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ABSTRACT OF THE DISSERTATION 

 

Decomposition and metrical analysis of single-joint movement of the hemiparetic 

upper-limb 

By MICHAEL T. WININGER 

Dissertation Director:  

William Craelius, Ph.D. 

 

Observation of the voluntary movement of the upper-limb is the primary 

method by which recovery is determined in the motor-impaired. Here, an analytical 

infrastructure is presented for the decomposition of the kinematical record into two 

constitutive components: the essential motor activity, and spontaneous motor noise. 

These tools are subsequently used to perform novel hypothesis tests on the symmetry 

and variability of discrete single-joint articulation of the elbow in chronic stroke 

patients and healthy control subjects.  

Firstly, elbow-joint goniometric data from 41 healthy volunteers was modeled 

with a high accuracy to a set of analytical curves, parameterized to account for 

movement delay and average velocity. From this it was determined that single-joint 

trajectories are not uniformly symmetric, nor are their trace morphologies highly 

stereotyped. Additional analysis of trajectory waveform variability following a 

pseudo-wavelet domain transformation revealed modest spontaneous behavior in the 

medial domains of joint articulation. Among 14 subjects with impaired motor control 

due to chronic stroke, though significantly greater transience was observed throughout 

the joint domain, cohort tendency to adopt symmetric trajectories within a narrow (but 
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non-singular) set of morphology themes did not depart significantly from that of 

unimpaired subjects.  

It is concluded that motor dysfunction in the hemiparetic upper-limb, as 

observed via the motor activity of the elbow joint in stroke-afflicted persons, pertains 

to the proclivity to accelerative transience across the joint range, and not to an 

essential motor behavior associated with basic task execution. 
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1 INTRODUCTION 

1.1.1 Statement of need 
 

Five million Americans have survived a cerebrovascular accident (stroke), with 

an annual affliction rate of approximately 700,000 clinical admissions annually 

(Gresham, Duncan et al. 1995). The resultant hemiparesis severely reduces the quality 

of life in stroke survivors according to the limitations of the activities of daily living 

(ADL), the widely accepted tasks constituting and independent lifestyle: grooming, 

eating, self-care and hobbies (King 1996). These activities are highly manual, 

requiring dexterous proficiency of all of the joints and musculo-tendinous complexes 

of the upper-limb.  

At almost every juncture of the rehabilitation process, rigorous quantitative 

measurement of limb functionality is highly important: from preliminary diagnosis 

and design of therapeutic regimen, to monitoring of patient progress, and patient 

categorization for administrative and insurance purposes. Thus, reliable and robust 

measures of motor proficiency are an essential aspect of both clinical care provision, 

and laboratory-based development of rehabilitation tools and re-training paradigms. 

However, artifact sourced either in the empirical acquisition of biomechanical data, or 

in the ill-posed analysis of even putatively noise-free data can greatly bias the 

inferences generated in motion analysis. Here, an analytical infrastructure is 

developed for the accurate and informative analysis of kinematic data recorded from 

motor-impaired individuals.  
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1.2 Research conducted under the thesis purview 

1.2.1 Overview 

In the present work, a series of analytical investigations are performed on a 

single, large dataset of human subjects performing discrete flexion of the elbow, 

yielding single-joint trajectory (SJT) data. Here, a diverse set of theories of human 

movement and kinematic analysis are discussed either as long-standing and widely-

tested conventions, or as novel hypotheses tested here for the first time. All human 

subjects testing described herein were approved by the Institutional Review Board of 

Rutgers University, in place of or in combination with that of the University of 

Medicine and Dentistry of New Jersey, and all protocol administrators were certified 

to work with human subjects via the Human Subjects Certification Program at 

Rutgers University.  

1.2.2 Devices 

1.2.2.1 The Hand-Arm Rehabilitation Interface (HARI) 

The Hand-Arm Rehabilitation Interface (HARI) system is a family of 

instruments for the re-training of the upper-limb. The maxim of HARI is that of a set 

of simple rehabilitation tools of sturdy construction, comfortable design, and 

dependable performance, coupled with an intuitive graphical interface for real-time 

biofeedback display of a given measurement. HARI’s softwares are written in 

consideration of client needs, with clear display, large fonts, audible commands, and a 

compliant, but rigid interface for the elbow, wrist, and digits. HARI’s simplicity 

ensures reduced fabrication costs and setup, as well as interface interpretability and 

ease of operation, maximizing HARI’s amenability to a broad cohort of individuals 
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with special needs, spanning a variety of ages, cognitive and attention deficits, visual 

and aural impairments, and motor limitations.   

1.2.2.2 The Mechanical Arm Support & Tracker (MAST) 

Third-generation MAST hardware was used in all experiments described herein. 

The MAST supports the arm against gravity, allowing movement in the transverse 

plane, while recording instantaneous joint angle as voltage returned from a variable 

resistor (potentiometer), stationed within the MAST, below the elbow pad (Figure 1). 

Movement is constrained to a single degree-of-freedom, articulation about the elbow, 

by strapping the forearm securely into a freely rotating walled platform, with the hand 

positioned in a neutral posture, palm down. The arm is secured at slightly below 

shoulder height, with a soft strap at the humerus to restrict shoulder movement, and 

also at the forearm, placing the elbow joint in-line with the goniometer axis. It is 

 
 

   
 
 
Figure 1 Mechanical Arm Support & Tracker (MAST).   
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presumed, though has not been rigorously demonstrated, that the arm is securely 

strapped and does not translocate during a single or multiple movement cycles.  

MAST interfaces with a National Instruments data acquisition board (DAQ, 

National Instruments, Austin TX, USA), which acquires data at 80 Hz, with 12 bits 

resolution. A real-time biofeedback display, programmed in LabView (National 

Instruments) provided real-time display of instantaneous joint angle, as well as an 

approximately 2-second buffer of recent movement history (Figure 2).  

Minor processing was performed within LabView for display purposes, mostly 

pertaining to device calibration to the subject’s total range of motion. However, only 

raw data were recorded to a tab-delimited text file and saved for downstream analysis.  

1.2.3 Subject recruitment and demography 

1.2.3.1 Healthy subjects with no known neurological impairments 

Whereas HARI is a nascent technology whose development can be traced to 

the preliminary experiments of which some results are presented here, a wide variety 

 
 
Figure 2 MAST Software Interface.   
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of subjects were recruited to perform repetitive movement tasks in the MAST. 

Healthy volunteers were taken in from the Rutgers University community, 

representing a variety of body types, ethnicities, age groups, and genders, as well as 

handedness, familiarity with computer-based and robotics-based rehabilitation, and 

from all education levels and backgrounds. For the results discussed here, a group of 

65 healthy subjects provided data that could be used for at least one of the analyses 

(Table 1). 

 

 

Table 1: Demography of healthy subjects 
 Group Multiple visits 
Number of Subjects 41 19 
Age (µ ± σ) 
Range (min/max) 

36.5 ± 16.2 
21/68 

26.0 ± 8.6 
21/59 

Gender (M/F) 21/20 15/4 
Side of affect (R/L) 35/6 15/4 
Number of visits (µ ± σ) 
Range (min/max) 

3.1 ± 3.0 
1/17 

5.5 ± 2.4 
2/17  

µ = Mean, σ = Standard deviation, min = Minimum, max = 
Maximum, M = Male, F = Female, R = Right, L = Left.  

 

 

In many cases, subjects were able to make repeated visits to the lab, in which 

case their data was incorporated into longitudinal studies comparing performance over 

several days. It is worth noting the somewhat narrowed profile of this cohort: because 

of the lab’s situation in the Engineering Building at a large state university, persons 

capable of making multiple visits to the lab fit a stereotype of students enrolled in 

such a degree program.  
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1.2.3.2 Subjects with impaired motor control due to chronic stroke 

Clinical collaborators of the Rutgers University Rehabilitation Lab at the JFK-

Johnson Rehabilitation Institutes at Edison and at Hartwyck JFK Medical Center at 

Oak Tree (Edison, NJ) provided access to a consenting cohort of outpatient clients 

interested in an intramural rehabilitation experience. Over one dozen adults with 

spasticity have used the MAST either at the Rehab Lab on Rutgers University’s 

Busch Campus, or at one of these regional facilities. Most individuals were interested 

in using the MAST system on repeated occasions, and some were compensated for 

their time.  

 

  

Table 2: Demography of stroke subjects 
 Group Multiple visits 
Number of Subjects 14 13 
Age (µ ± σ) 
Range (min/max) 

56.8 ± 18.9 
21/80 

54.8 ± 19.6 
21/80 

Gender (M/F) 9/5 8/5 
Side of affect (R/L) 8/6 7/6 
Number of visits (µ ± σ) 
Range (min/max) 

10.4 ± 4.2 
1/14 

10.8 ± 3.6 
3/14 

Months post-stroke (µ ± σ) 
Range (min/max) 

22.4 ± 14.9 
7/49 

21.7 ± 15.2 
7/49 

C-M arm score (µ ± σ) 
Range (min/max) 

3.7 ± 1.2 
3/7 

3.6 ±1.2 
3/7 

µ = Mean, σ = Standard deviation, min = Minimum, max = 
Maximum, M = Male, F = Female, R = Right, L = Left, C-M = 
Chedoke-McMaster stroke assessment.  

 

 

Strict inclusion criteria of visual acuity, cognitive presence and attention span 

were evaluated by a licensed therapist, employed as facility Staff. Several functional 

evaluations were used, including the Nine-Hole Peg Test (NHPT) and the Chedoke-
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McMaster arm score (Heller, Wade et al. 1987; Gowland, Stratford et al. 1993). 

Additional inclusion criterion of a Chedoke-McMaster score greater than 2+ or 5 

completed tasks was employed; completion of the NHPT was not required, and is not 

presented in the present discussion. For subjects enrolled in the formal visitation 

program, these functional evaluations were administered before and after program 

completion, along with a pair of arm rating questionnaires, one of which was adapted 

from clinical literature (L'Insalata, Warren et al. 1997).  

1.2.4 Subject protocol overview 

All experiments described herein follow the same essential protocol except 

where otherwise indicated. Whereas the primary objective of this thesis document is 

to analyze behavioral motor control in its purest and simplest form, all analyses 

described herein are based on the autonomous single-joint flexion and extension of 

the elbow, meaning that the elbow was supported against gravity, pace self-selected, 

and no targets were imposed. “Warm-up” assistance was provided to the patients as 

requested, typically involving stretching of the involved joints, gentle massage, and 

periods of rest throughout the protocol.  

1.2.5 MAST movement protocols 

Single-joint elbow articulations were recorded from healthy and impaired 

individuals moving along a fixed pathway, where the only possible variable was 

angular velocity, as similarly adopted by previous studies (Nagasaki 1989; Wiegner 

and Wierzbicka 1992; Jaric, Gottlieb et al. 1998; Osu, Kamimura et al. 2004). 

Subjects were seated in the HARI with their dominant arm supported against gravity 

by the MAST. The elbow and hand were always positioned in the same horizontal 

plane as the shoulder, or just below, and the hand was never obscured from view. 
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Hemi-paretic individuals were seated with their affected arm in the MAST, 

irrespective of handedness. 

 

 

Perform a series of maximally smooth flexions and 
extensions with your elbow. You can perform these at 
whatever pace you like, but you are asked to perform 
them as smoothly as possible, and to the bounds of your 
comfortable movement range. 

Movement 
Instruction 

 

Subjects were instructed to move as smoothly as possible, with large, but sub-

maximal angular range. Movements were performed at a moderate and self-selected 

pace: no targets temporal or spatial were imposed on movements. Though not strictly 

controlled, the hand typically paused at movement reversal, i.e. all results reflect 

discrete and not cyclical movements. The arm was visible to the subjects, and 

biofeedback was provided as described above, however subjects were not specifically 

instructed to attend to this information: no hypotheses contained herein are considered 

to depend on the strict control of visual feedback, and this is considered a random 

variable.  

1.3 Hypotheses  

1.3.1 Overview 

The present work represents a series of investigations into the characterization 

and analysis of human performance vis-à-vis both basic movement parameters and 

holistic assessments of movement proficiency via a family of smoothness metrics. A 

series of experimental hypotheses were put forth related to the assessment of human 

movement, and features of movement concerning both basic behavioral patterns, and 

their alteration under neurological deficit. 

A review of these hypotheses and their conclusions follows: 
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1.3.2 Raw SJTs can be approximated by analytical waveforms 

 It is hypothesized that the single-joint trajectory record can be faithfully 

modeled by a surrogate trace, the Essential Trajectory (ET), an analytical curve 

parameterized to match the observed trajectory, 

 

 

The single-joint trajectory can be accurately 
reconstructed by a parameterized analytic curve selected 
from among a small set of model traces, the so-called 
Essential Trajectory. 

(Hypothesis 1) 

 

and that the parameters extracted thereof would accurately reflect the veridical 

movement parameters contained within the SJT. 

 

 

Features extracted from the Essential Trajectory will 
report information relevant to the observed movement 
with an accuracy that is competes with or exceeds those 
extracted from the observed single-joint trajectory.  

(Hypothesis 2) 

 

Several parameters, including the time to peak velocity, and the symmetry of 

the observed trajectory are used to leverage important hypotheses of human motor 

control, and thus it is incumbent to extract these features from noise-free traces, thus 

reducing error generated in the presence of empirical noise. 

 

1.3.3 Essential movement patterns are symmetric and stable 

Based on empirical laws, e.g. the isogony principle, and on copious 

abstraction within the literature, it was supposed that the basic motor behaviors of 

healthy subjects would yield highly linear, or at least symmetric SJT traces.  
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 Subjects single-joint movements will be largely isogonic 
and symmetric in both flexion and extension tasks. (Hypothesis 3) 

  

Furthermore, it is suggested that the basic motor behaviors of these subjects 

will be highly stable and stereotyped in the absence of external perturbations, and 

with the movement constrained, as in the MAST.  

 

 

Irrespective of the isogonic nature of the movement 
profile (Hypothesis 3), model adoption by subjects will be 
highly uniform, showing relatively high stability among 
the available model types. 

(Hypothesis 4) 

  

 In the case that a degeneracy of movement themes should be observed, it is 

further hypothesized that “selection” of ET type could be related to basic parameters 

of the observed motion. 

 

 

In the cases where the primary model type is not observed 
in a given movement cycle, this deviation from the central 
behavioral theme can be explained as the result of some 
perturbation in basic movement patterns, i.e. angular 
velocity, angle of motion onset, or time. 

(Hypothesis 5) 

  

 Thus, the basic tendency toward symmetric, stable movement is tested via a 

novel curve-matching paradigm: matching SJTs to ETs.  

1.3.4 Stroke patients significantly less symmetric, stable 

In order to characterize the essential movement behaviors of an impaired 

cohort, an investigation into the essential movement patterns of stroke subjects will be 

performed. First, it will be determined whether the ET is a satisfactory approximant of 

the SJT in stroke subjects. 
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Essential Trajectory approximants of the SJT trace will 
yield equivalently strong trace reconstructions of 
trajectories recorded from hemiparetic individuals.   

(Hypothesis 6) 

  

Following this method validation, the ETs will be analyzed for their symmetry, 

as before with the healthy subjects. Whereas stroke subjects’ neuromotor system is 

impaired, the hallmark symmetry of healthy human motion is hypothesized to 

deteriorate in the stroke condition  

 

 Subjects with impaired motor control exhibit motor 
deficiency in the way of asymmetric movement patterns. (Hypothesis 7) 

 

 Furthermore, it is suggested that the “choice” of movement pattern will depart 

from the healthy subjects, resulting in a higher degeneracy. 

 

 

Motor impairment will manifest as an increased 
variability in trajectory patterns, and this instability will 
have greater co-dependence on basic movement 
parameters. 

(Hypothesis 8) 

 

 This analysis is a standard cohort comparison, testing the hypothesis of 

significant departure from the results observed in healthy subjects. 

1.3.5 Standard metrical resolution of motor proficiency  

Whereas it has been reported in the literature that standard jerk-based 

smoothness raters occasionally fail to report significant differences between cohorts, 

it is here supposed that this may relate to a spurious co-dependence of average angular 

velocity, 
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Standard jerk metrics are independent of average velocity 
in “well-behaved” movements performed by healthy 
individuals. 

(Hypothesis 9a) 

 

and that this might pertain only to persons with impaired motor control.  

 

 
Jerk metrics exhibit spurious dependence on movement 
velocity in the special case of spastic movements 
characterized by significant periods of stall behavior. 

(Hypothesis 9b) 

 

The standard jerk metric is tested in several different formulations for its 

ability to discriminate an obviously impaired cohort,  

 

 
Jerk metrics can discriminate between healthy individuals 
and those with impaired motor control due to chronic 
stroke. 

(Hypothesis 10) 

 

 Through this analysis, it will be determined whether, in the present dataset, 

standard proficiency metrics are sufficient for reliable assessment of motor skill in a 

diverse cohort with minimal constraints on the movement paradigm (and thus the 

maximally autonomous motion). 

1.3.6 Domain transformation yields robust motor assessments 

Temporal domain analysis of kinematic data results proficiency metrics that 

are not only highly prone to error, but are dependent on a relatively meaningless 

variable: time. In order to obviate the pitfalls of position-versus-time analysis, a 

pseudo-wavelet data transformation is proposed. 
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Vectorial rendering of the single-joint trajectory, 
following transformation into the domain of linear 
approximant error as a function of angle, accurately 
reports movement proficiency in both healthy and 
impaired cohorts. 

(Hypothesis 11) 

 

 Here, a subjective analysis of both special test cases, and empirical data 

yielded will assess the transformed representation of spontaneous accelerations in the 

angular domain. In order to support traditional analyses and hypothesis testing, a set 

of scalars will be defined from which the spatial acceleration map can be evaluated. 

 

 

Scalar smoothness metrics derived from the angular-
domain trajectory transformation can discriminate 
healthy from impaired condition as well as standard 
metrics. 

(Hypothesis 12) 

 

 As per the preceding investigation into spurious dependence of jerk-based 

metrics on average velocity (Hypothesis 9), scalars resulting from the domain 

transformation of positional data will be similarly tested.  

 

 
Measures derived from the angular domain are 
impervious to spurious co-dependence of angular 
velocity. 

(Hypothesis 13) 

 

 Thus it will be determined whether either or both classes of proficiency 

metrics are sufficiently robust to yield dependable analysis of motor abilities in a 

broad cohort study. 

1.4 Thesis overview 

1.4.1 Analysis of standard, and novel SJT performance metrics 

Here, standard measures of motor proficiency will be presented in the form of 

a review of the pertinent literature, and discussed for their respective applications. 
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Several metrics and data transformations will be discussed in considerable detail, 

from which it will be proposed that despite their wide incorporation into the analysis 

of SJTs, they are inherently prone to error due to either their formulation or their 

implementation, and therefore untenable for use in biomechanical analysis. To 

counteract the error associated with these data treatments, two novel SJT 

transformations are proposed, along with scalar metrics amenable to standard 

statistical analysis, and, where applicable, means by which to visualize the resultant 

information. These novel analyses espouse complementary approaches to trajectory 

waveform analysis: one a highly specific characterization of movement proficiency, at 

very high resolution; and the other, an extraction of the general trend of the trajectory 

pattern, in a setting devoid of higher-order trace activity. To conclude, several 

sequellae from this work are outlined for potential future work.  

1.4.2 Primary deliverables 

1.4.2.1 Explanation for jerk failure 

Jerk is an oft-used measure of kinematic performance, but occasionally yields 

spurious and counter-intuitive results, particularly in the identification of impaired 

cohorts. Though this metric deficiency has been noted in some instances, the reason 

for jerk’s failure is typically met with a superficial explanation, if any at all. Here, jerk 

is discussed for its dependence on an inherently noisy substrate, and its susceptibility 

to systematic deflation in the face of stalled movement, both a result of jerk’s 

postulation as a time-domain metric.  

1.4.2.2 Proposal of a SJT transformation and operational scalars 

In order to ameliorate the extraction of salient performance parameters from 

the trajectory record, a transformation of angle-versus-time data to smoothness-
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versus-angle is proposed. For most purposes, time is an arbitrary variable, with an 

undue influence on many smoothness metrics; a much more meaningful independent 

variable, one with relevance to skeletal muscle physiology, is joint angle. To operate 

on this new substrate, the transformed trajectory, several simple scalar metrics are 

presented, yielding comparable (and sometimes favorable) results in terms of cohort 

discrimination between healthy subjects and subjects with impaired motor control due 

to chronic stroke.  

1.4.2.3 Proposal of a noise-free SJT approximation 

Though motor performance is typically judged in terms of movement 

smoothness, many motor control hypotheses are predicated on the basic shape of the 

trajectory waveform. In this way, the important measurement is the SJT essence, and 

not the incidence. A model is presented for the abstraction of the global essence of the 

trajectory trace, based on noiseless, parameterized analytical curves fitted to each 

movement record. From these idealized trajectory representations, basic hypothesis 

tests of waveform parameters are performed, testing the notion of cycle-to-cycle 

invariance, trajectory straightness (equal angle in equal time: isogony), and these 

variables with respect to an impaired and a healthy cohort.  

1.4.2.4 “Extension” of scope 

The above analyses will be performed primarily on discrete (as opposed to 

cyclical) flexion of the elbow; however, select experiments will compare these results 

to data recorded from elbow extension, as well. Following a summary of these results, 

a brief outline of related methodologies is offered, and explained in sufficient detail to 

allow for adoption or adaptation, according to desire. Finally, the findings presented 

herein are discussed in the context of the central philosophy of this work, that it is 
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incumbent for researchers of the human neuromotor system to seek to identify not 

only those aspects in which the impaired differ from the unimpaired, but how they are 

alike.  
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2 KINEMATICAL OBSERVATION 

2.1 Theories of motor control, and kinematic study 

2.1.1 Minimum jerk 

Most motor control researchers believe that minimum principles have some 

biological utility (Engelbrecht 2001).  The notion of minimizing the rate of change of 

acceleration over some segment of a movement, i.e. maximizing smoothness, has 

postulated in terms of minimum endpoint jerk (Flanagan and Ostry 1990), and jerk 

over the entire course of movement (Hogan 1984). Trajectory formation under the 

principle of jerk minimization predicts bell-shaped tangential velocity profiles, and 

straight line pathways between the endpoints in higher-dimensional movements 

(Hogan 1984; Plamondon, Alimi et al. 1993).  

The minimum-jerk has principle been prolifically applied to cohorts with 

impaired motor control, including upper motor neurone syndrome (Cozens and 

Bhakta 2003), spasticity (Feng and Mak 1997), chronic stroke (Rohrer, Fasoli et al. 

2002), and cerebellar ataxia (Goldvasser, McGibbon et al. 2001). However, the 

apparent asymmetry observed by some in simple, single-joint movement tasks, has 

led to criticism of the minimum jerk hypothesis in voluntary motion of unimpaired 

individuals (Nagasaki 1989; Wiegner and Wierzbicka 1992; Mutha and Sainburg 

2007).  

2.1.2 Minimum change-of-torque 

Whereas jerk can be considered a kinematic cost, kinetic costs, derived from 

muscle-generated forces or torques applied to the arm, constitute a separate class of 

optimization variables. By minimizing the summed squares of torques applied to the 
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joints during movement or while a posture is maintained, it is thought that the 

minimum change-of-torque principle, a rough correlate to metabolic energy consumed 

by the muscles, constitutes the most biologically relevant optimization principle 

(Hogan 1984; Uno, Kawato et al. 1989; Kawato, Maeda et al. 1990). 

The relationship between torque and elbow joint angle has since been 

addressed in constant muscle activations in single- and multi-joint flexion movements 

(Gribble and Ostry 1999; Akazawa and Okuno 2006); and has been extended to 

special needs populations, including stroke and cerebellar ataxia (Dewald, Pope et al. 

1995; Bastian, Zackowski et al. 2000). Invoking the movement invariance of single-

joint movements in the context of a minimum torque-change principle, qualitative 

trajectory outcomes have been postulated according against which experimental data 

can be compared (Engelbrecht and Fernandez 1997). 

2.1.3 Equilibrium point hypothesis 

Suggested initially as a motor neuron activation threshold control, as opposed 

to force control (Asatryan and Feldman 1965), the notion of position sense 

comprising components other than an internal (e.g. muscle torque) model was 

originally suggested on the evidence of parallel control modalities associated the 

afferent and efferent mechanisms involved during movement under load (Feldman 

and Latash 1982). This equilibrium point hypothesis has been studied via kinematic 

and EMG studies of both autonomous and perturbed motion, in humans and sub-

human primates (Bizzi, Accornero et al. 1984; Gomi and Kawato 1996; Adamovich, 

Levin et al. 1997; Sainburg, Ghez et al. 1999; Adamovich, Archambault et al. 2001). 
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2.1.4 Two-thirds power law 

A non-linear relationship between tangential velocity and radius of curvature of 

hand trajectory in 2- and 3-dimensional motion is thought to be described by a power-

law relationship, the two-thirds power law (Viviani and Terzuolo 1982; Viviani and 

Schneider 1991). This principal has been tested in a variety of boundary conditions, 

movement constraints, and task objectives, each according to the trajectory of the 

hand (Viviani and Schneider 1991; Viviani and Flash 1995; Todorov and Jordan 

1998; Schaal and Sternad 2001). The adherence to or violation of this principle, 

according to movement task, is thought to imply the pre-dominance of rhythmic 

pattern generation, among other hierarchical control mechanisms. 

2.2 Artifact in the kinematical record 

2.2.1 Noise in the context of neuromotor research 

Nearly all experimental data contains some element of noise, which often 

proves to be the limiting factor in the utility or performance capabilities of a medical 

instrument (Semmlow 2004). “Noise” can refer to machine error associated with the 

acquisition of biological data by a digital interface, or rounding error generated in the 

post-hoc analysis, or even legitimate signal content that detracts from the analyst’s 

ability to make a determination about some concurrent phenomenon. We thus define 

“noise” as any aspect of the kinematic trace which interferes with a given motor 

analysis. 

2.2.2 Error introduced in the data acquisition process 

In the experiments presented here, all data are obtained from the elbow joint via 

a variable resistor (potentiometer) goniometer, embedded in a sturdy aluminum 

manifold. Joint angle is recorded as a function of voltage out of the resistor, fed 



  

 

20 

Goniometer 

 

Data Acqui-
sition Device 

(DAQ) 

 

Instrumentation 
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Processing, 
Analysis 
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Flowchart 0 Data acquisition schematic. Error can be introduced into the recording 
of continuous human movement data as discrete, digital samples at any juncture.  
 

Voltage resolution, 
device seating in 

HARI 
Analog-to-Digital 

conversion 
Resolution bottle-
neck, data con-

version & storage  

Rounding error, 
interpolation, 
filtering, etc. 

through a data acquisition box (DAQ), which sends the digitized signal to an 

interpretation software in the computer, where it is stored. Error in the data 

acquisition process can occur at any juncture of this process, either due to mechanical 

failure of the goniometer, e.g. not fitted correctly to its housing, or sliding of the 

wiper within the potentiometer body; in the conversion of analog to digital signal at 

the DAQ box, or in the conversion of voltage data to numerical representation and 

subsequent storage as a file for downstream analysis (Flowchart 0).  

 

 

 

Signal filtering, presents its own optimization process: filter design is an 

entirely separate field of study for which filter characteristics (ripple location in pass-

band, stop-band, or both; filter roll-off), filter order, and filter coefficients, are 

determined not only by parameters of the data, primarily sampling frequency, but also 

by experimental objectives, e.g. the nature of the measurement, the specific 

hypothesis posed, and the movement task. Though “standard” filter characteristics are 

typical of niche research fields, it will be shown in subsequent Chapters that these are 

seldom ideal.  
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2.2.3 Error introduced according to sampling frequency 

Above the Nyquist limit of minimum sampling frequency required to capture a 

given phenomenon, it is tempting to think that sampling frequency has little influence 

in the rendering of most processes (Shannon 1998). However, over-sampling any 

process creates as risk of generating instantaneous derivatives below the threshold of 

bit noise. Quantization of a continuous signal in the analog-to-digital conversion 

typically accounts for a trade-off between the signal-to-noise ratio and dynamic range 

by use of floating point sampling systems (c.f. fixed point systems with uniform 

sampling)1. In this way, if bit noise is large, and the ratio of dynamic range to 

sampling frequency sufficiently small, the resultant rate of change of signal may not 

supercede the error introduced in the system.  

For example, any goniometric system, particularly those involving 

potentiometric measurements, the measurement range MR (voltage units V) of the 

variable resistor and the sampling frequency ν (time sample c per second s) act 

reciprocally to determine the voltage resolution ρ (Volts per time sample):  
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i.e. an expectation of Volts per sample c. In a scenario where the potentiometer is 

calibrated to a total range of motion Δθcal, and a movement executed with a constant 

angular velocity !& ,  voltage resolution will be  
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1 Here the dynamic range denotes the usable voltage range of a given potentiometer, typically close to 
its total range, e.g. a 5V potentiometer with 4.8V of effective, non-saturated output.  
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= . Thus, voltage step size is inversely proportional to 

sampling frequency, creating potential for artifact in noisy systems.  

To illustrate, consider a 5V potentiometer, calibrated to record a 60° angular 

displacement as voltages ranging from 0.5 to 4.5V, i.e. 4V representation of the 

dynamic range. For a 1.2s duration movement, sampled at 200 Hz, assuming constant 

angular velocity ss /502.1/60
oo& ==! , voltage resolution is
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0167.0
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This, of course, presumes a constant average velocity. Comparing this average 

resolution to the system noise tolerance, if signal error is on the order of 0.01V, the 

movement record could be compromised.  

Indeed, constant movement speed is not physically realizable. For regimes of 

the motion where the instantaneous velocity is much larger than the average velocity 

!! && >>
i

, i.e. towards the center of the bell-curve reported in the literature (), this 

resolution becomes larger:  
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, reducing risk of error. However, it is 

easy to see that the lower bound for ρ is 
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& , which in the limit as 
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, greatly increases risk of error. This error is compounded in situations where 

differentiation is involved2.  

                                                
2 It is incumbent at this juncture to assess whether this limit poses a problem for the data analyzed in 
the present discussions. It was determined that the version of MAST used to acquire all data presented 
here operated to within 0.05° tolerance. Presuming (conservatively) a 4V MR, and calibration to Δθcal = 

120° for a range of motion Δθcal = 110° at a 2-second duration (!&  = 55° s-1). At a sampling rate of 80 

Hz, presuming a slow movement with the 10th percentile of speed at!&  = 3° s-1, the change in voltage 
per sample for this system is given by 

c

V

80

110

55

3

120

4

%10
!!=" = 2.5 × 10-3 Vc-1. Whereas it has been 

determined that the potentiometer tolerance is o

o
05.0

120

4 !V  = 1.65 × 10-4V, it is expected that the 

potentiometer, sampling rate, and calibration scales are entirely appropriate for our system, and its 
expected variable range. 
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2.2.4 Error resulting from differentiation 

Various signal processing methods, such as low-pass filtering can reduce a 

considerable proportion of noise, but filter design espouses its own fuzzy and non-

linear optimization process, and noise reduction presents a trade-off relationship with 

signal retention: it is possible to distort the meaningful signal in the process of 

removing meaningless content. Noise that remains is not only available to analysis 

and interpretation as a putative feature of ostensibly “clean” data, but is subject to all 

subsequent transformations on the original dataset, including differentiation with 

respect to time.  

Differentiation of discrete time-series data by the central difference method is a 

notoriously noisy process, and will not only propagate, but amplify, errors with each 

iteration of the derivative (O'Haver and Begley 1981; Usui and Amidror 1982; 

Dabroom and Khalil 1999). Though filters are typically incorporated after each 

differentiation, amplified noise will require dynamic filter design; conventional filter 

protocol incorporates identical filters with each application. Thus, for any position-

versus-time data to contain some noise content increases the probability that the 

velocity, acceleration, and jerk profiles are also contaminated, and possibly to a 

greater extent, constraining their utility as measurement substrates.  

2.2.5 Artifact associated with inappropriate task constraints 

Perhaps the least recognized limitation of biomechanical analysis is the lack of 

robust measures that can be implemented irrespective of a subject level of abilities. 

For instance, the simplest measure of motor proficiency, and the easiest to implement, 

is a target-tracking protocol. A simple mean-square deviation of the effector of 

interest (here the hand, directly reflecting joint angle) from the target allows for 
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impairment to be calculated instantaneously from within device software, or within 

readily available spreadsheet packages (e.g. Microsoft Excel).  

The parsimony of such a paradigm notwithstanding, this protocol is utterly 

insufficient for determining the true limitations of an individual with impaired motor 

control. By definition, a special needs population will suffer from limited range of 

motion, joint articulation speed, and dexterity; their movements will be spastic and 

uneven, and may exhibit very dynamic behaviors across their angular range due to 

position-dependent spasticity, or across time, owing to fatigue or compromised 

attention. Subjects with impaired motor control often present with associated 

symptoms including visual or cognitive deficit, or other co-morbidities that render 

target-tracking tasks, no matter how parameterized, untenable.  

2.2.6 Artifact associated with legitimate movement phenomena 

Independent of signal error associated with the hardware or software interfaces, 

and even in the evaluation of healthy human subjects with no known neurological 

impairments, noise can be introduced into the movement record that detracts from the 

extraction of the essential movement pattern. These spurious trajectory trace features 

are detected by various proficiency metrics, and reported as unsmooth behaviors, even 

when this implication is contradictory to the underlying assumptions. Indeed, some 

proportion of the motor system can be attributed directly to noise generated by the 

motor system. 

In the context of highly stereotyped movement patterns observed at many 

levels of the human nervous system, it has been postulated that the neural control 

signals underlying arm movements are corrupted by noise whose variance increases 

with the size of the control signal (Harris and Wolpert 1998). This noise influences 

the shape of the trajectory, and is selected in order to minimize end-point variance, at 
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the de-emphasis of trajectory smoothness. Irrespective of the veracity of this 

particular claim, and the magnitude of its impact in the trajectory signal, it is 

understandable that in the imperfect execution of some motor task, some noise will be 

overlaid on any putative essential trajectory pattern, associated with spurious, 

transient, and spontaneous accelerations produced throughout the movement 

execution, and unrelated to a hypothetical motor plan.   

2.3 Raters of kinematical proficiency 

2.3.1 Basic kinematic parameters 

2.3.1.1 Positional domain 

The primary characterization of motor execution is moored in the elemental 

features that can be extracted from the trajectory waveform. Amplitude Δθ, which 

ostensibly represents angular range of motion, unless a movement is purposefully 

performed at a sub-maximal range3, and temporal duration: total time T, synthesize or 

espouse several related metrics, including average velocity 
T

!
!

"
=& , angular minima 

and maxima (maximum joint extension, and maximum joint flexion θmin and θmax, as 

well as time to maximum position !"
max

4. 

 

                                                
3 It is strictly correct to reserve the nomenclature “Range of Motion” for the total range defined by the 
physiological limits of joint articulation for a given individual. In this discussion, we will adopt the 
convention that the ROM constitutes angular minimum to angular maximum of a given motion, which 
will be large, but sub-maximal and comfortable.  
4 Here, we will observe the convention that all temporal landmarks will be indicated with tau τ, 
subscripted to denote the significance of the landmark, and super-scripted to identify the domain in 
which this landmark is observed.  

Table 3: Basic kinematic variables of the positional domain 
Metric Symbol Units 

Movement amplitude !"  degrees 
Total movement time T  seconds 

Total number of samples s
N  time sample 

Average angular velocity !&  deg/second 
Maximum elbow 
extension angle min

!  degrees 

Maximum elbow flexion 
angle max

!  deg/second 

Time to maximum elbow 
flexion 

!"
max

 seconds, time sample, or 
proportion of T 5 
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These metrics are typically available upon inspection of the trajectory 

waveform, and require little processing of the movement record. Note that Ns = T · ν 

where ν is the sampling frequency in samples per second.   

2.3.1.2 Differentiated domains 

By differentiating the position-versus-time trace, it is possible to calculate 

movement parameters with greater relevance to theories of motor control. For 

instance, the minimum-jerk theory postulates that the velocity profiles of healthy 

human movement are bell-shaped and symmetric about the time to maximum velocity 

max
!& . This is typically quantified either by the time to peak velocity !"

&

max
, or by the 

ratio of time spent in acceleration to time spent in deceleration 
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00 ### &&&&&& , the so-called symmetry ratio, (Jaric, Gottlieb et al. 1998).  

 
 

                                                                                                                                       
5 All temporal landmarks will hereafter be rendered as a proportion of T, i.e. on unity scale, unless 
otherwise stated. 

Table 4: Standard kinematic variables of the differentiated domain 
Metric Symbol Units 

Peak angular velocity 
max
!&  degrees/second 

Peak angular acceleration 
max

!&&  degrees/second2 
Time to peak angular 

velocity 
!"
&

max
 Proportion of T 

Time to peak angular 
acceleration 

!"
&&

max
 Proportion of T 

Symmetry ratio  unitless 
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Velocimetric parameters, defined within the ( )t!&  domain can be extended to 

higher differentiations including acceleration, ( )t!&& , and higher derivatives (jerk, snap, 

etc.).  

2.3.2 Waveform evaluation 

2.3.2.1 Integrated jerk 
 

The jerk cost function6 is a much studied tenet of human motor control, and has 

been called the “distillation of its essence” (Engelbrecht 2001). That each movement 

performed by a healthy individual seeks to maximize trajectory smoothness as defined 

by the integrated squared rate of change of acceleration  
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#$ , (Equation 1) 

 

                                                
6 Though jerk is, by definition a vectorial quantity reflecting the rate of change of acceleration in time, 
this trace will not be discussed frequently here; for this reason, the short-hand of “jerk” will be applied 
to the integral expressed in (Equation 1), or variant thereof, and will be referenced simply by the 

variable J. When necessary, the jerk trace ( )ttJ
dt

d

!
3

3

)( =  will be identified appropriately.  
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where !  is some constant, implies a kinematic motor plan of which hand path is the 

primary expression. This criterion is applied to angular position data θ(t), as a primary 

means by which rehabilitation is monitored in a clinical setting (Rohrer, Fasoli et al. 

2002; Cozens and Bhakta 2003; Chang, Wu et al. 2005; Daly, Hogan et al. 2005; 

Fang, Yue et al. 2007) and motor control hypotheses are validated (Atkeson and 

Hollerbach 1985; Flash and Henis 1991; Wolpert, Ghahramani et al. 1995; Todorov 

2004), as well as in the design of haptic interfaces (Piazzi and Visioli 2000; 

Amirabdollahian, Loureiro et al. 2002).  

 Despite its simple formulation, the parametrizability of jerk, via its upper-

bound of integration and normalization coefficient, as well as data trace treatment, e.g. 

temporal normalization, makes jerk a cumbersome metric in terms of generalizability. 

For instance, κ is typically chosen to account for some variable expected to bias the 

jerk integral. Normalization to total movement time (Kluger, Gianutsos et al. 1997; 

Engelbrecht 2001; Cozens and Bhakta 2003; Yan, Rountree et al. 2008) is most 

common, though division by total number of degrees of freedom (Viviani and Flash 

1995; Feng and Mak 1997), maximum velocity (Rohrer, Fasoli et al. 2002), or not at 

all (Osu, Uno et al. 1997; Todorov and Jordan 1998; Goldvasser, McGibbon et al. 

2001; Amirabdollahian, Loureiro et al. 2002; Richardson and Flash 2002). The 

correction for movement time not sufficient to counteract the implicit devaluation of 

the jerk integral by movement duration T. Indeed, it has been shown that the optimum 

movement under the jerk integral is that which endures for infinite time (Hoff 1994). 

Normalization by sampling frequency or total movement time, cannot resolve this 

scaling (Engelbrecht 2001). 

 The incorporation of the jerk integral into subject performance evaluation has 

been met with some controversy, for its propensity to yield counter-intuitive or 
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occasionally contradictory results. For example, chronic stroke patients, undergoing 

therapy of the upper-limb were determined to produce significantly jerkier 

movements after re-training (Rohrer, Fasoli et al. 2002). This observation 

contradicted four other smoothness measures, suggesting a fundamental limitation of 

the jerk metric. Other claims have been made of jerk’s inability to discriminate 

between cohorts (Goldvasser, McGibbon et al. 2001; Cozens and Bhakta 2003), in 

various upper-limb movement paradigms. Here, it is noted that in the present 

discussion, “jerk” refers to the integral expressed in (Equation 1), as a measure of 

movement smoothness. This Section should not be interpreted as a discourse on the 

validity or veracity of the minimum jerk hypothesis, but an exposition on this 

particular evaluation of movement proficiency from a formulaic standpoint. 

2.3.2.2 Arrest periods 

Movements performed by individuals with compromised motor control, 

particularly resulting from severe spasticity, are often halting, interspersed with 

periods of low or zero velocity. Episodic movement is typical of patients in early 

stages of recovery, stopping multiple times before reaching their target (O'Dwyer, 

Ada et al. 1996; Blakeley and Jankovic 2002). That this stop-and-go movement 

behavior is endemic to a large subset of individuals, suggests the importance of a 

measure of the degree to which a given movement is punctuated with periods of 

angular velocity below some threshold.  

 The Mean Arrest Period Ratio (MAPR) quantifies the proportion of a 

movement task spent below an arbitrary threshold, for example, 10% of maximum 

velocity:  
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where  
max

1.0 !"
!

&
& #= , and has units of time (here again, proportion of total time T 

(Beppu, Suda et al. 1984). Velocity threshold 
!
" &  can be set with respect to the 

expectations of the cohort: a low threshold is suitable for healthy subjects, for 

example.  

2.3.2.3 Velocimetric peaks 

In addition to integrated metrics such as jerk and MAPR, and assessment of 

the area under some curve, kinematic trace tonicity can be rendered via counting 

metrics. Tallying the number of peaks in the velocity profile, for example, yields the 

number of directional changes in acceleration 
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for which it is hypothesized that in typical movements performed by healthy 

individuals, the velocity profile is a singly-peaked trace resembling a bell curve, i.e. 

!
" &  = 1. The number of peaks in the velocity profile7 has been used to quantify 

smoothness in healthy (Brooks, Cooke et al. 1973; Fetters and Todd 1987) and stroke 

patients (Rohrer, Fasoli et al. 2002; Kahn, Zygman et al. 2006); fewer peaks represent 

a smoother movement. 

 An indirect measure of jerk can be posed by assessing the ratio of the velocity 

trace maximum to the mean trace value: 

                                                
7 Often referred to as the “peaks metric,” but this jargon is avoided in the present discourse, as we will 
introduced several scalars depicting peaks in various traces. Here, “peaks” is indicated by pi ! , 
subscripted for the domain over which the peaks are being counted. 
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This so-called “power ratio” yields an estimate of the relative disparity 

between the peak velocity and average velocity, i.e. the magnitude of incidental 

transience associated with spontaneous accelerations, as compared to the velocity of 

the remainder of the movement. This ratio may not be appropriate for application to 

movements punctuated with prolonged arrest periods.  

2.3.3 Miscellany 

The art of feature extraction from any dataset involves a major component of 

creative waveform analysis. Myriad performance metrics have been proposed which 

variously assess some subset of peak features, which are thought to directly or 

indirectly report some aspect of motor proficiency. In the present discussion, attention 

will be focused primarily on the metrics described above, both for their simplicity, as 

well as their popularity amongst motor control and rehabilitation researchers. There 

are ample opportunities for the sufficiently ambitious analysts to develop new 

descriptors, both as scalars and as vectors, and indeed a small set of such novel 

metrics is presented in subsequent Chapters.  

2.3.4 Metric type and commutativity 

Though smoothness measures in laboratory research are typically of a 

quantitative nature, e.g. integrated jerk, RMS deviation for a target curve, or MAPR, 

these metrics may not necessarily be optimal for reporting the features of their 

respective substrates. For instance, jerk and RMS deviation are both subject to 

systematic bias due to experimental parameters (sampling frequency ν) and basic 
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kinematical parameters (total movement time T or angular range Δθ). Thus, the 

validity of these metrics extends only within a given protocol, and their cross-

comparison to other protocols is meaningless. In this way, an ordinal measure, i.e. of 

a given trace having the maximally smooth or having a sub-maximal smoothness, 

may be preferred. In other situations, a categorical variable, placing a given 

movement cycle in one of several different categories may be the most informative 

means of taxonomy. This paradigm, along with the subset of categorizations restricted 

to binary classification (“on” or “off,” “diseased” versus “healthy,” etc.) is generally a 

pattern recognition problem.  

2.3.5 Vectorial versus scalar metrics: local versus global analysis 

Lastly, it is proposed that for some research questions, a scalar smoothness rater 

is insufficient for a complete and meaningful assessment of motor proficiency. All of 

the measures described to this point have predicated on a mathematical operation 

applied to excursion trace or some equivalent transformation, yielding a single scalar 

metric. While scalars are convenient for interpretability, and amenable to traditional 

statistical analyses, there is often need to resolve motor proficiency as a function of 

time or angle, i.e. to retain the measure as a function of some independent variable. In 

this way, it is proposed that vectorial smoothness measures may provide crucial 

insight into the nature (location and magnitude) of the limitations of an individual’s 

neuromotor system.  

2.4 Summary 
 

Kinematic data constitutes the primary variable incorporated into basic 

research of the human motor system, and serves as the substrate of evaluation in 

clinical applications. These data, however, typically contain noise not associated with 
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the motor plan, and whose source is rarely understood. The metrics used to evaluate 

these traces are not universally accepted, limited in scope, and may not generalize 

across protocols. Further, these metrics are scalar when a vectorial rendering may be 

more appropriate, quantitative when a categorical or ordinal variable would be more 

informative, and may themselves be prone to amplifying signal artifact.  

Whereas abstractions of human movement are often formulated in terms of 

smoothness metrics, and subsequently used to assess the veracity of models of motor 

control, it is the burden of biomechanists to first demonstrate the validity of these 

parameters as fiduciary indices of motor output.  
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3 EXTRACTING THE TRAJECTORY ESSENCE 

3.1 Introduction 
 

The collection of kinematic data presents occasion for contamination of 

empirical data by noise unrelated to the true variable of interest. Research activities in 

which the trajectory curve is evaluated by some waveform operation, are subject to 

bias in the presence of trace artifact. For instance, even low amplitude transient 

accelerations in the flexion-versus-time record can greatly increase the peak content 

in the thrice-differentiated position-versus-time curve (jerk); this artifact skews all 

related metrics and invalidates hypothesis tests related to the adherence to a 

minimum-jerk trajectory. The incorporation of the kinematical data into basic 

research into human motor control, and characterization of motor deficiency in 

impaired subjects, evidences the importance of ensuring that the analysis of the 

trajectory waveform, and indeed the trace itself, is free from artifact. Here, the single-

joint trajectory will be discussed in terms of its shape, i.e. the evolution of joint angle 

in time, and the extraction of the trajectory essence without undue alteration from 

empirical incidence. 

3.2 SJT Shape: Theory and observation 

3.2.1 Physiology, task variables co-determine trajectory shape 

3.2.1.1 Agonist-antagonist activity 
 

That the kinematic trace has utility as a proxy to neuromuscular activity within 

the motor hierarchy has been demonstrated in the high correlation between 

electromyographic signs of antagonist activation and kinetic parameters of movement 

(torque and velocimetric aspects of the movement) in a variety of conditions (Bouisset 
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and Goubel 1973; Gottlieb, Corcos et al. 1989; Gottlieb, Latash et al. 1992). Features 

of the agonist bursts, as detected by EMG, co-vary with the torque required to 

decelerate the limb (Gottlieb, Latash et al. 1992); increased agonist activity correlate 

with movement speed (Corcos, Gottlieb et al. 1989; Hoffman and Strick 1990), and 

possibly movement distance and peak acceleration c.f. (Marsden, Obeso et al. 1983; 

Mustard and Lee 1987; Gottlieb, Corcos et al. 1989; Hoffman and Strick 1990). 

Indeed, SJTs reflect a complex interaction of several interdependent variables related 

to the movement task and the underlying physiology.  

Angular velocity of the hand about the elbow can be expressed as a second 

order linear differential equation reflecting the sum of torques generated by the flexor 

and extensor muscles 

 

 !=+ T
dt

d
B

dt

d
I

""
2

2

  

 

where I is the moment of inertia, B is the coefficient of viscosity, and T is the net 

muscle torque (Lemay and Crago 1996). Net torque about a joint is the resultant of 

torque by the flexor and extensor muscles. The torque exerted by a single muscle 

group Tm can be expressed as  
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where Fm is the active force produced by the muscle, dm is the effective moment arm, 

η is viscosity, K is the elastic stiffness, and θeq is the equilibrium joint angle. 

Posture and movement control are facilitated by both viscoelastic properties of 

muscle and muscle activation (van Soest and Bobbert 1993; Milner 2002). Torque 
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production results from neuromuscular activation of the agonist-antagonist pair: 

biceps and triceps, or triceps and biceps in flexion, or extension. Electromyographic 

measurement of muscular activity is deterministic (Prasad, Wasson et al. 1984; Yang 

and Zhao 1998; Lei, Wang et al. 2001), however, the activations themselves in terms 

of the time of onset, duration, and magnitude, are formed by a non-linear combination 

of multiple sources, reflect stochastic processes (Tian and He 2003; Pohlmeyer, Solla 

et al. 2007).  

3.2.1.2 Stretch reflex and velocity 

Torque is a linear function of stiffness K , a 1st-order LDE (linear in activation 

a) with dependence on motor neuron pool input u : 

 

 ( )L),(),( tutafK = .  

 

which is scaled by stretch reflex, a function with dependence on muscle length L, 

velocity 
i
L& , and several physiologic constants 

 

 stretch reflex ( )L& ,, ii LLf= ,  

 

L is reflexively determined by the angle spanned by the muscle across the joint, 

regulating the stretch reflex in a step-wise or zone-like fashion (Lemay and Crago 

1996; Levin and Dimov 1997).  
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Task variables, and parameters of the skeletal muscles co-determine 

performance variables. For instance movement symmetry changes with peripheral 

factors such as different inertial loads, movement distances, or under certain 

instruction (Nagasaki 1989; Jaric, Gottlieb et al. 1998; Jaric, Milanovic et al. 1999), 

either due to the role of damping forces, central control patterns, or both (Jaric, Blesic 

et al. 1999).  

3.2.2 Prediction of SJT shape from neuromotor control principles 

3.2.2.1 Minimum jerk velocity 

The jerk minimization theory poses that the motor system seeks to move with a 

maximally smooth motion according to the reduction of jerk as measured by some 

metric of the differentiation of acceleration in time. Suppose that for a given motion 

)(tr
r , it is determined that its sixth derivative is equal to 08. Thus 

                                                
8 This supposition is based on the original derivation submitted by Hogan (1984): The objective 

function !=
d

dtC
0

2

2"  is minimized as a function of state and input variables !" =& , 

!""!
I

B

I

K

I

K ##=
0

&  and !!" &
I

K

I

K

I

K
U ##= . Taking the Hamiltonian of this system and 

minimizing with respect to control U , we generate a set of three co-state equations in ! , which form 
a six-equation set of linear differential equations solving !& , !& , 

0
!& , 

1
!& , 

2
!& , and 

3
!& , where the 

characteristic polynomial is a sixth-order Laplacian (=0), yielding six eigenvalues, identically 0, and a 

Flowchart 0 Factors influencing trajectory shape. Simplified, control-free model.  
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Substituting FA!  for these coefficients, we impose the following boundary 

conditions 
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where Δ is the total range of motion, yielding  

 

 ( ) FEtDtCtBtAttr +++++= 2345r .  

 

where 

 

 ( ) ( ) ( ) ( ) ( ) ( ) 0000000
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=!+++++= FFEDCBAr
r ,  
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1234
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and 
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Three boundary conditions remain to solve ( ) 345
CtBtAttr ++=

r . Setting up a 

system of equations differentiated as above, we get the following matrix problem: 
                                                                                                                                       
fifth-order position trajectory given by ( ) 5

5

4

4

3

3

2

210
tbtbtbtbtbbt +++++=! . Euler-Poisson 

equation. 
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Performing some elementary row-reductions, we get the following in echelon form 
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yielding the following:  
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10156
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Thus the positional vector which satisfies the jerk minimization criteria is as 
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Differentiating once with respect to time, we generate the minimum jerk 

velocity vmj 
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From this bell-shaped velocity profile, a cumulative summation (effective 

integration), yielding degree of flexion in time, yields a sigmoidal plot analogous to 

the cumulative integration of the probability density function: the cumulative density 
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function. Invoking another analogue, that of the half-period sinusoid, it is proposed 

herein that by the small angle approximation !!
!

=
"

sin
0

lim
, the medial angles of 

flexion are transcribed at approximately constant velocity, i.e. plotting a linear 

trajectory (Figure 3).  

Depending on the steepness and symmetry of the actual velocity plot, the linear 

regional trajectory may shift or occur over longer or shorter range of motion. 

3.2.2.2 Two-thirds power law 

It was shown that within a singular motion segment, regions of constant 

curvature are transcribed with constant angular velocity: two-thirds power law 

(Viviani and Terzuolo 1982; Lacquaniti, Terzuolo et al. 1983). The two-thirds power 

 
 
 

   
 
 
Figure 3 Prediction of Linear Trajectory by vmj: The minimum jerk velocity plots a 
bell-shaped profile.  
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law relates the radius of curvature R  at any point s  along the trajectory with the 

corresponding tangential velocity  
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where β ≈ 0.33 and 0 ≤ α ≤ 1. Though originally formulated for multi-DOF movement 

tasks, this relationship has been demonstrated in several paradigms that espouse some 

or all of the experimental protocol utilized here: planar movements where the 

trajectory has no points of inflection (i.e. a single movement segment) (Viviani and 

Schneider 1991) and movements under mechanical constraint (Viviani and Terzuolo 

1982).  

3.2.3 Evidence of symmetric, approximately linear SJTs 

Single joint pointing movements are observed to transcribe bell-shaped velocity 

profiles with symmetric trajectory traces (Jaric, Blesic et al. 1999), having an 

approximately linear or gently curved (sigmoidal) morphology. This feature of motor 

behavior is abstracted as an invariant property of human motion, particularly under 

“low spatiotemporal accuracy requirements” (Atkeson and Hollerbach 1985).  Figure 

4 shows several examples of single-joint trajectories extracted from the relevant 

literature. Each trajectory (or ensemble) reflects an approximately symmetrical 

trajectory with a linear middle region, suggesting an either linear or sigmoidal 

trajectory curve.  
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Figure 4 Observations of symmetrical trajectories (Lacquaniti, Terzuolo et al. 
1983; Hogan 1984; Flanagan and Ostry 1990; Feng and Mak 1997; Pfann, 
Hoffman et al. 1998; Amirabdollahian, Loureiro et al. 2002; Ju, Lin et al. 2002; 
Liang, Yamashita et al. 2008). 
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 Though kinematic plots reveal considerable information regarding the specific 

shape of single-joint trajectories, their actual shape, and the variability of this shape 

from motion-to-motion and from person-to-person has not been rigorously determined. 

What is the baseline kinematic behavior of a healthy individual, in autonomous 

reaching tasks, and how does this vary within and between persons?  Moreover, is it 

possible to extract the basic pattern of a given record of single-joint motion, however 

noisy, and perform analyses of an individual’s essential motor behavior free of signal 

artifact? 

3.3 SJT approximation by analytical functions 

3.3.1 Need for suitable substrates in biomechanical analysis 

For situations where precise measurement of kinematical variables or keen 

representation of the global trends in movement is essential, trace noise may alter the 

SJT in such a way that it is no longer a tenable substrate for evaluation. Consider the 

following example. Let y be an ideal sigmoid, created by a standard trigonometric 

function acting over the interval 
22

!! ""# t : 

 

 )sin(ty = .  

 

The “position versus time” graph of y looks similar to that of the SJT traces 

found in the literature, and has a symmetric, bell-shaped velocity profile (Figure 5a). 

By doubly differentiating the velocity trace, the jerk curve is generated, and the jerk 

integral reads a value of approximately 0.01.  

 Now, very small amplitude noise is added by imposing 
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where k = 1 × 105, manually set to minimally distort the simulated trajectory trace 

(Figure 5d). 

 

The velocity trace y
dt

d !  features a large peak at 
4

25.0 !"=#= Tt , which is 

amplified in subsequent differentiations. The large area under the ytJ
dt

d != 3

3

)(  peak 

greatly increases the jerk integral (Figure 5f).  Despite the relative insignificance of 

this transient disturbance in the position domain, the distortion of the jerk profile 

   
 

 

 
 

 
 
 
Figure 5 Contamination of kinematic data by noise.  
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invalidates its use in situations where even modest noise component may persist in the 

kinematical record. 

In this way, it is possible for the incidence of movement to obscure the 

movement essence. It is suggested that a curve-matched trajectory surrogate, based on 

a simple analytical function, would provide a noise-free SJT approximation upon 

which hypotheses of motor control could be tested in the absence of contamination 

from incidental noise. 

3.3.2 Incorporation of analytical functions into biomechanics 

Mathematical models form the basis of forward dynamic simulations and 

performance criterion in a wide range of motor research and rehabilitation settings, 

and for many of these applications, analytical functions are ideal for their 

parametrizability. Velocimetric data is frequently modeled as a bell-shaped, i.e., 

Gaussian or Hanning function (Camilleri, Hull et al. 2007); periodic positional data is 

typically abstracted as a sigmoid or sinusoid (Hollerbach 1981; Soechting, Lacquaniti 

et al. 1986; Soechting and Terzuolo 1986); and geometric models such as square 

waves, triangular windows, and straight-lines are applied to rapid motion, impulse-

data, and segmented motion (via the two-thirds power law) (Viviani and Terzuolo 

1982; Viviani and Flash 1995; Camilleri, Hull et al. 2007) (Figure 6).  

 
 
 

     
 
 
Figure 6 Sample analytical models found in kinematic literature. 
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Figure 7 Archetypal model curves. Basic trajectory model curves (angle of flexion 
vs. time) modeled against observed motions. + = acceleration, ++ = relatively swift 
acceleration; ― = deceleration, ―― = relatively swift deceleration; 0 = abrupt 
change in velocity. 

 

Of course, whereas many of these models are devices of mathematical 

convenience, as opposed to physiological significance per se, their utility as an 

approximation cannot be underestimated in comparative studies as a basis for 

understanding the difference between health and disease (Wann, Nimmo-Smith et al. 

1988). 

3.4 Method overview: Simulation of SJTs 

3.4.1 Designing appropriate models for the angular trajectory 

In order to capture the essential pattern of angular trajectories recorded from 

healthy subjects in the MAST, six basic (archetypal) analytical curves are proposed, 

designed to simulate a range of features observed in a simple point-to-point reaching 

motion across the joint range of motion (Figure 7). 

Whereas there are infinitely many ways by which to model the θ(t) curve of a 

simple flexion task (Harris and Wolpert 1998), it is argued here that six curves are 

sufficient to “span the space” of angular trajectory behaviors. Symmetric trajectories 

(Linear and Sigmoidal, A and B) depict nearly instantaneous and moderate 

accelerative and declarative behaviors, respectively, of approximately equal 
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magnitude. Quasi-Convex models (C) simulate moderate acceleration and swift 

deceleration; Quasi-Concave (D), the opposite. Sigmo-convex and concave models (E 

and F) depict alternately gentle and moderate accelerative/decelerative behaviors 

(Table 5).  

 

 

Table 5: Analytical models for trajectory curve matching 
Model Type Description Velocity Profile 

A Linear Total isogony, negligible 

accelerations/deceleration 

Square wave 

B Sigmoidal  Medial isogony, symmetric and 

substantial acceleration/deceleration 

Bell curve 

C Quasi-Concave Distal isogony, reduced speed 

towards trunk 

Monotonically 

increasing D Quasi-Convex Proximal isogony, reduced speed 

away from trunk 

Monotonically 

decreasing E Sigmo-Concave Comparatively slower distal 

trajectory  

Positive skew bell 

F Sigmo-Convex Comparatively slower proximal 

trajectory 

Negative skew bell 

 

 

3.4.2 Global SJT model fitting by parameterization 

In order to generate the optimal fit to the SJT within each model curve, two 

primary parameters must be considered: average movement speed and time of 

maximum velocity, !"
&

max
. By presuming a symmetric velocity profile (see Chapter 2), 

the time to maximum velocity can be considered the equivalent to a benchmark of 

excursion beyond some minimum velocity.  

Whereas the vast majority of the movement will be modeled by the idealized 

waveform (Table 5), any period of relative inactivity preceding this motion will be 

simulated as a rest interval by a pad p of zero-velocity content. The movement cycle, 
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defined from t = 0 to some time T, will thus contain two such rests, offsetting the 

majority of the simulated movement, lasting some time l < T, starting at p > 0 (Figure 

6).  

For some basic curve bχ=A..F, we construct a baseline-padded curve !B  
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is created, where l ≥ 5 for the reason that a minimum of 5 points are necessary to 

construct a complete set of uniquely composed model vectors. Bi,χ is the basic curve 

bχ of length l, pre-padded with p time points of the angle of motion onset and 

appended with T − (p + l) time points of the angle of motion cessation. 

 The analytical curves bi,χ are given by  
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 Increasing the pre-pad value p to accommodate all possible departure times, 

and decreasing the simulated motion length l allows for an exhaustive modeling of all 
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Figure 8 Snapshots of the iterative pseudo-convolution across the observed 
trajectory: Line (Top) and Sigmoid (Bottom).  

possible average velocities of a movement starting at any time within the window of 

the repetition’s definition ( 

Figure 8).  

 

 

 Thus, the model universe comprises three parameters: average velocity, 

represented by time-in-motion, the length l of the basic model curve; time of peak 

velocity, the equivalent of positive velocity start time, following a pad p of rest, under 

the presumption of symmetric velocity; and model class χ.  
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3.4.3 Extraction of the Essential trajectory (ET) 

Among the paradigms by which the model curves B could be evaluated for 

similitude to the observed trace θ, the residual sum-of-squares was selected by 

convention. For each ordered pair of (l, p), model χ is compared against the recorded 

motion in a mean-squares way 
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By extension, from the global minimization over the entire model space, we 

define the Essential Trajectory (ET) as the single curve parameterized to best-match 

the observed trace over model type χ, movement duration l, and movement start 

time p :  
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By virtue of approximation error minimization, the Essential Trajectory is the 

best idealized representation of the actual trajectory record, comprising a 

parameterized noise-free surrogate of the potentially noisy kinematical trace: 

 

(Definition 1)  

The Essential Trajectory (ET) is the single baseline 
padded model curve B which best approximated the 
observed kinematical trace θ. The ET is inherently noise-
free and thus a preferable substrate for certain analyses. 

Essential 
Trajectory (ET) 

 

 It is proposed that from these well-conditioned waveforms, it will be possible 

to use highly sensitive functional operations, e.g. jerk, to ascertain the essential 

movement behaviors otherwise obscured by noise in the empirical data.  
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3.5 Analysis and discussion of ET curves 

3.5.1 Model assumptions  

Model construction is at its essence an optimization problem. Indeed, the 

primary criterion for model assessment presents an error minimization (Equation 10). 

Furthermore, it is imperative to minimize not only the number of model parameters 

required to synthesize the dataset to a given level of accuracy, but to place the model 

under the minimum number of assumptions. Here, two assumptions are made: 1) 

excursion is a monotonic process, and 2) the first time derivative of position is at most 

a unimodal process. These assumptions are fitting with the widely accepted 

generalizations of the SJT as a smooth trace, with a bell-shaped velocity profile. In 

fact, the incorporation of asymmetric velocity profiles (model classes χ = C, D, E, and 

F) account for the deviation of actual SJTs from this presumptive trajectory.  

It is noted that three of the model curve types (Linear, Quasi-Concave, and 

Quasi-Convex; A, C, and D) simulate a step change in velocity either at the onset or 

cessation of excursion, or both. In terms of observable motion, this is physically 

meaningless and implies an infinite jerk cost; thus, these are seemingly untenable 

choices for forward-dynamic simulation. Two caveats contradict this conclusion: 1) in 

all cases, data is of a discrete nature, so at all time points, the velocity is literally step-

wise posed, and 2) as with the processing of all kinematic data, filters can be applied 

either to the model itself, and following a large set of transformations applicable to 

the SJT downstream analysis, including all time derivatives.  

In order to fully characterize the jerk profile of model curves as a function of 

model type χ, a separate simulation was performed on a set of these curves.  
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3.5.2 Trajectory-matching model in jerk analysis: limitations 

3.5.2.1 Choosing a model set 

A fundamental consideration in the approximation of a trajectory curve by a 

series of analytical curves is the model set membership. Principally, any model must 

comprise a sufficiently replete set of basic curves to describe a large majority of the 

various species encountered within the dataset. If it should be determined that there 

exist some trajectory traces that are not adequately modeled by any of the archetypal 

curves, then it would be necessary to inject additional models. Model set expansion 

cannot continue ad libitum, however: haphazard model infusion creates a risk of 

fitting unimportant trajectory features, promoting their importance, and detracting 

from their “true essence.” A direct analogy is that of over-fitting in cluster analysis, 

wherein boundaries are drawn around noise, skewing the bias-variance tradeoff, and 

destabilizing the discriminant (Hastie, Tibshirani et al. 2001). Care must be taken in 

choosing the appropriate type and number of models.  

3.5.2.2 Specific models chosen to represent angular trajectories 

As shown in Figure 4, angular trajectories assume a variety of shapes, 

including those with comparatively swift accelerations. In order to simulate the basic 

trends in acceleration thought to underlie most SJTs, six curves are chosen, simulating 

three levels of acceleration and deceleration in tandem: gradual (++/- -), moderate (+, 

-), and extreme (0) (Figure 7, Table 5). Of course, any analytical curve can be used, 

according to the nature of the task, and the tolerances in computation time and model 

complexity. However, the six curves used here were used for their ability to simulate 

simple global trends in trajectory formation, and their parameterization by only 2 

variables. Polynomial curves, in particular, were avoided for their tendency to over-fit, 
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and for the linear increase in parameter set cardinality with increasing polynomial 

order9. 

3.5.3 Trajectory-matching model in jerk analysis: utility 

3.5.3.1 Forward- and backward-testing of the two-thirds power law 

In many fine motor tasks, the two-thirds power law predicts approximately 

linear trajectories within movement segments. Categorical assignment of a trajectory 

as having a predominantly linear morphology, from among a set of various canonical 

forms, permits a stringent examination of this relationship in broader circumstances. 

Conversely, by invoking the two-thirds power law in activities known to demonstrate 

this relationship, a backward test of the positional record may be made: portions of 

the movement matching best to a non-linear approximant would indicate multiple 

movement segments. 

3.5.3.2 Assessing hand path for adherence to jerk cost minimization 

The implications of this simulation are that for a given motion, the trajectory 

may be matched against a series of basic analytical curves, yielding a set of best-fit 

model curves (one for each curve class). From these, it can be determined 

immediately whether the path chosen was the minimally jerky path, as defined by the 

set of model curves. The hypothesis of tendency toward a minimally jerky movement 

can be tested directly, without contamination by error in the measurement, or the 

movement itself; model results yield categorical, as opposed to a quantitative variable. 

Whereas jerk calculation of a trajectory substrate yields a single scalar, the result can 

only be used for relative comparisons; no absolute information is gained with respect 
                                                
9  Most computational software packages, including Matlab, have a very efficient polynomial curve-
matching routine, which would almost certainly out-perform the nested for-loop calculations required 
of the six models used here. However, the curve-padding paradigm would not be feasible with 
polynomial fits, and thus would make comparisons amongst curve classes laborious at minimum.   
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to the minimization of jerk. However, by defining a set of model curves with 

correspondence to meaningful trajectory parameters, a standard classification-by-error 

minimization forces a categorization of a motion as either the path with the minimum 

jerk, or some jerk score greater than the minimum jerk.  

3.5.3.3 Generalizability of curve-matching model 

The attractiveness of most modeling paradigms is contingent on the simplicity 

and fidelity of the model to its analogue in the kinematical record. The simplistic 

formulation of the present set of model curves (Equation 8), and the apparent 

morphological similarity to the expected trajectory record (forecasted in Figure 4) is 

suggestive of the power of a small set of simple analytical traces to reproduce a wide 

variety of SJT traces.  

Though formulated in one dimension, for the purpose of illustrating 

application to historical problems in motor research, matching of the hand path can is 

readily generalized to higher dimensions. Many curves can be modeled as an 

analytical function, with some intuition of the underlying processes or of the nature of 

the curve itself. This has been done in the Rehab Lab and in the literature for a variety 

of phenomenon, not limited to biomechanics.  

3.6 Summary 
 

Empirical observation of the movement of the hand through space is a crucial 

activity in the research of human motor control and neuromotor dysfunction. However, 

the SJT is a mosaic of physiological processes, distorted by the compartments of the 

data acquisition process, thusly rendered as an inherently noisy trace. The subsequent 

subjectivity of this substrate to interpretation by metrics which many exhibit a large 

sensitivity to noise, suggests the need for a model-based method by which the 
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essential movement pattern is extracted without contamination from the movement 

incidence. Here, a method is proposed for extracting the Essential Trajectory based on 

a set of 6 basic trajectory behaviors, based on minimal assumptions, and 

parameterized to match average movement speed and time of maximum velocity. 

From this model, a single noise-free trajectory approximant results, upon which 

analyses of motor activity can be performed without contamination.  
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4 VALIDATION OF THE ESSENTIAL TRAJECTORY 

4.1 Introduction 
 

The evolution of elbow angle in time, the single-joint trajectory (SJT), is an 

essential measurement from which motor proficiency is assessed, and by which basic 

research into the human motor system is performed. The trajectory record, however, 

is highly prone to error both in the acquisition and processing of joint angular data, 

compromising the reliability of scalar metrics derived from these noisy substrates. In 

(Chapter 3), a method was proposed for the approximation of the SJT as a set of six 

idealized functions based on a pseudo-convolution search scheme with minimal 

assumptions.  

Here the essential trajectory (ET) was extracted from raw trajectories recorded 

from healthy subjects performing discrete flexions of the elbow. ET traces were 

analyzed for the goodness-of-fit to the actual trajectory θ, and features of each trace 

(ET versus θ) will be analyzed for trace pairs. Also, the notion of a symmetric singly-

peaked velocity profile will be directly tested.  

4.2 Experimental hypotheses 
 

Here, a method is proposed for the reconstruction of potentially noisy SJTs via 

noise-free Essential Trajectory surrogates. The present investigation sets out to 

demonstrate the validity of this trajectory approximation method. 

 

 

The single-joint trajectory can be accurately 
reconstructed by a parameterized analytic curve selected 
from among a small set of model traces, the so-called 
Essential Trajectory. 

(Hypothesis 1) 

 



  

 

57 

Furthermore, it is hypothesized that important features of the SJT, related to 

the veridical, essential motor behavior, and not associated with noise in the movement 

record, can be extracted from the ET approximants. 

 

 

Features extracted from the Essential Trajectory will 
report information relevant to the observed movement 
with an accuracy that is competes with or exceeds those 
extracted from the observed single-joint trajectory.  

(Hypothesis 2) 

 

Here the accuracy of reconstruction will be assessed via the coefficient of 

determination, comparing the SJT to its corresponding ET. Parameters related to peak 

velocity and other measures of symmetry will be assessed objectively on the level of 

cohort analysis, as well as on a trace-by-trace basis.  

4.3 Experimental methods 

4.3.1 Subjects and protocol 

Forty-one healthy individuals with no known neurological impairments 

voluntarily participated in this study, and were observed in a single session typically 

lasting less than 30 minutes. A subgroup of 17 subjects was observed on multiple 

occasions, with visits separated by at least 24 hours (Table 6). All subjects gave 

informed consent based on the procedures approved by the IRB of Rutgers (Section 

1.2.1). 

Subjects were seated in the MAST, and instructed to flex and extend about the 

elbow across their “comfortable range of motion” in such a way that “maximized 

smoothness.” Instantaneous visual feedback of joint angle, as well as a recent-history 

buffer of approximately 2 seconds, were provided by a real-time updating GUI 

appearing on a computer monitor, though subjects were not instructed to attend to this 

information. Pace was self-selected. 
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Table 6: Demography of healthy subjects: Trajectory modeling 
 Group Multiple visits 
Number of Subjects 41 17 
Age (µ ± σ) 
Range (min/max) 

36 ± 16 
20/68 

27 ± 9 
20/59 

Gender (M/F) 21/20 14/3 
Side of affect (R/L) 35/6 15/2 
Number of visits (µ ± σ) 
Range (min/max) 

3.4 ± 4.1 
1/17 

6.8 ± 4.7 
2/17 

µ = Mean, σ = Standard deviation, min = Minimum, max = 
Maximum, M = Male, F = Female, R = Right, L = Left.  

 

  

4.3.2 Signal processing and curve matching 

Single column vector data tracks were imported as raw elbow angular data, 

smoothed with a low-pass Butterworth’s filter (2nd-order, 12 Hz cutoff),  and divided 

into single cycles of flexion-and-extension, i.e. departure and return to maximal 

extension (elbow angle ~0°), automatically by a thresholded local minima.   
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Flowchart 1 Iterative curve-matching protocol. A label vector L of elements 

!"jL  is generated according to the single best-fit model approximation of the 
observed data. 
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Each repetition underwent an exhaustive curve matching process to determine 

the best-fit simulated trajectory waveform of synthesized from each of the six basic 

analytical curves χ = [Linear, Sigmoid, Quasi-Concave, …] defined previously 

(Section 3.4.1).  For the jth motion, the best-fit model class was assigned to a label 

vector L according to the curve type constituting the global minimum of modeling 

error. Thus label vector elements were coded variables χ = [A, B, C, … ]. This 

process is outlined in Flowchart 1. 

4.3.3 Waveform comparison 

The Pearson product moment correlation coefficient ρ yields a scale-free rater 

of waveform agreement, independent of waveform length (number of points) and 

amplitude. Thus, the correlation coefficient was selected as the optimal measure of ET 

model fit to actual trajectory θ:   
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1 . (Equation 11) 

 

where X  and 
X

!  is average and the standard deviation of waveform X , and T is the 

total number of samples in the waveforms. Recall that the waveforms are length-

matched.  

 Other waveform similarity measures, e.g. the sum-of-squared errors (SSE), 

were discarded for metrical dependence on parameters of scale. Though temporal and 

amplitude normalization would have equated these variables, the SSE does not have a 

universal scale. The correlation coefficient, however scales -1 ≤ ρ ≤ 1, facilitating 

easy comparison across repetitions, between subjects, and against other protocols. It is 

noted that whereas all waveform comparisons here are, by construction, assessing 
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minute differences between a raw waveform and its ET approximant which will have 

identical trends (upwards for flexion, downwards for extension), ρ is expected to be a 

positive quantity.  

4.4 Results 

4.4.1 Basic performance measures 

Several basic parameters of movement listed in (Section 2.3) provide 

elementary indices of movement behavior. Here, the neurologically intact volunteers 

enacting smooth, discrete articulation of the elbow joint performed the task within an 

expected range of large amplitude but sub-maximal movements executed at a self-

selected pace. Subject-wise averages are presented in (Table 7): 

 

 

Table 7: Parameters of SJTs recorded from healthy subjects (N = 41) 
Metric 

Value (µ ± σ) Comparison to 
assumption 

Movement amplitude !"  91.3 ± 6.8º  

Average angular velocity !&  90.6 ± 35.3º/s  

Time to maximum angular 
velocity !"

&

max
 0.36 ± 0.11·T  <0.5, P < 0.001 

Symmetry ratio !&&
"  0.71 ± 0.15 <1.0, P < 0.001 

Number of peaks in the 
velocity profile 

!
" &  5.1 ± 5.2 >1.0, P < 0.001 

All values µ ± σ.  
 

 

Though speed of flexion was not strictly controlled, Table 7 reports that each 

movement cycle was completed in approximately 1 second (Δθ ≈ !& ), and that the 

movement amplitude was large, but did not approach the physiological limit of the 
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elbow joint (generally presumed to exceed 120º). Thus, the movements observed here 

are considered to represent natural, smooth movement at a comfortable pace, over a 

comfortable range.  

In addition to basic kinematical parameters, two widely accepted notions of 

autonomous single-joint articulation were tested by inspection of the velocity and 

acceleration profiles. Specifically, the SJT velocity trace is thought to yield a singly-

peaked, symmetric velocity profile. These assumptions were rejected at the P < 0.001 

level of significance by a Student’s t-test on subject means versus the expectation of a 

single velocity peak 
!
" &  = 1 occurring at the temporal mid-point !"

&

max
 = 0.5·T, with 

equal time spent in acceleration versus deceleration !&&
"  = 1. Thus, SJTs were 

observed to yield neither symmetric, nor unimodal velocity profiles.  

It is noted that the prevalence of multiple peaks persists in the velocity profile 

despite low-pass filtering. Whereas the velocity traces of corresponding to the ET 

models are by construction singly-peaked, their accuracy in reconstructing the θ curve 

must be asserted. 

4.4.2 ET goodness-of-fit to the observed motion 

Over 6000 angular position traces were recorded from forty-one subjects, 

some of whom made multiple (up to 17) visits. Each trace was compared against each 

of 6 archetypal curves, padded at either end to simulate all possible average velocities 

within the constraint of total motion time T (in units of samples). This pseudo-

convolution, started with analytical curve duration lmin = 5, the minimum length at 

which the model curves were guaranteed to yield unique approximants. Thus, there 

were ( )
!

""

=

1

1

min
lT

k
k  total simulations for each model curve. For six curve types, for a 

1.5-second motion, sampled at 80 Hz, the global minimum represents the single best 
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approximation of the angular trajectory out of a total of ( )
!

"#

=
$

3805.1

1
6

k
k  = 41418 

possible models. The Pearson product moment correlation coefficient for these best-

fit curves against the observed motion was ρ = 0.99 ± 0.01.  Sample ET fits to raw 

trajectory data are shown in Figure 9.  

Note that the movement records in Figure 9a-c have distinctly different 

morphologies that were fit well by the respective model curves. 

4.4.3 Symmetry parameters: ET to SJT 

Despite a very high correlation between the SJT traces and the idealized 

Essential Trajectory model curves, the multiply-peaked !&  profiles may pose a 

challenge to the extraction of features from the differentiated Essential Trajectory 

models, which, by construction, yield a single peak. The accuracy of differentiated ET 

traces in identifying the apparent asymmetry observed in the SJTs was subsequently 

tested by identical analysis:  

 

   
 

Figure 9 Sample best-fit curves. Three sample trajectories from a single subject, 
with the global best fit curve B(l, p) (generating label L for three repetitions).  
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Table 8: Parameters of healthy subjects’ ETs (N = 41) 

Metric Value (µ ± σ) Comparison to filtered 
SJTs (Table 7) 

Time to maximum angular 
velocity !"

&

max
 0.39 ± 0.10·T  ≈0.36 

Symmetry ratio !&&
"  0.71 ± 0.26 ≈0.71 

Number of peaks in the 
velocity profile 

!
" &  1 ± 0 <5.1, P < 0.001 

All values µ ± σ.  
 

 

From Table 8, it is clear that the ET models correctly detected the asymmetry 

observed in the SJTs, while maintaining a uniformly unimodal velocity profile.  

4.5 Closer look: Filter validation 

4.5.1 Filter design 
 

It has been determined that the SJT traces observed here depart considerably 

from the expectation of a singly-peaked velocity profile. Under the assumption that 

these peaks are unrelated to the essential movement pattern, and are therefore 

considered “noise,” the simplest explanation for these peaks is that their persistence is 

a consequence of inadequate filtering. Thus, it bears disclosing the filter 

characteristics employed here. All data here were processed with a 2nd-order low-pass 

Butterworth’s filter, with the following filter expression 

 

 
[ ]
[ ]51.0,35.1,0.1

04.0,08.0,04.0

!
=h . (Equation 12) 
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This filter exhibits a moderate roll-off following the pass-band, but does yield 

a cutoff of -3 dB attenuation after approximately 12 Hz. A frequency response curve 

is shown in Figure 10.  

For kinematical analysis of SJT data, standard protocols typically specify a 

low-pass filter with a 6-15 Hz cutoff (Atkeson and Hollerbach 1985; Reina, Moran et 

al. 2001; Schaal and Sternad 2001; Cozens and Bhakta 2003; van Mourik and Beek 

2004; Mutha and Sainburg 2007), and a low-order (3rd-order or less) Butterworth’s 

filter is common (Feng and Mak 1997; Schaal and Sternad 2001; Ju, Lin et al. 2002; 

Mutha and Sainburg 2007). Thus, it is concluded that the filter design here is in 

keeping with the filtering conventions used in the literature for kinematical data, and 

that spurious peaks found here are not the result of a unique filter design, but could be 

found in a wide variety of protocols. 

 
 
Figure 10 Frequency response profile of the 2nd-order low-pass Butterworth’s filter 
used here: -3 dB reduction at approximately 12 Hz.  
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4.5.2 Filter assessment 
 

Under the hypothesis that the filter does actually improve the quality of the 

signal, it is expected that the filtered trace contains fewer peaks, and the peaks that 

remain are attenuated. Here, peak amplitude will reflect the “power” of the maximum 

velocity: the peak normalized to the mean:  

 

 
!

!
!

&

&
& max

max
= .  

 

It was found that there was a modest attenuation of peak power 
max
!&  with 

filtering: 2.64 ± 0.57 versus 2.81 ± 0.63 in filtered versus unfiltered traces; however 

this difference was not significant at the P < 0.05 level (pair-wise t-test).  

The number of peaks 
!

" & , time to peak velocity !"
&

max
, and symmetry ratio !&&

"  

will also be calculated, for a standard of comparison.  

 

 

Table 9: Parameters of healthy subjects’ unfiltered SJTs (N = 41) 

Metric Value (µ ± σ) Comparison to filtered 
SJTs (Table 7) 

Time to maximum angular 
velocity !"

&

max
 0.36 ± 0.11·T  ≈0.36 

Symmetry ratio !&&
"  0.80 ± 0.10 >0.71, P < 0.001 

Number of peaks in the 
velocity profile 

!
" &  9.05 ± 9.16 >5.1, P < 0.05 

All values µ ± σ.  
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Here as before, a pair-wise t-test was performed comparing features extracted 

from filtered SJTs directly against those extracted from the raw trajectory waveforms. 

It is evident that application of a low-pass filter with the characteristics described here 

significantly reduces the higher-frequency trace activity related to low-amplitude 

peaks, while preserving the large major peak associated with the essential movement 

activity, from which the abstraction of a singly-peaked velocity profile is made. Thus, 

the filter design is not only appropriate, but selective and effective (Table 9). 

Though it has been demonstrated that nearly half of the peaks found in the raw 

SJT are eliminated with low-pass filtering, it must now be determined whether the 

remaining peaks are sufficiently powerful to perturb SJT waveform parameter 

extraction. A cycle-by-cycle analysis of trace peaks follows. 

4.6 Peak identification: Nearest-neighbor analysis 

4.6.1 Spurious SJT peaks are randomly distributed 

It is seemingly paradoxical that despite the significant reduction in peak count 

after processing, the features extracted from filtered versus unfiltered traces are 

approximately identical (Table 8). There are two possible explanations for this 

counter-intuitive result: 1) the peaks persisting in the SJT trace are small and 

inconsequential to trace analysis, or 2) the remaining peaks are large, but randomly 

distributed about the ET peak, and thus cancel out in the averaging over many 

movement cycles. In order to directly identify the true character of these peaks, a 

cycle-wise analysis was performed on trace pairs, comparing the filtered SJT against 

the ET. For context, an identical comparison was made between filtered and unfiltered 

SJT, to further characterize the potency of the filters used in kinematical analysis (viz. 

Section 4.5.2).  
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Features of each trace were extracted as described above, and trace-pair 

disparity was defined as their difference, normalized to the mean of the two values: 

 

 
ba

ba

!+!

!"!
=#!

2

1
,  

 

where ! is a waveform feature: !"
&

max
, !&&
" , or 

max
!& , and  (a, b) is an ordered pair 

indicating the trace pair of interest. This postulation poses the difference proportional 

metrical scale (Table 10). 

 

 

Table 10: Disparity of features extracted from SJT:ET trace pairs (N = 3334) 

Metric ET versus filtered 
SJT 

Filtered versus 
unfiltered SJT 

Time to maximum angular 
velocity !"

&

max
#  0.14 ± 0.09 0.02 ± 0.01 

Symmetry ratio !&&
"#  0.05 ± 0.34 0.12 ± 0.11 

Peak power 
max

!&"  0.23 ± 0.26 0.07 ± 0.03 

All values µ ± σ.  
 

 

Despite the apparent equivalence between ET and filtered SJT trace parameters 

seen in the subject-wise analysis (Table 7), it is revealed that there is considerable 

disparity between traces in terms of their feature extraction on a cycle-by-cycle basis. 

Though the symmetry ratio appears to deviate very little within this pairing, the large 
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variability indicates that this is an artifact of the approximately equivalent propensity 

for !&&
"  in either direction10.  

By contrast, the differences found between filtered and unfiltered SJTs did not 

significantly depart from those found at the within-subject level. The change in peak 

power over all traces, 
max

!&" = 0.07 ± 0.03 (Table 10) agrees well with the subject-

wise differences revealed in Section 4.5.2: 
( )64.281.25.0

64.281.2

+!

"  = 0.06 ≈ 0.07. Likewise the 

change in symmetry ratio  !&&
"#  = 0.12 ± 0.11 ≈ 

( )71.080.05.0

71.080.0

+!

"  = 0.12, and !"
&

max
#  = 0.02 

± 0.01 ≈ 
( )361.036.05.0

6.036.0

+!

"  = 0 (Table 9).  

From this analysis, it is concluded that the peak content in the SJT trace consists 

of several large-amplitude transients, and that these peaks are randomly distributed 

about the single velocity peak simulated by the ET trace. This evidence, however, is 

not conclusive proof that the ET detects the correct peak, i.e. the single peak 

abstracted in common parlance. A more specific peak analysis is thus performed in 

order to determine whether the global maximum peak of the SJT is the best match to 

the true peak in velocity, approximated by the single ET peak.  

4.6.2 Veridical peak assessment 

That a large number of peaks persist in the differentiated SJT (
!

" &  = 5.1 ± 5.2, 

Table 7) following a low-pass filter, and that largest peaks in the SJT traces appear to 

be randomly distributed about the putative true peak modeled by the ET ( !"
&

max
#  

between ET and filtered SJT velocity 0.14 ± 0.09, Table 10) suggests two further 

possibilities: 1) the ET does not accurately detect the true velocity peak, and the 

veracity of the global maximum of the SJT is therefore undetermined, or 2) the 
                                                
10 Identicality would yield 0!"#

$&& , and 0!
"#

$% &&  
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maximal peak in the filtered SJT profile reflects spurious noise in the trace, and that 

another sub-maximal peak in the filtered SJT velocity trace is the true peak, and is 

accurately reconstructed by the ET.  

On the basis of the excellent waveform agreement of the ET trace to the SJT 

(ρ = 0.99 ± 0.01, Section 4.4.2), and via its adherence to the assumption that the 

differentiated trajectory profile ought to have a single peak, the single ET peak is 

considered the veridical peak11. If the SJT maximum is the true maximum, it will be 

the closest peak to the ET peak, as determined by the difference in their respective 

peak times: !"
&

max
. Thus, there should be peak such that there is a smaller temporal 

distance !"
&

#  to that peak than !"
&

max
# (calculated in Section 4.6.1). We define !"

&

VP
#  as 

the distance between the ET peak and the nearest peak in the filtered SJT trace.  

Under the hypothesis that the global maximum of the filtered and 

differentiated SJT trace is the veridical peak, 09.014.0
max

±=!"!=!
### $$$
&&&

VPVP
 

(Table 10). In this way, defining the rank 
VP
r  of this nearest-neighbor (and thus 

veridical) peak according to its amplitude in relation all other peaks in the 

differentiated SJT trace, rVP = 1 indicates the veracity of the SJT trace maxima; rVP > 

1 suggests that the SJT velocity peak corresponds to trace noise, and that some other, 

sub-maximal peak should be considered the true peak. This analysis was performed 

on all multi-peaked filtered SJT velocity traces (N = 3212 cycles, 96.3%).  

                                                
11 The robustness of this assertion is founded in the excellent waveform agreement. Based on this result, 
it is suggested that the counter-argument, i.e. that the ET peak does not correspond to any meaningful 
peak, is moot. 
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Table 11: Comparison: ET peak against multiple SJT peaks (N = 3212) 

Metric Value (µ ± σ) Comparison to 
assumption 

VP
r  2.08 ± 1.36 >1.0, P < 0.05 

% of 
VP
r  = 1 0.27 ± 0.22 <1.0, P < 0.001 
!"
&

VP
#  0.07 ± 0.03 <0.14, P < 0.001 

VP
r  = Rank of veridical peak in SJT velocity trace, !"

&

VP
#  = Temporal 

difference between single peak of ET curve, and veridical peak. 
 

 

The large rank of the nearest-neighbor SJT velocity peak to the single ET velocity 

peak rVP > 1, and the significantly smaller temporal distance to this peak 

!! ""
&&

max
#<#

VP
 is conclusive proof that the global SJT trace maxima does not 

correspond to the veridical peak simulated by the ET peak, but that there is frequently 

(1 − 0.27 = 73% of the time), a closer peak which is approximately the 2nd-largest 

(2.08 ± 1.36) peak. Indeed, this sub-maximal veridical peak is located significantly 

closer to the ET velocity peak: !"
&

VP
#  = 0.07 ± 0.03, which is less than !"

&

VP
#  at the P < 

0.001 (c.f. Table 10,Table 11). 

 

 
 
Figure 11 Overlay of a sample trajectory ! and its Essential Trajectory 
approximant (c.f. Figure 9). 
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A representative example of this result is shown in Figure 11: despite excellent 

agreement between the observed SJT and the ET model curve, their respective 

velocity traces reveal morphological dissimilarity and feature disparity. Δτ associated 

with the veridical peak rVP = 2 is much smaller than that of the !&  trace maximum: Δτ 

<< Δτmax. 

4.7 Summary 
 

Here, three results have been presented: 1) despite adherence to a standard 

movement protocol on which fundamental tenets of single-joint motion are based, and 

implementation of standard filtering protocols, SJT traces were contaminated by 

randomly-distributed peak activity unrelated to the essential motor plan, 2) ET models 

provide a noiseless high-fidelity representation of the trajectory trace, and accurately 

extract the veridical peak activity associated with the basic movement pattern, and 3) 

joint angular trajectory profiles were observed to be moderately asymmetric 

(predominance of decelerative activity) by two independent measures (symmetry ratio 

and time to peak acceleration) operating on two different substrates: SJT and ET.  

The widely accepted abstractions of SJTs as symmetric, is not universal in 

autonomous flexion of the elbow, and that the veracity of a singly-peaked velocity 

profile is a generalization that does not necessarily reflect the state of empirical data, 

even after conventional signal processing techniques. It is further concluded that the 

ET curve-matching paradigm yields noiseless trajectory surrogates which may 

provide useful insight into the human motor system in analyses where noisy substrates 

pose an untenably potent risk to metrical analysis and feature extraction.  
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5 MOVEMENT PATTERNS FROM ET MODELS 

5.1 Introduction 
 

As shown in Chapter 4, the basic shape of SJTs can be uniquely identified and 

classified into several variants. These shapes are determined by myriad 

interdependent factors and reflect the complex interplay between effectors at the 

many different stages of the motor hierarchy. Though trajectory formation has been 

studied extensively, the matching of raw trajectory patterns to idealized waveform 

models presents a novel opportunity to analyze both the nature and the variability of 

single-joint motion both within- and between individuals. Here, the essential 

movement pattern of single joint motion performed by both healthy and impaired 

subjects will be analyzed for thematic trends in trajectory curvature. The hypotheses 

of repeatable, isogonic SJTs will be tested directly by categorical analyses performed 

on ET approximations of the raw trajectory.  

5.2 Experimental hypotheses 
 

Having demonstrated the validity of the Essential Trajectory as a surrogate for 

the SJT, its utility as an index of basic movement behavior will manifest in a 

systematic analysis of the essential movement patterns in healthy subjects. Here, two 

central notions of human movement are tested: the adoption of highly symmetric 

trajectories of a consistent angular velocity in constrained tasks, and the highly 

stereotyped trajectories of repetitive movement 

 

 Subjects single-joint movements will be largely isogonic 
and symmetric in both flexion and extension tasks. (Hypothesis 3) 
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Isogony is measured simply by inspection of the results of the trajectory 

model: do linear or sigmoidal traces most frequently result the most common best-fit 

results. A separate test of the variability of this movement pattern is required.  

 

 

Irrespective of the isogonic nature of the movement 
profile (Hypothesis 3), model adoption by subjects will be 
highly uniform, showing relatively high stability among 
the available model types. 

(Hypothesis 4) 

 

Movement theme stability will be showed directly by an analysis of the 

histogram of model results. Highly stable movement patterns will show a sharp spike 

at the singularly relevant model; unstable movement patters will exhibit a broad 

distribution over multiple model curves. Lastly, in cases where movement profiles are 

observed to exhibit high variability, an explanation will be sought vis-à-vis situational 

parameters. 

 

 

In the cases where the primary model type is not observed 
in a given movement cycle, this deviation from the central 
behavioral theme can be explained as the result of some 
perturbation in basic movement patterns, i.e. angular 
velocity, angle of motion onset, or time. 

(Hypothesis 5) 

 

The relationship between “selection” of movement theme, and incidental 

variables will be assessed by standard statistical analyses. 

5.3 Experimental methods 

5.3.1 Subjects and protocol 

Here as before, forty-one healthy individuals described in Section 4.3.1, 

performed a simple single-joint movement task, and the data were treated identically, 

as outlined in Section 4.3.2. Subjects were seated in the MAST, and instructed to flex 
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and extend about the elbow across their “comfortable range of motion” in such a way 

that “maximized smoothness.” Visual feedback of joint angle was provided though 

subjects were not instructed to attend to this information. Pace was self-selected. 

5.3.2 Signal processing and curve matching 

As described in section 4.3.2, raw elbow angular data were smoothed with a 

low-pass Butterworth’s filter (2nd-order, 4 Hz cutoff), and divided into single cycles of 

flexion-and-extension by a thresholded local minima. Each repetition subsequently 

underwent an exhaustive curve matching process to determine the best-fit simulated 

trajectory waveform of synthesized from each of the six basic analytical curves (linear, 

sigmoidal, quasi- and sigmo-convex/concave, Chapter 3). A label vector L listed the 

models which best fit each movement cycle, indexed by j, according to a RMSE-

minimization criteria. 

5.3.3 Curvature theme analysis and interpretation 

5.3.3.1 Essential Trajectory label histograms 

In order to determine the nature and variability of curvature themes in the 

SJTs, the distribution of model class labels for each repetition were analyzed 

ensemble. Matching each repetition to a set of archetypal waveforms yields a label 

vector Nreps long, with elements !"jL  reporting the curve class for which repetition j 

was best modeled according to a sum-of-squares error assessment. Computing a 1 × | 

χ | = 6 histogram vector H of the proportion of the dataset for which model χj was the 

global best-fit, we determine the relative frequency of each curve type: 

 

 !! """"#=$%= iNjLLH repsijji 1,1 . (Equation 13) 
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Histogram elements are necessarily non-negative and sum to unity: 0 ≤ Hi ≤ 1, 

! j jH = 1. Histograms typically comprised all waveforms of a single direction 

(flexion or extension) from a single visit, or across all visits performed by a single 

subject, as noted.  

5.3.3.2 The Principal Trajectory (PT) 

Constructing S as a sorted version of H such that S1 ≥ S2 ≥ S3 ≥ …, we define 

the Principal Trajectory PT as the label corresponding to the first element S1, the 

model which produced the greatest proportion of Essential Trajectories for a given 

dataset.  

 

(Definition 2)  

The principal trajectory PT of an individual’s dataset is the 
single analytical curve type which most frequently 
generated the global best-fit trajectory approximant. 

repskjiji NjikLLPT !!"#=>=$%= 1,&&& , 
and is the label associated with 

1
S . 

Principal 
Trajectory 

 

Thus, the PT can be considered the predominant trend of trajectory curvature 

across a single dataset; this dataset will typically comprise all flexion or extension 

movements by a single subject in a single session, or across all sessions.  

5.3.3.3 Significant Trajectories (ST) 

While it is important to ask “what is the single best model of an individual’s 

trajectories?” the number of “good” trajectory models is equally valuable information. 

For instance, if a data session’s histogram was nearly equally divided amongst two 

models H = [ 0,  0.45,  0,  0.55,  0,  0 ], then to report only the single best model (in 

this case PT = D, Quasi-Convex) would be to ignore the frequency with which 

another model (Sigmoidal, B) was the global best-fit.  
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For this case, it is clear that there are two and only two contributors to the 

dataset’s model results space, each constituting a near 50% proportion. However, for 

an arbitrary case, for example H = [ 0.38,  0.30,  0.02,  0.06,  0.20,  0.04 ], a robust 

method is required in order to determine how many elements of H can be considered 

Significant Trajectory ST model classes, i.e. that a given model was sufficiently 

frequent to be a meaningful element of the trajectory modeling scheme.  

 

(Definition 3)  

The significant trajectories STs of an individual’s dataset 
is the set of analytical curve types that generated the 
global best-fit trajectory approximant for a sufficiently 
large proportion of the dataset, according to some 
criterion )(i!  where !  is either a vector or a scalar 
threshold:  { }

)(kiki
SST !""" >=#$=% . 

Significant 
Trajectory 

 

 The matter of significance in a histogram is reduced to a scree analysis12 

problem, as typical of a principal components task where the minimum number of 

meaningful signals is sought.  There are several major classes of scree analysis, each 

with their own set of considerations. Here, a broken-stick model was selected as the 

discriminant of choice as it has been found to yield the most consistent results 

(Jackson 1993; Cangelosi and Goriely 2007), and in fact, may be a conservative 

estimate of minimum dimensionality (Bartkowiak, Lukasik et al. 1991; Cangelosi and 

Goriely 2007). The broken-stick13 method imposes a vector of threshold criterion, 

above which any element 
i
S  of the sorted histogram is considered a significant 

contributor to the system if !"=>
kkk

bS  where !"  is the sorted vector of random 

values generated from uniform distribution on the interval [ 0, 1 ], ( )!=" ,
2

1
N : 

                                                
12 So-named because the monotonically non-increasing plot of sorted histogram values takes the shape 
of a mountain’s scree slope.  
13 So-named because a straight-line vector of thresholds, descending over the sorted histogram separate 
the significant contributors (above the line) from those not contributing significantly (below the line). 
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Here, these 1 × | χ | = 6 broken stick vectors b actually reflect the averaging of 

1000 sorted random-digit vectors !" , to ensure uniformity across all iterations. Thus, 

viz. Definition 3, the number of STs is the count of curve types with a proportional 

representation in the dataset greater than some threshold | Sk > κk = bk |. A rigid 

criterion is now defined for the assignation of significance to any member of the 

sorted histogram. This is demonstrated in Figure 12. 

In summary, from the vector L of repetition labels, determination of the 

predominant movement themes in a given dataset requires sorting a histogram of 

categorical variables.  

 
 
 

   
 
Figure 12 Example of scree analysis: Determination of significant contributors to 
an simulated over-determined system according to a broken-stick scree line 
threshold. 
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Flowchart 2 Curve-matching model analysis. A histogram H  reports the number 
of elements in L  labelled 

j
! . S  sorts H , with elements in descending order. 

From S , Principal and Significant Trajectories (PT, ST) can be ascertained. 
 

 

 

The Principal Trajectory is identifiable by inspection; important contributors 

(Significant Trajectories) are determined via scree analysis (Flowchart 2). 

5.4 Hypothesis testing via scree analysis 

5.4.1 Isogonic SJTs 

5.4.1.1 Isogony principle and the two-thirds power law 

The dependence of trajectory curvature on movement velocity in multi-joint 

motion was noted in a number of early studies (Binet and Courtier 1893; Jack 1895), 

where the notion of isogony was first introduced as the co-variation of angular 

velocity with radius of curvature: equal angle in equal time. The specific relation 

between geometric properties of the spatial trajectory (curvature, C) and the 

kinematics (angular velocity, V) of the movement have been formulated via the two-

thirds power law 
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More explicitly, the radius of curvature for a segment of movement s angular 

velocity has been shown to relate to the radius of curvature R according to   
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where 0 ≤ α ≤ 1 is a constant determined by the average velocity (Viviani and 

Schneider 1991).  Thus, for movement over which the hand passes through a 

trajectory of constant radius of curvature, the angular velocity is thought to remain 

approximately constant, at a value relating to the trajectory curvature by a power-law.  

5.4.1.2 The isogony principle in single-joint motion 

 The isogony principle has not been shown for movements of a single joint. 

However, there is sufficient evidence to suggest the possibility of isogony in single-

joint motion at the elbow: the relationship between spatial and kinematic movement 

variables is invariant under mechanical constraint (Viviani and Terzuolo 1982). 

Whereas imposition of hand path does not appear to alter trajectory dynamics, it is 

possible that the restriction of UL motion to a track of a single-DOF, where the radius 

of curvature is uniform and highly controlled, would manifest approximately linear 

SJTs, corresponding to a constant velocity of excursion. Here, this claim is tested 

directly via the null hypothesis that all SJTs will be classified as predominantly linear, 

or at least sigmoidal, traces with uniform curvature throughout a large portion of the 

movement: PT = A. 
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5.4.2 Trajectory pattern stability 

5.4.2.1 Quantitative raters of trajectory variability 

The Pearson product moment correlation coefficient ρ (Section 4.3.2) is the 

most commonly used measure of waveform similarity. However, the utility of the 

correlation coefficient extends to pair-wise comparisons of two curves, not to datasets 

comprising many repetitions. ANOVA-like raters exist for the purposes of comparing 

multiple traces, including the variance ratio (VR)  
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where X is the set of temporally normalized (to T*) data records, indexed by time i, 

and cycle iteration j; 
i
X  represents the average across all repetitions at time point i, 

and X  is the “grand mean” or “global mean” of the entire dataset, i.e. column mean 

of the row-means.  

 The primary advantage of a metric such as the VR is that it reports the trace-

to-trace variability as a single scalar value; this result is scaled between 0 (identical 

signals) to 1 (randomly generated signals). The minor variations in SJT morphology, 

however, may obsolesce quantitative metrics such as the VR, by obfuscating subtle 

alterations in the movement pattern. For instance, a dataset of 20 movement cycles 

comprising 10 identical SJTs modeled as class C and 10 identical trajectories modeled 

as class D, would generate some non-zero VR score. This score would be 

indistinguishable from another score of randomly matched repetitions with the right 
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set of parameters. Similarly, for a set of 20 repetitions to have identical curvature 

profiles, but performed at different speeds would obscure their mutual similarity by 

inflating the VR.  

In this way, it is not possible to determine whether there were a large or small 

set of movement themes in the dataset. Thus, quantitative metrics present one facet of 

SJT waveform variability analysis; information as to the variability of essential 

trajectory curvature requires non-quantitative metrics.  

5.4.2.2 Categorical metrics in trajectory variability analysis 

Categorical modeling of each trajectory record as having a given morphology, 

i.e. linear or variously non-linear, provides a unique paradigm by which the 

repeatability of SJTs can be assessed. Assignment of a single best-fit model to each 

movement cycle creates a label set of model types found to best represent the SJTs in 

a given dataset. That a given trace is best matched to a given model class, at the 

exclusion of all other model types, suggests that trajectory pattern themes will emerge 

if the Principal Trajectory is sufficiently large. Here, the notion of trajectory pattern 

stability, the adherence to a restricted set of movement patterns, is tested directly via 

the null hypothesis that all SJTs in a given dataset will be classified uniformly, 

irrespective of the model type: | ST | = 1. 

5.5 Results 

5.5.1 Isogony is common, but not universal  

For each dataset, a sorted histogram was constructed from the sorted label 

vector L, rendering the relative proportions of each model’s representation as the best-

fit approximant within the dataset. The Principal Trajectory PT was extracted as the 
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single model class which most frequently resulted in global error minimization (i.e. S1, 

Definition 2).  

No single model yielded PTs for a majority of the subjects; straight-slope 

models (class A) were the PT for a plurality of individuals in single-joint flexion and 

extension tasks. Sigmoids (B) were the next most frequent PT, also constituting the 

second-most PTs in both directions. These symmetric basic curves accounted for 

approximately 75% of all subjects’ PTs. Two models with a non-monotonic and 

asymmetric velocity profile (Sigmo-Concave and Sigmo-Convex, Types E and F), did 

not yield any PTs, and were only considered a significant contributor to an 

individual’s dataset in a few cases (Figure 13).  

 
 
 
 

 
 
Figure 13 Adoption of ET model type across subjects. Proportion of subjects 
(N=41) yielding Principal Trajectories (PT) of each curve type (χ = A→F) for 
flexion SJTs.  
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That approximately 25% of individuals’ PTs were neither linear nor sigmoidal 

suggests against isogony as a universal principle applicable to constrained motion of 

the elbow.  

5.5.2 Degeneracy of model themes typical 

Within each histogram, several model types were found to have non-zero 

components, i.e. some motion cycles were best-fit by a model other than the PT. In 

order to determine whether these non-PT models were “meaningful” contributors to 

the dataset’s model space, a broken-stick scree analysis was employed (Section 

5.3.3.3). These Significant Trajectories reveal the frequency with which a given 

 
 
 
 

 
 
Figure 14 Frequency of model class as a significant dataset component. Proportion 
of subjects (N=41) yielding Significant Trajectories (ST) of each curve type (χ = 
A→F) for flexion SJTs.  
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model class was a significant contributor to a given dataset, irrespective of whether it 

was the single greatest component (the Principal Trajectory).  

Here, it was typical for a given dataset to be best-modeled by a profile of ETs 

comprising a small set of curve types. Indeed, while the linear class (χ = A) yielded 

PTs for 47% of subjects (Figure 13), an additional 59% − 47% = 12% of subjects’ 

datasets a contained sufficient proportion of linear ETs to be considered “significant” 

by a scree analysis (Figure 14). Likewise, though sigmoidal, quasi-concave, and 

quasi-convex model curves were found to yield PTs in 27%, 15%, and 12% of 

subjects’ datasets respectively, these models were Significant in 56%, 37%, and 49% 

of subjects. 

It is apparent that for longitudinal analyses, i.e. inclusive of all movements 

performed over all sessions, subjects SJTs were not highly stereotyped, but were 

instead somewhat degenerate.  

 

(Definition 4)  
A degenerate model set is one for which the Principal 
Trajectory was not the only Significant Trajectory, i.e.      
| ST | > 1. Degeneracy 

 

Under the hypothesis that the movement patterns of SJTs are invariant and 

highly predictable, each dataset should yield a single Significant Trajectory, i.e. | ST | 

= 1, and thus the proportion of the dataset modeled by the Principal Trajectory should 

approach unity. 

It was determined that the hypothesis of invariance in the movement patterns 

conveyed via the SJT can be rejected with a high level of certainty in comprehensive 

data profiles (Table 12). However, it is important to acknowledge that a subgroup of 

subjects contributed data to these profiles over several days, which may contribute to 
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the apparent degeneracy observed in this longitudinal analysis. In this way, the effects 

of observation on multiple days should be eliminated by an analysis of each session 

unto itself.  

 

 

Table 12: Parameters of healthy subjects’ ETs (N = 41) 

Model Set Parameter Value (µ ± σ) Comparison to 
assumption 

|ST| (µ ± σ) 2.02 ± 0.72 >1, P < 0.001 
|ST| = 1 (proportion) 0.24 <1 

PT proportion 0.49 ± 0.14 <1, P < 0.001 
ST = Significant Trajectory, |ST| = ST set cardinality, PT = Principal 
Trajectory. 

 

 

5.5.3 Degeneracy persists at the single-session level 

A separate analysis, identical to that performed on subject-wise datasets was 

performed for each session in order to test the hypothesis of highly invariant 

trajectory patterns in repetitive single-joint flexions, without artificial inflation of 

trajectory variability measures due to the consolidation of movements performed over 

several days’ worth of sessions (Table 13).  

 

Table 13: Flexion trajectory degeneracy: Within-session analysis (N = 140) 

Model Set Parameter Value (µ ± σ) Comparison to 
assumption 

|ST| (µ ± σ) 1.93 ± 0.64 >1, P < 0.001 
|ST| = 1 (proportion) 0 <1 

PT proportion 0.53 ± 0.13 <1, P < 0.001 
ST = Significant Trajectory, |ST| = ST set cardinality, PT = Principal 
Trajectory. 
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Here again it is clear that the null hypothesis of low cycle-to-cycle variation of 

the model classes comprising the Essential Trajectory profiles, i.e. low ST and PT 

comprising 100% of each session dataset, is rejected at the P < 0.001. Indeed neither 

the ST set cardinality | ST |, nor the proportion of PTs per session (Table 13) were 

significantly different than their corresponding values from within-subject analysis 

(Table 12) at the P < 0.05 level. This result suggests that in terms of trajectory 

analysis, parameters pertaining to trajectory variability do not change over time 

(average of 6.8 sessions), and a single session may be sufficient for investigations into 

related questions. 

5.6 Comparison to extension movements 

5.6.1 Within-subjects analysis: Identical PT distributions 

In order to determine the effect of movement direction on trajectory shape, 

identical Principal Trajectory and Significant Trajectory analyses were performed on 

extension movements. Here, the hypothesis of general conservation of movement 

themes across movement direction was tested by the correspondence between PT 

distributions assessed in flexion and extension (Figure 15). 

Interestingly, the distributions of PTs across curve types was identically 

ordered across both tasks, a 1-in-5! occurrence by chance. This suggests strongly that 

there is some prediction across movement direction of trajectory pattern as modeled 

by the Essential Trajectory. However, a within-session analysis is necessary to assess 

the veracity of this claim. 
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5.6.2 Within-subjects analysis: Equivalently variable patterns 

As before, with flexion SJTs, trajectory pattern variability was assessed by the 

number of Significant Trajectories and proportion of Principal Trajectories, both 

against the null hypothesis of 1. Here again, model sets were seen to be degenerate via 

a significant departure from the null hypothesis of invariance at the P < 0.001 level. 

 

 

Table 14: Extension trajectory degeneracy: Within-subjects analysis (N = 41) 

Model Set Parameter Value (µ ± σ) Comparison to 
Table 12 

Comparison to 
assumption 

|ST| (µ ± σ) 1.92 ± 0.81 ≈2.02 >1, P < 0.001 
|ST| = 1 (proportion) 0.31 >0.24 <1 

PT proportion 0.56 ± 0.16 ≈0.50 <1, P < 0.001 
ST = Significant Trajectory, |ST| = ST set cardinality, PT = Principal Trajectory. 

 

 

  
 
 
Figure 15 Results of curve-matching. Proportion of subjects (N=41) yielding 
Principal Trajectories (PT) of each curve type (χ = A→F) for both flexion (Left) 
and extension (Right) tasks.  
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From the statistical equivalence of PT proportion and ST counts in extension, 

it is concluded that the SJTs of extension movements are equally degenerate as 

flexion movement profiles. It is reported, though not shown in tabular form, that 

beyond for a low (0) proportion of subjects with unity ST profiles, within-session 

analysis again revealed compatible results with within-subject analysis: | ST | = 1.83 ± 

0.38, and PT proportion 0.62 ± 0.18; neither differed from the within-subject analysis 

at the P < 0.05 level via a pair-wise t-test (Table 14). 

5.6.3 Movement patterns across direction: no correspondence  

5.6.3.1 “Hard” versus “soft” criteria for correspondence 

Under the hypothesis that trajectory models were equivalent across directions, 

the PTs observed in flexion should match those of extension, i.e. PTf = PTe. However, 

for the same reasons that the PT is a somewhat limited measure of motor performance 

(that it ignores large sub-majority contributors, see Section 5.3.3.3), a “softer” 

criterion may be tested in order to provide a more detailed answer to the question of 

directional equivalence. We define ST overlap O  as the number of common elements 

between ST sets (the intersection ! ) divided by the number of total elements (the 

cardinality of the union ! ): 

 

 ef

ef

STST

STST
O

!

"
= . (Equation 18) 

 

Thus, under the hypothesis of trajectory model equivalence across movement 

direction, O on average should be close to the identity (O →1), the proportion of 

identical subsets O1: STf = STe should be large, and there should be very few null 
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intersections (STf !  STe = null set, i.e., no common elements between the ST sets of 

flexion and extension, O0
14 ). 

5.6.3.2 Chance PT prediction, weak ST overlap 

Within each session, there was considerable diversity between model sets 

associated with flexion and those of extension. The proportion of sets with identical 

PTs was low (0.24), as was average overlap: O  = 0.39. Though there were few 

sessions with non-intersecting model sets O0 = 0.09, only 41% of datasets showed 

identical ST sets O1 (Table 15). 

 

 

Table 15: Flexion trajectory degeneracy: Within-session analysis (N = 140) 

Model Set Parameter Value Comparison to 
assumption 

PTf = PTe 0.24 <1 
Average ST overlap  O  0.39 ± 0.36 <1, P < 0.001 

Unity ST overlap O1 0.09 <1 
Null ST overlap O0 0.41 >0 

ST = Significant Trajectory, |ST| = ST set cardinality, PT = Principal 
Trajectory. 
  

 

It is noted that whereas only 4 of the 6 ET model types were found to yield PTs 

at all (Figure 13), there is an approximately 1-in-4 chance of finding any one of these 

models as the PT. In this way, fixing one model type, e.g. PTf, there is an 

approximately 0.25 chance in PTe = PTf at random. In this context, it is concluded that 

there is very little correspondence between SJTs observed in flexion and extension. 

                                                
14 So-named 

0
O  because the cardinality of the null set is 0. 
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5.6.4 Poor PT correlation to movement variables 

Single-joint motion is the realization of complex interplay between myriad 

effectors in the motor hierarchy. Changes in kinematics are expected under the 

condition of intentional adjustments in movement speed and range of motion, as has 

been shown for 1-D (Wiegner and Wierzbicka 1992; Jaric, Milanovic et al. 1999; 

Suzuki, Shiller et al. 2001; Mutha and Sainburg 2007) and less-constrained 

movements (Nagasaki 1989), and have been shown in 1-D motions. Another set of 

variables account for intrinsic muscle properties including the stretch reflex, 

activation, and stiffness. Within the scope of a purely kinematic experiment, it is not 

possible to ascertain these state variables. However, espousing these parameters in a 

collective variable, fatigue15, it may be possible to ascertain suggestion of a change 

some combination of these parameters over time: specifically, changes in best-fit 

trajectory with time. 

For three parameters: starting hand position 
on

! , average velocity !& , and time 

(here indexed by the number of cycles performed 1 ≤ j ≤ Nreps), correlative analyses 

were performed to determine the influence of these variables on trajectory model 

choice.  

The proportion of sessions in each movement task for which multiple STs 

were found (1 − 0.31 = 69% and 1 − 0.41 = 57% of sessions in flexion and extension) 

were analyzed; from each degenerate dataset, the two most prolific STs (the PT and 

the next ST), as well as the corresponding parameters associated with those motions. 

For quantitative parameters (θon and !& ) a Wilcoxon signed-rank test (a non-

parametric alternative to the Student’s t-test for when the assumption of normality is 

                                                
15 This does not necessarily mean to imply a measure of physical exhaustion, but rather to connote the 
time-dependency of performance, as measured here by the selection of trajectories from among the six 
model types.  



  

 

91 

not-valid); for ordinal variables (order of repetition, j = 1…N were analyzed in a 

Wilcoxon rank-sum test.  

 

 

Table 16: Correlation of ET model to motion parameters: Degenerate Sessions 

Movement parameter Flexion Extension 

N (# of sets) 97 82 

!&  (proportion) 0.14 0.12 

on
!  (proportion) 0.09 0.12 

# of repetition (proportion) 0.09 0.05 

!&  = Average angular velocity, 
on

!  = Angle of motion onset. 
 

 

Of the 97/82 degenerate datasets evaluated in flexion/extension, fewer than 

15% showed any significant relationship between trajectory model choice and the 

three basic parameters of motion outlined above. It is thus concluded that there is little 

dependence of model type on these movement parameters16.   

5.7 Discussion  

5.7.1 Inference regarding trajectory selection 

Of the 6 trajectory models, only 4 yielded PTs, and the remaining 2 resulted in 

STs for a limited number of individuals. For any one model should be assumed by 

random chance would occur with a frequency of 1-in-6. That any model should occur 

with frequency greater than 25 or 30% suggests its relevance as an approximant of the 

single joint trajectories generated in the present paradigm.  

                                                
16 It is noted that a mixed-effects model analysis was not performed, and thus it was not determined 
whether interaction between these parameters conspire to determine ET model type… 
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It was determined (Section 5.6.3) that trajectories of extension generated 

model sets with little correspondence to those of flexion. To reinforce this notion, 

consider that within the 6-dimensional model space, only 4 models yielded Principal 

Trajectories for the 41 subjects discussed here (Figure 15). Thus, the probability of an 

individual yielding a dataset for which a given archetypal curve class is the 

predominant best-fit (the PT), is 1-in-4. Supposing a subject’s PTf
 = χi, the probability 

of PTe = χj where j = i is 1-in-417. The equivalence analysis presented in Table 15 

reports just that: that selection of trajectory models in either direction is essentially 

random.  

5.7.2 Model space composition 

5.7.2.1 Change in model space dimensionality 

Whereas four models resulted in PTs in the present dataset, the question arises 

whether adding or subtracting models would change the distribution of PTs in Figure 

15. It is prudent to note the role of these apparently non-contributory models to the PT 

distribution.  

PTs are generated from an analysis of a histogram of the entire model space 

(the proportion of traces best-fit by each curve class). To remove a model is to 

displace the elements of its histogram to some other bin, i.e. those traces that will now 

be best-fit by some other curve. In this way, whereas an arbitrary curve type may not 

have yielded a PT, sufficiently many traces may have been best-fit by this function to 

alter the histogram in such a way that a new PT is reported. A low or zero-PT status 

for some model should not imply that it can be removed without impact on the model-

space histogram. 
                                                
17 Strictly speaking, fixing i implies a 1-in-16 chance: P = (¼ )2 chance of a subject’s PTf = PTe = χj. 
However, our analysis allows for arbitrary i, constraining this variable, and limiting our degrees of 
freedom to 1: P = (¼ ). 
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5.7.2.2 Change in model space membership 

In addition to judicious choice of the number of models, the models 

themselves must be carefully selected so as to represent a variety of possible 

trajectory curves, without “over-fitting.” For instance, the six curves modeled here 

were selected for their collective representation of the diverse morphologies of the 

trajectory traces observed in the experiment (see Section 3.4.1 for explanation of their 

relevance and formulation). The present models were designed with simple 

underlying assumptions: 1) monotonic trajectory direction, 2) velocity profile with at 

most a single peak, and 3) departure from θon / arrival to θoff. More elaborate models 

can be chosen that either adhere to these constraints, or disregard them. For instance, 

higher-order polynomials may provide more accurate fitting, but would violate 

Assumption 2 (odd and even polynomials), or Assumption 1 and 3 (even 

polynomials). As with many modeling activities, it is possible to arrive at model that 

fits a large portion of the data with very fine accuracy, but its validity is constrained 

by the assumptions (or lack thereof). 

It is clear that, some of the models used are posed in such away that 

implementation in a simulated human system, or as a performance criterion may be 

difficult to justify. For example, the straight-line trajectory is a physically unrealizable 

angular trajectory for the reason that it implies an infinite jerk cost in its discontinuous 

first derivative. This model’s validity can be explained by the curve’s approximation 

of a trajectory, implying a relatively brief acceleration/deceleration. Use of this model 

as a construct for simulated systems would require some filtering to obviate the errors 

associated with an impulse movement. However, the copious datasets for which this 

model was the Principal Trajectory, irrespective of its convoluted velocimetry, 

indicate its validity as a model of human motion. 
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5.7.3 Symmetry 

The symmetry of single-joint trajectories has been discussed in the literature, 

with no clear resolution, partly owing to the variety of performance protocols c.f. 

(Nagasaki 1989; Jaric, Milanovic et al. 1999; Mutha and Sainburg 2007). It can be 

argued, however, that the question of movement symmetry may not necessarily be 

well-posed with respect to standard quantitative analyses. For instance, a small 

spontaneous ridge in the data trace, whatever the cause, may corrupt point-wise 

differentiations of the 1st- or higher order (section 2.3.1.2). Here only two models 

could be considered symmetric: models A (linear SJT) and B (sigmoidal SJT). 

Subjects selected these models with sufficient frequency that together they comprise 

47 + 27% = 74% and 42 + 32% = 74% of the within-subject PT distributions (Figure 

15). Whereas the PT constitutes, on average, approximately 50-60% of any single 

dataset (Table 12, Table 13), and 26% of all subjects yielded datasets for which an 

asymmetric ET was the PT, it is concluded that symmetry is a common, but non-

universal characteristic of SJT movements.  

5.7.4 Single-joint protocols can be run in a single day 

Analysis of human performance over extended time periods allows for the 

generalization of good-practices for experimental design. In the present set of 

experiments, a subgroup of 17 subjects made multiple visits, recording datasets with 

identical cyclic elbow articulation data, in a constrained system. Significant 

Trajectory analysis revealed a modest increase in trajectory waveform variability with 

additional sessions (up to 17) that did not reach significance at the P < 0.05 level, and 

ST overlap did not change substantially with multiple visits. There is little indication 

that a single session is insufficient to characterize the proficiency and variability of 

healthy individuals’ single joint articulation. 



  

 

95 

5.8 Summary 
 

Essential trajectory (ET) traces, matched so as to best approximate the observed 

single-joint trajectories (SJTs) for a single subject’s profile were tabulated across all 

sessions, yielding histogram distributions of ETs per model type. The Principal 

Trajectory (PT, single most prolific ET type) and the Significant Trajectories (ST, all 

model types contributing importantly, as judge by a broken-stick scree analysis) were 

extracted to ascertain certain features of the observed SJTs. The notion of universal 

isogony (equal angle in equal time) in SJTs was rejected due to the wide prevalence 

of non-linear models (STs other than χ = A or χ = A, B);  as was SJT symmetry, on 

the frequency with which non-linear STs were observed (STs other than χ = A, B).  

Additionally, SJT movement patterns were found to be moderately variable: 

subjects tended to select from among 2 STs in both flexion and extension tasks, 

without relation to basic parameters of movement: time, movement speed, or angle of 

movement onset. There was no correspondence between movement patterns found in 

flexion and those in extension, and parameters found in sessional analysis did not 

differ significantly from those found within-subjects. 
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6 TRAJECTORY ANALYSIS OF STROKE COHORT 

6.1 Introduction 
 

Here, an ET analysis is performed on the SJTs recorded from a group of stroke 

patients. In addition to pattern analysis of the predominant movement profiles, 

analysis of the model distribution, both within-subjects and within-sessions will 

determine the stability of trajectory formation in persons with compromised motor 

control. In this way, single-joint movement in two cohorts will be exhaustively 

characterized for both its essential behavioral patterns, as well as transience in the 

movement profile.  

6.2 Experimental hypotheses 
 

The accurate extraction of trajectory features is made all the more important in 

the case of special populations, not only for the obvious implications in clinical and 

laboratory assessment, but for the reason that the present work has demonstrated the 

significantly greater noise component in stroke patients’ movement profiles versus 

healthy subjects. Thus, it is incumbent to demonstrate that the surrogate Essential 

Trajectory traces are adequate representatives of trajectories observed from an 

impaired cohort. 

 

 
Essential Trajectory approximants of the SJT trace will 
yield equivalently strong trace reconstructions of 
trajectories recorded from hemiparetic individuals.   

(Hypothesis 6) 

 

As before, a simple coefficient of determination will suffice in demonstration 

of model accuracy: detection of trace features, for example, time to maximum 

velocity, will follow as a presumption of satisfactory demonstration of SJT-ET 
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agreement. It is hypothesized that the results of the Essential Trajectory modeling, 

predicated on demonstration of Hypothesis 6, will reveal differences in the basic 

motor patterns of stroke patients.  

 

 Subjects with impaired motor control exhibit motor 
deficiency in the way of asymmetric movement patterns.  (Hypothesis 7) 

 

In addition to model “selection” within the stroke cohort, it is suggested that 

the proclivity for switching among movement patterns will manifest as a highly 

variable movement profile.  

 

 

Motor impairment will manifest as an increased 
variability in trajectory patterns, and this instability will 
have greater co-dependence on basic movement 
parameters. 

(Hypothesis 8) 

  

 Here, a scree analysis, identical to that performed on healthy subjects’ 

Significant Trajectory sets, will be expected to reveal not only degeneracy among the 

stroke subjects, but a significantly greater degeneracy than the corresponding findings 

in healthy subjects’ motions.  

6.3 Experimental methods 

6.3.1 Subjects and protocol 

Fourteen individuals enrolled in the JFK-Johnson outpatient stroke 

rehabilitation program, with a diagnosis of hemorrhagic or ischemic stroke greater 

than 6 months prior to study admission were recruited to participate, and were 

observed in a series of sessions typically lasting less than 30 minutes, enduring over 6 

weeks. Of the 14, three were eliminated from analysis, for reasons relating to early 
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study withdrawal (1) or by the investigators on the basis of being judged to have 

insufficient residual motor function for inclusion in a study of moderately functional 

stroke patients. Of the 11 study subjects, only a single individual did not make 

multiple visits; for this reason, no subgroup of single-visitors was analyzed; the 

between-session analysis was performed on the 10 repeat-visitors. All subjects gave 

informed consent based on the procedures approved by the IRB of Rutgers (Section 

1.2.1); subject demography is listed in Table 17.  

As described earlier, subjects were seated in the MAST, and instructed to flex 

and extend about the elbow across their “comfortable range of motion” in such a way 

that “maximized smoothness.” Subjects were uniformly tested on their affected side; 

no distinction was made between persons whose affected limb was collateral with 

their affected limb.  

 

 

Table 17: Demography of stroke subjects: Essential 
Trajectory extraction 
Number of Subjects 11 
Age (µ ± σ) 
Range (min/max) 

57.35 ± 17.35 
21/80 

Gender (M/F) 9/2 
Handedness (R/L) 6/5 
Number of visits (µ ± σ) 
Range (min/max) 

10.9 ± 4.78 
1/16 

Months post-stroke (µ ± σ) 
Range (min/max) 

22.4 ± 14.9 
7/54 

C-M arm score (µ ± σ) 
Range (min/max) 

3.13 ± 7.5 
3/7 

µ = Mean, σ = Standard deviation, min = Minimum, 
max = Maximum. M = Male, F = Female, R = 
Right, L = Left.  
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 Subjects were admitted to the study based on satisfactory performance in 

testable performance criterion of in functional assays, and sufficient stamina to 

complete the MAST movement protocols was established prior to inclusion (Chapter 

1). 

6.3.2 Signal processing and curve matching 

Goniometric data were smoothed with a low-pass Butterworth’s filter (2nd-order, 

12 Hz cutoff), and divided into single cycles of flexion-and-extension, i.e. departure 

and return to maximal extension (elbow angle ~ 0°), automatically by a thresholded 

local minima, as described previously (Section 4.3.2).  Six archetypal curve types, 

including linear and variously non-linear trajectory approximants were exhaustively 

matched to the observed trajectory signal in order to find the single best match for 

each trace over all six models. From each of these single Essential Trajectory (ET) 

results, and the single ET for which the greatest proportion of a dataset could be 

represented was extracted as the Principal Trajectory (PT).  

6.3.3 Degenerate behavior via scree analysis 

The models for which a large, but sub-maximal proportion of the dataset could 

be described yielded the set of significant trajectories (ST), as determined by a scree 

analysis. From these ST sets, analyses into the stability of movement themes could be 

quantified by the number of datasets for which | ST | = 1, as well as the average 

number of STs. Furthermore, trajectory trends in both movement directions were 

characterized by analysis of the ST sets in flexion and extension. Finally, correlational 

analyses were performed among degenerate datasets (those for which | ST | > 1), in 

order to determine the influence of basic movement parameters on SJT shape.  
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Figure 16 Distribution of flexion Principal Trajectories for both cohorts.  

6.4 Results: Principal Trajectory analysis 

6.4.1 Curve matching method equally accurate for stroke SJTs 

Despite the apparent prevalence of higher-order noise in the stroke patient’s 

trajectory traces, the goodness-of-fit of the Essential Trajectory waveforms found 

through the curve-matching process was high: R2 = 0.99 ± 0.01. Thus, one immediate 

conclusion can be drawn: that the curve matching paradigm proposed in this 

document is robust to moderate impairment, as found in the affected arms of 

hemiparetic individuals.  

6.4.2 Stroke trajectory choices mirror those of normal subjects 

In flexion tasks, the linear curve trace was the single-most prolific, i.e. the 

Principal Trajectory,  in 36% of subjects, greater than sigmoidal (27%), quasi-concave 



  

 

101 

 
 
 

 
 
Figure 17 Distribution of extension Principal Trajectories for both cohorts.  

(27%) and quasi-convex (9%). Figure 16 shows the distribution of subjects for whom 

each trace was observed to result the PT. Here, the distribution of PTs (shown for 

stroke subjects in grey) is nearly identical to those of the healthy subjects (black).  

For extension tasks, again the distribution was ordered identically, and nearly 

identical in composition to that of the healthy control subjects (Figure 17). To put this 

into context, consider that there are 6 possible traces from which a single PT could be 

“chosen.” In this way, there are 6! orderings among the archetypal curve types. For 

the PT distribution in stroke subjects to match those of the healthy subjects, thus 

involves a 1-in-6! ≈ 0.0014 occurrence by chance, Here again, the order of trajectory 

models in extension matched those of flexion identically, itself an equally unlikely 

event to happen by random assignment18.  

                                                
18 It is acknowledged that whereas only 4 of the six trajectory models were observed to yield PT, it is 
reasonable to ignore the sigmo-convex and sigmo-concave models from this interpretation of the low 
probability of identical random arrangements of PT distributions, increasing the probability to 1-in-4! ≈ 
0.04.  
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6.5 Results: Degeneracy, directionality analysis 

6.5.1 Stroke subjects are equivalently degenerate to unimpaired 

6.5.1.1 Within-subjects analysis 

A broken-stick scree analysis of stroke subjects Essential Trajectory 

distribution profiles revealed a degenerate movement profile in stroke subjects. ST 

distributions are shown in Figure 18.  

On average, subjects’ ST sets contained 2.36 ± 1.12, with only 3 subjects 

yielding datasets that were not degenerate in longitudinal analysis (Table 18).  

 
 

   
 
Figure 18 Distribution of stroke cohort Principal and Significant Trajectories.  
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Table 18: Flexion trajectory degeneracy: Stroke subjects  (N = 11) 

Model Set Parameter Value (µ ± σ) Comparison normal 
(Table 12) 

|ST| (µ ± σ) 2.36 ± 1.1 ≈2.02 
|ST| = 1 (proportion) 0.27 ≈0.24 

PT proportion 0.48 ± 0.18 ≈0.49 
ST = Significant Trajectory, |ST| = ST set cardinality, PT = Principal 
Trajectory. 

 

 

These findings were not significantly different from those of the healthy 

subjects c.f. (Table 12), however, these figures do represent a significant departure 

from the baseline hypothesis of | ST |=1 for all individuals.  

6.5.1.2 Between-sessions analysis 

Whereas ten of the 11 subjects performed single-joint articulations in multiple 

sessions, a session-by-session analysis was performed in order to determine the 

variability of trajectory themes day-to-day. Here, only modest decrease was observed 

in the degeneracy of single-day ET profiles, suggesting that there was not a significant 

increase in profile variability solely due to observation over multiple visits.  

 

 

Table 19: Flexion trajectory degeneracy: Within-session analysis (N = 120) 

Model Set Parameter Value (µ ± σ) Comparison to 
normal (Table 13) 

|ST| (µ ± σ) 1.93 ± 0.46 ≈1.93 
|ST| = 1 (proportion) 0 ≈0 

PT proportion 0.52 ± 0.17 ≈0.53 
ST = Significant Trajectory, |ST| = ST set cardinality, PT = Principal 
Trajectory. 
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These results are not significantly different from those of healthy subjects c.f. 

(Table 13).  

6.5.2 Stroke subjects equivalently predictive in extension 

Here, as with flexion tasks, the Essential Trajectory profiles resulting from 

curve-matching of extension traces was found to be degenerate, with an ST set 

cardinality significantly greater than 1, and only 36% percent of subjects with a single 

ST (Table 20). Though there was a large difference across movement directions in 

terms of the trajectory degeneracy for stroke subjects (1.63 ± 0.50 in extension, versus 

2.36 ± 1.12 in flexion), the large variability among subjects prevented significance at 

the P < 0.05 level (Wilcoxon rank-sum). As with flexion tasks, the difference between 

cohorts failed to reach significance, with a degeneracy between 1.5 and 2 STs.  

 

 

Table 20: Comparative degeneracy of extension: Within-subjects (N = 11) 

Model Set Parameter Value comparison to 
Table 18 

comparison to 
normal (Table 14) 

|ST| (µ ± σ) 1.63 ± 0.50 ≈2.36 ≈1.92 
|ST| = 1 (proportion) 0.36 ≈0.27 ≈0.31 

PT proportion 0.52 ± 0.13 ≈0.48 ≈0.56 
ST = Significant Trajectory, |ST| = ST set cardinality, PT = Principal Trajectory. 

 

 

Here again, the Principal Trajectory models typically accounted for half of all 

SJT traces.  
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6.5.3 Prediction across movement direction 

An analysis of ST set composition in flexion and extension tasks revealed low 

prediction between directions of movement. Principal Trajectories in flexion matched 

those in extension in only 3 subjects (27%), which is approximately the same as the 1-

in-4 chance found among healthy subjects (c.f. Table 15).  

 

 

Table 21: Directional prediction of PT and ST: Within-session (N = 140) 

Model Set Parameter Value Comparison to 
normal (Table 15) 

PTf = PTe 0.5 ≈0.24 
Average ST overlap  O  0.44 ± 0.30 ≈0.39 

Unity ST overlap O1 0.08 ≈0.41 
Null ST overlap O0 0.25 ≈0.09 

ST = Significant Trajectory, |ST| = ST set cardinality, PT = Principal 
Trajectory. 
  

 

ST sets in flexion and extension were found to have only modest intersection 

(O  = 0.44 ± 0.31), and in only 3 subjects were the ST sets found to completely 

intersect (O1 = 0.27). One subject yielded completely independent ST datasets (Table 

21). As before, these results were comparable to the similar analyses performed on 

healthy subjects.  

6.5.4 Correlation to basic movement parameters 

In order to determine whether the class of ideal comparison trace best-fit to the 

observed SJT (the ET) was influenced by angle of motion onset, the average 

movement velocity, or the sequence of movement, a measure loosely analogous to 



  

 

106 

learning, fatigue, or adaptation, Wilcoxon signed-rank tests were performed on each 

degenerate dataset in both flexion (97 of 120 sets) and extension (82 sets).  

 

 

Table 22: Correlation of ET model to movement parameters: Degenerate sessions 

 Flexion 
N = 97 sets 

Extension 
N = 82 sets 

Movement parameter Value 
comparison 
to normal 
(Table 16) 

Value 
comparison 
to normal 
(Table 16) 

!&  (proportion) 0.13 0.14 0.07 0.12 

θon (proportion) 0.05 0.09 0.07 0.12 
# of repetition (proportion) 0.10 0.09 0.10 0.10 

!&  = Average angular velocity, θon = Angle of motion onset. 
 

 

Similar to results observed in healthy subjects’ degenerate datasets, there was 

little correlation to these variables, according to the low proportion of sessions 

yielding significance at the P < 0.05 level. Here, average velocity was most frequently 

correlated to curve type in flexion tasks (significance in 13% of sessions), with cycle 

sequence showing correlation in 10% of sessions in both flexion and extension 

movements (Table 22).  

6.5.5 Stroke subjects significantly more symmetric 

In addition to a marginal increase in the apparent preference of stroke patients 

for symmetric Essential Trajectories, a quantitative analysis revealed a significantly 

greater symmetry as measured by the time to maximum flexion. In terms of the ratio 

of time spent in acceleration versus deceleration, however, stroke subjects’ flexion 

motions were equally asymmetric with respect to that of healthy individuals, however 
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the nature of this asymmetry was opposite: considerably greater time spent in 

acceleration in the case of impaired movement.  

 

 

Table 23: Symmetry comparison ETs recorded from stroke subjects (N = 11) 

Metric Value (µ ± σ) Comparison to normal 
(Table 8) 

Time to maximum angular 
velocity !"

&

max
 0.51 ± 0.16 >0.39, P < 0.01 

Symmetry ratio !&&
"  0.93 ± 0.23 >0.71, P < 0.001 

 

 

Though not explicitly reported here, similar results were found in extension 

tasks.  

6.6 Movement pattern variability: Standard measures 

6.6.1 Variance Ratio 

The finding of degenerate model sets in healthy and stroke subjects contradicts 

the notion of highly stereotyped trajectory paths, which is a central assertion in 

several thrusts of motor research (Wolpert, Ghahramani et al. 1995). However, that 

the matching of Essential Trajectories is a categorical metric, while illuminating for 

its assignment of trajectory shape as having one specific morphology chosen from 

among a finite set, is somewhat limited in its ability to quantify the variability in SJT 

formation. For instance: all movement cycles in a single dataset could assume a 

precisely linear shape, but at a variety of different speeds, or from different starting 

points. These factors will strongly influence the trajectory patterns, irrespective of the 

essential movement pattern.  
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 In order to quantify the cycle-to-cycle variability of an individual’s single-

joint trajectory record, the variance ratio was calculated for subjects’ longitudinal 

datasets (Equation 17). The variance ratio reports the variability of a collection of 

temporally-normalized waveforms from 0 (identical signals) to 1 (noise). Here, 

healthy subjects were observed to move with relatively high stability across all 

repetitions in both flexion (VR = 0.09 ± 0.05) and extension (VR = 0.07 ± 0.03) tasks. 

Stroke patients, however, moved with considerably greater variability from cycle to 

cycle: VR = 0.32 ± 0.24 (flexion), and VR = 0.34 ± 0.21 (extension), which was 

significantly greater than the healthy cohort: P < 0.01 (Wilcoxon rank-sum).  

6.6.2 Fluctuation in basic movement parameters 

That stroke patients’ SJTs are so highly variable, as reported by the Variance 

Ratio, and yet not significantly more degenerate than the healthy subjects’ model-

matched sets, suggests the need for an investigation into which specific parameters of 

the trajectory trace are more variable among the stroke patients. Thus, an analysis was 

performed on the variability of the two non-trivial movement parameters discussed 

elsewhere: average velocity !& , and end-point position θon + Δθ. Under the hypothesis 

that stroke patients greater variability results from one of these parameters, it a 

Wilcoxon rank-sum test was performed comparing cohorts for parameter variation 

equivalence. Here, parameter variability φ is defined as the ratio of the variance to the 

mean. For parameter ! , this is expressed as  

 

 
!

!

µ

"
# = .  
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As a cursory measure of performance difference between movement directions, 

the ratio of average speed in flexion was measured against the average speed of 

extension, presuming that their ratio would equate to the identity.  

 

 

Table 24: Comparison of movement parameter variability within-sessions 

Parameter  Healthy  
(N = 41) 

Stroke  
(N = 11) Comparison 

Flexion 0.00 ± 0.00 0.19 ± 0.14 P < 0.001 Average velocity 
!&  Extension 0.04 ± 0.01 0.19 ± 0.14 P < 0.001 

Flexion 0.13 ± 0.04 0.03 ± 0.04 →← End-point 
position θon + Δθ Extension 0.13 ± 0.05 0.09 ± 0.10 ≈ 

!&  Flex:Ext  (ratio) 1.08 ± 0.08 1.06 ± 0.08 ≈ 
All values (µ ± σ). →← = significance, in contradictory direction. Flex = Flexion, 
Ext = Extension. 

 

 

This variability analysis revealed a strongly suggestive result: that although 

the end-point error was approximately equivalent between cohorts, and indeed- was 

significantly reduced in stroke patients, at the P < 0.05 level, as indicated by the 

contradiction arrows in Table 24, the average velocity was significantly more variable 

within the stroke patients’ datasets, whereas there was almost zero fluctuation in the 

velocity of healthy subjects’ movements. Whereas flexion movements were 

performed with a significantly greater average velocity (6-8% faster than extension 

movements, P < 0.001), this was not significantly different between cohorts. 

6.7 Summary 
 

The present analysis served to validate the Essential Trajectory movement 

pattern extraction paradigm in cohort analysis, on the basis of a near-perfect 

goodness-of-fit. However, beyond method validation, the ET sets serve as new 



  

 

110 

substrates by which impairment can be described in the stroke cohort. Here it was 

shown that the distribution of Principal Trajectories was essentially identical in stroke 

patients, as healthy individuals, and that the ET sets were equivalently degenerate, 

meaning that the movement themes were pluralistic, but not significantly more so 

than healthy subjects, regardless of the domain of analysis: within-subjects, between-

sessions, flexion or extension. However, variance ratio analysis showed a 

significantly more variable trajectory dataset in stroke patients. This variability was 

attributed to a large cycle-to-cycle variation in average movement velocity, which 

yielded significantly greater variability in stroke patients; end-point error was low in 

both groups. It is suggested that another possible source of SJT variability may be the 

dispersion of arrest periods, as will be presented in Chapter 7. 
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7 RATERS OF MOTOR PERFORMANCE 

7.1 Introduction 
 

In Chapter 3 a method was presented whereby the raw trajectory record was 

substituted for an idealized SJT surrogate, the Essential Trajectory (ET), which 

eliminates the noise associated with data acquisition, data processing, or spurious 

behaviors not associated with the essential motor plan. The ET thus eliminates errors 

associated with conditioning of the measurement substrate. The following chapters 

address the second major source of error in measuring motor performance: 

formulation of the metric by which the substrate is evaluated. A novel metrical 

analysis will be described, primarily for application to trajectory traces where 

spontaneous behaviors are not only prevalent, but the primary object of measurement.  

Here, a critical analysis of widely-used smoothness metrics is conducted in the 

form of a review of the pertinent literature. A fundamental theorem of movement 

smoothness is proposed as a basic and universal tenet of what ought resemble a 

proficient motor activity, and several examples will be presented to illustrate 

fundamental shortcomings of smoothness raters commonly incorporated into clinical 

and laboratory research.  

7.2 Fundamental theorem of movement smoothness  

7.2.1 General definition 

In addition to basic kinematical parameters of voluntary movement (e.g. range 

of motion, maximum velocity, average velocity, etc.), trajectory smoothness is often 

evaluated in biomechanical performance assessments. Though no standard 

formulation of movement proficiency exists, it is generally accepted that smooth 
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movements contain a minimum of transient accelerations. We define a fundamental 

theorem of movement smoothness as  

 

(Theorem 1)  A smooth movement is that which exhibits a minimum of 
accelerative transience. Smoothness. 

 

Various raters have been proposed as quantifiers of movement smoothness. 

Several such smoothness metrics are presented in Table 25. 

 

 

Table 25: Smoothness raters 
Metric Formulation Source 
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Though these measures of motor proficiency are often used interchangeably, 

their respective formulations present a set of trace manipulation and feature 

extractions. Indeed, for each smoothness rater, there several parameters to consider in 

terms of data analysis and subsequent interpretation.  
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7.2.2 Basic principles of smoothness measurement 

Each smoothness metric measures motor performance according to a unique 

cost function associated with the SJT trace. Many metrics require a data 

transformation such as differentiation with respect to time, or complex evaluative 

operations, e.g. integration under a curve. Thus, in the family of smoothness metrics, 

descriptors can be grouped according to their substrate, i.e. the trace domain: angular 

position in time, velocity, acceleration, or higher-order trace, etc., their feature of 

evaluation: the number of trace peaks, percentage of trace above a set threshold, area 

under the curve, etc., and their operation: discrete summation, ratiometry, integration, 

etc.19. The myriad possible substrate-feature-operation combinations available for 

evaluation of motor performance allows for a wide variety of smoothness measures, 

among which there is some risk for non-uniformity. 

7.3 Counter-intuitive rater behavior 

7.3.1 Failure to discriminate obviously impaired cohorts 

Smoothness is used as an index of motor performance in both healthy subjects 

and persons with stroke (Trombly 1993; Platz, Denzler et al. 1994; Kahn, Lum et al. 

2006), however, it is not uncommon for some metrics to fail to discriminate between 

healthy and afflicted individuals (Archambault, Pigeon et al. 1999; Goldvasser, 

McGibbon et al. 2001; Rohrer, Fasoli et al. 2002; Cozens and Bhakta 2003). The 

reasons for this counter-intuitive metrical behavior, especially considering the obvious 

motor impairments of the involved cohorts, are not well-known, and have been 

variously attributed to the merit of the rater itself, noise in the trace, and even to an 

over-estimation of the true level of disability of the recruited patients. 

                                                
19 Additionally, it is possible to discriminate according to output. Discrete sums yield non-negative 
integers, ratiometry and integration yield real numbers. Such a distinction may be necessary depending 
on the specific design requirements for metric resolution.  
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7.3.2 Metrical contradiction 

Whereas each smoothness rater presents its own evaluation of the trajectory, 

subject to a unique set of constraints, it is not uncommon to incorporate multiple 

performance measures into a single kinesiological study. Here, there is risk of some 

metrics exhibiting contradictory behavior (Rohrer, Fasoli et al. 2002). A simple 

example will example the occasion for contradiction among smoothness raters.  

 Consider a simple ideal sigmoid over which a low jerk score is likely. 

Modifying this trace by the addition of two independent Gaussian features at various 

regions of the trace simulates a pair of spontaneous accelerations in the execution of a 

single-joint flexion motion, at proximal and distal reach. This trace is expressed 

generally by  
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where the “noisy” features are parameterized by [ A, B, α, β ]; let k = 104. 

 Inserting a single ridge into the otherwise smooth sigmoid, according to [ 0, 

0.1, 0, 3π ] increases the number of peaks in the velocity profile 
!

" &  from 1 to 2, 

yielding a Mean Arrest Period Ratio of 0.202. Moving this ridge to a different 

position in the trace, simulating an acceleration at a position proximal to the torso via 

[ 0.1, 0, 3π, 0 ], the number of velocity peaks remains the same, but MAPR decreases 

to 0.172. Re-introducing the first perturbation, but reducing peak amplitudes 

([ ]!! 3.0,3.0,1.0,1.0
2

2

2

2 "" ), the MAPR returns to 0.202, despite the additional 

peak in the velocity profile. In all three cases, average jerk is approximately the same: 

J =2.02 × 10-6 (Table 26). 
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 Table 26: Metrical contradiction among smoothness raters 

Metric [ ]!3.0,0,1.0,0  [ ]0,3.0,0,1.0 !  [ ]!! 3.0,3.0,1.0,1.0
2

2

2

2 ""  

J  2.02 × 10-6  2.02 × 10-6 2.02 × 10-6 

!
" &  2 2 3 

MAPR  0.202 0.172 0.202 
J  = Average jerk, 

!
" &  = Number of peaks in the velocity trace, MAPR = Mean 

arrest period ratio (10%). 
 

 

The traces corresponding to these parameter sets are shown in Figure 19.  

 

It is thus demonstrated that in some cases the relationship among smoothness 

metrics is neither predictable, nor congruent. In any assessment of empirical 

contradiction, determination of the erroneous elements is a difficult task: which rater 

is modus errare, and which is behaving ad ferenda, These simulated results suggest 

that an experimental analysis of this metric is warranted. 

 
 
 

 
 

Figure 19 Metrical Incongruence: Perturbation of ideal sigmoidal trajectory with 
parameterized noise, yields contradictory smoothness metric behavior. 
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7.4 The jerk profile 
 

Whereas acceleration is the essential variable of inertia-based control systems, 

its rate of change (i.e. jerk) is a standard measurement substrate in the assessment of 

movement smoothness. Jerk, however, is a function of time, and therefore not 

configured to report motor proficiency directly: scalar descriptors of this trace must be 

defined.  

 

 ( ) ( )( ) ( )t
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=" &&  (Equation 19) 

 

Several indices of movement smoothness have been proposed, evaluating 

various features of the jerk signal, many of which are predicated on the area under the 

Jerk curve (Table 27). 

 

 

 

                                                
20 The nomenclature employed herein is consistent with the literature. For the reason that different 
researchers name their metrics in the context of their development, descriptor names may not observe a 

Table 27: Jerk metrics 
Metric Formulation Source 
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As can be seen, the above metrics differ primarily in their method of 

normalization: none, to time, and to velocity.  

7.5 Jerk as a measure of movement proficiency 
 

Previous attempts to track recovery from neurological impairment via jerk-

based metrics have yielded inconclusive and sometimes counter-intuitive results. In 

training of thirty-one patients in a robotic therapy device, for example, and subsequent 

evaluation via five different smoothness metrics, four metrics reported a uniform 

improvement in movement coordination: the number of peaks in the speed profile, a 

ratiometric index of the peak speed to average speed, average movement speed, and 

the mean arrest period ratio (MAPR). The jerk metric (JM), however, curiously 

increased with training (Rohrer, Fasoli et al. 2002).  

This contradictory result was attributed to the blending of submovements, 

discrete movement segments with a possibly invariant shape of which a small number 

(presumed to be two or three) comprise an single motion unit (Krebs, Aisen et al. 

1999). A simulation was performed, convolving two fabricated Gaussian 

“submovements,” assessing the JM as a function of curve overlap. It was reported that 

as these submovements blended, i.e. approached one another, the period of rest (the 

space between them) is shortened, increasing average jerk, decreasing smoothness. It 

is concluded that “at least during post-stroke recovery, jerk minimization may not be 

the primary criterion governing refinements in movement patterns,” (Rohrer, Fasoli et 

al. 2002). 

Sub-movements were also cited as an explanation for the failure of integrated 

average jerk (IAJ), to discriminate between seventeen cerebellopathy (CB) patients 

                                                                                                                                       
logical or intuitive relationship. For instance, IAJ is so-called for its averaging across many repetitions; 
AJ reflects the averaging over time.  
21 The negative sign is convention employed to make JM a rater of smoothness, and not dysfunction. 
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and seventeen healthy control subjects at the P < 0.05 level .(Goldvasser, McGibbon 

et al. 2001). Here, the primitive neural activation commands, present in CB, and 

thought to underlie sub-movements, are considered to be more pronounced. These 

sub-movement activities are thought to reflect an internal jerk minimization process, 

applied not to the global movement, but to movement segments (sub-movements). 

Objective quantification of the form and process of sub-movements has not been 

demonstrated, despite a century from the original suggestion of their synthesis 

resulting in the observed continuous movements (Krebs, Aisen et al. 1999). 

7.6 Jerk normalization 

7.6.1 Need for normalization 

In general, it is not the absolute average velocity with which an individual 

moves that is important to the evaluation of motor proficiency, but the inherent 

smoothness of the motion, irrespective of whether it was performed at a fast or slow 

pace. For example, a healthy human moving at a fairly rapid pace of 1 flexion-

extension cycle per second should be scored equally by a jerk metric on equal smooth 

repetitions performed at half pace.  

     
 

Figure 20 Need for jerk normalization jerk: Trajectory θ1 (θ2: T1→T2=2T1 Left) 
yield disparate jerk profiles, skewing jerk according to average velocity (Right). 
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Figure 20 illustrates this scenario: ostensibly identical angular trajectories, to 

within a velocity scaling factor, yield jerk traces with similar morphologies, but scaled 

to different height and width. This transformation is not necessarily area conservative, 

and has been shown to artificially decrease non-normalized average jerk scores such 

as variants of IAJ, with increased duration (Cozens and Bhakta 2003). 

7.6.2 Jerk normalization to total movement duration 

Common to most scalar jerk metrics, either in combination with or in place of 

other normalization schema is an adjustment for total time of movement T. Division 

by total time serves two primary purposes: 1) to endow the metric with units: area 

under the curve is dimensionless, division by time gives a performance-score-per-

unit-time of movement, and 2) to eliminate variability according to movement 

duration: it has been shown (here, and elsewhere (Rohrer, Fasoli et al. 2002; Cozens 

and Bhakta 2003), that identical movements performed at different paces yield 

drastically different integrated jerk values: 
125.0

7.1

21212
2: JJTTT =!"=#$  

(Figure 20).  

In terms of scale adjustment, there are two essential shortcomings to a temporal 

normalization. Of primary concern is the uncertainty in the effect of movement speed 

on jerk: with decreased average velocity, i.e. greater T, it is not well-established 

whether jerk is prone to artefactual increase or decrease, and the dependence on the 

sign and magnitude of the effect vis-à-vis other movement parameters.  

A further and more subtle counter-argument to the temporal normalization of 

jerk metrics becomes apparent in the evaluation of highly spastic movements. A 

spastic individual has a tendency to produce stop-and-go movements that are 

alternately still and swift, uncontrolled motion (Nielsen, Andersen et al. 1998). Thus, 

a spastic movement is likely to contain regions of stall behavior.  
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(Definition 5)  A stall is any period within a movement sequence where 
the absolute velocity is below a given velocity threshold. Stall. 

 

 Stall behavior is traditionally quantified using the mean arrest period ratio 

(MAPR), the proportion of total movement time spent at a sufficiently low velocity, 

irrespective of movement direction (Beppu, Suda et al. 1984): 

 

 
( )

T

t

MAPR
! <

=
"#&

, (Equation 20) 

 

where δ is an arbitrarily small threshold velocity here set to 10% maximum velocity. 

Take, for example, and arbitrary sample flexion executed by a neurologically 

intact subject (Figure 21). The jerk profile, resulting from two differentiations of the 

velocity profile, yields some IAJ score (here IAJ = 1.27).  

Inserting two stall behaviors (instantaneous velocity << 10% maximum 

velocity), the jerk integral yields the same result: the area under the curve is not 

affected by the insertion of zero-jerk periods associated with the arrested motion. 

Scaling the independent variable T to a normalized value, however, alters the jerk-

profile in such a way that the integral is reduced in proportion to the increase in stall 

behavior: protraction of θ(t) to duration 1.5T (with the addition of 2 stalls of duration 

0.25T) decreases J→⅔J. 

Thus, where two identical movements, aside from the insertion of a period of 

stalled behavior, have equivalent absolute jerk scores, temporal normalization 

artificially decreases the apparent jerk associated with the spastic movement, where 

equal or greater jerk would be expectation. In this way, if jerk is to be adjusted by 

some factor, total movement time is not a tenable normalization parameter. 
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Figure 21 Artefact associated with jerk normalization to time: A sample flexion 
was assessed for jerk before (Top, Left) and after the insertion of simulated stalls 
(Middle, Left).  
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7.6.3 Normalization by peak velocity 

By adjusting the jerk trace to peak velocity within each degree of movement 

freedom, it is proposed that the Jerk Metric accounts for differences in signal 

size/shape (Rohrer, Fasoli et al. 2002). Whereas this normalization may account for 

some affine transformations, it is apparent from a previous example (Figure 20), 

where max

2
!& = max

1
2 !&" , that a simple scale factor is not sufficient to make up the 

difference between jerk integrals. Despite the algebraic validity of this 

normalization22, the peak-velocity normalized jerk does not withstand even simple 

perturbations of a given profile. 

In general, peak velocity is not a particularly robust parameter by which to 

normalize a biomechanical dataset. Consider two flexion movements, one where a 

                                                
22 Recall that the derivative and integral are linear operators: )(tfk

dt

d !  = )(tfk
dt

d!  and 

! " dttfk )(  = !" dttfk )( . Therefore, if the instantaneous velocity of )(2 t! at any time !  is half 

that of its corresponding locus in the original trace )( 21
!" , then for all time, )(2 t!& = )(12

1
t!& . This 

coefficient commutes out of the two subsequent differentiations: )(2 t!&&&  = )(1 t!&&& , and likewise, their 

integration: !
T

dtt
0

2 )("&&&  = !
T

dtt
0

12

1 )("&&& .  

        

      
Figure 22 Normalization of the jerk profile by maximum speed is more likely to 
skew the jerk metric by detection of velocity peaks related to spontaneous 
accelerations. 
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moderate jerk is committed at both early and late flexion; one where a minor 

acceleration is committed early, and severe jerk late (Figure 22). 

Ostensibly, the jerk profiles, though considerably different, yield the same 

integration, suggesting the equivalence of motor performance between the two 

movements. However, whereas the asymmetric jerk profile results from an 

asymmetric velocity profile, the single pre-dominant peak velocity will be extracted 

as the normalization factor for the second movement.  Whereas peak velocities will 

typically be associated with spontaneous and unintentional features of the movement 

profile, it seems that average velocity would make for a much more meaningful scale 

factor.   

7.6.4 Normalization by average velocity 

A jerk scaling factor based on the average movement velocity has also been 

proposed (Cozens and Bhakta 2003). This method of normalization avoids spurious 

peaks in the velocity profile associated with transient accelerations, and is based on 

the proportional spectral scaling of identical repetitions of differing velocity.  

An arbitrary trajectory x(t) can be phrased as the infinite sum of a series of 

orthogonal functions of t , with coefficients X(ω): 
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where 
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and ω is the angular frequency. An identical repetition performed at pace
T
Tp != , 

where T' is the duration of the new movement, is likewise expressed as x' = x(p·t) 

where the Fourier expansion now becomes  

 

 ( ) ( )!
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2

1 .  

 

 Jerk, the third derivative of position, now obeys the chain rule of successive 

differentiation of exponentials ( ) ( ) ( )tfn

dt
dtf

dt

d etfen
n

!= )( : 
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 ( ) ( ) ( )!
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2

1 ,  

 

where ( ) ( )tJptJ !=" 3 23.  

 The normalized, average rectified jerk (NARJ) proposed by Cozens accounts 

for average velocity across the entire motion, as opposed to maximum instantaneous 

velocity, as the Jerk Metric described earlier (Rohrer, Fasoli et al. 2002). However, in 

                                                
23 Note that this presumes ( )!

"

"#
$$ $
deX

ti = ( )!
"

"#
$ %% % deX pti , which is valid by the inclusion 

of the pace factor p in the period arguments of both )(tx  (and thus )(!X ) and iwt
e : )(!X "  = 

( )!
"

"#

#$ dtetx pti%  = ( )!
"

"#

# dteptx pti$ , i.e. a shift in frequency of each component by a factor of 

p , with preservation of amplitude Cozens, J. A. and B. B. Bhakta (2003). "Measuring movement 
irregularity in the upper motor neurone syndrome using normalised average rectified jerk." J 
Electromyogr Kinesiol 13(1): 73-81.. 
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the way that 1!
"T#& , normalization to average velocity seems equivalently moot to 

normalization to total movement time.  

In the context of jerk as a metric with no clearly defined paradigm for 

normalization, and a tendency to contradict other smoothness metrics, a metrical 

validation is warranted wherein each of the four jerk metrics are analyzed for their 

susceptibility to artifact rooted in basic variables of movement, i.e. movement speed.  

7.7 Assessment of jerk’s metrical validity 

7.7.1 Study overview 

Because movements of persons with compromised motor control are typically 

slower than healthy individuals, smoothness metrics should be independent of average 

velocity, and reflect only the intrinsic proficiency of the recorded movement (Cozens 

and Bhakta 2003).  

In order to test the influence on jerk metrics of average movement speed, a correlation 

study was devised. It was proposed (Section 2.3.2) that jerk metrics may be adequate 

for “well-behaved,” i.e. non-spastic, motions performed by healthy individuals, but 

become unreliable in the assessment of movement segments containing significant 

periods of stall activity. Accordingly, two cohorts of subjects were observed in the 

MAST, performing single-joint elbow flexion motions: a group of healthy volunteers, 

and a group of individuals with compromised motor control due to chronic stroke 

(Table 28). 
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Table 28: Demography of cohort study: Accelerative transients 
 Healthy Stroke 
Number of Subjects 10 5 
Age (µ ± σ) 54.9 ± 14.2 47.7 ± 20.8 
Gender (M/F) 4/6 2/3 
Months Post-Stroke (µ ± σ) 35/6 16 ± 8 
Chedoke-McMaster Arm 
Score 3.1 ± 3.0 3.4 ± 0.5 

µ = Mean, σ = Standard deviation, min = Minimum, max = 
Maximum, M = Male, F = Female, R = Right, L = Left. Stroke 
subjects all right-affected. 

 

7.7.2 Study protocol 

Subjects were seated with their dominant (or affected) arm in the MAST, and 

asked to perform as series of autonomous flexions about the elbow at a comfortable, 

self-selected pace. Visual feedback was of their instantaneous hand position was 

provided, though not necessarily attended to, as described previously (Section 1.2.2.1). 

Subjects made a single visit, performing a minimum of 30 repetitions in the MAST. 

7.7.3 Signal processing and analysis 

Goniometric data was bi-directionally filtered with a Butterworth’s low-pass 

filter (-3 db at 7.5 Hz). Repetitions were extracted from the continuous dataset by a 

thresholded local minimum, and edge effects were removed by truncating angular 

position data to those loci falling between the repetition onset and cessation, defined 

as the instant where angular velocity exceeds, and then recedes below, 2% maximum 

velocity. For simplicity, only flexion movements were considered; extension 

movements were discarded. 

Each repetition was evaluated for two parameters: average movement velocity, 

and a series of jerk-metrics (Table 27). Traces were differentiated with a point-wise 



  

 

127 

difference, and filtered with identical characteristics as described above. Average 

velocity was defined simply as the mean of the filtered trace value, and the Mean 

Arrest Period Ratio (MAPR) was calculated at 10% maximum velocity. Integration of 

the square of the triply-differentiated (and iteratively filtered) flexion trace was 

performed by a trapezoidal integration.  

7.7.4 Experimental hypotheses 

In order to resolve the dependency of the various metrics on average velocity, 

the correlation between these sets of parameters was assessed on subject means of 

average velocity !&  and each jerk metric. 

 

 
Standard jerk metrics are independent of average velocity 
in “well-behaved” movements performed by healthy 
individuals. 

(Hypothesis 9a) 

 

 
Jerk metrics exhibit spurious dependence on movement 
velocity in the special case of spastic movements 
characterized by significant periods of stall behavior. 

(Hypothesis 9b) 

 

The test criterion of correlation between the jerk metrics and average velocity 

was a Pearson Product Moment Correlation Coefficient ( )!" &,J # >0.7, where J' 

represents one of the four jerk metrics presented in Table 27: 
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where N is the total number of subjects in a given cohort, 
i
J !  and 

i
!&  are the ith 

subject’s sessional mean value for jerk metric J' and average movement velocity, 
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respectively; J ! , !&  and 
J !

" ,
!

"
&
 represent the cohort means and standard deviations 

of these parameters. 

The ability of jerk to resolve cohort differences was tested here with all four 

jerk metrics.  

 

 
Jerk metrics can discriminate between healthy individuals 
and those with impaired motor control due to chronic 
stroke. 

Hypothesis 10 

 

 This will be demonstrated with a simple hypothesis test on the difference of 

means between subject cohorts for each metric. 

7.7.5 Results: All jerk metrics spuriously correlated to speed 

All four jerk metrics were found to exhibit weak dependence ρ < 0.7 to average 

movement speed in the case of healthy subjects, mean velocity (expressed as a 

proportion of total range of motion per unit time) was faster than the stroke patients, 

although not significantly so at the P < 0.05 level (Table 29). Strong correlations, 

however, were found between stroke patient jerk scores and average velocity: ρ > 0.8.  

 

 

Table 29: Correlation of jerk metrics to average velocity 

 Avg. Vel. 
(°/s) 

MAPR 
@ 10% IAJ AJ JM NARJ 

Healthy 76.0 ± 19.8 0.09 ± 0.08 0.05 0.40 0.25 0.46 
Stroke 66.6 ± 49.1 0.26 ± 0.19 0.84 0.85 0.91 0.90 
Significance ≈ ≈  
Avg. Vel = Average velocity, MAPR = Mean arrest period ratio, IAJ = Integrated 
average jerk, AJ = Average jerk, JM = Jerk metric, NARJ = Normalized average 
rectified jerk. All values (µ ± σ). 
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By the reasoning outlined in Section 7.6.2, it is suggested that this strong 

dependence on movement speed is the result of a significant increase in the stall 

content of stroke patients’ movements (MAPRstroke ≈ 3 × MAPRhealthy, P < 0.05). 

7.7.6 Results: Jerk metrics do not discriminate between cohorts 

Though all jerk metrics reported greater dyscoordination in stroke patients 

versus healthy subjects, these impairments were not found to be significant at the P < 

0.05 level using the Wilcoxon rank-sum test (Table 30). This test was used because of 

the non-normality of the datasets, owing to the small subject pool (5 and 15 subjects, 

respectively), and demonstrated in the Kolmogorov-Smirnov test (failure to generate 

KS score <0.05). 

 

 

Table 30: Metrical results in cohort discrimination task 

 IAJ 
(×10-3) 

AJ 
(×10-4) 

JM 
(deg/s2 ×10-3) NARJ 

Healthy 12.5 ± 9.1 0.9 ± 0.7 9.5 ± 7.2 15.2 ± 16.7 
Stroke 33.8 ± 32.4 4.1 ± 4.7 11.2 ± 4.1 40.2 ± 21.5 
Significance ≈ ≈ ≈ ≈ 
IAJ = Integrated average jerk, AJ = Average jerk, JM = Jerk metric, NARJ = 
Normalized average rectified jerk. All values (µ ± σ). 

 

 

This lack of significance in jerk metric discrimination can be attributed to the 

high variability of these metrics within cohorts, where the variability ratio µ
!  is 

typically close to 1, and larger than the difference between group means µstroke-µnormal. 

It remains unclear as to why there is such variability among subjects.  
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7.8 Summary 
 

Smoothness is generally defined as the lack of accelerative transients in the 

trajectory record, and is quantified by any number of different proficiency metrics. 

However jerk-based metrics, despite their wide use in biomechanical applications, are 

prone to counter-intuitive, and occasionally contradictory behavior. It is shown here 

that this can be attributed to jerk’s incompatibility with metrical normalization to 

movement time, average velocity, or peak speed. Further, it has been demonstrated 

both as an exercise, and using SJT data recorded from human subjects, that natural 

events related to spastic movement may artificially reduce jerk metrics, decreasing its 

discriminative power among obviously impaired cohorts. These inherent limitations 

on jerk-based metrics suggest the need for a smoothness measure less labile to basic 

movement variables.  
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8 TRAJECTORY DOMAIN TRANSFORMATION 

8.1 Introduction 
 

The previous chapter critically reviewed raters of motor performance, 

particularly those associated with movement smoothness. In this Chapter, the artifact 

associated with time-domain analysis of kinematic data is addressed via a 

transformation of temporal data into the angular domain. Two explicit outcomes of 

this work are expected: 1) a more accurate rendering of motor performance resulting 

from the obviation of a potentially noisy differentiation, and 2) a transformation of 

raw kinematic data into a domain where the independent variable is more relevant to 

kinesiological analysis.  

8.2 Rater error introduced in discrete differentiation 
 

In the analysis of trajectory data for information related to the essential motor 

behavior, noise-related artifact can occur at two junctures: systematic noise associated 

with the manifest end-effector activity, typically sourced in imperfect execution of the 

motor intention, and signal noise related to data processing post-hoc. Perhaps the most 

profound source of processing-induced noise is that of differentiation: many 

performance metrics predicate on this transformation of temporal data, despite the 

inherent risk of contamination. 

The differentiation of discrete biomechanical data is typically performed via the 

finite difference method, based on the Taylor series truncated at various orders of the 

expansion 

 

 ( )
( ) ( )

( )!
!

!
"+

#+
=

xfxf
xf '   



  

 

132 

 

where Θ(δ) indicates that the error is of the order δ (step size) (Hurley 1981). Digital 

acquisition of continuous data at a sampling rate ν = δ-1 presents a trade-off between 

derivative approximation error (scaling with δ), and representational error (introduced 

in the rounding of acquired data). The filtering of derivative-associated noise out of 

the differentiated data, presents a new optimization problem of filter design, for which 

the most parsimonious solution is simply successive (after each iteration of the 

derivative) application of a low-pass filter with characteristics identical to those used 

to smooth the raw positional data (Semmlow 2004). Alternative differentiation 

methods, such as spline-polynomial differentiation (Hsiang, Chang et al. 1999), and 

discrete-time observers (Dabroom and Khalil 1999), eliminate artefact associated with 

the finite difference, but pose separate and unique challenges of optimization. The 

introduction of noise into the differentiated data competes directly with the analysis of 

velocity and acceleration waveforms for the determination of movement smoothness. 

8.3 Performance rater dependence on time is ill-posed 

8.3.1 Motor performance: time independence 

Parameter space both between and within subjects can be highly variable, 

confounding the analysis of biomechanical performance across the span of the task. In 

autonomous pointing movements, both average end-effector velocity and the shape of 

the velocity profile exhibit considerable variation (Levin 1996; Osu, Kamimura et al. 

2004); self-pacing of non-targeting rhythmic reaching tasks varies naturally in a way 

that is partly determined by demography (age, gender, and relative fitness), 

physiologic state (rest, fatigued, stressed), and cognitive situation (neurological 

impairment, task attention, and presence and type of feedback), among other variables. 

In free reaching tasks, time is not necessarily a meaningful performance parameter.  
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8.3.2 Motor performance: angular dependence 

Instantaneous joint angle θ is determined by the sum of torques generated at the 

flexor and extensor muscles:  
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where I is the moment of inertia, B is the coefficient of viscosity, and T is the net 

muscle torque (Lemay and Crago 1996). Torque is primarily a function of stiffness K 

 

 iiii
bKmT += ,  

 

Where i = [ f, e ]. K is a 1st-order LDE (linear in activation a) with dependence on 

motor neuron pool input u : 

 

 ( )L),(),( tutafK = .  

 

which is scaled by stretch reflex uifd, a function with dependence on muscle length L, 

velocity 
i
L& , and several physiologic constants 

 

 ( )L& ,, iiifd LLfu = ,  

 

L is reflexively determined by the angle spanned by the muscle across the joint, 

regulating the stretch reflex in a step-wise or zone-like fashion (Lemay and Crago 

1996). 
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8.3.3 Increased positional dependence in hemiplegia 

Smooth pointing movements are the result of precise execution of a series of 

activations of the antagonistic muscle pairs across the elbow joint. The stretch reflex 

(SR) is a mechanoreceptor-driven response to muscle lengthening, and serves to 

stabilize the joint by restoring antagonistic pairs to an equilibrium position (Voight 

and Cook 2001). In voluntary movement, this reflex activation is suppressed by 

reciprocal inhibition of the antagonist, accommodating an unopposed volitional 

contraction of the antagonist muscle by regulation of the SR. Deregulation of the 

central commands that coordinate these activations is a primary symptom of 

neurologic dysfunction: postural instability in hemiparetic individuals may result from 

either poor coordination of antagonist SR thresholds ─or a lack of detectable 

activational activity altogether─ within certain loci of the joint’s range of motion 

(Levin and Dimov 1997; Levin, Selles et al. 2000).  

8.4 Support for performance rater based on joint angle 

8.4.1 Isogony Principle & the Two-Thirds Power Law  

Appropriately constrained single degree-of-freedom may adhere to functional 

relationships describing force and kinematical observables in terms of task 

requirements. For instance, error in time to peak grasp force is affected by the time 

required to reach peak force, and peak force error scales with peak force magnitude 

(Schmidt’s Law, (Schmidt, Zelaznik et al. 1979; Hancock and Newell 1985; van 

Galen and de Jong 1995)). Furthermore, average movement time for rhythmic 

reaching between fixed targets increases with the distance between targets, and  

decrease with the target error tolerance (Fitts’ Law (Fitts 1954; Fitts and Peterson 

1964)).  
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 Velocimetric parameters also exhibit systematic response to geometrical 

considerations. In multi-dimensional upper-limb tasks, end-effector velocity has been 

shown to scale with trajectory curvature (Binet and Courtier 1893; Derwort 1938); for 

tasks such as handwriting and figure drawing, the comprehensive quantification of 

this relationship came in the form of the Two-Thirds Power Law (Viviani and 

Terzuolo 1982; Lacquaniti, Terzuolo et al. 1983): 

 

 

(Theorem 2)  

For a segment of motion s , trajectory radius of curvature R  
and angular velocity V  conform to a power-law relationship 
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where K is an arbitrary constant (velocity gain factor), and 
! is an empirical constant on unity scale. 

3

2  Power Law. 

 

 

 This relationship is not necessarily conserved over the entire movement, but 

within sequential movement aspects. For instance, in the drawing of a cursive (and 

thus highly curved) letter, ligatures with similar curvatures will be traced with a 

similar angular velocity, regardless of character identity or size (Viviani and Terzuolo 

1982; Lacquaniti, Terzuolo et al. 1983; Wann, Nimmo-Smith et al. 1988). Thus, for 

segmented motion, the isogony principle relates movement speed to angular velocity 

for a given curvature: 

 

(Definition 6)  Within a “unit of action,” equal angles are transcribed in 
similar times, even though arc length may vary. Isogony. 
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Though the isogony principle was originally demonstrated in higher-

dimensional movements, its validity has been extended to a wider class of movements, 

including planar movements where the trajectory has no points of inflection (i.e. a 

single movement segment) (Viviani and Schneider 1991) and movements under 

mechanical constraint (Viviani and Terzuolo 1982). Thus, it is concluded that for 

motion constrained to a constant arc, in a device such the MAST, that typical SJTs 

should appear approximately linear, i.e. as having essentially constant angular 

velocity.  

8.4.2 Essential Trajectories suggest basic SJT themes 

The isogony principle, and its demonstration in a wide variety of movement 

protocols, including paradigms similar to those used here, suggests an approximately 

linear SJT. However, a trajectory curve-matching analysis revealed non-linear 

Essential Trajectories in many instances (Section 5.5.1). Whereas it is presumed that 

the protocol was strictly observed, or only sparsely broken, in a random and randomly 

distributed way, this regional linearity serves as a sturdy axiom by which to base a 

robust criterion for the assessment of motor smoothness. 

8.4.3 Fuzzy isogony: regionally straight trajectory curvature 

Symmetric and approximately linear angular trajectories of single degree-of-

freedom motions are observed in a variety of protocols, and are predicted by empirical 

law. That mechanical constraint of the forearm into a wide, evenly arced hand path is 

robust to the 2/3 Power Law validates the assertion of constant angular velocity in the 

present experiment of self-paced elbow articulation with forearm and upper-arm 

secured. Indeed, single-joint movements committed by neurologically intact humans 
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tend to conform to the smoothest possible trajectory (Nelson 1983), which is typically 

abstracted as a linear or sigmoidal ramp curve (Section 2.1.1). 

Within the generalization of global isogony in human single-joint motion 

(Hypothesis 3), is the implicit linear relation of adjacent time-points in a digitized 

signal. Discrete functions have the property that in the limit as two samples are 

chosen an arbitrary number of cycles h from one another, the data spanning these two 

points assumes a linear shape: 
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Thus, it is an explicit consequence of data acquisition that in the low-limit of 

data analysis (choosing an arbitrarily small segment of data), the curve trends linearly. 

In consideration of this basic tenet of differential calculus, and of the empirical 

evidence of gently curved global trajectory shapes in single-joint motion, the regional 

adherence to an approximately linear trajectory is assumed:  

 

(Assumption 1)  

Within arbitrarily defined segments of a single-joint 
trajectory, the trace should demonstrate an 
approximately linear shape.  
 

1. Behavior of sampled data in low-limit 
2. Tendency towards smoothness  
3. 2/3 Power Law 

—Valid in present protocol 
—Predicts constant angular velocity 

Regional 
trajectory 
linearity. 
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8.5 Spatial resolution of movement smoothness 

8.5.1 Approach overview 

Rendering a scalar parameter as a dynamic variable across the domain space 

requires sensitive and specific feature detection, as well as easily interpretable and 

accurate representation. In the graduation from a scalar to a vector entity, several 

operations must be performed, each one representing a set of sequential arithmetic 

steps of which slight alterations may drastically alter the resultant spatial smoothness 

map. These operations are as follows 

 

Table 31: Smoothness map operations 
Operation Description Decision 

Data variable: time t, vs. angle θ 

Segmentation rate Segmentation 
Division of trajectory 
profile into adjacent 
regional partitions 

Segmentation limit 

Evaluation 
Imposition of an ideal 
straight-line trajectory 

against observed motion 

0-, 1-, or 2 best-fit “anchor 
points” 

Domain averaging vs. point-
wise attribution Assignment 

Accurate, high-resolution 
attribution of 

performance deficit to 
loci of the spatial map 

Nearest-neighbor vs. 
correspondence 

Measurement Comparison to ideal 
straight-line trajectory 

RMS error vs. correlation vs. 
other 

Scaling Normalization of 
segment errors 

Normalization within segments, 
within iterations, or none at all 

 

 

Broadly, the generation of a spatial rendering of motor performance from the 1-

D movement record will involve the assessment of movement smoothness according 

to the minimization of transient accelerations (Theorem 1) by the segmentation of the 

trajectory record into progressively smaller workspace sub-regions, and tabulating 

regional error to a straight-line trajectory.  
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8.5.2 Even, n-wise segmentation along time 

Locating spontaneous departures from a constant angular velocity within the 

spatiotemporal trajectory record requires division of a single action unit (Definition 6) 

into segments of motion spanning smaller regions of the workspace. In a 1-D record, 

partitions within two domains are possible: the independent (time) and dependent 

(angle) data, each with its own relative merit as a segmentation variable.  

Whereas single-joint trajectories are typically found to have approximately 

symmetric bell-shaped velocity profiles (Hogan 1984), partitions along θ-space would 

allow the possibility of large variations in partition sample density. For example, a 

sigmoidal trajectory approximated by the cumulative density function  
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exhibits gentle acceleration and deceleration at the motion onset and cessation, 

respectively. The number of points in a given partition Np are inversely proportional 

to average velocity over some interval α ≤ t ≤ β, and directly proportional to constant 

sampling rate ν 
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manifesting a concave histogram of distribution points per segment across the range 

of motion (Figure 23). Untoward consequences of this non-uniform regional 

distribution of points include the skewing of RMS-based error calculations, and the 

possibility of partitioning regions for which there are an insufficient number of 
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samples on which to base a comparison to a straight-line trajectory (see discussion of 

Segmentation Limit, below). By contrast, constructing a partition function within the 

time domain, by definition of a constant sampling rate, yields an identical number of 

samples (to within rounding error) in each partition 
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yielding an approximately flat histogram (Figure 23). Whereas it is often desirable to 

maintain equivalent partition sample sizes (for the reason that non-correlation-based 

raters might be used, c.f. Section 4.3.3), division in time is preferable to segmentation 

within angular space.  

The segmentation rate, the method by which the movement record is partitioned 

along the chosen variable, poses an additional consideration, roughly equating to a 

parameter of sensitivity. A tradeoff exists between segmentation rate and the relative 

scaling of map features, according to the compounding of error found during each 

segmentation iteration. For instance, segmentation at a slow rate may insufficiently 

 
 
 
 

 
 
Figure 23 Partition Equivalence: Segmentation according to time guarantees 
approximately equal number of samples per partition.  
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resolve small and local features in the trajectory profile, by over-weighting the global 

non-linearities in curvature (Section 5.5); segmentation at a fast rate may exaggerate 

trajectory minutiae, essentially decreasing the signal-to-noise ratio (SNR). 

Locations of unsmooth features in the movement profile are determined by 

comparing the trajectory curve against a series of temporally adjacent straight lines. 

This approach is similar to cell tracking assays in which the squared displacement 

vector over progressively larger time intervals is averaged over all interval sizes, 

yielding parameters that ultimately result in the random cell migration coefficient µ24 

(Shreiber, Barocas et al. 2003). In this way, the present method will observe the 

convention of one-at-a-time interval adjustment, comparing the trajectory trace to one, 

two, three intervals, and so on.  

8.5.3 Hard lower-limit to segmentation 

 A segmentation limit must also be defined. This limit recapitulates the 

resolution-noise tradeoff (Section 2.2.3): how many iterations can be performed so 

that the system is sufficiently rendered (with respect to locality and severity) without 

introducing artefact (distorting the performance map with amplified bit noise)? A 

terminal case exists wherein the number of elements in any partition interval | P | is 

less than 2, the minimum number of points necessary to define a line25. However, by 

this logic, | P | = 2 is trivially “smooth” (as the two points defining the line will 

naturally coincide with the line: the departure is nil), and the number of data points in 

a non-trivial partition is | P | ≥ 3. 

                                                
24 Though the present method was inspired by cell migration analysis, the resemblance beyond the 
initial construct of serial straight-line approximants is minimal: µ is a scalar determined by overlapping 
time intervals; spatial mapping of accelerative transients requires a non-intersecting comparison 
substrates (the straight lines) for determination of the precise locality in space of spontaneous 
accelerations.  
25 Unless otherwise stated, vertical brackets | × | will denote cardinality, i.e. the number of elements in a 
set. 
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 In the segmentation of a discrete time vector, however, rounding of the 

partitioned indices is necessary in order to avoid non-integer partition bounds (e.g. a 

9-point time vector cut into two segments would yield “half” vectors of 4- and 5-

points, or 5- and 4-points, but not 4-and-a-half and 4-and-a-half points). In this way, it 

is expected that many segmentations in the “low-limit” will generate some 

combination of 2- and 3-point vectors (e.g. an 8-point vector segmented into three 

partitions of | P1 | = 2, | P2 | = 2, | P1 | = 3. This presents an ill-posed segmentation, as 

zero error will be attributed to trivial partitions, which will give the appearance of 

comparatively smooth (indeed, perfectly smooth) movement, when the result is 

merely a rounding error artefact. Thus, a stopping rule is imposed where in no 

segmentation iteration j can contain a single trivial partition:  

 

 lim
1 Jj <! , !">#$ + %&& %% 1'

1lim
J Ν j< . (Equation 25) 

 

where { }
j
kT 1!"=#  is the set of partition boundaries (time units, up to total time T), 

!k Ν 1+! j
26. Note that adjacent time points need differ by greater than one (and not 

two) because elements of !  are vector indices, so index difference denotes degrees of 

freedom (i.e. number of elements -1); we require a minimum of three elements, so any 

difference of 2 or greater (i.e. >1) is permitted.  

                                                
26 For clarity, we define the following set theory notations: ! : subset; ! : element of; { }!  set 
containing ! . Number theory notation: Ν denotes the set of natural numbers (integers). Two logical 
notations: '! : such that; ! universal quantification “for all.” 
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Figure 24 Approximant construction: Three linear approximations to the data: 
scatter fit, linear fit from first data point, linear fit to segment ends.  

8.5.4 Linear approximants spanning observed angles 

In designing a linear fit-curve for a given partition, a criterion for trajectory 

approximation must be decided. In statistical applications, a first-order polynomial 

trend line is typically fit to scatter data in such a way that the sum-of-squares 

differences is minimized (Figure 24a). One argument against this “blind” fitting 

method is that the assumption of a normally distributed noise about a treatment trend 

is not necessarily applicable: this noise is the object of measurement, not the 

assumption, and a scatter fit may have the least physiological relevance. 

By “anchoring” the linear trend line to the initial segment data point, a more 

intuitive assessment of movement smoothness is made: starting from an arbitrary 

sample within the set of observed angles, determine the adherence to the best straight-

line path described by all | Pk | subsequent data (Figure 24b). This is implemented by 

defining a circle with center at the first data point, and radius determined by the 

distance between segment ends. At a user-determined resolution, Cartesian 
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coordinates for this polar data can be used to construct a set of | Pk |-long rays; the 

minimum error to these lines would represent segment smoothness. Alternatively, two 

“anchor points” define a line spanning the precise segment range, which is equally 

meaningful from a motor control perspective (adding the stipulation “and ending at 

angle θ + Δθ” to the previous case “starting from an arbitrary sample within the 

observed angles”). The two-anchor method was selected based on its equivalent 

appeal to physiologic relevance (as opposed to no anchors) and its computational 

efficiency (over one anchor, requiring a single line of code).  

Thus, on the thj  iteration, the time sample domain 1 ≤ i ≤T will be partitioned 

into j even intervals of motion described by τ, the set of j + 1 boundary time points, 

and their corresponding angles of record )()( t!" #$ . The kth segment of piecewise 

partition function P is thus 
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where 
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 The result is then a single linear approximant spanning the local range of joint 

angles, matching to the first- and last data points defining the segment.  
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Figure 25 Three error assignment methods: domain-wide attribution, and point-
wise error assignment (direct, or nearest-neighbor, shown for sub-region inset). 

8.5.5 Distribution of error across segment domain 

Comparison of each trajectory partition to a linear approximant will generate a 

set of errors, either for the entire segment (by methods described in Table 31) or for 

each data sample. These errors will be collected along the angular domain for 

representation as a spatial error function S(θ) function. Figure 25a demonstrates a 

domain-wide error, E3 > E2 > E1, according to some error measurement method; 

Figure 25b-c depicts a specific assignment of deviation between a single sample 

(either on the approximant, or from the data record) to its corresponding locus on the 

opposite curve. This operation, likely a squared-difference, can be performed two 

different ways: the error can be measured as a angular distance at a given time (direct 

assignment), or the minimum distance (the vector normal) of each time sample of the 

observed motion to the linear approximant. 
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Figure 26 Shortcomings of point-wise assignment: domain shift and non-surjective 
transformations.  

The principal utility for point-wise error assignment is in the limit of small 

deviations from the approximants, where high precision is desirable, and deviations 

are on the order of the inter-model sample distances. For partitions with moderate 

departure from the linear approximation, point-wise error assignment may cause 

misrepresentation in the S(θ) trace. In the case of direct assignment, the angular range 

over which a trajectory feature is observed may undergo transformation (expansion or 

compression, proximal or distal shift), if assigned the matching angular range within 

the model trace. Assignment to the θ-domain according to the observed angles 

eliminates the presumption of monotonicity, resulting in ambiguity in the error 

assignment27 (Figure 26). 

 Nearest-neighbor assignment runs additional risk of non-surjectivity in 

“poorly-behaved” trajectories. Non-monotonicities, in particular, present occasion for 

two data points to attribute to a single locus on the model curve, creating a quandary 

                                                
27 In “doubling-back” to an angular range previously considered, the error vector ( )!E  for a given 
iteration will exhibit considerable “jumpiness” for a smooth performance (low error from the first 
transcription) overlaid with sparse large peaks of high error associated with the jerky feature. 
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of error assignment: should the errors be over-written, averaged, or treated as two 

sides of a triangle (rooting the sum of their squares?). Of course, with a model and 

assignment vector, each the same number of samples as the recorded signal, each 

double-assignment generates an empty-space in the assignment vector (Figure 26).

 Though trans-partition error assignment loses considerable resolution, 

particularly in the early limit of large partitions, segmentation rate (Section 8.5.2) and 

normalization method (Section 8.5.7) can be chosen in such a way that this effect is 

minimized. After some number of iterations, resolution will be sufficient to 

discriminate between arbitrarily fine detail in the trajectory record; scale-factor 

(normalization) can be determined on a case-by-case basis. The flexibility of these 

two design parameters considerably outweigh the potential for skewed or non-

surjective error vector dysfunctionality, thus meriting domain-wide error assignment.  

8.5.6 Correlation-based measurement of approximant error  

Metrics describing how two samples differ from one another by assessing the 

departure of one dataset x  from a substrate of comparison a  in a sum-of-squares way 

are expressed according to the general formulation  
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where γ and κ are constants, and a, b, and c are either constants or comparison vectors 

(Table 32) 
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Table 32: Parameterization of domain transform 
!  a  b  c  !  Metric 
N  

i
y  

i
x  i

y  
2

1  Root-Mean Square Error RMSE  

T  x  
i
x  x  

2

1  Standard Deviation 
X

!  

T  x  
i
x  x  1 Variance 2

X
!  

T  x  
i
y  y  1 Covariance 2

XY
!  

YX
T !! ""  x  

i
y  y  1 Correlation Coefficient 

XY
!  

N  = Number of time points, T  = Total time (N  divided by the sampling 

rate),  = Standard deviation of the trace.  

Though segmentation within the time domain results in approximately equal 

partition cardinality (Section 8.5.2), segment distribution equivalence only normalizes 

error results within iterations. Between iterations, however, error scaling will increase 

rapidly with the span of the segments, suggesting the need for attenuation of the 

covariance. Thus, the Pearson product-moment correlation coefficient was selected as 

the performance metric for each segment  
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where k is as defined in (Equation 27). Whereas strong correlation to a straight-line 

approximant indicates a smooth performance, we define movement error E for the kth 

motion segment as the opposite: 
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Ek can range from 0 (perfectly smooth) to 1 (random motion) according to the unity 

scale of ρ. 
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8.5.7 Correlational error requires iterated normalization  

 For non-unitary metrics such as RMS- and variance-based metrics, 

normalization may be necessary to prevent large-scale bias of early iterations (low j), 

where partition angular range is large, and within-waveform variance is not accounted 

for. For correlation-based metrics, local details in the trajectory trace are less likely to 

be obscured from this scale disparity, however minor processing of the error vectors 

may diminish artefactual amplification of early iterations in the presence of global 

curvatures (Chapters 3 & 4).  

 Though iterative error vector S(θ) can in principle range from 0 to 1, this is not 

necessarily so, suggesting that neither bound is a guaranteed outcome, nor shall vector 

output necessarily exhibit large variation over the angular domain. Creating a 

template array A(θ), a j × γ array where γ = T · η and η is a user-defined spatial 

resolution for visualization purposes28, the jth row entry will be a normalized E(θ) 

 

 ( )
( )
( )( )!

!
!

E

E
EAj

max
== "

# , (Equation 31) 

 

where E*(θ): indicates a normalized error vector. Writing in partition terms for the jth 

iteration 
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ξ has units of time or sample number. Subtraction of vector minimum was considered 

prior to normalization, but was considered to artefactually inflate relative feature size. 

                                                
28 1512 !

= s
T

"  is sufficient for approximately 0.25° resolution in for a motion of range of motion  Δθ = 
90°. 
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Figure 28 Spatial error vector generation: stacking, summing of A1→6 (θ); 
histogram representation of S(θ) (the sum is not subtracted or normalized). 
 

     

     
 
Figure 27 Error vector generation: The first six iterations of partition and 
projection of E(θ), bar graph rotated to rise in the reverse-time dimension.  

For example, if j = 2 error vector E(θ) will have two components, E1 = α and E2 = β. 

If α – β ≠ 1, subtracting the minimum (α, if α < β) will artificially inflate the inter-

segmental difference; this difference amplification will be large in the limit as α 

approaches β. 
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8.6 Putting it all together: Creation of the spatial map 
 
 For each segmentation iteration, a vector E*(θ) is generated, consisting of j 

partitions, each with an error Ek for 1 ≤ k ≤ j, determined by the correlation ρ(θk, Pk) 

of the kth linear approximant to its corresponding data segment. These errors are then 

distributed over the 
j

T !"  samples in error template array A(θ), in the jth row (Figure 27). 

Summing over all iterations, a spatial error distribution vector S(θ) is defined as the 

sum of all errors E found for a given angle θ, as a function of deviation from a set of 

linear approximants P to some arbitrary limit resolution 
lim
J

T  (Figure 28) 
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 In all future use, unless otherwise stated, S(θ) will be discussed in terms of its 

min-subtracted, and normalized formulation: 
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 As shorthand, this normalization will be understood, but not acknowledged: 

S*(θ)→ S(θ).  

 Depiction of a trajectory’s trace features presents the opportunity for creativity 

in the legibility and interpretability of the performance information. Plotting this 

vector in the number plane (error as a function of elbow flexion angle), though 

amenable to traditional plotting techniques and expeditious for single-joint (i.e. 1 

DOF) motion, is not explicitly fidelious to motions of greater freedom. In order to 

enhance informational accessibility, spatial error vectors were converted to a single-
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Figure 29 Spatial error heat map generation: side-by-side comparison of flexion 
trace θ(t), spatial error generated from unsmooth trace features S(θ), and spatial 
error vector as a heat map.  
 

DOF heat map, and plotted as a band of colored tiles along the x-, y-, and z-

coordinates comprising the hand’s path through space. Heat map colors were chosen 

so that black signifying the “null” smoothness, S(θ) ≈ 0, and red the maximum error 

S(θ) ≈ 1, suggesting a “red light warning” of unsmooth performance (Figure 29).  

 Transverse planar motion, maintained by MAST constraint, is reflected in the 

circular arc segment of the resultant heat maps.  

 

8.7 Summary 
 

Most measures of motor proficiency evaluate performance over time. Though 

this is a natural consequence of the nature of biomechanical data and its observation 

(the movement through a sequence of loci over time), it is not necessarily a 

meaningful domain by which to ascertain meaningful parameters related to motor 

function. Moreover, that many of these metrics require differentiation of temporal 

data, a notoriously noisy data transformation, these raters are not only ill-posed, but 

prone to artifact. Here, a pseudo-wavelet kinematical data transformation was 
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proposed, whereby the movement smoothness was assessed at progressively finer 

spatial resolution, against the criterion of locally constant angular velocity.  

This pseudo-wavelet transform quantifies motor performance via a simple, 

well-established principle of motor behavior, while simultaneously obviating a 

potentially error-inducing differentiation, and expressing motor impairment as a 

function of joint angle, not time.  
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9 MAPPING ACCELERATIVE TRANSIENCE 

9.1 Introduction 
 

In Chapter 8, a pseudo-wavelet transform was proposed that determined 

smoothness in single-joint motion as adherence to a single simple criterion: constant 

angular velocity. It was suggested that in addition to rendering motor performance as 

a function of joint angle, as opposed to time, by obviating a potentially noisy 

differentiation of the SJT, the resultant spatial maps are robust to many movement 

conditions. In this chapter, this new method is compared against existing measures 

and the behavior of this novel wavelet transform is rigorously evaluated.  

Furthermore, fundamentally limitations of this method are answered by the 

introduction of scalar parameters expressing motor performance in a way that is easily 

quantified or subject to traditional statistical analysis: the maps are vectors, not scalars. 

Additionally, a formal validation of the accuracy of this transform was performed on a 

set of SJTs performed by both individuals with compromised motor control due to 

chronic stroke, and healthy controls.  

9.2 Experimental hypotheses 
 

Here, the spatial acceleration vectors proposed in Chapter 8 are validated as a 

means of conveying information related to the performance of single-joint motion in 

all subjects. 

 

 

Vectorial rendering of the single-joint trajectory, 
following transformation into the domain of linear 
approximant error as a function of angle, accurately 
reports movement proficiency in both healthy and 
impaired cohorts. 

(Hypothesis 11) 
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As the primary index of neuromotor health, movement smoothness has been 

quantified by myriad raters in both healthy persons, and in persons recovering from 

neurologic trauma, e.g. stroke (Rohrer, Fasoli et al. 2002; Kahn, Zygman et al. 2006). 

However, despite their evaluation of salient features (ridges, curve behavior) of 

fundamentally relevant kinematical substrates (angular velocity, acceleration, etc.), 

standard smoothness metrics do not always detect differences in trajectories generated 

by drastically disparate subject cohorts. Average jerk, for instance, was not 

significantly different for cerebellopathy patients performing simple pointing tasks 

(Goldvasser, McGibbon et al. 2001), and was found to increase during recovery from 

hemiparetic stroke (Rohrer, Fasoli et al. 2002). Thus, it is important to show that any 

new metric derived to report trajectory smoothness was able to resolve significant 

performance differences of an obviously impaired cohort. 

 

 

Scalar smoothness metrics derived from the angular-
domain trajectory transformation can discriminate 
healthy from impaired condition as well as standard 
metrics. 

(Hypothesis 12) 

 

The pseudo-wavelet transform permits precise location of unsmooth behaviors 

throughout the elbow workspace. It is therefore possible to assess the variability of 

accelerative behavior throughout the range of motion in both impaired and intact 

subjects.  

 

 
Measures derived from the angular domain are 
impervious to spurious co-dependence of angular 
velocity.  

(Hypothesis 13) 

 

 Thus, it is tested 1) whether the novel pseudo-wavelet transform proposed here 

can identify the difference between healthy and impaired subjects, and 2) the 
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transformation out of the temporal domain is necessary to avoid spurious correlation 

to velocimetric parameters. A validation of this transform precedes the formal 

hypothesis testing. 

9.3 Experimental methods 

9.3.1 Subjects and protocol 

Ten healthy individuals with no known neurological impairments voluntarily 

participated in this study, and were observed in a single session typically lasting less 

than 30 minutes. Additionally, a cohort of five outpatient clients of the JFK-Johnson 

Rehabilitation Institute (Edison, NJ) were recruited based on the inclusion criterion  

described in Section 1.2.3.2, also observed in a single session (Table 17).  After a 

brief orientation period and adequate warm-up, subjects were seated in the MAST 

with their right arm supported against gravity, and instructed to flex and extend at a 

comfortable (self-selected) pace, and to maximize their smoothness. Stroke subjects 

were tested on their affected hand. A single day’s data was collected. 

9.3.2 Transform method validation 

9.3.2.1 Determining the sensitivity to various curvatures 

The proposed spatial acceleration transform identifies regions of non-linearity. 

However, it was found by the Essential Trajectory method (Chapter 5) that some SJTs 

adopt a regional curvature. In this way, it is incumbent to establish that the gentle 

regional curvatures observed do not overshadow the more transient accelerations 

constituting instances of non-smooth movement by iterated maximization of the 

regional error. That is to say, whereas some SJTs of ostensibly ideal performance are 

gently curved, it is imperative that these low-frequency curvatures generate local error 
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of comparatively trivial order in the presence of spontaneous and non-smooth 

behaviors.  

9.3.2.2 Spatial acceleration versus raw acceleration 

Prior to any interpretation of the transformed kinematic data, its accuracy and 

interpretability as a performance measure was assessed. Several SJT traces were 

selected at random for a side-by-side peak comparison between spatial acceleration 

vector S(θ) and the raw acceleration vector ( )t!&& . Here, peaks were extracted manually 

from each trace, and their co-alignment determined manually. More elaborate 

assessments were foregone for the reason that it was not certain that the number of 

peaks in the respective profiles would equate. In the case where there were additional 

peaks in one trace, comparative metrics, e.g. the correlation of local maxima in terms 

of joint angle between the two traces, would require complex data conditioning, and 

would thus be beyond the scope of this analysis. Thus, all results presented here 

involve the direct observation of manually conditioned data.  

9.3.3 Data treatment and analysis 

9.3.3.1 Signal processing 

 Data traces were filtered with a low-pass Butterworth’s filter (4 Hz cutoff), 

and divided into flexion and extension motions according to a thresholded local 

minimum; extension curves were discarded. Flexion traces were then subjected to a 

series of assessments of performance smoothness.  

9.3.3.2 Standard smoothness raters: Average jerk and velocity peaks 

 Filtered angular data θ(t) was evaluated for the average jerk in the trajectory 

profile, as well as the number of peaks in the angular velocity trace. Time-averaged 
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jerk was determined by a trapezoidal integration of the triply differentiated angular 

position trace (Hogan 1984; Feng and Mak 1997; Todorov and Jordan 1998) 
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 The number of peaks in the velocity trace were counted over the singularly 

differentiate position trace (Rohrer, Fasoli et al. 2002) 
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 Signals were filtered with identical filter characteristics after each successive 

differentiation (Feng and Mak 1997).  

9.3.3.3 Scalar metrics of smoothness as a function of angle 

In consideration of the two established metrics described above (average jerk 

and the number of velocity peaks), and in the interest of devising metrics with 

compatibility to existing scalars, two similar operations are proposed presently. In 

keeping with the theme of red as a heat-map index of poor performance, we define 

R as the “redness” or total area under the regional performance error curve 
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R  thus has units of normalized error per degree of flexion. Additionally, we will 

count the number of curves 
S
N  in the ( )!S  error-by-angle plot 
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yielding integer values.  

9.3.3.4 Trace feature analysis: Trace peak analysis 

In addition to the area-under-the-curve, and the number of trace peaks in S(θ), 

an analysis of the distribution of accelerative behaviors was performed. In order to 

determine the proportional homogeneity of transients in the motion profile, i.e. 

whether a few large ridges dominated the S(θ) trace, or whether many small features 

were observed, the ratio of peak error to average error  
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was calculated. This yields a simple index of the relative weighting of trace peaks, 

analogous to a measure power-concentration. More complete identification of all trace 

peaks, for the purpose of correlation across repetitions would allow for an assessment 

of the variability of spontaneous accelerations across the joint workspace; correlation 

to the corresponding J(t) trace might permit a determination of cause-and-effect to 

further illuminate metrical design. However, these analyses are beyond the scope of 

this preliminary assessment, and will not be performed here.  

9.4 Results: Method validation 

9.4.1 Robustness to global curvature, i.e. curved ETs 

 It has been shown previously (Section 5.5.1) that trajectories often exhibit 

gentle curvatures related to the acceleration or deceleration in single-joint articulation 

tasks. Whereas this is observed in healthy subjects, and is justifiable in the context of 
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normal motor function, smoothness metrics should not be overly-sensitive to these 

benign global trajectory curvatures such that otherwise proficient performances are 

rendered as unsmooth. 

 In order to determine the validity of the spatial error pseudo-wavelet transform 

method, a test of S(θ) was performed for a series of ideal waveforms. Curvature 

detection within the trajectory trace was tested by application of the linear 

approximant method to a single straight line appended with a gentle unimodal 

curvature at 
10

6 T
t
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 A second straight-line perturbation was designed wherein two Gaussian noise 

peaks were added to the linear trajectory at 
10

2 T
t

!=" and 
10

8 T
t

!=" , simulating two 

unsmooth ridges in an otherwise perfect performance: 

 

 ( ) ( )

10

01.001.0

2

22

)(
!!

"""" #+#+#=
t

tktk eDeCtAty $% .  

 

 A composite curve was then created, superimposing two accelerative 

transients onto a gently curve trajectory 

 

 )()()( 213 tyFtyEty !+!= .  

 

 Gentle curvatures in the linear trace were detected with high precision: the 
primary onset of curvature was correctly detected at 60% of the waveform’s time-
course ( 
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Figure 30 Inverse weighting scale: S(θ) detects both gentle global curvatures and 
locally unsmooth activity, preferentially weighting small transients.  
 

Figure 30a). Simulated transient accelerations were also detected with considerable 

accuracy. The 
10

2 T
t

!="  peak, given an amplitude of C = 0.225created a peak in the S(θ) 

from approximately 20% to 20 + 22.5 = 42.5% percent of the normalized “range of 

motion.” Likewise, the second ridge, extending through D = 0.15 percent of the 

workspace generates a smaller peak in the S(θ) trace from approximately 65 to 80% 

of the joint range of motion29. 

                                                
29 The S(θ) peak begins a bit earlier (at approximately 57%), suggesting a more drastic “limb 
regression.” This is thought to be artefact due to the extreme change in velocity at peak onset (non-
monotonicity in the trace), and is considered minor. In the subsequent case, where a deceleration is 
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 Combining these two perturbations (gentle curvature and transient 

accelerations), the large peak associated with the simulated deceleration (Figure 30a) 

is absent from Figure 30c, but works to shift the peaks slightly to the right in the S(θ) 

curve. This is an expected consequence as the transient accelerations now appear at a 

more proximal angle than before (red highlights).  

 Thus, it is concluded that while gentle curvatures in the SJT are veridically 

detected, in the presence of even small transience, the spatial transform correctly 

prioritizes the swift accelerative behaviors, with only minimal skewing of the peaks of 

the S(θ) trace.  

9.4.2 Comparison of spatial acceleration to raw acceleration trace 

To assess spatial error vector S(θ) validity, a side-by-side comparison was 

made between peaks in S(θ), yielding the maximum spatial error by the segmented 

approximation described presently, and angular acceleration !&&  vector, yielding the 

maximally jerky features commensurate with the definition of average jerk (Equation 

35). Single-repetition trajectories were selected from stroke subjects flexing their 

affected limb.  

 Peaks in the spatial error and angular acceleration profiles were found as the 

subset of points whose derivative was sufficiently small 

 

 { } ( ) !"
"

" <#$#=% S
d

d
e

'  (Equation 40) 

 

and 

 

                                                                                                                                       
imposed over the second ridge (muting this abrupt velocity change), the second peak in the S(θ) trace 
appears closer to the expected 65%. 
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where δ is an arbitrarily small quantity. The time points τd corresponding to peaks in 

the acceleration profile were converted to their corresponding angles in the flexion 

trace 
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dd
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and compared against Θd, the angles yielding peaks in S(θ). The average angular 

difference, scaled to percent of range of motion was calculated for all peaks common 

to Θd and Θe (determined manually): 
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, (Equation 42) 

 

where !N  is the number of elements shared between the sets30 

 

 de
N !"!=" .  

 

 Acceleration traces were twice differentiated and filtered once (after both 

differentiations) with an inline smoothing function in the Matlab programming 

environment. Peaks of both profiles, when converted to the angular domain, exhibited 

an accuracy to within 5% of the trajectory range of motion (Figure 31). Though for 

many trajectories, the congruency
de

NN !"!== "#

31  was observed, some 

                                                
30 More set-theoretic notation: ! : intersection (elements common to two sets)  
31 Still more set-theoretic notation: ! : union (all elements among two sets). 
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trajectory traces manifested fewer peaks in ( )!S  (typically 1 missing peak). This 

suggests a soft limit on the sensitivity of the linear approximation method, but can 

probably be answered with adjustment of the protocols determined in the sections 

above (Sections 8.5.2-8.5.7).  

 

 

Here, it is apparent that the correspondence between peaks in the raw 

acceleration profile is mostly well-matched to those of the spatial acceleration profile.  

 
 

 
 

 
 
 
Figure 31 Accuracy and sensitivity of S(θ): two sample trajectories demonstrate 
the accuracy of spatial error vectors to <5% error from peaks in the acceleration 
profile.  
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9.5 Results: Human subjects testing 

9.5.1 Basic performance measures 

As expected, the neurologically intact volunteers enacted large amplitude, 

swift motions, at a difference that showed significantly greater proficiency than the 

stroke subjects (Table 33): 

 

 

Table 33: Parameters of SJTs from 15 Subjects 

Metric Normal 
 (N = 10) 

Stroke 
(N = 5) Comparison 

Movement amplitude !"  88.4 ± 0.7º 84.8 ± 5.5º P < 0.05 

Average angular velocity !&  91.0 ± 3.8º/s 80.0 ± 13.1º/s P < 0.05 
Mean Arrest Period Ratio  0.09 ± 0.08º/s 0.26 ± 0.19º/s P < 0.001 

All values (µ ± σ). 
 

 

Though speed of flexion was not strictly controlled, healthy subjects 

maintained a narrow range of velocities, versus stroke patients whose pace of 

movement was highly variable, and significantly slower (P < 0.05). As with the 

trajectory essence extraction (Chapters 3-5), healthy subjects moved with an average 

velocity of approximately 1 second ( !! &"# ), and that the movement amplitude was 

large, but did not approach the physiological limit of the elbow joint (generally 

presumed to exceed 120º). Thus, the movements observed here are considered to 

represent natural, smooth movement at a comfortable pace, over a comfortable range.  

It is noted that the stroke subjects spent significantly greater time at extremely 

low angular velocity, as detected by MAPR.  
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Figure 32 Sample spontaneous accelerations maps of healthy (Top) and stroke 
subjects (Bottom).  

9.5.2 Integrated metrics: Area under S(θ) and J(t) curves 

Two integrated metrics operated on the acceleration curves extracted from SJT 

data here: the “amount of redness” in the spatial map R, and the integrated average 

jerk J, each normalized to their respective independent variable (range of motion and 

time, respectively).  

 

Table 34: Peak counting of SJTs of 15 subjects 

Metric Normal 
 (N=10) 

Stroke 
(N=5) Comparison 

Area under ( )!S : R  x 10-3 3.1 ± 0.8 8.0 ± 2.9 P < 0.001 
Area under ( )tJ : J  x 10-5 9.0 ± 6.7 40.6 ± 46.9 ≈ 

All values (µ ± σ). 
 

 

 Here, though the mean jerk is very different between cohorts, the variability in 

this metric among stroke subjects is sufficiently large so as to preclude significance at 
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the P < 0.05 level (Wilcoxon rank-sum). The area under the transformed kinematic 

data, however, yielded significantly lower R-values at P < 0.001 (Table 36).  

9.5.3 Ratiometric indices: Peak maximum to trace mean 

 In order to estimate the sensitivity of each data trace (kinematic data in the 

temporal domain, versus transformed data in the angular domain), a peak-to-mean 

ratio of each trace was calculated, comparing the relative importance of the loci of 

greatest spontaneous acceleration to the rest of the trace.  

 

 

Table 35: Ratiometric indices evaluated from SJTs of 15 subjects 

Metric Normal 
 (N=10) 

Stroke 
(N=5) Comparison 

Ratiometry of ( )!S  

( )!"
S

 
12.1 ± 1.9 6.6 ± 0.9 P < 0.001 

Ratiometry of ( )tJ  

( )tJ!  
9.9 ± 7.7 42.8 ± 49.4 ≈ 

All values (µ ± σ). 
 

 

 Here again, though the time-domain metric demonstrated a large difference 

between cohort means, the variability within the stroke cohort prevented significance 

at the P < 0.05 level, whereas the transformed kinematic data provided a robust 

discrimination between groups at the level of P < 0.001 (Table 35). 

9.5.4 Tallied metrics: Peak counting 

Lastly, whereas it has been demonstrated that the number of peaks in the S(θ) 

trace correspond well (both in number, and in location in the θ-domain), with peaks in 

the J(t) trace, it was hypothesized that their ability to distinguish healthy from 

impaired motion would be approximately equivalent.  
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Table 36: Peak counting of SJTs of 15 subjects 

Metric Normal 
 (N=10) 

Stroke 
(N=5) Comparison 

Peak counting of ( )!S : ( )!"
S

 9.3 ± 0.9 9.9 ± 1.6 ≈ 
Peak counting of ( )tJ : ( )tJ!  14.4 ± 4.5 9.9 ± 5.7 ≈ 

All values (µ ± σ). 
  

 

Unlike ratiometry and integration, the failure of peak counting in the jerk-

versus-time trace failed to reach significance at the P < 0.05 level because an apparent 

similitude in group means. Similarly, and as predicted by the preliminary analysis 

above (Section 9.4.2), the number of peaks in the time-domain and angular-domain 

error representations are approximately similar in healthy subjects, and apparently 

identical for stoke subjects.  

9.6 Speed, temporal metrics correlated in stroke cohort 

9.6.1 Prolonged stall periods (high MAPR) skew jerk metrics 

The need to normalize jerk-based metrics, in order to account for differences 

in angular range, movement speed, and experimental parameters between repetitions, 

over several subjects, or across protocols, was discussed in Section 2.2. The clear 

importance of normalization, however, occasionally competes with the preservation 

of jerk trace scale; this is especially true in the maintenance of the area under the 

curve under conditions of prolonged periods of zero-jerk during stalled motion 

(Section 7.6). Here, stroke subjects were observed to move with significantly longer 

periods of stall, as determined by the Mean Arrest Period Ratio (MAPR), measuring 

the percent of time spent below 10% velocity (Table 33). Thus, it is suggested that 

time-domain metrics extracted from subject groups with significantly different 

durations of low-velocity movement, such as features extracted from the jerk trace, 
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may be unreliable for cross-cohort comparison. A quantitative analysis supports this 

argument. 

9.6.2 Spurious correlation: Jerk, speed in high-MAPR cohort 

In order to determine the impact of prolonged stall periods on metrical 

behavior, a simple correlational analysis was performed. It has been established that 

whereas even healthy subjects are capable of performing single-joint tasks at a variety 

of movement speeds, with ostensibly similar performance quality, no measure of 

motor proficiency ought co-vary with movement speed under any circumstance. This, 

in many instances, holds true, but may unjustly presume the minimization of stall 

periods mid-motion.  

 

 

Table 37: Correlation of smoothness metrics to average speed ( )X,!" &  

Metric Domain 
Healthy 

(MAPR =  
0.09 ± 0.08) 

Stroke 
(MAPR =  

0.26 ± 0.19) 
( )tJ  J  = 0.40 J  = 0.85 

Integration 
( )!S  R  = -0.22 R  = 0.01 
( )tJ  ( )tJ!  = 0.38 ( )tJ!  = 0.85 

Ratiometry 
( )!S  ( )!"

S
 =  0.03 ( )!"

S
 = 0.31 

MAPR = Mean arrest period ratio (10%). !  = Ratiometric index (max to mean).  
 

 

Here, it was found that for stroke subjects, jerk-based measures correlate 

strongly, and spuriously, with average velocity. This metrical co-variation is attribute 

to the prevalence of stall (extremely low-velocity) periods in the trace, something not 

observed in healthy subjects jerk traces, or the spatial acceleration vector S(θ). 

Similarly, ratiometric indices evaluated from a trace with a small set of tall peaks, and 
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prolonged floors (zero-jerk regimes associated with movement stall), will be 

artificially reduced, erroneously decreasing jerk. Healthy subjects’ ratiometry has 

relatively few periods of stall behavior, and are therefore less prone to correlation 

with average velocity; S(θ) is again impervious for its transform out of the temporal 

domain (Table 37).  

9.7 Summary  
 

Here, a novel angular-domain transformation is systematically tested for its 

response to a set of simple test cases, and is implemented in the analysis of empirical 

data recorded from both healthy and impaired subjects. Scalar metrics were devised 

for the analysis of vectorial spatial acceleration maps developed in Chapter 8. It was 

shown that the spatial acceleration maps S(θ) deliver an accurate and approximately 

surjective representation of peaks within the temporal acceleration profile, and 

selectively amplifies transient accelerations associated with spurious behavioral 

activity, virtually ignoring the gentle trajectory curvatures associated with the 

essential movement trends. Moreover, integrated and ratiometric scalars derived from 

these maps proved capable of discriminating an obviously impaired cohort, where 

similar time-domain metrics could not; in neither case were peak-counting metrics 

capable of reliably identifying impairment. It was determined that this limitation of 

jerk-based metrics may be explained by a spuriously high correlation between jerk 

and average movement velocity, observed under conditions of prolonged stall 

behaviors. 
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10 SUMMARY 

10.1 Kinematical measurement of the upper-limb  

10.1.1 Experimental methodology 

10.1.1.1 Instrumentation 

Kinematical analysis is the primary means by which motor impairment is 

assessed in both clinical and laboratory settings, and is considered a proxy to latent 

neurological processes occurring throughout the neuromotor hierarchy. In the present 

work, the motion of the upper-limb (UL) was studied in human subjects performing 

single-joint movements in the Mechanical Arm Support and Tracker (MAST). The 

MAST supports the UL against gravity, and rests the elbow and hand at or just below 

the plane of the shoulder, allowing for analysis of the elbow joint in repetitive 

movement tasks, providing both a comfortable interface, as well as continuous 

measurement of elbow angle. 

10.1.1.2 Subjects and protocol 

A variety of analytical paradigms, both traditional and novel, are discussed in 

terms of their origins, domain of application, and constraints. In order to test the limits 

of these tools, their incorporation into the analysis of trajectory data from subjects 

with a range of abilities was implemented: study recruitment comprised healthy 

persons with no known neurological impairment, as well as a cohort of hemiparetic 

individuals with compromised motor control due to chronic stroke, representing a 

wide distribution of age, gender, handedness, and (in the impaired cohort) side of 

cerebrovascular insult. Inclusion criteria for stroke subjects were pre-determined prior 
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to institutional review, and participant qualification was evaluated by an independent 

Occupational Therapist not involved with the study in any other capacity. 

While subjects performed discrete single-joint articulations of the elbow, they 

were presented with a real-time GUI interface displaying not only instantaneous joint 

angle, but a buffer of approximately 2 seconds of movement history; their attention to 

this feedback was voluntary and not prompted in any way. Subjects were instructed to 

move “as smoothly as possible” within a “large, and comfortable range of motion.” 

Prior to session start, all subjects were given complete instructions, and adequate time 

to warm-up; stroke subjects were provided with stretching exercises on request, as 

well as ample rest.  

Some subjects made were observed in a single session, others performed the 

same movement task in independent sessions spanning several weeks, with a 

minimum of 24 hours in-between. When informative, a separate within-subjects 

analysis was performed on all subjects’ data profiles, irrespective of the number of 

visits made to the lab; otherwise a within-session analysis was implemented on each 

session as an independent observation period. 

10.1.2 Analysis: Standard, novel metrics 

10.1.2.1 Characterization 

The analyses performed here were primarily quantitative, reporting on 

parameters associated with movement proficiency, including basic spatiotemporal 

variables of the single-joint trajectory (SJT), symmetry, and smoothness. Where 

standard measures are reportedly flawed, these shortcomings are explained in the 

context of the data analyzed here (see, for example, Jerk Metrics among the 

differentiated smoothness metrics and Sections 2.2.4 and 7.4-7.7); in other cases, 



  

 

173 

certain metrics are discussed in terms of previously uncharacterized limitations (for 

example, dependence on average velocity of several jerk metrics under arrested 

motion, Section 7.6.2). Though derivation of these metrics is beyond the scope of this 

applied work, the origins of many objective smoothness measures are highlighted here 

where instructive.  

10.1.2.2 Implementation 

In addition to a light theoretical treatment of the standard measures of motor 

performance, these metrics were implemented directly the SJT traces recorded from 

the demographics described above, representing a spectrum of ability levels. Only 

through exhaustive, centralized evaluation of many subjects’ movements can the true 

behavior of these performance measures be understood. In order for the results of 

these analyses to generalize beyond the setting of this work, and for validation against 

previous work, common practices were used in signal processing and metrical 

formulation as often as possible. Filter characteristics and use are consistent with what 

is found in there relevant literature, and departures from standard procedure are 

explained.  

10.2 Results: Basic movement parameters 

10.2.1 Cohorts not significantly different by standard measures 

As expected, stroke subjects were found to have a large deficit in basic 

performance variables related to the range and speed of motion, as well as the amount 

of time spent in arrested motion. However, in most groupings, this only the mean 

arrest period ratio (MAPR) was found to yield significance at the P < 0.05 level, 

though range of motion Δθ and average velocity !&  were nearly significant.  
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In terms of movement proficiency, stroke subjects were found to be markedly 

less smooth in their motion than healthy subjects, though none of the four jerk-based 

smoothness measures yielded significance at the P < 0.05 level. This result is 

consistent with others’ findings as reported in the literature, where obviously impaired 

cohorts failed to yield significantly different measures (Goldvasser, McGibbon et al. 

2001; Cozens and Bhakta 2003), and occasionally are observed to become less 

proficient with training, a counter-intuitive result, indeed (Rohrer, Fasoli et al. 2002). 

A summary is presented in Table 38. 
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Table 38: Results Summary: Basic parameters of upper-limb motion 
 Healthy Stroke  

Parameter Value Chapter 
ref. Value Chapter 

ref. 
Cohort 
Comparison 

 
91.3 ± 6.8º 4.4.1 85.9 ± 7.3 

 
Chp 9 P ≈ 1.5e-4 Angular Range 

!"  (º) 88.4 ± 0.7 8.5.1 84.8 ± 5.5 8.5.1 P ≈ 0.0753 
90.6 ± 35.3 4.4.1 80.6 ± 23.5 Chp 9 P ≈ 0.0985 
76.0 ± 19.8 6.7.5 66.6 ± 49.1 6.7.5 P ≈ 0.2761 

Angular  velocity 
!&  (º/s) 91.0 ± 3.8 8.5.1 80.0 ± 13.1 8.5.1 P ≈ 0.2065 

0.09 ± 0.08 6.7.5 0.26 ± 0.19 6.7.5 P ≈ 0.0297 MAPR 10% 0.15 ± .017 n/a 0.41 ± 0.22 n/a P ≈ 0.0193 
 
Smoothness measures 
IAJ (×10-3) 12.5 ± 9.1 6.7.6 33.8 ± 32.4 6.7.6 P ≈ 0.3097 
AJ (×10-4) 0.9 ± 0.7 6.7.6 4.1 ± 4.7 6.7.6 P ≈ 0.2097 
JM (º/s2 ×10-3) 9.5 ± 7.2 6.7.6 11.2 ± 4.1 6.7.6 P ≈ 0.1645 
NARJ 15.2 ± 16.7 6.7.6 40.2 ± 21.5 6.7.6 P ≈ 0.0992 
 
Movement variability 
Sess VR Flex 0.09 ± 0.05 9.6.1 0.32 ± 0.24 9.6.1 P ≈ 1.7e-4 
Sess VR Ext 0.07 ± 0.03 9.6.1 0.34 ± 0.21 9.6.1 P ≈ 9.7 e-7 

Var. !&  Flex 0.00 ± 0.00 9.6.2 0.19 ± 0.14 9.6.2 P ≈ 0.0067 
Var. 

fin!  Flex 0.13 ± 0.04 9.6.2 0.03 ± 0.04 9.6.2 P ≈ 2.4e-31 

Var  !&  Ext 0.04 ± 0.01 9.6.2 0.19 ± 0.14 9.6.2 P ≈ 0.0031 
Var. 

fin!  Ext 0.13 ± 0.05 9.6.2 0.09 ± 0.10 9.6.2 P ≈ 1.3e-05 
 
Movement symmetry 

!"
&

max
SJT, Flex 0.36 ± 0.11 4.4.1 0.49 ± 0.15 n/a P ≈ 0.0020 

!&&
"  SJT, Flex 0.71 ± 0.15 4.4.1 1.26 ± 0.48 n/a P ≈ 5.9e-7 

!
" &  SJT, Flex 5.1 ± 5.2 4.4.1 5.2 ± 8.1 n/a P ≈ 0.0870 
!"
&

max
SJT, Ext 0.60 ± 0.13 n/a 0.40 ± 0.15 n/a P ≈ 4.8e-5 

!&&
"  SJT, Ext 0.86 ± 0.28 n/a 1.45 ± 0.49 n/a P ≈ 2.5e-5 

!
" &  SJT, Ext 5.87 ± 5.43 n/a 7.72 ± 9.88 n/a P ≈ 0.2208 
MAPR = Mean Arrest Period Ratio. IAJ = Integrated average jerk, AJ = Average jerk, 
JM = Jerk metric, NARJ = Normalized average rectified jerk.  VR = Variance Ratio, 
Flex = Flexion, Ext = Extension, Var. = Variability, fin!  = !! "+

on
.  !"

&

max
 = Time to 

maximum velocity, !&&
"  = Symmetry ratio, 

!
" &  = Number of peaks in the velocity 

profile, SJT = Single-joint trajectory. 
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10.2.2 Significant deficit apparent in SJT symmetry, variability 

There were, however, several domains in which cohort impairment was 

veridically resolved: movement variability and movement symmetry. Here, healthy 

subjects were found to perform single-joint motion with significantly less symmetry 

than stroke subjects, both in flexion and extension, and as measured by both the 

symmetry ratio, and the time to maximum velocity. Additionally, the SJTs recorded 

from stroke subjects exhibited significantly greater variation in average velocity and 

end-point positional error parameters, as well as holistic assessment of the trajectory 

profile over many cycles, as measured by the variance ratio (VR). The number of 

peaks in the velocity profile was not found to be a robust discriminant among cohorts. 

10.3 Results: Trajectory domain transform 

10.3.1 Method 

Several standard measures of motor proficiency were found to insufficiently 

resolve obvious impairment in the cohorts involved in the present work. Furthermore, 

it was shown that these metrics were in some cases, highly correlated to average 

movement velocity, an untenable constraint in motion analyses where smoothness 

should not in any way reflect speed of motion. This metrical opacity was partly 

attributed to several shortcomings: 1) a dependency on the inherently noisy process of 

differentiation of discrete time-series data, 2) operation within the relatively 

uninformative domain of position versus time, and 3) no clear standard for 

normalization.  

In order to address these limitations in performance measurement, a pseudo-

wavelet transform was presented wherein goniometric data was parsed into segments 

of progressively finer resolution, testing regional partitions of the SJT against the 

standard of isogony: equal angle in equal time. This criterion can be tested directly by 
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a number of methods (here chosen to be the Pearson product moment correlation), and 

is related to the universally accepted notion of smooth movement: that of 

minimization of accelerative transience.  

For each segment, an error was assigned, based on the correlation of the local 

SJT segment to its straight-slope approximant, to the corresponding domain of joint 

angle, yielding a plot of error-to-ideal versus joint angle. This transformation was 

validated for accuracy both in special test cases, and against empirical data, and scalar 

metrics were provided for the vector result.  

10.3.2 Jerk correlates to average velocity in high arrest conditions 

Task performance is considered “proficient” if the movement profile contains 

a minimum of transient accelerative behaviors; no dependence on speed should be 

inferred. Despite this supposed velocity independence, all four jerk metrics were 

found to correlate strongly (ρ > 0.8) to movement speed in the stroke cohort. It was 

concluded that this spurious interdependence of jerk and velocity could be explained 

by artificial decrease in the jerk integral, irrespective of its normalization, in situations 

of protracted periods of movement arrest. Indeed, the stroke subjects here had a 

significantly greater MAPR score than the healthy subjects.  
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Table 39: Justification for, and analysis of, domain transform of kinematic data 
 Healthy Stroke  
Parameter Value Chapter 

ref. 
Value Chapter 

ref. 
Cohort 
Comparison Correlation: Standard metrics to average velocity 

ρ(IAJ,!& ) 0.05 6.7.5 0.84 6.7.5 n/a 

ρ(AJ,!& ) 0.40 6.7.5 0.85 6.7.5 n/a 

ρ(JM,!& ) 0.25 6.7.5 0.91 6.7.5 n/a 

ρ(NARJ,!& ) 0.46 6.7.5 0.90 6.7.5 n/a 
 
Cohort discrimination: Temporal versus angular domain 
AUC ( )!S  

 x 10-3 
3.1 ± 0.8 8.5.2 8.0 ± 2.9 8.5.2 P ≈ 6.6e-4 

AUC ( )tJ  
 x 10-5 

9.0 ± 6.7 8.5.2 40.6 ± 46.9 8.5.2 P ≈ 0.2544 
Ratiometry ( )!S  

 
12.1 ± 1.9 8.5.3 6.6 ± 0.9 8.5.3 P ≈ 6.7e-4 

Ratiometry ( )tJ  
 

9.9 ± 7.7 8.5.3 42.8 ± 49.4 8.5.3 P ≈ 0.3097 
Peaks ( )!S  9.3 ± 0.9 8.5.4 9.9 ± 1.6 8.5.4 P ≈ 0.7892 
Peaks ( )tJ  14.4 ± 4.5 8.5.4 9.9 ± 5.7 8.5.4 P ≈ 0.0992 
 
Correlation: Integrated metrics to average velocity 
ρ( ( )tJ  Int,!& ) 
 

0.40 8.6.2 0.85 8.6.2 n/a 

ρ( ( )!S  Int,!& ) 
 

-0.22 8.6.2 0.01 8.6.2 n/a 

ρ( ( )tJ Rat,!& )  0.38 8.6.2 0.85 8.6.2 n/a 

ρ( ( )!S  Rat,!& ) 0.03 8.6.2 0.31 8.6.2 n/a 
AUC = Area under the curve. ρ = Pearson product moment correlation, IAJ = 
Integrated average jerk, AJ = Average jerk, JM = Jerk metric, NARJ = Normalized 
average rectified jerk. !&  = average angular velocity. 
 

10.3.3 Transformed metrics: Velocity-independent, discriminative 

Whereas the transform enacted on SJT waveforms eliminates temporal 

information, metrics related to the vector of spontaneous acceleration S(θ) were found 

to correlate poorly to average velocity, with all values yielding cohort averages of ρ < 

0.5 (Table 39). From these traces, two classes of parameters were proposed: trace 

integrations, and trace ratiometrics. Though both metric classes were devoid of 

velocity dependence in both jerk and S(θ) traces recorded from healthy subjects, 
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temporal domain (jerk) metrics persisted in spuriously high velocity-dependence in 

the stroke cohort; transformed data exhibited no such correlation.  

10.4 Results: Essential movement patterns 

10.4.1 Method 

Whereas proficiency can be readily assessed from the transient accelerations 

in the SJT profile, these features in the trajectory profile can obscure highly 

informative features of the movement profile such as the basic movement pattern and 

parameters related to movement symmetry. This noise can be related either to the 

generation of movement, or in its empirical observation; three such sources of trace 

artifact are proposed as 1) legitimate motor behavior unrelated to the essential motor 

plan, 2) machine error related to the acquisition and digitization data, not necessarily 

restricted to goniometry, and 3) noise related to the processing of kinematical data, 

not necessarily restricted to its differentiation.  

In order to prevent contamination of certain trajectory analyses from noise 

inherent in the kinematical record, a trajectory surrogate was proposed where in the 

observed trace was reconstructed by one of a small set of analytical traces, 

parameterized to match average angular velocity, total range of motion, and delay of 

movement onset. These traces, selected from a set of ideal trajectory models selected 

to represent a modest (but complete) range of motor behaviors, involve a single 

presumption: that of monotonic angular velocity. From these noise-free trajectory 

approximants, selected via a standard minimization of the mean-squared difference, it 

is argued that both the essential motor behavior, and parameters related to trajectory 

symmetry, can be accurately extracted.   

 Beyond the first-order validation of method accuracy by direct waveform 

comparison (here by the coefficient of determination), a comprehensive analysis of 
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trace velocity feature identification was performed on both SJT data and their 

corresponding ET waveforms.  

10.4.2 Cohorts similar in essential motor behaviors, not symmetry 

10.4.2.1 Degenerate movement patterns 

In all tasks, the single best model-based reconstruction of the SJT, the so-

called Essential Trajectory (ET), was found to fit to the observed motion with a high 

degree of accuracy. The single most prolific model type in terms of the proportion of 

each dataset for which the greatest number of ETs were of a given curve type, was 

denoted as the Principal Trajectory (PT), irrespective of the proportion of its 

representation within the dataset. A Significant Trajectory (ST) was a model curve for 

which a “large” proportion of the dataset could be best-fit by a given class, as 

determined by a broken-stick scree analysis. The designation of a model curve as an 

ST is inclusive, but not limited to the ET.  

In flexion tasks, a single ET was not sufficient to explain the totality, nor even 

a majority of subjects’ datasets, in either within-subjects or within-session analysis. 

The average number of STs was greater than 2, indicating a degeneracy in movement 

themes. Indeed the proportion of traces for which the PT was the best-fit was 

approximately 50%, indicating that a variety of movement patterns could be expected 

from subjects. In datasets for which | ST | > 1, i.e. degenerate sets, no prediction 

between movement type could be found among basic movement parameters (average 

velocity, angle of movement onset, or performance sequence). 

10.4.2.2 Identical model trace distributions 

The movement patterns of both healthy and impaired cohorts, as depicted by 

histograms of proclivity per a given ET among subjects, revealed a nearly identical 
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propensity for subjects to “select” from among the six possible trajectory patterns. 

The primary movement class was that of linear traces, followed by sigmoidal traces 

(notably both symmetric), though a wide variety of movement patterns manifested as 

Significant Trajectories. In fact, not only were the distributions and degeneracies of 

PT model types nearly identical among cohorts, but there was little difference in 

setting: within-subject and within-session analyses yielded equivalent results.  

 

 

Table 40: Results summary: Flexion pattern via Essential Trajectory modeling 
 Healthy Stroke  
Parameter Value Chapter 

ref. 
Value Chapter 

ref. 
Cohort 
Comparison 

Goodness of Fit 
ET R2 0.99±0.01 4.4.2 0.99±0.01 9.3.1 P ≈ 0.9878 
 
Symmetry  

!"
&

max
ET 0.39 ± 0.10 4.4.3 0.51 ± 0.16 9.5.5 P ≈ 0.0193 

!&&
"  ET 0.71 ± 0.26 4.4.3 0.93 ± 0.23 9.5.5 P ≈ 0.9878 
 
Scree analysis 
|ST| Subject 2.02 ± 0.72 5.5.2 2.27 ± 1.1 9.5.1.1 P ≈ 0.5973 
|ST| = 1 Subject 0.24 5.5.2 0.27 9.5.1.1  
PT prop Subject 0.49 ± 0.14 5.5.2 0.48 ± 0.18 9..1.1 P ≈ 0.4733 
|ST| Session 1.93 ± 0.64 5.5.3 1.93 ± 0.46 9.5.1.2 P ≈ 0.6578 
|ST| = 1 Session 0 5.5.3 0 9.5.1.2  
PT prop Session 0.53 ± 0.13 5.5.3 0.52 ± 0.17 9.5.1.2 P ≈ 0.1658 
 
Correlation: ET type to basic movement parameters 
ρ(ET,!& ) 0.14 5.6.4 0.13 9.4.4 n/a 
ρ(ET,

on
! ) 0.09 5.6.4 0.05 9.4.4 n/a 

ρ(ET, #) 0.09 5.6.4 0.10 9.4.4 n/a 
ET = Essential Trajectory, R2 = Coefficient of determination.  !"

&

max
 = Time to 

maximum velocity, !&&
"  = Symmetry ratio.  ST = Significant Trajectory, |ST| = 

Number of STs, PT prop = Proportion of movement profile ETs fitted to the Principal 
Trajectory (PT).  ρ = Pearson product moment correlation, !&  = average angular 
velocity, 

on
!  = angle of motion onset, # = Sequence number in dataset. 
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10.4.2.3 Stroke subjects move with greater symmetry 

Whereas the Essential Trajectory was validated as a measurement substrate for 

extraction of parameters associated with the veridical movement behaviors, symmetry 

in the SJT was extracted from the corresponding ET movement patterns. Similar to 

the results generated in a symmetry analysis of SJT waveforms, stroke subjects were 

found to move with a highly symmetric rhythm, reaching significance at the P < 0.01 

level in the time-to-maximum velocity, and near-significance via the symmetry ratio; 

healthy subjects were found to spend less time in acceleration, and more time in 

deceleration. It is noted that despite the apparent equivalence between symmetry 

analysis via ET and via SJT, this is an artifact resulting from a randomly-distributed 

noise in the trajectory traces. Indeed, on a trace-by-trace basis, the differences 

between the observed velocity peak in the raw trace (low-pass filtered), and the 

differentiated-and-filtered Essential Trajectory was large, with the Essential 

Trajectory demonstrably accurate in extracting the veridical velocity peak.  

10.4.3 Extension movement patterns reveal additional insight 

10.4.3.1 PT distributions, degeneracy similar to that of flexion 

In extension tasks, the linear and sigmoidal ET traces most-often yielded 

Principal Trajectories. Here again, the movement profiles both in sessional and 

subject analysis, were found to be degenerate with multiple STs, and less than 40% of 

subjects yielding single-ST datasets. As with flexion tasks, the proportion of each 

dataset for which the PT was found to yield the ET was approximately 50-60%, and 

no correlation to basic movement parameters was found.  
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10.4.3.2 Poor prediction across movement direction 

For degenerate datasets, an analysis of the correspondence between flexion 

and extension movement patterns was performed by inspection of the ST sets. Here, 

the average overlap between flexion STs and extension STs was low (approximately 

O  = 0.4-0.5), with less than 10% of subjects’ ST sets completely identical among 

movement tasks (unity overlap,O1); a large proportion of subjects’ ST sets yielded a 

null overlap: O0= 0.2 - 0.5. Thus, it is concluded that there is relatively little 

predictive power across direction of between movement theme generation.   
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Table 41: Results summary: Extension pattern via Essential Trajectory modeling 
 Healthy Stroke  
Parameter Value Chapter 

ref. 
Value Chapter 

ref. 
Cohort 
Comparison 

Symmetry  
!"
&

max
ET, Ext 0.66 ± 0.07 n/a 0.47 ± 0.10 n/a P ≈ 2.4e-7 

!&&
"  ET, Ext 0.67 ± 0.23 n/a 1.04 ± 0.43 n/a P ≈ 0.0120 
 
Scree analysis 
|ST| Subject 1.92 ± 0.81 5.6.2 1.63 ± 0.50 9.5.1.3 P ≈ 0.3482 
|ST| = 1Subject 0.31 5.6.2 0.36 9.5.1.3 n/a 
PT prop Subject 0.56 ± 0.16 5.6.2 0.52 ± 0.13 9.5.1.3 P ≈ 0.5014 
|ST| Session 1.93 ± 0.64 n/a 1.72 ± 0.43 n/a P ≈ 0.2694 
|ST| = 1 Session 0.05 n/a 0 n/a n/a 
PT prop Session 0.61 ± 0.17 n/a 0.59 ± 0.18 n/a P ≈ 0.4363 
 
Correlation: ET type to basic movement parameters 
ρ(ET,!& ) 0.12 5.6.4 0.07 9.4.4 n/a 
ρ(ET,

on
! ) 0.12 5.6.4 0.07 9.4.4 n/a 

ρ(ET, #) 0.10 5.6.4 0.10 9.4.4 n/a 
 
Prediction: Flexion, Extension 
PTf = PTe Subj 0.29 n/a 0.27 n/a n/a 
ST O  Subj  0.39 ± 0.36 n/a 0.45 ± 0.30 n/a P ≈ 0.9589 
ST 

1
O Subj 0 n/a 0.10 n/a n/a 

ST 
0
O  Subj 0.35 n/a 0.20 n/a n/a 

PTf = PTe Sess 0.24 5.6.3.3 0.5 9.5.3 n/a 
ST O  Sess 0.39 ± 0.36 5.6.3.3 0.44 ± 0.30 9.5.3 P ≈ 0.3461 
ST 

1
O  Sess 0.09 5.6.3.3 0.08 9.5.3 n/a 

ST 
0
O  Sess 0.41 5.6.3.3 0.25 9.5.3 n/a 

ET = Essential Trajectory, !"
&

max
 = Time to maximum velocity, !&&

"  = Symmetry ratio. 
ST = Significant Trajectory, |ST| = Number of STs, PT prop = Proportion of 
movement profile ETs fitted to the Principal Trajectory (PT).  ρ = Pearson product 
moment correlation, !&  = average angular velocity, 

on
!  = angle of motion onset, # = 

Sequence number in dataset. O = Average ST overlap, 
1
O  = Proportion of profiles 

with unity ST intersection, 
0
O  = Proportion of profiles with null ST. 
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10.5 Conclusions to hypotheses 

10.5.1 Overview 

The present work represents a series of investigations into the characterization 

and analysis of human performance vis-à-vis both basic movement parameters and 

holistic assessments of movement proficiency via a family of smoothness metrics. A 

series of experimental hypotheses were put forth related to the assessment of human 

movement, and features of movement concerning both basic behavioral patterns, and 

their alteration under neurological deficit.  A review of these hypotheses and their 

conclusions follows: 

10.5.2 Chapter 4: Essential Trajectory as a valid SJT surrogate 

 It was hypothesized that the Essential Trajectory, an analytical curve  

parameterized to match the observed trajectory, would serve as a valid trajectory 

surrogate,   

 

 

The single-joint trajectory can be accurately 
reconstructed by a parameterized analytic curve selected 
from among a small set of model traces, the so-called 
Essential Trajectory. 

(Hypothesis 1) 

 

and that the parameters extracted thereof would accurately reflect the veridical 

movement parameters contained within the SJT. 

 

 

Features extracted from the Essential Trajectory will 
report information relevant to the observed movement 
with an accuracy that is competes with or exceeds those 
extracted from the observed single-joint trajectory.  

(Hypothesis 2) 
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It was, indeed determined that the ET was a valid and highly accurate 

representation of the single-joint trajectory, and that the parameters associated with 

the essential motor behavior were accurately extracted via the Essential Trajectory. 

10.5.3 Chapter 5: SJTs symmetric, but unpredictably degenerate 

Based on empirical laws, e.g. the isogony principle, and on copious 

abstraction within the literature, it was supposed that the basic motor behaviors of 

healthy subjects would yield highly linear, or at least symmetric SJT traces.  

 

 Subjects single-joint movements will be largely isogonic 
and symmetric in both flexion and extension tasks. (Hypothesis 3) 

  

Additionally, it was suggested that the basic motor behaviors of these subjects 

were highly stable and stereotyped in the absence of external perturbations, and with 

the movement constrained, as in the MAST.  

 

 

Irrespective of the isogonic nature of the movement 
profile (Hypothesis 3), model adoption by subjects will be 
highly uniform, showing relatively high stability among 
the available model types. 

(Hypothesis 4) 

  

 While the predominance of linear and sigmoidal Principal Trajectories in the 

subjects’ datasets indicated a highly symmetric movement, these movement patterns 

were hardly exclusive. Indeed, there was a considerable degeneracy in the movement 

themes, and many asymmetric ETs were found to contribute significantly. In these 

pluralistic cases, it was further hypothesized that “selection” of ET type could be 

related to basic parameters of the observed motion. 
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In the cases where the primary model type is not observed 
in a given movement cycle, this deviation from the central 
behavioral theme can be explained as the result of some 
perturbation in basic movement patterns, i.e. angular 
velocity, angle of motion onset, or time. 

(Hypothesis 5) 

  

 This was found not to be the case. It is noted that mixed-effects analyses were 

not performed, however this would be beyond the scope of the present work. It is 

concluded that humans without apparent neurologic deficit do not necessarily adopt 

uniformly linear or symmetric movement behaviors, but fluctuate in a way that cannot 

necessarily be predicted by initial conditions.  

10.5.4 Chapter 6: Stroke patients equivalently isogonic, degenerate 

In order to characterize the essential movement behaviors of an impaired 

cohort, a validation of the Essential Trajectory model in stroke subjects’ SJTs was 

performed.  

 

 
Essential Trajectory approximants of the SJT trace will 
yield equivalently strong trace reconstructions of 
trajectories recorded from hemiparetic individuals.   

(Hypothesis 6) 

  

As expected, the ET traces yielded highly accurate representations of stroke 

subjects’ movements, with an equivalently high coefficient of determination as that of 

the healthy subjects. Lastly, it was hypothesized that the compromised motor skills of 

chronic stroke patients would manifest as a deviation from the highly symmetric and 

linear trajectories observed in stroke patients.  

 

 Subjects with impaired motor control exhibit motor 
deficiency in the way of asymmetric movement patterns. (Hypothesis 7) 
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 Furthermore, it was suggested that the “choice” of movement pattern would 

depart even further from the pluralistic PT model results of healthy subjects, resulting 

in a higher degeneracy. 

 

 

Motor impairment will manifest as an increased 
variability in trajectory patterns, and this instability will 
have greater co-dependence on basic movement 
parameters. 

(Hypothesis 8) 

 

Contrary to expectation, it was determined that the impaired cohort performed 

the single-joint movement task with surprisingly similar basic behavior as that of the 

healthy subjects. No significant difference was found in the number of significant 

trajectories, nor in the adoption of ETs as Principal Trajectories. Here, a cohort 

similarity is identified, where dissimilarity was expected.  

10.5.5 Chapter 8: Failure of jerk measures in cohort discrimination 

Whereas it has been reported in the literature that standard jerk-based 

smoothness raters occasionally fail to report significant differences between cohorts, 

it was supposed that this may relate to a  spurious co-dependence of average angular 

velocity, 

 

 
Standard jerk metrics are independent of average velocity 
in “well-behaved” movements performed by healthy 
individuals. 

(Hypothesis 9a) 

 

and that this might pertain only to persons with impaired motor control.  

 

 
Jerk metrics exhibit spurious dependence on movement 
velocity in the special case of spastic movements 
characterized by significant periods of stall behavior. 

(Hypothesis 9b) 
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 Indeed, it was shown that in highly arrested motion, the jerk integral, 

irrespective of its normalization, was artificially decreased, resulting in the artificial 

appearance of reduced performance deficit: the greater the movement arrest, the 

greater the decrease in jerk.  

 

 
Jerk metrics can discriminate between healthy individuals 
and those with impaired motor control due to chronic 
stroke. 

(Hypothesis 10) 

 

 It was further shown that this effect is sufficiently powerful and so highly 

variable among subjects that cohort impairment is no longer resolvable at a significant 

level.  

10.5.6 Chapter 9: Domain transformation yields valid substrates 

Temporal domain analysis of kinematic data results proficiency metrics that 

are not only highly prone to error, but are dependent on a relatively meaningless 

variable: time. In order to obviate the pitfalls of position-versus-time analysis, a 

pseudo-wavelet data transformation was proposed. 

 

 

Vectorial rendering of the single-joint trajectory, 
following transformation into the domain of linear 
approximant error as a function of angle, accurately 
reports movement proficiency in both healthy and 
impaired cohorts. 

(Hypothesis 11) 

 

 Here, subjective analysis of both special test cases, and empirical data yielded 

convincing evidence of the accuracy of the representation of spontaneous 

accelerations in the angular domain transform. In order to support traditional analyses 

and hypothesis testing, a set of scalars was defined from which the spatial acceleration 

map could be evaluated. 
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Scalar smoothness metrics derived from the angular-
domain trajectory transformation can discriminate 
healthy from impaired condition as well as standard 
metrics. 

(Hypothesis 12) 

 

 It was determined that these scalars were not only capable of resolving cohort 

differences, but exhibited a metrical independence of angular velocity not observed in 

temporal domain (jerk) metrics.  

 

 
Measures derived from the angular domain are 
impervious to spurious co-dependence of angular 
velocity. 

(Hypothesis 13) 

 

 Thus it is concluded that the angular domain transform is not only an 

accurate and utilitarian paradigm in the resolution of spatio-temporal behavioral 

idiosyncrasies, but may be necessary in order to avoid corruption of the proficiency 

assessment due to average velocity in the case of highly arrested movement.  

10.6 Concluding remarks 

10.6.1 Thesis scope 

For many standard performance measures, there is no central work in which a 

given metric is compared against other metrics: it is atypical for a metric’s use to be 

justified beyond cursory explanation, particularly in clinical studies. Furthermore, 

despite their evaluation of obviously impaired cohorts, many measures have an 

imperfect record in cohort discrimination. This can be explained by a dearth of best-

practices in performance assessment, starting with which metrics are best used for 

what research hypothesis, and including metrical normalization, and other 

standardization practices that would allow for generalization across protocols, thus 
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greatly increasing the power of experimental and clinical activities and their 

dissemination in the scientific literature.  

Here, an in-depth, but by no means comprehensive, analysis is performed on 

several widely-adopted measures, including an overview of their origins and 

limitations. Alternative methods are proposed to balance the typically mutually 

exclusive needs of identification of the essential movement pattern, and isolation of 

specific loci of motor deficiency. As well as possible, these novel methods are 

validated and compared against the state-of-the-art paradigms, hopefully to the 

satisfactory demonstration of their accuracy. It is the presumption of the author that 

their utility is self-evident.  

10.6.2 Thesis self-consistency 

There are many consistencies among the analyses performed here that suggest 

the veracity of these results. One subtle but noteworthy aspect of these data bears 

mention. It is reported (Table 38) that stroke subjects move with significantly (or 

near-significance) greater symmetry than the healthy subjects. Elsewhere, their 

symmetry is reported as not significantly different (Figure 16). To explain: these 

apparently contradictory conclusions result from two entirely different analyses: 

quantitative assessment by symmetry ratio and time-to-maximum velocity, and by 

categorical analysis of the Principal Trajectory type. These results are not necessarily 

incongruous: quantitative measurement assesses the entire movement trace, without 

discriminating for periods of relatively slow movement at the motion extrema; the 

Essential Trajectory model (and thus the PT), accounts for this “stall” behavior 

automatically, and reports only the “important” movement activity above a given 

threshold of movement.  
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10.7 Concluding philosophy 
 

Here, simple substrates of single-joint motion are decomposed into their two 

primary aspects: the movement essence, and their incidence. Beyond the impact on 

experimental observation or research into the human motor system it is suggested that 

this work may contain implications for broader impacts on the approach of 

neuromotor scientists and clinicians: While it is certainly relevant to ask “in what way 

are we different,” (we referring to any two individuals or cohorts, here chronic stroke 

patients and the unimpaired), just as important a question may be “in what way are we 

similar?” Indeed, it is not necessarily the way a question is answered that is 

informative but the question, itself, that was posed.  
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APPENDIX 

10.8 Variables: Classical Latin alphabet 
Variable Description First mentioned 
A Arbitrary simulation parameter 7.3.2 
A(θ) Template error array 8.5.7 
a Activation 3.2.1.2 
a Muscle activation 8.3.2 
a Coefficient of correlation metrics 8.5.6 
B Viscosity 3.2.1.1 
B Baseline-padded curve b 3.4.2 
b Basic model curve 3.4.2 
b Coefficient of correlation metrics 8.5.6 
C Curvature 5.4.1.1 
c Time sample 2.2.3 
C Coefficient of correlation metrics 8.5.6 
dm Moment arm of muscle m 3.2.1.1 
E(θ) Domain of approximation error 8.5.5 
E*(θ) Normalized error array 8.5.7 
E Regional scalar value for E(θ) 8.6 
Fm Force of muscle m 3.2.1.1 
G Partition subset 8.5.4 
H Histogram 5.3.3.1 
h Filter coefficients 4.5.1.1 
I Inertia 3.2.1.1 
i Time sample 2.2.3 
i Index of flexion/extension 8.3.2 
J Jerk integral 2.3.2.1 
J  Average jerk 7.2.1 
J(t) Jerk as a function of time 7.4 
j Cycle iteration 5.4.2.1 
K Elastic stiffness 3.2.1.1 
K Curvature 3.2.2.2 
k Arbitrary coefficient 3.2.2.2 
k Arbitrary simulation parameter 7.3.2 
k Partition index 8.5.4 
k Coefficient of correlation metrics 8.5.6 
L&  Rate of change of muscle length 3.2.1.2 
L Muscle length 3.2.1.2 
L Vector of ET labels 4.3.2 
MAPR Mean arrest period ratio 2.3.2.2 
MR Movement range 2.2.3 
Np Number of points in partition 8.5.2 
Ns Number of samples 2.3.1.1 
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O Overlap of ST sets 5.6.3.1 
PT Principal Trajectory 5.3.3.2 
PTf,e PT in flexion, extension 5.6.3.1 
P Temporal domain partition 8.5.3 
p Zero-pad duration 3.4.2 
p Pace  7.6.4 
R Radius of curvature 5.4.1.1 
R Spatial error map (heat map) 9.5.2 
rvp Rank of veridical max. !&  peak 4.6.2 
S Sorted histogram 5.3.3.2 
ST Significant Trajectory 5.3.3.2 
S(θ) Spatial acceleration vector 8.5.5 
S*(θ) Normalized S(θ) 8.6 
s Second 2.2.3 
s Motion segment 3.2.2.2 
T Total movement time 2.3.1.1 
Tm Torque of muscle group m 3.2.1.1 
T Torque 3.2.1.1 
T* Normalized time 5.4.2.1 
T' Transformed movement duration 7.6.4 
t Time 2.3.2.1 
u Muscle activation input 3.2.1.2 
uifd Stretch reflex 8.3.2 
V Voltage 2.2.3 
vmj Minimum jerk velocity 3.2.1.2 
V Angular velocity 5.4.1.1 
X Arbitrary dataset 5.4.2.1 

i
X  Average across time points of X 5.4.2.1 

X  Grand mean of X 5.4.2.1 
X(ω) Fourier transform of position 7.6.4 
x(t) Position as a function of time 7.6.4 
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10.9 Variables: Greek alphabet 
Variable Description First mentioned 
α Positive constant of 2/3-PL 3.2.2.2 
α Arbitrary simulation parameter 7.3.2 
α Partition lower-bound 8.5.2 
α Arbitrary error value 8.5.7 
β Exponent of 2/3-PL 3.2.2.2 
β Arbitrary simulation parameter 7.3.2 
β Partition upper-bound 8.5.2 
β Arbitrary error value 8.5.7 

!&&
"  Symmetry ratio 2.3.1.2 
γ Arbitrary parameter 6.6.2 
γ Coefficient of correlation metrics 8.5.6 
Δθ Range of motion 2.3.1.1 
Δθcal Calibration range of motion 2.2.3 
Δ Range of motion 3.2.2.1 
δ MAPR Velocity threshold 2.3.2.2 
δ Derivative resolution/step size 7.6.2 
δ Arbitrary threshold 9.4.2 
ε Ratio of trace peak-to-mean 9.3.3.4 
η Viscosity 3.2.1.1 
η User-defined spatial resolution 8.5.7 
!&  Velocity vector 2.2.3 

!&  Average velocity 2.3.1.1 

min
!  Angle of motion onset 2.3.1.1 

max
!  Angle of motion cessation 2.3.1.1 

max
!&  Maximum angular velocity 2.3.1.2 

max
!&&  Maximum angular acceleration 2.3.1.2 
θ(t) Joint angle as a function of time 2.3.2.1 
Θeq Equilibrium joint angle 3.2.1.1 
θROM Angular range of motion 3.4.2 
θon Angle of motion onset 3.4.2 
θoff Angle of motion cessation 3.4.2 
Θd,e Angles of raw error comparison 9.4.2 
κ Jerk normalization coefficient 2.3.2.1 
µ Mean 1.2.3.1 
µ Migration coefficient 8.5.2 
ξ Partition sample 8.5.7 

!
" &  Number of peaks in velocity trace 4.4.1 
ρ Correlation coefficient 4.3.3 
ρXY Correlation of two traces 8.5.6 
σ Standard deviation 1.2.3.1 
2

!
" &  Velocity variance 7.2.1 

σX Standard deviation of a single trace 8.5.6 
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σXY Standard deviation of a two traces 8.5.6 
!"
max

 Time to max. elbow flexion 2.3.1.1 
!"
&

max
 Time to max. angular velocity 2.3.1.2 

!"
&&

max
 Time to max. angular acceleration 2.3.1.2 

τ Temporal landmark 4.6.2 
τd Selected points of a given trace 9.4.2 
ν Sampling Frequency 2.2.3 
φ Parameter variability 6.6.2 
χ b class (= A → F) 3.4.2 
Ψ Arbitrary waveform feature 4.6.1 
ω Angular frequency 7.6.4 
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