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ABSTRACT OF THE DISSERTATION 

Estimating the process of speciation for humans and chimpanzees 

By YONG WANG 

 

Dissertation Director:  

Jody Hey 

 

 

One of the most fascinating questions for evolutionary scientists is “How did 

humans arise as a new species?” In the last seventy years, two major schools of theory, 

allopatric speciation and sympatric speciation, have been developed and applied to 

explain the speciation process. Allopatric theory attributes the inducement of speciation 

to the establishment of geographic barriers that abruptly divide the ancestral population 

into two reproductively isolated groups, while sympatric theory emphasizes the role of 

divergent selection, leading to assortive mating and gradually diminishing gene flow. 

The two different scenarios should leave distinct footprints in the derivative genomes 

of the emerging species. Many mathematical methods have been developed to study 

human-chimpanzee speciation history by studying the genetic variation pattern in 

current human and chimpanzee populations. However, most methods either fail to 

incorporate sympatric speciation, or use datasets that don’t provide enough information 

about ancient divergence. In this study, we developed a new maximum likelihood 

method for analyzing genome data under the ‘isolation with migration’ model. Testing 

with simulated datasets demonstrates that this method is capable of generating accurate 

estimates regarding both current and ancient evolutionary histories. We applied this 
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method to the whole-genome alignment of human, chimpanzee and orangutan. The 

estimated human-chimpanzee speciation time is 4.3 million years (Myr). This estimate 

is in agreement with several previous studies. A more important finding of our study is 

a weak but significant one-way gene flow from the chimpanzee to the human 

population (0.002 migrations per generation). Simulation studies confirm that this gene 

flow is not an artifact created by within-locus recombination or violation of other 

assumptions of our method. A further analysis finds that the gene flow from 

chimpanzees into humans and chimpanzees persisted for a limited period of time, 

subsequent to the initial separation. These results lead us to favor a speciation process 

for humans and chimpanzees that includes some limited genetic exchange. 
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Chapter One 

Introduction 
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Speciation is an evolutionary process that splits a single species into two 

reproductively isolated lineages, and understanding the speciation process is fundamental 

to evolution research. A classic model for speciation process was described by 

Dobzhansky (1936) and Muller (1940). In their model, the ancestral species was separated 

by a geographic barrier (major mountains, rivers, etc.) that completely blocked gene flow 

between two isolated (allopatric) subpopulations. Independent evolution in the two 

subpopulations led to accumulation of randomly fixed incompatible mutations, which 

then created reproductive isolation and finalized the speciation process. This model is 

called allopatric speciation. An alternative model for this process is sympatric speciation 

(Maynard Smith, 1966) (Felsenstein, 1981). The sympatric speciation model does not 

invoke a geographic separation, but rather suggests that divergent selection, driven by 

competition for resources, habitats and mates, creates local adaptation within a spatially 

homogenous population. The local adaptation then induces assortive mating via 

pleiotropy (and/or hitchhiking) and reproductive isolation gradually develops between 

adaptively divergent subpopulations. A major difference between the two speciation 

models concerns the question of whether gene flow exists during the process of 

speciation. Because gene flow has a homogenizing effect that works against divergence, 

it is believed that strong divergent selection is required to overcome the effect of gene 

flow and allow speciation. As a result, Mayer {Futuyma, 1980 #126} suggested that one 

should use allopatric speciation as a null model when study the speciation process.  

 

Over the last several decades, many experiments have been designed to duplicate the 

process of speciation in particular organisms (mostly fruit flies). In their 1993 review, 
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Rice and Hostert (Rice and Hostert, 1993) summarized the results from a large number of 

experimental studies. They found no conclusive evidence for genetic drift to create 

reproductive isolation among isolated populations. On the other hand, multiple studies 

provided strong support for the establishment of reproductive isolation under divergent 

selection in allopatric populations. Using strong and multifarious divergent selection, 

several studies were able to find the same isolation in sympatric populations. These 

results lend feasibility to sympatric speciation theory. To accompany the experimental 

results with theoretical support, Rice and Hostert proposed a scenario where moderately 

strong divergent selection initially creates partial reproductive isolation. As this partial 

reproductive isolation reduces gene flow, other characters can become more gently 

selected, generating further isolation. After a number of cycles, this positive-feedback, 

run-away process will ultimately proceed to the level of complete reproductive isolation. 

 

The human-chimpanzee speciation event is one of the more interesting objects in 

evolutionary research. “When did humans separate from chimpanzees?” “Which 

evolutionary forces drove this process?” These are important questions to be answered by 

evolutionary biologists. Although it is impossible to duplicate this speciation process in 

the laboratory, historical evolution has left distinct footprints in current human and 

chimpanzee genomes, which allow us to infer their evolutionary history by studying the 

genetic variation pattern found in current human and chimpanzee populations. Early 

studies of human-chimpanzee speciation have been dominated by an assumption of 

allopatric speciation. According to the allopatric model, the human-chimpanzee 

divergence consists of two components, divergence both before and after the speciation 
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event, proportional to the ancestral population sizes and the speciation time respectively 

(Takahata, 1986). Based on this idea, Takahata and colleagues studied 13 pairs of human 

and chimpanzee sequences and obtained the maximum likelihood estimates of the two 

divergence components (0.005 prior to speciation, 0.010 after speciation). From these 

two estimates, they calculated that humans diverged from chimpanzees approximately 4.6 

Myr ago and the effective population size of the human lineage was ~83,000, before 

speciation.  

 

Another widely used method for studying human evolutionary history is called the 

tree mismatch method (Nei, 1987) (Wu, 1991), which exploits the fact that ancestral 

polymorphism creates conflicts between the species tree and the gene tree and estimates 

the ancestral population size, along with the speciation time, by equating the proportion 

of mismatched gene trees to the theoretical expectation (Rannala and Yang, 2003). Chen 

and Li (Chen and Li, 2001) applied this method to 53 coding contigs from human, 

chimpanzee, gorilla and orangutan, and obtained estimates of 6.2 and 8.4 Myr for human-

chimpanzee and human-gorilla speciation time, with an estimate of  96,000 for the 

effective population size of the common ancestor of humans and chimpanzees.  

 

In addition, many likelihood-based methods have been developed on the basis of 

Felsenstein’s classic treatment (Felsenstein, 1988), which relates a dataset to the 

parameters of a population model by introducing the unknown gene tree (G) as a 

nuisance variable that is removed by integration (Hey, 2006). 
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=
G

ParametersGGDataDataParametersL )|Pr()|Pr()|(  (1.1) 

Burgess and Yang (Burgess and Yang, 2008) developed a method that approximates the 

integration in (1.1) using a Markov Chain Monte Carlo simulation. Their method was 

then used for analysis of a large data set of ~7.4 Mb aligned sequences from 5 primate 

species (Patterson et al., 2006). The results showed that human and chimpanzee 

populations diverged from each other at about 4 Myr ago. 

 

In recent years, evolutionary biologists have begun to look at the human-chimpanzee 

speciation process from a sympatric point of view. If it is really selection that gradually 

leads to complete reproductive isolation, genetic exchange should then be prohibited first 

in regions surrounding genes under strong divergent selection (or called by the name 

“speciation genes”). As a result, these “speciation genes” should diverge much earlier 

than the rest of the genome and demonstrate greater divergence, relative to the genomic 

average (Takahasi and Innan, 2008). Based on this idea, Osada and Wu (Osada and Wu, 

2005) adapted Takahata’s approach (Takahata, 1986) to compare human-chimpanzee 

divergence in coding versus non-coding sequences. Their likelihood ratio test revealed a 

significant smaller average divergence in non-coding sequences. This result matched the 

expectation of sympatric speciation, as coding sequences are more likely to be subject to 

selection. In another study, Navarro and Barton  (2003) examined the idea that 

chromosomal rearrangement served the role of “speciation genes” (Rieseberg, 2001). 

They analyzed 115 genes (59 from nine pericentric inversions and one choromosomal 

fusion, 56 from co-linear chromosome sequences) in terms of the non-synonymous 

versus synonymous substitution ratio (KA/KS). They found that the ratio in rearranged 



6 
 

chromosomes was more than twice as large as that in co-linear chromosomes, supporting 

the role of chromosomal rearrangements in promoting the reproductive isolation. 

However, their conclusion has been criticized by other authors (Lu et al., 2003) (Hey, 

2003) and should be viewed with caution. Another controversial study by Patterson 

(Patterson et al., 2006) compared human-chimpanzee divergence between sequences on 

the X chromosome and those on the autosomes.  Their results indicated reduced 

divergence along the entire X chromosome, even after accounting for the difference in 

population size and mutation rates between X chromosome and the autosomes. To 

explain the phenomenon, Patterson proposed a hypothesis that a period of hybridization 

happened, following the initial isolation of human and chimpanzee populations. A flaw of 

Patterson’s conclusion, as pointed out by Barton (Barton, 2006) and Wakeley (Wakeley, 

2008), is that he did not statistically test his hypothesis against the null hypothesis of 

simple allopatric speciation. In addition, Wakeley (Wakeley, 2008) found that Patterson 

used a relatively small male-to-female mutation ratio, which will result in the  

underestimation of X chromosome divergence . Several attempts have been also been 

made to extend the likelihood method based on Felsenstein’s equation to study the gene 

flow during divergence process. For example, Innan and Watanabe developed a 

maximum likelihood method to detect gene flow in the ancestral population (Innan and 

Watanabe, 2006). Applying their method to a dataset of ~17 Mb of human-chimpanzee 

orthologs, they found no evidence for gene flow. However, they did not rule out the 

possibility of sympatric speciation, though they did suggest that using a larger dataset 

would help to infer the true evolutionary history. 
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Many methods described above are intended for data sets with samples from many 

individuals at a few loci. One difficulty for these methods is, because the effective 

population size of modern humans and chimpanzees has been relatively small in the 

recent past, almost all lineages within each species will have coalesced more recently 

than the human-chimpanzee speciation event. Therefore, sampling more individuals at 

known positions will not provide much extra information (Barton, 2006). Fortunately, 

with recent improvements in DNA sequencing methodology, entire-genome sequences 

have become available from at least small numbers of humans, chimpanzees and other 

apes. Using rapid methods to analyze these new data, we should be able to gain some 

new insight into the speciation process for humans and chimpanzees. 

 

The current research is aimed at studying the process of human-chimpanzee 

speciation. In particular, it aims to examine whether gene flow existed during the 

speciation process. Chapter Two describes a newly developed maximum likelihood 

method for analyzing genomic data under the ‘isolation with migration’ model. Unlike 

many other coalescent-based likelihood methods, this method does not rely on sampling 

genealogies, but rather provides a precise calculation of the likelihood by numerical 

integration over all genealogies. Simulation studies demonstrate that this method 

generates accurate estimates for population parameters, including gene migration rates, 

and therefore has the statistical power to differentiate between allopatric and sympatric 

speciation models. The maximum-likelihood method was then applied to the whole-

genome alignment of human, chimpanzee and orangutan. Chapter Three presents the 

results of the estimation. Significant one-way gene flow from chimpanzees to humans 
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(0.002 migrants per generation) is reported. Results from simulation studies, which 

confirm that gene flow is not an artifact created by recombination or violation of other 

assumptions, are also presented. A further analysis finds that gene flow is likely to be 

restricted to a time period following initial separation. These findings are in agreement 

with the expectation of sympatric speciation theory. The final chapter concludes our 

current research and presents the significance of our results. Some limitations of our 

study are also discussed. 
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ABSTRACT 

Many methods have been developed that adapt coalescent models to the divergence 

process between closely-related populations. Most methods are intended for data sets 

with samples from many individuals at few loci. Such data are good for inferring recent 

population history but are unlikely to contain much information about more ancient 

divergence. In recent years, the growing availability of genome sequences offers another 

potential source of data. Data sets extracted from whole genome alignments include DNA 

sequences sampled from very few individuals but at a very large number of loci. To take 

advantage of these data, we developed a new maximum likelihood method for analyzing 

genomic data under the ‘isolation with migration' model. Unlike many coalescent-based 

likelihood methods, the method does not rely on sampling genealogies, but rather 

provides a precise calculation of the likelihood by numerical integration over all 

genealogies. We demonstrate that our method works well on simulated data sets. We also 

consider two models for accommodating mutation rate variation among loci. We find the 

model that treats mutation rates as random variables leads to better estimates. 
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INTRODUCTION 

In the study of speciation researchers often inquire of the extent that populations 

have exchanged genes as they diverged, and on the time since populations began to 

diverge. Answers to questions about historical divergence and gene flow potentially lie in 

patterns of genetic variation that are found in present day populations. To bridge the gap 

between population history and current genetic data, population geneticists often make 

use of a gene genealogy G as a nuisance variable (Griffiths, 1989). A gene genealogy is a 

bifurcating tree that represents the history of ancestry of sampled gene copies. The 

introduction of G provides a way to connect parameters of a model of divergence to the 

data. The probability of a particular value of G can be calculated for a particular 

parameter set, typically using coalescent models. Then given a particular genealogy, 

genetic variation can be examined using a mutation model that is appropriate for the kind 

of data being used. Finally by considering multiple values of G, the connection can be 

made between the population evolution history and the data. A mathematical 

representation that treats G as a key interstitial variable was given by Felsenstein 

(Felsenstein, 1988): 

dGGGXXXL 
Ψ

Θ=Θ=Θ )|Pr()|Pr()|Pr()|( ,                                               (2.1) 

where X represents the sequence data, G represents gene genealogy, Ψ represents the set 

of all possible genealogies and Θ represents the vector of population parameters included 

in the model.  
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Unless sample sizes are very small (2.1) cannot be solved analytically, and so 

considerable effort has gone into finding approximate solutions (Griffiths, 1989; Kuhner 

et al., 1995; Wilson and Balding, 1998). One general approach is to sample genealogies 

using a Markov chain Monte Carlo simulation. Kuhner and colleagues (Kuhner et al., 

1995) used an MCMC simulation to draw a large sample of genealogies from the 

distribution Pr(G|X, Θ0), conditioned on a driven parameter vector Θ0. With a sample of 

genealogies the relative likelihoods for other values of Θ are evaluated by importance 

sampling. Another approach (Nielsen, 2000; Rannala and Yang, 2003; Wilson and 

Balding, 1998) uses a prior probability, Pr(Θ), and MCMC simulations are performed to 

sample (Gi, Θi) pairs from the joint posterior distribution Pr(G, Θ|X). Given enough 

running time, the marginal density curve of Θi will converge to Pr(Θ|X). Both approaches 

allow extensions to the basic coalescent to include migration (Beerli and Felsenstein, 

1999, 2001; Nielsen and Wakeley, 2001). A general problem for these methods is that 

they usually require long running times to generate sufficiently large and independent 

samples, especially when the MCMC simulation is mixing slowly. 

 

With fast-improving DNA sequencing techniques, more and more genome 

sequences are becoming available, and alignments of these whole-genome sequences 

provide a potentially very useful source of information for the study of divergence. 

However traditional MCMC methods are likely to be slow on genome-scale data because 

running times are proportional to the number of loci. To overcome this difficulty Yang 

developed a likelihood method (Yang, 2002) for data sets containing one sample from 

each of the three populations at every locus. This method uses numerical integration to 
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calculate the likelihood function in formula (2.1). By using a very large number of loci, 

the method can make up for using a very small number of individuals (i.e. genomes). 

 

Yang’s method is based on a divergence model which assumes no gene flow 

between separated populations. However there are many situations where gene flow may 

have been occurring and where it is preferable to use a model that includes gene flow 

(Hey, 2006) (Nosil, 2008). One model that has been used frequently in this context is the 

‘isolation with migration’ (IM) model, which incorporates both population separation and 

speciation and migration (Nielsen and Wakeley, 2001).  

 

However, it is not straightforward to extend a numerical integration method, such as 

Yang’s (Yang, 2002), to a model that includes gene flow. Under an IM model the 

genealogies include not only some fixed number of coalescent events and speciation 

events, but also any possible number of migration events. The potential for very large 

numbers of migration events complicates the sample space of G and makes the numerical 

integration seemingly impossible. Innan and Watanabe (Innan and Watanabe, 2006) 

circumvent this problem by using a recursion method to estimate the coalescent rates on a 

series of time points. In recursion, the accuracy in calculating coalescent rate at one time 

point depends on the accuracy of calculation at previous time points. This may impair the 

precision of the likelihood calculation. Therefore, we have developed a method that 

solely relies on numerical integration to calculate the likelihood under an IM model.  
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THEORY AND METHODS 

We employ a two-population IM model (Figure 2.1) and assume selective neutrality. 

For convenience the two extant populations and the ancestral population are named Pop1, 

Pop2 and PopA respectively. For any one population the population size parameter is 

θ=4Nu, where N is the effective population size and u is the neutral substitution rate. The 

population size parameters for the three populations in the model are denoted as θ1, θ2 

and θA. A migration event from Pop1 to Pop2 (in the coalescent direction, back in time) is 

represented by M1→2 and a migration event in the reverse direction is represented by 

M2→1. Migration rate parameters have units of migrations per mutation event, i.e. m=m/u, 

where m is the migration rate per generation. Rates of the two kinds of migration events 

are denoted as m1 and m2. The speciation time parameter is T=tu, where t is the time since 

splitting in generations. In total the model includes six parameters: θ1, θ2, θA, m1, m2 and 

T.  

 

One key to integrating over genealogies with migration events is to realize that the 

probability of the data given the genealogy is unaffected by migration events in the 

genealogy; Pr(X|G), depends on G only through branching topology and branch lengths. 

In other words, all genealogies that share the same coalescent events contribute 

identically to Pr(X|G). Let G* denote a group of genealogies with the same coalescent 

events (but different migration events). If there is a way to calculate Pr(G*|Θ) together for 

all genealogies in G*, then  
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 Θ=Θ=Θ
*

*** )|Pr()|Pr()|Pr()|(
ψ

dGGGXXXL                                         (2.2) 

 

The new integrand is estimated over the sample space of G*, which is of much lower 

dimensionality relative to G. Here, we show that for the simple case where only a pair of 

genes are sampled from two populations, Pr(G*|Θ) can be calculated directly for the 

‘isolation with migration’ model. The performance of the method is tested on simulated 

data sets.  

 

Coalescent time distribution 

Two gene copies are sampled at each locus, and we consider first the case when one 

is from Pop1 and the other from Pop2. These two genes coalesce at some time point t. If 

the coalescent event happened before both genes enter the ancestral population (i.e. t<T), 

then an odd number (2x+1, x=0, 1, 2…) of migration events must occur before they 

coalesce, dividing t into 2x+2 time intervals. During each interval, the ancestral lineages 

of the two samples reside in one of the three possible states: 

S11: both ancestral lineages are in Pop1, 

S12: one ancestral lineage is in Pop1 and the other is in Pop2, 

S22: both ancestral lineages are in Pop2. 

 



16 
 

A migration event will result in a specific switch from one state to another, as shown 

in Figure 2.2. A coalescent can only happen in two states (S11 or S22), when both genes 

are in the same population. Assuming they coalesce in S22, there have been 2x+1 

migration events, x+1 of which are M1→2 and x of which are M2→1. Furthermore, of the 

2x+2 time intervals: x+1 are in state S12; y (0≤y≤x) are in state S11; and x-y+1 are in state 

S22. We denote the total duration of these three categories of time intervals as U, V, and 

W (=t-U-V), respectively. Then  

)]2()2(22exp[2)|Pr( 21
21

2
1

1
2

WUmVUmWVmmG xx +−+−−−=Θ +

θθθ
      (2.3) 

(Beerli and Felsenstein, 1999; Hey and Nielsen, 2007). Swapping θ1 with θ2, m1 with m2 

gives the probability of a genealogy in which the coalescent event happens in Pop1. 

 

The exponential function in (2.3) depends only on five variables: x, y, U, V and W. 

The total probability of a group of genealogies, which share the same value for these five 

variables, can be calculated by permutation and convolution. 
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Integrating (2.4) over the five variables (under the constraint U+V+W=t) gives: 


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(2.5) 

This is the total probability of all the genealogies that share the same coalescent time t 

(<T). To the best of our knowledge, there is no analytical solution to the integration in 

(2.5). However the function can be precisely approximated by using numerical 

integration methods. Note that W=t-U-V, meaning that the integration is over two 

variables instead of three. 

 

If the coalescent event happens after T, then at time point T, both genes are either in 

the same population (S11 S22) or in different populations (S12). The probabilities of these 

two scenarios, denoted as Q0(T,Θ) and Q1(T,Θ) respectively, are: 

),,,(),,,(),,,('

),,,('),,,(),(

2211

0
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Both Q0 and Q1 can be evaluated by numerical integration. And the probability of 

all genealogies sharing coalescent time t (>T), is: 

)](2exp[2)],(),([)|Pr( 10
* TtTQTQG

AA

−−Θ+Θ=Θ
θθ

 , for t>T. (2.8) 

 

Note that in both (2.5) and (2.8), swapping parameter θ1 and m1 with θ2 and m2 does 

not change the value of the functions. This suggests that the likelihood surface is 

symmetric and sampling one sequence from each population won’t provide enough 

resolution for estimating population parameters. Also, in the case when both migration 

rates are close to zero, it is impossible to estimate the size of sampled populations when 

each locus is sampled once from each population. To permit estimation of all parameters, 

we consider the case where two genes are sampled from the same population (either Pop1 

or Pop2) at additional loci. The probability of these genealogies can be derived and 

evaluated in essentially the same way as described above (See Supplement Methods).  
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A computer program was written to implement an adaptive multidimensional 

integration routine for the two-dimensional integration in (2.5) and (2.7). The adaptive 

routine estimates a function on a hypercube(s) based on cubature rules, returning an 

estimate of the integral together with an estimate of the error (Johnson, 2005). After each 

iteration, the routine picks the hypercube with the largest estimated error and divides it 

into two. The routine stops after the estimated integral converges. Romberg integration 

(Press et al., 1992) is then used to integrate over t in (2.2). Both simulated annealing and 

the downhill simplex method as implemented by PRESS et al. (Press et al., 1992) are used 

to search for the maximum likelihood estimator.  

 

Mutation rate variation 

If it is assumed that all loci have the same mutation rate, then none of the variation 

that is observed among loci is considered to be caused by variation in the mutation 

process. We implement this model and identify the method as the “single-rate method” in 

order to compare it to models that allow for variation in the mutation rate. In general we 

expect that methods allowing for variation in mutation rate will be preferable. Failing to 

account for such variation is expected to lead to an overestimate of the variance in the 

coalescent process as compensation for the lack of variance in mutation, and therefore 

should introduce significant bias to the estimates of ancestral population size and species 

divergence time. (Yang, 1997) 
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In an MCMC application of the IM model additional locus-specific mutation scalars 

are assigned to each locus (Hey and Nielsen, 2004). During the MCMC run, these 

mutation scalars are allowed to vary, subjecting to the constraint that the product of all 

scalars equals 1. This approach is effective when multiple sequences are sampled 

(Burgess and Yang, 2008; Hey and Nielsen, 2007). However, as our method uses only 

two genes at each locus, there is not enough information to partition the variation among 

loci into that due to variance in coalescent times and that due to variance in mutation 

rates. Another method uses the average distance from an outgroup sequence to the sample 

sequences to calculate a relative mutation rate for each locus (Yang, 2002). A problem 

for this method is that outgroup-sample genealogy shares part of its branch with sample-

sample genealogy. This creates an additional correlation between the outgroup-sample 

distance and the sample-sample distance and may introduce bias to the parameter 

estimates. To avoid these issues, we develop two new methods that we identify as ‘fixed-

rate’ and ‘all-rate’ respectively. Both methods rely on sampling an extra pair of 

sequences, each from an outgroup population, to provide information on mutation rates. 

When the two chosen outgroup populations have separated from each other for a long 

time and haven’t exchanged genes after initial separation, the variance in coalescent time 

of these two outgroup sequences is small compared to the long population splitting time 

and can be neglected. Also, the genealogy of the two outgroup sequences is independent 

of the genealogy of the sampled sequences. Under such circumstances the distance 

between the two outgroup sequences becomes a good indicator of the locus-specific 

mutation rate.  
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For the fixed-rate method, the distance between the two outgroup sequences, is used 

to calculate a fixed mutation scalar for each locus. For example, the mutation scalar of 

the ith locus (μ i) is estimated as the outgroup distance (di) divided by the average 

outgroup distance along all loci ( d ), 

ddii /=μ
                                                         

(2.9) 

These fixed rate scalars are used in the calculation of Pr(X|G) during the search for the 

maximum likelihood.  

 

Outgroups are also used for the all-rate method, but rather than using them to set 

fixed mutation rate scalars, the divergence between outgroups for each locus is 

considered as part of the data. The joint probability of the data is found by assuming a 

Gamma (or Uniform) prior, P(μ i), for the scalars and by integrating over them;  

= iiiOOiOO dPTXGXTGXX μμμμ )(),|Pr(),|Pr(),|,Pr(                     (2.10) 

Here the outgroup distance is represented by XO and the time of common ancestry of the 

outgroups is TO. When an Infinite-Sites mutation model is applied (Kimura, 1969), the 

integration in (2.10) can be solved analytically.  

 

Test on Simulated Data 

Simulations assuming a single mutation rate: We tested the performance of the 

method on two groups of data sets simulated under the six-parameter IM model assuming 
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a single mutation rate for all loci. The first group were simulated under a model of bi-

directional migration, with parameter values θ1=0.005, θ2=0.003, θA=0.002, m1=50, 

m2=100 and T=0.003. The numerical values for population size and splitting time 

parameters are much less than one, and the values for the migration rate terms are high, 

because the mutation rate component of these parameters is assumed to be on a per-

basepair scale and thus to be quite low. The second group of data sets was simulated 

without migration, using population parameter values θ1=0.005, θ2=0.003, θA=0.002, 

m1=0, m2=0 and T=0.003. These parameter values describe a history in which the 

divergence time was fairly long ago, relative to population size (i.e. the ratio of the 

population size parameter to the divergence time parameter is on the order of 1). This 

means that considerable genetic drift will have occurred following population separation 

and the large majority of genealogies are expected to coalesce before the splitting time. 

To examine how much data the method requires we simulate data sets with different 

numbers of loci. For each data set, two genes are sampled at each locus from one of three 

source types: type “12”, where one gene is sampled from each population; and types “11” 

and “22”, for samples where each gene comes from the same population. We expect loci 

of the “12” type to provide more information on ancient population history (i.e. θA and T) 

and loci of the “11” and “22” types to provide more information on recent population 

history (i.e. θ1 and θ2). Thus, in addition to varying the total number of sampled loci, we 

also examine the effect of varying the size of the three categories of samples. In total we 

simulated data with 9 different sets of category sizes (Table 2.1). For each combination of 

population parameters and category sizes, we simulated 10 data sets. Locus length is 

fixed at 1000 basepairs. Data was simulated assuming an infinite-sites mutation model 
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(i.e. all mutations at different points in the sequence) and without recombination, with 

each locus having an independent coalescent history (i.e. free recombination between 

loci).  

 

After simulation, each data set was analyzed by searching for the joint maximum 

likelihood estimate (MLE) for all six parameters. The precision standard of the numerical 

integration routines is set at 10-6 for the log-likelihood of a single locus. This means that 

for a data set of 10,000 loci, our calculated log-likelihood of the whole data set has an 

estimated error less than 0.01. For the ten data sets simulated under the same parameters 

and sample sizes, we calculated the mean and standard deviation of the MLEs (Table 2.1). 

We also plot the mean MLEs in Figure 2.3, with error bars for the standard deviation 

(SD). For data sets containing no “11” type of loci, we omit the plots for θ1 estimates due 

to their having a very large variance.  

 

We analyze the quality of parameter estimates ( Θ̂ ) using two statistics: bias 

( ΘΘ−Θ /)ˆ(E ) and mean square error (MSE, 22 /))ˆ(( ΘΘ−ΘE ). Bias is a measure of 

accuracy, whereas the mean square error reflects both accuracy and precision. Since both 

statistics are scaled by the true value of the parameter, we omit the calculation when the 

true value is zero.  
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Mutation rate variation: For each vector of parameter values, 10 data sets were 

simulated with mutation rate variation. Each data set consists of 10,000 loci (2500 type 

“11”, 5000 type “12”, and 2500 of type “22”). A mutation scalar is assigned to each locus 

at the start of the simulation. These scalars are generated from a Gamma(15, 15) 

distribution having a mean value of 1. An extra pair of outgroup sequences is simulated at 

each locus, using the same mutation scalar. The common ancestor time of the two 

outgroup sequences (TO) is set to 0.015, which is 5 times the value for T used in the 

simulations. Each data set is analyzed using both the fixed-rate and the all-rate methods. 

For the all-rate method we considered four different prior distributions of mutation rates. 

First we applied three gamma priors, all with the same mean of 1.0, but with different 

variances (0.10, 0.67 and 0.05). We also considered a uniform prior (U(0,∞)). This prior 

is attractive because it is uninformative, however it is an improper prior with an infinite 

mean.  
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RESULTS 

Accuracy of estimates 

The means and standard deviations of parameter estimates are listed in Table 2.1 and 

shown in Figure 2.3. Biases and MSEs are listed in Table 2.2. With an input of 10,000 

loci distributed across all three types of samples (Table 2.1and Figure 2.3), the method 

generates estimates that are quite close to the true values of the parameters, with all true 

values falling in the range of one SD away from the mean MLE. For set III simulations 

the mean MLEs for migration rates have a bias <14% and the mean MLEs for the other 

parameters all have a bias <2% (Table 2.2). As expected, the quality of estimates goes 

down with decreasing total number of loci. For data sets of 1000 loci (set II), the true 

parameter values still fall within one SD of the mean, but with considerably larger MSEs. 

Similarly for data sets of only 100 loci (set I) the MSEs are much larger, although bias for 

most parameters is still low. In this case the mean MLEs for m1 and θA have an estimated 

bias of 60.7% and 14.3% respectively.  

 

In addition to the effect of the total number of loci, we see that the quality of 

parameter estimates depends on the numbers of the three categories of loci. As expected 

the estimates of θA and T are strongly affected by the number of type “12” loci. When this 

is set to 5000, the method provides quite accurate estimates for θA and T (all biases<2.5% 

and all MSE<0.005), even when the data set contains no type “11”. We also see that 
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estimates of θ1 and θ2 improve quickly with more “11” and “22” type of loci, respectively 

and that accurate estimation of m1 and m2 requires high numbers of all three types of loci.  

 

To examine more closely the way that likelihood varies with each parameter we 

estimated the profile likelihood function and 95% confidence intervals for each parameter 

for two randomly picked 10,000 locus data sets. The profile likelihood is the maximized 

likelihood function conditioned on a selected focal parameter of interest. Figure 2.4 

shows the profile likelihood curves, and Table 2.3 shows the 95% confidence intervals 

(CI) calculated from these curves based on the standard assumptions of a likelihood ratio 

test. The result shows that, for both parameter sets, all true parameters fall in range of the 

95% CI. And for data sets simulated with positive migration, we can reject the hypothesis 

of no migration based on the fact that 0 falls outside of the 95% CI for both m1 and m2. 

These curves also reveal some issues that arise for models that include migration. In the 

first place the 95% CIs for θ1, θ2, θA and T are narrower for data sets simulated without 

migration. Secondly, the confidence intervals for m1 and m2 are relatively wider than for 

the other parameters.  

 

Mutation Scalar Methods 

In the simulation studies described above, all data were simulated with a single 

mutation rate for all loci. However for real data the substitution rates vary across the 

chromosome, and neglecting such variance may result in misleading estimates. To 

address this we analyzed data simulated under a model in which mutation rates were 
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sampled from a Gamma(15,15) distribution and then analyzed these data under both the 

fixed-rate method and the all-rate method.  

 

Results shown in Table 2.4 and Figure 2.5 confirm that neglecting the variance in 

mutation rates can lead to poor estimation. The single-rate method tends to overestimate 

migration rates and ancestral population size while underestimating population splitting 

time and population sizes for sampled populations. As Table 2.5 shows, estimates 

generated by the single-rate method have the largest bias. The fixed-rate method 

generally gives better estimates (smaller bias for all parameters except θA) than the 

single-rate method. However, the fixed-rate method still overestimates ancestral 

population size and underestimates population splitting time. The all-rate method leads to 

the most accurate estimates, and it appears that using Gamma prior results in slightly 

better result than using the improper uniform prior. It also appears that using different 

shape/scalar parameters for the gamma prior has only a small effect on the estimation, as 

all three gamma priors that were considered lead to similar estimates. Based on these 

results the all-rate method is the method of choice. 

 

We also looked at profile likelihoods for a small sample of data sets simulated with 

mutation rate variation and analyzed using the all-rate method with a Gamma (15, 15) 

prior. Figure 2.6 shows the profile likelihood curves, and from these the 95% confidences 

intervals were calculated as described above. As for the single-rate results (Table 2.3 and 

Figure 2.4), all true parameter values fall in the range of 95% CI. For the data set 
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simulated with non-zero migration, we can reject the hypothesis of no migration because 

0 falls out of the 95% CI for both m1 and m2. The profile likelihood for the shape/scale 

parameter of the gamma prior is shown in Figure 2.7, and we note that the estimated 

MLE for the gamma prior is close to the true value of 15 used in the simulations.  
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DISCUSSION 

In this paper we describe a new likelihood-based inference method for the ‘isolation 

with migration’ model. This method resembles Yang’s method (Yang, 2002) by using 

numerical integration to evaluate the likelihood function. Consequently, both methods 

share the same limitation in that they can’t handle data with large samples at each locus. 

However they can handle data from many independently segregating loci. The situation 

raises the question of just how sampling should ideally be proportioned: more loci with 

few gene copies each? Or fewer loci with more gene copies per locus?  

 

In 2006, Felsenstein studied the accuracy of maximum likelihood estimates of 

effective population size for a single population (Felsenstein, 2006). Using simulated data 

he found the accuracies of the MLE were well predicted by the formula developed by Fu 

and Li (Fu and Li, 1993). According to the formula, the accuracy of the estimation is 

proportional to the number of loci, and approximately proportional to the logarithm of the 

number of sampled genes at each locus. This result agrees with the conclusion of 

Pluzhnikov and Donnelly(Pluzhnikov and Donnelly, 1996) that it is optimal to take small 

samples from populations. Felsenstein noted that this is because the increase in total 

branch length by sampling extra sequences goes down as the sample size becomes bigger. 

Although Felsenstein’s study was performed on only a single population, the reasoning 

can be extended to the case of ‘isolation with migration’ model, especially when the 

population splitting time is long compared to both extant population sizes and migration 

rates are not high. Under this scenario, two samples from the same population will most 
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likely coalesce before they either enter the ancestral population or migrate into the other 

population. Thus, estimating the effective population size of a sampled population is 

similar to the case of estimating the size of a single population, favoring samples with a 

large number of loci with two gene copies from the population for which the size 

parameter is to be estimated.  

 

The estimates for ancestral population size and population splitting time depend 

primarily on samples from different populations, in which case they coalesce only after 

they enter the ancestral population or after one of them migrate into the other population. 

This process may take a long time unless migration is high. When additional samples are 

collected, they tend to coalesce with genes from the same population and contribute little 

to the length of the genealogy. Since the estimation of ancestral population size and 

population splitting time relies on old coalescent history, it appears that it’s better to have 

a large number of loci with one sample from each population.  

 

Estimating migration rates also benefits from more loci with one sample from each 

population, because longer branches are more likely to carry migration events. However, 

the occurrences of migration events can be detected only if two samples from different 

populations coalesce before entering the ancestral population. This means that it is not 

possible to estimate migration rates well without also estimating population sizes well. 

Therefore, in order to achieve good estimates for migration rates, it is preferable to have 

multiple loci of all three types. This is in agreement with our results from simulation data. 
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Many statistical methods in population genetics must somehow deal with the 

question of how much of the variation that is observed among loci is due to variation in 

the actual mutation rate. Some methods assume that there is no variation of this type and 

that all base positions have the same mutation rate (Becquet and Przeworski, 2007; Innan 

and Watanabe, 2006). For data that match this assumption our method, using the single-

rate assumption, performs quite well (Figure 2.3). The problem however, for such 

methods that assume no mutation rate variation, is that when they are applied to real data 

that do vary in mutation rate, the additional variance will be attributed to variance in the 

coalescent process. 

 

If indeed loci really do have different mutation rates, then the question arises how 

best to use information from outgroup species to account for this variation. If outgroup 

populations have been separated for enough time, the variance in the coalescent process 

may be ignored and the expected outgroup divergence is proportional to the local 

mutation. Thus one direct way to estimate a relative mutation scalar for a locus is to use 

the observed outgroup divergence at that locus. However even if we assume that there is 

no variation due to the coalescent in the outgroup divergence, the variance of outgroup 

divergence still includes both a variance among mutation rates and a stochastic variance 

of the mutation process. By using a fixed mutation scalar derived from the outgroup 

divergence we are in effect treating all of the variance in outgroup divergence as being 

due to mutation rate variation. For the purpose of illustration, assume there is actually no 
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variation in mutation rate among loci. Under these circumstances some loci will still have 

larger (or smaller) outgroup divergences due to random variation in the mutation process, 

and this variation will be interpreted as variation in mutation rates. When these variable 

fixed rates, that were actually sampled from a process with no mutation rate variation, are 

applied to the model, the introduced variation leads to additional variation in the 

coalescent times. We identify this effect of overestimating the variance in sample 

coalescent time as “over-compensation”. As a result of over-compensation we expect to 

overestimate ancestral population size and to underestimate population splitting time. 

These biases are in agreement with our results on simulated data (Figure 2.4 and Table 

2.5). Burgess and Yang also found similar trends in their study (Burgess and Yang, 2008). 

 

An alternative to using a fixed mutation rate for each locus, based on outgroup 

divergence, is to treat the mutation scalar as a random variable. In this method we 

consider outgroup divergence as part of the data, and the joint likelihood of sample 

divergence and outgroup divergence is integrated over a prior distribution for the 

mutation scalar. This is equivalent to integrating the likelihood function over the 

posterior distribution of the mutation scalar that is derived from outgroup divergence. 

Our analyses with this all-rate method, and a prior gamma distribution, yielded estimates 

with the least bias, compared to results for other ways of handling the mutation rate 

scalars. We also observed little sensitivity of estimates to the choice of the gamma 

distribution parameter. 
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The method described here is designed for data sets with very small samples for 

very large numbers of loci. Specifically it can be applied in cases where data is available 

from two genomes, from each of two closely related species. As DNA sequencing 

techniques advance, we can anticipate growing availability of multiple whole-genome 

sequences for pairs of recently diverged species. Although we do not yet have two 

genome sequences from each of two closely related species, we can anticipate some of 

the issues that will arise when preparing the data for analysis. One large issue is the 

choice of outgroup species, which need to have been separated for a relatively long time, 

so that the ancestral polymorphism is small compared to divergence. On the other hand, 

these populations should not be too far away from the populations under study to guard 

against the possibility of not sharing in actual mutation rates.  

 

Two other key issues are recombination and selection. Our method follows basic 

coalescent theory by assuming mutational neutrality, no recombination within loci and 

free recombination between loci. Violation of these assumptions will impair the validity 

of the analysis and bring bias to the estimation (Takahata et al., 1995). Thus, loci that 

undergo selection or recombination during the divergence process needs to be removed 

from the input data. When multiple (≥2) genome sequences from each population are 

available, several statistic tests are available for screening for possible selection events, 

either by comparing nonsynonymous and synonymous substitutions (dN/dS test (Li et al., 

1985)), or by comparing polymorphism and divergence (HKA test(Hudson et al., 1987)). 

To guard against within-locus recombination, we suggest using short sequences. We also 
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suggest that sequences be taken from genome locations that are separated by sufficient 

distance so that their evolutionary histories are effectively independent of each other. 
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TABLES 

TABLE 2.1  

Mean and standard deviation of maximum likelihood estimates 

“11” “12” “22” θ 1 θ 2 θ A m 1 m 2 T

0.00429(0.00119) 0.00301(0.00107) 0.00169(0.00107) 80.360(96.111) 100.668(142.789) 0.00303(0.00067)

0.00556(0.00325) 0.00326(0.00123) 0.00167(0.00087) 3.485(10.092) 19.537(36.135) 0.00323(0.00047)

0.00556(0.00074) 0.00297(0.00045) 0.00205(0.00024) 43.927(21.427) 114.992(46.319) 0.00293(0.00018)

0.00491(0.0004) 0.00300(0.00022) 0.00191(0.00019) 2.267(4.689) 6.393(16.118) 0.00310(0.00012)

0.00509(0.00016) 0.00297(0.00015) 0.00200(0.00004) 43.111(6.005) 110.283(16.236) 0.00300(0.00003)

0.00497(0.00019) 0.00295(0.00010) 0.00202(0.00006) 0.257(0.458) 1.384(2.598) 0.00299(0.00003)

0.00516(0.00249) 0.00372(0.00151) 0.00202(0.00007) 108.132(56.601) 45.133(88.054) 0.00299(0.00005)

0.00481(0.00104) 0.00304(0.00031) 0.00200(0.00004) 0.966(1.953) 0.469(1.351) 0.00302(0.00003)

0.00488(0.00069) 0.00299(0.00052) 0.00200(0.00006) 39.792(40.033) 112.329(57.084) 0.00299(0.00004)

0.00504(0.00045) 0.00291(0.00016) 0.00196(0.00006) 1.005(1.494) 1.284(3.301) 0.00302(0.00003)

0.00468(0.00111) 0.00301(0.00015) 0.00196(0.00011) 40.232(16.520) 98.390(17.358) 0.00302(0.00006)

0.00561(0.0017) 0.00297(0.00006) 0.00200(0.00004) 0.209(0.579) 0.230(0.719) 0.00301(0.00002)

0.00504(0.00053) 0.00304(0.00024) 0.00205(0.00007) 49.613(16.590) 100.807(22.905) 0.00297(0.00004)

0.00499(0.00042) 0.00301(0.00005) 0.00196(0.00009) 0.224(0.490) 0.466(1.04) 0.00302(0.00004)

0.03352(0.08029) 0.00297(0.00077) 0.00201(0.00003) 62.361(57.418) 131.58(97.519) 0.00297(0.00005)

0.15932(0.17869) 0.00299(0.00025) 0.00200(0.00007) 0.736(1.517) 6.212(10.390) 0.00301(0.00005)

0.08354(0.15151) 0.00303(0.00016) 0.00200(0.00006) 74.678(46.795) 100.491(18.893) 0.00299(0.00006)

0.10070(0.18942) 0.00297(0.00007) 0.00198(0.00006) 1.397(2.357) 3.515(5.334) 0.00303(0.00003)

0.00500 0.00300 0.00200 50.000 100.000 0.00300

0.00500 0.00300 0.00200 0.000 0.000 0.00300
True Parameters

VIII 0 5000 250

IX 0 5000 2500

VI 25 5000 2500

VII 250 5000 2500

IV 25 5000 25

V 250 5000 250

II 250 500 250

III 2500 5000 2500

# of loci Mean and Stand Deviation of MLEs

I 25 50 25

 

Numbers outside the parentheses are mean MLEs and numbers inside are standard 

deviations. Upper part of each cell shows the result from data sets simulated with non-

zero migration. Lower part shows the result from data sets simulated without migration. 

 

 

 

 



36 
 

TABLE 2.2  

Mean square error and bias of maximum likelihood estimates 

“11” “12” “22” θ 1 θ 2 θ A m 1 m 2 T

I 25 50 25 0.0768(-0.143) 
0.4349(0.111)

0.1269(0.003) 
0.1768(0.086)

0.3123(-0.155) 
0.2158(-0.166)

4.0636(0.607)  
-

2.0389(0.007)  
-

0.0500(0.011) 
0.0304(0.078)

II 250 500 250 0.0343(0.111) 
0.0068(-0.018)

0.0227(-0.009) 
0.0054(-0.001)

0.0154(0.025) 
0.0108(-0.046)

0.1984(-0.121) 
-

0.2370(0.150)  
-

0.0041(-0.023) 
0.0027(0.032)

III 2500 5000 2500 0.0013(0.018) 
0.0015(-0.006)

0.0025(-0.011) 
0.0015(-0.018)

0.0003(0.000) 
0.0008(0.009)

0.0334(-0.138) 
-

0.0369(0.103)  
-

0.0001(-0.001) 
0.0001(-0.004)

IV 25 5000 25 0.2487(0.031) 
0.0449(-0.039)

0.3118(0.239) 
0.0112(0.014)

0.0013(0.008) 
0.0005(0.001)

2.6332(1.163)  
-

1.0764(-0.549) 
-

0.0003(-0.003) 
0.0002(0.006)

V 250 5000 250 0.0194(-0.024) 
0.0081(0.008)

0.0304(-0.003) 
0.0037(-0.029)

0.0009(0.001) 
0.0011(-0.019)

0.6827(-0.204) 
-

0.3411(0.123)  
-

0.0002(-0.003) 
0.0001(0.006)

VI 25 5000 2500 0.0530(-0.063) 
0.1310(0.123)

0.0024(0.004) 
0.0005(-0.010)

0.0031(-0.018) 
0.0004(-0.001)

0.1473(-0.195) 
-

0.0304(-0.016) 
-

0.0005(0.008) 
0.0001(0.002)

VII 250 5000 2500 0.0111(0.008) 
0.0072(-0.001)

0.0065(0.015) 
0.0003(0.003)

0.0018(0.025) 
0.0024(-0.021)

0.1102(-0.008) 
-

0.0525(0.008)  
-

0.0003(-0.010) 
0.0003(0.007)

VIII 0 5000 250 290.36 (5.704)  
2229.8 (30.86)

0.0657(-0.009) 
0.0070(-0.003)

0.0003(0.007) 
0.0013(0.000)

1.3798(0.247)  
-

1.0507(0.316)  
-

0.0004(-0.011) 
0.0003(0.003)

IX 0 5000 2500 1165.0(15.71) 
1801.5(19.14)

0.0029(0.009) 
0.0006(-0.012)

0.0010(0.000) 
0.0011(-0.012)

1.1195(0.494)  
-

0.0357(0.005)  
-

0.0004(-0.003) 
0.0002(0.009)

0.00500 0.00300 0.00200 50.000 100.000 0.00300

0.00500 0.00300 0.00200 0.000 0.000 0.00300

# of loci MSE and Bias

True Parameters

 

Bias and MSE are scaled by the true value of the parameter and its square, 

respectively. Numbers outside the parentheses are MSE and numbers inside are biases. 

Upper part of each cell shows the result from data sets simulated with non-zero migration. 

Lower part shows the result from data sets simulated without migration. 
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TABLE 2.3 

Maximum likelihood estimate and 95% confidence interval 

θ 1 θ 2 θ A m 1 m 2 T

True Parameters 0.00500 0.00300 0.00200 50.000 100.000 0.00300

MLE 0.00496 0.00314 0.00202 51.334 83.078 0.00298

95%CI (0.00455,0.00537)(0.00287,0.00346)(0.00188,0.00216) (25.575,79.317) (50.690,116.563) (0.00287,0.00308)

True Parameters 0.00500 0.00300 0.00200 0.000 0.000 0.00300

MLE 0.00508 0.00307 0.00198 0.000 0.000 0.00298

95%CI (0.00479,0.00539)(0.00292,0.00323)(0.00186,0.00211) (0.000,3.021) (0.000,4.512) (0.00292,0.00305)  

Top part of the table shows the result from a data set simulated with non-zero 

migration. Bottom part of the table shows the result from a data set simulated without 

migration. 
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TABLE 2.4  

Mean and standard deviation of maximum likelihood estimates 

θ 1 θ 2 θ A m 1 m 2 T

I Single Rate 0.00469(0.00026) 
0.00449(0.00013)

0.00273(0.00018) 
0.00281(0.00010)

0.00277(0.00007) 
0.00282(0.00005)

63.669(28.205) 
17.384(8.511)

130.679(36.067) 
7.097(8.940)

0.00267(0.00006) 
0.00266(0.00005)

II Fixed Rate 0.00512(0.00023) 
0.00493(0.00012)

0.00292(0.00018) 
0.00297(0.00007)

0.00258(0.00011) 
0.00260(0.00005)

47.877(15.839) 
2.793(4.105)

117.302(27.573) 
1.775(3.435)

0.00277(0.00008) 
0.00277(0.00005)

III Prior 
Uniform(0,∞)

0.00519(0.00023) 
0.00490(0.00011)

0.00291(0.00018) 
0.00293(0.00008)

0.00200(0.00013) 
0.00197(0.00006)

39.830(15.773) 
0.845(1.722)

112.995(27.577) 
0.568(1.796)

0.00288(0.00008) 
0.00292(0.00004)

IV Prior 
Gamma(10,10)

0.00517(0.00023) 
0.00496(0.00011)

0.00295(0.00018) 
0.00297(0.00008)

0.00199(0.00012) 
0.00197(0.00005)

43.978(15.527) 
0.884(1.864)

108.617(25.925) 
0.813(2.530)

0.00300(0.00008) 
0.00303(0.00004)

V Prior 
Gamma(15,15)

0.00511(0.00023) 
0.00492(0.00011)

0.00292(0.00017) 
0.00296(0.00008)

0.00200(0.00012) 
0.00199(0.00005)

45.486(14.766) 
1.105(2.299)

109.654(24.792) 
0.870(2.697)

0.00299(0.00008) 
0.00302(0.00004)

VI Prior 
Gamma(20,20)

0.00506(0.00022) 
0.00490(0.00010)

0.00291(0.00017) 
0.00294(0.00007)

0.00202(0.00011) 
0.00202(0.00005)

47.824(15.430) 
1.237(2.645)

110.574(24.857) 
1.402(3.496)

0.00298(0.00008) 
0.00300(0.00004)

0.00500 0.00300 0.00200 50.000 100.000 0.00300

0.00500 0.00300 0.00200 0.000 0.000 0.00300

Model for

Mutation Scalar 

Mean and Stand Deviation of MLEs

True Parameters

 

Bias is scaled by the true value of the parameter and MSE is scaled by square of the 

true value of the parameter. Data are simulated with mutation rate variation and analyzed 

using different mutation scalar methods.  Numbers outside the parentheses are mean 

MLEs and numbers inside are standard deviations. Upper part of each cell shows the 

result from data sets simulated with non-zero migration. Lower part shows the result from 

data sets simulated without migration. 
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TABLE 2.5 

Mean square error and bias of maximum likelihood estimates 

θ 1 θ 2 θ A m 1 m 2 T

I Single Rate 0.0064(-0.061) 
0.0113(-0.103)

0.0118(-0.091) 
0.0053(-0.065)

0.1496(0.385) 
0.1707(0.412)

0.3930(0.273)   
-

0.2242(0.307)   
-

0.0128(-0.111) 
0.0132(-0.114)

II Fixed Rate 0.0027(0.023) 
0.0008(-0.015)

0.0045(-0.028) 
0.0006(-0.011)

0.0870(0.290) 
0.0907(0.300)

0.1021(-0.042)  
-

0.1060(0.173)   
-

0.0064(-0.076) 
0.0060(-0.075)

III Prior 
Uniform(0,∞)

0.0037(0.038) 
0.0008(-0.019)

0.0047(-0.031) 
0.0012(-0.023)

0.0043(-0.001) 
0.0009(-0.013)

0.1409(-0.203)  
-

0.0929(0.130)   
-

0.0022(-0.039) 
0.0008(-0.026)

IV Prior 
Gamma(10,10)

0.0033(0.035) 
0.0005(-0.008)

0.0039(-0.016) 
0.0007(-0.008)

0.0037(-0.007) 
0.0009(-0.014)

0.1109(-0.120)  
-

0.0746(0.086)   
-

0.0007(0.000) 
0.0003(0.011)

V Prior 
Gamma(15,15)

0.0027(0.023) 
0.0007(-0.015)

0.0040(-0.027) 
0.0008(-0.013)

0.0034(0.000) 
0.0007(-0.006)

0.0954(-0.090)  
-

0.0708(0.097)   
-

0.0007(-0.003) 
0.0002(0.006)

VI Prior 
Gamma(20,20)

0.0020(0.012) 
0.0009(-0.021)

0.0043(-0.031) 
0.0010(-0.019)

0.0032(0.010) 
0.0008(0.011)

0.0971(-0.044)  
-

0.0730(0.106)   
-

0.0007(-0.006) 
0.0002(0.000)

0.00500 0.00300 0.00200 50.000 100.000 0.00300

0.00500 0.00300 0.00200 0.000 0.000 0.00300

Model for
Mutation Scalar 

MSE and Bias

True Parameters

 

Bias and MSE are scaled by the true value of the parameter and its square, 

respectively. Data are simulated with mutation rate variation and analyzed using different 

mutation scalar methods. Numbers outside the parentheses are accuracies and numbers 

inside are biases. Upper part of each cell shows the result from data sets simulated with 

non-zero migration. Lower part shows the result from data sets simulated without 

migration. 

 

 

 

 

 



40 
 

TABLE 2.6  

Maximum likelihood estimate and 95% confidence interval 

θ 1 θ 2 θ A m 1 m 2 T

True Parameters 0.00500 0.00300 0.00200 50.000 100.000 0.00300

MLE 0.00520 0.00295 0.00200 52.898 97.784 0.00301

95%CI (0.00479,0.00565)(0.00269,0.00324)(0.00182,0.00215) (28.592,81.430) (64.305,131.988) (0.00290,0.00314)

True Parameters 0.00500 0.00300 0.00200 0.000 0.000 0.00300

MLE 0.00497 0.00300 0.00207 0.000 0.000 0.00294

95%CI (0.00471,0.00527)(0.00286,0.00315)(0.00194,0.00221) (0.000,3.651) (0.000,3.551) (0.00286,0.00331) 

Data are simulated with mutation rate variation and analyzed using a all-rate model 

with a Gamma(15,15) prior.  Top part of the table shows the result from a data set 

simulated with non-zero migration. Bottom part of the table shows the result from a data 

set simulated without migration. Both data sets are simulated with mutation rate variation. 
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FIGURE LEGENDS 

FIGURE 2.1 ‘isolation with migration’ Model. The demographic parameters are 

effective population sizes (θ1, θ2, and θA), gene migration rates (m1 and m2) and 

population splitting time (T).  

 

FIGURE 2.2 Graphic representation of the three possible states for two sampled gene 

before coalescent. A migration event will result in a switch from one state to another.  

 

FIGURE 2.3 Maximum likelihood estimates of population parameters. Dots in the 

graph represent the mean maximum likelihood estimates and bars represent the 

corresponding standard deviations. I-IX stand for the nine combinations of sample 

sizes as described in Table 2.1. Panel A-C show the result from data sets simulated 

with non-zero migration. Panel D-F show the result from data sets simulated without 

migration. 

 

FIGURE 2.4 Profile likelihood curves for population parameters. Panel A-C show 

the result from a data set simulated with non-zero migration. Panel D-F show the 

result from a data set simulated without migration. 
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FIGURE 2.5 Maximum likelihood estimates of population parameters. Data is 

simulated with mutation rates sampled from a Gamma(15,15) distribution and 

analyzed using different mutation scalar methods.  Dots in the graph represent the 

mean maximum likelihood estimates and bars represent the corresponding standard 

deviations. I-VI stand for the six different mutation scalar methods as described in 

Table 2.4. Panel A-C show the result from data sets simulated with non-zero 

migration. Panel D-F show the result from data sets simulated without migration. 

 

FIGURE 2.6 Profile likelihood curves for population parameters. Data is simulated 

with mutation rate variation and analyzed using a all-rate model with a Gamma(15,15) 

prior.  Panel A-C show the result from a data set simulated with non-zero migration. 

Panel D-F show the result from a data set simulated without migration. 

 

FIGURE 2.7 Profile likelihood curves for gamma parameter of mutation scalar prior. 

Panel A shows the curve from a data set simulated with non-zero migration. Panel B 

shows the curve from a data set simulated without migration. 
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FIGURE 1.2 
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FIGURE 2.3 
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FIGURE 2.4 
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FIGURE 2.5 
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FIGURE 2.6 
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FIGURE 2.7 
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SUPPLEMENTAL METHODS  

Distribution of coalescent time for sample from same population 

When two genes are sampled from the sample population, the distribution of 

coalescent time can be derived in similar way as we showed in the paper. Without 

losing generality, we assume the both genes are sampled from population1 (i.e. the 

staring state is S11). The coalescent event can happen either in population 1, or 

population 2, or the ancestral population. For the first two scenarios, the coalescent 

time is less than the population splitting time (t<T).  

 

Two genes coalesce in population 1: Before the coalescent, there can only be 

even number (2x, x≥0) of migration events (x of which being M1→2 and the other x 

being M2→1). Of the 2x+1 time intervals, x are in state S12, y+1 (0≤y≤x) are in state S11 

and x-y are in state S22. We denote the total duration of these three categories of time 

intervals as U, V, and W (=t-U-V), respectively. Then 

)]2()2(22exp[2)|Pr( 21
21

21
1

WUmVUmWVmmG xx +−+−−−=Θ
θθθ

 (2.11) 

 

By permutation and convolution, we get 
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Two genes coalesce in population 2: Before the coalescent, there must be 2x+2 

(x≥0) migration events (x+2 of which being M1→2 and the other x being M2→1). Of the 

2x+3 time intervals, x+1 are in state S12, y+1 (0≤y≤x) are in state S11 and x-y+1 are in 

state S22. We denote the total duration of these three categories of time intervals as U, 

V, and W (=t-U-V), respectively. Then  

)]2()2(22exp[2)|Pr( 21
21

2
2

1
2

WUmVUmWVmmG xx +−+−−−=Θ +

θθθ
 (2.13) 

 

By permutation and convolution, we get 
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Two genes coalesce in ancestral population: If the coalescent event happens 

after T, then at time point T, both genes are either in the same population (S11 S22) or 

in different populations (S12). The probabilities of these two scenarios, denoted as 

Q0(T,Θ) and Q1(T,Θ) respectively, are: 

),,,()),,,(),,,((),( 210 ΘΘ+Θ=Θ 
=++

WVUfWVUgWVUgTQ
TWVU

(2.15) 
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And the probability of all genealogies with coalescent time t (>T), is: 

TtforTtTQTQG
AA
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 (2.17) 

 

 

 

 

 

 



53 
 

 

 

 

 

 

 

Chapter Three 

Estimating Population Parameters of Human- Chimpanzee 

Divergence 
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ABSTRACT 

The divergence of the human and chimpanzee lineages was a pivotal event in 

human evolutionary history. In this study, we developed a maximum-likelihood (ML) 

method for joint estimation of six population parameters, based on whole genome 

data and the ‘isolation with migration’ model. We applied this method to the 

alignment of human, chimpanzee and orangutan genome sequences. We estimated 

that humans and chimpanzees separated approximately 4.3 Myr ago from an ancestral 

population with a size of ~37000, similar to values obtained by other methods. 

Surprisingly we detected a clear signal of unidirectional gene flow from chimpanzee 

to human (0.002 migrations per generation). We showed that this signal is not an 

artifact created by the recombination or multiple mutation events. To assess the 

timing of genetic exchange, we extended the model to include a distinct time interval 

during which gene flow could occur, following population separation. Likelihood 

ratio test results show that a model with gene flow restricted to the initial period of 

time following population separation is favored over a model with constant gene flow, 

from that time until the present. 
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INTRODUCTION 

An oft- debated question in evolutionary research is whether speciation can 

happen in the presence of gene flow. According to traditional allopatric speciation 

theory (Dobzhansky, 1936), speciation takes place after a geographic barrier divides 

an ancestral population into two subpopulations, so that gene flow between them 

ceases. The two subpopulations then evolve independently and accumulate 

incompatible mutations. These mutations, in turn, create reproductive isolation and 

prevent interbreeding if there is subsequent breakdown of the barrier. Alternative 

theories that do not require the geographic separation have also been proposed. One of 

those theories is sympatric speciation (Maynard Smith, 1966). In sympatric theory, 

two populations can diverge from each other while still inhabiting the same 

geographic region, a scenario built upon the assumption that speciation can happen 

despite genetic exchange. Although allopatric theory has been widely used in 

modeling speciation, several recent studies have supported the sympatric model for a 

variety of speciation events (Llopart et al., 2005) (Niemiller et al., 2008) (Shaw, 2002) 

(Emelianov et al., 2004) (Turner et al., 2005) (Forbes et al., 2009). These findings 

suggest that sympatric speciation theory can serve as a useful alternative to traditional 

allopatric theory. 

 

Of all speciation events, that between humans and our closest relatives, (common 

chimpanzees) has drawn the most intense interest. As human beings, we are eager to 

answer the question “How did our ancestors separate from chimpanzees to form a 

separate species?” Although there is no evidence for recent interbreeding between the 
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two populations, we cannot rule out the possibility of early gene flow, after the initial 

separation. But most studies of human-chimpanzee speciation (Takahata et al., 1995) 

(Yang, 2002) (Rannala and Yang, 2003) (Rannala and Yang, 2003) (Burgess and 

Yang, 2008) have ignored gene flow subsequent to separation, assuming an 

instantaneous and complete separation. As a result, these studies attribute the large 

variance detected in human-chimpanzee divergence to a large ancestral population 

size. For example, in his classic study (Takahata et al., 1995) Takahata estimated that 

the human-chimpanzee ancestral population size is about 10 times of current human 

population size. However, the large variance can also be explained by genetic 

exchange between human and chimpanzee populations, subsequent to separation. 

Several studies have recently been conducted to test the hypothesis of sympatric 

speciation. Osada and Wu (Osada and Wu, 2005) compared the human-chimpanzee 

divergence of coding sequences and intergenic sequences. Their idea was that if gene 

flow ceases at the same time, along the whole genome, we would expect no 

differences in human-chimpanzee divergences between the two types of sequences. 

However, if effective gene flow stops first at genome regions around some set of 

‘speciation genes’, thought to be important in the divergence of the two taxa, we 

would expect coding sequences to show larger divergence than intergenic sequences, 

as coding sequences are more likely to serve as ‘speciation genes’. Comparing 345 

coding and 143 intergenic sequences, they concluded that the divergence times of 

coding sequences were different from those of intergenic sequences and rejected the 

null hypothesis of instantaneous speciation. They suggested that there existed a period 

of genetic exchange in the human-chimpanzee divergence process. In another study, 

Patterson and colleagues (Patterson et al., 2006) compared 28 Mb of aligned human, 

chimpanzee sequences. Their results confirmed the large variance of human-
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chimpanzee divergence. More importantly, they found that X chromosome sequences 

showed much less divergence than those on autosomes. They argued that the 

difference cannot be explained solely by small population size and low mutation rates 

for the X chromosome. They proposed a speciation model in which humans and 

chimpanzees initially separated, but subsequently exchanged genes (mostly X-linked 

genes) via later hybridization events. 

 

There are criticisms one could level at these results. First, both studies were 

based only on the summary statistics of the human-chimpanzee divergence and did 

not use all the information in the data. Second, data used in both studies corresponds 

to less than 1% of the human genome. Last but not least, they did not estimate the 

level of gene flow. An initial attempt to evaluate gene flow between humans and 

chimpanzees was made by Innan and Watanabe (Innan and Watanabe, 2006). They 

developed a maximum likelihood method to estimate a parameter, α, which represents 

the level and duration of gene flow. They applied the method to a dataset of 170,000 

human-chimpanzee orthologs, each with a length of 100 bps. Their results supported 

an infinite maximum likelihood estimate of α, tantamount to a model with 

instantaneous speciation. However, Innan and Watanabe did not evaluate the 

existence of ‘speciation genes’, as most loci in their dataset came from non-coding 

regions.   

  

The data studied by Innan and Watanabe covers ~17 Mb, representing less than 

1% of the human genome. The model they used also imposes some restrictions on the 

speciation process. For example, they assumed symmetric migrations in both 
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directions and constant mutation rates for each locus. To avoid these problems, we 

developed an elaborate maximum likelihood method. The method is designed for joint 

estimation of population sizes, migration rates and population splitting time, using 

large datasets with two samples for each locus. We applied this method to a dataset 

extracted from the human-chimpanzee-orangutan genome alignment. This dataset 

includes ~200,000 loci and covers ~228 Mb, roughly 8% of the human autosomal 

genome. The greater coverage should provide a more adequate distribution of human-

chimpanzee divergence. 
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MODEL AND METHODS 

Model  

We based our method on the ‘isolation with migration’ (IM) model (Figure 3.1). 

The demographic parameters in this model include three population sizes (θ1, θ2 and 

θA), one population splitting time (T), and a pair of migration rates (m1, m2). The IM 

model is a nice tool for examining the speciation process, because it accommodates 

both sympatric and allopatric speciation. With non-zero migration rates, the IM model 

can be used to study a sympatric speciation process. When both migration rates are set 

to zero, the model reduces to allopatric speciation. The fact that two models are nested 

allows us to compare them via likelihood ratio tests. 

 

A genealogy, G, is a bifurcating tree that represents the evolutionary history of 

sampled sequences. Given the genealogies at all loci, the probability of the data (X), 

conditioned on a set of demographic parameters (Θ), can be calculated with 

coalescent theory and appropriate mutation models. The likelihood of Θ is then found 

by considering (integrating over) all possible genealogies (Ψ), 

dGGGXXXL 
Ψ

Θ=Θ=Θ )|Pr()|Pr()|Pr()|(                                                (3.1) 
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In most cases, this function cannot be solved by analytical means. Recently, however, 

we have developed a method (Wang and Hey, submitted) that implements multi-

dimensional numerical integration to calculate the likelihood.   

 

Some studies have assumed homogeneous mutation rates among loci (Takahata 

et al., 1995) (Innan and Watanabe, 2006), but substantial variation in mutation rates 

has been reported by several analysis (Wolfe and Sharp, 1993). Neglecting such 

variation will result in overestimating the variance of human-chimpanzee divergence 

and can lead to questionable inference (Yang, 1997). Other studies account for the 

variation by scaling the human-chimpanzee divergence against that between humans 

and orangutans (or/and macaques) (Patterson et al., 2006) (Yang, 2002). As we have 

pointed out elsewhere (Wang and Hey, 2009), a problem with such an approach is that 

estimating fixed locus-specific mutation rates still leads to an overestimate of human-

chimpanzee divergence variation. In addition, the human-chimpanzee genealogy 

shares part of its branch length with the human-orangutan genealogy, which entails an 

additional correlation between the two divergences, which may introduce bias into the 

parameter estimates. To avoid these problems, we propose a new method that uses the 

human-orangutan divergence (XO) as part of the data. The joint probability of the data 

is found by assuming a Gamma prior, P(μ), for the mutation scalars (locus-specific 

mutation rates, divided by genome average) and by integrating over them,  
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= μμμμ dPTGXGXTGXX OOOO )(),,|Pr(),|Pr(),|,Pr( .                   (3.2) 

 

Here, TO represents common human-orangutan ancestry time. Comparing to the 

human-orangutan speciation time, TO has a very small variance and is usually 

considered as a genomic constant. When the ‘infinite sites’ mutation model (Kimura, 

1969) is used, the integration can be solved analytically.  

 

TO and the shape parameter of the mutation scale distribution can be estimated 

from human-orangutan divergence separately. Let L be the sequence length and α be 

the shape/scale parameter of mutation scales distribution. The number of substitutions 

between a pair of aligned human and orangutan sequences, NHO, follows a 

Poisson(2μLTO) distribution, and  the mean and variance of the human-orangutan 

divergence dHO are 
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Given the mean and variance, TO and α can be jointly extracted from equation (3.3) 

and (3.4). 
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Data Preparation 

Alignment genomes for human (assembly hg18), chimpanzee (assembly panTro2) 

and orangutan (assembly ponAbe2) were retrieved from the multiple alignments of 

eight vertebrate genomes from USCS Genome Bioinformatics site. 1500-bp long loci 

were extracted from autosomal regions of the alignment. All loci are separated from 

their closest neighbor by at least 8000 bps. The human sequence of each locus was 

blasted against the Celera human genome to obtain a second human sequence (Venter, 

2003). The four-gamete test (Hudson and Kaplan, 1985) was performed to search for 

possible within-locus recombination. If a locus fails the test, only the longest segment 

that reveals no signal of recombination was retained. Repeated sequences were also 

removed. A total of 201,432 HHCO (two human, one chimpanzee and one orangutan 

sample) loci were included. In addition, we acquired 69 pairs of chimpanzee 

sequences from two earlier studies (Yu et al., 2003) (Fischer et al., 2006). The 

chimpanzee sequences were blasted against the human-chimpanzee-orangutan 

genome alignment to search for their human and orangutan orthologs. Of the 69 

HCCO loci, 57 passed the four-gamete test and were included in our dataset. 

 

A basic assumption of the method is selective neutrality of data. An early study 

by The Chimpanzee Sequencing and Analysis Consortium detected six genomic 

regions with significantly reduced human diversity, relative to human-chimpanzee 

divergence (2005), suggesting strong selective sweeps in these regions in recent 

evolutionary history. Loci that fall in these regions were discarded from the dataset. 
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Loci that overlap with the 3.6-Mb MHC region on chromosome 6 were also removed, 

because MHC genes are believed to be under intense balancing selection (The MHC 

sequencing Consortium, 1999).  

 

In the next step, loci with excessive numbers of indels (>0.005 per bp) that 

distinguished the two human sequences were removed from the dataset. Residues next 

to indels were also masked to reduce the error introduced by alignment uncertainties.  

Pairwise distances were calculated for each locus. We assume orangutan as the distant 

outgroup, so if human-orangutan divergence or chimpanzee-orangutan divergence 

was less than or equal to other distances (i.e., Min(dHO, dCO)≤Max(dHH, dHC, dCC)), 

that locus was removed from the dataset.  

 

Our program requires only three sequences at each locus, including one outgroup 

sequence. For HHCO loci, with 50% chance, one of the two human sequences was 

removed at random. Otherwise, the chimpanzee sequence was removed. For HCCO 

loci, the human sequence was removed. Finally, loci with extremely large divergence 

(dHH/ dCC >0.03, or dHC >0.07, or dHO >0.1) or small length (L<100) were excluded. In 

total, the input data consist of 97,999 HHO loci, 98,035 HCO loci and 56 CCO loci. 
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RESULT 

Distribution of Distances 

We recalculated the pairwise distances from the final input data (196,090 loci). 

Distribution curves were plotted in Figure3.1. The average human-orangutan 

divergence is 0.03033 per site (Table 3.1). Based on equation (3.3), the outgroup 

ancestry time (To) is 0.01516, basically half of human-orangutan divergence. The 

variance of dHO = 8.829E-5. By solving equation (3.4), the shape parameter of the 

mutation rate distribution is estimated to be 13.51. This estimation is based on the 

assumption of a constant human-orangutan ancestry time for all loci, while in reality, 

the ancestry time varies slightly among loci. So it is possible that we are 

overestimating the variation in mutation rates, in which case the true shape parameter 

should be a little larger than our estimate.  

 

The Human-chimpanzee divergence distribution has a mean of 0.01167 per site 

with a variance of 2.820E-5. This mean is slightly smaller than a distance of 0.0123 

from two previous studies (Innan and Watanabe, 2006) (2005). The discrepancy can 

be explained by different data preparation procedures, as we have removed loci with 

very large dHC.  

 

Human-human distance has a small average 0.00054, consistent with a small 

effective size of human population. Average distance between 56 pairs of chimpanzee 

sequences is very small as well, but we cannot assert a small chimpanzee population 

size with any confidence, as these chimpanzee sequences were sampled from the 
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western chimpanzee population and may not be representative of common 

chimpanzees in general.  

 

Estimation of Human-Chimpanzee Divergence 

Maximum likelihood estimates from three separate runs using different mutation 

rate priors were compared. The results reveal only minor difference (Table 3.2), so 

our method is robust to the choice of mutation rate prior, and we only use the gamma 

prior with a shape parameter of 15 for further analysis. In all three cases, our method 

detects one-way migration from chimpanzee to human (as time moves forward), 

suggesting the existence of gene flow into the human- lineage, subsequent to 

separation. To test the significance of the gene flow, we fit data to the ‘isolation’ 

model (IM with both m1 = 0 and m2 = 0) and searched for a restricted maximum 

likelihood estimate. As expected, excluding gene flow leads to larger estimates for the 

ancestral population size and more recent population splitting time (Table 3.3). 

Without gene flow, the effective chimpanzee population size depends only on the 

distance between chimpanzee sequences. This results in a much smaller estimate for 

chimpanzee population size than that from the model with gene flow. The 

significance of gene flow is tested by likelihood ratio analysis. Let Λ be the difference 

between the log likelihoods for two models. Because two parameters (m1 and m2) are 

fixed at boundary values in the reduced model, according to Hey (Hey and Nielsen, 

2007), -2Λ is expected to follow a composite χ2 distribution (0.25 2
0χ  +0.5 2

1χ  

+0.25 2
2χ ) under the null hypothesis. In our case -2Λ=1445, so we reject the null 

hypothesis (‘isolation’ model) at a significance level of p << 0.001. Interestingly, we 
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find even the model with one-way migration from human to chimpanzee is 

significantly better than the ‘isolation’ model.  

 

To calculate the 95% confidence intervals (CI), we plot the profile likelihood 

curves for the six population parameters (Figure 3.4). Profile likelihood is the 

maximized likelihood function, conditioned on a selected focal parameter of interest. 

The 95% confidence intervals were estimated from these curves, based on the 

standard assumptions of a likelihood ratio test (Table 3.4). The estimates for human 

and ancestral population size and population splitting time all have very narrow CIs. 

Estimates for migration rates have relative wider CIs, but zero falls outside of the 

95% CI of m1, confirming that the gene flow from chimpanzee to human is significant. 

Estimate for chimpanzee population size has the largest CI, due to the small number 

of CCO loci.  

 

Population parameters in the IM model are all scaled by the average mutation 

rate μ (θ1 = 4N1μ, θ2 = 4N2μ , θA = 4 NAμ, m1 = M1/μ , m2 = M2/μ , T = Τ’μ). To convert 

the estimates, μ is estimated using human-orangutan speciation time as a calibration 

value. Several studies have estimated this time to range from 13 Myr to 18 Myr 

(Glazko and Nei, 2003) (Satta et al., 2004). In our study, we use a human-orangutan 

speciation time of 15 Myr, together with a 20-year generation time (Gage, 1998). We 

estimate that the average mutation rate is 1.013E-9 per year and 2.026E-8 per 

generation. Estimates for population parameters are converted using this value (Table 

3.4). 
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Our estimate for human population size is ~6,200. This result is slightly smaller 

than the size 10,000 estimated by Takahata (Takahata et al., 1995), (7,500 if they had 

scaled their result using the same 20-year generation time). We argue that our 

estimate should be closer to the true value, because we used a much larger data set 

(97,999 pairs of human sequences) than they did (49 pairs). Despite a small average 

distance between chimpanzee sequences in our dataset, our analysis resulted in a very 

large estimate for chimpanzee population size (~35,000), which is close to the 

estimate of Becquet (Becquet and Przeworski, 2007) and almost double the estimates 

of Caswell (Caswell et al., 2008) and Hey (Hey, 2009).  

 

The human-chimpanzee speciation time is estimated to be approximately 4.3 

Myr. This is in agreement with the 4.6 Myr from Takahata (Takahata et al., 1995). 

Another recent study (Hobolth et al., 2007) reported a speciation time of 4.1 Myr, but 

they used an 18-Myr human-orangutan divergence time and a 25-year generation time. 

Other studies have estimated speciation time of 4 (Burgess and Yang, 2008), 5 (Sarich 

and Wilson, 1973) (Yang, 2002) and 6 Myr (Glazko and Nei, 2003). Our results 

suggest that the human-chimpanzee ancestral population had a size of ~37,000, which 

is larger than the result from two early studies (Yang, 2002) (Rannala and Yang, 2003) 

but smaller than those from two more recent studies (Hobolth et al., 2007) (Burgess 

and Yang, 2008). Our estimate for ancestral population size is about six times as large 

as the estimated human population size. This ratio is between the value of 5 reported 

by by Wall (Wall, 2003) and that of 10 reported by Takahata (Takahata et al., 1995). 

Finally, our study estimates that the migration from chimpanzee to human (2N1m1) 
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happens at a rate of 0.002 migrations per generation, if we allow continous migration 

from the time of separation until now. This level of the gene flow, despite being 

significant, is not strong enough to prevent two populations from diverging (Wright, 

1931). 

 

It is hard to compare results from multiple studies that use different calibration 

points, so we focus on the comparison with a recent study by Burgess and Yang 

(Burgess and Yang, 2008), who fit a large data set (~7.4 Mb) to the ‘isolation’ model. 

Using a 15-Myr human-orangutan divergence time and 1.0E-9 per bp mutation rate, 

they estimated that humans and chimpanzees separated 4 Myr ago from an ancestral 

population of size 99,000. Relative to their results, we obtain a slightly deeper 

estimate for speciation time and much smaller estimate for ancestral population size. 

The directions of the differences were expected, of course, because part of the 

variance in human-chimpanzee divergence is explained by gene flow between 

populations in our study. 

 

Simulation Study 

 To test the accuracy of our method, we simulated ten data sets using a set of 

parameters (θ1 = 0.0005, θ2 = 0.003, θA = 0.003, m1 = 10, m2 = 0, T = 0.005, TO = 0.015, 

α = 15) close to our estimates from the human-chimpanzee-orangutan genome 

alignment. Another ten data sets were then simulated using the same parameters, 

except without gene flow (θ1 = 0.0005, θ2 = 0.003, θA = 0.003, m1 = 0, m2 = 0, T = 

0.005, TO = 0.015, α = 15). Each simulated data set contains 20,100 loci, each 1000-bp 
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long, including 10,000 HHO loci, 10,000 HCO loci and 100 CCO loci. Data was 

simulated using ‘infinite-site’ mutation model and without recombination. 

 

Maximum likelihood estimates were estimated from these simulated data sets. 

Their means and standard deviation were calculated (Table 3.5, data group I&VI) and 

plotted in Figure 3.5. The diamonds represent the means and the error bars represent 

the corresponding standard deviations (SD). As Figure 3.5 shows, our method 

generates estimates that are quite close to the parametric values, with all true values 

falling within one SD of the average MLE.  

 

An important assumption followed by our method is that of no recombination 

within loci, but with an average locus length over 1000 bps, this assumption is not 

sound. Although we used the four-gamete test to screen the data, only a part of the 

recombination events can be detected and removed via that test. In order to assess the 

impact of recombination on our estimation, we simulated 20 data sets, using the same 

two sets of parameters, but adding a recombination rate of 1.5E-8 per bp per 

generation. As shown in Figure 3.5 (data group II&VII), violating the assumption of 

no recombination within a locus will result in slightly overestimating speciation time 

and underestimating ancestral population size. However, it has minimal effect on 

estimating human or chimpanzee population sizes. More importantly, it creates no 

false-positive signals of gene flow. 
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Burgess and Yang (Burgess and Yang, 2008) suggested that one can examine the 

effect of recombination by using a shorter segment of each locus. Their idea was that 

recombination should have a larger impact on longer sequences. To test this idea, we 

cut the 20 data sets in half and used the first 500 bps of each locus. Our results (Figure 

3.5, data group III&VIII) demonstrate that estimates from half-length data sets do 

have less bias. We then generated and analyzed a half-length data set from our 

original data. The results of this analysis are listed in Table 3.2. The new estimates are 

close to those obtained from the full-length data set, except for chimpanzee 

population size, which might be a random effect caused by small sample size of CCO 

loci. Everything considered, we concluded that our estimates for human-chimpanzee 

divergence are robust to the assumption of within-locus recombination. 

 

Our method uses the ‘infinite-site’ mutation model which assumes no multiple 

mutations at a single site. To evaluate the impact of multiple mutations, we simulated 

20 data sets with the Jukes-Cantor (JC69) mutation model. Maximum likelihood 

estimates from these data sets are listed in Table 3.5 (data group IV&IX). No 

deviation from the true values is detected. Thus we concluded that our estimates are 

also robust to the choice of mutation models. 

 

Another assumption of our method is the genome-wide constant human-

orangutan ancestry time. To examine the consequence of violating this assumption, 

we simulated 20 data sets with a human-orangutan ancestral population size of 0.003. 

The results of our analysis (Figure 3.5, data group V&X) demonstrate that neglecting 

the variance in human-orangutan ancestry time can lead to slight underestimation of 
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human-chimpanzee splitting time, human population size and chimpanzee population 

size. However, it has minimal effect on the estimation of migration rates and human-

chimpanzee ancestral population size.  

 

Extending the IM model 

In ‘isolation with migration’ model, two populations exchange genes at a 

constant rate after the initial separation. However, it is reasonable to suppose that 

gene flow between humans and chimpanzees, given its existence, would only last for 

a limited period of time, subsequent to isolation. To test the possibility of this scenario, 

we extended the IM model to a ‘two-stage migration’ model (Figure 3.2.A). The new 

model has one more time parameter. In this model, gene flow only exists in the initial 

time period (T2) following the initial population split, and ceases thereafter (T1). The 

‘two-stage migration’ model is nested within both IM and ‘isolation’ models. When 

T1 is set to zero, the ‘two-stage migration’ model becomes identical to the IM model. 

And when m1 and m2 are set to zero, it reduces to the ‘isolation’ model. 

 

We fit this ‘two-stage migration’ model to the human-chimpanzee-orangutan 

dataset. Our maximum likelihood estimates are listed in Table 3.3, and converted 

parameters are listed in Table 3.6. Again, the method detects a significant (-2Λ=3052, 

p << 0.001) and much stronger (0.138 migrations per generation) one-way gene flow 

from chimpanzee to human. The new estimate for human-chimpanzee ancestral 

population size is ~20,000. This value is about half of the estimate, based on the IM 
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model (~37,000), and the new estimate for the human-chimpanzee splitting time, 6.6 

Myr (T1’+ T2’), is ~50% larger than 4.3 Myr estimated from the IM model. 

 

We compared the likelihood of the two MLEs estimates from ‘two-stage 

migration’ and IM models. Since the two models differ by one parameter fixed at 

boundary a value (T1 = 0), we expect -2Λ to follow a composite χ2 distribution (0.5 2
0χ  

+ 0.5 2
1χ ) (Hey and Nielsen, 2007).  With -2Λ = 1607, we rejected the standard model 

at significance level of p << 0.001, suggesting that a two-stage migration scenario 

provides a better approximation to real human-chimpanzee evolutionary scenario.   

 

In the IM model, the ancestral population size is treated as a constant. However, 

as pointed out by several studies (Patterson et al., 2006), in one third of the cases, 

human or chimpanzee sequences are closer to gorilla sequences than to each other. 

This suggests that gorillas split off shortly before human-chimpanzee speciation. So it 

might not be appropriate to assume the ancestral population size remains constant 

over the timescale of human-chimpanzee coalescent. To assess the impact of changing 

ancestral population size, we developed another model (Figure 3.2.B). In this model, 

the ancestral population size changed from θB to θA at time TA before the population 

splitting time, TB. This new model has two more parameters than the standard IM 

model. When θA = θB, these two models become identical to each other. 
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Maximum likelihood estimates and converted population parameters based on 

‘changing ancestral size’ model are listed in Table 3.3 and Table 3.6. The results 

shows human-chimpanzee speciation started at 3.7 Myr ago. The human-chimpanzee 

population size is estimated to be ~70,000, which doubles the size estimated based on 

IM. This size reduces to ~20,000 at 6.6 Myr ago. Weak but significant (-2Λ = 693, p 

<< 0.001) gene flow from chimpanzee to human is detected as well. The likelihood 

ratio test suggests ‘changing ancestral size’ model is also better than the standard IM 

model (-2Λ=1607) at the significant level p << 0.001.  
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DISCUSSION 

In this study, we estimated the demographic parameters of human-chimpanzee 

speciation from the human-chimpanzee-orangutan genome alignment. We detected a 

significant unidirectional gene flow from chimpanzees to humans (as time moves 

forward). Our finding is in contrast with the result of Innan and Watanabe (Innan and 

Watanabe, 2006), who studied 17,000 100-bp long human-chimpanzee orthologs and 

found no signal of gene flow. One of the differences between our study and theirs is 

that we used longer sequences (average length >1100). Using longer sequences will 

help determine the human-chimpanzee coalescent time more accurately and improve 

the quality of the estimates. On the other side, estimation based on longer loci is more 

likely to be influenced by recombination. Nevertheless, our simulation study 

demonstrates that the gene flow detected by us is unlikely to be an artifact created by 

the recombination effect. Nor could it be a false-positive consequence of other effects, 

including multiple mutations and varying outgroup ancestry time. To make a further 

comparison of ‘isolation’ model with ‘isolation with migration’ model, we simulated 

two data sets. Data set one was simulated with demographic parameters estimated 

based on the ‘isolation with migration’ model, but data set two was simulated with 

those estimated based on the ‘isolation’ model. We calculated the distribution of 

human-chimpanzee divergence from the two simulated data sets and plotted both 

distributions, along with the divergence distribution from the real data (Figure 3.6). 

The three distributions are very similar to each other, with the distribution in data set 

one being a little closer to the real data.  
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The gene flow we detected is unidirectional from chimpanzee population to 

human population. A possible explanation for unidirectionality is that genes also were 

contributed by humans to chimpanzees, but that the recipient population has either 

remained unsampled to date (or later went extinct). A second explanation is that the 

signal of gene flow from human to chimpanzee is masked by the effect of 

recombination. In fact, when half-length data were used, we did detect a marginally 

significant signal of gene flow in this direction. 

 

We also examined two models extended from standard ‘isolation with migration’ 

model to the data. Likelihood ratio tests reveal that each of these models is 

significantly better than the standard IM, but because these two models are not nested, 

we were not able to compare them directly with each other. We argue that both 

models may have represented some aspect of the real history of human-chimpanzee 

speciation history. However, we find the ‘two-stage migration’ model gives a 

relatively large estimate (6.7 Myr) for human-chimpanzee speciation time. This time 

is in agreement with several fossil finds from the Late Miocene, suggesting that the 

human- chimpanzee speciation might have happened 7 million years ago (Senut et al., 

2001) (Brunet et al., 2002) (Brunet et al., 2005).  
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TABLES 

Table 3.1. 

Mean and variance of human-human, human-chimpanzee and human-orangutan 

distances 

Divergence HH HC CC HO

Number of loci 97999 98035 56 196090

Mean 0.00054 0.01167 0.00049 0.03033

Variance 1.35E-06 2.82E-05 1.13E-06 8.83E-05
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Table 3.2. 

Maximum likelihood estimates from using full length and half length data 

Length Mutation rate 
prior

θ 1 θ 2 θ A m 1 m 2 T

Gamma(10,10) 0.00050 0.00286 0.00299 6.101 0.000 0.00440

Full Gamma(15,15) 0.00050 0.00286 0.00298 5.991 0.000 0.00440

Gamma(20,20) 0.00050 0.00285 0.00298 5.860 0.000 0.00439

Gamma(10,10) 0.00049 0.00180 0.00310 6.346 1.655 0.00434

Half Gamma(15,15) 0.00049 0.00179 0.00310 6.371 1.604 0.00434

Gamma(20,20) 0.00049 0.00181 0.00310 6.346 1.650 0.00434
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Table 3.3. 

Testing the speciation models 

Model θ 1 θ 2 θ A m 1 m 2 T Log-
likelihood

Basic IM 0.00050 0.00286 0.00298 5.991 0.000 0.00440 -1117868.08

Basic IM, m 1 =0 0.00052 0.00049 0.00302 0.000 2.936 0.00436 -1118344.11

Basic IM, 
m 1 =m 2 =0 0.00052 0.00050 0.00314 0.000 0.000 0.00426 -1118590.41

θ 1 θ 2 θ A m 1 m 2 T 1 T 2
Log-

likelihood
Two-Stage 
Migration 0.00052 0.00248 0.00166 528.703 0.029 0.00313 0.00357 -1117064.45

Two-Stage 
Migration, 
m 1 =m 2 =0

0.00052 0.00050 0.00314 0.000 0.000 0.00426-T 2 0.00426-T 1 -1118590.41

θ 1 θ 2 θ B θ A m 1 m 2 T B T A
Log-

likelihood
Changing 

Ancestral Size
0.00051 0.00379 0.00569 0.00166 3.274 0.000 0.00375 0.00289 -1116734.67

Changing 
Ancestral Size, 

m 1 =m 2 =0
0.00052 0.00049 0.00688 0.00180 0.000 0.000 0.00354 0.00276 -1117081.40
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Table 3.4. 

MLE and estimated 95% confidence interval and converted population parameters 

θ 1 θ 2 θ A m 1 m 2 T 

MLE 0.00050 0.00286 0.00298 5.991 0.000 0.00440

Estimated 
95% CI (0.00050, 0.00051) (0.00237, 0.00345) (0.00297, 0.00301) (5.761, 6,332) (0.000, 0.084) (0.00439, 0.00440)

N 1 N 2 N A 2N 1 M 1 2N 2 M 2 T’ (Myr)

Converted 
MLE 6204 35266 36768 0.002 0.000 4.341

Converted 
95% CI (6177, 6255) (29290, 42510) (36648, 37086) - - (4.336, 4.438)
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Table 3.5.  

Mean and standard deviation of maximum likelihood estimates for population 

parameters from simulated data sets 

Data group θ 1 θ 2 θ A m 1 m 2 T

I 0.00050 
(0.00001)

0.00304 
(0.00014)

0.00295 
(0.00007)

9.498 
(0.919)

0.499 
(0.577)

0.00501 
(0.00005)

II 0.00050 
(0.00001)

0.00298 
(0.00011)

0.00226 
(0.00009)

9.850 
(1.013)

0.009 
(0.012)

0.00536 
(0.00005)

III 0.00050 
(0.00001)

0.00301 
(0.0001)

0.00235 
(0.00007)

9.535 
(0.797)

0.370 
(0.520)

0.00532 
(0.00004)

IV 0.00051 
(0.00001)

0.00303 
(0.00014)

0.00289 
(0.00005)

10.070 
(0.869)

0.337 
(0.443)

0.00508 
(0.00002)

V 0.00046 
(0.00001)

0.00276 
(0.00009)

0.00292 
(0.00006)

10.487 
(1.516)

0.531 
(0.522)

0.00455 
(0.00003)

True parameter 0.00500 0.00300 0.00300 10.000 0.000 0.00500

VI 0.00050 
(0.00001)

0.00292 
(0.00012)

0.00294 
(0.00005)

0.026 
(0.061)

0.008 
(0.023)

0.00503 
(0.00002)

VII 0.00050 
(0.00001)

0.00308 
(0.00012)

0.00223 
(0.00004)

0.003 
(0.010)

0.101 
(0.122)

0.00538 
(0.00003)

VIII 0.00050 
(0.00001)

0.00307 
(0.00010)

0.00233 
(0.00008)

0.001 
(0.002)

0.310 
(0.370)

0.00533 
(0.00004)

IX 0.00051 
(0.00001)

0.00301 
(0.00010)

0.00288 
(0.00006)

0.152 
(0.120)

0.008 
(0.023)

0.00508 
(0.00004)

X 0.00047 
(0.00001)

0.00278 
(0.00008)

0.00293 
(0.00007)

0.048 
(0.065)

0.038 
(0.083)

0.00453 
(0.00003)

True parameter 0.00500 0.00300 0.00300 0.000 0.000 0.00500  

Each group of data is simulated with a different model. I: Standard ‘isolation with 

migration’ (IM); II: IM with recombination, full length; III: IM with recombination, 

half length; IV: IM with multiple mutation; V: IM with varying outgroup ancestry 

time; VI: Standard ‘isolation’ model; VII: Isolation with recombination, full length; 

VIII: Isolation with recombination, half length. IX: Isolation with multiple mutation; 

X: Isolation with varying outgroup ancestry time. 
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Table 3.6. 

Converted population parameters of two extended IM models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 1 N 2 N B N A 2N 1 M 1 2N 2 M 2 T 1 ’ /T B ’(Myr) T 2 ’/T A ’(Myr)

Two-Stage 
Migration 6433 30552 - 20471 0.138 0.000 3.090 3.523

Changing 
Ancestral Size 6242 46730 70250 20429 0.001 0.000 3.696 2.851
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FIGURE LEGENDS 

Figure 3.1.  Standard ‘isolation with migration’ model. The demographic parameters 

are effective population sizes (θ1, θ2, and θA), gene migration rates (m1 and m2) and 

population splitting time (T). The two arrows indicate the direction of migration as 

time moves backward. 

 

Figure 3.2. Extended ‘isolation with migration’ models. A) ‘two-stage migration’ 

model: gene flow only lasts for a period of time (T2) following initial population 

separation and doesn’t happen in the time period (T1) afterwards. B) ‘changing 

ancestral size’ model: Ancestral population size changes from θA to θB at time TA , 

before the initial population separation.   

 

Figure 3.3. Distribution curves of three distances. Solid line represents distribution of 

distances between pair of human sequences. Dash line represents distribution of 

distance between human and chimpanzee sequences. And dash-dot line represents 

distribution of distance between human and orangutan sequences. 

 

Figure 3.4. Profile likelihood curve for population parameters estimated from human-

chimpanzee-orangutan genome alignment. 

 

Figure 3.5. Maximum likelihood estimates for population parameters estimated from 

simulated data sets. Dots in the graph represent the mean maximum likelihood 
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estimates and bars represent the corresponding standard deviations. I-X stand for the 

demographic models used to simulate data, as described in Table 3.5.  

 

Figure 3.6. Comparing human-chimpanzee divergence distributions. Line with solid 

diamond marks represents the divergence distribution in human-chimpanzee-

orangutan genome alignment. Line with hollow square marks represents the 

distribution in a data set simulated with parameters estimated from ‘isolation with 

migration’ model (θ1 = 0.0050, θ2 = 0.00286, θA = 0.00298, m1 = 5.991, m2 = 0.000, T 

= 0.00440, α = 15). Line with hollow triangle marks represents the distribution in a 

data set simulated with parameters estimated from ‘isolation’ model (θ1 = 0.0052, θ2 = 

0.00050, θA = 0.00314, m1 = 0.000, m2 = 0.000, T = 0.00426, α = 15). 
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Figure 3.2. 
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Figure 3.5. 
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Figure 3.6. 
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Chapter Four 

Conclusions 
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When a new statistical method is developed to study an evolutionary problem, 

we must first ask if the method is capable of providing reliable estimates. Extensive 

tests on simulated datasets demonstrate that our new method generates very accurate 

estimates from whole-genome alignment data and is a useful tool for estimating the 

divergence process between closely related species. The simulation results also show 

that, in order to achieve more accurate estimates, several factors must be taken into 

account. First, mutation rate variation among loci introduces significant bias into the 

results, so it is essential to have an outgroup genome. The distance between the 

sample sequences and the outgroup sequence provides good information about the 

locus-specific mutation rates. Coupling this information with a newly designed 

mutation rate variation model greatly improves the accuracy of estimation. Second, it 

appears that including a number of loci that include a pair of samples from each 

individual population, helps to estimate the sizes of current populations and the rates 

of gene flow.  

 

The population parameters of human-chimpanzee divergence were estimated by 

applying our method to the genome alignment of human, chimpanzee and gorilla. The 

estimates for the speciation time and population sizes are within the range of several 

previous studies. A more striking result from this research is the observation of what 

appears to be a signal of historical gene flow from the chimpanzee to the human 

population, subsequent to the initial separation. We tested this divergence-with-gene-

flow model against the null model of allopatric speciation, and were compellingly 

able to reject the null model without gene flow.  The gene flow estimate for the 

reverse direction was zero. However, a marginally significant (-2Λ=6.91, p <0.005) 

signal of gene flow in this direction was discovered, when analyzing half-length data.  
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The ‘isolation with migration’ model is used in this research. Like many other 

population genetics models, the IM model is a simplification to real evolutionary 

history, based on a series of assumptions. Violating these assumptions in practice 

might lead to questionable results. For this research, a rather important assumption is 

that of no within-locus recombination. In an early paper (Innan and Watanabe, 2006), 

Innan and Watanabe reported that recombination could create the signal of gene flow. 

We argued against their point, because recombination events, by creating independent 

coalescent histories inside loci, are expect to reduce the variance of human-

chimpanzee divergence time among loci. Therefore, recombination should have only 

attenuated the signal of gene flow. Our simulation confirmed this argument, as 

analyzing datasets simulated with recombination did not lead to overestimating 

migration rates. In addition, the effect of violations of some other assumptions, 

including the ‘infinite sites’ mutation model and constant human-orangutan ancestral 

time, was studied. In summary, the simulation study found no bias in the estimates for 

gene flow and only minor deviation in the estimates for other population parameters. 

As a result, we concluded that the estimate of a non-zero migration rate from 

chimpanzee to human population is sound. 

 

If gene flow did exist during the human-chimpanzee speciation process, it 

suggests that divergent selection  might have played a role in the evolution and 

maintenance of reproductive isolation between humans and chimpanzees (Takahasi 

and Innan, 2008). In recent years, a number of studies (Navarro and Barton, 2003) 

(Osada and Wu, 2005) (Patterson et al., 2006) have been devoted to search for those 
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genetic regions subject to the selections that led to the speciation, namely ‘speciation 

genes’. Although the current research did not attack this problem directly, our new 

method works as a nice tool in searching for ‘speciation genes’. If a larger estimate of 

speciation time with two smaller estimates of migration rates is obtained from a group 

of genes, these genes are more likely to be under the influence of divergent selection. 

Based on this idea, we are planning to examine the possibility of chromosomal 

rearrangement regions serving as ‘speciation genes’. 

 

One limitation for the current research comes from the “Trichotomy Problem”. 

As reported by many studies (Satta et al., 2000) (Chen and Li, 2001) (Rannala and 

Yang, 2003) (Burgess and Yang, 2008), our next closest relatives, gorillas, split off 

only shortly before the human-chimpanzee speciation. Given the fact that the 

divergence times of many human chimpanzee orthologs are even older than the 

human-gorilla speciation time, it might be better to study the two speciation process in 

a joint effort. However, without an available gorilla genome, we are currently limited 

to the human-chimpanzee speciation. With the gorilla genome project in progress, we 

are planning to extend this method to a three-population model in the future. Some 

other interesting topics we would like to address are the female-male ratio of mutation 

rates and female-specific migration rates. Because of the different number of mitotic 

cycles genes experienced in the two sexes, the mutation rate in males are believed to 

be much higher than those in female. And in many situations of interspecies 

hybridization, gene flow is sexually asymmetric, involving males from one species 

and females from the other species, but not the reverse combination. This leaves a 

signal of unidirectional gene flow, as we observed in the speciation process for 

humans and chimpanzees. Both the female-male ratio and the female-specific 
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migration rates can be evaluated by comparing the divergence between X 

chromosomal and autosomal rates. A limitation of the current study for attacking this 

question is that we failed to collect a large enough number of loci from the X 

chromosome, which (at the moment) consists of a pair of chimpanzee sequences. We 

are searching for additional X-chromosomal data, and hope to be able to attack this 

issue in the near future.  
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