
PERFORMANCE ANALYSIS OF THE WINC2R

PLATFORM

BY SUMIT SATARKAR

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Wade Trappe

and approved by

New Brunswick, New Jersey

October, 2009

c© 2009

Sumit Satarkar

ALL RIGHTS RESERVED

ABSTRACT OF THE THESIS

Performance Analysis of the WiNC2R Platform

by Sumit Satarkar

Thesis Director: Prof. Wade Trappe

A Cognitive Radio (CR) is an intelligent transceiver device, able to support multiple

technologies, dynamic re-configurability, ease of programming and collaboration with

other CR devices to improve the communication efficiency. The two key requirements

for an efficient CR implementation are flexibility in operation/programming and speed.

WiNC2R (Winlab Network Centric Cognitive Radio) achieves high speed of oper-

ation using its hardware platform and flexibility using its software-configurable archi-

tecture. The current WiNC2R architecture implements an 802.11a-like OFDM flow.

We evaluate the WiNC2R hardware architecture to see the modularity in the archi-

tecture, separation of data and control flow and the performance in terms of latency

and throughput. To test the system, the Xilinx Bus Functional Model environment,

which is designed to test the IBM standard bus-architecture-based hardware systems, is

used. We use a simple ALOHA protocol in the MAC layer to communicate between two

WiNC2R nodes and evaluate the performance under the best-case scenario, where the

performance is only hindered by the architecture itself rather than external conditions

like channel state.

The results of our basic experiments showed that for a single OFDM 802.11a-like

flow, the Unit Control Modules (UCM) were idle for almost 80% of the total processing

time.

ii

We then tested the WiNC2R system to study the effects of changing the frame size.

It was seen that the latencies in the WiNC2R transmitter are frame-size dependent

while those in the receiver mainly depend on the size of the data in the last chunk

rather than the size of the whole frame. We suggest that chunk size should be 2

OFDM symbols, and chunking be moved to MAC layer for better performance. We

give analytical estimates of resulting performance improvement. In the next experiment,

we describe virtualization in the WiNC2R by adding more flows. We describe the steps

to implement the additional flows and estimate maximum number of concurrent flows

possible.

In the last analysis, we show the effect of operating clock frequency on the per-

formance. We prove that at 250 MHz operating frequency and 2 OFDM symbols per

chunk, the current WiNC2R implementation will be able to satisfy the SIFS criterion.

iii

Acknowledgements

First and foremost, I would like to thank my adviser Prof. Wade Trappe for his constant

guidance and support throughout the entire duration of my MS research. He gave me

enough freedom to work in the field of my interest while making sure that I was always

on the right path. I would also like to thank Prof. Zoran Miljanic for his vision and

guidance during the WiNC2R design phase.

This work would not have been possible without Ivan Seskar, Khanh Le and Renu

Rajnarayan. Their constant support and enormous patience to deal with many of my

doubts and questions have made this work conceptually sound. It was a great experience

working with them and because of them, I can confidently say that working on WiNC2R

project has been a very good learning experience .

I have met many fantastic people on my way to a graduate degree. My time in

Winlab was made memorable by my friends and peers in the Cognitive Radio team

Tejaswy, Madhura, Vaidehi, Shalini, Akshay, Prasanthi, Mohit and Onkar. With them

there was never a dull moment while working in the lab. Since the beginning of the MS

study, I have been fortunate enough to have what I hope to be long-lasting friendships

with Amrita, Tanuja and Ayesha.

Last here but foremost in my mind, I would like to thank my parents and my family

for their continuous support throughout this journey. I would like to dedicate this work

to them.

iv

Table of Contents

Abstract . ii

Acknowledgements . iv

List of Tables . vii

List of Figures . viii

1. Introduction . 1

2. Survey of Cognitive Radio Platforms . 7

2.1. CR Platforms . 7

2.1.1. Classification of CR Platforms 7

2.1.2. GNU Radio Platform . 9

2.1.3. WARP Platform . 11

3. WiNC2R Architecture . 13

3.1. WiNC2R Architecture . 13

3.1.1. Top Level Modular Architecture 13

3.1.2. Re-configurability in WiNC2R 14

3.1.3. Current WiNC2R Implementation 18

3.1.4. Plug-and-play and Re-configurability Inside PE 20

3.1.5. Architectural Comparison of GNU Radio and WiNC2R 21

4. Testing and Simulations . 23

4.1. WiNC2R Test-Bench . 23

4.1.1. A Generic Test-Bench to Test Hardware Systems 23

4.1.2. Need for an Automated Test Bench 24

v

4.1.3. BFM Testing Environment . 26

4.1.4. WiNC2R Test-Bench using BFM 28

4.2. Basic Analytical Experiment . 30

4.2.1. The Experimental Setup . 30

4.2.2. Measurements and Analysis: Data Frame Transfer 32

4.2.2.1. FU MAC Tx Analysis 32

4.2.2.2. FU HDR Tx Analysis 34

4.2.2.3. FU MOD Tx Analysis 38

4.2.2.4. FU IFFT Tx Analysis 39

4.2.2.5. FU SYNC Rx Analysis 39

4.2.2.6. FU MAC Rx Analysis 43

4.2.3. ACK Frame Transfer . 44

4.2.4. Summary . 44

4.3. Effect of Frame Size on WiNC2R Performance 48

4.3.1. Experimental Setup and Measurements 48

4.3.2. Analysis of TAT and RTT . 49

4.3.2.1. TAT Analysis . 51

4.3.2.2. TAT Improvement . 54

4.3.2.3. RTT Analysis . 58

4.3.2.4. Improvement in TDATA Tx 59

4.4. Supporting Multiple Flows by Time-Sharing of UCM 63

4.4.1. Motivation and Experimental Setup 63

4.4.2. Measurements and Analysis . 64

4.5. Effect of Change in Clock Frequency . 67

5. Conclusions and Future Work . 69

References . 72

vi

List of Tables

4.1. Truth Table for Two-Bit-Input Adder 23

4.2. FU MAC Tx Measurements: Fixed Frame Size 33

4.3. FU Sync Rx Preamble Processing Measurements 43

4.4. FU MAC Rx Measurements: Fixed Frame Size 44

4.5. FU Measurements: Fixed Frame Size . 45

4.6. Chunk Sizes with 4 Symbols per chunk 53

4.7. TMAC Rx Measurements: Varying Frame Size 54

4.8. Last Chunk Size Table . 56

vii

List of Figures

2.1. The Data and Control Flow in GNU Radio 11

2.2. The Architecture of WARP Platform . 12

3.1. Top Level Block Diagram of WiNC2R 13

3.2. Components of the FU: PE and UCM 15

3.3. The Two Versions of TD Table for FU1 16

3.4. The Effect of the Change in TD Table on the Data Flow 17

3.5. FUs Currently Implemented in WiNC2R 18

3.6. The Effect of Chunking on the Frame 19

3.7. The Summary of GNU Radio and WiNC2R Architecture 21

4.1. A Generic Test Bench for Two-bit Input Adder 24

4.2. A Generic Test Bench using BFM . 26

4.3. A Sample BFL Script . 27

4.4. Interaction between BFL Script and VHDL test-bench 27

4.5. Block Diagram of a BFM Node . 28

4.6. Communication between two WiNC2R nodes in BFM simulation 30

4.7. Data Transfer using simple ALOHA MAC Protocol 31

4.8. Data Frame Format . 31

4.9. Ack Frame Format . 31

4.10. Task Flow for Data Frame Transfer . 32

4.11. Components of FU Latencies . 32

4.12. PLCP Header Format . 35

4.13. Effect of Chunking and Reschedule Period in PE HDR 36

4.14. Processing Latencies in FU HDR: Fixed Frame Size 37

4.15. Comparison of TFU HDR and TIDLE: Fixed Frame Size 37

viii

4.16. Processing Latencies in FU MOD: Fixed Frame Size 38

4.17. Processing Latencies in FU IFFT: Fixed Frame Size 40

4.18. The Task Flow inside the FU SYNC block 41

4.19. Processing Latencies in FU Sync Rx: Fixed Frame Size 43

4.20. Task Flow for ACK Frame . 45

4.21. UCM Latencies per chunk: Fixed Frame Size 46

4.22. Control and Data Overhead in TTT . 46

4.23. Data Transfer using simple ALOHA MAC Protocol 48

4.24. RTT Measurement: Varying Frame Size 49

4.25. Throughput Measurement: Varying Frame Size 50

4.26. Measurement of TAT and RTT at GPIO Interfaces of Nodes 50

4.27. Components of TAT . 51

4.28. TAT Measurement: Varying Frame Size 52

4.29. Start of Last Chunk Processing w.r.t End of Frame 53

4.30. TAT Measurements: 2 Symbols Per Chunk, Varying Frame Size 56

4.31. TAT with chunking only in FU SYNC 57

4.32. TAT with chunking extended to FU MAC Rx 57

4.33. Components of RTT . 58

4.34. RTT Measurements: 4 Symbols Per Chunk, Varying Frame Size 59

4.35. TDATA Tx with chunking being done in FU HDR 60

4.36. TDATA Tx with chunking being done in FU MAC Tx 60

4.37. Setup for Two Concurrent Data Flows through WiNC2R 64

4.38. System Latency Components . 65

4.39. System Latency Measurement for Multiple Flows 65

4.40. FU MOD Latency Measurement for Multiple Flows 66

ix

1

Chapter 1

Introduction

A “Cognitive Radio”(CR) is a radio which constantly senses its environment and uses

this information to configure its own parameters so as to communicate reliably and

with maximum efficiency. The parameters modified can be transmission rate, power,

frequency, modulation scheme and any combination of these. To give an example,

if a wireless cognitive transceiver senses that the channel on which it is transmitting

has improved in quality, it might choose to increase its rate of transmission. If it is

communicating with another cognitive transceiver, a higher transmission rate can be

agreed upon by both of them when the channel changes state, so as to achieve better

communication exchange overall.

Another example might be two people sitting in a cafe with open-access Wi-Fi and

exchanging information using their laptops. If the number of customers increases in

the cafe, the quality of the communication link will deteriorate and the possibility of

disruption of the service will increase. In laptops equipped with cognitive radio cards,

the communication can be seamlessly transferred to a say a Bluetooth link or any

other suitable technique when the Wi-Fi channel quality deteriorates. If the channel

quality improves, the radios could jump back to Wi-Fi which may support higher data

rates. In fact, a pair of “ideal” cognitive radios can even negotiate a completely new

communication protocol with a specific frame format, medium contention algorithm,

modulation and coding scheme etc.

Cognitive radios were first officially proposed as a radio-extension of a Software-

Defined Radio (SDR), which can communicate with the network about its own current

state and the state required by the network to get the best possible service [1]. A

cognitive radio will use the result of this communication to configure the parameters

2

of the SDR. Today, this definition of cognitive radio has been expanded to include an

ideal radio platform which can configure itself to suit any physical and/or medium-

access and even upper layer requirements. Such a device will have ability to support

adaptive power and rate control, dynamic spectrum sensing and agile frequency hopping

at the physical layer along with ability to support various medium access schemes at

the higher layers [2].

The chief features of Cognitive Radios are listed below [3].

1. Spectrum Sensing: A cognitive radio can scan a wide spectrum and determine

frequencies being used as well as the location of corresponding transceivers. This

enables the cognitive radio to determine its own transmission characteristics like

operating frequency, signal modulation scheme and transmit signal strength.

2. Spectrum Etiquette Management: This feature includes the regulatory policies

which will place constraints on the behavior of cognitive radio. For example,

operation of a CR in licensed spectrum be restricted to regulations. These regu-

lations will require the CR to yield the spectrum access to “registered” users for

this spectrum. An example of such licensed spectrum is AM and FM radio spec-

trum. The regulation will require that priority be given to the broadcast radio

channels in this spectrum over a CR. A CR is called a secondary user for these

spectrum ranges. Another policy can be constraints on configuration parameters

like transmit signal strength of the CR.

3. Modular architecture and on-the-go re-configurability: The architecture of the

CR should be modular so that adding and removing modules from the radio is

easy (Plug-and-play). Each module should be self describing and independent

in its chief functionality from the other modules. CRs should provide suitable

interface for all such kinds of modules. Also, a CR should be able to change the

flow of data between these modules seamlessly while still in operation.

4. Creation of specific user profiles: A CR is able to create a set of configuration

settings best suited for a specific application scenario. For example, a CR will

create a specific profile for a wireless device whenever the user is at his/her home

3

by sensing the home network environment specifications and typical usage char-

acteristics.

5. Adaptive algorithms: During the radio operation, CR continues to sense the

environment, and will negotiate with the peers in the network to tweak its own

operating algorithms to improve its efficiency.

6. Distributed collaboration: Throughout the operation, CRs share their operating

characteristics, application requirements and current performance measurements

with each other. This data is used to determine the policies to best utilize the

network resources.

Because of the above properties CR lends itself to many applications.

1. Public Safety Applications [4]: CR’s spectrum sensing and frequency adaptive

abilities are useful where guaranteed communication links are a necessity. Public

safety personnel and devices always need to be in touch with each other to im-

mediately report any events. CRs will guarantee the best possible link between

any two radios in a given environment. Communications from a team working

in the most critical part of a burning building will be given priority above those

from any other teams’ and even those from multiple devices accompanying press

reporters. The enhanced capabilities of a cognitive radio node can also provide

broadband applications like visual sensing important to security along with nar-

row band voice communication. Such visual output from public safety personnel’s

hand-held phone-camera can help more in combating the crisis.

2. Military Applications [5]: Troops of a nation can be distributed in many parts

of the world on separate missions. Differences in spectrum allocation policies in

those areas and the home country can restrict usage of the communication equip-

ment used by the troops. Also, these differences also translate to the difficulties

in communication between troops from different areas. The flexibility in archi-

tecture allows the CR to support various communication technologies. Modules

supporting the local technologies can immediately be added. Also, during team

4

operations where constant connectivity can be an issue, the dynamic spectrum

allocation capability of the CR can provide improvements in the communica-

tion within the troops. Currently, Defense Advanced Research Projects Agency

(DARPA) is advancing its Next Generation (XG) program on these lines.

3. Support for heterogeneous networks: Ability of CR to support a multitude of

technologies enables it to act as a bridge between two devices/networks based

on different communication technologies. CRs can thus operate as gateways and

access points and create large extended networks made up of small networks of

different kinds.

4. Location dependent services: Using the profiles created for various application

scenarios, CRs can provide location dependent services. Based on data gathered

when you are home, in office and on the road, a cognitive radio can create separate

user profiles which suite your applications in those specific environments.

5. Efficient Spectrum Utilization: Though a cognitive radio can sense a free portion

of spectrum and tune to it, it is always a secondary user if the spectrum is licensed.

That is, an authorized user for that spectrum will get priority over the cognitive

radio. Still, if on such a spectrum there is space available, cognitive radios can

communicate. Thus the free portion of a licensed spectrum also gets used. Also, a

group of cognitive radio nodes operating in any spectrum can negotiate spectrum

access to increase the efficiency. For example, an increased number of customers

at a time will be able to use free wireless services in cafes than currently can if

the customers are using CRs.

Given the range of features described, and multitude of intended application scenar-

ios, it is not surprising to see that after just a decade since the inception the concept,

CR platforms are still in a research and development stage. If we scan the features

offered by the CR, we see that the modular architecture and dynamic re-configurability

are the most important features when it comes to implementation. Modular architec-

ture implies that radio functionality should be divided into individual entities or blocks,

which once configured can perform the requisite operations. Re-configurability implies

5

that the flow of data between these blocks might not always follow the same path. As

this re-configurability is intended on-the-go; i.e. the data flow path can change during

the CR operation as well; the architecture needs to support all possible data flow paths

at all times. Last but not the least, is the support for plug-and-play for any new service.

While the new functionality can be coded as an independent module, for plug-and-play

the CR will need to offer a uniform interface to all modules. So, while the different

modules can contain implementations of a diverse set of operations inside them, their

way of interacting with the CR must be same.

Providing for these features makes the CR architecture much more complex to

design than an architecture designed to cater to one specific application/technology. It

adds lot of superfluous logic, like control flow management, all of which might not be

necessary for each and every application but is there to provide CR capabilities discussed

earlier. Because of this, implementation of the CR architecture will need extensive

resources in terms of processing power and hardware requirements. Again, as the CR

needs to support current technologies as well, it will need to satisfy corresponding

operating constraints like Inter-Frame Spacing (IFS) durations in 802.11a/b/g PHY

standards. With all the additional baggage, these can be tough to satisfy. Hence,

each CR architecture and implementation needs to be evaluated on two points, namely

resource requirements and latency, until the architecture reaches maturity.

Winlab Network Centric Cognitive Radio (WiNC2R) [6] platform is a programmable

hardware CR platform designed by Wireless Information Network LABoratory (WIN-

LAB) at Rutgers University. WiNC2R implements the radio functionality using various

hardware accelerators, which are programmable by software. The software resides in a

standard Xilinx soft-core processor called MicroBlaze implemented on Xilinx Virtex-5

FPGA chip. The hardware accelerators are implemented in the FPGA fabric. The

accelerators are connected by a standard bus implementation.

WiNC2R provides all the features necessary for a CR platform. The radio level

functionality is divided into signal processing applications which are independent of

each other, e.g. MAC processing and Modulation. These applications are then assigned

to individual blocks called Functional Units (FUs). Inside the FUs, the separation of

6

control flow and data flow is achieved by provision of a Unit Control Module (UCM) and

an independent radio processing block called Processing Engine (PE) which implements

the FU core operations. UCM is responsible for configuring and activating the PE, and

for the data transfer in between the PEs. The flexibility of data flow is maintained by

using two databases which list configuration settings for each operation performed by

PE. These databases also describe all possible data paths following each PE. The data

flow paths can be configured during the setup and initialization and also during the

actual operation. WiNC2R provides a backbone architecture with a uniform interface

to all modules, which supports plug-and-play ability. WiNC2R also supports run time

re-configurability inside the modules currently implemented.

This work evaluates the architecture of WiNC2R on the ground of re-configurability,

and latency. It also presents and classifies some currently available CR architectures.

Out of these, two namely, the GNU Radio platform [7] and WARP platform [8] are

chosen as representatives of their own class of CR platforms. We compare them with

WiNC2R with hopes of identifying a correct direction in CR implementation. Specif-

ically, we prove that while WiNC2R provides the range of re-configurability necessary

for CR better than GNU radio and WARP platform, it also pays the price for it in

terms of latency.

The rest of this thesis is organized as follows. Section 2 presents a survey of cur-

rently available CR architectures. We discuss various features of these platforms with

detailed description of the GNU radio and WARP platforms with which we compare

the features of WiNC2R. Section 3 will present the WiNC2R architecture and present

its implementation of CR features. Section 4 will discuss the experimental setup for our

simulations and their results. We will compare these results and compare them with

some features of other platforms to draw conclusions in the Section 5.

7

Chapter 2

Survey of Cognitive Radio Platforms

The aim of this section is to describe a classification of CR platforms with a few ex-

amples. Some of the examples mentioned are not cognitive radios per se, but they do

posses CR capabilities like re-configurability and flexibility. We describe two platforms,

GNU radio and WARP platform, in detail.

2.1 CR Platforms

2.1.1 Classification of CR Platforms

[2] classifies the current CR platforms in four types.

1. Multimodal Hardware-based Platforms

These platforms represent the most basic type of CRs. To support multiple tech-

nologies, these platforms implement modules for each technology separately, for

example, separate cards for Wi-Fi and Bluetooth in commercial laptops. The

cognitive functionality is limited to activating one or both of them according to

the requirements. Apart from support of various technologies, these platforms do

not offer any other CR feature like modularity, programmability and plug-and-

play. Programmability is limited since each flow (Wi-Fi or Bluetooth) is designed

to support one specific application. Also, as number of supported technologies

increases, these platforms become inefficient in terms of resource consumption.

2. Portable Software Platforms

These platforms implement the radio functionalities in the software for pro-

grammability. Since, these functions are coded in high-level programming lan-

guages, it is easy to add new modules and also the level of programmability is

8

high. These platforms run as application software on a general purpose or Real-

Time Operating System (RTOS) installed on general purpose processors (GPPs).

Because of this, these platforms can run on any system which uses the compati-

ble OS. Although most radio processing is done in software, these platforms need

RF hardware boards to provide wireless interface. These boards implement the

RF functionalities like filtering, up/down conversion and ADC/DAC functions.

Implementing these functions in software is difficult. The example of such plat-

forms is GNU Radio and VANU platform. While the use of GPP makes them

portable, it also hinders them since the GPP is not tailored to meet the appli-

cation requirements. Also, performance of these platforms depends not only the

GPP used but also on the underlying software (OS) on which these platforms run

as applications. Hence, it is often found that lot of times the GPP and the OS

become the performance bottlenecks.

3. Re-configurable Hardware Platforms

This CR platform type includes multiple different platforms which use various

combinations of Field Programmable Gate Arrays (FPGAs), DSPs (Digital Signal

Processors) and embedded RISC (Reduced Instruction Set Computer) processors.

These platforms support one technology at a time but they can be re-configured

to support different technologies by downloading a new image into the FPGA.

These platforms are essentially reconfigurable because of the presence of FPGA

and RISC processors both of which support some degree of programmability. But

on-the-go re-configurability is not supported by these platforms since a new image

needs to be downloaded to the FPGA to change the functionality of the platform.

The programming is done in low-level languages (like hardware development lan-

guages) and is, hence, more complex than that in software platforms. Also, the

presence of different cores like FPGA and DSP constitutes a heterogeneous envi-

ronment which is difficult to simulate and test. The example of such platforms is

Rice University WARP platform.

4. SoC Programmable Radio Processors

9

These platforms make up a system-on-chip (SoC) environment using arrays of

special purpose processors. Just like the re-configurable platforms, there is no

standard architecture and number of processors varies from platform to platform.

The functional space and processing power depends upon the number of proces-

sors. Programming is done using standard tools and the use of these with high-

level language support makes programming easy. The example of such platforms

is picoChip devices.

We now look into details of GNU radio and WARP platforms.

2.1.2 GNU Radio Platform

GNU radio (GNU is a recursive acronym, Gnu is Not Unix) is a free software toolkit

to build software radios [9]. A software radio is a radio where all radio processing

except RF and ADC/DAC is done in high level software languages. GNU radio uses

C++ and Python for implementing signal processing applications. It uses C++ to code

performance critical functions (many PHY layer applications) and Python for high level

organization, policy and non-performance critical blocks. Python is also used to connect

together the modules coded in C++. The GNU radio toolkit can be installed and run

on any GPP with a compatible (usually Linux-based) OS.

To provide the air-interface and RF functions, GNU Radio is connected to an RF

board through USB or Gigabit Ethernet. GNU radio uses standard RF board called

Universal Software Radio Peripheral (USRP) [10]. USRP contains ADC/DACs, slots

for various types of daughterboards, and an FPGA [11]. The ADC/DACs connect to the

FPGA. The FPGA itself usually contains digital up and down converters and spectral

shaping filters. The FPGA helps reduce the high bandwidth at the RF interface to

data rates supported by USB or Gigabit Ethernet.

GNU Radio provides us with a basic block called GR BLOCK to code our own signal

processing blocks(SPBs) [12]. GR BLOCK declares the basic virtual functions and the

SPB needs to implement its own instance of these functions to be part of the GNU

Radio architecture. For example, the GR BLOCK declares a virtual “general work”

10

function. The SPB implments its own instance of this function, where it includes all its

processing logic. This function also tells the SPB logic how many input items need to

be processed based on output space available. The GR BLOCK also provides functions

which are used by the application code to inform the control logic how many input

items were consumed and how many output items were generated. To write a SPB, a

. cc and a . h file needs to be generated.

The blocks written in C++ are connected in Python together to form a complete

communication chain. To make this possible, C++ processing methods need to be

visible in Python. The ‘Simplified Wrapper and Interface Generator’ (SWIG) provides

this mechanism. To use SWIG, the user needs to write a . i file for each application.

Hence, to create and include a new SPB, three different files, . cc, . h and . i are needed.

The instances of C++ methods made visible in python are then connected together to

get required functionality. Such a chain is called a flow graph.

To control the data flow between the various C++ blocks, GNU radio provides

a C++ block called Scheduler. When the flow graph is created and instantiated in

Python, the control is transferred to scheduler. The scheduler creates buffers (each of

size 32kB) between each pair of consecutive blocks. The first block processes the data

and dumps it into the buffer. The next block then reads the data from this buffer. It

is the task of scheduler to call each block and pass it the input data size. After the

processing is done each block returns the size of the output data written. The flow of

logic in a GNU radio chain is as shown in Figure.

We show here a simple transmitter chain with a framer, CRC calculator, FEC

(Forward Error Correction) coder and Modulator implemented as GR BLOCKs in

C++. When Python creates and starts the flow graph, scheduler creates the data

buffers shown. It then first calls the framer block with the parameter input size. We

assume framer reads the input data from a text file. Framer processes the input data

and stores it into the data buffer. After the processing is done, it transfers the control

back to the scheduler with the size of output data produced. The scheduler then calls

the next block in the chain which is CRC calculator. The output size of the framer is

used as input size for this block. After CRC block is done, it transfers the control back

11

Scheduler

Python Script

Start the
flow graph

Framer

D
A
T
A

B
U
F
F
E
R

D
A
T
A

B
U
F
F
E
R

D
A
T
A

B
U
F
F
E
R

CRC
FEC

Coder
Modula

tor
Data Data Data Data Data Data Data

In
pu

t S
iz

e

O
ut

pu
t S

iz
e

In
pu

t S
iz

e

O
ut

pu
t S

iz
e

In
pu

t S
iz

e

O
ut

pu
t S

iz
e

In
pu

t S
iz

e

O
ut

pu
t S

iz
e

flow graph
finished

To USRP

Figure 2.1: The Data and Control Flow in GNU Radio

to scheduler with the size of output data it produced. This process goes on for every

block in the flow graph. After the last block is done, the control is transferred back to

the python script. If the application wants to send the next packet, it can again start

the flow graph.

We now analyze the GNU radio architecture in terms of CR features achieved. GNU

radio is modular since it divides the radio processing into separate C++ blocks. Due

to use of high-level languages like C++ and Python, programming is comparatively

easier than hardware platforms. The connection of the blocks is defined in the python

script and this can be changed according to application requirements, hence there is

re-configurability. Since, GNU Radio requires that any radio processing block to be

coded must be derived from GR BLOCK (or its subclasses), we can say that it achieves

uniform interface for all new modules. In Section 3, we compare the architecture of

GNU radio with that of WiNC2R in terms of these features.

2.1.3 WARP Platform

Wireless open-Access Research Platform (WARP) is a platform developed at Rice Uni-

versity. This platform implements all the radio functionality in an FPGA and an em-

bedded RISC processor. The FPGA used is Xilinx Virtex-II Pro and the processor is

12

IBM Power PC (PPC). For detailed architecture description of WARP platform please

refer to [13]. WARP implements the time-critical PHY layer functions in the FPGA

fabric and uses embedded programming to code higher-level MAC layer functions. The

entire structure is connected using IBM standard Processor Local Bus (PLB) as shown

in the following figure [14].

PLB

Timer
Interrupt

Controller
PowerPC PHY TxPHY RxEthernet

Figure 2.2: The Architecture of WARP Platform

The use of FPGA adds a degree of re-configurability in the WARP board. But

it is limited because each time you need to download a new image file to the FPGA

to run a different application. Hence, on-the-go re-configurability is not supported.

To implement the PHY layer blocks, WARP uses blocks generated using Simulink

libraries. We see that apart from the PHY layer re-configurability offered by the use of

FPGA and MAC level re-configurability offered by the use of embedded programming

in PowerPC, WARP does not provide any other CR features like separation of data and

control flow, dynamic selection of one of several possible data-flow paths and modularity.

But it achieves better speed in operations due to use of FPGA. We will compare the

performance of WARP with that of WiNC2R in Section 4.

13

Chapter 3

WiNC2R Architecture

The chief architectural requirements of a CR are modularity, plug-and-play and on-

the-go re-configurability. In this section, we see how we have achieved these features

in WiNC2R through its architecture. The complete platform hardware and software

architecture for WiNC2R is described in [15].

3.1 WiNC2R Architecture

3.1.1 Top Level Modular Architecture

Processor Local Bus

FU 1

PLB
IPIF

FU 2

PLB
IPIF

FU 3

PLB
IPIF

FU 4

PLB
IPIF

FU N

PLB
IPIF

…

…

…

µBlaze CPU Core

PLB-
PLB

Bridge

Processor Local Bus

GPIO INTC Timer

Software
System

Components

Hardware
System

Components

GTT
BRAM

Figure 3.1: Top Level Block Diagram of WiNC2R

14

In figure 3.1, we show generic top level architectural block diagram of WiNC2R. The

architecture of WiNC2R can be divided in two parts shown in separate dashed boxes.

The upper box shows the software systems components while the lower one includes

the hardware accelerator components. While the actual data processing takes place

in the hardware components, the software system is responsible for their configuration

and initialization. The software code sits in standard Xilnix soft-core CPU called

MicroBlaze. Through this software code, WiNC2R initializes the FUs and configures

the data flow between them as per the application requirements. The Microblaze core is

connected to its own GPIO ports (General Purpose IO), Timer and Interrupt peripheral

modules using an IBM standard bus structure called Processor Local Bus (PLB).

The functionalities of the radio processing are divided into independent blocks called

Functional Units (FUs). These are equivalent to SPBs in GNU Radio and serve the

same purpose. All FUs are currently implemented using a hardware description lan-

guage called VHDL (VLSI Hardware Description Language). No two FUs are directly

connected; instead all of them communicate using a separate PLB. The two PLBs

are connected through a bridge. Having two separate buses helps to reduce capacitive

loading on each of them and separates the hardware and software functionality.

Each FU interfaces to the PLB through Xilinx implementation of standard IPIF

(Intellectual Property Interface). Since there is no direct interface between any two

FUs, the data flow can be configured to be from any FU to any other FU.

3.1.2 Re-configurability in WiNC2R

The processing in FU can be divided into two parts; data processing and control pro-

cessing. The data processing includes the core radio signal processing functionality

while the control processing is the logic WiNC2R adds to achieve CR features.

The block diagram 3.2 describes the corresponding two processing blocks in the

WiNC2R FU [16]. The Processing Engine (PE) implements the radio processing func-

tions in the FU. It consists of a Processing Unit (PU) and RMAP (Register Map).

Each PU has two block RAMs associated with it called input buffer and output buffer.

15

IPIF

TA

Input & Output
Memory

Functional Unit

TT

UCM PLBPE

PU

RMAP

Figure 3.2: Components of the FU: PE and UCM

RMAP is also a RAM, but depending upon the PU requirements it may be imple-

mented as a block RAM or just a set of individual memory locations. The RMAP

contains software-configurable control information required for PU processing.

Unit Control Module (UCM) implements the control logic required for re-configurability

in WiNC2R [17]. WiNC2R uses a task-based architecture with two types of task-related

databases, called Global Task-descriptor Table (GTT) and Task-Descriptor Table (TD

Table). Both databases are implemented as block RAMs. GTT is implemented as a

block RAM connected to the PLB and separate from all FUs while each FU has its own

TD Table. Based on its core functionality, each FU is assigned a set of input tasks and

the FU is idle until it receives one of these tasks [18]. There are two types of tasks, data

and control. Data task indicate that there is data to be processed present in the input

buffer of the PU. For example, data task TxMod tells the Modulator block that there

is data in the input buffer that needs to be modulated. This data is transferred to the

input buffer of PU before the task is sent. Control tasks impart some useful control

information to FUs, for example ChannelIdle/ChannelBusy control tasks tell MAC FU

the channel state information which is necessary if MAC uses CSMA (Carrier Sense

Multiple Access).

Each FU has its own TD Table that stores all the required information for each input

16

task for the FU [19]. When the FU receives a data task, the UCM Task Activation

block fetches this information from the TD table and processes it. It then forwards the

task to PE along with the location and size of input data. The PE processes the data

and stores it in the Output Buffer. Once the processing is over, PE relays the location

and size of processed data in Output Buffer to the UCM through Next Task Request

and Next Task Status signals. The Next Task Status bits indicate the location of the

processed data in the output buffer. Depending on the PU, the output data may be

stored at more than one location. The Next Task Request signal indicates the UCM

Task Termination (TT) block how the output data at locations indicated by status bits

is to be processed. The TT processing includes transferring the data to next FU/FUs

in the data flow. The NT Request tells the TT to which FU the data is to be sent. The

next PE (or FU) in the data flow in determined the information stored in TD table.

By updating the information in TD table, software can change the next FU in the data

flow path. This way the data flow path is reconfigured on-the-go.

Task Name

Input Data Location for this FU

Input Data Size for this FU

Next FU in flow == FU2

Task Name

Input Data Location for this FU

Input Data Size for this FU

Next FU in flow == FU3

TD Table for FU1 Changed TD Table for FU1

Figure 3.3: The Two Versions of TD Table for FU1

Figure 3.3 and 3.4 show us an example of this. Figure 3.3 shows TD table entry

for FU1. It designates the next FU in the data flow as FU2. The TD table for FU 2

(not shown in figure) will have similar entry for FU3. The resulting flow is as shown

in Figure 3.4 by solid lines. FU1 receives a task. UCM TA block does activation and

passes the task with input data location and size to PE1. PE does task processing (TP)

and transfers the NextTaskRequest along with output data location and size. UCM

TT block then looks up the next FU for the current data flow and finds out that it is

FU2. It then initiates the data transfer between FU 1 Output Memory to FU2 Input

Memory and after that is done, generates a task for FU2.

17

PE 1
Task Processing (TP)

UCM Task Activation UCM Task Termniation

FU 1

PE 2
Task Processing (TP)

UCM Task Activation UCM Task Termniation

FU 2

Task
Request

PE 3
Task Processing (TP)

UCM Task Activation UCM Task Termniation

FU 3

D
A

T
A

DATA

Task
Request

T
as

k
R

eq
ue

st

T
as

k
R

eq
ue

st

D
A

T
A

T
as

k
R

eq
ue

st

IP
 D

at
a

Lo
ca

tio
n

IP
 D

at
a

S
iz

e

N
T

R
eq

ue
st

O
P

 D
at

a
Lo

ca
tio

n

O
P

 D
at

a
S

iz
e

T
as

k
R

eq
ue

st

IP
 D

at
a

Lo
ca

tio
n

IP
 D

at
a

S
iz

e

N
T

R
eq

ue
st

O
P

 D
at

a
Lo

ca
tio

n

O
P

 D
at

a
S

iz
e

T
as

k
R

eq
ue

st

IP
 D

at
a

Lo
ca

tio
n

IP
 D

at
a

S
iz

e

N
T

R
eq

ue
st

O
P

 D
at

a
Lo

ca
tio

n

O
P

 D
at

a
S

iz
e

Figure 3.4: The Effect of the Change in TD Table on the Data Flow

Before UCM TT block generates task request for FU2, it needs to look up some

information regarding the task request to be generated. This information is specific to

FU2 and hence not stored in TD table of FU1. For this information, the UCM accesses

Global Task-descriptor Table (GTT). Unlike TD table, there is only single GTT for

all FUs and it is implemented in a separate memory than all the FUs as shown in

figure. This table contains the information UCM TT block of each FU might need.

The details of all these operations are described in [15]. FU2 processing goes through

same operational stages (TA, TP and TT) and same happens for FU3.

Now referring again to Figure 3.3, we see in the dashed box an updated TD table

entry for FU1. Here the next FU in the data flow is changed to FU3, cutting out FU2

from the flow. The reasons behind this change can be more than one. For example,

assume FU1 does MAC processing, FU2 Forward Error Correction coding and FU3

modulation. It may happen that the CR senses that channel quality is good enough to

do away with the FEC doing. In that case data will flow from MAC processor (FU1)

to Modulator (FU3) directly. To implement this change, software just changes the FU1

TD table next task entry from FU2 to FU3. The resulting data flow is as shown in

Figure 3.4 by dotted arrows going from FU1 to FU3.

18

We also note in Figure 3.4 the clear separation of the data and control flow in the

WiNC2R. While the data flows between PEs, the control information flows between

the corresponding UCMs. The overall processing in each FU is divided into three

non-overlapping stages namely, TA, TP and TT.

3.1.3 Current WiNC2R Implementation

Figure 3.5: FUs Currently Implemented in WiNC2R

The figure shows FUs currently implemented in the WiNC2R. The six FUs are

divided into a transmit chain of four FUs and receive chain of two. Following is the

brief description of each of them.

1. FU MAC Tx: This FU currently provides two medium access schemes, ALOHA

and CSMA-CA back-off. It also uses 802.11a ?? compatible inter-frame spacing

(IFS) durations and frame formats.

2. FU HDR Tx: This FU adds 802.11a PLCP Header to the MAC frame. This

FU instructs the Tx IFFT to start generating the preamble by means of task

request. While processing data, it divides the MAC frame into chunks. Each

chunk is processed individually and forwarded to the next FU [20]. The chunking

introduces pipelining in the transmitter operation. Since at a time a small portion

of a frame is getting processes and stored in the memory, it also reduces the

memory requirements.

The size of the individual chunk is determined by the modulation scheme used.

In terms of number of OFDM symbols, each chunk (except the last one) is equal

19

to four OFDM symbols. FU HDR pads the last chunk to next immediate integral

number of OFDM symbols. Since the number of bytes in an OFDM symbol

changes with modulation scheme used, the size of each chunk in bytes also changes

with modulation scheme. Usually, for a given modulation scheme, the size is same

for all chunks except the first and last one. The first chunk size differs since it

may contain PLCP header and part of MAC frame. Regardless of the modulation

scheme chosen the PLCP header is always modulated using BPSK.

For a given modulation scheme, size of first chunk and size of subsequent chunks is

specified in TD Table. The UCM TA block is responsible for doing the chunking

operation.

DATAFU
MAC Tx

FU
HDR Tx

FU
MOD Tx

DATA
CHUNK

1

DATA
CHUNK

2

DATA
CHUNK

3

DATA
CHUNK

4

DATA
CHUNK

1

DATA
CHUNK

2

DATA
CHUNK

3

DATA
CHUNK

4

FU
IFFT Tx

DATA
CHUNK

1

DATA
CHUNK

2

DATA
CHUNK

3

DATA
CHUNK

4

Figure 3.6: The Effect of Chunking on the Frame

The effect of chunking is as shown in Figure 3.6. We see the output of all FUs in

the transmit chain.

Current implementation supports BPSK and QPSK modulation schemes. The

value of firstchunksize, chunksize is 16, 24 and 34, 48 bytes respectively for

these.

3. FU MOD Tx: This FU implements various modulation schemes compliant with

802.11a.

4. FU IFFT Tx: This FU implements an IFFT to convert incoming bytes to OFDM

symbols. It also generates and adds short and long preamble before the frame.

5. FU MAC Rx: This FU receives the frame and performs various checks. If it finds

that frame is meant for it and is error free, then it stores the frame into a separate

20

RAM and alerts the CPU by means of an interrupt. This FU processing is also

802.11 based.

6. FU SYNC Rx FFT DMOD: This FU is combination of four individual FUs, FU

SYNC, FU Rx FFT, FU DMOD and FU CHKR. These were combined to reduce

the resource utilization. Before combining them, each FU had its own UCM. By

integrating the FUs, we removed three UCMs from the design.

This FU detects the start of frame, converts it from OFDM symbols to data

bytes, demodulates it and assembles all the chunks into a single frame. While

doing this, it also calculates checksum over the complete frame and reports the

result to MAC Rx.

3.1.4 Plug-and-play and Re-configurability Inside PE

We have seen in previous subsections how we achieve modularity and on-the-go re-

configurability for the data flow path amongst the modules. We now see implementation

of two other CR features, plug-and-play and re-configurability inside the modules. We

refer to block diagram of PE shown in Figure 3.2.

The PE itself is a just a wrapper and does not implement any radio processing

logic. As shown in figure, it wraps around two blocks called Processing Unit (PU) and

Register Map (RMAP). All radio processing logic is implemented inside the PU. The

RMAP is a block of registers (memory locations) required for PU operation. There are

registers which can be updated by CPU during the reset stage and they help achieve

the re-configurability inside the PE. For example, PE MAC Rx implements 802.11

compliant IFS durations. It uses timers for this purpose. These durations are different

for each substandard of 802.11 like a, b and g. Hence, whenever PE MAC Rx wants

to wait for a specific IFS duration, it just reads the IFS value from a location in the

RMAP. It is the responsibility of CPU to update this location with the correct value

for current standard implemented. Hence, PE MAC Rx is reconfigurable for 802.11 a,

b and g standard.

The interfaces of PU and RMAP will differ according to a specific application. But

21

UCM needs a uniform interface to communicate with the PE. The PE wrapper sup-

ports this uniform interface. It hides all the PU specific interface ports by mapping

them internally to the PE ports. We can thus say that the WiNC2R backbone ar-

chitecture consists of the software components, the PLB components and the UCM

and PE wrapper. All application specific logic is contained in PU and RMAP. Using

the PE wrapper, the WiNC2R offers a uniform interface to all the PUs thus achieving

plug-and-play.

3.1.5 Architectural Comparison of GNU Radio and WiNC2R

We now see a brief comparison of WiNC2R and GNU Radio architectures.

Radio Function Specific Code: General
Work Function

Radio Function Specific Code: PU and
RMAP

Wrapper: GR BLOCK Wrapper: PE

Interconnect: SWIG and Python Interconnect: GTT and TD Tables

Application Layer: Python
Application Layer: Microblaze soft-core

CPU
Python

Python

C++: .i files

C++: .cc and .h
files

Embedded
C++

Memory
Locations

VHDL

VHDL

GNU Radio WiNC2R

Figure 3.7: The Summary of GNU Radio and WiNC2R Architecture

The Figure 3.7 summarizes the WiNC2R implementation and GNU radio imple-

mentation. In GNU Radio platform, the radio processing is implemented in C++ while

in WiNC2R we do it in VHDL in PU and RMAP blocks. GNU Radio provides the

GR BLOCK interface for plug-and-play while we provide the PE wrapper written in

VHDL. The connections between the modules are specified using SWIG and Python in

the GNU radio. In WiNC2R these connections are coded in the two databases, GTT

and TD tables. The application layer code, from where the payload is written to the

radio processing functions, sits in the Python script in GNU radio while we use the

Xilinx soft-core embedded CPU Microblaze for the same purpose.

Referring to Figure and Figure 3.4 we see that the control flow is very similar in

GNU radio and WiNC2R. In both, there is controller block which activates the radio

22

processing block with input data size and in case of WiNC2R only, the location. The

difference is that in WiNC2R, each radio processing block has its own controller while

in GNU radio all the blocks share the same controller. Also, in GNU radio consecutive

blocks in the flow graph share the data buffers while in WiNC2R, we have separate

buffers for each block. Nevertheless, we see that same degree of programmability and

re-configurability has been achieved in both GNU Radio and WiNC2R.

23

Chapter 4

Testing and Simulations

In this section, we describe the test-bench and simulations used to analyze the perfor-

mance of the WiNC2R.

4.1 WiNC2R Test-Bench

4.1.1 A Generic Test-Bench to Test Hardware Systems

To simplify the explanation of the test-bench used for evaluating WiNC2R, we first

present a generic test-bench model that can be used to test any hardware system [21].

Consider an example of Two-Bit-Input adder as a system that needs to be tested. The

complete behavior of the adder can be described by the truth table shown in Table 4.1.

Test Case Input Output
No. Ports Ports

A B C S

1 0 0 0 0

2 0 1 0 1

3 1 0 0 1

4 1 1 1 0

Table 4.1: Truth Table for Two-Bit-Input Adder

There are four possible test cases represented by four AB combinations. The vector

AB is called input vector. The output vector of Carry and Sum is denoted by CS. The

block diagram of the generic test-bench for this adder is as shown in Figure 4.1.

The system that needs to be tested is called a Design-Under-Test (DUT). Here, the

Adder is the DUT. Its input ports are connected to the Driver block while the output

ports are connected to the Monitor block. The simulation manager knows all possible

24

Two-Bit-Input
Adder (DUT)

Driver Monitor

Simulation
ManagerTest Case No.

Test Case No.

Simulation Result
(PASS/FAIL)

Set of
Input

Vectors

Set of
Output
Vectors

INPUT
VECTOR {AB}

OUTPUT
VECTOR {CS}

Figure 4.1: A Generic Test Bench for Two-bit Input Adder

test-cases described in Table 4.1. The Driver knows all possible input vectors for each

test case i.e. four possible values of set AB. The Monitor knows the corresponding

output vectors. The simulation manager determines which test case is to be simulated

and provides the test case information to the Driver block. The driver then generates

the input sequence, AB, corresponding the test case number and sends it to the DUT.

The Monitor is also informed about the test case being executed. The monitor compares

the output of the DUT, CS, with the expected output for a given test case number

and informs the result to the simulation manager. The manager then takes the decision

whether to execute the next test case or to report an error and stop the simulation.

The manager can be programmed to carry out hundreds of test cases in a loop and

report the collective result back, or it can be programmed to interrupt the simulation

after the first error.

4.1.2 Need for an Automated Test Bench

Our goal is to test the performance of whole WinC2R system with respect to latency

and throughput. The WiNC2R architecture described in Section 3 can be roughly di-

vided into two parts: software system components and hardware system components

as described in Figure 3.1. The software system components include the MicroBlaze

and its peripherals like GPIO, timer and Interrupt Controller. The hardware system

includes all the FUs and the PLB bus that connects them. Currently, the software

implements only the basic functionalities of initializing and configuring the hardware

components. We do not yet have a full-fledged software system that has CR features

like gathering data from hardware components and making decisions based on them or

25

negotiating with other CR nodes for efficient spectrum access. The hardware compo-

nents on the other hand already provide required CR features like uniform interface for

every module, separation of control and data flow, and dynamic re-configurability of the

data-flow path through the system. We hence conclude that the hardware architecture

is ripe and stable enough to be evaluated for performance. Such performance analysis

will give useful information about the cost the WiNC2R pays in exchange for all the

CR features mentioned above. It will point out the bottlenecks in the architecture; it

can also present an analytical model for the same and point out the right direction

for future developments. We provide such performance analysis of WiNC2R hardware

system in this thesis.

To test just the hardware system, we needed to substitute the software system

with the three blocks described in Figure 4.1, namely simulation manager, driver and

monitor. Since we use IBM standard PLB bus core in our system, the driver and

monitor need to have an interface to the bus core. The driver needs to have all the

initialization code for the FUs. For WiNC2R, this stage includes updating the data

at thousands of memory locations. The driver also needs to make the system ready

for communication by initializing the receiver, so that it starts scanning the spectrum.

In the last stage, the driver needs to start data communication by first writing the

application data to the MAC transmit block and triggering it by writing the SendFrame

task to it. All these operations need to be checked for correct execution. This involves

reading all the updated memory locations to confirm the presence of valid data. We

need to confirm that all the initializations and activation data is getting written at

correct memory locations. The sheer size of these operations in terms of the number of

memory writes and reads to be performed convinced us that at least some part, if not all,

needed to be automated. Though we could not generate the test data automatically

since it was application specific, we could automate the read and write operations.

The WiNC2R development team already had used Xilinx cores like Microblaze, Xilinx

implementations of the standard IBM PLB bus core and IPIF for each FU. Hence, for

the reason of compatibility, ready availability and familiarity, we chose to use the Xilinx

Bus Functional Model (BFM) simulation system to test WiNC2R.

26

4.1.3 BFM Testing Environment

BFM system includes Master, Slave and monitor components for IBM standard core-

connect buses [22] [23]. We use the components for PLB bus core. The Bus Functional

Language is used to describe the behavior of these components and the Bus Functional

Compiler translates a BFL file into executable commands for the BFM components.

The block-level diagram of BFM simulation is as shown in Figure 4.2.

IP Core (DUT)

VHDL
Testbench

IBM Bus IBM BusBFM Processor BFM Monitor

BFL Script

B
F

M
 S

yn
c

B
us

Driver Instructions Monitor Instructions

BFM

Figure 4.2: A Generic Test Bench using BFM

Figure 4.2 is drawn as an extension of the basic model of Figure 4.1 to facilitate a

clear understanding of our test-bench; and can be explained in similar manner. The

BFM here emulates the full behavior of a microprocessor. It contains a bus master

component which acts as Driver and is called BFM processor. It also contains a monitor

component called BFM monitor. The VHDL test-bench acts as simulation manager and

control the behavior of both processor and monitor through the BFL script. The BFL

file initializes both the processor and monitor devices. It contains series of memory

reads and writes. The writes are instructions for processor while reads are instructions

for monitor. A sample BFL which initializes both the devices and does read-write

operations is shown in Figure 4.3.

The first two lines in the script shown in Figure 4.3 specify the generic definitions.

The generics are user-defined and can be as many as required. The next two lines

27

set_alias(ADDR1 = 0xC3621030)
set_alias(DATA1 = 0x01010101)

set_device(path = /bfm_system/bfm_monitor/bfm_monitor/slave, device_type = plb_slave)

set_device(path = /bfm_system/bfm_processor/bfm_processor/master, device_type = plb_master)

mem_update(address = ADDR1, data = DATA1)
write(addr = ADDR1, size = SINGLE_NORMAL, be = WORD0)

mem_update(address = ADDR1, data = DATA1)
read(addr = ADDR1, size = SINGLE_NORMAL, be = WORD0, req_delay = 100)

Figure 4.3: A Sample BFL Script

initialize the processor and monitor using the set device command with the full path

of device files. The last four lines contain one write and on read operation. The read

operation is executed after a 100 clock cycle delay to give the write operation sufficient

time to finish.

The VHDL test-bench communicates with the BFL script using the BFM synchro-

nization bus (synch bus) as shown in Figure 4.2. This contains two independent 32-bit

unidirectional buses going to and from the BFL script called Synch Out and Synch In.

The BFL script can be made to wait upon high signal on any pin on its input synch

bus. The script in turn can drive any pin on the synch out bus high. The test-bench

can wait for this stimulus to do further operations.

CONSTANT RESET = 0;
CONSTANT START = 1;

PROCESS
BEGIN
 SYNC_OUT(RESET) <= ‘1’;

 WAIT UNTIL SYNCH_IN (RESET) = 1;

 SYNC_OUT(START) <= ‘1’;
END

BFL SCRIPT
VHDL

TestBench

set_alias(RESET = 0)
set_alias(START = 1)

WAIT (LEVEL = RESET)

mem_update(address = ADDR1, data = 0x00000000)
write(addr = ADDR1, size = SINGLE_NORMAL, be = WORD0)

mem_update(address = ADDR1, data = 0x00000000)
read(addr = ADDR1, size = SINGLE_NORMAL, be = WORD0, req_delay =
100)

SEND (LEVEL = RESET)

WAIT (LEVEL = START)
mem_update(address = ADDR1, data = DATA1)
write(addr = ADDR1, size = SINGLE_NORMAL, be = WORD0)

mem_update(address = ADDR1, data = DATA1)
read(addr = ADDR1, size = SINGLE_NORMAL, be = WORD0, req_delay =
100)

Figure 4.4: Interaction between BFL Script and VHDL test-bench

A simple example of communication between these two entities using synch bus is

as shown in Figure 4.4. It shows same code as shown in Figure 4.3, only modified by

28

addition of synch bus signals. When simulation begins, test-bench makes RESET pin

(pin number zero) level high. The BFL script is waiting for this signal and performs

reset operation. In this example, the reset operation includes writing zeros to given

memory location and confirming that they are correctly written by reading the same

memory location (ADDR1) after some delay. The test-bench meanwhile is waiting for

the reset processing to be finished. When the script makes its own output pin zero

level high, test-bench knows that reset is done and communicates to the script to start

normal operations using the START pin.

4.1.4 WiNC2R Test-Bench using BFM

We now describe the system used for testing the WiNC2R. The hardware components

of WiNC2R are a collection of various FUs each with its own IPIF to the PLB. Since

performance of each FU needs to be tested, we use each FU as a separate DUT in our

test-bench. This enables us to use separate simulation manager and to monitor each

FU’s performance. Each simulation manager has its own synch bus interface with the

BFL script.

FU MAC
Tx

(DUT 1)

VHDL
Test-

bench 3

PLB BusBFM Processor BFM Monitor

BFL Script
Driver Instructions Monitor Instructions

BFM

FU HDR
Tx

(DUT 2)

FU MOD
Tx

(DUT 3)

FU FFT
Tx

(DUT 4)

VHDL
Test-

bench 1

VHDL
Test-

bench 2

VHDL
Test-

bench 5

FU SYNC
Rx

(DUT 5)

FU MAC
Rx

(DUT 6)

VHDL
Test-

bench 4

VHDL
Test-

bench 6

GPO Port to RF GPI Port from RF

BFM Node

Figure 4.5: Block Diagram of a BFM Node

The top-level diagram of BFM test-bench for WiNC2R is as shown in Figure 4.5.

The structure in the figure describes a complete transceiver system as far as simulation

29

is concerned. The software components of the WiNC2R architecture are replaced by

the BFM components. The BFM system (first described in Figure 4.2) is denoted by

the inner shaded box. The outer box is referred to as ‘BFM Node’. We treat this black-

box as a complete communication system. The GPIO(General Purpose IO) interface

represents the RF interface of the BFM Node. The output of the transmit chain is sent

to RF through GPO port while input from the RF is fed to the synchronizer block in

the receive chain of WiNC2R. All the FUs share the same PLB bus. The bus arbiter is

not shown in the figure for convenience.

30

4.2 Basic Analytical Experiment

The aim of this experiment is

• To examine the complete task flow in the transmitter and receiver chain in the

WiNC2R

• To examine the concept of chunking and associated configuration parameters

• To analyze the processing latency in each FU for processing the task and find out

the UCM and PE processing delays

4.2.1 The Experimental Setup

Figure 4.6 shows the experimental setup for this experiment. Two BFM Nodes(Figure 4.5)

are connected through their GPIO interface. The common channel between the two

nodes was simulated by ORing the output of the two GPO ports together to form a

common output. This output was then looped back to the GPI port of each node. The

GPO port of a node is driven low when a node is not transmitting.

BFM Node 1 BFM Node 2

OR Gate

GPO 1 GPO 2

G
P

I 1

G
P

I 2

Figure 4.6: Communication between two WiNC2R nodes in BFM simulation

The functional details for the experiments are as follows. ALOHA MAC protocol is

simulated on the MAC FUs with the PHY layer blocks providing 802.11a-like OFDM

PHY at 5 GHz, 12 Mbps data rate using QPSK Modulation scheme. It is to be noted

that the PHY layer implementation is not fully compliant with 802.11a. The format

used for MAC frame is 802.11 compatible. Only two frame types are used however,

namely DATA and ACK. For all experiments, data transfer takes place as depicted in

Figure 4.7.

31

D
A

TA

A
C

K

D
A

TA

D
A

TA

A
C

K

A
C

K

D
A

TA

Node
2

Node
1

Time

Figure 4.7: Data Transfer using simple ALOHA MAC Protocol

Node 1 initiates the data transfer by sending a frame to Node 2. It then waits for

an ACK from Node 2 before sending the next data frame. Note that we do not use

Stop-and-Wait ARQ [24]. Instead, node 1 keeps waiting until the ACK is received from

Node 2. Since the channel simulated between them is perfect, there are no packet-

drops and hence, there is no danger of Node 1 waiting indefinitely for ACK. Also, we

assume that Node 1 always has data to send to Node 2. Hence, the data transfer can

go indefinitely and is only limited by the simulation time specified in the test-bench.

The MAC frame size used for this experiment is 500 bytes including the MAC header,

payload and checksum. We use the frame format for the data frame traveling within a

BSS(Basic Service Set). The frame format for the data frame is shown in Figure 4.8.

The size of the MAC header for such a data frame is always equal to 24 bytes. As seen

from the Figure 4.8 checksum size is also fixed at 4 bytes. Thus, the payload for the 500

byte sized frame is 472 bytes long. The ACK frame is always 14 Bytes long. Figure 4.9

shows the frame format for the ACK frame.

MAC Frame PayloadMAC Frame Header FCS

24 Bytes Variable Length 4 Bytes

Figure 4.8: Data Frame Format

MAC Frame Header FCS

10 Bytes 4 Bytes

Figure 4.9: Ack Frame Format

32

4.2.2 Measurements and Analysis: Data Frame Transfer

In this section, we study the complete task and data flow through the WiNC2R FUs

for the frame transfer depicted in Figure 4.7. We describe in brief the operations and

processing latencies in each FU. The discussion and results from this experiment will

make the following experiments easier to understand.

Figure 4.10 shows the task flow in the transmit chain of node 1 and receive chain

of node 1 as the data frame progresses through the chain. For all FUs, the UCM

task activation processing latency TTA, PE task processing latency TTP and UCM task

termination latency TTT are measured as shown in the Figure 4.11. The total processing

latency for UCM operations is denoted by TUCM . It is sum of TTA and TTP . We will

denote the total FU Latency by TFU NAME for all FUs, e.g. TFU MAC Tx. It is sum of

TUCM and TTP .

FU MAC
Tx

(DUT 1)

FU HDR
Tx

(DUT 2)

FU MOD
Tx

(DUT 3)

FU FFT
Tx

(DUT 4)

FU SYNC
Rx

(DUT 5)

FU MAC
Rx

(DUT 6)

FU MAC
Tx

(DUT 1)

FU HDR
Tx

(DUT 2)

FU MOD
Tx

(DUT 3)

FU FFT
Tx

(DUT 4)

FU SYNC
Rx

(DUT 5)

FU MAC
Rx

(DUT 6)

Node 1

Node 2

Data Frame Transfer Command Flow

2. TxDataAvl 4. TxMod 5. TxIFFT

DATA
6. RxMACData

3. TxSendPreamble

1. SendaAlohaFrm

7. SendAckFrm

7. DataFrmAvl

To Software

From
Software

Figure 4.10: Task Flow for Data Frame Transfer

UCM to Task
Queue

UCM to PE PE to UCM UCM to PE

De_queue
request

Task valid Task Done TT done

TTA TTP TTT

Figure 4.11: Components of FU Latencies

4.2.2.1 FU MAC Tx Analysis

1. Initialization

33

The experiment begins with the MAC Frame header and the payload data getting

written into the Header RAM and Input Buffer of MAC Tx PE respectively. The

BFM Processor then writes the descriptor for the ‘SendAlohaFrm’ task to the

task queue of FU MAC Tx.

2. UCM TA Processing

The UCM TA block fetches the task descriptor from the task queue. It then

reads the task information in TD Table and updates the ‘InDataPointer’ and

‘InDataSize’. There is only one input buffer region used for this task. The TA

block then sends ‘task valid’ signal to PE.

3. PE MAC Tx Processing

The PE then generates the frame, using the frame header and payload bytes,

according to the frame format shown in the Figure 4.8. It also calculates and

appends the CRC checksum word at the end. Along with data, PE MAC Tx

also generates a 32-bit vector called ‘TxVector’ and stores it separately from the

frame data in a different output buffer region. The details of this vector are not

relevant here. The ‘TxVector’ generation is specific to 802.11 scheme. The task

processing ends with task done signal to UCM.

4. UCM TT Processing

The UCM TT block then generates the ‘TxDataAvl’ task for PE HDR. The TT

processing involves the transfer of data from two output buffer regions.

5. Processing Latencies

Table 4.2 shows the processing latency measurements for FU MAC Tx.

TTA TTP TTT TFU MAC Tx TUCM

µs µs µs µs µs

0.48 4.08 5.65 10.21 6.13

Table 4.2: FU MAC Tx Measurements: Fixed Frame Size

We note that the TUCM is larger than TPE and TTT latency is the highest com-

ponent in FU MAC Tx processing latency.

34

4.2.2.2 FU HDR Tx Analysis

1. UCM TA Processing

The UCM of FU HDR Tx performs the chunking operation on the frame. This

operation is implemented in the UCM TA block. TA block fetches the task

‘TxDataAvl’ queued in the task queue. It reads the task information in TD table

and updates the ‘InDataPointer’ and ‘InDataSize’ for buffer in which ‘TxVector’

is stored. For the data region in input buffer, the pointer and size is updated

according to the ‘FirstChunkSize’ and ‘ChunkSize’. Then, the task descriptor for

the next chunk is stored in the task queue and at the end, ‘task valid’ sent to PE.

The process is repeated for each chunk, except the last one. In the TA processing

for last chunk, the UCM does not need to write the task for next chunk. The last

chunk is decided based upon the size of remaining data to be processed.

The number of chunks in the 500 Byte MAC frame for current settings is 11. The

size of first chunk is 34 Bytes; for intermediate 9 chunks, it is 48 Bytes and the

size of the last chunk is remaining 34 Bytes. These chunks are input to PE one

by one. The data is divided into chunks as per the Equation 4.1.

500 = 34 + (9 ∗ 48) + 34 (4.1)

When the task for the next chunk is scheduled and stored in the task queue, the

start of processing time of that task is calculated using the Reschedule Period.

The tasks for every two consecutive chunks are separated by Rescheduling Pe-

riod. Currently, the value of Reschedule Period is set at 2560 clock cycles, which

translates to 25.6 µs for the simulation frequency of 100 MHz.

2. PE HDR Tx Processing

For the first chunk, PE HDR adds the PLCP (Physical Layer Convergence Pro-

tocol) Header before the MAC frame. The format used for the PLCP header is

defined as shown in the Figure 4.12. The Rate and Length information is read

from the ‘TxVector’ from the PE MAC Tx.

35

Rate and Length
Service

Bits

3 Bytes 2 Bytes

Coded BPSK
Coded
QPSK

Figure 4.12: PLCP Header Format

The PLCP header format used here is similar to the one specified in 802.11a

standard. But the size is different. The format in the standard uses 3 byte

field for ‘TxVector’, but our implementation pads it to 6 bytes. This padding is

achieved by duplicating each bit. The reason is that the standard assumes that

the PLCP header will be coded using 1/2 rate convolution coder. The WiNC2R

does not have a coder in the current implementation. Hence, we compensate

for the size expansion by the coder by padding. Doing this is important since

the standard requires the ‘TxVector’ information to be sent as a single OFDM

symbol. The service bytes are modulated using the modulation scheme used for

the MAC frame. We have used QPSK modulation for the frame. Also for the

first chunk, while processing the data, PE HDR also generates ’TxStartPreamble’

task for Tx IFFT. This task informs the the Tx IFFT to start processing and

storing the preamble. The task processing for the first chunk also includes the

TT for this task.

For the intermediate chunks, there is no processing done. PE HDR just forwards

them to the Output Buffer. For the last chunk, if the data is not equivalent to

integer number of OFDM symbols in size, PE HDR pads zeros at the end to make

it so.

The size of the first chunk at the output is 42 Bytes, because of the addition of

PLCP header. The size of the intermediate chunks at the output is 48 Bytes,

since there is no processing for these. For the last chunk, the size at the output

is 36 Bytes, because the PE HDR pads the 34 Byte input chunk by 2 Byte zeros.

36 Byte output chunk translates to 3 OFDM symbols at the IFFT, which was the

desired effect.

36

3. UCM TT Processing

After each chunk processing, UCM TT generates the ‘TxMod’ task for FU MOD.

The data transfer includes two output buffer regions.

4. Processing Latency

Figure 4.13 shows the effect of chunking in PE HDR. We see that, for each chunk

there is one instance of TTA, TTP and TTT . This is because each chunk is processed

as a separate task. We also see the effect of Rescheduling Period which separates

the consecutive de-queuing requests from the UCM to the task queue. The time

between the ‘TT Done’ signal of one chunk and the de-queuing request for the

next chunk is called TIDLE . In this time ,the FU HDR UCM is just waiting for

the start time of the next chunk.

RESCHED_PERIOD

task_valid

task_done

tt_done

TA

TP
T_IDLE

TP

TT

T IDLE

dequeue-
request

TT

TA

RESCHED_PERIOD

Figure 4.13: Effect of Chunking and Reschedule Period in PE HDR

Figure 4.14 shows the TTA, TTP , and TTT processing latencies for each chunk.

It is seen that for all chunks except the first one, TTT is the dominant part.

When the PE HDR receives the task for the first chunk, it generates the task

‘TxStartPreamble’ for Tx IFFT and simultaneously starts processing data. The

TA latency for the first chunk also includes the processing done in the HDR UCM

TT block for the TxStartPreamble task. Hence, the TTA value for the first chunk

is higher than the rest.

Figure 4.15 shows the total processing latency in FU HDR, denoted by TFU HDR,

and the parameter TIDLE . Note that the TIDLE parameter is zero for the last

chunk. TFU HDR is sum of the components shown in Figure 4.14.

37

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

Chunk Number

T
im

e(
in

 m
ic

ro
se

co
nd

s)

Components of FU HDR Processing Latency for Each Chunk

T
TA

T
TP

T
TT

Figure 4.14: Processing Latencies in FU HDR: Fixed Frame Size

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

Chunk Number

T
im

e(
in

 m
ic

ro
se

co
nd

s)

Comparsion of FU HDR Processing Time and Idle Time for Each Chunk

T
FU_HDR

T
IDLE

Figure 4.15: Comparison of TFU HDR and TIDLE: Fixed Frame Size

We see that TIDLE is almost always 3 or 4 times larger than the TFU HDR because

of the Rescheduling Period. The UCM is a complex block and requires lot of re-

sources on the FPGA (7% for each UCM on the currently used Virtex-5 FPGA)

and it seems that all these resources are not getting used for almost 80% of the

time. It is to be noted that this apparent wastage is not due to UCM architecture

but because of the requirement imposed by the 802.11a-standard and correspond-

ing implementation. We suggest a few methods to better utilize TIDLE in later

sections.

38

4.2.2.3 FU MOD Tx Analysis

(a) UCM TA Processing

The TA stage includes fetching the task descriptor from the task queue and

updating ‘InDataPointer’ and ‘InDataSize’ for two buffer regions.

(b) PE MOD Tx Processing

The most important thing in this FU is that it expands the data by large

magnitudes. For QPSK, every pair of 2 bits is converted to a 32-bit word.

Hence, the data size multiplication factor is 16. Since the modulator gets

the data in small chunks; the required output space is also limited. If the

whole 500-byte frame was processed without chunking, the required output

space would have been 8000 Bytes. But the chunking minimizes the output

memory requirement for each task to maximum 48 * 16 = 768 bytes at a

time.

(c) UCM TT Processing For each chunk, ‘TxIFFT’ task is sent to PE Tx IFFT.

There is data in two output buffer regions to be transferred.

(d) Processing Latencies The FU latencies for each chunk are as shown in Fig-

ure 4.16. We note that just like previous FUs, the TTT is larger than any

other FU latency component.

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

Chunk Number

T
im

e(
in

 m
ic

ro
se

co
nd

s)

Components of FU MOD Processing Latency for Each Chunk

T
TA

T
TP

T
TT

Figure 4.16: Processing Latencies in FU MOD: Fixed Frame Size

39

4.2.2.4 FU IFFT Tx Analysis

(a) UCM TA Processing

The TA stage includes fetching the task descriptor from the task queue and

updating ‘InDataPointer’ and ‘InDataSize’ for two buffer regions.

(b) PE IFFT Tx Processing

The IFFT PE converts the incoming data into OFDM symbols and outputs

them onto the GPO interface. Hence, there is not data transfer involved in

the TTT . The current implementation is 802.11a-specific and is only able

to handle single OFDM flow at a time. PE starts outputting the PLCP

preamble onto the GPO when it gets the TxStartPreamble task from the

PE HDR. The first chunk of the frame should reach the IFFT and should

be ready to be outputted before the preamble is over. This timing is made

sure by the correct setting of the rescheduling period.

(c) UCM TT Processing

The TT stage includes transferring only the context information required for

processing the next chunk.

(d) Processing Latencies

The FU latencies are as shown in Figure 4.17. Here, it is noted that the

TTA latencies dominate the other components. This is obvious since both

TA and TT operations in FU IFFT contain only control operations and no

data transfer.

4.2.2.5 FU SYNC Rx Analysis

(a) UCM TA Processing

The TA stage of FU SYNC Rx is part of the initialization stage in the test

script. It consists of fetching the ‘RxStartRcvCtl’ task descriptor from the

task queue. This task processing is not included in the processing latency

analysis.

40

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

Chunk Number

T
im

e(
in

 m
ic

ro
se

co
nd

s)

Components of FU IFFT Processing Latency for Each Chunk

T
TA

T
TP

T
TT

Figure 4.17: Processing Latencies in FU IFFT: Fixed Frame Size

(b) PE SYNC Rx Processing

The FU SYNC is combination of three different PEs, PE Sync-Rx-FFT,

PE Demod and PE Checker.(The PE Sync-Rx-FFT is also divided into two

parts, synchronizer and Rx-FFT. But these two are not considered separate

PEs.) The Sync-Rx-FFT, DMOD and CHKR have been combined because

of the resource limitations on the FPGA. If they were separate, each PE

would need a separate UCM. Since each UCM requires 7% of the Virtex-5

SX-95 FPGA resources, the combined utilization of three UCMs (one each for

Sync-Rx-FFT, DMOD and CHKR) would be 21%. The combined resource

requirement of the three PEs is about 41%. Summing up these numbers, we

get that the resource consumption of the these three FUs is 62%. Adding to

that the utilization of MAC Rx FU, the number becomes close to 70%. This

leaves only 30% space on the FPGA for routing the connections among the

blocks which is not enough. Since we cannot compromise on the PE logic, we

combined the PEs and assigned the combination a single UCM. This saved

14% of the resources and we were able to fit the design on the FPGA.

The Figure 4.18 shows the task flow inside the combined block.

The Sync-Rx-FFT is constantly scanning the GPI port for preamble. When

it detects the preamble, it sends the received PCLP header to PE DMOD for

41

FU Sync
Rx FFT

FU
DMOD

FU CHKR

1. RxHdrDmod 2. RxPLCPCheck

3. RxData(Start)

DATA

4. RxDmod (Start) 5. RxFrmChk (Start)

6. RxData(Cont)

9. RxData(End)

7. RxDmod (End) 8. RxFrmChk (End)

12. RxMACData

Figure 4.18: The Task Flow inside the FU SYNC block

demodulation. The demodulated data is then sent for Checksum calculation

in FU CHKR. If the checksum passes, the CHKR PE demands for the next

data by sending the RxData command to the FU Sync. The amount of data

demanded depends on the chunk size. Currently, it has been configured to

4 OFDM symbols per chunk which is the same as that in the transmitter.

The PE CHKR knows the frame size from the PLCP header. Based on

the frame size and the chunk size it calculates the number of chunks in the

frame. When the Sync receives the ‘RxData’ command, it accordingly sends

4 OFDM symbols to the PE DMOD. PE DMOD then demodulates the data

and sends it to the PE CHKR for checksum. The PE Chkr then asks for the

next chunk and the cycle repeats until the last chunk has been processed by

the Chkr. The Chkr then sends the processed frame to MAC Rx.

(c) UCM TT Processing

For each chunk, the UCM transfers the data in the Output Buffer to Input

Buffer of MAC Rx. The task descriptor for ‘RxMACData’ task is only

written for the last chunk.

The size of each chunk going to the input of FU MAC Rx is not the same

as size of corresponding chunk at the input of PE HDR. The difference

between the chunk sizes at the input of PE HDR and those at the output

of FU SYNC Rx (or input to FU MAC Rx) can be explained as follows.

We have seen that in PE HDR, an 8-Byte long PLCP header is appended

at the beginning of the first chunk of the frame. Since, the size of first

chunk is 34 Bytes, the output of the first chunk in PE HDR is thus 42 Byte

42

long. There are two parts in the PLCP header. The 6-Byte information

from ‘TxVector’ is coded with BPSK modulation while the 2-Byte Service

Bits field is coded with QPSK modulation. Unlike the PE HDR however,

the Sync-Rx-FFT PE does not count the PLCP Header as part of the first

chunk. The ‘TxVector’ is processed before processing the first chunk. The

two service bytes are processed with the first chunk but are not sent over.

The chunk size currently is set at 48 Bytes. Not counting the service bytes,

this means that the Sync should send over 46 Bytes of MAC data in the

first chunk. But the current implementation only allows the FU SYNC to

write integer number of 32-bit words. Hence, the Sync stores the last two

bytes and sends over the first 44 Bytes to DMOD-CHKR. So, the chunking

Equation 4.1 becomes now,

500 = 44 + (9 ∗ 48) + 24 (4.2)

Note the difference in the size of last chunk; it is reduced by 10. Hence, if

the last chunk contains less than or equal to 10 bytes in Equation 4.1, the

receiver will process one less chunk (but same amount of data) according to

Equation 4.2.

Hence, as Equation 4.2 shows, the size of all chunks, except the first and

last, is 48 Bytes. The size of the first chunk is 44 Bytes and the size of the

last chunk will depend on the frame size. For 500 Byte frame, the last chunk

size is 24 Bytes.

(d) Processing Latencies

The processing latencies in the Sync-rx-FFT and in the dmod-chkr are as

shown in Table 4.3 and Figure 4.19.

We see here that the processing latencies in the various PEs in FU SYNC

dominate the FU Latencies rather than TTT as has been the case in FU MAC

Tx, FU HDR and FU MOD. The reason is that since we are using only one

UCM for three PEs, the data transfers which would have occurred in the

43

µs

Sync Preamble and PLCP Header Processing Time 33.65

Rx FFT Preamble and PLCP Header Processing Time 4.81

Dmod PLCP Header processing time 2.2

Chkr PLCP Header processing time 0.66

Table 4.3: FU Sync Rx Preamble Processing Measurements

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

14

16

18

Chunk Number

T
im

e(
in

 m
ic

ro
se

co
nd

s)

Components of FU SYNC Rx Processing Latency for Each Chunk

T
TP_SYNC

T
TP_Rx−FFT

T
TP_DMOD

T
TP_CKHR

T
TT

Figure 4.19: Processing Latencies in FU Sync Rx: Fixed Frame Size

intermediate TTT stages are happening internally. The only data transfer

that happens through the UCM TT block, is the frame transfer to FU MAC

Rx for which the Figure 4.19 shows the processing latency.

4.2.2.6 FU MAC Rx Analysis

(a) UCM TA Processing

The TA stage includes fetching the task descriptor from the task queue and

updating ‘InDataPointer’ and ‘InDataSize’ for two buffer regions.

(b) PE MAC Rx Processing

The MAC Rx is the last FU in the receiver chain. The last section explained

that the Sync-Rx-FFT-DMOD-CHKR FU transfers the data in chunks to

FU MAC Rx, the RxMACData task is sent only for the last chunk. Hence,

effectively the MAC Rx waits for the complete frame before starting to pro-

cess it. The MAC Rx PE checks the frame type, intended destination and

44

the checksum. If the incoming frame is an error-free, type DATA frame in-

tended for itself, the PE generates the task ‘SendAckFrm’ task for the MAC

Tx. It sends the source address in the data frame header to MAC Tx along

with this task.

(c) UCM TT Processing

The software reads the data frame from the MAC Rx OBUF, so there is no

data frame transfer involved in the MAC Rx TT stage. But, the address

of the sender (source) of the incoming frame is sent to FU MAC Tx for

transmitting the ACK frame, along with the descriptor of that task.

(d) Processing Latencies

The Table 4.4 shows the processing latencies for this FU. We see that the

TTT latency is small because of the absence of data transfer in the TT stage.

TTA TTP TTT TUCM TFU MAC Rx

µs µs µs µs µs

0.64 4.84 1.84 2.48 7.32

Table 4.4: FU MAC Rx Measurements: Fixed Frame Size

4.2.3 ACK Frame Transfer

The Figure 4.20 shows the task flow for the Ack frame. We see that the task

flow is the same as that for the data frame. The only difference is that since Ack

frame is only 14 bytes long, it fits into a single chunk. Since the operations are

the same, we do not go into details of operational latencies.

4.2.4 Summary

We now summarize the processing latencies for all FUs and calculate the UCM

overhead and PE processing delay for each FU. The results are as shown in the

Table 4.5.

The TTA and TTT values shown in Table 4.5 are combined values for all chunks

in the case of HDR Tx, MOD Tx and IFFT Tx FUs. We plot the per chunk

45

FU MAC
Tx

(DUT 1)

FU HDR
Tx

(DUT 2)

FU MOD
Tx

(DUT 3)

FU FFT
Tx

(DUT 4)

FU SYNC
Rx

(DUT 5)

FU MAC
Rx

(DUT 6)

FU MAC
Tx

(DUT 1)

FU HDR
Tx

(DUT 2)

FU MOD
Tx

(DUT 3)

FU FFT
Tx

(DUT 4)

FU SYNC
Rx

(DUT 5)

FU MAC
Rx

(DUT 6)

Node 1

Node 2

Ack Transfer Command Flow

ACK

7. SendAckFrm

8. TxDataAvl 10. TxMod 11. TxIFFT

9. TxSendPreamble

12. RxMACData

13. AckFrmAvl

To Software

Figure 4.20: Task Flow for ACK Frame

FU TTA TTP TTT TUCM TTotal TUCM TPE

µs µs µs µs µs % %

MAC Tx 0.48 4.08 5.65 6.13 10.21 60.039 39.961

HDR Tx 7.09 12.02 30.47 37.56 49.58 75.756 24.244

MOD Tx 6.16 71.68 78.33 84.49 156.17 54.101 45.899

FFT Tx 6.6 38.1 3.024 9.624 47.724 20.166 79.834

SYNC Rx - 283.39 16.7 16.7 300.09 5.565 94.435

MAC Rx 0.64 4.84 1.84 2.48 7.32 33.880 66.120

Table 4.5: FU Measurements: Fixed Frame Size

TTA and TTA values for these FUs along with TTA and TTT values for MAC FUs

in Figure 4.21. We do not include the FU Sync Rx in the analysis since the TA

stage is part of the configuration stage.

We see that the per chunk values for the TA stage are almost same across all FUs.

This shows that for current implementation, the TA operations are very similar

for all PEs. The same is however not true for the TTT values. The TTT values

largely depend on the size of the output data being transferred. Also, we again

see that except for Tx IFFT FU, the TTT latency is 2 to 7 times greater than the

TTA latency. We thus analyze the TTT further.

As seen in Section 3, the TT operations involve data transfer along with some

control operations. We now measure the split-up between the control overhead

and the data transfer latency in TTT for three FUs which involve data transfer

in the TT stage namely FU MAC Tx, FU HDR Tx and FU MOD Tx. The TT

46

MAC Tx HDR Tx MOD Tx IFFT Tx SYNC Rx MAC Rx
0

1

2

3

4

5

6

7

8

FU

T
im

e
(in

 m
ic

ro
se

co
nd

s)

T
TA

 and T
TT

 per chunk for Each FU

T
TA

T
TT

Figure 4.21: UCM Latencies per chunk: Fixed Frame Size

operations in these FUs are identical in nature except the data size. Hence we

will be able to study the effect of data size on the TTT .

MAC Tx HDR Tx MOD Tx
0

10

20

30

40

50

60

FU

T
im

e
(in

 m
ic

ro
se

co
nd

s)

Control and Data Overhead in T
TT

Control
Data

500

510

8256

Figure 4.22: Control and Data Overhead in TTT

The Figure 4.22 shows the split up between data and control for these FUs. We

also show the size in bytes of the data transfer for each FU above the bars.

We see that though FU MAC Tx and FU HDR Tx generate very similar amount

of data at the output, the TTT control overhead is much larger for FU HDR. This

is because FU HDR processes and transfers the data in chunks. For each data

chunk transfer, there is additional control overhead in TT stage. We see that the

control overhead for the FU HDR is same as that of FU MOD Tx which can be

47

attributed to the fact that they both process and transfer data in same number

of chunks. But for the same number of chunks, the data latency is more than 5

times greater for FU MOD. This is because of the large amount of data FU MOD

transfers to FU IFFT. We can conclude here that transferring data in smaller

chunks is inefficient since it adds up control overhead. But since the chunk size

is fixed by modulation, there is no scope for improvement here.

In the next experiment we analyze the effect of change in frame size over the per-

formance of WiNC2R.

48

4.3 Effect of Frame Size on WiNC2R Performance

4.3.1 Experimental Setup and Measurements

The experimental setup is the same as that for the previous one. The two WiNC2R BFM

nodes are connected as shown in the Figure 4.6. The data transfer taking place is also

similar to previous experiment. The nodes use ALOHA MAC protocol to communicate.

Node 1 sends the data frame and waits for the ACK from node 2. After receiving the

ACK, it sends the next data frame. There is no ACK-TIEMOUT period; instead node

1 keeps waiting for the ACK before sending the next frame. Since, the channel between

the nodes is perfect there are no packet drops and hence there is no danger of Node 1

waiting indefinitely for the ACK.

D
A

TA

A
C

K

D
A

TA

D
A

TA

A
C

K

A
C

K

D
A

TA

Node
2

Node
1

Time

TAT

RTT

RTT

Figure 4.23: Data Transfer using simple ALOHA MAC Protocol

The ALOHA MAC communication is as shown in Figure 4.23. Two parameters

Turn-Around-Time (TAT) and Round Trip Time (RTT) are also depicted in the figure.

TAT is defined as time taken by the node to turn around from being a receiver to being

a transmitter. RTT is defined as time difference between any two data frames or ACK

frames. For this experiment, the MAC input frame size is varied from 500 bytes up to

1500 bytes in the steps of 250 bytes. For each frame RTT was measured and throughput

was calculated based on the equation 4.3.

Throughput = MAC Frame Size/RTT (4.3)

The equation 4.3 measures the MAC-level throughput. The modulation scheme

was fixed as QPSK providing the PHY data rate of 12 Mbps according to 802.11a

standard. Based on the modulation scheme, the FirstChunkSize was fixed at 34 Bytes

49

and ChunkSize was fixed at 48 Bytes at the input of PE HDR Tx. At the output of the

FU SYNC Rx, these sizes are 44 Bytes and 48 Bytes respectively. The Rescheduling

Period was fixed at 2560 clock cycles which translates to 25.6 µs at the current operating

frequency of 100 MHz.

Figure 4.24 shows the effect of change in frame size on RTT . We see that though

RTT increase linearly with the increase in frame size, the relationship between them is

not one-to-one. The green line in the graph shows the frame size to illustrate a one-to-

one relationship. We see that as frame size increase the RTT keeps going farther away

from this line.

400 600 800 1000 1200 1400 1600
400

600

800

1000

1200

1400

1600

R
T

T
 (

in
 µ

se
co

nd
s)

Frame Size (in Bytes)

Effect of Frame Size on RTT

400 600 800 1000 1200 1400 1600
400

600

800

1000

1200

1400

1600

F
ra

m
e

S
iz

e
(in

 B
yt

es
)

RTT

Figure 4.24: RTT Measurement: Varying Frame Size

Figure 4.25 shows the effect on throughput of change in frame size. We see that

throughput increases at first but begins to flatten out as the frame size keeps increasing.

The reason the throughput is increasing with the MAC frame size is, that as the

MAC frame size increases the percentage time consumed by the frame overhead bits

like PLCP Header and PLCP Preamble reduces.

4.3.2 Analysis of TAT and RTT

Figure 4.26 shows how the RTT and TAT were measured.

We can here elaborate more on previous definitions of RTT and TAT . For measure-

ment purposes, TAT was measured at the node 2 GPIO interface as shown in figure.

It is defined as time difference between the end of data frame at GPI and the start

50

400 600 800 1000 1200 1400 1600
8.5

9

9.5

10

10.5

11

11.5

12

12.5

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Frame Size (in Bytes)

Effect of Frame Size on Throughput

400 600 800 1000 1200 1400 1600
400

600

800

1000

1200

1400

1600

F
ra

m
e

S
iz

e
(in

 B
yt

es
)

Throughput

Figure 4.25: Throughput Measurement: Varying Frame Size

DATA

DATA

Node
1

Node
2

Tx
GPO

Tx
GPO

Rx
GPI

Rx
GPI

ACK

ACK

DATA

DATA

ACK

ACK

TAT
TAT

RTT

TP

TP

Figure 4.26: Measurement of TAT and RTT at GPIO Interfaces of Nodes

of ACK frame at the GPO interface. The TP is propagation delay between Tx and

Rx. In the simulation environment it is fixed and very small (about 27 clock cycles

at clock frequency of 100 MHz). RTT is measured at Node 1 interfaces. It is mea-

sured as time difference between two consecutive data frames.Since the focus of these

experiments is to evaluate the performance of WiNC2R architecture, we have ignored

channel propagation delays. Also, we assume a perfect channel with no packet drops.

In short we envision a scenario where the performance of WiNC2R is only hindered by

its own architecture. In other terms, the performance is affected by the factors inside

the radio rather than outside like channel quality and propagation delay. Since we are

performing architectural evaluation, we can say that these assumptions are valid for

given test cases.

51

4.3.2.1 TAT Analysis

TAT dictates the amount of time node 1 is willing to wait for an acknowledgment

before retransmission. In many systems the ACK timeout is the most stringent timing

constraint to be satisfied; e.g. in 802.11 MAC, the ACK timeout denoted by SIFS

(Short Inter-Frame Spacing) is the has the smallest value for a time constraint for any

PHY layer defined. For 802.11a PHY, it is 16 µs. It is thus important to see how close

WiNC2R comes to satisfying this criterion.

DATA

TSYNC_Rx

GPI

TAT

DATAFU
SYNC

Rx

TMAC_Rx

DATA
FU

SYNC
Rx

TACK_Tx

ACKGPO

TSYNC_Rx_EOF

Figure 4.27: Components of TAT

Figure 4.27 shows more details about TAT . We focus on the node 2 GPIO interface

and the FUs in the receive chain working behind it. The transmit chain FUs have been

bunched together.

As shown in the Figure 4.27, TAT is composed of time required for data frame

processing in the receive chain of the node and time required by the first byte of ACK

to travel through the transmit chain to reach the GPO interface. The data frame

processing in the receive chain can be divided as processing in FU Sync Rx and FU

MAC Rx. TSY NC Rx is used to denoted time required by FU Sync Rx to process the

incoming data frame. TMAC Rx denotes the same for FU MAC Rx and TACK Tx denotes

the time required by the whole transmit chain to output first byte of ACK frame on

the GPO interface.

However, TAT will not include the complete processing time in FU SYNC Rx. The

definition of TAT states that it starts only after the end of frame in the receiver. Hence,

only the part of processing time of the FU SYNC which occurs after the end of frame

52

on GPI is included in TAT . We call this time processing time in FU SYNC Rx after

End of Frame (EOF), TSY NC Rx EOF . Our equation for TAT is thus,

TAT = TSY NC Rx EOF + TMAC Rx + TACK Tx (4.4)

Following are the results of our simulations which measured these three components.

500 750 1000 1250 1500
0

10

20

30

40

50

60

Frame Size (in Bytes)

T
A

T
 C

om
po

ne
nt

s
(in

 µs
ec

on
ds

)

TAT Measurements: 4 Symbols per chunk, Varying Frame Size

T
MAC_Rx

T
SYNC_Rx_EOF

T
ACK_Tx

TAT

Figure 4.28: TAT Measurement: Varying Frame Size

From the Figure 4.28, it is evident that TACK Tx is constant regardless of the data

frame size. It is to be noted that irrespective of the data frame size, the ACK frame

size is always constant at fourteen bytes. Also, the ACK frame is a single chunk frame

and hence goes through the simplest processing the transmit chain could offer. Since,

the improvement in individual PEs is out of scope of this thesis, we conclude that there

is no scope for improvement in this component.

Referring again to Figure 4.28, we see that TAT closely follows the changes in the

TSY NC Rx EOF component. This component includes the processing latency for the last

chunk. In the current setting, four OFDM symbols are processed in each chunk. The

last chunk however might not always contain four number of OFDM symbols, since it

has the remaining data from the frame. The size of data in the last chunk depends on

the frame size and the chunk size. For the current setting, the sizes for the last chunk

53

vary with the frame size as shown in Table 4.6.

Frame Size Number First Chunk Chunk Size Last Chunk
(Bytes) of Chunks Size(Bytes) Size(Bytes) Size(Bytes)

500 11 44 48 24

750 16 44 48 34

1000 21 44 48 44

1250 27 44 48 6

1500 32 44 48 16

Table 4.6: Chunk Sizes with 4 Symbols per chunk

From Table 4.6 and measurements in Figure 4.28, it can be seen that there is inverse

relationship between the last chunk size and TSY NC Rx EOF . Figure 4.29 shows the

start of last chunk processing with respect to the end of frame for all frame sizes. For

convenience, the time axis starts from the instant the second-to-last chunk processing

for the 500 Byte frame starts. Hence, for all frames we see chunk number 11 onwards.

Note that we have also counted Preamble and PLCP Header Processing as a chunk in

Figure 4.29, though technically it is not so.

0 100 200 300 400 500 600

500 Byte Frame

Sync Chunks

750 Byte Frame

Sync Chunks

1000 Byte Frame

Sync Chunks

1250 Byte Frame

Sync Chunks

1500 Byte Frame

Sync Chunks

Time (in µseconds)

Start of Last Chunk Processing in SYNC Rx with resepect to EOF

11

111212

11

11

11 12

12

12

12 13

13

13

13 14

14

14

14 15

15

15

15 16

16

16

16 17

17

17

17

18

18

18 19

19

19 20

20

20 21

21

21 22

22

22 23

23 24

24 25

25 26

26 27

27 28

28 29 30 31 3232 33

Figure 4.29: Start of Last Chunk Processing w.r.t End of Frame

It is seen that as frame size changes from 500 to 1000, the processing for the last

chunk starts earlier. In case of 1250 byte frame however, it starts much later and for

1500 byte frame the starting location is slightly better than the that for 1250 byte

frame.

This apparent delay in starting last chunk processing is not because of any factor in

54

FU SYNC, but the length of the frame. As the last chunk becomes smaller, the frame

will earlier on the GPI interface. This is depicted in Figure 4.29. For the 1250 byte

frame, which has the smallest last chunk at 6 bytes, the frame ends before the processing

in the second-to-last chunk, chunk number 27, has not even finished. The 1000 byte

frame, having the largest amount of data in the last chunk at 44 bytes, finishes after

the last chunk processing has started. Since we measure the TAT from the end of the

frame, the apparent value of the TAT seems larger in case of 1250 byte frame than in

the 1000 byte frame.

Referring back to Figure 4.28, the MAC Rx latency, denoted by TMAC Rx, seems to

vary almost linearly with the change in data frame size. We give the details of MAC

Rx latency in Table 4.7.

Frame Size TTA TTP TTT TMAC Rx

Bytes µs µs µs µs

500 0.64 4.2 1.84 6.68

750 0.64 6.09 1.84 8.57

1000 0.64 7.95 1.84 10.43

1250 0.64 9.84 1.84 12.32

1500 0.64 11.7 1.84 14.18

Table 4.7: TMAC Rx Measurements: Varying Frame Size

We see that the TA latency is constant irrespective of the frame size. We saw

in Section 3 that the TA operations have nothing to do with the actual data, they

are control operations. This explains the independence of TA latency with respect to

frame result. Since, the MAC Rx is the last block in the receiver chain, there is no data

transfer in MAC Rx TT. Instead, the software in the soft-core CPU reads the frame.

Hence, the TT latency is also independent of data frame size. The TP delay increases

linearly with frame size. This is also expected since the MAC Rx PE operates on the

complete frame.

4.3.2.2 TAT Improvement

1. Improvement in TSY NC Rx EOF

From Figure 4.28, it is clear that TSY NC Rx EOF is the largest component in

55

TAT . The measurements of TSY NC Rx EOF for different frame size indicate a

range between 20 µs to 30 µs. For the 802.11a standard, the SIFS time period

is 16 µs. We see that improvement in the performance is a necessity for TAT to

conform to SIFS measure. Though we do not deal with improvement inside the

PEs, we will try and see if there is any configuration setting which can improve

the performance of FU SYNC Rx.

It was seen in TAT analysis that TSY NC Rx EOF depends upon the processing

latency for the last chunk. In Figure 4.29, we saw that it might also depend

on the processing latency of the second-to-last chunk as well. The processing

latency for each chunk will in turn depend upon the efficiency of the algorithm

in FU SYNC Rx and the size of each chunk. We do not deal with improvements

in the SYNC algorithm but we study the effect of change in chunk size on the

performance.

In the previous experiment, we saw the reason the chunk size in the transmitter

was set at 4 OFDM symbols. In the receiver no analysis has been done to decide

the most effective chunk size. The default setting was set at 4 just like the

transmitter. Since TSY NC Rx EOF depends on chunk size, we decided to halve

the chunk size to 2 OFDM symbols per chunk and see the effect on TAT and its

components.

Figure 4.30 shows the effect of changing the frame size on TAT and its components

with 2 OFDM symbols per chunk. We also show the TAT and TSY NC Rx EOF

values for the chunk size equal to 4 OFDM symbols, in blue. We notice that

TSY NC Rx EOF s now reduced to be always less than 20 µs. The TAT values are

also below 40 µs for all frame sizes, though they are still at least double the SIFS

value. It is also noticed that the gain in performance is not the same for all frame

sizes.

In Table 4.8, the last chunk sizes are listed with chunk size set to 4 OFDM

symbols and 2 OFDM symbols. It is seen that due to change in the chunk size,

the distribution of last chunk size is changed. From Table 4.8 and Figure 4.30, we

56

500 750 1000 1250 1500
0

10

20

30

40

50

60

Frame Size (in Bytes)

T
A

T
 C

om
po

ne
nt

s
(in

 µs
ec

on
ds

)

TAT Measurements: 4 Symbols per chunk, Varying Frame Size

T
MAC_Rx

T
SYNC_Rx_EOF

T
ACK_Tx

New TAT
Old T

TAT

Old T
SYNC_Rx_EOF

Figure 4.30: TAT Measurements: 2 Symbols Per Chunk, Varying Frame Size

Frame Size 4 Sym per chunk 2 Sym per chunk
No. of Chunks Last Chunk Size No. of Chunks Last Chunk Size

Bytes Bytes Bytes

500 11 24 21 24

750 16 34 32 10

1000 21 44 42 20

1250 27 6 53 6

1500 32 16 63 16

Table 4.8: Last Chunk Size Table

see that TSY NC Rx EOF values are still correlate, in the same manner as before,

with the last chunk size. That is, TSY NC Rx EOF decreases as the last chunk size

increases.

2. Improvement in TMAC Rx

In the TAT analysis, it was seen that the processing latency in the FU MAC Rx

depends largely on the TTP . This task processing time in turn depends upon the

frame size as was discussed in the basic experiment’s analysis. We have already

demonstrated how the processing latency can be made independent of the frame

size (at least to some degree) in the FU SYNC Rx by the process of chunking.

For the initial development, to keep the FU MAC Rx design as simple as possible,

we had limited chunking to the FU SYNC. But based on the performance, it is

57

now proposed that the chunking be extended to FU MAC Rx as well.

Figure 4.31 shows the interaction between FU SYNC Rx and FU MAC Rx in the

current implementation. The SYNC Rx transfers the data in chunks to MAC Rx

and when all the chunks have been transferred, SYNC triggers the MAC Rx by

sending RxMACData task to it.

DATA GPI

DATAFU
MAC
Rx

FU
SYNC

DATA
CHUNK

1

DATA
CHUNK

2

DATA
CHUNK

3

DATA
CHUNK

4

TMAC_Rx

TFU_SYNC_EOF

TAT

Figure 4.31: TAT with chunking only in FU SYNC

Figure 4.32 shows the interaction between FU SYNC Rx and FU MAC Rx with

the chunking extended in MAC Rx. Here also SYNC rx transfers the data in

chunks to MAC Rx, but along with the chunks it also activates it with sending

the task. As a result FU MAC Rx processes the data in chunks. From the

processing latency tables seen in the basic experiment, we can see that compared

to FU SYNC, FU MAC rx latencies are small. There will be no situation where

the FU SYNC will have to wait until the FU MAC finishes processing. Hence,

after the end of frame, only last chunk will need to be processed. Thus, the FU

MAC Rx latency contributing to TAT will effectively depend on last chunk size.

DATA GPI

FU
MAC
Rx

FU
SYNC

DATA
CHUNK

1

DATA
CHUNK

2

DATA
CHUNK

3

DATA
CHUNK

4

TMAC_Rx

TFU_SYNC_EOF

DATA
CHUNK

1

DATA
CHUNK

2

DATA
CHUNK

3

DATA
CHUNK

4

TAT

Figure 4.32: TAT with chunking extended to FU MAC Rx

58

4.3.2.3 RTT Analysis

The Round Trip Time (RTT) is defined as time duration between two successful con-

secutive data transmissions. We define a successful data transmission as shown in fig.

i.e. the frame is received correctly at the receiver of node 2 and ACK is transmitted by

node 2 transmitter. This ACK is also received correctly at Node 1 and is interpreted

as an OK to send the next frame. The details of RTT are shown in Figure 4.33.

DATA

DATA

Node
1

Node
2

Tx
GPO

Tx
GPO

Rx
GPI

Rx
GPI

ACK

ACK

DATA

DATA

ACK

ACK

TAT TAT

RTT

RTT

TP

TP

TDATA

TACK

TATTx

Figure 4.33: Components of RTT

Referring to Figure 4.33 we can have the following equation for RTT. The various

terms used in the equation are also explained below.

RTT = TDATA + TP + TAT + TP + TACK + TATTx + TDATA Tx (4.5)

Figure 4.34 shows the results from our simulation for all the above parameters.

The results can be explained as follows. TDATA and TACK only depend upon the

respective frame lengths. The data frame size increases linearly from 500 to 1500 but

ACK frame size remains constant at 14 bytes. Hence, it can be concluded that TDATA

rises linearly with increase in frame size while TACK remains constant. Thus, The

RTT variation with frame size is chiefly because of TAT and TDATA Tx. The TAT has

already been discussed, we thus focus on TDATA Tx.

59

500 750 1000 1250 1500
0

100

200

300

400

500

600

700

800

900

1000

Frame Size(in bytes)

R
T

T
 (

in
 µ

se
co

nd
s)

Effect of Change in Frame Size on RTT and its components

T
DATA

TAT
Tx

T
ACK

T
ACK_Rx

T
DATA_Tx

RTT

Figure 4.34: RTT Measurements: 4 Symbols Per Chunk, Varying Frame Size

4.3.2.4 Improvement in TDATA Tx

The two main components of TDATA Tx are described in Figure 4.35. These are frame

processing time in MAC Tx FU and frame processing time in the rest of the transmit

chain FUs. The MAC Tx processes the complete frame and sends it to FU HDR. The

FU HDR however divides the frame into chunks and processes each chunk separately

one after the other. This is done in order to save memory and to introduce parallel

processing in the WiNC2R. The number of chunks and size of each chunk depends on

the MAC frame size and modulation scheme/bit rate chosen for transmission.

The TDATA Tx is defined as time taken by the first byte of the data frame to reach

FFT GPO interface through the whole transmit chain. Going by the representation of

the process shown in Figure 4.35, it is seen that this time will vary directly with frame

size. The processing time in MAC Tx FU, denoted by TMAC Tx, increase proportionally

with the increase in frame size. After the MAC Tx, the data frame is divided into

chunks. For TDATAT x analysis we are only concerned with processing time of the first

chunk. The size of this chunk is constant regardless of the MAC frame size. The size of

60

DATA FU FFT
GPO

DATAFU
MAC Tx

FU
HDR Tx

FU
MOD Tx

DATA
CHUNK

1

DATA
CHUNK

2

DATA
CHUNK

3

DATA
CHUNK

4

DATA
CHUNK

1

DATA
CHUNK

2

DATA
CHUNK

3

DATA
CHUNK

4

TMAC_Tx

TDATA_Tx

TREM_Tx

Figure 4.35: TDATA Tx with chunking being done in FU HDR

first chunk has been fixed by the modulation scheme. Hence, we can say that processing

time for the first chunk in the transmit chain, excluding MAC Tx, is constant. This

time is denoted by TREM Tx. The equation for the TDATA Tx is

TDATA Tx = TMAC Tx + TREM Tx (4.6)

Since, TREM Tx is constant, TDATA Tx changes with TMAC Tx which in turn changes

linearly with frame size. The following scheme is proposed to remove this dependency.

Just as in the case of MAC Rx processing in TAT analysis, it is observed that MAC

Tx does not necessarily need to wait until the complete frame has been processed to

send the first byte to FU HDR. However, sending a single byte or word over the bus

does not make sense. So, we propose that the chunking process, which is currently

being done in FU HDR, be moved to FU MAC Tx.

DATA
FU
FFT
GPO

FU
MAC Tx

FU
HDR Tx

FU
MOD Tx

DATA
CHUNK

1

DATA
CHUNK

2

DATA
CHUNK

3

DATA
CHUNK

4

TMAC_Tx

TDATA_Tx

TREM_Tx

DATA
CHUNK

1

DATA
CHUNK

2

DATA
CHUNK

3

DATA
CHUNK

4

DATA
CHUNK

1

DATA
CHUNK

2

DATA
CHUNK

3

DATA
CHUNK

4

Figure 4.36: TDATA Tx with chunking being done in FU MAC Tx

61

Figure 4.36 shows the possible output of this change. Much less time will be required

to process a single chunk than that to process a complete frame in MAC Tx FU. Hence,

total TDATA Tx will be reduced. The actual amount of reduction depends on the size

chosen for the first chunk. Nonetheless, this technique will help reduce the RTT . But

there are difficulties in the implementation. The size of first and subsequent chunk is

determined by the modulation scheme. When a chunking task is input to UCM, it looks

at these sizes to manipulate the size of input data to the PE. It does to change the

actual data. Rather it just modifies the values of the inputdatalocation, inputdatasize

tuple passed to PE. For example, when using QPSK modulation scheme, the first

chunk size is fixed at 34 bytes while the size of subsequent chunks is fixed at 48 bytes.

Assume that a frame 100 bytes long is written starting from location LOC in the input

buffer of the PE HDR. For this frame, UCM will send 3 commands, each time with

different tuple value namely, LOC, 34, LOC + 34, 48, and LOC + 34 + 48, 18. PE will

read corresponding bytes of data and process it.

The problem with doing chunking in MAC Tx is that not all data which is input to

MAC Tx is present in input buffer. Some information like MAC header resides in the

RMAP of MAC Tx. This header information is attached at the beginning of the frame.

The UCM does no have any idea about the RMAPs in the PE. Thus, to any first chunk

size given by UCM, MAC Tx is going to add number of bytes equal to size of header.

Hence the calculation of first chunk size becomes difficult. It can be said that the first

chunk size is only equal to the real value minus the length of the header. For example,

again for QPSK, real first chunk size is 34 bytes. If we assume MAC data frame header

to be 24 bytes, then the apparent first chunk size for MAC Tx is 34 − 24 = 10. But

this will not work in cases where the real first chunk size is less than the frame header

size. For example, in BPSK, the first chunk size is only 16. Also, the length of the

MAC frame header might not always be the same even for the same frame type. For

example, in 802. 11 MAC the size of MAC header for data frame changes according to

ToDS and FromDS bits.

A tentative solution for this problem can be to move the header information from

RMAP to Input Buffer. This means the processor will have to write both the header

62

information and the payload to the input buffer before sending command to the MAC

Tx. Due to time constraints, we suggest this as future work.

63

4.4 Supporting Multiple Flows by Time-Sharing of UCM

4.4.1 Motivation and Experimental Setup

Supporting multiple technologies which might exist in the network at the same time is

an important feature for a CR platform. Even more important is the ability to support

all these flows at the same time without duplicating the hardware as far as possible.

This requires effective time-sharing mechanism in the layer above the hardware and

per-flow re-configurability support in the underlying hardware. In this experiment, we

demonstrate the ability of current WiNC2R platform to support multiple flows. Since

the current implementation supports only 802.11a-like OFDM flow, we use multiple

instances of the same OFDM flow.

A secondary motivation behind this experiment is to improve the UCM resource

utilization. The analysis in the basic experiment showed us that the FU HDR UCM is

idle for almost 80% of the time. We exploit this idle time to multiplex more OFDM

flows through the WiNC2R transmit chain. Figure 4.15 showed the comaprison between

the TIDLE and TFU HDR.

We study the effect of adding more flows to the one used in previous experiments.

Specifically, we study the change in the FU HDR UCM idle time and the number of

flows at which the first flow will break down.

We use BFM tool-set, described in Section 4.1, to create a test-bench using just the

WiNC2R transmit chain. To support the addition of more flows, we create instance

of the FU IFFT Tx for each added flow. All the flows will be multiplexed throughout

the first three FUs, but will split at the output of FU MOD. The duplication of FU

Tx IFFT is necessary because the current PE IFFT implementation supports only one

OFDM flow at a time. The IFFT output is corrupted if there is an attempt to route

more than one flow through it at the same time.

Figure 4.37, shows the task flow setup for two OFDM flows. As shown, a second

set of tasks needs to be created to support the additional flow. This is because with

each task there is an input data location, input data size set associated. For both the

flows, this set has to be different otherwise the data will get overwritten. We create a

64

FU MAC
Tx

(DUT 1)

FU HDR
Tx

(DUT 2)

FU MOD
Tx

(DUT 3)

FU FFT
Tx

(DUT 4)

Node 1

2. TxDataAvl
4. TxMod

5. TxIFFT

3. TxSendPreamble_Flow2

1. SendaAlohaFrm

From
Software

FU FFT
Tx

(DUT 5)

1. SendaAlohaFrm_Flow2 5. TxIFFT_Flow2

4. TxMod_Flow22. TxDataAvl_Flow2

3. TxSendPreamble

Flow 1

Flow 2

Figure 4.37: Setup for Two Concurrent Data Flows through WiNC2R

duplicate of each task in the first flow until the FU IFFT. All the information in these

tasks is the same as that for tasks in first flow, except the input data location and size.

4.4.2 Measurements and Analysis

To consider the effect of additional flows, we first need to consider some details about

the working of the PE IFFT block. The PE IFFT block converts the incoming chunked

data to a continuous OFDM stream at the output. To achieve this, PE IFFT stores

the incoming chunks into a FIFO, which it reads at constant rate. To maintain the

continuity in the output stream, once the frame starts, the FIFO has to have some data

in it. It cannot be empty. The purpose behind the rescheduling period is to prevent

overwriting of FIFO for low system latency cases. The rate at which the data is written

into the FIFO depends on the system latency from the input of FU HDR to input of FI

IFFT. If the system latency is too large, the FIFO will become empty and the OFDM

stream will break. We consider this point as the point where our system breaks down.

We denote the system latency for the first flow as Tsys and keep on adding flows, until

Tsys becomes larger than the rescheduling period, at which point the flow 1 output

stream will break.

Figure 4.38 shows the Tsys and its components.

Figure 4.39 shows the result of our experiment.

The plot shows the average Tsys for first flow. The average is calculated using

latencies for all chunks except the first and last one. These chunks are special cases. Tsys

65

FU MOD PROCESSING

FU HDR
PROCESSIN

G

FU IFFT
PROCESSI

NG

DATA INTO FIFO

FU HDR
PROCESSIN

G

FU IFFT
PROCESSI

NG

DATA INTO FIFO

RESCHED PERIOD

FU MOD PROCESSING

RESCHED PERIOD

RESCHED PERIOD

TSYS

Figure 4.38: System Latency Components

0 1 2 3 4 5
0

5

10

15

20

25

30

Number of Concurrent Flows

T
S

Y
S
 P

er
 C

hu
nk

 fo
r

F
irs

t F
lo

w
 (

in
 µ

se
co

nd
s)

Effect of Additional Flows on System Latency

T
FU_HDR

T
TA_MOD

T
TP_MOD

T
TT_MOD

T
IFFT

F
IFO

RESCHED PERIOD

Figure 4.39: System Latency Measurement for Multiple Flows

is divided into 5 components. TFU HDR is total processing latency for FU HDR. The

TTA MOD, TTP MOD and TTT MOD are FU MOD latency components. The TFFT FIFO

is the sum of TA latency for FFT FIFO plus time PE IFFT takes to write the first

word to FIFO after receiving the task.

We can see from the plot that up to three concurrent flows the system latencies are

about the same. The actual data shows that there are minor variations due to delay

in getting access to the bus. But for the fourth flow, the Tsys suddenly jumps and

crosses the red line denoting Rescheduling period. This indicates that, in case of four

concurrent flows, the output stream for flow 1 breaks. It is also seen that the added

latency is because of jump in TTA MOD.

66

The reason behind this apparent increase in TTA MOD is that as the number of

concurrent flows is increased; the tasks start getting queued up in in FU MOD. The

PE can process only one task at a time. The other tasks have to wait in the UCM

until PE finishes the current task. For PE MOD, Figure 4.16 shows us that TP and

TT latencies are large. Hence, the waiting time is also large. Figure 4.40 shows the

processing latencies in the FU MOD for 4 concurrent flows.

TP TA

RESCHED PERIOD

TT

TP TT

TP TT

TP TT

TA

TA

TA

TA

FLOW 4

FLOW 1

FLOW 2

FLOW 3

TP TT

Figure 4.40: FU MOD Latency Measurement for Multiple Flows

It is seen that when the second chunk task for the first flow arrives, UCM is busy

processing TT for first chunk of flow 3 and TP for first chunk of flow 4. Until the UCM

is done with one of these it has no space to process the incoming flow 1 task. Since, the

TP and TT take large amount of time, the flow 1 second chunk task sits in the UCM.

Hence the TA latency increases.

We thus conclude that the TP and TT latencies in the FU MOD are bottlenecks

when supporting multiple flows.

67

4.5 Effect of Change in Clock Frequency

In the previous experiments, we evaluated the performance of the WiNC2R platform

with different experimental settings. From these experiments, we were able to conclude

that for the given operating settings WiNC2R was not able to satisfy the SIFS criterion

because of the processing delay in PE SYNC. Also, the number of simultaneous flows

the system can support is limited by the processing delay in the PE MOD and the task

termination delay for the same PE.

In all these experiments, we had kept the operating frequency, at which the sim-

ulation was run, at 100MHz. The reason behind this is that for higher frequencies,

the implementation of the receiver chain in the FPGA was not able to meet timing

constraints. The clock frequency is thus limited by the resource requirements rather

than the architecture. If implemented on an FPGA with larger resources, the design

could be run at higher clock frequencies. In this section, we do a simple analysis to

estimate the clock frequency at which the WiNC2R can satisfy the SIFS criterion.

From the measurements of Section 4.2, we see that the maxim WiNC2R gives max-

imum value of TAT , approximately 40 µs, for 1250 byte frame with 2 OFDM symbols

per chunk. In terms of number of clock cycles, the TAT value is 4000 clock cycles. To

finish this number of clock cycles within the SIFS time (16 µs), the clock frequency

should be 4000/16 = 250MHz.

We thus see that increasing the operating frequency to 250 MHz will be enough for

the current WiNC2R implementation to satisfy the SIFS criterion. The requirement to

increase the clock frequency is the availability of more resource-rich FPGA. Given the

improvements in chip design based on Moore’s law, development of such an FPGA can

easily be imagined within the next few years.

The increase in clock frequency will also increase the number of simultaneous flows

the system can support. As seen in Section 4.3, this number is equal to maximum num-

ber of flows at which Tsys is less than the rescheduling period. The rescheduling period

inversely varies with the rate which FIFO in Tx FFT is read. With increase in clock

frequency, this rate will decrease to maintain constant rate of OFDM symbols at the

68

output. Thus, rescheduling period will increase, increasing the number of simultaneous

flows the system can support.

69

Chapter 5

Conclusions and Future Work

The WiNC2R was developed with an aim to achieve to speed of operation through

hardware and flexibility through software. In this work, we studied the performance

of the hardware components of WiNC2R on the ground speed and re-configurability.

The architectural analysis provided in Section 3 illustrated that WiNC2R is on-the-

go per-packet re-configurable platform. It offers modular approach provided with the

separation of data and control flow which are important features for any CR platform.

We then conducted experiments to analyze the processing latencies in WiNC2R

with an aim to figure out the best performance this architecture can give. The current

platform implementation consists only 802.11a-like OFDM flow with slice of 802.11-like

MAC operations. WiNC2R assigns the radio signal processing functions to PEs and

control functions to corresponding UCMs. Our basic analysis for a simple ALOHA-

based frame exchange revealed that for a single-OFDM based flow, the UCMs were

idle 80% of the time. It is seen from the measurements that a single UCM could

have been enough to support all four FUs in the transmit chain without any adverse

effect on performance. Since UCM is complex and resource-intensive block, we believe

that this idea of having a common UCM should be investigated further from resource

conservation point of view. Analysis should be done so as to how many PEs a UCM

can support.

Further analysis of UCM processing latencies indicated that the usage characteristics

of the UCM differ for each PE. With a PE like PE MOD, the data transfer to the next

PE constituted the dominant component of the UCM processing overhead. At the

same time, for PE HDR, the data transfer in small chunks made the control operations

overhead look bigger. This suggests that for better performance the architecture needs

70

to be tailored according to the application requirements. Currently, work is going on

a new UCM architecture that will support more than one PE. This will reduce the

control overhead in the task termination stage.

The results from the experiment to study the effect of frame size gave us results

about the two important parameters RTT and TAT . It was found that TAT does

not depend on frame size; but has an inverse relationship with the last chunk size.

Also, processing 2 OFDM symbols in a chunk in the receiver reduced TAT . We also

suggested that for more improvement, chunking operation should be moved to MAC

layer FUs. In spite of these improvements, the TAT was still in the range of 30− 40µs

for all frame sizes used.

The final experiment, tested the WiNC2R transmitter chain for concurrent multiple

flows. It was found that for current settings, maximum three 802.11a-like flows can

be multiplexed. When the number of concurrent flows goes above three, the large

values of task processing and task termination latencies in FU MOD turn out to be the

bottleneck.

The operating frequency for all these experiments was limited to 100 MHz. In the

last analysis, we saw that this was due to resource constraints and not because of the

WiNC2R architecture. If the design is run at 250 MHz, the current implementation

will be able to satisfy the SIFS criterion for all frame sizes considered and also increase

the number of simultaneous flows it can support. The requirement to increase the clock

frequency is the availability of an FPGA with larger amount of resources.

To conclude, we say that the current WiNC2R architecture succeeds in providing

important CR features like modularity and ability to support multiple standards. For

the operating frequency at 250 MHz and 2 OFDM symbols per chunk, the current

WiNC2R implementation will be able to satisfy the SIFS criterion. Since the majority

of the TAT is now contributed by the FU SYNC block, and the processing delay of PE

MOD limits number of flows the system can support simultaneously, we are working on

more sophisticated architectures for PEs. This architecture will be based on commercial

RISC cores and will help in improving the performance.

For future analysis, we suggest that more PEs be available so that a full 802.11

71

flow can be implemented. Different PE implementations might also help in simulating

different types of flows in the system.

72

References

[1] III Mitola, J. and Jr. Maguire, G.Q. Cognitive radio: making software radios more
personal. Personal Communications, IEEE, 6(4):13–18, Aug 1999.

[2] Zoran Miljanic, Ivan Seskar, Khanh Le, and Dipankar Raychaudhuri. The winlab
network centric cognitive radio hardware platform - WiNC2R. In Cognitive Radio

Oriented Wireless Networks and Communications, 2007. CrownCom 2007. 2nd

International Conference on, pages 155–160, Aug. 2007.

[3] Gary Minden Joe Evans and Ed Knightly. Technical document on cognitive radio
networks. Discussion papers, U.Kansas, Rice University, September 2006.

[4] Bill Lane. Cognitive radio for public safety. http://www.fcc.gov/pshs/

techtopics/techtopic8.html.

[5] Sto:the next generation program. http://www.darpa.mil/sto/smallunitops/

xg.html.

[6] Network centric cognitive radio platform(WiNC2R). http://www.winlab.

rutgers.edu/docs/focus/{W}i{NC}2{R}.html.

[7] Gnu radio: the gnu software radio. www.gnu.org/software/gnuradio.

[8] Rice university: Wireless open-access research platform. http://warp.rice.edu/.

[9] Eric Blossom. Exploring gnu radio. http://www.gnu.org/software/gnuradio/

doc/exploring-gnuradio.html, November 2004.

[10] The universal software radio peripheral. http://www.ettus.com/.

[11] Usrpfaq/intro/fpga. http://gnuradio.org/trac/wiki/UsrpFAQ/Intro/FPGA,
June 2008.

[12] Eric Blossom. How to write a signal processing block. http://www.gnu.org/

software/gnuradio/doc/howto-write-a-block.html, July 2006.

[13] P. Murphy, A. Sabharwal, and B. Aazhang. Design of warp: A flexible wireless
open-access research platform. In Proceedings of EUSIPCO, 2006.

[14] C. Hunter, J. Camp, P. Murphy, A. Sabharwal, and C. Dick. A flexible framework
for wireless medium access protocols. In Signals, Systems and Computers, 2006.

ACSSC ’06. Fortieth Asilomar Conference on, pages 2046–2050, 29 2006-Nov. 1
2006.

[15] S. Jain. Hardware and software for WiNC2R cognitive radio platform. Master’s
thesis, Rutgers University, October 2008.

73

[16] S. Satarkar K. Le, S. Jain and T. Hari. WiNC2R platform functional unit archi-
tecture. Architecture Specification Document, October 2008.

[17] Khanh Le. WiNC2R platform unit control module architecture. Architecture
Specification Document, May 2008.

[18] Z. Miljanic K. Le and R. Rajnarayan. WiNC2R platform PE command specifica-
tion. Architecture Specification Document, January 2008.

[19] Shalini Jain and Khanh Le. WiNC2R platform system flow. Architecture Specifi-
cation Document, March 2008.

[20] Renu Rajnarayan. WiNC2R platform processing engine frame header specification.
Architecture Specification Document, March 2009.

[21] S. Iman. Step by Step Functional Coverge with System-verilog and OVM. Hansen
Brown, 2008.

[22] Xilinx, Inc. EDK BFM Simulation Tutorial, July 2006.

[23] Xilinx, Inc. BFM Simulation in Platform Studio, 2008.

[24] L. Peterson and B. Davie. Computer Networks: A Systems Approach. Morgan
Kaufmann Publishers, 3 edition, 2003.

