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Sigma models with (0, 2) supersymmetry in two dimensions possess quasi-topological

sectors characterized by chiral algebras. In this thesis, we study these chiral algebras

and explore their nonperturbative aspects.

The chiral algebras of (0, 2) models emerge when one considers the cohomology of

local operators with respect to one of the supercharges, and provide infinite-dimensional

generalizations of the chiral rings of (2, 2) models. Perturbatively, they enjoy rich math-

ematical structures described by sheaves of chiral differential operators. Nonperturba-

tively, however, they vanish completely for certain (0, 2) models with no left-moving

fermions. Examples include the models in which the target spaces are the complete flag

manifolds of compact semisimple Lie groups.

The vanishing of the chiral algebra of a (0, 2) model implies that supersymmetry is

spontaneously broken in the model, which in turn suggests that no harmonic spinors

exist on the loop space of the target space. We analyze this supersymmetry breaking

using holomorphic Morse theory on the loop space in the case where the target space

is CP
1. As expected, we find that instantons interpolate between pairs of perturbative

supersymmetric states, thereby lifting them out of the supersymmetric spectrum.
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Chapter 1

Introduction

Supersymmetric sigma models in two dimensions have played central roles in a number

of important physical and mathematical developments during the past three decades.

One of the key concepts in these developments is that of the chiral rings of sigma models

with (2, 2) supersymmetry [1]. These finite-dimensional cohomology rings are basic

ingredients of topological sigma models [2, 3], and intimately connected to Gromov–

Witten invariants [4, 2], Floer homology [5], and mirror symmetry [6], among others.

While the chiral rings of (2, 2) models are clearly very interesting, we also know that

some of the beautiful structures of two-dimensional supersymmetric sigma models arise

in essentially infinite-dimensional contexts; most notably, the elliptic genera [7, 8]. It is

then natural to ask whether there are infinite-dimensional generalizations of the chiral

rings. The answer is “yes.” Such generalizations are provided by the chiral algebras of

sigma models with (0, 2) supersymmetry [9].

The chiral algebra of a (0, 2) model is the cohomology of local operators with respect

to one of the supercharges, graded by the right-moving R-charge, and equipped with a

product structure inherited from the operator product expansion (OPE). As a conse-

quence of (0, 2) supersymmetry, its elements vary holomorphically on the worldsheet,

so it has a structure similar the chiral algebra of a conformal field theory—the algebra

generated by holomorphic fields. Just like topological (2, 2) models are characterized

by their chiral rings, there are quasi-topological twists of (0, 2) models that turn them

into holomorphic field theories characterized by their chiral algebras.

Classically, the chiral algebra is isomorphic, as graded vector spaces, to the direct
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sum of the Dolbeault cohomology groups of a certain infinite series of holomorphic vec-

tor bundles over the target space. Quantum mechanically, this structure gets deformed

by quantum corrections. Since the chiral algebra, like the chiral rings, is invariant un-

der deformations of the target space metric, one can compute it in the large volume

limit where the theory is weakly coupled. The novelty is that, unlike the chiral rings, it

receives perturbative corrections because the contributions from bosonic and fermionic

fluctuations do not cancel due to the lack of left-moving supersymmetry. This leads to

the very interesting subject of perturbative chiral algebras.

At the level of perturbation theory, the physics of a sigma model is determined by

the local geometry of the target space. On the other hand, we can always deform the

metric and make it flat locally without affecting the chiral algebra. Combining these

observations, we reach a surprising conclusion: the perturbative chiral algebra can be

described locally by sigma models with flat target spaces and, therefore, reconstructed

by gluing these free theory descriptions patch by patch over the target space.

This fact was exploited by Witten [10] to show that the perturbative chiral algebra

of a twisted model with no left-moving fermions can be formulated as the cohomology

of the sheaf of chiral differential operators, introduced by Malikov et al. [11] and studied

extensively [12, 13, 14, 15, 16] earlier in mathematics. In this picture, the moduli of

the perturbative chiral algebra are encoded in the different possible ways of gluing the

relevant free theories, whereas the anomalies of the theory manifest themselves in the

obstructions to doing so consistently. In the case of models with left-moving fermions

coupled to the tangent bundle of the target space, it was shown by Kapustin [17] that

the perturbative chiral algebra is given by the cohomology of the sheaf of chiral de Rham

complex [11]. The theory of perturbative chiral algebras has been further developed by

Tan [18, 19, 20, 21] along these lines.

Nonperturbatively, instantons can change the picture radically [22]. A particularly

striking example is the (0, 2) model with no left-moving fermions whose target space
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is the complete flag manifold of a compact semisimple Lie group G. The perturbative

chiral algebra of this model is infinite-dimensional and possesses the structure of an

affine g-module at the critical level [11, 23, 24]. In the presence of instantons, however,

the chiral algebra vanishes.

A hint that such a vanishing phenomenon might exist comes from the conjecture

made by Stolz [25] in 1996 and also independently by Höhn, which asserts that the

elliptic genus of a supersymmetric sigma model with no left-moving fermions vanishes

if the target space X admits a metric with positive Ricci curvature. In the paper [25],

Stolz gave a heuristic argument for this conjecture, which goes as follows. Let us assume

that the natural scalar curvature of the free loop space LX of X is computed, at a given

point, by the integral of the Ricci curvature of X along the corresponding loop. Then

LX has positive scalar curvature if X has positive Ricci curvature. By analogy with the

Lichnerowicz theorem, this would imply that LX has no harmonic spinors. Meanwhile,

supersymmetric states of the theory may be identified with harmonic spinors on LX [8].

Since the elliptic genus counts the number of bosonic minus fermionic supersymmetric

states at each energy level, it would vanish then.

If Stolz’s idea turns out to be correct, then the positivity of the Ricci curvature

implies not only the vanishing of the elliptic genus, but also that the theory has no

supersymmetric states; in other words, supersymmetry is spontaneously broken. Flag

manifolds have positive Ricci curvature, hence supersymmetry must be broken in the

(0, 2) model in question. Supersymmetry breaking is indeed triggered whenever the

chiral algebra becomes trivial with instanton corrections. The model with target space

X = CP
1 is simple enough so that one can see, by considering the holomorphic version

of Morse theory [26] on LX [5], that instantons actually connect pairs of perturbatively

supersymmetric states and lift them.

In fact, this vanishing of the chiral algebra of the flag manifold model is a spe-

cial case of a more general vanishing theorem for nonperturbative chiral algebras—or
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rather, “theorem” with quotation marks—that holds for a larger class of target spaces:

the chiral algebra of a (0, 2) model with no left-moving fermions vanishes nonpertur-

batively if the target space admits a rational curve with trivial normal bundle. This

nonperturbative vanishing “theorem” is the main result of this thesis, which we will

“prove” by a physical argument.

The nonperturbative aspects of the chiral algebras of (0, 2) models and their relations

to loop space geometry remain mysterious. I hope that the results presented in this

thesis will shed some light on this subject.

This thesis is organized as follows. In Chapter 2, we formulate (0, 2) models and

discuss the general features of their chiral algebras. In Chapter 3, we demonstrate

how the perturbative chiral algebra of a twisted model can be reconstructed by gluing

free theories over the target space. In Chapter 4, we establish the nonperturbative

vanishing “theorem.” In Chapter 5, we study the supersymmetric spectrum of the CP
1

model and argue that the model exhibits supersymmetry breaking from the viewpoint

of holomorphic Morse theory on loop space. Finally, in Chapter 6, we present some

possible directions for future research.
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Chapter 2

Chiral Algebras of (0, 2) Models

In this chapter we discuss the general features of the chiral algebras of (0, 2) models.

We begin by formulating the models that we will study in this thesis.

2.1 (0, 2) Models

A two-dimensional sigma model admits a (0, 2) supersymmetric extension if the target

space is strong Kähler with torsion, or strong KT for short [10]. A complex manifold

is called strong KT if it admits a hermitian metric whose associated (1, 1)-form ω

satisfies ∂∂̄ω = 0. Kähler manifolds are in particular strong KT because Kähler forms

obey ∂ω = ∂̄ω = 0. Below we assume that the target space is Kähler, deferring the

treatment of the strong KT case to Appendix.

Let Σ be a Riemann surface and let X be a Kähler manifold of dimension d. The

bosonic sigma model with worldsheet Σ and target space X is then a field theory of

smooth maps φ : Σ → X. Imposing (0, 2) supersymmetry on it requires the introduction

of two right-moving fermions, ψ+ and ψ̄+. They are sections of a square root of the

antiholomorphic canonical bundle KΣ of Σ, taking values respectively in the pullback

by φ of the holomorphic and antiholomorphic tangent bundles TX and TX of X:

ψ+ ∈ Γ(K1/2
Σ ⊗ φ∗TX), ψ̄+ ∈ Γ(K1/2

Σ ⊗ φ∗TX). (2.1)

Now, let me explain how a (0, 2) supersymmetric theory is constructed using this min-

imally (0, 2) supersymmetric field content.
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To begin, we implement (0, 2) supersymmetry. We do this by picking sections ε−, ε̄−

of K
−1/2
Σ and postulating the transformation generated by −iε−Q+ + iε̄−Q+ as follows:

δφi = −ε−ψi
+, δφı̄ = ε̄−ψ̄ı̄

+,

δψi
+ = iε̄−∂z̄φ

i, δψ̄ı̄
+ = −iε−∂z̄φ

ı̄.

(2.2)

The supercharges Q+, Q+ then satisfy the anticommutation relations

{Q+, Q+} = {Q+, Q+} = 0,

{Q+, Q+} = −i∂z̄

(2.3)

and generate the (0, 2) supersymmetry algebra together with the generators H, P of

translations, M of rotations, and FR of R-symmetry. Under the last symmetry, ψ+ and

ψ̄+ are assigned charges −1 and +1; thus Q+ has charge −1 and Q+ has charge +1.

In order to construct a (0, 2) supersymmetric action, we choose a Kähler metric g

on X and consider the local operator gij̄ψ
i
+∂zφ

j̄d2z, with d2z = 2idz ∧ dz̄, which is a

(1, 1)-form on Σ and has R-charge −1. Then the action

S =
1
2π

∫
Σ

d2z{Q+, gij̄ψ
i
+∂zφ

j̄} (2.4)

is invariant under R-symmetry and, by virtue of the relation Q2
+ = 0, under the sym-

metry generated by iε̄−Q+ provided that ε̄− is antiholomorphic (so commutes with the

∂z inside). That this action is also invariant under −iε−Q+ for antiholomorphic ε−

becomes manifest if we rewrite it as

S =
1
2π

∫
Σ

d2z{Q+, gij̄∂zφ
iψ̄j̄

+}. (2.5)

Expanding the anticommutators and using the Kähler condition, one can check that

the two actions (2.4) and (2.5) both coincide with

S =
1
2π

∫
Σ

d2z(gij̄∂z̄φ
i∂zφ

j̄ + igij̄ψ
i
+Dzψ̄

j̄
+). (2.6)

The covariant derivative Dz is here the ∂-operator coupled to the pullback of the Levi-

Civita connection Γ on X. Explicitly, Dzψ̄
ı̄
+ = ∂zψ̄

ı̄
+ + ∂zφ

j̄Γı̄
j̄k̄

ψ̄k̄
+.
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We may also add a topological invariant to the action. Let B = BIJdφI ∧ dφJ be a

closed two-form on X. Then the functional

SB =
∫

Σ
φ∗B (2.7)

depends only on the cohomology class [B] and the homology class φ∗[Σ]. As such, it is

invariant under any continuous transformations, especially the supersymmetry trans-

formations and the R-symmetry. The topological action SB vanishes in perturbation

theory where one considers only homotopically trivial maps.

We have obtained a (0, 2) supersymmetric action. To complete the construction,

we need to make sure that a sensible quantum theory based on it exists. It turns out

that X must satisfy two topological conditions for this. First, X must be spin, or

equivalently, its first Chern class must be zero modulo 2:

c1(X) ≡ 0 (mod 2). (2.8)

As we will see, this condition ensures that the fermion parity (−1)F is well defined,

which is necessary to distinguish bosonic and fermionic states. Second, the second

Chern character ch2(X) = c1(X)2/2−c2(X), which is also a half of the first Pontryagin

class p1(X), must be zero:
1
2
p1(X) = 0. (2.9)

This is the condition for the cancellation of sigma model anomalies [27, 28], the ob-

struction to finding a well-defined path integral measure.

From the viewpoint of the the free loop space LX of X, the space of smooth maps

from the circle S1 to X, the first condition means that LX is orientable [29, 30]. The

second condition, on the other hand, may be interpreted as the condition for LX to

admit spinors [31]. The Dirac operator on LX [7, 8] will play an important role when

we study the cohomology of (0, 2) models in Chapter 5.

The action (2.6) plus the topological action (2.7) defines the simplest version of
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(0, 2) model. The supercharges are realized as

Q+ =
∮

dz̄ gij̄ψ
i
+∂z̄φ

j̄, Q+ =
∮

dz̄ gij̄∂z̄φ
iψ̄j̄

+, (2.10)

and satisfy the reality condition Q†
+ = Q+.

With a holomorphic vector bundle E over X, we can extend this model by adding

left-moving fermionic fields valued in φ∗E and φ∗E. This extended (0, 2) model is called

the heterotic model. Since the left-movers contribute to the sigma model anomaly in the

opposite way as the right-movers do, their presence changes the anomaly cancellation

condition to p1(TX)/2 = p1(E)/2. This condition is trivially satisfied if E = TX ; in this

case, the heterotic model actually possesses (2, 2) supersymmetry. It is also possible to

add superpotentials [32]. For brevity, we will not consider these extensions in this thesis.

For the perturbative aspects of the heterotic model, we refer to Tan [18, 19, 20, 21].

2.2 Chiral Algebras

Having formulated (0, 2) models, let us now defined their chiral algebras.

Let Q be one of the supercharges, say Q = Q+. We consider the action of Q in the

space of local operators, given by commutator on bosonic operators and anticommutator

on fermionic operators. This Q-action increases R-charge by one, and squares to zero by

the relation Q2 = 0. Given a (0, 2) model, therefore, we can define the Q-cohomology

of local operators graded by R-charge.

Since ∂z̄ is Q-exact by the (0, 2) supersymmetry algebra, ∂z̄ acts trivially in the Q-

cohomology: if O is Q-closed, then ∂z̄O = [{Q, iQ†},O] is Q-exact. The Q-cohomology

classes thus vary holomorphically on Σ. Moreover, there is a natural product structure

on the Q-cohomology induced by the OPE:

[Oi(z)] · [Oj(z′)] = [Oi(z) · Oj(z′)] ∼
∑

k

cij
k(z − z′)[Ok(z′)]. (2.11)

The Q-cohomology of local operators equipped with this OPE structure defines the
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chiral algebra of the (0, 2) model. We denote it by A and its charge q subspace by Aq:

A =
⊕

q

Aq. (2.12)

The chiral algebra possesses the defining properties of a chiral algebra in the sense of

conformal field theory, except that the grading by conformal weight is missing.

The chiral algebra forms an interesting quasi-topological sector of the (0, 2) model.

Consider the n-point function of Q-closed local operators, O1, · · · , On:

〈
O1(z1, z̄1) · · · On(zn, z̄n)

〉
(2.13)

If one of the local operators, Oi, is Q-exact and written as Oi = {Q,O′
i} for some O′

i,

then the n-point function becomes 〈{Q,O1 · · · O′
i · · · On}〉. Computed with Q-invariant

action and path integral measure, this correlation function becomes the integral of a

“Q-exact form” over the field space and vanishes. The n-point function (2.13) therefore

depends only on the cohomology classes of Oi. In particular, it is a holomorphic (or

more precisely, meromorphic) function of the insertion points

So far, we have considered the chiral algebra of a fixed (0, 2) model described by a

fixed action. A different choice of the action of course leads to a different chiral algebra

in general. Imagine deforming the theory by perturbing the action:

S → S + εS′. (2.14)

For this deformation to preserve the fermionic symmetry generated by Q, the pertur-

bation S′ must be Q-closed. If S′ is Q-exact, on the other hand, then the chiral algebra

of the deformed theory is isomorphic to that of the original theory. This conclusion

is obtained by expressing the matrix elements of Q as path integrals on a cylinder of

infinitesimal length. One can then show that the action of Q in the deformed the-

ory is represented in the original theory by Q + ε[Q,Λ] for some operator Λ. Such a

deformation is equivalent to the conjugation

Q → e−εΛQeεΛ, (2.15)
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under which the chiral algebra is mapped to an isomorphic algebra, with isomorphism

given by O 
→ e−εΛOeεΛ.

In our action the target space metric appears inside a Q-commutator, so any small

change of the metric results in a Q-exact perturbation. Therefore, the chiral algebra is

invariant under deformations of the target space metric that are compatible with the

complex structure. The chiral algebra certainly depends on the complex structure, for

this enters the definition of the supersymmetry transformations.

2.3 Twisting

We have seen that the (0, 2) model action (2.4) is invariant under the supersymmetry

transformation (2.2) if the parameters ε−, ε̄− are antiholomorphic sections of K
−1/2
Σ .

When Σ is topologically nontrivial, however, it is very possible that this bundle does

not admit any global antiholomorphic sections. In such a case the chiral algebras of a

(0, 2) model on Σ, as defined in the previous section, does not exist. But since what we

actually need to construct the chiral algebra is one of the two supercharges, it would be

nice if we could somehow save one in return for giving up the other. This is achieved

by “twisting” the model.

Let us modify the spins of the right-moving fermions, so that ψ+ and ψ̄+ become a

(0, 1)-form and a scalar on Σ. To make this point clear, we rename these fields as

−ψi
+ → ρi

z̄, −iψ̄ı̄
+ → αı̄. (2.16)

From the supersymmetry transformation (2.2), we see that this modification turns Q+

into a (0, 1)-form and Q+ into a scalar. The parameter ε̄− is now a function on Σ, so we

can choose it to be constant. In this way, we obtain the twisted model which possesses a

fermionic charge Q on any Riemann surface Σ. The twisted model has another fermionic

symmetry, generated by Q+, when K−1
Σ admits antiholomorphic sections.

Since we only demand the twisted model to have one scalar fermionic charge, Q, we
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can actually formulate them for any hermitian manifold X which may or may not be

Kähler. To do this, we simply introduce fermionic fields

ρ ∈ Γ(KΣ ⊗ φ∗TX), α ∈ Γ(φ∗TX), (2.17)

and define the action of Q by

[Q, φi] = 0, [Q, φı̄] = αı̄,

{Q, ρi
z̄} = −∂z̄φ

i, {Q, αı̄} = 0.

(2.18)

Then the twisted model with worldsheet Σ and target space X equipped with metric g

is by definition the theory described by the action

S =
∫

Σ
d2z{Q,−gij̄ρ

i
z̄∂zφ

j̄} +
∫

Σ
φ∗B. (2.19)

When X is Kähler and g is a Kähler metric, this theory is obtained by twisting the

corresponding (0, 2) model and setting ρi
z̄ = −ψi

+ and αı̄ = −iψ̄ı̄
+. If K

1/2
Σ is moreover

trivial, the two models are equivalent because the twisting does nothing in that case.

To understand the effect of the twisting on the chiral algebra, let us first introduce

some terminology. We say that a local operator O has dimension (n, m) if O(0) inserted

at the origin transforms under a rescaling z → λz, z̄ → λ̄z̄ as

O(0) → λ−nλ̄−mO(0). (2.20)

The integers n and m are the holomorphic and antiholomorphic dimensions of O, re-

spectively. Thus, a local operator of dimension (n, m) transforms like ∂n
z ∂m

z̄ . Classically,

our (0, 2) models are conformally invariant and the space of local operators is graded

by dimension, as well as R-charge.

After the twisting, Q generates a global fermionic symmetry that commutes with
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conformal transformations. Classically the latter are also symmetries, so their genera-

tor, the energy-momentum tensor, should commutes with Q. Indeed, we have

Tzz = gij̄∂zφ
i∂zφ

j̄,

Tz̄z̄ = gij̄∂z̄φ
i∂z̄φ

j̄ + gij̄ρ
i
z̄Dz̄α

j̄,

Tzz̄ = Tz̄z = 0,

(2.21)

and these are all Q-closed with the equation of motion Dzα
j̄ = 0. Thus, classically

conformal transformations act naturally on the chiral algebra. It follows in particular

that the classical chiral algebra is graded by dimension.

In fact, Tz̄z̄ is not just Q-closed; it is actually Q-exact since we can rewrite it as

Tz̄z̄ = {Q,−gij̄ρ
i
z̄∂z̄φ

j̄}. This is an important feature of the twisted model that is a

consequence of the fact that the infinitesimal diffeomorphism z 
→ z + εvz(z, z̄) almost

commutes with the fermionic symmetry, but fails by a quantity involving ∂z̄v
z and not

∂z̄v
z̄, ∂zv

z, or ∂zv
z̄. So, as far as the computations of Tzz̄, Tz̄z and Tz̄z̄ are concerned,

we may treat the diffeomorphism as though it commutes with Q and take the variation

of the action under it inside the Q-commutator.

The Q-exactness of Tz̄z̄ means that antiholomorphic reparametrizations act trivially

on the chiral algebra. Especially, the antiholomorphic rescaling z̄ → λ̄z̄ leaves cohomol-

ogy classes invariant. Since this acts on the cohomology class represented by a Q-closed

local operator O of dimension (n, m) by [O(0)] 
→ λ̄−m[O(0)], we must have [O] = 0

unless m = 0. Therefore, the chiral algebra of the twisted model is classically supported

by Q-closed local operators of dimensions (n, 0) with nonnegative integers n.

Quantum mechanically, the action gets renormalized and the energy-momentum

tensor receive corrections. As is well known [33, 34, 35], the conformal invariance is

broken and Tzz̄ is no longer zero if the Ricci curvature of the target space is nonzero.

Still, Tzz̄ and Tz̄z̄ remain Q-exact at the level of perturbation theory. The reason is that

the perturbative renormalization of the twisted model can be done while preserving the

fermionic symmetry, using counterterms that are Q-closed operators. By rotational
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symmetry, these counterterms have dimension (n, n) with n > 0. Such Q-closed local

operators are actually all Q-exact, as shown in the next section.1

With Tzz̄ and Tz̄z̄ trivial in the chiral algebra, it follows that the chiral algebra is

still supported by Q-closed local operators of dimension (n, 0). Moreover, the grading

by holomorphic dimension is preserved even though the theory may no longer be con-

formally invariant. This is because if a local operator has classically dimension (n, m),

then perturbatively n and m may be shifted, but the spin n−m can only take integers

and hence is protected from small quantum corrections.

Regarding Q as a BRST operator, we have found that the twisted model is pertur-

batively a holomorphic field theory, in which the antiholomorphic degrees of freedom

completely decouple, and characterized by the chiral algebra graded by holomorphic

dimension as well as R-charge. The OPE now takes the form

[Oi(z)] · [Oj(z′)] ∼
∑

k

cij
k[Ok(z′)]

(z − z′)ni+nj−nk
, (2.22)

where [Ok] have holomorphic dimensions nk. Beyond perturbation theory, the grading

by dimension may be broken.

The twisting thus allows us to define the chiral algebras with interesting holomorphic

structure for a larger class of worldsheets and target spaces including those that are not

compatible with (0, 2) supersymmetry. However, there is a price to pay. Twisting the

right-moving fermions amounts to tensoring with K
−1/2
Σ the bundle to which Dz couples.

This changes the anomaly cancellation condition to ch2(X) + c1(Σ)c1(X)/2 = 0, or

1
2
p1(X) =

1
2
c1(X)c1(Σ) = 0. (2.23)

(Here the pullback to Σ×X is implicit in the expression c1(X)c1(Σ).) So the twisting

1Here we have assumed that the counterterms are local operators. When the worldsheet Σ is curved,
however, we need to introduce a metric on it in order to define a meaningful cutoff length. Coupling the
theory to the worldsheet metric gives rise to a counterterm that is proportional to the Ricci curvature
of Σ [35]. In that case, the theory suffers from gravitational and Weyl anomalies due to the asymmetry
in the left- and right-moving central charges [36, 37]. Such c-number anomalies do not affect the action
of Q on operators and hence the chiral algebra.



14

introduces an additional anomaly which requires c1(X)c1(Σ)/2 to vanish. We must

therefore consider worldsheets with c1(Σ) = 0 if the target space has c1(X) �= 0.

2.4 Classical Chiral Algebras and Quantum Corrections

Now let us take a closer look at the chiral algebra of a twisted model. We first consider

the classical chiral algebra, then find possible forms of quantum corrections.

Since ρ and z̄-derivatives of any fields have positive antiholomorphic dimensions,

these do not enter the classical chiral algebra. Furthermore, z-derivatives of α can be

replaced with other fields using the equation of motion Dzα = 0. Thus, a general local

operator of charge q and dimension n can be written, as a sum of operators of the form

O(φ, φ̄)j···k···l̄···m̄···̄ı1···̄ıq∂zφ
j · · · ∂2

zφk · · · ∂zφ
l̄ · · · ∂2

zφm̄ · · ·αı̄1 · · ·αı̄q , (2.24)

with the total number of ∂zs equal to n.

Identifying αı̄ with dφı̄, the local operator (2.24) of charge q and dimension n can

be regarded as a (0, q)-form with values in a certain holomorphic vector bundle V n
X

over X, constructed from the holomorphic tangent bundle TX and its dual T∨
X . For

example, local operators of charge q and dimension zero are of the form Oı̄1···̄ıqαı̄1 · · ·αı̄q ;

thus they are (0, q)-from on X and VX,0 = 1, the trivial bundle. For local operators

of charge q and dimension one, we have two possibilities, Ojı̄1···̄ıq∂zφ
jαı̄1 · · ·αı̄q and

Oj
ı̄1···̄ıqgjk̄∂zφ

k̄αı̄1 · · ·αı̄q ; thus they are (0, q)-forms of VX,1 = TX ⊕ T∨
X . At dimension

two, we have five independent local operators of charge q. We list them in the case of

q = 0: Ojı̄1···̄ıq∂2
zφj , Ojkı̄1···̄ıq∂zφ

j∂zφ
k, Oj

k
ı̄1···̄ıq∂zφ

jgkl̄∂zφ
k̄, Ojk

ı̄1···̄ıqgjl̄∂zφ
l̄gkm̄∂zφ

m̄,

and Oj
ı̄1···̄ıq∂z(gjk̄∂zφ

k̄). Thus VX,2 = TX ⊕T∨
X ⊕S2TX ⊕ (TX ⊗T∨

X)⊕S2T∨
X , where Sk

is the symmetric kth power. In general, V n
X is given by the series

∞∑
n=0

qnVX,n =
∞⊗

k=0

Sqk(TX)
∞⊗
l=0

Sql(T∨
X). (2.25)

Here St(V ) of a vector bundle V is defined by St(V ) = 1 + tV + t2S2V + · · · . We set

VX =
⊕∞

n=0 VX,n and denote by V q
X the space of (0, q) forms with values in VX .
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From the commutation relations (2.18) and the equation of motion Dzα
ı̄ = 0, we

see that Q acts on local operators as the ∂̄-operator. Classically, the qth Q-cohomology

group of local operators of dimension n is therefore isomorphic to the qth Dolbeault

cohomology group Hq

∂̄
(X, VX,n). Therefore, we find

A ∼=
d⊕

q=0

∞⊕
n=0

Hq

∂̄
(X, VX,n) (2.26)

as graded vector spaces.

Quantum mechanically, this classical result is deformed by quantum corrections.

The following two general principles are useful to keep in mind. First, quantum correc-

tions can only destroy—or “lift”—cohomology classes, not create new ones, if the target

space is compact and quantum effects are small enough. Second, quantum corrections

lift cohomology classes in pairs.

Perturbatively, the structure of the chiral algebra is not very much different from the

classical case. The basic property of sigma model perturbation theory is that it is local

on the target space. The short distance singularities in perturbation theory come from

the fluctuations around constant maps. The perturbative renormalization can thus be

performed with the knowledge about the behavior of the theory near each constant

map, in other words, locally at each point on the target space. From the locality, it

follows that Q still acts on VX,n as a differential operator. Therefore, perturbatively

A ∼=
d⊕

q=0

∞⊕
n=0

Hq
Q(X, VX,n), (2.27)

with Q being a deformation of the ∂̄-operator by perturbative corrections.

There is one important consequence of the perturbative corrections. Let us consider

the perturbative action of Q on Tzz. The generator ∂z of holomorphic translations

commutes with Q. Since Tzz̄ is perturbatively Q-exact, we have

[
Q,

∮
dz Tzz +

∮
dz̄ Tzz̄

]
=

∮
dz[Q, Tzz] = 0, (2.28)
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which implies that [Q, Tzz] = ∂zθ for some θ. The conservation of R-charge, dimension,

the power counting on the target space, and the requirement that ∂zθ be Q-closed leave

only one possibility at one loop:

θ ∝ Rij̄∂zφ
iαj̄. (2.29)

Thus we expect that the perturbative corrections destroy Tzz by making it no longer

Q-closed, while lift ∂zθ by making it Q-exact. If c1(X) = 0, then θ is Q-exact and we

can modify Tzz to retain a Q-closed energy-momentum tensor. But if c1(X) �= 0, there

is no way to remove this conformal anomaly. So the perturbative chiral algebra is a

little exotic in this case: it is like the chiral algebra of a conformal field theory, but one

without an energy-momentum tensor! We will show in Chapter 3 that perturbatively

[Q, Tzz] is indeed given by a nonzero multiple of ∂z(Rij̄∂zφ
iαj̄). This reflects the one-

loop beta function that is proportional to the Ricci curvature of the target space.

Nonperturbatively, the physics is no longer local on the target space. This leaves the

possibility of more radical deformations to the chiral algebra. To assert what kind of

deformations are possible, we first need to discuss where the nonperturbative corrections

come from. We will do so in the next section, but before that, let me explain why the

two principles that we have stated above are true.

First of all, notice that similar principles hold for the space of supersymmetric states.

If the target space is compact, there is a finite gap between the smallest eigenvalue of

the laplacian {Q, Q†} = H − P and zero. Thus, small quantum effects cannot push

nonsupersymmetric states with H − P > 0 down to H − P = 0, but can only lift

supersymmetric states by giving them a very small H − P . Also, nonsupersymmetric

states come always in boson-fermion pairs related by the supercharges. So whenever

an approximate supersymmetric state is lifted by quantum corrections, there should be

another of opposite statistics that is lifted together.

For the chiral algebra, the argument for the first principle goes as follows. Classi-

cally, the theory is conformally invariant and there is actually an isomorphism between
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the Q-cohomology of local operators and the space of supersymmetric states via the

state-operator correspondence. For a local operator to represent a nonzero cohomology

class after small quantum corrections are included, to begin with it must be very close

to successfully representing a nonzero cohomology class classically. Then, the corre-

sponding classical state must have very small H −P . However, this is impossible if the

target space is compact.

The argument for the second principle is a bit longer. Let us represent the quantum-

corrected action of Q by the operator Q + εQ′ in the classical theory. Here ε is a

small parameter that controls the strength of quantum effects. For (Q + εQ′)2 to be

zero, {Q, Q′} = 0. Suppose that O is a local operator that is Q-closed but not Q-

exact, and let us see what happens when the Q-cohomology class [O] is lifted by the

quantum corrections. (In what follows {Q,O} denotes commutator if O is bosonic and

anticommutator if O is fermionic.)

First, suppose that O is not (Q+ εQ′)-closed, and one cannot find a correction that

makes it (Q + εQ′)-closed. Then {Q′,O} is Q-closed since O is Q-closed. Further, it is

not Q-exact. For if {Q′,O} = −{Q,O′} for some O′, then {Q+εQ′,O+εO′} = 0, but by

assumption such O′ does not exist. Thus {Q′,O} represents a nontrivial Q-cohomology

class. However, {Q′,O} = {Q + εQ′, ε−1O}, so {Q′,O} is (Q + εQ′)-exact.

Next, suppose that one can find a correction O′ such that O+εO′ is (Q+εQ′)-closed,

but the corrected operator is (Q + εQ′)-exact. Then O + εO′ = {Q + εQ′, ε−1O′′} for

some Q-closed O′′ such that O = {Q′,O′′}. As O is not Q-exact by assumption, O′′

is not Q-exact either. Thus O′′ represents a nontrivial Q-cohomology class. However,

{Q + εQ′,O′′} = εO, so O′′ is not (Q + εQ′)-closed. Moreover, one cannot find a

correction that makes it (Q + εQ′)-closed because, again, O is not Q-exact.

The above argument shows that whenever a Q-cohomology class [O] gets lifted

by quantum corrections, either becoming no longer Q-closed or Q-exact, there is the

associated Q-cohomology class, [{Q′,O}] or [O′′], which also gets lifted but by the other
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way. This demonstrates the second principle.

2.5 Localization

The chiral algebra has an important property that follows from the invariance under

deformations of the target space metric: it receives contributions only from instantons

and fluctuations around them.

In a theory with a fermionic charge Q, instantons are bosonic field configurations at

which the fermionic fields become Q-invariant. In our case, Q = Q+ and the instanton

equation reads

{Q, ψi
+} = ∂z̄φ

i = 0. (2.30)

Thus, instantons are holomorphic maps from Σ to X. The space M of such maps is

called the instanton moduli space. The above property of the chiral algebra can then

be stated that the path integral computation of the chiral algebra localizes to M. The

reason that this localization takes place is that we can compute the chiral algebra in

the limit where the volume of the target space is very large. But in the large volume

limit, any path integral localizes to the zeros of the bosonic action

∫
Σ

d2z gij̄∂z̄φ
i∂zφ

j̄, (2.31)

hence to holomorphic maps. This localization principle is what makes the chiral algebra

effectively computable.

Incidentally, there is another situation in which this localization applies: when the

path integral computes the correlation function of Q-closed operators [3]. In this case

the localization occurs because, in essence, away from M one can use the fermionic

symmetry to set one of the fermionic fields to zero. Then the operators in the correlation

function become independent of this fermionic field and the integration over it vanishes.

This situation is not really relevant for us right now, though—we would like to ask, in

the first place, whether a given local operator is Q-closed or not!
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To keep track of the order of instanton contributions, we set the real part of the

B-field to the Kähler form ω and assume for simplicity that it is normalized such that

∫
Σ

φ∗B = kt (2.32)

for integers k ≥ 0. We label the components of instanton moduli space M by their

degree. The k-instanton moduli space Mk is the space of instantons of degree k.

Correlation functions now decompose into different instanton sectors:

〈. . .〉 =
∞∑

k=0

e−kt〈. . .〉k. (2.33)

Correspondingly, any operator A can be expanded in the instanton weight:

A =
∞∑

k=0

e−ktAk. (2.34)

Sigma model perturbation theory is the zero-instanton approximation. Instantons of

degree zero are constant maps, and their moduli space M0
∼= X.

Instantons are closely related to the anomaly of R-symmetry. We can see this by

constructing the path integral measure for the right-moving fermions.

The fermionic fields ψ+ and ψ̄+ are sections of K
1/2
Σ ⊗ φ∗TX and K

1/2
Σ ⊗ φ∗TX ,

respectively, hence in order to define the fermionic path integral measure, we must

introduce local frames on these bundles. This can be done by expanding the fermions

in the eigenmodes of the laplacians as

ψ+(z, z̄;φ) =
∑

s

bs
0v0,s(z, z̄;φ) +

∑
n

bα
nvn,α(z, z̄;φ),

ψ̄+(z, z̄;φ) =
∑

r

cr
0ū0,r(z, z̄;φ) +

∑
n

cα
nūn,α(z, z̄;φ),

(2.35)

where ū0,r, v0,s are zero modes, ūn,α, vn,α are nonzero modes, and bs
0, cr

0, bn, cn are

grassmannian variables. The measure is then defined by the formal product

∏
r,s,n,α

dbs
0dcr

0dbndcn. (2.36)

Because of the paring of nonzero modes, the nonzero mode part of the fermionic

path integral measure (2.36) is neutral under the R-symmetry. On the other hand, the



20

zero mode part has charge equal to the number of ψ+ zero modes v0,s minus the number

of ψ̄+ zero modes ū0,r, that is, minus of the index of the ∂̄-operator twisted by φ∗TX .

On a compact Riemann surface Σ, the index is given by

∫
Σ

φ∗c1(X). (2.37)

Therefore, R-symmetry is anomalous if c1(X) �= 0.

Due to this anomaly, the correlation function vanishes in a given instanton sector

unless the total charge of the inserted operators is equal to the quantity (2.37) computed

for maps in that sector. Furthermore, the R-symmetry is broken to the discrete Z2k

symmetry, where 2k is the greatest common divisor of c1(X). (Recall the condition

c1(X) ≡ 0 (mod 2).) As a result, it is possible for two local operators O1 and O2,

whose charges differ by a multiple of 2k, to define the same cohomology class in the full

correlation function. Therefore, the grading of the chiral algebra by R-charge is broken

to a Z2k-grading in the presence of instantons.
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Chapter 3

Perturbative Chiral Algebras

In the previous chapter we have discussed the chiral algebras in general terms. We now

focus on the perturbative approximation to the chiral algebras of the twisted models.

The goal of this chapter is to understand how the perturbative chiral algebras can be

reconstructed, to all orders in perturbation theory, by gluing certain free conformal field

theories over the target spaces.

3.1 Čech–Q Isomorphism

The classical chiral algebra of a twisted model with target space X is given by the Dol-

beault cohomology of the holomorphic vector bundle VX over X, which is the direct sum

of the bundles VX,n appearing in the series (2.25). The Čech–Dolbeault isomorphism

states that we have

Hq

∂̄
(X, VX) ∼= Ȟq(X,D∂̄

X), (3.1)

where D∂̄
X is the sheaf of holomorphic sections of VX . Classically, the Čech–Dolbeault

isomorphism therefore provides an alternative formulation of the chiral algebra.

Perturbatively, Q acts on sections of VX as a deformation of the ∂̄-operator. It

is then plausible that we can furnish a similar sheaf-theoretic interpretation of the

perturbative chiral algebras, via an isomorphism

Hq
Q(X, VX) ∼= Ȟq(X,DQ

X) (3.2)

between the perturbative Q-cohomology of local operators and the cohomology of the
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sheaf DQ
X of perturbatively Q-closed sections of VX . Does such a perturbative “Čech–Q

isomorphism” exist?

To answer this question, we recall two key ingredients in the proof of the Čech–

Dolbeault isomorphism: the ∂̄-Poincaré lemma and the fact that Hp(X,Vq
X) = 0 for

all p > 0, where Vq
X are the sheaves of (0, q)-forms of VX . We now argue that these

properties of the sheaf of local operators carry over to the perturbative case.

First, we note that the ∂̄-Poincaré lemma can be formulated as the vanishing of

the higher cohomology groups on a topologically trivial open set; in other words,

Hq

∂̄
(Cd, VX) = 0 for q > 0. We need here the Q-Poincaré lemma, Hq

Q(Cd, VX) = 0

for q > 0. This follows immediately from the general principle that quantum correc-

tions can only destroy, and never create, cohomology classes.

As for the assertion that Hp(X,Vq
X) vanish for all p > 0, this relies on the existence

of a partition of unity. Suppose that we have a “classical” partition of unity {ρα}

subordinate to an open cover {Uα}, so that
∑

α ρα(φ, φ̄) = 1. Quantum mechanically,

we must renormalize the composite operators ρα, but if we do this consistently, then

the resulting operators should add up to unity again. This gives a “quantum” partition

of unity.

The perturbative Čech–Q isomorphism (3.2) can now be established by imitating

the proof of the Čech–Dolbeault isomorphism. First, the Q-Poincaré lemma yields the

short exact sequence of sheaves

0 −→ DQ,q−1
X −→ Vq−1

X

Q−→ DQ,q
X −→ 0, (3.3)

where DQ,q
X are the sheaves of perturbatively Q-clsoed (0, q)-forms of VX . This in turn
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induces the long exact sequence of cohomology:

0 −→ H0(X,DQ,q−1
X ) −→ H0(X,Vq−1

X ) −→ H0(X,DQ,q
X )

−→ H1(X,DQ,q−1
X ) −→ H1(X,Vq−1

X ) −→ H1(X,DQ,q
X ) −→ · · ·

...

−→ Hp(X,DQ,q−1
X ) −→ Hp(X,Vq−1

X ) −→ Hp(X,DQ,q
X ) −→ · · · .

(3.4)

Now, since Hp(X,Vq
X) = 0 for p > 0, the long exact sequence produces a chain of

isomorphisms:

Hq(X,DQ
X) ∼= Hq−1(X,DQ,1

X )

...

∼= H1(X,DQ,q−1
X )

∼= H0(X,DQ,q
X )/QH0(X,Vq−1

X ).

(3.5)

Therefore, Hq(X,DQ
X) ∼= Hq

Q(X,VX).

3.2 Chiral Algebras from Free Theories

Although we have established the Čech–Q isomorphism, this is not quite the end of

the story. For the computation of the Čech cohomology groups Hq(X,DQ
X), we need to

know what the sections of DQ
X look like, which are by definition Q-closed local operators

of charge zero. Classically, they are simply holomorphic sections of the holomorphic

vector bundles VX . However, the perturbative corrections to the classical action of Q

can be quite intricate.

To circumvent this problem, we adopt a different strategy: instead of defining the

sheaves DQ
X using the perturbative action of Q, we define them through isomorphic

sheaves obtained by gluing free theories patch by patch over the target space. We

now explain how one can reconstruct the Q-cohomology in this way, to all orders of

perturbation theory.
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Choose an open cover {Uα} of X such that Uα
∼= C

d. The crucial observation is

the following: over each topologically trivial open set Uα, one can deform the theory to

make it locally free without affecting the Q-cohomology. Specifically, one flattens the

target space metric and deforms the two-form gauge field to zero over Uα. Under such

a deformation, the action of Q changes by conjugation, Q → eΛαQe−Λα . Let Q̃α be the

restriction of this deformed supercharge to Uα.

With respect to some local trivializations, the holomorphic vector bundle VX is de-

scribed by holomorphic transition functions fαβ . We consider new transition functions

f̃αβ = eΛαfαβe−Λb . The bundle ṼX constructed using f̃αβ is isomorphic to VX . Fur-

thermore, the operators Q̃α glue consistently to define a differential operator Q̃ acting

on the sections of Ṽh. It is clear from the construction that the sheaf Dch
X of Q̃-closed

sections of ṼX is isomorphic to DQ
X under the isomorphism ṼX

∼= VX . In particular, we

have an isomorphism between their cohomology:

Hq(X,DQ
X) ∼= Hq(X,Dch

X ). (3.6)

Thus, the Q-cohomology is isomorphic to the Čech cohomology of the sheaves Dch
X .

It may seem that all we have done is just relabeling various objects. The point is

that the action of Q̃ is determined locally by a free theory. We know how it acts on

local operators exactly—it is just the ∂̄-operator!

The sections of Dch
X are easy to describe locally. They are holomorphic local sections

of VX , hence do not depend on φ̄. If we introduce the bosonic fields β of dimension one

and γ of dimension zero by

βi = δij̄∂zφ̄
j̄, γi = φi, (3.7)

then such local operators are functions of β, γ, and their derivatives. Their dynamics

are governed by the free, chiral, conformal field theory with action

S =
1
2π

∫
Σ

d2zβi∂z̄γ
i, (3.8)
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called the free βγ system. The action yields the OPE

βi(z)γj(w) ∼ − δj
i

z − w
, (3.9)

with the ββ and γγ OPEs being regular. The sheaf Dch
X of local operators of free βγ

systems is known as the sheaf of chiral differential operators [38, 13]. Therefore, we

have found that the Q-cohomology of a (0, 2) sigma with target space X is given by

the cohomology of a sheaf of chiral differential operators on X.

We emphasize that this result is exact in perturbation theory because free βγ sys-

tems, being free, do not receive perturbative corrections. The perturbative corrections

are now encoded in the transition functions f̃αβ , which describe how these βγ systems

are to be glued together.

So the question is, what transition functions should we use? Of course, they are

fixed up to isomorphisms once the theory is formulated globally, as it fixes the original

sheaves DQ
X . But as we mentioned already, the problem is that it can be hard to

determine DQ
X in the first place, because doing so requires detailed knowledge of the

perturbative corrections. Still, we can start with the local descriptions by βγ systems

and glue them with various choices of the transition functions. We are then effectively

parametrizing the moduli of the chiral algebra by the way this gluing is done.

The guiding principle in finding a consistent set of transition functions is as follows.

Perturbatively, the path integral measure is constructed by gluing local measures over

the zero-instanton moduli space M0
∼= X, in such a way that the gluing preserves the

OPE structure, R-charge, and scaling dimension across patches. The same must be

true of the free theory description. In other words, the gluing must be done using the

symmetries of the βγ system that commute with charge and dimension, hence generated

by currents of charge zero and dimension one.
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For example, the current JV = −V iβi for a holomorphic vector field V has appro-

priate charge and dimension. The OPE between JV and γ is

JV (z)γi(w) ∼ V i(w)
z − w

. (3.10)

Thus JV generates the infinitesimal diffeomorphism δγ = V . On β, it acts by

JV (z)βi(w) ∼ −(∂iV
jβj)(w)

z − w
, (3.11)

which means that classically β transforms as a (1, 0)-form under this diffeomorphism.

Quantum mechanically, the expression ∂iV
iβj must be regularized and there is a cor-

rection to the transformation law.

If we have a holomorphic one-form B, then we can also make JB = Bi∂zγ
i. This

acts on β only, with the OPE

JB(z)βi(w) ∼ − Bi(w)
(z − w)2

+
(Cij∂wγj)(w)

z − w
, (3.12)

where C = ∂B. The corresponding charge vanishes if B is ∂-exact. The target space

of the free βγ system being topologically trivial, B is ∂-exact if and only if C = 0, and

for any closed holomorphic two-form C, there is a holomorphic one-form B such that

C = ∂B. The symmetries of this type are thus in one-to-one correspondence with the

closed holomorphic two-forms.

Now, the transition functions f̃αβ can be constructed by choosing a holomorphic

vector field Vαβ and a closed holomorphic two-form Cαβ on each overlap Ua ∩ Ub,

finding holomorphic one-forms Bαβ such that Cαβ = ∂Bαβ , and setting

f̃αβ = exp
(
−

∮
dz V i

αββi +
∮

dz Bαβ,i∂zγ
i
)
. (3.13)

For the gluing to be consistent, the transition functions must satisfy f̃αβ f̃bcf̃ca = 1 on

triple overlaps Uα ∩ Uβ ∩ Uγ . In terms of Vαβ and Cαβ , this condition reads

Vαβ + Vβγ + Vγα = Cαβ + Cβγ + Cγα = 0; (3.14)
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that is to say, Vαβ and Cαβ must satisfy the cocycle condition of Čech cohomology.

The vector field parts of the transition functions determine how the Uαs are glued

together into the target space X, whereas the one-form parts determine the other moduli

of the chiral algebra. Since the latter leave γ invariant, the dimension zero subspace of

the chiral algebra receive no perturbative corrections, except for possible deformations

of the classical complex structure of the target space.

The choice of the transition functions is not unique. Suppose that we choose a dif-

ferent set of holomorphic vector fields, say V ′
αβ . For this new choice to give a consistent

gluing, the difference V ′
αβ − Vαβ must satisfy the cocycle condition, too. Moreover,

if V ′
αβ − Vαβ = Wα − Wβ for some holomorphic vector fields Wα on Uα and Wβ on

Uβ, then the change just amounts to acting Dch
X (Uα) with transformations generated

by Wα. Thus, different ways of choosing Vαβ that lead to distinguished sheaves are

parametrized by elements of the first cohomology group H1(X, TX) of the sheaf TX

of holomorphic vector fields on X. This is the space of deformations of the complex

structure on X.

Similarly, the different ways of choosing Cαβ are parametrized by elements of the

cohomology group H1(X,Ω2,cl
X ), where Ω2,cl

X denotes the sheaf of closed holomorphic

two-forms on X. To understand what this space represent, consider a locally defined

(2, 0)-form T . If we define H = dT , then H is a locally defined closed form of type

(3, 0)⊕ (2, 1). Conversely, for any local closed form H of type (3, 0)⊕ (2, 1), we can find

a local (2, 0)-form T such that H = dT .1 Thus we have the short exact sequence

0 −→ Ω2,cl
X −→ A2,0

X
d−→ Z3,0

X ⊕Z2,1
X −→ 0, (3.15)

where Ap,q
X and Zp,q

X are respectively the sheaves of (p, q)-forms and closed (p, q)-forms

on X. Since Hp(X,A2,0
X ) = 0 for p > 0, the long exact sequence of cohomology implies

H1(X,Ω2,cl
X ) ∼= H0(X,Z3,0

X ⊕Z2,1
X )/dH0(X,A2,0

X ). (3.16)

1By the Poincaré lemma, locally H = d(U + V ) for some (2, 0)-form U and ∂̄-closed (1, 1)-form V .
By the ∂̄-Poincaré lemma, locally V = ∂̄W for some (1, 0)-form W . Then T = U + V − dW .
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This is the space of closed forms H of type (3, 0) ⊕ (2, 1) modulo those that can be

written as dT with T a globally defined (2, 0)-form.

This moduli arises because we could add to our action the classically conformal

invariant Q-closed term

ST =
∫

Σ
d2z{Q, Tijρ

i
z̄∂zφ

j}. (3.17)

This is not necessarily Q-exact because T may not be a globally defined (2, 0)-form, so

can affect the chiral algebra. However, we can subtract a globally defined (2, 0) form

from T to make it locally zero. Under such a deformation, the chiral algebra is left

invariant and the theory becomes locally free. Therefore, this term can be treated—

and necessarily included—in the framework of sheaf of chiral differential operators.

Let us recapitulate what we have discussed so far in this chapter. Classically, the

Q-cohomology is given by Dolbeault cohomology. One can exploit the Čech–Dolbeault

isomorphism to recast it in the language of Čech cohomology. Quantum mechanically,

the action of Q receives quantum corrections and in general, it is hard to capture the

explicit dependence of the Q-cohomology on the moduli of the chiral algebra. Even

though we have the Čech–Q isomorphism perturbatively, this itself does not help to

make the problem tractable since the perturbative corrections enter the very definitions

of the sheaves that are used in the Čech cohomology computations. To proceed, we

use the fact that sheaf theory is local in nature and deform the theory to make it free

locally on the target. The Q-cohomology can then be reconstructed by gluing free βγ

systems over the target space, while the moduli of the chiral algebra is now encoded in

the way this gluing is done.

3.3 CP
1 Model

To illustrate the use of the sheaf of chiral differential operators, and also to prepare

for the discussion in Chapter 4, let us compute the perturbative chiral algebra of the
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twisted model with target space X = CP
1 for the first few dimensions.

Recall that quantum corrections can only destroy cohomology classes. Hence, if we

wish to understand the perturbative chiral algebra, we should first know the classi-

cal chiral algebra. The classical chiral algebra of the CP
1 model can be summarized

concisely by the following formula for the Hodge numbers:

h0(O(n)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n + 1 (n ≥ 0);

0 (n ≤ −1),

h1(O(n)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (n ≥ −1);

−n − 1 (n ≤ −2).

(3.18)

Here O(k) is the line bundle over CP
1 whose first Chern class is equal to k; thus

TX = O(2) and T∨
X = O(−2). Let us see how perturbative corrections modify these

classical conditions, using the tool developed in the previous section.

Let N and S be the “north” and “south” poles of X, respectively. Then X is covered

by {UN , US}, where UN = X \ {S} and US = X \ {N}. We put the βγ system on US

and the β′γ′ system on UN , related to each other by

γ′ =
1
γ

. (3.19)

Since H1
∂̄
(X, TX) = H1(X,Ω2,cl

X ) = 0, this is essentially the only way to glue the two

systems.

Classically, β transforms as β′ = −γ2β, but we need to regularize this expression.

A nice thing about dealing with a free theory is that the regularization of composite

operators is readily performed. We will use conformal normal ordering:

γ2β(z) = lim
w→z

(
γ2(w)β(z) − 2γ(w)

w − z

)
. (3.20)

The quantum transformation law for β that is compatible with this regularization is

β′ = −γ2β + 2∂zγ. (3.21)

The anomalous term 2∂zγ ensures the transformations (3.19) and (3.21) to preserve the

OPEs; without it, the β′β′ OPE is not zero.
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We first look at the zeroth cohomology A0. Since these are given by zeroth Čech

cohomology groups, cohomology classes are represented by global sections the sheaf of

chiral differential operators on X.

In dimension zero, the relevant local operators are holomorphic functions. Since

a holomorphic function on a compact manifold must be constant, the dimension zero

subspace of A0 is one-dimensional and generated by the constant operator 1.

In dimension one, the possible local operators are those of the form B(γ)∂zγ and

V (γ)β, where B is a holomorphic one-form and V is a holomorphic vector field. Since

global holomorphic one-forms do not exist on CP
1, there are no cohomology classes of

the former type. On the other hand, we have three independent holomorphic vector

fields, ∂, γ∂, and γ2∂. Corresponding to these, classically there are three cohomology

classes represented by the local operators. These survive to the perturbative chiral

algebra, with the quantum counterparts being

J− = β = −γ′2β′ + 2∂zγ
′,

J3 = −γβ = −γ′β′,

J+ = −γ2β + 2∂zγ = β′,

(3.22)

generating the current algebra of SL(2) at level −2:

J3(z)J3(w) ∼ − 1
(z − w)2

,

J3(z)J±(w) ∼ ± J±(w)
(z − w)2

,

J+(z)J−(w) ∼ − 2
(z − w)2

+
2J3

z − w
.

(3.23)

That the perturbative chiral algebra has these currents is a reflection of the fact that

the target space admits an SL(2)-action; in fact, CP
1 is the flag manifold of SL(2).

Next, we consider the first cohomology A1. The first Čech cohomology groups are

generated by the sections of Dch
X (US ∩ UN ) that cannot be written as a difference of

sections of Dch
X (US) and Dch

X (UN ). Such sections can be regarded as global sections of

Dch
X with poles at S and N . We need poles at both S and N ; otherwise the sections
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can be considered as well-defined sections of Dch
X (US) or Dch

X (UN ) and hence vanishes

in the cohomology.

In dimension zero, we already have h1(O(0)) = 0 classically, thus the dimension

zero subspace of A1 is zero. In the Čech language, this means that we can always split

a holomorphic function f with poles at S and N into holomorphic functions fS with a

pole at N and fN with a pole at S.

In dimension one, we can try operators of the form β/γn having poles at S. However,

they are all regular at N . The other possibilities are operators of the form ∂zγ/γn.

Requiring that they have poles at N , we find that only ∂zγ/γ can represent a nontrivial

cohomology class. Indeed, it does. Dimension one sections of Dch
X (US∩UN ) are currents

used to glue the βγ and β′γ′ systems, so the sheaf of chiral differential operators would

be trivial if none of them represents a cohomology class. Thus, the dimension one

subspace of A1 is one-dimensional and generated by [{∂zγ/γ}].

In dimension two, the sections with poles at both N and S are ∂2
zγ/γ, ∂2

zγ/γ2,

(∂zγ)2/γ, (∂zγ)2/γ2, and (∂zγ)2/γ3. The last one does not lead to an independent

cohomology class since we have the relation

∂2
zγ′ = −∂2

zγ

γ2
+

2(∂zγ)2

γ3
. (3.24)

This is consistent with the Hodge numbers h1(O(−2)) = 1 and h1(O(−4)) = 3.

The perturbative corrections induce another relation. Consider the energy-momentum

tensor of the βγ system

TS(z) = (β∂zγ)(z) = lim
w→z

(
β(w)∂zγ(z) − 1

(w − z)2
)

(3.25)

and that of the β′γ′ system TN = β′∂zγ
′. A straightforward computation shows

TN − TS = −2∂z

(∂zγ

γ

)
(3.26)

on UN ∩ US . Hence, the cocycle −2∂z(∂zγ/γ) vanishes in the cohomology. This is the

Čech cohomology counterpart of the relation [Q, Tzz] = ∂zθ, the existence of which was

argued in Section 2.2.
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There are no other perturbative relations that lift classical cohomology classes, so

the dimension two subspace of A1 is three-dimensional. Using the cohomology classes

obtained already, we can construct three classes: [J−θ], [J3θ], and [J+θ].

We have shown that the dimension zero subspace of A0 is generated by [1] and the

dimension one subspace of A1 is generated by [θ], while the dimension one subspace of

A0 is generated by [J−], [J3], [J+] and the dimension two subspace of A1 is generated

by [J−θ], [J3θ], [J+θ]. Therefore, up to the first two nontrivial dimensions, we have

found the isomorphism A0 ∼= A1 induced by the map 1 
→ θ. It has been shown [38]

that this isomorphism persists in higher dimensions as well.

3.4 Target Spaces with Nonzero First Chern Class

Next, let us consider the target space X with nonzero first Chern class, c1(X) �= 0. We

would like to see if there is anything in the perturbative chiral algebra that is associated

with c1(X). This example will also be relevant for the discussion in Chapter 4,

Let {Uα} be a good cover of X; thus, all nonempty finite intersections of the open

sets Uα are diffeomorphic to C
d. Choose holomorphic transition functions fαβ of the

canonical bundle KX on the overlaps Uα ∩ Uβ. On triple overlaps Uα ∩ Uβ ∩ Uγ , the

transition functions satisfy

δfαβγ = fβγfγαfαβ = 1. (3.27)

Thus {fαβ} defines a cohomology class in H1(X,O×
X), where O×

X is the sheaf of nowhere

vanishing holomorphic functions on X. This is mapped to the first Chern class c1(X)

under the homomorphism H1(X,O×
X) → H2(X, Z) induced by the short exact sequence

0 −→ Z −→ OX −→ O×
X −→ 1. (3.28)

The map Z → OX is the inclusion and OX → O×
X is given by f 
→ exp(2πif).

To obtain a cohomology class in the chiral algebra, we map fαβ 
→ log fαβ . Naively,

it seems that the right-hand side of the cocycle condition (3.27) is mapped to 0 and
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{log fαβ} defines a cocycle for the chiral algebra. However, due to the nontrivial topol-

ogy of the manifold we only have

δ log fαβγ = log fbc + log fca + log fαβ ∈ 2πiZ. (3.29)

In fact, {δ log fαβγ} is a cocycle representing c1(X). So we make use of an additional

degree of freedom: the worldsheet. We differentiate this equation by z and set

θαβ =
1
2
∂z log fαβ =

1
2
f−1

αβ ∂zfαβ . (3.30)

Now {θαβ} represents a cohomology class of charge one and dimension one.

Let us find a representative of [{θαβ}] in the sigma model. First, we note that θαβ

can be written as θαβ = Wβ − Wα, where Wα is the quantity

W =
1
2
∂zφ

i∂i log det |gij̄| (3.31)

computed in Uα. This does not mean that {θαβ} is trivial in Čech cohomology since

Wα are not holomorphic. Rather, Wα transform by holomorphic transition functions.

Thus, ∂̄W is globally well defined and represents an element of H1
∂̄
(X,F1), and this is

the desired cohomology class. Using the formula Rij̄ = −∂i∂̄ j̄ log det |gij̄|, we find

∂̄W =
1
2
Rij̄∂zφ

iαj̄. (3.32)

It is indeed a local operator of charge one and dimension one.

Classically, we obtain cohomology classes of higher dimensions by applying ∂z re-

peatedly on this operator. Quantum mechanically, these classes are actually all lifted

because, as we argued in Section 2.3, perturbatively corrections induce the relation

[Q, Tzz] = ∂zθ for some θ ∝ Rij̄∂zφ
iαj̄. Let us look at this phenomenon from the Čech

cohomology perspective.

On each Uα, we put the βαγα system with energy-momentum tensor Tα = βa,i∂zγ
i
α.

The OPE between JV and Tα gives

JV (z)Tα(w) ∼ ∂iV
i(w)

(z − w)3
+

(∂w∂iV
i + V iβi)(w)

(z − w)2
+

1
2

∂2
w(∂iV

i)(w)
z − w

. (3.33)
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We see that Tα is not invariant under the infinitesimal diffeomorphism δγ = εV :

δTα =
ε

2
∂2

z (∂iV
i). (3.34)

The finite form of this transformation is [13]

Tβ − Tα =
1
2
∂2

z log det
∣∣∣∂γi

β

∂γj
α

∣∣∣ = ∂zθαβ . (3.35)

Therefore, we have [Q, Tzz] = ∂zθ with θ = ∂̄W .
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Chapter 4

Nonperturbative Vanishing of Chiral Algebras

We have seen in the previous chapter that, although the perturbative corrections de-

forms the classical chiral algebra, the consequences are relatively minor. In particular,

the gradings by R-charge and dimension are still preserved in perturbation theory, and

the perturbative chiral algebra of a twisted model can be completely reconstructed from

a sheaf of chiral differential operators.

Nonperturbatively, however, instantons violate R-charge if the target space X has

c1(X) �= 0, and also the grading by dimension. These properties of instantons make it

possible for them to induce more radical deformations. In this chapter, we will see a

particularly striking example of such a nonperturbative deformation: instantons lift all

of the cohomology classes and, therefore, the chiral algebra vanishes nonperturbatively.

4.1 Vanishing Chiral Algebras

To begin, let us discuss the general mechanism that renders a chiral algebra trivial.

The starting point is the following observation: the chiral algebra is trivial if and only

if there exists a local operator Θ such that

{Q,Θ} = 1, (4.1)

in other words, if and only if [1] = 0. For if [1] = 0, then [O] = [1] · [O] = 0 · [O] = 0.

Conversely, if [O] = 0 for all Q-closed local operator O, then [1] = 0 in particular.

The relation (4.1) cannot be induced by perturbative corrections. To see this, note

that for this relation to hold Θ must have perturbatively charge −1 because R-symmetry
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is not broken perturbatively. Then, Θ must contain at least one ρ and hence have pos-

itive antiholomorphic dimension, but since scaling dimension is perturbatively not vio-

lated either, {Q,Θ} cannot be equal to 1. Therefore, the vanishing of the chiral algebra,

if occurs, is a purely nonperturbative phenomenon induced by worldsheet instantons.

Even nonperturbatively, the relation (4.1) is impossible if c1(X) = 0. In this case,

R-symmetry is conserved and thus Θ has charge −1. Furthermore, Θ must be perturba-

tively Q-closed since the vanishing can occur only nonperturbatively. Then, Θ must be

perturbatively Q-exact because it has positive antiholomorphic dimension. However, we

know that quantum corrections lift cohomology class in pairs, so this is a contradiction:

[1] cannot be paired with [Θ], which is already zero.

The same line of reasoning leads to the conclusion that there must be an isomor-

phism between the bosonic and fermionic subspaces of the perturbative chiral algebras.

For each perturbative cohomology classes must be paired with some other class with

different statistics.

4.2 CP
1 Model

The simplest example of a vanishing chiral algebra is provided by the twisted model

with target space X = CP
1. Since c1(CP

1) = 2, R-symmetry is anomalously broken

to Z2 nonperturbatively in this model, with the charge violation given by −2k at the

k-instanton level. The twisted model exists when the worldsheet Σ has c1(Σ) = 0, or

equivalently, the canonical bundle KΣ is trivial. We choose K
1/2
Σ to be trivial so that

the twisted and untwsited models are isomorphic, with isomorphism given by tensoring

the fermionic fields by a nowhere vanishing section of K
1/2
Σ .

The perturbative chiral algebra of the CP
1 model was studied in Section 3.3. As we

saw there, its bosonic and fermionic subspaces are isomorphic in an interesting way: the

cohomology classes [1] and [θ] play the role of “ground states” of the chiral algebra, on
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which the other cohomology classes are constructed by acting with the “creation opera-

tors,” which are the bosonic cohomology classes. In view of this suggestive isomorphism

and the R-charge violation, one may expect that degree one instantons “tunnel” from

[θ] to [1], thereby lifting these perturbative cohomology classes out of the chiral algebra.

This is indeed the case.

We now show, to leading order in perturbation theory around degree one instantons,

that the action of Q on θ induces the nonperturbative relation

{Q, θ} = e−t(s · 1 + Q-exact local operator). (4.2)

Here s is a nowhere vanishing section of KΣ. The operators on the two sides have dif-

ferent dimensions; such a relation is possible nonperturbatively since instantons violate

scaling dimension. It follows that {Q,Θ} = 1 with Θ = ets−1θ+ · · · . The chiral algebra

of the CP
1 model therefore vanishes nonperturbatively.

If the relation (4.2) does exist, then the same relation should hold with θ replaced

by any local operator representing the perturbative cohomology class [θ]. This is simply

because, in doing so, the right-hand side will differ by a Q-exact operator that vanishes

perturbatively (thus at least of order e−t). By the same token, if this relation holds

for some representative, then it should also hold for θ. Our strategy is then to pick a

representative on which the action of Q takes a particularly simple form. We will call

this representative θ∞.

For definiteness, we consider the case where Σ is the cylinder S1 × R described by

a holomorphic coordinate w. The action of Q on θ∞ can be read off from the matrix

elements of {Q, θ∞} inserted at w = 0:

〈Ψj |{Q, θ∞(0)}|Ψi〉. (4.3)

To compute such matrix elements, we propagate the states to the far future and the

far past, at the same time rescaling them to cancel the exponential factors from the

evolution operator. Then the matrix elements are represented by path integrals with
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an insertion of the contour integral

∮
dw̄ G(w̄)θ∞(0) (4.4)

of the conserved current G for Q and asymptotic boundary conditions specified by the

initial and final states corresponding respectively to |Ψi〉 and |Ψj〉.

For the purpose of computing the action of Q, it is actually more convenient to

compactify the cylinder to the Riemann sphere Σ̂ = CP
1 by adding points at infinity

and bring them to a finite distance by the conformal map w 
→ z = e−iw. Before we do

this, however, we must untwist the theory because the twisted model with X = CP
1

is anomalous on Σ̂. The initial and final states are then mapped to local operators

inserted at z = 0 and ∞:

〈
Oj(∞)

∮
dz̄ G(z̄)θ∞(1)Oi(0)

〉
. (4.5)

Our theory is not really conformally invariant due to quantum corrections, so there are

actually nonlocal contributions coming from the transformation of the renormalized

action. These can be discarded as far as the leading term of {Q, θ∞} is concerned.

Now that the matrix elements are expressed as correlation functions on the sphere,

we can exploit the approximate conformal symmetry to simplify the problem. Let us

bring the vertex operators close to each other by a conformal transformation, combine

them by OPE, and then go back to the original frame. This replaces the vertex operators

by a sum of local operators of various dimensions located at z = 0. Therefore, the action

of Q on θ∞ is characterized to leading order by the correlation function

〈∮
dz̄ G(z̄)θ∞(1)O(0)

〉
(4.6)

evaluated for an arbitrary local operator O in the presence of degree one instantons.

In the present case, the one-instanton moduli space M1 is the space of biholomor-

phic maps from Σ̂ = CP
1 to X = CP

1, which is isomorphic to the space of Möbius



39

transformations. At φ0 ∈ M1, the complex conjugates of ψ̄+ zero modes are holo-

morphic sections of K
1/2
bΣ

⊗ φ∗
0TX � O(1), while ψ̄+ zero modes can be regarded as

holomorphic (0, 1)-forms of the same bundle. Since h0(O(1)) = 2 and h1(O(1)) = 0,

there are two ψ̄+ zero modes and no ψ+ zero mode in the one-instanton sector. We see

that G and θ∞ contain just the right number of ψ̄+s to soak up the ψ̄+ zero modes. The

correlation function (4.6) can be nonvanishing when O is purely bosonic, as it should

be if the constant part of {Q, θ} is nonzero. It is important here that we have no excess

fermion zero modes; otherwise, we would need to bring down the interaction terms and

the conformal invariance present at leading order would be broken.

Instantons are holomorphic maps, so typical one-instanton contributions are cap-

tured by taking O to be a local operator of the form

Oφ···φφ̄···φ̄(φ, φ̄)
1

k1!
∂k1

z φ · · · 1
kN !

∂kN
z φ

1
l1!

∂l1
z φ̄ · · · 1

lN !
∂lN

z φ̄. (4.7)

In this case, only the “classical” part of O contributes; the correlation function (4.6) is

given, to leading order, by setting φ = φ0 and integrating over the fermion zero modes

and the instanton moduli space:

e−t

∫
dM1 dη1 dη2

∮
dz̄ G(z̄)θ∞(1)O(0)

∣∣∣
φ=φ0

. (4.8)

Here dM1 is the measure on M1, and dη1 dη2 is the measure for the ψ̄+ zero modes. (Of

course, the contour integral must be evaluated before dropping quantum fluctuations.

The appearance of short distance singularities is essential for that!)

Suppose that the integrations over the nonzero modes and fermion zero modes are

done, and we would now like to integrate over the one-instanton moduli space. A

Möbius transformation φ0 ∈ M1 is commonly written as

φ0(z) =
az + b

cz + d
, (4.9)

using complex parameters a, b, c, d such that ad− bc �= 0. This parametrization makes

M1 into the noncompact group PGL(2, C).
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A Möbius transformation can also be specified by the points X0, X1, X∞ ∈ X to

which it maps 0, 1, ∞ ∈ Σ̂. This latter parametrization provides a natural compactifi-

cation of M1 to CP
1 × CP

1 × CP
1 and is more convenient. Using the formula

1
k!

∂k
z φ0(0) = (X0 − X∞)

( X1 − X0

X1 − X∞

)k
, (4.10)

we find that the classical part of O is given by

Oφ···φφ̄···φ̄(X0, X0)(X0 − X∞)N
( X1 − X0

X1 − X∞

)Δ
(X0 − X∞)N

( X1 − X0

X1 − X∞

)Δ
, (4.11)

where (Δ,Δ) is the dimension of O. Apart from the coefficient functions, the correlation

function (4.6) thus depends on the integers ki, li through (N,N) and (Δ,Δ) only.

We can simplify the correlation function by choosing θ∞ neatly. Let us make the

target space metric flat except in the neighborhood of ∞. With this deformation of the

metric, the Ricci curvature becomes zero almost everywhere, but develops a sharp peak

at ∞ with total area 4π. (Recall that the Ricci form represents 2πc1.) We denote this

Ricci curvature by R∞
φφ̄

and set θ∞ = R∞
φφ̄

∂zφα. Then θ and θ∞ represent the same

cohomology class.

The correlation function now contains a delta function at X1 = ∞, so the de-

pendence of the classical part (4.11) on (Δ,Δ) disappears after integrating over X1.

Integrating over X∞ as well, we obtain

e−t

∫
CP

1
gφφ̄d2X0 Aφ···φφ̄···φ̄

N,N Oφ···φφ̄···φ̄ (4.12)

for some section AN,N of (TX)⊗N ⊗ (TX)⊗N . What is this section? It must be con-

structed from gφφ̄ and R∞
φφ̄

since these are the only inputs from the target space geom-

etry. Moreover, to lowest order in the large volume limit, their derivatives are small

and should not enter. It follows that AN,N = 0 for N �= N .

Now, the crucial observation is the following: the zero-instanton moduli space being

the target space itself, the integral (4.12) is nothing but the two-point function

〈
e−t

∑
N≥0

AN (1)O(0)
〉

(4.13)
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with AN ∝ Aφφ···φ̄φ̄···
N,N (gφφ̄∂zφ̄)N (gφ̄φ∂z̄φ)N , computed to the leading order of perturba-

tion theory! Assuming that there are no other one-instanton contributions, this shows

that the action of Q on θ∞ is given by

{Q, θ∞(z, z̄)} = e−t
∑
N≥0

|z|2N−2AN (z, z̄). (4.14)

The dependence on the insertion point has been recovered by a scale transformation.

Since AN are perturbatively Q-closed local operators of (twisted) dimension (N, N),

A0 is a holomorphic function on X, hence constant, while AN for N > 0 are perturba-

tively Q-exact. Going back to the cylinder, we have thus established the relation (4.2),

with the section s given by e−2τA0 (times the inverse square of the nowhere vanishing

section of K
1/2
Σ used in the twisting).

For other choices of the worldsheet, we compute the matrix elements of {Q, θ∞}

between states living on the ends of a very short cylinder lying in Σ. By taking the

cylinder out of the worldsheet and extending it along the time direction, such matrix

elements can be expressed as matrix elements on an infinitely long cylinder. The prob-

lem thus reduces to the case of Σ = S1×R, and the conclusion is unchanged. However,

the resulting section s depends on the details of how this mapping is done.

Having understood roughly how the relation (4.2) should arise in the presence of

instantons, let us now make our argument more precise by carrying out the computation

sketched in the above argument.

The first step is to evaluate the contour integral. This seemingly straightforward

task is actually very tricky. We are looking for an antiholomorphic single pole 1/(z̄−1)

in the OPE

G(z̄)θ∞(1) ∝ (gφφ̄∂z̄φψ̄+)(z̄)(R∞
φφ̄∂zφψ̄+)(1). (4.15)

It appears that the only way to obtain such a pole is to contract ∂z̄φ with Rφφ̄. This

contraction, however, just leads to the classical action of Q and annihilates θ. We must

find “hidden” quantum fluctuations producing additional antiholomorphic poles.
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At this point, we recall that the fermionic fields couple to the pullback of the tan-

gent bundle of X. Thus, the eigenmodes with which the fermionic fields are expanded

carry within themselves the bosonic field. But away from the instanton moduli space,

the bosonic field is itself subject to quantum fluctuations. As a result, the fermionic

modes—even the zero modes—can produce short distance singularities against the

bosonic nonzero modes!

To extract this bosonic dependence of the fermionic fields, consider a normal neigh-

borhood N1 of M1 which is diffeomorphic to the normal bundle of M1. Let {xα} be

local coordinates on M1 (e.g., ones given by the parametrization (4.9)) and parametrize

the normal directions by {yα} in such a way that yα = 0 on M1. Given φ(z, z̄;x, y) ∈

N1, we denote its projection to M1 by φ0(z;x). An instanton of degree one maps the

points of Σ̂ = CP
1 to the points of X = CP

1 in a one-to-one manner, so we can invert

the function φ0(z;x) to obtain z(φ0;x). Using this, we express the bosonic field as

φ(z, z̄;x, y) = ϕ
(
φ0(z;x), φ̄0(z̄;x);x, y

)
, (4.16)

where ϕ(φ0, φ̄0;x, y) = φ(z(φ0;x), z̄(φ̄0;x);x, y). The supercharge Q is a differential

operator on the field space. Computing [Q, φ̄] using the expression (4.16), we find

−iψ̄+ =
∂ϕ̄

∂φ̄0
[Q, φ̄0] +

∂ϕ̄

∂xr
[Q, xr] +

∂ϕ̄

∂yα
[Q, yα]. (4.17)

The antiholomorphic section [Q, φ̄0] of φ∗
0TX is −i times ψ̄+0(φ0), the zero mode part

of ψ̄+ at φ0. Since ∂z̄φ̄ = (∂ϕ̄/∂φ̄0)∂z̄φ̄0 and ∂z̄φ̄0 �= 0, we can write

ψ̄+ =
∂z̄φ̄

∂z̄φ̄0
ψ̄+0(φ0) + · · · . (4.18)

So we have extracted partially the dependence of ψ̄+ on the bosonic fluctuations.

As desired, ∂z̄φ from G can now be contracted with ψ̄+ from θ∞ to produce an

antiholomorphic double pole. This gives

∮
dz̄ G(z̄)θ∞(1) ∝

(
R∞

φφ̄

∂zφ

∂z̄φ̄0
∂z̄ψ̄+ψ̄+0(φ0)

)
(1) + · · · . (4.19)
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The leading term is all we need. This is because the fermionic nonzero modes can be

ignored to the lowest order computation, and modulo the fermionic nonzero modes and

the equation of motion for the bosonic field, the leading term of (4.18) represents the

zero mode part of ψ̄+. This term correctly reduces to ψ̄+0(φ0) on M and, with the

equation of motion, satisfies

Dz

( ∂z̄φ̄

∂z̄φ̄0
ψ̄+(φ0)

)
= Rφ̄

φ̄φφ̄

∂zφ̄

∂z̄φ̄0
ψ+ψ̄+ψ̄+0(φ0), (4.20)

which vanishes if the fermionic nonzero modes are dropped.

To complete the computation, we need to specify the path integral measure. For

this, we can choose any Q-invariant measure. The derivation of the relation (4.6) relies

only on the fact that A0 is nonzero. Since different measures differ by multiplication

of invertible Q-closed operators, A0 is nonzero for any measures if it is so for some

measure. Moreover, apart from the subtlety discussed above, the role of the nonzero

mode integration is simply to give the bosonic and fermionic determinants, which are

Q-invariant by themselves (though do not cancel since the left-moving supersymmetry

is lacking). So we just need to consider the part dM1 dη1 dη2 for the instantons and

the fermion zero modes.

Instantons are parametrized by the Möbius coordinates (4.9). Let us focus on the

region of M1 where d �= 0 and set d = 1 by an overall rescaling. We choose dM1 to

be conformally invariant. A conformal transformation z 
→ z′ acts on M1 by φ′
0(z

′) =

φ0(z). The invariance under φ0 
→ φ′
0 determines dM1 up to a factor:

dM1 = |a − bc|−4d2a d2b d2c. (4.21)

The two ψ̄+ zero modes are generated from instantons by global superconformal trans-

formations, so the zero mode part of ψ̄+ can be expanded as

ψ̄+0(φ0) = η1∂z̄φ̄0 + η2z̄∂z̄φ̄0. (4.22)

Then dM1 dη1 dη2 is Q-invariant. This follows from the fact that dM1 is invariant
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under superconformal transformations, which is in turn a consequence of the conformal

invariance.

In terms of the variables X0, X1, X∞ describing the compactified one-instanton

moduli space, dM1 is written as

dM1 =
d2X0 d2X1 d2X∞

|X0 − X1|2|X1 − X∞|2|X∞ − X0|2
. (4.23)

Thus, the integral (4.8) vanishes when X1 is integrated and set to ∞ unless the integrand

behaves as |X1|4 for large |X1|. From the expression

O(0)|φ=φ0 = Oφ···φφ̄···φ̄(X0, X0)(X0 − X∞)N (X0 − X∞)N (4.24)

which is valid at X1 = ∞ and

1
k!

∂k
z φ0(1) = (X1 − X∞)

( X0 − X1

X∞ − X0

)k
, (4.25)

we see that it is necessary for the integral to be nonvanishing that the operator at z = 1

contains ∂zφ0∂z̄φ̄0. The fermion zero mode integration gives exactly what is needed:

∫
dη1 dη2

∮
dz̄ G(z̄)θ∞

∣∣∣
φ=φ0

∝ R∞
φφ̄(φ0, φ̄0)∂zφ0∂z̄φ̄0. (4.26)

Hence, the mysterious expression (4.19) of the contour integral is turned into the pull-

back of the Ricci form by the instanton. Other choices of O do not give a nonvanishing

result; those necessarily contain nonzero modes, which must be contracted with the

fields within G or θ∞ and leads to a decrease in the dimension of the operator at z = 1.

Putting all pieces together, we find that the integral (4.8) is proportional to

e−t

∫
CP

1×CP
1
d2X0 d2X∞

Oφ···φφ̄···φ̄(X0, X0)
(X∞ − X0)2−N (X∞ − X0)2−N

. (4.27)

The X1-integral gave the evaluation of c1(X) on the fundamental class [X]. The re-

maining integral is precisely of the form (4.12), with

Aφ···φφ̄···φ̄
N,N (X0, X0) ∝ gφφ̄(X0, X0)

∫
d2Y Y 2−NY 2−N (4.28)
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and Y = X∞ − X0. As expected, Aφ···φφ̄···φ̄
N,N vanish for N �= N by rotational symmetry.

For N = N , however, they diverge due to the contributions from the points where X0

and X∞ coincide or are infinitely far apart (or both).

One way to regularize the integral (4.28) is to choose l > 0 and impose the lower

bound l and the upper bound 1/l on the distance between X0 and X∞ measured by

the target space metric. This regularization distinguishes the “poles” of Σ̂ from other

points, therefore breaks conformal symmetry. The residual symmetries are scale trans-

formations and rotations. At z = 0, the dimension of a local operator is determined by

the behavior under scale transformations and hence preserved. Sure enough, the only

nonzero and finite term in {Q, θ∞(0)} is A1(0) = (Aφφ̄
1,1gφφ̄∂zφ̄gφ̄φ∂z̄φ)(0), which cor-

rectly has dimension (1, 1). Away from z = 0, however, the symmetry that determines

the dimension is a combination of scale transformation and translation. Since the latter

are broken by the regularization, the grading by dimension is violated nonperturba-

tively. On the original cylinder translations are conserved, so the (0, 2) supersymmetry

algebra is still good.

We would like to see whether A0 = A0,0 is a nonzero constant. For l � 1, the

regularization amounts to cutting out from the integration domain the region in which

gφφ̄(X0, X0)|Y |2 ≥ l2. Then the regularized integral gives

A0(X0, X0) ∝ gφφ̄(X0, X0)
∫ ∞

l2gφφ̄(X0,X0)

d|Y |2
|Y |4 ∝ l−2, (4.29)

which is indeed nonzero and constant.

Finally, let us check that we have Q2 = 0 to leading order at the one-instanton

level. This can be seen by computing the action of Q on G′ = R∞
ij̄ ∂z̄φ

iαj̄. By the same

argument as for {Q, θ∞}, one can show that {Q, G′} = 0, which in turn implies that

{Q, G} = −2e−t{Q, G1} for some G1. We see that Q may no longer square to zero at

the one-instanton level, but rather, satisfies {Q, Q} = −2e−t{Q, Q1} with

Q1 =
∮

dz̄ G1. (4.30)
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The operator Q + e−tQ1 does square to zero, though. Thus we have found that the

supercharge receives instanton corrections.

The redefinition of Q do not spoil the relation {Q, θ} ∼ e−t · 1. The one-instanton

correction just adds a perturbatively Q-closed operator e−t{Q1, θ} of charge zero to

the right-hand side. For a generic target space metric, there is no perturbative Q-

cohomology class of charge zero associated to the Ricci curvature. Thus {Q1, θ} is

Q-exact. This completes the demonstration of the relation (4.2).

4.3 Nonperturbative Vanishing “Theorem”

The property of the CP
1 model that was crucial for establishing the vanishing of its

chiral algebra is that R-symmetry is broken to Z2 without any excess fermion zero

modes, namely, by two ψ̄+ zero modes and no ψ+ zero modes in the one-instanton

sector. The same property also implies the vanishing of the nonperturbative chiral

algebra for other target spaces.

Consider a (0, 2) sigma model with compact target space X of complex dimension d.

In the case of X = CP
1, there is only one CP

1 in the target space that instantons can

wrap, which is the target space itself. In general, X has many holomorphic curves

of genus zero, called rational curves. Suppose that X has a rational curve C such

that there are two ψ̄+ zero modes and no ψ+ zero modes associated to the instantons

wrapping it once. We would like to show that the one-instanton action of Q on θ renders

the chiral algebra of this model trivial.

Let us compute the contribution to the action of Q on θ from the instantons wrap-

ping C. Since there are always two ψ̄+ zero modes in the directions tangent to C, these

should be all the fermion modes; especially, none should come from the normal direc-

tions. Then the computation is essentially the same as in the case of the CP
1 model

if we regard C as the target space. For instance, the fermion zero mode integration
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turns the contour integral (4.26) again into the pullback of the Ricci form, but this

time restricted to C, and the integration over the parameters of the instantons becomes

an integration over C × C × C. Consequently, the contribution to {Q, θ} from C is a

nonzero constant supported on C and zero outside (times a nowhere vanishing section

of KΣ), plus perturbatively Q-exact operators.

We have found that {Q, θ} contains a local operator of dimension (0, 0) at the one-

instanton level. This operator must be perturbatively Q-closed and hence a holomorphic

function on X. But since X is compact, it must be constant—not just on C, but on

the whole target space! Therefore, the chiral algebra must be trivial.

One may wonder how the existence of one rational curve C, whose contribution to

{Q, C} is confined on C itself, can possibly imply something about other regions of the

target space. This point can be understood by looking at possible deformations of C

to nearby rational curves.

Infinitesimal deformations of C are described by holomorphic sections of the normal

bundle NC/X
∼= TX |C/TC . By Grothendieck’s theorem [39], NC/X splits into a direct

sum of line bundles over C ∼= CP
1:

NC/X � O(n1) ⊕ · · · ⊕ O(nd−1). (4.31)

The integers n1, . . . , nd−1 are fixed by the requirement that there be no fermion zero

modes in the normal directions. After complex conjugation, these zero modes become

holomorphic zero- and one-forms of the bundle O(−1) ⊗ (O(n1) ⊕ · · · ⊕ O(nd−1)) over

Σ̂ = CP
1. According to the formula (3.18), then it must be that n1 = · · · = nd−1 = 0

and the normal bundle is trivial, NC/X
∼= O⊗d−1. Therefore, generically, we expect

that C can be translated in every direction in the target space. If the rational curves

obtained by translations sweep the whole target space, their contributions to {Q, θ}

can add up to a nonzero constant.

In conclusion, we have obtain the following nonperturbative vanishing “theorem”:
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the chiral algebra of a twisted model with no left-moving fermions vanishes nonpertur-

batively if the target space admits a rational curve with trivial normal bundle.

4.4 Flag Manifold Model

An example in which the above deformation argument is beautifully demonstrated is

the (0, 2) sigma model with target space the complete flag manifold G/T of a compact

semisimple Lie group G, equipped with the canonical G-invariant complex structure.

The flag manifold has vanishing first Pontryagin class, so this model is anomaly free,

and c1(G/T ) = 2(x1 + · · · + xr) with r = rankG, so R-symmetry is broken to Z2.

The perturbative chiral algebra of the flag manifold model has a rich structure as an

affine g-module at the critical level [11, 23, 24]. The reason is that the affine g-currents

lie in the perturbative chiral algebra due to the symmetry of the target space geometry.

They necessarily generate the current algebra at the critical level because c1(G/T ) �= 0;

otherwise, there would be an energy-momentum tensor by the Sugawara construction.

Pick a rational curve C in the target space. The normal bundle of C is then trivial,

since a global section can be constructed by choosing a point in the total space and

acting with the action of G. Therefore, the chiral algebra is trivial nonperturbatively.

Indeed, the G-action on C generates rational curves that cover the whole target space.

4.5 Supersymmetry Breaking

The vanishing of the chiral algebra of a twisted model a nontrivial consequence on the

Hilbert space of the theory. To see this, let us define the Q-cohomology of states graded

by R-charge. This is naturally a module over the chiral algebra: for a Q-closed local

operator O and a Q-closed state |Ψ〉, we define the action of [O] on [|Ψ〉] by

[O] · [|Ψ〉] = [O|Ψ〉]. (4.32)
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When the theory is conformally invariant, the cohomology of states is isomorphic to

the chiral algebra by the state-operator correspondence.

The cohomology of states is most interesting when the target space is Kähler. In

this case, the supercharges of the underlying physical (0, 2) model obey Q†
+ = Q+, so

we have the inequality

{Q+, Q+} = H − P ≥ 0. (4.33)

A state has H −P = 0 if and only if it is annihilated by both Q+ and Q+. States with

this property are said to be supersymmetric. The restriction of Q to the supersymmet-

ric states is identically zero by definition, whereas any Q-closed state |Ψ〉 that is not

supersymmetric is Q-exact:

|Ψ〉 =
{Q, Q†}
H − P

|Ψ〉 = Q
( Q†

H − P
|Ψ〉

)
. (4.34)

Thus, the cohomology of states is isomorphic to the space of supersymmetric states.

Now suppose that the chiral algebra is trivial: [1] = 0. Then

[|Ψ〉] = [1] · [|Ψ〉] = 0. (4.35)

This equation says that Q-closed states are Q-exact, so the cohomology of states is

trivial. Furthermore, in the Kähler case, this means that there are no supersymmetric

states in the physical model. Therefore, perturbative supersymmetric states are all

lifted by instantons and supersymmetry is spontaneously broken. In particular, the

elliptic genus vanishes.
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Chapter 5

Supersymmetry Breaking and Loop Space Geometry

So far, we have mainly considered the chiral algebra. We now turn to the cohomology

of states and discuss its relation to the loop space of the target space. By studying the

cohomology of the CP
1 model using holomorphic Morse theory on loop space, we will

be able to see how instantons actually pair up perturbative supersymmetric states and

lift them out of the cohomology. This gives us further insights into the nonperturbative

physics of (0, 2) models.

5.1 Cohomology of States as Cohomology of Loop Space

Consider the (0, 2) model with compact Kähler target space X, defined on the cylinder

Σ = S1 × R with coordinates (σ, τ), where σ ∼ σ + 2π. We equip Σ with a complex

structure by setting ∂z = ∂σ − i∂τ and pick K
1/2
Σ to be trivial; then H and P are the

generators of translations in τ and σ, respectively. With the B-field set to the Kähler

form ω = igij̄dφi ∧ dφj̄, the action is given by

S =
1
2π

∫
Σ

dσdτ
{
Q, gij̄ψ

i
+(∂σ − i∂τ )φj̄

}
+

1
2π

∫
Σ

φ∗ω

=
1
2π

∫
Σ

dσdτ
(
gij̄(∂τφ

i∂τφ
j̄ + ∂σφi∂σφj̄) + gij̄ψ

i
+(Dτ + iDσ)ψ̄j̄

+

)
.

(5.1)

We would like to identify the cohomology of states associated to this theory.

We will deal mainly with states in the Hilbert space, so it is most natural to proceed

in the Hamiltonian formalism. We will do this by regarding τ as time. Then, at each

time τ , the bosonic field φ : S1 × R → X specifies a point φτ in the loop space LX

by φτ (σ) = φ(σ, τ). Similarly, the fermionic fields specify ψ+,τ and ψ̄+,τ , which we
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may identify respectively with vectors in TLX |φτ
∼= Γ(φ∗

τTX) and TLX |φτ
∼= Γ(φ∗

τTX),

by ψ+,τ (σ) = ψ+(σ, τ) and ψ̄+,τ (σ) = ψ̄+(σ, τ). In what follows, we will fix a time τ

and write these simply as φ, ψ+, and ψ̄+. As is clear from this description, the theory

may now be viewed as supersymmetric quantum mechanics on LX. Let us canonically

quantize it and see what we get.

Choose a local orthonormal frame {ea, eā} of TX ⊕ TX . The quantization identifies

−δS/δ(∂τφ) with the functional derivative δ/δφ on LX, so we have

δ

δφi
= − 1

2π
gij̄∂τφ

j̄ − 1
4π

ωiab̄[ψ
a
+, ψ̄b̄

+],

δ

δφı̄
= − 1

2π
gı̄j∂τφ

j − 1
4π

ωı̄ab̄[ψ
a
+, ψ̄b̄

+].
(5.2)

On the other hand, the fermionic fields are quantized to obey

{ψa
+(σ, τ), ψ̄b̄

+(σ′, τ)} = 2πδabδ(σ − σ′). (5.3)

This is the loop space version of the Clifford algebra {Γa,Γb̄} = δab̄, in which ψa, ψā play

the roles of the gamma matrices Γa, Γā with extra continuous indices σ parametrizing

the directions along the loop. States furnish a representation of this algebra, so they

are spinors on LX. Finally, the supercharges are quantized to

Q =
1
2π

∫
dσ gı̄jψ̄

ı̄
+(i∂τ + ∂σ)φj =

∫
dσ ψ̄ı̄

+

(
−i

D

δφı̄
+

1
2π

gı̄j∂σφj
)
,

Q† =
1
2π

∫
dσ gij̄ψ̄

i
+(i∂τ + ∂σ)φj̄ =

∫
dσ ψi

+

(
−i

D

δφi
+

1
2π

gij̄∂σφj̄
)
,

(5.4)

where D/δφ is the covariant functional derivative. These may be thought of almost

as the holomorphic and antiholomorphic halves of the Dirac operator on LX; but not

quite, because they got extra pieces coupling to the vector field ∂σ.

So we have found that the Q-cohomology is the cohomology of the Dirac operator

on LX deformed by the Killing vector generating the natural isometry of LX, namely,

the rotations of loops.

To understand the effect of the deformation, let Q0, Q†
0 be the halves of the “bare”

Dirac operator obtained by dropping the extra pieces from the supercharges. Actually,
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this operator is ill defined—all vibration modes contribute equally and there are no

continuum limits in which the cutoff on frequency is taken to infinity—but let us treat

it as though it existed. Then, for a function h : LX → R, we define the deformed Dirac

operators Qh, Q†
h by

Qh = e−h/2πQ0e
h/2π =

∫
dσ ψ̄ı̄

+

(
−i

D

δφı̄
− i

2π

δh

δφı̄

)
,

Q†
h = eh/2πQ†

0e
−h/2π =

∫
dσ ψi

+

(
−i

D

δφi
+

i

2π

δh

δφi

)
,

(5.5)

which generate symmetries of the theory with action

Sh =
1
2π

∫
Σ

dσdτ
{

Qh,−iψi
+

(
gij̄∂τφ

j̄ − δh

δφi

)}
+

1
2π

∫ ∞

−∞
dτ∂τh. (5.6)

The point of introducing such operators is that they reduce to the supercharges if we

choose h appropriately. Therefore, the Q-cohomology is isomorphic to the cohomology

of the spinor bundle of LX.

The function h that does the trick is constructed as follows. First, we pick a base

loop in each connected component of LX. Then, given a loop φ, we choose a homotopy

φ̂ : [0, 1] × S1 → LX from the base loop (in the component that φ lies) to φ and set1

h(φ) =
∫

[0,1]×S1

φ̂∗ω. (5.7)

Under a variation of the loop, h changes by

δh =
∫

dσ(−igij̄δφ
i∂σφj̄ + igij̄∂σφiδφj̄). (5.8)

Thus the deformed Dirac operators (5.5) indeed reduce to the supercharges (5.4).

5.2 Perturbative Cohomology of States

We have seen that the Q-cohomology can be interpreted as the cohomology of the

Dirac operator on the loop space of the target space. So far, this connection between

1Actually, h is not single valued if the cohomology class of ω do not vanish on some two-cycle.
However, we can always go to the covering space of LX in which h becomes single valued and define
the theory in this space. See [40].
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the Q-cohomology and the loop-space cohomology remains hypothetical, as a rigorous

construction of the “Dirac operator on loop space” is not known yet. Still, following

this logic backwards, we can obtain a perturbative description that approximates the

loop space cohomology by an infinite-series of well-defined cohomologies associated to

the target space itself.

Perturbatively, we may compute the Q-cohomology by restricting to the subspace

in which H −P = 0 to leading order; Q-closed states with H −P > 0 can be discarded

since they are all Q-exact. From the quantum expressions of the supercharges, we find

that {Q, Q†} = H − P contains the potential energy

1
2π

∫
dσ gij̄∂σφi∂σφj̄. (5.9)

This means that the energy required to “stretch” a loop in the target space is propor-

tional to its length squared. In the large volume limit, this potential rises rapidly away

from the zeros, thereby localizing low-lying states to the constant loops (for a fixed P ).

As the constant loops form a copy of X inside LX, we expect these states to define

sections of some vector bundles over X. This is an indication that the Q-cohomology

can be treated perturbatively within the target space geometry.

The curvature of the target space becomes significant only when a loop has a mea-

surable length. States supported on a tiny loop can then be treated in the Fock space

of a free closed string. So let us construct this space.

Consider a small loop φ fluctuating around a point φ0. We identify φ with a vector

field ϕ ∈ φ∗
0(TX ⊕ TX) and expand it in the eigenmodes of Dσ, which reduces to ∂σ at

constant loops:

ϕa(σ) =
∑

n∈Z\{0}
φa

neinσ, ϕā(σ) =
∑

n∈Z\{0}
φā

neinσ. (5.10)
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Then we define the bosonic raising and lowering operators

αa
n = − i√

2

( ∂

∂φā−n

+ nφa
n

)
, αā

n = − i√
2

( ∂

∂φa−n

+ nφā
n

)
,

α̃a
n = − i√

2

( ∂

∂φā
n

+ nφa
−n

)
, α̃ā

n = − i√
2

( ∂

∂φa
n

+ nφā
−n

)
,

(5.11)

They obey the familiar commutation relations [αa
m, αb̄

n] = [α̃a
m, α̃b̄

n] = mδabδm,−n. Simi-

larly, we parallel transport (in LX) the fermionic fields to φ0 and expand:

ψa
+(σ) =

∑
n∈Z

ψ̃a
ne−inσ, ψ̄ā

+(σ) =
∑
n∈Z

ψ̃ā
ne−inσ. (5.12)

The fermionic modes obey the anticommutation relations {ψ̃a
m, ψ̃b̄

n} = δabδm,−n.

The states of the Fock space are obtained by applying on the ground states the

raising operators, αn, α̃n, ψ̃n with n < 0. The ground states are degenerate. They are

given by

|0;φ0〉 =
d∏

a=1

ψ̃a
0

∞∏
n=1

e−nφa
−nφā

n−nφa
nφā

−nψ̃ā
nψ̃a

n (5.13)

and those obtained from it by acting with ψ̃ā
0 . These states are annihilated by the

annihilation operators, αn, α̃n, ψ̃n with n > 0. The number of ψ̃ā
0 give the R-charge of

the state.

Although states on any one tiny loop cannot feel the curvature, we can also make

the superpositions of states carried by many tiny loops spread over the target space.

These are able to detect the curvature.

Suppose that we would like to make the superposition of ground states, all of the

same charge q, using a wave function ψ:

|0;ψ〉 =
∑

φ0∈X

ψ(φ0)ψ̃ā1
0 · · · ψ̃āq

0 |0;φ0〉. (5.14)

In view of the fact that the zero modes ψ̃0 generate the Clifford algebra, the zero mode

parts of |0;ψ〉 from different points must combine smoothly to define a spinor on X. The

“Dirac sea” part, involving the infinite product of ψ̃a
nψ̃ā

n with n > 0, must also combine

consistently, but this should be possible when the sigma model anomaly is absent. The
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perturbative ground states are therefore in one-to-one correspondence with the spinors.

Every time a raising operator is applied on a ground state, it creates an index of either

TX or TX . Thus, excited states are spinors twisted by powers of the tangent bundle.

Now, we expand the supercharges (5.4) to next-to-leading order. We find that they

are written in the raising and lowering operators as

Q =
d∑

a=1

(
−iψ̃ā

0

D

Dφā
0

+
√

2
∑

n∈Z\{0}

d∑
a=1

ψ̃ā
nα̃a

−n

)
,

Q† =
d∑

a=1

(
−iψ̃a

0

D

Dφa
0

+
√

2
∑

n∈Z\{0}

d∑
a=1

ψ̃a
nα̃ā

−n

)
.

(5.15)

Computing {Q, Q†}, we obtain

H − P = − /D
2 + 2

d∑
a=1

∑
n∈Z\{0}

(α̃a
−nα̃ā

n + nψ̃a
−nψ̃ā

n). (5.16)

Here /D is the Dirac operator on X. Hence the right-moving raising operators α̃−n,

ψ̃−n increase H − P by 2n. Since the low-lying eigenvalues of − /D
2 are of order g−1, it

follows that low-lying states, those that have H − P = 0 to leading order, do not have

these excitations. Restricted to these states, the supercharges reduce to the halves of

the Dirac operator. The Q-cohomology is thus given to next-to-leading order by the

cohomologies of twisted spinor bundles over X.

The space of low-lying states are graded by the eigenvalues of P . In terms of the

raising and lowering operators, P is written to leading order as

P = − d

12
+

d∑
a=1

∑
n∈Z\{0}

(αa
−nαā

n − α̃a
−nα̃ā

n − nψ̃a
−nψ̃ā

n). (5.17)

The constant −d/12 comes from normal ordering and cancels the zero point energy.

Let us look at the relevant bundles for small values of P . For P = −d/12, we have

the ground states |0;ψ〉, the spinors. For P = −d/12 + 1, we have states of the form

α−1|0;ψ〉; these are spinors twisted by TX ⊕TX . For P = −d/12+2, we have α−2|0;ψ〉

or α−1α−1|0;ψ〉, hence spinors twisted by (TX ⊕ TX)⊕ S2(TX ⊕ TX). In general, low-

lying states with P = −d/12 + n are spinors twisted by the holomorphic vector bundle
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VX,n given by the series (2.25). Therefore, we have found that the spinor cohomology

of LX can be approximated by the direct sum of the cohomologies of the twisted spinor

bundles S ⊗ VX,n.

As long as the volume of the target space is not strictly infinite, there are higher

order corrections to the cohomology. For example, at the next order in perturbation

theory Q contains a term proportional to ψ̃ı̄
lRı̄jk̄lα

j
mαk̄

nαl
−l−m−n. The action of Q on

|Tzz〉 = gij̄α
i−1α

j̄
−1|0;ψ〉, with ψ harmonic, thus gives

ψ̃ı̄
0Rı̄jk̄lα

j
−2α

k̄
1α

l
1|Tzz〉 ∼ Rij̄α

i
−2ψ̃

j̄
0|0;ψ〉 (5.18)

This relation suggests that, although the states |Tzz̄〉 and |∂zθ〉 = Rij̄α
i−2ψ̃

j̄
0|0;ψ〉 are

Q-closed to next-to-leading order, perturbative corrections lift them at the next order.

We recognize this as the Fock space counterpart of the relation [Q, Tzz] = ∂zθ.

Since P is exactly conserved quantum mechanically, the quantum corrections can

only modify the Q-cohomology within each eigenspace of P . In particular, the pertur-

bative corrections just deform the Dirac operator to another differential operator that

restricts to S ⊗ Rn for all n. Also, the elliptic genus is a topological invariant and

receives no quantum corrections.

5.3 Holomorphic Morse Theory on Loop Space

Now that we have a fairly clear picture of the perturbative cohomology of states, let us

ask: what is the exact cohomology of states?

In the context of supersymmetric quantum mechanics, Morse theory provides a

powerful tool for studying the supersymmetric spectrum [41]. To adapt this approach

to our case, we need to make two generalizations. First, our models are quantum field

theories in two dimensions, so we must deal with Morse theory on loop space along the

lines of Floer [5]. Second, we must consider holomorphic Morse theory [26] since the

supercharges exist in the right-moving sector only.
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As a preliminary step to holomorphic Morse theory on the infinite-dimensional man-

ifold LX, let us consider the finite-dimensional case, supersymmetric quantum mechan-

ics on X with action

S =
∫

dτ
(
gij̄∂τφ

i
0∂τφ

j̄
0 + gij̄ψ̃

i
0Dτ ψ̃

j̄
0

)
. (5.19)

This theory is obtained from the (0, 2) model by simply killing the σ-dependence of the

fields, and describes the dynamics of the zero modes. The Hilbert space of the theory

is therefore the space of spinors. The supercharges are the antiholomorphic half of the

Dirac operator −iD = −iψ̃ā
0Dā and its adjoint −iD† = −iψ̃a

0Da, obeying the super-

symmetry algebra {−iD,−iD†} = H. We would like to identify the D-cohomology.

Given a function f : X → R, let Vf be a vector field given by ∂̄f = iVf
ω. A typical

situation in which holomorphic Morse theory is applicable is when Vf is a holomorphic

vector field. In this case, we define the deformed supercharges −iDf and −iD†
f by

Df = e−fDef and D†
f = efD†e−f . These generate symmetries of the deformed theory

described by the action

Sf =
∫

dτ{−iDf ,−iψi
+(gij̄∂τφ

j̄ − ∂if)} +
∫

dτ∂τf (5.20)

and obey the deformed supersymmetry algebra {−iDf ,−iD†
f} = Hf − iLXf

, where

Hf = H − i

2
DaVf,b̄[ψ̃

a
0 , ψ̃b̄

0] + gij̄V
i
f V j̄

f (5.21)

is the Hamiltonian of the deformed theory and

LXf
= V i

f Di + V ı̄
fDı̄ +

1
2
DaVf,b̄[ψ̃

a
0 , ψ̃b̄

0] (5.22)

is the Lie derivative on spinors with respect to the Hamiltonian vector field Xf = Vf+V f

of f . Since f is time independent, LXf
commutes with Hf . Energy eigenstates are

therefore eigenstates of iLXf
as well.

We see that the deformation introduced the potential energy ‖Vf‖2. If we now

consider the large volume limit, and at the same time rescale f in such a way that Vf
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remains unchanged, then supersymmetric states (for a fixed value of iLXf
) localize to

the critical points of f . Let us assume that f is a Morse function with nondegenerate,

isolated critical points {xa}, and look at the structure of the perturbative supersym-

metric states.

Around each xa, we can find Kähler normal coordinates {φi
0}; thus gij̄(0) = δij and

∂kgij̄(0) = ∂k̄gij̄(0) = 0, where φi = 0 at xa. By assumption, Dı̄D
jf(0) = ∂ı̄∂j̄f(0) and

DiD
j̄f(0) = ∂i∂jf(0) vanish. On the other hand, we can use a unitary transformation

to diagonalize DiDjf(0) = ∂ı̄∂jf(0). Then ∂i∂j̄f(0) = λa,iδij with real eigenvalues λa,i,

all nonzero by the nondegeneracy of the critical point. With these coordinates, the

deformed supercharges become

−iDf =
d∑

i=1

−iψ̃ı̄
0(∂ı̄ + λa,iφ

i
0),

−iD†
f =

d∑
i=1

−iψ̃i
0(∂i − λa,iφ

ı̄
0),

(5.23)

and the Lie derivative becomes

iLXf
=

d∑
i=1

λa,i

(
φi

0∂i − φı̄
0∂ı̄ +

1
2
[ψ̃i

0, ψ̃
j̄
0]

)
, (5.24)

to the leading order in the expansion in φ0.

For a state to be annihilated by both −iDf and −iD†
f , it must be annihilated either

by ψ̃ı̄
0 and ∂i − λa,iφ

ı̄
0 or by ψ̃i

0 and ∂ı̄ + λa,iφ
i
0 to leading order, for each i. Thus, to

this order, the perturbative supersymmetric states supported on xa are

|ni;xa〉 =
∏

i;λa,i<0

(φı̄
0)

niψ̃ı̄
0

∏
i;λa,i>0

(φi
0)

ni

d∏
i=1

e−|λa,i|φi
0φı̄

0ψ̃i
0 (5.25)

with nonnegative integers ni. These states have Hf = iLXf
=

∑d
i=1(ni +1/2)|λa,i| and

R-charges equal to the Morse index of xa (up to a shift by a constant common to all the

critical points; Morse index is here defined by the number of the negative eigenvalues

of DiDjf at the critical point). Starting from these leading order expressions, we can

construct supersymmetric states to all orders in perturbation theory.
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To find the exact Df -cohomology, we compute the action of Df on perturbative

supersymmetric states. We can do this by representing the matrix elements of Df

by path integrals. Since these states are sharply peaked at the corresponding critical

points, we can express the matrix element 〈nj ;xb|Df |mi;xa〉 as

lim
T→∞

〈nj ;xb|e−(H−iLXf
)T [Df , f ]

f(xa) − f(xb)
e
−(H−iLXf

)T |mi;xa〉. (5.26)

This can in turn be represented by the path integral

lim
T→∞

e
2iLXf

(|ni;xa〉)T
∫

Dφ0 Dψ̃0 e−Sf Ψ†
nj ;xb

(T )
ψ̃ı̄

0∂ı̄f

f(xa) − f(xb)
Ψmi;xa(−T ), (5.27)

with Ψni;xa being the wavefunctions of |ni;xa〉.

In the large volume limit, the path integral localizes to the local minima of the

bosonic part of the action. The bosonic action can be written as

∫
dτ

∥∥∥∂τφ
i ∓ gij̄∂j̄f

∥∥∥2
±

∫
dτ∂τf, (5.28)

so the relevant configurations are trajectories satisfying

∂τφ
i ∓ gij̄∂j̄f = 0, (5.29)

that is, ascending and descending gradient flows of f . For the Morse index to increase

as going from xa to xb, we must have ascending gradient flows with the − sign. These

are instantons for which {Df , ψ̃ı̄} = 0.

The path integral (5.27) vanishes unless there is precisely one ψ̃ı̄
0 zero mode and no

ψ̃i
0 zero mode. If this is the case, then the instanton moduli space is one-dimensional; the

only ψ̃ı̄
0 zero mode comes from time translations, under which the instanton equation is

invariant. In the case of ordinary Morse theory, the integrations over the fermion zero

mode and the instanton moduli space cancel f(xa) − f(xb) in the denominator, while

the integration over the nonzero modes gives ±1 because the bosonic and fermionic

determinants have the same absolute values due to supersymmetry. The path integral

for holomorphic Morse theory are more complicated, for wavefunctions depend on the
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powers of φ0 and also there is no cancellation between the bosonic and fermionic deter-

minants; for example, it vanishes unless
∑d

i=1(mi + 1/2)|λa,i| =
∑d

i=1(ni + 1/2)|λb,i|.

If the path integral (5.27) does give a nonzero result, then we have a relation

〈nj ;xb|Df |mi;xa〉 ∼ e−(f(xa)−f(xb)). (5.30)

This indicates that |mi;xa〉 is no longer Df -closed, whereas |nj ;xb〉 is no longer D†
f -

closed, after the tunneling effects are taken into account. Therefore, these states are

nonperturbatively lifted.

Let us return to our case. The (0, 2) model with target space X is supersymmetric

quantum mechanics on LX, deformed by the function h. Furthermore,

Vh = −i

∫
dσ gij̄ δh

δφj̄

δ

δφi
=

∫
dσ ∂σφi δ

δφi
(5.31)

is a holomorphic vector field on LX, with Xh generating rotations. This suggests that

everything we have said about the finite-dimensional case naturally generalizes to our

case. However, h is not a Morse function—the critical point set of h is not a discrete

set of points, but the whole manifold X in LX. As a result, the space of perturbative

supersymmetric states is the direct sum of certain twisted spinor bundles on X, a bit

too large to compute all the matrix elements of Q between its members.

We know how to fix this problem already. Since the zero mode part of the theory is

described by supersymmetric quantum mechanics on X, we can deform the supercharges

to localize supersymmetric states further to the critical points of a Morse function!

As before, let f be a Morse function on X with nondegenerate, isolated critical

points. We define

hf = h +
∫

dσ φ∗f (5.32)

This function is known as the symplectic action functional. Its critical points are the

2π-periodic solutions of the Hamiltonian equation

∂σφ(σ) + Xf (φ(σ)) = 0. (5.33)
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It is possible that there are nonconstant solutions, but we expect that such configu-

rations can be killed by perturbing f . The only solutions are then the constant loops

sitting at the critical points of f . Supersymmetric states of the supercharges Qhf
, Q†

hf

deformed by hf are thus localized there.

The Hamiltonian vector field Xf lifts naturally to a vector field on LX, which we

denote by Xf as well. The deformed supercharges Qhf
, Q†

hf
obey

{Qhf
, Q†

hf
} = Hhf

− P − iLXf
, (5.34)

where Hhf
is the Hamiltonian of the deformed theory and the Lie derivative

LXf
=

∫
dσ

(
V i

f

D

δφi
+ V ı̄

f

D

δφı̄
+

1
2
DaVf,b̄[ψ̃

a
+, ψ̃b̄

+]
)
. (5.35)

The operators Hhf
, P , and LXf

all commute. Hence, at each critical point xa, we will

obtain a tower of perturbative supersymmetric states labeled by P and LXf
.

We can readily work out the structure of perturbative supersymmetric states. In

Kähler normal coordinates {φ0} around xa, the deformed supercharges are written as

Qhf
=

d∑
i=1

−iψ̃ı̄
n

( ∂

∂φı̄
n

− (n − λa,i)φi
n

)
,

Q†
hf

=
d∑

i=1

−iψ̃i
n

( ∂

∂φi
n

− (n + λa,i)φı̄
n

) (5.36)

to leading order. We rescale f so that 0 < |λa,i| < 1. Then, the perturbative super-

symmetric states are given by the ground states

|0;xa〉 =
∏

i;λa,i<0

ψ̃ı̄
0

d∏
i=1

e−|λa,i|φi
0φı̄

0ψ̃i
0

∞∏
n=1

e−(n−λa,i)φ
i
−nφı̄

n−(n+λa,i)φ
i
nφı̄

−nψ̃ı̄
nψ̃i

n (5.37)

and the excited states obtained from the ground states by applying the left-moving

creation operators α−n, and powers of φi
0 or φı̄

0 depending on whether λa,i is positive

or negative. We have

iLXf
=

d∑
i=1

λa,i

(
φi

n

∂

∂φi
n

− φı̄
n

∂

∂φı̄
n

+
1
2
[ψ̃i

−n, ψ̃j̄
n]

)
, (5.38)
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to leading order, so the ground state |0;xa〉 has Hhf
= iLXf

=
∑d

i=1 |λa,i|/2 and P = 0.

For excited states, each holomorphic index i adds +λa,i and antiholomorphic index ı̄

adds −λa,i to iLXf
.

As in the finite-dimensional case, the exact Qhf
-cohomology is found by computing

the matrix elements 〈Ψj ;xb|Qhf
|Ψi;xa〉 by the path integrals

lim
T→∞

e
2(P+iLXf

)(|Ψi;xa〉)T
∫

DφDψ̃0 e
−Shf Ψ†

j;xb
(T )

ψ̄ı̄
+∂ı̄hf

hf (xa) − hf (xb)
Ψi;xa(−T ), (5.39)

The path integrals localize to instantons,

∂τφ
i − gij̄ δhf

δφj̄
= ∂τφ

i − i∂σφi − gij̄∂j̄f = 0. (5.40)

These are deformations of holomorphic maps from Σ to X.

5.4 CP
1 Model

We now apply the holomorphic Morse theory formalism to the CP
1 model in order to

study the supersymmetry breaking which the vanishing of the chiral algebra implies.

We equip X with the Fubini-Study metric

g =
sdφ dφ̄

(1 + |φ|2)2 , (5.41)

and choose the Morse function

f =
sλ

4
|φ|2 + 1
|φ|2 − 1

, (5.42)

where 0 < λ< 1. Then the Hamiltonian vector field Xf = λ(−iφ∂φ + iφ̄∂φ̄) generates

rotations on the target space, φ → e−iθφ.

The critical points of f are S at φ = 0, with Morse index zero and the eigenvalue of

the Hessian equal to λ, and N at φ = ∞, with Morse index one and the eigenvalue equal

to −λ. So, in the limit s → ∞, we have the space of perturbatively supersymmetric

states of charge zero at S, and the space of perturbatively supersymmetric states of
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charge one at N . Apart from the charges, these spaces are isomorphic, making it

possible for instantons to pair up all of their members and lift them.

In the present case, instantons going from S to N are φ ∝ e−inσ+(n+λ)τ with n ≥ 0

and those going from N to S are φ ∝ einσ−(n−λ)τ with n ≥ 1. The fermion zero modes

satisfy the equations

(∂τ + i∂σ − λ)ψ̄+ = 0,

(∂τ + i∂σ + λ)(gφ̄φψ+) = 0.
(5.43)

These are solved by ψ̄+0 ∝ eilσ+(l+λ)τ and ψ+0 ∝ gφ̄φeimσ+(m−λ)τ . The normalizability

at τ = ±∞ gives the conditions −λ < l < 2n + λ and λ < m < −2n − λ for instantons

going from S to N , and −2n+λ < l < −λ and 2n−λ < m < λ for instantons going from

N to S. Imposing that there be one ψ̄+ zero mode and no ψ+ zero mode leaves only

φ ∝ eλτ and φ ∝ eiσ−(1−λ)τ as instantons possibly giving nonvanishing contributions.

As a first example of an instanton effect, we consider the amplitude going from the

ground state |0;S〉 at S to the other ground state |0;N〉 at N , both of which have

iLXf
= λ/2 and P = 0. They are connected by the family of instantons

φσ0,τ0(τ) = eλ(τ−τ0−iσ0), (5.44)

parametrized by σ0, τ0. These instantons propagate along lines attached to S and N .

We will refer to them as worldline instantons.

Since the worldline instantons do not depend on σ, the computation essentially

reduces to supersymmetric quantum mechanics on X. The path integral (5.39) gives

∫
dτ0 dσ0 e−Sh

∫
dσ ∂τ0 φ̄σ0,τ0

δh

δφ̄
(φσ0,τ0) ∝

(
f(N) − f(S)

)
e−(f(N)−f(S))/2π. (5.45)

Here we have used the fact that neither the ground state wavefunctions nor the Morse

function h depend on the phase of φσ0,τ0 . So we obtain

〈0;N |Qhf
|0;S〉 ∝ e−(f(N)−f(S))/2π. (5.46)



64

Therefore, we conclude that the worldline instantons induce a relation Qhf
|0;S〉 ∼

|0;N〉 and lift the ground states.

Notice that R-charge is not violated in this relation. This is because the worldline

instantons are “classical” instantons, in the sense that they capture the classical geom-

etry of the target space. Since |0;S〉 and |0;N〉 are would-be supersymmetric states

of P = 0 which should correspond to harmonic spinors in the original theory (before

the deformation by the Morse function f), the lifting of these states is a reflection of

the Lichnerowicz theorem: there are no harmonic spinors on a manifold with positive

scalar curvature.

Once the ground states are lifted, one might be tempted to say that all the excited

states constructed on them should also be lifted by the fluctuations around the same

instantons. However, there is a symmetry that forbids the lifting of some of those

states. Consider the U(1) rotation that acts on the bosonic nonzero modes only. To

the leading order of the large volume limit, the action is quadratic in fluctuations and

this is a symmetry. Let us call this approximate symmetry the bosonic R-symmetry.

In the path integral computation of the matrix elements, only the zero mode part of

Qhf
contributed. Therefore, the bosonic R-charge commutes with Qhf

to leading order.

For example, the states φk
0α−n|0;S〉 and φ̄k

0ᾱ−n|0;N〉 cannot be paired by the worldline

instantons to leading order, even though they both have P = n and iLXf
= (k +3/2)λ.

On the other hand, φk
0α−n|0;S〉 and φ̄k+2

0 α−n|0;N〉 will be lifted because they have the

same P , iLXf
, and bosonic R-charge. Similarly, φk+2

0 ᾱ−n|0;S〉 and φ̄k
0ᾱ−n|0;N〉 will

be lifted. However, φk
0ᾱ−n|0;S〉 and φ̄k

0α−n|0;N〉 are not lifted for k ≤ 1. Since the

former corresponds to a section of K
1/2
X ⊗ TX

∼= O(1) and the latter corresponds to

a (0, 1)-form of K
1/2
X ⊗ T∨

X
∼= O(−3) in the original theory, this is consistent with the

Hodge numbers h0(O(1)) = h1(O(−3)) = 2. In this way, we can show that worldline

instantons lift all states in the Fock spaces that do not make appearance in the classical

Q-cohomology.
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Of course, higher order corrections break the bosonic R-symmetry. We have already

encountered an example of this, where the Fock space counterpart of the operator

relation [Q, Tzz] = ∂zθ gives [Q, gij̄α
i−1α

j̄
−1] ∼ Rij̄α

i−2ψ̃
j̄
0. Thus, the matrix element

of Qhf
between α−1ᾱ−1|0;S〉 and α−2|0;N〉 should become nonzero after the higher

order corrections are included. Although the two states have different iLXf
to leading

order, there is no contradiction here, as iLXf
also gets corrected. For the same reason,

α−k|0;N〉 for k ≥ 3 should be all lifted because they correspond to ∂k−1
z θ = [Q, ∂k

z Tzz].

Complex conjugation on the target space implies that ᾱ−k|0;S〉 are lifted for k ≥ 2.

So it seems that perturbative supersymmetric states that are not lifted by the world-

line instantons or the fluctuations around them are α−1|0;N〉 and ᾱ−1|0;S〉, and those

constructed on them. The first two states are connected by the instantons

φσ0,τ0(σ, τ) = ei(σ−σ0)−(1−λ)(τ−τ0), (5.47)

going from N to S, which have the right behavior for α−1|0;N〉 ∝ φ′−1|0;N〉 and

ᾱ−1|0;S〉 ∝ φ̄−1|0;S〉, where φ′ = 1/φ; thus, they may lift these states. Although

perturbatively the initial state has charge two and the final state has charge zero, this

lifting is possible because degree one instantons violate R-charge by −2. Moreover, it

is consistent with the bosonic R-charge which is assigned to nonzero modes and not to

instantons.

This time, the path integral (5.39) contains the factor φ1(T )φ′−1(−T ) ∝ e−2(1−λ)T

from the wavefunctions of positive energy states. This factor is canceled by e
2(P+iLXf

)T

in front of the path integral, except for the contribution from the zero point energy λ/2

which should be included in the path integral measure (or canceled by considering

normalized matrix elements). The rest of the computation proceeds as in the first

example, and we obtain

〈Ψf |Qh|Ψi〉 ∝ e−(h(φ∞)−h(φ−∞))/2π. (5.48)

Therefore, α−1|0;N〉 and ᾱ−1|0;S〉 are lifted. In contrast to the first example, this
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nonvanishing amplitude is induced by worldsheet instantons, depending on σ as well

as τ . These instantons wrap the target space once as they propagate from N to S,

sweeping out its fundamental class.

Let us summarize what we have found. We have seen, by deforming the super-

charges using a Morse function, that the Q-cohomology of states for X = CP
1 is given

approximately by the Fock spaces of closed strings with charge zero and one located

respectively at S and N . At this point, the bosonic and fermionic supersymmetric spec-

tra are manifestly isomorphic due to the degeneracy of the ground states. The classical

geometry of the target space then induces “classical” instanton effects, which lift those

states that do not enter the classical Q-cohomology. Some of the surviving states are

lifted by the perturbative corrections to classical instantons. Finally, worldsheet instan-

tons lift every other states that were not lifted by classical instantons or perturbative

corrections, thereby breaking supersymmetry. These worldsheet instantons capture the

geometry of the loop space LX, just like worldline instantons—instantons in supersym-

metric quantum mechanics on X—capture the geometry of X.
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Chapter 6

Outlook

In this thesis, we have uncovered a surprising phenomenon in which the chiral algebras

of certain (0, 2) models completely vanish nonperturbatively. The vanishing of the chiral

algebra also implies supersymmetry breaking, and we have seen that holomorphic Morse

theory on loop space is a useful tool in studying the instanton lifting behind it. Our

results suggest several possible directions for future research. I would like to conclude

this thesis by discuss two of them here.

One possible direction is the nonperturbative generalization of the sheaf-theoretic

approach to the chiral algebras.

In Chapter 3, we saw that the perturbative chiral algebra of a twisted model is

computed by the cohomology of the sheaf of βγ systems on the target space. To

establish this result, we used two properties of the twisted model and its chiral algebra.

First is that perturbatively the action of Q is local on the target space and defines a

differential operator acting on sections of a holomorphic vector bundle. Second is that

the chiral algebra is invariant under deformations of the target space metric, so locally

it can be described by a free theory.

Nonperturbatively, the counterpart of the first property is that the action of Q

is local on the instanton moduli space M. This is true because, instantons being

nonpropagating, the short distance singularities of the quantum theory come only from

the directions normal to M in the field space and the renormalization can be done locally

on M. Whether the second property generalizes to M is not clear, but it is plausible

that there exists a sheaf-theoretic formulation of the chiral algebra that replaces the
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sheaf of βγ systems by another sheaf defined on the whole instanton moduli space, not

just the zero-instanton component M0
∼= X. Such a formulation would allow us to

compute the nonperturbative chiral algebra systematically, so this idea seems worth

pursuing.

The other possible direction is an application of holomorphic Morse theory to the

Höhn–Stolz conjecture.

A closer look at the argument in Chapter 5 reveals that the vector field Vf generated

by the Morse function f does not need to be holomorphic, but rather, being holomorphic

only in the neighborhood of the critical points of f is sufficient for the analysis to work.

Naively, one can achieve this by deforming f appropriately around the critical points.

If this is the case, the Höhn–Stolz conjecture is likely to follow in the Kähler case.

In the large volume limit, the space of supersymmetric states is approximated by

the direct sum of Fock spaces localized at each critical point. These Fock spaces are all

isomorphic as vector spaces, but carry different charges: looking at the expression of

the ground states (5.37), we see that the Fock space at a critical point of Morse index q

consists of states of charge q. This large volume approximation is usually the starting

point of computing the exact spectrum of supersymmetric states. However, if we are

only interested in the elliptic genus, we may use it to compute the exact answer.

Now suppose that the target space X has positive Ricci curvature. Then X has no

harmonic spinors because the scalar curvature is also positive. This means that there

are no supersymmetric states with P = −d/12 before we deformed the supercharge by

the Morse function. On the other hand, the ground states of the Fock spaces localized

around the critical points after the deformation are would-be supersymmetric states

with P = −d/12. Since there are none such states, they must be lifted by instantons.

This lifting is possible only if there are the same numbers of bosonic and fermionic

ground states; otherwise they cannot be all paired up. But then, since the local Fock

spaces are isomorphic to one another, there must be the same numbers of bosonic and
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fermionic states at each energy level. Therefore, the elliptic genus vanishes.

Where did we use the condition that the Ricci curvature of the target space is

positive? This is where the divergence of the quantum field theory comes in. The

renormalization group of a sigma model generates a flow of the target space metric. At

one-loop, the metric g(μ) renormalized at energy scale μ obeys the equation [33, 34, 35]

μ
dgij̄(μ)

dμ
= Rij̄(g(μ)), (6.1)

where Rij̄(g) is the Ricci curvature of g. From this equation, we see that the metric

becomes larger as the energy scale μ gets larger when the Ricci curvature is positive

definite. Since the theory is weakly coupled when the target space has large volume,

the theory is then well behaved—it is asymptotically free. So if the Ricci curvature

is nonzero, physically it had better be positive. The Ricci curvature indeed arises

when we normal order the higher order terms of the supercharges in the Fock space

representation.
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Appendix

(0, 2) Models with Strong KT Target Spaces

In this appendix, we construct (0, 2) sigma model actions with non-Kähler target spaces.

Our strategy is to first define (0, 2) supersymmetric actions locally on a general complex

target space X, then find the conditions on X for these local actions to consitently

combine into a single global action.

Locally on the target space, choose a (1, 0)-form K = Kidφi and consider the action

S = −i

∫
Σ

d2z{Q+, [Q+, Ki∂zφ
i − K ı̄∂zφ

ı̄]}. (A.1)

By Q2
+ = Q2

+ = 0, this local action is invariant under −iε−Q+ + iε̄−Q+ for antiholo-

morphic sections ε−, ε̄− of K
1/2
Σ . Expanding the Q+-commutator, we find

S =
∫

Σ
d2z{Q+, gij̄ψ

i
+∂zφ

j̄ − Tijψ
i
+∂zφ

j}, (A.2)

with gij̄ = ∂iK j̄ +∂j̄Ki and T = ∂K. Expanding the Q+-commutator as well, we obtain

the expression

S =
∫

Σ
d2z(gij̄∂z̄φ

i∂zφ
j̄ + igij̄ψ

i
+Dzψ̄

j̄
+) + i

∫
Σ

φ∗T. (A.3)

Here the covariant derivative is Dzψ̄
ı̄
+ = ∂zψ̄

ı̄
+ + (∂zφ

j̄gı̄l∂k̄glj̄ − ∂zφ
jgı̄l∂k̄Tlj)ψ̄k̄

+.

Globally, the (0, 2) sigma model action is constructed by gluing the local descriptions

found above, consistently over the target space. It is clear that gij̄ should be interpreted

as a hermitian metric on the target space, hence globally defined. The associated (1, 1)-

form ω = i∂K − i∂̄K obeys

∂∂̄ω = 0. (A.4)
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Therefore, X must be strong KT. With respect to this strong KT structure specified by

K, the covariant derivative Dz is the pullback of the Bismut connection Γ + H, where

Γ is the Levi-Civita connection on X and

H =
1
2
d(T + T ) =

i

2
(∂̄ω − ∂ω). (A.5)

is the torsion three-form. Conversely, if X is strong KT, then one can always find

locally a (0, 1)-form K such that the target space of the action (A.1) is equipped with

a given strong KT structure.1 In the Kähler case, we can set K = ∂K with K a Kähler

potential, whereby T vanishes.

Now, suppose that we have two local actions of the form (A.1) whose target spaces

are open sets U and U ′ in X, equipped with the metrics that descend from the same

strong KT structure on X. If K and K ′ are the corresponding local (1, 0)-forms, then

∂(K ′ −K) = ∂̄(K ′ −K) on the overlap U ∩U ′. This shows that ∂̄(K ′ −K) is a closed

real (1, 1)-form. Such a form is generated by i∂̄∂f from a “Kähler potential” f , hence

K ′ = K + κ + i∂f (A.6)

for some holomorphic one-form κ. On the other hand, the transformation K → K ′ is a

symmetry of the action (A.1). Therefore, the two local actions can be glued together

to describe a theory with target space U ∪ U ′. Applying this gluing procedure for an

open cover of X, we obtain a would-be global action of the form (A.3).

We still need to check that this would-be global action is well defined for all maps,

not just for those that can be captured by the local actions. The kinetic terms of the

action (A.3) are manifestly well defined since they are written with the metric and the

1Let ω be a real (1, 1)-form obeying ∂∂̄ω = 0. Since ∂ω is closed, by the Poincaré lemma we
have ∂ω = dτ locally for some two-form τ . Writing τ = τ (2,0) + τ (1,1) + τ (0,2), we find the equations
∂τ (2,0) = ∂̄τ (1,1) + ∂τ (0,2) = ∂̄τ (0,2) = 0 and ∂ω = ∂̄τ (2,0) + ∂τ (1,1). By the ∂̄-Poincaré lemma,
τ (0,2) = ∂̄α for some α. Then ∂̄(τ (1,1) − ∂α) = 0, so again by the ∂̄-Poincaré lemma, τ (1,1) = ∂α + ∂̄β
for some β. On the other hand, by the ∂-Poincaré lemma τ (2,0) = ∂γ for some γ. Now we have
∂ω = d(∂̄α + ∂α + ∂̄β + ∂γ) = ∂∂̄(β − γ), and the ∂-Poincaré lemma implies that ω = i∂K + ∂̄(β − γ)
for some K. Since ω is real, β − γ = −iK.
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torsion three-form, both of which are globally defined. However, the pullback term

ST (φ) = i

∫
Σ

φ∗T (A.7)

is apparently not well defined. For T changes under the gauge transformation (A.6) as

T → T + ∂κ, hence is not globally defined.

To make sense of this term, pick a map φα from each connected component Cα of

the space C of smooth maps from Σ to X. We write the two-cycles φα∗[Σ] in X simply

as Σα; the two-cycle for a general map φ : Σ → X is denoted by Σ. Now, given φ ∈ Cα,

choose a homotopy C from φα to φ. This may be regarded as a three-chain such that

∂C = Σ−Σα. (If the maps are one-to-one, we can choose C to be a three-dimensional

submanifold of X interpolating Σ and Σα.) Then the Stokes theorem gives

ST (φ) − ST (φα) = i

∫
∂C

T = i

∫
C

H(2,1). (A.8)

This formula determines ST (φ) in terms of ST (φα), the gauge invariant quantity H(2,1),

and the homotopy C. If we choose another homotopy C ′, then ST (φ) shifts by

i

∫
C′

H(2,1) − i

∫
C

H(2,1) = i

∫
D

H(2,1), (A.9)

where D = C ′ − C is a three-cycle. Thus, ST becomes independent of the choice of C

if H(2,1) vanishes in the cohomology or, since H = H(2,1) − idω/2, if H does.

What we assign for the values of ST (φα) are part of the definition of the action.

There are constraints, though, because if a subset of base maps {φα, · · · , φβ} induces

a linear relation cα[Σα] + · · · + cβ[Σβ] = 0, then there exits a three-chain U such that

∂U = cαΣα + · · · + cβΣβ and

cαST (φα) + · · · + cβST (φβ) = i

∫
U

H(2,1). (A.10)

Practically, these constraints do not cause much difficulty; we are usually interested in

the components of C∞(Σ, X) that contain holomorphic maps, and it is natural to set

ST (φα) = 0 for holomorphic φα.
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Let us summarize. The (0, 2) sigma model action (A.3) is well defined if the target

space X is equipped with a strong KT structure whose torsion three-form H vanishes

in the cohomology. The definition requires a choice of the values of ST at the base maps

φα that satisfies the consistency condition (A.10) whenever cα[Σα] + · · · + cβ[Σβ] = 0,

but practically this degree of freedom is irrelevant. In fact, it suffices for H/2π to

represent an integral cohomology class:

[H/2π] ∈ H3(X; Z). (A.11)

The integrality ensures that the action takes values in C/2πiZ and, therefore, the path

integral weight e−S is well defined.
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