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ABSTRACT OF THE DISSERTATION

New Results in Optimization with Functional Constraints

by Gábor Rudolf

Dissertation Director: Professor Farid Alizadeh

We consider optimization problems featuring nonnegativity constraints on functions associated

with the decision variables. The first part of the thesis is devoted to the topic of optimization

over the cone of positive polynomials. We present a method for constructing non-negative

spline approximations to the arrival rate of a non-homogenous Poisson process based on ob-

served arrival data, along with numerical results and a comparison to previous approaches. Our

results are obtained by formulating the problem as a semidefinite program; we explore the the-

oretical obstacles to a more direct method by proving that only a constant number of linearly

independent bilinear optimality conditions exist for cones of positive polynomials, regardless

of dimension.

In the second part we look at optimization with second order stochastic dominance con-

straints. Here the functional inequalities appear naturally, featuring the integral of the distribu-

tion function of a random variable defined by the decision variables. We develop new duality

results as well as cutting plane methods that are shown to perform well on a class of portfo-

lio optimization problems. Finally we point out an interesting connection, arising as part of

our duality considerations, between the theory of measures with given marginals and network

feasibility. This results in a new proof of Strassen’s Theorem from its trivial discrete case.
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to Professor Andrzej Ruszczyński, who initiated and guided much of the research presented in

the second half of this thesis.

The results of this thesis are based on joint papers with Farid Alizadeh, Andrzej Ruszczyński,
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Chapter 1

Introduction

In this thesis we present various approaches to analyzing and solving optimization problems of

the following general form:

max c(x)

s.t. ϕx(t) ≥ 0 ∀t ∈ T

x ∈ X,

(1.1)

where X and T are arbitrary sets, c : X → R is a given objective function, and the map

ϕ : X → RT assigns a real-valued function ϕ(x) = ϕx to every value of the variable x. A large

variety of interesting problems can be cast in this setting, including the following examples, the

first and third of which we are later going to examine in detail:

• The set X consists of real vectors x to which we assign a polynomial (or spline) function

ϕx with coefficients x. The functional constraint in (1.1) expresses the nonnegativity of

said polynomial (or spline) over the set T.

• The set X consists of real-valued random variables X to which we assign ϕX = FY − FX,

where FX is the distribution function of X, and FY is the distribution function of some

‘reference’ random variable Y. If we set T = R, the functional constraint expresses the

first order stochastic dominance relation X º(1) Y.

• In the previous example replace the definition of ϕX by

ϕX(t) =

∫ t

−∞
FY(s) − FX(s)ds.

The functional constraint now expresses the second order dominance relation X º(2) Y.

If both X and T are subsets of finite dimensional real vector spaces, (1.1) becomes equiv-

alent to the well-known semi-infinite programming problem with a finite number of variables
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and infinitely many constraints. Although general purpose solution methods exist (for an ex-

haustive overview see [RR98]), the special structure of the actual problems encountered in our

computational work can always be exploited to provide an equivalent description of the feasible

sets with finite set of convex constraints.

1.1 Overview of results

In Chapter 2 we describe a method to approximate the arrival rate function of a non-homogeneous

Poisson process based on observed arrival data. We estimate the function by cubic splines, us-

ing an optimization model based on the maximum likelihood principle. A critical feature of

the model is that the splines are constrained to be everywhere nonnegative. These constraints

are enforced by using a characterization of nonnegative polynomials by positive semidefinite

matrices. We also describe versions of our model that allow for periodic arrival rate functions

and input data of limited time precision. We formulate the estimation problem as a convex

nonlinear program, and solve it with standard nonlinear optimization packages. Numerical re-

sults using both an actual record of e-mail arrivals over a period of sixty weeks, and artificially

generated data sets are provided, along with a performance comparison to previous approaches.

We also present a cross-validation procedure for determining an appropriate number of spline

knots to model a set of arrival observations.

While the previous application shows the usefulness of optimization over the cone of poly-

nomials, solving such problems via semidefinite programming (SDP) has a few drawbacks.

Firstly, currently available SDP packages (such as SeDuMi, [Stu01]) do not support nonlin-

ear objective functions, despite the fact that concave maximization subject to SDP constraints

appears to be a tractable problem. Secondly, transforming the problem to an SDP leads to a

quadratic increase in the number of variables.

These issues motivate us to look for a direct approach to solving these problems. Efficient

primal-dual interior point methods for linear programming, second order cone programming

and SDP make use of complementary slackness conditions which are bilinear in the primal

and dual variables. Unfortunately, while such conditions always exist for symmetric cones,

this turns out not to be the case for cones of positive polynomials. In Chapter 3 we examine
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some well-known non-symmetric cones, including the cone of positive polynomials over the

real line and its dual, the closure of the moment cone. We show that the number of linearly

independent bilinear optimality conditions is constant (4 in the case of positive polynomials

over R), regardless of the dimension of the cones.

In Chapter 2 we explored non-negative splines as a tractable and rich class of functions

suitable for applications which require non-parametric approximation subject to functional

constraints. However, such constraints also arise naturally in other contexts. In particular,

stochastic dominance constraints require inequalities to hold between distribution functions, or

integrals of distribution functions, of random variables.

In Chapter 4 we develop a new form of duality theory, featuring measures on the product

of the probability space and the real line, for stochastic optimization problems with second

order stochastic dominance constraints. We present two formulations involving small num-

bers of variables and exponentially many constraints: primal and dual. The dual formulation

reveals connections between dominance constraints, generalized transportation problems, and

the theory of measures with given marginals. Both formulations lead to classes of cutting plane

methods. Finite convergence of both methods is proved in the case of finitely many events.

Numerical results for a portfolio problem are provided.

Strassen’s Theorem about the existence of measures with given marginals ( [Str65, Theo-

rem 6]) is fundamental to the duality developed in Chapter 4. For the discrete case explored

in our computational work this theorem specializes to a simple and well-known network fea-

sibility condition. Surprisingly, using discretization techniques this elementary combinatorial

result allows us to derive the continuous case of Strassen’s Theorem. This alternative proof is

presented in Chapter 5.

1.2 Sources

Chapter 2 is based on [AENR08]. The main results of Chapter 3 have first appeared in [NRA05],

but the current simplified presentation is taken from [NRAP] (which also contains some recent

results not included in this thesis). Chapter 4 has been published as [RR08], while Chapter 5

first appears here.
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Since each chapter is self-contained, we have opted to everywhere keep the original notation

from the sources mentioned above.
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Chapter 2

Arrival Rate Approximation by Nonnegative Cubic Splines

2.1 Introduction

This chapter describes a method for constructing a smooth approximation of the arrival rate of

a nonhomogeneous Poisson process, based on observed arrival data. This estimation problem

has applications in most situations where nonhomogeneous Poisson processes can be used,

including the management of database replicas [GE01, GES03] or website mirrors. Our basic

methodology may also be applied to a variety of other statistical function-estimation problems.

The essence of the problem is as follows: we observe an arrival process for a time interval

[t, t], and observe a vector of arrival times t = (t1, . . . , tn), where t ≤ t1 < · · · < tn ≤ t.

We believe that these arrivals have been generated by a nonhomogeneous Poisson process with

unknown arrival rate function λ : [t, t] → R+, and wish to estimate the smooth nonnegative

function λ(·) based on the data t. We use cubic splines to model λ(·), enforcing nonnega-

tivity by taking advantage of a representation of nonnegative polynomials using semidefinite

matrices. This approach leads to optimization problems with convex objective functions, linear

constraints, and semidefinite cone constraints; because of their special form, the semidefinite

constraints may also be viewed as second order cone constraints.

Abstractly, our problem consists of choosing a function λ(·) from some set of candidates Λ

in some way that best fits the data t; note that we consider the number of arrivals n to be part

of the data embodied in t. Approaches to such problems may be classified as either parametric

or nonparametric, depending on the dimension of Λ. In parametric approaches, Λ is explicitly

finite dimensional, with a form typically determined by application-specific modeling. In non-

parametric approaches, Λ is an infinite-dimensional set, but the estimation procedure picks an

estimate for λ(·) from a finite-dimensional subset Λ ⊂ Λ which it determines using the data t.
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To find λ(·) within Λ, the nonparametric procedure solves one or more finite-dimensional opti-

mization problems whose size depends on the data t. In parametric approaches, by contrast, the

dimensionality of the optimization problem is fixed by the choice of parametric model, without

reference to the observed data t. In this chapter, we take the nonparametric approach and de-

termine the number of spline knots, and thus the dimension of our optimization problem, by a

cross-validation procedure; see §2.4.1 below.

One of the simplest nonparametric approaches is to let Λ be the set of piecewise constant

functions over [t, t]. In this case, we choose a set of knots a0, a1, . . . , am, with t = a0 < a1 <

· · · < am = t, and require that λ(·) be constant on each interval [ai−1, ai). Once the ai are

fixed, the assumed Poisson process becomes homogeneous within each interval, with an easily

estimated arrival rate. Even in the special case of evenly spaced knots, it can be shown that

setting m sufficiently large allows one to approximate to arbitrary precision any function one

could reasonably consider for λ(·) (technically, any square integrable function). In practice, m

should not be chosen too large relative to the amount of input data, so as to avoid overfitting.

Another standard nonparametric approach is to assume λ(·) is piecewise linear and contin-

uous. Here, we again choose knots t = a0 < a1 < · · · < am = t, but assume that λ(·) is

affine on each interval [ai−1, ai], and continuous at all the interval boundaries ai. Once the

ai have been fixed, this approach yields a convex optimization problem with linear equality

and inequality constraints, solvable by standard methods of mathematical programming; see

for example [TT90] for the formulation of a closely related problem. It can be shown that a

large enough m allows arbitrarily close approximation of a wide range of continuous functions

on [t, t] (technically, any absolutely continuous function with a square integrable derivative).

For values of m appropriate to realistic amounts of sample data, such simple piecewise-

constant or piecewise-linear models tend to produce estimates of λ(·) having abrupt changes

in the arrival rate or its derivative. Poisson arrival models typically arise from the aggregate

behavior of large numbers of independent actors; arrival rate functions with large jumps or

sharp nondifferentiabilities are appropriate when there are discrete events that simultaneously

affect all actors, or a significant subset of actors. Examples of such events include the start

or close of trading on a stock exchange, or maintenance shutdown of a web or e-mail server.

Arrival rate estimation is this kind of environment should involve either a priori knowledge of
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the times of such events, or a data sample sufficiently large to make them clearly observable.

By contrast, we focus on constructing smoother estimates of process arrival rates. Smooth

arrival rate functions are appropriate when there are time-correlated but imperfectly synchro-

nized changes in the population of actors giving rise to the Poisson process. Consider, for

example, a 24-hour support center for a business-oriented product. The incidence of calls to

the support center should increase at the beginning of the normal work day; however, not all

customers will start work at precisely 9 AM, as would be implicitly assumed by a λ(·) function

with a discontinuous step increase at that time. Smoothly varying λ(·) functions provide more

realistic and internally consistent models for such cases.

Here, we therefore choose the set Λ to contain only functions of a certain smoothness.

Splines are natural and standard tools to use in such situations: for a spline of order k ≥ 0, we

again select knots t = a0 < a1 < · · · < am = t, and assume that λ(·) is a polynomial of

degree k on each interval. That is, with the convention 00 = 1,

λ(t) = p(i)(t) =

k∑

`=0

p
(i)
` (t − ai−1)

` (2.1)

whenever t ∈ [ai−1, ai], where the p
(i)
` , i = 1, . . . ,m, ` = 0, . . . , k, are real coefficients

linearly constrained so that λ(·) has continuous derivatives of order up to k − 1; see §2.3. Note

that the piecewise-constant model is essentially the special case k = 0, and the piecewise-linear

model is the special case k = 1. It can be shown that, even with the restriction of evenly spaced

knots, choosing m large enough allows an order-k spline to approximate to arbitrary precision

any member of the Sobolev-Hilbert space H(k), consisting of functions whose derivatives of

order smaller than k exist and are absolutely continuous, and whose derivative of order k is

square integrable; see for example [Wah90], [TT90], or [Sch81]. Thus, unless m is fixed

independently of the data t, this approach should be considered nonparametric. Much of our

analysis applies to splines of arbitrary order, but we focus particularly on the cubic spline

case k = 3—see for example [dB78]—as cubic splines possess a desirable combination of

simplicity and versatility.

Any reasonable choice of λ(·) should be nonnegative throughout [t, t]; in fact, in §2.3 we

show that without such a restriction, maximum-likelihood estimation of λ(·) may become an

ill-posed problem. In terms of the coefficients p
(i)
` of the spline polynomials, however, the
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condition that λ(t) ≥ 0 for all t ∈ [t, t] may not take an immediately obvious form. In our

approach, we enforce nonnegativity by applying a characterization of nonnegative polynomials

related to semidefinite programming (SDP) and second-order cone programming (SOCP), both

areas of intensified research activity in the mathematical programming community over the last

decade. The theory of nonnegative polynomials is at least a century old; the text by [KS66]

develops a complete version of this theory from which the semidefinite characterization of the

cone of nonnegative univariate polynomials and nonnegative univariate trigonometric polyno-

mials is easily derived. [Nes00] has extended this SDP representation to the class of possibly

multivariate functions that are weighted sums of squares of other functions. Using the charac-

terization described in Karlin and Studden, we formulate the maximum-likelihood estimation

of a nonnegative cubic spline function λ(·) from the observed arrival data t. Our maximum-

likelihood approach is also easily modified to use aggregated input data: instead of a vector of

exact arrival times t, we have a set of counts of arrivals during some arbitrary set of disjoint

time intervals. In either the exact or aggregated case, the resulting nonlinear optimization prob-

lem is convex, with a unique global optimum. With some adjustments to improve the model’s

scaling properties (see §2.3.3), the optimal λ(·) can be found routinely by nonlinear program-

ming software packages such as KNITRO [NW03], LOQO [BVS02], and IPOPT [WB06], all

of which are available through NEOS servers [CMM98, Dol01, GM97].

We should mention at this point an alternative approach to enforcing nonnegativity that does

not require SDP/SOCP methods. Suppose one can identify a basis b1(·), . . . , bm̃(·) of span(Λ)

such that each bi(·) is nonnegative throughout [t, t]. Then, for any scalars α1, . . . , αm̃ ≥ 0, we

have α1b1(t)+· · ·+αm̃bm̃(t) ≥ 0 for all t ∈ [t, t]. Thus, it is possible to enforce nonnegativity

by defining λ(t) = α1b1(t) + · · · + αm̃bm̃(t) and letting α1, . . . , αm̃ be the optimization

decision variables, under the simple constraints α1, . . . , αm̃ ≥ 0. B-splines [dB78, Sch81]

are an example of this technique, forming a natural nonnegative basis for the space of spline

functions.

The drawback of these approaches is that they impose tighter constraints than are actually

required. For example, suppose Λ consists of the nonnegative splines over [t, t] with knots

t = a0 < a1 < · · · < am = t. Then Λ is a convex cone, but not a polyhedral cone.

Taking nonnegative linear combinations of a basis b1(·), . . . , bm̃(·) for span(Λ), on the other
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hand, only yields a polyhedral cone, which must hence be strictly contained in Λ. For a very

simple example of such a situation, consider the nonnegative basis {1, 1−t, t2} for all quadratic

polynomials on [0, 1]. The set of polynomials of the form α1 + α2(1 − t) + α3t
2, where

α1, α2, α3 ≥ 0, does not contain the nonnegative polynomial 1 + t + t2 = 2 − (1 − t) + t2. To

characterize nonnegative functions in a linear space, neither nonnegativity of the basis functions

nor of the coefficients is necessary. Our SDP/SOCP techniques, without increasing the number

of parameters, use convex nonlinear constraints to work directly and exactly with cones of

nonnegative splines.

Because solutions to the nonlinear optimization models we formulate can be found effi-

ciently, it is practical to solve a collection of related problems using different numbers of knots

m and different subsets of the sample data. This capability allows us to determine an appropri-

ate value of m by using a cross-validation procedure we describe in §2.4.1. The basic structure

of this procedure is fairly generic and could be applied to a variety of related models.

In summary, the principal contribution of our work is to point out that, with careful use

of the theory of nonnegative polynomials and techniques from SDP/SOCP and computational

nonlinear programming, estimation of arrival functions by nonnegative cubic splines, including

determination of an appropriate number of knots, is practical. There is no need to restrict the

search by constraints that are strictly stronger than function nonnegativity.

In the §2.2 and §2.3, respectively, we present the necessary background information on

nonhomogeneous Poisson processes, maximum likelihood estimators, cubic splines and non-

negative polynomials, ending with the formulation of our estimation problem as a convex op-

timization model. In the course of the development, we also discuss variants of the problem

in which the arrival data are aggregated, the splines are constrained to be periodic functions,

or both. §2.3.4 outlines our procedure for determining the most appropriate number of spline

knots. Next, §2.4 addresses validating our approach and demonstrating its practicality, and

gives more details of our cross-validation procedure. Our numerical experiments use both a

real-world e-mail arrival dataset and artificially generated datasets. In §2.4.3, we also provide

numerical comparisons of our methodology to some existing approaches to arrival rate estima-

tion whose basic properties are described in §2.1.2. Finally, §2.5 presents some conclusions

and possible directions for future work.
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In the remainder of this section, we briefly describe how our techniques can be extended

to related function estimation problems, and then compare our approach to other arrival rate

estimation techniques.

2.1.1 Related function estimation problems

Regression and shape constraints.

In regression problems, we are given a set of points x1, . . . , xn in an interval [x, x], and possibly

noisy observations y1, . . . , yn of respective function values of f(x1), . . . , f(xn). From this

information, we wish to estimate the unknown function f(·). Various error models are possible

for the yj, depending on the application: one simple case is the standard homoscedastic normal-

error model yj = f(xj) + εj, where ε1, . . . , εn are independent normal random variables with

mean 0 and standard deviation σ. We wish to find the function f(·) that best fits the data

(x1, y1), . . . , (xn, yn); various notions of fit can be used, depending on the error model. For

example, applying the maximum likelihood principle to the normal-error model above results

in the least-squares fitting criterion min
∑n

i=1 (yi − f(xi))
2. A common parametric approach

to this problem is to select some known functions f1(·), . . . , fm(·) : [x, x] → R, and adopt the

model f(x) = θ1f1(x) + · · · + θmfm(x). With a least-squares fitting criterion, estimation of

(θ1, . . . , θm) then reduces to a multiple linear regression problem, which may be solved by

classical computational techniques.

Several nonparametric approaches are also common. For example, one could use a piecewise-

constant or piecewise-linear model for f(·), with a variable number of knots m determined from

the input data (x1, y1), . . . , (xn, yn). The piecewise-linear approach is described in [TT90].

Nonparametric spline regression models of order k > 1 have also been extensively investigated;

see for example [Wah90]. Wahba’s work presents two ways to avoid overfitting: a penalty ap-

proach and a cross-validation method similar to the techniques described in this chapter.

The most significant contribution of our methodology to regression applications arises in the

case of regression subject to shape constraints that restrict the form of the f(·). Such constraints

can be applied in either the parametric or nonparametric case. For example, we may wish f(·)
to be nonnegative throughout [x, x], to be either nondecreasing or nonincreasing, or to be either
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convex or concave. All these constraints are examples of the general form Lf(x) ≥ 0 for all

x ∈ [x, x], where L is some linear functional operator:

• For f(·) to be nonnegative throughout [x, x], we set L to the identity mapping.

• For f(·) to be nondecreasing, we let L = D, the differential operator. For nonincreasing

f(·), we let L = −D

• For f(·) to be convex, we let L = D2, the second derivative operator. For concave f(·),
we let L = −D2.

The methodology described in this chapter could easily be adapted to perform regression to

spline functions under such shape constraints. With further modification, it could also be ap-

plied in other contexts, such as regression to trigonometric polynomials under shape constraints.

Density or distribution estimation.

In the common and fundamental problem of density estimation, we are given a sample x1, . . . , xn

of observed values of some continuous random variable X, and wish to estimate either its prob-

ability density function fX(·) or its cumulative distribution function FX(·) over [x, x], where

x ≤ x1, . . . , xn ≤ x. As in arrival rate estimation, fX(·) must be everywhere nonnegative; anal-

ogously, FX(·) must be nondecreasing. If it is acceptable for the estimate of fX(·) or FX(·) to

be discontinuous or have discontinuous derivatives, then we may employ piecewise-constant or

piecewise-linear nonparametric models, with the number of breakpoints m determined appro-

priately from the sample data x = (x1, . . . , xn). As with arrival rate estimation, the piecewise-

constant model leads to a closed-form estimation formula, while the piecewise-linear model

leads to a relatively straightforward convex programming problem, as in [Sco76] and [STT80].

If a smoother estimate of fX(·) or FX(·) is desired, then the problem may be solved by tech-

niques similar to this chapter’s, with some minor variations: for fX(·), the maximum likelihood

objective function is simpler, taking the form max
∑n

j=1 ln fX(xj), and one must also require
∫x

x fX(x) dx = 1, which may be enforced by a linear constraint on the spline coefficients. For

the cumulative distribution, we must impose the nondecreasing shape constraint DFX(x) ≥ 0

for all x ∈ [x, x], as well as FX(x) = 1.
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2.1.2 Comparison to other Poisson rate estimation methods

First, we note that it is possible to replace the problem of estimating the arrival rate λ(·) of

a nonhomogeneous Poisson process with the equivalent problem of estimating its mean value

function N(·), defined by

N(t) = E
[
N(t)

]
=

∫ t

0
λ(t) dt,

where N(t) denotes the number of arrivals up to time t. The requirement that λ(·) be nonneg-

ative is equivalent to the constraint that N(·) be nondecreasing.

In a series of related papers, Kuhl, Damerdji, Wilson, Johnson, Bhairgond, and Sumant

have studied Poisson arrival rate estimation from various perspectives. The work described

in [KDW98], [KSW06], and [KW01] uses a multiresolution procedure involving nested peri-

odicities; at each resolution, the authors fit a normalized and aggregated version of the observed

accumulated arrival process N(·) with a polynomial function (but not a spline). On the other

hand, [KDW98] and [KWJ97] assume a particular parametric model, namely

λ(t) = λ(t; p, γ, ω, φ) = exp




k1∑

i=0

pit
i +

k2∑

j=1

γj sin(ωjt + φj)


 , (2.2)

where p ∈ Rk1 and γ, ω, φ ∈ Rk2 . This formula includes periodic effects of unknown period

and known shape; by contrast, our principal computational experiments on e-mail data in §2.4.1

below model periodic effects of known period but unknown shape, an approach we consider

more likely to be useful in practice for a given number of parameters. The main difference

between [KDW98] and [KWJ97] is that the latter work uses a maximum likelihood approach,

while the former applies a least squares method to N(·).
Note that the exponential function in (2.2) assures positivity of λ(·) without the need for

any explicit constraints on the parameters. This technique is convenient for modeling mul-

tiplicative effects, but may also have some drawbacks: it makes it difficult to model additive

effects, and the arrival intensity can never be exactly zero. Qualitatively, the rapid growth of the

exponential produces λ(·) estimates that tend to have sharp peaks and shallow valleys; see for

example Figure 2.4.3 below. The corresponding log likelihood function is concave in terms of

the parameters p and γ, but it is nonconcave in ω and φ, leading to a computationally difficult

estimation problem for the parameters.
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[KB00] employ wavelets to estimate λ(·), adapting the nonnegative wavelet estimation of

general density functions proposed by [WS98]. In this approach, the arrival rate is expressed

as a nonnegative linear combination of nonnegative wavelets, with the coefficients obtained

by simple recurrence formulas. As with the nonnegative basis technique discussed above, the

drawback of such methods is that they impose more restrictions on λ(·) than are actually needed

to obtain nonnegativity: in fact, neither nonnegativity of the basis wavelets nor of the wavelet

coefficients are required to produce a nonnegative function. On the other hand, the Walter-

Shen approach results in closed form formulas, or at worst unconstrained optimization, and is

therefore computationally much simpler than our constrained convex nonlinear programming

approach.

In comparison to the work described above, one deficiency of our current work is that it does

not explicitly combine periodic behavior with a long term trend; we either model an arbitrary

function over [t, t], or a function that has a certain known periodicity. In principle, there are

various ways our approach could be augmented to combine periodic behavior with long term

trend effects; we leave the investigation of the these alternatives for future research.

To gauge the relative effectiveness of our approach, §2.4.3 applies it to simulated data gener-

ated from the model (2.2). Overall, our methodology compares favorably to the results reported

in [KB00] and [KDW98].

2.2 Nonhomogeneous Poisson Likelihood Functions

Our models’ objective functions are based on the maximum likelihood principle. Consequently,

we begin by presenting the maximum likelihood functions arising from the nonhomogeneous

Poisson model. For the moment, assume that we are trying to select an estimated arrival rate

function λ(·) from some arbitrary given set Λ. Later, we refine our models for specific forms

of Λ based on nonnegative splines.
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2.2.1 Individual arrival data

Given tj−1, a choice of λ(·) assigns, through the nonhomogeneous Poisson model, a probability

density to tj, namely

fj(tj, λ) = λ(tj) exp

(
−

∫ tj

tj−1

λ(t) dt

)
.

Fixing t0 = t, the joint probability density of (t1, . . . , tn) is then

f(t, λ) =

n∏

i=1

fj(tj, λ) =

n∏

i=1

λ(tj) exp

(
−

∫ tj

tj−1

λ(t)dt

)
.

To make use of the information that there were no arrivals during (tn, t], we multiply f(t, λ) by

the probability that a Poisson random variable with mean
∫t

tn
λ(t) dt has the value 0, yielding

f̃(t, λ) = exp

(
−

∫ t

tn

λ(t) dt

)
f(t, λ) = exp

(
−

∫ t

tn

λ(t) dt

)
n∏

i=1

λ(tj) exp

(
−

∫ tj

tj−1

λ(t) dt

)
.

The maximum likelihood principle suggests that we choose λ ∈ Λ to maximize f̃(t, λ), or

equivalently L(t, λ) = ln f̃(t, λ). Using the convention ln(0) = −∞, this log likelihood func-

tion is

L(t, λ) =

n∑

j=1

(
ln λ(tj) −

∫ tj

tj−1

λ(t)dt

)
−

∫ t

tn

λ(t)dt =

n∑

j=1

ln λ(tj) −

∫ t

t
λ(t)dt. (2.3)

2.2.2 Aggregated arrival data

In many practical situations, we may not have exact arrival time information. Instead, we may

only have access to data of the following aggregated form: given some times q0 < q1 < · · · <
qν, we know the number of arrivals nj in each interval (qj−1, qj], but not the exact arrival times

within these intervals. Here, we apply the maximum likelihood principle in the following way:

an arrival rate function λ : [q0, qν] → R+ and the Poisson model assign a probability of

P(nj, qj−1, qj, λ) =
1

nj!

(∫qj

qj−1

λ(t)dt

)nj

exp

(
−

∫qj

qj−1

λ(t)dt

)

to the occurrence of nj arrivals in (qj−1, qj]. Letting n = (n1, . . . , nν) and q = (q0, . . . , qν),

the joint probability of the arrival pattern n is

P(n,q, λ) =

ν∏

j=1

P(nj, qj−1, qj, λ).
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Again, the maximum likelihood principle suggests choosing λ ∈ Λ to maximize P(n,q, λ), or

equivalently Ld(n, q, λ) = ln P(n,q, λ). Simplifying Ld, we obtain

Ld(n, q, λ) =

ν∑

j=1

(
nj ln

(∫qj

qj−1

λ(t)dt

)
− ln nj!

)
−

∫qν

q0

λ(t)dt. (2.4)

Note that the terms ln nj! are independent of λ(·), and may therefore be ignored when per-

forming the optimization maxλ∈Λ Ld(n,q, λ). Our experimental data in Section 2.4 are in this

form.

2.2.3 Periodic arrival rate functions

In many situations, it is reasonable to assume that the arrival rate follows a repetitive periodic

pattern. For example, events tied to the rhythm of the work week should exhibit a repeating

weekly arrival pattern. Formally, the assumption of such a pattern means that we restrict λ

to take the form λ(t) = ω(t (mod T)) for some period T > 0 and ω : [0, T) → R+. For

simplicity, assume that we are given the arrival times 0 < t1 < . . . < tn < cT for the time

period [0, cT ], where c is a positive integer. Rewriting the log-likelihood function (2.3) in terms

of ω(·), one obtains

L(t,ω) =

n∑

j=1

ln ω
(
tj (mod T)

)
− c

∫T

0
ω(t)dt. (2.5)

For aggregated data in the interval [q0, qν] = [0, cT ], we may similarly rewrite the log-

likelihood function (2.4) in terms of ω as

Ld(n, q,ω) =

ν∑

j=1

[
nj ln

(∫qj

qj−1

ω
(
t (mod T)

)
dt

)
− ln nj!

]
− c

∫T

0
ω(t) dt. (2.6)

Supposing that we have some arbitrary set Ω from which we wish to select ω(·), the maximum

likelihood estimation problems for pointwise or aggregated data are then respectively

maxω∈Ω {L(t,ω)} and maxω∈Ω {Ld(n, q,ω)} .

Below, we consider the specific cases of these formulations in which Ω arises from periodic

cubic spline functions.
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2.3 Nonnegative Cubic Splines

We now consider a specific choice for the set Λ from which to select the arrival rate functions

λ(·). As suggested in §2.1, we fix real numbers t = a0 < a1 < · · · < am = t, and let Λ

be the set of nonnegative cubic splines with knots a0, a1, . . . , am. The 4m real numbers p
(i)
` ,

i = 0, . . . , m − 1, ` = 0, . . . , 3, determine such a spline. With k = 3, (2.1) reduces to

λ(t) = p(i)(t) =

3∑

`=0

p
(i)
`

(
t − ai−1

)` ∀ t ∈ [ai−1, ai], (2.7)

with the convention 00 = 1. The p
(i)
` are the main decision variables in our optimization model.

To be a spline, the resulting function must be continuous and have continuous derivatives up to

order k − 1 = 2, meaning that it must obey, for i = 1, . . . ,m − 1, and di = ai − ai−1, the

linear equations

p
(i+1)
0 = p

(i)
0 + p

(i)
1 di + p

(i)
2 d2

i + p
(i)
3 d3

i (2.8)

p
(i+1)
1 = p

(i)
1 + 2p

(i)
2 di + 3p

(i)
3 d2

i (2.9)

2p
(i+1)
2 = 2p

(i)
2 + 6p

(i)
3 di. (2.10)

In our numerical experiments, we use evenly spaced knots ai = t + (i/m)(t − t), in which

case di = (t − t)/m for all i = 1, . . . , m. This choice of equidistant knots is simply for

convenience, and is not a fundamental requirement in our approach. Finally, we determine m

using the cross-validation procedure described in §2.3.4 and §2.4.1.

Consider now the periodic models of §2.2.3, in which we have λ(t) = ω
(
t (mod T)

)
. To

apply a spline model in this case, given knots 0 = a0 < a1 < · · · < am = T , we define

ω analogously to (2.7). However, in order for λ(·) to be continuous and twice continuously

differentiable at T, 2T, . . . , cT , we must also have ω(T) = ω(0), ω ′(T) = ω ′(0), and ω ′′(T) =

ω ′′(0). Therefore, in terms of the spline coefficients p
(i)
` , we must have

p
(1)
0 = p

(m)
0 + p

(m)
1 dm + p

(m)
2 d2

m + p
(m)
3 d3

m (2.11)

p
(1)
1 = p

(m)
1 + 2p

(m)
2 dm + 3p

(m)
3 d2

m (2.12)

2p
(1)
2 = 2p

(m)
2 + 6p

(m)
3 dm. (2.13)

Functions satisfying these conditions, together with (2.8)-(2.10) for i = 1, . . . ,m, are called

periodic splines with period T . We choose the set Ω of candidates for ω(·) to be the set of
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nonnegative m-knot periodic splines over [0, T ]. As in the nonperiodic case, we use equidis-

tant knots for our numerical experiments, and select the number of knots m through a cross-

validation procedure.

We now turn to the question of how to constrain the p
(i)
` so that the resulting arrival rate

function is nonnegative throughout [t, t]. In §2.4.2, we empirically demonstrate that nonnega-

tivity is an essential requirement: for a small data set of e-mail arrivals, without the nonnega-

tivity assumption, the computed arrival rate does in fact take negative values. However, there

is even a more fundamental problem. Without the nonnegativity assumption, the likelihood

function corresponding to a cubic spline arrival rate (or any polynomial spline of order k ≥ 1)

may be unbounded. Specifically, maximizing the likelihood function (2.3) in the absence of

such a nonnegativity constraint is in general ill-posed, even in a finite-dimensional linear func-

tional space. To see how such ill-posedness can occur, consider what happens when the feasible

region Λ for λ(·) is a cone and

∃µ(·) ∈ Λ : µ(tj) > 0 ∀ j = 1, . . . , n,

∫ t

t
µ(t) dt ≤ 0. (2.14)

Now consider setting λ(t) = αµ(t), where α > 0; since Λ is a cone, such a λ(·) always lies

in Λ. By increasing α, it is easily confirmed that one can make the likelihood function (2.3)

arbitrarily large. For the periodic situation (2.5), analogy to (2.14) suggests the condition that

Ω is a cone and

∃ µ̃(·) ∈ Ω : µ̃
(
tj (mod T)

)
> 0 ∀ j = 1, . . . , n,

∫T

0
µ̃(t)dt ≤ 0. (2.15)

Much as in the nonperiodic case, setting ω(t) = αµ̃(t) and letting α → ∞ then results in

an unbounded objective. Indeed, for periodic cubic splines, (2.15) is satisfied when m = 3

and 0 < tj (mod T) < T/3 for all j. Similar phenomena can occur with the aggregate-data

likelihood functions (2.4) and (2.6) if there are observation intervals with nj = 0. Thus, it is

in general necessary to require nonnegativity simply to obtain a well-defined problem, and it is

therefore imperative to consider how to characterize the polynomials that are nonnegative over

each segment [ai−1, ai].
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2.3.1 Characterization of nonnegative polynomial splines

The most important results of the well-established theory of nonnegative polynomials and as-

sociated dual moment cones are covered in the text of [KS66]. These topics are related to

semidefinite programming (SDP) and its special case called second order cone programming

(SOCP). For a general reference on semidefinite programming, see [WSV00] and its extensive

bibliography. For a survey of SOCP, see [AG03]. Here, we present a quick review of these

topics and their connection to nonnegative polynomials and splines.

Recall that a real r × r symmetric matrix X is positive semidefinite, written X < 0, if

for every real r-vector v, we have v>Xv ≥ 0. It is clear from the definition that the set Mr

of r × r real symmetric positive semidefinite matrices is a closed convex cone. Semidefinite

programming is simply the optimization of linear functions over affine transformations and

affine preimages of Mr.

Given some inner product 〈·, ·〉, the dual cone of any convex cone K is defined as:

K∗ = {z | 〈x, z〉 ≥ 0 for all x ∈ K}.

For symmetric matrices, we number rows and columns starting with 0, and employ the inner

product

〈A,B〉 = A • B =

r−1∑

i=0

r−1∑

j=0

AijBij. (2.16)

With this inner product, it is well known that the cone of positive semidefinite symmetric ma-

trices is self-dual, that is, Mr = M∗
r .

If we represent a polynomial p0 + p1x + · · · + pnxk by its vector of coefficients p =

(p0, p1, . . . , pk), then it is clear that the nonnegative polynomials over the interval [a, b] com-

prise a closed convex cone, since any nonnegative combination of such polynomials remains

nonnegative over [a, b]; we denote this cone by Pk+1(a, b). Using the standard inner product

forRk+1, the dual cone P∗k+1(a, b) of Pk+1(a, b) consists of vectors that are moments of some

nondecreasing function of bounded variation over [a, b]; see [KS66]. More precisely, if F[a, b]

is the set of probability measures over [a, b], then

P∗k+1(a, b) =
{

(c0, . . . , ck)
∣∣ ∃ α > 0, F ∈ F[a, b] : ci = α

∫b

a
ti dF(t), i = 0, . . . , k

}
.
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P∗k+1(a, b) is called the moment cone over [a, b]. The key property of P∗k+1(a, b) is that

it is SD-representable [Nem99]. This property simply means that the moment cone can be

expressed as an affine preimage of the positive semidefinite cone Mr for some integer r > 0.

Specifically, if k is even, let h = k/2 and define the square matrices

Hk = (ci+j)ij, 0 ≤ i, j ≤ h (2.17)

Hk =
(
(a + b)ci+j+1 − ci+j+2 − abci+j

)
ij
, 0 ≤ i, j ≤ h − 1. (2.18)

If k is odd, let h = bk/2c, and define the (h + 1)× (h + 1) matrices

Hk =
(
ci+j+1 − aci+j

)
ij
, 0 ≤ i, j ≤ h (2.19)

Hk = (bci+j − ci+j+1)ij, 0 ≤ i, j ≤ h . (2.20)

In either case, Hk and Hk are Hankel matrices, that is, the value of entry (i, j) is determined

by i+ j (implying they are symmetric). From the analysis in [KS66], [DS97], and [Nes00], Hk

and Hk are related to the moment cone as follows:

(c0, c1, . . . , ck) ∈ P∗k+1(a, b) ⇐⇒ Hk < 0 and Hk < 0. (2.21)

For any h ≥ 0, let Eh
` be the (h + 1)× (h + 1) matrix given by

(
Eh

`

)
ij

=





1, i + j = `

0, i + j 6= `,
0 ≤ i, j ≤ h.

Then Eh
0 ,Eh

1 , . . . , Eh
2h form a basis for the space of (h + 1)× (h + 1) Hankel matrices.

Using (2.21), we can now characterize the cone P∗k+1(a, b) and its dual Pk+1(a, b). The

details differ depending on whether k is even or odd, and thus whether we employ (2.17)-(2.18)

or (2.19)-(2.20).

When k is odd.

Letting h = bk/2c and rewriting (2.19) and (2.20) in terms of the basis elements Eh
0 , . . . , Eh

2h =

Eh
k−1, we have

Hk = −c0aEh
0 + c1(E

h
0 − aEh

1 ) + c2(E
h
1 − aEh

2 ) + · · ·+ ck−1(E
h
k−2 − aEh

k−1) + ckEh
k−1

Hk = c0bEh
0 + c1(bEh

1 − Eh
0 ) + · · ·+ ck−1(bEh

k−1 − Eh
k−2) − ckEh

k−1.
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Therefore, by (2.21), the cone P∗k+1(a, b) consists of all vectors (c0, c1, . . . , ck) satisfying

−c0aEh
0 + c1(E

h
0 − aEh

1 ) + · · ·+ ck−1(E
h
k−2 − aEh

k−1) + ckEh
k−1 < 0 (2.22)

c0bEh
0 + c1(bEh

1 − Eh
0 ) + · · ·+ ck−1(bEh

k−1 − Eh
k−2) − ckEh

k−1 < 0. (2.23)

Since Pk+1(a, b) is closed and convex, we have P∗∗k+1(a, b) = Pk+1(a, b), so Pk+1(a, b) is

simply the dual of the cone described by (2.22)-(2.23). To characterize this dual cone, we as-

sociate symmetric positive semidefinite matrices X and Y with (2.22) and (2.23), respectively.

These matrices play much the same role as Lagrange multipliers in general nonlinear program-

ming, except that they must be matrices of the same shape as the two sides of the semidefinite

inequalities (2.22)-(2.23), that is, both X and Y are (h + 1) × (h + 1) symmetric matrices.

Using the inner product defined in (2.16), we then argue that (p0, p1, . . . , pk) is in Pk+1(a, b)

whenever there exist X, Y < 0 such that

p0 = −aEh
0 • X + bEh

0 • Y

p1 = (Eh
0 − aEh

1 ) • X + (bEh
1 − Eh

0 ) • Y

p2 = (Eh
1 − aEh

2 ) • X + (bEh
2 − Eh

1 ) • Y

...

p` = (Eh
`−1 − aEh

` ) • X + (bEh
` − Eh

`−1) • Y

...

pk = Eh
k−1 • X − Eh

k • Y .

Formally, this result may be obtained by applying the following fact: suppose the cone C ⊂ Rr

is defined by C = {u ∈ Rr | Au ∈ K}, where A is an s× r matrix and K ⊂ Rs is some closed

convex cone; then C∗ = {A>w | w ∈ K∗}. This result follows from the separating hyperplane

property of convex sets and is subsumed, for example, by [Roc70, Corollary 16.3.2].
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When k is even.

In this case, we can let h = k/2 and apply an analysis similar to (2.17)-(2.18) and (2.21),

resulting in the characterization that (p0, . . . , pk) ∈ Pk+1(a, b) if and only if

p0 = Eh
0 • X − abEh−1

0 • Y

p1 = Eh
1 • X +

(
(a + b)Eh−1

0 − abEh−1
1

) • Y

p2 = Eh
2 • X +

(
−Eh−1

0 + (a + b)Eh−1
1 − abEh−1

2

) • Y

...

p` = Eh
` • X +

(
−Eh−1

`−2 + (a + b)Eh−1
`−1 − abEh−1

`

) • Y

...

pk = Eh
k • X − Eh−1

k−2 • Y

X < 0

Y < 0,

where the symmetric positive semidefinite matrices X and Y have dimension (h+ 1)× (h+ 1)

and h× h, respectively.

Cubic polynomials and shifted representations.

Here, it is convenient to represent a polynomial over [a, b] by p(x) = p0 + p1(x − a) +

p2(x − a)2 + · · · + pn(x − a)n. In this case, p(x) is nonnegative over [a, b] if and only if

p0 +p1t+p2t
2 + · · ·+pntn is nonnegative over [0, b−a], so the representations given above

can be modified by replacing a with zero and b with d = b − a.

In particular, consider the cone P of cubic polynomials p(x) = p0 + p1(x − a) + p2(x −

a)2 + p3(x − a)3 that are nonnegative over [a, b]. Consider (2.22)-(2.23) specialized to the

case k = 3 and thus h = b3/2c = 1. Replacing a ← 0 and b ← d, we conclude that the vector

(c0, c1, c2, c3) is in the dual cone P∗3(0, d) if and only if


c1 c2

c2 c3


 < 0 and


dc0 − c1 dc1 − c2

dc1 − c2 dc2 − c3


 < 0

Specializing the analysis of §2.3.1 to k = 3, we observe that the cubic polynomial p0 +p1(x−
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a) + p2(x − a)2 + p3(x − a)3 is nonnegative on [a, b] whenever there are 2× 2 matrices

X =


x y

y z


 and Y =


s v

v w




satisfying

p0 = d(E1
0 • Y) ⇐⇒ p0 = ds

p1 = E1
0 • X + (dE1

1 − E1
0) • Y ⇐⇒ p1 = x + 2dv − s

p2 = E1
1 • X + (dE1

2 − E1
1) • Y ⇐⇒ p2 = 2y + dw − 2v

p3 = E1
2 • X + −E1

2 • Y ⇐⇒ p3 = z − w

X < 0 ⇐⇒ x, z ≥ 0, Det(X) = xz − y2 ≥ 0

Y < 0 ⇐⇒ s, w ≥ 0, Det(Y) = sw − v2 ≥ 0.

In this case, because X and Y are 2 × 2, the positive semidefiniteness constraints X, Y <

0 can be reformulated as the linear and quadratic constraints x, z, s, w ≥ 0, xz − y2 ≥ 0,

and sw − v2 ≥ 0. This form of the constraints makes it possible to use standard nonlinear

programming software. Incidentally, we note that the quadratic constraints may be considered

to be second order cone programming (SOCP) constraints. Second Order Cone Programming

(SOCP) involves optimization over affine transformations and affine preimages of the second

order, or Lorentz, cone, namely

Qr+1 =
{

(x0, x1, . . . , xr) | x0 ≥
√

x2
1 + · · ·+ x2

r

}

Specifically, when x, z, s, w ≥ 0, we may express the quadratic inequalities xz − y2 ≥ 0 and

sw − v2 ≥ 0 as

(
x + z

2

)2

≥
(

x − z

2

)2

+ y2 ⇐⇒




x+z
2

x−z
2

y



∈ Q3, (2.24)

(
s + w

2

)2

≥
(

s − w

2

)2

+ v2 ⇐⇒




s+w
2

s−w
2

v



∈ Q3. (2.25)
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2.3.2 Practical optimization models

The nonnegativity of a cubic spline with coefficients {p
(i)
` } and knots a0, . . . , am is equivalent

to the nonnegativity of each polynomial p(i)(t) =
∑3

`=0 p
(i)
` (t − ai−1)

` over the respective

interval [ai−1, ai]. Summarizing the results of the last section, we thus have

Theorem 1 p(i)(t) = p
(i)
0 + p

(i)
1 (t − ai−1) + p

(i)
2 (t − ai−1)

2 + p
(i)
3 (t − ai−1)

3 ≥ 0 for all

t ∈ (ai−1, ai) if and only if there exist xi, yi, zi, si, vi, wi ∈ R such that, for di = ai − ai−1,

p
(i)
0 = disi (2.26)

p
(i)
1 = xi − si + 2divi (2.27)

p
(i)
2 = 2yi − 2vi + diwi (2.28)

p
(i)
3 = zi − wi (2.29)

xizi ≥ y2
i (2.30)

siwi ≥ v2
i (2.31)

xi, zi, si, wi ≥ 0. (2.32)

Theorem 1 completes our characterization of the sets Λ and Ω of (periodic) nonnegative splines

over which we wish to maximize the likelihood functions (2.3), (2.4), (2.5), or (2.6). First,

consider (2.5). For j = 1, . . . , n, define ij = argmini=1,...,m {ai : ai ≥ tj (Mod T)}. Inserting

the definition of a periodic cubic spline into (2.5), we obtain the likelihood function

L(t,p) =

n∑

j=1

ln

[
3∑

`=0

p
(ij)
`

(
tj (Mod T) − aij−1

)`

]
− c

m∑

i=1

3∑

`=0

p
(i)
`

d`+1
i

` + 1
. (2.33)

Here and below, we let p represent the 4m-vector of spline coefficients p
(i)
` , ` = 0, . . . , 3,

i = 1, . . . , m. The constraints on p are just the spline continuity and differentiability restric-

tions (2.8)-(2.13) and the nonnegativity constraints summarized in Theorem 1, where we intro-

duce additional variables xi, yi, zi, si, vi, wi, i = 1, . . . ,m. Thus, we have the optimization
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problem

max
n∑

j=1

ln

[
3∑

`=0

p
(ij)
` (tj (Mod T) − aij−1)

`

]
− c

m∑

i=1

3∑

`=0

p
(i)
`

d`+1
i

` + 1

s.t. Constraints (2.8)-(2.10) hold, i = 1, . . . , m − 1

Constraints (2.11)-(2.13) hold

Constraints (2.26)-(2.32) hold, i = 1, . . . , m.

(2.34)

The non-periodic version of the problem—maximizing (2.3) over Λ—would amount to delet-

ing “(Mod T)”, “c”, and constraints (2.11)-(2.13).

Note that the objective function of (2.34) is concave in the decision variables, since all its

terms are either linear in p or logarithms of linear functions of p. The constraints (2.8)-(2.10)

and (2.11)-(2.13) are also linear in the decision variables p. As for the spline nonnegativity

constraints (2.26)-(2.32), it is clear that (2.26)-(2.29) and (2.32) are linear in the decision vari-

ables p and xi, yi, zi, si, vi, wi, i = 1, . . . , m. This leaves only the constraints (2.30)-(2.31),

which are nonlinear, but describe a convex region, since they are equivalent to the semidefinite

constraints X, Y < 0 and SOCP constraints of the form (2.24)-(2.25). Thus, (2.34) describes

the maximization of a concave objective function over a convex region. As a result, any lo-

cal maximum is necessarily global. Except for its concave nonlinear objective function, the

problem is an SOCP. General results of [NN94] imply that it is tractable to optimize (2.34) by

standard interior point methods.

The same observations also apply when the data are aggregated, and the likelihood function

take the form (2.6). In this case, the constraints are identical to those of (2.34), as are the

linear terms
∑m

i=1

∑3
`=0 p

(ij)
` d`+1

i /(` + 1) in the objective function. The logarithmic objective

terms corresponding to
∑ν

j=1 nj ln
(∫qj

qj−1
ω(t (mod T))dt

)
in (2.6) take a slightly different

form than the logarithmic terms in (2.33), and may in general be quite complicated. Clearly,

however, the arrival rate function λ(t) = ω
(
t (mod T)

)
is a linear function of the parameters p,

and consequently the definite integrals
∫qj

qj−1
λ(t)dt are also linear in p. Thus, when viewed

as a function of p, (2.6) has the same basic form as (2.33)—a sum of linear functions and

logarithms of linear functions—and is therefore concave. We conclude that the maximum

likelihood problem with aggregated data has the same general properties as (2.34).
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A relatively simple case of the aggregate model is when the aggregation points q0, . . . , qν

are chosen to align within spline segments, that is, for each j = 1, . . . , ν, there exists an

i(j) ∈ {1, . . . , m} and an integer r(j) ≥ 0 such that [qj−1, qj] ⊆ [r(j)T +ai(j)−1, r(j)T +ai(j)].

Then, dropping the constant terms ln nj!, we obtain the model

max
ν∑

j=1

nj ln

(
3∑

`=0

p
(i(j))
`

(qj − qj−1)
`+1

` + 1

)
− c

m∑

i=1

3∑

`=0

p
(i)
`

d`+1
i

` + 1

s.t. Constraints (2.8)-(2.10) hold, i = 0, . . . , m − 1

Constraints (2.11)-(2.13) hold

Constraints (2.26)-(2.32) hold, j = 1, . . . ,m.

(2.35)

The nonperiodic case of maximizing (2.4) is obtained by deleting the constant c and constraints

(2.11)-(2.13).

While we have focused on cubic splines, it is clear that by employing the theory described

in §2.3.1 and appropriately generalizing the constraints (2.8)-(2.10) and (2.11)-(2.13), our

methodology could readily be extended to higher-order or quadratic splines. The main com-

putational difference would be that for splines of order higher than 3, the positive semidefinite

constraints X, Y < 0 would not reduce so simply to nonlinear functional constraints like (2.30)-

(2.31), so one would have to maximize a concave objective over a set of linear and semidefinite

constraints. However, the basic convexity properties of the problem would still hold. From now

on, we consider only cubic splines.

2.3.3 Improved scaling

Although models like (2.34) and (2.35) are in principle readily solvable to global optimality

by standard nonlinear programming tools, they have scaling properties that can make them nu-

merically challenging. Specifically, if the problem is formulated so that the di are significantly

different in magnitude from 1, the scaling of the optimal spline coefficients p
(i)
` can vary dra-

matically with `. For example, if di is on the order of 0.01, then p
(i)
3 can easily be on the

order of 106 times larger than p
(i)
0 , and sometimes more. For higher-order splines, this effect

would be even more pronounced. In practice, these scaling issues can make models like (2.34)

and (2.35) difficult to solve: of the solvers we had available, only KNITRO [BHN99, NW03]

was able to solve models of this form to optimality.
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Fortunately, these scaling difficulties may be overcome by expressing the spline in a differ-

ent way. In the spline construction we have used so far, we translate the [0, di] portion of the

ith polynomial by ai−1, and use it as the ith portion of the spline. To acheive better scaling, we

define m polynomials

u(i)(x) =

3∑

`=0

u
(i)
` x` i = 1, . . . ,m,

where u
(i)
` ∈ R, ` = 0, . . . , 3, i = 1, . . . , m, and translate and scale the [0, 1] portion of u(i) to

obtain the ith segment of the spline. Thus, whenever t ∈ [ai−1, ai], we have

λ(t) = u(i)

(
t − ai−1

ai − ai−1

)
= u(i)

(
t − ai−1

di

)
=

3∑

`=0

u
(i)
`

(
t − ai−1

di

)`

.

For λ(t) to be everywhere nonnegative, we need each polynomial u(i) to be nonnegative on

[0, 1]. Applying Theorem 1 with di = 1 and eliminating the variable si = u
(0)
i from (2.26), we

obtain the equivalent conditions

u
(i)
1 = xi − si + 2vi xizi ≥ y2

i

u
(i)
2 = 2yi − 2vi + wi siwi ≥ v2

i

u
(i)
3 = zi − wi u

(i)
0 , xi, zi, wi ≥ 0.

After some routine manipulations, we obtain the formulation in Figure 2.3.3, equivalent to (2.34).

Note that in the case of equidistant knots, we have di+1/di = 1 for all i = 1, . . . ,m, along

with d1/dm = 1, so the di do not appear in the constraints. For aggregated data, we similarly

obtain a model with the objective function

max
ν∑

j=1

nj ln

(
3∑

`=0

u
(i(j))
`

(qj − qj−1)
`+1

(` + 1)d`
i

)
− c

m∑

i=1

di

3∑

`=0

u
(i)
`

` + 1
, (2.36)

and the same constraints as in Figure 2.3.3. Unlike (2.34) and (2.35), such scaled models were

solved to optimality by all the nonlinear programming solvers we attempted to use, includ-

ing IPOPT [WB06], LOQO [BVS02], and KNITRO [BHN99, NW03]. Furthermore, although

KNITRO could also solve the unscaled models, it converged more rapidly on the scaled mod-

els. Nonperiodic variants of the scaled models may be obtained by deleting model elements in

an analogous manner to the unscaled versions.
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max
n∑

j=1

ln

[
3∑

`=0

u
(ij)
`

(
tj (Mod T) − aij−1

di

)̀ ]
− c

m∑

i=1

di

3∑

`=0

u
(i)
`

` + 1

s.t. u
(i+1)
0 = u

(i)
0 + u

(i)
1 + u

(i)
2 + u

(i)
3 i = 1, . . . , m − 1

(di+1/di) u
(i+1)
1 = u

(i)
1 + 2u

(i)
2 + 3u

(i)
3 i = 1, . . . , m − 1

2(di+1/di)
2 u

(i+1)
2 = 2u

(i)
2 + 6u

(i)
3 i = 1, . . . , m − 1

u
(1)
0 = u

(m)
0 + u

(m)
1 + u

(m)
2 + u

(m)
3

(d1/dm)u
(1)
1 = u

(m)
1 + 2u

(m)
2 + 3u

(m)
3

2(d1/dm)2 u
(1)
2 = 2u

(m)
2 + 6u

(m)
3

u
(i)
1 = xi − si + 2vi i = 1, . . . , m

u
(i)
2 = 2yi − 2vi + wi i = 1, . . . , m

u
(i)
3 = zi − wi i = 1, . . . , m

xizi ≥ y2
i i = 1, . . . , m

siwi ≥ v2
i i = 1, . . . , m

u
(i)
0 , xi, zi, wi ≥ 0 i = 1, . . . , m

Figure 2.1: Scaled version of full periodic optimization model with exact arrival times.
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2.3.4 Cross-validation approaches for determining m

We now consider the problem of choosing the number of spline knots m. As discussed in

§2.1, our method should only be considered nonparametric if the choice of m corresponds in a

reasonable way to the input data t or (n, q). Qualitatively, too small a value of m does not fully

exploit the available data, whereas too large a value results in overfitting: rapidly fluctuating

rate estimates overly tailored to individual arrival events in the dataset. In fact, for exact arrival

time data t, allowing m to grow indefinitely results in splines that resemble linear combinations

of Dirac δ distributions: such arrival rate estimates in effect assign positive probability to the

observed arrival times tj and zero probability to other times. A similar effect can occur for

aggregated input data if it is of sufficiently high resolution.

Here, we propose using a cross-validation method to determine m from the input data.

Roughly speaking, cross validation proceeds as follows: we start with a relatively small value

of m, say m1. Next, we choose a random subset of arrival times T and set them aside. We solve

the optimization problem described above for the remaining set of arrivals, with m = m1. Once

the estimated spline function is determined, we calculate its likelihood function value for the

arrival times in the set T. We may repeat this process R times, each for a different random subset

T, and calculate the average value L(m1) of the likelihood function over this sample. Next, we

increase the number of knots to some m2 > m1, and repeat the above process, obtaining an

average likelihood L(m2). After similarly testing a sequence of values m1, m2, . . . , mM, we

select the number of knots which maximizes L(mi). In our numerical experiments, we apply a

variant of this technique known as K-folding; details are described in §2.4.1.

In general, as in the case of nonparametric regression and nonparametric density estimation,

cross-validation procedures are most effective when the sample size is large. It should be

noted that each time a step of the cross-validation process is applied, a different instance of the

optimization problem described in this section must be solved. Thus, having fast methods to

solve the nonnegative maximum likelihood spline arrival rate problem is essential.
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2.4 Numerical Experiments

2.4.1 An e-mail arrival dataset

In this section, we present results obtained for a dataset of approximately 10,000 e-mail arrivals

recorded over a period of 446 days. The recorded arrival times are rounded to the nearest integer

second, resulting in aggregated data with one-second intervals. Thus, we used model (2.35),

or in scaled form, the model of Figure 2.3.3 and (2.36). Examination of the data revealed a

clear weekly periodicity: see Figures 2.4.1-2.4.1 below, where the jagged lines show a standard

piecewise-constant approximation to λ(·) using 64 intervals. The optimization models are ex-

pressed in the AMPL modeling language [FGK02a], and solved by KNITRO [BHN99,NW03]

on the NEOS servers [CMM98, Dol01, GM97].

Determining the number of knots.

The specific variant of cross validation we use to determine the number of knots is K-folding,

also known as the leave-one-out cross-validation method [Sha93].

In our implementation of K-folding, we randomly divide the observation period into K

regions D1, . . . , DK of equal size. Then, for each i = 1, . . . , K, we estimate the arrival rate,

omitting Di from the model input. Next, by evaluating the appropriate log-likelihood function

given by (2.6), we examine how well the estimated arrival intensity function λ(·) describes the

behavior of the process during Di. Specifically, we evaluate Ld

(
n(i),q(i), λi

)
, where λi is the

arrival intensity function estimate derived from all the subsets except Di, and n(i) and q(i) are

derived only from Di.

For each choice under consideration for the number of spline knots m, we perform the

above procedure R times, randomly selecting D1, . . . , DK differently each time. Thus, for each

possible value of m, we obtain RK different values of the likelihood Ld

(
n(i), q(i), λi

)
, whose

average is L(m). Among the values tried for m, we then select the one which maximizes

L(m). The entire procedure requires RKM solutions of our optimization model, where M is

the number of different values considered for m.

For the e-mail dataset, Figure 2.4.1 shows the average likelihood level results for K = 5

and R = 10; thus, each point in the figure is the average of RK = 50 observations. The tested
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Figure 2.2: Average likelihoods for 10 different 5-foldings, large e-mail dataset.

values of m are 21, 30, 42, 45, 48, 50, 63, 84, and 168. Based on these results, we use 48

knots. Figure 2.4.1 shows the estimate using 14 knots, which does not provide sufficient detail

to describe the arrival process, and Figure 2.4.1 shows the results for 48 knots. Figure 2.4.1

shows the estimate using 336 knots, which appears to overfit the data. In Figures 2.4.1-2.4.1,

as well as in Figures 2.4.1, 2.4.2, and 2.4.2, the time axis is measured in weeks.

Sensitivity to data aggregation.

We also consider the sensitivity of the results to the degree of aggregation in the input data.

In the results of Figures 2.4.1-2.4.1, we set qj − qj−1 = 1 second, the recorded precision of

the dataset, for all j. Starting with this data representation, we successively merge adjacent

intervals, aggregating their arrival information. Setting qj − qj−1 = s for all j, we evaluate

various aggregation intervals s ranging from the original one second to 24 hours. We write

n(s) and q(s) for vectors resulting from data aggregation with interval length s. For each

value of s, we recompute the spline estimate of λ(·) with 48 knots, denoted λ[s](·), and record

the value of the log likelihood function Ld

(
n(s),q(s), λ[s]

)
.
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Figure 2.3: 14-knot approximation for the large e-mail dataset.
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Figure 2.4: 48-knot approximation for the large e-mail dataset.
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Figure 2.5: 336-knot approximation for the large e-mail dataset.
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Figure 2.6: Optimal log likelihood as a function of the aggregation interval s.
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Figure 2.7: Magnified view of the critical portion of Figure 2.4.1.

Figure 2.4.1 shows the results. A sharp drop in the objective value occurs when the esti-

mating spline reaches zero and the inequalities (2.30)-(2.32) in the nonnegativity constraints

become binding. Figure 2.4.1 shows the section of the graph around this drop in more detail,

while Figure 2.4.1 shows the estimating spline computed just after the drop. These results in-

dicate that aggregating the arrival data with periods of up to 5 minutes does not significantly

affect the fit.

2.4.2 Illustrating the importance of the nonnegativity constraints

In most of the experiments of §2.4.1, the spline nonnegativity constraints were not binding at

the optimal solution, that is, the influence of the logarithmic terms in the objective function

was sufficient to make the spline nonnegative without the help of the variables xi, yi, zi, vi,

wi, si and the associated constraints. In general, however, we cannot rely on such automatic

satisfaction of nonnegativity. For smaller datasets or arrival rate functions that sometimes ap-

proach zero, nonnegativity constraints are essential. Further, as observed in §2.3, the estimation

problem may even be unbounded and thus ill-posed if the nonnegativity constraints are omitted.
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Figure 2.8: Approximating spline with excessively aggregated data.

To illustrate practical importance of the nonnegativity constraints, we consider a small

dataset of 550 e-mail arrival times. Figure 2.4.2 shows the 42-knot spline estimate of the ar-

rival rate, while Figure 2.4.2 shows the results when the nonnegativity constraints are omitted.

Note from the piecewise-constant approximation that there is a significant time period (cor-

responding to Friday nights) when there are no arrivals in the dataset. Without nonnegativity

constraints, the maximum-likelihood spline takes negative values during this period.

2.4.3 Numerical comparison to other approaches

We now present a comparison of our numerical results with those reported by [KB00] using

nonnegative wavelets, and (in one instance) by [KDW98], using a parametric model and a least

squares estimation method.

For testing purposes, we simulate arrival data using the same arrival rate functions λ1(·),
λ2(·), and λ3(·) as [KB00]. All three of these functions have the general form (2.2); for λ1(·),
the “trend” component

∑
pit

i of the function is constant, and the the trigonometric part con-

sists of a single sine function. For λ2(·), the trend
∑

pit
i is a quadratic polynomial, and the
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Figure 2.9: Arrival rate estimate for the small e-mail dataset.
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Figure 2.10: Estimate for the small e-mail dataset without spline nonnegativity constraints.
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periodic part is again a single sine function. Finally, for λ3(·), the polynomial
∑

pit
i is again

constant, but the periodic part consists of two sine terms.

Since we are comparing our results to those of [KDW98], we have tried to closely follow

their testing procedure. For each function λi(·), i = 1, 2, 3, we simulate arrivals in the interval

[0,7] using the procedure described in [LS79]. We repeat this process twenty times for each of

the three functions. Next, for each of the twenty simulations, we use our nonnegative spline

method to construct an estimate λ̂i,j of the arrival rate, where i = 1, 2, 3 and j = 1, . . . , 20.

For each t ∈ [0, 7], we next form an empirical 90% tolerance interval [λi(t), λi(t)] for λ(t) by

discarding the lowest and highest of these values, that is, letting λi(t) = λ̂i,(2)(t) and λi(t) =

λ̂i,(19)(t), where λ̂i,(r)(t) denotes the rth smallest element of the set {λ̂i,1(t), . . . , λ̂i,20(t)}.

Figures 2.4.3-2.4.3 display λi(t), λi(t), and λi(t) as functions of t for each value of i. For

i = 1, we make two sets of calculations: in Figure 2.4.3, we take into account the known

periodicity of the function, and in Figure 2.4.3 we do not.

We also calculate the quality of these results with respect to the measures described in

[KB00] and [KDW98]. In particular,

• δ is the average error from original arrival rate

• δ∗ the maximum error from original arrival rate

• ∆ is the average error from original mean value function

• ∆∗ is the maximum error from original mean value function

• D is the average discrepancy between the estimated mean value function and the empir-

ical arrival count function N(t).

• D∗ is the maximum discrepancy between the estimated mean value function and the

empirical arrival count function N(t).

In the above, the averages and maxima are taken over time, that is, over t ∈ [0, 7]; all

the reported statistics are also averaged over the 20 replications for each i. For each statis-

tic X, we also define a normalized version QX: for example, Qδ is the average over t of

|λi(t) − λ̂i,j(t)|/λi(t); the other statistics are normalized similarly. This information is re-

ported in Table 2.4.3. In the table, the notation V[X] denotes the coefficient of variation of the
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Table 2.1: Comparison of quality of estimated arrival rate functions computed by nonnegative
splines, wavelet, and parametric least squares methods.

λ1(t) λ2(t) λ3(t)

Periodic Least
Wavelet Spline Spline Squares Wavelet Spline Wavelet Spline

δ 10.28 9.36 4.40 10.00 14.37 12.37 12.50 12.08
Qδ 0.21 0.19 0.09 0.21 0.18 0.16 0.20 0.19
V [δ] 0.14 0.07 0.27 0.65 0.15 0.08 0.15 0.11
δ∗ 33.07 31.57 11.59 23.70 49.01 47.98 56.25 50.63

Qδ∗ 0.67 0.64 0.24 0.48 0.63 0.61 0.88 0.80
V[δ∗] 0.29 0.17 0.32 0.60 0.33 0.03 0.24 0.15

∆ 8.49 7.23 7.03 12.4 7.12 7.04 10.81 7.46
Q∆ 0.048 0.040 0.040 0.043 0.034 0.030 0.048 0.030
V[∆] 0.43 0.43 0.75 0.84 0.4 0.25 0.61 0.42
∆∗ 19.56 17.11 14.10 25.10 23.52 17.59 21.85 17.20
Q∆∗ (*) 0.49 0.10 0.08 0.09 (*) 0.54 0.08 0.49 0.07

V[∆∗] 0.11 0.30 0.72 0.74 0.1 0.28 0.09 0.39
D 1.70 1.82 6.01 N/A 2.32 2.86 2.20 3.40

QD 0.01 0.01 0.06 N/A 0.01 0.01 0.01 0.01
D∗ 5.80 6.96 14.78 N/A 8.97 9.65 7.63 10.77
QD∗ (*) 0.03 0.04 0.15 N/A (*) 0.06 0.05 0.05 0.05

“N/A” indicates data not available from [KB00] or [KDW98]. We suspect the values marked
(*) are incorrect and may have resulted from typographical errors in [KDW98].

statistic X over the 20-element sample. In our view, D and D∗ are the least relevant statistics:

they may not be good indicators of performance, since they measure the error from the sample

path arrival count function, as opposed to the original mean value function. Such measures

cannot detect overfitting.

In the case of the periodic estimator for λ1(·), for example, our estimator stays quite close to

the actual mean value function, but deviates from the empirical arrival count. Instances in which

the spline estimators result in lower error statistics than reported in [KB00] and [KDW98] are

marked in boldface; we have not boldfaced any of the coefficients of variation. Note that

in nearly all cases, except for D and D∗, the spline estimators outperform those of [KB00]

and [KDW98], even though they employ a parametric model of the same form used to generate

the data. Our technique thus compares favorably with such prior work, especially considering

that our approach is nonparametric.
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Figure 2.11: The function λ1(t) and computed empirical 90% tolerance interval, with explicit
periodicity included in the spline model.
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Figure 2.12: The function λ1(t) and computed empirical 90% tolerance interval, with period-
icity not included in the spline model.
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Figure 2.13: λ2(t) and its associated empirical 90% tolerance interval.
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Figure 2.14: The function λ3(t) and its associated empirical 90% tolerance interval.



40

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2 2.5

log(time)

Meximum difference L1-norm L2-norm (scaled by 0.1)

Figure 2.15: Convergence of estimates to λ4(·).

2.4.4 Datasets generated from a known arrival rate function

We also used our own methodology to evaluate our approach’s effectiveness on data generated

from known arrival rate functions. In these experiments, we randomly generate datasets for

time periods of different lengths, using periodic arrival rate functions λ4(·) and λ5(·) with a

period of 1; λ4(·) is a cubic spline with 6 knots, while λ5(t) = 100(sin(2πt) + 1).

We estimated both of these functions with our method, using 6-knot splines. To measure the

accuracy of the resulting estimate λ∗(·), we computed the L1-norm, L2-norm and the maximum

of the absolute value of the difference λi(·) − λ∗(·), that is, for i = 4, 5,

L1,i =

∫1

0

∣∣λi(t) − λ∗(t)
∣∣dt L2,i =

(∫1

0

(
λi(t) − λ∗(t)

)2
dt

)1/2

L∞,i = max
t∈[0,1]

∣∣λi(t) − λ∗(t)
∣∣.

Figure 2.4.4 shows the results of these experiments for λ4(·), while Figure 2.4.4 displays the

results for λ5(·). In both figures, the horizontal axis shows the logarithm of the length of time

for which data were generated.

2.5 Conclusion and future work

We have demonstrated that it is computationally feasible to use recorded arrival data to compute

nonnegative cubic spline estimates for the arrival rates of nonhomogeneous Poisson processes.
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Figure 2.16: Convergence of estimates to λ5(·).

The problem reduces to a convex nonlinear programming problem which is consistently solved

to global optimality by the KNITRO software package, and also by a variety of other packages

if proper scaling is employed, as suggested in §2.3.3

There are a number of possible extensions which bear further investigation. One extension

is to model situations in which an arbitrary nonparametric cyclic intensity pattern modeled by

splines is combined with a long term growth or decay trend analogous to the
∑

i pit
i com-

ponent of (2.2). An additive trend is easily combined with our model, but a more desirable

multiplicative trend would require some modifications to our approach. It may be interesting to

try to identify techniques that would guarantee a global likelihood maximum in such settings.

Another issue is determining whether there is any significant practical benefit in departing

from the equidistant spline knot spacing we have used. Turning the spline knot positions {ai}

into additional decision variables in the nonlinear programming formulation results in a non-

linear integer model that is most likely intractable. However, if our cross-validation procedure

considered knot positions as well as just the number of knots m, there might be some benefit.

It is also interesting to consider whether our techniques may be extended to non-Poisson

models. In particular, in order to validate our approximate solutions statistically, we applied the

Kolmogorov-Smirnov goodness-of-fit test between the observed interarrival intervals and the

nonhomogeneous Poisson distribution function implied by our estimates of λ(·); see [GE01]
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and [GES03] for a more detailed discussion. For our e-mail dataset, the results of these tests are

poor for both the spline and traditional piecewise-constant estimates. The reason, we believe, is

that the e-mail arrival process displays some autocorrelation or “burstiness”. Specifically, some

e-mail messages provoke other messages to appear shortly afterwards. Such autocorrelation

occurs, for example, during “flame wars”, or when there is an ongoing discussion. An inter-

esting challenge is to devise a model which can take into account such effects in combination

with natural cyclic time variations, and estimate these time variations in a manner similar to the

techniques of this chapter.

We also note that our model can be extended to more general settings than polynomial

splines. The basic characterization of nonnegative functions that we have employed applies in

any functional space generated by a Tchebychev system {u1(·), . . . , um(·)}; see [KS66] for de-

tails. The log likelihood functional in this situation is still concave, and the cone of nonnegative

functions remains convex. In many important special cases, this cone may be SD-representable,

as in the case of the Tchebychev system generated by trigonometric polynomials of the form
∑

i ai sin(it) + bi cos(it) (in this case, the trigonometric moment cones are characterized by

positive semidefinite Töplitz matrices). For general Tchebychev systems, the cone of positive

functions may not be SD-representable, but there are still efficient barrier functions from which

practical interior point methods may be constructed; see [Fay02].

Finally, it is possible to consider extending our work to estimating multivariate probabil-

ity distributions and multivariate nonhomogeneous Poisson processes. For instance, we may

wish to estimate multivariate probability densities, or two- or three-dimensional arrival rates

in spatial Poisson processes. Most of the theory described in this chapter carries over to such

situations, with the notable exception of the nonnegativity requirement. It is in fact NP-hard

to decide whether a multivariate polynomial is nonnegative over a given region. However, it

may be possible to estimate nonnegative functions by polynomials that are weighted sums of

squares using the construction in [Nes00]. Thus, it could prove worthwhile to study thin-plate

multivariate polynomial splines made up of such sum-of-squares polynomials.



43

Chapter 3

Bilinear Optimality Constraints for the Cone of Positive
Polynomials

3.1 Introduction

In this chapter we examine the complementarity conditions for convex cones. In particular, we

are interested in those cones where complementarity can be expressed using bilinear relations.

Our main result is that the complementarity conditions for the cone of positive polynomials and

its dual, the closure of the moment cone over the real line, cannot be represented by bilinear

relations alone.

The cone of positive polynomials is a non-symmetric cone with many practical applications

such as shape-constrained regression and the approximation of nonnegative functions (see for

example [AENR08, PA08]).

It is well-known that positive polynomials over the real line are precisely those polynomials

that can be written as the sum of squares of other polynomials. This property directly leads to

the expression of the cone of positive polynomials as a linear image of the cone of positive

semidefinite matrices, see for example [Nes00]. For instance, optimization over the cone of

positive polynomials of degree 2n can be expressed as the dual of a semidefinite program over

n × n Hankel matrices [DS97]. However, this approach may significantly increase the size

of the problem and introduce degeneracy. This motivates us to look for solution methods and

optimality conditions which directly apply to the cone of positive polynomials.

As a first step we wish to find as simple complementary slackness conditions as is possible

for the positive polynomials and the moment cones. For instance, in linear programming com-

plementary slackness conditions are given by xisi = 0 where xi are the primal variables and si

are the dual slack variables. In semidefinite programming (SDP) the complementary slackness
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theorem is given by XS + SX = 0, where, again, X is the primal matrix variable and S is the

dual slack matrix. Finally for second order cone programming (SOCP) we have 〈x, s〉 = 0

and s0xi + six0 = 0 (see the next section for more details). All of these relations are bilinear

in the primal and dual slack variables. This property turns out to be essential in the design of

primal-dual interior point algorithms. Furthermore, these bilinear forms make the machinery

of certain algebraic structures available to help the understanding and improvement of such

algorithms; this is especially true for SDP and SOCP.

According to a result of Güler, for every closed, pointed, convex cone K and its dual cone

K∗, the complementarity set C(K), that is, the set of vector pairs (x, s) ∈ R2n, where x ∈ K,

s ∈ K∗ and 〈x, s〉 = 0, is an n-dimensional manifold. In many cases, this fact translates to

a computationally tractable set of n equations fi(x, s) = 0 (i = 1, . . . , n), which form the

basis of complementary slackness theorems in optimization problems. Thus, it is an interesting

endeavor to seek the simplest and most natural expressions for such relations. In fact, if it is

at all possible to represent complementarity relations with bilinear forms, then that would be

ideal, because potentially primal-dual interior point algorithms can be designed for such cones.

Furthermore, bilinear relations induce algebras, and properties of these algebras may shed light

on the properties of these cones and optimization problems over them [?].

In this chapter we develop some techniques for proving that for certain cones, bilinear

relations are not sufficient to express complementary slackness. The method we apply relies

on results allowing the parametrization of the boundaries of these cones based on the theory of

Chebyshev systems [KS66].

The chapter is structured as follows: in Section 3.2 we present some fundamental concepts

and results related to complementarity for proper cones, and introduce the notion of algebraic

cones. In Section 3.3 we present a simple proof template for showing that cones are not alge-

braic. In the process we show a few simple cones that are not algebraic. We review necessary

background information about the cone of positive polynomials P2n+1 and its dual, the closure

of the moment cone M2n+1 in Section 3.4. Section 3.5 contains our main results concerning

bilinear optimality constraints where we show that for the cone positive polynomials there are

exactly four linearly independent bilinear complementarity relations.
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3.1.1 Notation

For a polynomial represented by the vector of its coefficients p = (p0, . . . , pn) the correspond-

ing polynomial function is denoted by p(t) = p0 + p1t + p2t
2 + · · ·+ pntn. For a real t ∈ R

and nonnegative integer n, cn+1(t) denotes the moment vector (1, t, . . . , tn)>.

Throughout the chapter we adopt the following convention: if for a range of indices the

lower bound is greater than the upper bound, the range is considered to be empty.

The convex hull of a set S ⊂ Rn is denoted by conv(S), the closure of S is denoted by S̄.

The linear space spanned by vectors v1, . . . , vk is denoted by span(v1, . . . , vk).

The inner product of vectors x and s is denoted by 〈x, s〉 = xTs.

The parity of an integer m is denoted by m (mod 2) =





0 if m is even

1 if m is odd
.

For a matrix A = (aij)m×n, vec(A)
def
= (a11, . . . , an1, a12, . . . , an2, . . . , amn)>. For two

column vectors u and v, their Kronecker product is defined to be u⊗ v
def
= vec(uv>).

3.2 Algebraic Cones

Let K be a proper cone in Rn (that is, a closed, pointed, and convex cone with nonempty

interior in Rn), and let

K∗ = {z | 〈x, z〉 ≥ 0, ∀ x ∈ K}

be its dual cone. A pair of vectors (x, s), x ∈ K, s ∈ K∗ is said to satisfy the complementary

slackness conditions with respect to K if 〈x, s〉 = 0. We are interested in the following set:

Definition 1 Let K be a proper cone, and K∗ its dual. Then the set

C(K) = {(x, s) | x ∈ K, s ∈ K∗, 〈x, s〉 = 0}

is called the complementarity set of K.

Since for every proper cone (K∗)∗ = K, it is immediate from the definition that C(K) and

C(K∗) are congruent: one can be obtained from the other by exchanging the first and last n

coordinates.
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Let us now recall the following basic geometric fact, which will be necessary to prove an

important result underlying the complementary slackness theorems for all convex optimization

problems.

Proposition 1 Let S ⊆ Rn be a closed convex set and a ∈ Rn. Then there is a unique point

x = ΠS(a) in S, called the projection of a to S, which is closest to a, i.e., there is a unique

point x ∈ S such that x = argminy∈S ‖a − y‖. Furthermore, if S is a closed convex cone, then

〈x, x − a〉 = 0.

The proof of the following theorem is due to O. Güler [Gül97].

Theorem 2 For each proper cone K in Rn, C(K) is an n-dimensional manifold homeomor-

phic to Rn.

Proof: We need to show a continuous bijection between the complementarity set C(K) of K

and Rn, whose inverse is also continuous.

Let ϕ : Rn → Rn × Rn be defined by ϕ(a) = (x, s), where x = ΠK(a) and s = x − a.

Clearly ϕ is continuous; we first show that ϕ(a) ∈ C(K) for every a. By definition ΠK(a) ∈
K, and by the above proposition 〈x, s〉 = 0. It remains to show that s ∈ K∗.

For an arbitrary u ∈ K \ {x}, define the convex combination uα = αu + (1 − α)x where

0 ≤ α ≤ 1, and let ζ(α) = ‖a−uα‖2. Then ζ is a differentiable function on the interval [0, 1],

and min0≤α≤1 ζ(α) is attained at α = 0. Hence dζ
dα

∣∣
α=0

≥ 0.

Now, using 〈x, s〉 = 0, we have

dζ

dα

∣∣∣∣
α=0

= 2〈s,u − x〉 = 2〈s,u〉 ≥ 0

for every u ∈ K \ {x}. Note that the inequality 〈s, u〉 ≥ 0 also holds for u = x, implying

〈s, u〉 ≥ 0 for every u ∈ K. Therefore s ∈ K∗.

Consider now the continuous function ϕ̄ : C(K) → Rn defined by ϕ̄(x, s) = x − s. To

conclude the proof we show that ϕ̄◦ϕ = ιRn and ϕ◦ϕ̄ = ιC(K) , where ιS denotes the identity

function of the set S. The first one is easy:

(ϕ̄ ◦ϕ)(a) = ϕ̄ (ΠK(a), ΠK(a) − a) = a.

To show ϕ ◦ ϕ̄ = ιC(K), it suffices to prove that ΠK(x − s) = x for every (x, s) ∈ C(K).
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Suppose on the contrary that there is a point u ∈ K such that ‖a − u‖ < ‖a − x‖, where

a = x − s. Then, again using 〈x, s〉 = 0,

0 > 〈a−u, a− u〉− 〈a − x, a− x〉 = 〈x− s− u, x− s −u〉− 〈s, s〉 = ‖x−u‖2 + 2〈s, u〉,

in contradiction with 〈s,u〉 ≥ 0, which completes the proof.

To see the implications of this result for optimization problems over affine images or pre-

images of proper cones, consider the following pair of dual cone-LP problems:

Primal

inf 〈c, x〉
s.t. Ax = b

x ∈ K

Dual

sup 〈y,b〉
s.t. A>y + s = c

s ∈ K∗

(3.1)

It is easy to see that for any feasible solution x of the Primal problem and any feasible solution

(y, s) of the Dual problem the quantities 〈c, x〉− 〈y, b〉 and 〈x, s〉 are equal and nonnegative.

The strong duality theorem for cone-LP problems states the following: Under certain regularity

conditions, if both the Primal and Dual problems are feasible, then inf and sup can be replaced

by min and max. Moreover, the optimal objective values are equal, i.e., 〈c, x∗〉 − 〈y∗, b〉 =

〈x∗, s∗〉 = 0. It follows that at the optimum we have (x∗, s∗) ∈ C(K). Since C(K) ∈ R2n is

n-dimensional, it is often possible to obtain a square system of equations

Ax = b

A>y + s = c

fi(x, s) = 0 for i = 1, . . . , n,

(3.2)

where fi(x, s) = 0 are the complementarity equations. Many primal-dual algorithms for linear,

second order and semidefinite programming problems, are based on strategies for solving this

system of equations.

Let us examine some familiar examples.

Example 1 (Nonnegative orthant) When K is the nonnegative orthant, K∗ = K. In this case

if x and s contain only nonnegative components, and 〈x, s〉 = 0, then we must have xisi = 0

for i = 1, . . . , n. This is the basis of the familiar complementary slackness theorem in linear

programming.
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Example 2 (Positive semidefinite cone) If K is the cone of real, symmetric positive semidef-

inite matrices, then K∗ = K. If both X and S are real symmetric positive semidefinite matrices,

and 〈X, S〉 =
∑

ij XijSij = 0, then it is easy to show that the matrix product XS = 0, or equiva-

lently XS + SX = 0. This is the basis of the complementary slackness theorem in semidefinite

programming.

Example 3 (Second order cones) Let K ∈ Rn+1 be the cone defined by all vectors x such

that x0 ≥ ‖x‖, where x = (x0, x1, . . . , xn), x = (x1, . . . , xn), and ‖ · ‖ is the Euclidean norm.

This cone is also self-dual. Now if x, s ∈ K and 〈x, s〉 = 0, then from Cauchy-Schwarz-

Bunyakovsky inequality it follows that x0si +xis0 = 0 for i = 1, . . . , n. These relations along

with 〈x, s〉 = 0 are the basis of the complementary slackness theorem for the second order

cone programming problem.

Example 4 (Lp cones) Generalizing the previous example, suppose instead the cone Kp con-

sists of vectors x such that x0 ≥ ‖x‖p, where ‖ ·‖p is the Lp norm for some real number p > 1.

Then it is known that the dual cone is Kq where 1
p + 1

q = 1. In this case one can deduce from

Hölder’s inequality that if x ∈ Kp and s ∈ Kq and 〈x, s〉 = 0, then s
q
0 |xi|

p − x
p
0 |si|

q = 0 for

i = 1, . . . , n.

Example 5 (L1 and L∞ cones) A limiting case of the previous example is when p = 1 (and

thus q = ∞). Here K1 consists of vectors x such that x0 ≥ |x1| + · · ·+ |xn|, and K∞ consists

of vectors s where s0 ≥ maxi |si|. In this case, if x ∈ K1, s ∈ K∞ and 〈x, s〉 = 0, then

xi(s0 − |si|) = 0 for i = 1, . . . , n.

Recall that an algebra is a linear space with an additional multiplication operation: x·y = z

defined on its vectors. The main requirement is that the components of z be expressed as bi-

linear functions of x, and y; in algebraic terms this multiplication must satisfy the distributive

law. Therefore, there are matrices Qi such that zi = x>Qiy. If for a cone the complementarity

relations can be exclusively expressed by bilinear forms, then, since these bilinear forms also

define an algebra with multiplication, say “·”, the complementarity relations may be charac-

terized by x · s = 0. The machinery of this algebra may be useful in studying optimization

problems over these cones. This motivates the following definitions.
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Definition 2 Let K ∈ Rn be a proper cone. The n × n matrix Q is a bilinear optimality

condition for K if every (x, s) ∈ C(K) satisfies x>Qs = 0.

Note that the set of all bilinear optimality conditions for K, denoted by Q(K), is a linear

subspace of Rn×n.

Definition 3 A proper cone K ⊆ Rn is called algebraic if there exist at least n linearly inde-

pendent bilinear optimality conditions for K.

Remark 1 An algebraic cone K ⊆ Rn may have more than n bilinear optimality condi-

tions, as the following example shows. Let K be the three-dimensional second order cone

(see Example 3), and let

Q1 =




1 0 0

0 1 0

0 0 1




, Q2 =




0 1 0

1 0 0

0 0 0




, Q3 =




0 0 1

0 0 0

1 0 0




, Q4 =




0 0 0

0 0 1

0 −1 0




.

Then every (x, s) ∈ C(K) satisfies x>Qis = 0, i = 1, 2, 3, 4. These four equations are linearly

independent.

Since C(K) and C(K∗) are congruent, the cone K∗ is algebraic if and only if K is.

From the examples above we observe that the cones in Examples 1, 2, and 3 are algebraic.

Note that in Example 5, even though K1 and K∞ are polyhedral, the complementarity relations

are not completely bilinear due to the absolute values. In Theorem 3 we show that K1 and K∞

do not have any non-trivial bilinear complementarity relations.

The largest class of cones known to be algebraic are the symmetric cones. These are cones

that are self-dual and homogeneous (that is, for any two points in the interior of the cone, there

is a linear automorphism of the cone mapping the first point to the second one [FK94]). The

cones in Examples 1, 2, and 3 are all symmetric. In addition, the cones of positive semidefinite

complex Hermitian and quaternion Hermitian matrices are also symmetric. The second order

cone, and the cones of positive semidefinite symmetric, complex Hermitian and quaternion

Hermitian matrices, along with an exceptional 27 dimensional cone, are essentially the only

symmetric cones; any other symmetric cones can be decomposed into direct sums of these five

classes of cones.
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Symmetric cones are intimately related to Euclidean Jordan algebras, see [FK94] and

[Koe99]. In such algebras the binary operation “◦” is the abstraction of the operation X ◦ S =

XS+SX
2 in matrices. The properties of these algebras have played a major role in all aspects of

optimization over such cones. In particular, design and analysis of interior point algorithms,

duality, complementarity, and design of numerically efficient algorithms have been greatly sim-

plified using the machinery of Jordan algebras. This is particularly true in the design of primal-

dual interior point algorithms [Fay97], [AS00].

There is an easy way to manufacture algebraic cones from other algebraic cones.

Definition 4 The proper cones K and L are algebraically equivalent if there is a nonsingular

(one-to-one and onto) linear transformation A such that AK = L.

If two cones are algebraically equivalent, then one is algebraic if and only if the other one

is. In fact, in the next section we introduce the concept of bilinearity rank of a cone and prove

that this rank is invariant among all algebraically equivalent cones.

In the next two sections we develop techniques to prove certain cones are not algebraic.

3.3 A simple approach for proving cones are not algebraic

Recall that Q(K) denotes the linear space of all bilinear optimality conditions for K, and con-

sider the linear space

L(K)
def
= span{sx> | (x, s) ∈ C(K)}.

Proposition 2 For every proper cone K we have

dim(Q(K)) = co-dim(L(K)).

Proof: Follows immediately from the identity x>Qs = 〈sx>, Q>〉.
Since by definition X ∈ L(K) implies trace X = 〈X, I〉 = 0, the co-dimension of L(K) as

a subspace of Rn×n is at least 1. Now if there are m linearly independent bilinear forms Qi

such that 〈X,Qi〉 = 0 for all X ∈ L(K), then co-dim(L(K)) ≥ m. Therefore, if we show

n2 − k linearly independent matrices X ∈ L(K), then this proves that there can be at most

k bilinear forms in any characterization of C(K). In particular, K is algebraic if and only if
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co-dim(L(K)) ≥ n. Note that, as Remark 1 shows, it is possible that co-dim(L(K)) > n for

an algebraic cone K.

Definition 5 The quantity dim(Q(K)) = co-dim(L(K)) is called the bilinearity rank of K and

is denoted by β(K).

The manifolds C(K) and C(K∗) are congruent for every proper cone K, implying β(K) =

β(K∗). Furthermore, we have:

Lemma 1 If K and L are algebraically equivalent proper cones then β(K) = β(L).

Proof: Let A be a nonsingular linear transformation such that AK = L. Then the dual cone of

AK is the cone A−>K∗. Furthermore, Qi (i = 1, . . . , m) define linearly independent bilinear

complementarity conditions for K if and only if A−>QiA
> (i = 1, . . . , m) define linearly

independent bilinear complementarity conditions for AK.

To derive our main results, we use the following simple fact.

Proposition 3 If there are k pairs of vectors (xi, si) ∈ C(K) for i = 1, . . . , k, such that the

matrices six
>
i are linearly independent, then β(K) ≤ n2 − k. In particular, if k > n2 − n,

then K is not algebraic.

These results lead to the following template for proving certain cones are not algebraic:

Suppose K is a proper cone in Rn.

Step 1 Select a finite set S of orthogonal pairs of vectors (x, s), where x is a boundary vector

of K and s is a boundary vector of K∗.

Step 2 Form the matrix T whose rows are x⊗ s = vec(sx>), (x, s) ∈ S.

Step 3 If rank T > n2 − n, then K is not algebraic. More generally, β(K) ≤ n2 − rank T .

To see how this template works let us show that the dual cones K1, K∞ ⊆ Rn+1 from Example

5 are not algebraic for n ≥ 2.

Theorem 3 β(K1) = β(K∞) = 1.
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Proof: As before, we assume that vectors are indexed from zero. We begin by introducing the

following notation:

• ei = (0, . . . , 0, 1, 0 . . . , 0)> ∈ Rn+1, with the single nonzero element in the ith position

(i = 0, . . . , n),

• f = (1, . . . , 1) ∈ Rn+1,

• fi = (1, . . . , 1, −1, 1, . . . , 1) ∈ Rn+1, with all entries equal to 1 except in the ith position

(i = 0, . . . , n),

• fij = (1, . . . , 1,−1, 1, . . . , 1,−1, , 1, . . . 1) ∈ Rn+1 with all entries equal to 1 except in

the ith and jth positions (i, j = 0, . . . , n).

The extreme rays of K1 are the 2n vectors e0 ± ei (i = 1, . . . , n), while the extreme

rays of K∞ are the 2n vectors of the form (1,±1,±1, . . . ,±1)>. Specifically, for every i, j =

1, . . . , n, the vectors f, fi, and fij are among the extreme vectors of K∞.

Let the set S (as described in Step 1 of the previous template) consist of the following

orthogonal pairs (x, s) from C(K1):

• (e0 + ei, fi), i = 1, . . . , n,

• (e0 − ei, f), i = 1, . . . , n,

• (e0 + ei, fij), i, j = 1, . . . , n, i 6= j,

• (e0 − ei, fj), i, j = 1, . . . , n, i 6= j,

and let the matrix T be constructed as in Step 2. The following vectors can be obtained as linear

combinations of the rows of T .

r0j = e0 ⊗ ej =
1

4

(
(e0 + e1)⊗ f1 − (e0 + e1)⊗ f1j + (e0 − e1)⊗ f − (e0 − e1)⊗ fj

)
j = 1, . . . , n,

rij = ei ⊗ ej =
1

4

(
(e0 + ei)⊗ fi − (e0 + ei)⊗ fij − (e0 − ei)⊗ f + (e0 − ei)⊗ fj

)
i, j = 1, . . . , n, i 6= j

rii = −e0 ⊗ e0 + ei ⊗ ei =
∑

1≤j≤n
j 6=i

r0j −
1

2

(
(e0 + ei)⊗ fi + (e0 − ei)⊗ f

)
, i = 1, . . . , n

ri0 = ei ⊗ e0 = −(e0 + ei)⊗ f +

n∑

j=1

r0j −
∑

1≤j≤n
j 6=i

rij − rii, i = 1, . . . , n.
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Let R ∈ R[(n+1)2−1]×(n+1)2
denote the matrix consisting of rows r01, r02, . . . , r0n, r10, . . . , rnn.

Notice that by deleting the first column of R we obtain the identity matrix I(n+1)2−1. The rows

of R were obtained as linear combinations of the rows of T , which in turn implies rank T ≥
(n + 1)2 − 1. In accordance with Step 3 of the previous template this completes the proof.

The template we used to prove Theorem 3 is a special case of the following, formally more

general, framework:

Step 1 Select a set S of orthogonal pairs of vectors (x, s), where x is a boundary vector of K

and s is a boundary vector of K∗.

Step 2 Consider the set T = {x⊗ s | (x, s) ∈ S}.

Step 3 If dim(span(T)) > n2 − n, then K is not algebraic. More generally, β(K) ≤ n2 −

dim(span(T)).

After presenting some necessary structural results in Section 3.4, we shall use these steps

to prove our main results in Section 3.5.

3.4 Positive Polynomials and Moment Cones

Let us first introduce the cones of positive polynomials and moment cones:

Definition 6 The cone of positive polynomials (also referred to as cone of nonnegative poly-

nomials) of degree 2n

P2n+1
def
=

{
(p0, . . . , p2n) ∈ R2n+1 | p(t) = p0 + p1t + p2t

2 + · · ·+ p2nt2n ≥ 0 ∀t ∈ R
}

consists of the coefficient vectors of nonnegative polynomials of degree 2n. The moment cone

of dimension 2n + 1 is defined as

M2n+1
def
= conv ({c2n+1(t) | t ∈ R}) , where c2n+1(t)

def
= (1, t, t2, . . . , t2n)>.

Remark 2 This is not the traditional definition of the moment cone. See [KS66] (Ch.VI) for

the original definition and proof of its equivalence with the one given above.

The cone of positive polynomials and the moment cone are closely related [KS66]:
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Proposition 4 P∗2n+1 = M̄2n+1.

We will repeatedly use the following simple observation.

Proposition 5 If p ∈ Rn+1 is the coefficient vector of a polynomial p, and t is real number,

then p(t) = 〈p, cn+1(t)〉. In particular, p(t) = 0 if and only if 〈p, cn+1(t)〉 = 0.

In order to use the templates presented in Section 3.3 and prove that a cone K is not alge-

braic, it is useful to know the boundary or extreme rays of the cones K and K∗. The extreme

rays of M2n+1 are well known:

Proposition 6 ( [KS66])

The extreme vectors of M2n+1 are the vectors αc(t) for every α > 0 and t ∈ R, and the

vectors (0, . . . , 0, α)> for every α ≥ 0.

Finally, in the subsequent sections we will also use the following observation:

Proposition 7 ( [KS66])

Every root of a nonnegative polynomial in P2n+1 is a multiple root with even multiplicity.

3.5 Main Results

In this section we show our main result, namely that the cone of positive polynomials over the

real line is not algebraic. Moreover, we give the exact bilinearity rank of this cones.

To prove our main results we need the following elementary fact from linear algebra.

Lemma 2 Let k be a positive integer and let B = {b1, . . . , bk} be a set of linearly independent

vectors in a real vector space. For a set {m1, . . . , mk} ⊂ span(B) consider the coordinates

αi,j ∈ R (i, j = 1, . . . , k) uniquely defined by the representations mi =
∑k

j=1 αi,jbj. (We refer

to this as the B-representation of mi.) If the conditions

αi,i 6= 0 for all 1 ≤ i ≤ k,

αi,j = 0 for all 1 ≤ i < j ≤ k

hold, then the set {m1, . . . mk} is also linearly independent.
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Proof: The claim follows immediately from the observation that the matrix (αi,j)k×k is lower

triangular with a nonzero diagonal, and hence non-singular.

We are going to use the following, formally more general version of the above lemma:

Corollary 1 Let B ⊂ R[x1, . . . , xn] be a finite set of linearly independent polynomials and

consider a set M ⊂ span(B) with coordinates αm,b (m ∈ M, b ∈ B) defined by the repre-

sentations m =
∑

b∈B αm,bb. Assume that there exists an injection ϕ : B → M and a linear

order ≺ on ϕ(B) such that

αϕ(b),b 6= 0 for all b ∈ B,

αϕ(b),d = 0 for all b, d ∈ B satisfying ϕ(b) ≺ ϕ(d).

Then dim (span (M(Rn))) = |B|, where M(Rn)
def
= {(m(x))m∈M | x ∈ Rn}.

Proof: Let k = |B|. It is well known that for a vector P = (p1, . . . , pk) ∈ (R[x1, . . . , xn])k

consisting of linearly independent polynomials we have dim (span (P(Rn))) = k, therefore it

suffices to find a k-element linearly independent subset of M. As ϕ is injective, there exists

an indexing B = {b1, . . . , bk} such that ϕ(b1) ≺ · · · ≺ ϕ(bk). Let mi = ϕ(bi) ∈ M (for

all i = 1, . . . , k). It is easy to verify that the sets {b1, . . . , bk} and {m1, . . . , mk} satisfy the

conditions of Lemma 2. Consequently the set {m1, . . . , mk} ⊂ M is linearly independent,

which implies our claim.

3.5.1 Positive polynomials over the real line

Theorem 4 The cone P2n+1 is not algebraic, unless n = 1. More specifically, for every n,

β(P2n+1) ≤ 4.

The second claim immediately implies the first. Note that when n = 1, we do have an

algebraic cone algebraically equivalent to the cone of 2× 2 positive semidefinite matrices.

Proof: Consider the matrix valued functions M : Rn 7→ R(2n+1)×(2n+1) defined as

M(t1, . . . , tn) = cp>,

where p ∈ P2n+1 is the coefficient vector of the polynomial p(x) =
∏n

k=1(x − tk)2, and

c = c2n+1(t1) = (1, t1, . . . , t
2n
1 ) is the moment vector corresponding to the first root of p. It
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is easy to verify that the entries of M = (mi,j)
2n
i,j=0 satisfy the polynomial equation

2n∑

j=0

mi,jx
j ≡ ti

1

n∏

k=1

(x − tk)2. (3.3)

The polynomial p(x) is clearly nonnegative everywhere, and c is a moment vector, further-

more, by Proposition 5, 〈p, c〉 = 0. Therefore, following the general template of Section 3.3

(with p and c playing the roles of x and s, and M(Rn) playing the role of T), the theorem

follows if dim(span(M(Rn))) = (2n + 1)2 − 4. We show this equality using the sufficient

condition presented in Corollary 1, with the set {mi,j} playing the role of set M.

Let us define the n-variate polynomials Π(k, `) by

Π(k, `)(t1, . . . , tn)
def
=

∑

0≤α2,...,αn≤2
α2+···+αn=`

tk
1

n∏

j=2

2(αj mod 2)t
αj

j , (3.4)

whenever 0 ≤ k ≤ 2n + 2 and 0 ≤ ` ≤ 2n − 2; for values of k and ` outside these ranges

let us define Π(k, `) to be the zero polynomial. Let B denote the set {Π(k, `) | 0 ≤ k ≤
2n + 2, 0 ≤ ` ≤ 2n − 2}. It follows from the definition that |B| = (2n + 1)2 − 4, and that B

is linearly independent, because no two polynomials share a common monomial. It remains to

show that M is indeed a subset of span(B), and exhibit the injection ϕ and the linear order ≺
of Corollary 1.

The coefficient of x2n−k−` in the polynomial
∏n

j=1(x − tj)
2 is

∑2
k=0 Π(k, `). From this

observation it follows immediately that span(B) contains the entries of M; more specifically,

for every 0 ≤ i, j ≤ 2n,

mi,j = Π(i, 2n − j) + Π(i + 1, 2n − 1 − j) + Π(i + 2, 2n − 2 − j). (3.5)

We now introduce an injection ϕ : B 7→ M by defining its inverse (where it exists): let mi,j

be the image of the polynomial

ϕ−1(mi,j) = qi,j
def
=





Π(i, 2n − j) j ≥ max{2, i}

Π(i + 2, 2n − 2 − j) j ≤ min{i − 1, 2n − 2}

not defined otherwise

. (3.6)

In particular, we assign a polynomial to each entry mi,j of M except for m0,0, m0,1, m1,1, and

m2n,2n−1, and we assign different polynomials to different entries of M, because if qi1,j1 =
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qi2,j2 for some (i1, j1) 6= (i2, j2) and i1 ≤ j1, then j1 ≥ i1, i2 − 1 ≥ j2, i1 = i2 + 2, and

2n − j1 = 2n − 2 − j2, a contradiction, as the sum of these inequalities reduces to −1 ≥ 0.

Consequently, each Π(k, `) is equal to qi,j for precisely one pair (i, j), therefore ϕ is indeed an

injection.

Equation (3.5) shows that the coefficient of qi,j in the B-representation of mi,j is 1, so using

the notation of Corollary 1, αϕ(Π(k,`)),Π(k,`) = 1 for all Π(k, `) ∈ B.

Let us define a linear order Â on ϕ(B) in the following way: mi1,j1 Â mi2,j2 precisely

when one of the following three conditions holds:

1. i1 − j1 ≥ 1 > i2 − j2;

2. i1 − j1 ≥ 1, i2 − j2 ≥ 1, and either i1 > i2, or i1 = i2 but j1 < j2;

3. i1 − j1 < 1, i2 − j2 < 1, and either j1 < j2, or j1 = j2 but i1 > i2.

An easy case analysis using Equations (3.5) and (3.6) shows that if mi1,j1 Â mi2,j2 , then the

coefficient of qi1,j1 in the B-representation of mi2,j2 is zero:

1. If i1−j1 ≥ 1 > i2−j2, then Equations (3.5) and (3.6) show that the three terms of mi1,j1

have higher degree than those of mi2,j2 , so in particular Π(i1 + 2, 2n − 2 − j1) does not

appear in the B-representation of mi2,j2 .

2. If both i1 − j1, i2 − j2 ≥ 1, then i1 + 2 > i2 + 2 or 2n − 2 − j1 > 2n − 2 − j2, and by

Equation (3.5) Π(i1 + 2, 2n − 2 − j1) does not appear in the B-representation of mi2,j2 .

3. If both i1 − j1, i2 − j2 ≤ 0, then i1 > i2 or 2n − j1 > 2n − j2, and by Equation (3.5),

Π(i1, 2n − j1) does not appear in the B-representation of mi2,j2 .

The injection mi,j 7→ qi,j and the linear order Â satisfy the conditions of Corollary 1,

therefore, by Equation (3.6),

dim(span(M(Rn))) =
∣∣B∣∣ = (2n + 1)2 − 4,

which completes the proof.
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3.5.2 Lower bounds

To simplify the proof of the validity of bilinear optimality conditions, we will use the following

lemma.

Lemma 3 The bilinear optimality condition x>Qs = 0 is satisfied by every (x, s) ∈ C(K) if

and only if it is satisfied by every (x, s) ∈ C(K) such that x is an extreme vector of K and s is

an extreme vector of K∗.

Proof: The only if direction is obvious. To show the converse implication, observe that every

x ∈ K and s ∈ K∗ can be expressed as a sum of finitely many extreme vectors of K and K∗,

respectively. Furthermore, if x =
∑k

i=1 xi and s =
∑`

j=1 sj, then 〈x, s〉 = 0 if and only if

〈xi, sj〉 = 0 for every 1 ≤ i ≤ k, 1 ≤ j ≤ `. Therefore, if 〈x, s〉 = 0, and the optimality

condition is satisfied by every orthogonal pair of extreme vectors, then 〈xi, sj〉 = 0 for every

1 ≤ i ≤ k, 1 ≤ j ≤ `, and

x>Qs =

(
k∑

i=1

xi

)>

Q


∑̀

j=1

sj


 =

k∑

i=1

∑̀

j=1

x>i Qsj = 0.

We are now ready to show that the upper bound on the number of linearly independent

bilinear optimality conditions given in Theorem 4 is sharp.

Theorem 5 For every integer n ≥ 1, β(P2n+1) = 4.

Proof: We have already proven β(P2n+1) ≤ 4. Now we prove that the following bilinear

optimality conditions satisfied by every (p, c) ∈ C(P2n+1):

2n∑

i=0

pici = 0, (3.7a)

2n∑

i=1

ipici−1 = 0, (3.7b)

2n−1∑

i=0

(2n − i)pici = 0, (3.7c)

2n−1∑

i=0

(2n − i)pici+1 = 0. (3.7d)
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It is easy to see that these conditions are indeed linearly independent. By Lemma 3 it is

enough to show that the conditions are satisfied for pairs of vectors (p, c) ∈ C(P2n+1) where

c is an extreme vector of M̄2n+1.

If c = c2ne2n = (0, . . . , 0, c2n) with some c2n > 0 and 〈p,e2n〉 = 0, then (3.7a), (3.7b),

and (3.7c) trivially hold, since all the terms on the left-hand sides these equations are zeros.

Furthermore, the left-hand side of (3.7d) simplifies to p2n−1c2n, which must be zero, because

otherwise p2n−1 6= 0, p2n = 0, and p would be a polynomial of odd degree, which cannot be

nonnegative over the entire real line.

If c is an extreme vector of M2n+1, then, by Proposition 5, c = c(t0) for some t0 ∈ R, and

c is orthogonal to p if and only if p(t0) = 0. But this equation is equivalent to (3.7a), since

p(t0) =

2n∑

i=0

pit
i
0 =

2n∑

i=0

pici.

By Proposition 7, every root of p has even multiplicity, therefore (p, c) ∈ C(K) implies

p ′(t0) = 0, which is equivalent to (3.7b), as

p ′(t0) =

2n∑

i=1

piit
i−1
0 =

2n∑

i=1

ipici−1.

Furthermore, if p(t0) = p ′(t0) = 0, then 2np(t0) − t0p
′(t0) = 0, which translates to (3.7c),

since

2np(t0) − t0p
′(t0) =

2n∑

i=0

2npit
i
0 −

2n∑

i=1

piit
i
0 =

2n∑

i=0

2npici −

2n∑

i=1

ipici =

2n∑

i=0

(2n − i)pici.

Finally, p(t0) = p ′(t0) = 0 also implies 2nt0p(t0) − t2
0p

′(t0) = 0, which is equivalent to

(3.7d):

2nt0p(t0)−t2
0p

′(t0) =

2n∑

i=0

2npit
i+1
0 −

2n∑

i=1

piit
i+1
0 =

2n∑

i=0

2npici+1−

2n∑

i=1

ipici+1 =

2n−1∑

i=0

(2n−i)pici+1.

3.6 Conclusion and recent results

Our main motivation for this research came from our work on solving statistical nonparametric

estimation problems using polynomials and polynomial splines where the estimated functions
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themselves required to be nonnegative, [AENR08] and [PA08]. Our goal was to see if there is

an easier way than formulating these problems as semidefinite programs. In particular are there

efficient algorithms for cone-LP problems over positive polynomials? This questions led us to

consider the simplest form of complementarity relations for positive polynomials, and we have

found that bilinear complementarity relations alone are not sufficient.

As mentioned before, the results of this chapter originally appeared in [NRA05]. The re-

vised framework presented here can also be used to prove similar results for positive polyno-

mials over finite intervals and, using algebraic equivalence, several other cones of functions.

Below we provide a quick overview of these recent developments, more details can be found

in [NRAP].

Definition 7 For real numbers a < b, the cone of positive polynomials (or nonnegative poly-

nomials) over the interval [a, b] of degree n is the cone

P
[a,b]
n+1

def
=

{
(p0, . . . , pn) ∈ Rn+1 | p(t) = p0 + p1t + p2t

2 + · · ·+ pntn ≥ 0 ∀t ∈ [a, b]
}

.

The proof of the following result is similar to that of Theorems 4 and 5, although the computa-

tions are more complicated as case analysis becomes necessary.

Theorem 6 The cone P
[a,b]
n+1 is not algebraic. More specifically, for every n, β(P

[a,b]
n+1 ) = 2.

Using Lemma 1 we can extend our results to include cones which are algebraically equiva-

lent to cones with a known bilinearity rank.

Theorem 7 The cone P
[0,∞]
n+1 of polynomials non-negative over the half-line is algebraically

equivalent to P
[0,1]
n+1. Therefore β

(
P[0.∞]

)
= 2 for every n ∈ N.

Theorem 8 The cone of positive trigonometric polynomials of degree 2n

P
trig
2n+1 =

{
r ∈ R2n+1 | r0 +

n∑

k=1

(
r2k−1 cos(kt) + r2k sin(kt)

) ≥ 0 for all t ∈ R
}

is algebraically equivalent to P2n+1. Therefore, β
(
P

trig
2n+1

)
= 4 for every n ∈ N.

The central question remaining open is whether there are algebraic cones other than sym-

metric cones and their algebraic equivalents?
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Another direction is to investigate more sets of cones and estimate their bilinearity rank. For

example one can examine all cones of positive functions over Chebyshev systems, and cones

of functions of several variables which can be expressed as sums of squares of functions over a

given finite set of functions.
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Chapter 4

Optimization with Second Order Stochastic Dominance
Constraints

4.1 Introduction

Our objective is to develop new approaches to stochastic optimization problems with a con-

straint in the form of the second order stochastic dominance relation. Such problems, intro-

duced and analyzed in [DR03, DR04a], are new models of risk-averse optimization, in which

risk aversion is expressed by the stochastic dominance constraint. Due to its specific structure,

the constraint poses new theoretical and computational challenges.

The relation of stochastic dominance (introduced in statistics in [Leh55, MW47] and in

economics in [HR69, QS62]) is defined as follows. Let X and Y be random variables on a

probability space (Ω, F, P) with distribution functions FX and FY , respectively. We say that X

dominates Y in the first order if FX(η) ≤ FY(η) for all η ∈ R, and we denote this relation by

X º(1) Y. An equivalent condition is that for every nondecreasing function u(·) one has

E[u(X)] ≥ E[u(Y)], (4.1)

provided the expected values above are finite.

For two integrable random variables X and Y, we say that X dominates Y in the second

order if
∫η

−∞ FX(t) dt ≤ ∫η
−∞ FY(t) dt for all η ∈ R, and we denote this relation by X º(2) Y.

An equivalent condition is that for every concave nondecreasing function u(·) condition (4.1)

holds true, provided that the expected values on both sides are finite.

We refer the readers to the monographs [MS02, SS94] for a modern view on the stochastic

dominance relations and other comparison methods for random outcomes.
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More generally, for an interval I ⊂ R let X º(2,I) Y denote the relation

∫η

−∞
FX(t) dt ≤

∫η

−∞
FY(t)dt, ∀ η ∈ I.

It is a relaxation of the second order dominance relation. If the interval I is compact, then

this relaxation allows us to overcome technical difficulties in dealing with the second order

dominance relation, as discussed in [DR03, DR04a]. If the interval I is reduced to one point,

then the relation X º(2,I) Y becomes the integrated chance constraint of [KH86].

An alternative representation of the second order dominance relation can be derived by

using the shortfall of a random variable X from a target η ∈ R, defined as max(0, η − X) (and

written compactly [η−X]+). By changing the order of integration one can easily verify that the

expected value of the shortfall is given by the formulaE([η−X]+) =
∫η

−∞ FX(t) dt. Therefore

we can rewrite the relation X º(2,I) Y in the following form:

E([η − X]+) ≤ E([η − Y]+), ∀ η ∈ I. (4.2)

Consider a stochastic model in which our decisions z ∈ Z affect a random outcome X =

G(z). We assume that z ∈ Z ⊂ Z, where Z is a Banach space and Z is a convex closed set.

The mapping G : Z → L1(Ω,F, P) is assumed to be continuous and concave in the sense that

for P-almost all ω ∈ Ω the function z 7→ [G(z)](ω) is concave. Finally, let f : Z → R be a

concave objective functional (for example, f(z) = EG(z)). We are interested in the following

problem

maximize
z

f(z)

subject to G(z) º(2,I) Y,

z ∈ Z.

(4.3)

Here Y ∈ L1(Ω,F, P) is a benchmark random outcome and I is an interval in R.

As the second order dominance relation carries over to expectations of concave nondecreas-

ing utility functions, no risk averse decision maker will prefer random outcome Y over random

outcome G(z) (if I = R). Therefore, if the benchmark outcome Y represents an “acceptable”

risk exposure, the risk exposure of G(z) is even “more acceptable.” Furthermore, suppose that

the objective functional is monotone (consistent) with respect to the second order stochastic

dominance relation, as defined in [OR99,OR01,OR02]: G(z ′) º(2) G(z) ⇒ f(z ′) ≥ f(z). For
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example, we may use f(z) = E[G(z)] or f(z) being a negative of a coherent measure of risk. If

the solution of problem (4.3) is unique, then no other feasible outcome G(z ′) can strictly dom-

inate the solution G(z) (see [OR99, OR01, OR02]). The essence of the approach via stochastic

dominance constraints is that the distribution of the outcome G(z) is indirectly shaped by the

distribution of the benchmark Y, which may also be an artificially constructed random variable.

Reference [NR08] illustrates this modeling flexibility on an example of a portfolio problem.

The papers [DR03,DR04a] provide optimality and duality theory for problem (4.3) in which

Lagrange multipliers associated with the dominance constraints are identified with concave

nondecreasing utility functions. In [DR06a] an equivalent inverse form of the second order

stochastic dominance constraint was analyzed and it was shown that it is equivalent to a con-

tinuum of Conditional (Average) Value at Risk constraints [RU02]. Moreover, Lagrange mul-

tipliers associated with the inverse form of stochastic dominance constraints were identified

in [DR06a] with concave rank dependent utility functions of the dual utility theory [Yaa87]. In

this way, model (4.3) is related to several classical models of risk averse decision making.

However, efficient solution of problem (4.3), even in the finite dimensional linear case,

remains a challenge.

In what follows we focus on the stochastic dominance constraint G(z) º(2,I) Y as the novel

element in model (4.3), leaving aside considerations about possible objective functionals. We

also remark that setting the problem in a Banach space Z does not lead to any significant tech-

nical difficulties, as compared to the finite dimensional case Z = Rn. Moreover, we hope to

apply our formulation to multistage stochastic optimization problems, with Z representing the

space of policies, which is usually modeled as a subspace of the space of integrable functions

(see [RS03]).

Using (4.2) we obtain a more explicit formulation of (4.3):

maximize
z

f(z)

subject to E([η − G(z)]+) ≤ E([η − Y]+), ∀ η ∈ I.

z ∈ Z.

(4.4)

When the functions f(·) and G(·) are affine and the set Z is a convex closed polyhedron, in

§4.2 we develop a linear programming formulation of problem (4.4). But even in the finite
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dimensional case, this problem is difficult to solve, because its size grows quadratically with

the number of the elementary events considered.

Another approach to (4.4) is the dual method of [DR04a]. It is a specialized nonsmooth

optimization algorithm applied to the dual problem, in the space of concave nondecreasing

functions playing the role of Lagrange multipliers associated with the dominance constraint.

While efficient for some problems, especially portfolio problems of [DR06b], the dual method

is rather complicated.

Our objective is to develop new efficient linear programming formulations, which exploit

the specific structure of the stochastic dominance constraint in cut generation schemes. This

results in a significant increase of the size of computationally tractable problems, as well as

in a speedup in the solution of smaller instances. Furthermore, for problems with first order

stochastic dominance constraints G(z) º(1) Y, which are typically much more difficult, due to

the potential nonconvexity of the feasible region, model (4.3) serves as a powerful convex re-

laxation (see [DR04b,NRR06,NR08]). Thus, the speedup also benefits some advanced iterative

methods of [NR08] for problems with first order constraints.

In §4.2 and §4.3 we present a primal cutting plane method based on formulation (4.4). In

§4.4 we develop a new version of the duality theory for an extended reformulation of problem

(4.4). In §4.5 we show how a reduction of the number of variables in the dual problem can be

achieved by employing Strassen’s theorem about the existence of measures on product spaces

with given marginals. This leads to a dual cutting plane method of §4.7. Finally, in §4.8 we

present numerical results, along with performance comparisons of the various methods, for

portfolio optimization problems based on real data.

We remark that work to improve cutting plane methods for problems with second order

stochastic constraints is still ongoing; see [DR] for some recent advances.

4.2 A linear representation of the second order stochastic dominance constraint

In order to solve (4.3) it is necessary to represent the SSD relationº(2,I) in a tractable form. The

usual approach to achieve this is to introduce shortfall functions. In the finite dimensional case

they correspond to slack variables, but in the infinite dimensional case we need to introduce an
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appropriate space of the shortfall functions.

Denote by ` the Lebesgue measure on I, and let B be the σ-algebra of Borel subsets of I.

We denote the Banach space of continuous functions on I by C(I). Let S be the vector space

of all real-valued measurable functions s on (I × Ω, B × F, P × `) satisfying the following

conditions:

(i) for every η ∈ I the function s(η, ·) is an element of L1(Ω, F, P);

(ii) for P-almost all ω ∈ Ω the function s(·,ω) is an element of C(I);

(iii) the function ω 7→ maxη∈I |s(η,ω)| is an element of L1(Ω, F, P).

Owing to the Lebesgue theorem, the function w(η) =
∫

Ω s(η,ω)dP is an element of C(I). It

can be verified directly from the definition that S a Banach space with the norm

‖s‖ =

∫

Ω

max
η∈I

|s(η,ω)|dP.

Immediately from (4.2) we obtain the following observation.

Lemma 4 Assume that X, Y ∈ L1(Ω, F, P). Then X º(2,I) Y if and only if there exists a

nonnegative function s ∈ S such that

s(η, ω) ≥ η − X(ω), ∀ η ∈ I, ∀ ω ∈ Ω,
∫

Ω

s(η,ω) dP ≤
∫

Ω

[η − Y(ω)]+ dP, ∀ η ∈ I.

Let us introduce the notation v(η) = E([η−Y]+) =
∫

Ω[η−Y(ω)]+ dP for the shortfalls of

the benchmark variable. Applying Lemma 4, we can formulate another optimization problem

which is equivalent to (4.3):

maximize
z,s

f(z)

subject to
∫

Ω

s(η, ω) dP ≤ v(η), ∀ η ∈ I,

[G(z)](ω) + s(η,ω) ≥ η, ∀η ∈ I, ∀ ω ∈ Ω,

s ≥ 0,

z ∈ Z, s ∈ S.

(4.5)
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If the functional f(·) and the mapping G(·) are affine and the set Z is polyhedral, then problem

(4.5) becomes a linear programming problem in Banach spaces. When the distribution of the

benchmark outcome is discrete, one can restrict the range of η in (4.5) to the realizations of the

benchmark Y.

A potential drawback of the above approach is the introduction of the auxiliary variables

s(·, ·) indexed by the set I × Ω. As we shall see in §4.8, even in the finite dimensional case,

when Z = Rn and the probability space Ω is finite, formulation (4.5) may be impractical to

solve.

We now present an alternative representation which does not require additional variables

s(·, ·). It is an extension of the representation developed in [KHVDV06] for integrated chance

constraints.

Theorem 9 Assume that X, Y ∈ L1(Ω,F, P). Then X º(2,I) Y if and only if for all η ∈ I and

all events A ∈ F,

E ((η − X) 1A) ≤ v(η).

Proof: For every event A ∈ F

E ((η − X) 1A) ≤ E([η − X]+).

This inequality becomes an equation if A = {X < η}, and thus

max
A∈F

E ((η − X) 1A) = E([η − X]+).

The theorem immediately follows from (4.2).

Using this result we obtain another equivalent formulation of the optimization problem (4.2):

maximize
z

f(z)

subject to
∫

A

(
η − G(z)

)
dP ≤ v(η), ∀ η ∈ I, ∀ A ∈ F,

z ∈ Z.

(4.6)

Although the auxiliary variables are no longer present, we have introduced an infinite family of

constraints indexed by the set I×F. However, we shall show that the new family of constraints

can be efficiently dealt with by a cut generation method.
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4.3 A primal cutting plane method

In this section we assume that I = R, the probability space Ω is finite, with elementary events

ω1, . . . , ωN and corresponding probabilities p1, . . . , pN. The realizations of the benchmark

outcome Y are denoted by y1, . . . , yD and the corresponding benchmark shortfalls are vj =

E([yj − Y]+). We also write Gi(z) for [G(z)](ωi).

It is known from [DR03,DR04a] that in the case of a discrete benchmark, the second order

dominance condition G(z) º(2) Y is equivalent to finitely many inequalities:

E([yj − G(z)]+) ≤ vj, j = 1, . . . , D. (4.7)

We can thus rewrite problem (4.6) as follows

maximize
z

f(z)

subject to
∑

i∈A

pi

(
yj − Gi(z)

) ≤ vj, ∀ j = 1 . . . ,D, ∀ A ⊂ {1, . . . , N},

z ∈ Z.

(4.8)

The last formulation allows for construction of a cutting plane method. At iteration k we have

a collection of subsets (events) A1, . . . , Ak−1 of {1, . . . ,N}. We solve a relaxation of (4.8):

maximize
z

f(z)

subject to
∑

i∈Am

pi

(
yj − Gi(z)

) ≤ vj, j = 1 . . . , D, m = 1, . . . , k − 1,

z ∈ Z.

(4.9)

If the solution zk of this problem (which is assumed to exist) satisfies all constraints (4.7), then

we stop. Otherwise we find j∗ for which (4.7) is violated and we define

Ak = {1 ≤ i ≤ N : yj∗ > Gi(z
k)}.

The iteration index k is increased by one, and we solve (4.9) again.

Since (4.7) is violated,
∑

i∈Ak

pi

(
yj∗ − Gi(z)

)
> vj∗ ,

and thus Ak is different than Am, m = 1, . . . , k − 1, used in problem (4.9). As the possible

number of sets that can be added is finite, the method must stop at an optimal solution of (4.8).
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Examples in §4.8 suggest that in practice a small number of sets Ak need to be generated in

order to find the optimal solution.

4.4 Lagrangian duality

In this section we derive duality relations for the extended formulation (4.5). Our derivation

uses ideas and techniques developed in [DR04a]. The main difference is that we develop du-

ality relations for the formulation (4.5) involving explicit shortfall variables, in contrast to the

duality theory of [DR04a], where we focused on the dominance constraint in the nonsmooth

formulation (4.4).

The difficulty with formulation (4.5) is that no Slater condition can be formulated for the

inequality constraint on the shortfall variables:

[G(z)](ω) + s(η,ω) ≥ η, ∀ η ∈ I, ∀ ω ∈ Ω,

because the nonnegative cone in the space S has no interior. Because of that, we cannot simply

apply general duality schemes from [Roc74] or [KH86]. We need to exploit the special structure

of problem (4.5).

At first, we introduce several relevant topological vector spaces. We denote by rca(I) the

space of finite signed measures on I and by L∞(Ω, F, P) the space of essentially bounded

measurable real functions on (Ω, F, P). Let M denote the vector space of signed measures on

(I×Ω,B×F), such that for every measure λ ∈ M the marginal measures λI and λΩ, defined

by the equations

λI(B) = λ(B×Ω), B ∈ B,

λΩ(A) = λ(I×A), A ∈ F,

satisfy the conditions:

λI ∈ rca(I),
dλΩ

dP
∈ L∞(Ω,F, P). (4.10)

Here we implicitly assume that λΩ is absolutely continuous with respect to P.
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Theorem 10 The space M is the topological dual space to the space S, that is, ` is a continuous

linear functional on S if and only if there exists λ ∈ M such that for all s ∈ S

`(s) =

∫∫

I×Ω

s(η,ω) dλ. (4.11)

Proof: Fix any λ ∈ M, λ ≥ 0, and consider the linear functional (4.11). Its value can be

bounded as follows:

|`(s)| ≤
∫∫

I×Ω

max
η∈I

|s(η,ω)|dλ =

∫

Ω

max
η∈I

|s(η,ω)| dλΩ

=

∫

Ω

max
η∈I

|s(η,ω)|
dλΩ

dP
(ω) dP ≤

∥∥∥dλΩ

dP

∥∥∥
L∞
‖s‖.

For a general signed measure λ ∈ M we use its Jordan decomposition into a difference of two

nonnegative measures: λ = λ+ − λ−, and we define Ω+ and Ω− to be the support sets of λ+

and λ−, respectively. Using the last displayed inequality we obtain the estimate

|`(s)| ≤
∣∣∣∣

∫∫

I×Ω+

s(η,ω) dλ+

∣∣∣∣ +

∣∣∣∣
∫∫

I×Ω−

s(η,ω) dλ−

∣∣∣∣

≤
∥∥∥dλ+

Ω

dP

∥∥∥
L∞

∫

Ω+

max
η∈I

|s(η,ω)| dP +
∥∥∥dλ−

Ω

dP

∥∥∥
L∞

∫

Ω−

max
η∈I

|s(η,ω)| dP

≤ max
(∥∥∥dλ+

Ω

dP

∥∥∥
L∞

,
∥∥∥dλ−

Ω

dP

∥∥∥
L∞

) ∫

Ω

max
η∈I

|s(η,ω)| dP =
∥∥∥dλΩ

dP

∥∥∥
L∞
‖s‖,

and we conclude that the linear functional (4.11) is continuous. Thus S∗ ⊃ M.

To prove the converse inclusion, consider the linear subspace of S:

S0 =
{
s ∈ S : s = ϕξ, ϕ ∈ C(I), ξ ∈ L1(Ω,F, P)

}
.

Let ` ∈ S∗0. Fix A ∈ F and consider the functional ϕ 7→ `(ϕ1A). It is continuous on C(I). By

the Riesz representation theorem, there exists a measure µ`
A ∈ rca(I) such that

`(ϕ1A) =

∫

I

ϕ(η)dµ`
A, ∀ ϕ ∈ C(I).

Define the measure λ` on (I×Ω,B× F) by the formula:

λ`(B×A) = µ`
A(B), ∀ B ∈ B, ∀ A ∈ F.
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Then

`(ϕ1A) =

∫∫

I×Ω

ϕ(η)1A(ω)dλ`.

It follows that for every s = ϕξ such that ϕ ∈ C(I) and ξ is a step function, i.e., ξ =

∑K
k=1 αk1Ak

with some αk ∈ R and Ak ∈ F, k = 1, . . . , K, the functional ` has form (4.11)

with λ = λ`. As the step functions are dense in L1(Ω,F, P), for every ξ ∈ L1(Ω, F, P) we

can find a sequence of step functions ξj → ξ, j → ∞. Since ` is continuous, we obtain

`(ϕξ) = lim
j→∞

`(ϕξj) = lim
j→∞

∫∫

I×Ω

ϕ(η)ξj(ω) dλ` =

∫∫

I×Ω

ϕ(η)ξ(ω)dλ`,

and thus the functional ` has form (4.11) on S0. Moreover, the marginal measure λ`
I satisfies

the first part of condition (4.10):

λ`
I(B) = λ`(B×Ω) = µ`

Ω ∈ rca(I).

Consider now functions s(η,ω) = ξ(ω) with ξ ∈ L1(Ω, F, P). As ` is continuous, the

functional ξ 7→ `(1ξ) must be continuous on L1(Ω,F, P). Since

`(1ξ) =

∫∫

I×Ω

ξ(ω)dλ` =

∫

Ω

ξ(ω) dλ`
Ω,

it is necessary that also the second part of (4.10) is satisfied by λ`
Ω. Thus S∗ ⊂ S∗0 ⊂ M.

We can now formulate the Lagrangian L : Z× S×M× rca(I) → R of the optimization

problem (4.5) as follows:

L(z, s, λ, µ) = f(z) −

∫∫

I×Ω

(
η − [G(z)](ω) − s(η,ω)

)
dλ +

∫

I

(
v(η) −

∫

Ω

s(η,ω) dP
)

dµ.

The corresponding Lagrangian dual function LD : M× rca(I) → R is given by

LD(λ, µ) = sup
s≥0, z∈Z

L(z, s, λ, µ)

= sup
s≥0, z∈Z

{
f(z) +

∫∫

I×Ω

s(η,ω) d(λ − µ× P) −

∫

I

ηdλI +

∫

Ω

[G(z)](ω) dλΩ +

∫

I

v(ω) dµ
}

.

By examining the second term of this expression we obtain

LD(λ, µ) =





−

∫

I

ηdλI +

∫

I

v(η)dµ + sup
z∈Z

{
f(z) +

∫

Ω

[G(z)](ω) dλΩ

}
if λ ≤ µ× P,

+∞ otherwise.
(4.12)
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This leads to the following dual problem:

minimize
λ,µ

−

∫

I

ηdλI +

∫

I

v(ω) dµ + sup
z∈Z

{
f(z) +

∫

Ω

[G(z)](ω) dλΩ

}

subject to λ ≤ µ× P,

λ ∈ M+, µ ∈ rca+(I).

(4.13)

Here we use M+ and rca+(I) to denote the sets of all nonnegative measures in M and rca(I),

respectively.

Theorem 11 (Weak Duality) Let c∗ and cL denote the optimum values of the original prob-

lem (4.5) and the Lagrangian dual (4.13), respectively. Then c∗ ≤ cL.

Proof: Let (z, s) be feasible for (4.5). Then for every (λ, µ) ∈ M+ × rca+(I) we have the

inequalities

LD(λ, µ) ≥ L(z, s, λ, µ) ≥ f(z).

Taking the infimum of the left hand side with respect to (λ, µ) and the supremum of the right

hand side with respect to feasible (z, s) we obtain the assertion.

In order to prove the strong duality relation we need a constraint qualification condition,

introduced in [DR03, DR04a].

Definition 8 Problem (4.5) satisfies the uniform dominance condition if there exists z̃ ∈ Z

such that

max
η∈I

{
E

[
(η − G(z̃))+

]
− v(η)

}
< 0.

Theorem 12 (Strong Duality) Assume that problem (4.5) satisfies the uniform dominance

condition and that it has an optimal solution. Then the dual problem (4.13) has an optimal

solution and c∗ = cL.

Proof: Due to Theorem 11, it is sufficient to find (λ̂, µ̂) ∈ M+×rca+(I) such that LD(λ̂, µ̂) =

c∗.

Let (ẑ, ŝ) be an optimal solution of (4.5). Consider the equivalent problem formulation
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(4.4). Following [DR03] we can rewrite in the abstract form:

maximize
z

f(z)

subject to Γ(z) ∈ K,

z ∈ Z,

where Γ : Z → C(I) is a continuous operator defined as

[Γ(z)](η) = v(η) −E([η − G(z)]+), η ∈ I.

The set K is the cone of nonnegative functions in C(I). Observe that the function z 7→ η−G(z)

is convex, for almost all ω ∈ Ω, and the function x 7→ (x)+ is convex and nondecreasing.

Therefore, the composition E[(η − G(z))+] is a convex function of z. It follows that the

operator Γ is concave with respect to the cone K, that is, for any z1, z2 in Z and all λ ∈ [0, 1],

Γ(λz1 + (1 − λ)z2) − [λΓ(z1) + (1 − λ)Γ(z2)] ∈ K.

As the topological dual space to C(I) is rca(I), we can introduce the Lagrangian Λ : Z ×
rca(I) → R,

Λ(z, µ) = f(z) +

∫

I

[Γ(z)](η)dµ. (4.14)

Let us observe that the uniform dominance condition implies that the following generalized

Slater condition is satisfied: there exists a point z̃ ∈ Z such that Γ(z̃) ∈ int K. Therefore we can

use the necessary conditions of optimality in Banach spaces (see, e.g., [BS00, Theorem 3.4]).

We conclude that there exists a measure µ̂ ∈ rca+(I) such that

Λ(ẑ, µ̂) = max
z∈Z

Λ(z, µ̂) (4.15)

and ∫

I

(
v(η) −E([η − G(ẑ)]+)

)
dµ̂ = 0. (4.16)

This means that c∗ = f(ẑ) = Λ(ẑ, µ̂).

Define the set U =
{
(β,X, z) ∈ R× L1(Ω, F, P)× Z : β ≤ f(z), X ≤ G(z)

}
. It follows

from (4.15) that β̂ = f(ẑ), X̂ = G(ẑ) and ẑ are the solution of the convex optimization problem

maximize
(β,X,z)∈U

β −

∫∫

I×Ω

[η − X]+ dP dµ̂. (4.17)
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Indeed, the best value of β is f(z), and, due to the monotonicity of the function x 7→ −[η−x]+,

the best value of X is G(z). By carrying out the partial maximization with respect to (β,X) we

reduce (4.17) to the right hand side of (4.15).

Consider the function ϕ : S → R defined by

ϕ(s) =

∫∫

I×Ω

[
s(η,ω)

]
+

dP dµ̂,

at the point ŝ(η,ω) = η − [G(ẑ)](ω), η ∈ I, ω ∈ Ω. By virtue of the necessary and sufficient

condition of optimality for problem (4.17), there exists a subgradient γ ∈ ∂ϕ(ŝ) such that

(β̂, X̂, ẑ) is also a solution of the problem

maximize
(β,X,z)∈U

β +

∫∫

I×Ω

γ(η, ω)XdP dµ̂. (4.18)

By Strassen’s disintegration theorem [Str65, Theorem 1],

γ(η,ω) ∈ ∂
(
η − X̂(ω)

)
+

=





{1} if η > X̂(ω),

{0} if η < X̂(ω),

[0, 1] if η = X̂(ω).

From the definition of the set U and from the fact that γ(η,ω) ≥ 0, for every value of z the

best values of β and X in (4.18) are f(z) and G(z), respectively. It follows that ẑ is an optimal

solution of the problem

maximize
z∈Z

{
f(z) +

∫∫

I×Ω

γ(η,ω)G(z) dP dµ̂
}

.

Define the measure λ̂ as absolutely continuous with respect to µ̂× P with the Radon-Nikodym

derivative
dλ̂

d(µ̂× P)
= γ.

Since 0 ≤ γ ≤ 1, we have 0 ≤ λ̂ ≤ µ̂× P. From (4.12) we obtain

LD(λ̂, µ̂) = −

∫

I

ηdλ̂I(η) +

∫

I

v(η) dµ̂ + sup
z∈Z

{
f(z) +

∫

Ω

[G(z)](ω) dλ̂Ω

}

= −

∫∫

I×Ω

ηγ(η,ω) dP dµ̂ +

∫

I

v(η) dµ̂ + f(ẑ) +

∫∫

I×Ω

[G(ẑ)](ω)γ(η,ω) dP dµ̂.
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It follows from the definition of γ that the first and the last term in this expression can be written

as

−

∫∫

I×Ω

ηγ(η,ω) dP dµ̂ +

∫∫

I×Ω

[G(ẑ)](ω)γ(η,ω) dP dµ̂

= −

∫∫

I×Ω

(
η − [G(ẑ)](ω)

)
+

dP dµ̂ = −

∫

I

E
(
η − [G(ẑ)](ω)

)
+

dµ̂.

Substituting into the last formula for LD(λ̂, µ̂) we conclude that

LD(λ̂, µ̂) = f(ẑ) +

∫

I

[
v(η) −E

(
η − [G(ẑ)](ω)

)
+

]
dµ̂ = f(ẑ) = c∗.

In the last equation we have used the complementarity condition (4.16).

Finally, let us observe that the condition λ ≤ µ× P appearing in the dual problem implies

that λI ≤ µ. This is of importance for the solution method we describe later in §4.7.

4.5 Reducing the space of Lagrange multipliers

Notice that apart from the condition λ ≤ µ×p the measure λ ∈ M on the product space I×Ω

appears in the dual optimization problem (4.13) via its marginal measures λI and λΩ. We can

exploit this fact to achieve a reduction of the space of variables similar to that seen in the case

of the primal problem. The main tool for this reduction is Strassen’s theorem on the existence

of measures with given marginals [Str65, Theorem 6]. We present here its version in the setting

suitable for direct application to our problem.

Theorem 13 Let κ ∈ M+, β ∈ rca(I), and let α be a measure on (Ω,F). There exists a

measure λ ∈ M+ having marginal measures λI = β and λΩ = α and such that λ ≤ κ, if and

only if

β(B) + α(A) ≤ ψ + κ(B×A), ∀ B ∈ B, ∀ A ∈ F,

where ψ = β(I) = α(Ω).

Observe that setting B = I we obtain α(A) ≤ κ(B × A) for all A ∈ F. Employing the

definition of M+ we conclude that it is necessary that dα/dP ∈ L∞(Ω, F, P).
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Applying Theorem 13 to the dual problem (4.13) with κ = µ× P, we obtain the following

equivalent formulation of the dual problem:

minimize
α,β,µ,ψ

−

∫

I

ηdβ +

∫

I

v dµ + sup
z∈Z


f(z) +

∫

Ω

[G(z)](ω)dα




subject to β(I) = ψ, α(Ω) = ψ,

β(B) + α(A) ≤ ψ + µ(B)P(A), ∀ B ∈ B, ∀ A ∈ F,

α ≥ 0,
dα

dP
∈ L∞(Ω,F, P), β, µ ∈ rca+(I).

(4.19)

Note that the measure λ on the product space I×Ω is eliminated from this formulation, at the

cost of introducing new constraints indexed by the family B×F. The merits of this tradeoff be-

come apparent for problems with discrete distributions, where we propose a column generation

method.

4.6 An implied transportation problem

We now focus again on the finite probability space Ω = {ω1, . . . , ωN} with correspond-

ing probabilities p1, . . . , pN. The realizations of the benchmark outcome Y are denoted by

y1, . . . , yD and the corresponding benchmark shortfalls are vj = E([yj − Y]+).

We recall for convenience the dual problem (4.13) in this case. The measure λ becomes an

array λij, i = 1, . . . , N, j = 1, . . . ,D. The marginal measures are its row and column sums,

respectively. We obtain the formulation:

minimize
λ,µ

−

D∑

j=1

N∑

i=1

λijyj +

D∑

j=1

µjvj + sup
z∈Z

{
f(z) +

N∑

i=1

D∑

j=1

λijGi(z)
}

subject to λij ≤ piµj, i = 1, . . . , N, j = 1, . . . , D,

λ ≥ 0, µ ≥ 0.

(4.20)

Consider the marginal sums

αi =

D∑

j=1

λij, i = 1, . . . , N,

βj =

N∑

i=1

λij, j = 1, . . . , D.
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Vectors α ≥ 0 and β ≥ 0 are marginal sums of a feasible dual variable λ if and only if the

following conditions are satisfied:

(i) for some ψ ≥ 0 we have
∑N

i=1 αi =
∑D

j=1 βj = ψ;

(ii) there exists a transportation flow of value ψ in the network having N source nodes with

supplies α, D destination nodes with demands β, and with arc capacities equal to piµj

for every arc (i, j), i = 1, . . . , N, j = 1, . . . , D.

In the discrete case Strassen’s Theorem takes on the form of the Maximum Flow–Minimum

Cut Theorem [FF56, Gal57] specialized for the above network: for all A ⊂ {1, . . . , N} and all

B ⊂ {1, . . . , D}
∑

i∈A

αi +
∑

j∈B

βj −
∑

i∈A

pi

∑

j∈B

µj ≤ ψ. (4.21)

The dual formulation based on this fact and corresponding to (4.19) is

minimize
α,β,µ,ψ

−

D∑

j=1

yjβj +

D∑

j=1

vjµj + sup
z∈Z

{
f(z) +

N∑

i=1

αiGi(z)
}

(4.22)

subject to
N∑

i=1

αi = ψ,

D∑

j=1

βj = ψ,

∑

i∈A

αi +
∑

j∈B

βj −
∑

i∈A

pi

∑

j∈B

µj ≤ ψ, ∀ A ⊂ {1, . . . , N}, ∀ B ⊂ {1, . . . , D},

α ≥ 0, β ≥ 0, µ ≥ 0, ψ ≥ 0.

In this formulation ND dual variables of (4.20) are replaced by N + D marginal sums, at the

cost of introducing 2N+D new constraints, indexed by all possible sets A and B.

If the functions f(·) and Gi(·) are affine and the set Z is defined by linear equations and

inequalities, then problem (4.22) becomes a linear programming problem. In a standard way,

the term supz∈Z

{
f(z) +

∑N
i=1 αiGi(z)

}
can be replaced by an affine function of α and linear

inequalities involving α. All these manipulations are the same as in linear programming duality

theory. We illustrate them for a portfolio example in §4.8.

The main difficulty associated with problem (4.22) is the large number of constraints. We

show in §4.7 a way to overcome this difficulty, by generating only a subset of relevant con-

straints.



78

4.7 A dual column generation method

Formulation (4.22) suggests a cutting plane method of the following form. At iteration k we

have pairs of sets Am ⊂ {1, . . . ,N} and Bm ⊂ {1, . . . , D}, m = 1, . . . , k − 1. We solve a

relaxation of problem (4.22):

minimize
α,β,µ,ψ

−

D∑

j=1

yjβj +

D∑

j=1

vjµj + sup
z∈Z

{
f(z) +

N∑

i=1

αiGi(z)
}

subject to
N∑

i=1

αi = ψ,

D∑

j=1

βj = ψ,

∑

i∈Am

αi +
∑

j∈Bm

βj −
∑

i∈Am

pi

∑

j∈Bm

µj ≤ ψ, m = 1, . . . , k − 1,

α ≥ 0, β ≥ 0, µ ≥ 0, ψ ≥ 0.

(4.23)

The next step is to verify inequalities (4.21) for all possible sets A and B, at the optimal solution

(αk, βk, µk, ψk). To this end, we find a pair Ak, Bk, which solves the problem

maximize
A⊂{1,...,N}
B⊂{1,...,D}

−ψk +
∑

i∈A

αk
i +

∑

j∈B

βk
j −

∑

i∈A

pi

∑

j∈B

µk
j . (4.24)

Defining the complement event Ac = {1, . . . , N} \ A we observe that the first three terms in

(4.24) describe the required inflow to the set of nodes Ac∪B. The last term in (4.24) is the total

capacity of the arcs leading to this set, that is, the arcs starting in A and ending in B. It follows

that problem (4.24) is a problem of finding a minimal cut in a bipartite graph. It can be solved

in a very efficient way by special network algorithms, as described in [AMO93]. One method,

which is closely related to our transformation, is the following. We formulate the maximum

flow problem:

maximize
λ

N∑

i=1

D∑

j=1

λij

subject to
D∑

j=1

λij ≤ αk
i , i = 1, . . . , N, (4.25)

N∑

i=1

λij ≤ βk
j , j = 1, . . . , D, (4.26)

0 ≤ λij ≤ piµ
k
j , i = 1, . . . ,N, j = 1, . . . , D.
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If the flow equals ψk, then the optimal solution of (4.23) is also optimal for (4.22). Otherwise,

we denote the Lagrange multipliers associated with (4.25) by ζi, = 1, . . . , N, and the Lagrange

multipliers associated with (4.26) by ξj, j = 1, . . . ,D (they all are equal either 0 or 1). We set

Ak = {i : ζi = 0}, Bk = {j : ξj = 0},

we add the pair (Ak, Bk) to the pairs of sets included in (4.23), increase k by 1, and continue.

Observe that if the maximum in (4.24) is positive (and thus the maximum flow in the last

displayed problem is smaller than ψk), the new cut is different from the cuts already included

in problem (4.23). As the number of possible cuts is finite, the method must eventually stop

at an optimal solution. In that case the flow in the network gives us the optimal values of the

multipliers λ in the dual problem (4.20).

4.8 Numerical illustration

Let R1, . . . , Rn be random return rates of assets 1, . . . , n. We denote the fractions of the initial

capital invested in these assets by z1, . . . , zn. Clearly, the portfolio return rate equals

G(z) = R1z1 + · · ·+ Rnzn.

The set of possible asset allocations is the simplex

Z = {z ∈ Rn : z1 + · · ·+ zn = 1, zk ≥ 0, k = 1, . . . , n},

but the approach outlined here easily extends to more general polyhedral sets Z. Finally, let

a benchmark random return rate Y be given; for example, Y may represent the return rate

of an index or the return rate of the current portfolio. The dominance-constrained portfolio

optimization problem takes on the form

maximize
z

E
[
R1z1 + · · ·+ Rnzn

]

subject to R1z1 + · · ·+ Rnzn º(2) Y

z ∈ Z.

This model was introduced as an example in [DR03] and analyzed in [DR06b].
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As discussed in the introduction, no risk averse decision maker will prefer a portfolio with

return rate Y over a portfolio with return rate R1z1+ · · ·+Rnzn. Therefore, the risk exposure of

the portfolio return rate is “more acceptable” than that of Y. In our model we use the expected

value of the portfolio return rate as the objective functional, and thus the entire burden of

controlling risk it carried by the stochastic dominance constraint. As the distribution of the

returns at the solution is indirectly shaped by the distribution of the benchmark Y, it is essential

that Y be “acceptable,” for example, the return rate of a broad market index. However, it is easy

to additionally incorporate risk-averse objective functionals to our model, such as coherent

measures of risk (see [ADEH99, FS02, FS04, MR08, RS06] and the references therein).

In the discrete distribution case, we denote the return of asset k in event i by rik, i =

1, . . . , N, k = 1, . . . , n, the probabilities of the elementary events by pi, i = 1, . . . , N, the

realizations of the benchmark returns by yj, and the benchmark shortfalls by

vj =

N∑

i=1

pi(yj − yi)+.

We obtain the problem:

maximize
z

N∑

i=1

n∑

k=1

pirikzk

subject to
N∑

i=1

pi

(
yj −

n∑

k=1

rikzk

)
+
≤ vj, j = 1, . . . , N,

z ∈ Z.

The piecewise linear constraint is dealt with by the primal cutting plane method.

The dual problem (4.22) takes on the form:

minimize
α,β,µ,ψ,ζ

−

N∑

j=1

yjβj +

N∑

j=1

vjµj + ζ

subject to
N∑

i=1

αi = ψ,

N∑

j=1

βj = ψ,

N∑

i=1

(pi + αi)rik ≤ ζ, k = 1, . . . , n,

∑

i∈A

αi +
∑

j∈B

βj −
∑

i∈A

pi

∑

j∈B

µj ≤ ψ, ∀ A ⊂ {1, . . . , N}, ∀ B ⊂ {1, . . . , N},

α ≥ 0, β ≥ 0, µ ≥ 0, ψ ≥ 0.
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The variable ζ in the objective function of this problem represents the term

sup
z∈Z

{
f(z) +

N∑

i=1

αiGi(z)
}

= sup
z∈Z

{ N∑

i=1

n∑

k=1

pirikzk +

N∑

i=1

n∑

k=1

αirikzk

}

= max
1≤k≤n

N∑

i=1

(pi + αi)rik.

The constraints involving the sets A and B are dealt with by the dual cutting plane method.

We considered several problem instances of different sizes, obtained from historical data

on realizations of joint daily returns of n = 500 assets in N days, for seven different values of

N, ranging from 50 to 1000. We used the returns in each day as equally probable realizations

of the n-dimensional random vector R. The benchmark outcome Y was the return rate of the

S&P 500 index. All calculations were carried out on a 2.00 GHz Pentium 4 PC with 1.00 GB of

RAM, by using the AMPL modeling language [FGK02b] and with version 9.1 of the CPLEX

solver [ILO05].

Table 4.1: Dimensions of the three formulations.
Scenarios Linear Programming Primal Formulation Dual Formulation

Variables Constraints Variables Constraints Variables Constraints
50 3000 2551 500 1 152 502

100 10500 10101 500 1 302 502
150 23000 22651 500 1 452 502
200 40500 40201 500 1 602 502
500 250500 250001 500 1 1502 502
750 563000 562501 500 1 2252 502
1000 1000500 1000001 500 1 3002 502

Table 4.2: Performance of the three approaches.
Scenarios Linear Programming Primal Method Dual Method

CPU Iterations CPU Cuts Iterations CPU Cuts Iterations
50 3.44 570 0.55 9 9 13.81 68 6883

100 20.23 3161 2.03 33 75 407.26 259 156304
150 372.52 7272 3.49 53 267 9144.25 552 1155166
200 373.63 16666 3.90 61 180 - - -
500 - - 6.59 88 924 - - -
750 - - 9.74 123 477 - - -
1000 - - 10.23 117 530 - - -

Table 4.1 compares the sizes of the three formulations: the straightforward linear program-

ming model (4.5), the primal cutting plane formulation (4.6), and the dual cutting plane for-

mulation (4.19). In the last two cases we report the initial numbers of constraints only, without

the cuts indexed by the sets A ∈ F and B ∈ B. The numbers of cuts, which were actually
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generated in the course of the solution, are reported in Table 4.2. This table provides also the

CPU times of the simplex solver in the three cases, and the total numbers of simplex iterations

performed.

It can be seen from these results that the primal cut generation method is quite efficient and

it dramatically outperforms the direct linear programming approach. This is consistent with the

results of [KHVDV06] for integrated chance constraints. In fact, the direct linear programming

model was too large for our computer for 500 scenarios and more. The dual method is much

slower for this problem class, mainly due to minimal differences between many cuts and severe

numerical difficulties associated with that. For problems with N = 200 and more scenarios,

we interrupted the calculation, because of excessive time. Apparently, the number of Strassen

cuts is too large. However, we still believe that the dual formulation is interesting in its own

right and that one day it may find its application.

Finally, Figure 4.8 compares the cumulative distribution functions of the return rates of the

benchmark portfolio (the S&P 500 index) and of the solution to the dominance constrained

problem for the case of 1000 scenarios. The optimal portfolio contains only 11 assets, but we

can see that they are sufficient to shape the distribution function in a favorable way. Close

inspection reveals that the optimal distribution function is not entirely below the benchmark

(this would mean first order stochastic dominance); in the range between -0.02 and -0.015 it is

slightly above. However, the expected shortfall (4.2) is always smaller at the solution than at the

benchmark. This is in line with the results of [NR08], where similar examples are presented.
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Figure 4.1: Cumulative distribution functions of the return rates of the benchmark and optimal
portfolios in the 1000 scenario example.
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Chapter 5

Strassen’s Theorem Revisited

In this chapter we present a new proof of Strassen’s Theorem about the existence of measures

with given marginals. As we saw in Section 4.6, when applied to a discrete space, Strassen’s

Theorem yields a special case of the Maximum Flow–Minimum Cut Theorem. Our goal here

is to go in the reverse direction and use the discrete result to prove the general case.

In order to proceed, we first establish a strong duality theorem; the exposition below closely

follows the framework laid out in [Roc74].

5.1 Abstract Duality

Let X and V be paired locally convex topological vector spaces. That is, X and V are equipped

with respective topologies which make them locally convex topological vector spaces and these

topologies are compatible with the real-valued bilinear form 〈x, v〉. The latter condition means

that every linear continuous functional on X can be represented in the form 〈·, v〉 for some

v ∈ V, and every linear continuous functional on V can be represented in the form 〈x, ·〉 for

some x ∈ X. In particular, we can equip each space X and V with its weak topology induced

by its paired space. This will make X and V paired locally convex topological vector spaces

provided that for any x ∈ X\{0} there exists v ∈ V such that 〈x, v〉 6= 0, and for any v ∈ V\{0}

there exists x ∈ X such that 〈x, v〉 6= 0. Further, let U and Y be paired locally convex topological

vector spaces, with the corresponding bilinear form 〈u, y〉 (we use the same notation, because

it will never lead to misunderstanding).

Suppose A : X → U is a continuous linear operator, c ∈ V, Q is a closed convex cone in
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U, K is a closed convex cone in X. Consider the problem

min 〈c, x〉

s.t. Ax + u ∈ Q,

x ∈ K.

(5.1)

We consider u as a parameter of this problem and we are interested in the optimality conditions

for (5.1) at u = u0.

Define ϕ : U → R as the infimum value of problem (5.1), as a function of u ∈ U; if the

problem is infeasible, we set ϕ(u) = +∞.

Define the polar cone to K as

K◦ = {v ∈ V : 〈x, v〉 ≤ 0, ∀x ∈ X}.

Similarly, we define the polar cone Q◦ ⊂ Y.

Together with problem (5.1) we define the dual problem:

max 〈u, y〉

s.t. A∗y + c ∈ −K◦,

y ∈ Q◦.

(5.2)

A∗ is the adjoint of A.

The following theorem is a corollary of [Roc74, Thm.15].

Theorem 14 Suppose that the optimal value function is lower semicontinuous at u0. Then

inf (5.1) = sup (5.2),

where in both problems we set u = u0.

5.2 The Capacitated Mass Transportation Problem

Suppose Ω1 and Ω2 are measurable spaces, with σ-algebras F1 and F2, respectively, and let

Ω = Ω1 × Ω2, F = F1 × F2. Suppose that on the spaces Ω1 and Ω2 regular nonnegative

measures P1 and P2 are defined, and let P be their product measure. Consider X as the space of

measures which are absolutely continuous with respect to P, with a square-integrable density.
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Then we can identify X with the space L2(Ω, F, P). In an analogous way we define the spaces

X1 = L2(Ω1, F1, P1) and X2 = L2(Ω2,F2, P2). For a set A ∈ F define 1A(ω) = 1, if

ω ∈ A, and 1A(ω) = 0, if ω /∈ A. We write 1 for the constant 1 function of the corresponding

space.

We define the linear operators Π1 : X → X1 and Π2 : X → X2 as follows:

〈Π1x,1A〉 = 〈x,1A×Ω2
〉, ∀A ∈ F1,

〈Π2x,1B〉 = 〈x,1Ω1×B〉, ∀B ∈ F2.

In other words, Π1(x) and Π2(x) are the marginal measures of x on Ω1 and Ω2, respectively.

In this setting Strassen’s Theorem can be formulated as follows:

Theorem 15 Consider two elements u1 ∈ X1 and u2 ∈ X2 (the marginal measures), and an

element x̄ ∈ X (the upper bound). Assume that 〈1, u1〉 = 〈1, u2〉, and denote this common

value by κ. Then there exists an element x ∈ X such that

Π1x = u1,

Π2x = u2,

0 ≤ x ≤ x̄.

(5.3)

if and only if the condition

∫

A

u1(ω1)dP1 +

∫

B

u2(ω2) dP2 +

∫∫

(Ω1\A)×(Ω2\B)

x̄(ω1,ω2)dP1 dP2 ≥ κ.

holds for all A ∈ F1 and B ∈ F2.

The remainder of this chapter is devoted to the proof of this theorem. First, in order to

be able to apply the duality results from the previous section, we convert (5.3) to a linear

optimization problem.

Theorem 16 System (5.3) has a solution if and only if problem (5.4) below has an optimal

solution and its optimal value is at least κ.
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max 〈1, x〉

s.t. Π1x ≤ u1,

Π2x ≤ u2,

x ≤ x̄,

x ≥ 0.

(5.4)

Proof: If system (5.3) has a solution x∗ then it is feasible for problem (5.4). By the definition

of Π1

〈1Ω1×Ω2
, x∗〉 = 〈1Ω1

, Π1x
∗〉 = 〈1Ω1

, u1〉 = κ.

Thus the optimal value is at least κ. Notice that it cannot be higher, because for every feasible

solution x, by the above relations and the first constraint,

〈1Ω1×Ω2
, x〉 ≤ 〈1Ω1

, u1〉 = κ.

Now suppose that problem (5.4) has an optimal solution x∗ with objective value κ. Then

κ = 〈1Ω1×Ω2
, x∗〉 = 〈1Ω1

, Π1x
∗〉 ≤ 〈1Ω1

, u1〉 = κ.

For this to hold true, we must in fact have Π1x
∗ = u1. Similarly, Π2x

∗ = u2, and thus x∗

solves system (5.3).

Problem (5.4), after changing the sign of the objective, is of the form (5.1) with

c = −1, A =




Π1

Π2

I




, u =




−u1

−u2

−x̄




,

K being the non-negative cone in X, and −Q the nonnegative cone in X1 × X2 × X.

In this case the optimal value function ϕ(u) is indeed lower semicontinuous. Consider a

sequence uk → u, and the corresponding sequence of εk-optimal solutions xk, with εk ↓ 0. To

verify lower semicontinuity, we only need to consider the case when ϕ(uk) < ∞, and thus all

xk are indeed feasible for their problems. This implies that for every δ > 0

0 ≤ xk ≤ x̄ + δ1,
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for all sufficiently large k. This is a closed convex set, and in L2 it is weakly compact. Thus

xk have a weak limit x∗ in this set. It is obvious that 0 ≤ x∗ ≤ x̄, because δ > 0 was arbitrary.

Consider an arbitrary set A ∈ F1. As xk is feasible for the kth problem, we have

〈uk
1 ,1A〉 ≥ 〈xk,1A×Ω2

〉 → 〈x∗,1A×Ω2
〉.

The last relation follows from the weak convergence of xk to x∗. We conclude that for every

A ∈ F1

〈x∗,1A×Ω2
〉 ≤ 〈u1,1A〉.

This means that Π1x
∗ ≤ u1. Similarly, Π2x

∗ ≤ u2. Consequently, x∗ is feasible for the primal

problem, and

ϕ(u) ≤ −〈1, x∗〉 = − lim〈1, xk〉 ≤ lim inf
[
ϕ(uk) + εk

]
= lim inf ϕ(uk).

We can thus use the duality theorem derived in Section 5.1.

The next step is to formulate the dual problem:

max − 〈u1, y1〉− 〈u2, y2〉− 〈x̄, z〉

s.t. Π∗1y1 + Π∗2y2 + z ≥ 1,

y1 ≥ 0, y2 ≥ 0, z ≥ 0,

with y1 ∈ Y1 = L2(Ω1,F1, P1), y2 ∈ Y2 = L2(Ω2, F2, P2), z ∈ Z = L2(Ω, F, P).

This is equivalent (after changing the sign of the objective function) to the problem

min 〈u1, y1〉+ 〈u2, y2〉+ 〈x̄, z〉

s.t. Π∗1y1 + Π∗2y2 + z ≥ 1,

y1 ≥ 0, y2 ≥ 0, z ≥ 0.

More explicitly, the dual problem can be reformulated as follows:

min
∫

Ω1

y1(ω1)u1(ω1) dP1 +

∫

Ω2

y2(ω2)u2(ω2)dP2 +

∫∫

Ω1×Ω2

z(ω1,ω2)x̄(ω1,ω2) dP1 dP2

(5.5)

s.t. y1(ω1) + y2(ω2) + z(ω1, ω2) ≥ 1, P-a.s., (5.6)

y1(ω1) ≥ 0, y2(ω2) ≥ 0, z(ω1,ω2) ≥ 0, P-a.s. (5.7)
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By Theorem 14 if the primal problem has optimal value κ, the dual problem also has

optimal value κ. It follows that:

∫

Ω1

y1(ω1)u1(ω1) dP1 +

∫

Ω2

y2(ω2)u2(ω2) dP2 +

∫∫

Ω1×Ω2

z(ω1,ω2)x̄(ω1,ω2)dP1 dP2 ≥ κ,

for all functions y1, y2, and z such that

y1(ω1) + y2(ω2) + z(ω1,ω2) ≥ 1, P-a.s.,

y1(ω1) ≥ 0, y2(ω2) ≥ 0, z(ω1,ω2) ≥ 0, P-a.s.

Setting y1 = 1A, y2 = 1B we see that the worst value of z is

z = 1(Ω1\A)×(Ω2\B).

We conclude that it is necessary that for all A ∈ F1 and B ∈ F2

∫

A

u1(ω1)dP1 +

∫

B

u2(ω2)dP2 +

∫∫

(Ω1\A)×(Ω2\B)

x̄(ω1,ω2)dP1 dP2 ≥ κ. (5.8)

In the next section we show that this condition is also sufficient.

5.3 A discretization method

Assume that the common optimum of (5.4) and (5.5) is strictly less than κ. Then there exists

ε > 0 and a feasible solution y∗1, y
∗
2, z

∗ of (5.5) such that

∫

Ω1

y∗1(ω1)u1(ω1) dP1+

∫

Ω2

y∗2(ω2)u2(ω2) dP2+

∫∫

Ω1×Ω2

z∗(ω1,ω2)x̄(ω1,ω2)dP1 dP2 < κ−ε.

Notice that, since the replacement of y∗1, y
∗
2 and z∗ by min(y∗1, 1), min(y∗2, 1) and min(z∗, 1),

respectively, does not increase the objective value and preserves feasibility, we can assume

y∗1, y
∗
2, z

∗ ≤ 1 without loss of generality. Let us introduce the step functions

yN
1 (ω1) =

dNy∗1(ω1)e
N

yN
2 (ω2) =

dNy∗2(ω2)e
N

zN(ω1,ω2) =
(
1 − yN

1 (ω1) − yN
2 (ω2)

)
+
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for some N ≥ 2κ
ε , where (·)+ is the positive part operation . It is readily verified that

yN
1 , yN

2 , zN is also a feasible solution of (5.5), and the relations yN
1 ≤ y∗1 + 1

N , yN
2 ≤ y∗2 + 1

N ,

zN ≤ z∗ and yN
1 , yN

2 , zN ≤ 1 hold.

Let Aj =
{

ω1 ∈ Ω1 | yN
1 (ω1) = j

N

}
and Bj =

{
ω2 ∈ Ω2 | yN

2 (ω2) = j
N

}
denote the

level sets of yN
1 and yN

2 , respectively, for j = 0, . . . ,N. Furthermore, let αi =
∫
Ai

u1(ω1)dP1,

βj =
∫
Bj

u2(ω2)dP2, γij =
∫∫

Ai×Bj

x̄(ω1,ω2)dP1 dP2.

Lemma 5 The optimum of the following linear programming problem with variables

ỹ1 ∈ RN+1, ỹ2 ∈ RN+1, z̃ ∈ R(N+1)×(N+1) is strictly less than κ.

min
N∑

i=0

αiỹ
i
1 +

N∑
j=0

βjỹ
j
2 +

N∑
i=0

N∑
j=0

γijz̃
ij

s. t. ỹi
1 + ỹ

j
2 + z̃ij ≥ 1 i, j = 0, . . . , N

0 ≤ ỹ1, ỹ2, z̃ ≤ 1

(5.9)

Proof: The solution ỹi
1 = i

N , ỹ
j
2 = j

N , z̃ij = (1 − i
N − j

N)+ is obviously feasible. Using
∫

Ω1

u1(ω1) dP1 =
∫

Ω2

u2(ω2) dP2 = κ and N ≥ 2κ
ε the corresponding objective value is:

N∑

i=0

αiỹ
i
1 +

N∑

j=0

βjỹ
j
2 +

N∑

i=0

N∑

j=0

γijz̃
ij

=

N∑

i=0




∫

Ai

u1(ω1) dP1


 i

N
+

N∑

j=0




∫

Bj

u2(ω2) dP2


 j

N
+

N∑

i=0

N∑

j=0




∫∫

Ai×Bj

x̄(ω1, ω2) dP1 dP2


 (1 −

i

N
−

j

N
)+

=

N∑

i=0

∫

Ai

yN
1 (ω1)u1(ω1)dP1 +

N∑

j=0

∫

Bj

yN
2 (ω2)u2(ω2) dP2 +

N∑

i=0

N∑

j=0

∫∫

Ai×Bj

zN(ω1,ω2)x̄(ω1,ω2)dP1 dP2

=

∫

Ω1

yN
1 (ω1)u1(ω1) dP1 +

∫

Ω2

yN
2 (ω2)u2(ω2)dP2 +

∫∫

Ω1×Ω2

zN(ω1,ω2)x̄(ω1,ω2) dP1 dP2

≤
∫

Ω1

(y∗1(ω1) +
1

N
)u1(ω1) dP1 +

∫

Ω2

(y∗2(ω2) +
1

N
)u2(ω2)dP2 +

∫∫

Ω1×Ω2

z∗(ω1,ω2)x̄(ω1,ω2) dP1 dP2

=

∫

Ω1

y∗1(ω1)u1(ω1) dP1 +

∫

Ω2

y∗2(ω2)u2(ω2)dP2 +

∫∫

Ω1×Ω2

z∗(ω1,ω2)x̄(ω1,ω2) dP1 dP2 + 2
κ
N

< κ − ε +
2κ
N

≤ κ.
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Now we can apply the integrality of the discretized system:

Lemma 6 The matrix of the LP given in (5.9) is totally unimodular.

Proof: The columns corresponding to the variable z̃ constitute an identity matrix, while the

remaining columns form the incidence matrix of the complete bipartite graph KN+1,N+1.

It follows from Lemma 6 that (5.9) has a 0 − 1 valued optimal solution ŷ1, ŷ2, ẑ. Let A =

⋃
i:ŷi

1=1

Ai and B =
⋃

j:ŷj
2=1

Bj. Notice that (by the feasibility of this solution) ŷi
1 = ŷ

j
2 = 0

implies zij = 1. Using this fact and Lemma 5 we conclude that

∫

A

u1(ω1)dP1 +

∫

B

u2(ω2) dP2 +

∫∫

(Ω1\A)×(Ω2\B)

x̄(ω1,ω2)dP1 dP2

=
∑

i:ŷi
1=1

∫

Ai

u1(ω1)dP1 +
∑

j:ŷj
2=1

∫

Bj

u2(ω2) dP2 +
∑

i:ŷi
1=0

∑

j:ŷj
1=1

∫∫

Ai×Bj)

x̄(ω1,ω2) dP1 dP2

≤
N∑

i=0




∫

Ai

u1(ω1) dP1


 ŷi

1 +

N∑

j=0




∫

Bj

u2(ω2)dP2


 ŷ

j
2 +

N∑

i:ŷi
1=0

N∑

j=0




∫∫

Ai×Bj)

x̄(ω1,ω2) dP1 dP2


 ẑij =

N∑

i=0

αiŷ
i
1 +

N∑

j=0

βjŷ
j
2 +

N∑

i=0

N∑

j=0

γijẑ
ij < κ.

Therefore the sets A and B violate condition (5.8), which completes the proof.
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[DR] D. Dentcheva and A. Ruszczyński. Inverse cutting plane methods for optimiza-
tion problems with second order stochastic dominance constraints. Optimization.
To appear.
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[DR06b] D. Dentcheva and A. Ruszczyński. Portfolio optimization with stochastic domi-
nance constraints. Journal of Banking and Finance, 30, 2006.

[DS97] H. Dette and W. J. Studden. The Theory of Canonical Moments with Applica-
tions in Statistics, Probability, and Analysis. Wiley, New York, 1997.

[Fay97] L. Faybusovich. Euclidean Jordan algebras and interior-point algorithms. Posi-
tivity, 1(4):331–357, 1997.

[Fay02] L. Faybusovich. Self-concordant barriers for cones generated by Chebychev
systems. SIAM J. Optim., 12(3):770–781, 2002.

[FF56] L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Canad. J.
Math., 8:399–404, 1956.

[FGK02a] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming, 2nd edition. Boyd and Fraser, Danvers, MA, 2002.

[FGK02b] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. The Duxbury Press, 2002.
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