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ABSTRACT OF THE DISSERTATION  

OPTIMIZING DYNAMIC PORTFOLIO SELECTION  

by HALEH VALIAN  

Dissertation Director: Professor Mohsen A. Jafari 

In this dissertation, a control-theoretic decision model is proposed for an agent to 

“optimally” allocate and deploy its financial resources over time among a dynamically 

changing list of opportunities (e.g., financial assets), in an uncertain market environment. 

This control-theoretic approach is unique in the sense that it solves the problem at distinct 

time epochs over a finite time horizon. The solution is a sequence of actions with the 

objective of optimizing a reward function over that time horizon.  

While the above problem is quite general, we will focus solely on the problem of 

dynamic financial portfolio management. The dynamic portfolio model looks at the 

portfolio as a moving object to achieve a maximal expected utility for a given risk level 

and time horizon. We tackle this problem using Semi-Markov Decision Processes and 

develop an efficient solution methodology based on the Q-learning algorithm. The 

performance of the model is analyzed, and results from the model are compared to a 

known market index. 

The “optimal” portfolio management policy is then extended to configurations 

whereby only incomplete information is available. Furthermore, quality of information 

and its impact on the decision making process is assessed. Here the market environment 

is characterized by its volatility and price dynamics. The existence of other agents in the 

market place, who can act adversarial or collaborative, further complicates the underlying 



price dynamics. The complexity of interactions among different agents is an important 

challenge for the dynamic portfolio management problem. We fully examine this 

challenge using a game-theoretic approach to determine the optimal actions of non-price-

taking agents with and without a debt constraint. 
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CHAPTER 1 

INTRODUCTION AND PROBLEM DEFINITION 

1.1. Problem Definition 

A fundamental decision faced by an individual (or an agent in a virtual sense) is 

how to optimally allocate and deploy its available resources at each epoch during a time 

horizon in an uncertain environment. From a control-theoretic point of view, one can 

think of an agent as a controller that must optimize its reward function at each decision 

epoch by selecting appropriate actions from its action space. The controller must make 

decisions in lieu of the following challenges:  

1. The environment is only minimally controllable at its best, with a stochastic return 

function. Thus, the impact of the agent’s control actions may not necessarily be 

positively rewarding.  

2. There are other agents in the environment, which may act adversarially or 

collaboratively with respect to this agent, depending on their own reward systems.  

3. The agent solution space may be too large for the amount of time that it has to respond 

appropriately. Thus, it must seek simple and fast solutions. 

4. The agents are not fully aware of the underlying processes that generate rewards.  

While the above problem is quite general, we will focus solely on the problem of 

dynamic financial portfolio management. Here the environment is characterized by 

market volatility and price dynamics which are often controlled by factors outside of the 

agent’s action space; and other asset owners and managers which could dynamically act 

adversarially or collaboratively.   
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1.2. Major Contributions  

In this research, we tackle the dynamic portfolio selection problem using Semi-

Markov Decision Processes, and develop an efficient solution methodology based on the 

Q-learning algorithm. Our control-theoretic approach is unique in the sense that the 

problem is solved at distinct time epochs over a finite time horizon. The solution is an 

“optimal” sequence of actions with the objective of optimizing a reward function over 

that time horizon. Chapters 2 and 3 provide details of our methodology and give 

illustrative examples. In Chapter 4, we compare the optimal sequence of investors’ 

actions under complete and incomplete information configurations. We show how the 

quality of information influences the agents’ sequence of actions. Chapter 5 focuses on 

the development of game-theoretic and collaborative approaches among several agents.   

1.3. General Overview 

Markowitz (1952), in his pioneering work, formulated a single period portfolio 

management problem where decisions were made according to the mean and variance of 

the portfolio. In his model, all agents chose the same risky assets regardless of their 

attitudes toward risk. Furthermore, he assumed that the optimal portfolio was 

independent of the agent’s investment time horizon. In reality, different agents hold 

different portfolios, and a rational agent’s optimal portfolio is dependent on the 

investment time horizon. Many extensions of the Markowitz model exist in the literature.  

In the dynamic portfolio management problem, decisions are made more than 

once over a planning horizon. The decision epochs are not necessarily equally spaced 

over time. The original works on this topic were pioneered by Merton (1969) and 

Samuelson (1969) in continuous-time and by Fama (1970) in discrete-time.  These works 
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led to substantial insights into the properties of optimal portfolio policies. Prompted by 

these pioneering works, many researchers have been studying different aspects of the 

dynamic portfolio management problem.  It turns out that in most cases, the optimal 

portfolio weights over time cannot be derived.   

1.4. Objectives 

In this dissertation, a control-theoretic decision model is proposed for an agent to 

allocate and deploy its financial resources over time among a dynamically changing list 

of opportunities (financial assets) in an uncertain market environment. The problem is 

formulated as a Semi-Markov Decision Process (SMDP), and Q-learning is applied as a 

solution methodology.  We use real world data to experiment with the models and 

validate the reasonableness of our solutions. The impact of incomplete information and 

other agents’ actions on the optimal policies of our agent are also investigated, and 

solutions are presented.  

1.5. Motivation  

In recent years, there has been a growing interest in the development of resource 

allocation models, which enable agents to handle the uncertainty of future returns. This 

type of problem has been categorized as dynamic portfolio management in finance, 

which can also be referred to as asset management, investment management and money 

management, and can be approached by different techniques. 

 Different methods have been applied to asset management problems. While there 

have been many theoretical papers in recent years, the solutions often have complicated 

forms that are hard to interpret. The usual methods for solving dynamic portfolio 
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management are summarized in Figure 1.1. Dynamic programming, Martingale and 

Stochastic programming methods are not applicable to real world problems, since the 

computational time required for the generation of an optimal solution grows 

exponentially with the number of variables. Also, the increased data requirement limits 

the application of these methods to only a relatively small number of assets. In real life, 

however, portfolio managers have to choose profitable investments from among a large 

number of assets. 

Dynamic Portfolio 
Management 

Dynamic 
Programming 

Stochastic 
Programming  

Martingale  

Reinforcement 
Learning  

 

Figure 1.1: Methods for Solving Dynamic Portfolio Management 
 

Reinforcement learning method (known as Neuro-Dynamic Programming) solves 

problems with a large amount of data [XufreCasqueiroa 2006]. A number of 

reinforcement learning models have been applied to the dynamic asset management 

problem. These models include restrictive assumptions and simplifications of the market 

characteristics. Their objectives are the acquisition of an optimal action under which the 

agent achieves the maximal average reward from the environment [Lee 2002]. In our 

work, we tackle dynamic asset management in a reinforcement learning framework to 

determine the optimal sequential trading actions.  
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1.6. Scientific and Technical Merits of This Research 

A particularly challenging class of portfolio management problems involves 

dynamic cases where decisions are made at multiple time epochs during a planning 

horizon, with information on uncertain parameters revealed only incrementally but on a 

progressive basis over that horizon. Under uncertainty, the construction of models 

requires that we distinguish factual from non-factual (e.g., merely speculative) 

information, and find appropriate mechanisms to reconcile our knowledge [Tapiero 

1998].  

The methodology we are about to present is general, but in this research we focus 

our attention on its application to the dynamic portfolio management problem. We 

consider the problem of optimal portfolio choice in a financial market with one bond and 

n assets.  This problem is formulated as a Semi-Markov Decision Process, and Q-learning 

is used to solve it. Time is assumed to be continuous, so that system states change 

continually between discrete decision epochs.  This is unlike regular MDPs, where the 

states change only due to actions assumed in the model.  The dynamics of the model 

include the following steps: 

Step 1: Observe the historical data of asset prices at time 0. 

Step 2: Forecast the price of assets till time T. 

Step 3: Compute the agent’s wealth for this period. 

Step 4: Compute the agent’s expected utility function of wealth. 

Step 5: Optimize the expected utility function and find the agent’s optimal actions. 

Step 6: Perform the first optimal action.  

Step 7: Go back to Step 2. 
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The formulation of this methodology is explained in Chapter 2. 

1.7. Related Literature Review 

1.7.1. Agent 

A variety of definitions of “Agent” are found in the literature. Russell (1995) 

defined an agent as anything that can be viewed as perceiving its environment through 

sensors and acting upon that environment through effectors. The various definitions 

discussed in the literature involve a host of properties of an agent. Some of these 

definitions are listed in Error! Not a valid bookmark self-reference..1. 

Table 1.1: Definitions of Agents 

Name Definition 

Reactive Responds in a timely fashion to changes in the environment based on 

local information [Sycara 2003] 

Proactive Has ability to  take  the initiative; is not driven solely by events, but is 

capable of generating goals and acting RATIONALLY to achieve 

them [Wooldridge 1995] 

Goal-Oriented Does not simply act in response to the environment; plans to achieve 

goals with domain knowledge [Smith 1994] 

Autonomous Senses the environment and acts on it, over time, in pursuit of its own  

agenda so as to effect what it senses in the future [Franklin 1996] 

Learning Changes its behavior based on its previous experience [Franklin 1996] 

Communicative Communicates with other agents and solves problems by collaboration 

and synergy [Wooldridge 1995] 

Mobile Has ability to transport itself from one machine to others [Petrie 1996] 

Intelligent Attempts to make the best decisions based on a given performance 

measure [Vlassis 2003] 
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For the purpose of this research, an agent is defined as an intelligent being that 

has one or more goals and is capable of communicating with other agents in its 

environment. Furthermore, agents are goal-oriented and react to changes in the 

environment. 

1.7.2. Machine Learning 

Machine Learning addresses the question of how to program agents to 

automatically learn and improve with experience. Machine Learning algorithms fall into 

three groups with respect to the kind of feedbacks that the system/learner has access to 

[Duba 2000]: 

 Supervised Learning is based on a given sample of input-output pairs (also called 

the training sample), and the task is to find a deterministic function that maps any 

input to an output such that disagreement with future input-output observations is 

minimized. 

 Unsupervised Learning is based on the similarities and differences among the 

input patterns without any feedback from the environment. 

 Reinforcement Learning is a sub-area of machine learning concerned with how an 

agent ought to take actions in an environment in order to maximize its long-term 

reward. Reinforcement learning models attempt to find a policy that maps states 

of the world to the actions the agent should take in those states [Sutton 1998]. 

Learning by trial and error and optimal control came together in the late 1980s to 

produce the modern field of reinforcement learning. Minsky (1954) in his Ph.D. 

dissertation discussed computational models of reinforcement learning and described his 

construction of Stochastic Neural-Analog Reinforcement Calculators. In the 1960s, the 
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terms "reinforcement" and "reinforcement learning" were used in the engineering 

literature for the first time (e.g., [Waltz 1965], [Mendel 1966] and [Fu 1970]). 

The standard reinforcement learning model is depicted in Figure 1.2Error! 

Reference source not found.. In each step of the interaction of the agent with the 

environment, the agent computes the state S(t) of the environment based on the 

information it receives; the agent then chooses an action, a(t), to generate an output. The 

action changes the state of the environment to S΄(t), and the value of this state transition 

is communicated to the agent through a reward value, R(S(t),S΄(t), a(t)). The agent should 

choose actions that tend to increase the long-run sum of its reward values [Kaelbling 

1996]. 

In
fo

rm
at

io
n 

Agent 

Environment 

R
(S

(t
),

 S
΄(

t)
, a

(t
))

 

a(
t)

 

 

Figure 1.2 : The Standard Reinforcement Learning Model 
 

 

1.7.3. Markov Decision Process 

 
Markov Decision Processes [Bellman 1957] provide an elegant mathematical 

framework for modeling and solving sequential decision problems in the presence of 

uncertainty. Formally, a finite-state Markov Decision Process (MDP) is expressed as 

M=(SS,A,P,RR), where SS={S(1)... S(n)} is a set of states, A = {a(1)... a(m)} is a set of 
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actions, P:SS×A×SS→[0, 1] is a stochastic transition function of state dynamics 

conditioned on the preceding state and action, RR is a set of  reward functions, and R is 

immediate payoff function of state-action configurations [Puterman 1994]. An MDP 

represents a controlled stochastic process with described dynamics [Kveton 2006]. In the 

simplest form, the states and actions of an MDP are discrete and unstructured. The 

discrete-time MDP can be solved efficiently by standard dynamic programming methods 

[Bellman 1957], [Puterman 1994] and [Bertsekas 1996]. The explanatory grid for 

Markov models is shown in Figure 1.3. 

Do we have control over state transitions?  

No Yes 

No 
Markov Chain 

MDP 
Markov Decision Process 

C
an

 s
ta

te
s 

be
 

co
nt

in
uo

us
? 

Yes 
 

Semi-Markov Chain 

SMDP 

Semi-Markov Decision Process 

 
Figure 1.3: Explanatory Grid for Markov Models 

1.7.4. Portfolio Management or Asset Management 

Traditionally, investment is defined as the current commitment of resources in 

order to achieve later benefits [Luenberger 1997]. Portfolio management is a decision 

process of dividing the total investment fund among some major asset classes such as 

equities, bonds, cash, options, etc [Zhao 2000]. To have a good understanding of 

portfolio management, first we should look at the definition of “portfolio” in the 

literature. Morgan Stanley's Dictionary of Financial Terms offers the following 

explanation: “If you own more than one security, you have an investment portfolio. You 
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build the portfolio by buying additional stocks, bonds, mutual funds, or other 

investments. Your goal is to increase the portfolio's value by selecting investments that 

you believe will go up in price.” 

For some investments, such as bonds, the amount of money to be gained in the 

future is known. However, in most situations we do not know the amount of money to be 

gained later, and its determination is complex because stock returns are very often 

volatile as stated by Grossman et. al. (1981). Over the period of 1871 to 1996, the 

standard deviation of real annual continuously compounded stock returns in the U.S. was 

17.4% [Brennan 2001]. Also the prediction of future price of an asset is complex since all 

of the available information is already reflected in the history of past prices. 

Essential to portfolio management theory is the quantification of the relationship 

between risk and return, and the assumption that investors must be compensated for 

assuming risks [Downes 2006]. Markowitz formulated the portfolio problem as a choice 

between the mean and variance of a portfolio of assets [Markowitz 1952]. This approach 

is widely utilized because of its simplicity. Although this model has led to some 

important results, such as capital asset pricing, its simplicity is its major shortcoming 

[Zhao 2000]. Considering just the mean return and variance of return of a portfolio is an 

oversimplification of the problem at hand. Higher order moments, if included, could 

provide a more complete description of the distribution of portfolio returns [Elton 1997]. 

In addition, the Markowitz model was developed to find the optimum portfolio when an 

investor is concerned with return distributions over a single period. A major theoretical 

problem here is how to modify and extend the single-period model to multi-period 

problems. Also, the existing solutions to this problem commonly make the assumption of 
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perfect information; i.e., they assume that investors are fully aware of the underlying 

processes that generate dividends or returns. Yet it is clear that investors are uncertain 

about the stochastic process generating stock returns and consumption [Brennan 2001].  

The multi-period portfolio problem is generally hard to solve; nevertheless, in the 

literature various approaches have been developed for its solution. Examples include 

Dynamic Programming (DP), Martingale, Stochastic Programming and Reinforcement 

Learning. The traditional approach for solving dynamic portfolio optimization problems 

is dynamic programming (DP). However, this approach suffers from of dimensionality: it 

cannot handle high dimension problems and requires an exact model of the environment, 

(see [Samuelson 1969], [Richard 1975], [Kim 1996], [Lioui 2001], [Wachter 2002] and 

[Liu 2007]).  

As a result of the difficulties encountered in DP, there has been considerable 

interest in the application of the Martingale approach. This interest was generated by 

Harrison in 1979, and was applied by [Karatzas 1987], [Pliska 1986], [Cox 1989], [Basak 

1995], [Grossman 1996], [Detemple 2003] and [Cvitanic 2003]. This approach is 

implemented if markets are sufficiently “complete”, that is, if individuals have full 

information about the pricing of future states. The degree of market completeness is a 

major challenge for the practical validity of this approach. It works by transforming a 

dynamic problem into an optimizing invested wealth problem. It computes the optimal 

amount for investment and consumption, but not the optimal trading actions [Han 2005]. 

Another class of approaches uses Stochastic Programming. These approaches 

provide a useful tool for discrete space approximation with many constraints on 
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investment strategies [Zhao 2000].  They require additional assumptions about the 

stochastic processes that the agent cannot control.  

For all the above-mentioned approaches, the transaction cost should be considered 

since in a more realistic market model, brokerage fees have to be paid for each 

transaction. Also, the optimal strategy without transaction costs entails an infinite number 

of transactions [Merton 1969]. To account for this, some papers considered a market 

model with transaction costs (such as: [Magil 1976], [Taksar 1988], [Akian 2001], [Davis 

1990], [Korn 1998] and [Øksendal 2002]). In this research, we consider the transaction 

cost in the model of the dynamic portfolio management problem.  

1.7.4.1. Agents in Portfolio Management and Financial Markets 

 
The use of agents is certainly not new to financial markets and portfolio 

management [Grossman 1976]. LeBaron (2006) mentioned several reasons why financial 

markets are particularly appealing applications for agent-based methods. First, financial 

time series contain many curious puzzles that are not well understood. Second, financial 

markets provide a wealth of pricing and volume data that can be analyzed.  

In a portfolio management, an agent is a decision maker that solves an 

optimization problem. For example, buyers and sellers are two commonly encountered 

types of agents. Snarska et al. (2006) introduced an automatic decision-making system, 

which allows a single agent to use complex methods of Modern Portfolio Theory. 

Gode and Sunder (1993) were interested in just how much “intelligence” was 

necessary to generate the behavior of many real trading experiments. They ran a 

computer experiment with agents who will not bid more than what the asset is worth in 

redemption value. Their results show that in most cases the agents allocate the assets at 
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over 97% efficiency which is very close to that for human [LeBaron 2000]. This means 

that the agent does not need to be highly intelligent if it follows the structure of the 

market.  However, agents in financial markets may change over time in response to past 

performance. Lettau (1997) implemented many of the ideas of evolution and learning in a 

population of traders in a very simple setting that provided a useful benchmark.  

1.7.4.2. Markov Decision Process in Portfolio Management 

 

Norman et al. (1965) applied the Markov Decision Process to the portfolio of an 

insurance company, since such a company has to make decisions each day about how 

much of its effective bank balance should be invested, in light of random claims, 

expenses, and call-offs by stockbrokers. The state of the system on any given day is 

defined by its effective bank balances. The possible states at the next decision epoch 

depend upon the above events and on the decisions made previously. Norman’s objective 

function was to maximize the growth rate of the company. This is similar to the problem 

of Bartmann (1980), who applied the Markov Decision Process to credit institutions. 

Credit institutions have to make daily decisions to figure out how much, and in what 

form, they should hold cash, in light of possible robberies, and when they need to ask for 

shipment of cash when shortages appear imminent [Bartmann 1980]. Wessels (1980) also 

formulated the problem of how much money the bank should hold.  The states of the 

system on any day are its cash levels. The possible states at the next decision epoch 

depend upon current deposits and withdrawals, and on the decisions made. 

The Markov Decision Process was applied by Krawczyk (2000) to optimize the 

portfolio management problem. Also, the weak Euler scheme was used to make the time 
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evolution of a portfolio discrete, and an inverse distance method was used to describe the 

transition probabilities. The approximating Markov decision problem was solved by 

value iteration, and numerical solutions to a few specific portfolio problems were 

obtained, with varying degrees of accuracy. 

Labbi et al. (2007) described a new tool, the IBM Customer Equity Lifetime 

Management Solution (CELM) which maximizes the return on investment and minimizes 

the risks (uncertainty). Labbi et al. (2007) applied the Markov Decision Process in order 

to find the optimal allocation of marketing resources. 

Derman et al. (1984) considered an investment problem as a finite-horizon Semi-

Markov stochastic dynamic program to maximize expected profit over a finite horizon. 

He computed the amount of available resources that should be invested as soon as an 

opportunity presents itself. These opportunities occur with certain probabilities at any 

given time. At any decision epoch, the state of the system is defined by the level of 

holdings available for investment. The only random factor is the time interval to the next 

investment opportunity [White 1993]. 

1.7.4.3. Machine Learning in Portfolio Management 

 
There are two basic steps involved in portfolio management. The first step is the 

prediction of asset prices and the second step is the allocation and management of assets. 

Papers on machine learning in portfolio management can be classified into two groups: 

predicting future asset prices and managing the assets.  

Many machine learning methods have been applied to predicting future asset 

prices. The prediction of asset prices is an aim of supervised learning, which models the 

relationship between the input and output [Duda 2000]. Since Artificial Neural Networks 
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(ANN) is not sensitive to unusual data patterns, there has been a lot of interest in 

applying it to the prediction of asset prices. ANN was used to predict asset prices by 

Beltratti et al. (1992), Armano et al. (2005), Lee (2004) and Saad et al. (1998). Kuo et al. 

(1998) applied Fuzzy Delphi and Fuzzy Neural Networks and constructed the informative 

macro-economic indicators by a fuzzy equation. Saad et al. (1998) compared time delay, 

recurrent, and probabilistic Neural Networks for the stock trend prediction.  

There is a wide range of clustering techniques for stock selection, such as 

Random Matrix Theory [Pafka 2004], Chaotic Map Synchronization [Basalto 2005], 

Potts Magnetization Model [Kullmann 2004], Transfer Entropy [Baek 2005] and Support 

Vector Machine [Fan 2001]. For example, Fan et al. (2001) used the Support Vector 

Machine as a classifier of stocks in the Australian stock market, by formulating the 

problem as a binary classification.  

On the other hand, there has not been much interest in applying supervised 

learning methods to asset management since these models cannot cover goals of asset 

management. These methods basically try to minimize errors between the input and the 

predicted output of actions, without considering the effect of action. The major 

alternative method is reinforcement learning, which tries to achieve the maximal reward 

from the environment by considering the effect of the original decision.  

Asset management has been intensively studied in terms of reinforcement 

learning. Gao et al. (2000) presented a solution technique for portfolio management 

scheduling, namely, how to switch between two price series within a Q-learning 

framework. Moody et al. (2001) formulated portfolio management using direct 

reinforcement but they focused only on how to switch between a few two-price series. O 
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(2006) and Neuneier (1998) made assumptions about the market to make the problem 

manageable in a reinforcement learning framework. Neuneier (1998) formulated the 

financial market as MDP under some assumptions and simplifications about the market’s 

characteristics, and one year later he modified Q-learning by adding preference to the risk 

avoiding tendency and to make decisions with less risk [Neuneier 1999]. He focused on 

how to change one’s position to either Dollar or Deutsche Mark. Xiu et al. (2000) 

proposed a static portfolio management system using Q-learning, and used two 

performance functions, absolute profit and relative risk-adjusted profit [Xiu 2000]. 

Most of these papers have treated the problem of asset allocation in a single 

period. Some others have formulated asset allocation between multiple markets or by 

considering multiple agents. In this work, in contrast, we aim at solving the dynamic 

portfolio management problem in a single market with one agent. 
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CHAPTER 2 

PROBLEM FORMULATION 

 

2.1.  Problem Definition 

Dynamic Portfolio Management or Dynamic Asset Management is the investment 

of liquid capital in various trading opportunities during a given time horizon. The 

investor’s ultimate goal is to optimize some relevant measure of the trading system 

performance, such as return, risk, or expected utility function value. In this research, the 

agent tries to find actions which maximize expected the utility function value for a given 

risk level and time horizon.  

2.2. Problem Formulation Contribution  

In this chapter, we give a rigorous mathematical formulation of the problem. We 

construct a policy (sequence of actions) that is optimal in the sense that, starting from any 

state, it yields the maximum possible objective function that can be achieved from that 

state. The dynamic portfolio management problem is formulated as the following 

optimization problem:  

 Maximizing the expected discounted utility between time zero and T 

 Subject to: everything is reinvested and there is no consumption or labor 

income during the investment horizon. 

2.3. Defining the Model 

The asset allocation or portfolio management problem consists of determining 

how to allocate the available capital to different assets. As Gennotte (1986) showed in a 
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similar setting, the investor’s decision problem can be divided into two separate 

problems: an inference problem, in which the agent updates its estimate of the future 

value of the asset’s price, and an optimization problem, in which it uses its current 

estimate to choose an optimal portfolio. 

Here, optimizing the asset allocation is further modeled in two steps. In the first 

step, the agent estimates the price of all assets. It is assumed that there are only two types 

of assets in the market: risk-free assets and risky assets. A risk-free asset, such as a bank 

account or a bond, offers a known return if held over some period of time. This asset has 

a deterministic future value and return. A risky asset has a stochastic future value and 

return. We assume that the rate of return of risky assets is governed by Geometric 

Brownian Motion. The use of Geometric Brownian Motion to model asset price 

fluctuations was proposed by Samuelson in 1969 and became widely accepted through 

the work of Merton in 1990. 

In the second step, the agent assigns a value to all possible choices using the 

expected utility function of wealth. Then it tries to find a policy that maximizes the 

expected value of utility. The optimal policy determines fractions of wealth invested in 

each asset over a finite time horizon. The agent invests its wealth in the market among 

available assets and rebalances its portfolio at any time by incurring some transaction 

costs. This means that the agent can transfer funds from one asset to other assets at any 

time. However; there is a penalty for this transaction.  

Our model is an abstraction of the real world and, as such, is based on some 

assumptions. The following simplifications do not necessarily restrict the generalization 
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of the proposed methods, but make our models more tractable from a mathematical 

standpoint. The assumptions are:  

 The agent is small and does not influence the market by its trading. 

 The agent always invests the total amount of its wealth. 

 There are no taxes. 

 There are no restrictions requiring the agent to buy or sell assets at their market 

price. 

The first assumption is relaxed in Chapter 5, where we discuss the optimal portfolio 

management while considering the impact of agent action. 

2.4. Asset Price 

As mentioned earlier, the first step of portfolio management is forecasting the 

future price of all available assets in the market. The possible future asset prices can be 

generated by one of the scenario-generation models which are discussed in Chapter 3.  

In this research, scenarios are generated for the key parameter of a portfolio 

investor (future assets price) by Geometric Brownian Motion model. Osborne’s paper 

showed that the rate of return on asset prices in the market varies in a similar fashion to 

molecules in Geometric Brownian Motion (GBM) [Osborne 1972]. The stochastic 

process of the asset price satisfies the following stochastic differential equation:  

tdBdt
ts

tds  
)(

)(
               (2.1) 

or tdBtsdttstds )()()(   ,              (2.2) 

where Bt is a Brownian motion, s(t) is the asset price, and ds(t) represents an infinitesimal 

change in the asset price. In Equation (2.1), proportional changes in the asset price are 
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assumed to have drift   and volatility , which is the standard deviation of asset price 

change. dBt is the instantaneous change of Bt and has a drift rate of zero and a variance 

rate of one. Therefore, the expected value of Bt is equal to its current value. 

In Equation (2.2), the first term on the right hand side implies that ds(t) has an 

expected drift rate of )(ts  per unit time which is the predicted movement during 

interval dt.  tdBts )(  is the random shock term and represents the noise or variability in 

the unpredictable path followed by s(t).  This term is the underlying uncertainty in the 

model during dt.  By using Ito’s lemma [Luenberger 1997], the following process is 

obtained: 

tdBdttsd 


  )
2

()(ln
2

.  

The equation has an analytic solution: 

tBt
ests




 


)
2

(
2

)0()( , 

where s(0) is the initial value. s(t) is a log-normally distributed random variable with 

expected value ))
2

exp(()0())((
2

tBtstsE 


   and variance . )1())((
22

0
2  tt esetsVar 

At this point it is natural to ask how well this model fits actual asset price 

behavior. First, notice that the price remains positive in this model, which is also the case 

in the real world. Second, the asset prices in the above model follow a lognormal 

distribution. Based on an analysis of past asset price records, the price distributions of 

most assets are actually quite close to lognormal [Luenberger 1997]. In Chapter 3, other 

asset price models will be explained and appropriate models for different situations will 

be discussed.  
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2.5. Asset Management 

The asset management is modeled here by a Semi-Markov Decision Process 

(SMDP). SMDP provides solutions for stochastic decision-making problems where 

outcomes are only partially under the control of the decision maker. SMDP can be 

described by a finite state set, SSS; a finite set of admissible control actions, aA, for 

every state; a set of transition probabilities, pS,S '

)

(a)

(ap

, which describes the dynamics of the 

system; a return function, RRR, and a function giving probability distribution of 

transition time for each state-action, F. More precisely, a Semi-Markov Decision Process 

is a controlled stochastic process characterized by a set of states where in each state there 

are several actions from which the decision maker must choose. For a state S and an 

action a, a state transition function determines the transition probabilities to the 

next state. The agent wants to optimize its total rewards by taking appropriate actions.  

',SS

2.5.1. States 

The state of SMDP at period t is represented by S(t), which includes prices and 

positions of holding assets.  denotes the price of asset i at time t, and defines 

the agent’s holding number or its holding positions of asset i at time t. These variables 

describe the state of the system completely for the purpose of portfolio management. If 

this information is available for the current time, then it is not necessary to know 

anything more about the history of the process. Explicitly, we write S(t) as: 

)(tsi )(txi

S(t) =     )(),...,(,)(),...,( 1111 txtxtsts nn  . 
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The state space is the set of possible situations that the agent may face. The state space SS 

of the SMDP consists of all possible combinations of prices, and weights for all possible 

assets.  

2.5.2. Actions 

The action space A consists of all possible actions that an agent can possibly take. 

An action means the trading volume of each asset. If there are n risky assets and one risk-

free asset, the action a(t)  has an n+1 element vector defined as:  )(),...,()( 11 tatata n , 

where  is the change in the holding of asset i at time t. Each agent has a given initial 

endowment, , of the asset, and it can continuously trade the asset by choosing its 

action, 

)(tai

)(

)0(x

a ; hence, at time t its position, )(tx , is: 

 daxx
t

t )()0()(
0
 . 

2.5.3. Transitions 

At each decision epoch, the SMDP either stays in the same state or makes a 

transition to a new state, depending not only on the action taken, but also on the 

stochastic nature of the environment. If the SMDP is in state S and action a is chosen, the 

probability that it will make a transition to state S′ is expressed as: . )(', ap SS

2.5.4. Rewards  

Suppose that the system is originally observed in state S and the action a is 

applied. The reward is then given by: 
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)()(),',( ',
00

atdFdkwueaSSR SSk

T
k

t
   , 

where )(', atF SS  is the probability distribution (given the action a) that the transition 

from S to S′ occurs within time t, and u(wk) is the utility function of wealth at time k. 

Since time is continuous, the discount factor for an interval of length k will be given by 

the exponential function , where ke    is the interest rate.  

2.5.5. Decision Epochs 

The manner in which information flows in the financial market makes the “time 

interval” different on different trading days. On some days an agent may have more 

volatile markets than on others. Changing volatility may require changing the basic 

observation period. The agent may choose finer time intervals depending on the level of 

volatility. Thus, asset price as a random variable should be defined over a continuous 

time.  

One factor to take into account in making decisions is the length of the time 

horizon. But by using an appropriate utility function, the dependency between the time 

horizon and the optimal investment strategy can be reduced. Samuelson (1969) found that 

the optimal investment strategy is mostly independent of the time horizon by using a 

logarithmic function for the utility. Decisions are made at the beginning of each time 

period over a predetermined planning horizon, here assumed to be T. It is assumed that 

time is continuous: . The infinitesimal intervals are considered and symbolized 

by . The set of decision epochs is defined as:  t = 0, dt , 2 ... T.  For each  we 

observe the state, S, choose an action, a, and receive a reward, R, which is a function of 

 Tt ,0 

dt dt dt
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the state and action taken at that decision epoch. Uncertainties are assumed to occur 

within each time period. The basic setup is shown in Figure 2.1 [Mulvey 2006]. 

 

0         dt          2dt                                      T 
 Time  

Decision at the beginning of each time period 

 

Figure 2.1: The Basic Setup for a Multi-Period Investment Model 
 

2.5.6. Utility Function 

In life, there are many situations where agents face two or more choices. The 

economic “theory of choice” uses the concept of a utility function to describe the way 

agents make decisions when faced with a set of options. A utility function assigns a value 

to all possible choices faced by the agent. The higher the value of a particular choice, the 

greater the utility derived from that choice.  

Here, the utility function (u) is defined on the wealth, and its output is a real 

value. The agent’s wealth can be defined as: ,  where 

 is the fraction of wealth invested in the risky asset i in period t; is the 

transaction cost of action , and  is the price of asset i at period t.  

 



n

i

iii
t tactstxw

1

))(()()(

((ac i)(txi ))t

)(tai )(tsi

The specific utility function used varies among individuals, depending on their 

individual risk tolerance and their individual financial environment. However, most 
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agents are more sensitive to losses than to gains. Utility functions of wealth can capture 

various kinds of risk preferences. Broadly speaking, the aim of our agent is to maximize 

its expected utilities. The agent does not merely wish to maximize the immediate utility 

in the current state, but wishes to maximize the utilities it will receive over a period of 

time in the future.  Some popular utility functions are shown in Figure 2.2 [Luenberger 

1997]. The exponential utility function is defined as: for a>0, and the 

logarithmic utility function is defined as: 

taw
t ewu )(

)ln()( tt wwu   for wt>0. If there is any positive 

probability of obtaining an outcome of 0, the expected logarithmic utility function will be 

-∞. The power utility function is defined as for b≤1 and b≠0.  The Quadratic 

utility function is defined as  for some parameter b>0. 

b
tt bwwu )(

2
tbw)( tt wwu 

 

 

Figure 2.2: Some Popular Utility Functions 
 

The main purpose of a utility function is to provide a systematic way to rank 

alternatives that captures the principle of risk aversion [Luenberger 1997]. Risk aversion 

is related to the behavior of an agent under uncertainty. It is measured as the additional 

u(w)

w
Exponential 

Logarithmic
Quadratic

Power
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marginal reward that an agent requires in order to accept additional risk. In other words, 

it measures how much utility the agent wants to gain for its investment in risky assets.  

The risk aversion coefficient is related to the magnitude of the bend in the utility 

function. Arrow and Pratt proposed the following formula for a risk aversion coefficient: 

Arrow- Pratt coefficient of relative risk aversion = 
)('

)("

t

tt

wu

wuw
  [Damodaran 2008], 

with   as the wealth accumulated at the end of  period t. is the second derivative 

of the utility of wealth, and it measures the magnitude of the bend in the utility function. 

 is the first derivative of the utility of wealth, and it measures how the utility 

changes as wealth changes. Pratt and Arrow proposed this formula, since the second 

derivative of the utility function measures the change in the utility itself changes as a 

function of the wealth level.  appears in the denominator to arrive at a normalized 

Arrow-Pratt coefficient.  

tw

)t

)(" twu

(' wu

)(' twu

Decreasing this coefficient indicates that the proportion of wealth that agents are 

willing to put at risk increases. For many utility functions, the Arrow- Pratt coefficients 

decrease as the wealth increases. This makes sense, since the risk-seeking of an agent 

depends on the agent’s wealth. Many agents are willing to take more risk when they are 

financially secure.    

The risk aversion of an agent depends on the agent’s feelings about risk and its 

current financial situation. The appropriate risk factor and utility function for wealth 

increments should be determined by an agent’s internal feelings toward risk and by an 

agent’s financial environment.  
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Since power utility functions capture varying degrees of risk sensitivity, in this 

research, the power utility function is selected: 









1
)(

1
t

t
w

wu .  The Arrow-Pratt 

coefficient of relative risk aversion for this utility function is defined as:  


)('

)("

t

tt

wu

wuw
. 

This coefficient of risk aversion, β, is constant. If β has a value close to one, the utility 

function will be logarithmic. The case β=0 is risk-neutral, and the utility function of 

wealth corresponds to absolute wealth or profit, while the larger values of   β correspond 

to greater sensitivity to loss.  In this research, β=1 has been considered; this means that 

agents will invest the same percentage of their wealth in risky assets as they get 

wealthier. 

2.5.7. Objective Function 

The agent’s problem is how to choose portfolio strategies in order to maximize 

the objective function. The objective function is defined in one of the following ways 

based on the agent’s situation [Han 2005]: 

 When the agent lives forever, the objective function is: 










  dtwueEMaxF t

t )(
0

 , 

where E indicates the expected value and is the discount factor. te 

 When the agent makes a decision at time T, the objective function is:  

 )( TwuEMaxF  . 
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 When the agent makes its decision at random time T
~

, where T
~

is an exponentially 

distributed random variable, the objective function is: 

   .  )( ~
T

wuEMaxF 

 When the agent makes its decision during the time horizon 0 to T, the objective 

function is: 









  dtwueEMaxF t

T
t )(

0

 . 

In this research, the agent makes a decision at each point in time during a time 

horizon. Therefore, the objective function is considered as maximizing the expected 

utility or reward function between time zero and T. The dynamic portfolio management is 

formulated as:  

.0)0(:

)(
0















 

j

j

j

t

T

t

saSt

dtueEMax w

 

The constraint shows that everything is reinvested and there is no consumption or labor 

income during the investment horizon. 

2.6. Solving the Model 

The future evolution of the process depends on the current state and on the policy that 

will be followed. If the process is in state S and the policy   is followed, the expected 

return will be written as . That is, )(SV

)()'()(),',()()( ',
' 0

',
'

', atdFSVeapaSSRapSV SS
SSS

t
SS

SSS
SS 


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





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and )()(),',( ',
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atdFdkwueaSSR SSk

T
k

t
    . 

The optimal value function for an SMDP satisfies the following Bellman optimality 

equation: 


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
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This model can be solved by Q-learning:  

)())'(,'()(),',()(),( ',
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
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. 

),( aSQ  represents the discounted cumulative reward of doing action a in state S and 

then subsequently following policy  . The optimal Q-function corresponding to state S 

and action a is: 

)()','()(),',()(),( ',
*

'' 0
',
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',

* max atdFaSQeapaSSRapaSQ SS
AaSSS

t
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This leads to the following Q-learning:  
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where k is the learning rate and ),',(
1

aSSR
e




 is the sample reward received at   

time units, and  is the sample discount on the value of the next state given a 

transition time of  

e

  time units. 
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2.7. Validation of the Model 

For the validation of the model, the Sharpe Ratio is used. Two strategies will be 

considered: always investing in the risk-free asset, and the buy and hold strategy. The 

Sharpe Ratio is a measure of performance of a portfolio over a given period of time. The 

important aspect of the Sharpe Ratio is that it takes into consideration the portfolio risk.  

In order to use the Sharpe Ratio, three factors must be known: the portfolio return, the 

risk-free rate of return, and the variance of the portfolio. The portfolio return is equal to 

the sum of all individual assets’ weights in the portfolio, times their returns. The variance 

of the portfolio is the sum of the squared weighted variances of the individual assets, plus 

two times the sum of the weighted pair-wise covariance of the assets. For the risk-free 

rate of return, the average return (over a period of time) of some government bonds or 

notes may be used. The Sharpe Ratio has the following formula: 

Sharpe Ratio= (Portfolio Return - Risk-Free Return) / Portfolio Variance 0.5 . 

 

2.8. Numerical Example 

Here, a very simple numerical example is considered and in Chapter 3 another 

example is discussed. Suppose that there are two choices for investment: one risk-free 

and one risky asset.  The annual interest rate of the risk-free asset has been set to 2%. The 

Kinder Management stock is considered as a risky asset. The historical value of the 

closing price of this stock is shown in Figure 2.3. For the purpose of testing, the 

observations of stock price from 5/16/2006 to 5/16/2007 are set apart. The remaining data 

are used for estimating of parameters of asset price. Figure 2.4 shows the histogram of 
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changes of logarithm of Kinder Morgan Management stock price in time period 

5/16/2001 to 5/16/2006.  
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Figure 2.3: Observed Price of Kinder Management Stock 
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Figure 2.4: Histogram of Logarithm Changes of Kinder Morgan Management Stock  
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The graph in Figure 2.4 is quite close to log-normal, and on the righthand side tail 

the observed distribution is larger than a normal distribution. Since the period considered 

in this example is too short, there are not any significant jumps in the historical data.  The 

future stock price is generated by the Geometric Brownian Motion Method using 

tBt
ests




 


)
2

(
2

)0()(  with parameters estimated at µ=.0638, and σ2=.005513. These 

parameters were estimated by the Curvefit Toolbox of MATLAB. 

The utility function is considered as 

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)))(()()(( 1tactstx
. Let us consider that =1 

and =0. The utility function reduces to . If the discount factor is 0.1 

and the objective function for trading between time zero and 12 is considered the 

objective function is: .  
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At the end of each month, the agent must decide about the amount of risky asset. We test 

different approaches as: buy and hold strategy, investing always on the risk-free asset and 

Q-learning. To compare these approaches, we consider several performance measures, 

computed within 5/16/2006 and 5/16/2007. These performance measures are profit, and 

Sharpe Ratio. For this data set, the main results obtained with Q-learning are: 

profit=1.459 and Sharpe Ratio=2.257. The results obtained from buy and hold strategy 

are: profit=1.21 and Sharpe Ratio=1.363. In the case of investing in risk-free asset, the 

profit is 1.019. This shows Q-learning solution gives us a portfolio with a higher profit 

and a higher Sharpe Ratio.  
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CHAPTER 3 

ANALYZING THE RESULTS 

3.1. Major Contributions 

In this chapter, we review how a dynamic portfolio management problem may be 

effectively solved by using Q-learning. The more general case of the methodology is 

discussed, and an illustrative example is given.  The performance of the model is 

analyzed, and results from the model are compared to a known market index. 

3.2. General Overview 

Dynamic programming is a common approach for solving optimal control 

problems. However, for problems with large state or solution space, it is not effective. On 

the other hand, Q-learning can compute the optimal course of actions to be learned 

directly, without any requirement for modeling the environment or remembering previous 

actions for more than a short period of time. We find that the Q-learning framework 

enables a simpler optimization problem representation, avoiding Bellman’s curse of 

dimensionality.  

Dynamic Portfolio Management requires making sequential decisions in 

stochastic environments to maximize the expected utility function of wealth for a given 

finite horizon. The optimization problem requires taking into account the current state of 

the environment. In this model, state S(t)=(s(t),x(t)) consists of element s(t), which 

characterizes the assets price, and element x(t), which characterizes the allocation of the 

wealth at time t. Note that prices of assets are the only variables which are independent of 

portfolio decisions. Therefore, asset allocation is a control problem and may not be 

reduced to a pure prediction problem. 
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Figure 3.1 demonstrates our modeling paradigm of optimizing the expected utility 

function of a dynamic portfolio. The model iterates by the agent interacting with the 

environment through state sequence S(t), selecting actions a(t), and evolving to the next 

state S′(t+dt). There is a cost c(a(t)) for the agent’s actions. This problem is complicated 

because the investor revises the decision (a(t)) at every time step. 

S’(t+dt) 

c(a(t)) 

a(t)

S(t) 

s(t) 
 

x(t) 

s(t+dt) 
 
x(t+dt)=x(t)+a(t) 

S(t): state of system 
s(t): asset price 
x(t): number of holding assets 
c(a(t)): transaction cost of chosen action 
  : stochastic transition 
  : deterministic transition

 

Figure 3.1: Model of Dynamic Portfolio Management 
  

3.3. Dynamic Portfolio Management 

To obtain an optimal portfolio, the investor agent has to solve an optimization 

problem consisting of two steps: (1) estimating the future state (S(t+dt)), and (2) 

maximizing the expected utility function. In the first step, we need only to estimate the 

asset price, since the number of holding assets has a deterministic transition. In the 

second step, based on the estimated asset price, a portfolio is formed that takes into 

account the risk level that the investor is willing to choose.  

In the following sections, the asset pricing model (Section 3.3.1) and the search 

for an optimal portfolio (Section 3.4) are explained. With real financial data, we find that 
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our approach based on Q-learning produces more profit than an approach based on the 

market index.  

3.3.1.  Asset Price and Scenario Generation 

The first step of portfolio management is to forecast the future prices of all 

available assets in the market, s(t+dt). These prices can be forecasted by one of the 

scenario generation models. In general, a scenario generation model includes some or all 

the following steps [Domenica 2007]:  

(a) Model assumptions, which explain the behavior of the random parameters (for 

instance, econometric models for interest rates, etc.). 

(b) Estimation/calibration of parameters for the chosen model, using historical data 

and expert opinions. 

(c) Generation of state trajectories according to the chosen model, or discretization of 

the distributions using approximation of statistical properties.  

Some of the models used in scenario generation [Domenica 2007] are given in Table 3.1.  
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Table 3.1: Models Used in Scenario Generation 

Purpose Methods 

Econometric Models: 

Auto Regressive: (AR) 

Moving Average: (MA) 

Auto Regressive Moving Average: (ARMA) 

Generalized Auto Regressive Conditional Heteroscedasticity: (GARCH) 

Vector Auto Regressive: (VAR) 

Bayesian VAR 

Reduced Rank Regression 

Diffusion Processes: 

Simple Asset Price Models 

Mean Reverting Models 

Ornstein-Uhlenbeck Model  

Geometric Brownian Motion Model 

Square Root Brownian Motion Model 

Generation of 
Data 
Trajectories 

Other Method: 

 Neural Networks 

Statistical Approximation: 

Property Matching  

Moment Matching 

Non-parametric Methods 

Discretization 

Sampling: 

Random Sampling 

Stratified Sampling 

 

In recent years, different diffusion process models have been successfully used. 

Typically, these models deliver the future values of asset prices based on past data. Each 

model is appropriate in different situations, as follows: 
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3.3.1.1. Simple Asset Price Model 

The Simple Asset Price Model is appropriate in practice if, over time, the 

behavior of the asset prices is stable, trends and variations do not change, and there are no 

jumps in asset prices. In this case, the drift and diffusion coefficients are independent of 

the information received over time. This model uses:  

tdBdttds  )( , 

where Bt is a Brownian motion, and ds(t) represents an infinitesimal change in the asset 

price. The instantaneous change in Bt (dBt) has a drift rate of zero and a variance rate of 

one. In this formula, the coefficients   and   are constants in time and do not depend 

on the information set It. The behavior of ds(t) seems to fluctuate around a straight line 

with slope . The size of the diffusion determines the extent of the fluctuations around 

this line.  

3.3.1.2. Mean Reverting Model 

The Mean Reverting Model is appropriate when the asset price has an equilibrium 

level. There is a major difference between the Mean Reverting Model and the previous 

model: the deviations around the trend for the Mean Reverting Model are not completely 

random. If the prices of assets get plucked away from their non-event levels, they revert 

to more or less the levels they started from, but it may take some time. This model uses: 

tdBtsdttstds )())(()(   . 

As s(t) falls below some mean value  , the drift term ))(( ts  will become positive. 

This makes ds(t) more likely to be positive, with s(t) eventually approaching towards . 

The rate of mean reversion is controlled by parameter  >0. As this parameter becomes 
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greater, the excursions become shorter. Every time the term tdBts )( gives the asset 

price a push away from , the drift term acts in such a way that the asset price starts 

heading back to . 

3.3.1.3. Ornstein-Uhlenbeck Model 

The Ornstein-Uhlenbeck Model is a special case of the Mean Reverting Model. It 

can be used for asset prices that fluctuate around zero. This model uses: 

tdBtsdttt )()() sds(   , 

where  is the rate of mean reversion. As this parameter increases, s(t) reverts towards 

zero at a faster rate.  

3.3.1.4. Geometric Brownian Motion Model 

The Geometric Brownian Motion Model is appropriate when there is an 

exponential trend and the variance increases over time, or the graph of historical data is 

close to log-normal distribution. This model is somewhat more realistic than other asset 

price models. The Geometric Brownian Motion model satisfies the following formula: 

tdBtsdtt )()) ts(ds(   . 

The drift of this model is )(ts , and its diffusion is )(ts . These coefficients depend on 

the information set It.  

The Geometric Brownian Motion is sometimes referred to as the Wiener Process 

and has been used in physics to describe the motion of particles that are subject to a large 

number of molecular shocks. Similarly, asset prices are subject to shocks in the market.   

This process has two properties: (1) Its instantaneous changes in a small period of time 
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follow a normal distribution, and (2) the values of these changes for any two short, non-

overlapping time intervals are independent. 

The pricing of financial assets in continuous time may not have extreme changes, 

as long as one ignores rare events. Historically speaking, however, financial markets 

demonstrate some extreme rare behavioral shocks from time to time.  The analysis of 

prices over historical data reveals sudden and rare breaks logically accounted for by 

exogenous events (jumps) on historical data [Guo 2004]. It is clear that changes in asset 

prices are a function of normal events that occur in a continuous fashion and of rare 

events that occur infrequently.  

Given a Brownian Motion process, the small unexpected price changes occur with 

a variance , where dt2   may depend on the available information, and dt is a small 

interval. The distribution of these changes is assumed to be normal. In Brownian Motion, 

when dt approaches to zero, the size of the changes becomes smaller and the probability 

of significant changes approaches zero.  Hence, it is not an appropriate model for 

situations where, in very short intervals, prices can make significant jumps. The rare 

events have the following properties: 

 At each small interval, at most one rare event can occur. 

 The information set It can not help us to predict the occurrence or the 

nonoccurrence of the event in the next interval t . 

Rare events can be modeled by the Pareto-Beta Jump-Diffusion process. At a given time 

t, the price of a risky asset follows [Ramezani 1998]:  

)()1()()1(
)(

)(
)()(

tdNYtdNYdBdt
ts

tds ddd

tN

uuu

tNt dduu 


 , 
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where Yd and Yu are random variables for the size of up and down jumps, and  Nu and Nd 

are independent Poisson processes with intensity parameters λu and λd (u and d represent 

up and down jumps, respectively). There are two parts in this formula, one described by a 

Brownian Motion and the other by a Poisson process. The Brownian Motion process is 

used for modeling the small changes in asset price, while the Poisson process is used for 

modeling jumps caused by rare events. This model shows occasional jumps due to the 

Poisson component, but between jumps, the process is not constant; it fluctuates 

randomly due to Brownian motion. The noise introduced by the Brownian motion is 

much smaller than the jumps due to the Poisson process. 

3.3.1.5. Square Root Brownian Motion Model 

If the variance of asset price does not increase too much when the s(t) increases, 

the Square Root Brownian Motion Model should be applied. This model has the 

following formula: 

tdBtsdttstds )()()(   . 

In this formula, the s(t) has an exponential trend and its variance increases proportionally 

to the s(t). Clearly, the fluctuations of this model are more subdued than those of 

Geometric Brownian Motion Model, but they have similar trends. 

3.4. Asset Allocation 

Here, asset allocation is formalized as an SMDP. If the state space is small and an 

appropriate model of the system is available, the SMDP can be solved by Dynamic 

Programming. If an accurate model of the environment is not available, Q-learning is a 
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viable option. It learns system behavior through trial and error interactions with its 

dynamic environment.  

3.4.1. Dynamic Programming and Q-learning 

 The optimal value function for an SMDP is the solution of the following Bellman 

equation: 
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*V  can be found by using the value iteration algorithm. This algorithm assumes that the 

expected return function and transition probabilities are known. Q-

learning optimizes the problem by sampling state-action pairs and returns while 

interacting with the system. Let us assume that the agent executes action a(t) at state S, 

and the system moves to state S
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The selection of action a(t) should be guided by the trade-off between the 

discovery of the possibilities of the environment, and the utilization of the actions that 

have been discovered so far. At the beginning, the agent chooses actions randomly, but as 

it learns, it selects actions with larger Q-values with increasingly higher probability.  

3.4.2. Learning  

The optimal actions can be learned from rewards and punishments. Learning 

about optimal actions implies that the agent will eventually acquire the ability to follow 

the maximally optimal action. 
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The learning of optimal actions may be clarified by considering a portfolio 

problem with two assets (A and B). We assume here that the agent may choose either 

asset A or asset B, but not both. After choosing an asset, the agent receives a reward. The 

reward is generated according to a different probability distribution. Successive rewards 

are independent of each other. The average rewards given by two assets are different. The 

agent reward depends only on its assets. At each time, the agent may decide which asset 

to choose based on the rewards it has received so far. If the agent knows that asset A 

gives a higher reward than asset B, then clearly its optimal action is to choose asset A. 

But if the agent is uncertain about the relative mean rewards offered by the two assets, 

and its objective is to maximize its total discounted reward after time period T, then the 

problem becomes interesting. The point is that the agent should try to choose both assets 

alternately at first, to determine which asset appears to give higher rewards.  

3.5. Experimental Result  

In this section, the following cases are investigated: 

Case 1: one riskless asset and one risky asset in one period 

Case 2: one riskless asset and one risky asset in more than one period 

Case 3: one riskless asset and 47 risky assets in more than one period. 

3.5.1. Static Portfolio Management for Two Assets 

We illustrate our approach by using the following example for a single period. 

Here we consider a single stock (Wal-Mart stock) versus a bond. A total of 265 weekly 

stock price data, from April 1, 2002, through November 10, 2008, are used, as shown in 

Figure 3.2: 
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Figure 3.2: Wal-Mart Stock Prices 
 

The first 192 data are used as a training dataset and the remaining points are used as a 

testing stage. The Curvefit Toolbox of MATLAB is used for fitting the distribution and 

finding its parameter.  
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Figure 3.3: Best Fitted Distributions on Wal-Mart Stock Price 

 
Several distributions are examined and fitted in this data set, and three distributions with 

better fitting results are shown in Figure 3.3. Since there are an exponential trend and 

some jumps in this data, Geometric Brownian Motion with a jump is also fitted to the 

data set (Figure 3.4).  

 
Figure 3.4: Fitted Geometric Brownian Motion with Jump on Wal-Mart Stock Price  
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The results of Curve fitting are summarized in Table 3.2.  

Table 3.2: Curve Fitting Results 
 

Distribution SSE R-square Adj R-sq 

Gaussian 946.16 .91392 .9057 

Geometric Brownian Motion and Jump 906.29 .91755 .90812 

Polynomial 1722.9 .84325 .83567 

Sum of Sin 2182.4 .80145 .78249 

 

In this table, SSE means sum of squares due to error. This statistic measures the 

deviation of the responses from the fitted values of the responses. A value closer to 0 

indicates a better fit. The coefficient of multiple determinations is shown as “R-square.” 

This statistic measures how successful the fit is in explaining the variation of the data. A 

value closer to 1 indicates a better fit. Also, “Adj R-sq” is the degree of freedom of the 

adjusted R-square. A value closer to 1 indicates a better fit.  In this table, the curve fitting 

of Geometric Brownian Motion with Jump has the best results. Therefore, we choose this 

distribution for our data. 

Suppose the bond has the rate of return .07. The agent should make its decision 

on investment by choosing the asset (stock) or the bond with the larger Q-value. In this 

section, the utility function is considered as: . The Q-value is the expected utility 

function.  

twln2

By using the Geometric Brownian Motion with Jump model, we can predict that 

the asset price will decrease in the next period. Obviously, it is preferred to hold the bond 

during this period. Figure 3.5 shows the Q-values of the holding the bond and the Q-
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values of the holding the asset. In this figure, the Q-value of the asset is lower than the Q-

value of the bond. Therefore, the optimal policy for the next period is holding the bond. 

 

Figure 3.5: Q-value of One Stock and One Bond for One Period 
 

3.5.2. Dynamic Portfolio Management for Two Assets 

Within a period of time, the Q-value function will be the expected discounted 

utility function. Suppose the estimated price of the stock is raised in time periods from 

t=1 to t=5 and from t=11 to t=15. The optimal actions will be to hold the stock from t=1 

to t=5 and from t=11 to t=15, and to hold the bond in the remaining period. It should be 

noted that the Q-values for this stock vary according to the changes in its price.  

Therefore, the optimal action based on our model is buying the stock in time 1, selling the 

stock and buying the bond in time 5, and selling the bond and buying the stock in time 

11. 
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3.5.3. Dynamic Portfolio Management for 47 Assets  

In this section, forty-seven assets are considered. These assets are Dow Jones 

assets in the period from 1992 to 2008. Again, by using the Curvefit Toolbox of 

MATLAB on 196 points of the data set, we can determine the best fitted distribution and 

its parameters. The Geometric Brownian Motion with Jump is chosen based on the Curve 

fitting results. In order to define the best trading policy, we should choose the optimal 

portfolio in each period. Since we are dealing with thousands of portfolios and it is 

impossible to illustrate them in one graph, let us consider 250 portfolios with the highest 

Q-value in each period.  These portfolios and their Q-values  are shown in Figure 3.6.  

 

Figure 3.6: Q-value of 250 Optimal Portfolios 

By applying Q-learning, we can determine 40 optimal scenarios. Figure 3.7 shows 

a snapshot of the Q-learning program in MATLAB.  In this program, we are trying to 
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optimize the Q-value in 2000 epochs. The 23rd epoch is shown in Figure 3.7. Each epoch 

is related to one trading policy. On the lefthand side of this figure, you can find the 

details of this trading policy. The forecasted Q-value and realized Q-value of this trading 

policy are on the righthand side of this figure. The forecasted Q-value is calculated based 

on Geometric Brownian Motion with Jump, and the realized Q-value is calculated based 

on historical data. The difference between the realized and the forecasted Q-values 

decreases after epoch 1400. 

 

Figure 3.7: A Snapshot of Q-learning Program in MATLAB 
 
The realized return of this trading policy is shown on the righthand side of this figure.  
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Figure 3.8: Realized Return of Portfolio Scenarios   

 

As you can see in Figure 3.8, each trading policy has a different return.  

 

Figure 3.9: Mean-Variance Performance and Comparison with DJIA Benchmark 
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DJIA can be used as a benchmark, and we can compare our results with this index. Figure 

3.9 shows returns and standard deviations of different trading policies and DJIA. DJIA 

has the lowest standard deviation, but some of the portfolio scenarios have larger returns. 

Also, the drawdown of DJIA can be compared with drawdowns of portfolio scenarios. 

This is shown in Figure 3.10. 

 

Figure 3.10: Drawdowns of Portfolio Scenarios 
 
As you can see, some of our portfolio scenarios have lower drawdowns than DJIA. 

 
 

3.6. Conclusion 

In this chapter, the problem of Dynamic Portfolio Management was solved by 

using the Q-learning algorithm. Q-learning was utilized in combination with Geometric 
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Brownian Motion as an asset price function. We compared our results with the market 

index. This comparison shows that the trading policy from Q-learning gave us sequential 

actions with better portfolio returns but not better standard deviations than the market 

index. 
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CHAPTER 4 

IMPACT OF INCOMPLETE INFORMATION 

4.1. Problem Definition 

Models of asset pricing generally are made based on the assumption that their 

parameters are known and observable. However, in general they are not observable and 

must be estimated. The optimal estimators of these parameters do not yield precise 

inferences because agents may have noisy and only partial observations.  In these 

situations, it is more realistic to include uncertainty in?/on the value of parameters. This 

will be referred to as the case of incomplete information.    

4.2. Major Contributions 

To the best of our knowledge, the sequence of optimal actions (trading) has not 

been addressed previously in the literature. The literature mainly focuses on a single 

optimal action. This research compares an investor’s sequence of optimal actions under 

complete and under incomplete information setups and shows how the quality of 

information influences the agent’s sequence of actions. In particular, the following 

objectives will be pursued here: (1) To obtain optimal estimators for the unobservable 

drifts using observations of past realized returns, and (2) To examine the impact of 

uncertainty on the sequence of portfolio actions. 

4.3. General Overview 

The asset pricing model described here is similar to the one explained in most 

asset pricing models, with the fundamental difference that agents do not know the exact 

value of the parameters which determine the state of their systems. There are two 
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parameters in asset pricing models: volatility and drift. It is feasible to obtain a good 

estimate of the asset’s volatility, but it is much harder to estimate drift from noisy 

observations [Merton 1980]. Therefore, we focus only on the problem of uncertainty 

about the asset’s drift and consider the asset’s volatility as a known constant. The 

unobservable drift is estimated from observations of past realized returns. This estimator 

is optimized by applying Filtering Theory. 

This uncertainty may have an impact on the portfolio choices of agents 

(investors). Several authors such as: Detemple (1986), Gennotte (1986), Browne (1996), 

Brennan et al. (2001), Cvitanic et al. (2003), Brandt et al. (2004), Brendle (2005), 

Lundtofte (2006) and Feldman (2007), have discussed the impact of incomplete 

information on asset prices and investors’ portfolios. Essentially, these authors tried to 

find the optimal allocation with incomplete information. Because it is not our purpose to 

give an historical account of the development of optimal portfolio methods with 

incomplete information, we explore only some directions of research in this area.  

The first category of papers in the literature formulates the discrete-time optimal 

portfolio with incomplete information. For example, Brandt et al. (2004) presented a 

simulation-based method for solving discrete-time portfolio problems involving a large 

number of assets with incomplete information on expected rate of return of assets.   

Other authors, pioneered by Detemple (1986), extended this idea to continuous-

time settings. In most of these papers (e.g., [Brennan 2001]), investors have prior beliefs 

about the assets’ expected returns which are updated according to their observation of 

prices. Brennan et al. (2001) considered incomplete information about dividend growth 

rate and measured the effect of learning on portfolio selection. The representative agent 
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in their model is in an early stage of learning, such that any new information may 

potentially decrease its uncertainty about dividends until a steady state is reached.  

However, as Gennotte (1986) showed, the accuracy of the estimators does not necessarily 

increase over time. Since past observations may contain imperfect information, the path 

of the expected returns will not be perfectly assessed with imperfect information. 

In the last category of papers in this area, some authors, like Browne at al. (1996), 

solved the problem of optimal portfolio allocation in a discrete time and showed its 

convergence to a continuum time solution.  

4.4. Incomplete Information 

Drifts and volatilities of rates of return are considered as inputs to asset pricing 

models. These inputs are generally defined based on historical observations of assets’ 

prices, but the practicality of this assumption is questionable. The reason is twofold:  (1) 

the sample path of an asset price within a time interval is not fully observed; instead, 

discrete observed statistics of sample paths are used. This means that the sample period 

[0, T] is divided into m intervals, and only m discrete time price realizations are available 

to draw the continuous-time model. Therefore, it is not a reasonable estimation of the 

asset pricing model parameter (drift). (2) Only current and some past assets’ prices are 

observable, and the expected rate of return, s , is unknown. This parameter must be 

induced from current and past asset prices. The uncertainty in the asset price is generated 

by Brownian motion, Bt. Since Bt is not observable, and drifts (rates of return) can not be 

retrieved. Thus, drifts are not fixed and follow a stochastic process.  
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4.5. Information Structure 

All uncertainty is defined over a probability space ),,( PF with a fixed terminal 

time T>0, where  denotes a complete description of the environment. Agents are 

endowed with a common probability measure P, and F denotes the augmented filtration 

generated by the Brownian Motion B.  



Some information, denoted by the symbol Ft, is utilized to forecast the value of 

unobservable parameters. The information utilized could be, and in general is, different 

from one time to another. If we assume that the agent never forgets past data, the 

information sets will increase over time: 

TFFF  ...10 , (4.1) 

where  is generated by the observations of the value of the asset up to time t, and is 

augmented.  

tF

4.6. Assumptions 

It is assumed that the capital market is perfectly competitive. In general, the 

number of buyer agents and seller agents is sufficiently large. Under this assumption, the 

agent can buy or sell assets as much as it wants. All agents are small enough relative to 

the market so that no individual agent can influence an asset’s price. This assumption is 

relaxed in Chapter 5 where the impact of the agent’s action is discussed.  

Agents are characterized by their risk aversion factors and their initial wealth. 

Here, an agent is concerned with constant absolute risk aversion in a continuum setting. 

The investor can observe asset prices, but not instantaneous drifts, which follow a mean-

reverting process. By considering these assumptions, the optimal portfolio under partial 
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observation (incomplete information) is determined. The agent’s objective function is to 

maximize its expected utility of wealth at time T.  

4.7. The Methodology 

The main goal of this methodology is to select a sequence of optimal portfolio 

actions with incomplete information. Before we delve into the details, it will be useful to 

see an overview of this methodology. Five main steps of this methodology are listed 

below:  

1. Determining the model for asset pricing 

2. Determining the model for drift of asset price 

3. Applying filtering theory and minimizing noises 

4. Learning process 

5. Optimizing portfolio  

The agent’s decision problem is divided into two separate problems [Gennotte 

1986]. In Steps 1 to 4, the agent tries to find a good estimate of the asset price. The agent 

seeks to filter or extract information on unobservable variables from its past observations. 

In Step 5, it uses its current estimate of asset prices to choose a sequence of optimal 

portfolio actions. The process of selecting optimal actions with incomplete information is 

shown in Figure 4.1. 
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Start

Determine Volatility of 
Asset Price  

 

Estimate Drift of Asset 
Price 

Apply Filtering Theory 
and Minimize the Noises 

Observe Asset Price 

Selecting the Optimal 
Portfolio Actions 

Figure 4.1 : The Process of Selecting Optimal Actions with Incomplete Information 

 Here, agents who make decisions in continuums time over a finite time horizon 

 are considered. At time zero, the agent determines from available data the volatility 

and drift of asset prices. Based on these parameters, it forecasts the asset prices, and 

selects the optimal actions which maximize its expected utility of wealth. Whenever the 

agent observes the new asset prices, it updates its estimation of drift and optimal actions. 

Since some noises exist in the asset and drift process, the agent filters information to 

minimize the effects of these noises. 

 T,0 

4.7.1. Determining the Model for Asset Pricing 

The environment has n risky assets and one risk-free asset available for 

investment. The price s(t) of asset at time t is interpreted as accumulated its dividend and 

its price at that time. The price is observable and satisfies the following stochastic 

differential equation:  
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where  is the expected rate of return of asset  i, and  is its volatility.  is 

considered equal to zero for the riskless asset.  can be interpreted as the infinitesimal 

change in a Brownian motion over the next instant of time.  

)(ti i
s i
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i
tdB

At each point in time, the asset price is characterized by the path of , and the 

value of prior to that time point. The uncertainty in the asset price is generated by 

this Brownian motion.   is defined over a complete probability space  with a 

non-decreasing family of sub-
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 -algebras TtFt 0, . The possible paths of  and 

constitute the set of possible events. 

i
tB

)(ti

4.7.2. Determining the Model for Drift of Asset Prices 

Clearly, the assumption of constant expected drift is inappropriate and needs to be 

replaced. The estimation of  is not a particularly easy problem, and estimated errors 

are likely to be substantial. Like Brendle (2005), Barberis (2000) and Xia (2001), we 

assume that drifts are modeled by a mean-reverting process, and the follows a 

stochastic differential equation of the form: 

)(ti

)(ti

i
t

iii
i

i dZdtttd   ))(()(     nii  1, ,  (4.3) 

where i is the mean reversion level, 0i is the reversion rate, and  is the drift 

volatility of asset i.  represents the infinitesimal change in a Brownian motion. The 

value of 

i


i
tdZ

i  defines how quickly the drift returns to the equilibrium. Parameters i , i  

and  are known and constants. i

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This equation differs from simple diffusion by the addition of an equilibrium level 

and a restoring force that pulls subsequent values toward that equilibrium. The first term 

of this formula brings  back to some equilibrium level ()(ti i ). Every time the 

stochastic term ( ) gives a push away from the equilibrium, the deterministic 

term (

i
t

i dZ )(ti

dtti ))(i
i (   ) will act in such a way that will start heading back to the 

equilibrium. When the deterministic term is negative (

)(ti

)(tii   ),  is pulled down 

toward the equilibrium level,

)(ti

i . When the deterministic term is positive ( )(tii   ),  

 is pulled up to the equilibrium value)(ti i . The end result is that the drift tends to 

oscillate around the equilibrium. The greater the value of i is, the faster the value of 

returns to the equilibrium level. )(ti

4.7.3. Applying Filtering Theory and Minimizing Noises 

The agent has to make its investment decisions on the information available at the 

time of decision. The quality of the portfolio selection obviously depends on the 

information that can be used by the investor. A better-informed agent (investor) can make 

a better investment decision.  

Here, the agent has partial information in its hands. The drift is not directly 

observable, but the asset price is. The agent forecasts the asset price (Equation (4.2)) 

based on the estimated drift (Equation (4.3)). The agent seeks to extract information on 

future expected returns from its observation of past returns. Equations (4.2) and (4.3) are 

rearranged as: 

)1)(()( dtdttdZdtt i
ii

t
ii

i
i     (4.4) 
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and 

)(ln)()(ln dttsdBdttts iii
s

ii

t
  . (4.5) 

Based on Equations (4.4) and (4.5), the asset price and drift have their own noises,   

and dZt
i. These two noises are independent of each other. The process of predicting the 

asset price is represented pictorially in Figure 4.2.  

i

t
dB

i
tdZ  

 
Figure 4.2 : The Process of Predicting Asset Prices 

 
This approach has two glaring weaknesses. First, there is no feedback from observation 

(s(t)) to estimate the drift process. Second, there are two noises in the computation, which 

could cause a large error.  

The problem of estimating the state of a dynamic system from noisy observations 

is an important topic in engineering. Filtering can derive the optimal estimators of the 

expectation of unobservable parameters conditional on past observations. In simple 

terms, filtering is based on a recursive algorithm that would find an optimal solution 

given current measurement data and past system data from the previous iteration (the 

recursion) [Maybeck 1979].  

+
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By applying the filtering theory (Theorem 12.1 of Liptser and Shiryayev [Liptser 

2001]), the effect of noises is minimized and estimation of drifts is updated by new 

observations. This allows us to predict future returns, conditional only on observed noisy 

data, and not on fixed parameter values. The conceptual overview of Filtering theory is 

shown in Figure 4.3. 

Observe Asset Price 

Predict Drift = Estimation + (Weight ) *(New Observation- Estimation)  

Estimate Drift Based on Historical Data 

 

Figure 4.3: Conceptual Overview of Filtering Theory 
 

At time zero, each agent has a belief about drift. At each time point, the agent 

continuously updates its beliefs and uses all observable information to learn about the 

unobservable drift. 

4.7.4. Learning Process 

It is assumed that the asset price drift is normally distributed and its initial 

distribution, )0( , has mean m0 and variance v0 . During each time interval ],[ dttt  , the 

agent observes
)(

(

s

ds )

t

t
, which is correlated with the drift, )(t . The agent does not directly 

observe )(t . Let  tFttm )()(    and let  tFtmtt 2))()()( E ( v  denote the 

expectation and variance of drift at time t conditional on observing data up to time t (the 

augmented filtration, Ft). Then, upon observing the asset price, the agent can revise its 
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belief about the true value of the drift. Based on Theorem 12.1 of Lipster et al. (2001), 

the instantaneous changes in the expected estimated drift, , and the instantaneous 

changes in the variance of estimated drift, , are given by Equations (4.6) and (4.7): 

)(tdm

)(tdv

))(tm
)(

)(
(

)(
))(()( dt

ts

tdstv
dttmtdm

2
s

s 





   (4.6) 

and 

22 )
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s

tv

 ()(2
)(

tv
dt

tdv    .  (4.7) 

 The updating process is a recursive procedure as new observations become 

available. From Equation (4.6), the change in the assessment of drift, , is equal to 

the estimated expected drift at time t plus a correction term. This term includes the 

weighting value and instantaneous change occasioned by the observation of s over the 

period . This means that the agent updates  by the surprise component 

(

)(tdm

],[ dttt  )(tm

dttm )(
)


ts

tds

)(

(
) weighted by its relative uncertainty (

2

)(

s

tv


 s

). The agent raises its 

assessment of the drift whenever the rate of return is above its current assessment. The 

weight in Equation (4.6),
2

)(

s

s tv


   , determines how much of the new information is 

incorporated into the updating of . When the quality of data is poor (a high value 

of ), little information can be extracted, and therefore,  is not changed much. 

When the agent is less confident of its current estimate (a higher ) more information 

can be obtained. In this case, the agent puts more weight on the new information, and 

revises its beliefs more quickly.   

)(tm

2
s )(tm

)(tv
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The first two terms of Equation (4.7) correspond to the unobservable variation of  

)(t  over the period . The last term denotes the reduction in variance when 

additional information becomes available. It says that the better the quality of data (a low 

value of ), the more rapidly the agent learns about the current value of the drift. The 

solution of this equation is: 

],[ dttt 
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. (4.8) 

This equation says the uncertainty about drift decreases as time progresses. The limit of 

v(t) as t tends to infinity is zero. If we perfectly know m0 (this means that v0 =0), the 

uncertainty of m(t) will totally disappear (v(t)=0). 

The process is defined as a Brownian motion as follows: tB

))(
)(

)(
(

1
dttm

ts

tds
Bd

s
t 


. (4.9) 

tB  is the normalized deviation of the rate of return from its estimated mean. tB  can be 

inferred from observable processes; therefore, tB  is observable. Rearranged Equations 

(4.9) and (4.6) follow: 

ts Bddttm
ts
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This means that the incomplete information is equivalent to complete information with 

the consideration of expected drift (see [Gennotte 1986]). The solution of Equation (4.11) 

is: 














 kBd

s

kvt ketemtetm )
)(

(
0

)1(0)(


 . (4.12) 

Based on this equation, if   is considered as an unknown constant, m(t) still fluctuates, 

but its limit, as t tends toward infinity, is  .  

4.7.5. Optimizing the Portfolio  

To choose a sequence of optimal portfolio actions, the agent forms its assessment 

of the drift from the observed asset prices. The objective function of the agent is to 

maximize the expected utility of wealth at the end of horizon T. The agent’s utility 

function at time t depends on its current wealth and its risk aversion factor. This utility is 

assumed to be in the form of: 

0
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for
w

wu t
t .   (4.13) 

The parameter   represents the Arrow-Pratt coefficient of the relative risk aversion 

factor, which is assumed to be constant for this choice of utility function.   is the 

wealth accumulated at the end of period t and is given by: 

tw

))(()()( tdxctstxwt  ,  (4.14) 

where  specifies the number of assets belonging to the agent at time t, and  is 

the transaction cost of action . For simplicity,  is considered equal to zero. 

)(tx ))(( tdxc

)(tdx ))(( tdxc
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The agent has to make its investment decision on its actions, dx(t), which is equal to the 

instantaneous change in : )(tx

dtta )(tdx )(  .   (4.15) 

Since the environment is perfectly competitive and the instantaneous returns do 

not depend on the level of investment, the agent can choose its optimal portfolio action 

based on the estimated expected drifts of asset prices. The impact of uncertainty on this 

action is discussed in the next section.  

4.8. Examining, the Impact of Uncertainty on Agent’s Action 

The problem of optimal control is to find the sequence of dx(t) (t=0,..T) which 

maximizes the objective function. Following Liu (2007) and Brennan (1998), the 

stochastic optimal control approach is applied to find the optimal sequence of the agent’s 

actions. The optimal portfolio actions ( ), which ignore parameter uncertainty, are 

compared with the portfolio actions that take this uncertainty into account. This 

framework allows us to understand how parameter uncertainty affects portfolio choices. 
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The instantaneous change of wealth is as follows:  
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The agent’s indirect utility function at time t, , depends on wealth, estimated 

drift, variance of estimated drift and time.  

Iu

Let  be the expected value of utility of wealth, , at time t<T  

(

,,,( tvmwIu

 )()

)( Twu

,,,( TwuEt 

][ dIuE

vmwIu ). Based on the stochastic control approach, the optimal policy 

can be found by .  is formulated by considering Ito’s lemma as: 0 dIu
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where , ,  and 
twIu tIu )(tvIu )(tmIu denote partial derivatives with respect to wt , t, v(t) 

and m(t), respectively. Similar notation is used for higher derivatives and mixed 

derivatives.  Since the Brownian Motion includes dtte )(  (e(t) is a normal random 

variable with zero mean and unit variance), the terms with  and  are discarded and 

 is considered as dt. Equation (4.17) is simplified as: 
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The investor’s indirect utility function  is given by (Theorem 3 of Brennan 

[Brennan 2001b]):  
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The principle of optimality leads to: 
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with the boundary condition: 
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)(* ta  is derived by the first order condition of Equation (4.20), and it is given by 

Equation (4.21). This defines the sequences of optimal portfolio actions. The sign of  

shows whether the optimal action is to sell or to buy. 
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Given the agent’s information set, its optimal portfolio action at time t is characterized by 

its current asset level, its current assessment of drift, its risk aversion factor, the volatility 

of asset price and the drift of asset price. Note that in a complete information scenario, 

 is zero, and the optimal agent’s action is: )(tvf
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Consider an agent with relative risk aversion factor greater than zero. Whether the 

agent’s optimal trading volume under incomplete information is more or less than that 

under complete information depends on its estimate of drift, m(t). Based on Equation 

(4.21), when the agent assessment of drift is lower than the mean of rate of return, the 

action of complete information may be higher than the action of incomplete information. 

Otherwise, it is always less than the trading volume of incomplete information.  

4.9. Summary and Conclusions 

Previous chapters discuss cases where the uncertainty of parameters is ignored. 

This means the agents allocate their portfolios taking the parameters as fixed at their 

computations. Here, these parameters are considered as stochastic variables. This is a 

quite realistic assumption, since the only available information for agents at each time is 

the prices of the assets up to that time, and the underlying Brownian Motion and the drift 

process of the asset prices are not directly observable. The optimal estimators for the 

unobservable rate of returns were obtained by applying Filtering theory.   

The main contribution of this chapter is to find the optimal sequence of actions of 

a dynamic portfolio. These actions were defined based on estimated drifts. To establish 

the results, the structure of the optimal sequence of actions with incomplete information 

was formally defined in mathematical terms. Then, we compared the optimal actions of 

an investor who takes into account the error of predicted drift of asset prices, with the 

optimal actions of an investor who is blind to this error. In other words, the effect of the 

uncertainty of parameters was defined by comparing the solution of fixed parameters 

with the solution of uncertain parameters. This comparison showed that the uncertainty of 

parameters usually forces risk-averse agents to choose a higher trading volume. However, 
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these trading volumes may be lower in cases where the agent’s assessment of drift is 

lower than the mean of drift.  
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CHAPTER 5 

IMPACT OF AGENT ACTIONS 

5.1.  Problem Definition 

Different sources of empirical evidence indicate that large investors have striking 

impacts on prices through their trading strategies. These agents often consider the 

question of how to choose their trading strategies when taking into account their price 

impact. They choose trading strategies in order to maximize their objective functions. An 

agent’s objective function depends on its own action as well as on other agents’ actions. 

5.2.  Major Contributions 

In previous chapters, all agents were considered as price taking investors. 

However, observations of today’s asset markets reveal the ever-increasing importance of 

non-price-taking investors. A non-price-taking investor influences market prices with its 

large order flow. Therefore, a non-price-taking agent is often called a large trader or a 

large agent. This agent is particularly important in small environments because of its 

significant effect on prices. Here, a model based on game theory is developed to figure 

out the optimal actions of non-price-taking agents with and without debt constraint. 

5.3. General Overview 

Numerous papers have been written about price impact, which was considered 

mainly in the market with private information and imperfect competition [Pritsker 2005]. 

The number of works is too great to mention all the relevant papers. Glosten et al. (1985), 

Basak (1995), Demarzo et al., Urosevic (2002), Foster et al. (1996) and Holden et al. 

(1996) studied price impacts based on private or asymmetric information.  Lindenberg 
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(1979) and Kihlstrom (2001) examined the impacts of agent actions on the imperfect 

competition market. Lindenberg (1979) considered the static portfolio optimization 

problem with many large investors. Kihlstrom (2001) considered a dynamic portfolio 

with only one large investor. In this chapter, the price impact of agents’ actions is 

modeled on Game Theory. This model attempts to figure out the Nash Equilibrium of 

games when each agent acts to optimize its own expected utility. The game model has the 

following form: first the players (agents) simultaneously choose actions (trading 

volumes); then they receive payoffs (rewards) that depend on the combination of the 

actions just chosen. In this game, each agent’s payoff depends on the others’ actions. 

Also, an agent considers both the fact that its action has an effect on its payoff at that 

period, and the trading opportunities available in the future.  

This chapter is organized as follows: In Sections 5.4 through 5.6, game theory, 

and the market and asset pricing model are introduced. Section 5.7 discusses a game in a 

market without any constraint. Then, in that framework, Sections 5.8 and 5.9 present a 

game in the market with and without debt constraint. Section 5.10 concludes. 

5.4.  Game Theory 

A large number of financial assets are held and managed by non-price-taking 

investors, whose order flows may change asset prices. Game Theory is applied to 

consider the impact of actions by non-price-taking agents. “Game theory is a modeling 

approach which drops competition’s assumption that individuals are price-takers and 

instead requires them to behave strategically, taking into account that their actions will 

alter the behavior of the rest of the market” [Rasmusen 1992]. This theory first appeared 
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with the publication of Von Neumann and Morgenstern’s book, The Theory of Games 

and Economic Behavior [Von Neumann 1944].  

Each agent has to consider some constraints imposed by its information. The 

limitations on information are important in understanding an agent’s behavior, because 

such limitations induce the agent to alter its behavior. There are different kinds of games 

based on available information. 

Games are classified according to their level of limitation of information. If the 

historical moves of a game are not accessible to all players, the game is said to be an 

imperfect information game; otherwise, it is a perfect information game. The incomplete 

information game is interpreted as a game where a player lacks full information about 

utility functions and the available strategies of other players. If this information is 

available to a player at the time of a move, the game is said to be a complete information 

game.  

Games can also be classified based on the level of collaboration between agents. 

A game may be played by agentscooperatively or noncooperatively. In a cooperative 

game, agents jointly maximize their expected utilities, and in a non-cooperative game, 

each agent selfishly maximizes its own expected utility. Cooperative games concentrate 

on the efficient payoffs of agents under the assumption that the agents are allowed to 

communicate and make binding commitments, whereas non-cooperative games seek 

efficient payoffs when the players are not able to communicate. In the real world, non-

cooperative games are more common than cooperative ones. In this research, each agent 

plays a non-cooperative, perfect, and complete-information game with other large agents.  
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5.5.  Market 

The market is populated by large agents and “noise” traders. The noise trader is 

an asset trader who makes decisions to buy, sell or hold without fundamental analysis. 

We consider only one noise trader in our model. This assumption may capture the 

essence of multi-noise traders if we consider this noise trader as an aggregate of all noise 

traders.  

Market makers are not considered in this model; thus, the trading is done 

according to the supply and demand of assets. Also, there is no private information in this 

model, and all news is public knowledge. The other assumptions of this market are as 

follows: 

 The time horizon is infinite, and trading in the market can happen in each time 

epoch. 

 There are always buyers and sellers for the assets, in the sense that almost any 

amount of an asset can be bought or sold immediately. There is no delay in selling 

or buying orders. 

 The random quantity traded by each noise trader is distributed independently from 

present or past quantities traded by other agents. 

 The quantity traded by a large agent at time t is independent of the quantities traded 

by this agent at other times. 

 When an agent chooses the quantity to hold or trade, it observes past prices of 

assets.  

 Large agents have the ability to affect the price of assets by varying their trading 

volumes, while noise traders do not have this ability.  
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5.6.  Asset Price Model 

Suppose that there exist n risky assets traded in continuous time. In Chapter 2, the 

risky asset price was modeled by a stochastic differential equation, 
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)0()( ). In this model, the price impact of an agent’s order flow and its 

inventory of assets were not considered. Let us now consider the price of asset i as 

, where  is the inventory variable which measures the 

aggregate amount of asset i that the large agents hold at time t.  is defined by 

, where denotes the number of holding asset i by agent j at time t. The 

holding asset at the start of period t should be right continuous ( ). 
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The aggregate supply of risky asset i at any time t is divided between the 

large agents’ holdings, , and the noise trader’s holding, , such 

that . As  increases, the supply available to the noise trader 

decreases and the value of . Where  is the total traded 

volume of asset i  at time t. We can consider  as  , where 

denotes the trading volume of asset i by agent j at time t. with positive 

value is the purchasing amount of the asset and  with negative value is the selling 

amount of the asset. If many agents want to sell their holding assets, the value of 
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The asset price models with linear function of total action and inventory have 

been widely used in both the theoretical and the empirical literature. This widespread 

application is not due to the opinion that those linear functions are particularly realistic, 

but instead, is due to the simplicity of analysis and the possibility of having a well 

behaved solution. Here, a linear function of action and inventory is considered as follows: 

)())(()(Pr tAtXZts   , (5.1) 

where  and   are considered as parameters. This asset price model is justified by an 

empirical work by Cheng et al. (1997). 

5.7. The Game in the Market 

The behavior of the market can be viewed as a two-sequential-step game. In Step 

One, all agents simultaneously choose their actions. Agents’ possible actions are buying, 

holding and selling an asset. When making this choice, an agent does not observe future 

prices, or current and future quantities traded by other agents. In Step Two, the aggregate 

quantities are traded, and then the market has price fluctuations as a consequence of these 

aggregate order flows. The timing of the game is shown in Figure 5.1. 

Assets are 
traded 

Asset prices 
are determined 

Actions are 
chosen by agents 

t+dt t  

Figure 5.1: The Timeline of the Game 
 

Each agent in the market is trying to optimize its own reward function. This 

reward function directly depends on assets price, which in turn depends on all agents’ 

actions. Therefore, agents choose actions which optimize their reward functions.  
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When a large agent decides to buy a large amount of one asset, the demand will 

increase; hence, a higher price will emerge. If it decides to sell the asset, this time the 

supply will increase, causing the asset price to fall. If the agent decides to hold the asset, 

since neither the demand nor the supply changes, the asset price will remain unaffected.  

The large agents form a tight Cournot oligopoly over order flow in the market. This game 

has a Nash Equilibrium.  

5.7.1. Definition: Nash Equilibrium 

A Nash Equilibrium is a profile of strategies such that each player’s strategy is an 

optimal response to the other players’ strategies. In other words, if each agent has chosen 

a strategy, and no agent can benefit by changing its strategy, the current set of strategy 

choices is a Nash Equilibrium. This means that no player has a reason to choose a 

strategy other than its equilibrium strategy. 

5.8. Game without any Constraint 

The strategic interaction of agents is modeled as a Cournot model in continuous 

time. Our framework borrows heavily from the Cournot model of repeated games, as 

developed by Cournot in 1838 [Gibbons 1992]. First, we consider a very simple version 

of Cournot’s model, and then, in each subsequent section, some variations on the model. 

In this model, we assume that agents choose their actions simultaneously since it is easier 

to describe a game in continuous time with simultaneous action. Also, we assume that 

agents do not engage in forms of competition other than quantity of trading or price. 
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5.8.1. The Model  

The normal form representation of a game is specified by its players, available 

actions and the payoff of each player in different states. Here, k+1 players are considered. 

These players are either rational large agents or non-rational noise traders. We consider k 

large agents and one noise trader. Large agents trade to maximize their rewards, whereas 

a noise trader agent trades without a particular goal. The trading volume of asset is 

considered to be the agent’s action: . Basically, the agent at each time 

chooses to buy , sell , or hold , the asset. Each large 

agent chooses its action without knowledge of the others’ actions. The payoff of a player 

in this game is equal to its reward function.  
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The pay off function of each agent depends on that agent’s holding and trading 

volume of its assets and the price of assets. The asset price model (Equation (5.1)) has 

three parts: ))((),( tXZts  and )(tA . s(t)  follows the differential stochastic equation 

and shows the effects of an uncertain environment on the fortunes of asset price. The last 

two terms, ))((( tXZ  and ))(tA , measure the impact of order flow and inventory on 

the asset price. These two terms can be controlled by agents’ actions. However, s(t) 

cannot be controlled. The effect of s(t) on the asset price turns out to be very important in 

our analysis. The agents trade the advantage of a high level of an asset when s(t) is high, 

against the disadvantage when s(t) is low. The Cournot game with uncertainty can be 

applied to model this trading volume game in the market.  

5.8.1.1. Nash Equilibrium  
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The Nash Equilibrium of the game is the set of strategies if for 

each agent i,  is at least tied for agent i’s best response to the strategies specified for 

the k other agents:  
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where is the reward function of agent I, and is the solution of: iJ )(* tai
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Basically, each agent’s best action is determined based on Equation (5.2), taking 

as given.  *
1 (t))a ..., (t),a(t),a (t),(a *

k
*

1ii
*
1 

5.8.2. Static Portfolio 

Let the risk aversion factor of agent i be zero and let players be playing for one 

trading period. The agent’s reward function is then given by: 

))(())(),(),(Pr()( tactAtXtstxJ iii  . (5.3) 

We assume that  for all i and j.  is the vector ( , ,…, ), 

which lies in (0, )n
. In the Equation (5.3), each agent’s payoff is determined by the 

agent’s action and its holding position of assets and global quantity A(t) and X(t). 
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In the market, the agent is playing against other agents. Although it is assumed in 

this game that all agents choose their actions at the same time, it does not mean that the 

parties necessarily act simultaneously. After agents make decisions about their trading 

volumes, then the market determines how the prices of assets change.  

The game in the market is defined as: 

Players: Agent 1,…, Agent k, and noise trader 
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Natural number n: number of assets in the market 

Protocol: 

For t=1 

Agent i selects ai(t) 

Noise trader selects O(t) 

Market selects price (Pr) 

Each agent seeks to maximize its reward function. The agent’s objective function is: 

 ))(()()())(()()()(
)(

tactAtxtXZtxtstxEMax iiii
tai

  . 

Each agent may buy or sell various assets at set prices at the beginning of the trading 

period, and the market determines the assets’ returns at the end of that period. An agent is 

allowed to distribute its current wealth across all n assets in one period. 

5.8.2.1. Illustrative Example 

The purpose of this section is to present a simple example to illustrate the game in 

the market. Let us consider two large agents in the market who are playing a game in the 

market for one period of time.  and denote the quantities traded by Agent 1 and 2, 

respectively. The asset price follows Equation (5.1):

1a 2a

AXZs )())0(()1(Pr   . 

Agent i’s total cost for trading  is . We assume that the agents choose their 

actions simultaneously. In this game, the strategies available to each agent are the 

different quantities they may trade. We assume that trading volume is continuously 

divisible and that an agent can trade any fraction of an asset. An agent cannot hold and 

trade more than asset supply Z and does not hold any cash or debt. For player i, must 

solve the following optimization problem: 

ia )ia(c

*
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Let us consider ))1((sE  and 0)( iac . These formulas optimize the expected utility 

function of an agent by considering the optimal action of other agents. This constraint 

shows that everything is reinvested and there is no consumption or labor income during 

the investment horizon. After applying the Lagrange multiplier method, we have: 

   )0())(())0(())0(( * saaaXZaxMax ijiii
ai

  . 

The first order equation yields: 
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Thus, if the quantity pair  is a Nash equilibrium, the agent’s action must be: ),( *
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The quick insight behind this equilibrium is simple. If the agent is alone in the market, it 

would choose to optimize as: ia )0,( ii aJ
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If there are two agents, the optimal action will be: 
2
2*

1
a

a  . Since these actions have 

lower qualities than actions in the Cournot equilibrium, so the associated price is higher, 

and so the temptation to increase action is increased. In the Cournot equilibrium, in 

contrast, the agents do not want to increase or decrease their actions.  
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5.8.3. Dynamic Portfolio 

 
In this section, the model of a static portfolio is generalized by examining a model 

in which a number of rounds of trading take place sequentially. Trading begins at time 

t=0 and ends at time t=T. The agent owns different assets during this time horizon. The 

resulting dynamic model is structured so that equilibrium prices at each round of trading 

reflect the information contained in the past and current portfolios.  

The game in the market is defined as: 

Players: Agent 1,…, Agent k and noise trader 

Natural number n: number of assets in the market 

Natural number T: investment period 

Protocol: 

For t= (0, T) 

Agent i selects ai(t) 

Noise trader selects O(t) 

Market selects price (Pr) 

The payoff function is 
  
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each agent seeks to maximize its payoff function. Each trade by a large agent impacts the 

price. It therefore acts strategically and takes its price impact into account when trading.   

Each agent may buy various assets at set prices at the beginning of each trading 

period, and the market determines the assets’ returns at the end of that period. An agent is 

allowed to redistribute its current wealth across all n assets in each round. We call the set 

of all possible sequences, , the sample space of the game, and ))}(),(),(Pr(),({ tXtAtstai
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we designate it as  . We call any subset of   an event.  All agents are also allowed to 

redistribute their current wealth across all n assets in each round, but the moves of the 

other agents are not recorded in the sample space. They do not define events. 

5.9.Game with a Debt Constraint  

The agent’s obligations to debt holders are usually ignored in modeling the 

strategic interaction between agents in the market. Ignoring the financial aspect of an 

agent that depends on external financing misses a significant constraint on the agent’s 

actions in the real world. The agent who uses external financing can be forced to liquidate 

when its debts are recalled. This forces the agent to sell its assets with less utility value 

than if it held them. Moreover, this forced liquidation leads the asset price to drop in the 

market.  

Agents undertake debt levels that restrict their actions later in a game. The first 

central insight is that higher debt levels tend to increase an agent’s desire to sell assets. 

As discussed, s(t) follows the stochastic differential equation. A lower realization of s(t) 

corresponds to cases where the asset price is low. In this situation, an agent should sell 

more assets to satisfy its debt holders. In particular, the agent sells its assets even at a low 

price. The more debt the agent has, the more aggressive it becomes.  

Large agents fear a forced liquidation, especially if their cash needs are known by 

other agents [Brunnermeier 2005].  If rival agents know that an agent needs to sell 

something quickly, they will also sell the same asset and subsequently buy it back. This 

kind of trading is called predatory trading [Brunnermeier 2005]. Cramer (2002) described 

predatory trading as follows: “When you know that one of your numbers is in trouble…. 

you try to figure out what he owns and you start shorting those stocks…” Goldman, 
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Sachs & Company and other counterparties to Long Term Capital Management (LTCM) 

did exactly that in 1998 [Brunnermeier 2005]. Predatory trading tends to drive the price 

down even faster and reduces the liquidation value for distressed agents. 

The model of this section provides a framework for predatory trading. During 

each period, a liquidity event may occur in which an agent is required to trade a large 

block of an asset in a relatively short time period.  This is especially important when 

many large agents are financially distressed and have to quickly liquidate some or all of 

their positions to meet cash needs. The need for liquidity is observed by other agents; 

hence, they may choose to predate. Predation trading may cause an adverse price impact 

on the market. 

Suppose many large agents are playing the game in the market. This game has the 

following form: first, each agent chooses its own debt level, . Then the liquidation 

event (obligation to pay debt claims) may occur. After agents simultaneously choose their 

trading volume, the market experiences price fluctuations.  The timing of the model is 

depicted in Figure 5.2. 

)(tDi

t t+dt 

Liquidation 
event may 

happen 

Debt level is 
chosen by each 

agent 

Assets 
are traded

Asset 
prices are 

determined

Each agent’s 
cash flow is 
determined 

 

Figure 5.2: The Timeline of Game with a Debt Constraint 
  

Here, we do not examine the earlier decision of how much debt the agent should 

take on. Agents are always obliged to pay debt claims out of their own cash. If the agent 

is unable to meet its debt obligations, it should take actions which lead to lower levels of 
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its utility. If after these actions the agent still cannot meet debt obligations, the agent goes 

bankrupt. An increase in debts means that the range of the states over which the firm 

becomes bankrupt is expanded. 

The model presented here is the simplest model of connectivity between financial 

decisions and actions. Our model is closest in spirit to Brunnermeier (2005). He 

discussed predatory trading; trading that induces and/or exploits the need of other agents 

to reduce their positions. The objective function of his model was to maximize the 

expected terminal wealth, whereas our objective function is to maximize the discounted 

expected utility function from time zero to T.  

There are important linkages between debt levels, trading volume decisions and 

an agent’s utility. One possible linkage between them is the rivals’ bankruptcy effect. The 

firm’s fortunes will usually improve if one or more of its rivals are driven into 

bankruptcy. The agent can lead its rival with high debt levels to bankruptcy by predatory 

trading. 

5.9.1.Model  

The debt level of agent i is represented by Di(t). Given debt levels, the agent 

should choose actions with the objective of maximizing the discounted expected utility 

from time zero to time T.  

All agents should reduce their asset levels if they have debts. Compared to a zero 

debt case, agents will receive lower rewards.  It is assumed that the debt levels are chosen 

before actions are decided upon.  

5.9.2. Structure and Notation 
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 Risky assets have a supply of Z. The agent’s position in risky assets, )(tx  and , 

cannot be unlimited, and 

)(to

)(tx and  are less than or equal to Z. The trading mechanism 

works as follows: Each agent trades the asset by choosing its action. At time T the 

agent’s position in the risky assets is: 

)(to

 .  daxx
T

T )()0()(
0


Large agents are subject to a risk of financial distress. We denote the set of all 

large agents by L and the set of distressed agents by Ld (LdL). In this game, large 

agents are either distressed or they are predators. If an agent is troubled, it must liquidate 

its position in the risky asset ( ) to pay back its debts. A distressed agent is 

required to sell a large block of assets in a short time period. Hence, at time t its action is 

restricted to: 

0)( tia

  )()Pr()( titti Da . 

This relationship indicates that a troubled agent must liquidate its position by at 

least as much as . After trading occurs, the agent should pay creditors Di(t) out of its 

available cash. For simplicity, we assume that cash is completely invested in assets, so 

that creditors can collect only earnings from current sales of assets. 

)(tiD

The predators are informed of the trading requirement and they trade strategically 

in the market in order to drop the price of the distressed agents’ selling power. At the start 

of the game, each agent chooses its own actions over the period [0,T] to maximize its 

own expected utility function, assuming the other agents will do likewise. Subject to their 

initial wealth and debt level constraints, they solve the following model: 
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))(),(),(Pr( tXtAts  is the price of assets at time t. The high value of A(t) (buy 

more) corresponds to a higher value of  . An increase in Agent i’s 

debts causes a decrease in ai(t). In particular, higher levels of debts make it optimal for 

Agent i to sell more regardless of any information from its rival Agent j. An agent 

becomes bankrupt when it cannot cover its debt obligations, which happens to be the 

state in which the marginal returns to extra output are very low. 

))(),(),(Pr( tXtAts

5.10.  Conclusion 

In recent years a literature has emerged that studies non-cooperative game theory 

from a decision-theoretic point of view [Aumann 1995]. Following this approach, we 

discuss a portfolio management game in terms of the rationality of the players and their 

cognitive states, that is, what they know or believe about the game and about each other’s 

actions. The model describes the uplink of a market that consists of k+1 agents investing 

in n assets.   
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CHAPTER 6 

CONCLUSION 

The dynamic portfolio model distributes the available funds accessible to or 

owned by an agent (investor) to different assets and opportunities over time in an 

uncertain environment. The general problem is how to enable an agent to maximize its 

expected utility by taking actions (selling or buying assets) in an uncertain environment. 

Most asset returns are uncertain, and investors do not know the probabilities of different 

future returns. This uncertainty must be considered since we do not have full knowledge 

about other agents’ actions or events within the environment.  

The agent should choose actions to change the portfolio based on the 

environment. If the agent does not take any action, events (observable and unobservable) 

will change the market and the value of the portfolio.  

In this research, we illustrated the potential of describing and optimizing dynamic 

portfolio selection under the framework of Semi-Markov Decision Processes. The detail 

of the model was discussed in Chapter 2, where we gave a rigorous mathematical 

formulation of the problem. It was assumed that a single agent was trying to strategize its 

actions in order to maximize; its objective function, defined as capturing the agent’s level 

of risk aversion. At any time, the agent keeps track of the positions and prices of all the 

possible assets in the market. The asset prices are modeled as a Geometric Brownian 

Motion process. The Q-learning technique is applied to define the solution.  

In Chapter 3 we introduced the Q-learning approach and presented some 

numerical results to the above problem for: 

 one risk-free asset and one risky asset in one period of time 
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 one risk-free asset and n risky assets in one period of time 

 one risk-free asset and n risky assets in more than one period of time 

As we indicated above, the agent’s state of information includes positions and 

prices for all assets in the market. While it is possible for the agent to limit this to a small 

subset of the market, there are no provisions made in the model to account for the 

partiality of the information about the rest of the market. On the other hand, the agent can 

include in its state of information, all the possible options. This would certainly result in 

incomplete information of the system states. In Chapter 4, we tried to address these 

shortcomings of Chapter 2’s model and discussed the impact of incomplete information 

on portfolio choices. Furthermore, in Chapter 5 we have discussed the impact of agent 

actions on portfolio selection.   
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