

ENHANCEMENTS OF THE GENERIC MANIFOLD USER INTERFACE

By

RAGHAVENDRA Y. SIDHANTI

A thesis submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Master of Science

Graduate Program in Electrical & Computer Engineering

Written under the direction of

Dr. Ivan Marsic

And approved by

New Brunswick, New Jersey

October, 2009

ii

ABSTRACT OF THE THESIS

Enhancements of The Generic Manifold User Interface

By

RAGHAVENDRA Y. SIDHANTI

Thesis Director:

Dr. Ivan Marsic

Manifold is an attempt to create a generic UI which would be application-

independent, where the UI can be easily “detached” from one application and “attached”

to another one. The Model-View-Controller (MVC) design pattern is a popular design

pattern used in User Interfaces which has been employed in manifold. In this pattern, a

user generates input device events which are interpreted as actions on the domain model

via a Controller. After execution of the requested actions, the model sends notifications

about the effect of the actions, and the notifications are visualized as feedback to the user.

Different applications have different sets of inputs and so the UI should be able to

translate a users input on manifold’s workspace to that of the domain model. To solve

these issues, the MVC design and the Event Frame concept has been incorporated. The

EventFrame conveys user’s intentions (event) in a standardized format to the

Controller to be acted up on the domain model.

The EventFrame being the only “medium” to communicate to the

Controller makes it pivotal in communication between the UI and the domain model.

We envision manifold to grow in to a complex application that would cater to various

complex domain models on the internet where XML is gaining popularity as a way to

iii

share and transport data. In such a situation, the number of messages sent between the

manipulator and Controller would be enormous. We felt that in such a situation,

the Event Frame would be a bottle neck to performance.

 Considerable amount of my work in this thesis concerns with re-engineering the

Event Frame in order to make it “web friendly”. We eliminated the Hashtable to

represent the EventFrame with a comma separated String that would make it easier

for the XML parser to parse data. The modifications made to the application and

performance enhancements have been described in detail.

Property editors are used to edit the properties/attributes of a selected glyph. It

exposes the glyph’s properties for editing. Every time a new glyph is selected, the old

editors are emptied from the viewer, and the new set of editors are loaded. My work in

this thesis describes the implementation of newer property editors incorporated in to the

property viewer panel that will provide a user with enhanced options to edit a selected

glyph. The newer property editors incorporated are a fill color editor which fills the

interior of a glyph with a user specified color and a stroke editor which edits the stroke of

a glyphs boundary.

Lastly, while the basic feature of being able to draw a glyph and perform actions on

them using tools worked, there were certain issues with the property viewer that

prevented the properties editors from being displayed in the property viewer pane. My

preliminary work was to eliminate these issues. I have described the issues with in the

application and the solutions employed to eliminate them.

iv

Table of Contents

Chapter 1: Introduction ... 1

1.1 Manifold Framework: Current Implementation ... 2

1.2 Brief Introduction to my work .. 6

1.2.1 Property Viewer .. 6

1.2.2 Property Editors... 6

1.2.3 Event Frame .. 6

Chapter 2: Architecture Overview .. 7

2.1 Model-View-Controller Design Pattern ... 7

2.2 Model .. 8

2.2.1 Domain Model Visualization .. 9

2.3 Controller .. 10

2.3.1 Parsing Input Event Sequences ... 11

2.3.2 Manipulator ... 11

2.3.3 Interaction with the domain model.. 12

2.4 View ... 12

Chapter 3: Property Viewer... 14

3.1 Introduction: Property Viewer .. 14

3.2 The Issue: Property Viewer Issues ... 16

3.3 Design: Property Viewer .. 17

3.4 Solution: Issue 1 ... 20

3.5 Solution: Issue 2 ... 22

3.6 Solution: Issue 3 ... 24

Chapter 4: Property Editors ... 26

4.1 Introduction: Property Editors .. 27

4.2 Design ... 28

4.2.1 manifold.swing.PropertyEditorsPanel ... 29

4.2.2 editors.xml ... 30

4.2.3 manifold.impl2D.GeometricFigure ... 31

4.2.4 cachedState .. 32

4.3 Property Editor Modifications .. 32

v

4.3.1 Fill Color ... 33

4.3.2 Stroke .. 37

Chapter 5: Event Frame... 43

5.1 Tool, Manipulator, Controller .. 43

5.2 Introduction to Event Frame ... 46

5.3 Design ... 47

5.4 Issue .. 51

5.5 New EventFrame Design .. 53

5.6 Re-Engineering: New EventFrame Format .. 54

5.7 Modifications to Manifold .. 59

5.7.1 manifold.ControllerImpl ... 61

5.7.2 manifold.impl2D.tools.* ... 62

5.7.3 manifold.swing.editors.* ... 63

5.8 Performance .. 65

5.8.1 Application Loading Time .. 66

5.8.2 EventFrame Performance: Selector Manipulator .. 67

5.8.3 EventFrame Performance: Fill Color Editor ... 68

5.8.4 EventFrame Performance: Creator Manipulator ... 70

5.8.5 EventFrame Performance: Drag Drop Feature.. 73

Chapter 6: Future Work... 75

6.1 Text Box ... 75

6.2 Linker ... 76

6.3 Manipulating Multiple Glyphs ... 77

6.4 New Property Editors ... 78

6.5 Workspace Background Color ... 78

6.6 Thread Issues .. 78

Conclusion ... 80

References ... 82

vi

List of illustrations

Figure 1: Use Case diagram for the example application of the manifold framework 3

Figure 2: Manifold User Interface ... 4

Figure 3: Abstraction of the Model-View-Controller (MVC) Design Pattern (Marsic, I) . 8

Figure 4: UML class diagram of glyph inheritance hierarchy in Manifold (Marsic, I) 10

Figure 5: Example of a property editing dialog box. Property editors allow editing the

property values. (Marsic, I) ... 15

Figure 6: Errors generated on the first run .. 16

Figure 7: View of Manifold on its initial runs. It had a non functional property editor

panel on selection of a glyph. Notice that the aesthetics of the property viewer weren’t

great too. .. 17

Figure 8: (a) A dummy Implementation of the Properties Viewer (b) Class hierarchy of

the Properties viewer. (Marsic, I) .. 18

Figure 9: Implementation of manifold.swing.PropertyEditorsPanel 19

Figure 10: Functional manifold (a) default ellipse glyph (b) glyph with a colored outer

line (c) glyph with a modified width (d) glyph with a modified width and color 24

Figure 11: Property Viewer with a default Layout Manager .. 25

Figure 12: Illustrates the property editors. (a) The manifold user interface (b) The

underlying design of the properties viewer with PropertyEditorPanel (c) Example

property editors that could be incorporated in to the property viewer. 27

Figure 13: JColorChooser dialog box ... 34

Figure 14: Screenshots of the fill color property editor. (Left) Manifold user interface

with the fill color palette (Top right) Two glyphs with default properties, before the fill

color has been applied (Bottom Right) Two glyphs with fill color applied. 37

Figure 15: Property Viewer with the implementation of the Stroke editor. Surrounding

the Property Viewer are screenshots of the some of the implemented strokes 42

Figure 16: Tool Box encapsulates the features of Tool .. 43

Figure 17: UML diagram summarizing typical input event interpretation in Manifold. The

collaboration diagram accentuates the central role of Tool/Manipulator in this process

(Marsic, I) .. 44

Figure 18: UML Sequence diagram showing the usage of Event Frame as a helper in

communicating the user’s intent to the domain model via Controller (gateway) 47

Figure 19: A pictorial representation of (a) HashTable that is used in the current

implementation of EventFrame (b) the new proposed String implementation 53

Figure 20: Displays results of the application startup time of the Original manifold and

Modified manifold with the new EventFrame. Y-Axis displays time in milliseconds

(ms) and X-Axis are the trials. .. 66

Figure 22: Displays results of the performance of EventFrame with the Selector

Manipulator of the Original manifold and Modified manifold with the new

EventFrame. Y-Axis displays time in milliseconds (ms) and X-Axis are the trials. 68

Figure 21: Displays the points between which the measurements were made in order to

calculate the time take by the selector manipulator to make and display the selection. ... 67

Figure 23: Displays the points between which the measurements were made in order to

calculate the time take by the Fill Color editor to add a fill color to the selected glyph. .. 69

vii

Figure 24: Displays results of the performance of EventFrame with the Fill Color Editor

of the Original manifold and Modified manifold with the new EventFrame. Y-Axis
displays time in milliseconds (ms) and X-Axis are the trials. ... 69

Figure 25: Displays the points between which the measurements were made in order to

calculate the time taken to create a glyph and display it on the screen. 70

Figure 26: Displays results of the performance of 10 EventFrame’s of the Original

manifold and Modified manifold with the new EventFrame. Y-Axis displays time in

milliseconds (ms) and X-Axis are the trials. ... 71

Figure 27: Displays results of the performance of 50 EventFrame’s of the Original

manifold and Modified manifold with the new EventFrame. Y-Axis displays time in

milliseconds (ms) and X-Axis are the trials. ... 72

Figure 28: Displays the points between which the measurements were made in order to

calculate the time taken by the Event Frame to be transported between the Manipulator

and Controller. ... 73

Figure 29: Displays results of the performance of EventFrame’s of the Original

manifold and Modified manifold using the Selector tool. Y-Axis displays time in

milliseconds (ms) and X-Axis are the number of EventFrames. 74

1

Chapter 1

Introduction

Most of us are very familiar with the usage of a remote control to operate a

television, a dialing pad to make a telephone call and a web browser to browse the

internet. These are devices that make life convenient by making things easily accessible.

These devices essentially provide a medium through which a user can interact with an

underlying system that may be more complex than its operation. Moreover these are

devices that are specifically built for a purpose and are solely operated to achieve this

purpose.

Essentially, the above mentioned devices are interfaces that provide means to

interact with something. While user interfaces (1) provides means by which a person can

interact with a system – a particular machine, a computer program, a device. It provides

an input through which the user can manipulate a system and output allowing the system

to notify the user of the requested changes. A graphical user interface (GUI) (2) in

particular embodies the basic principles of a user interface by providing graphical icons,

visual indicators and visual outputs. A GUI is a human-computer interface that uses

windows, icons and menus and which can be manipulate by a mouse (or other pointing

devices) and often to a limited extent by a keyboard as well. It stands in sharp contrast to

the command line interface which uses only text and can be operated solely by a

keyboard.

Here, my work mainly focuses on GUI’s. Using the user interface, the user can:

2

• Modify the properties of model elements

• Select the viewpoint and navigate the “model world”

Generally, UI’s are molded about its particular application domain hence

requiring a great deal of work if it were to be molded around a different application. This

is particularly true for interfaces based on hand operation of input devices. To overcome

this problem Dr. Ivan Marsic and his team presented a design called Manifold (3).

Manifold is an attempt to create a generic UI which would be application-independent,

where the UI can be easily “detached” from one application and “attached” to another

one. The first version of Manifold appeared in (4). And, was also based on the work (5;

6). My work has been to extend the work initiated by Dr. Marsic in many ways.

My work encompasses the following areas,

• Debugging errors existent in manifold

• Addition of Property Editors

• Re-engineering the Event Frame

In order to understand the problems and the solutions employed to solve them, it is

critical to understand the architecture of manifold. This introduction provides an over

view of the Manifold frame work. The Chapters that follow will provide a serious,

detailed explanation of these problems and the solutions employed.

1.1 Manifold Framework: Current Implementation

In order to understand the manifold framework, it is important to visualize the

domain model. Figure 1 shows the use case diagram of the application (domain model)

that will be used as an example for employing the Manifold framework.

3

Figure 1: Use Case diagram for the example application of the manifold framework

To provide a visual appearance of the underlying elements of the domain model,

glyphs have been used. A Glyph (7) is a visual representation corresponding to a model

data element in a domain model. It visualizes the domain model’s state changes. The

name “glyph” is borrowed from typography to connote simple, lightweight objects with

an instant specific appearance. The key purpose of Glyph is to implement composite

design pattern, so to hierarchically compose glyphs into more complex figures.

Figure 2 displays a prototype of the current implementation of Manifold. Using

this interface one can create, delete, select, rotate and link various glyphs. It is also

possible to attribute various properties to these Glyphs through a Property Editor.

4

Features incorporated in the prototype Manifold user interface include:

• A Workspace, which is the area with in the interface where a user can create

glyphs such as rectangles, ellipses, lines and text boxes. With in the Workspace,

the glyphs can be selected, rotated, linked and deleted. Various property attributes

can be assigned to these glyphs with in the Workspace using the property editors

provided in the Property Viewer panel.

• A Tree Viewer provides the ability to view the existing glyphs in a tree format.

The tree is arranged on the basis of the order in which the nodes of the tree

(Glyphs) were created in the workspace. Each time a glyph is created in the

workspace, a glyph will be automatically added to the tree in the Tree Viewer.

Figure 2: Manifold User Interface

Workspace

Tool Box
Tree Viewer

Property Viewer

Menu Bar

Minimizing,

Resizing,

Closing buttons

5

Similarly, deletion of a glyph in the workspace will automatically result in

deletion of a node in the Tree Viewer.

• Property Viewer allows the user to set certain attributes to the glyphs created in

the workspace via a set of property editors. The property editors in the Property

Viewer are visible when a glyph is created or an existing glyph is selected. The

properties incorporated in to the Property Viewer of the interface include; a line

color which defines the boundary color through a color palette, five pre-defined

stroke types that define the type of stroke and width of these strokes for the

rectangle, ellipse and line glyph. While the rectangle and ellipse have an

additional property called fill color that defines the fill color of these closed

glyphs through a color palette.

• Tool Box provides the user a set of buttons to perform various functionalities in

the workspace. There are buttons for Creating a glyphs (rectangles, ellipses, lines)

and text box (under development). Buttons for: a selector for selecting the glyphs,

delete to delete a glyph, rotator to rotate a glyph and a linker to create links

between two glyphs (under development).

• A Menu Bar which provides access to several advanced features such as linking

two or more interfaces over a network, Saving and loading files, ability to open

multiple interfaces and editing the properties of the interface is under

development.

Manifold user interface is a work in progress. It employs Sun Microsystems Java

Technology as its primary coding language to design the interface and its underlying

6

application. My work on the interface has been on developing some of the features of the

application which makes the system a stable platform to work on. My work has been

outlined in the next section.

1.2 Brief Introduction to my work

My work on manifold was on three specific areas:

1.2.1 Property Viewer

When I began working on Manifold, there were several issues with in the

application. These issues prevented the rendering of individual Property Editors

pertaining to a glyph in the Property Viewer panel. My primary task was to debug these

issues and make the Property Viewer a functional entity of the interface.

1.2.2 Property Editors

I worked on incorporating new Property Editors for the glyphs with in the

Property Viewer of Manifold.

1.2.3 Event Frame

An Event Frame transcribes user’s actions in to a format that can be used to

communicate with the domain model. I worked on re-engineering the Event Frame by

replacing its format from a hash tables to a string. The idea behind the change was to

make the application more viable over the internet.

7

Chapter 2

Architecture Overview

The design of Manifold may seem very intuitive at the beginning. But, as one drill

down in to the code, the ideas and techniques employed may not seem all that intuitive.

In order to better understand my work it is important that one understands a general

overview of its architecture. In this section, I have described certain critical aspects of the

architecture and provided a “some what” in depth analysis of the topics that would be

needed in understanding my work. For further clarifications and a better description of

the Manifold architecture I recommend the documentation provided by Dr. Marsic which

I have cited at.

2.1 Model-View-Controller Design Pattern

The Model-View-Controller (MVC) design pattern is a popular design pattern used

in User Interfaces (8; 9; 10). The MVC paradigm is a way of breaking an application, or

even just a piece of an application's interface, into three parts: the model, the view, and

the controller. The model represents information (the data, underlying application) of the

application; the view corresponds to elements of the user interface such as workspace,

text, checkbox items, and so forth; and the controller manages the communication of data

and the business rules used to manipulate the data to and from the domain model. Figure

3 illustrates an abstraction of the user interface using the MVC model.

8

Controller

View

Input

Device

Events

Event

Interpreter

Event

Interpreter

Domain

Model

Action

Domain

Model

Domain

Model

Model

Visualizer

Model

Visualizer

Notification

About the

Effects of the

Action

Visual Feedback

of the Altered

Model
User

User Interface
Model

Figure 3: Abstraction of the Model-View-Controller (MVC) Design Pattern (Marsic, I)

In this model a user generates an Input Device Event which is interpreted as actions

on the domain model by the interface. These events are converted to Domain Model

Action. After executing the requested actions, the model sends notification about the

effects of the actions in the reverse order and the notifications are visualized as feedback

to the user. This is how classical Observer design pattern works, i.e., the Observer reads

the Subject state upon being notified about the state changes (9). Conversely, in the Java

event delegation pattern (11), the event source sends to the listener the event containing

the new state information along with the notification.

2.2 Model

Domain Logic represents the calculations and data storage that form the core of an

application. The model encapsulates the functional core of the application which is its

Domain Logic. The goal of MVC is to make the model independent of the view and

9

controller which together form the user interface of the application. An object may act as

the model for more than one MVC triad at a time.

Since the model must be independent, it cannot refer to either the view or controller

portions of the application. The model may not hold direct instance variables that refer to

the view or the controller. It passively supplies its services and data to the other layers of

the application.

2.2.1 Domain Model Visualization

In manifold, Glyphs have been used to visualize the elements of the domain

model. Glyph is a visual representation corresponding to a model data element in a

domain model. It visualizes the model’s state changes. The key purpose of Glyph is to

implement the Composite design pattern (9), so to be able to hierarchically compose

glyphs into more complex figures.

The base class for glyphs is manifold.Glyph, which is an abstract class, see

Figure 4. The class manifold.impl2D.Glyph2D implements geometric

functionality specific for Java 2D (12) domain on the Glyphs. From this, two types of

two-dimensional glyphs are derived:

1. Leaf glyphs, which have visual appearance, i.e., they can be rendered. For

example, glyphs for primitive geometric shapes inherit from

manifold.impl2D.GeometricFigure, and are implemented in the

package manifold.impl2D.glyphs.

2. Inner glyphs represented by manifold.impl2D.TransformGroup, which is

composite, a container for groups of glyphs.

10

� abstract�

G lyph2D

– transfo rm : T ransfo rm 2D

– h ighlighte r : H ighlighte r

+ getT ransfrom () : A ffineT ransfo rm

+ getBound ingShape() : Shape

+ s im ula teHandleMovem ent(newPo int : Poin t2D)

+ p ick (traversa l : T raversa l)

G lyph3D

� abs tract�

G lyph

– id : S tr ing

– vis ib le : boo lean

– cachedS tate : Hashtable

+ addChild(ch ild : G lyph)

+ rem oveChild (ch ild : G lyph)

+ se tProperty(nam e : S tring, va lue : O bject)

+ draw(tra versal : T raversal)

+ pick (trave rsal : T raversa l)

� abstract�

Geom etricF igu re

+ draw (traversa l : T raversal)

trans lateAndScaleShape(double [])

T ransformG roup

+ p ickC losest(shape : P ickShape)

+ p ickA ll(shape : P ickShape)

+ d raw (graph ics : G raph ics2D)

+ d raw (tra ve rsa l : T raversal)

Text

� abstract�

G lyph2D

– transfo rm : T ransfo rm 2D

– h ighlighte r : H ighlighte r

+ getT ransfrom () : A ffineT ransfo rm

+ getBound ingShape() : Shape

+ s im ula teHandleMovem ent(newPo int : Poin t2D)

+ p ick (traversa l : T raversa l)

G lyph3DG lyph3D

� abs tract�

G lyph

– id : S tr ing

– vis ib le : boo lean

– cachedS tate : Hashtable

+ addChild(ch ild : G lyph)

+ rem oveChild (ch ild : G lyph)

+ se tProperty(nam e : S tring, va lue : O bject)

+ draw(tra versal : T raversal)

+ pick (trave rsal : T raversa l)

� abstract�

Geom etricF igu re

+ draw (traversa l : T raversal)

trans lateAndScaleShape(double [])

T ransformG roup

+ p ickC losest(shape : P ickShape)

+ p ickA ll(shape : P ickShape)

+ d raw (graph ics : G raph ics2D)

+ d raw (tra ve rsa l : T raversal)

TextText

Figure 4: UML class diagram of glyph inheritance hierarchy in Manifold (Marsic, I)

2.3 Controller

A strict distinction has been maintained between the domain model and UI. This is

critical in order to create an effective UI. A controller is the means by which the user

interacts with the application. A controller accepts input from the user and instructs the

model and view to perform actions based on that input. In effect, the controller is

responsible for mapping end-user action to application response. For example, if the user

clicks the mouse button or chooses a menu item, the controller is responsible for

determining how the application should respond.

11

2.3.1 Parsing Input Event Sequences

When a user handles an input device(s), it generates interaction events, which are

translated to actions on the domain model. For example, the user’s activity of depressing

the mouse button and dragging it around the workspace has different meaning, depending

on the currently selected tool. Examples are rotation of a graphical figure, resizing,

translation, etc. The selected tool “knows” which one of these is currently in effect. The

design espoused here is inspired by Unidraw (13; 14) and Fresco (15; 16).

2.3.2 Manipulator

To carry out the manipulation, a tool creates a “Manipulator”. In other words, the

tool encapsulates state and Manipulator encapsulates behavior. A new Manipulator

object is instantiated (by invoking Tool.createManipulator()) at the moment

the user starts a new interaction cycle and disposed of at the end of the interaction cycle.

An example of “interaction cycle” is: (1) user depresses a mouse button; (2) drags the

mouse across the workspace; and, (3) releases the mouse button.

Roughly speaking, the tool encapsulates the static part of the interpretation

apparatus, i.e., describing what this tool does. Manipulator encapsulates the dynamic part,

the transient state associated with a single manipulation cycle.

The manipulator plays a key role in orchestrating the event interpretation. Once

an event is created, the events are transcribed in to an EventFrame and notified to the

Controller.

12

2.3.3 Interaction with the domain model

In manifold, Controller is a single object acting as a gateway between the

presentation and domain modules of the system. Conversely, in the MVC design pattern,

Controller is a component of the pattern, usually implemented as a set of cooperating

objects working together on the input interpretation task.

It is common to think of the application domain (also called functional core, or,

application logic) as not dealing with user interface issues. True, the domain does not

deal with the presentation of information to the user and other aspects of interaction.

Nonetheless, it is on the way of the data flow and its functioning becomes apparent in the

interaction.

The domain module may not be “aware” of the user, but the user is keenly aware

of the domain (via the presentation). Therefore, the domain designer may need to take

into account the impact of design decisions on the efficiency/effectiveness of interaction.

It is noteworthy that the event frames do not contain explicit information about the

current operating mode of the user activity. For example, regardless of whether the

operation is rotation or scaling or translation, the event frame only contains the glyph

identity and its new transformation attribute. If it for some reason needs to know what

transformation is being applied, it is possible to decompose the transformation into

constituent “pure” transformations by invoking

2.4 View

The View is responsible for mapping graphics onto a device. A view typically has a

one to one correspondence with the display surface and knows how to render to it. A

13

view attaches to a model and renders its contents to the display surface. In addition when

the model changes, the view automatically redraws the affected part of the image to

reflect those changes. There can be multiple viewports onto the same model and each of

these viewports can render the contents of the model to a different display surface.

14

Chapter 3

Property Viewer

As mentioned earlier, my work on manifold is an extension of Dr. Marsic’s. During

my early encounters with Manifold I noticed a lot of errors being generated while running

the application. While the basic feature of being able to draw a glyph and perform actions

on them using tools worked there were certain bugs with the property viewer that

prevented the properties editors from being displayed in the property viewer pane. My

preliminary work was to eliminate these bugs.

3.1 Introduction: Property Viewer

The design of manifold is very elegant. Inter coupling of various domains of the

interface have been minimized to a great extent. What I mean is that, a glyph can be

drawn on the workspace even if the property viewer doesn’t function or the tree viewer

does not function. A strict de-coupling of the features has been ensured through out the

design which is what makes it very interesting. Moreover, it makes the code easier to

read and to de-bug.

The role of property viewer is to display editable properties (attributes) of the

glyphs in the workspace in the form of property editors. Property Viewer displays only

one glyph at a time—the one that is selected. When a glyph in the workspace is selected

using the selector tool its corresponding properties are displayed on the property viewer.

15

Similarly, when a new glyph is created on the workspace using the creator tools, its

properties are automatically displayed on the property viewer panel. This is because

when a new glyph is being created, it is the currently selected glyph.

The properties that could be displayed can be of several different types. For

example, a rectangle or an ellipse glyph could have properties that could help set their

outer boundary and fill colors. They could have options to decorate their boundary lines

with decorative lines (dashed lines, dotted lines, dash-dotted lines etc). Have options to

erase part of the boundaries or modify their shapes. The possibility of zooming in or

zooming out of figures. And, the possibility of placing a selected glyph in the background

or foreground when several glyphs are present. Some of these properties could be applied

to line glyphs as well. Other non glyphs like text box can benefit from the property

viewer, where one can vary font type and size. The ability to add 3D art in fonts and draw

tables are some other advanced features that a properties viewer can provide.

It can be noticed that the number of different properties that can be created in the

property viewer and attributed to a glyph are plenty and can be left to the imagination of

the developer. As mentioned above, there is only one property viewer instantiated per

application. Every time a new glyph is selected, the old editors are emptied from the

 PropertiesViewer

1.82

CancelApply
L
a
b
e
ls

Number-type Property:

NJNJ

Fraction-type Property:

List-type Property:

Color-type Property:

E
d
ito
rs

Figure 5: Example of a property editing dialog box. Property editors allow editing the property

values. (Marsic, I)

16

viewer, and the new set of editors are loaded. Figure 5 illustrates the idea of property

viewer and its editors.

3.2 The Issue: Property Viewer Issues

Up one running the code for the first time, I noticed that there was a serious

problem with interface. Several error messages were being generated at the start of the

program and the property viewer panel wouldn’t work! Figure 6 displays the errors

generated at the start of the application. Each time a glyph was created or selected two

dummy buttons would show up on the property viewer panel which up on clicking would

not change the attributes of the glyphs.

Figure 6: Errors generated on the first run

17

Figure 7: View of Manifold on its initial runs. It had a non functional property editor panel on

selection of a glyph. Notice that the aesthetics of the property viewer weren’t great too.

Figure 7 displays the initial version of the user interface with non functional

buttons. My first task was to get the property viewer up and running.

3.3 Design: Property Viewer

The java code manifold.swing.PropertiesViewer is responsible for

displaying the property editor panels in the property viewer pane. Its implementation is

shown in Figure 8. The glyph-specific property editors are contained in the

manifold.swing.PropertyEditorsPanel, which is specific to different glyph

types and is re-loaded every time a new glyph is selected. PropertyEditorsPanel

Non functional

Property Editor

Buttons of the

selected Glyph

Property Viewer

Selected Glyph

Glyphs

18

contains multiple property editors, which are subclasses of

javax.swing.JComponent (17).

Note that the information about the editable properties is known only to the glyph’s

PropertyEditorsPanel, not to the glyph and not to the corresponding domain

node, so the property viewer in fact inquires the PropertyEditorsPanel.

 PropertiesViewer

CancelApply

PropertiesViewer {JPanel}

JInternalFrame

PropertyEditorsPanel {JPanel}

PropertyEditor {JComponent}GridLayout

JPanel

JLabel

*

contentPane

*

Property editor

Property label

Property editors panel

Property editor panel

(a) (b)

Viewer panel

Figure 8: (a) A dummy Implementation of the Properties Viewer (b) Class hierarchy of the

Properties viewer. (Marsic, I)

The PropertyEditorsPanel is a subclass of javax.swing.JPanel

(18). With in the PropertyEditorsPanel are a set of smaller JPanel’s with a

Grid Layout of 1x2 as shown in Figure 9. Each of this subset (1x2) JPanels hold the

editable properties of a selected glyph. The left box (i.e [1,1]) contains a

javax.swing.JLabel (19) which displays the name of the editable property and

19

right box (i.e. [1,2]) contains the editable properties which are

javax.swing.JComponent’s.

A PropertyEditorsPanel containing various editable properties and their

label is specific to a particular glyph. Hence, each glyph has one such

PropertyEditorsPanel containing all its editable properties in it. These panels

and their corresponding glyph names are held in a hash table created via an XML file

editors.xml. The editors.xml file also lists the editable properties to be

included in the PropertyEditorsPanel for a particular glyph.

Once the PropertyEditorsPanel is created, its contents are displayed via a

protected method buildLUT() in manifold.swing.PropertiesViewer.

buildLUT() builds a look up table containing these editable properties. Further more,

it de-couples the PropertyEditorsPanel to obtain the JComponent (i.e the

JPanel

Inner JPanel with a

1x2 GridLayout

JLabel describing

the property name

Holds the editable

property, a JComponent

Outer JPanel, defining

the Property Viewer

JLabel JComponent

JLabel JComponent

JLabel JComponent

Figure 9: Implementation of manifold.swing.PropertyEditorsPanel

20

editable properties) and assigns them to a generic interface

manifold.ProperyEditor. Through the PropertyEditor interface the

properties are subsequently altered.

The reason behind the editable properties not functioning in the properties viewer

was because this de-coupling and its subsequent assignment to the ProperyEditor

wasn’t taking place in a proper fashion. By proper, I mean in the opposite way to which

the PropertyEditorPanel was created.

3.4 Solution: Issue 1

Figure 9 displays the design of the PropertyEditorPanel. And its 1x2 inner

JPanel for each editable property, and a JLabel and JComponent. In order to

successfully assign the JComponent to the interface manifold.PropertyEditor

the following steps have to be followed sequentially,

1. Retrieve the values of the hash table using a Java Iterator (20). Each

value corresponds to a PropertyEditorsPanel.

2. On each of these PropertyEditorPanel’s,use a loop to obtain each of the

inner JPanel’s containing the JLabel and JComponent.

3. From each of these inner JPanel’s, retrieve the JComponent and assign it to

the interface PropertyEditor after proper type casting.

It should be noted that, there are three loops placed in a hierarchy in order to make a

successful assignment to the PropertyEditor. The original code wasn’t following

this sequence and hence the cause of errors.

21

The original code stub which caused the error was,

for (Iterator i_ = editorPanels.values().iterator(); i_.hasNext();){

 PropertyEditor editor_ = (PropertyEditor) i_.next();
 editor_.setPropertiesViewer(this);

}

Here the editorPanels is the hash table. In this code, the first step of the

sequence existed while the other two were missing. Hence, these lead to the assignment

of a PropertyEditorPanel to the PropertyEditor interface. This was an in-

appropriate assignment.

In order to correct the bug, I followed the sequence as mentioned above. This

resulted in a code which looks like this,

for (Iterator i_= editorPanels.values().iterator(); i_.hasNext();){

JPanel newPanel_ = (JPanel) i_.next();

for(int j_=0;j_< newPanel_.getComponentCount();j_++){

Component comp_= ((JPanel)
newPanel_.getComponent(j_)).getComponent(1);

 if(comp_ instanceof PropertyEditor){

PropertyEditor editor_ = (PropertyEditor) comp_;
 editor_.setPropertiesViewer(this);
 }
 }
}

Following the code changes, I expected the application to work the way it was

supposed to but, it did not. While the initial errors (Figure 6) on the application start up

did not re-occur this time, there were a series of new errors generated when the properties

22

were assigned to a selected glyph. These errors were pertaining to a

java.lang.NullPointerException (21). On closer inspection of the errors

and the code, I realized that the source of the error was still in

manifold.swing.PropertiesViewer. However, this time the cause of the error

was in a different method called selectionsChange.

3.5 Solution: Issue 2

manifold.SelectionsListener is an interface responsible for notifying

listeners (22) about changes to the list of selected glyphs inside the workspace. The

listeners are notified if more glyphs become selected or some become de-selected. Events

of this type are generated by manifold.SelectionsModel. selectionsChange

is a method called by SelectionsListener to obtain the

PropertyEditorsPanel of the currently selected glyph by providing the node ID of

the currently selected glyph. Through the PropertiesEditorsPanel the system

accesses the editable properties (JComponent’s) and the properties are assigned to the

selected glyph.

The JComponent’s belong to a package manifold.swing.editors. These

Classes implement an ActionListener (23) and PropertiesEditor. Every

time a property is assigned to a glyph through the properties viewer, an event is generated

and a method actionPerformed is called (23). actionPerformed captures the

users requested changes and sends the new properties to the model for re-rendering and

storing in the cachedState. In order to perform the requested action (property change)

these JComponents need to know the node ID of the node (glyph) of which the

23

properties need to be changed. The node ID has to be translated to them when the glyph

is selected. selectionsChange being part of the properties viewer bares the

responsibility of notifying these property editor classes (JComponents) of the current

node ID. This wasn’t being translated hence no changes were taking place to the

properties of the glyph. More over, there was no defined method with in the property

editor classes to translate the node ID to it.

I defined a method called setCurrentNodeId with in the property editor

classes which allows other classes to communicate the current node ID to these classes.

Code stub of setCurrentNodeId

public void setCurrentNodeId(String node_){
currentNodeId = node_;

}

By adding editor_.setCurrentNodeId(currentNodeId) to the

selectionsChange method in manifold.swing.PropertiesViewer I was

able to translate the node ID of the currently selected glyph to the property editors.

Following the code changes, the Properties Viewer functioned as it was supposed

to. With fully functional Property Editor buttons. Figure 10, shows a glyph under four

different situations. Figure 10-(a) is a default glyph, Figure 10-(b) is a color glyph,

Figure 10-(c) is a glyph with a modified width, and Figure 10-(d) is a glyph with

modified color and width.

24

Bug 3

3.6 Solution: Issue 3

The PropertyEditorsPanel extends a JPanel (18) class which provides

general-purpose containers for lightweight components. Like other containers, JPanel

uses a layout manager to position and size its components. By default, a panel's layout

manager is an instance of FlowLayout (24), which places the panel's contents in a row.

Hence, resulting in a look as shown in Figure 11 with the property editors beside each

other. In order to make the property editors appear one below the other, a

GridLayout(25) had to be used. This was incorporated in the constructor of

manifold.swing.PropertyEditorsPanel using the following code stub,

public PropertyEditorsPanel(){
 super(new GridLayout(4,1));
}

(d) (c)

(a) (b)

Figure 10: Functional manifold (a) default ellipse glyph (b) glyph with a colored outer line (c) glyph

with a modified width (d) glyph with a modified width and color

25

GridLayout(x, y) divides the panel in to x rows and y columns. In this case, 4

rows and 1 column. The number 4 is arbitrary.

Property Viewer

Color editor. JButton to

modify the color of the

glyph

Value, JButton to modify

the width of the glyph

Figure 11: Property Viewer with a default Layout Manager

26

Chapter 4

Property Editors

After fixing the issues, the Property Viewer could change two properties of a

selected glyph (1) Change the width of the Glyph (2) Change the color of the Glyph

peripheral lines. While these two properties were fully functional, the idea was to

implement more editable properties of a selected glyph.

This section describes the changes made to manifold in order to avail two more

editable properties namely:

1. Fill Color

2. Line Stroke

I would like to clarify a probable misconception that may exist in this section. The

property editors that I am going to address in this section are the JComponent’s present

in side the 1x2 JPanel of the manifold.swing.PropertyEditorPanel. This

is different from the manifold.PropertyEditor which was talked about in the

previous section. The manifold.PropertyEditor is an interface that is

implemented by the property editors. In case of confusion, the best way to distinguish

between the two would be by realizing the difference in font used to describe them.

27

4.1 Introduction: Property Editors

Property editors are used to edit the properties/attributes of a selected glyph. While

introducing the properties viewer in the previous chapter, I had talked about several

different properties that could be inculcated in to it. Where each of these properties would

be a JComponent retrieved by the PropertyEditorPanel. These JComponents

(property editors) could be any Java Swing Component that can directly physically alter

the properties of the Glyphs or indirectly participate in it. With in manifold, these

JComponents belong to a package manifold.swing.editors that contains a list

of classes. Where, each class is specific to a property which would alter a glyphs

JLabel JComponent

JLabel JComponent

JLabel JComponent

(b)

(c)

(a)

Figure 12: Illustrates the property editors. (a) The manifold user interface (b) The underlying design

of the properties viewer with PropertyEditorPanel (c) Example property editors that could be

incorporated in to the property viewer.

28

property. Figure 12 shows what I am talking about pictorially. In Figure 12, (c) are some

examples of property editors that could be incorporated in to the manifold user interface.

Each property editor would be an individual class with in the package

manifold.swing.editors which would be called by the

PropertyEditorPanel.

4.2 Design

The package manifold.swing.editors contains all the property editors.

Where each class files corresponds to a particular property. These classes implement a

PropertyEditor interface and java.awt.event.ActionListener (23). And

generally extend a javax.swing (26). These classes have several Mutators for altering

the values in the classes and assessors to access their values. The important ones are

summarized below:

• setValue(java.lang.Object value_)

 Mutator for altering the value of the editable property.

• getValue()

 Accessor for retrieving the value of the editable property.

• actionPerformed(java.awt.event.ActionEvent event_)

There are certain classes of importance which have to be understood in order to

understand my work. The following sections will provide a brief description of these

classes and their importance.

29

4.2.1 manifold.swing.PropertyEditorsPanel

The PropertyEditorsPanel is a subclass of javax.swing.JPanel

(18). Which creates a set of smaller JPanel’s with a Grid Layout of 1x2 as shown in

Figure 9. Each of this subset (1x2) JPanels hold the editable properties of a selected

glyph. There is a single property editor panel object per glyph type. Each individual

property editor edits a single property of the glyph. This panel holds all these editors

together.

A method called add() with in the PropertyEditorsPanel is responsible

for creating the smaller JPanel’s with a Grid Layout of 1x2 and placing a

javax.swing.JLabel (19) in the left box (i.e [1,1]) which displays the name of

the editable property and a property editor in the right box (i.e. [1,2]) contains the

editable properties which is a javax.swing.JComponent’s.

Each of these 1x2 JPanels are stacked one below the other inside the

PropertyEditorsPanel. A code stub of the add() method is provided below.

public Component add(Component component_) {

// Set a (1-row X 2-column) grid layout.

 JPanel panel_ = new JPanel(new GridLayout(1,2));

 // Default label text is empty.
 String labelText_ = "";

if (component_ instanceof PropertyEditor) {

// Set the property description, if available, as the label text.
 labelText_ = ((PropertyEditor) component_).getDescription();
 }

 // Add first the text label to the grid layout.
 JLabel label_ = new JLabel(labelText_);
 panel_.add(label_);

 // Add the property value editor to the right of the text label.

30

 panel_.add(component_);

 // Add the entire 1x2 grid panel to the parent panel.
 return super.add(panel_);
}

4.2.2 editors.xml

editors.xml is an XML file which is part of the manifold package. Through

the editors.xml file one can specify the set of property editors which have to be

included in to the manifold.swing.PropertyEditorsPanel. This is done by

using the add() method of the PropertyEditorsPanel where its attributes would

be a property editor class from the manifold.swing.editors package. A

propertyName will also be defined to aid in easy access of the property with in the

application.

<object class="manifold.swing.PropertyEditorsPanel">
 <void method="add">
 <object class="manifold.swing.editors.ColorEditor">
 <void property="propertyName">
 <string>line.color</string>
 </void>
 </object>
 </void>
</object>

The above mentioned code is particular to a glyph and would result in one 1x2

inner JPanel embedded in to the PropertyEditorsPanel. This is because only

one property has been specified. For more property editors, the code has to be repeated

by varying the property editor’s class object and value of the propertyName. This

would result in PropertyEditorsPanel with several 1x2 inner JPanels.

31

Each of these PropertyEditorsPanel’s created is specific to a glyph (eg.

Rectangle, ellipse). These panels are added to a hash table through the editors.xml

file. This hash table is accessed by manifold.swing.PropertiesViewer which

was discussed earlier.

A code stub of the editors.xml file has been provided below. It is specific to a

rectangle glyph.

<!-- ********* Rectangle Editor Panel ********* -->

<object class="java.util.HashMap">
 <void method="put">
 <string>rectangle</string>
 <object class="manifold.swing.PropertyEditorsPanel">
 <void method="add">
 <object class="manifold.swing.editors.DoubleEditor">
 <void property="propertyName">
 <string>line.width</string>
 </void>
 </object>
 </void>
 <void method="add">
 <object class="manifold.swing.editors.ColorEditor">
 <void property="propertyName">
 <string>line.color</string>
 </void>
 </object>
 </void>
 </object>
 </void>
</object>

4.2.3 manifold.impl2D.GeometricFigure

Glyphs are represented via simple geometric shapes such as rectangles and

ellipses. Manifold.impl2D.GeometricFigure is the base class and is extended by

these specific geometric figures.

32

4.2.4 cachedState

A strict distinction between the application domain and the presentation layers of

a software package has been maintained. Glyphs do not have any state—their actual state

is defined by the corresponding objects in the application domain and mirrors what the

application domain object notifies it.

Glyphs, however, cache the state information in the look-up table called

cachedState. The reason for caching is to improve performance, especially if the

domain is located across the network. The look-up table represents the glyph’s attributes

as a set of 〈property, value〉 pairs. The commonly used attributes are defined in

manifold.EventFrame, although some may be defined locally in glyphs. The

cachedState entries are dynamically created at runtime and their values are

dynamically typed.

4.3 Property Editor Modifications

The previous sections provided a background of the design of manifold. Initial

implementation included two property editors namely, value and color.

• Value is a JButton that allows the user to change the width of a selected glyph

• Color is also a JButton that provides the user an option to change the color of the

selected glyph.

We felt that these two property editors were too little for the application. We

decided on adding two more property editors, namely Fill Color and Stroke.

33

Fill Color fills the glyph with a specified color. While stroke changes the stroke of the

outer lines of the glyph. The implementation of these two properties is described in the

following two sections.

These properties were incorporated by implementing two new classes namely

FillColorEditor and StrokeEditor in to the manifold.swing.editor

package. Through the PropertyEditorsPanel these properties will be incorporated

just as the line color and width already existent in the application. However, apart from

describing these classes in manifold.swing.editors package, changes were

made in manifold.swing.GeometryFigure to allow these properties affect the

physical properties of the selected glyph with in the application.

The following sections will describe the implementation of these classes and the

modification made to the manifold.swing.GeometryFigure.

4.3.1 Fill Color

Fill color provides the user an option to fill the inner area of a glyph with a

selected color via a color palette. The idea was incorporated by using

java.awt.Color (27). The Color class is used to encapsulate colors in the

default RGB color space. Every color has an implicit alpha value of 1.0 or an explicit one

provided in the constructor. The alpha value defines the transparency of a color and can

be represented by a float value in the range 0.0 - 1.0 or 0 - 255. An alpha value of 1.0 or

255 means that the color is completely opaque and an alpha value of 0 or 0.0 means that

the color is completely transparent. In this case we use the default alpha value for an

opaque color.

34

The palette was incorporated by using javax.swing.JColorChooser

(28). JColorChooser provides a pane of controls designed to allow a user to

manipulate and select a color. It contains two parts, a tabbed pane and a preview panel.

The three tabs in the tabbed pane select chooser panels. The preview panel below the

tabbed pane displays the currently selected color. The JColorChooser API also

makes it easy to bring up a dialog (modal or not). More information on how to use the

JColorChooser can be found at (29). The following code stub with a dialog was

incorporated in to manifold.swing.editors.FillColorEditor:

Color color_= JColorChooser.showDialog(this,"Select Fill Color", value)

Figure 13 shows what JColorChooser looks like in Java Look & Feel.

Tabs to select chooser

panels

Color palette

Color preview pane

Buttons for confirming the

chosen color, cancellation

and resetting the color

Figure 13: JColorChooser dialog box

35

The manifold.swing.editors.FillColorEditor implements two

interfaces manifold.PropertyEditor, java.awt.event.ActionListener

and extends javax.swing.JButton (30) (a push button). FillColorEditor

implements ActionListener as it has to process an action event when a user clicks

the JButton. Up on clicking the JButton, the ActionListener interface receives

action events. An object created through the JButton is registered with a component,

using the component's addActionListener method. When the action event occurs,

the object's actionPerformed method is invoked. More information on how to use a

JButton can be found at (31). Under the actionPerformed method I have defined the

actions to be performed.

public void actionPerformed(ActionEvent event_) {
Color color_ =

 JColorChooser.showDialog(this, "Select Fill Color", value);

 if (color_ != null) {
 // Make an event frame to request the application domain
 // for property change.
 Hashtable slots_ = new Hashtable();
 slots_.put(EventFrame.VERB, ControllerImpl.SET_PROPERTIES);
 slots_.put(EventFrame.NODE_ID, currentNodeId);
 slots_.put(propertyName, color_);

 this.setBackground(color_); // Change the button
color to the current color

 propertiesViewer.getController().sendAsyncEvent(new
EventFrame(slots_));

 }
}

In the above code stub, the first action performed is to retrieve the color chosen by

the user via the JColorChooser and store the Color value in color_. The

following steps generate a manifold.EventFrame and send it to the Controller.

An EventFrame contains information about the interpretations of the user’s event

36

which has been transcribed to a form that the application can understand. In this case, the

property name (fill.color) and the fill color chosen are sent to the controller via the

EventFrame. Further details on EventFrame have been covered in the next chapter.

Moreover the color of the JButton is changed to the current color chosen by

this.setBackground(color_);

The values specified in the EventFrame are stored in the cachedState hash

table if they do not exist or are updated if they exist in it. The currently selected color has

not been used by a glyph or in other words modified the properties of the glyph. It has

only been chosen and is stored in the cachesState hash table.

There is no default fill color set to the glyph when it is created. It is the

developer’s responsibility to set these colors to the glyph. In order to incorporate the fill

color properties to a glyph, small changes have to be made to

manifold.Impl2D.GeometricFigure. The method draw renders the glyphs of

the type java.awt.Shape (32). Every time a glyph has to be created or modified,

this method is called. In order to incorporate a property change to the glyph a change has

to be made in this method.

Color fillColor_ = (Color) cachedState.get(EventFrame.FILL_COLOR);
if (fillColor_ != null) {

graphics_.setColor(fillColor_);
 graphics_.fill(shape);
}

The above code stub is the lines of code added to draw. The code checks whether

cachedState contains a fill color value. If it doesn’t exist, nothing is done. However,

37

if it exists the color chosen by the user is set as the fill color to the glyph. The glyph is

then re-rendered on the workspace.

Figure 14 provides few screenshots of the new fill color property editor.

4.3.2 Stroke

Once fill color was complete, we felt the glyphs were very plain and needed some

decorations. We wanted to add a feature that could decorate the outer lines of the glyph.

This consequently resulted in the implementation of a stroke editor.

Stroking a Shape is like tracing its outline with a marking pen of the appropriate size

and shape. The area where the pen would place ink is the area enclosed by the outline

Shape. The BasicStroke (33) class defines a basic set of rendering attributes for

the outlines of graphics primitives, which are rendered with a Graphics2D object that

has its Stroke attribute set to this BasicStroke. The rendering attributes defined by

Figure 14: Screenshots of the fill color property editor. (Left) Manifold user interface with the fill

color palette (Top right) Two glyphs with default properties, before the fill color has been applied

(Bottom Right) Two glyphs with fill color applied.

38

BasicStroke describe the shape of the mark made by a pen drawn along the outline of

a Shape and the decorations applied at the ends and joins of path segments of the

Shape. These rendering attributes include:

• width - The pen width, measured perpendicularly to the pen trajectory.

• end caps - The decoration applied to the ends of unclosed sub paths and dash

segments. The three different decorations are: CAP_BUTT, CAP_ROUND, and

CAP_SQUARE.

• line joins - The decoration applied at the intersection of two path segments and at

the intersection of the endpoints of a sub path. The three different decorations are:

JOIN_BEVEL, JOIN_MITER, and JOIN_ROUND.

• miter limit - The limit to trim a line join that has a JOIN_MITER decoration. A

line join is trimmed when the ratio of miter length to stroke width is greater than

the miterlimit value. The miter length is the diagonal length of the miter, which is

the distance between the inside corner and the outside corner of the intersection.

The smaller the angle formed by two line segments, the longer the miter length

and the sharper the angle of intersection. The default miterlimit value of 10.0f

causes all angles less than 11 degrees to be trimmed. Trimming miters converts

the decoration of the line join to bevel.

• dash attributes - The definition of how to make a dash pattern by alternating

between opaque and transparent sections.

All attributes that specify measurements and distances controlling the shape of the

returned outline are measured in the same coordinate system as the original un-stroked

39

Shape. When the Graphics2D object uses a Stroke object to redefine a path during

the execution of the draw method, the geometry is supplied in its original form before

the Graphics2D transform attribute is applied. Therefore, attributes such as the pen

width are interpreted in the user space coordinate system of the Graphics2D object and

are subject to the scaling and shearing effects of the user-space-to-device-space transform

in that particular Graphics2D. For example, the width of a rendered shape's outline is

determined not only by the width attribute of this BasicStroke, but also by the

transform attribute of the Graphics2D object.

The class manifold.swing.editors.StrokeEditor defines the code

necessary to implement the stroke editor. This class implements two interfaces

manifold.PropertyEditor, java.awt.event.ActionListener and

extends javax.swing.JPanel. The JPanel is used to hold two JComponents,

one is a JComboBox and the other is a JTextField (34). JComboBox (35)

combines a button and a drop down list allowing the user to chose a value from the drop-

down list, which appears at the user's request. Here, the JComboBox contains a list of

editable strokes that the user can chose from. JTextField is a lightweight component

that allows the editing of a single line of text. Here, it will allow the user to specify the

width of the stroke. Both the JComboBox and JTextField are added to the

ActionListener via the addActionListener method. This is because the

application has to process an action event when a user clicks the JComboBox and

JTextField. As in the FillColorEditor class, up on clicking either the

JComboBox or JTextField, the ActionListener interface receives action

events. An object created through them is registered with a component, using the

40

component's addActionListener method. When the action event occurs, the

object's actionPerformed method is invoked. Under the actionPerformed

method I have defined the actions to be performed.

public void actionPerformed(ActionEvent event_) {
String item_ = (String) comboBox_.getSelectedItem();

 Float value_ = Float.parseFloat(text_.getText());
 float[] dash1 = {5.0f};
 float[] dash2 ={10.0f};
 float[] dash3 ={15.0f};
 if(item_ != null){
 if(item_ == strokeType_[0]){
 stroke_ = new BasicStroke(value_);

 }

 else if(item_ == strokeType_[1]){

stroke_ = new BasicStroke(value_,
BasicStroke.CAP_ROUND, BasicStroke.JOIN_BEVEL, 10.0f,
dash2, 0.0f);

 }

 else if(item_ == strokeType_[2]){

stroke_ = new BasicStroke(value_,
BasicStroke.CAP_SQUARE, BasicStroke.JOIN_ROUND,
10.0f, dash3, 0.0f);

 }

 else if(item_ == strokeType_[3]){

stroke_ = new BasicStroke(value_,
BasicStroke.CAP_ROUND, BasicStroke.JOIN_BEVEL, 10.0f,
dash1, 0.0f);

 }

 else if(item_ == strokeType_[4]){

stroke_ = new BasicStroke(value_,
BasicStroke.CAP_SQUARE, BasicStroke.JOIN_MITER,
10.0f, dash2, 0.0f);

 }

 else if(item_ == strokeType_[5]){

stroke_ = new BasicStroke(value_,
BasicStroke.CAP_BUTT, BasicStroke.JOIN_MITER, 10.0f,
dash1, 0.0f);

 }

 // Make an event frame to request the application domain
 // for property change.

 Hashtable slots_ = new Hashtable();
 slots_.put(EventFrame.VERB, ControllerImpl.SET_PROPERTIES);

41

 slots_.put(EventFrame.NODE_ID, currentNodeId);
 slots_.put(propertyName, stroke_);

propertiesViewer.getController().sendAsyncEvent(new
EventFrame(slots_));

 }

}

Based on the stroke selected by the user through the JComboBox is assigned to

item_.

String item_ = (String) comboBox_.getSelectedItem();

Based on the users input, the corresponding stroke property is selected and added

to the EventFrame. The values are then added to the cachedState hash table

through the Controller if they do not exist or are updated if they exist in it. During the

creation of a new glyph, a default stroke made available by Graphics2D is applied.

Similar to the implementation of fill color, changes to the draw method in

manifold.impl2D.GeometricFigure are made in order to render the new stroke.

The code stubs added were:

BasicStroke stroke_ = new BasicStroke();
if (cachedState.containsKey(EventFrame.LINE_STROKE)){
 stroke_= (BasicStroke) cachedState.get(EventFrame.LINE_STROKE);
}

graphics_.setStroke(stroke_);

42

The code checks for the existence of the stroke property in the cachedState. If

it exists the new stroke is added to the glyph and the glyph is re-rendered other wise no

action is take and the default stroke is drawn. Figure 15 provides screenshots of the

stroke property editor

Figure 15: Property Viewer with the implementation of the Stroke editor. Surrounding the Property

Viewer are screenshots of the some of the implemented strokes

43

Chapter 5

Event Frame

5.1 Tool, Manipulator, Controller

Tool encapsulates the semantics of user interaction with the application. User

handling of input device(s) generates interaction events, which need to be translated to

actions on the domain model. For example, the user’s activity of depressing the mouse

button and dragging the mouse around the workspace has different meaning, depending

on the currently selected tool. Examples are rotation of a graphical figure, resizing,

translation, etc. Figure 16 displays the Tool Box that encapsulates the features provided

by Tool.

In order to accomplish a user’s action, a Manipulator is created by Tool to carry

out manipulations to a glyph. In other words, Tool encapsulates state and Manipulator

Figure 16: Tool Box encapsulates the features of Tool

Selector

Rotator

Rectangle

Line

Deletor

Text Box

Ellipse

Linker

44

Figure 17: UML diagram summarizing typical input event interpretation in Manifold. The

collaboration diagram accentuates the central role of Tool/Manipulator in this process

(Marsic, I)

encapsulates behavior. A new Manipulator is instantiated (by invoking

Tool.createManipulator()) at the moment the user starts a new interaction cycle

and disposed of at the end of the interaction cycle. An example of “interaction cycle” is:

(1) user depresses a mouse button; (2) drags the mouse across the workspace; and, (3)

releases the mouse button. Elaborating further: input events come from a positional

device such as a mouse. When a new rectangle glyph is created, Tool initiates a new

Manipulator. The manipulator calculates the glyphs co-ordinates in the workspace and

adds them accordingly to a default glyph with preset values. Once the necessary

calculations are done, the manipulator sends an Event Frame to the controller with the

required actions and transformations to be performed on the domain model, in this case

“add node”.

To notify the domain model, an Event Frame is sent to the controller because

manifold is based on a Model-View-Controller (MVC) design. The controller acts as a

gate way to the domain model. Through the controller, the domain is notified about the

request for addition of a new node. The domain will then perform domain specific actions

and during the process (or after) will display its actions in the workspace. Figure 17

summarizes the steps pictorially.

Event →→→→ FrameEvent →→→→ Frame

User

: Tool

: Manipulator

: InputListener

gateway : ?

operate

input device

dispatch input

device event

send

frame to domain

Parsing

: Tool

: Manipulator

: Tool

: Manipulator

: InputListener

gateway : ?

input device

device event

frame to domain

Parsing

45

It can be observed that the user’s actions do not manipulate the domain model

directly. Instead, the users actions are translated to an Event Frame which is sent to the

controller (gateway) requesting for a particular action to take place. Controller is a

single object acting as a gateway between the presentation and domain modules of the

system.

Since the Event Frame contains information about interpretations of the user’s

event. The controller implementation must specify a well-known list of the verbs that will

be used in the event frames generated by the manipulators. The vocabulary is application-

dependant and both manipulators and the application domain must know the meaning of

these verbs. To be more precise, the manipulators must know how to parse the input

events into the verbs (and other slots of the event frame). Application domain must know

what action(s) to take in response to particular event frame. Of course, there is no need

for manipulators to know neither what those actions are nor what their meaning is.

manifold.Controller is an interface which defines the Controller methods.

It is implemented by manifold.ControllerImpl. In our example implementation,

the following verbs are defined in manifold.ControllerImpl:

• public static final String ADD_NODE = "add";

• public static final String DELETE_NODE = "delete";

• public static final String SET_PROPERTIES = "setProperties";

• public static final String PROPERTY_QUERY = "propertyQuery";

Since it is the duty of the event frame to convey a users intents to the controller, it

should be quick and be implemented effectively. Should be portable, and should be easily

46

read by an XML parser. The idea is to able to port this application on to the internet, and

in web domain it is easier if such things are strings as we use an XML parser to parse it.

The current implementation of the EventFrame is a hash table. The idea is to re-design it

to be a string.

This chapter deals with the Event Frame. Its structure and modifications made to

it in order to improve manifolds efficiency. The idea is to be internet viable. The current

implementation of Event Frame is a Hashtable. The need is to convert it to a string.

The viewer uses a translation table to map the raw event into an action represented

by an event frame. The event frame is passed on to the application domain for

interpretation and execution.

5.2 Introduction to Event Frame

Event Frames are frame objects containing the information about the

interpretation of the user event. Frames are normally generated by Manipulators,

which "parse" input device events and convert them into the actions to be performed on

the domain model. The recipient of a frame is usually the Controller object. Frames

are a concept from Artificial Intelligence, introduced by Marvin Minsky of MIT (36; 37).

Though the Manipulator is the primary source of Event Frames, there are

other classes that make use of them. The manifold.swing.TreeViewer,

manifold.swing.PropertiesViewer, manifold.swing.Viewer2DImpl and

classes with in the package manifold.swing.editors are the other classes that

make use of Event Frames for similar purposes, to convey a message to the

47

Controller. Figure 18 displays a UML sequence diagram describing the usage of the

Event Frame in manifold.

5.3 Design

The current implementation of manifold describes the Event Frame class in

manifold.EventFrame. In order for the Event Frame to effectively communicate a

user’s actions to the Controller, the senders of an Event Frame should translate these

actions to an appropriate description of the actions. These descriptions should be easily

understood by the sender and the receiver because the sender needs to encode them while

the receiver needs to decode them. To enable this, the Event Frame creates a table that

Figure 18: UML Sequence diagram showing the usage of Event Frame as a helper in

communicating the user’s intent to the domain model via Controller (gateway)

gateway : ? gateway : ?

evt := create()

GUI toolkit : : InputListener
currentTool

: Tool
manip

: Manipulator
sceneGraph

: Glyph

User

press inp dev

evt

: InputDevEvent

pressEventOccurred(evt)

picked

: Glyph

frame
: EventFrame

manip := createManipulator()

grasp(evt)

pt : = getPoint ()
picked := pick(pt)

id := getId()

frame := create(id)

send(frame)

evt := create() drag inp dev

dragEventOccurred(evt)
manipulate(evt)

evt := create()

GUI toolkit : : InputListener
currentTool

: Tool
manip

: Manipulator
sceneGraph

: Glyph

User

press inp dev

evt

: InputDevEvent

pressEventOccurred(evt)

picked

: Glyph

frame
: EventFrame

manip := createManipulator()

grasp(evt)

pt : = getPoint ()
picked := pick(pt)

id := getId()

frame := create(id)

send(frame)

evt := create() drag inp dev

dragEventOccurred(evt)
manipulate(evt)

48

contains a set of Keys and Values. The keys are set of pre-defined property slot to which

the sender has to assign slot values. At the Controller (receiver), based on the slot values

of the property slots, the Controller requests the domain model to perform necessary

actions. The property slots included in the Event Frame of the current implementation of

manifold are:

• public static final String VERB = "verb", The verb slot of the

frame. It identifies the action that the frame represents. The actions are defined in

manifold.ControllerImpl as:

o add

o delete

o setProperties

o propertyQuery

• public static final String SOURCE = "source", The source

slot of the frame. Also known as the active causal agent instigating the action.

• public static final String NODE_ID = "nodeId", The

identifier slot which identifies the target (glyph) up on which the action is done.

Note: There could be more than one target objects identified here. In such a case,

the object ID’s should be separated by either a coma or a white space.

• public static final String NODE_TYPE = "nodeType", The

logical type slot identifies the type of the model object. It is used to map a glyph

object class when instantiating a new glyph.

• public static final String PARENT_ID = "parentId", The

parents identifier slot, identifies the “parent” object of the model object. This

assumes that objects are organized in a hierarchical structure.

49

• public static final String SOURCE_URL = "source", The

source URL slots for objects downloaded from the web.

• public static final String TRANSFORM = "transform", The

transformation slot. Represents the spatial transformation that is applied to the

objects visual representation

• The graphical style slots, for describing the graphical attributes of a glyph. These

are:

o Public static final String LINE_WIDTH = “line.width”

o Public static final String LINE_COLOR = “line.color”

o Public static final String FILL_COLOR = “fill.color”

o Public static final String LINE_STROKE = “line.stroke”

Based on the user’s actions, it is the responsibility of the sender to instantiate a

new frame and assign the appropriate slot values to the above mentioned property slots.

From the moment a frame is created, slot values assigned by its sender and till the frame

reaches the Controller, it is the responsibility of the EventFrame to maintain the

correct assignment of these slots. In order to accomplish this, the current implementation

of manifold contained a HashTable as the data structure to hold these key and value

pairs. Through the EventFrame’s contructor, this HashTable is set.

private Hashtable slots = null;

public EventFrame(Hashtable slots_) {
 this.slots = slots_;
}

50

In order to describe a user’s action, the sender of a frame needs to create a

HashTable containing slot values of the necessary property slots while not describing

the rest. It is not necessary to fill all the property slots with a value as has been described

in the code stub below. This HashTable is then assigned to the EventFrame via its

contructor. The following code stub describes the user’s action of assigning a fill

color to a selected glyph:

Hashtable slots_ = new Hashtable();
slots_.put(EventFrame.VERB, ControllerImpl.SET_PROPERTIES);
slots_.put(EventFrame.NODE_ID, currentNodeId);
slots_.put(propertyName, color_);
propertiesViewer.getController().sendAsyncEvent(new EventFrame(slots_))

The last line of code is the sender (in this case,

manifold.swing.editors.FillColorEditor) sending the event frame to the

Controller after obtaining the current Controller instance.

manifold.EventFrame describes methods that the Controller can use to

obtain the slots. The current methods described in EventFrame are:

• containsSlot, Informs whether or not there is a slot in this frame with the

specified name. Method returns true if such slot exists, false otherwise.

• getSlots, Accessor for retrieving all the slots of the frame at once. The method

returns a HashTable containing all the slots.

• getSlotValue, Accessor for retrieving individual slots of the frame. The

method returns the value of the slot, or null if this frame does not have such

slot.

51

5.4 Issue

The design of manifold.EventFrame is very simple and so is its purpose.

Any object with in the application that has a need to contact the Controller to convey a

user event to the domain model uses EventFrame. The manifold interface and its

domain model also being fairly simple in its current implementation means that the

number of EventFrame’s sent to the Controller are fewer and so are the number of

different property slots and verbs.

The main idea behind creating manifold is to provide a generic UI which can be

used over any application (domain model). As we know very well, different applications

have different sets of inputs and so the UI should be able to translate a users input on

manifold’s workspace to that of the domain model. Moreover, manifold still being in its

early stages has a lot more features that could be added to it which will be needed by

other domain models. To solve these issues, the MVC design and the EventFrame

were incorporated. Where, the Controller acts as a sole liaison between the manifold

UI and domain model. And the EventFrame conveys user’s intentions (event) in a

standardized format to the Controller to be acted up on the domain model.

The EventFrame being the only “medium” to communicate to the

Controller makes it pivotal in communication between the UI and the domain model.

We envision manifold to grow in to a complex application that would cater to various

complex domain models on the internet. In such a situation, the number of messages sent

between the manipulator and Controller would be enormous. Also, the number

of property slots that will be needed would increase as they require defining every event

in the most appropriate way.

52

Given these issues, we felt that the current implementation of

manifold.EventFrame as a HashTable was inappropriate. Under a small

workload in its current implementation its effects on performance may not be of concern,

but as the UI becomes more complex and support more intricate domain models on the

web, the Hashtable could be a big hindrance. Moreover, choosing an effective hash

function for a specific application is more an art than a science. Although operations on a

hash table take constant time on average, the cost of a good hash function can be

significantly higher than the inner loop of the lookup algorithm for a sequential list or

search tree.

Over the internet, XML is gaining popularity as a way to share and transport data.

One of the most time-consuming challenges for developers is exchanging data between

incompatible systems. XML greatly reduces this complexity, since the data can be read

by different incompatible applications. Owing to its wide popularity and adoption in

various applications we have considered adopting it in manifold. The current

implementation of manifold uses XML at a modest level. As the application moves

towards a web domain XML will be adopted extensively.

As XML gets adopted more widely, efficient parsing of XML documents is more

and more critical. It is very important to have an efficient way to parse XML data,

especially in applications that are intended to handle large volumes. Improper parsing can

result in excessive memory usage and processing times that can hurt scalability.

For parsing in Java, several types of XML parsers are available (e.g. DOM, SAX,

StAX). An XML parser takes as input a raw serialized string and performs certain

operations on it. This being the case, we felt that in a web domain a HashTable would

53

again not be very effective. According to (38), XML syntax is redundant to binary

representations of similar data, especially with tabular data. We felt that instead of a

using a Hashtable to represent the EventFrame we should use a comma separated

String that would make it easier for the XML parser to parse data.

Given the above mentioned issues with the Hashtable we decided to replace it

with a comma separated String. This chapter describes my work on this new design of

manifold.EventFrame and the subsequent changes I made to the application for it to

work.

5.5 New EventFrame Design

In the current implementation of manifold.EventFrame, a

java.util.Hashtable (39) holds the property - value slot in a (key, value)

respectively. We propose a comma separated java.lang.String (40) to hold

those values instead. Figure 19 summarizes the idea.

KEY VALUE

Property 1 Value 1

Property 2

Value 2

Property 3

Value 3

Property 4

Value 4

Property 5

Value 5

(a)

(Property 1, Value 1, Property 2, Value 2, Property 3,

Value 3, Property 4, Value 4, Property 5, Value 5)

(b)

Figure 19: A pictorial representation of (a) HashTable that is used in the current implementation of

EventFrame (b) the new proposed String implementation

54

Figure 19-(b) describes the new idea, where the property - value slots are placed

adjacent to each other separated by a comma. Moreover, the property and values in the

slots are also separated by commas. While this may seem a trivial task of replacing a

HashTable with a String, it wasn’t as simple it seemed. Primarily because of the

applications extensive dependence on manifold.EventFrame. Manifold relies on

EventFrame in sending varied information to the Controller. This information

may also be a Java.lang.Object (41) and not just a String as described in

earlier sections. The current implementation being a java.util.HashTable had no

issues in holding a java.lang.Object as one of its Value’s. However, in the proposed

new idea a java.lang.Object is unacceptable with in java.lang.String! The

second issue that I faced was regarding the vast code changes that I had to make in order

to make the various Classes of manifold to use the new EventFrame. The issues faced,

and the solution to these problems has been explained in further sections.

5.6 Re-Engineering: New EventFrame Format

With out changing the basic structure of the EventFrame, I replaced the

HashTable with a java.lang.String. The resulting changes to the constructor

were,

private String slots = null;
public EventFrame(String slots_) {

this.slots = slots_;
}

55

The getSlot method in EventFrame which returns the frame was implemented

by replacing the return value to a String.

public String getSlots() {
 return slots;
}

The containsSlot method checks for the existence of a slot with a specified

name in the frame. In the old design, to check for existence of a slot a HashTable

method containsKey was used. It returns a Boolean true if it exists else false.

Java.lang.Strings does not provide a method which searches for the existence of a

sub-string and returns a Boolean value. To achieve this a few extra lines of code had to

be written. The results were achieved by using the indexOf method in

java.lang.String. indexOf method returns the index of the first occurrence of the

specified substring. If the substring argument occurs with in this String, the index of

the first character of the first such substring is returned; if it does not occur as a substring,

-1 is returned. Since a particular slot is specified only once in a frame, the indexOf

method is appropriate (40). The containsSlot method was implemented using the

indexOf method on the String and checking for a “-1” return value. If -1 was

returned a Boolean false was returned by the containsSlot method else true.

public boolean containsSlot(String slotName_) {
 boolean find = false;
 if(slots.indexOf(slotName_)!= -1){
 find = true;
 }
 return find;
}

56

The third method, getSlotValue returns individual slots of the frame. Under

the old design this was easily implemented by using the get method of HashTable. In

the new design, every slot is comma separated and all the slots are placed adjacent to

each other also separated by a comma (as shown in Figure 19-(b)). To search for a slot

value, the best way would be to break the String in to tokens and search for the slot

name. Once obtained the next token will be the correct slot value. Tokens are small

chunks of words formed from a String based on a simple rule. In this case, the comma

defines the rule and breaks the String in to tokens. This idea was achieved by using

java.util.StringTokenizer. The StringTokenizer class allows an

application to break a String into tokens. The delimiter (rule) was set via the

contructor of the class. A code stub of the method has been provided below,

public String getSlotValue(String slotName_) {
 String slotValue_ = null;
 st_ = new StringTokenizer(slots,",");

// checks whether the slot with slotName_ exists
 if(containsSlot(slotName_)){
 while(st_.hasMoreTokens()){
 slotValue_ = st_.nextToken();

 // Checks for slotName_. When found return the next token
 if(slotValue_.equals(slotName_)){
 slotValue_ = st_.nextToken();
 break;
 }
 }
 }

return slotValue_;
}

57

Till now, changes were made only to the existent methods of EventFrame.

While these methods were sufficient for EventFrame under the old design, they

weren’t for the new design. Manifold uses Hashtables at several locations. For

example, the cachedState described in earlier sections is a Hashtable which holds

properties of a glyph. And the Controller has a Hashtable called model which is a

Hashtable of hashtables that simulates the domain model. In the earlier implementation,

the EventFrame being a hash table resulted in several direct assignments of the

EventFrame to these and other hashtables. Such as,

1. model.put(id_, frame_.getSlots().clone());

2. Hashtable newProps_ = frame_.getSlots()

I order to make these assignments viable with out greatly changing the code of

manifold itself; I implemented a new method called getHashSlots. getHashSlots

returns a HashTable representation of the String frame. This was implemented as follows,

public Hashtable getHashSlots(){
 Hashtable hashtable_= new Hashtable();
 if(slots != null){
 st_ = new StringTokenizer(slots,",");
 while(st_.hasMoreTokens()){
 String key_ = st_.nextToken();
 String value_ = st_.nextToken();
 hashtable_.put(key_, value_);
 }
 }
 return hashtable_;
}

In a Hashtable, the put method maps a specified key to a specified value.

If the key already exists then the previous value of the key is replaced with the new

58

value and the old value is returned. A remove method on the other hand removes the

key-value pair from the hash table and returns the old value. These two methods were

occasionally used in the Controller. In order to cater to these requirements I created

two new methods namely remove and replace that would provide the same effects in

the String implementation of EventFrame. As in a HashTable, the remove

method in the new design removes a specified slot from the String and the replace

method replaces a specified slot with a new slot value. Code stubs of the remove and

replace methods have been provided below,

public String remove(String slotName_){
 String key_;
 String value_ = null;
 String tempSlot_ = new String();
 st_ = new StringTokenizer(slots,",");
 if(containsSlot(slotName_)){
 while(st_.hasMoreTokens()){
 key_ = st_.nextToken();
 value_ = st_.nextToken();
 if(key_.equals(slotName_)){
 continue;
 }

 else{
 tempSlot_ = (tempSlot_ + key_ + "," + value_ + ",");
 }
 }
 }
 //Ensures that the last "," is removed.
 slots = tempSlot_.substring(0, (tempSlot_.length()-1));;
 return value_;
}

public String replace(Object slotName_, Object newValue_){
 String oldValue_ = null;
 if(containsSlot((String)slotName_)){
 oldValue_ = remove((String)slotName_);

slots = (slots + "," + (String)slotName_ + "," +
(String)newValue_);

 }
 return oldValue_;
}

59

5.7 Modifications to Manifold

Earlier sections of this chapter had discussed EventFrame’s role in manifold.

It required a sender to create a new frame containing all the relevant event information

and a receiver that would receive this frame and translate the information to the domain

model. In manifold the receiver is the Controller while the sender is typically the

Manipulator. However, there are instances from the PropertiesViewer,

TreeViewer and manifold.swing.editors package that use EventFrame.

These Classes till now depended on the old EventFrame format to communicate.

Which means the application by itself was designed to recognize the EventFrame as a

Hashtable. Following the changes to the EventFrame, the manifold application

wouldn’t cater to the new design of EventFrame because of the new String format.

For instance, in a typical case of creating an EventFrame the sender would first create

a HashTable containing all the necessary slots. It would then assign these slots to a

new instance of EventFrame and send the frame to the Controller, as shown in the

following code stub

Hashtable slots_ = new Hashtable();
slots_.put(EventFrame.VERB, ControllerImpl.SET_PROPERTIES);
slots_.put(EventFrame.NODE_ID, currentNodeId);
slots_.put(propertyName, color_);
propertiesViewer.getController().sendAsyncEvent(new EventFrame(slots_))

Under the new format creating a frame with the same information is a trivial task,

which was obtained by

60

String slots_ = new String();
slots_ = (EventFrame.VERB + "," + ControllerImpl.SET_PROPERTIES + ","
 + EventFrame.NODE_ID + "," + currentNodeId + ","
 + propertyName + "," + color_.getRGB());
propertiesViewer.getController().sendAsyncEvent(new EventFrame(slots_))

Creating a new frame seems easy as long as the contents of the slots are also

Strings. However, this wasn’t the case every time. The above code stubs are an

example of this situation. Under the slot propertyName an Object of java.awt.Color

was being assigned. While this was fine with a Hashtable, this is totally unacceptable

with a String. A String can not hold any other Object other than a String. If the

Object assigned to it isn’t a String, it will have to be converted to a String before

being assigned. Such assignments of Objects to the EventFrame were common

through out the application and had to be dealt with in order to enable the application to

function.

Once an Object has been converted to a String, it is difficult to obtain the same

instance of the Object back. One of the options was to use the Java Reflections API but

even they wouldn’t solve the problem entirely. Another idea was to re-consider the

format of EventFrame to hold both String slots and Hashtable slots. Where the

Hashtable’s would contain the non String Objects and the String slots would

contain all the Strings.

String slots_ = new String();
Hashtable hashSlots_ = new Hashtable();
slots_ = (EventFrame.VERB + "," + ControllerImpl.SET_PROPERTIES + ","
 + EventFrame.NODE_ID + "," + currentNodeId);
hashSlots_.put(propertyName, color_);

61

propertiesViewer.getController().sendAsyncEvent(
new EventFrame(slots_, hashSlots_));

But this didn’t suit the purpose either as it wouldn’t be any different from the

original EventFrame format and hence XML “unfriendly”. It was subsequently

realized that in order to incorporate the new EventFrame format a bold step of

changing parts of Manifold had to be taken.

The following sections describe the changes made to various classes of manifold.

5.7.1 manifold.ControllerImpl

Controller is an interface implemented via the

manifold.ControllerImpl. Two methods mainly deal with EventFrame

namely, sendAsyncEvent and sendSyncEvent. sendAsyncEvent

asynchronously sends a given event frame to the domain model. While the

sendSyncEvent synchronously sends a given event to the domain model. Since the

current implementation of Manifold.ControllerImpl does not have a domain

model attached, the event frames are stored in a Hashtable called model. Since the

previous implementation of EventFrame was a Hashtable, the EventFrame was

stored in it as a Hashtable.

model.put(id_, frame_.getSlots().clone());

Following the changes, the model was designed to an EventFrame as an

Object.

62

model.put(id_, frame_);

5.7.2 manifold.impl2D.tools.*

manifold.impl2D.tools is a package which holds the Classes describing the

implementations of the various tools of manifold. These are the manipulators and are the

primary source of EventFrame’s. Changes were made regarding the creation of an

EventFrame. The changes made in this context were regarding the assignment of slots

to Strings instead of a Hashtable.

The new format was,

String slots_ = (EventFrame.VERB+","+ControllerImpl.SET_PROPERTIES+ ","
 + EventFrame.NODE_ID + "," + currentGlyph.getId() + ","
 + EventFrame.TRANSFORM + "," + stringMatrix_);

viewer.getController().sendAsyncEvent(
 new EventFrame(slots_));

Instead of,

Hashtable slots_ = new Hashtable();
slots_.put(EventFrame.VERB, ControllerImpl.SET_PROPERTIES);
slots_.put(EventFrame.SOURCE, this);
slots_.put(EventFrame.NODE_ID, currentGlyph.getId());
slots_.put(EventFrame.TRANSFORM, flatmatrix_);

viewer.getController().sendAsyncEvent(
 new EventFrame(slots_));

A transformation matrix is a double array holding the transformation of the glyph

in the local co-ordinates. The manipulator being the implementer of various tools had to

deal extensively with the transformation matrix. This being an Array Object, it could

63

not be sent via a String due to reasons explained earlier. To over come this issue, I

incorporated two methods with in the EventFrame that would convert a double to a

semi-colon separated String

public String editToFlatString(double[] flatMatrix_){
String flatString_ = "";

for(int i_=0; i_<flatMatrix_.length;i_++){
flatString_= (flatString_ + String.valueOf(flatMatrix_[i_])+";");
}

return flatString_;
}

And a method to get back the double from a String

public double[] editToFlatmatrix(String stringMatrix_){
 st_ = new StringTokenizer(stringMatrix_, ";");
 double[] flatMatrix_ = new double[st_.countTokens()];
 int i_ = 0;
 while(st_.hasMoreTokens()){
 flatMatrix_[i_] = Double.parseDouble(st_.nextToken());
 i_++;
 }
 return flatMatrix_;
}

Each time a transformation matrix had to be sent via an EventFrame, it was

converted to a semi-colon separated string before appending it to the String. And

following it reaching its intended destination it was reconverted back to a double array.

5.7.3 manifold.swing.editors.*

This package holds the Classes describing the property editors. These Classes

incorporated the EventFrame to send property change events to the Controller.

64

The properties are generally Java Objects of type Color, Stroke etc. While under

the old implementation of EventFrame, these Objects were directly added to the

Hashtable this would be inappropriate with the new implementation. So instead of

sending a Color Object I sent its RBG and instead of sending the Stroke as an

Object I converted it to a semi-colon separated String and appended them to the

EventFrame. Following the changes, changes also had to be made to the classes that

set these properties to the appropriate selected Glyph namely

manifold.impl2D.GeometricFigure.

In manifold.impl2D.GeometricFigure, code stubs before and after the

changes have been provided below

For Fill Color, before the EventFrame changes

Color fillColor_ = (Color) cachedState.get(EventFrame.FILL_COLOR);
if (fillColor_ != null) {
 graphics_.setColor(fillColor_);
 graphics_.fill(shape);
}

Changed to

if (cachedState.get(EventFrame.FILL_COLOR) != null) {
Color fillColor_ = new Color(
Integer.parseInt(cachedState.get(EventFrame.FILL_COLOR).toString(
)));

 graphics_.setColor(fillColor_);
graphics_.fill(shape);

}

For BasicStroke, before the EventFrame changes

65

if (cachedState.containsKey(EventFrame.LINE_STROKE)){
 stroke_= (BasicStroke) cachedState.get(EventFrame.LINE_STROKE);
}
graphics_.setStroke(stroke_)

Changed to,

if (cachedState.containsKey(EventFrame.LINE_STROKE)){
StringTokenizer st_ = new
StringTokenizer(cachedState.get(EventFrame.LINE_STROKE).toString(
), ";");

 float width = Float.parseFloat(st_.nextToken());
 int cap = Integer.parseInt(st_.nextToken());
 int join = Integer.parseInt(st_.nextToken());
 float miterLimit = Float.parseFloat(st_.nextToken());
 float[] dash = {Float.parseFloat(st_.nextToken())};
 float dashPhase = Float.parseFloat(st_.nextToken());

BasicStroke stroke_ = new BasicStroke(width, cap, join,
miterLimit, dash, dashPhase);

 graphics_.setStroke(stroke_);
}

5.8 Performance

Following the code changes, a performance test was performed between the old

manifold UI and the new manifold UI with the modified EventFrame format. These

tests were performed to test the effectiveness in terms of time for the new EventFrame

to send the users information to the controller.

These experiments describe the time take to complete one full interaction cycle. A

description of the interaction cycle and the results has been provided in the following

sections.

Tests were performed on my laptop with the following configurations:

Processor: Mobile Intel (R) Pentium (R) 4

66

Speed: 3.06 GHz

RAM: 512 MB

Operating System: Microsoft Windows XP Service Pack 2 (Version 2002)

Java: Java Development Kit (JDK) 6

Platform: Eclipse SDK, Version 3.0.4

5.8.1 Application Loading Time

The time in milliseconds taken by both the applications to load was tested. The

results are based on 5 trials. Results have been displayed in the graph below.

Figure 20: Displays results of the application startup time of the Original manifold and Modified

manifold with the new EventFrame. Y-Axis displays time in milliseconds (ms) and X-Axis are the

trials.

67

5.8.2 EventFrame Performance: Selector Manipulator

The Selector manipulator is responsible for selecting a glyph. The results

shown below describe the time taken for the applications to “consider” a glyph selected

once a user has selected it. This happens when the application acknowledges the change.

The figure above displays the points between which the test was conducted.

Time has been measured from the instance an event is generated by the user

clicking on the glyph (sends an event) till the application acknowledges the users action

and displays the result on the screen. During the process EventFrame’s are sent to the

Controller by the Selector Manipulator.

In order to record the results, 5 trials were conducted. The average time taken by

the system to display a selected glyph was calculated by using the formula:

Time Interval = T2 - T1

Avg. Time =

Avg. Time for Original Manifold = 127.20 ms

Figure 21: Displays the points between which the measurements were made in order to calculate the

time take by the selector manipulator to make and display the selection.

MANIFOLD

Manipulator

Core

C
o
n
tr
o
ll
er

Event Frame

D
o
m
ai
n

Mouse

T1 T2

68

Avg. Time for Modified Manifold = 61.80 ms

Figure 22: Displays results of the performance of EventFrame with the Selector Manipulator of the

Original manifold and Modified manifold with the new EventFrame. Y-Axis displays time in

milliseconds (ms) and X-Axis are the trials.

5.8.3 EventFrame Performance: Fill Color Editor

Fill Color fills the interior of a glyph with a specified Color. The results shown

below describe the time taken by the application to fill a glyph with a specified Color.

The figure above displays the method used to calculate the performance of the fill color

editor.

69

Figure 23: Displays the points between which the measurements were made in order to calculate the

time take by the Fill Color editor to add a fill color to the selected glyph.

Figure 24: Displays results of the performance of EventFrame with the Fill Color Editor of the

Original manifold and Modified manifold with the new EventFrame. Y-Axis displays time in

milliseconds (ms) and X-Axis are the trials.

In order to record the results, 5 trials were conducted. The average time taken by

the system to display a selected glyph was calculated by using the formula:

MANIFOLD

Manipulator

Core

C
o
n
tr
o
ll
er

Event Frame

D
o
m
ai
n

Mouse

T1 T2

70

Time Interval = T2 - T1

Avg. Time =

Avg. Time for Original Manifold = 1861.20 ms

Avg. Time for Modified Manifold = 1503.80 ms

5.8.4 EventFrame Performance: Creator Manipulator

Figure 25: Displays the points between which the measurements were made in order to calculate the

time taken to create a glyph and display it on the screen.

Every time a glyph is created an EventFrame is generated. These tests display

the time taken to send 10 EventFrame’s between the Creator Manipulator and The

Controller. The figure above displays the technique used to measure the time taken

to create a glyph.

Time was measured between the moments the user drags the mouse over the

workspace by clicking on it till he releases it. In order to maintain consistency in this drag

MANIFOLD

Manipulator

Core

C
o
n
tr
o
ll
er

Event Frame

D
o
m
ai
n

Mouse

T1 T2

71

and release process, I used only one click which results in a default glyph. The interval of

time between 10 such glyphs was measured.

Figure 26: Displays results of the performance of 10 EventFrame’s of the Original manifold and

Modified manifold with the new EventFrame. Y-Axis displays time in milliseconds (ms) and X-Axis

are the trials.

72

Figure 27: Displays results of the performance of 50 EventFrame’s of the Original manifold and

Modified manifold with the new EventFrame. Y-Axis displays time in milliseconds (ms) and X-Axis

are the trials.

The above graph displays the time taken to send 50 EventFrame’s between the

Creator Manipulator and The Controller.

Time was measured between the moments the user drags the mouse over the

workspace by clicking on it till he releases it. In order to maintain consistency in this drag

and release process, I used only one click which results in a default glyph. The interval of

time between 50 such glyphs was measured.

In order to record the results, 5 trials were conducted for a set of 10 Event Frames

generated and 50 Event Frames generated. The average time taken by the system to

display a selected glyph was calculated by using the formula:

Time Interval = T2 - T1

Avg. Time =

73

Avg. Time for Original Manifold = 303.95 ms

Avg. Time for Modified Manifold = 250.35 ms

5.8.5 EventFrame Performance: Drag Drop Feature

These tests were performed by dragging the glyphs handle along the workspace

hence re-sizing the glyph. A handle are the anchor points on the glyph that are used to re-

size the glyph.

Each time the handle is moved along the work space, a set of Event Frames are

generated by the Selector Manipulator which sends then to the Controller. The

measurements here were taken by measuring the time taken by the Selector to send

1000, 1500 and 2000 Event Frames to the Controller.

Figure 28: Displays the points between which the measurements were made in order to calculate the

time taken by the Event Frame to be transported between the Manipulator and Controller.

MANIFOLD

Manipulator

Core

C
o
n
tr
o
ll
er

Event Frame

D
o
m
ai
n

Mouse

T1 T2

74

Figure 29: Displays results of the performance of EventFrame’s of the Original manifold and

Modified manifold using the Selector tool. Y-Axis displays time in milliseconds (ms) and X-Axis

are the number of EventFrames.

In order to record the results, trials were conducted for a set of 1000 Event

Frames, 1500 Event Frames and 2000 Event Frames. The average time taken by the

system to send an Event Frame across the system is:

Time Interval = T2 - T1

Avg. Time =

Avg. Time for Original Manifold = 34.12 ms

Avg. Time for Modified Manifold = 28.39 ms

75

Chapter 6

Future Work

The features incorporated in to manifold so far are basic and provide limited

functionality. But what makes the application exciting is that any developer can add as

many new features as he desires and the type of these features can be left to his/her

imagination, such is the design of manifold. A basic platform has been created that only

has to be enhanced to make it a better application. This can be done by developing newer

feature. While features are one part the other part would be to enhance the performance

of the application in various ways. This section describes the scope of future work that

can be done on manifold to enhance its features and performance.

There are certain features included in manifold which do not serve the purpose

they were intended to. Below are described some of these features and how they can be

incorporated. Newer features that can be incorporated in to manifold to provide the user

with multitude of options have also been described. Several of these ideas can be

imagined to be similar in functionality to those in popular applications such as Microsoft

PowerPoint, Microsoft Word and Microsoft Paint.

6.1 Text Box

 The textbox is a tool that can be used by a user to create text on the workspace.

The current implementation of manifold on displays this option but does not implement

76

it. In the current implementation a user can draw a textbox across the workspace but can

not write anything with in it. This is because the events generated by the keyboard do not

have a listener with in the application. Future scope is to implement an

ActionListener that listens to the users events from the keyboard and display them

with in the textbox of the workspace. One can draw parallel ideas from the

implementation of a similar textbox in Microsoft PowerPoint where the user can draw a

textbox with in the workspace (in this case slides) and display text with in it. Added

features to this would be the ability to stretch or compress the textbox while preserving

the text with in the textbox as in MS PowerPoint. Additional features to the textbox

would be to provide the user a set of property editors with which the user can modify its

properties. Like, the user can assign color to the text, vary font, vary the fill and border

color of the textbox.

6.2 Linker

 The Linker is another dummy feature with in the current implementation of

manifold. The linker is a line that has connection points at the ends of the line and stays

connected to the glyph that you attach it to. Current implementation only displays this

provision but does not implement it. However, ground work has been laid to facilitate this

feature. manifold.impl2D.tools.linker is responsible for implementing this

feature. While the class does not describe the process of linking two glyphs it does

contain methods that listen to mouse actions and can recognize the node id of the glyph

currently under the mouse cursor. This greatly reduces the work required to implement

the linker feature.

77

 Future scope of work which is required is to incorporate features that will allow

the mouse to automatically grab the closest handle (connection point) of the first glyph to

the mouse cursor when a manipulation cycle has begun. And similarly be able to grab the

closest handle (connection point) to the mouse cursor on the second glyph in order to

complete the manipulation cycle. This can be realized by highlighting the handles closest

to the mouse cursor when the cursor is on the glyph and as it is moved over them. These

highlighted handles indicate where the linker can be attached to. When glyphs joined by

linkers are rearranged, the linkers remain attached to and move with the shapes. If either

ends of a connector is moved, that end detaches from the glyph, and it can then be attach

to another connection site on the same glyph or attached to another glyph. After the linker

attaches to a handle, the linker should stay connected to the shapes no matter how the

glyph is moved. An additional feature would be tor provide three types of linkers:

straight, elbow (angled), and curved.

6.3 Manipulating Multiple Glyphs

 The current implementation of manifold allows multiple selections of glyphs but

does not allow the user to change their properties as a group. For example, one can draw

a selection box around multiple glyphs but will not be able to drag this selection box

around the work space. Only one glyph can be acted up on at a time. The option making

this possible would be a useful feature.

78

6.4 New Property Editors

The list of new properties editors that can be incorporated can be enormous and

best be left to the imagination of the developer. However, one feature of interest that we

felt is important is to provide the user an option to move the glyph either to the

background or foreground in a group of glyphs.

Another added feature would be to provide the user an option to Preview his

actions before they are performed on the glyph. This would mean that the

manipulator sends events to the domain while the object is being manipulated. Most

editors allow “preview,” through animation, and perform actions on the domain model

only at the end of manipulation. This would be a cool feature.

6.5 Workspace Background Color

 Most of the features covered so far are glyph specific. A new feature to change

the “look” of the workspace will be a nice feature. A provision to fill the background

with a fill color or placing a picture/clip art will provide the user with greater flexibility

and options.

6.6 Thread Issues

If you anticipate working only with small domain models (with correspondingly

small number of glyphs) and you are thread-thrifty, you may decide not to run Display

in a separate thread. Rather, Display is asked to perform redraws within the current

thread. How to redesign Display to be able to make this choice (threaded vs. non-

79

threaded) at runtime? Also, depending on the particular GUI toolkit used for the Manifold

implementation, the toolkit may have mechanism for the frame rate control. This should

be possible to exploit from Display.

80

Conclusion

Many of the user interface ideas that you may have seen articulated elsewhere,

will be found implemented in Manifold. The Manifold framework presented here

provides a domain-independent implementation of a presentation module. It translates the

user’s pointing gestures into action frames that are delivered to the underlying application

domain. The conversational metaphor is exploited throughout the framework.

 My work rid the application of the multitude of issues that inhibited it from

functioning the way it was designed to. The changes to the application following the

addition of the property viewer resulted in a fully functional application with working

line color editor and line width editor.

 I incorporated newer property editors to the property viewer panel that provides

users enhanced options to change the properties of a selected glyph. These new properties

included a fill color editor that fills the interior of a glyph with a user specified color and

a stroke editor that changes the stroke of a selected glyph.

 The EventFrame is responsible for translating the user’s actions to a form that

can be understood by the underlying domain model. I re-engineer the design of the

EventFrame by changing its slot container to a String from a Hashtable. The

changes to the EventFrame and the subsequent changes to the code to incorporate the

new EventFrame resulted in enhanced performance of the application.

81

 In conclusion, Manifold is currently completely error free and includes several

newer property editors. The changes to the EventFrame enhanced the performance of

frame transfer rate from a manipulator to the Controller.

82

References

1. Wikipedia: Graphical User Interface, Online at:

http://en.wikipedia.org/wiki/Graphical_user_interface.

2. I. Marsic, Manifold User Interface Framework, Rutgers University, NJ, 2005.

3. I. Marsic, An architecture for heterogeneous groupware application, Proceedings of

the 23rd IEEE/ACM International Conference on Software Engineering (ICSE 2001),

Toronto, Canada, pp. 475-484, May, 2001.

4. F.Flippo, A.Krebs and I.Marsic, A framework for rapid development of multimodal

interfaces, Proceedings of the 5th International Conference on Multimodal Interfaces

(ICMI 2003), Vancouver, B.C., Canada, pp. 109-116, November 2003.

5. B.A. Mayers, A Brief History of Human-Computer Interaction Technology, ACM

interactions, 1998.

6. Wikipedia: Glyph, Online at: http://en.wikipedia.org/wiki/Glyph.

7. G. Krasner and S. Pope, A cookbook for using the model-view-controller user
interface paradigm in smalltake-8, Journal of Object-Orienter Programming, vol. 1,

no. 3, pp. 26-49, 1988.

8. E. Gamma et al, Design Patterns: Elements of Reusable Object-Oriented Software,

Addison Wesley Longman, Inc, Reading, MA, 1995.

9. C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development, 3
rd
 edition, Prentice Hall PTR,

Upper Saddle River, NJ, 1995.

10. JavaBeans Component Architecture Webpage, Online at:

http://java.sun.com/products/javabeans/.

11. Sun Microsystems: Java 2D Tutorial, Online at:

http://java.sun.com/docs/books/tutorial/2d/index.html.

12. J.M., Vlissides, UniDraw: A framework for building domain-specific graphical

editors. [ed.] T. Lewis. Object-Oriented Application Frameworks. Greenwich, CT :

Manning Publications, Co., 10, pp. 239-290, 1995.

13. J.M. Vlissides and M.A. Linton. Unidraw: A framwork for building domain-specific

graphical editors. ACM Transactions on Information Systems. Vol. 8, 3, pp. 237-268,

July 1990.

83

14. S.H. Tang and M.A. Linton, Blending structured graphics and layout, 7th ACM

Annual Symposium on User Interface Software and Technology (UIST), Marina Del

Ray, CA . pp. 167-173, November 1994.

15. S. Churchill, Structured graphics in Fresco, C++ Report, pp. 61-68. 3, March/April

1995.

16. Sun Microsystems: Class JComponent, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JComponent.html.

17. Sun Microsystems: Class JPanel, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JPanel.html.

18. Sun Microsystems: Class JLabel, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JLabel.html.

19. Sun Microsystems: Interface Iterator, Online at:

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Iterator.html.

20. Sun Microsystems: Class NullPointerException, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/NullPointerException.html.

21. Sun Microsystems: How To Write an Action Listener, Online at:

http://java.sun.com/docs/books/tutorial/uiswing/events/actionlistener.html.

22. Sun Microsystems: Interface ActionListener, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/java/awt/event/ActionListener.html.

23. Sun Microsystems: How To Use Panels, Online at:

http://java.sun.com/docs/books/tutorial/uiswing/components/panel.html.

24. Sun Microsystems: Class GridLayout, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/java/awt/GridLayout.html.

25. Sun Microsystems: Javax.Swing package, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/package-summary.html.

26. Sun Microsystems: Class Color, Online at:

http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Color.html.

27. Sun Microsystems: Class JColorChooser. Sun Java, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JColorChooser.html.

84

28. Sun Microsystems: How to Use Color Chooser, Online at:

http://java.sun.com/docs/books/tutorial/uiswing/components/colorchooser.ht

ml.

29. Sun Microsystems: Class JButton, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JButton.html.

30. Sun Microsystems: How to use Buttons, Checkboxes and Radio Buttons, Online at:

http://java.sun.com/docs/books/tutorial/uiswing/components/button.html.

31. Sun Microsystems: Interface Shape, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Shape.html.

32. Sun Microsystems: Class BasicStroke, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/java/awt/BasicStroke.html.

33. Sun Microsystems: Class JTextField, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JTextField.html.

34. Sun Microsystems: Class JComboBox, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JComboBox.html.

35. M.L. Minsky, A Framework for Representing Knowledge, MIT-AI Laboratory

Memo, MIT, Cambridge, MA, pp 306, June 1974.

36. P.H. Winston, Artificial Intelligence, 3rd Edition, Addison-Wesley Publishing

Company, Inc., Reading, MA, 1992.

37. Harold, Elliotte Rusty. Processing XML with Java(tm): a guide to SAX, DOM,

JDOM, JAXP, and TrAX, ISBN: 0201771861, Addison-Wesley Publication, Inc,

2002.

38. Sun Microsystems: Class Hashtable, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Hashtable.html.

39. Sun Microsystems: Class String, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html.

40. Sun Microsystems: Class Object, Online at:

http://java.sun.com/j2se/1.3/docs/api/java/lang/Object.html.

