
c© 2009

Christopher Peery

ALL RIGHTS RESERVED

WAYFINDER: A FEDERATED INFORMATION

SHARING AND MANAGEMENT SYSTEM

BY CHRISTOPHER PEERY

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Thu D. Nguyen

and approved by

New Brunswick, New Jersey

October, 2009

ABSTRACT OF THE DISSERTATION

Wayfinder: A Federated Information Sharing and

Management System

by Christopher Peery

Dissertation Director: Thu D. Nguyen

The decreasing costs of computing devices, increases in connectivity, and improved

performance are altering the computing environments of users in fundamental ways.

Users are no longer restricted to operating single devices in isolation but rather dis-

tribute and access information across many devices and develop complex sharing pat-

terns among groups of users. Unfortunately, while these trends are significantly en-

riching the user’s computing experience, they are also increasing the data management

overhead as users must explicitly reason about data placement and replication across

multiple devices and logical sharing groups.

In this thesis, we present the Wayfinder file system, which was designed to simplify

the management of information in federate systems. Wayfinder focuses on three crit-

ical management deficiencies present in most current federated environments: 1) the

lack of a consistent view for stored information across devices, 2) the required manual

management of replicated information, and 3) the limited search/ranking capability for

finding relevant information.

The Wayfinder file system addresses these deficiencies by providing three synergistic

abstractions: 1) a global namespace that is uniformly accessible across connected and

disconnected operation, 2) a user-centric automatic availability management to ensure

ii

continuous access to information based on data-centric availability policies, and 3) a

multi-dimensional fuzzy search framework that significantly improves relevance ranking.

We will show that these abstractions simplify the management burden by requiring users

to reason only about the data and its properties while ignoring the underlying physical

complexities of the system.

Underlying all three abstractions is a common implementation layer that adheres

to three principles. First, any subset of nodes in a Wayfinder community can interact

normally when they are interconnected, regardless of the membership of the subset.

Second, all protocols and interactions are tolerant of a weakly consistent model allowing

them to suffer unexpected devices departures. Finally, devices are assumed to be owned

by specific users and so should prioritize the needs of their owners in the presence of

resource constraints, while using excess resources to benefit the community as a whole.

iii

Acknowledgements

During my time at Rutgers I have had the pleasure of interacting with an amazing

group of individuals. Two people in particular stand out; my wife, Sharon, and my

advisor, Prof. Thu Nguyen. Sharon has been a unwaivering source of encouragement

and support in my life. This thesis might not have been completed if not for her love and

endless confidence in me. Thu has stuck with me through the years and continuously

challenged me to do my best. This thesis is a testimony to his patience and to the

many things I have learned from him. I thank them both for all they have done for me.

I also thank all the members of Panic-Lab and Dark-Lab, past and present; Matias

Cuecna Acuna, Kiran Nagaraja, Xiaoyan Li, Kien Le, Wei Wang, Tuan Phan, Taliver

Heath, Eduardo Pinheiro, and Fabio Oliveira. You made being at the lab a memo-

rable and culturally enriching experience. Our friendships, lab discussions, and many

experiences allow me to look back at my time at Rutgers with fondness and laughter.

I thank the other professors I have had the privilege of working with; Prof. Rich

Martin, and Prof Amélie Marian, for their instruction and advice.

I thank the staff of the Computer Science Department and LCSR for helping me

solve the countless the problems that graduate students have to deal with.

I thank the “Argentinian Gang”; Matias, Cecilia, Miguel, and Silvia. Your friendship

and acceptance will never be forgotten.

I thank my friends outside of Rutgers; Foster, Courtney, Rita, Dave, and Frank.

You provided me with an escape, with words of encouragement, and with friendship

when I needed them most.

Finally, I thank my parents to whom this thesis is dedicated. They have always

been there for me and I owe much of who I am and where I am today to them.

iv

Dedication

To my parents, who were the first to teach me the value of an inquisitive mind.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . xi

List of Figures . xiv

1. Introduction . 1

1.1. Motivation and Goals . 1

1.2. Thesis Structure . 3

1.3. Contributions . 11

2. Background and Related Work . 12

2.1. Federated Systems . 12

2.2. PlanetP . 14

2.3. Distributed File Systems . 19

2.4. Global Directory Structure . 21

2.5. Consistency Model . 21

2.6. Disconnected Operation . 22

2.7. Content-based addressing . 24

2.8. Personal Information Search . 24

2.9. Distributed Information Search . 25

2.10. Availability . 26

2.11. Cooperative Caching . 28

vi

3. Federated File System . 29

3.1. Overview . 29

3.2. Example Usage . 31

3.2.1. Usage Example: Wiki . 31

3.2.2. Usage Example: Shared Search Structure 32

3.3. File System Design . 34

3.3.1. Files . 36

3.3.2. Directories . 39

3.4. Caching . 40

3.5. Consistency Model . 41

3.5.1. Files . 42

3.5.2. Directories . 44

3.6. Security Model . 46

3.7. Storage Tables . 48

3.7.1. Metadata Table . 48

3.7.2. Structural Table . 49

3.7.3. Content Table . 49

3.8. Performance . 50

3.8.1. Experimental Setup . 50

3.8.2. Micro Benchmark . 50

3.8.3. Macro Benchmark . 52

3.8.4. Scalability and Robustness . 54

3.8.5. Storage Overhead . 55

3.9. Summary . 56

4. Automatic Availability Management . 57

4.1. Replication Algorithm . 58

4.1.1. Terminology and Assumptions 61

4.1.2. Replication . 62

vii

4.1.3. Eviction . 64

4.1.4. Updates . 65

4.1.5. Estimating Online Availability 67

4.1.6. Algorithm Implications . 67

4.2. Implementation . 69

4.2.1. Locating Replicas . 69

4.2.2. Maintaining Node Groups . 69

4.2.3. Tracking Device Online Availability 69

4.2.4. File Tagging . 70

4.2.5. Maintaining Offline and Ownership Availability 70

4.2.6. Maintaining Online Availability 71

4.2.7. Eviction . 72

4.2.8. Updates . 72

4.3. Evaluation . 72

4.3.1. Methodology . 73

4.4. Online Availability for Creation and Write Bursts 74

4.5. Online Availability for a Collaborative Workload 76

4.6. Ownership Availability for a Collaborative Workload 82

4.7. CPU and Network Utilization . 83

4.8. Summary . 87

5. Single Node Multi-Dimensional Search 88

5.1. Introduction . 88

5.2. A Unified Multi-dimensional Scoring Framework 90

5.2.1. Query Model . 91

5.2.2. Scoring Content . 92

5.2.3. Scoring Metadata . 92

5.2.3.1. DAG Representation of Metadata Relaxations 93

5.2.3.2. Scoring Metadata Relaxations 96

viii

5.2.3.3. Aggregating Metadata Scores 97

5.2.4. Scoring Structure . 97

5.2.4.1. DAG Representation of Structure Relaxations 99

5.2.5. Aggregating Multi-dimensional Scores 100

5.3. Implementation . 101

5.3.1. Indexing Structures . 101

5.3.1.1. Metadata Index . 101

5.3.1.2. Structural Index . 102

5.3.2. Efficient Query Processing . 102

5.4. Experimental Evaluation . 104

5.4.1. Experimental Setting . 104

5.4.1.1. Platform . 104

5.4.1.2. Data Set . 104

5.4.1.3. Query Set . 105

5.4.2. Behaviors of Scoring Functions 106

5.4.3. Scores and Rankings for Approximate Answers 108

5.4.4. Impact of Flexible Multi-Dimensional Search 111

5.4.5. Impact of Multi-dimensional Scoring on Results 113

5.4.6. Query Performance . 115

5.4.7. System Scalability . 117

5.4.8. Storage Cost . 118

5.4.9. Comparison of Third Party Search Tools 118

5.5. Summary . 119

6. Federated Multi-dimensional Search . 121

6.1. Design . 123

6.1.1. Global Indexes . 123

6.1.2. Query Evaluation . 125

6.1.2.1. Node Selection . 125

ix

6.1.2.2. Query Evaluation . 126

6.1.2.3. Result Merging . 126

6.1.3. Partitioned Federated Search . 127

6.2. Implementation . 128

6.2.1. Maintaining Global Indices . 128

6.2.2. Summary Sizes . 129

6.2.2.1. Data Sets . 129

6.2.2.2. Lossless Summary Compression 130

6.2.2.3. Lossy Summary Compression 134

6.3. Experimental Evaluation . 137

6.3.1. Experimental Setting . 138

6.3.1.1. Platform . 138

6.3.2. Federated Query Evaluation . 138

6.3.2.1. Federated System . 139

6.3.2.2. Data Replication . 139

6.3.2.3. Queries . 140

6.3.2.4. Federated Query Performance 141

6.3.2.5. Stability . 146

6.3.2.6. Global Index Maintenance 149

6.4. Summary . 151

7. Conclusions . 153

References . 159

Vita . 165

x

List of Tables

3.1. Micro-benchmarks for NFS operations in both single and multi-node communi-

ties while using both persistent and in-memory storage for the tables outlined in

Section 3.7. The benchmark comprises a set a user coming into a community,

creating numerous files and directories at different locations, writing to them,

and then deleting them. 51

3.2. Results of the Modified Andrew Benchmark using the Linux NFS, original

JNFSD and the JNFSD linked with Wayfinder running in isolation and

in a community of 12 nodes. 53

4.1. The median time required for Wayfinder to achieve the target online

availability TOAC for a group of newly created files. 75

4.2. Percentage of CPU utilization while running Wiki Trace in both the HW

and CO environments with different restrictions on the size of the local

hoard. 84

4.3. Count of operations performed by replication algorithm during the Wiki

Trace. Replication Request is the actual sending of a replication request

from a champion. Download Attempt is the number of actual file down-

loads that occurred as a result of either an access or replication request.

File Eviction is the number of performed replica evictions. 84

xi

4.4. Breakdown of the amount of data written during the wiki experiment for

different environments. Included is the total amount of information writ-

ten (in MBs), the average write bandwidth (in KB/s) for devices and a

breakdown (in MBs) of the total bandwidth into replication related ac-

tivities. Content is the retrieval of remote file content. Search is the

amount of information exchanged when during distributed query process-

ing in PlanetP. Replication is the amount of information sent to issue

replication requests. 85

5.1. The rank of a target file—the novel Sea Wolf by Jack London—returned

by a set of related queries. In the presences of ties in the relevance scores,

the highest rank the target file could have is given. The queried dimen-

sions include Content, Type (Metadata), Date (Metadata), and Struc-

tural. The initial content query Q1 provides the set C containing the 4

query terms {jack, london, sea, wolf}. Structural values are abbreviated.

The complete path of our target file is /Personal/Ebooks/Novels/JackLondon/.

Queries which contain a “*” in the first column represent those in which

the target file would not be considered as a relevant answer given today’s

typical filtering approach. 111

5.2. Query performance for various single- and multi-dimensional queries for

both in-memory indexes/tables and persistent indexes/tables. k is set to

20. 115

6.1. Summary of the data sets used in our evaluation. Presented are summary

statistics for metadata, content, and structural information. 129

6.2. Table showing the number of hashed values that experienced collision

when encoding structure and content values using an MD5 hash and trun-

cating it to various sizes. 132

xii

6.3. The space requirements for encoding the summaries of the data sets out-

lined in Table 6.1 under various schemes. Naive refers to using 4 bytes

per integer value and a tuple (size, value) for any strings. Hash encodes

textural information as a hash value of the specified size. Byte refers to

byte-aligned encoding and Gamma to a gamma encoding. For rows iden-

tified by two encodings (i.e., Byte, Gamma), the first is the encoding of

the key value and the second the corresponding file count for each tuple

in the summary. All versions use a run-length encoding on the key values.134

6.4. The number of unique keys for (a) modification times and (b) file sizes

that results from aggregating the unique values of the respective tables

into increasing larger ranges. 135

6.5. The number of bytes needed to encode the date and file size information

for several data sets after tables values have been aggregated. The percent-

age after each number is the percentage of reduction achieved compared

to the encodings given in Table 6.3. 136

6.6. The number of valid queries generated for each category of files. Shown

are the number for exact queries. If the number of relaxed queries differ,

the difference is given in parenthesis. 140

6.7. Summary of the changes in rank of the target files used in the construction

of our set of queries when comparing a single node (SE) query evalua-

tion to that of a federated system (FE) broken down by query categories.

Shown is the behavior for the set of exact queries (a), relaxed queries (b),

and exact queries using an aggregated index(c). Improved represents that

the target file attained a higher rank, for Worsened it attained a lower

rank, for Unchanged the rank was the same, and Not Found represents

that the target file was not found in either setting. For these queries, K

was set to 20. 148

xiii

List of Figures

2.1. Layout of storage system in PlanetP. Shown is the distributed table and

the gossip-based communication component for a single running instance.

The latter component ensures that any updated information is received

and shared with the rest of the community. 16

2.2. Layout of the storage system in PlanetP which has been altered to al-

low multiple user-defined global tables and to permit the storage of XML

documents. Each table is designed to store a particular type of XML doc-

ument. Remote summaries are passed, and stored, only between tables of

the same type. 17

2.3. Example XPath query to retrieve information from PlanetP. 18

3.1. Wayfinder dynamically constructs a shared namespace across any set of

connected devices by merging their local hoards. This figure shows 5 nodes

originally being connected so that the shared namespace is the merged

view of hoards H1 through H5. When the community is partitioned into

3 connected subsets, Wayfinder maintains a merged view for each subset.

When the subsets reconnect, Wayfinder dynamically re-merges the shared

namespace. Shaded boxes indicated connected partitions. 30

3.2. An overview of Wayfinder’s architecture across two devices each with

their own local hoards (denoted by cylinders). Portions of the global

tables for storing metadata and structural information are shown with

their relationship to information in the local hoard. 36

3.3. XML encoding of the metadata portion of a waynode representing a file. 37

3.4. XML encoding of the content summary of a waynode representing a file. 37

3.5. XML encoding of the structural portion of a waynode representing a file. . . . 38

xiv

3.6. Example of a file’s history vector containing information for several ap-

plied and conflicting updates. 43

3.7. (a) Time required to scan a namespace plotted against community size.

(b) Scan time in the presence of DHT failures. X-axis indicates a se-

quence of successive scans with solid vertical lines denoting a scheduled

failure point. The label associated with each solid line indicates the num-

ber of nodes involved. Dashed lines represent the minimum and maximum

times across twelve samples. 55

4.1. (a) Basic and (b) modified replication algorithms for a user u and his

device set. Files in Ownu must be stored in the PSpace of at least one

device in DSu (or just the champion (b)). Files in WSu are stored in the

PSpace of all devices in DSu. Each device in DSu (or just the champion

(b)) then pushes files in Ownu to the CSpace of other devices in the

community. 60

4.2. The availability of a file (both as a percentage and the number of nines)

plotted as a function of the number of replicas placed on devices with equal

availability. Each line represents a specific device availability. Figure (b)

is an enlarged view of the upper-left region of Figure (a). 67

4.3. Average file online availability, average version availability (for the latest

version of each file at each instant in time), and minimum availability

plotted as functions of experiment time for (a) CO with infinite space,

(b) HW with infinite space, (c) CO with constrained space, and (d) HW

with constrained space. 78

4.4. Division of files between PSpace and CSpace for (a) CO with infinite

space, (b) HW with infinite space, (c) CO with constrained space, and

(d) HW with constrained space. 79

4.5. Online version availability for a representative file from HW with infinite

space. 81

xv

4.6. Ownership availability of a representative file vs. experiment time for

the HW environment with (a) infinite space and (b) constrained space.

Figures plot the number of replicas contained within a user’s device set

and how many of these replicas are up-to-date given changes performed

by the user (Group Access) and remote changes (Remote Access). . . . 83

5.1. Fragments of the indexing DAGs for (a) file type (extension) metadata,

and (b) file date metadata. Both represent portions of the complete DAGs

with several levels removed for simplicity of presentation. For file dates,

we present the length of the relaxation intervals at each level of the DAG

on the box at the far right. Highlighted nodes indicate the sequence of

relaxations for a file type query of “.cpp” and a date query of “3:00 PM

on Feb. 5, 2006” . 93

5.2. Fragment of the indexing DAG for file sizes. The DAG spans the range of

file size up to 8 MB. Portions of the DAG have been removed to simplify

the presentation. Shown are the branches associated with files size of 16

bytes and 512 KB. Dashed lines represent locations where several nodes

have been removed for space considerations. Highlighted nodes indicate

the sequence of relaxations for a file size query “512 KB”. 94

5.3. The structure DAG for the structural query condition Personal/Ebooks/JackLondon.

Solid lines represent parent-child relationships. Dotted lines represent

ancestor-descendant relationships, with intermediate nodes removed for

simplicity of presentation. 99

5.4. Relevance score plotted as a function of ranking for (a) four content

queries, (b) three structure queries, and (c) three size metadata queries. 106

5.5. Score (a-b) and rank (c-d) of a target file returned as a result of a constant

2-dimensional query as the file is relaxed away from the query conditions

across the two query dimensions. Score and rank of the same file target

file plotted for a content-only query (e) and a structure-only query (f). 109

5.6. ρmin value for various multi-dimensional queries as a function of k. . . 114

xvi

5.7. (a) The mean time for queries targeting email and documents plotted as

a function of the data set size. (b) CDF of the total query time for all

queries targeting email and documents. k is set to 20. 116

5.8. CDF of the total time for evaluating queries for different values of k. . . 117

6.1. (a) Equation for computing Inverse Document Frequency (IDF) and (b)

a plot of this function as the value of T increases with a value of 1000

for N . 124

6.2. The three stages of compressing an index/table summary (a) using a

run-length encoding (b) on index/table values followed by either a (c.1)

byte-aligned encoding scheme or (c.2) gamma encoding scheme. For the

byte-aligned encoding, the underlined bits indicate (in binary) how many

bytes are used. 131

6.3. Distribution of scores returned when querying for files having size of 1

KB under different levels of aggregation. Base represents no aggregation,

Small Aggr. represents using a 32 bytes factor and Large Aggr. using a

1024 byte factor. 137

6.4. A pictorial representation of how scores are assigned when Global IDF

Summary indexes are aggregated. Shown is a sequence of file sizes along

a range (middle), the span of several relaxation steps over these files sizes

(top), and the aggregation intervals for a factor of 32 bytes. The labels

S1, S2, S3 explicitly identify three specific sizes. 138

6.5. (a-b) The Result Overlap and (c-f) normalized cumulative ranks of any

missed files when comparing the set of exact queries evaluated on a single

node (SE) to an evaluation in a federated setting (FE). For the cumula-

tive miss rate, every fifth rank is denoted by a darkened bar. 142

6.6. (a) The Result Overlap and (b) normalized cumulative ranks of any

missed files when comparing the set of relaxed queries evaluated on a

single node (SE) to an evaluation in a federated setting (FE). For the

cumulative miss rate, every fifth rank is denoted by a darkened bar. . . 144

xvii

6.7. Result Overlap when comparing the results of query evaluation on a single

node (SE) to the results of evaluation in a federated setting (FE) in which

the global indexes have been aggregated. Aggregation is done based on a

small configuration and queries used are exact. 146

6.8. Result Overlap for (a) content-only and (b) multi-dimensional when com-

paring the results of query evaluation on a single node (SE) to the results

of evaluation in a federated setting (FE) for various values of k. 147

6.9. Number of global index values that changed daily for content (a) and

metadata (b) a period of 19 days. Changes are computed on a daily

basis. Date, Size, Directory indicate changes to specific dimensions. File

represent the number of files that were either added or removed. At the

start of the trace there are approximately 4,696,362 terms in the content

table. 149

6.10. Number of global index values that changed daily for metadata during a

period of 126 days (a) and a subset of this trace spanning 30 days (b).

Changes are computed on a daily basis. Date, Size, Directory indicate

changes to a specific dimension. File represent the number of files that

were either added or removed. 150

xviii

1

Chapter 1

Introduction

1.1 Motivation and Goals

Information management concerns the collection, organization, re-distribution, and

maintenance of information [39]. Since most information today is stored digitally, com-

puting devices play a significant role in performing these tasks. As computing devices

have evolved, so have these management tasks; in the process becoming increasingly

more complex. In the 80’s, the PC was the primary tool by which users managed infor-

mation. This continued in the 90’s with the advent of the World Wide Web providing

users with access to previously unheard of amounts of new information. In the last ten

years, single PCs have been replaced by sets of devices, many of which are mobile. This

evolution has lead to changes in information management; it has become more difficult.

Difficulties arise from several on-going trends in the computing world that are af-

fecting how users manage information. The first of these trends is the decreasing cost,

and increasing size of storage. This is providing users with access to larger amounts

of space to store information. This space is subsequently being used and exhausted,

as is evident by the continuing market for larger storage disks. The second trend is

that devices are becoming increasingly connected, allowing for both increased access to

external resources and interactions with remote entities. Third, due to the decreasing

cost and size of computing devices, the number of devices per user is increasing. It is

quite common today for the average user to own, or have access to, several different

personal computers throughout a given day (at home or at work) and to have several

smaller devices (such as PDA or phones) in their personal procession. Each of these is

capable of storing and accessing information. Finally, computing devices have become

2

pervasive in our society.

When viewed together, these trends create a challenging scenario for managing infor-

mation. Despite improvements in connectivity, users often take advantage of increases

in storage to replicate portions of their working environments locally. In doing this,

users have increased responsiveness during connected operation and ensure availability

during disconnected operation at the expense of manually tracking and maintaining

potentially large numbers of replicas. Further, accessing and storing large amounts of

information exacerbates the difficulty many users experience in recalling details concern-

ing information (i.e., where is file “report.txt” stored). This is even further complicated

when information resides across multiple devices. Also, while network connectivity is

improving, it is not universal. Mobile devices may go offline for a number of reason (i.e.,

lack of signals, power conservation, or security concerns) making disconnected operation

and changes in online membership common.

Finally, individual users are rarely online in isolation; the sharing of information has

become a social activity. Large scale file sharing networks [31, 43] are quite popular.

Many popular online services (i.e., YouTube [81], Flickr [27], Myspace [53]) cater to

the desire to share certain types of information. Most instant messaging have features

to allow the pair-wise exchange of files. The sharing of information is becoming an

increasingly complex activity and can involve groups, or federations, of users.

We believe that small to medium size (10s to 100s of nodes) federated communities

represent the most common and interesting targets for studying how to improve infor-

mation management. Aside from several well-known P2P communities, which arguably

have a very simple model of information sharing, no large scale systems have been de-

ployed or are actively in use. We feel that smaller communities provide a more suitable

environment for fostering complex interactions and sharing patterns. This could be

a result of participants knowing each other personally or that the information being

shared is very specific and thereby only attracts a limited interest group (i.e., files being

shared at a workplace or amongst members of a family).

In such federated environments, a user’s computing environment is sufficiently frag-

mented to produce three management deficiencies. First, as the same information may

3

be potentially named differently across devices (i.e., a file system structure on a machine

running a Windows operating system and on a Linux-based operating system differ),

there is no consistent manner for accessing and storing information. Second, replica

management requires users to manually reason about the properties of information (i.e.,

its version and the flow of updates) and its location to ensure its availability. Finally,

searching for information in a distributed computing environment is difficult as search

tools are often device specific. Further, these tools rely on content-centric queries, ig-

noring the large amount of structure and meta-data stored within file systems that

could be used to improve the ranking of relevant results.

1.2 Thesis Structure

In this thesis, we present the Wayfinder file system which aims to simplify the manage-

ment of information in federate systems by providing the tools that will enable users

to reason about the data and its properties while ignoring the physical complexities

of the underlying environment. While this goal is neither new or unique to our work,

our contribution lies in addressing it in a federated system of personal devices centered

around information sharing. As such, we assume that devices may reside in separate

administrative domains and so may act with relative autonomy; including leaving the

community at any time. Further, we hold that personal devices should, as their pri-

mary function, prioritize the needs of their respective owner over that of the community.

However, engaging in collaboration and sharing on a communal level remains beneficial.

Thus, the salient feature of this thesis is providing users with a single available view of

their entire computing environment while accounting for the autonomous behavior of

nodes and balancing the individual needs of users on their personal devices with that

of the communal good.

We address the above mentioned deficiencies through three synergistic abstractions.

These abstractions simplify the management burden by requiring users to reason only

about the data and its properties while ignoring the underlying physical complexities

of the system. The abstractions are: 1) a global namespace that is uniformly acces-

sible across connected and disconnected operation – ensuring a consistent naming of

4

information, 2) a user-centric automatic availability management component to ensure

continuous access to information based on data-centric availability policies – removing

manual overhead of replica placement and management, and 3) a multi-dimensional

fuzzy search framework that significantly improves relevance ranking – allowing ex-

pressive search queries over a distributed computing environment. Their combination

allows a computing environment to appears as a single coherent and available resource

to a user.

As part of this thesis, we will show that these abstractions can be built using a weakly

consistent distributed query-based object store [16] that provides only probabilistic

guarantees. With this object store, remotely stored information is retrieved by posing

appropriate queries. It is a further goal of this thesis to demonstrate that this model of

storage can be employed in a federate system for the purpose of supporting a variety

of useful abstractions.

The thesis consists of four main parts as follows.

Federated File System

We begin by addressing how to improve the storage and organization of information

in federated systems. Motivation for various approaches can be found in the example

of the World Wide Web. The success of web search engines such as Yahoo [79] and

Google [32] demonstrate the usefulness of search technologies for finding information.

The usefulness of these tools, however, is dependent on having a set of useful terms

with which to search. In contrast, several online services exist, such as DMOZ [23] or

Yahoo groups [80], that classify information in large manually constructed namespaces.

These allow users to browse for unfamiliar information by utilizing a pre-constructed

ontology; alleviating the need to construct a query. The web is therefore an example

where both browsing and searching are useful for the successful management of large

volumes of information.

Similar circumstances to the Web exists in a federated community where a majority

of the shared content will be residing on devices belonging to other users and possibly

be unfamiliar, providing motivation to leverage both search and browsing to organize

5

information. In particular, we investigate creating a collaborative organizational struc-

ture that will provide a consistent browsing experience regardless of which devices a

user is on. Further, given the large amounts of information present, this structure

will leverage search technologies to automatically place new information into relevant

portions of the structure.

We propose two mechanisms as part of the Wayfinder file system to address these

issues. The first mechanism is a unified globally accessible namespace that allows

device-independent browsing of all data in a connected community. Our approach is

novel in that the namespace is constructed by merging directories with the same name,

but located on different devices, into a single directory viewable across all the devices.

This produces a single coherent structure that presents a shared view of all data stored

across any set of connected nodes. By using this merge approach, the global namespace

is able to expand and contract smoothly on node arrivals and departures. Critically, this

permits the namespace to be uniformly accessible across connected and disconnected

operation of devices. At the extreme, disconnected operation simply means that the

namespace will include only the local hoard. Additionally, the community may, at any

point, split into multiple connected subsets, each with its own shared namespace, and

later rejoin to recreate the entire global namespace.

Such a namespace reduces data management overheads by removing the need for

users to explicitly reason about what replica resides on which device. Finally, in natu-

rally encompassing partitioned and disconnected operation users are provided with some

continuity in how their data may be accessed irrespective of their connected state.

The namespace, however, presents a fundamental trade-off; allow users to continue

accessing information regardless of their connected state versus the consistency of ac-

cessed information. Partitioned and disconnected operation imposes limitations on any

consistency of replicated information. The novelty of our work is that we present a

unified model that explores this trade-off across the full range of connected states a

user may experience; complete disconnection, partially connected, and fully connected.

This ensures a browsing experience that will always be similar, albeit the amount of

available information will change.

6

The second mechanism is search queries that are embedded persistently into the

global namespace in the form of Semantic Directories [30, 33]. These are directories

that have associated content queries. The queries are evaluated over the shared content

of the federated system and the directory is populated by files that are returned as

results. When re-evaluated periodically, these directories allow a portion of the global

namespace to become an active organization structure by automatically creating file

bindings for new incoming content. Our work explores providing this functionality in

a federated settings.

An evaluation of a prototype implementation shows that our method of dynamic

namespace construction does incur some overhead. To minimize this, we show how to

leverage a storage paradigm from the Peer-to-Peer community towards constructing a

communal cache, specifically we use a light-weight Distributed Hash Table [67] (DHT).

We feel that given the benefits of the system, that the observed overheads are

tolerable. In fact, we have found the device-independent naming of files provided by

the global namespace to be quite useful. This feature assisted in greatly simplifying

the designs presents in the later chapters of this dissertation. However, we also found

that various file system operations, such as deleting files and directories, become more

complicated.

Automatic Availability Management

We then turn to addressing issues concerning the availability of information in fed-

erated information systems. Increasingly, users are accessing their computing environ-

ments from multiple personal devices. Among these devices, users maintain multiple

copies of data to increase responsiveness during connected operation and availability

during disconnected (or low-bandwidth) operation. Users also create replicas of impor-

tant information stored remotely to guarantee continued personal availability; a sort

of personal back-up. Furthermore, replicas of files may be created, either manually or

automatically, to ensure that they remain online for the benefit of the federated com-

munity. Each of these scenarios requires the creation of replicas to improve availability,

albeit the placement and number of replicas may vary. Each fundamentally raises the

overheads of data management as users are required to create and track data replicas

7

across numerous devices and often under different policies.

In an ideal situation, we would replicate content across these devices so that any

shared content would be accessible from any device at anytime with high probabil-

ity, regardless of the device’s connection status at the time of an access. This device

and connection transparency would allow users to avoid the need to reason about the

placement of data replicas on specific devices.

This ideal situation is impractical. We instead propose a novel unified availability

model which differentiates between three types of availability; online, offline, and owner-

ship availability. The first represents a communal availability (i.e., being able to access

information when connected) while the latter two are forms of personal availability

(i.e., ensuring that information can be accessed by a user on their devices). We argue

that in addressing these three availabilities, we can reasonably approximate the ideal

situation by ensuring availability across periods of connected, temporary disconnected,

and permanent disconnection operation.

We also propose that in a federated system composed of personal devices, that a

replication algorithm should allow devices to prioritize the availability needs of their

owners over the needs of the community. The primary use of a personal device is to store

content that the user cares about (i.e., content he is likely access in the near future)

and content that the user owns (i.e., content he would want in the case of permanent

disconnection). Failure to store this basic information may cause problems and result

in the user leaving the community out of frustration. Nevertheless, it is beneficial for

devices to collaborate to maintain high online availability for all shared content because

this allows all users to find new content of interest to them as well as easy access to

content that they have not used in a long time.

We present the design of a single replication algorithm that achieves all three types

of availability while prioritizing the needs of individual users on their personal devices.

We present an implementation of this algorithm as part of the Wayfinder file system.

Coupling our replication algorithm with the Wayfinder global namespace removes the

need for users to reason about the placement of replicas for both locating data and

ensuring data availability. The burden of data management for each user is thus reduced

8

to reasoning about what availability properties he desires for specific portions of the

global namespace.

Our evaluation shows that with a sufficient amount of communal storage, the repli-

cation algorithm is able to efficiently achieve any specified availability targets. However,

if space is sufficiently constrained, nodes enter a non-cooperative mode of operation in

which they prioritize the needs of their owners before that of the community. The results

is that personal availability targets are meet, while attaining any degree of communal

availability is a mere side-effect.

Single Node Multi-dimensional Search

We then consider methods for improving search techniques. Despite this disserta-

tion’s focus on federated systems, we first focus on addressing this topic in a single node

setting, addressing deficiencies of many contemporary search tools. Applying this work

to a federated setting is next.

There is an explosion in the amount of data users access and store. Beyond the

content of a file, file systems provide potentially useful metadata that can assist users

in searching. There is a need for powerful search tools to access often complex data

in a simple and efficient way. Numerous third-party search tools have been developed

to perform keyword searches and locate personal information stored in personal infor-

mation management systems such as the commercial file system search tools Google

Desktop [29] and Spotlight [66]. However, these tools usually index text content, allow-

ing for some ranking on the textual part of the query—similar to what has been done

in document search in the Information Retrieval (IR) community—but only consider

structure (e.g., file directory) and metadata (e.g., date, file type) as filtering conditions.

We argue that this approach is insufficient in many query scenarios and believe that

allowing flexible conditions on structure and metadata can significantly increase the

quality and usefulness of search results in many search scenarios. The challenge is then

to adequately score the search results by taking into account flexibility in the textual

component together with some flexibility in the structural and metadata components

of the query. Once an adequate scoring mechanism is chosen, efficient algorithms to

identify the best query results, without considering all the data in the system, are also

9

needed.

To this end, we present a novel approach that allows users to provide fuzzy conditions

on three query dimensions: content, metadata, and structure. We describe individual

IDF-based scoring approaches for each of these dimensions (scoring of the structural

dimension was done outside the context of this thesis and we present only a brief

overview) and present a unified scoring framework which aggregates the individual

dimensions scores to produces a single relevance score per file.

We perform an evaluation using a real-world data set. We show that our approach is

able to provide relevant results for query situations that are difficult for contemporary

search tools. We demonstrates that our IDF-based scoring approach provides a mean-

ingful distribution of scores that captures the specificity of each dimension. We also

show that our multi-dimensional score aggregation technique preserves the properties

of individual dimension scores and has the potential to significantly improve ranking

accuracy.

Multi-dimensional Federated Search

To complete our work in developing improved search techniques, we turn to applying

our multi-dimensional search framework to a federated setting. In this setting, our

approach to fuzzy multi-dimensional score evaluation is complicated by the required

content and metadata information being distributed across the community and the

lack of any centralized indexes.

It is our goal to allow a user to search the shared content of a federated system in

the same manner that they would perform a local search on a single node. We seek

an approach that can be integrated with all of the previously outlined work and design

goals (i.e., file system and availability model). This offers a clear management benefit

when coupled with the global namespace of the Wayfinder file system; users will have an

improved method for locating relevant information remote nodes (or just within their

own device set) while not needing to concern themselves with the physical location of

the actual data.

We attempt to employ a standard approach to distributed query evaluation. Given

a query Q, we first choose a set of candidate nodes that may contain data relevant to Q.

10

Q is then sent to this set and evaluated locally. Any results are returned and merged

to produce the final set of relevant answers. The difficulty lies in the computation

of the relevance scores during query evaluation. No single node is likely to have a

complete snapshot of the shared content and, by association, all of the necessary scoring

information. Thereby, locally independent query evaluation across nodes is likely to

results in variety of scores, possibly for the same data.

Further, the computation of any IDF-based relevance scores is complicated by the

existence of distributed replicas. In the Wayfinder file system, replicas can be created

either explicitly through common file system operations or implicitly by the action

of our automatic availability framework. In either case, this can result in an uneven

number of replicas for individual files, resulting in relevance scores being skewed.. Any

scoring approach must either account for these replicas or be tolerant of them. In this

thesis, we have opted for the latter approach by treating each replica as a separate file.

We hypothesized that this will have minimal effect on the quality of query results. Our

evaluation confirms this.

We propose an approach where each queryable node maintains a global index of

approximate scoring information. More specifically, each node individually computes a

summary of its local scoring information in a replica-oblivious manner; that is without

information to discern if files are accounted more then once across several nodes. These

summaries are then communicated, collected, and aggregated throughout the commu-

nity. Query evaluation then utilizes this global index when computing relevance scores.

Intuitively, if all nodes have the same global index, any compute scores should then be

comparable thereby allowing distributed results to be merged meaningfully.

Our work investigates approaches to efficiently compute the necessary indexes and

to quantify the impact that skews in file replication may have on the results of queries.

For the latter aspect, our evaluation consists, in part, of a comparison between evaluat-

ing queries in a federated and single node environments. The results demonstrated that

using global indexes alters the final results only slightly, with changes being concen-

trated among the lower ranked files. Further, we demonstrated that a simple encoding

and aggregation techniques can significantly reduce the communication overhead of

11

exchanging summary information without greatly affecting results.

1.3 Contributions

The contributions of this thesis are as follows:

• We studied the viability of using a loosely consistent query-based data store for

building abstractions and tools for managing information in a federated environ-

ment.

• In Chapter 3, we present a design for a federated file system that has among

its features a global unified namespace constructed dynamically by merging the

information stored on individual devices. This namespace provides location inde-

pendent naming of files and ensures continuity in how information is accessed by

providing a uniform view of information across changes in a device’s connectivity

status.

• In Chapter 4, we present a design for a three part availability model to capture the

availability needs of a community and its individual users. We implemented and

evaluated a single replication algorithm that achieves this model while prioritizing

the specific needs of users on their personal devices.

• In Chapter 5, we present a design and evaluation of a unified multi-dimensional

scoring framework for a single node. This framework allows users to provide

flexible query conditions on several dimensions of information relating to files.

• In Chapter 6, we present a design and evaluation of an extension to our multi-

dimension scoring framework to allow distributed query evaluation over the shared

content of a federated community.

• We implemented and evaluated all of our ideas and designs in a prototype imple-

mentation of a federated file system called Wayfinder.

12

Chapter 2

Background and Related Work

In this chapter, we begin by presenting a background discussion of federated systems

and a federated toolkit that was used in our work. We then conclude with a discussion

of related work in areas relevant to this thesis.

2.1 Federated Systems

Generally speaking, federated systems are collections of distributed computing devices

located across administrative domains. Participation within these systems provides ac-

cess to resources, and/or information, being shared through the collaborative efforts of

the individual member devices. This access is often provided through a unified abstrac-

tion (i.e., a global namespace in the case of a federated file system) which attempts to

hide the complexities of the underlying distributed environment.

Federated systems are distributed systems with the following characteristics. First,

each device contributes local resources to be used by the system. These resources are

shared by integrating them as part of a globally unified abstraction which is accessible

to all devices. This is in contrast to a system in which devices obey a strict server-client

model (e.g., an NFS file system) or systems in which resources are partitioned (e.g.,

multi-tiered web-server).

Second, the members of a federated system are relatively autonomous with regards

to their actions and local resources. Devices may reside in separate administrative

domains, be geographically distributed, or may simply not be very dependent on one

another. In this regard, these systems distinguish themselves from tightly coupled

distributed systems (i.e distributed databases).

13

Third, interactions between individual devices are governed by a set of communal

protocols. A device’s participation in the system often requires adherence to these

protocols which govern per-device behavior and inter-device communication.

Finally, the dynamics of federated systems are influenced by external factors. Ex-

ternal incentives for participation in the system (e.g., the desire to share information

or job requirements) encourage a majority of the users to allow their devices to remain

actively involved. This helps avoid wide spread “free-loading” which is one form of

a common dilemma encountered in many P2P systems known as the “Tragedy of the

Commons”. This dilemma argues that a shared, yet limited, resources can be destroyed

if all users act of their own self-interests, even if its destruction is not beneficial in the

long term. This is avoided through external relationships (e.g., friendships and occu-

pational) that may influence the resource dynamics by imposing policies or rules not

articulated in any protocol. For example, users participating in federated file systems

may agree on a structure for a shared global namespace. While not needed for proper

operations, the alignment of these external factors typically help to improve the overall

user experience.

In this thesis, we are specifically targeting federated systems that allow sharing

of information within a community of users. It is our belief that the dynamics of

sharing information on a large scale in this setting is poorly understood. Aside from

several well-known peer-to-peer (P2P) communities (both past and present) no large

scale systems have been deployed or are actively being used by the general public.

Arguably, the reasons for the large size of these P2P systems (i.e., tens of thousands

of users) is the simple data model (publish and download), users’ tolerance of minimal

guarantees (both for performance and the availability of information), and the nature

of the information being shared (i.e., illegally distributed content). These factors align

themselves to create an environment in which popular content is heavily replicated and

easy to find. Rare content requires more effort to locate but the reward of obtaining

a copy for free is often sufficient incentive. We believe such environments are poorly

suited for users with complex information management needs.

Instead, we specifically focus on communities whose sizes range from tens to several

14

hundred devices. It is our belief that information exchanges in these smaller communi-

ties are likely to be more complex and diverse, and hence more interesting. Examples

of such communities may include:

1. Social groups to share information among family and friends.

2. Company infra-structure for sharing information between employees.

3. A single user desiring to share information among their personal devices.

In addition to the community size, we make several assumptions about our target

environments that affect the design choices presented in later chapters. First, we as-

sume that a community’s membership is relatively stable over the short-term. We do

anticipate changes in membership, but given our target size and the motivations for

forming communities, it seems unlikely that large changes will occur in a short period of

time. Second, devices may change their connectivity status at any time and users may

continue to use a device regardless of its connectivity state. Finally, we expect that the

average user will have multiple personal devices and may use them all to participate in

a federated system; the behavior and information on these devices will exhibit strong

correlations.

2.2 PlanetP

In this section we present the PlanetP toolkit [16] which provides the foundation for

the construction of our federated communities. We present only the features of PlanetP

that are central to the design choices made in this thesis. To this end, PlanetP provides

four useful abstractions; a gossiping-based communication module [16,21], a communal

membership directory, an data storage system and distributed query processing engine,

and a lightweight active Distributed Hash Table (DHT). Previous work [16] has shown

that these abstractions are sufficient for building useful federated systems based on

weakly consistent global state. We will discuss each abstraction in turn.

PlanetP uses a gossip-based communication protocol [16] to replicate and maintain

shared state (see below) across all members of a community. This protocol includes

15

both anti-entropy, where two devices perform a complete information exchange, and

rumoring, where a device push out new information. While the choice of the communi-

cation partners is random, gossip-based communication has theoretical properties that

allow information to reach a large portion of a community in a relatively short amount

of time.

To maintain a community, PlanetP supports a shared communal membership direc-

tory known as the Global Directory. This structure contains information about every

member of a PlanetP community. Each instance of PlanetP maintains a local version

of the Global Directory which is updated with new information as needed. For exam-

ple, suppose DeviceA detects that DeviceB has come online. DeviceA would update

its local global directory to show DeviceB ’s status as being online. The above men-

tioned gossip-based communication is then used to keep all the local instances of the

Global Directory consistent. Continuing with our example, all the other members of

the community would eventually learn that DeviceB is online.

PlanetP’s data storage system provides the abstraction of a distributed table. In

particular, this distributed table stores bindings of the form {k1, k2, ..., kn} → s, where

ki is a text key, s is a textual fragment, and we say that keys(s) = {k1, k2, ..., kn}. Re-

trieval of stored bindings is done in a device-independent manner by specifying queries

over the distributed table. These queries are comprised of text keys combined using

three operators, and (∧), or (∨), and without (−). For example, a query (“cat” ∧ “dog”

− “bird”) would retrieve the set {o | ({cat, dog} ⊆ keys(o)) ∧ ({bird} 6⊆ keys(o))}.

When a binding {k1, k2, ..., kn} → s is stored at a particular node, PlanetP actually

stores the information in a persistent local table. Associated with this table, PlanetP

maintains a summary table that stores a collection of summaries other nodes. Each

stored summary is obtained from a remote node and represents information about the

bindings stored locally on that node (i.e., the contents of the local table belong to its

instance of the distributed table). These summaries assist in identifying nodes that may

contain a bindings for a particular key. More specifically, given a key k, the summary

table can be used to determine the set of nodes that have at least one published binding

for a string s, where k ∈ keys(s). This table is replicated across the community and

16

Distributed Table

BloomFilter(UserA)BloomFilter(UserA)

Keys(SnippetS) � SnippetS

…
Keys(SnippetZ) � SnippetZ

Keys(SnippetX) � SnippetX

Inter-Node Gossip-Based CommunicationInter-Node Gossip-Based Communication

BloomFilter(UserRemote)BloomFilter(UserRemote)

PlanetP Instance - User A

{k 1, k2, … , kn},
SnippetI

{k 1, k2, … , kn},
SnippetI

UserC � BloomFilter(UserC)

UserB � BloomFilter(UserB)
…

Summary Table

Local Persistent Table

Figure 2.1: Layout of storage system in PlanetP. Shown is the distributed table and
the gossip-based communication component for a single running instance. The latter
component ensures that any updated information is received and shared with the rest of
the community.

kept loosely synchronize using PlanetP’s gossiping-based communication.

Given the these two tables (i.e., local and summary), (Figure 2.1), PlanetP answers

a query over the distributed table by first using the summary table to identify the subset

of remote nodes that contain keys relevant to the query and then communicating the

query to these nodes. Each target node then independently evaluate the query against

their local tables and return all matching strings to the querier.

The individual node summaries used in the summary table are implemented as

Bloom Filters [7]. A Bloom Filter consists of a finite sized bit vector and a set of

hashing functions whose ranges map to locations in the bit vector. Values are stored

by hashing them to locations in the bit vector using the set of hashing functions. The

bits at these locations are then set. Searching a Bloom Filter for a value proceeds

similarly except the bits are checked to see if they are already set. If all the necessary

bits are set, then a value may have been stored in the Bloom Filter. This process can

generate a result that is a false positive but never one that is a false negative. Bloom

17

Storage System

Summary (Table 1)Summary (Table 1)

PlanetP Instance - User A

Inter-Device Gossip-Based Communication

Summary(Remote Index)

XML
Document

Summary Table

Distributed Table 1

Local Table

Summary Table

Distributed Table 2

Local Table

Summary Table

Distributed Table N

Local Table…

Summary (Table 2)Summary (Table 2) Summary (Table N)Summary (Table N)

Figure 2.2: Layout of the storage system in PlanetP which has been altered to allow
multiple user-defined global tables and to permit the storage of XML documents. Each
table is designed to store a particular type of XML document. Remote summaries are
passed, and stored, only between tables of the same type.

Filters have mathematical underpinnings that allow the probability of this occurring to

be controlled by altering the length of the bit vector. When used as described above,

this representation provides a compact summary of the keys in the local table with an

underlying theoretical model that can be used to guide trade-offs between accuracy and

space.

To complement the gossip-based persistent data store, PlanetP also implements an

active unreliable Distributed Hash Table (DHT). This DHT is active in that stored

objects can execute on the hosting node to alter their stored state but unreliable in

that objects are not replicated and so can be arbitrarily lost if nodes leave (or fail)

without redistributing their portions of the DHT’s content. There are two expected

use of this DHT: a rendezvous point for reducing the number of potential conflicts as

concurrent operations will attempt to communicate with the same DHT object and

caching of any soft state to enhance performance.

To support the work presented in this thesis, we have made several modifications to

the original design of the PlanetP toolkit as presented above. In our work, we encode

18

FOR $i in /Entity[FileSysMetadata/extension = ’pdf’]

FOR $j in /Entity[ContentSummary/WordInfo/Term = ’time’ OR

ContentSummary/WordInfo/Term = ’machine’]

WHERE $i/fileID = $j/fileID

RETURN $i/FileSysMetadata/@id

Figure 2.3: Example XPath query to retrieve information from PlanetP.

and store complex information using a structural representation (i.e., XML). Queries

must account for this structure in their conditions. The storage and query model of

PlanetP are insufficient for this. To this end, our changes extend PlanetP’s storage and

query capabilities by allowing additional storage structures and more complex query

evaluation (Figure 2.2). First, we expanded the storage system to allow additional user-

defined distributed tables. Each additional table independently behaves as described

above. Internally, these user-defined tables may use one or more persistent data struc-

tures to store information internally. Query evaluation proceeds as before with the

query being evaluated against each defined table separately.

Second, we altered the interface of PlanetP to accept self-contained XML documents

rather than the previously discussed tuples. To account for different types of XML

documents, we create several different global tables to store them. When published, a

document is parsed by PlanetP and, based on the existence of predefined XML tags,

stored in a table specifically designed for it. For example, an XML document containing

the tag “<ContentSummary>” will be sent to a global table tailored for storing content

information. This mapping of XML document types to tables is defined when the table

is created. It is the responsibility of the storing table to store the XML encoded

information persistently and return it when queried for. Note, the XML encoding is

required only when transferring information to and from the table and may not reflect

how the information is actually stored.

Finally, given the alterations in the data model and storage framework, we altered

the query language to support a simplified version of the XQuery query language [77]. It

is simplified in that the we only support the portion of XQuery that allows us to express

19

independent predicates (i.e., FOR Statements), perform a join operation over the re-

sults (i.e., WHERE Statement), and finally return a result (i.e., RETURN statements).

Figure 2.3 presents an example query exhibiting all of these aspects. The XPath ex-

pression associated with each FOR clause defines a particular table in PlanetP over

which the given predicate is evaluated. For example, the first expression in Figure 2.3

contains the predicate extension = ′pdf ′ and the path /Entity/F ileSysMetadata.

This will result in a search of the PlanetP table storing file system metadata (presented

in Chapter 3) for all files having an extensions of “pdf ′′.

2.3 Distributed File Systems

Wayfinder is a distributed file system; it allows for the managing and locating of files on

remote devices through a file system abstraction which hides the underlying distributed

nature of the environment. In this regard, the Wayfinder file system is related to a wide

range of existing cluster-based and distributed file systems research.

Cluster-based systems are comprised of homogeneous nodes within a single adminis-

trative domain. As a result of this environment, cluster-based systems such as XFS [3],

Network File System (NFS), and Frangipani [73] make strong assumptions concerning

the integrity and integration of their nodes. These systems cannot tolerate a network

partitions and all assume low latencies for network communication. Wayfinder’s target

environment invalidates may of these assumptions by assuming that devices can span

multiple administrative domains or be geographically distributed.

Given this degree of decentralized and heterogeneity, the most relevant work to this

thesis with respect to file systems is from the Peer-to-Peer community. This commu-

nity has developed several data sharing system such as CFS [18], Pasta [51], Ivy [52],

and Pond [61]. These systems are build using fault-tolerant distributed hash tables

(DHT) [17, 62, 67, 84] that employ a key-based routing scheme based on consistent

hashing [41]. Wayfinder distinguishes itself from these works in two major ways; the

target environment and the underlying storage model. Wayfinder’s target environment

is small to medium size (10’s to 100’s) communities while the target environments of

20

the DHT-based systems are large communities (thousands to millions of nodes). As a

result many of our design choices relating to scale differ.

Furthermore, Wayfinder utilizes a dual-arrangement for storing information in which

file content and file metadata are stored separately. Specifically, the local storage of

a device stores shared content information (in the form of whole files) and a locally

running instance of PlanetP stores any file system metadata. Remote devices then

use PlanetP to access the shared metadata to learn of, and retrieve, any locally stored

content. We employ this dual approach for several reasons. 1) storing files in their

entirety at locations where they are used simplifies dealing with disconnected operation.

A file has to be available in its entirety to be useful offline. 2) Separating the storage

of file content from metadata ensures a user has continued access to files outside of

PlanetP as files are stored in a usable form in the local file system. This may be

necessary if a PlanetP community is dissolved or a user no longer wishes to participate.

This approach is distinct from the above mentioned P2P systems which store both file

content (often at the level of individual blocks) and metadata in the DHT. A user must

therefore be connected to the DHT to access even locally stored information and the

usage of local storage is governed solely by the key-based routing scheme.

Two particularly relevant projects to our work are Farsite [1] and Pangaea [63].

Both projects build a federated file system over communities of nodes. Both systems,

however, target a much larger community size than Wayfinder.

Farsite is a general read/write server-less file system for a corporate environment

that serves to replace the traditional centralized file server. It is assumed that this

corporate environment is comprised of nodes that are relatively homogeneous both in

their resources and availability. Farsite utilizes idle resources across desktop machines

together with Byzantine-fault tolerant protocols and encryption techniques to ensure

both consistency and security. The Byzantine-fault tolerant protocols allow Farsite to

implement a much stricter consistency model than what is possible in Wayfinder given

our support for disconnected operation and target environment. However, this benefit

comes at the cost of a more complicated design.

Pangaea [63] is a wide-area file system designed for large communities of users

21

spanning the globe. This work attempts to minimize the use of the wide area network

(i.e., the network economy) during file system operations by considering the physical

proximity of nodes.

Total Recall [6] is a project focused on providing availability for data in P2P systems.

Part of this work involved the construction of a distributed file system that used the

Total Recall availability architecture. We present a more detail comparison of this work

below in our discussion on availability

2.4 Global Directory Structure

A key aspect of the Wayfinder file system is the construction of a shared global names-

pace, an idea which has been explored by several previous project. Most distributed file

systems mentioned above maintain a global namespace [1, 18,51,52,63] for their users.

In contrast, Wayfinder’s contribution is performing this construction in a distributed

setting by merging the local namespaces of individual devices. A similar approach is

used in the Federated File System [68] which recursively merged the local namespaces

on a set of cluster nodes in a tightly integrated and highly available cluster environment.

In contrast to our approach of using the global namespace as a communal resource

for managing information that is collaboratively organized, several projects have ex-

plored using more personalized organizational structures; in particular the Prospero

file systems [54], the Jade File System [59], and the Pasta storage system [51]. In all of

these cases, the work focuses on providing users with personalized views of information.

More specifically, Prospero and Jade allow users to link together distributed resources

that are accessible over the network into a single personalized namespace while Pasta

permits independently manipulate of directories in the global namespace to create a

personalized directory structure.

2.5 Consistency Model

Numerous projects have experimented with weak consistency models in the context of

file systems [36,44,57,63]. In this section, we discuss several that share similarities with

22

our work, namely Bayou [57], Ficus [36], and Pangaea [63].

The Bayou [57] system supports data sharing among a collection of mobile devices

in which nodes have less than ideal connectivity. Access to information is provided via

a complete replica of a shared database stored on each individual node. Changes to any

copy of this shared database is communicated to other nodes using a form of gossiping-

based communication. To ensure agreement among all nodes as to the ordering of

updates, Bayou designates one server as a primary commit server. Wayfinder differs

from Bayou in that nodes are not required to retain complete copies of the shared state

and our method for reconciling updates does not require a primary commit server.

The consistency model of Pangea and Ficus are very similar to that of Wayfinder.

Both support a single-copy availability model but differ primarily in how the eventual

consistency of information is achieved. For this Pangea [63] maintains an abstraction

called a replica set. This set defines the locations of replicas for a particular file, or

directory, and are used to construct per-replica connected graphs. Given an update,

the links of these graphs form a multi-cast tree to quickly propagate diff information

to all replicas. Alternatively, Ficus relies on periodically running several community-

wide two-phase algorithms to ensure the all replicas are brought up-to-date. These

approaches are in contrast to the continuous push/pull model employ in Wayfinder.

Similar to Wayfinder, both Ficus and Pangea rely on version vectors to detect concur-

rent updates.

2.6 Disconnected Operation

In our support for disconnection operation we are similar to the Ficus File System [36],

Coda File System [44], and the Pangaea file system [63]. In comparing these works to

our own, we will refer to the three stages a node must pass through as it transitions

between connected and disconnected states. These stages are information hoarding,

actual disconnection, and re-integration.

In the case of Coda, our work differs in the approach to re-integration. Specifically,

Coda requires each user to explicitly specify the set of files to retain on a per-machine

23

basis. This is similar to a user specifying offline availability targets in our availability

model. Once disconnected, a device has access to any files that were hoarded in this

manner. However, unlike Wayfinder, upon reconnection a Coda device must synchro-

nize any changes to its local storage with a server node for them to be considered as

committed.

In Ficus, objects are organized into volumes that are replicated across nodes. Dur-

ing disconnected operation, access is limited to the content of any replicas that exist

within these locally replicated volumes [45]. It is not clear if user-defined hoarding is

possible as this would require user-level control of volume placement and content. For

reconciliation, Ficus relies on several communal two-phase algorithms to ensure that all

updates are considered and committed.

Wayfinder also resembles Ficus in the overhead associated with creating replicas. In

Coda, the creation of replicas on devices amounts to storing a cached copy. The creation

or removal of these copies requires little or no administrative overhead on the part of the

system since any necessary state processing is confined to the client. In Ficus, however,

there are no cached replicas. Each replica is maintained and monitored by the overall

system and their creation and removal requires updating system state [45]. The same

is true for Wayfinder as all replicas are monitored and have published state.

In the Pangaea File System there is no method for a user to predefine which content

should be hoarded on a device. Instead the contents of a node’s local store at the

time of disconnection is determined by the replication requirements of the system and a

user’s explicit activity. Upon reconnection, changes are propagated using the previously

mentioned per replica graphs.

The Seer project [46] attempted to improve the usefulness of hoarding algorithms

by leveraging semantic distance and clustering algorithms for prefetching content. This

work is complementary to our own in that we can leverage their approaches to im-

prove Wayfinder’s hoarding algorithm (currently based on LRU) for improved offline

availability.

24

2.7 Content-based addressing

Content search is a useful tool for finding information in file systems [48, 49] and we

explore its use as an organization tool by allowing queries to be embedded persistently

in a global namespace as semantic directories. These directories are populated by files

deemed relevant to the query. The original idea of semantic directories was introduced

by the Semantic File System [30]. This work was later extended by the HAC File Sys-

tem [33] by allowing semantic directories to be embedded into an existing hierarchical

directory structures forming a hybrid namespace. Wayfinder has further extends this

line of work by allowing a construction of a similar hybrid namespace in a distributed

environment.

2.8 Personal Information Search

The Wayfinder file system contributes to a growing body of work that investigates

personal information search. Much of this work has focused on a single device/user

settings. The SEMEX [10] and Haystack [42] systems allow users to specify semantic

associations between pieces of data. These associations can be leveraged to improve

information organization and the locating of relevant information during searches. The

work done by Soules et. al [65] attempts to identify related information specifically

based on the context in which it was accessed. This context information can be used

at query time to locate additional relevant information.

Other works [22, 78] propose generic data models capable of storing and retrieving

heterogeneous and evolving data. The Nebula [9] project explores designing a file system

using an object-oriented database system as the underlying storage mechanism.

These works are aimed at creating, identifying, or accessing additional information

beyond what is supported by traditional file systems. The Wayfinder file system focuses

on using data that is already present in the file system and returns results based solely on

the conditions of a user-provided query. While Wayfinder does deviate from traditional

file systems in how metadata is stored and managed, our approach is not as generic as

those mentioned above.

25

There has also been a recent surge in projects attempting to improve search capabil-

ities specifically in the desktop environment [13, 29, 66]. These projects provide search

capabilities over content and then employ other pieces of information, such as size, date,

or file type, as filtering conditions. We argue in later chapters that this approach is

insufficient in many search scenarios and addressed this deficiency with our work.

2.9 Distributed Information Search

Numerous works have explored the improvement and designing of search technolo-

gies in a distributed environment. Among these are distributed IR Systems such as

GLOSS [34] and PlanetP [16]. The latter of which is the basis for the toolkit upon

which the Wayfinder file system is built. Others explore search technologies in the con-

text of P2P systems [5, 12, 38, 55, 60, 69–71, 82, 83]. These works explored methods for

building distributed online indexes with efficient techniques for query evaluation. Their

primary focus is on providing content search, whereas our work in improving search

techniques explores the use of multiple query dimensions. Further, to reduce storage

and communication costs, we explore methods for reducing the overall size of the global

index through compression and aggregation. This is done in a manner which aims to

minimize the impact on the quality of results. Of the mentioned works, several [69,70]

have explored the use of Information Retrieval techniques to improve search. Various

other projects have also explored the application of Top-K [26] evaluation techniques

in a distributed setting [4, 11,50,74].

In this thesis, we explore the design of a framework for evaluating multi-dimensional

queries in a federated system. Query evaluation is performed in a manner that allows

results to be scored and ranked using a global approximation of the necessary statistics.

The closest work to this approach is pSearch [70]. This project investigates the design

of a scalable P2P IR system using DHTs and IR algorithms. As with our approach,

this framework requires maintaining global statistics for the purpose of scoring. How-

ever, contrary to our approach of computing the necessary information on each node

by gathering and aggregating individual node summaries, pSearch pre-computes and

maintains statistics based on samples that are representative of the potential document

26

set.

2.10 Availability

The availability work presented in this thesis builds on a previous effort by Cuenca et

al. [15]. This earlier work considered the task of ensuring the continuous availability

of information in highly dynamic environments and proposed a replication algorithm

in which devices make autonomous replication decisions based on a small amount of

loosely consistent state. We have extended this work to support multiple devices per

user and dynamic content. Specifically, our extensions include support for additional

types of availability, permitting changes to the hoards of individual devices (i.e., adding

or removing files), enabling the loose coordinate of actions for multiple devices belonging

to a single user, and accommodating mutable shared file content (i.e., writing files).

Related to our work are many of the above mentioned P2P file systems [18, 28, 51,

52, 61], each of which takes measures to ensure the availability of information. The

main difference between these efforts and our own is that they consider only online

availability whereas Wayfinder supports a unified availability model.

Two systems that are particularly relevant are Total Recall [6] and Farsite [1]. With

respect to availability, Wayfinder differs from these projects primarily in how availability

is monitored and in replica placement. In this regard, Wayfinder’s approach consists of

continuously monitoring the availability levels for both files and nodes and performing

replica placement randomly. Also, as with the previously mentioned P2P file systems,

both only consider online availability.

Of the two, Total Recall is the most related to Wayfinder. Total Recall is contempo-

rary work to our own that also explores the problem of maintaining online availability

of files for P2P content sharing systems through replication. The degree of replication

required is determined using two types of predictions; a short-term availability estima-

tion that accounts for transient node departures and a long-term predication to account

for non-transient node failures. This dual approach is different from that employed by

Wayfinder (i.e., continuous monitoring and random placement). Both Wayfinder and

27

Total Recall assume communities with devices of heterogeneous availability.

Since Wayfinder replies on continuous monitoring, failures may be detected and

responded to quickly. If the failures are transient, any additional replicas created as a

result of this detection may be unnecessary in the future, resulting in over-replication.

For permanent failures, this method results in a faster time to replace any lost replicas.

Recall that the purpose of the Farsite project is to replace a centralized file server

with distributed resources. To this end, Farsite attempts a stronger consistency model

than Wayfinder. Specifically, directory information is replicated across nodes running a

Byzantine-fault tolerant protocol to ensure agreement. Furthermore, Farsite attempts

to achieve an even distribution of availability for all files by replicating all files equally

and giving considerable thought to where (i.e., which nodes) the replicas are placed.

This is possible given that Farsite targets relatively large and stable environments (i.e.,

corporate and academic) with availability higher than that of most Internet hosts [1].

In contrast, Wayfinder’s approach (i.e., continuously monitoring and random place-

ment) and our target environment (nodes with varying degrees of availability) can re-

sult in files having significantly different replica counts. Furthermore, given Wayfinder’s

champion nodes, a file is only replicated if there are resources (i.e., a user and his de-

vices) who are interested in the file. Thereby, Wayfinder does not ensure the availability

of all files, but rather only those that have online advocates.

Pangea [63] maintains availability through the per file/directory replica sets men-

tioned above. The membership of these sets define a minimal replication factor for

files/directories. A subset of each set is defined to be Golden replicas and can not be

deleted. Furthermore, as mentioned earlier, the availability of latest version of a file

is increased by propagating changes through these per-replica graphs built over each

replica set. Such per-replica graph construction would be difficult during periods of

partial connectivity which are supported in Wayfinder.

28

2.11 Cooperative Caching

For several aspects of its design, Wayfinder employs whole file replication to provide

improved access to information. Each device maintains a region of local storage to

store these replicas for local use. The placement of files into this region is governed

in part by a user actions and the various running sub-systems of the file system (See

Chapter 4). Files can be evicted from these local stores at any time (with certain

restrictions on certain nodes) as needed. This region behaves essentially as a local file

cache with information begin retained by the community so long as at least one cached

copy persists.

In this regard, the Wayfinder file system is similar to work done on Cooperative

Caching [19] which leverages resources on remote machines to store data. The difference

in our work are several. Cooperative caching systems assume LAN networks (i.e.,

high-speed and low-latency) and share memory resources to store fixed size blocks

of data. These systems use various algorithms to track replicas and ensure write-

consistency. In contrast, the devices in a wayfinder file systems share disk storage and

may be distributed over great distances (both in terms of network and geographically).

Further information is shared at the granularity of whole file and we assume a weak

consistency model for writes. Finally, replicas are tracked through small amount of

weakly consistent state that is shared amongst the community.

29

Chapter 3

Federated File System

3.1 Overview

In this chapter, we present the design of the Wayfinder federated file system and eval-

uate the performance of a prototype implementation. Wayfinder enables a federate

community to persistently store and share data using two complementary abstractions:

a global namespace and persistent search queries. We shall see in this chapter that

these two abstractions allow information to be located, and organized, by both name

(i.e name-based addressing) and content (i.e., content-based addressing).

To store the files to be shared via the file system, we assume that each device

provides a portion of its local storage system. This space is called the device’s local

hoard and consists of the directory structure and files containing all the information a

device wants to share. Given a set of connected devices, S, we construct the global

namespace by overlaying and merging the directory structures found in the individual

hoards as shown in Figure 3.1. This merged namespace is then accessible to every

device in S.

We adopt the above merging approach for two reasons. First, it provides users with

a consistent browsing (i.e., name-based addressing of files) experience by ensuring that

any file can be named in a device independent manner. Secondly, a merging approach

naturally encompasses connected, partitioned, and disconnected operation as shown in

Figure 3.1. At the two extremes of connectivity, a device will either have access to the

entire namespace or be limited to its local hoard. During partitioned operation a com-

munity may be split into multiple connected subsets. Each subset will independently

construct an isolated namespace from its member’s hoards. This approach ensures that

30

G

/

A B

C D

F

E

B

D E

/

G

/

B

D

F

/

A B

C E

/

A

H1

E

/

C

B

H2 /

D

B

H3

G

/

F

H4

E

/

D

B

H5

/

A

H1

E

/

C

B

H2

/

D

B

H3

G

/

F

H4
E

/

D

B

H5

Figure 3.1: Wayfinder dynamically constructs a shared namespace across any set of
connected devices by merging their local hoards. This figure shows 5 nodes originally
being connected so that the shared namespace is the merged view of hoards H1 through
H5. When the community is partitioned into 3 connected subsets, Wayfinder maintains
a merged view for each subset. When the subsets reconnect, Wayfinder dynamically
re-merges the shared namespace. Shaded boxes indicated connected partitions.

with changes in connectivity, the amount of accessible content may change but the

manner in which users browse and access files does not; any reachable file remains so

through the same name.

To complement the above name-based approach, we have implemented content-

based addressing and organizing by implementing search capabilities which include

the use of persistent queries that can be embedded in the namespace via semantic

directories [30,33]. A semantic directory is a search query that is embedded persistently

in the namespace in the guise of a normal directory. The content of such a directory is

the set of relevant files returned when evaluating the associated query. In this manner,

semantic directories allow the automatic name binding of files based on their content

and other attributes. For example, a paper dealing with federated file systems will be

automatically placed in a semantic directory with the query “Federated, File, Systems”

based solely on its content. Given that these queries are persistent, it is possible for

users to preserve “good”queries and share them through the global namespace.

31

A semantic directory is periodically reevaluated to reflect changes in the shared data

set. This re-evaluation turns the file system namespace into an active organizational

tool, allowing it to automatically classify new information entering the community.

Further, similar to the HAC file system [33], Wayfinder allows users to refine the query

results of a semantic directory through direct manipulation of the directory’s content

as an alternative to manipulating the original query until the exact set of desired files

are returned.

In the next section, we outline several scenarios that illustrate Wayfinder’s bene-

fit in simplifying a user’s management role. We then discuss Wayfinder’s design and

prototype implementation. In particular, we will show that an important aspect of

our design is that its abstractions are all implemented as queries against our federated

toolkit PlanetP (Section 2.2). Therefore, the primary difference in implementing either

the name-based or the content-based addressing is the manner in which the appropriate

query is formulated. We also describe how Wayfinder utilizes PlanetP’s light-weight dis-

tributed hash table (DHT) as a caching infrastructure to make this query-based design

efficient.

3.2 Example Usage

In this section, we present two scenarios that demonstrate the usefulness of the ab-

stractions outlined in Section 3.1. We believe these scenarios to be representative of

common situations encountered in the workplace.

3.2.1 Usage Example: Wiki

A Wiki is a collaborative web-based tool for maintaining a set of shared web pages.

Users can independently access, upload, and edit information within these shared pages.

While a wiki provide a useful tool for collaboration, it does presents several information

management difficulties.

First, information stored within a wiki can only be accessed and manipulated

32

through wiki-specific tools and interfaces, requiring users to learn and use them. Sec-

ond, users must explicitly partition their data between two separate logical information

domains (i.e., their local file system and the online wiki). Unless users make exclusive

use of only a wiki, this partitioning often requires at least a portion of a user’s the

information to be replicated across the shared web-pages and their local file system.

Third, in dealing with separate information domains, users are forced to use disjoint

tools for searching and managing information (i.e., the search of the online wiki can

not also search the local file system and vice-versa). Finally, as a wiki is web-based, it

requires continuous network connectivity to access.

As an alternative approach, the web pages contained in a wiki can be maintained as

a shared file system using Wayfinder. This shared file system can be integrated directly

into a user’s local file system (We will show later (Section 3.8) that our prototype

implementation can be mounted within the namespace of existing file systems). Users

can then access any shared information as local files while continuing to use their

standard set of applications (i.e., vi, emacs, Frontpage) to manipulate them. Wayfinder

will maintain the illusion of a shared workspace by automatically replicating shared

information and updates to other users as necessary. Finally, if a user still desires to

view information in a web-based format, a locally running web server can be used.

This scenario demonstrates how a user might leverage Wayfinder as an alternative

to managing shared information across multiple logical information domains. By using

Wayfinder’s abstractions, this task can be simplified to reasoning about a single domain

(i.e., the local file system) while still retaining the features (i.e., publishing to interested

parties) necessary for collaboration.

3.2.2 Usage Example: Shared Search Structure

We now present a scenario illustrating how a small research group might use Wayfinder

to collaboratively manage information across several users and devices. This scenario

is motivated by a research group’s effort to share the efforts of one student’s work in

researching file-systems. We will refer to the student in question as Alice and assume

that she has a locally running instance of Wayfinder mounted in her local file system

33

at the path “/shared/.

We begin our example with Alice finding eighteen papers pertaining to the topic of

“file systems” that she considers relevant for the group. She places these files into her lo-

cal directory structure under a Wayfinder directory /shared/Alice/papers/worthKeeping.

Having found the papers, Alice is now faced with the organizational task of placing

the papers (i.e., as files) into the namespace in a manner that is conducive to the

remainder of the group finding them should they browse the namespace. We will show

in this scenario that this can be accomplished by creating several semantic directories,

examining the results, and making changes as necessary.

Continuing our example, Alice next creates a semantic directory ”file systems”

within the directory /shared/group/papers. This semantic directory will become log-

ically populated by all the files in her original set. We shall see later that a query

represented by a semantic directory is a boolean expression over the terms associated

with the semantic directories in the pathname; in this case, it is a logical conjunction

of the terms “file, systems”. In addition, Wayfinder adds several files matching the

query “file, systems” from another student’s desktop and from a professor’s laptop in

the directory /shared/profs/Bob/needsReading. At this point, we can observe that

Wayfinder allows Alice to not only organize her own set of papers, but also to include

relevant papers from other users.

Alice then further refines the file-system area by creating an additional seman-

tic directory /shared/group/papers/file systems/replication (in this case the query

terms corresponding to the new directory are “file”, “systems”, and “replication”),

which finds all the files containing the word replication from the set of papers in

/shared/group/papers/file systems. In our example, this prunes the original set

of papers to ten. She refines the query again by creating a further semantic directory

/shared/group/papers/file systems/replication/optimistic to find papers concern-

ing optimistic replication. The resulting directory might contain papers describing the

Farsite [1], Ficus [36], and Pangaea [63] projects.

Alice next creates a semantic directory with the path

/group/papers/file systems/ficus intending to find any papers primarily dealing with

34

the Ficus File System [36]. Wayfinder returns a directory with seven files. However,

she decides only two are relevant because the rest mention Ficus only in the references.

She deletes the unwanted files from the semantic directory, which results in Wayfinder

excluding those files as results in the semantic directory. These deletions are localized

to the semantic directories; the files in their original locations are unchanged.

We close our example with a professor needing to select a paper for the group’s

seminar. He begins his search by browsing the /shared/group/papers/ directory on

his laptop. Because of the merged view he sees the file system directory created by

Alice. With further browsing, the professor locates the directory

/shared/group/papers/file system/replication/optimistic. Based on the three papers

in this directory, the professor names the discussion topic for the week “optimistic

replication in file systems” and selects one of the papers. The location of this paper is

then e-mailed to the entire group. As there is a single global namespace for all users

and devices, the emailed location can be resolved be all the users.

While our example is simple, it demonstrates several possible uses of Wayfinder.

First, it allows a single user to share a meaningful organization of content through a

shared directory structure. Second, it allows automatic publication of the information

by placing it in a namespace. Third, our example shows that content-based lookup is

useful to organize a set of documents given that users may not be aware of the location

of all relevant files. Fourth, it shows the merit of sharing the resulting search-based

organization structure. In this case, the choice of keywords and query results was re-

used by the professor to organize his seminar. Finally, manual query refinement, which

in example involved pruning results, is necessary as semantic directories can become

populated with an excess of information.

3.3 File System Design

In this section, we describe the design of the Wayfinder file system, focusing specifically

on details of storage and the implementation of files and directories. Recall that each

device in a Wayfinder community manages an area of its local file system, known as the

35

hoard (Figure 3.2). The hoard stores the content (in files) and the namespace that a

device is sharing; both of which are a subset of what is present in the global namespace.

Each device also runs an instance of PlanetP that is used to store and search for file

system metadata; both local and remote.

For each file, or directory, f in a device’s local hoard we encapsulate the aggregate

state of f in an abstraction called a waynode. A waynode is a data structure storing a

file’s state which may include metadata, content summary, and structural properties.

Within a Wayfinder community, a single file (or directory) may have multiple replicas

residing on different devices. Each of these replicas is represented by its own distinct

waynode.

To optimize the process of storing a waynode, we allow its state to be partitioned

into disjoint segments, each of which summarizes one aspect of the file’s state (i.e., meta-

data, content summary, or structure information). Each segment is stored in PlanetP,

specifically in a global table maintained as part of PlanetP’s storage framework. The

design of these tables is detailed in Section 3.7. When passed to PlanetP for storage,

each waynode segment is encoded as an XML document.

Individual devices only maintain waynodes for files/directories in their local hoards.

To construct any global state, a node must retrieve the localized information stored

across remote nodes by queries to PlanetP. Returned results are then processed by the

querying node to form the global state, or view, of either a file or directory. Subse-

quent re-constructions are necessary to learn of remote changes to the state of a file or

directory.

This query-based model offers two benefits: (1) As we assume that a sizeable portion

of our target environment will consist of mobile devices, we anticipate a corresponding

amount of churn in online membership as these devices are used and turned off. There

is a fundamental trade-off between keeping a single view of an object’s state and al-

lowing each device to determine the state for itself (i.e., by querying for it). Given a

directory, d, in the global namespace and state(d) representing all state related relating

to d, requiring a single persistent copy of state(d) mandates that it be stored some-

where. This limits the use of d to devices with access to state(d) and should state(d)

36

B

C E

/

B

C E

/ /

A B

D E

/

A B

D E

E“/B”“456”

C“/B”“123”

E“/B”“456”

C“/B”“123”

ChildID Parent Name

Wayfinder HTTP Server

F14“456

D4096“/”

F14“456

D4096“/”

FileID Size Type

E“/B”“456”

A“/B”“789”

E“/B”“456”

A“/B”“789”

ChildID Parent Name

F14“456”

D4096“/”

F14“456”

D4096“/”

FileID Size Type

Wayfinder HTTP Server

/

A B

D EC

/

A B

D EC

S
tructure

M
etadata

S
tr

uc
tu

re
M

et
ad

at
a

Global Namespace

PlanetP

User Requests

Local Index Local Index

Figure 3.2: An overview of Wayfinder’s architecture across two devices each with their
own local hoards (denoted by cylinders). Portions of the global tables for storing meta-
data and structural information are shown with their relationship to information in the
local hoard.

becomes inaccessible, either because the hosting device is inaccessible or the accessing

device is disconnected, then any available portions of the namespace dependent on d

is likewise inaccessible. (2) Finally, the query-based model allows an easy transition to

disconnected and partition operation, as queries are evaluated only on connected nodes

and so accurately reflect the available information.

In the remainder of this section we will describe the implementation of file and

directories.

3.3.1 Files

Each Wayfinder file is defined by a globally unique identifier that is determined when

the file is created. For a file to be present in the global namespace it must be located

in the local hoard of at least one device in the community.

A file waynode contains the metadata and content summary of its respective replica.

The metadata information consists of file attributes such as the file ID, version, a URL

37

<Entity type="File" src="WF-trillian00">

<FileSysMetadata id="78aeed5039e85ed9e7a2e32b8fa57717">

<fileName>foobar</fileName>

<extension>txt</extension>

<version>1.0:initial</version>

<FileSize>15</FileSize>

<creationTime>1169501796000</creationTime>

<modificationTime>1169501796000</modificationTime>

<lastAccessTime>1169501796000</lastAccessTime>

<location>http://WayfinderNode-1/foobar.mp3</location>

<version_history>1.0:initial</version_history>

<source>WayfinderNode-1</source>

</FileSysMetadata>

</Entity>

Figure 3.3: XML encoding of the metadata portion of a waynode representing a file.

<Entity type=’ContentData’>

<ContentSummary id=’78aeed5039e85ed9e7a2e32b8fa57717’

wordCount=’4’ src=’WayfinderNode-1’>

<WordInfo><Count>1</Count><Term>foo</Term></WordInfo>

<WordInfo><Count>1</Count><Term>bar</Term></WordInfo>

<WordInfo><Count>2</Count><Term>byte</Term></WordInfo>

</ContentSummary>

</Entity>

Figure 3.4: XML encoding of the content summary of a waynode representing a file.

(our prototype implementation uses a simple HTTP web-server to transfer files) indi-

cating where the replica can be retrieved and other information commonly maintained

by standard file systems (e.g., the information contained within an inode in the Unix

file system). The content summary is information about a replica’s content. At a min-

imum, this information can be used (i.e., by PlanetP) to perform relevance ranking

(i.e., TF · IDF) for content queries. For storage, this information is separated into a

metadata and content segments. Examples of the XML encoding of these segments is

given in Figures 3.3 and 3.4.

A file’s location in the local hoard is a mirror of its location in the global namespace.

Assuming the root of a local hoard is at the path /WFRoot, then a file stored in the

38

<Entity type=’Relationship’>

<SourceNode>WF-trillian00</SourceNode>

<ChildID>78aeed5039e85ed9e7a2e32b8fa57717</ChildID>

<ChildName>foobar.txt</ChildName>

<Source>/workspace/</Source>

<Predicate> ChildOf </Predicate>

</Entity>

Figure 3.5: XML encoding of the structural portion of a waynode representing a file.

global namespace at /path/name would be stored locally at /WFRoot/path/name. Any

access to a file’s content requires a local replica. If an access is attempted and no replica

exists, it is automatically retrieved.

For example, suppose that the hoard of a device n is located at /WFRoot in n’s

local file system. If a file /workspace/foobar.txt is opened on device n, Wayfinder

first retrieves the ID for foobar.txt from the metadata associated with /workspace

(see below) and queries PlanetP for the set of waynodes representing all replicas of

foobar.txt (specifically the segments encoding the metadata information). From this

set, Wayfinder computes the latest version and individual locations of any replica.

Then, if n does not have a local copy of foobar.txt, Wayfinder retrieves a copy, stores

it at /WFRoot/workspace/foobar.txt, creates the a local waynode for this replica, and

stores it in PlanetP. The new waynode contains the file’s unique ID and has location

information (i.e., URL) to reflect its presence n’s hoard (Figure 3.3). On the other

hand, if n has an old version of foobar.txt, Wayfinder updates the local state (both

file and metadata) to the newer version. Finally, after a local and updated replica is

present, Wayfinder completes the open operation. File creation works similarly except

that Wayfinder generates a new file ID for the newly created file.

For operations writing a file replica, Wayfinder enforces open/close semantics. When

a written replica is closed, the replica’s version number is incremented and the metadata

segment of its waynode is updated. The replica’s content is then scheduled to be indexed

in the background. Once the indexing is completed, Wayfinder updates any stored

content information by updating the content segment of the replica’s waynode.

39

3.3.2 Directories

Recall that we construct the global namespace by merging the contents of locally

hoarded directories with the same name. To simply this process, we ensure that any

merge-able directories have the same unique global identifier; namely their full path-

name.

A directory waynode contains metadata information and the name-binding infor-

mation for all files/directories the local replica contains. The metadata information is

similar to that of files, although smaller as some information is not needed (i.e., ver-

sions, size). The name-bindings represent the “content” of the directory. On a given

node n and a directory in the local hoard, d, for each file f that is child of d, we store

the parent-child binding d → f .

For storage, we partition this waynode into a metadata segment and a set of sepa-

rate structural segments; one segment for each parent-child binding. The parent-child

bindings are established during the creation of the a file/directory. By keeping this

information as separate bindings, the creation process involves simply adding more

structural segments to the necessary tables rather then updating existing ones. As

with files, all segments are encoded as XML documents before being stored in PlanetP.

An example of the encoding for a structural segment is given in Figure 3.5.

To determine the set of bindings for d in the global namespace, the appropriate

query is place to retrieve all of the waynodes that contain as d as a parent value (e.g.,

any structural segments of any waynodes matching d → ∗). Each device only stores

information for the local parent-child bindings present in its hoard. It possible for a

device to have only a portion of the global state for a directory present locally; thus we

say that directories are partially replicated.

As mentioned earlier, every access to a file’s content requires a local replica and

the namespace of the local hoard mirrors that of the global namespace. As result, the

replication of a file f will naturally result in the replication of all directories in f ’s path

name.

40

3.4 Caching

A common operation in Wayfinder is the construction of file and directory views in

response to a user’s action (i.e., the user performs an “ls” operation). Recall that

underlying the construction of a view is a query to retrieve any necessary state, either

local or remote. Performance would be unacceptable if such an operation required

contacting a majority of the community for each traversal. Thus, we make extensive

use of caching. In particular, Wayfinder caches a processed version of the query’s result

both locally and in PlanetP’s DHT. Both copies are retained for a pre-defined amount

of time; 10 seconds for the local cache and 15 minutes for the DHT-based cache. The

latter state makes results available to the community as a whole and, as we will present

shortly, is proactively maintained, allowing for a longer caching time. We examine

the performance of a directory traversal in the presence and absence of caching in

Section 3.8.

With the possible existence of pre-computed state for directories existing in the

DHT, a lookup for a directory, d, on node n, proceeds as follows: 1) n checks the

DHT, using the identifier of d as a key, for any pre-existing state. If found, the state

is retrieved and used. 2) If no state is found, n retrieves the set of all of the waynodes

related to d, W (d). 3) W (d) is processed (i.e., removing duplicates, parsing information,

and summarizing information) to produce state(d). 4) state(d) is cache locally and used

to complete the lookup of d. 5) Additionally, the tuple < d, state(d) > is then stored

in the DHT with “d” being used as the key. A similar caching process exists for files.

Cached entries in the DHT are maintained as active objects that can receive and

process information regarding updates. Any device adding, deleting, or editing a file

represented by a cached entry, updates the cached entry to reflect the change. With the

exception of the initial publishing of cached information, a node is only responsible for

correctly publishing its portion of the global state. While cache views are continuously

updated in this manner, they are periodically discarded to remove any stale data (e.g.,

from nodes that have left the community).

In summary, information concerning files and directories is made public in two

41

ways using PlanetP; either by publishing in the PlanetP’s global table or in the DHT.

Through the DHT, it is possible for nodes to be made aware of changes before the

global table has had a opportunity to fully propagated similar information.

3.5 Consistency Model

Wayfinder supports partitioned operation by allowing continued operation even when

the sharing community is partitioned. Operating in such scenarios inherently introduces

inconsistencies into the file system when files are manipulated concurrently by devices

not in direct communication with one another. Inconsistencies can even occur during

connected operation as Wayfinder does not attempt to coordinate operations using a

single rendezvous point. This results in an inherent delay in learning about changes on

other devices in the system. The caching model described in section 3.4 attempts to

minimize any windows of inconsistency but is not required for normal operation. For

these reasons, Wayfinder exports a weak consistency model, similar to that of Bayou [57]

and Coda [47], for both directories and files.

This model allows for two types of observable inconsistencies. The first is a content

conflict resulting from concurrent writes to multiple replicas of the same file. The second

is name conflict resulting from concurrent creations of files with the same name bindings.

An example of the latter would occur if two replicas of a directory on separate devices

each contain a file with the same name but have different global identifiers. When

constructing the global namespace, the merged directory will having two different files,

each with the same name, resulting in a name collision.

Due to our weak consistency model both type of inconsistencies are possible during

either connected, partitioned, or disconnected operation. In the remainder of this sec-

tion, we will outline our consistency model as it applies to both files and directories in

greater detail.

42

3.5.1 Files

For files, Wayfinder supports a single-replica availability model [36] in which access to

a single replica is sufficient to access and manipulate a file. Upon accessing a non-local

file, f , at a device n, Wayfinder will attempt to locate the latest version of f and

download it to the hoard of n. If f is already stored locally, n may try to determine

whether the local copy of f is out-of-date with respect to other online replicas and

update it accordingly. Any file system operations on f at n are then performed on the

local replica.

Under partitioned operation, this model can lead to users seeing stale data if re-

cent writes occurred outside of n’s currently connected partition. Fortunately, previous

studies have shown that the incidents of write-sharing among files in multi-user envi-

ronments [44] tends to be a rare occurrence.

To address write conflicts, Wayfinder associates a history vector with each file

replica. A history vector is an ordered sequence of tokens for uniquely identifying

successive changes that have been applied to a file. Each change is identified by a

monotonically increasing version number and the identifier of the editing device. For

example, the vector [(1,x), (2, y), (3, x)] would indicate a file that was edited three

times on two different devices, x and y, with no content conflicts. Changes to a file

extend the vector (i.e., [(1,x), (2, y), (3, x), (4, x)]).

Potential content conflicts are detected when updating a local replica and learning of

another replica with a conflicting history vector, indicating concurrent edits. Detection

occurs when tokens within two vectors for different replicas of the same file have the

same version number but different device identifiers. For example, in the vectors [(1,x),

(2, x), (3, x), (4, x)] and [(1,x), (2, x), (3, x), (4, y)], we observe a concurrent edit

after the third updates. In dealing with these conflicts, we pessimistically assume that

any concurrent write indicates a conflict within the file. This is done even if the areas

affected by the updates does not overlap as they may alter the file in semantically

different ways rendering the content meaningless.

Given two conflicting replicas, Wayfinder attempts to determine which is the most

43

(1, NA) (2, NA) (2, NB) (2, NC) (3, NA) (3, NB) (4, NC)

Applied Updates

Figure 3.6: Example of a file’s history vector containing information for several applied
and conflicting updates.

of up-to-date by identifying the one with the longest sequence of applied updates. In-

tuitively, this property represents the largest non-conflicting set of changes to a replica.

Wayfinder then automatically reconciles the state of the second replica to that of the

most up-to-date.

During this process, Wayfinder leverages the history vectors of each replica to de-

termine which is the most up-to-date. Specifically, given two replicas of the same file

with conflicting history vectors, we identify the dominating vector. The dominating

history vector is defined as having the largest update count on the final token. For

example, given [(1,x), (2, x), (3, x), (4, x)] and [(1,x), (2, x), (3, y)], the first vector

would be dominating. Note, this is a poor measure of how much a file’s content may

have changed as a single committed update could completely rewrite a file’s content.

If the final vector entries are the same (this could occur with partitioned operation)

or the numbers are tied, the dominating vector is chosen in a deterministic manner

(i.e., lexicographical ordering). Once chosen, the conflict is resolved by updating the

dominated replica’s content to that of the dominating replica.

With automatic reconciliation it is still possible to obtain a version of file that is

semantically meaningless (i.e., the content is no longer useful to the user). For such

situations, Wayfinder allows users to manually review the results of the automatic rec-

onciliation process and create a new version of the file. We facilitate this by extending

the information maintained in the history vector to include all the updates ever consid-

ered during reconciliation (see below) while also retaining copies of conflicting replicas

outside of the global namespace. These copies can be used by users, or applications,

to devise a more useful conflict resolution. For example, a tool with access to this

44

information could assist users in resolving any conflicts, construct a new version of the

file, and then commit this as a new update. The conflicting copies are retained for a

fixed amount of time (possibly several weeks) after which they are simply deleted.

Under this model, a replica’s history vector (Figure 3.6) can be divided into two

disjoint sets of updates; those applied and those in conflict. The first token associated

with each update number (i.e., 1, 2, 3, and 4 in Figure 3.6) represents the applied update

for that version number with conflicting updates listed subsequently. For example, given

the vector in Figure 3.6, the set of applied updates is {(1, NA), (2, NB), (3, NA), (4,

NC)} while the set {[(2, NB), (2, NC), (3, NB)} reflects past conflicts.

When determining the dominance of two history vectors, only the applied updates

are considered. After a conflict is resolved, the complete history vectors of both replicas

are merged to reflect both the change in content and the presence of the conflict. For

example, given two vectors for replicas of the same file, [(1,x), (2, x), (3, x), (4, x), (5,

x)] for replica R1 and [(1,x), (2, x), (3, a), (4, a)] for R2, R1 would be considered the

dominating replica and after reconciliation, both would have a vector of [(1,x), (2, x),

(3, x), (3, a), (4, x), (4, a), (5, x)]. This deterministic process allows devices to resolve

conflicts without resorting to a voting or distributed consensus protocol.

To reduce the likelihood of conflicts occurring, information stored in the PlanetP

DHT(Section 3.4) can allow a device to determine the state of a file with a single lookup

and also provides a on-line rendezvous point for file information.

3.5.2 Directories

Accessing a directory /path/dir in the global namespace from a device n requires either

the construction, or retrieval (from the DHT), of the associated directory view. Part

of the state associated with this view is set of the name-bindings for files contained

in /path/dir. These bindings are gathered from the online devices within n’s partition

when the view is created. Therefore, a user can only access directory /path/dir if a

device in this partition has a replica of /path/dir.

The creation of a new name-binding in /path/dir can be done at any time. If a device

has a local replica of the directory, then the name-binding is added to the existing state.

45

If no local replica exists, a local replica of /path/dir is created and the name-binding

is then added to it resulting state. In either case, the directory replica can then be

merged with other partial online replicas of /path/dir.

As with files, a user may see inconsistent information when accessing a direc-

tory. These inconsistencies may include seeing name-bindings that do not exist, name-

bindings that have been deleted, or name-bindings that are in conflict. The latter are

detected during the construction of the directory view and are dealt with by a renaming

process. For example, two different files having the same name, f , in directory d on

device x and y will be renamed to /d/f −x and /d/f −y in the global namespace. Any

attempt to access a file through a renamed binding will result in a user notification so

that a permanent rebinding can be affected.

To delete a name-binding /path/f, Wayfinder unlinks path/f in the local hoard,

removes f from the cached entry of /path in the DHT, and publishes a temporary

delete notification to PlanetP. Whenever a device accesses /path, it see the set of delete

notification associated with /path and deletes any local replicas as needed. To limit their

accumulation, delete notifications are discarded after an expiration period currently set

to one month. This expiration may allow a device that was offline for longer than this

period to bring back a copy of a deleted file when it comes back on-line.

Directory deletion poses unique problems in Wayfinder as a directory should be

deleted only if it is empty of all name-bindings. The merging approach to constructing

directory views makes this particularly difficult as it is impossible to ensure that a di-

rectory is complete empty as several name-bindings may be absent or offline. To deal

with this, Wayfinder pursues a lazy and localized approach; local directories are auto-

matically deleted once they are empty. Thereby, a directory is only fully deleted from

the global namespace after all devices have deleted all local replicas contained within

that directory and subsequently the local directory replicas have been automatically

deleted as well. Intuitively, this is akin to garbage collecting unused portions of the

local directory structure in the hoards of individual devices.

However, this method of deleting a directory can be interrupted. Assume a device n

is attempting to delete a directory, /path, and delete notifications for all containing files

46

has been published. As these notification are being applied to the replicas throughout

the community, another device, m, can create a new name-binding /path/g. This

binding would prevent the directory’s complete removal as /path can not be deleted

on m. We deem this behavior acceptable because the original deletion attempt was

conducted with the original set of files in mind. If another user start using a deleted

directory again, this is akin to the user re-creating the directory for a different purpose

after it is deleted on a single device system.

To permit the existence of empty directories, Wayfinder automatically includes the

creation of a placeholder file as part of the directory creation. Intuitively, this file acts

as a flag to prevent the automatic removal of a directory.

3.6 Security Model

The Wayfinder file system is designed to work on devices spanning multiple adminis-

trative domains. It is therefore impossible to ensure the integrity of all devices. We

do, however, assume that a majority are well-behaved. We pursue a security model

that does not to prevent malicious behavior but rather limit its impact on the proper

working of the community at large. This model is part of a preliminary design and has

not been implemented.

Recall that Wayfinder supports a single copy availability model and any operations

involving a file’s content requires a local copy be present. As part of our design, we

do not restrict the downloading of replicas by any devices and so Wayfinder does not

enforce any form of control for read access. Instead, we rely on users encrypting the

contents of file using standard encryption techniques.

Furthermore, given a local replica of an available file, it is impossible to prevent a

user from subsequently altering a file once it is downloaded. It is equally impossible

to prevent the publishing of malicious update information. Therefore, Wayfinder does

not attempt to prevent malicious users from either of these actions, but rather tries

to stem the effects of their actions from spreading through the community. This is

accomplished by imposing write access control at each device independently through

47

the detection of improper versions of files (i.e., files having history vectors that contain

disallowed updates) and preventing them from being presented to the user. Essentially,

files with malicious updates are ignored by properly functioning devices.

To implement this model, each file is regarded as being owned by a public/private

key pair. An access control list (ACL) that stores the public keys of principals (i.e., de-

vices) that can write a file is encoded as part of a file’s metadata waynode (Section 3.3).

The ACL is digitally signed by the owning key pair with the public key being embedded

in the file’s globally unique ID. Files can have multiple owners by sharing its private

key.

Once write permission has been given to a principle, it cannot be revoked. A file’s

owner can only add to a file’s ACL, never delete from it. Otherwise, it would be

impossible to tell whether writes from a user with revoked access rights preceded or

followed the actual revocation. This is particularly relevant if a device makes valid

changes to a file while disconnected and has its write permissions revoke during this

period. As a result, write revocation is implemented by creating a new file with the

same content, a modified ACL, and same file ID but with different keys. Wayfinder is

able to distinguish between identical files with different keys to prevent name collisions.

Intuitively, the unique identifier of the file becomes a time-stamp for the ACL while

the delete mechanism for files (Section 3.5) ensures that older versions of the ACL are

eventually removed. It is up to the user accessing a file to verify that it is owned by

the proper principal since multiple owners may compete for a single name within the

shared namespace.

When a file is modified, its content is signed by the modifying principal’s private key.

Devices receiving knowledge of a change must first verify its origin using this signature.

Once verified, the new version is checked against the current ACL of the file. If both

are correctly signed and the write is permitted, the new version of the file is considered

as valid by Wayfinder; otherwise it is ignored.

A subtle complication arises in our system when considering indirect sharing of

updated files. To protect the integrity of files, the history vector and content hash must

be signed by one of the principals with write permission. Otherwise, a malicious device

48

can apply disallowed updates to a file without updating the file’s metadata. This invalid

version of the file can then propagated to innocent devices as a properly protected file.

This means that there can exist two version of a file; an “un-official” version in which

all legal updates have been considered but the resulting content has not been validated

and an “official” version in which all updates and content have been verified by one

of the write principals. For efficiency reasons, Wayfinder allows devices to interchange

non-official updated versions so that not all devices are required to repeat the work

of validating changes while waiting for a write principal to sign a new version. The

users of these collaborative devices, however, must establish a trust relation outside of

Wayfinder’s write control model.

3.7 Storage Tables

Throughout this chapter we have demonstrate how Wayfinder’s abstractions are im-

plemented as queries against the underlying PlanetP toolkit. To store the necessary

information to support these abstractions we use three separate global tables that are

part of the PlanetP storage system; specifically a content table, a metadata table, and

a structural table. We will discuss each table in turn, presenting a description of its

implementation and the summary information it generates.

3.7.1 Metadata Table

The metadata table stores the typical metadata (i.e., size, dates, owner, etc) associated

with a single file/directory which is encoded by the metadata portion of a file/directory’s

waynode. Each entry in this table is associated with a particular file. Note, in most

current file system, this information is typically dispersed throughout the file system

(i.e., stored within the inodes), making it difficult to find files that match specific

metadata query conditions without actually traversing the entire system.

The summary information for this table consists of a Bloom Filter that encodes the

set of unique file IDs associated with every file; essentially one value per row of the

table. With this information being shared, it is possible for a node to ascertain which

49

remote nodes contain information for a particular file/directory.

3.7.2 Structural Table

The structural table stores information concerning the directory structure of a device’s

local hoard, specifically the information encoded in the structural portion of waynodes

for the local directories. This table is implemented using a set of data structures to

store the necessary name-bindings. In particular, given a file f in a directory d, the

parent-to-child binding (f → d) and its reverse (d → f) are stored. The latter

binding is kept to make file deletes more efficient.

There is no summary information for this table as remote nodes can determine the

location of directory replicas using the summary of the Metadata table (see above).

3.7.3 Content Table

The content table stores information concerning the content of files in a device’s local

hoard which is necessary to return ranked results for any content queries (i.e., those

associated with semantic directories). Any file that is stored by in the Wayfinder file

system is subjected to having its content parsed. For a file F , this process results in

a set S = {(k1, n1), (k2, n2), . . . (ki, ni)} where i is the number of unique terms in F

and (kj , nj) represents the jth unique term with a term frequency of nj in F . If a file’s

content can not be parsed (e.g., binary files) then the S = {∅}. During parsing, terms

are stemmed and stop words are removed.

As with the structural table, this table is implemented as a set of data structures.

For each file, three types of information are stored: 1) a term → file mappings, for

every ki in F the binding ki → F is stored, 2) the total number of terms for each file,

F →
∑m

i=1 ni, and 3) a reverse mapping of the form F → {k1, k2, . . . , kn}. The first

two types are used for content search and ranking while the latter is for simplifying the

deletion of a file’s content at the cost of using additional storage. If storage space is

constrained, the reverse mapping can be removed and a lazy traversal of the term →

file mappings used to delete a file’s content.

The summary information for this table is a Bloom Filter that encodes the set of

50

unique terms in this table. With this information being shared, it is possible for a node

to ascertain which remote nodes contain information relevant for a particular term in

a content query.

3.8 Performance

Having described the design of Wayfinder in detail, we now turn to evaluating its

performance during standard file system operations and robustness using a prototype

implementation.

3.8.1 Experimental Setup

Our prototype is written in Java and uses a modified version of the JNFSD server [40]

to export its services as a locally mounted user-level NFS system. All reported results

were obtained on a cluster of PCs where each node is equipped with a 64-bit 2.8 GHz

hyper-threaded Intel Xeon processor, 2 GB of memory, and a 10K RPM 70 GB SCSI

disk. All nodes ran the Linux 2.6.18 kernel and Sun’s Java 1.5.0 JVM. The cluster is

interconnected by a 100Mb/s Ethernet switch.

All information stored in the underlying instance of PlanetP is done so persistently

using the BerkeleyDB database [64]. In several experiments, we forgo this persistency

by using in-memory data structures to show the overhead of storing data persistently.

Each Wayfinder node caches file and directory views retrieved from the DHT in

local memory for 10 seconds. When Wayfinder is used by communities connected over

the Internet, this caching reduces the impact of communication over the WAN. Note

that this caching is similar to caching done by the Linux NFS client (3–30 seconds),

although Linux has a more sophisticated policy of when to disregard the cache. Unless

specified, all nodes are participants in the PlanetP DHT.

3.8.2 Micro Benchmark

Table 3.1 shows the results of a micro-benchmark experiment in which we measured

the time taken for various NFS operation as a node enters a community, creates a set of

51

NFS v 2.0 Micro-Benchmarks (in ms)

Single-Node Multi-Node
In-Memory Persistent In-Memory Persistent

Create 6.58 23.23 17.26 32.55

Lookup 0.93 1.05 2.65 2.72

Getattr 0.10 0.10 0.18 0.12

Mkdir 8.73 18.49 26.76 36.64

Remove 1.02 10.87 8.77 18.72

Readdir 3.66 4.43 3.78 3.56

Write 2.68 21.25 2.92 24.22

Table 3.1: Micro-benchmarks for NFS operations in both single and multi-node communities

while using both persistent and in-memory storage for the tables outlined in Section 3.7. The

benchmark comprises a set a user coming into a community, creating numerous files and direc-

tories at different locations, writing to them, and then deleting them.

files and directories, edits the files, and concludes by deleting them. In the single-node

case, all requests are satisfied by local operations and so represent the best possible

times for a Wayfinder client. The multi-node case simulates the scenario when a node

enters an existing community and all information is located on remote nodes thereby

requiring network communication. This experiment was performed on a 12 node system

in which the node running the benchmark did not participate in the DHT. The latter

point ensures that all access to the DHT would require remote communication. We do

this to ensure that the observed behavior is similar to what would be encountered in a

larger community where a DHT access would most likely not be satisfied locally.

In looking at the single node case, we observe that operations that require storing

new metadata, such as Create and Mkdir, incur longer overheads resulting from storing

information in PlanetP. The time for Mkdir is larger than that of the Create as this

time includes the overhead for creating the actual directory and the required hidden file

(Section 3.5). Without this file, a Mkdir operation would take less time than a Create

because it does not require the storing of content information.

Further can we observe that any operation that require communication with the

DHT to access cached state, with the exception of the NFS Lookup and Getattr, takes

longer in the multi-node setting. When Lookup operations require learning about

remote files via waynodes, the results are cached for a small amount of time (a few

52

seconds) to improve performance of repeated Lookups. For Getattr the required file is

always cached by previous operations.

Accessing the DHT to store information does incur visible overheads. As we shall

see in later (Section 3.8.4), the benefit of the DHT is in improving the retrieval of in-

formation. For this, utilizing the DHT means the difference between possibly accessing

a single node storing needed data in memory or contacting a large number of nodes

where the needed data is stored persistently on disk.

Finally, as expected there is a significant cost in storing data persistently. The

choice of using the BerkeleyDB for persistency was one made for its simplicity and

ease of use. The BerkeleyDB stores all information as arrays of bytes. Our Java-

based prototype uses Java serialization to convert between these arrays and various

Java objects and primitive data types. Such conversions are performed when storing

or retrieving information from the database. As an optimization, we have implemented

a cache to store frequently accessed data. A persistent data store tailored to the data

requirements of Wayfinder that could avoid this process would improve access times.

3.8.3 Macro Benchmark

Table 3.2 shows the running time for the Modified Andrew Benchmark [37] for Linux

NFS, the unmodified JNFSD, and Wayfinder in various configurations. The benchmark

consists of five phases executed by a single client: (1) create a directory structure, (2)

copy a set of files into the directory structure, (3) stat each file, (4) grep through the

files, and (5) compile the files. In all cases, the NFS server and client ran on the

same machine for comparison against when Wayfinder is running on a single node.

The column titled “Wayfinder: 1 Node” indicates the experiment being run in a single

node community. “Wayfinder: 12 Nodes” reflects performance for the scenario where

the community is sufficiently large so that each access to the DHT requires a message

exchange. For this scenario, we present the times when using both persistent storage

and in-memory data structures.

Observe that Wayfinder imposes little overhead compared to the JNFSD when the

workload is not entirely comprised of file system operations. In particular, Wayfinder

53

Modified Andrew Benchmark (in sec)

Phase Linux NFS JNFSD Wayfinder: 1 Node Wayfinder: 12 Nodes
in-memory in-memory persistent

1 0.01 0.02 0.20 0.53 1.31

2 0.12 0.45 1.23 2.04 9.61

3 0.21 0.26 0.30 0.42 0.71

4 0.22 0.25 0.28 0.29 0.62

5 1.58 2.60 2.85 3.16 6.08

Total 2.12 3.58 4.86 6.44 18.33

Table 3.2: Results of the Modified Andrew Benchmark using the Linux NFS, original
JNFSD and the JNFSD linked with Wayfinder running in isolation and in a community
of 12 nodes.

imposes insignificant overheads for phases 4 and 5, when the client is grepping and

compiling, respectively.

Currently to determine whether or not a write operation has actually changed a

file, Wayfinder creates a snapshot of the file’s content when it is opened for writing.

This snapshot is used for comparison when the file is flushed. This process, in part,

contributed to the higher performance penalty imposed in Phases 1 and 2. Additionally,

Phases 1 and 2 require the synchronously flushing of waynodes from the local caches and

force a remote DHT update of the any cached entries. This overhead can be observed

when comparing the fourth and fifth column in Table 3.2, specifically for phases 1 and

2. Phase 3 benefits from the cache footprint resulting from phase 2 and so imposes only

a modest amount of overhead.

In the sixth column of Table 3.2, we observe the worst case scenario in which all

DHT access require remote communication and the accessing, or changing, of file sys-

tem metadata requires accessing persistent storage. In particular, we see that Phases

1, 2, and 5 have significant overheads resulting from file creations. The cost of ac-

cessing persistently stored data (i.e., in the BerkeleyDB) surpasses any communication

overheads.

We thus conclude that while Wayfinder does impose visible overheads on basic file

system operations. These overheads are acceptable given that the prototype is a largely

un-tuned Java program. We also observe that the Andrew Benchmark gives the worst

54

case scenario for Wayfinder: all operations are performed at a single client and so gives

no measure of Wayfinder’s effectiveness for collaborative workloads.

3.8.4 Scalability and Robustness

We now show the advantage of Wayfinder’s dual nature for sharing information; using

gossiping for robustness to failures and caching in the DHT for scalable performance. In

this experiment we measure the time required for a single node to perform a complete

traversal of an artificial namespace, e.g., doing an “ls -R”. The scanned namespace is a

complete trinary directory tree of depth 3 at the root of the namespace, giving a total of

41 directories with each directory containing a single file. We ensure that all accesses to

the PlanetP DHT require remote communication by disallowing the scanning node from

being a participant in the DHT. We again do this to ensure that the observed behavior

is similar to what would be encountered in a larger community where a DHT access

would most likely not find the required state locally. We also ensure that sufficient time

passes between each scan to negate any benefits we may receive from the local caching

of view objects. However, we do allow the caching of objects retrieved from persistent

storage. We have already observed in the previous section that accessing persistent

storage incurs significant overheads. The absence of this caching would further increase

the observed times in this experiment as DHT objects are stored in memory and manual

re-creation of views may require accessing information stored persistently on remote

nodes. In this experiment, we instead focus on the increased cost of communication.

Finally, each node hoards the entire namespace so that in the absence of cached state,

communication with every node is required to determine the current state of each file.

Figure 3.7(a) plots the time required for this experiment as we increase the size of

the community as an average of five runs. As the namespace is replicated universally,

increasing the community size increases the amount of distributed state that needs to

be retrieved. As expected, the scan time without caching in the DHT grows linearly

with community size since computing each directory view requires contacting all nodes.

With caching, however, the scan time remains relatively constant as the cost of accessing

cached DHT entries remains unchanged.

55

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12

T
im

e
(s

ec
on

ds
)

Community Size (nodes)

Scan Time for Namespace

with DHT
no DHT

 0

 1

 2

 3

 4

 5

 6

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
on

ds
)

Scan Operations

Scan Time with DHT Failures

1 Down 4 Down 8 Down All Down

(a) (b)

Figure 3.7: (a) Time required to scan a namespace plotted against community size. (b)
Scan time in the presence of DHT failures. X-axis indicates a sequence of successive
scans with solid vertical lines denoting a scheduled failure point. The label associated
with each solid line indicates the number of nodes involved. Dashed lines represent the
minimum and maximum times across twelve samples.

Figure 3.7(b) shows Wayfinder’s robustness to loss of data cached in the DHT. In

this experiment, we run a sequence of twenty scans over a similar namespace as before

and at four points simulate multiple node crashing in the DHT by discarding all DHT

content on selected nodes. The average results of twelve runs of this experiment is show

with the vertical bars at each data point delimiting the range of observed times.

We observe a rise in the scan time immediately proceeding each DHT failure indicat-

ing that some directory and file state had to be reconstructed manually by the scanning

node. The subsequent return to the original scan time shows that this reconstructed

state was successfully re-inserted into the DHT. The range of values after each failure

reflect how much information was discarded as a result of the DHT failure.

3.8.5 Storage Overhead

For storage costs, our prototype incurs the cost of storing the tables defined in Sec-

tion 3.7 persistently. These costs are described in detail for real life data sets in Sec-

tion 5.4.8.

56

3.9 Summary

In this chapter we presented both the design and a prototype implementation of the

Wayfinder federated file system. This file system allows a community of users to shared

and store information in a collaborative setting through two complementary abstrac-

tions: a single unified global namespace constructed dynamically from the available

information of individual users and search queries that can be persistently embedded

into the namespace in the form of Semantic Directories. These abstractions allow users

to address information by both name and content.

With regard to these abstractions, we detailed the a method of constructing the

namespace based on a merging principle. This method of construction allows the names-

pace to dynamically represent the available content while also providing effective sup-

port for both partitioned and disconnected operations. Furthermore, we showed that

the combination of this global namespace and semantic directories provides a active

search structure that can be shared among users.

This chapter detailed Wayfinder’s storage model in which all file system metadata

is stored in a loosely consistent federated data store provided by the PlanetP toolkit.

We described the method by which all of Wayfinder’s abstractions are implemented by

posing the appropriate queries to this underlying storage system. We also demonstrated

the usefulness of using a light-weight DHT for improving performance.

We have demonstrated through experimentation that while Wayfinder does impose

some overhead for common file system operations, it may be reasonable given the

benefits the system provide.

57

Chapter 4

Automatic Availability Management

In this chapter, we will consider the problem of automatic data replication in a federated

system used for sharing information. In an ideal situation when sharing information in a

federated community, we would replicate any shared content across all devices, ensuring

that any shared content would be accessible from any device at anytime, regardless of

the device’s connection status at the time of an access. This device and connection

transparency would allow users to forgo reasoning about the placement of data replicas

on specific devices. Furthermore, the effect of a user’s permanent disconnection would

be tempered as his personal devices would contain a complete snapshot to access any

content. Such permanent disconnection can arise for a number of reasons, including

catastrophic failure of the federated system, dissolution of the federation, or the user

simply leaving permanently. Mitigating this effect removes the need for a user to

hoard content external to the federated system to ensure availability in case of such a

disconnection.

This ideal situation is impractical. We anticipate that for most communities the

amount of information being shared will be considerably larger than the storage of any

single device. Each device will likely contain only a subset of the aggregated shared

content of the community making the guarantees of the ideal model (i.e., access any

file at any time) impossible.

We instead propose an intuitive 3-part availability model that approximates the

ideal. Each user should be able to (1) access any file from any device connected to the

federated system with high probability—this corresponds to the traditional definition

of availability, which we will call online availability, (2) access files within a working

set from any device within a set of personal devices when operating in disconnected

58

mode with high probability—we call this offline availability, and (3) access files that he

owns from his personal devices with high probability, even if he becomes permanently

disconnected from the community—we call this ownership availability.

Our model departs from the ideal in two ways. First, during disconnected operation,

the user is limited to working from one of his personal devices and can only access

files local to that device. With high probability, these local files should include his

working set. This deviation is both reasonable and intuitive given that users do typically

constrain disconnected operation to their personal devices rather than arbitrary devices

in the federated system. Further, when operating in disconnected mode, the user is

limited to the resources available on his local device and thus cannot expect to have

access to all shared content. Having a well-defined working set automatically placed on

his personal devices should go a long way toward meeting a user’s need for disconnected

operation with minimal data management overheads [44]. The second deviation occurs

when a user becomes permanently disconnected from the community. In this case, his

devices may only contain the subset of files that he owns rather than a snapshot of

the entire system. Again, this difference is reasonable and intuitive given the finite

resources of a user’s device set and that the user is unlikely to be interested in the

content of the entire federated system.

In the remainder of this chapter we discuss and present a supporting replication

algorithm for this model. Specifically, we demonstrate how this algorithm explicitly

attempts to balance the personal needs of an individual user (i.e., ownership and of-

fline availability) with the needs of the community (online availability) while allowing

nodes to retain a high degree of autonomy in their actions. We conclude this chapter

by discussing a prototype implementation of our replication algorithm as part of the

Wayfinder file system and present an evaluation.

4.1 Replication Algorithm

In this section, we describe an automatic replication algorithm devised to support the

above mentioned availability model.

59

A key intuition behind our replication algorithm is that devices belonging to a user

should prioritize offline and ownership availability for their user over online availability

for the community. This is because the primary use of a personal device is to store

content that the user cares about; i.e., content in the user’s working set, which he will

likely access in the near future, and content that the user owns, which he would want in

the case of permanent disconnection. However, it is beneficial for devices to collaborate

to maintain high online availability for all shared content because this allows all users

to find new content of interest to them as well as ensure easy access to content that they

have not used in a long time. In our algorithm, devices selfishly use their local storage

to store files in their owners’ working set (the set of files a use may want to access in the

near future) and ownership set (the set of all files a user will want to retain a copy of).

However, excess storage across the federated system is used to collaboratively ensure

high online availability for all shared content. Server-like devices that do not belong

to any single user can also be added to the system to ensure that sufficient communal

storage is available to maintain high online availability.

Critically, our replication algorithm explicitly considers the impact of the selfish

hoarding actions of individual devices on the online availability of shared content. This

means that hot content, i.e., content that has been recently accessed by many users,

typically does not need to be replicated for online availability. On the other hand, as

content becomes cold, the algorithm will ensure that sufficient replicas remain in the

system to maintain a target online availability level.

Our approach relies only on replication decisions being made autonomously by in-

dividual devices using only a small amount of loosely synchronized global state. This

state is shared as part of PlanetP’s global directory and consists, in part, of an approx-

imate replica-to-device mapping and a per device average availability measure. With

this information, our replication algorithm can differentiate between the state of various

files and ensure that they are neither over- nor under-replicated. Further, replication

decisions are made locally and autonomously. This autonomy is important because

devices in a federated system may join and leave the online system unpredictably and

may have low online availability (e.g., laptops that are often turned off). Devices can

60

Device Set
User u

C-Space P-Space

Device 3

Device 1

Device 2

F1

F2

F4

F1

F2

F4

F3

F4

F3

F4

Ownu

WSu

F3F1

F4

F3

F4

F3

F2 F4

Federated
Community

User m - Device 1

F4

User k - Device 1

F3

F4

…

Device Set
User u

C-Space P-Space

Device 3

Device 1

Device 2

F1

F2

F4

F1

F2

F4

F3

F4

F3

F4

Ownu

WSu

F3F1

F4

F3

F4

F3

F2

F4

Federated
Community

User m - Device 1

F4

User k - Device 1

F3

F4

…

C
ha

m
pi

o
n

(a) Replication (Basic) (b) Replication (with Champion devices)

Figure 4.1: (a) Basic and (b) modified replication algorithms for a user u and his device
set. Files in Ownu must be stored in the PSpace of at least one device in DSu (or just
the champion (b)). Files in WSu are stored in the PSpace of all devices in DSu. Each
device in DSu (or just the champion (b)) then pushes files in Ownu to the CSpace of
other devices in the community.

also arbitrarily leave the system permanently.

More specifically, our algorithm mandates that personal devices belonging to a user

u collaborate among themselves to maintain offline and ownership availability for u’s

working set and ownership set, respectively, and for all devices in the federated system

to collaborate to maintain the online availability of all shared content. Toward this goal

(See Figure 4.1), devices belonging to a user u would: (1) hoard replicas of files in u’s

working and ownership sets, and (2) push replicas of files owned by u throughout the

system to achieve a target online availability level.1 Assuming that each file is owned

by at least one user, then the push component of our algorithm serves to maintain

online availability for all files. However, because devices prioritize offline and ownership

availability over online availability, the target online availability is only achievable when

there is sufficient excess storage space.

In the remainder of this section, we first introduce some notations and several im-

portant assumptions. We then describe the various aspects of our algorithm in detail.

1Although we talk about replicating files because files are a well-understood content encapsulating
abstraction, our replication algorithm should be applicable to arbitrary data objects.

61

4.1.1 Terminology and Assumptions

With respect to notation, let WSu denote the working set of a user u, Ownu denote

u’s ownership set, and DSu be the set of all personal devices belonging to u. Also, let

us divide the local storage of each device into two logical regions called personal space

(PSpace), which is used to achieve offline and ownership availability for the device’s

owner, and communal space (CSpace), which is used to achieve the communal online

availability (Figure 4.1). As shall be seen, the boundary between PSpace and CSpace is

determined dynamically, with devices selfishly extending PSpace and shrinking CSpace

as needed to maintain offline and ownership availability for their owners.

To support the availability model introduced in Section 4.1, we assume that up to

two tags can be associated with each file f for each user u: (1) 〈u, f,OffA, t〉, spec-

ifying that u wants high offline availability for f until the expiration time t, and

(2) 〈u, f,OwnA〉, indicating that u wants high ownership availability for f . The set

{f |∃〈u, f,OffA, t〉,where t > the current time} then defines u’s working set at any point

in time while the set {f |∃〈u, f,OwnA〉} defines u’s ownership set. As shall be seen in

Section 4.2, in an implementation, tag inheritance, e.g., tagging a directory in a feder-

ated file system and specifying that files and subdirectories inside that directory should

inherit the tags, and automatic system tagging, e.g., automatic tagging of files recently

accessed by a user for high offline availability, makes this tagging scheme practical. As

the tagging is done per user, it is possible for multiple users to own the same file. In

this context ownership only implies that user wants to retain a copy of the file to guard

against permanent disconnection and not having any special rights to the file compared

to other users.

The key point with respect to the model is that users are asked to explicitly reason

about the availability properties for files within the system’s namespace; that is, users

locate files using their names and then attach, modify, or remove the desired availability

tags. Users do not, however, have to reason about the replication and placement of files

to achieve the specified availability properties. This latter aspect is the responsibility

of the system running the replication algorithm discussed in Section 4.1.2. We shall

62

see later (Section 4.3) that the global namespace provided by the Wayfinder file system

(See Chapter 3) simplifies this locating of files by name in a federated system.

We also assume that: (1) for each user u, DSu contains at least 1 device that is

online most of the time—that is, this device has high online availability with respect

to the federated system; (2) given a file f , each device can inexpensively determine the

latest version of f and the approximate location of all replicas of f as well as all replicas

of a specific version of f ; (3) each device can inexpensively track the online availability

of all other devices in the federated system; and (4) devices in DSu can inexpensively

track WSu and Ownu. In Section 4.2, we will show how these assumptions can be

supported in an actual system.

4.1.2 Replication

The replication strategy for each user u is then to: (1) replicate each file in Ownu in the

PSpace of at least one device in DSu; (2) replicate each file in WSu in the PSpace of all

devices in DSu; and (3) replicate each file in Ownu in the CSpace of devices throughout

the system as needed to achieve a communal online availability target TOAC . The first

component ensures that the user will have at least one copy of each file that he owns

in the case of permanent disconnection. The second component ensures that the user

will have access to his working set during disconnected operation, regardless of which

personal device he is using. Finally, the last component ensures online availability for

all shared content when there is sufficient space.

To simplify the implementation of the above strategy, we introduce the notion of

champion devices. Each user u must designate at least one champion device Cu from

DSu—typically the per-user highly available device assumed above. Ideally, Cu also has

plentiful storage and processing capacity. The role of Cu is then to maintain ownership

availability for u and to shoulder’s u portion of ensuring online availability for all shared

content (Figure 4.1). (Note that while we describe the algorithm as if there is a single

champion per user, each user can in fact have multiple champions without introducing

added complexity.) The remainder of the devices in DSu are only concerned with

maintaining offline availability for u.

63

Further assume for the moment that Cu has sufficient capacity to store all files

in Ownu. Then, Cu would monitor Ownu and download any new member of this set

to its PSpace. If its local storage is full, it will evict enough files from its CSpace

to accommodate the new file. Eviction is described in Section 4.1.3. Cu would also

periodically, every Tr time units, randomly select a file f from Ownu with lower online

availability than TOAC and push a replica of f to a randomly selected peer that does

not yet store f .

Simultaneously, each non-champion device in DSu monitors WSu and downloads

any new member of this set to its PSpace. If its local storage is full, then the device

will evict enough files from its CSpace to accommodate the new file. If WSu becomes

larger than the device’s local storage capacity, then files in WSu are evicted in order of

expiration time, nearest to furthest in the future (i.e., LRU ordering)

If Cu cannot hold all files in Ownu, then it must ask one or more peer devices in DSu

to hold some of the files (in their PSpaces) on its behalf. This is a “golden” copy with

respect to ownership availability and thus cannot be dropped by the peer device without

the consent of Cu. Further, the peer device must become the champion for maintaining

the online availability target for the subset of Ownu that it is storing. This is the only

instance in our algorithm when two devices must explicitly coordinate. Note that if a

user has multiple champion devices, it is quite easy for these devices to coordinate the

partitioning of files in Ownu among themselves; they are highly available and so can

easily run a standard commit protocol. This ensures that the size of a user’s ownership

set is not limited to the storage capacity of a single machine.

If Cu has plentiful storage, it can also monitor and hoard files in WSu in the case

that u ever needs to use it in the disconnected mode.

All devices may receive push requests from peers in the system to increase the online

availability of under-replicated files. When a device receives such a request, it accepts

and stores the replica in its CSpace if it has sufficient free space. Otherwise, it can

either reject the request or evict from its CSpace to free up space.

64

4.1.3 Eviction

Eviction is a two-part process: (1) migrating files from PSpace to CSpace, and (2)

evicting files from CSpace. Specifically, each device migrates each file f in its PSpace

to its CSpace whenever f is no longer a member of Ownu
⋃

WSu. A non-champion

device holding a golden copy of a file in Ownu but not in WSu can also migrate that file

to its CSpace after Cu negotiates to take back the responsibility for the golden copy.

When evicting files from CSpace, each device should evict the files with the high-

est online availability. If each device deterministically evicts the most over-replicated

files, however, then multiple devices running the same algorithm autonomously may

simultaneously victimize the same set of files, leading to drastic changes in the files’

availability. Thus, we instead use a weighted random selection process, where files with

higher availability have higher chances of being selected for eviction.

This availability-conscious eviction policy is implemented as follows. Periodically,

each device computes the average number of nines in the availability of all files in

its CSpace. We use the number of nines rather than the availability itself because it

linearizes the differences between availability values, i.e., the difference between 0.9 and

0.99 (1 and 2 nines respectively) is the same as that between 0.99 and 0.999 (2 and

3 nines respectively). If a push request requires eviction, then the request would be

rejected if the availability of the file to be replicated is more than a threshold percentage

(we use 10%) above the computed average availability of local files. This prevents the

acceptance of a replica that will likely be evicted the next time a replication request is

received by the target device. Otherwise, lottery scheduling is used to affect a weighted

random selection of victims where over-replicated files are heavily penalized for their

excess availability, making it highly probable that a replica of an over-replicated file

will be evicted.

In particular, a set of tickets is divided into two subsets with the ratio 80:20. Each

replica in CSpace is assigned an equal share of the smaller subset. In addition, replicas

with availability above 10% of the average are given a portion of the larger subset. The

amount given to each of these replica is proportional the difference of the average local

65

file availability and the availability of the respective replica.

The intuitions behind our eviction policy are as follows. First, we reject the incoming

replica if it will simply become a target for eviction the next time a replication request

is received by the target device. Without this condition, we will simply be shifting

replicas around without much effect. Our threshold for this outright rejection may

seem rather low (i.e., 10% above the computed average of local files); at some cost of

bandwidth, if we were less aggressive at rejecting replicas, perhaps over time, the system

can reach a better configuration. However, we learned in previous work that while this

threshold affects bandwidth usage, it does not significantly affect the overall replication

process [15]. Next, we penalize over-replicated files heavily for the number of nines in

their availability, making it highly probable that a replica of an over-replicated file will

be evicted.

4.1.4 Updates

Thus far, we have described our replication algorithm as if files are immutable. When a

file is updated, however, we must ensure that the update is propagated to maintain the

availability of the latest version. (We are, of course, assuming that the file system itself

does not ensure that an update is applied to all existing replicas.) If a file is updated

on a non-champion device, then the device would push the new version of the file to

the champion as soon as possible. Further, the device cannot evict the file until the

new version reaches the champion. As shall be seen, when a system automatically tags

recently accessed files to be in the accessing users’ working sets, the accessing devices

would naturally avoid evicting these files for some time to ensure offline availability.

When an updated file reaches the champion Cu, or if the update was performed

on Cu, there are two possible cases: (1) the file is owned by u, and (2) the file is not

owned by u. In the first case, Cu uses the standard periodic pushing process described

earlier to push the new version of the modified file. One complication is that Cu is

faced with the problem of computing the availability of the latest version as opposed to

that of old versions of the file. We address this problem by distinguishing between file

online availability and version online availability, where file availability is computed by

66

considering all replicas of the file, regardless of the version, and version availability is

computed by considering only replicas of a particular version. The champion then uses

the version availability of the latest version of a file when it is considering whether a file

still needs to be pushed for increased online availability. Eviction remains based on file

online availability. This ensures that replicas of out-of-date versions will eventually be

flushed from the system since they inflate file online availability but are not maintained

by any champion.

In the second case, Cu becomes a temporary champion for the updated file and

pushes the new version to achieve TOAC for it. Cu stores a replica of this version in its

PSpace until it stops championing that file, at which time the replica would be migrated

to its CSpace. All champion devices periodically look for updates to files in their users’

Own sets and download the new versions. Once the true champion of an updated file has

downloaded the new version, it takes over the responsibility of maintaining the online

availability of that version. (Ownership availability is already ensured by the fact that

the champion downloaded the new version.) Note that this hand-off is implicit in that

the temporary champion will push the new version of the updated file for a period of

time, after which it quits under the assumption that the true champion has found the

update.

When pushing an updated file, the champion will preferentially select a device that

already has a replica of a previous version of the file by giving these devices more

weight in its random selection of replication targets. This limits the storage devoted to

replicas of out-of-date versions (although, even without this bias, out-of-date versions

would eventually be flushed from the system as explained above).

To further ensure high online and offline availability for the latest version of a file

in the presence of remote changes, each champion actively monitors files in the working

set of its user looking for outstanding updates. If found, these updates are applied to

the local replica.

67

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9

0.05

0.10

0.15

0.22

0.30

0.40

0.52

0.70

1.00

P
er

ce
nt

ag
e

A
va

ila
bi

lit
y

N
um

be
r

of
 N

in
es

Number of Replicas

Availability verse Replica Count

20%
40%
60%
80%
90%
99%

90.0

99.0
 99.9

 1 2 3 4 5 6 7 8 9
1.00

2.0
3.0

P
er

ce
nt

ag
e

A
va

ila
bi

lit
y

N
um

be
r

of
 N

in
es

Number of Replicas

Availability verse Replica Count

20%
40%
60%
80%
90%
99%

(a) (b)

Figure 4.2: The availability of a file (both as a percentage and the number of nines)
plotted as a function of the number of replicas placed on devices with equal availability.
Each line represents a specific device availability. Figure (b) is an enlarged view of the
upper-left region of Figure (a).

4.1.5 Estimating Online Availability

Assuming that devices going online and offline are independent events, the availability

of a file f can be computed as A(f) = 1 −
∏

d∈D(f)(1 − Ad), where D(f) is the set of

devices that contain replicas of f and Ad is the availability of device d. The effect on

the availability of a file when increasing the number of replicas on devices with similar

availability is shown in Figure 4.2. Recall that D(f) can be computed inexpensively

according to assumption (2) in Section 4.1.1 and the availability of all devices are known

according to assumption (3). The availability of a particular version fv of file f can be

computed similarly using the set of devices that contain replicas of fv.

4.1.6 Algorithm Implications

We now turn to discussing several important implications of the replication algorithm.

First, it is quite easy to extend our algorithm to support per-file online availability

targets, as opposed to a single common target. As space becomes constrained, however,

our eviction algorithm will essentially place a cap on the maximum online availability

that is achievable.

Second, while users do not have to reason about replicas and their placement, they

68

do need to be aware of the amount of storage available on their personal devices vs. the

files that they want to own. As a user owns more files, more storage on his personal

devices will be devoted to maintaining ownership availability, which may directly reduce

offline availability for the user and online availability for the community as a whole. As

already mentioned, a user can easily aggregate the resources of multiple champions to

store and maintain the ownership availability of a large ownership set.

Third, it is easy to add devices not belonging to any user, e.g., server-like machines,

to the system to provide communal space for maintaining online availability. These

devices could passively provide additional storage (i.e., CSpace) to the community or

actively take ownership of a portion of the shared content to help monitor and maintain

online availability. Thus, our replication algorithm extends quite naturally to hybrid

environments containing both personal devices and shared servers.

Finally, note that our replication algorithm, as presented, is not concerned with

durability. By specifying a high ownership availability, users can ensure that a file will

be replicated on at least one of their devices. If the user’s champion device (which is

tasked with maintaining the ownership availability) has sufficient availability, then this

file may only have one replica in the system. In this scenario, the file would not survive

the single failure of this champion device.

Our model can be extended to consider durability as a factor during replica place-

ment by allowing users to associate persistency ratings with devices in their device set.

These rating can be derived from a variety of factors including the quality of the hard-

ware, how the machine is administered, and the type of software installed. In turn,

these rating can be used to define durability rules that are evaluated during the repli-

cation and eviction process. During their evaluation, a file can be deemed sufficiently

persistent or require additional replicas. An example of a simple rule might be, “Ensure

that all files in Ownu are located on at least two of my devices or on a device having a

“Back Up” rating; indicating the presence of an external back-up system.”

69

4.2 Implementation

As indicated earlier we implemented a prototype of our replication algorithm as part

of the Wayfinder file system. In this section we will present relevant aspects of the

implementation. As we shall see, we employ the global tables in PlanetP presented in

Chapter 3 but expand the summary information, specifically for the Metadata table.

4.2.1 Locating Replicas

For each replica of a file f having a unique ID fID and version v, we store the terms

fID (already required by the file system) and the additional term fID.v as part of the

summary information of the Metadata table. A device can then locate replicas of f

by querying PlanetP for the set of devices containing the term fID in their respective

tables. Similarly, a device can determine the locations of a particular version of f . Note

that both these computations only involve consulting the summary information in the

Metadata table (Section 3.7) and so does not require any network communication.

4.2.2 Maintaining Node Groups

For each user, u, having a set of devices, D, we maintain a group identifier, IDu. Devices

belonging to D adds the term IDu to their summary information of the Metadata table.

The champion node of D adds the additional term “Champion.IDu” to the summary

of the Metadata table. Similar to when locating files, remote devices can determine the

membership and the champion of a particular device set by querying PlanetP for the

appropriate set of devices.

4.2.3 Tracking Device Online Availability

Each device in a Wayfinder system tracks when it is connected to the system (online)

and when it is not (offline) and computes its availability as P (online) =

online time
(online time+offline time) . Each device publishes its own availability as a property in the

PlanetP membership directory.

While the above definition of online availability is quite standard, in a federated

70

system such as Wayfinder where any subset of devices can form a working subsystem,

the question arises of what constitutes being connected to the system. Under the

assumption that any Wayfinder system is likely to have at least a small number of

highly available devices if it is to provide reasonable data availability, we define a core

set that contains one or more of these highly available devices for each file system.

Then, a device is defined to be connected to the file system if it can connect to at least

one device in the core set.

4.2.4 File Tagging

To support our availability mode, Wayfinder allows users to specify tags for directories

that should be inherited by descendant files and sub-directories. In essence, this allows

the user to specify an availability directive for an entire portion of the namespace with

just one explicit tag. In addition, Wayfinder can optionally tag files automatically for

each user u as follows: (1) whenever u accesses a file f , f is tagged with 〈u,OffA, t〉,

where t is the current time plus a user-specified drop period; and (2) whenever u creates

a new file f , f is tagged with 〈u,OwnA〉. This tagging information is maintained in

the locally stored waynode as part of a replica’s metadata information.

4.2.5 Maintaining Offline and Ownership Availability

Each device in DSu maintains copies of u’s working and ownership sets and loosely syn-

chronize them with its peers in DSu using PlanetP’s gossiping service. (Non-champion

devices only have to maintain their additions to the ownership set.) Whenever a device

learns of an addition to the working set, it downloads the new file to its hoard as part

of PSpace. The champion device does the same thing for the ownership set.

By maintaining the working set, devices learn about changes made to files within

DSu. Changes made outside of DSu, however, may go unnoticed. To learn of such

remote changes, each champion device maintains a finite collection, M , of recently ac-

cessed files to periodically query for remote changes. Files are automatically placed

into M when they become part of a user’s working set. Assuming there may be some

71

locality in file updates, we use a weighted multi-chance lottery to chose update candi-

dates. Specifically, the lottery uses tickets assigned to each files on its initial placement

into M . When a file f is chosen, a user’s device attempts to determine if any out-

standing updates to f exists and if so, updates the local replica of f . If the update is

not successful, the file’s ticket count is halved for future lotteries. This continues until

the ticket count drops below one at which point the file is removed completely from

consideration. If successful, the ticket count for the file is reset to the amount given at

insertion.

An interesting consequence of tag inheritance is that a user may become the owner

of a file that he did not create. An example of this situation arises when a user is

interested in maintaining a copy of all content in a directory, regardless of who first

introduces that content. Thus, to properly maintain the ownership set, each champion

device periodically traverses all portions of the namespace tagged for ownership by its

owner. In fact, the champion does not maintain the full ownership set; rather, it only

maintains the set of roots defining the portions of the namespace that it must traverse

to compute the ownership set.

4.2.6 Maintaining Online Availability

Recall that each champion device Cu must periodically choose a file from Ownu that

has not achieved an online availability of TOAC and push a replica of that file out to

the system. As Cu traverses the namespace to compute the ownership set, it computes

the current version online availability of the latest version of each member of Ownu

and inserts it into a pool of candidates if the file is under-replicated. The champion

then periodically selects a file from this pool, recomputes its version availability if a

threshold time period has passed since the availability was last computed, pushes a

replica if still necessary, and removes the file from the pool if it has now achieved its

availability target. The pool has finite size. If the pool fills up, candidates are removed

using a random selection similar to that described in Section 4.1.3 but weighted by the

version availability instead of the file availability.

72

4.2.7 Eviction

A finite pool of candidates for eviction is maintained on each device similar to the pool

on each champion for replication. Each device continuously traverses its local hoard,

filling the pool with potential candidates for removal. Files are considered candidates

if they are in CSpace. When needed, eviction victims are then chosen from the pool

using the method described in Section 4.1.3.

4.2.8 Updates

A new version of a file is created as the results of a write operation. Whenever a device

learns of an update to a file in its PSpace, it downloads the new version of the file to

replace the older version. To reduce the overhead of detecting such file updates in our

implementation, only the champions look for updates to files in their owners’ working

sets. When a champion learns of an update, it downloads the new version of the file

and then gossips the existence of the update to its peer devices in the device group.

Each peer devices may then attempt to update its own local copy as needed.

4.3 Evaluation

We will now explore the performance of the replication algorithm presented in this

chapter. We have implemented the replication algorithm as part of the Wayfinder file

system. Wayfinder provides a natural hosting platform for our model as it provides

a global namespace that ensures uniform naming of information across connected and

disconnected operation. Coupling our replication algorithm with a global namespace

removes the need for users to reason about the physical placement of replicas for both

locating data and ensuring data availability. The burden of data management for

each user is thus reduced to reasoning about what availability properties he desires for

specific portions of the global namespace. Note that the latter is an already existing

and necessary part of participating in a federated system unless the user’s devices have

sufficient resources to hoard all shared content.

We evaluate our prototype implementation using a micro-benchmark as well as a

73

macro-benchmark derived from traces of a online wiki site. The macro-benchmark

is particularly relevant because wikis are designed to allow communities of users to

collaboratively maintain shared sets of web pages.

4.3.1 Methodology

Our study centers around two benchmarks; a micro-benchmark that injects bursts of

file creations and a macro-benchmark derived from a read/write trace of a wiki. The

former studies the efficiency of our randomized replication algorithm while the latter

studies our algorithm’s behavior under a real, albeit condensed, workload.

Our study focuses only on Wayfinder’s maintenance of online and ownership avail-

ability. While the full replication algorithm is always executed, we do not measure

offline availability as we do not have sufficient data on disconnected access patterns.

Further, our contribution is a combined availability model that includes hoarding as

a component, rather than any novel hoarding algorithm for disconnected operation.

Other efforts [46] have explored this latter problem and our replication algorithm can

directly leverage their algorithms if desired. As mentioned, our algorithm maintains an

LRU working set for simplicity.

Our benchmarks are run in two different environments designed to represent two

different styles of federated communities.

Corporate (CO). This community represents what we might see in a standard corpo-

rate or university environment, where each employee is assigned a desktop. The goal of

this community is to provide high online availability for all content. This community is

parameterized using data from Bolosky et al.’s [8] study of a large corporate environ-

ment. Specifically, we set each node in a cluster of 12 nodes to have 80% availability

with an average uptime of 272 minutes. (The average uptime was shortened by a factor

of 11 from that reported by Bolosky et al. because our benchmark is a compressed

trace designed to reduce experimental time.) Each node belongs to a distinct device

set. This is akin to each user only owning a single node in the community. All files in

the system are tagged as owned by a single node, which represents the infrastructural

resource devoted to maintaining availability for all shared content. In essence, this node

74

is the champion for the entire community. We could have also chosen to have all nodes

own all files. However, this would have put the algorithm in the best possible case of

fully concurrent downloads by all nodes.

Heterogeneous Workgroup (HW). This community represents an extended, more

mobile environment, where each user may have a desktop at work, a laptop for mobile

computing, and a home machine. This community is quite representative of our research

lab and is parameterize using measurements obtained from our lab. Specifically, the

community contains 3 device sets belonging to 3 distinct users. Each device set has a

work desktop with 80% availability, a home desktop with 50% availability, and a laptop

with 32% availability. The community also has 3 additional server-like nodes that do

not belong to any user but rather provide resources for the entire community. Each

of these server-like nodes has 95% availability. The average node uptimes were set to

387 min., 225 min., 60 min., and 55 min. for nodes with 95%, 80%, 50%, and 32%

availability, respectively. Files were partitioned into 3 non-overlapping ownership sets,

one per distinct user.

Experimental Platform. All reported results were obtained on a cluster of PCs,

where each node was equipped with a 64-bit 2.8 GHz hyper-threaded Intel Xeon pro-

cessor, 2 GB of memory, and a 10K RPM 70 GB SCSI disk. All nodes ran the Linux

2.6.18 kernel and Sun’s Java 1.5.0 JVM. The cluster is interconnected by a 100Mb/s

Ethernet switch. The Wayfinder prototype was configured with a 1 second PlanetP

gossiping interval and a 3 seconds inter-push time for replication for online availability,

10 seconds local caching of directory and file views.

4.4 Online Availability for Creation and Write Bursts

Two key aspects to any replication scheme is how events that require the replicating

of data can be detected and once detected, how quickly until the system reaches a

stable configuration again. The speed at which such events are detected and the repli-

cation speed in Wayfinder is influenced by two process; the traversal speed of over the

namespace to find replication candidates and the rate of replication.

75

Time to achieve Time to achieve
TOAC in CO (sec) TOAC in HW (sec)

No. background Burst Size (Nb) Burst Size (Nb)
files (Ni) 10 20 30 10 20 30

100 138 266 535 69 124 214
200 137 269 409 72 138 162
400 145 276 427 95 129 182

Table 4.1: The median time required for Wayfinder to achieve the target online avail-
ability TOAC for a group of newly created files.

We study these two aspects by measuring the time required by our prototype to

achieve a stable configuration stable configuration, i.e., one in which all files have

achieved TOAC , after a single node has injects a burst of new data into the system.

Specifically, we use a benchmark that first creates Ni files and allows the system to

reach a stable configuration. The creation of these initial files is designed to evaluate

whether the time to reach a stable configuration depends on the number of existing files

as well as the size of a creation burst. Then, the benchmark creates an additional Nb

files and measures the time required for the system to achieve TOAC for these files. All

created files are small, on the order of several hundred bytes, and so the actual time to

create a physical replica is negligible.

Table 4.1 shows the results for the file creation bursts when the above benchmark is

run on a cluster of 12 nodes with TOAC = 0.999. In both the CO and HW environments,

the bursts were performed on a champion device. During the experiment, node arrival

to and departure from the online system were driven by exponential arrival processes

based on the mean times given above. The times presented were averaged over five runs

of the benchmark.

Observe that the time required for Wayfinder to achieve the online availability tar-

get for all newly created files is roughly linear to Nb but independent of Ni. This

independence from the number of existing files arises from the “pool of candidates”

implementation described in Section 4.1.2 and is quite important because Wayfinder

systems may contain very large numbers of files (e.g., millions). The linear dependence

on the burst size shows that Wayfinder’s randomized selection process is (almost) as

76

efficient as the use of a predetermined deterministic schedule.

Observe also that Wayfinder reaches stability faster in HW than in CO. This is

because the ownership of the created files in HW was partitioned among the three

device sets—they were created in different directories, each of which was owned by a

different user with tag inheritance turned on—and so the new files were pushed by all

three champions as opposed to the single champion in CO.

Variance in convergence time is due largely to nodes altering their connectivity

during the benchmark. In the event of an inconsistent view of the community’s online

membership, attempts to create replicas fail if they are directed to nodes that have

recently gone offline. Also in case of the champion going offline, the replication process

may stall entirely.

4.5 Online Availability for a Collaborative Workload

We now explore Wayfinder’s behavior using a trace of a collaborative workload. In

particular, we derive a benchmark based on data collected from an online wiki site,

specifically for the PlanetLab Project [58]. The PlanetLab is an endeavor targeted at

building and deploying an open platform for running planetary-scale services. The doc-

umentation for this project is maintained in an online wiki website (http://www.planet-

lab.org). Through this wiki, the PlanetLab community collaboratively provides evolving

documentation for the system. The wiki software used by PlanetLab is much like a ver-

sion control system in that it preserves the history of a given page’s evolution. This

makes it ideally suited as a source for a collaborative workload.

We were able to obtain information about file creations (one file per web page) and

updates, when they occurred, and who performed them. When we collected our trace

on September 27, 2005, the wiki web contained 457 distinct files with 2800 distinct

versions. The updates spanned a period of several years and were performed by 153

distinct users.

We created a benchmark from the above data as follows. First, we chose a period of

134 days during which the wiki was particular active, containing 532 updates spanning

77

128 files and derived an update stream. This update stream was then compressed by

reducing each inter-write interval that was longer than 15 seconds down to a random

time between 5–15 seconds. This led to a trace that runs for approximately 90 minutes.

The trace requires (in its worst case) approximately 2.35 MB with a final size of 1.84

MB.

Second, to actually run the benchmark, we needed to map the updates in the trace

to authoring nodes in the federated system. Since we are not evaluating offline availabil-

ity, all accesses needed to be mapped to nodes that are online at the time of the access.

We ensured this by first mapping accesses of each user to a node in the community—

typically, this meant that multiple users were assigned to each node—and then con-

structing the online and offline behavior of each node around the accesses assigned to

that node. In particular, for each node, we generate a time line with arrival to and

departures from the online community by choosing a sequence of online/offline intervals

(as defined by the availability and average uptime of the node). If an access would occur

during an offline interval, then we discard the tail of the sequence starting at the online

interval before the offending offline interval. We then regenerate the tail and try to

grow the time line until we have a legal sequence for the trace. As the interval lengths

were generated using an exponential distribution, the resulting time line represents one

possible sequence consistent with the probabilistic behavior of the node. Each node’s

behavior corresponded to one possible sequence of arrival to and departure from the

online system according to an exponential arrival process with the appropriate mean.

Third, we added in read traffic by injecting reads to random files in the web during

nodes’ uptimes according to an exponential arrival process with a mean inter-arrival

time of 5 seconds. Finally, to avoid name conflicts, which are difficult to handle in an

automated trace-driven experiment, we set the benchmark to pre-create all files at the

beginning of the experiment with an initial size of zero.

We carefully logged all relevant actions of each Wayfinder instant in order to recon-

struct the placement of file replicas and the availability of each file at any instant in

the trace.

78

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90

A
va

ila
bi

lit
y

(N
o.

 o
f N

in
es

)

Time (Minutes)

Online Availability

Avg. Version Avail
Avg. File Avail
Min. File Avail

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90

A
va

ila
bi

lit
y

(N
o.

 o
f N

in
es

)

Time (Minutes)

Online Availability

Avg. Version Avail
Avg. File Avail
Min. File Avail

(a) CO with infinite space (b) HW with infinite space

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90

A
va

ila
bi

lit
y

(N
o.

 o
f N

in
es

)

Time (Minutes)

Online Availability

Avg. Version Avail
Avg. File Avail
Min. File Avail

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90

A
va

ila
bi

lit
y

(N
o.

 o
f N

in
es

)

Time (Minutes)

Online Availability

Avg. Version Avail
Avg. File Avail
Min. File Avail

(c) CO with constrained space (d) HW with constrained space

Figure 4.3: Average file online availability, average version availability (for the latest
version of each file at each instant in time), and minimum availability plotted as func-
tions of experiment time for (a) CO with infinite space, (b) HW with infinite space, (c)
CO with constrained space, and (d) HW with constrained space.

We then ran the above benchmark in several different environments: CO with infi-

nite storage, CO with constrained storage (each non-champion node was given about

35% of the final hoard size), HW with infinite storage, and HW with constrained stor-

age (champs given approximately 80% of final hoard size, devices given 19% of final

size, and servers given approximately 11% of the hoard size) The shared servers were

given very little space on account of the high availability and to cause contention for

their storage.

The eviction threshold, the hoard size to which nodes attempt to reclaim space to

during the eviction process was set to 70% of the local hoard. TOAC was again set to

0.999.

79

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 10 20 30 40 50 60 70 80 90

R
ep

lic
a

C
ou

nt

Time (minutes)

Storage Division

CSpace
PSpace

Own Set

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 10 20 30 40 50 60 70 80 90

R
ep

lic
a

C
ou

nt

Time (minutes)

Storage Division

CSpace
PSpace

Own Set

(a) CO with infinite space (b) HW with infinite space

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 10 20 30 40 50 60 70 80 90

R
ep

lic
a

C
ou

nt

Time (minutes)

Storage Division

CSpace
PSpace

Own Set

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 10 20 30 40 50 60 70 80 90

R
ep

lic
a

C
ou

nt

Time (minutes)

Storage Division

CSpace
PSpace

Own Set

(c) CO with constrained space (d) HW with constrained space

Figure 4.4: Division of files between PSpace and CSpace for (a) CO with infinite space,
(b) HW with infinite space, (c) CO with constrained space, and (d) HW with constrained
space.

80

Figures 4.3 and 4.4 show some of the results. We make several observations based

on these results. First, when there is sufficient storage space, the system consistently

achieves and maintains the target online availability for all files. Figures 4.3(a-b) show

that Wayfinder takes some time to achieve the target online availability for all files,

particularly when there is only one champion as in the CO environment, because of

the creation burst at the beginning of the benchmark. In CO, the champion has to

push all files created at the beginning of the benchmark as well as updates that occur

before it can achieve TOAC for the files. However, once the minimum file availability

reaches the target online availability, it never drops below this target again. In fact, the

average file online availability is greater than the target as the benchmark continues to

run. This is because of the hoarding of files in the working set for offline availability;

as files are read or written on a device, they become members in the user’s working set

and are hoarded on that device. Since we have infinite storage, no file is ever discarded

from any device’s local storage.

Second, when there is insufficient storage space, the system approaches a non-

cooperative configuration where devices selfishly use their local storage to achieve offline

and ownership availability for their owners. Observe that there is significant separation

between the minimum and average file availability in Figure 4.3(c-d) as space becomes

constrained. This is because devices are not cooperating to maintain the target on-

line availability for shared content. Rather, online availability is just a consequence of

devices hoarding content for offline and ownership availability. This is shown clearly

in Figures 4.4(a-b) and (c-d), where CSpace is much smaller in the space constrained

case (c-d) than in the case with infinite space (a-b) and nodes attempt to reclaim space

through the removal of files in CSpace.

Additionally observe that in Figure 4.4(b), the number of files in PSpace is reduced

with respect to the scenario in Figure 4.4(d). This reduction is a results of nodes

evicting additional files from their working set when the set of candidate files in CSpace

is exhausted. Despite this eviction, in all scenarios the target ownership availability is

ensured.

Third, our unified availability model allows the system to account for the selfish

81

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90
A

va
ila

bi
lit

y
(N

o.
 o

f N
in

es
)

Time (minutes)

Version Availability

Version Avail
Write Op.
Read Op.

Figure 4.5: Online version availability for a representative file from HW with infinite
space.

behaviors of devices in attempting to achieve the best possible online availability for

all shared content. Observe that even though CSpace is much more constrained in

Figure 4.4(c-d) than in (a-b), the average file availability is still not far from the target

of 3 nines. This is because replicas of files that are relatively over-replicated by selfish

hoarding are preferentially evicted from CSpace. Also, because each file is owned by at

least one device, typically a champion, the minimum file online availability remains at

least at the availability of the champion—in this case 90% (or 1 nine).

Finally, the system efficiently maintains the target online availability for all files,

despite a stream of updates that requires re-replication of the modified files. The nature

of our trace ensures that a continuous stream of writes produces files with changing ver-

sions. In Figure 4.3, we observe a noticeable difference throughout the trace between

the average file availability and the average version availability. The lower version avail-

ability is a side effect of the replicas being out-of-date with respect to recent changes.

As a general rule, in the presences of updates, high availability of a file need not imply

a high version availability for the same file.

Wayfinder attempts to address this by targeting replication requests for files to

existing replicas if the respective replica availability is already sufficiently high. The

replication request then becomes translated locally to a request for updating the file’s

content, thereby improving the version availability.

If the modified files are part of a user’s working set then changes are communicated

82

rapidly to a user’s devices prompting a quick update of replicas. This behavior is clearly

observable in Figure 4.5 which depicts the version availability of a single file in the HW

environment during the experiment. We see clearly that with every write operation, the

version availability of the file drops. The magnitude of the drop reflects the availability

of the device performing the write as this will become the new availability of the latest

version. This is followed by the system rapidly regaining the target online availability

for the new version.

Comparing the size of PSpace and CSpace (Figure 4.4), we see that PSpace is larger

in the HW community then for the CO Community when space is not restricted. Recall

that PSpace is comprised of files in the ownership set or working set of a node. In the

HW, the growth seen in PSpace is the result of replicating the working set across devices

in a given device set. As the devices sets in CO are completely disjoint, this additional

replication does not occur.

4.6 Ownership Availability for a Collaborative Workload

To examine the ownership availability, we chose to monitor a single user’s activity with

respect to a representative file. This file was chosen because it accessed throughout the

trace and was done so by several different users. During the experiment, we track both

the placement and the version of the selected file among a user’s devices set.

Figure 4.6 plots the ownership availability of our representative file against exper-

iment time as the wiki benchmark is executed in the HW environment with infinite

storage (a) and constrained storage (b). Ownership availability is expressed as the

number of up-to-date file replicas in the owning user’s device set. This count can drop

to zero if the file is updated by a device outside of the owning user’s device set. This

can be observed occurring several times in Figure 4.6. However, in each case at least

one device in the device set notices the update within a short time so that there is

almost always at least one up-to-date replica in the device set. This notification can

be a result of targeted replication or the champion node’s monitoring of files in the

Ownership set.

83

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90

R
ep

lic
a

C
ou

nt

Time (Minutes)

Ownership Availability

Group Access
Remote Access

Up-to-date Replica
Replica Count

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90

R
ep

lic
a

C
ou

nt

Time (Minutes)

Ownership Availability

Group Access
Remote Access

Up-to-date Replica
Replica Count

(a) HW with infinite space (b) HW with constrained space

Figure 4.6: Ownership availability of a representative file vs. experiment time for the
HW environment with (a) infinite space and (b) constrained space. Figures plot the
number of replicas contained within a user’s device set and how many of these replicas
are up-to-date given changes performed by the user (Group Access) and remote changes
(Remote Access).

Figure 4.6(b) plots the ownership availability when the benchmark is run in the HW

environment with constrained space. In this case, we see that only one replica of the

representative file is kept unless that file is accessed by the user and so becomes part

of the working set, resulting in replicas being created on all online devices. These new

replicas are then rapidly discarded from the non-champion devices as other files are

accessed.

4.7 CPU and Network Utilization

Our replication algorithm relies on a number of periodic processes—e.g., pushing under-

replicated files, looking for and downloading updates to files in the user’s working and

ownership sets, etc.—that must run continuously in an implementation. Thus, we

measured the CPU utilization during the execution of the wiki benchmark to evaluate

the CPU overhead imposed by these periodic processes. The results are summarized

in Table 4.2. For all tested environments, including the one with constrained storage

space, the average CPU utilization was below 3.8 % on a champion device and less

than 2.5% on a non-champion device. More specifically for a champion devices the

CPU utilization was relatively constant between 3.68% to 3.72% while a non-champion

84

Percentage CPU Utilization
CO HW

Node Infinite Constrained Infinite Constrained
Type Space Space Space Space

Champion 3.68 3.69 3.68 3.72
Non-Champion 2.44 2.34 2.34 2.42

Table 4.2: Percentage of CPU utilization while running Wiki Trace in both the HW and
CO environments with different restrictions on the size of the local hoard.

Count of Replication Operations

CO HW
Operations Infinite Constrained Infinite Constrained

Replication Request 1631 1629 4266 4291

Download Attempts 1916 2143 2684 3252

File Evictions 0 1022 0 1256

Table 4.3: Count of operations performed by replication algorithm during the Wiki
Trace. Replication Request is the actual sending of a replication request from a cham-
pion. Download Attempt is the number of actual file downloads that occurred as a
result of either an access or replication request. File Eviction is the number of per-
formed replica evictions.

devices was in the range of 2.34% to 2.44%. From these results, we conclude that our

periodic processes impose very little CPU overhead and are relatively constant across

the discussed experimental scenarios.

To provide an alternative measure of the amount of work done by our replication

algorithm, Table 4.3 presents the counts of various replication related activities that

were performed during the wiki benchmark for various device types. We see an expected

increase in the number of file downloads and evictions as the storage space in the

community is reduced. Note that the number of replication requests stays constant

across configurations for the same community. In our implementation, the replication

process is ongoing and performed at a constant pace regardless of the community.

We also measured the write bandwidth needed while running the wiki benchmark.

The entire data set, i.e., a single copy of the final version of each file is approximately

1.8 MB in size. The mean file size is 14.7 KB with a median size of 5.6 KB;

The results of this analysis are presented in Table 4.4. Shown is the total amount of

85

Write Bandwidth

Community CO HW

Infinite Constrained Infinite Constrained
Space Space Space Space

Node Type Ch. NCh. Ch. NCh. Ch. NCh. Ch. NCh.

Content 16.3 11.8 11.2 7.4 47.3 16.3 89.9 11.9

Search 144.0 899.3 142.1 764.0 373.6 480.5 341.8 439.9

Replication 1.3 0.0 1.1 0.0 5.1 0.0 4.4 0.0

Total (MB) 207.5 1103.5 199.4 966.2 469.5 558.1 482.1 520.8

Bandwidth (KB/s) 39 19 38 17 30 12 31 11

Table 4.4: Breakdown of the amount of data written during the wiki experiment for
different environments. Included is the total amount of information written (in MBs),
the average write bandwidth (in KB/s) for devices and a breakdown (in MBs) of the
total bandwidth into replication related activities. Content is the retrieval of remote
file content. Search is the amount of information exchanged when during distributed
query processing in PlanetP. Replication is the amount of information sent to issue
replication requests.

information (in MBs) sent by each node type (champion and non-champion) for each

evaluated community (CO-infinite, CO-constrained, HW-infinite, and HW-constrained),

bandwidth broken down by replication related activities, and the average amount of

write bandwidth used by each node. Note that the measurements for the categories of

content and search represent an upper-bound as these include activities not explicitly

related to replication. For example, user-level file system requests, such as file read and

writes, may trigger the search for and downloading of files; both of which would be

accounted for in these categories.

From this data, we observe that the bandwidth requirements for any node ranges

between 10 K to 40 KB with champion nodes requiring twice the bandwidth of non-

champion nodes. We can make several additional observations.

In the constrained environments, the amount of data required to process a distributed

query (search category) is reduced. This saving is a result of replicas being constantly

evicted and thereby fewer nodes needing to be contacted at query time.

The amount of information downloaded is a poor indicator of the work being done by

the replication algorithm. Observe that for the content category in the CO environment,

86

the amount of information sent decreases when comparing the CO-infinite environment

to the CO-constrained environment.

In CO-constrained, file availabilities change more frequently on account of replica

being evicted. Given their larger number, smaller files are more likely to be candidates

for evicted and then subsequent re-replicated. The overall effect is that larger files are

replicated less frequently in CO-constrained because there are always smaller files with

availability less than TOAC , thus lowering the bandwidth requirement for replicating

content. This observation is supported by the data in Table 4.3 which indeed shows a

higher incidents of downloads and evictions for CO-constrained. We determined that

the average file download size for CO-constrained was 15.1 KB while for CO-infinite it

was 23.3 KB; supporting that larger files are transferred more often in the latter case.

In the HW environment this drop in content bandwidth is not present. We attribute

this to the faster rate of replication given the existence of 3 champions devices and device

sets actively attempting to maintain offline availability. However, it should be noted

that this measurement for HW-finite may be misleading. We have determined that only

50% of the written information is actually read on the receiving devices. Recall that in

our prototype implementation, we use a simple web server (Section 3.3) to publish local

files for downloading by other instances of Wayfinder. This web-server uses a simple

HTTP protocol and may send information that is unused by the receiver. Specifically

this can occur in a constrained environment in which the receiver may abort a download

upon learning the size of a replica (if there is an metadata inconsistency, the expect

size and actual size may differ) after the actual download has begun.

Note that in our experiment, various settings are elevated to account for the ag-

gressive compression of the actual wiki trace that was used to obtain the benchmark.

For example, we set the gossiping interval for PlanetP to 1 second. In a more typical

setting, the gossiping interval is likely to be larger and so the bandwidth usage should

be significantly lower.

87

4.8 Summary

In this chapter, we presented a novel unified availability model targeted to content

sharing federated systems. Such federated systems are typically comprised of a num-

ber of users collaborating to share data, each of whom may be using a distinct set of

personal devices. To accommodate this environment, our model differentiates between

three types of availability; online, offline, and ownership availability. Based on these

distinctions, we outlined a user-centric availability model that tries to make data avail-

able to users across periods of connected and disconnected operation. This model also

helps users to preserve data they care about in case they become permanently discon-

nected from the federated system. Consequently, the model removes the need for users

to explicitly manage data replicas and to hoard data external to the federated system.

We have outlined the design of a single replication algorithm that achieves all three

types of availability. This algorithm allows devices to selfishly prioritize ownership and

offline availability for their owners over online availability for the community. However,

the algorithm explicitly accounts for the impact of devices’ selfish hoarding actions on

online availability in order to minimize the space required to achieve a target online

availability level for all shared content. Further, this algorithm is based on autonomous

actions from devices in the community, allowing the system to tolerate the fact that

devices in a federated system is not under centralized control and so may have unpre-

dictable prolonged periods of disconnection or even leave the system permanently.

We have presented a practical implementation of the proposed algorithm as part of

the Wayfinder file system. Our presented evaluation involved modeling several types of

information sharing communities and utilizing a collaborative trace obtained from an

online wiki. Our results show that this implementation efficiently achieves our design

goals.

88

Chapter 5

Single Node Multi-Dimensional Search

5.1 Introduction

We now turn our attention to the search technologies underlying the content-addressing

portion of the Wayfinder file system. In particular, we explore how to improve the

current textual search that underlies most of today’s search engines. In a previous

chapter (Section 2.8), we presented several contemporary search tools that produce

results through a combination of ranking and filtering techniques. When evaluating a

query with multiple predicates, these tools determine results by first applying a ranking

algorithm to a textual part (often a content predicate) of the query and then using the

other dimensions (date, size, location) as filtering conditions.

As an example, consider a user that has saved personal information on a computing

device. In addition to data explicitly added by a user, some of the data available on the

device may come from external sources (such as other users in a network setting) and

therefore may not be familiar to the user. Alongside this data, the system may store

(a potentially large amount of) metadata information (e.g., access time, file type), as

well as some navigational structure information (e.g., directory structure).

In such a scenario, it is possible to ask the query:

“Find a pdf file created on March 21, 2007 that contains the words ‘proposal draft.’ “

Keyword-based search tools answer this query by returning all files of type pdf

created on 03/21/2007 (filtering conditions) that have content similar to “proposal

draft” (ranking expression), ranked based on how close the content matches the text

“proposal draft” using some underlying text scoring mechanism. Contemporary tools

would miss any relevant file that do not strictly adhere to the date and file type filtering

89

conditions; for example, tex documents created on 03/19/2007 that contain the text

“proposal draft” would not be considered. The only recourse left to the user is to

use filtering conditions based on ranges (i.e., all dates in March 2007). The fear of

not finding the desired information, however, leads users to construct ranges which are

overly broad and so may not be very useful in filtering the ranked results.

In this chapter, we present the design and implementation of a multi-dimensional

fuzzy search framework for a single node setting. In the next chapter, we will expand

this design to a federated environment. Our single node framework has two advantages

over contemporary tools. First, objects that are approximate matches to any query

conditions (i.e., not just content) will continue to be considered as results. Second,

an object’s relevance will be determined by an aggregate numerical value that conveys

how well the object matches the individual dimension-specific predicates of the query.

These, in turn, will not be a simple binary score, as would be the case with filtering

conditions.

It is our claim that these features can significantly increase the quality and usefulness

of search results in many search scenarios. For instance, in the previous example, the

user might not remember the exact creation date of the file of interest—or may not be

the original creator of the file—but remembers that it was created around 03/21/2007.

Similarly, the user might be primarily interested in files of type *.pdf but might also

want to consider relevant files of different but related types (e.g., *.tex, or *.txt). In

this case, the date and file type conditions should not only be considered for filtering

purposes but should also be part of the ranking conditions of the queries.

While the work presented in this chapter is applicable to a wide range of information

management scenarios, we focus specifically on file systems. That is, we consider the

granularity of the search results to be a single file in a larger file system, whether it be on

a single node or distributed. For this reason, we explore queries over three dimensions

of information relevant in most file systems; content, metadata, and structure.

Our scoring approach is based on Inverse Document Frequency (IDF) scores. That

is, the magnitude of an object’s relevance score for a query predicate is inversely pro-

portional the number of matching documents. We will describe a scoring approaches

90

for each of the above mentioned dimensions and present a framework for unifying the

dimensional scores for multi-dimensional queries. The final result will be a single rele-

vance score for each file returned as a result. These scores are computed in a manner

that allows for approximate matches in all queried dimensions. Furthermore, we em-

ploy a top-K algorithm to score top ranking files without considering all the data in

the system.

In the next section, we will present the details of our multi-dimensional scoring

framework. This will be followed by a description our system’s overall architecture and

the algorithms used in aggregating scores and returning the best answers to a query.

We then present the details and evaluation of a single node prototype implementation.

5.2 A Unified Multi-dimensional Scoring Framework

In this section, we present our unified framework for assigning scores to files based on

how closely they match individual query dimension conditions. We distinguish three

scoring dimensions: content for conditions on the textual content of the files, metadata

for conditions on the system information related to the files, and structure for conditions

on the directory path to access the file.

Our scoring strategy is based on an IDF-based interpretation of scores for each

dimension. Traditionally, the IDF score of a document for a keyword in the IR world is

a function of how many documents contain the keyword [76]. The content IDF scoring

strategy has been widely adopted in IR systems as it considers the data distribution to

assign scores. We extend this idea to each of our search dimension and assign a score to a

file in a query dimension based on how many files match the query dimension condition.

The unification aspect of our scoring framework comes from this IDF-based scoring

approach; for each dimension, the score of a file is a function of the document frequency.

The multi-dimensional score of the file is then a combination of the individual dimension

scores. It is our belief that using a unified IDF framework allows us to meaningfully

combine scores on several orthogonal dimensions to provide a single result, as we will

show experimentally in Section 5.4.

91

We first give a brief overview of our query model (Section 5.2.1), we then present

our IDF-based scoring strategies for each dimensions: content (Section 5.2.2), metadata

(Section 5.2.3), and structure (Section 5.2.4). Finally, we show how we aggregate scores

across dimension in Section 5.2.5.

5.2.1 Query Model

To perform multi-dimensional queries, we need a query language that can express meta-

data and structure conditions in addition to content searches. For this, we use the

simplified version of XQuery [77] supported by PlanetP (Section 2.2) as our query lan-

guage. The path structure in each query condition indicates the type of data (i.e.,

content, metadata, or structure) being queried. For example, query conditions contain-

ing the component “FileSysMetadata” in their paths indicate queries over metadata.

The query from our earlier example would be expressed as follows:

FOR $i in /File[FileSysMetadata/FileDate = ’03/21/07’]

FOR $j IN /File[ContentSummary/WordInfo/Term = ’proposal’

AND ContentSummary/WordInfo/Term = ’draft’]

FOR $m IN /File[FileSysMetadata/FileType = ’pdf’]

WHERE $i/@fileID = $j/@fileID AND

$i/@fileID = $m/@fileID

RETURN $i/fileName

An answer to a query is a file that is relevant to one or more of the query conditions.

Internal flags are used to specify whether only exact matches are allowed (filtering

conditions) or whether approximate matches are considered (ranking conditions). If

approximate matches are allowed, a score is assigned for each query condition based

on how closely the answer (file) matches the condition (exact matches for filtering

conditions have a score of 1).

In remainder of this section, we discuss our strategies for scoring approximate

matches for query conditions in each dimension.

92

5.2.2 Scoring Content

We use standard indexing structures and scoring mechanisms from the IR literature [76]

for query conditions involving text content. Specifically, we assign scores using a stan-

dard TF · IDF scoring function. Relaxation is already an integral part of TF · IDF since

it scores files that contain only a subset of the terms as well as those containing all

terms in the content query condition.

Definition 1 (Content TF·IDF Score of a File) For a given keyword query, Q,

consisting of the terms t1, t2, . . . , tn, the content score of a file F , with respect to

Q is computed as:

scoreContent(Q,F) =

∑n
i=1(IDFti · TFti,F)

√

|F |

with

TFt,F = 1 + log(Ft) IDFt = log(1 +
N

Nt
)

where |F | is the total number of terms in the file, Ft is the number of times the term

t appears in file F , Nt is the number of files containing the term t, and N is the total

number of files.

Note that to stay consistent with traditional IR system, in this dimension we con-

sider the TF score of a match as well as its IDF score. This stays in the spirit of our

overall IDF-based framework, as the TF score is only used to give additional weight

information on the quality of the matches.

5.2.3 Scoring Metadata

Quite often systems that store information (i.e., file systems, dataspaces, and personal

information systems) store metadata information alongside files. Such metadata may

include file sizes, file owners, and various file timestamps (e.g., date created and date

last modified). File extensions can also hint at the corresponding file types. Users often

want to enhance their query with metadata conditions (e.g., file was accessed last week,

file is a pdf document), but may not accurately remember the exact metadata values

93

All Files

Executable Media Document Unknown Type

... Video Image Music

... .avi

Code .docpdf

... .cpp .java

Relaxation Steps

All Dates

Year - 2006 Year - 2007

Month [1-3]Month [2-4] Month [3-5]

Month - 2 Month - 3 Month - 4

Day - 5 Day - 25 Day - 19 Day - 21

Hour - 19 Hour - 5Hour - 15 Hour - 21 Hour - 19

Full Range

Year

3 Months

1 Month

Day

Hour

(a) (b)

Figure 5.1: Fragments of the indexing DAGs for (a) file type (extension) metadata,
and (b) file date metadata. Both represent portions of the complete DAGs with several
levels removed for simplicity of presentation. For file dates, we present the length of
the relaxation intervals at each level of the DAG on the box at the far right. Highlighted
nodes indicate the sequence of relaxations for a file type query of “.cpp” and a date
query of “3:00 PM on Feb. 5, 2006”

for which they are looking. Therefore, allowing for some approximation in metadata

conditions is desirable.

In this section we discuss our scoring strategies for metadata information. We

develop the concept of metadata relaxation to score and retrieve approximate matches

to metadata query conditions.

5.2.3.1 DAG Representation of Metadata Relaxations

We use a DAG indexing structure to support the scoring of relaxations on metadata

conditions. In particular, we construct a DAG-based index for each type of searchable

metadata to support both the retrieval and the scoring of results. In these indexes,

possible metadata values that files can have are stored in the leaves of the DAG. Inter-

nal nodes of the DAG then represents progressive hierarchical generalizations of their

children.

For example, Figures 5.1 and 5.2 represents (subgraphs of) the DAGs associated

with file types (Figure 5.1(a)), file dates (Figure 5.1(b)), and file sizes (Figure 5.2).

94

[16 B, 17 B)

[16 B, 18 B)

[16 B, 32 B)

[0, 16 KB)

[0, 128 KB)

[0, 1 MB)

[128 KB, 256 KB) [256 KB, 512 KB) [512 KB, 1 MB)

[0, 8 MB)

[512 KB, 512 KB + 64 KB])

[512 KB, 512 KB + 1 KB)

Figure 5.2: Fragment of the indexing DAG for file sizes. The DAG spans the range of file
size up to 8 MB. Portions of the DAG have been removed to simplify the presentation.
Shown are the branches associated with files size of 16 bytes and 512 KB. Dashed lines
represent locations where several nodes have been removed for space considerations.
Highlighted nodes indicate the sequence of relaxations for a file size query “512 KB”.

For the file type DAG, each leaf represents a specific file type (e.g., .doc and .pdf)

and contains a count as well as references to all files of that type. Each internal node

represents a more general file type that is a union of the types of its children (e.g.,

Media is the union of Video, Image, and Music types) and thus a relaxation of its

descendants. Correspondingly, each internal node contains the sum of the file counts

of its descendant leaves. Note that the count maintained at each internal node is thus

guaranteed to be greater than or equal to the count at any of its children.

Similarly, in the DAG for file dates, individual timestamps are represented at the leaf

node level and internal nodes represent larger time periods spanning those represented

by their descendants. The length of the represented time periods are based on, or

on multiples of, actual calendric units. (i.e., days, months, and years). As seen in

Figure 5.1(b), DAG construction is based on the containment properties of these periods

(i.e., hours are contained within days and days within months). Additionally, we observe

95

that there internal nodes whose periods do not overlap (i.e., months, days, years) and

those which do overlap (i.e., 3 month intervals). At query time, this overlap allows the

use of relaxations in which the query time is relatively centered. For example, given a

timestamp for February 15th, the relaxation interval for 3 Months would consider all

timestamps in the months of January, February, and March with the queried timestamp

falling in the middle month. Similarly, a timestamp for March 15th, would consider

timestamps in the months of February, March, and April with March being the middle

month. This results in multiple paths existing from the root of the DAG to a given

leaf node. The reverse, however, is not true, ensuring that for a given timestamp the

sequence of relaxations periods is deterministic.

A similar DAG is constructed to represent file sizes (Figure 5.2). As most file

systems contain a greater number of smaller files than larger files, the distribution of

file sizes generally mirrors an exponential distribution with a long tail. In constructing

relaxations intervals for this type of metadata it is desirable for each interval to match

approximately the same number of files (or at least match a small number) to provide a

good distribution of scores. This can be accomplished by allowing smaller files sizes to be

represented by relaxation intervals of shorter length while larger files sizes be represented

by intervals of longer length. Figure 5.2 is a sub-graph of a DAG for file sizes constructed

in this manner showing two leaf nodes representing file sizes of 16 bytes and 512 KB.

Each node is labeled with the range of values it represents. As before, each successive

relaxation interval (traveling from leaf to root) represents a larger range of values. The

difference in the ranges of two successive intervals is proportional to their sizes; a shorter

interval has a smaller increase to reach the next interval. Intuitively, small increases for

intervals representing larger file sizes are unlikely to result in many additional matches

given their expected distribution, hence larger increases are employed.

To expand a DAG node, the range of each internal node, as shown by the node

labelled “[0,1 MB)”, is sub divided into four sub-ranges whose lengths increase expo-

nentially. When this division is not possible (e.g., with node labeled “[16 B, 18 B)”) a

division based on individual bytes is used. This manner of division produces a skewed

DAG in which the left size (representing small file sizes) has a greater depth than the

96

right size (representing larger file sizes). Given that we anticipate a greater number of

smaller files than larger ones, the higher density of file sizes will be divided among a

larger number of DAG nodes.

5.2.3.2 Scoring Metadata Relaxations

As mentioned, the metadata DAG indexes are used for scoring. Our IDF-based frame-

work requires the score of a file to depend on how many files match a given relaxation of

a query condition. Given a specific metadata condition, the path from the matching leaf

to the root of the DAG index for a metadata type represents all of the approximations

that we can score for that condition. For instance, the query condition FileType=’pdf’

in our earlier example (Section 5.1) would exactly match the leaf .pdf in the DAG ex-

ample of Figure 5.1(a). The leaf’s ancestor nodes, Documents and All Files, represent

categories for approximate matches.

Continuing the example, our IDF-based scoring approach then scores matching files

as follows. Files of type .pdf would have the highest score as they are exact matches

to the query condition. Files of type Document, other than type .pdf, (e.g., .doc and

Code) would be assigned a lower score. Finally, files of type All Files, other than type

Document, which would consist of all remaining files in the system, would be assigned

yet a lower score. The latter two assigned scores are for the two approximations of the

query condition as they are assigned to files that do not match the query condition

exactly.

Definition 2 (Metadata Condition Score of a File) For a given metadata query,

Q, consisting of a target value vQ for a metadata condition C, the metadata score of a

file F , with corresponding metadata value vF , with respect to Q is computed as:

scoreMetaData(Q,F,C) =
log(N

|fileDesc(commonAnc(vQ,vF))|)

log(N)

where N is the total number of files, commonAnc(x, y) returns the closest common

ancestor of nodes x and y, and fileDesc(x) returns the files that can be reached through

the descendants of node x in the metadata DAG. The score is normalized by log(N) so

97

that a single perfect match would have the highest possible score of 1. The most relaxed

matches to the condition C will have a score of 0 as their closest common ancestor with

vQ is the root node of the DAG which contains all N files as its descendants.

Intuitively, we find the closest common ancestor of vQ and vF in the metadata DAG,

and count the number of files that can be reached through descendants of this common

ancestor. The higher this number is, the lower the score of F for Q will be as many

other files share the same level of approximation with Q as F .

5.2.3.3 Aggregating Metadata Scores

For queries involving multiple metadata conditions (e.g., our example query, with a

condition on date and a condition on filetype) the individual condition scores have to

be aggregated to produce a unified metadata score.

We aggregate individual metadata scores by considering both the query and the doc-

ument as vectors of dimension n, where n is the number of individual metadata condi-

tions C1, ..., Cn. The document vector ~VF consists of the individual scoreMetaData(Q,F,Ci)

(1 ≤ i ≤ n). The query vector ~VQ has value 1 (exact match) for each dimension. The

unified metadata score is then the normalized length of the projection of the document

vector on the query vector.

Definition 3 (Metadata Score of a File) For a given metadata query Q with cor-

responding query vector ~VQ, consisting of several metadata value conditions C1, ..., Cn,

the metadata score of a file F with corresponding document vector ~VF , with respect to

Q is computed as:

scoreMetaData(Q,F) =
~VF · ~VQ

| ~VQ|

Note that if only one metadata condition C is present in Q, then scoreMetaData(Q,F) =

scoreMetaData(Q,F,C).

5.2.4 Scoring Structure

Most users organize their files into a hierarchical directory structure for navigation. In

addition, the structure within a document can be seen as an extension of the directory

98

path structure and used for more complex query searches [22]. However, users are no-

toriously bad at remembering where they stored a particular file or how the files are

structured [14]. When a user searches for a file using structure information such as

directory path information, the query is likely to be incorrect, as users often confuse or

misremember the order of the directories, their relationships, or their labels. However,

it is common that users do correctly remember some portion of the path whether it be

a prefix or several (possibly non-consecutive and out-of-order) directory names. There-

fore, allowing for a method of approximation that leverages any correct information in

an otherwise incorrect (when taken as a whole) path is desirable.

Previous work [56, 75] has explored possible scoring strategies for the structure

information of files. While very relevant to this section, this work was done outside

the context of this thesis. We will review the approach presented in this work in so far

as it is relevant to presenting a unified scoring approach. We will begin by outlining

the structural relaxations required to handle the specific needs of user searches in a file

system. We will then briefly describe the DAG used to compute and score structural

relaxations.

Assuming that structure query conditions are given as pathnames, these relaxations

are:

• Edge Generalization is used to relax a parent-child relationship to an ancestor-

descendant relationship. For example, applying edge generalization to /a/b would

result in /a//b.

• Path Extension is used to extend a path P such that all files within the directory

subtree rooted at P can be considered as answers. For example, applying path

extension to /a/b would result in /a/b//∗.

• Node Deletion is used to drop a node from a path. For example, applying node

deletion on b from /a/b/c would result in /a//c. Note that the edge between a

and c is generalized. This is to preserve a necessary containment property [56,75].

• Node Inversion is used to permute nodes within a path. For example, applying

99

node inversion on b and c from /a/b/c would result in /a/(b/c), allowing for both

the original query condition as well as /a/c/b.

These above relaxations can be applied to the original query condition as well as

relaxed versions of the original condition. We then say that a file matches a (possibly

relaxed) query condition if all structural relationships between the condition’s com-

ponents are preserved in the file’s parent directory. For example, the file /a/b/c/f

matches the condition /a//c because the parent-child relationship between / and a and

the ancestor-descendant relationship between a and c are preserved in the directory

/a/b/c.

Figure 5.3: The structure DAG for the structural query condition Per-
sonal/Ebooks/JackLondon. Solid lines represent parent-child relationships. Dotted
lines represent ancestor-descendant relationships, with intermediate nodes removed for
simplicity of presentation.

5.2.4.1 DAG Representation of Structure Relaxations

As proposed in [2], a DAG is used to represent all possible structural relaxation of

a path query condition. The DAG structure is used not only to compute and store

score information but also for query processing, as it allows us to incrementally access

increasingly relaxed answers during query processing (Section 5.3). Figure 5.3 shows

an example relaxation DAG, along with example IDF scores, for the structure query

100

condition Personal/Ebooks/JackLondon. At the root of this DAG is a node representing

the exact query condition itself, with each non-root node representing a relaxed form.

Note that this structure DAG is a query specific in that is a representation of the query

and all possible relaxed forms of that query given the above relaxation operations. This

is in contrast to the indexing metadata DAGs in Figure 5.1. which are an actual index

of data in the file systems. For each DAG node, we compute an IDF score. Matches

for the exact query P/E/J have a score of 1, while matches to increasingly relaxed

versions of the query, as we go down the DAG, have lower scores, with matches to the

most general relaxation of P/E/J : //∗ having a score of 0. Algorithms exist for the

efficient construction and evaluation of these DAGs [56,75].

5.2.5 Aggregating Multi-dimensional Scores

A strength of our scoring framework is that all dimensions are scored using a simi-

lar IDF metric, which takes into account the number of files that match a particular

query condition (or relaxation of that condition). This unified framework allows us to

meaningfully aggregate scores across different query dimensions.

The individual dimension scores are aggregated to produce the final score of a file

for a query. We use a vector projection for the aggregation of multi-dimension scores,

similar to the one we used for aggregating individual metadata condition scores (Sec-

tion 5.2.3.3). We build a 3-dimension file vector ~VF , which consists of the (normalized)

three dimension (content, metadata, and structure) scores. For a query Q and a file F ,

we have:

~VF = (scoreContent(Q,F), scoreMetaData(Q,F),

scoreStructure(Q,F))

The query vector ~VQ has value 1 (exact match) for each dimension. The file multi-

dimensional score is the normalized length of the projection of the document vector on

the query vector.

101

Definition 4 (Query Score of a File) For a given query, Q with corresponding query

vector ~VQ, the score of a file F with corresponding document vector ~VF , with respect to

Q is computed as:

score(Q,F) =
~VF · ~VQ

| ~VQ|

Note that our aggregation assigns the same importance to each dimension in the

query. We could easily incorporate weights in our aggregation function to give more

importance to one or more dimension.

5.3 Implementation

In this section we present details of our implementation, focusing specifically on the

design of the various dimensional indexes and efficient query processing.

5.3.1 Indexing Structures

We have implemented our approach as part of the PlanetP toolkit (Section 2.2). In

doing so we have extended the metadata and structural tables described in Chapter 3.7

with several data structures and added a top-k query processing algorithm to efficiently

find the top k relevant results. In the remainder of this section, we will present relevant

design details pertaining to both of these aspects of our implementation.

5.3.1.1 Metadata Index

We have extended the Metadata table with five query indexes to support efficient

searches on the size, type, date-of-creation, last-modified-time, and last-accessed time

attributes. Each of these query indexes is used to obtain the necessary scoring infor-

mation need for our DAG-based approach.

For query indexes storing discrete values (i.e file type), the index structure employed

is a predefined statically constructed DAG similar to the one presented in Figure 5.1 for

file types. As references to files are stored at the appropriate leaf nodes and the path

from a leaf node to the root represents the progressive relaxations steps of a specific

file type, this static DAG is used both for storage and scoring.

102

Query indexes for continuous values (i.e size, time-stamps) use quad-trees [20] for

storage. Given a large range of values, quad-trees can efficiently store data by employing

a dynamically constructed tree in which each node represents a finite non-overlapping

sub-range. Nodes are recursively divided into smaller ranges if the amount of data they

are storing exceeds a predefined threshold. Thus, a sparse sub-range may be represented

by very few (possibly even one) node(s). The tree structure and the assignment of non-

overlapping ranges to nodes permits efficient querying of data for a given range query.

At query time the required scoring information is determined as follows: 1) Given

a query value, x, determine the structure of the relaxation DAG for x. We need not

create the entire DAG (as seen in Figure 5.1(b)) but rather only the path from the leaf

node to the root. This path represents all the relaxations that will be considered for

the query value of x during evaluation. We have opt to compute this path at query

time rather then keep an entire pre-computed DAG in memory. 2) Given the relaxation

DAG (or relevant path), evaluate the sub-ranges associated with each node against the

quad-tree to determine the number of matching files associated with the respective

relaxation. For example, in Figure 5.1(b) for the nodes labeled “Day”, the quad-tree

would be queried for all times that fall within the 24 hours period containing the query

value. 3) Given the file counts, compute the scores for each DAG node as discussed in

Section 5.2.3.

5.3.1.2 Structural Index

Numerous additional data structures were added to the structural table to support the

construction and efficient evaluation of the structural DAGs presented in Chapter 5.2.4.

A detailed discussion of these can be found in Wang et al. [56,75].

5.3.2 Efficient Query Processing

Our query model (Section 5.2) supports ranked retrieval of answers based on how closely

they match a query. Previous work on top-k query processing has shown that evaluating

all possible matches to return the k best answers is prohibitively expensive. In our

scenario, this would lead to scoring and ranking every single file in the system for each

103

query. Several top-k query processing techniques have been proposed in the Database

community in recent years. We have adapted the Threshold Algorithm (TA) [26] to

our scenario. TA uses a threshold condition to avoid evaluating all possible matches to

a query, instead focusing on identifying the k best answers.

TA takes as input several sorted lists, each containing the system’s objects (files

in our scenario) sorted in descending order according to their relevance scores for a

particular attribute (dimension in our scenario) and dynamically accesses the sorted

lists until the threshold condition is met to find the k best answers without evaluating

all possible matches to a query. In our adaptation, TA uses the aggregation approach

described in Section 5.2.5 to compute the unified relevance score for each candidate

object that it considers.

TA relies on sorted and random accesses to retrieve individual attribute scores.

Sorted accesses, that is, accesses to the sorted lists mentioned above, require the files

to be returned in descending order of their scores for a particular dimension. Random

accesses require the computation of a score for a particular dimension for any given file.

Random accesses occur when TA chooses a file from a particular list corresponding to

some dimension and then needs the scores for the file in all the other dimensions to com-

pute its unified score. To use TA in our scenario, our indexing structures and algorithms

need to support both sorted and random access for each of the three dimensions.

Finally, recall that our scoring approach requires a single score be computed for each

queried dimension. In the case of content and metadata, several query conditions may

be involved in each computation. For content this occurs when querying for multiple

keywords and for metadata, querying over several different types of metadata in the

same query. To compute the final score, individual dimension scores must be computed

first. To make this process efficient, we employ a two tiered top-k framework. Each

dimension executes the above TA top-k algorithm separately to compute its top-k

results. These results are then aggregated using a concurrently running TA top-k

algorithm across all queried dimensions.

104

5.4 Experimental Evaluation

In this section, we will present our the experimentally validation of our IDF-based scor-

ing approach and evaluate the potential for the corresponding multi-dimensional fuzzy

search approach to improve relevance ranking. We also report on query performance to

show that multi-dimensional search is practical to use. This evaluation will be done in

a single node environment and will be used for comparison in the next chapter where

we investigate multi-dimensional fuzzy search in a federated environment.

5.4.1 Experimental Setting

5.4.1.1 Platform

All experiments were performed using the Wayfinder file system. Experiments were run

on a PC with a 64-bit hyper-threaded 2.8 GHz Intel Xeon processor, 2 GB of memory,

and a 10K RPM 70 GB SCSI disk, running the Linux 2.6.16 kernel and Sun’s Java 1.5.0

JVM.

5.4.1.2 Data Set

As noted in [22], there is a lack of synthetic data sets and benchmarks to evaluate

search over personal information management systems; therefore we used a real user

data set comprised of (a representative subset of) files and directories from the working

environment of a user in our lab. This data set contained 24,927 files in 2,339 directories.

24% of this data set were multi-media files (e.g., music and pictures), 17% document

files (e.g., pdf, text, and MS Office), 14% email messages,1 and 12% source code files.

The average directory depth was 3.4 with the longest being 9. On average, directories

contained 11.6 sub-directories and files, with the largest—a folder containing emails—

containing 1013. Wayfinder extracted 347,448 unique stemmed content terms.2 File

modification dates spanned 10 years. 75% of the files were smaller than 177 KB, and

95% of the files were smaller than 4.1 MB.

1Email messages are stored in the Maildir format in which each email is stored in a separate file.

2Content was extracted from MP3 music files using their ID3 tags.

105

5.4.1.3 Query Set

For several experiments, we require a large number of queries to evaluate our system.

In the absence of a meaningful benchmark, we create a set of synthetic queries for this

evaluation. These queries are designed to include a large variety of query conditions

combined in different ways across three or four dimensions. The query specifically

targets files from two content categories: emails and documents. In the document

category, we specifically target files belonging to the sub-categories of ebooks, code

files, and academic papers. For each of the four categories (i.e., emails, ebooks, code,

and papers), we generate 50 random queries. This diverse set of queries allow us to

explore the performance of our system across the parameter space that should include

most real-world search scenarios.

The construction of these queries has been described in previous work [75] and we

review it here. It has been noted [72] that individuals often know exactly what they

are looking for when they execute searches for an email message, a file, or even a Web

page. Thus, each of our query targets a specific file f , and so is built using (relaxations

of) f ’s attributes. The query conditions are formed as follows.

• Content: Each condition has 2 to 4 terms chosen randomly from the top 50 terms

(based on TF values) in f ’s content.

• Metadata: Each date (last modified) is randomly chosen from a small range (±7

days to represent cases where users are searching for files they recently worked on)

or a large range (±3 months to represent cases where users are searching for files

that they have not worked on for a while and so only vaguely remember the last

modified times) around f ’s actual last modified date. Each file type (extension)

is randomly chosen from .txt or .pdf for a document; otherwise, it is the correct

file type. For file sizes, three ranges based on the queried values are constructed;

one that spans the range of numbers with the same order of magnitude (i.e., tens,

thousands, and millions), one that spans numbers that are one order of magnitude

less, and the last for numbers which are one order of magnitude greater. Of these

three, one is chosen randomly and then middle number of that range is computed

106

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000

R
el

ev
an

ce
 S

co
re

File Rank

7 keywords
5 keywords
3 keywords
1 keyword

 1
 0.9
 0.8
 0.7
 0.6
 0.5
 0.4
 0.3
 0.2
 0.1

 0
 1 10 100 1000 10000

R
el

ev
an

ce
 S

co
re

File Rank

path-original
path-node-deleted

path-nodes-permuted

(a) Content Queries (b) Structure Queries

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000

R
el

ev
an

ce
 S

co
re

File Rank

1 KB
100 KB

1 MB

(c) Size Metadata Queries

Figure 5.4: Relevance score plotted as a function of ranking for (a) four content queries,
(b) three structure queries, and (c) three size metadata queries.

and use.

• Structure: Each condition is randomly chosen from: (a) the correct path p, (b)

one random word was dropped from p, (c) two adjacent words in p are swapped,

and (d) one word in p was misspelled.

5.4.2 Behaviors of Scoring Functions

We start by studying the behaviors of our scoring functions. Figure 5.4 plots the

scores of all relevant files as a function of their ranking for several 1-dimensional queries

targeting three different dimensions as follows. Figure 5.4(a) plots the normalized scores

for four content queries that contain from one to seven keywords. For each query, the

scores of matching files were normalized against the highest score since content scoring

is based on TF · IDF as opposed to just IDF. Figure 5.4(b) plots the scores for three

107

structure queries. The first query is a standard path query that corresponds to a path

that exists in the directory tree (of the form /a/b/c/d), the second is the original

path query after deleting a node (/a/b/d), and the third is the original path query

after permuting two nodes (/a/b/d/c). We choose these queries to exhibit common

user mistakes in querying structure. Finally, Figure 5.4(c) plots the scores for three

metadata queries for three different file sizes.

First and foremost, we observe that all scoring functions have similar behaviors.

In all cases, the relevance scores monotonically decrease (by design) as files become

less similar to the query conditions. Most critically, all scoring functions allow a large

number of files that do not exactly match the query conditions to be scored and ranked,

providing the desired flexibility over filtering. This is particularly important when a

query condition such as a non-existing directory is provided in the query; in such cases,

filtering would not consider any file in the system as being relevant to the query.

On the other hand, there are several interesting differences between the scoring func-

tion for content and the scoring functions for the other dimensions. In particular, the

scoring functions for structure and metadata (Figures 5.4(b-c)) are noticeably plateau-

shaped because of our DAG-based approach to computing IDF. In this approach, each

relaxation step is likely to bring a set of files that are deemed to be equally similar

to the query condition. For instance, in Figure 5.4(c), each plateau corresponds to a

discrete relaxation interval to which a range of file sizes has been mapped.

Plateaus in the scoring function, where many files are assigned the same score,

can make a query dimension less useful for ranking. For metadata, we can arbitrarily

smooth the scoring function as long as files do not have exactly the same attributes

(e.g., same size) by considering increasingly smaller relaxation intervals. In contrast,

this is not possible to do for structure, as the relaxation intervals are defined by the

matching directories and the number of files inside each directory, which is under user

control. (Users can aid the search engine by using sparser directory structures.)

The content scoring function also differ from the other two in its sharp drop from

the top several ranked results to the 10th-100th ranked results and its non-zero scoring

of a much smaller subset of the files in the system. These differences do not seem

108

fundamental, however. For example, if we choose a set of content terms that appear in

most files, then the content scoring function would likely look more like the other two.

Thus, despite the differences, we conclude that the data in Figure 5.4 makes a

strong case for combining relevance scores from orthogonal query dimensions using

our framework as it places these dimensions into a common setting to be compared.

The differences mentioned likely provide opportunities to explore more complex score

aggregation approaches in future work.

5.4.3 Scores and Rankings for Approximate Answers

We now show how scoring (and the corresponding ranking) is affected by inaccurate

query conditions. For this purpose, we choose a target file that is an exact match for

the query conditions of a particular query, resulting in a high score and rank. We

then modify the target file so that it is progressively farther away from the query

conditions; that is, the file will only match increasingly relaxed approximations of the

query conditions. While relaxing the target file, we alter several other files as needed to

ensure that any global statistics used in scoring computations are kept constant. This

ensures that scores for files unrelated to our relaxation process are unaffected, providing

a stable background for interpreting the changing score (and rank) of the target file.

Figures 5.5(a-d) plot the score and rank, respectively, of the target file for two repre-

sentative 2-dimensional queries covering the four dimensions of content, structure, size

metadata, and (last modified) date metadata. In the content dimension, we relax the

file by progressively removing occurrences of the query term from within the file. In

the structure dimension, we relax the file by progressively moving the file up the direc-

tory tree (representing simple relaxations steps) from its original location. In the size

metadata dimension, we relax the file by progressively decreasing its size (We also relax

in the opposite direction but do not plot the results because they are not significantly

different). In the date metadata dimension, we relax the file by progressively moving

its date backward from the query condition.

109

-7t-6t-5t-4t-3t-2t-1torig Exact
1

2

 0
 0.2
 0.4
 0.6
 0.8

 1

Relevance Score

.543

.173

Content Structure

Relevance Score

-1m
-3d

-12h
-1hExact

-8%-4%-2%1%Exact

 0
 0.2
 0.4
 0.6
 0.8

 1

Relevance Score
.932

.348

Mod. DateFile Size

Relevance Score

(a) Content & Structure (b) Size & Date Metadata

-7t-6t-5t-4t-3t-2t-1torig Exact
1

2

 1

 10

 100

Rank

107

Content Structure

Rank

-1m
-3d

-12h
-1hExact

-8%-4%-2%1%Exact

 1

 10

 100

Rank

32

Mod. DateFile Size

Rank

(c) Content & Structure (d) Size & Date Metadata

 0

 0.2

 0.4

 0.6

 0.8

 1

-7t-6t-5t-4t-3t-2t-1torig
 0

 50

 100

 150

 200

R
el

ev
an

ce
 S

co
re

R
an

k

Content Relaxation Steps (keywords Count)

rank
score

 0

 0.2

 0.4

 0.6

 0.8

 1

4321Exact
 0

 50

 100

 150

 200

R
el

ev
an

ce
 S

co
re

R
an

k

Path Relaxation Steps

rank
score

(e) Content (f) Structure

Figure 5.5: Score (a-b) and rank (c-d) of a target file returned as a result of a constant
2-dimensional query as the file is relaxed away from the query conditions across the two
query dimensions. Score and rank of the same file target file plotted for a content-only
query (e) and a structure-only query (f).

110

It should be noted that in Figure 5.5, the target file is not the only exact match to

the query condition in the structure, size, and date dimensions, leading to a relevance

score of less than 1 in each of these dimensions even before relaxation of the file. Also,

the target file is not returned as the top result to the content-only query leaving again

a score of less than 1. This arises from the fact that our data set has several small files

that contain a subset of the query terms. As our TF · IDF scores are normalized by file

lengths, these smaller files achieve higher scores than the target file, which is a novel

containing over 100,000 terms.

Figures 5.5(a-b) show that the combined scoring functions for a multi-dimensional

query behave as expected; that is, they preserve the trends of the 1-dimensional scoring

functions, decreasing as the file is relaxed away from the query conditions in either

dimension; we plot the score and rank of the target file as it is relaxed against 1-

dimensional content and structure queries in Figures 5.5(e-f) for comparison purposes.

More interestingly, we observe that providing query conditions for other dimensions

in addition to content, even when the provided query values are somewhat inaccurate,

can significantly improve ranking accuracy. For example, when the target file contains

only 5 of the 7 terms (-2t) in the content query, its rank drops to around 50 (Fig-

ure 5.5(e)). When we provide an approximate structural value, the parent directory of

the directory containing the target file, the ranking jumps to close to 10 (Figure 5.5(c)).

Similarly, if we provide information on the file’s size and date, even when the size is 8%

off and the date is incorrect by 1 month, the target file is ranked 32nd (Figure 5.5(d)).

Interestingly, sometimes inaccurate query conditions on one dimension do not affect

ranking, as is shown in (Figure 5.5(d)) where a slight approximation in the query con-

dition of one dimension, provided the other dimension is exact, still results in a rank of

1 since few exact matches to each individual dimension exist in the data set.

Of course, providing incorrect query values can hurt ranking as well. For example,

providing an ancestor directory two level up pulls the rank of the target file down to

around 100, even when the file contains all 7 query terms in the content dimension.

Keep in mind, however, that providing incorrect non-content query values to current

filtering approaches may prevent the target file from being ranked at all. Thus, in

111

Query Evaluation Results

Query Conditions Comments on Relaxation

Query Content Type Date Structure Rank from Query Q1

Q1 C - - - 49 Base Query
Q2 C .txt 26 Feb 07 16:08 /p/e/n/j 1 Correct Values (all dim.)
Q3 C .txt - - 6 Correct Value
Q4 * C .pdf - - 1026 Incorrect Value
Q5 * C .doc - - 45 Incorrect Value
Q6 C Docs. - - 21 Relaxed Range
Q7 C 26 Feb 07 - 5 Relaxed Range (Day)
Q8 C - 25-28 Feb 07 - 5 Relaxed Range (Week of month)
Q9 C - Feb 07 - 7 Relaxed Range (Month)

Q10 * C - 27 Feb 07 16:08 - 9 Incorrect Value (off by 1 day)
Q11 * C - 19 Feb 07 16:08 - 14 Incorrect Value (off by 1 week)
Q12 * C - 26 Mar 07 16:08 - 150 Incorrect Value (off by 1 month)
Q13 C - - /p/e/n/j 3 Correct Path
Q14 C - - /p/e 13 Prefix of Correct Path
Q15 * C - - /j/e 3 Incorrect Order/Correct Names
Q16 * C - - /p/e/n/h 11 Incorrect Path
Q17 C Docs. Feb 07 /p/e/n 3 Relaxed Range (all Dim.)
Q18 * C .pdf 19 Feb 07 16:08 - 36 Incorrect Values
Q19 * C .pdf 19 Feb 07 16:08 /j/e 2 Incorrect Values (all Dim.)

Table 5.1: The rank of a target file—the novel Sea Wolf by Jack London—returned by a
set of related queries. In the presences of ties in the relevance scores, the highest rank the
target file could have is given. The queried dimensions include Content, Type (Meta-
data), Date (Metadata), and Structural. The initial content query Q1 provides the set
C containing the 4 query terms {jack, london, sea, wolf}. Structural values are abbre-
viated. The complete path of our target file is /Personal/Ebooks/Novels/JackLondon/.
Queries which contain a “*” in the first column represent those in which the target file
would not be considered as a relevant answer given today’s typical filtering approach.

these cases, our approach may not improve on the current filtering approaches (users

typically do not look at returned results beyond some top K ranked items) but is no

worse than filtering.

5.4.4 Impact of Flexible Multi-Dimensional Search

In the last section, we demonstrated the general trends of multi-dimensional scoring

to validate that our combined scoring function behaves as desired. We also argued

that providing fuzzy query conditions in non-content dimensions has the potential to

significantly improve scoring (and thus ranking) accuracy. In this section, we explore

this latter potential and compare our approach against current filtering approaches in

more detail.

In this study, we initially construct a content-only query intended to retrieve a

specific target file and then expand this query along several other dimensions. We start

112

with a base content-only query because content-only queries are the standard search

interface in many real world systems. For each query, we consider the ranking of the

target file by our approach together with whether the target file would be ranked at all

by today’s typical filtering approaches on non-content query conditions.

Table 5.1 summarizes the results of our study. The target file is the novel Sea

Wolf by Jack London and the set of query content terms, C, in our initial content-only

query, Q1, contains the four terms sea, wolf, jack, and london. While the query is quite

reasonable, the terms are generic enough that they appear in many files, leading to a

ranking of 49 for the target file. Query Q2 augments Q1 with the exact matching values

for file type, date, and containing directory. This brings the rank of the target file to

1. Of course, this result by itself is not meaningful because it is unlikely that the user

will remember the file attributes with such precision.

In the remainder of the table, we explore what happens when we modify the query

in two different ways for the non-content dimensions: (1) instead of the precise correct

value we provide a range around the precise value, and (2) we provide an incorrect

value.3 The results are quite promising. For example, in query Q15, just getting

a couple of components correct in the directory name—note that the components are

given in an incorrect order—brings the ranking up to 3. Providing an incorrect directory

that shares a common prefix with the correct directory brings the ranking to 11 (query

Q16). In contrast, if such directories were given as filtering conditions, the target file

would be considered irrelevant to the query and not ranked at all.

Similar results can be seen for most other queries marked with a “*” in the first

column (indicating that the target file would not be found using a filtering-only ap-

proach). Two exceptions include queries Q4 and Q12. In these queries, the incorrect

values for the other dimensions reduce the ranking of the target file below that achiev-

able with only content. For query Q4, this decreased ranking is because there are many

pdf documents that achieve a higher metadata score than the target file. Similarly, for

3We do not consider incorrect ranges, that is, a range that does not include the value of the target
file, because the results are similar to incorrect values; filtering would not rank the target file and in
our approach, while the scores change, the ranking does not change significantly.

113

query Q12, many files with dates closer to the query condition achieve higher metadata

scores. Given that the ranking in these two cases are 1026 and 150, our approach is

not meaningfully different from filtering since users are unlikely to look that far down

a ranking list.

Using ranges also give promising results although our approach is unlikely to out-

perform filtering (when the matching value of the file attribute is included in the range

so that the file is not filtered). Intuitively, however, we believe it is easier to provide an

approximate query condition and allowing the search engine to rank all files based on

their similarity to the condition than it is to guess at the correct filtering range, which

may require overfitting or increasing the range in several query iterations.

Based on the above results, we conclude that our approach of providing flexible

query conditions for non-content search dimensions has the potential to considerably

improve search accuracy over current filtering approaches. Future work could involve

validating this potential in more extensive user studies.

5.4.5 Impact of Multi-dimensional Scoring on Results

To complement the last section, where we studied the ranking of a single target file with

respect to a set of related queries, we now consider the impact of our scoring approach

on the entire set of top-k files returned in answer to a query. Specifically, we compare

the query results for several multi-dimensional queries with those of a content-only

query. To measure the impact of our techniques, we use the minimized Spearman’s rho

as described in [25]. The standard Spearman’s rho (ρ) measures the distance between l1

and l2, two permutations of the same list. The minimized Spearman’s rho (ρmin) is an

adaptation of the standard Spearman’s rho to top-k lists, which may not overlap. We

normalize the minimized Spearman’s rho between -1 and 1, where a score of -1 means

that objects in the two top-k lists are disjoint, and a score of 1 means the two lists are

identical:

ρmin = 1 −
6 ∗

∑

d2
i

k(k + 1)(2k + 1)

114

-1

-0.5

 0

 0.5

 1

20010050251051
M

in
im

iz
ed

 S
pe

ar
m

an
’s

 r
ho

k

query A:content,metadata
query A:content,structure

query A:content,structure,metadata
query B:content,metadata
query B:content,structure

query B:content,structure,metadata

Figure 5.6: ρmin value for various multi-dimensional queries as a function of k.

where k is the number of results returned, di is the difference in rank between each

object that appears in l1 or l2; an object that does not appear in one of the list is

considered to have a rank of k + 1 in that list.

Figure 5.6 shows the ρmin values for various multi-dimensional queries as a function

of k. We use two different queries, A and B, to which we add dimension conditions. For

Query B we see that the addition of either metadata or structure conditions has only

a slight effect on the overall results (indicated by the respective lines staying above

0.5). The combination of both, however, results in significant changes to the set of

results. In contrast, for Query A the addition of the metadata dimension provides us

with a spearman score ranging from 1.0 to -0.4 indicating that as we increase k the

results change significantly. This indicates that the set of files relevant to the content

condition of the query and the meta-data condition are quite different. The addition of

the structural condition lessens this trend.

Our results show that the multi-dimensional scoring modifies the top-k results with

the impact being the most visible for smaller values of k. We have also shown that

the degree of change is dependent on the conditions with which the query is extended.

Set of conditions whose relevant files are similar will result in very little movement, or

introduction of new results, into the final top-k files.

115

Total Query Time (ms)
Query Dimensions Index/Tables

In-Memory Persistent
Content 21.49 122.72

Date 3.49 11.24
File Type 3.02 9.09
Structure 12.15 51.68

Content and Date 49.39 187.92
Content and File Type 50.60 186.06
Content and Structure 54.76 218.31

Content, Structure, and Date 113.93 355.26
Content, Structure, File Type, and Date 162.10 586.75

Table 5.2: Query performance for various single- and multi-dimensional queries for
both in-memory indexes/tables and persistent indexes/tables. k is set to 20.

5.4.6 Query Performance

Until now our evaluation has focused on measuring the impact of our unified scoring

framework on query results. In this section, we now turn to evaluating its perfor-

mance. For this evaluation, we utilize a set of queries randomly generated queries

(Section 5.4.1.3). Fifty queries were generated for each of the four content categories

(including sub-categories).

We have implemented several top-k query optimization techniques to speed up query

evaluation (Section 5.3.2). Our techniques ensure that the correct top k answers for a

query, according to our unified scoring framework, are returned to the user.

Table 5.2 shows the query performance of several single- and multi- dimensional

queries using both completely in-memory indexes/tables and persistent indexes/tables.

Recall that our persistent indexes/tables were implemented using the BerkeleyDB [64]

via its Java API. Each reported number is an average of all the query evaluations for

the respective configuration.

Immediately noticeable are the larger times for both content and structure when

compared to either size and date. The large content times result from our current

unoptimized index/table design. Processing a query for each term currently requires

the retrieval of the entire list of all files that contain that term. For structure, the larger

times result from constructing and evaluating the structural DAG at run time.

116

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 14000 18000 22000 26000

T
im

e
(s

ec
)

Data Set Sizes (files and directories)

Average Query Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

ag
e

of
 Q

ue
rie

s

Total Query Time (in seconds)

3800 files
9800 files

14000 files
18500 files
27000 files

(a) (b)

Figure 5.7: (a) The mean time for queries targeting email and documents plotted as a
function of the data set size. (b) CDF of the total query time for all queries targeting
email and documents. k is set to 20.

The increases in time between the in-memory and persistent index/table stems from

the need to read data from the persistent data store (implemented using BerkeleyDB).

We have implemented several simple caching mechanisms to minimize these accesses.

We believe, however, significant opportunities for optimization remain.

The difference in times between one dimension and the multi-dimensional searches

is largely due to the overhead of top-k processing. While it may be cheap to access the

top results for a single dimension using sorted indexes, a multi-dimensional search may

require to accessing files (via more expensive random accesses) that have low scores in

one or more dimensions.

Future work could investigate additional methods to further improve performance.

Among these are more aggressive caching techniques to further minimize access to disk,

adjustments to our top-k algorithm that will reduce it computational cost. Our results

show reasonable query response times. Since these measurements were taken in an

early, mostly unoptimized prototype, we believe our fuzzy multi-dimensional scoring

approach is practical for implementation in real systems.

117

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

P
er

ce
nt

ag
e

of
 Q

ue
rie

s
Total Query Time (in seconds)

K=1
K=10
K=20

K=100
K=200

Figure 5.8: CDF of the total time for evaluating queries for different values of k.

5.4.7 System Scalability

We believe that our experimental data set is sufficiently large that our performance

results apply directly to personal information management systems. Nevertheless, we

briefly study the scalability of our system to assess its potential to handle very large

personal data sets. We again use a set of randomly generated queries described earlier.

Figure 5.7(a) plots average query times against data set size and Figure 5.7(b) presents

the CDF of the total query times for these queries for different data set sizes. These

result show that shows that query performance scales linearly with data set size but with

a relatively flat slope (e.g., increase of only 0.1 seconds in mean query processing time

when the data set doubles in size). Further, analysis shows that the linear growth is

directly attributable to our unoptimized implementation of the top-k algorithm; score

evaluation times remain relatively constant vs. data set size. This result is quite

promising because there are many known optimizations that we can apply to improve

the performance and scalability of the top-k algorithm.

Along a different dimension, in Figure 5.8 we present measurement of query perfor-

mance for increasing values of k. Results show that our approach scales very well with

k. For example, the 90th percentile processing time (i.e., the time within which 90%

of the queries completed) only increased from 0.95 seconds for k = 10 to 1.38 seconds

for k = 50 to 2.28 seconds for k = 200. Average and median query processing times

followed the same trend.

118

5.4.8 Storage Cost

To show that our approach is practical with respect to space (i.e., storage cost), we now

report on the cumulative size of our indexes and tables for storing the data set used

in this evaluation. In total, our indexes/tables require 273 MB of storage to store the

data set defined in Section 5.4.1.2. This is less than 2% of the data set size (14.4 GB).

Data for the metadata dimension accounts for approximately for 6% of the total storage

with 17.5 MB, of which 11.2 MB is accounted for by the metadata table and 6.3 MB

by the query indexes (Section 5.3.1). Storage costs are dominated by the content table,

which accounts for about 92% of the total space with 252 MB. The indexes/tables are

so compact compared to the data set because of the large sound (music) and video

(movie) files. As future data sets will be increasingly media rich, we expect that our

indexes/tables will continue to require a relatively insignificant amount of storage.

5.4.9 Comparison of Third Party Search Tools

In Section 5.1, we discussed the existence of several tools providing advanced search

functionality on users’ desktops. As our evaluation has presently focused on a single

device setting, we attempted a comparative evaluation of Wayfinder with several of

these tools; specifically Copernic Desktop Search (CDS) [13] (Version 2.1.1), Google

Desktop (GD) [29] (version 5.10707), and Spotlight (SL) [66]. In each instance we sup-

plied the application with the data set presented in Section 5.4.1 and provide sufficient

time to index. We then manually ran a set of queries and compared the results.

Our findings were ambiguous at best. All three applications were sufficiently differ-

ent to Wayfinder, and with each other, that comparing results in a meaningful manner is

difficult. Each application dealt differently with key tasks such as parsing, ranking, and

result presentation. For example, all three applications (as well as Wayfinder) disagree

on the set of file types to parse: GD does not seem to parse latex files while SL does,

and CDS does so only after the indexing settings are manually altered. Additionally,

while Wayfinder, SL, and CDS consider the entire file when parsing, GD indexes only

the first 5000 terms in a document.

119

With regards to ranking of results, only Wayfinder, SP, and GD allow this function-

ality. SP, however, will only use ranking to determine the single most relevant result

and in GD the ranking of results must be explicitly selected as it is not the default be-

havior. Finally, the difference in scoring/ranking and parsing further complicates any

comparison. As expected, however, we were able to validate the results of Section 5.4.4

by locating specific target files with inaccurate queries using Wayfinder whereas the

filtering-based search tools failed.

5.5 Summary

Contemporary search tools use a combination of ranking and filtering to evaluate multi-

predicate queries provided by users. These tools apply ranking algorithms to the content

predicate of a query while any remaining predicates are use as filtering conditions. We

have argued in this chapter that this approach is insufficient in many search scenarios.

In this chapter, we have presented a unified scoring framework for multi-dimensional

queries over personal information file systems. We proposed individual IDF-based scor-

ing approaches for several dimensions of data; namely content, metadata, and structure.

In particular, we have defined a methodology for constructing progressive relaxations

for each of these dimensions that may be used to locate relevant files that are not exact

matches to a query. We have shown how to use these relaxations at query time to

assign relevance scores based on how many files match a particular query condition, or

a relaxation of it. We then presented a method of for aggregating individual dimension

scores to produce a single unified relevance score for each file.

We presented an implementation and evaluation our scoring framework as part of

the Wayfinder file system. Our evaluation has shown that our IDF-based scoring ap-

proach provides a meaningful distribution of scores that captures the specificity of each

dimension. Additionally, we have shown that our multi-dimensional score aggregation

technique preserves the properties of individual dimension scores and has the potential

to significantly improve ranking accuracy. We reported on the impact of our multi-

dimensional scoring on query answers, on query performance, results scalability, and

120

data set scalability.

121

Chapter 6

Federated Multi-dimensional Search

In this chapter, we present an extension to our single node multi-dimensional search

framework to allow searches over the shared content of a federated community. Our goal

is to allow a user to leverage the framework of the previous chapter for querying content

throughout a federated system. At the same time, the method of querying should

be identical to a single node environment and with comparable results. We present

an approach that is compatible with all the abstractions and designed considerations

previously outlined in this thesis.

Distributed query evaluation can be discussed in the context of three distinct stages:

1) Node Selection - determining the set of nodes that may contain information relevant

to a query’s evaluation, 2) Query Evaluation - the actual evaluation of the query on

the set of chosen nodes, and 3) Result Merging - aggregating the results received from

queried nodes and presenting the final set of results to the user. Each of these stages

is complicated by our target environment and previous design choices made for the

Wayfinder file system.

Recall that in a Wayfinder community, it is unlikely that any single node will have a

complete snapshot of content being shared by a community. Instead, a node will contain

a partial snapshot whose content is determined by various Wayfinder operations (auto-

matic availability management) or user activities (file system). This non-standardized

placement of data complicates the selection of nodes to be considered during query

evaluation as relevant information may reside anywhere. Similarly, no single node will

contain a complete collection of the necessary scoring statistics needed for computing

relevance in a communal context. Independent query evaluation that relies on using

only local information may therefore lead to different scores, possibly for the same data,

122

complicating the final merging of results.

In an ideal situation, we would maintain aggregated scoring information in a reliable

communal online data structure. Any scoring information would be computed over

all of a community’s content (accounting for replicas) and be accessible to any node

wishing to compute relevance scores (in our case IDF-based scores). Given a query

Q, the simplest form of query evaluation would then be to send Q to all nodes, have

Q evaluated locally while using the global scoring information to compute relevance

scores, and then return the results to the querying node. As scores would be computed

using the same state, the process of merging remote results to produce the final set of

answers is greatly simplified.

This ideal situation is difficult to achieve. Maintaining and ensuring the availability

of global data structures is difficult and expensive given the connectivity properties of

our target environment.

Instead, to limit the impact of dynamic membership and avoid maintaining a large

amount of online information, we propose an approach that considers only a small subset

of a community during query evaluation and leverages globally replicated state. More

specifically, we define a set of nodes NC whose combined local content is (with high

probability) a complete snapshot of a community’s content. During query evaluation,

queries are forward to only this set of nodes. The coverage property of NC ensures that

all information in the community is considered during evaluation.

Given NC , we must then ensure that remotely computed scores are comparable.

For this, we allow each node in NC to individually collect and maintain the necessary

global scoring statistics to perform relevance scoring. This is done separately for each

distributed table that is used in evaluating a query locally (i.e., content, metadata, and

structural). Each device in NC constructs an index summary specific for each global

table maintained by PlanetP. Each summary contains the information used during local

query evaluation to compute our IDF-based relevance scores. These summaries are

propagated to other nodes in NC using PlanetP’s gossip-based communication. Each

receiving node independently aggregates (details given below) the index summaries

related to a particular distributed table to form a Global File Count (GFC) index for

123

that respective table. During query evaluation, computation of IDF-based relevance

scores utilizes these GFC indexes rather than the local indexes/tables.

Intuitively, a GFC index captures information about the communal files counts

relative to the values stored in a distributed table in PlanetP. As each node in NC

will maintain an independent instance of these indexes and they are kept consistent

through gossiping, individual nodes will have similar information for computing IDF-

based relevance scores. Therefore, disregarding any inconsistencies that might arise

from gossiping delays, independently computed IDF scores will be comparable. The

independent copies also allow scoring despite changes in the connectivity of nodes in

NC .

The federated evaluation of a query then proceeds as follows. A querying node

sends a query to all the nodes in the set NC . Each node in NC evaluates the query

locally utilizing its local instance of the GFC indexes to compute relevance scores.

The computed results are returned to the querying node where they are merged and

presented to the user.

In the remainder of this chapter, we present a discussion detailing our design of a

GFC index in greater detail. We explore various methods of compressing index infor-

mation using both lossy and lossless techniques to allow for a practical implementation.

We then present our approach for federated query evaluation using these indexes and

then conclude with an evaluation of our approach.

6.1 Design

In this section we will review the design of the GFC indexes and the distributed eval-

uation of a query in greater detail.

6.1.1 Global Indexes

A Global File Count (GFC) index is built for each distributed table used during local

query evaluation by each node in NC . While a GFC index maintains global state and

utilizes summary information, they are different from the distributed tables of PlanetP;

124

IDF = 1 + log2(N/T)

N = Total number of doc.

T = Number of matching doc.

 0

 2

 4

 6

 8

 10

 5 10 15 20 25 30 35 40 45 50

ID
F

 S
co

re

Number of files

score

(a) (b)

Figure 6.1: (a) Equation for computing Inverse Document Frequency (IDF) and (b) a
plot of this function as the value of T increases with a value of 1000 for N .

they are used for retrieving scoring information and not retrieving remote information.

A distributed table of PlanetP use summary information to establish a term → peer

mapping. This mapping is used for determining which nodes should be contacted to

retrieve information pertaining to a given query. In the case of the GFC, the summaries

are used to construct a term → file count mapping. When accessed, the GFC returns

the file count stored in this mapping; this requires no remote communication.

The summaries used in constructing a GFC index are defined as follows. For a table,

I, on device m, the summary of I is of the form [(km1, Cm1), (km2, Cm2), . . . (kmn, Cmn))

where kmi is the ith unique table key in I on device m, Cmj is the number of files having

value kmi specifically on device m, and n is the total number of unique keys in I on m.

Index construction involves the collecting and merging of these per-device summaries

for the same distributed table across nodes in NC . Merging is done by finding the

common keys among the summaries and adding the corresponding file counts. The end

results is a mapping kj → Cj where kj is the jth unique key across all summaries and

Cj is the accumulated count of all the file counts associated with kj in the collected

summaries.

This method of index construction maintains no information concerning individual

files and so ignores the impact of skewed file replication (that is, some files may be

125

more heavily replicated= than others). We believe this is acceptable for several reasons.

First, discerning identical file replicas within the summaries would require a significant

increase in the amount of state that must be represented. Second, given our availability

model and method of constructing the global namespace, any file that is persistent, or

reasonably available, is at any time likely to have at multiple replicas. As the equation

for computing IDF scores is logarithmic (Figure 6.1(a)), large variations in scores will

occur primarily if the single device document count is quite small (i.e., less than 10)

and the aggregated replica count is significantly larger (Figure 6.1(b)). Therefore, we

hypothesize that while the number of replicas for a file will vary, there will be minimal

changes in the final relevance ranking.

For file sizes and dates, the set of keys maintained in the GFC index (i.e., kmi) are

the unique values obtained from the Metadata table of nodes in NC for the respective

property. Given such a GFC index, it is a simple task to determine the approximate

number of files matching a queried value, or a range of values (in the case of relaxations).

For file types, the keys stored are in the GFC index are the set of tracked types. For

content, the keys stored in the GFC index are unique content terms stored in the

Content table. For structure, the keys are paths stored in the Structural table. The

file count information associated with each of the required summaries can be easily

determined using the existing tables presented in previous chapters.

6.1.2 Query Evaluation

We now turn to discussing the process of federated query evaluation in more detail. We

will address each of the three previously mentioned stages in turn.

6.1.2.1 Node Selection

Recall from Chapter 4, we assume a federated community in which each user’s device set

contains a champion device. These nodes have the role of ensuring offline and ownership

availability for their users and have sufficient storage and availability to accomplish the

task. To this end, independent of the rest of the community, the set of champion nodes

in a community should contain close to a complete snapshot of a community’s shared

126

content. Furthermore, their number relative to the community size should be small.

For this reason, we designate NC as the set of champions nodes in the community.

To further simplify our design, we currently consider the entire set as candidates for

each query. The communication cost for querying is then proportional to the number of

users in the systems, as we assume each user retains the use of at least one champion.

This latter simplification may result in considering nodes that are unlikely to produce

relevant results. Future work can explore approaches to optimize the choice of candidate

nodes.

6.1.2.2 Query Evaluation

Upon receipt of a remote query, a node evaluates the query over the content of its local

hoard using the local indexes/tables; just as if the query were issued locally. However,

rather then using local file count information when computing IDF-based relevance

scores, the GFC indexes are used. As these indexes are replicated across nodes, nodes

will produce the same score for replicated files.

A query is evaluated until the k most locally relevant results are found. This final

set is returned to the querying node. Included with the returned results is the complete

scoring information for each file which includes the un-normalized dimensions scores.

This information will be needed in the next stage.

6.1.2.3 Result Merging

Once the results have been collected from the queried nodes, the results are merged

to produce the final k relevant answers to the query. This task is greatly simplified

because the actual returned relevance scores are comparable.

Recall that during query evaluation, individual dimensions are normalized by the

highest possible score (i.e., an exact match). In the case of content, this normalizing

is done with respect to the highest content score. As this score may differ across

nodes, we must re-normalize all of the received results before they can be merged. In

particular, we determine the necessary factor by considering the un-normalized scores

for all returned results and then proceed by adjusting the scores uniformly. With the

127

final scores computed, the results are sorted, duplicates removed, and the top k are

chosen as the final result.

It can arise in practice that inconsistencies may exists in the GFC indexes on differ-

ent nodes (i.e., as the result of gossiping delays). Such inconsistencies can result in the

same file receiving different scores on different nodes. We will show in Section 6.3.2.6

that we expect that the effects of such inconsistencies will cause only minor variations.

Should this situation arise in practice, we retain the higher score for the file.

6.1.3 Partitioned Federated Search

Until now, our approach to evaluating federated queries has required access to the set

of champion nodes for a community. However, such a degree of connectivity may not

always be possible given Wayfinder’s support for disconnected and partially connected

operation. Should a node, or group of nodes, become disconnected from all the cham-

pions in a given community, they lose access to the pre-computed GFC indexes and

content of these champions nodes.

During complete disconnection, federated searches are reduced to local searches

and so the global indexes are not needed. When partially connected, the amount of

accessible content is naturally limited to the local hoards of devices within the connected

partition. For this, we employ a two-phase process for query evaluation. Assume a set

S of connected nodes and a user formulated query Q. In the initial phase, Q is sent to

all nodes in S. Each node determines the local file count information that is needed to

score local files relevant to Q. This information is returned to the querying node where

it is aggregated to create the necessary GFC index state required to evaluate the query.

During the second stage, Q is again sent to all nodes in S along with the query specific

index information. Each node then evaluates Q as described above using the manually

computed index information when appropriate. Results are then returned and merged

as before.

128

6.2 Implementation

We have implemented a prototype of the distribute querying framework presented in

this chapter as part of the Wayfinder file system. In this section we will discuss relevant

aspects of our implementation.

6.2.1 Maintaining Global Indices

The construction of a GFC index is initiated by explicitly contacting remote champion

nodes to request their respective summaries. To simplify our design, after an index

is constructed, we retain only the aggregated state. Changes to the local state of a

champion node is affected in the GFC indexes by propagating update information using

the gossip-based communication protocol of PlanetP. To detect missing, or out-of-order,

changes, each update is given a monotonically increasing version number.

Since a GFC index stores only aggregated information, we can not rely on PlanetP

to maintain its consistency (as is the case with the distributed tables) as this would

require keeping significant state for each individual node in NC . Instead, we maintain

only the version for the last seen update for each node. In the event that a missing

update is detected, a complete synchronization with the necessary champion node is

performed to retrieve the missing state.

Situations may arises that can not be dealt with by merely using updates. These

may include the permanent departure of a user (and their champion node) or if update

information is permanently lost. In these situations, it is impossible to reason about

the correct state of the index and it is discarded and rebuilt. For example: Given two

node, n1 and n2, with n1 generating the summary S1 = [(10, 1), (20, 1)] for file sizes

and n2 generating S2 = [(10, 5), (25, 1)], the GFC index would have the aggregated

state Saggr = [(10, 6), (20, 1), (25, 1)]. Should node n1 permanently depart from the

community, it is not possible to remove S1 from Saggr with out actually knowing S1.

If we retained the individual node summary information, such discards may be

avoided at the expense of managing the additional state. However, we believe that

such events will occur infrequently in our target environment and that this expense is

129

Data Set Summary

Name
26K User-Set Server-Set Fed-Search

Number of Files 24,927 287,819 876,579 18,537
Number of Directories 2,339 21,798 92,819 1,701

Total 27,266 309,617 969,398 20238

Content Information

Valid Term Count 202,794 4,696,351 NA 223,857
Average Term Length (char) 8.69 13.27 NA 8.75

Metadata Information

Unique File Sizes 15,201 32,475 72,824 10,125
Unique Modification Times 12,258 43,182 155,783 7,947

Structure Information

Average Path Length (char) 45.6 91.7 73.1 56.93
Average Number of Path Components 4.7 7.3 7.2 5.5

Average Path Name Length (char) 9.7 10.8 18.2 9.1

Table 6.1: Summary of the data sets used in our evaluation. Presented are summary
statistics for metadata, content, and structural information.

not warranted.

6.2.2 Summary Sizes

The size of a summary used to construct a GFC index and the size of the final index

itself is proportional to the number of unique keys in the summarized tables on nodes

in NC . We expect these numbers to be quite large. As summaries are shared, for

large local tables this may result in a prohibitive communication cost. In this section

we consider several techniques for compressing these summaries and the GFC indexes.

We begin by first presenting several data sets that we will use in our discussion and

subsequent evaluation.

6.2.2.1 Data Sets

We use several data sets in our discussion and the subsequent evaluation (Section 6.3).

The characteristics of these data sets are summarized in Table 6.1. For content terms

we only consider alphanumeric terms with a length of no more than 256 characters and

at most four numeric characters [76]. Any other terms are unlikely to be used by users

130

for searching.

The 26K data set was used in the evaluation of the previous chapter. To review,

it includes a representative snapshot of a single user’s personal files and contains both

personal and work related content. In this chapter, we re-visit this data set for com-

parison.

The User-Set represents a complete snapshot of a single user’s files that reside on

a research lab’s file server. This data set is intended to represent a single user’s work

environment and contains files relating to coding, papers, logs, and executables.

The Server-Set is a complete snapshot of all the metadata and structural information

for all the users on our research lab’s file server. For privacy reasons, this snapshot does

not contain any content information. The Server-Set and User-Set are obtained from

the same file server, albeit on different dates. This data set represents a larger snapshot

containing information from 28 distinct users.

Finally, the Fed-Search represents a collection of shared files that a single user might

store on his personal devices. This collection was constructed by aggregating files from

real users on our lab’s file server that would be of interest to a single user. These

include files relating to papers and code being worked on collaboratively, pictures of

events, and HTML papes. Overall, files can be sub-divided into three broad categories;

personal files, files belonging to other users which are of interest, and files being used

in collaboration with other users. This classification of files is done primarily on the

basis of directories with all the immediate children of a directory falling entirely into

one category. This data set is used in our evaluation to model multiple users sharing

information for the perspective of what might interest a single user.

6.2.2.2 Lossless Summary Compression

Recall that an index summary is comprised of a set of tuples where each tuple contains

a unique key value and the number of files having that key as the value for a particular

attribute. Given the number of unique values that are presented in the data sets

outlined in Table 6.1, the corresponding summaries can be quite large. For this reason,

we seek methods for compressing them to reduce the communication costs.

131

Example of Encoding Schemes for Index/Table Summaries

(a) Original Summary: [(1, 32), (10, 3), (32, 14), (128, 7)]

(b) Run-Length Encoding: [(1, 32), (9, 3), (22, 14), (96, 63)]

(c.1) Byte Aligned Encoding: [(0000 0001, 0010 0000),
(0000 1001, 0000 0011),
(0001 0110, 0000 1110),
(0100 0000 0110 0000, 0011 1111)]

(c.2) Gamma Encoding: [(0, 111 1100 0000),
(111 0001, 101),
(1 1110 0110, 111 0110),
(1 1111 1010 0000, 111 1101 1111)]

Figure 6.2: The three stages of compressing an index/table summary (a) using a run-
length encoding (b) on index/table values followed by either a (c.1) byte-aligned en-
coding scheme or (c.2) gamma encoding scheme. For the byte-aligned encoding, the
underlined bits indicate (in binary) how many bytes are used.

In the case where the table keys are numeric (i.e., for file sizes and dates), these

tuples can be sorted by the key values, making a run-length encoding applicable [35].

That is, rather then encode each table key separately, we instead encoded the difference

between two adjoining table keys (See Figure 6.2(b)). This can reduce the range of

possible values and provide additional opportunities for further compression.

Among the compression techniques we consider are the use of either a byte-aligned or

gamma encoding. Both methods attempt to improve on a naive encoding of 4 bytes per

integer value (assuming a 32 bit architecture). Byte-aligned encoding is a fixed length

encoding that minimizes the number of bytes needed to store a value. For a value x,

the two left-most bits of x’s encoding are reserved for indicating the minimum number

of bytes needed to encode x. The value of x is then encoded in binary and appended to

these bits (See Figure 6.2(c.1)). Using this encoding, a value can be stored in either 1,

2, 3, or 4 bytes [35]. Gamma encoding is a variable length compression technique that

uses a family of universal codes [24]. In this scheme (See Figure 6.2(c.2)), an integer

value x is represented with 2⌊log2(x)⌋ + 1 bits. The first ⌊log2(x)⌋ bits are a unary

representation of ⌊log2(x)⌋ (that is the value 3 is represented as “111” and the value 5

as “11111”). This is followed by a single “0” bit and ends with the binary representation

of x − 2⌊log2(x)⌋ (requiring ⌊logs(2)x⌋ bits) [35]. This scheme is particular effective at

132

Observed Collisions for Hash-based Encoding Scheme

Structure (component of pathnames)
Hash Size 26K User-Set Server-Set

2 byte 7 84 2,933
3 byte 0 0 17
4 byte 0 0 0
5 byte 0 0 0
6 byte 0 0 0

Content (terms)
Hash Size 26K User-Set Server-Set

2 byte 53,339 65,536 NA
3 byte 1,197 546,677 NA
4 byte 2 2,585 NA
5 byte 0 13 NA
6 byte 0 0 NA

26K User-Set Server-Set

Total Term Count 202,794 4,696,351 NA
Unique path components: 926 3,074 22,050

Table 6.2: Table showing the number of hashed values that experienced collision when
encoding structure and content values using an MD5 hash and truncating it to various
sizes.

compressing small numbers.

For textual values (i.e., content terms and pathnames), we employ a simple hashing

scheme. Given a string value S we compute its MD5 hash and truncate the resulting

16 byte binary number to the required number of bytes. We see in Table 6.1 that the

length of a content term is greater than eight. If we assume a naive string encoding

of 1 byte per character, then any hash length of less than eight will result in a space

savings.

Table 6.2 shows the number of collisions that occur when using this hash encoding

scheme for the structure and content information in several of our experimental data

sets. We see that for structure, a 4 byte truncated hash is sufficient to avoid any

collisions while for content this results in collision for 0.06% of the terms.

During query evaluation, structural relaxations are matched against individual com-

ponents within the paths present in the local hoard. For example, the path /a/b/c must

133

match the path queries //b/c or /a//c. Any encoding of structural information must

retain this granularity of matching. To accomplish this, we assign each directory in the

namespace a unique integer identifier. We then proceed to encode each directory name

using a 4 byte hash. The entire link structure is then encoded using this information.

More specifically, for each directory we encode its integer identifier, the hash of its

name, the identifier of its parent, and the number of files present in that directory. The

latter number is the file count information. If we assume the number of directories is

less than 216 and no directory holds more than 216 files, then the total encoding cost

for each directory is 10 bytes.

In Table 6.3 we present the cost of encoding the various dimensions in our data sets

using combinations of these compression techniques. As we use a run-length encoding,

we expect that a gamma encoding will fare better than a byte-aligned encoding because

of the extra bits being wasted when encoding smaller numbers1.

We see in Table 6.3 that using a gamma encoding for both the key value and the

file count requires the least amount of space for the User-Set and Server-Set datasets.

For the 26K Data set, using a byte encoding for the key value is more beneficial for file

dates. We attribute this to the range of values present in the data set. The 26K has

a significantly small number of files and so the key values are more likely to be spread

out. In contrast the User-Set and Server-Set have a sufficiently larger number of files

to fill in any holes in the range of possible values, allowing for the run-length encoding

to produce smaller offsets.

We also observe that regardless of the encoding used for the key values, there is

always improvement in using a gamma encoding for the file counts. The file counts

are generally being very small numbers on account of the summaries storing the exact

values in the index/table. In the next section, we explore what happens when this is

not the case.

1There are larger numbers for which a gamma encoding will results in a better degree of compression
than a byte-aligned encoding. This occurs when the extra bits in a byte-aligned encoding are not
actually used for encoding a value. For the range of values which can be stored for by 2 bytes using a
byte-aligned encoding (i.e., 0 to 16383), a gamma encoding will be more efficient for only for 2% of the
range. For 1 byte, this percentage is 24%. Therefore, for smaller numbers, a gamma-encoding is often
best.

134

Encoding Overheads for Data Sets

Content Encoding (in KB)
Name 26K User-Set Server-Set

Naive 2,710.35 83,801.88 NA
Hash-4, Gamma 875.65 19,341.25 NA
Hash-6, Gamma 1,271.73 28,513.81 NA

Date Encoding (in KB)
Name 26K User-Set Server-Set

Naive 95.77 337.36 1,217.05
Byte, Gamma 22.54 70.30 250.31
Byte, Byte 31.76 96.63 348.85
Gamma, Gamma 24.52 52.74 205.87
Gamma, Byte 33.74 79.07 304.40

Size Encoding (in KB)
Name 26K User-Set Server-Set

Naive 118.76 253.71 568.94
Byte, Gamma 22.34 48.77 112.99
Byte, Byte 34.06 68.96 153.97
Gamma, Gamma 20.52 37.90 87.03
Gamma, Byte 32.24 58.09 128.01

Structure Encoding (in KB)
Name 26K User-Set Server-Set

Tree/Hash Encoding 22.84 212.87 906.44

Table 6.3: The space requirements for encoding the summaries of the data sets outlined
in Table 6.1 under various schemes. Naive refers to using 4 bytes per integer value and
a tuple (size, value) for any strings. Hash encodes textural information as a hash value
of the specified size. Byte refers to byte-aligned encoding and Gamma to a gamma
encoding. For rows identified by two encodings (i.e., Byte, Gamma), the first is the
encoding of the key value and the second the corresponding file count for each tuple in
the summary. All versions use a run-length encoding on the key values.

6.2.2.3 Lossy Summary Compression

In discussing the above compression techniques, we assumed that only exact information

is used and communicated. For date and size, this requires distinguishing between

values at the granularity of seconds and bytes, respectively. We believe it unlikely

that users will remember attributes of files at this granularity and therefore investigate

decreasing the fidelity of the data stored in the global indexes to improve compression.

We proceed by normalizing each key value in a table by a predefined aggregation

factor when computing the summary information. If multiple values normalize to the

135

Number of Unique Values for Various
Bin Sizes - Mod. Date

Bin Size Unique Dates
User-Set Server-Set

1 second 43,182 155,783

1 minute 11,373 57,730

1 hour 5,681 18,609

1 day 1,894 3,626

Total File Cnt 309,798 971,152

Number of Unique Values for Various
Bin Sizes - File Sizes

Bin Size Unique Sizes
(in bytes) User-Set Server-Set

1 32475 72824

2 25016 55077

4 19131 41866

8 14647 31985

16 11431 24529

32 9025 18765

64 7140 14261

128 5647 10926

256 4446 8487

512 3510 6448

1024 2779 4976

Total File Cnt 309798 971152

(a) (b)

Table 6.4: The number of unique keys for (a) modification times and (b) file sizes that
results from aggregating the unique values of the respective tables into increasing larger
ranges.

same value, their file counts are accumulated. For example, when normalizing files sizes

with a factor of 8 bytes, the file sizes of 12, 14, and 36 bytes would result in values 1,

1, and 4 respectively. The normalized value of 1 will have a value equal to the number

of files having a size in the range of [8, 15].

Table 6.4 shows the effect of this aggregation on the number of unique table keys in

two of our data sets. For both date (Figure 6.4(a)) and size (Figure 6.4(b)), a significant

reduction in the number of unique values can be observed with only a slight increase in

the granularity of the values being stored. Based on Table 6.4, when aggregating table

information we employ a 1 hour and 32 byte aggregation factors for file date and size,

respectively. This reduces the number of unique terms by an order of magnitude and

we believe are sufficiently small to not impede how a user would formulate a query.

In Table 6.5, we presented the results of encoding an aggregated version of the table

for three of our data sets. This table presents only results for encoding file date and

file size as these are the two dimensions that can be aggregated. We also include the

136

Encoding Overheads for Data Sets with Aggregation

Date Encoding (in KB)

Name 26K User-Set Server-Set

Naive 32.00 (66.6%) 44.38 (86.8%) 145.38 (88.1%)
Byte, Gamma 5.63 (75.0%) 8.30 (88.2%) 28.98 (88.4%)
Byte, Byte 8.31 (73.8%) 11.60 (88.0%) 37.75 (89.2%)
Gamma, Gamma 3.80 (84.5%) 5.88 (88.8%) 18.37 (91.1%)
Gamma, Byte 6.48 (80.8%) 9.19 (88.4%) 27.15 (91.1%)

Size Encoding (in KB)

Name 26K User-Set Server-Set

Naive 54.33 (54.3%) 70.51 (72.2%) 146.60 (74.2%)
Byte, Gamma 10.10 (54.8%) 13.71 (71.9%) 29.05 (74.3%)
Byte, Byte 15.07 (55.8%) 19.39 (71.9%) 39.82 (74.1%)
Gamma, Gamma 8.20 (60.0%) 10.59 (72.1%) 22.16 (74.5%)
Gamma, Byte 13.17 (59.1%) 16.27 (72.0%) 32.93 (74.3%)

Table 6.5: The number of bytes needed to encode the date and file size information
for several data sets after tables values have been aggregated. The percentage after
each number is the percentage of reduction achieved compared to the encodings given in
Table 6.3.

percentage of reduction that we achieve compared with a non-aggregated table. These

results show that with aggregation a significant saving of 54% to 91% is possible. Also,

despite changing the distribution of values through aggregation, the (Gamma,Gamma)

encoding is still best.

To understand the effect that this aggregation will have on our scoring approach,

we examine how various levels of aggregation may alter the computed scores for a

dimension. In Figure 6.3, we present the distribution of scores (Similar to Figure 5.4)

when querying for a file size of 1 KB when the table has been aggregated using different

factors.

In this figure we observe two possible behaviors. The first is shown by a large

aggregation factor (1 KB). In this, several levels of scoring associated with the small

relaxation intervals disappear and the scored results receive a lower score. The larger

aggregation factor has essentially removed the ability to distinguish among smaller

relaxation levels when computing scores. In this case, any interval less than 1 KB.

137

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000

R
el

ev
an

ce
 S

co
re

File Rank

Base
Small Aggr.
Large Aggr.

Figure 6.3: Distribution of scores returned when querying for files having size of 1
KB under different levels of aggregation. Base represents no aggregation, Small Aggr.
represents using a 32 bytes factor and Large Aggr. using a 1024 byte factor.

Second, is the reduced score for the small aggregation factor (32 bytes) while match-

ing the same number of files as the non-aggregated scoring (Base). This is unusual be-

cause lower scores should be associated with a greater number of file matches and so the

initial plateau should be larger horizontally. This behavior is explained in Figure 6.4.

During query evaluation, relevant files are found locally via the relaxation intervals for

the query value. For example, in Figure 6.4 interval R1 will match sizes S1 and S2. For

purposes of local scoring, the size of this interval would be deemed as 2. However, when

using the GFC indexes the range of the relaxation interval is mapped to the aggregated

intervals used to compress the table’s state. In this case, interval R1 falls within the

range of the second aggregation interval (i.e., 32-64). Locally, this interval accounts for

sizes S1, S2, S3. Thus, two files match the relaxation interval R1 but are scored on the

basis of matching three.

6.3 Experimental Evaluation

In this section, we experimentally evaluate our federated scoring approach using our

prototype implementation. With this evaluation, we attempt to determine how our

approach to federate query evaluation compares with a non-federated approach. We

will also gauge the cost of maintaining the GFC indexes over time.

138

0 32 64 128

R1R1
R4R4

R3R3
R4R4

Relaxation
Intervals

Range of
File Sizes

Aggregation
Intervals

S1 S2 S3

Figure 6.4: A pictorial representation of how scores are assigned when Global IDF Sum-
mary indexes are aggregated. Shown is a sequence of file sizes along a range (middle),
the span of several relaxation steps over these files sizes (top), and the aggregation in-
tervals for a factor of 32 bytes. The labels S1, S2, S3 explicitly identify three specific
sizes.

6.3.1 Experimental Setting

6.3.1.1 Platform

All experiments were performed using the Wayfinder file system. Experiments were

run on a cluster of PC where each node was equipped with a 64-bit hyper-threaded 2.8

GHz Intel Xeon processor, 2 GB of memory, and a 10K RPM 70 GB SCSI disk, running

the Linux 2.6.16 kernel and Sun’s Java 1.5.0 JVM. The cluster is interconnected by a

100Mb/s Ethernet switch.

6.3.2 Federated Query Evaluation

In this section we will attempt to quantify the effect that any inaccuracies that result

from using the GFC indexes have on query evaluation. We compare the results of

performing a query in a federated setting to an evaluation in a single node setting.

To do this we create a federated system to represent devices belonging to multiple

users. We use the Fed-Search data set and publish it among the devices based on a

pre-defined mapping of directories to users. We then allow our replication algorithm

(See Chapter 4) to achieve the necessary target availabilities for these files. At this

point, we construct a set of random queries and evaluate them in this federated setting.

For comparison, we publish the Fed-Search data set on a single node and evaluate the

139

same set of randomly generated queries. In the remainder of this section we present

further details of this set-up and conclude with a presentation and discussion of the

results.

6.3.2.1 Federated System

As our search algorithm relies primarily on the champion nodes for query evaluation,

we attempt to model a system consisting mostly of champion nodes. Since we are

attempting to model the effects of federated search from the perspective of a single user,

we also model at least a single user’s complete device set. Our federated community

for our experiments consists of 12 separate devices. Four devices are designated as

belonging to a single user’s device set; of these devices one is a champion. We will refer

to this particular user as Bob in our discussion. The remaining devices are designated

as belonging to other individual users; they are the champions of their respective users.

All champions are given 90% availability and all non-champion nodes 80%. We do not

limit the size of the local hoards.

Each user (thereby each champion) is assigned a set of namespace tags for files in the

Fed-Search data set that they will maintain according to our availability model. Recall

that this data set is constructed through the aggregation of files belonging to multiple

users. The tagging reflects this ownership and the user’s collaborative interests. Several

directories are shared by multiple users and some by a single user. As we shall discuss

below, this will introduce a skew in the number of file replicas when our availability

algorithm is run. Bob′s device set contains a complete snapshot of the entire data set

as it is his files being shared.

6.3.2.2 Data Replication

Files are replicated according to Wayfinder’s availability model. Each champion node

will attempt to maintain the online, offline, and ownership availability for any files

specified in its assigned tags. We set the target online availability to 99.9% (i.e., TOAC

for device C).

To introduce skew in the file replication, we purposely tagged the namespace to allow

140

Query Counts

All Low High MedPic MedPub MedCode

Content Only 346 (-2) 100 45 (-2) 7 97 97
All Dimensions 433 (+1) 88 93 97 72 83 (+1)

Table 6.6: The number of valid queries generated for each category of files. Shown are
the number for exact queries. If the number of relaxed queries differ, the difference is
given in parenthesis.

files to fall into three distinct categories after the replication processes has reached a

stable configuration; those that have a few replicas (RepLow), those that have a high

number of replicas (Rephigh) and those falling in-between (Repmed). Files in Rephigh

are considered to have a replica count in excess of what is needed (as a result of the

introduced skew) to reach TOAC .

Note, that if a file is replicated on each of the devices in Bob′s device set, that this

is sufficient to achieve TOAC . Intuitively, we expect the files in RepLow to be files

belonging to Bob′s working set or only files that Bob is interested in. We consider these

files to have low replication factor not on account of the number of replicas but rather

the impact on the GFC indexes. Despite being replicated on several devices, files stored

only within Bob′s device set will be accounted for only once in the GFC as only file

on champions are considered. The highly replicated files are those tagged by numerous

champions and so will have more replicas to achieve ownership availability.

6.3.2.3 Queries

As in the previous chapter, our evaluation used a sets of synthetic queries (Section 5.4.1.3).

Queries are generated for each of the aforementioned replication categories. To account

for the characteristics of different groups of files, we further sub-divide Repmed into small

categories. Specifically, this sub-division is Repmedpic, Repmedpubs, and Repmedcode for

files relating to pictures, publications, and code. The number of queries generate for

each category is given in Table 6.6. These queries were generated automatically. Some

of these created queries were meaningless and subsequently discarded. For example

for the category “MedPic”, there were very few useful “Content Only” queries because

only a small number of picture files contained any content information. This resulted

141

in the observable differences in the query counts.

As before, each query targets a specific file f in our data set. Using f , we construct

two sets of queries; the first consists of querying for f ’s attributes with exact values

and the second using relaxations of the attribute values of f . The former represents

queries where the user has accurate knowledge of f while the latter assumes inaccurate

knowledge. For the latter class of queries, attribute values are relaxed in the manner

described in Section 5.4.1.3

6.3.2.4 Federated Query Performance

To evaluate our approach to federated query evaluation we begin by comparing the

results achieved when evaluating our set of queries over our federated environment

(FE) against an evaluation in our single-node environment (SE). In FE, scoring will

be accomplished using the GFC indexes while in SE scoring will employ only local

information. We compute several metrics over these results.

The first metric attempts to measure how similar the results for FE are to those of

SE by comparing the amount of overlap in the final ranked results. For each rank in

the final result of a query evaluated in FE, we use the following equation:

Result Overlap =
|{Single Node Search Docs.}

⋂

{Federated Search Docs.}|

|{Federated Search Docs.}|

Scores can be in the range of 0 to 1, with 1 indicating perfect overlap.

The second metric is the missed rank which measures the cumulative number of

misses (files present in the results of an SE evaluation but not corresponding FE eval-

uation) according to their original rank position when evaluated in SE. This metric is

intended to show which portion of the ranked results in SE are most affected by our

federated scoring approach. The final cumulative count for each rank is normalized by

the total number of queries in each category.

The results for comparing the evaluation of our randomly generated queries in SE

and FE for exact queries using these metrics is shown in Figure 6.5 and for relaxed

queries in Figure 6.6.

142

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 2 4 6 8 10 12 14 16 18 20

P
re

ci
si

on

Result Count

All
LowRep
HighRep

MedRepPics
MedRepPubs
MedRepCode

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 2 4 6 8 10 12 14 16 18 20

P
re

ci
si

on

Result Count

All
LowRep
HighRep

MedRepPics
MedRepPubs
MedRepCode

(a) Result Overlap - Content Only (b) Result Overlap - All Dims.

 0

 0.1

 0.2

 0.3

 0.4

1 5 10 15 20 1 5 10 15 20 1 5 10 15 20

M
is

se
s

(N
or

m
al

iz
ed

)

Ranks

All Low High

 0

 0.1

 0.2

 0.3

 0.4

1 5 10 15 20 1 5 10 15 20 1 5 10 15 20

M
is

se
s

(N
or

m
al

iz
ed

)

Ranks

MedPics MedPub MedCode

(c) Cumulative Misses - Content Only (d) Cumulative Misses - Content Only

(All, Low, and High Categories) (Med. Categories)

 0

 0.1

 0.2

 0.3

 0.4

1 5 10 15 20 1 5 10 15 20 1 5 10 15 20

M
is

se
s

(N
or

m
al

iz
ed

)

Ranks

All Low High

 0

 0.1

 0.2

 0.3

 0.4

1 5 10 15 20 1 5 10 15 20 1 5 10 15 20

M
is

se
s

(N
or

m
al

iz
ed

)

Ranks

MedPics MedPub MedCode

(e) Cumulative Misses - All Dims. (f) Cumulative Misses - All Dims.

(All, Low, and High Categories) (Med. Categories)

Figure 6.5: (a-b) The Result Overlap and (c-f) normalized cumulative ranks of any
missed files when comparing the set of exact queries evaluated on a single node (SE)
to an evaluation in a federated setting (FE). For the cumulative miss rate, every fifth
rank is denoted by a darkened bar.

143

In Figure 6.5(a,c,d), we observe that for Content-Only queries the result overlap is

quite good with only slight degradation after rank 14. The least amount of overlap

occurs in the queries targeting files in RepLow. This is a result of the global file counts

for content terms not changing uniformly. A low replication factor for a file does not

necessarily equate to a low global file count for its content terms as they may also be

present in other highly replicated files. This results in observed situations where the

scores associate with terms altered their relative importance towards a documents final

relevance score. Such changes typically result in small score changes that allows files

which already close in score to switch positions. In some cases, larger jumps can be

observed. This is supported by Figure 6.5(c,d) which shows that files which fell out

of the ranking were concentrated to the end of the list of results where slight rank

inversions make the difference between inclusion or exclusion in the final set of ranked

results.

The results for multi-dimensional queries (Figure 6.5(b,e,f)) show similar trends

as the content-only queries but in general there is even less overlap, especially for

queries targeting files in RepLow. This is due largely to the structural dimension.

Files in RepLow reside in the same directories within the shared namespace (recall that

replication behavior is defined by namespace tagging). Therefore, the IDF scores of

these directories will increase as the perceived overall number of files increases for other

directories during the construction of the GFC indexes. This manifests itself in boosting

the structural score significantly in queries searching these under-replicated directories.

Similar behavior is possible in the content dimension, although it is rare because scores

are based on TF · IDF . In such cases, large changes to IDF are tempered by the TF

component.

In Figure 6.6, we present the results for relaxed queries for multi-dimensional queries.

We do not show results for Content-Only queries as we can not “relax” content terms

and so the results would be similar to those seen in Figure 6.5(a,c,d). The performance

for this scenario is notably worse with the queries for files in RepLow again fairing the

most poorly. The reason for this lies in the “inaccurate” query values of the relaxed

queries. These values match other files which they are close to, resulting in a greater

144

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 2 4 6 8 10 12 14 16 18 20

P
re

ci
si

on

Result Count

All
LowRep
HighRep

MedRepPics
MedRepPubs
MedRepCode

(a) Result Overlap - All Dims.

 0

 0.1

 0.2

 0.3

 0.4

1 5 10 15 20 1 5 10 15 20 1 5 10 15 20

M
is

se
s

(N
or

m
al

iz
ed

)

Ranks

All Low High

 0

 0.1

 0.2

 0.3

 0.4

1 5 10 15 20 1 5 10 15 20 1 5 10 15 20

M
is

se
s

(N
or

m
al

iz
ed

)

Ranks

MedPics MedPub MedCode

(b) Cumulative Misses - All Dims. (c) Cumulative Misses - All Dims.

(All, Low, and High Categories) (Med. Categories)

Figure 6.6: (a) The Result Overlap and (b) normalized cumulative ranks of any missed
files when comparing the set of relaxed queries evaluated on a single node (SE) to an
evaluation in a federated setting (FE). For the cumulative miss rate, every fifth rank is
denoted by a darkened bar.

145

variety of results. However, in this greater variety there are less files that match all

dimensions well, resulting in lower overall scores. This coupled with the previously

mentioned scoring boost observed in the structural dimension leads to a greater number

of rank changes. As before, we can see in Figure 6.6(b,c) that most of the missed results

are located at the end of the returned results.

Recall that each query used in our evaluation is constructed with a particular target

file in mind. Until now we have only considered the set of query results as a whole and

ignored this target. In Table 6.7, we analyze how the ranks of the target files for our

queries are affected when evaluated in FE.

In Table 6.7(a) we see that the results for the set of exact queries shows very little

difference as most ranks are unchanged. Since we employ the exact values along multiple

dimensions, the target file is often ranked first despite the inaccuracies introduced by

the GFC indexes.

Table 6.7(b) presents the results for the set of relaxed queries. In contrast to Ta-

ble 6.7(a) there are several noticeable differences. First is the larger number of queries

that did not find the intended target file within the top 20 results. This is a result of

the value relaxation matching other files more closely than the target files. Second, for

the queries targeting files in RepLow, around 25% see an improvement in their rank-

ing caused by the previously mentioned increase in structural scores. However, overall

when the target file is found, its rank remains unchanged.

Finally, in Figure 6.7 we present the results of comparing the results of query evalu-

ation in SE and FE when using an aggregated version of the GFC indexes. In this case,

aggregation was done with a 1 hour and 32 byte factors for date and size respectively.

The results is almost identical to Figure 6.5(b) reaffirming that using a small degree of

aggregation has little effect on query result while providing a large savings in encoding

size. Table 6.7(c) shows the changes in the rank of the target file for the various query

categories in this setting. Again the results are almost identical to previous results

(Table 6.7(a)). There are several cases when the results do worsen because the initial

relaxation levels are lost on account of the aggregation.

146

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 2 4 6 8 10 12 14 16 18 20
P

re
ci

si
on

Result Count

All
LowRep
HighRep

MedRepPics
MedRepPubs
MedRepCode

Figure 6.7: Result Overlap when comparing the results of query evaluation on a single
node (SE) to the results of evaluation in a federated setting (FE) in which the global
indexes have been aggregated. Aggregation is done based on a small configuration and
queries used are exact.

6.3.2.5 Stability

To determine whether our results and trends are stable as k changes, in Figure 6.8 we

present the Result Overlap for both content-only queries and multi-dimensional queries

as we vary the value of k. We observe that the previously discussed trends are stable

as k increases.

147

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 2 4 6 8 10 12 14 16 18 20

P
re

ci
si

on

Result Count

K=20
K=15
K=10
K=5

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 2 4 6 8 10 12 14 16 18 20

P
re

ci
si

on

Result Count

K=20
K=15
K=10
K=5

(a) Content Only (b) Multi Dimension

Figure 6.8: Result Overlap for (a) content-only and (b) multi-dimensional when com-
paring the results of query evaluation on a single node (SE) to the results of evaluation
in a federated setting (FE) for various values of k.

148

a)

Exact Queries

Query Categories
Effect on Rank Low High MedPics MedPub MedCode

Improved 0 0 0 0 1
Worsened 0 1 0 1 2
Unchanged 88 92 96 71 80
Not Found 0 0 1 0 0

Total Query Count 88 93 97 72 83

b)

Relaxed Queries

Query Categories
Effect on Rank Low High MedPics MedPub MedCode

Improved 22 0 0 0 0
Worsened 9 3 0 2 3
Unchanged 48 44 37 66 77
Not Found 9 46 60 4 4

Total Query Count 88 93 97 72 84

c)

Exact Queries with Aggregation

Query Categories
Effect on Rank Low High MedPics MedPub MedCode

Improved 0 0 0 3 2
Worsened 2 3 0 5 7
Unchanged 86 90 96 64 74
Not Found 0 0 1 0 1

Total Query Count 88 93 97 72 83

Table 6.7: Summary of the changes in rank of the target files used in the construction
of our set of queries when comparing a single node (SE) query evaluation to that of
a federated system (FE) broken down by query categories. Shown is the behavior for
the set of exact queries (a), relaxed queries (b), and exact queries using an aggregated
index(c). Improved represents that the target file attained a higher rank, for Worsened it
attained a lower rank, for Unchanged the rank was the same, and Not Found represents
that the target file was not found in either setting. For these queries, K was set to 20.

149

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 4 6 8 10 12 14 16 18 20
 0

 0.5

 1

 1.5

 2
T

er
m

 C
ha

ng
es

 (
in

 th
ou

sa
nd

s)

P
er

ce
nt

ag
e

of
 T

er
m

s
A

ffe
ct

ed

Successive Days

Term Changes
Percentage

 0

 1000

 2000

 3000

 4000

 5000

 2 4 6 8 10 12 14 16 18
 1

 10

 100

 1000

 10000

 100000

N
um

be
r

of
 V

al
ue

s
C

ha
ng

ed

N
um

be
r

of
 F

ile
s

C
ha

ng
ed

Successive Days

Date
Size

Directory
Files

(a) Changes in Content Global Index (b) Changes in Metadata Global Index

Figure 6.9: Number of global index values that changed daily for content (a) and meta-
data (b) a period of 19 days. Changes are computed on a daily basis. Date, Size,
Directory indicate changes to specific dimensions. File represent the number of files
that were either added or removed. At the start of the trace there are approximately
4,696,362 terms in the content table.

6.3.2.6 Global Index Maintenance

A critical part of our approach in constructing the GFC indexes consists of ensuring

that the state being used on remote nodes is up-to-date. While the initial state transfer

can not be avoided, subsequent changes to indexes can utilize diff information. The cost

of sending this information is related to how much and how often information changes.

To examine this cost we collected several traces for a single user from our lab’s file

server. These traces consist of daily snapshots of the file structure, file metadata, and

(in part) file content. These snapshots allow us to determine how much index state

would change daily should the user’s files be published in a Wayfinder community.

More specifically we collected two traces. The first trace consists of all of the above

mentioned information for a duration of 19 days. The second trace consists of only the

metadata and structural snapshots for a period of 126 days for the same user. The time

frames of the traces do not overlap.

For each trace, we computed the state of the GFC indexes and track the number of

index entries that change. The results are plotted in Figures 6.9 and 6.10.

Figure 6.9 shows that the changes to the state of the global indexes can be bursty

150

 0

 1000

 2000

 3000

 4000

 5000

 20 40 60 80 100 120
 1

 10

 100

 1000

 10000

 100000

N
um

be
r

of
 V

al
ue

s
C

ha
ng

ed

N
um

be
r

of
 F

ile
s

C
ha

ng
ed

Successive Days

Date
Size

Directory
Files

 0

 1000

 2000

 3000

 4000

 5000

 40 45 50 55 60 65 70
 1

 10

 100

 1000

 10000

 100000

N
um

be
r

of
 V

al
ue

s
C

ha
ng

ed

N
um

be
r

of
 F

ile
s

C
ha

ng
ed

Successive Days

Date
Size

Directory
Files

(a) Content Changes (b) Meta-data Changes

Figure 6.10: Number of global index values that changed daily for metadata during
a period of 126 days (a) and a subset of this trace spanning 30 days (b). Changes
are computed on a daily basis. Date, Size, Directory indicate changes to a specific
dimension. File represent the number of files that were either added or removed.

across all dimensions. In Figure 6.9(b) we see that a large number of changes in files

(through creation or deletion) may not require changing a corresponding amount of

state in the global indexes. This is because the GFC indexes track file counts for table

keys and not the files themselves. For example, if we remove 1000 files all of which

have a file size of 1024 bytes, only the value associated with the file size of 1024 will be

affected.

In Figure 6.10, we see that the behavior observed in Figure 6.9(b) continues in

the longer trace. It should be noted that these traces were collected from a user’s

home directory and so reflect changes that result from his working environment. These

include running experiments and compiling large amounts of code and so may reflect

more information than a user would actually wish to share in a collaborative setting.

For example, the spike in the number of files created in Figure 6.10(a) around day 93

is a result of running numerous experiments that produced over 110,000 output files.

However, in most cases the number of changes reflect only a small portion of the entire

index. The median number of keys that changes on a given day throughout the trace

ranges from 0.5% (for structure) to 1.0% (for dates) of the respective indexes. The

mean values are slightly higher, ranging from 0.7% to 1.8%. Given this information

151

we believe that it is possible to batch communications for changes. Furthermore, given

the number of changes and the encodings techniques discussed earlier, the amount of

information transferred should be small.

6.4 Summary

We have argued in this thesis that contemporary computing environments are no longer

restricted to a single devices. In this chapter, we presented an extension of the frame-

work and methodology outlined in Chapter 5 to allow multi-dimensional searches across

the shared content of an entire federated community. This extension is compatible with

the abstractions and the goals of previous chapters.

This chapter presented an approach to distributed query evaluation that is based

on computing relevance scores using a global approximation of the necessary scoring

information. This approximation is built by each node generating summaries of its

local scoring information and communicating this information. These local summaries

are collected and aggregated to form a global approximation of the necessary scoring

information. The individual scoring summaries are computed in a replica-oblivious

manner; that is information needed to account for replicas is not included and so replicas

across nodes are treated as distinct files. We hypothesized that this will have minimal

effect on the quality of query results.

The distributed evaluation of query then takes the form of 1) sending the query to

various nodes to be evaluated, 2) evaluating the query locally while using the approxi-

mated scoring information to compute relevance scores, and 3) returning the results to

the querying node to merge them and produce the final set of results. The final step

is greatly simplified since scores are computed with the same approximate global score

information and are therefore comparable.

In this chapter, we presented an evaluation of our approach based on a prototype

implementation as part of the Wayfinder file system and an investigation using several

data sets and file-server traces. Our prototype evaluation showed that while ranking

is affected by replication when evaluating distributed queries, the effect is small. The

152

evaluation of the data sets show that significant reductions in the cost of communi-

cating the score summaries can be achieved through simple aggregations and encoding

techniques. The evaluation of the traces demonstrated that the rate and size of updates

to any shared scoring state is not prohibitive.

153

Chapter 7

Conclusions

In this dissertation, we have argued that computing environments are becoming increas-

ingly complex. Various computing trends are producing devices that are increasingly

smaller, more powerful, and cheaper than their predecessors. In turn, these devices

are providing users with new ways and increased flexibility in accessing and sharing

information. However, this improvement comes at the cost of complicating most man-

agement tasks in federated information systems.

Complications arise from the requirement that users be aware of, and reason about,

the underlying distributed nature of these complex systems when locating, accessing,

or searching for information. In this dissertation, we addressed these difficulties in the

context of file systems, specifically a federated file system which we have designed called

Wayfinder.

To simply the management of information, we proposed a set of three synergistic

abstractions that hide the physical aspects of the federated system from the user. When

performing a management task, these abstractions allow a user to reason about the

desired properties of the data while ignoring the complexities of the underlying system.

In our investigation, we considered small to medium-sized federated communities

constructed for collaboration and information sharing. These systems contain multiple

users, each of which may be represented by several devices. The memberships of such

communities is expected to be stable but nodes may exhibit a high degree of churn in

their connectivity.

The first abstraction was a single unified global namespace with the purpose of prov-

ing a consistent view of shared information across computing devices. The construction

154

of this namespaces involves the recursive merging of the namespaces of individual de-

vices. We demonstrated that this manner of construction provides a namespace that

reflects the currently available information and allows devices to see information in a

consistent manner whether they are in a connected, partially connected, or disconnected

state. Furthermore, as the namespace is seen by all users, its construction and design

is a collaborative effort, benefiting the entire community.

To complement this namespace, we further allowed the use of queries that could

be persistently embedded into the namespace in the form of Semantic directories. The

queries associated with each directory are evaluated over the content of the federated

system and the directory is populated by files that are returned as result. When re-

evaluated periodically, these directories allow a portion of the global namespace to

become an active organization structure, automatically creating file bindings for new

incoming content. The combination of the global namespace and semantic directories

allows files to be addressed by either content or name.

We presented a design and prototype implementation of this namespace as part

of Wayfinder file system. We showed that our approach to constructing the global

namespace does impose some overhead compared to local file system operation but

we believe it is tolerable given the benefits of the system. We found the location-

independent naming afforded by the namespace to be very useful and it assisted us in

simplifying many of our later designs. However, it complicated other various aspects of

our design, such as directory deletion.

The second abstraction was a user-centric unified automatic availability model. The

goal of this abstraction was to ensure the continued access to information despite the

expected churn in node connectivity in our target community. More specifically, a user

should be able to, with high probability, access any shared information from any of

their devices, at any time. To improve file availability, we employed the traditional

method of creating additional replicas. However, we hold the tenet that a computing

device should prioritize the needs of its owner before the needs of the community.

To accommodate this, we proposed a novel unified availability model which differ-

entiates between three types of availability; online, offline, and ownership availability.

155

Based on these distinctions, we outlined a user-centric availability model that tries to

make data available to users across periods of connected and disconnected operation.

This model also helps users to preserve data they care about in case they become per-

manently disconnected from the federated system. Consequently, the model removes

the need for users to explicitly manage data replicas and to hoard data external to the

federated system.

We designed of a single replication algorithm that achieves all three types of avail-

ability as part of the Wayfinder file system. This algorithm allows devices to selfishly

prioritize ownership and offline availability for their owners over online availability for

the community. The algorithm explicitly accounted for the impact of devices’ self-

ish hoarding actions on online availability in order to minimize the space required to

achieve a target online availability level for all shared content. Further, this algorithm

was based on autonomous actions from devices in the community, allowing the system

to tolerate the fact that devices in a federated system are not under centralized control

and so may have unpredictable prolonged periods of disconnection or even leave the

system permanently.

Our evaluation showed that when a federated community has sufficient space, our

algorithm can efficiently achieve its availability goals. However, when space becomes

constrained, nodes enter a non-cooperative configuration where any communal avail-

ability is a side-effect of trying to achieve the availability goals of their respective owners.

The third abstraction involved an investigation into methods for improving of search

techniques. In this work, we addressed the limitation of many contemporary search tools

that use a combination of ranking and filtering to evaluate multi-predicate queries.

These tools apply ranking algorithms to the content predicate of a query while the

remaining predicates are used as filtering conditions.

We began our investigation by presenting a unified scoring framework for multi-

dimensional queries over personal information file systems, specifically in a single node

setting. We proposed individual IDF-based scoring approaches for several dimensions of

data; namely content, metadata, and structure. In particular, we defined a methodology

for constructing progressive relaxations for each of these dimensions that may be used

156

to locate relevant files that are not exact matches to a query. We showed how to use

these relaxations at query time to assign relevance scores based on how many files

match a particular query condition, or a relaxation of it. We then presented a method

for aggregating individual dimension scores to produce a single unified relevance score

for each file.

Further, we presented an implementation and evaluation of this framework as part

of the Wayfinder file system. Our evaluation showed that our IDF-based scoring ap-

proach provides a meaningful distribution of scores that captures the specificity of each

dimension. We further demonstrated that our multi-dimensional score aggregation

technique preserves the properties of individual dimension scores and has the potential

to significantly improve ranking accuracy. We reported on the impact of our multi-

dimensional scoring on query answers, query performance, results scalability, and data

set scalability.

We then expanded the multi-dimensional search framework to allow query evaluation

in a distributed setting. Specifically, we integrated our search framework with PlanetP’s

distributed query engine.

We proposed an approach to distributed query evaluation that is based on com-

puting relevance scores using an approximation of global scoring information. This

approximation is constructed by a process in which each node individually computed

summaries of its local scoring information. These summaries are then communicated,

collected, and aggregated to build global indexes used for scoring. The summaries are

computed in a replica-oblivious manner; that is, replicas across nodes are treated as

distinct files. We hypothesized that this would have minimal effect on the quality of

query results.

The distributed evaluation of a query then takes the form of 1) send the query

to various nodes to be evaluated, 2) evaluate the query locally while using the global

indexes to compute relevance scores, and 3) return the results to the querying node

and merged them to produce the final set of results. The final step is greatly simplified

since scores are computed with the same global index information and are therefore

comparable.

157

Our evaluation attempted to quantify the effect of replication on search results

given our approach. We found that predicting the behavior of query results based on

the amount of file replication is difficult as a file’s replication factor does not necessarily

equate to the replication factor of its attributes. However, in general we observed that

the effect on query results was small. Furthermore, we studied several techniques to

reduce the bandwidth costs of implementing our global index scheme.

In conclusion, it was the goal of this thesis to provide users with the means of viewing

their computing environments as a single accessible unified resource. In this way, we

reduce the management burden by allowing users to access, search, and manipulate all

of their information at all times, regardless of which device they are using and to do

so in a unified manner. Our contribution was pursuing this goal in the context of a

federate system composed of multiple users and their personal devices.

We articulated several management deficiencies that arise in federated computing

environments and designed abstractions to address each. In doing this we pursued two

specific goals in our designs. First, each abstraction was built using a weakly consistent

distributed query-based object store designed for our target environment. This showed

the viability of the storage model presented by PlanetP [16] for constructing useful

services in dynamic federated systems.

Secondly, each abstraction was required to be useful regardless of the connected

state of the device being used. This was done to allow a user to continue working at all

times and proved to be both a useful and necessary requirement in simplifying a user’s

management roles. However, this was achieved at the expense of ensuring any form of

strong consistency for information. This thesis explored this trade-off across the range

of connected states a user might encounter.

An important question raised by this work and not addressed in this thesis is how

much consistency a user can, or is willing, to tolerate in their computing environment.

While this thesis did present methods for maintaining a weak level of consistency, it

is not clear how the behavior of a user would be altered if they were made aware of

any inconsistencies. In our system, such situations could arise for a number of reasons;

write conflicts on files, a user trying to search for information that has disappeared, or

158

inconsistencies among a user’s devices because needed information did not disseminate

fast enough. Addressing this issue would require detailed user studies.

Finally in this work, we have focused primarily on information stored in file systems.

While this will most likely account for large portion of the information stored in a user’s

computing environment, it is not all of it. Additional information can be stored in a

variety of different formats or locations. These may include various device-specific

databases or online services (such as MySpace [53] or Flickr [27]). Such information

must be accessible to any abstractions that seek to provide a unified view of a user’s

complete computing environment. Further work is required to address issues resulting

from these other sources of information.

159

References

[1] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken,
John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and Roger P.
Wattenhofer. FARSITE: Federated, Available, and Reliable Storage for an In-
completely Trusted Environment. In Proceedings of the Symposium on Operating
Systems Design and Implementation (OSDI), December 2002.

[2] Sihem Amer-Yahia, Nick Koudas, Amélie Marian, Divesh Srivastava, and David
Toman. Structure and Content Scoring for XML. In Proceedings of the Interna-
tional Conference on Very Large Databases (VLDB), September 2005.

[3] Thomas Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson,
Drew S. Roselli, and Olph Y. Wang. Serverless Network File Systems. In ACM
Transactions on Computer Systems, 1995.

[4] Wolf-Tilo Balke, Wolfgang Nejdl, Wolf Siberski, and Uwe Thaden. Progressive
Distributed Top-k Retrieval in Peer-to-Peer Networks. In Proceedings of the In-
ternational Conference on Data Engineering (ICDE), April 2005.

[5] Matthias Bender, Sebastian Michel, Peter Triantafillou, Gerhard Weikum, and
Christian Zimmer. Improving Collection Selection with Overlap Awareness in P2P
Search Engines. In Proceedings of the ACM International Conference on Research
and Development in Information Retrieval (SIGIR), August 2005.

[6] Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Savage, and Geoff M.
Voelker. Total Recall: System Support for Automated Availability Management.
In Proceedings of Symposium on Networked Systems Design and Implementation
(NSDI), March 2004.

[7] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.
Communications of the ACM, 1970.

[8] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of a Serverless
Distributed File System Deployed on an Existing Set of Desktop PCs. In Proceed-
ings of the International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), June 2000.

[9] C. Mic Bowman, Chanda Dharap, Mrinal Baruah, Bill Camargo, and Sunil Potti.
A File System for Information Management. In Procceedings of the International
Conference on Intelligent Information Management Systems (ISMM), 1994.

[10] Yuhan Cai, Xin Luna Dong, Alon Halevy, Jing Michelle Liu, and Jayant Madha-
van. Personal Information Management with SEMEX. In Proceedings of the ACM
International Conference on Management of Data (SIGMOD), June 2005.

160

[11] Pei Cao and Zhe Wang. Efficient Top-K Query Calculation in Distributed Net-
works. In Proceedings of the Symposium on Principles of Distributed Computing
(PODC), July 2004.

[12] Edith Cohen, Amos Fiat, and Haim Kaplan. Associative search in peer to peer net-
works: Harnessing latent semantics. Computer Networks, 51(8):1861–1881, 2007.

[13] Copernic Desktop Search. http://www.copernic.com, July 2009.

[14] W. B. Croft, P. Krovetz, and H. Turtle. Interactive Retrieval of Complex Docu-
ments. Information Processing and Management, 26(5):593–613, 1990.

[15] Francisco Matias Cuenca-Acuna, Richard P. Martin, and Thu D. Nguyen. Au-
tonomous Replication for High Availability in Unstructured P2P Systems. In Pro-
ceedings of the Symposium on Reliable Distributed Systems (SRDS), October 2003.

[16] Francisco Matias Cuenca-Acuna, Christopher Peery, Richard P. Martin, and
Thu D. Nguyen. PlanetP: Using Gossiping to Build Content Addressable Peer-
to-Peer Information Sharing Communities. In Proceedings of International Sym-
posium on High Performance Distributed Computing (HPDC), June 2003.

[17] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert Morris,
Ion Stoica, and Hari Balakrishnan. Building Peer-to-Peer Systems With Chord,
a Distributed Lookup Service. In Proceedings of the Workshop on Hot Topics in
Operating Systems (HotOS), May 2001.

[18] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Wide-Area Cooperative Storage with CFS. In Proceedings of the Symposium on
Operating Systems Principles (SOSP), October 2001.

[19] Michael D. Dahlin, Randolph Y. Wang, Thomas E. Anderson, and David A. Patter-
son. Cooperative Caching: Using Remote Client Memory to Improve File System
Performance. In Proceedings of the Symposium on Operating Systems Design and
Implementation (OSDI), November 1994.

[20] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Com-
putational Geometry. Springer-Verlag, 2nd edition, 2000.

[21] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic Algorithms for Repli-
cated Database Maintenance. In Proceedings of the Symposium on Principles of
Distributed Computing (PODC), 1987.

[22] Jens-Peter Dittrich and Marcos Antonio Vaz Salles. iDM: A Unified and Versatile
Data Model for Personal Dataspace Management. In Proceedings of the Interna-
tional Conference on Very Large Databases (VLDB), September 2006.

[23] DMOZ. http://dmoz.org, October 2002.

[24] P. Elias. Universal Codeword Sets and Representations of the Integers. IEEE
Transactions on Information Theory, 21:194–203, 1975.

161

[25] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing Top K Lists. SIAM
Journal on Discrete Mathematics, 17(1), 2003.

[26] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal Aggregation Algorithms
for Middleware. Journal of Computer and System Sciences, 2003.

[27] Flickr. http://www.flickr.com, July 2009.

[28] Kevin Fu, M Frans Kaashoek, and David Mazires. Fast and Secure Distributed
Read-Only File System. In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI), October 2000.

[29] Google desktop. http://desktop.google.com, July 2009.

[30] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O’Toole Jr.
Semantic File Systems. In Proceedings of the Symposium on Operating Systems
Principles (SOSP), October 1991.

[31] Gnutella. http://www.gnutella.com, October 2002.

[32] Google. http://www.google.com, October 2002.

[33] Burra Gopal and Udi Manber. Integrating Content-Based Access Mechanisms with
Hierarchical File System. In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI), 1999.

[34] Luis Gravano, Hector Garcia-Molina, Anthony Tomasic, Inria Rocquencourt, and
Name Luis Gravano. GlOSS: Text-Source Discovery over the Internet. ACM
Transactions on Database Systems, 24:229–264, 1999.

[35] David A. Grossman and Ophir Frieder. Information Retrieval: Algorithms and
Heuristics. Springer, 2nd edition, 2004.

[36] Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page, Jr., Gerald J.
Popek, and Dieter Rothmeir. Implementation of the Ficus Replicated File System.
In Proceedings of the Summer USENIX Conference, June 1990.

[37] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-
narayanan, Robert N. Sidebotham, and Michael J. West. Scale and Performance in
a Distributed File System. ACM Transactions on Computer Systems, 6(1):51–81,
February 1988.

[38] Ryan Huebsch, Brent Chun, Joseph M. Hellerstein, Boon Thau Loo, Petros Mani-
atis, Timothy Roscoe, Scott Shenker, Ion Stoica, and Aydan R. Yumerefendi. The
Architecture of PIER: an Internet-Scale Query Processor. In Proceedings of the
Conference on Innovative Data Systems Research (CIDR), January 2005.

[39] Information management: http://en.wikipedia.org/wiki/information management,
July 2009.

[40] Java NFS Server. http://members.aol.com/ ht a/markmitche11/jnfsd.htm, Octo-
ber 2002.

162

[41] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin, and
Rina Panigrahy. Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web. In Proceedings of the
ACM Symposium on Theory of Computing (STOC), May 1997.

[42] David R. Karger, Karun Bakshi, David Huynh, Dennis Quan, and Vineet Sinha.
Haystack: A Customizable General-Purpose Information Management Tool for
End Users of Semistructured Data. In Proceedings of the Conference on Innovative
Data Systems Research (CIDR), January 2005.

[43] Kazaa. http://www.kazaa.com, July 2009.

[44] J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File Sys-
tem. In Proceedings of the Symposium on Operating Systems Principles (SOSP),
October 1991.

[45] Jame J. Kistler. Disconnected Operation in a Distributed File System, volume
1002. Springer, 1995.

[46] Geoffrey H. Kuenning and Gerald J. Popek. Automated Hoarding for Mobile
Computers. In Proceedings of the Symposium on Operating Systems Principles
(SOSP), October 1997.

[47] P. Kumar and M. Satyanarayanan. Flexible and Safe Resolution of File Conflicts.
In Proceedings of the Winter USENIX Conference, January 1995.

[48] Udi Manber and Udi Manber. Finding Similar Files in a Large File System. In
Proceedings of the Winter USENIX Conference, January 1994.

[49] Udi Manber and Sun Wu. GLIMPSE: A Tool to Search Through Entire File
Systems. Technical Report TR-93-34, The University of Arizona, October 1993.

[50] Sebastian Michel, Peter Triantafillou, and Gerhard Weikum. KLEE: a Frame-
work for Distributed Top-k Query Algorithms. In Proceedings of the International
Conference on Very Large Databases (VLDB), 2005.

[51] Tim D. Moreton, Ian A. Pratt, and Tim L. Harris. Storage, Mutability and Naming
in Pasta. In International Workshop on Peer-to-Peer Computing, May 2002.

[52] A. Muthitacharoen, R. Morris, T. Gil, and Ivy B. Chen. Ivy: A Read/Write
Peer-To-Peer File System. In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI), December 2002.

[53] MySpace. http://www.myspace.com, July 2009.

[54] B. Clifford Neuman. The Prospero File System: A Global File System Based on
the Virtual System Model. Computing Systems, 5(4):407–432, 1992.

[55] Odysseas Papapetrou, Sebastian Michel, Matthias Bender, and Gerhard Weikum.
On the Usage of Global Document Occurrences in Peer-to-Peer Information Sys-
tems. In Proceedings of the International Conference on Cooperative Information
Systems (COOPIS), November 2005.

163

[56] Christopher Peery, Wei Wang, Amélie Marian, and Thu D. Nguyen. Multi-
Dimensional Search for Personal Information Management Systems. In Proceed-
ings of the International Conference on Extending Database Technology (EDBT),
March 2008.

[57] Karin Petersen, Mike Spreitzer, Douglas Terry, and Marvin Theimer. Bayou:
Replicated Database Services for World-Wide Applications. In Proceedings of the
ACM Special Interest Group on Operating Systems (SIGOPS) European Workshop,
September 1996.

[58] PlanetLab. http://www.planet-lab.org, September 2005.

[59] Herman C. Rao and Larry L. Peterson. Accessing Files in an Internet: The Jade
File System. Software Engineering, 19(6):613–624, 1993.

[60] Patrick Reynolds and Amin Vahdat. Efficient Peer-to-Peer Keyword Searching. In
Proceedings of the International Conference on Middleware, June 2003.

[61] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz.
Pond: The Oceanstore Prototype. In Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), March 2003.

[62] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location and
Routing for Large-Scale Peer-to-Peer Systems. In Proceedings of the International
Conference on Middleware, November 2001.

[63] Yasushi Saito and Christos Karamanolis. Pangaea: a Symbiotic Wide-Area File
System. In Proceedings of the ACM Special Interest Group on Operating Systems
(SIGOPS) European Workshop, September 2002.

[64] Sleepycat Software. Berkeley DB. http://www.sleepycat.com.

[65] Craig A. N. Soules and Gregory R. Ganger. Connections: Using Context to En-
hance File Search. In Proceedings of the Symposium on Operating Systems Prin-
ciples (SOSP), 2005.

[66] Apple MAC OS X Spotlight. http://www.apple.com/macosx/features/spotlight,
July 2009.

[67] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
In Proceedings of the ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, August 2001.

[68] Liviu Iftode Suresh Gopalakrishnan, Ashok Arumugam. Federated File Systems
for Clusters with Remote Memory Communication. Technical Report DCS-TR-
472, Department of Computer Science, Rutgers University, December 2001.

[69] Chunqiang Tang and Sandhya Dwarkadas. Hybrid Global-Local Indexing for Ef-
fcient Peer-to-Peer Information Retrieval. In Proceedings of Symposium on Net-
worked Systems Design and Implementation (NSDI), March 2004.

164

[70] Chunqiang Tang, Zhichen Xu, and Mallik Mahalingam. pSearch: Information
Retrieval in Structured Overlays. SIGCOMM Computer Communication Review,
33(1):89–94, 2003.

[71] Igor Tatarinov, Zachary Ives, Jayant Madhavan, Alon Halevy, Dan Suciu, Nilesh
Dalvi, Xin (Luna) Dong, Yana Kadiyska, Gerome Miklau, and Peter Mork. The
Piazza Peer Data Management Project. SIGMOD Record, 32(3), 2003.

[72] Jaime Teevan, Christine Alvarado, Mark Ackerman, and David Karger. The Per-
fect Search Engine is Not Enough: A Study of Orienteering Behavior in Directed
Search. In Proceedings of the Conference on Human Factors in Computing Systems
(SIGCHI), 2004.

[73] Chandramohan A. Thekkath. Frangipani: A Scalable Distributed File System. In
Proceedings of the Symposium on Operating Systems Principles (SOSP), 1997.

[74] Akrivi Vlachou, Christos Doulkeridis, Kjetil Nrvg, and Michalis Vazirgiannis. On
Efficient Top-k Query Processing in Highly Distributed Environments. In Proceed-
ings of the ACM International Conference on Management of Data (SIGMOD),
June 2008.

[75] Wei Wand, Christopher Peery, Amélie Marian, and Thu D. Nguyen. Efficient
Multi-Dimensional Query Processing in Personal Information Management Sys-
tems. Technical Report DCS-TR-627, Department of Computer Science, Rutgers
University, April 2008.

[76] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Com-
pressing and Indexing Documents and Images. Morgan Kaufmann Publishers, Inc,
1999.

[77] An XML Query Language. http://www.w3.org/TR/xquery.

[78] Z. Xu, M. Karlsson, C. Tang, and C. Karamanolis. Towards a Semantic-Aware
File Store. In Proceedings of the Workshop on Hot Topics in Operating Systems
(HotOS), May 2003.

[79] YAHOO. http://www.yahoo.com, July 2009.

[80] YAHOO Groups. http://www.groups.yahoo.com, July 2009.

[81] YouTube. http://www.youtube.com, July 2009.

[82] Jiangong Zhang and Torsten Suel. Efficient Query Evaluation on Large Textual
Collections in a Peer-to-Peer Environment. In Proceedings of the International
Conference on Peer-to-Peer Computing, August 2005.

[83] Rongmei Zhang and Y. Charlie Hu. Assisted Peer-to-Peer Search with Partial
Indexing. IEEE Transactions on Parallel and Distributed Systems, 18, 2007.

[84] Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An Infrastructure for Fault-
tolerant Wide-area Location and Routing. Technical Report CSD-01-1141, Depart-
ment of Electrical Engineering and Computer Sciences, University of California,
Berkeley, April 2001.

165

Vita

Christopher R. Peery

1999 B.S. in Computer Science,
Richard Stockton College of New Jersey, Pomona, New Jer-
sey, USA

2003 M.S. in Computer Science,
Rutgers University, New Brunswick, New Jersey, USA

2009 Ph.D. in Computer Science,
Rutgers University, New Brunswick, New Jersey, USA

Selected Publications

2001 “DRRRRaW: A Prototype Distributed 3D Real-Time Rendering
Toolkit for Commodity Clusters”. T. D. Nguyen, C. Peery, and
J. Zahorjan, In Proceedings of the International Parallel and Dis-
tributed Processing Symposium (IPDPS), May 2001.

2003 “PlanetP: Using Gossiping to Build Content Addressable Peer-to-
Peer Information Sharing Communities”. F. M. Cuenca-Acuna, C.
Peery, R. P. Martin, and T. D. Nguyen, In Proceedings of the Inter-
national Symposium on High Performance Distributed Computing
(HPDC), June 2003.

2004 “Wayfinder: Navigating and Sharing Information in a Decentral-
ized World”. C. Peery, F. M. Cuenca-Acuna, R. P. Martin, and
T. D. Nguyen. In Proceedings of the International Workshop on
Databases, Information Systems and Peer-to-Peer Computing
(DBISPSP), August 2004.

2006 “Reducing the Availability Management Overheads of Federated Con-
tent Sharing Systems”. C. Peery, F. M. Cuenca-Acuna, and T. D.
Nguyen. In Proceedings of the Symposium on Reliable Distributed
Systems (SRDS), October 2006.

2008 “Multi-Dimensional Search for Personal Information Management
Systems”. C. Peery, W. Wang, A. Marian, and T. D. Nguyen. In
Proceedings of the International Conference on Extending Database
Technology (EDBT), March 2008.

2008 “Fuzzy Multi-Dimensional Search in the Wayfinder File System”. C.
Peery, W. Wang, A. Marian, and T. D. Nguyen. In Proceedings of

166

the International Conference on Date Engineering (ICDE - Demo
Track), April 2008.

