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ABSTRACT OF THE DISSERTATION

Gradient Estimates for the Conductivity Problems and

the Systems of Elasticity

by Biao Yin

Dissertation Director: YanYan Li

We investigate the high stress concentration in stiff fiber-reinforced composites. By the

anti-plane shear model, this problem can be transferred into the conductivity problems

with multiple inclusions. Here we consider the extreme cases, i.e. the perfect and

insulated conductivity problems. We obtain the optimal blow-up rates of the gradient

in the perfect conductivity problems and an upper bound of the gradient in the insulated

conductivity problems. We also study the related problems in elliptic systems including

systems of elasticity and obtain some partial results.
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Chapter 1

Introduction

In this thesis, we study elliptic partial differential equations arising from the study of

composite materials, particularly, the stiff fiber-reinforced composites. We are inter-

ested in the stress intensity inside the composites since it provides important informa-

tion for the damage analysis of the fiber composites. Different mathematical models

are developed to deal with these problems. Here we introduce two different models

and derive the corresponding partial differential equations which we will study in the

following sections.

The first and the simplest model that we consider in the study of composite ma-

terials is the anti-plane shear model. Generally It asserts that the strain is achieved

when the displacements in the material are zero in the plane of interest, but nonzero

in the direction perpendicular to the plane. In the equilibrium case, the anti-plane dis-

placement satisfies the partial differential equation for the conductivity problems. In

the following we give a brief introduction of the conductivity problems and the extreme

cases that we studied.

Let Ω be a domain in Rn with C2,α boundary, n ≥ 2, 0 < α < 1. Let {Di} (1 ≤ i ≤
m) be m strictly convex open subsets in Ω with C2,α boundaries, m ≥ 2, satisfying

the principal curvature of ∂Di ≥ κ0,

εij := dist(Di, Dj) > 0, (i 6= j)

dist(Di, ∂Ω) > r0, diam(Ω) <
1
r0

,

(1.1)

where κ0, r0 > 0 are universal constants independent of εij . We also assume that the

C2,α norms of ∂Di are bounded by some universal constant independent of εij . This

implies diam(Di) ≥ r∗0 for some universal constant r∗0 > 0 independent of εij .
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We state more precisely what it means by saying that the boundary of a domain,

say Ω, is C2,α for 0 < α < 1: In a neighborhood of every point of ∂Ω, ∂Ω is the graph

of some C2,α function of n − 1 variables. We define the C2,α norm of ∂Ω, denoted by

‖∂Ω‖C2,α , as the smallest positive number 1
a such that in the 2a−neighborhood of every

point of ∂Ω, identified as 0 after a possible translation and rotation of the coordinates

so that xn = 0 is the tangent to ∂Ω at 0, ∂Ω is given by the graph of a C2,α function,

denoted as f , which is defined as |x′| < a, the a−neighborhood of 0 in the tangent

plane. Moreover, ‖f‖C2,α(|x′|<a) ≤ 1
a .

Denote

Ω̃ := Ω\∪m
i=1Di.

Given ϕ ∈ C1,α(∂Ω), the conductivity problem can be modelled by the following equa-

tion: 



div(ak(x)∇uk) = 0 in Ω,

uk = ϕ on ∂Ω,

(1.2)

where k = (k1, . . . , km) and

ak(x) =





ki ∈ (0,∞) in Di,

1 in Ω̃.

(1.3)

It is well known that there exists a unique solution uk ∈ H1(Ω) of the above equation,

which is also the minimizer of Ik on H1
ϕ(Ω), where

H1
ϕ(Ω) := {u ∈ H1(Ω) | u = ϕ on ∂Ω}, Ik[v] :=

1
2

∫

Ω
ak|∇v|2.

In the context of composite materials, the domain Ω here would represent the cross-

section of a fiber-reinforced composite, Di (0 ≤ i ≤ m) would represent the cross-

sections of the fibers, Ω̃ would represent the matrix surrounding the fibers, and the

shear modulus of the fibers Di would be ki and that of the matrix Ω̃ would be 1.

Equation (3.1) is then obtained by using a standard model of anti-plane shear, and

the solution uk represents the out of plane elastic displacement. The most important

quantities from an engineering point of view are the stresses, in this case represented

by ∇uk.
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It is well known that the solution uk satisfies ‖uk‖C2,α(Di) < ∞. In fact, if ∂Di (0 ≤
i ≤ m) are Cm,α, we have ‖uk‖Cm,α(Di) < ∞. Such results do not require Di to be

convex and hold for general elliptic systems with piecewise smooth coefficients; see e.g.

theorem 9.1 in [18] and proposition 1.6 in [17]. For a fixed 0 < k < ∞, the Cm,α(Di)-

norm of the solution might tend to infinity as εij → 0. Babuska, Anderson, Smith

and Levin [4] were interested in linear elliptic systems of elasticity arising from the

study of composite material. They observed numerically that, for solution u to certain

homogeneous isotropic linear systems of elasticity, ‖∇u‖L∞ is bounded independently of

the distance εij between Di and Dj . Bonnetier and Vogelius [8] proved this in dimension

n = 2 for the solution uk of (3.1) in the limit case when two unit balls are touching at

a point. This result was extended by Li and Vogelius in [18] to general second order

elliptic equations with piecewise smooth coefficients, where stronger C1,β estimates

were established. The C1,β estimates were further extended by Li and Nirenberg in

[17] to general second order elliptic systems including systems of elasticity. For higher

derivative estimates, e.g. an ε-independent L∞-estimate of second derivatives of uk

in D1, we draw attention of readers to the open problem on page 894 of [17]. In

[18] and [17], the ellipticity constants are assumed to be away from 0 and ∞. If

we allow ellipticity constants to deteriorate, i.e. k = ∞ or k = 0, the situation is

different. In these two extreme cases of the conductivity problems, the electric field,

which is represented by the gradient of the solutions, may blow up as the inclusions

approach to each other, the blow-up rates of the electric field have been studied in

[2, 3, 6, 19, 24, 25, 26].

In particular, when there are only two strictly convex inclusions, and let ε be the

distance between the two inclusions, it was proved by Ammari, Kang and Lim in [3]

and Ammari, Kang, H. Lee, J. Lee and Lim in [2] that, when D1 and D2 are balls of

comparable radii embedded in Ω = R2, the blow-up rate of the gradient of the solution

to the perfect and the insulated conductivity problem is ε−1/2 as ε goes to zero; with

the lower bound given in [3] and the upper bound given in [2]. Yun in [24] generalized

the above mentioned result in [3] by establishing the same lower bound, ε−1/2, for two

strictly convex subdomains in R2. Note that [3] and [2] contain also results for k < ∞.
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In [6], we give both lower and upper bounds to blow-up rate of the gradient for the

solution to the perfect conductivity problem in a bounded matrix, where two strictly

convex subdomains are embedded. Our methods apply to dimension n ≥ 3 as well. One

might reasonably suspect that the blow-up rate in dimension n ≥ 3 should be smaller

than that in dimension n = 2. However we prove the opposite: As ε goes to zero, the

blow-up rate is ε−1/2, (ε| ln ε|)−1 and ε−1 for n = 2, 3 and n ≥ 4, respectively. We also

give a criteria, in terms of a linear functional of the boundary data ϕ, for the situation

where the rate of blow-up is realized. Later in [7], we generate the results in [6] for the

perfect conductivity problems in the presence of multiple closely spaced inclusions in

a bounded domain in Rn (n ≥ 2). We also establish an upper bound on the gradients

for the insulated conductivity problems. More reecntly, Lim and Yun in [19] obtained

further estimates with explicit dependence of the blow-up rates on the size of some

inclusions for the perfect conductivity problem (see also [2] for results of this type).

Next, we consider the linearized elastic model in the study of composite materi-

als. Linear elasticity is widely used in structural analysis and engineering design of

composite materials, for details see [16, 22] and the references therein. In this model,

the displacement at each point inside the material is a three dimensional vector which

satisfies a system of partial differential equations.

Let Ω be a domain in Rn, ϕ ∈ H1(Ω), then the system of linear elasticity is as

follows. 



∂

∂xh

(
Ahk

ij

∂uj

∂xk

)
= 0 in Ω,

u = ϕ. on ∂Ω,

(1.4)

Where the coefficients Ahk
ij ∈ L∞(Ω) satisfy the following condition

Ahk
ij = Akh

ji = Aik
hj ,

κ1ηihηih ≤ Ahk
ij ηihηjk ≤ κ2ηihηih.

(1.5)

It is well known that this system has a unique weak solution u = (u1, u2, . . . , un) ∈
H1(Ω).

The stress tensor σh
i and the strain tensor εk

j are defined by the following equations

εk
j =

1
2
(
∂uj

∂xk
+

∂uk

∂xj
); σh

i = Ahk
ij εk

j (1.6)
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The conormal derivative is defined as follows

∂u

∂ν
= (Ahk

ij

∂uj

∂xk
)Nh (1.7)

where N = (N1, N2, · · · , Nn) is the outer normal unit vector on ∂Ω

In the classical theory of linear elasticity for a homogeneous isotropic body, the

coefficients are given by the following formula

Ahk
ij = λδihδjk + µ(δijδhk + δikδhj)

where λ is the first Lamé’s parameter and µ is the shear modulus, with 2µ ≥ κ1 and

2µ + nλ ≤ κ2 to satisfy the ellipticity in (1.5).

Let D1 and D2 be two subdomains of Ω, denote

Ω̃ := Ω \D1 ∪D2

Suppose the Lamé pairs in D1 ∪ D2 and Ω̃ are (λ̃, µ̃) and (λ, µ) respectively, namely,

the system coefficients are

Ahk
ij = (λχeΩ + λ̃χD1∪D2)δihδjk + (µχeΩ + µ̃χD1∪D2)(δijδhk + δikδhj)

Denote

Lλ,µu := µ∆u + (λ + µ)∇(∇ · u).

Then system (1.4) can be written as the following




Lλ,µu = 0 in Ω̃

Leλ,eµu = 0 in D1 ∪D2

u|+ = u|− on ∂D1 ∪ ∂D2,

∂u

∂ν
|+ =

∂u

∂ν
|− on ∂D1 ∪ ∂D2,

u = ϕ on ∂Ω.

(1.8)

where the subscript ± indicates the limit from outside and inside the domain, respec-

tively.

By the above equation (1.7), the conormal derivative is

∂u

∂ν
|+ = λ(∇ · u)N + µ(∇u +∇uT )N,

∂u

∂ν
|− = λ̃(∇ · u)N + µ̃(∇u +∇uT )N



6

It has been proved in [17] that when 0 < λ, λ̃ < ∞ and 0 < µ, µ̃ < ∞, the stress

and strain are bounded independent of the distance ε between the two inclusions D1

and D2. Actually among others the C1,α estimate is established in [17] independent of

ε for general elliptic systems. But when the shear modulus µ̃ = ∞ or µ̃ = 0 in D1 and

D2, the stress and strain may blow up as these two inclusions approach to each other.

Based on the ideas we use for the conductivity problems, We are expecting to find the

blow-up rates of the stress and strain for systems of linear elasticity as well.

We mainly focus on the systems of linear elasticity with extreme shear moduli in

the fibers of the composite materials. As the first step, stimulating from [1], we derive

the gradient estimates for the systems of linear elasticity with special boundary values

on the closely spaced inclusions. Our methods are mainly L2 estimates for elliptic

systems. But we haven’t achieved much for the systems of linear elasticity, as we will

see in Chapter 4, the main problem still remains open.

This thesis is organized as follows. In Chapter 2, we study the perfect conductivity

problems with two inclusions. In Chapter 3, we extend our results into multiple inclu-

sions and we also study the insulated conductivity problems. In Chapter 4, we consider

the elliptic systems and obtain some partial results.
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Chapter 2

The perfect conductivity problems with two inclusions

In this chapter, we consider the perfect conductivity problems with only two inclusions.

The results are from our paper [6].

2.1 Mathematical set-up and the main results

Let Ω be a bounded open set in Rn with C2,α boundary, n ≥ 2, 0 < α < 1, D1 and

D2 be two bounded strictly convex open subsets in Ω with C2,α boundaries satisfying

the conditions in (1.1). Given ϕ ∈ C2(∂Ω), the perfect conductivity problem can be

described as follows:




∆u = 0 in Ω̃,

u|+ = u|− on ∂D1 ∪ ∂D2,

∇u ≡ 0 in D1 ∪D2,∫

∂Di

∂u

∂ν

∣∣∣
+

= 0 (i = 1, 2),

u = ϕ on ∂Ω.

(2.1)

where
∂u

∂ν

∣∣∣
+

:= lim
t→0+

u(x + tν)− u(x)
t

.

Here and throughout this paper ν is the outward unit normal to the domain and the

subscript ± indicates the limit from outside and inside the domain, respectively.

The existence and uniqueness of solutions to equation (2.1) are well known, see the

Appendix. Moreover, the solution u ∈ H1(Ω) is the weak limit of the solutions uk to

equations (3.1) as k → +∞. It can be also described as the unique function which has

the “ least energy” in appropriate functional space, defined as I∞[u] = minv∈A I∞[v],
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where

I∞[v] :=
1
2

∫
eΩ
|∇v|2, v ∈ A,

A :=
{
v ∈ H1

ϕ(Ω)
∣∣∇v ≡ 0 in D1 ∪D2

}
.

The readers can refer to the Appendix for the proofs of the above statements.

Denote

ρn(ε) =





1√
ε

for n = 2,

1
ε| ln ε| for n = 3,

1
ε

for n ≥ 4.

(2.2)

Then we have the following gradient estimates for the perfect conductivity problem

Theorem 2.1.1. Let Ω, D1, D2 ⊂ Rn, ε be defined as in (1.1), ϕ ∈ C2(∂Ω). Let

u ∈ H1(Ω) ∩ C1(Ω̃) be the solution to equation (2.1). For ε sufficiently small, there

is a positive constant C which depends only on n, κ0, r0, ‖∂Ω‖C2,α, ‖∂D1‖C2,α and

‖∂D2‖C2,α, but independent of ε such that

‖∇u‖
L∞(eΩ)

≤ Cρn(ε) (2.3)

Remark 2.1.1. We draw attention of readers to the independent work of Yun [25]

where he has also established the upper bound, ε−1/2, in R2. The methods are very

different. Results in this paper and those in [24] and [25] do not really need D1 and

D2 to be strictly convex, the strict convexity is only needed for the portions in a fixed

neighborhood (the size of the neighborhood is indepedent of ε) of a pair of points on ∂D1

and ∂D2 which realize minimal distance ε.

To prove Theorem 2.1.1, we first decompose the solution u of equation (2.1) as

follows:

u = C1v1 + C2v2 + v3 (2.4)

where Ci := Ci(ε) (i = 1, 2) be the boundary value of u on ∂Di (i = 1, 2) respectively,

and vi ∈ C2(Ω̃) (i = 1, 2, 3) satisfies




∆v1 = 0 in Ω̃,

v1 = 1 on ∂D1, v1 = 0 on ∂D2 ∪ ∂Ω,

(2.5)
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∆v2 = 0 in Ω̃,

v2 = 1 on ∂D2, v2 = 0 on ∂D1 ∪ ∂Ω,

(2.6)





∆v3 = 0 in Ω̃,

v3 = 0 on ∂D1 ∪ ∂D2, v3 = ϕ on ∂Ω.

(2.7)

Define

Qε[ϕ] :=
∫

∂D1

∂v3

∂ν

∫

∂Ω

∂v2

∂ν
−

∫

∂D2

∂v3

∂ν

∫

∂Ω

∂v1

∂ν
, (2.8)

then Qε : C2(∂Ω) → R is a linear functional.

Theorem 2.1.2. With the same conditions in Theorem 2.1.1, let u ∈ H1(Ω)∩C1(Ω̃) be

the solution to equation (2.1). For ε sufficiently small, there exists a positive constant

C which depends on n, κ0, r0, ‖∂Ω‖C2,α, ‖∂D1‖C2,α, ‖∂D2‖C2,α and ‖ϕ‖C2(∂Ω), but is

independent of ε such that

‖∇u‖
L∞(eΩ)

≥ |Qε[ϕ]|
C

ρn(ε) (2.9)

Remark 2.1.2. If ϕ ≡ 0, then the solution to equation (2.1) is u ≡ 0. Theorem

2.1.1 and Theorem 2.1.2 are obvious in this case. So we only need to prove them for

‖ϕ‖C2(∂Ω) = 1, by considering u/‖ϕ‖C2(∂Ω).

Remark 2.1.3. It is interesting to know when |Qε[ϕ]| ≥ 1
C for some positive constant

C independent of ε. Roughly speaking Qε[ϕ] → Q∗[ϕ] as ε → 0, and this amounts to

Q∗[ϕ] 6= 0. For details, see Section 2.

Remark 2.1.4. As we mentioned in Remark 3.1.1, the strictly convexity assumption of

the two inclusions is not necessary. Indeed, our methods can also apply to more general

case with arbitrary shape of the inclusions.

For instance, in dimension n = 2, by a translation and rotation of the axis, without

loss of generality we may denote the curve ∂D1 ∩B(0, r) as x = f(y)− ε
2 and the curve

∂D2∩B(0, r) as x = g(y)+ ε
2 where r ∈ R is a fixed positive number which is independent

of ε and f(0) = g(0) = 0, g′(0) − f ′(0) = 0. Assume further that g(y) − f(y) > 0 for

(x, y) ∈ B(0, r) \ (0, 0), which is equivalent to say

g(y)− f(y) = a0y
2k + ◦(|y|2k), (2.10)
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for some a0 > 0, k ≥ 1 ∈ Z.

Under this assumption, in R2, let u ∈ H1(Ω) ∩ C1(Ω̃) be the solution to equation

(2.1). For ε sufficiently small, there exist positive constants C and C ′ where C depends

on n, a0, r0, ‖∂Ω‖C2,α, ‖∂D1‖C2,α and ‖∂D2‖C2,α, C ′ depends on the same as C and

also ‖ϕ‖C2(∂Ω), but both are independent of ε such that

|Qε[ϕ]|
C ′ ε−1/2k ≤ ‖∇u‖

L∞(eΩ)
≤ C‖ϕ‖C2(∂Ω)ε

−1/2k. (2.11)

where k is the smallest integer such that a0 := (g − f)(2k)
∣∣
y=0

> 0 and Qε[ϕ] is defined

by (2.8).

The proof is essentially the same except for the computation of
∫
eΩ |∇v1|2 which

should be ε−1+1/2k instead of ε−1/2 (see Section 1.2).

Theorem 2.1.1−2.1.2 can be extended to equations with more general coefficients as

follows: Let n, Ω, D1, D2, ε and ϕ be same as in Theorem 2.1.1, and let

A2(x) :=
(
aij

2 (x)
) ∈ C2(Ω̃)

be n×n symmetric matrix functions in Ω̃ satisfying for some constants 0 < λ ≤ Λ < ∞,

λ|ξ|2 ≤ aij
2 (x)ξiξj ≤ Λ|ξ|2, ∀x ∈ Ω̃, ∀ξ ∈ Rn,

and aij
2 (x) ∈ C2(Ω\ω).

We consider 



∂xj

(
aij

2 (x) ∂xiu
)

= 0 in Ω̃,

u|+ = u|− on ∂D1 ∪ ∂D2,

∇u = 0 in D1 ∪D2,∫

∂Di

aij
2 (x)∂xiuνj

∣∣
+

= 0 (i = 1, 2),

u = ϕ on ∂Ω.

(2.12)

where repeated indices denote as usual summations.

Here is an extension of Theorem 2.1.1:
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Theorem 2.1.3. With the above assumptions, let u ∈ H1(Ω)∩C1(Ω̃) be the solution to

equation (2.12). For ε sufficient small, there is a positive constant C which depends only

on n, κ0, r0, ‖∂Ω‖C2,α, ‖∂D1‖C2,α, ‖∂D2‖C2,α, λ, Λ and ‖A2‖
C2(eΩ)

, but independent

of ε such that estimate (2.3) holds.

Similar to the decomposition formula (2.4), we decompose the solution u of equation

(2.12) as follows:

u = C1V1 + C2V2 + V3 (2.13)

where Ci := Ci(ε) (i = 1, 2) be the boundary value of u on ∂Di (i = 1, 2) respectively,

and Vi ∈ C2(Ω̃) (i = 1, 2, 3) satisfies




∂xj

(
aij

2 (x) ∂xiV1

)
= 0 in Ω̃,

V1 = 1 on ∂D1, V1 = 0 on ∂D2 ∪ ∂Ω,

(2.14)





∂xj

(
aij

2 (x) ∂xiV2

)
= 0 in Ω̃,

V2 = 1 on ∂D2, V2 = 0 on ∂D1 ∪ ∂Ω,

(2.15)





∂xj

(
aij

2 (x) ∂xiV3

)
= 0 in Ω̃,

V3 = 0 on ∂D1 ∪ ∂D2, V3 = ϕ on ∂Ω.

(2.16)

Define

Qε[ϕ] :=
∫

∂D1

aij
2 (x) ∂xiV3 νj

∫

∂Ω
aij

2 (x) ∂xiV2 νj

−
∫

∂D2

aij
2 (x) ∂xiV3 νj

∫

∂Ω
aij

2 (x) ∂xiV1 νj ,

(2.17)

then Qε : C2(∂Ω) → R is a linear functional.

Theorem 2.1.4. With the same conditions in Theorem 2.1.3, let u ∈ H1(Ω) ∩ C1(Ω̃)

be the solution to equation (2.12). For ε sufficiently small and Qε[ϕ] defined by (2.17),

there is a positive constant C which depends only on n, κ0, r0, ‖∂D1‖C2,α, ‖∂D2‖C2,α,

λ, Λ and ‖A2‖
C2(eΩ)

, but independent of ε such that estimate (2.9) holds.

2.2 Proof of Theorem 2.1.1 and 2.1.2

As in the above section, we write u = C1v1 + C2v2 + v3 as in (2.4). To prove our main

theorems, we first estimate ‖∇u‖
L∞(eΩ)

in terms of |C1−C2|, and then estimate |C1−C2|.
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In this section we use, unless otherwise stated, C to denote various positive constants

whose values may change from line to line and which depend only on n, κ0, r0, ‖∂Ω‖C2,α ,

‖∂D1‖C2,α and ‖∂D2‖C2,α .

Proposition 2.2.1. Under the hypotheses of Theorem 2.1.1, let u be the solution of

equation (2.1). There exists a positive constants C, such that, for sufficiently small

ε > 0,
1
ε
| C1 − C2 |≤ ‖∇u‖

L∞(eΩ)
≤ C

ε
| C1 − C2 | + C‖ϕ‖C2(∂Ω). (2.18)

To prove this proposition, we first estimate the gradients of v1, v2 and v3. With-

out loss of generality, we may assume throughout the proof of the proposition that

‖ϕ‖C2(∂Ω) = 1; see Remark 2.1.2.

Lemma 2.2.1. Let v1, v2 be defined by equations (2.5) and (2.6), then for n ≥ 2, we

have

‖∇v1‖L∞(eΩ)
+ ‖∇v2‖L∞(eΩ)

≤ C

ε
, ‖∂v1

∂ν
‖L∞(∂Ω) + ‖∂v2

∂ν
‖L∞(∂Ω) ≤ C.

Proof : By the maximum principle, ‖v1‖L∞(eΩ)
≤ 1, and since v1 achieves constants

on each connected component of ∂Ω̃, and each connected component of ∂Ω̃ is C2,α then

the gradient estimates for harmonic functions implies that

‖∇v1‖L∞(eΩ)
≤ C‖v1‖L∞

dist(∂D1, ∂D2)
=

C

ε
.

Similarly, we can prove ‖∇v2‖L∞(eΩ)
≤ C/ε. The second inequality follows from the

boundary estimates for harmonic functions. ¤

Before estimating |∇v3|, we first prove:

Lemma 2.2.2. Let ρ ∈ C2(Ω̃) be the solution to:




∆ρ = 0 in Ω̃,

ρ = 0 on ∂D1 ∪ ∂D2, ρ = 1 on ∂Ω.

(2.19)

Then ‖∇ρ‖
L∞(eΩ)

≤ C.
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Proof : Let ρi(i = 1, 2) ∈ C2(Ω\Di) ∩ C1(Ω\Di) be the solution to:




∆ρi = 0 in Ω\Di,

ρi = 0 on ∂Di, ρi = 1 on ∂Ω.

Again by the maximum principle and the strong maximum principle, we obtain 0 <

ρ1 < 1 in Ω\D1. Since D2 ⊂ Ω\D1, we have ρ1 > 0 = ρ on ∂D2. And since ρ1 = ρ on

∂D1 and ∂Ω, therefore ρ1 > ρ on Ω̃. Now because ρ1 = ρ = 0 on ∂D1 and ρ1 > ρ > 0

on Ω̃, so

‖∇ρ‖L∞(∂D1) ≤ ‖∇ρ1‖L∞(∂D1) ≤ C.

Similarly,

‖∇ρ‖L∞(∂D2) ≤ ‖∇ρ2‖L∞(∂D2) ≤ C.

By the boundary estimate of harmonic functions, we know that ‖∇ρ‖L∞(∂Ω) ≤ C.

Since ∆ρ = 0 in Ω̃, ∂xiρ is also harmonic, by the maximum principle,

‖∇ρ‖
L∞(eΩ)

≤ max
(
‖∇ρ‖L∞(∂D1), ‖∇ρ‖L∞(∂D2), ‖∇ρ‖L∞(∂Ω)

)
≤ C.

¤

Now, we estimate |∇v3|:

Lemma 2.2.3. Let v3 be defined by equation (2.7), for n ≥ 2, we have

‖∇v3‖L∞(eΩ)
≤ C.

Proof : Since v3 = −ρ = ρ = 0 on ∂Di(i = 1, 2), and −ρ ≤ v3 = ϕ ≤ ρ on ∂Ω, we

have, by the maximum principle,

−ρ ≤ v3 ≤ ρ in Ω̃.

It follows, for i = 1, 2, that

‖∇v3‖L∞(∂Di) ≤ ‖∇ρ‖L∞(∂Di) ≤ C.

By the boundary estimate,

‖∇v3‖L∞(∂Ω) ≤ C.
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By the harmonicity of ∂xiv3 and the maximum principle,

‖∇v3‖L∞(eΩ)
≤ C.

¤

Remark 2.2.1. Without assuming ‖ϕ‖C2(∂Ω) = 1, we have

‖∇v3‖L∞(∂D1∪∂D2) ≤ C‖ϕ‖L∞(∂Ω),

where C has the dependence specified at the beginning of this section, except that it does

not depend on ‖∂Ω‖C2,α. This is easy to see from the proof of Lemma 2.2.3.

The above lemma yields the main result of [1].

Corollary 2.2.1. ([1]) Let B1 and B2 be two spheres with radius R and centered at

(±R ± ε
2 , 0, · · · , 0), respectively. Let H be a harmonic function in R3. Define u to be

the solution to 



∆u = 0 in R3\B1 ∪B2,

u = 0 on ∂B1 ∪ ∂B2,

u(x)−H(x) = O(|x|−1) as |x| → +∞.

Then there is a constant C independent of ε such that

‖∇(u−H)‖L∞(R3\B1∪B2) ≤ C.

Proof : By the maximum principle and interior estimates of harmonic functions,

the C3 norm of u|B2R(0) is bounded by a constant independent of ε. Apply Lemma

2.2.3 with Ω = B2R(0) and ϕ = u|B2R(0), we immediately obtain the above corollary.¤

With the above lemmas, we give the

Proof of Proposition 2.2.1: dist(∂D1, ∂D2) = ε, by the mean value theorem, ∃ ξ ∈ Ω̃

such that

‖∇u‖
L∞(eΩ)

≥ |∇u(ξ)| ≥ |C1 − C2|
ε

.
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By the decomposition formula (2.4),

∇u = C1∇v1 + C2∇v2 +∇v3 = (C1 − C2)∇v1 + C2∇(v1 + v2) +∇v3.

Hence,

‖∇u‖
L∞(eΩ)

≤ |C1 − C2|‖∇v1‖L∞(eΩ)
+ |C2|‖∇(v1 + v2)‖L∞(eΩ)

+ ‖∇v3‖L∞(eΩ)
.

By Lemma 2.2.2, since v1 + v2 = 1− ρ in Ω̃, we have

‖∇(v1 + v2)‖L∞(eΩ)
= ‖∇(1− ρ)‖

L∞(eΩ)
= ‖∇ρ‖

L∞(eΩ)
≤ C.

Using the fact we showed in the Appendix, ‖u‖H1(Ω) ≤ C, so |C1|+ |C2| ≤ C.

Therefore using also Lemma 2.2.1 we obtain,

‖∇u‖
L∞(eΩ)

≤ C

ε
| C1 − C2 | + C.

This proof is now completed. ¤

Later we will give an estimate of |C1 − C2|, which, together with Proposition 2.2.1,

yields the lower and upper bounds of ‖∇u‖
L∞(eΩ)

for strictly convex subdomains D1

and D2.

2.2.1 Estimate of |C1 − C2|

Back to the decomposition formula (2.4), denote

aij =
∫

∂Di

∂vj

∂ν
(i, j = 1, 2), bi =

∫

∂Di

∂v3

∂ν
(i = 1, 2). (2.20)

We first give some basic lemmas:

Lemma 2.2.4. Let aij and bi be defined as in (2.20), then they satisfy the following:

1. a12 = a21 > 0, a11 < 0, a22 < 0,

2. −C ≤ a11 + a21 ≤ − 1
C , −C ≤ a22 + a12 ≤ − 1

C ,
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3. |b1| ≤ C, |b2| ≤ C.

By the fourth line of equation (2.1), C1 and C2 satisfy




a11C1 + a12C2 + b1 = 0,

a21C1 + a22C2 + b2 = 0.

(2.21)

By solving the above linear system, using a12 = a21 and a11a22 − a12a21 > 0 which

follows from Lemma 2.2.4, we obtain

C1 =
−b1a22 + b2a12

a11a22 − a2
12

, C2 =
−b2a11 + b1a12

a11a22 − a2
12

, (2.22)

and therefore,

|C1 − C2| = |b1 − αb2|
|a11 − αa12| , where α =

a11 + a12

a22 + a12
> 0. (2.23)

Based on this formula, we will give the estimates for |a11 − αa12| and |b1 − αb2|, then

the estimate for |C1 − C2| follows immediately.

Proof of Lemma 2.2.4: (1) By the maximum principle and the strong maximum prin-

ciple,

0 < v1 < 1 in Ω̃.

By the Hopf Lemma, we know that

∂v1

∂ν

∣∣
∂D1

< 0,
∂v1

∂ν

∣∣
∂D2

> 0,
∂v1

∂ν

∣∣
∂Ω

< 0.

Similarly,
∂v2

∂ν

∣∣
∂D1

> 0,
∂v2

∂ν

∣∣
∂D2

< 0,
∂v2

∂ν

∣∣
∂Ω

< 0.

Thus a11 < 0, a12 > 0, a21 > 0 and a22 < 0.

Also, since v1 and v2 are the solutions of equations (2.5) and equations (2.6), re-

spectively, we have

0 =
∫
eΩ

∆v1 · v2 −
∫
eΩ

∆v2 · v1 = −
∫

∂D2

∂v1

∂ν
· 1 +

∫

∂D1

∂v2

∂ν
· 1

= −a21 + a12,

(2.24)
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i.e. a21 = a12.

(2) We will prove the first inequality, the second one stands with the same reason.

By the harmonicity of v1 in Ω̃,

a11 + a21 = −
∫
eΩ

∆v1 +
∫

∂Ω

∂v1

∂ν
=

∫

∂Ω

∂v1

∂ν
< 0.

By Lemma 2.2.1,

a11 + a21 =
∫

∂Ω

∂v1

∂ν
≥ −C.

On the other hand, since 0 < v1 < 1 in Ω̃ and v1 = 1 on ∂D1, by the boundary gradient

estimates of a harmonic function, ∃ B(x̄, 2r̄) ⊂ Ω̃, such that v1 > 1/2 in B(x̄, r̄), where

r̄ is independent of ε. Let ρ ∈ C2(Ω\D2 ∪B(x̄, r̄)) ∪ C1(∂Ω ∪ ∂D2 ∪ ∂B(x̄, r̄)) be the

solution of the following equation:




∆ρ = 0 in Ω\D2 ∪B(x̄, r̄),

ρ = 1/2 on ∂B(x̄, r̄) ρ = 0 on ∂D2 ∪ ∂Ω.

By the maximum principle and the strong maximum principle, 0 < ρ < 1/2 in

Ω\D2 ∪B(x̄, r̄). A contradiction argument based on the Hopf Lemma yields,

−∂ρ

∂ν
≥ 1

C
on ∂Ω.

On the other hand, since ρ ≤ v1 on the boundary of Ω\D1 ∪D2 ∪B(x̄, r̄), we obtain, via

the maximum principle, 0 < ρ ≤ v1 in Ω\D1 ∪D2 ∪B(x̄, r̄). It follows, using ρ = v1 = 0

on ∂Ω, that
∂v1

∂ν
≤ ∂ρ

∂ν
on ∂Ω.

Thus,

a11 + a21 =
∫

∂Ω

∂v1

∂ν
≤

∫

∂Ω

∂ρ

∂ν
≤ − 1

C
.

(3) Clearly,

0 =
∫
eΩ

∆v1 · v3 −
∫
eΩ

∆v3 · v1 =
∫

∂Ω

∂v1

∂ν
· ϕ +

∫

∂D1

∂v3

∂ν
· 1 =

∫

∂Ω

∂v1

∂ν
· ϕ + b1.

Thus,

|b1| =
∣∣∣
∫

∂Ω

∂v1

∂ν
· ϕ

∣∣∣ ≤
∫

∂Ω

∣∣∣∂v1

∂ν

∣∣∣ ≤ C.
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Thus, we finished the proof. ¤

2.2.2 Estimate of |a11 − αa12|

By a translation and rotation of the axis, we may assume without loss of generality

that D1, D2 are two strictly convex subdomains in Ω ⊂ Rn which satisfy the following:

(−ε/2, 0′) ∈ ∂D1, (ε/2, 0′) ∈ ∂D2, ε = dist(∂D1, ∂D2) = dist(D1, D2). (2.25)

Near the origin, we can find a ball B(0, r) such that the portion of ∂Di (i = 1, 2)

in B(0, r) is strictly convex, where r > 0 is independent of ε. Then ∂D1 ∩ B(0, r) and

∂D2∩B(0, r) can be represented by the graph of x1 = f(x′)− ε/2 and x1 = g(x′)+ ε/2

respectively, where x′ = (x2, · · · , xn). Thus f(0′) = g(0′) = 0, ∇f(0′) = ∇g(0′) = 0,

and −CI ≤ (
D2f(0′)

) ≤ − 1
C I, 1

C I ≤ (
D2g(0′)

) ≤ CI.

With these notations, we first estimate aii for i = 1, 2.

Lemma 2.2.5. Let aii be defined by (2.20), then

1
C
√

ε
≤ −aii ≤ C√

ε
, for n = 2, i = 1, 2.

Proof : It suffices to prove it for a11. By the harmonicity of v1, we have

0 =
∫
eΩ

∆v1 · v1 = −
∫
eΩ
|∇v1|2 −

∫

∂D1

∂v1

∂ν
= −

∫
eΩ
|∇v1|2 − a11,

i.e.

a11 = −
∫
eΩ
|∇v1|2.

Now we construct a function (here in R2, we let x = x1, y = x2)

w(x, y) = − x− g(y)− ε
2

g(y)− f(y) + ε
(2.26)

on Or := Ω̃ ∩ {
(x, y)

∣∣ |y| < r
}
. It is clear that w(x, y) is linear in x for fixed y and

w |B(0,r)∩∂D1
= 1; w |B(0,r)∩∂D2

= 0,
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so we have ∫ g(y)+ ε
2

f(y)− ε
2

|∂xw(x, y)|2dx ≤
∫ g(y)+ ε

2

f(y)− ε
2

|∂xv1(x, y)|2dx,

i.e.
1

g(y)− f(y) + ε
≤

∫ g(y)+ ε
2

f(y)− ε
2

|∂xv1(x, y)|2.

Integrating on y we get

∫ r/2

0

∫ g(y)+ ε
2

f(y)− ε
2

|∂xv1(x, y)|2dxdy ≥
∫ r/2

0

1
g(y)− f(y) + ε

dy

=
1
C

∫ r/2

0

1
y2 + ε

dy =
1

C
√

ε
.

(2.27)

Thus

−a11 ≥
∫ r/2

0

∫ g(y)+ ε
2

f(y)− ε
2

|∂xv1(x, y)|2dxdy ≥ 1
C
√

ε
.

On the other hand, we can find ψ ∈ C2(Ω) such that

ψ = 0 on Or/8, ψ = 1 on ∂D1\(Or/4), ψ = 0 on ∂D2\(Or/4),

ψ = 0 on ∂Ω, and ‖∇ψ‖L∞(Ω) ≤ C.

We can also find ρ ∈ C2(Ω) such that

0 ≤ ρ ≤ 1, ρ = 1 on Or/2, ρ = 0 on Ω\Or and |∇ρ| ≤ C.

Let w = ρw + (1 − ρ)ψ, then w = 1 = v1 on ∂D1;w = 0 = v1 on ∂D2; w = 0 = v1 on

∂Ω and w = w on Or/2. Then by the properties of ψ, ρ and the harmonicity of v1, we

have ∫
eΩ
|∇v1|2 ≤

∫
eΩ
|∇w|2 ≤

∫
eΩ∩Or/2

|∇w|2 + C. (2.28)

A calculation gives

∂yw =
g′(y)(g(y)− f(y) + ε)− (g(y)− x + ε

2)(g′(y)− f ′(y))
(g(y)− f(y) + ε)2

.

We will show
∫
eΩ∩Or/2

|∂yw|2 ≤ C.
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Indeed,
∫ r/2

0

∫ g(y)+ ε
2

f(y)− ε
2

|∂yw(x, y)|2dxdy

≤ 2
∫ r/2

0

∫ g(y)+ ε
2

f(y)− ε
2

(
g′(y)2

(g(y)− f(y) + ε)2
+

(g(y)− x + ε
2)2(g′(y)− f ′(y))2

(g(y)− f(y) + ε)4

)
dxdy

= 2
∫ r/2

0

g′(y)2

g(y)− f(y) + ε
dy + 2

∫ r/2

0

(g′(y)− f ′(y))2

g(y)− f(y) + ε
dy

= C

∫ r/2

0

y2

y2 + ε
dy + C

∫ r/2

0

y2

y2 + ε
dy

≤ C.

(2.29)

Then by (2.28) and (2.29)

|a11| =
∫
eΩ
|∇v1|2 ≤

∫
eΩ∩Or/2

|∇w|2 + C

≤ C

∫ r/2

0

∫ g(y)+ ε
2

f(y)− ε
2

|Dxw(x, y)|2dxdy + C

= C

∫ r/2

0

1
g(y)− f(y) + ε

dy + C = C

∫ r/2

0

1
y2 + ε

dy + C

≤ C√
ε
.

(2.30)

The proof is completed. ¤

Similarly, we have

Lemma 2.2.6. Let aii be defined by (2.20),

1
C
| ln ε| ≤ −aii ≤ C| ln ε|, for n = 3, i = 1, 2.

Proof : We consider

w(x1, x
′) = − x− g(x′)− ε

2

g(x′)− f(x′) + ε
(2.31)

on Or/2 := Ω̃ ∩ {(x1, x
′)| |x′| < r

2}. Use the same proof in Lemma 2.2.5, we have
∫ r/2

0

∫ g(x′)+ ε
2

f(x′)− ε
2

|∂x′w(x1, x
′)|2dx1dx′ ≤ C.

Therefore, it suffices to verify that
∫
eΩ∩Or/2

|∂x1w(x1, x
′)|2 ∼ | ln ε|.
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Indeed,
∫
eΩ∩Or/2

|∂x1w(x1, x
′)|2 =

∫

|x′|<r/2

1
g(x′)− f(x′) + ε

dx′ =
∫ r/2

0

t

Ct2 + ε
dt ∼ | ln ε|.

This completes the proof. ¤

Lemma 2.2.7. Let aii be defined by (2.20),

1
C
≤ −aii ≤ C for n ≥ 4, i = 1, 2.

Proof : We only need
∫

Or/2

|∂x1w(x1, x
′)|2 =

∫

|x′|<r/2

1
g(x′)− f(x′) + ε

dx′ =
∫ r/2

0

tn−2

Ct2 + ε
dt ∼ C.

The proof is completed. ¤

Lemma 2.2.8. Let α be defined by (2.23), we have

1
C
≤ α ≤ C.

Proof : By the definition of α and using the second statement in Lemma 2.2.4, we

are done. ¤

To summarize, we have

Proposition 2.2.2. Let aij and α be defined by (2.20) and (2.23), we have

1. 1
C
√

ε
≤ |a11 − αa12| ≤ C√

ε
for n = 2,

2. 1
C | ln ε| ≤ |a11 − αa12| ≤ C| ln ε| for n = 3,

3. 1
C ≤ |a11 − αa12| ≤ C for n ≥ 4.

Proof : Since a11 < 0, a12 > 0, a11 + a12 < 0 and α > 0, we have

|a11| < |a11 − αa12| < (1 + α)|a11|.

Combining the results of Lemma 2.2.5, Lemma 2.2.6, Lemma 2.2.7 and Lemma 2.2.8,

the proof is completed. ¤
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2.2.3 Estimate of |b1 − αb2|

Proposition 2.2.3. Let b1, b2, α and Qε[ϕ] be defined by (2.20), (2.23) and (2.8), we

have
|Qε[ϕ]|

C
≤ |b1 − αb2| ≤ C‖ϕ‖C2(∂Ω).

Proof : Combining the third result in Lemma 2.2.4 and Lemma 2.2.8, we have

|b1 − αb2| ≤ |b1|+ |α||b2| ≤ C‖ϕ‖C2(∂Ω).

On the other hand, by the definition and the harmonicity of v1 and v2 and using Lemma

2.2.4, we obtain

|b1 − αb2| = |b1(a22 + a12)− b2(a11 + a12)|
|a22 + a12|

≥ 1
C
·
∣∣∣
∫

∂D1

∂v3

∂ν

∫

∂Ω

∂v2

∂ν
−

∫

∂D2

∂v3

∂ν

∫

∂Ω

∂v1

∂ν

∣∣∣ =
|Qε[ϕ]|

C
.

This completes the proof. ¤

Now we are ready to prove our two main theorems:

Proof of Theorem 2.1.1-2.1.2: By Proposition 2.2.1 and (2.23), then using Propo-

sition 2.2.2, 2.2.3, we are done. ¤

2.3 Estimate of |Qε[ϕ]|

In order to identify situations when ‖∇u‖L∞ behaves exactly as the upper bound es-

tablished in Theorem 2.1.1, we estimate in this section |Qε[ϕ]|. To emphasize the

dependence on ε, we denote D1, D2 by D1ε, D2ε, denote ϕ by ϕε, and denote v1, v2,

v3 defined by equation (2.5), (2.6), (2.7) as v1ε, v2ε, v3ε. In this section we assume,

in addition to the hypotheses in Theorem 2.1.1, that along a sequence ε → 0 (we still

denote it as ε), D1ε → D∗
1, D2ε → D∗

2 in C2,α norm, ϕε → ϕ∗ in C1,α(∂Ω). We use
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notation Ω̃∗ = Ω\D∗
1 ∪D∗

2, and assume, without loss of generality, that D∗
1 ∩D∗

2 = {0}.
We will show that as ε → 0, viε converges, in appropriate sense, to v∗i which satisfies





∆v∗1 = 0 in Ω̃∗,

v∗1 = 1 on ∂D∗
1\{0}, v∗1 = 0 on ∂Ω ∪ ∂D∗

2\{0},
(2.32)





∆v∗2 = 0 in Ω̃∗,

v∗2 = 1 on ∂D∗
2\{0}, v∗2 = 0 on ∂Ω ∪ ∂D∗

1\{0},
(2.33)





∆v∗3 = 0 in Ω̃∗,

v∗3 = 0 on ∂D∗
1 ∪ ∂D∗

2, v∗3 = ϕ∗ on ∂Ω.

(2.34)

First we prove

Lemma 2.3.1. There exist unique v∗i ∈ L∞(Ω̃∗) ∩ C0(Ω̃∗ \ {0}) ∩ C2(Ω̃∗), i = 1, 2, 3,

which solve equations (2.32), (2.33) and (2.34) respectively. Moreover, v∗i ∈ C1(Ω̃∗ \
{0}).

Proof : The existence of solutions to the above equations can easily be obtained by

Perron’s method, see theorem 2.12 and lemma 2.13 in [12]. For reader′s convenience,

we give below a simple proof of the uniqueness. We only need to prove that 0 is the

only solution in L∞(Ω̃∗) ∩ C0(Ω̃∗ \ {0}) ∩ C2(Ω̃∗) to the following equation:




∆w = 0 in Ω̃∗,

w = 0 on ∂Ω̃∗\{0}.
(2.35)

Indeed, ∀ ε > 0, we have

|w(x)| ≤
εn−2‖w‖

L∞(eΩ∗)
|x|n−2

, on ∂(Ω̃∗\Bε)(0).

By the maximum principle,

|w(x)| ≤
εn−2‖w‖

L∞(eΩ∗)
|x|n−2

, ∀ x ∈ Ω̃∗\Bε(0).

Thus w ≡ 0 in Ω̃∗. The additional regularity v∗i ∈ C1(Ω̃∗ \ {0}) follows from standard

elliptic estimates and the regularity of the ∂Di and ∂Ω. ¤
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Lemma 2.3.2. For i = 1, 2, 3,

viε −→ v∗i in C2
loc(Ω̃

∗), as ε → 0, (2.36)

∫

∂Ω

∂viε

∂ν
−→

∫

∂Ω

∂v∗i
∂ν

, as ε → 0, i = 1, 2, (2.37)

∫

∂Diε

∂v3ε

∂ν
−→

∫

∂D∗i

∂v∗3
∂ν

, as ε → 0. (2.38)

Proof : By the maximum principle, {‖viε‖L∞} is bounded by a constant independent

of ε. By the uniqueness part of Lemma 2.3.1, we obtain (2.36) using standard elliptic

estimates. By Lemma 2.2.3, {‖∇v3ε‖L∞} is bounded by some constant independent of

ε, so ‖∇v∗3‖L∞ < ∞. Estimate (2.37) and (2.38) follow from standard elliptic estimates.

The proof is completed. ¤

Similar to Qε[ϕε], we define

Q∗[ϕ∗] :=
∫

∂D∗1

∂v∗3
∂ν

∫

∂Ω

∂v∗2
∂ν

−
∫

∂D∗2

∂v∗3
∂ν

∫

∂Ω

∂v∗1
∂ν

, (2.39)

then Q∗ : C2(∂Ω) 7→ R is a linear functional. Let Qε[ϕε] and Q∗[ϕ∗] be defined by

equation (2.8), (2.39), then, by the above lemmas,

Qε[ϕε] −→ Q∗[ϕ∗], as ε → 0.

Corollary 2.3.1. If ϕ∗ ∈ C2(∂Ω) satisfies Q∗[ϕ∗] 6= 0, then |Qε[ϕε]| ≥ 1
C , for some

positive constant C which is independent of ε.

In the following we give some examples to show that, in general, the rates of the

lower bounds established in Theorem 2.1.2 are optimal.

Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with C2,α boundary, 0 < α < 1, which

is symmetric with respect to x1-variable, i.e., (x1, x
′) ∈ Ω if and only if (−x1, x

′) ∈ Ω,

where x′ = (x2, · · · , xn).

Let D∗
1 be a strictly convex bounded open set in {(x1, x

′) ∈ Rn|x1 < 0} with

C2,α boundary, 0 < α < 1, satisfying 0 ∈ ∂D∗
1 and D∗

1 ⊂ Ω. Set D∗
2 = {(x1, x

′) ∈
Rn|(−x1, x

′) ∈ D∗
1}.
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Let ϕ ∈ C2(∂Ω)\{0} satisfy

ϕodd(x1, x
′) :=

1
2
[
ϕ(x1, x

′)− ϕ(−x1, x
′)
] ≤ 0 (or ≥ 0), (2.40)

on (∂Ω)+ := {(x1, x
′) ∈ ∂Ω|x1 > 0}.

For ε > 0 sufficiently small, let

D1ε :=
{
(x1, x

′) ∈ Ω
∣∣(x1 +

ε

2
, x′) ∈ D∗

1

}
,

D2ε :=
{
(x1, x

′) ∈ Ω
∣∣(x1 − ε

2
, x′) ∈ D∗

2

}
,

ϕε := ϕ.

Proposition 2.3.1. Under the above assumptions, we have |Qε[ϕ]| ≥ 1
C , for some

positive constant C independent of ε. Consequently,

‖∇uε‖L∞(eΩ)
≥ 1

C
√

ε
for n = 2,

‖∇uε‖L∞(eΩ)
≥ 1

Cε| ln ε| for n = 3,

‖∇uε‖L∞(eΩ)
≥ 1

Cε
for n ≥ 4,

(2.41)

where uε is the solution to equation (2.1).

The above proposition can be easily obtained by the following lemma which gives a

necessary and sufficient condition instead of condition (2.40) on ϕ for the lower bounds

(2.41) to hold.

Let

(v∗3)odd(x1, x
′) :=

1
2
[
v∗3(x1, x

′)− v∗3(−x1, x
′)
]
, (2.42)

we have

Lemma 2.3.3. Under the same hypotheses in Proposition 2.3.1 except for the condi-

tion (2.40), let Qε[ϕ] and (v∗3)odd(x) be defined by equation (2.8) and (2.42), then the

following statements are equivalent:

1. For some positive constant C independent of ε, we have |Qε[ϕ]| ≥ 1
C ,

2.
∫
∂D∗2

∂(v∗3)odd

∂ν 6= 0.
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Proof : By symmetry, the strong maximum principle and the Hopf Lemma, we can

easily obtain ∫

∂Ω

∂v∗1
∂ν

=
∫

∂Ω

∂v∗2
∂ν

< 0.

Then

Q∗[ϕ] =
∫

∂Ω

∂v∗1
∂ν

( ∫

∂D∗1

∂v∗3
∂ν

−
∫

∂D∗2

∂v∗3
∂ν

)

=
∫

∂Ω

∂v∗1
∂ν

( ∫

∂D∗1

∂(v∗3)odd

∂ν
−

∫

∂D∗2

∂(v∗3)odd

∂ν

)

= −2
∫

∂Ω

∂v∗1
∂ν

∫

∂D∗2

∂(v∗3)odd

∂ν
.

Hence, Q∗[ϕ] 6= 0 if and only if
∫
∂D∗2

∂(v∗3)odd

∂ν 6= 0. Then by Corollary 2.3.1, we com-

plete the proof. ¤

Proof of Proposition 2.3.1: Note that (v∗3)odd(0, x′) = 0 by symmetry, and (v∗3)odd is

harmonic with (v∗3)odd = ϕodd ≤ 0 (or ≥ 0) but not identically 0 on (∂Ω)+. Now by using

the strong maximum principle and the Hopf Lemma, it is clear that
∫
∂D∗2

∂(v∗3)odd

∂ν 6= 0,

Hence, by Lemma 2.3.3 and Theorem 2.1.2, we are done. ¤

Remark 2.3.1. If ϕ =
∑n

i=1 bixi with bi ∈ R and b1 6= 0, then by Proposition 2.3.1

we have |Qε[ϕ]| ≥ 1
C . Therefore, by Theorem 2.1.1 and 2.1.2, the blow-up rates of

‖∇u‖
L∞(eΩ)

are ε−1/2 in in dimension n = 2, (ε| ln ε|)−1 in dimension n = 3 and ε−1

in dimension n ≥ 4.

Now instead of in a bounded set Ω, we consider in Rn:




∆uε = 0 in Rn\D1ε ∪D2ε,

uε|+ = uε|− on ∂D1ε ∪ ∂D2ε,

∇uε ≡ 0 in D1ε ∪D2ε,∫

∂Diε

∂uε

∂ν

∣∣∣
+

= 0 (i = 1, 2),

lim sup
|x|→∞

|x|n−1|uε(x)−H(x)| < ∞,

(2.43)

where H(x) is a given entire harmonic function in Rn.
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we have the following result regarding the lower bound for |∇uε|:

Proposition 2.3.2. With the same assumptions on D1ε and D2ε as in Proposition

2.3.1, and let H(x) be an entire harmonic function in Rn satisfying Hodd(x1, x
′) :=

1
2

[
H(x1, x

′)−H(−x1, x
′)
]

< 0 (or > 0) on Rn
+ := {(x1, x

′) ∈ Rn|x1 > 0}, then for some

positive constant C independent of ε, we have

‖∇uε‖L∞(Rn\D1ε∪D2ε)
≥ 1

C
√

ε
for n = 2,

‖∇uε‖L∞(Rn\D1ε∪D2ε)
≥ 1

Cε| ln ε| for n = 3,

‖∇uε‖L∞(Rn\D1ε∪D2ε)
≥ 1

Cε
for n ≥ 4,

(2.44)

where uε is the solution to equation (2.43).

Proof : Step 1. First, we show that there exists a positive constant C independent

of ε, such that for any small ε > 0,

|x|n−1|uε(x)−H(x)| ≤ C, ∀ x ∈ Rn\D1ε ∪D2ε. (2.45)

(i) For any bounded open set U ⊂ Rn with C1 boundary ∂U satisfying ∂U∩D1ε ∪D2ε =

∅, we have, in view of the first and the fourth lines in (2.43),

∫

∂U

∂uε

∂ν
=

∫

U\D1ε∪D2ε

∆uε = 0. (2.46)

(ii) We show that there exists a positive constant M independent of ε, such that

‖uε −H‖L∞(Rn\D1ε∪D2ε)
≤ M, ∀ small ε > 0.

We only need to prove

‖uε −H‖L∞(Rn\D1ε∪D2ε)
≤

2∑

i=1

(max
Diε

H −min
Diε

H). (2.47)

Since ∇uε = 0 in D1ε ∪ D2ε, uε is constant on each Diε, denoted as Ci(ε). We know

that

lim
|x|→∞

(uε(x)−H(x)) = 0, (2.48)

and

Ci(ε)−max
Diε

H ≤ uε −H ≤ Ci(ε)−min
Diε

H, on Diε, i = 1, 2. (2.49)
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If (2.47) did not hold, say,

sup
Rn

(uε −H) >
2∑

i=1

(max
Diε

H −min
Diε

H),

then, because of (2.48) and (2.49), there would exist 0 < a < sup
Rn

(uε −H) such that

U := {x ∈ Rn | (uε −H)(x) > a} 6= ∅ satisfies ∂U ∩D1ε ∪D2ε = ∅. We may assume,

by the Sard theorem, that a is a regular value of uε −H, and therefore ∂U is C1. By

the Hopf lemma,
∂(uε −H)

∂ν
< 0 on ∂U , and therefore

∫

∂U

∂(uε −H)
∂ν

< 0.

On the other hand, using (2.46) and the harmonicity of H in U , we have

∫

∂U

∂(uε −H)
∂ν

= −
∫

∂U

∂H

∂ν
= −

∫

U
∆H = 0.

A contradiction.

(iii) Consider wε(x) := uε(x) − H(x). Fix a constant R0 > 0, independent of ε, such

that D∗
1 ∪D∗

2 ⊂ BR0/2(0), and let

w̃ε(y) :=
1

|y|n−2
wε

( y

|y|2
)
, 0 < |y| < 1

R0
.

Then w̃ε is harmonic in B1/R0
\{0}. By the last line of (2.43), there exists a positive

constant C(ε) such that

|w̃ε(y)| ≤ C(ε)|y|, 0 < |y| < 1
R0

.

Therefore, ∆w̃ε = 0 in B1/R0
and w̃ε(0) = 0. By (ii), we have |w̃ε| ≤ C, on ∂B1/R0

, for

some positive constant C independent of ε. Hence, |w̃ε| ≤ C, |∇w̃ε| ≤ C in B1/(2R0),

then

|w̃ε(y)| ≤ C|y|, |y| < 1
2R0

.

Therefore, also using (ii), (2.45) holds.

Step 2. For R > R0, let Ω = BR(0). Let ϕε := uε|∂Ω, then by Corollary 2.3.1 and
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Theorem 2.1.2 it is enough to show, for some R, that Q∗[ϕ∗] 6= 0, where ϕ∗ is defined

at the beginning of this section. By symmetry, we have

Q∗[ϕ∗] =
∫

∂Ω

∂v∗1
∂ν

( ∫

∂D∗1

∂v∗3
∂ν

−
∫

∂D∗2

∂v∗3
∂ν

)
.

Without loss of generality, we may assume Hodd(x) > 0 on Rn
+. Recall that v∗3 is

the solution of (2.34) with boundary data ϕ∗. In the following we use notation (v∗3)h

to denote the the solution of (2.34) with boundary data h. Since Q∗[ϕ∗] is linear on

ϕ∗ and by symmetry Q∗[Heven] = H[ϕ∗even] = 0, where Heven(x) := H(x)−Hodd(x) =

1
2

[
H(x1, x

′) + H(−x1, x
′)
]

and similar for ϕ∗even, we may assume H(x) = Hodd(x).

Now consider w(x) = H(x)−(v∗3)H(x). Then w(x) is harmonic in Ω̃∗ which is defined

at the beginning of this section. By symmetry, w(−x1, x
′) = −w(x1, x

′), w(x) = H(x)

on ∂D∗
1 ∪ ∂D∗

2 and w(x) = 0 on ∂Ω. Therefore,

−2
∫

∂D∗2
H

∂w

∂ν
=

∫
eΩ∗

w(x)∆w(x) +
∫
eΩ∗
|∇w|2 =

∫
eΩ∗
|∇w|2 ≥ 0.

On the other hand, (v∗3)H = 0 on ∂D∗
2, (v∗3)H > 0 on (∂Ω)+ and, by the oddness of

(v∗3)H , (v∗3)H = 0 on {(x1, x
′) | x1 = 0}. Thus, by the maximum principle and the strong

maximum principle, (v∗3)H > 0 in Ω̃∗ and in turn, using the Hopf lemma,
∂(v∗3)H

∂ν
> 0

on ∂D∗
2. Hence, using the harmonicity of H,

max
∂D∗2

H

∫

∂D∗2

∂(v∗3)H

∂ν
≥

∫

∂D∗2
H

∂(v∗3)H

∂ν
≥

∫

∂D∗2
H

∂H

∂ν
−

∫

∂D∗2
H

∂w

∂ν

≥
∫

D∗2
|∇H|2 ≥ 1

C
,

Therefore, ∫

∂D∗2

∂(v∗3)H

∂ν
≥ 1

C
,

for positive constant C independent of R.

For sε := ϕε − H on ∂Ω, by step 1, there exists a constant C > 0 which is in-

dependent of ε and R, such that ‖sε‖L∞(∂Ω) ≤ CR1−n. By Remark 2.2.1, we have

‖∇(v∗3)s∗‖L∞(∂D∗1∪∂D∗2) ≤ C‖s∗‖L∞(∂Ω), thus,

∣∣∣
∫

∂D∗i

∂(v∗3)s∗

∂ν

∣∣∣ ≤ C

∫

∂D∗i
‖s∗‖L∞(∂Ω) ≤ CR1−n,

for some positive constant C independent of ε and R.
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Therefore, for large enough R,
∫

∂D∗2

∂(v∗3)ϕ∗

∂ν
=

∫

∂D∗2

∂(v∗3)H

∂ν
+

∫

∂D∗2

∂(v∗3)s∗

∂ν
≥ 1

C
6= 0.

It is also clear that
∫
∂Ω

∂v∗1
∂ν < 0, Thus,

Q∗[ϕ∗] = −2
∫

∂Ω

∂v∗1
∂ν

∫

∂D∗2

∂(v∗3)ϕ∗

∂ν
6= 0.

This proof is completed. ¤

Remark 2.3.2. In R2, when D1ε and D2ε are identical balls of radius 1, the estimate

(2.44) was established in [2] under a weaker assumption ∂x1H(0) 6= 0.

2.4 Proof of Theorem 2.1.3 and 2.1.4

In the introduction, similar to the harmonic case, we still decompose u = C1V1+C2V2+

V3 as in (2.13).

Proposition 2.2.1 holds since Lemma 2.2.1−2.2.3 hold for V1, V2, V3 defined by (2.14)−(2.16)

and ρ ∈ C2(Ω̃) which is the solution to:




∂xj

(
aij

2 (x) ∂xiρ
)

= 0 in Ω̃,

ρ = 0 on ∂D1 ∪ ∂D2, ρ = 1 on ∂Ω.

The proofs are essentially the same.

Now we start to estimate |C1 − C2|. By the decomposition formula (2.13), instead

of (2.20), we denote

alm =
∫

∂Dl

aij
2 (x) ∂xiVm νj (l, m = 1, 2),

bl =
∫

∂Dl

aij
2 (x) ∂xiV3 νj (l = 1, 2).

(2.50)

Then Lemma 2.2.4 and (2.21)−(2.23) still hold for alm and bl defined above.
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In fact, to prove Lemma 2.2.4 with general coefficients, we only need to change ∂∗
∂ν

to aij
2 (x) ∂xi∗ νj , change ∆∗ in ∂xj

(
aij

2 (x) ∂xi∗
)

and change v1, v2, v3 in V1, V2, V3,

respectively, in the original proof of Lemma 2.2.4. For instance, (2.24) is changed to

0 =
∫
eΩ

∂xj

(
aij

2 (x) ∂xiV1

)
· V2 −

∫
eΩ

∂xj

(
aij

2 (x) ∂xiV2

)
· V1

= −
∫

∂D2

aij
2 (x) ∂xiV1 νj · 1 +

∫

∂D1

aij
2 (x) ∂xiV2 νj · 1

= −a21 + a12.

(2.51)

Therefore, to estimate |C1−C2|, it is equivalent to estimating |a11−αa12| and |b1−αb2|.

For |a11 − αa12|, Lemma 2.2.5−2.2.7 still hold for all(l = 1, 2) defined by (2.50).

The proof is quite similar and the only thing which needs to be shown is the following:

0 =
∫
eΩ

∂xj

(
aij

2 (x) ∂xiV1

)
· V1

= −
∫
eΩ

aij
2 (x) ∂xiV1∂xjV1 −

∫

∂D1

aij
2 (x) ∂xiV1 νj · 1

= −
∫
eΩ

aij
2 (x) ∂xiV1∂xjV1 − a11,

i.e.

a11 = −
∫
eΩ

aij
2 (x) ∂xiV1∂xjV1.

Then by the uniform ellipticity of aij
2 (x) and the harmonicity of v1,

|a11| ≥ λ

∫
eΩ
|∇V1|2 ≥ λ

∫
eΩ
|∇v1|2,

and

|a11| ≤
∫
eΩ

aij
2 (x) ∂xiw∂xjw ≤ Λ

∫
eΩ
|∇w|2 ≤ Λ

∫
eΩ∩Or/2

|∇w|2 + C,

where w is defined in the proof of Lemma 2.2.5 with the same boundary data of V1 and

w is defined by (2.26) and (2.31).

Thus, Lemma 2.2.5−2.2.7 follow by the same computations. Then Lemma 2.2.8 and

Proposition 2.2.2 hold with the same proofs.
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For |b1 − αb2|, Proposition 2.2.3 also holds for bl(l = 1, 2) defined by (2.50) and

Qε[ϕ] defined by (2.17). The proof is the same after changing ∂∗
∂ν to aij

2 (x) ∂xi∗ νj .

Combining the above propositions, we obtain our theorems.

2.5 Appendix

Some elementary results for the conductivity problem

Assume that in Rn, Ω and ω are bounded open sets with C2,α boundaries, 0 < α < 1,

satisfying

ω =
m⋃

s=1

ωs ⊂ Ω,

where {ωs} are connected components of ω. Clearly, m < ∞ and ωs is open for all

1 ≤ s ≤ ω. Given ϕ ∈ C2(∂Ω), the conductivity problem we consider is the following

transmission problem with Dirichlet boundary condition:




∂xj

{[(
kaij

1 (x)− aij
2 (x)

)
χω + aij

2 (x)
]
∂xiuk

}
= 0 in Ω,

uk = ϕ on ∂Ω,

(2.52)

where k = 1, 2, 3, · · · , and χω is the characteristic function of ω.

The n×n matrixes A1(x) :=
(
aij

1 (x)
)

in ω, A2(x) :=
(
aij

2 (x)
)

in Ω\ω are symmetric

and ∃ a constant Λ ≥ λ > 0 such that

λ|ξ|2 ≤ aij
1 (x)ξiξj ≤ Λ|ξ|2 (∀x ∈ ω), λ|ξ|2 ≤ aij

2 (x)ξiξj ≤ Λ|ξ|2 (∀x ∈ Ω\ω)

for all ξ ∈ Rn and aij
1 (x) ∈ C2(ω), aij

2 (x) ∈ C2(Ω\ω).

Equation (2.52) can be rewritten in the following form to emphasize the transmission
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condition on ∂ω:




∂xj

(
aij

1 (x) ∂xiuk

)
= 0 in ω,

∂xj

(
aij

2 (x) ∂xiuk

)
= 0 in Ω\ω,

uk|+ = uk|−, on ∂ω,

aij
2 (x)∂xiukνj

∣∣
+

= kaij
1 (x)∂xiukνj

∣∣
− on ∂ω,

uk = ϕ on ∂Ω.

(2.53)

Here and throughout this paper ν is the outward unit normal and the subscript ±
indicates the limit from outside and inside the domain, respectively.

We list the following results which are well known and omit the proofs.

Theorem 2.5.1. If uk ∈ H1(Ω) is a solution of equation (2.52), then uk ∈ C1(Ω\ω)∩
C1(ω) and satisfies equation (2.53).

If uk ∈ C1(Ω\ω) ∩ C1(ω) is a solution of equation (2.53), then uk ∈ H1(Ω) and

satisfies equation (2.52).

Theorem 2.5.2. There exists at most one solution uk ∈ H1(Ω) to equation (2.52).

The existence of the solution can be obtained by using the variational method. For

every k, we define the energy functional

Ik[v] : =
k

2

∫

ω
aij

1 (x)∂xiv∂xjv +
1
2

∫

Ω\ω
aij

2 (x)∂xiv∂xjv, (2.54)

where v belongs to the set

H1
ϕ(Ω) := {v ∈ H1(Ω)| v = ϕ on ∂Ω}.

Theorem 2.5.3. For every k, there exists a minimizer uk ∈ H1(Ω) satisfying

Ik[uk] = min
v∈H1

ϕ(Ω)
Ik[v].

Moreover, uk ∈ H1(Ω) is a solution of equation (2.52).
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Comparing equation (2.53), when k = +∞, the perfectly conducting problem turns

out to be: 



∂xj

(
aij

2 (x) ∂xiu
)

= 0 in Ω\ω,

u|+ = u|− on ∂ω,

∇u = 0 in ω,
∫

∂ωs

aij
2 (x)∂xiuνj

∣∣
+

= 0 (s = 1, 2, · · · ,m),

u = ϕ on ∂Ω.

(2.55)

We also have similar results:

Theorem 2.5.4. If u ∈ H1(Ω) satisfies equation (2.55) except for the fourth line, then

u ∈ C1(Ω\ω) ∩ C1(ω).

Proof : By the third line of equation (2.55), we have u ≡ const on each component

of ω, so u ≡ const on each component of ∂ω. Thus u ≡ const on each component of

∂(Ω\ω).

Since u ∈ H1(Ω) satisfies ∂xi

(
aij

2 (x) ∂xiuk

)
= 0 in Ω\ω, u|∂Ω = ϕ ∈ C2(∂Ω) and

u ≡ const on each component of ∂(Ω\ω), by the elliptic regularity theory, we have

u ∈ C1(Ω\ω) ∩ C1(ω). ¤

Theorem 2.5.5. There exists at most one solution u ∈ H1(Ω) ∩ C1(Ω\ω) ∩ C1(ω) of

equation (2.55).

Proof : It is equivalent to showing that if ϕ = 0, equation (2.55) only has the solution

u ≡ 0. Integrating by parts in the first line of equation (2.55), we have

0 = −
∫

Ω\ω
∂xj

(
aij

2 (x) ∂xiuk

)
· u

=
∫

Ω\ω
aij

2 (x)∂xiu∂xju−
∫

∂Ω
u · aij

2 (x)∂xiuνj

∣∣
− +

∫

∂ω
u · aij

2 (x)∂xiuνj

∣∣
+

≥ λ

∫

Ω\ω
|∇u|2 −

∫

∂Ω
ϕ · aij

2 (x)∂xiuνj

∣∣
− + Cs

∫

∂ωs

aij
2 (x)∂xiuνj

∣∣
+

= λ

∫

Ω\ω
|∇u|2.

Thus ∇u = 0 in Ω\ω. And since u = ϕ = 0 on ∂Ω, we have u ≡ 0 in Ω\ω. Since

u|+ = u|− on ∂ω and u ≡ C on ω, we get u = 0 on ω. Hence u ≡ 0 in Ω, i.e. u ≡ 0 is
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the only solution of (2.55) when ϕ = 0. ¤

Define the energy functional

I∞[v] :=
1
2

∫

Ω\ω
aij

2 (x)∂xiv∂xjv, (2.56)

where v belongs to the set

A :=
{
v ∈ H1

ϕ(Ω)
∣∣∇v ≡ 0 in ω

}
.

Theorem 2.5.6. There exists a minimizer u ∈ A satisfying

I∞[u] = min
v∈A

I∞[v].

Moreover, u ∈ H1(Ω) ∩ C1(Ω\ω) ∩ C1(ω) is a solution of equation (2.55).

Proof : By the lower-semi continuity of I∞ and the weakly closed property of A,

it is easy to see that the minimizer u ∈ A exists and satisfies ∂xj

(
aij

2 (x)∂xiu
)

= 0 in

Ω\ω. The only thing which needs to be shown is the fourth line in equation (2.55), i.e.

∫

∂ωs

aij
2 (x)∂xiuνj

∣∣
+

= 0, s = 1, 2, · · · ,m.

In fact, since u is a minimizer, for any φ ∈ C∞
c (Ω) satisfying φ ≡ 1 on ωs and φ ≡ 0 on

ωt(t 6= s), let

i(t) := I∞[u + tφ] (t ∈ R),

we have

i′(0) :=
di

dt

∣∣∣
t=0

=
∫

Ω\ω
aij

2 (x)∂xiuφxj = 0.

Therefore

0 = −
∫

Ω\ω
∂xj

(
aij

2 (x) ∂xiuk

)
φ =

∫

Ω\ω
aij

2 (x)∂xiuφxj +
∫

∂ωs

φ · aij
2 (x)∂xiuνj

∣∣
+

=
∫

∂ωs

aij
2 (x)∂xiuνj

∣∣
+
,

for all s = 1, 2, · · · ,m. ¤

Finally, we give the relationship between uk and u.
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Theorem 2.5.7. Let uk and u in H1(Ω) be the solutions of equations (2.53) and (2.55),

respectively. Then

uk ⇀ u in H1(Ω), as k → +∞,

and

lim
k→+∞

Ik[uk] = I∞[u],

where Ik and I∞ are defined as (2.54) and (2.56).

Proof : Step 1. By the uniqueness of the solution to equation (2.55), we only need

to show that there exists a weak limit u of a subsequence of {uk} in H1(Ω) and u is

the solution of equation (2.55).

(1) To show that after passing to a subsequence, uk weakly converges in H1(Ω) to some

u.

Let η ∈ H1
ϕ(Ω) be fixed and satisfy η ≡ 0 on ω, then since uk is the minimizer of Ik

in H1
ϕ(Ω), we have

λ

2
‖∇uk‖2

L2(Ω) ≤ Ik[uk] ≤ Ik[η] =
1
2

∫

Ω\ω
aij

2 (x)ηxiηxj ≤
Λ
2
‖η‖2

H1(Ω),

i.e.

‖∇uk‖L2(Ω) ≤ ‖η‖H1(Ω)
.= M,

where M is independent of k.

Since uk = ϕ on ∂Ω and supk ‖uk‖H1(Ω) < ∞, we have uk ⇀ u in H1
ϕ(Ω).

(2) To show that u is a solution of equation (2.55).

In fact, we only need to prove the following three conditions:

∂xj

(
aij

2 (x) ∂xiu
)

= 0 in Ω\ω, (2.57)

∇u = 0 in ω, (2.58)
∫

∂ωs

aij
2 (x)∂xiukνj

∣∣
+

= 0, s = 1, 2, · · · ,m. (2.59)

(i) For every k, since uk ∈ H1(Ω) is the solution of equation (2.52), then

∀ φ ∈ C∞
c (Ω), we have

k

∫

ω
aij

1 (x)∂xiukφxj +
∫

Ω\ω
aij

2 (x)∂xiukφxj = 0.
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Thus, ∀ φ ∈ C∞
c (Ω\ω) ⊂ C∞

c (Ω),

0 =
∫

Ω\ω
aij

2 (x)∂xiukφxj −→
∫

Ω\ω
aij

2 (x)∂xiuφxj ,

since uk ⇀ u in H1
ϕ(Ω) ⊂ H1(Ω).

Therefore, ∫

Ω\ω
aij

2 (x)∂xiuφxj = 0, ∀ φ ∈ C∞
c (Ω\ω),

i.e. (2.57).

(ii) Let η ∈ H1
ϕ(Ω) be fixed and satisfy η ≡ 0 on ω, then since uk is the minimizer of Ik

in H1
ϕ(Ω), we have

kλ

2
‖∇uk‖2

L2(ω) ≤ Ik[uk] ≤ Ik[η] =
1
2

∫

Ω\ω
aij

2 (x)∂xiη∂xjη ≤
Λ
2
‖η‖2

H1(Ω),

which implies

‖∇uk‖2
L2(ω) → 0, as k →∞.

By (1), since uk ⇀ u in H1(Ω), then uk ⇀ u in H1(ω). Therefore, by the lower-semi

continuity, we get

0 ≤ λ

∫

ω
|∇u|2 ≤

∫

ω
aij

1 (x)∂xiu∂xju ≤
∫

ω
aij

1 (x)∂xiuk∂xjuk

≤ Λ‖∇uk‖2
L2(ω) −→ 0, as k −→∞.

Hence,
∫
ω |∇u|2 = 0 =⇒ ∇u ≡ 0 in ω, which is just (2.58).

(iii) By (i) and (ii), u satisfies (2.57) and is either constant or ϕ on each component

of ∂(Ω\ω). Thus, u ∈ C2(Ω\ω). For each s = 1, 2, · · · ,m, we construct a function

% ∈ C2(Ω\ω), such that % = 1 on ∂ωs, % = 0 on ∂ωt(t 6= s), and % = 0 on ∂Ω.

By Green’s Identity, we have the following:

0 = −
∫

Ω\ω
∂xj

(
aij

2 (x) ∂xiuk

)
%

=
∫

Ω\ω
aij

2 (x)∂xiuk∂xj%−
∫

∂Ω
% · aij

2 (x)∂xiukνj

∣∣
− +

∫

∂ω
% · aij

2 (x)∂xiukνj

∣∣
+

=
∫

Ω\ω
aij

2 (x)∂xiuk∂xj% + k

∫

∂ωs

aij
1 (x)∂xiukνj

∣∣
−

=
∫

Ω\ω
aij

2 (x)∂xiuk∂xj%.
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Similarly,

0 = −
∫

Ω\ω
∂xj

(
aij

2 (x) ∂xiu
)
% =

∫

Ω\ω
aij

2 (x)∂xiu∂xj% +
∫

∂ωs

aij
2 (x)∂xiuνj

∣∣
+
.

Since uk ⇀ u in H1(Ω), it follows

0 =
∫

Ω\ω
aij

2 (x)∂xiuk∂xj% −→
∫

Ω\ω
aij

2 (x)∂xiu∂xj%.

Thus, ∫

∂ωs

aij
2 (x)∂xiuνj

∣∣
+

= 0,

for any s = 1, 2, · · · ,m. Therefore, we finish the proof of the first part.

Step 2. Since uk is a minimizer of Ik and ∇u = 0 in ω, for any k ∈ N,

Ik[uk] ≤ Ik[u] = I∞[u].

Then lim supk→+∞ Ik[uk] ≤ I∞[u].

On the other hand, by Theorem 2.5.7, since u is the weak limit of {uk} in H1(Ω),

we obtain

I∞[u] =
∫

Ω
aij

2 (x)∂xiu∂xju ≤ lim inf
k→+∞

∫

Ω
aij

2 (x)∂xiuk∂xjuk ≤ lim inf
k→+∞

Ik[uk].

Therefore,

lim
k→+∞

Ik[uk] = I∞[u].

¤
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Chapter 3

The perfect and insulated conductivity problems with

multiple inclusions

In this chapter, we investigate the two extreme cases of the conductivity problems,

i.e. the perfect and insulated conductivity problems, in the general sense that multiple

inclusions with extreme conductivity are imbedded in the surrounding matrix.

3.1 Mathematical set-up and the main results

let Ω be a domain in Rn with C2,α boundary, n ≥ 2, 0 < α < 1. Let {Di} (1 ≤ i ≤ m)

be m strictly convex open subsets in Ω with C2,α boundaries, m ≥ 2, satisfying (1.1)

Given ϕ ∈ C1,α(∂Ω), the conductivity problem can be modelled by the following

equation: 



div(ak(x)∇uk) = 0 in Ω,

uk = ϕ on ∂Ω,

(3.1)

where k = (k1, . . . , km) and

ak(x) =





ki ∈ (0,∞) in Di,

1 in Ω̃.

(3.2)

The existence and uniqueness of solutions to the above equation is well known. More-

over, we have ‖uk‖H1(Ω) ≤ C‖ϕ‖C1,α(∂Ω) for some constant C independent of k. There-

fore, by passing to a subsequence, we have uk ⇀ u∞ in H1(Ω) as k → ∞, where

u∞ ∈ H1(Ω) is the solution to the following perfect conductivity problem, for details,
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see e.g. the Appendix of [6],




∆u = 0 in Ω̃,

u|+ = u|− on ∂Di, (i = 1, 2, . . . , m),

∇u ≡ 0 in Di (i = 1, 2, . . . , m),
∫

∂Di

∂u

∂ν

∣∣∣
+

= 0 (i = 1, 2, . . . , m),

u = ϕ on ∂Ω,

(3.3)

where
∂u

∂ν

∣∣∣
+

:= lim
t→0+

u(x + tν)− u(x)
t

.

Here and throughout this paper ν is the outward unit normal to the domain and the

subscript ± indicates the limit from outside and inside the domain, respectively.

Since the high stress concentration only occurs in the narrow regions between the fibers,

we only need to focus on those narrow regions.

For i 6= j, denote

dist(xi
ij , x

j
ij) = dist(Di, Dj) = εij > 0, xi

ij ∈ ∂Di, xj
ij ∈ ∂Dj ,

and

x0
ij :=

1
2
(xi

ij + xj
ij).

It is easy to see that there exists some positive constant δ < 1
4 which depends only on

κ0, r0 and {‖∂Di‖C2,α}, but is independent of {εij} such that

if εij < 2δ, B(x0
ij , 2δ) only intersects with Di and Dj . (3.4)

Denote

ρn(ε) =





1√
ε

for n = 2,

1
ε| ln ε| for n = 3,

1
ε

for n ≥ 4.

(3.5)

Then we have the following gradient estimates for the perfect conductivity problem
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Theorem 3.1.1. Let Ω, {Di} ⊂ Rn, {εij} be defined as in (1.1), n ≥ 2, ϕ ∈ L∞(∂Ω),

δ be the universal constant satisfying (3.4). Suppose u∞ ∈ H1(Ω) is the solution to

equation (3.3), then for any εij < δ, we have

‖∇u∞‖L∞(eΩ∩B(x0
ij ,δ))

≤ Cρn(εij)‖ϕ‖L∞(∂Ω)

where C is a constant depending only on n, m, κ0, r0, {‖∂Di‖C2,α}, but independent

of εij.

Note that if εij ≥ δ, by boundary estimates of harmonic functions, we immediately

get ‖∇u∞‖L∞(eΩ∩B(x0
ij ,δ))

≤ C‖ϕ‖L∞(∂Ω). Then by Theorem 3.1.1 and standard bound-

ary Schauder estimates, see e.g. Theorem 8.33 in [12], we have the global gradient

estimates of u∞ in Ω̃.

Corollary 3.1.1. Let Ω, {Di} ⊂ Rn, {εij} be defined as in (1.1), ε := min
i6=j

εij > 0, and

ϕ ∈ C1,α(∂Ω), 0 < α < 1, let u∞ ∈ H1(Ω) be the solution to equation (3.3). Then

‖∇u∞‖L∞(eΩ)
≤ Cρn(ε)‖ϕ‖C1,α(∂Ω).

where C is a constant depending only on n, m, κ0, r0, ‖∂Ω‖C2,α, {‖∂Di‖C2,α}, but

independent of ε.

Remark 3.1.1. Theorem 3.1.1 and Corollary 3.1.1 do not really need Di and Dj to

be strictly convex, the strict convexity is only needed in a fixed neighborhood (the size

of the neighborhood is independent of ε) of a pair of points on ∂Di and ∂Dj which

realize minimal distance ε. In fact, our proofs of Theorem 3.1.1 and Corollary 3.1.1

also apply, with minor modification, to more general situations where two closely spaced

inclusions, Di and Dj, are not necessarily convex near points on the boundaries where

minimal distance ε is realized; see discussions after the proof of Theorem 3.1.1 in Section

2.

Next, we study the insulated conductivity problem. Similar to the perfect conduc-

tivity problem, the solution to the insulated conductivity problem can also be treated

as the weak limit of uk in H1(Ω̃) as k approaches to 0. Here we consider the insulated

conductivity problem with anisotropic conductivity.
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Let Ω, Di ⊂ Rn, εij be defined as in (1.1), ϕ ∈ C1,α(∂Ω), suppose A(x) :=
(
aij(x)

)

is a symmetric matrix function in Ω̃, where aij(x) ∈ Cα(Ω̃) and and for constants

Λ ≥ λ > 0,

‖aij‖
Cα(eΩ)

< Λ, aij(x)ξiξj ≥ λ|ξ|2 (∀ξ ∈ Rn,∀x ∈ Ω̃).

Then the anisotropic insulated conductivity problem can be described by the following

equation, 



∂i(aij∂ju) = 0 in Ω̃,

aij∂juνi = 0 on ∂Di(i = 1, 2, . . . , m),

u = ϕ on ∂Ω.

(3.6)

The existence and uniqueness of solutions to equation (3.6) are elementary, see the

Appendix.

As we mentioned before, the blow-up only occurs in the narrow regions between

two closely spaced inclusions. Therefore, we only derive gradient estimates for the

solution to (3.6) in those regions. Without loss of generality, we consider the insulated

conductivity problem in the narrow region between D1 and D2. Assume

ε = dist(D1, D2)

After a possible translation and rotation, we may assume

(−ε/2, 0′) ∈ ∂D1, (ε/2, 0′) ∈ ∂D2.

Here and throughout this paper by writing x = (x1, x
′), we mean x′ is the last n − 1

coordinates of x.

We denote the narrow region between D1 and D2 and its boundary on ∂D1 and

∂D2 as follows

O(r) := Ω̃ ∩ {x ∈ Rn
∣∣|x′| < r}

Γ+ := ∂D1 ∩ {x ∈ Rn
∣∣|x′| < r}

Γ− := ∂D2 ∩ {x ∈ Rn
∣∣|x′| < r}

(3.7)

where r is some universal constant depending only on {‖∂Di‖C2,α}.
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Under the above notations, we consider the following problem,




∂i(aij∂ju) = 0 in O(r),

aij∂juνi = 0 on Γ+ ∪ Γ−.

(3.8)

Then we have:

Theorem 3.1.2. If u0 ∈ H1(O(r)) is a weak solution of (3.8), then

|∇u0(x)| ≤ C‖u0‖L∞(O(r))√
ε + |x′|2 , for any x ∈ O(

r

2
). (3.9)

where C is a constant depending only on n, r, Λ, λ and ‖∂Di‖C2,α(i = 1, 2), but

independent of ε.

Remark 3.1.2. It is possible that ‖u0‖L∞(O(r)) is infinity, in that case, the above

theorem is automatically true. Theorem 3.1.2 also remains true for the general second

order elliptic systems, its proof is essentially the same as for the equations.

As an application of Theorem 3.1.2, we have the global gradient estimates for the

insulated conductivity problem

Corollary 3.1.2. Let Ω, {Di} ⊂ Rn, {εij} be defined as in (1.1), ε := min
i6=j

εij > 0, and

ϕ ∈ C1,α(∂Ω), let u0 ∈ H1(Ω̃) be the weak solution to equation (3.6), then

‖∇u0‖L∞(eΩ)
≤ C√

ε
‖ϕ‖C1,α(∂Ω). (3.10)

where C is a constant depending only on n, m, κ0, r0, ‖∂Ω‖C2,α, {‖∂Di‖C2,α}, but

independent of ε.

Note that through this paper we often use C to denote different constants, but all

these constants are independent of ε, in this sense, we will not distinguish them.

The paper is organized as follows. In Section 2 we consider the perfect conductiv-

ity problem and prove Theorem 3.1.1. In Section 3 we show Theorem 3.1.2 for the

insulated case. Finally in the Appendix we present some elementary results for the

insulated conductivity problem.
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3.2 The perfect conductivity problem with multiple inclusions

In this section, we consider the perfect conductivity problem (3.3). Note that from

equation (3.3), we know that u ≡ Ci on Di, 1 ≤ i ≤ m, where {Ci} are some unknown

constants. In order to prove Theorem 3.1.1, we first estimate |Ci−Cj | for 1 ≤ i 6= j ≤ m,

which later will allow us to control the gradient of u in the narrow region between Di

and Dj .

3.2.1 A Matrix Result

To estimate |Ci − Cj |, the following proposition plays a crucial role.

Let m be a positive integer, P = (pij) an m×m real symmetric matrix satisfying,

(A1). pij = pji ≤ 0 (i 6= j);

(A2). r1 ≤ p̄i :=
m∑

j=1

pij ≤ r2,

where r1 and r2 are some positive constants.

Then we have

Proposition 3.2.1. Given an integer m ≥ 1, let P = (pij) be an m×m real symmetric

matrix satisfying (A1) and (A2). for β ∈ Rm, let α be the solution of

Pα = β, (3.11)

then

|αi − αj | ≤ m(m− 1)
r2

r1

|β|
|pij |+ r1

, (3.12)

where |β| = max
i
|βi|.

Remark 3.2.1. An m × m matrix P satisfying |pii| >
∑
j 6=i

|pij | is called a diagonally

dominant matrix. Such a matrix is nonsingular, see [13]. (A1) and (A2) implies that

the matrix P is diagonally dominant, therefore (3.11) has a unique solution.

Before proving the above theorem we introduce the following lemmas.
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Denote

I(l) = {all l × l diagonal matrices whose diagonal entries are 1 or −1},

Ie(l) = {I ∈ I(l)
∣∣I has even numbers of −1 in its diagonal},

Io(l) = {I ∈ I(l)
∣∣I has odd numbers of −1 in its diagonal}.

Then we have

Lemma 3.2.1. Given a positive integer l, suppose I, Ie(l), Io(l) are defined as above,

then for any x ∈ R and any l × l matrix A,

∑

I∈Ie(l)

det (xI + IA) ≡ 2l−1(xl + det A)

∑

I∈Io(l)

det (xI + IA) ≡ 2l−1(xl − det A)

Proof: We prove it by induction. The above identities can be easily checked for

l = 1. Suppose that the above identities stand for l = k − 1, we will prove them for

l = k. Observe that if x = 0 then the above identities are true, to prove they are true

for any x, it suffices to show that the derivatives with respect to x in both sides of the

identities coincide. Since for any I ∈ I(k),

(det (xI + IA))′ =
k∑

i=1

det (xI + IiAi)

where Ai and Ii are the submatrices obtained by eliminating the ith row and the ith

column of A and I respectively.

Notice that if I runs through all the elements of Ie(k), Ii will achieve all the elements

of I(k − 1) for any i ∈ {1, 2, . . . , k}, so we have

∑

I∈Ie(k)

(det (xI + IA))′

=
k∑

i=1

( ∑

I∈Ie(k−1)

det (xI + IAi) +
∑

I∈Io(k−1)

det (xI + IAi)
)

=
k∑

i=1

(
2k−2(xk−1 + det Ai) + 2k−2(xk−1 − det Ai)

)
(By induction)

= k2k−1xk−1 = 2k−1(xk + det A)′.
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Therefore, we have proved the first identity. The second one follows from the first one

by changing the sign of one row of A.

As a consequence of Lemma 3.2.1, we have

Corollary 3.2.1. Let A be an l × l matrix, if det (I + IA) ≥ 0 for any I ∈ I(l), then

|det A| ≤ 1.

Lemma 3.2.2. Given integers m > l ≥ 1, let Q = (qij) be an m× l real matrix which

satisfies, for j = 1, 2, . . . , l,

qjj >
∑

i6=j

|qij | (3.13)

Let A be the set of all l × l submatrices of the above matrix Q and S1 ∈ A the matrix

obtained from the first s rows of Q. then we have

det S1 = max
S∈A

|det S|.

Proof : For any S ∈ A, by rearranging the order of its rows we do not change

|det S|. Thus we can treat S as a matrix obtained by replacing some rows of S1 by

some other rows of Q, note that S and S1 could have no rows in common, which means

S is obtained by replacing all the rows of S1 by some other rows of Q.

Given any I ∈ I(l), we claim:

det (S1 + IS) ≥ 0

Proof of the claim: There are two cases between S1 and S:

Case 1. S1 and S have no rows in common. Then by (3.13), we know that S1 + IS is

diagonally dominant, therefore det (S1 + IS) > 0.

Case 2. S1 and S have some common rows, denote the order of these rows by 1 ≤ i1 <

· · · < is ≤ l, 1 ≤ s ≤ l. If row is0 of IS is opposite to row is0 of S for some 1 ≤ s0 ≤ s,

then row is0 of S1 + IS is 0, therefore det (S1 + IS) = 0. Otherwise row it of IS is the

same as that of S and S1 for any 1 ≤ t ≤ s, then we take out the common factors 2 in

these rows when we compute the det (S1 + IS), thus we have

det (S1 + IS) = 2s det (S1 + IŜ),

where Ŝ is the matrix obtained by replacing row it of S by 0 for any 1 ≤ t ≤ s. We

know that S1 + IŜ is diagonally dominant according to (3.13), then det (S1 + IŜ) > 0,
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therefore, det (S1 + IS) > 0.

Since det S1 > 0 and

det (S1 + IS) = det (I + ISS−1
1 ) det S1

we have, by the claim, that for any I ∈ I(l),

det (I + ISS−1
1 ) ≥ 0

By Corollary 3.2.1, we have

|det (SS−1
1 )| ≤ 1

therefore

det S1 ≥ | det S|.

Now we are ready to prove Proposition 3.2.1.

Proof of Proposition 3.2.1: For m = 1 the inequality is automatically true. For

m = 2, we have, by Cramer’s rule,

α1 − α2 =

∣∣∣∣∣∣
β1 p12

β2 p22

∣∣∣∣∣∣
∣∣∣∣∣∣

p11 p12

p21 p22

∣∣∣∣∣∣

−

∣∣∣∣∣∣
p11 β1

p21 β2

∣∣∣∣∣∣
∣∣∣∣∣∣

p11 p12

p21 p22

∣∣∣∣∣∣

=

∣∣∣∣∣∣
β1 p̄1

β2 p̄2

∣∣∣∣∣∣
∣∣∣∣∣∣

p11 p12

p21 p22

∣∣∣∣∣∣

Since r1 ≤ p̄i ≤ r2 by Condition (A2),
∣∣∣∣∣∣

β1 p̄1

β2 p̄2

∣∣∣∣∣∣
= β1p̄2 − β2p̄1 ≤ 2r2|β|

On the other hand, by Condition (A1) and (A2)
∣∣∣∣∣∣

p11 p12

p21 p22

∣∣∣∣∣∣
=

∣∣∣∣∣∣
p̄1 p12

p̄2 p22

∣∣∣∣∣∣
= p̄1p22 − p̄2p12 ≥ p̄1p22 ≥ r1(r1 + |p12|)

Therefore, Proposition 3.2.1 for m = 2 follows from the above.

For m ≥ 3, we only estimate |α1−α2| since the other estimates can be obtained by

switching columns of P .
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Since α satisfies (3.11), by Cramer’s rule, we have:

α1 − α2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 p12 · · · p1m

β2 p22 · · · p2m

...
...

. . .
...

βm pm2 · · · pmm

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

p11 p12 · · · p1m

p21 p22 · · · p2m

...
...

. . .
...

pm1 pm2 · · · pmm

∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣

p11 β1 · · · p1m

p21 β2 · · · p2m

...
...

. . .
...

pm1 βm · · · pmm

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

p11 p12 · · · p1m

p21 p22 · · · p2m

...
...

. . .
...

pm1 pm2 · · · pmm

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 p11 + p12 p13 · · · p1m

β2 p21 + p22 p23 · · · p2m

β3 p31 + p32 p33 · · · p3m

...
...

...
. . .

...

βm pm1 + pm2 pm3 · · · pmm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

p11 p12 · · · p1m

p21 p22 · · · p2m

...
...

. . .
...

pm1 pm2 · · · pmm

∣∣∣∣∣∣∣∣∣∣∣∣∣
By adding the last (m−2) columns of the matrix in the numerator to its second column,

we have

α1 − α2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 p̄1 p13 · · · p1s

β2 p̄2 p23 · · · p2s

β3 p̄3 p33 · · · p3s

...
...

...
. . .

...

βm p̄m pm3 · · · pmm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

p11 p12 · · · p1m

p21 p22 · · · p2m

...
...

. . .
...

pm1 pm2 · · · pmm

∣∣∣∣∣∣∣∣∣∣∣∣∣

:=
det P̃

det P
.

Next we estimate the determinants of the above two matrices separately.
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Expanding detP with respect to the first column, we have

det P =
m∑

j=1

pj1Pj1

where Pji is the cofactor of pj1.

Applying Lemma 3.2.2 to the m × (m − 1) matrix obtained by eliminating the first

column of P , we know that, among the cofactors Pj1, P11 > 0 has the largest absolute

value. Since pj1 = p1j ≤ 0 (j 6= 1) and p11 > 0 by condition (A1) and (A2), we have

det P ≥
m∑

j=1

pj1P11 = p̄1P11.

For the same reason, we have

P11 =

∣∣∣∣∣∣∣∣∣∣

p22 · · · p2m

...
. . .

...

pm2 · · · pmm

∣∣∣∣∣∣∣∣∣∣

≥ ( m∑

j=2

p2j

)

∣∣∣∣∣∣∣∣∣∣

p33 · · · p3m

...
. . .

...

pm3 · · · pmm

∣∣∣∣∣∣∣∣∣∣

.

Combining the above two inequalities and using condition (A1) and (A2), we have

det P ≥ p̄1

m∑

j=2

p2j

∣∣∣∣∣∣∣∣∣∣

p33 · · · p3m

...
. . .

...

pm3 · · · pmm

∣∣∣∣∣∣∣∣∣∣

= p̄1(p̄2 − p21)

∣∣∣∣∣∣∣∣∣∣

p33 · · · p3m

...
. . .

...

pm3 · · · pmm

∣∣∣∣∣∣∣∣∣∣

≥ r1(|p12|+ r1)

∣∣∣∣∣∣∣∣∣∣

p33 · · · p3m

...
. . .

...

pm3 · · · pmm

∣∣∣∣∣∣∣∣∣∣

.

(3.14)

By Laplace expansion, see e.g. page 130 of [23], we can expand det P̃ with respect

to the first two columns of P , namely,

det P̃ =
∑

i1,i2

∣∣∣∣∣∣
βi1 p̄i1

βi2 p̄i2

∣∣∣∣∣∣
P̃i1i212, (3.15)

where 1 ≤ i1 < i2 ≤ m and P̃i1i212 is the cofactor of the 2nd-order minor in row i1, i2

and column 1, 2 of P̃ .
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Applying Lemma 3.2.2 to the m × (m − 2) matrix obtained by eliminating the first 2

columns of P̃ , we know that, among all those cofactors,
∣∣∣∣∣∣∣∣∣∣

p33 · · · p3m

...
. . .

...

pm3 · · · pmm

∣∣∣∣∣∣∣∣∣∣
has the largest absolute value. Since 0 < p̄i ≤ r2 by condition (A2),

∣∣∣∣∣∣
βi1 p̄i1

βi2 p̄i2

∣∣∣∣∣∣
≤ 2r2|β|,

then by (3.15), we have

∣∣ det P̃
∣∣ ≤ m(m− 1)r2|β|

∣∣∣∣∣∣∣∣∣∣

p33 · · · p3m

...
. . .

...

pm3 · · · pmm

∣∣∣∣∣∣∣∣∣∣

. (3.16)

By (3.14) and (3.16), we have

|α1 − α2| = |det P̃ |
|det P | ≤ m(m− 1)

r2

r1

|β|
|p12|+ r1

.

3.2.2 Proof of Theorem 3.1.1

We decompose u∞ into m + 1 parts:

u∞ = v0 +
m∑

i=1

Civi, (3.17)

where vi ∈ H1(Ω̃) (i = 0, 1, 2, . . . , m) are determined by the following equations:

for i = 0, 



∆v0 = 0 in Ω̃,

v0 = 0 on ∂D1, ∂D2, . . . ∂Dm,

v0 = ϕ on ∂Ω.

(3.18)

for i = 1, 2, . . . , m,




∆vi = 0 in Ω̃,

vi = 1 on ∂Di,

vi = 0 on ∂Dj , for j 6= i,

vi = 0 on ∂Ω.

(3.19)
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Since u∞ satisfies the integral conditions in equation (3.3), using the decomposition

formula (3.17), we know that the vector (C1, C2, . . . , Cm) satisfies the following system

of linear equations



a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

am1 am2 · · · amm







C1

C2

...

Cm




=




b1

b2

...

bm




(3.20)

where

aij :=
∫

∂Dj

∂vi

∂ν
, (i, j = 1, 2, . . . , m), (3.21)

bi := −
∫

∂Di

∂v0

∂ν
, (i = 1, 2, . . . , m). (3.22)

Similar to the two inclusions case in [6], we first investigate the properties of vi (i =

0, 1, · · · ,m), the matrix A and the vector b in equation (3.20). Here we state several

lemmas, for their proofs, readers may refer to Lemma 2.1, Lemma 2.3, and Lemma 2.4

in [6].

Lemma 3.2.3. Let v0, vi(i = 1, . . . , m) be the solutions of equations (3.18) and (3.19)

respectively, then there exists a universal constant C depending only on n, m, r0, k0,

∂Di and ∂Ω, but independent of εij such that,

‖∇v0‖L∞(eΩ)
≤ C, ‖∇vi‖L∞(eΩ)

≤ C

ε
, ‖∂vi

∂ν
‖L∞(∂Ω) ≤ C.

Lemma 3.2.4. For 1 ≤ i, j ≤ m, let aij and bi be defined by (3.21) and (3.22), then

they satisfy the following:

1) aii < 0, aij = aji > 0 (i 6= j),

2) − C ≤
∑

1≤j≤m

aij ≤ − 1
C

,

3) |bi| ≤ C‖ϕ‖L∞(∂Ω),

where C > 0 is a universal constant depending only on n, r0, ∂Ω, but independent of

εij.
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Remark 3.2.2. From property (1) and (2) in Lemma 3.2.4, we know that A is diago-

nally dominant, therefore it is nonsingular.

Next, we derive some further estimates of aij .

Lemma 3.2.5. Let aij be defined as in (3.21), if εij < 1/2, then there exists a universal

constant C > 0, depending only on n, m, r0, κ0, {‖∂Di‖C2,α} and ‖∂Ω‖C2,α, but

independent of εij, such that for any 1 ≤ i 6= j ≤ m,

− C√
min
j 6=i

εij
< aii < − 1

C
√

min
j 6=i

εij
,

1
C
√

εij
< aij <

C√
εij

, for n = 2,

−C| ln(min
j 6=i

εij)| < aii < − 1
C
| ln(min

j 6=i
εij)|, 1

C
| ln εij | < aij < C| ln εij |, for n = 3,

−C < aii < − 1
C

,
1
C

< aij < C, for n ≥ 4.

Proof : Without loss of generality, we assume i = 1, j = 2. The proof of the

estimates for a11 and a22 is the same as that in Lemma 2.5, Lemma 2.6, and Lemma

2.7 in [6]. Here we prove the estimate for a12. In this following, we use C to represent

the universal constants depending only on n, m, r0, κ0, {‖∂Di‖C2,α} and ‖∂Ω‖C2,α , but

independent of {εij}.
Notice that if ε12 is larger than some universal constant, then the proof is trivial.

Therefore, we can assume ε12 < δ, where δ < 1/4 is the universal constant satisfying

(3.4). By (3.4), we know that B(x0
12, δ) only intersects with D1 and D2.

Denote

Γi := ∂Di ∩B(x0
12, δ) (i = 1, 2), Γ3 := ∂B(x0

12, δ) \ (D1 ∪D2)

Since B(x0
12, 2δ) does not intersect with Di(i ≥ 3) or ∂Ω by (3.4), then

dist(Γ3,∪m
i=3∂Di) > δ, dist(Γ3, ∂Ω) > δ,

by the gradient estimates and boundary estimates, we have

‖∇v1‖L∞(Γ3) < C (3.23)

Next we show ‖∇v1‖L∞(∂D2\Γ2) < C. Since the tangential derivatives of v1 on ∂D2 is

0, we only need to consider its normal derivative.



53

Let ṽ1 ∈ H1(Ω \ (D1 ∪D2)) be the solution to the following equation




∆ṽ1 = 0, in Ω \ (D1 ∪D2)

ṽ1 = 1 on ∂D1

ṽ1 = 0 on ∂D2 ∪ ∂Ω

Then ṽ1 − v1 ≥ 0 in Ω̃ by the maximum principle. Since ṽ1 − v1 = 0 on ∂D2, by the

Hopf Lemma, we have
∂ṽ1

∂ν
>

∂v1

∂ν
> 0 on ∂D2.

But by boundary estimates of harmonic functions, we have

‖∇v1‖L∞(∂D2\Γ2) ≤ C (3.24)

By (3.24), we have

a12 =
∫

∂D2

∂v1

∂ν
=

∫

Γ2

∂v1

∂ν
+

∫

∂D2\Γ2

∂v1

∂ν

=
∫

Γ2

∂v1

∂ν
+ O(1).

(3.25)

By the harmonicity of v1 on B(x0
12, δ) ∩ Ω̃ and (3.23), we have

0 =
∫

Γ1

∂v1

∂ν
+

∫

Γ2

∂v1

∂ν
+

∫

Γ3

∂v1

∂ν

=
∫

Γ1

∂v1

∂ν
+

∫

Γ2

∂v1

∂ν
+ O(1).

(3.26)

Meanwhile, by Green’s formula and (3.23), we have

−
∫

B(x0
12,δ)∩eΩ

|∇v1|2 =
∫

Γ1

v1
∂v1

∂ν
+

∫

Γ2

v1
∂v1

∂ν
+

∫

Γ3

v1
∂v1

∂ν

=
∫

Γ1

∂v1

∂ν
+

∫

Γ3

v1
∂v1

∂ν

=
∫

Γ1

∂v1

∂ν
+ O(1)

(3.27)

Therefore, by combining (3.25), (3.26) and (3.27), we have

a12 =
∫

B(x0
12,δ)∩eΩ

|∇v1|2 + O(1).
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Similar to the energy estimates given in Lemma 1.5, Lemma 1.6, and Lemma 1.7 in [6],

we have

1
C
√

ε12
<

∫

B(x0
12,δ)∩eΩ

|∇v1|2 <
C√
ε12

, for n = 2

1
C
| ln ε12| <

∫

B(x0
12,δ)∩eΩ

|∇v1|2 < C| ln ε12|, for n = 3

1
C

<

∫

B(x0
12,δ)∩eΩ

|∇v1|2 < C, for n ≥ 4.

Therefore,

1
C
√

ε12
< a12 <

C√
ε12

, for n = 2,

1
C
| ln ε12| < a12 < C| ln ε12|, for n = 3,

1
C

< a12 < C, for n ≥ 4.

¤

Knowing enough properties of the system of linear equations (3.20) from Lemma

3.2.4 and Lemma 3.2.5 , we have

Proposition 3.2.2. Let u∞ ∈ H1(Ω) be the weak solution to equation (3.3) and Ci

the value of u∞ on Di, then for any 1 ≤ i 6= j ≤ m with εij < δ, there exists a

universal constant C > 0 depending only on n, m, κ0, r0, ‖∂Ω‖C2,α, {‖∂Di‖C2,α}, but

independent of {εij} such that

|Ci − Cj | ≤ C
√

εij‖ϕ‖L∞(∂Ω) for n = 2,

|Ci − Cj | ≤ C
1

| ln εij |‖ϕ‖L∞(∂Ω) for n = 3,

|Ci − Cj | ≤ C‖ϕ‖L∞(∂Ω) for n ≥ 4.

(3.28)

Proof: By Lemma 3.2.4, we know that the matrix −A satisfies condition (A1) and

(A2), then applying Proposition 3.2.1 on (3.20), we have, for any 1 ≤ i 6= j ≤ m,

|Ci − Cj | ≤ C

aij
‖ϕ‖L∞(∂Ω)

where C is some constant depending on n, m, κ0, r0, ‖∂Ω‖C2,α , {‖∂Di‖C2,α}, but

independent of {εij}.
By Lemma 3.2.5, we immediately finish the proof. ¤
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Now we are ready to complete the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1: We prove the estimates in dimension 2, the higher dimension

cases follow from the same idea. Without loss of generality, we assume ε12 < δ and

prove the gradient estimates for u∞ in the narrow region between D1 and D2. For

simplicity, we assume ‖ϕ‖L∞(∂Ω) = 1.

By the decomposition formula (3.17), we have

∇u∞ = (C1 − C2)∇v1 + C2(∇(v1 + v2)) +
m∑

i=3

Ci∇vi +∇v0

By Lemma (3.2.3), we have

‖∇v1‖L∞(eΩ∩B(x0
12,δ))

<
C

ε12
, ‖∇v0‖L∞(eΩ∩B(x0

12,δ))
< C (3.29)

where C is some universal constant.

Next we show that, for i = 3, . . . , m,

‖∇vi‖L∞(eΩ∩B(x0
12,δ))

< C, ‖∇(v1 + v2)‖L∞(eΩ∩B(x0
12,δ))

< C. (3.30)

Let ṽ3 be the solution of the following equation,




∆ṽ3 = 0 in Ω \D1 ∪D3,

ṽ3 = 0 on ∂D1,

ṽ3 = 1 on ∂D3,

ṽ3 = 0 on ∂Ω.

Then we have ṽ3 ≥ v3 on ∂Ω̃, by the maximum principle, ṽ3 ≥ v3 in Ω̃. Since ṽ3 = v3 = 0

on ∂D1, by the Hopf lemma, we have

∂ṽ3

∂ν
>

∂v3

∂ν
> 0

But |∇ṽ3| < C on ∂D1 ∩ B(x0
12, δ) by the boundary estimates of harmonic functions,

then we have

‖∇v3‖L∞(∂D1∩B(x0
12,δ)) = ‖∂v3

∂ν
‖L∞(∂D1∩B(x0

12,δ)) < C (3.31)
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Similarly, we have

‖∇v3‖L∞(∂D2∩B(x0
12,δ)) = ‖∂v3

∂ν
‖L∞(∂D2∩B(x0

12,δ)) < C (3.32)

Furthermore, by gradient estimates and boundary estimates of harmonic functions,

we have

‖∇v3‖∂B(x0
12,δ)∩eΩ < C. (3.33)

Since ∇v3 is still harmonic function on B(x0
12, δ) ∩ Ω̃, by (3.31), (3.32) and (3.33) and

the maximum principle, we have

‖∇v3‖L∞(eΩ∩B(x0
12,δ))

< C.

Similarly, we get, for i = 3, . . . , m,

‖∇vi‖L∞(eΩ∩B(x0
12,δ))

< C.

Since v1 + v2 = 1 on both ∂D1 and ∂D2, similar to the proof in the above, we can

show that

‖∇(v1 + v2)‖L∞(eΩ∩B(x0
12,δ))

< C.

By Proposition 3.2.2, (3.29) and (3.30), we have

‖∇u∞‖L∞(eΩ∩B(x0
12,δ))

≤ |C1 − C2|‖∇v1‖L∞(eΩ∩B(x0
12,δ))

+ |C2|‖∇(v1 + v2)‖L∞(eΩ∩B(x0
12,δ))

+
m∑

i=3

|Ci|‖∇vi‖L∞(eΩ∩B(x0
12,δ))

+ ‖∇v0‖L∞(eΩ∩B(x0
12,δ))

≤ C
√

ε12
1

ε12
+ C

≤ C√
ε12

.

As we mentioned in Remark 3.1.1, the strict convexity assumption of the two in-

clusions can be weakened. In fact, our proof of Theorem 3.1.1 applies, with minor

modification, to more general inclusions.

In Rn, n ≥ 2, for two closely spaced inclusions Di and Dj which are not necessarily

strictly convex, assume ∂Di∩B(0, r) and ∂Dj∩B(0, r) can be represented by the graph
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of x1 = f(x′) + εij

2 and x1 = −g(x′) − εij

2 , then f(0′) = g(0′) = 0, ∇(g + f)(0′) = 0.

Assume further that

λ1|x′|2l ≤ g(x′) + f(x′) ≤ λ2|x′|2l, ∀|x′| ≤ r/2, (3.34)

where λ2 ≥ λ1 > 0, l ∈ Z+.

Under the above assumption, let u∞ ∈ H1(Ω) be the solution to equation (3.3).

Then, for εij sufficiently small, we have

‖∇u∞‖L∞(eΩ∩B(x0
ij ,δ))

≤ C‖ϕ‖L∞(∂Ω)ε
−n−1

2l
ij if n− 1 < 2l,

‖∇u∞‖L∞(eΩ∩B(x0
ij ,δ))

≤ C‖ϕ‖L∞(∂Ω)
1

εij | ln εij | if n− 1 = 2l,

‖∇u∞‖L∞(eΩ∩B(x0
ij ,δ))

≤ C‖ϕ‖L∞(∂Ω)
1
εij

if n− 1 > 2l.

(3.35)

where C is a constant depending on n, λ1, λ2, r0, ‖∂Di‖C2,α and ‖∂Dj‖C2,α , but

independent of εij .

For the proof, please refer to the corresponding discussion after the proof of Theorem

0.1-0.2 in [6].

3.3 The insulated conductivity problem

In this section, we consider the anisotropic insulated conductivity problem, which is

described by Equation (3.6). As we mentioned in the introduction, the gradient only

blows up when two inclusions are close to each other. In order to establish the gradient

estimates for this problem, we first consider the local version of the problem, namely

Equation (3.8).

To make the problem easier, we first consider the equation in a strip. In this case,

by using a ”flipping” technique, we manage to derive the gradient estimates in the strip.

Denote, for any integer l

Ql := {z ∈ Rn
∣∣(2l − 1)δ < z1 < (2l + 1)δ, |z′| ≤ 1},

Γ+
l := {z ∈ Rn

∣∣z1 = (2l + 1)δ and |z′| ≤ 1},

Γ−l := {z ∈ Rn
∣∣z1 = (2l − 1)δ and |z′| ≤ 1},
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and

Q = {z ∈ Rn
∣∣|z1| ≤ 1 and |z′| ≤ 1}.

We consider the following equation in Q0





∂zi

(
bij(z) ∂zjw

)
= 0 in Q0,

b1j∂zjw = 0 on Γ±0 .

(3.36)

where (bij) ∈ Cα(Q0)(0 < α < 1) is a symmetric matrix function in Q0, and there exist

constants Λ2 ≥ λ1 > 0 such that, for all ξ ∈ Rn,

‖bij(z)‖Cα(Q0) ≤ Λ2, λ2|ξ|2 ≤ bij(z)ξiξj (∀z ∈ Q0).

Then we have

Lemma 3.3.1. Suppose w ∈ H1(Q0)∩L∞(Q0) is a weak solution of (3.36), then there

exists a constant C > 0 depending only on n, λ2,Λ2, but independent of δ, such that

‖∇w‖L∞(Q0( 1
2
)) ≤ C‖w‖L∞(Q0),

where Q0(1
2) := {z ∈ Rn

∣∣|z1| ≤ δ and |z′| ≤ 1
2}.

Proof : For any integer l, We construct a new function w̃ by “flipping” w evenly

in each Ql. w̃ is defined by induction on l. We first define w̃ = w in Q0. Suppose w̃ is

defined in Q±(l−1) for some l ≥ 1, we define w̃ in Ql and Q−l in the following

w̃(z) =





w̃((4l − 2)δ − z1, z
′) if z ∈ Ql,

w̃(−(4l − 2)δ − z1, z
′) if z ∈ Q−l.

(3.37)

In this way, we can define w̃ in Q by the above flipping process.

Similarly we define the elliptic coefficients by induction on l in the following

Let b̃ij = bij in Q0. Suppose b̃ij is defined in Q±(l−1) for l ≥ 1, then b̃ij on Ql and Q−l

is defined as follows,

for α = 2, 3, . . . , n,

b̃α1(z) = b̃1α(z) =




− b̃1α((4l − 2)δ − z1, z

′) if z ∈ Ql;

− b̃1α((4l + 2)δ − z1, z
′) if z ∈ Q−l.

(3.38)
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for all other indices

b̃ij(z) =





b̃ij((4l − 2)δ − z1, z
′) if z ∈ Ql;

b̃ij(−(4l − 2)δ − z1, z
′) if z ∈ Q−l.

(3.39)

Under the above definition of w̃ and b̃ij , we can easily check that, for any integer l,




∂zi

(
b̃ij(z) ∂zj w̃

)
= 0 in Ql,

b̃1j∂zj w̃ = 0 on Γ±l ,

(3.40)

Then for any test function ψ ∈ C∞
0 (Q), we have

∫

Q
b̃ij(z) ∂zj w̃∂ziψ =

∑

l

∫

Ql

b̃ij(z) ∂zj w̃∂ziψ

= 0
(
by the definition of weak solution)

Therefore w̃ ∈ H1(Q) satisfies

∂zj

(
b̃ij(z) ∂ziw̃

)
= 0 in Q. (3.41)

Following exactly from [17], we first introduce a new equation

∂zi

(
B̃ij(z) ∂zju

)
= 0 in Q

where

B̃ij(z) =





limz∈Ql, z→((2l−1)δ, 0′) b̃ij(z) z ∈ Ql, l > 0;

b̃ij(0) z ∈ Q0

limz∈Ql, z→((2l+1)δ, 0′) b̃ij(z) z ∈ Ql, l < 0;

then we define the norm

‖F‖Y s,p = sup
0<r<1

r1−s(
∫
−rQ|F |p)

1
p

Since bij(z) ∈ Cα(Q0) , b̃ij(z) is piecewise Cα continuous in Q, then we can immediately

check that

‖b̃ij − B̃ij‖Y 1+α,2 < C

where C is some constant only depending on Λ2. Using Proposition 4.1 in [17], we have

‖∇w̃‖L∞( 1
2
Q) ≤ C‖w̃‖L2(Q) ≤ C‖w̃‖L∞(Q),
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therefore

‖∇w‖L∞(Q0( 1
2
)) ≤ C‖w‖L∞(Q0)

where C > 0 depends on n, λ2, Λ2, but is independent of δ. ¤

Since D1 and D2 are strictly convex, we can write O(r), which is defined by (3.7),

as follows

O(r) = {x ∈ Rn
∣∣− g(x′)− ε/2 < x1 < f(x′) + ε/2, |x′| < r}

With the side boundary Γ+ and Γ− as

Γ+ = {x ∈ Rn
∣∣x1 = f(x′) + ε/2, |x′| < r}, Γ− = {x ∈ Rn

∣∣x1 = −g(x′)− ε/2, |x′| < r}

where f(x′) and g(x′) are strictly convex functions, moreover they satisfy

f(0′) = g(0′) = 0, ∇f(0′) = ∇g(0′) = 0.

Under the above notation, we prove Theorem 3.1.2:

Proof of Theorem 3.1.2: Fix one point (0, x′0) ∈ O( r
2) and let δ =

√
f(x′0) + g(x′0) + ε,

since f(x′) and g(x′) are strictly convex, then there exists a universal constant C de-

pending only on ‖∂D1‖C2,α and ‖∂D2‖C2,α such that

1
C

√
|x′0|2 + ε < δ < C

√
|x′0|2 + ε. (3.42)

We shift the origin to (0, x′0) and rescale the coordinates with δ, then the new

coordinates y = (y1, y
′) can be written as follows





y1 = x1/δ,

y′ = (x′ − x′0)/δ.

(3.43)

Let

v(y) = u0(δy1, x
′
0 + δy′), ãij(y) = aij(δy1, x

′
0 + δy′).

Denote

Õ(r̃) := {y ∈ Rn
∣∣− ε

2
− g(x′0 + δy′) < δy1 <

ε

2
+ f(x′0 + δy′), |y′| < r̃}
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With its side boundary

Γ̃+ := {y ∈ Rn
∣∣δy1 =

ε

2
+ f(y′0 + δy′), |y′| < r̃}

Γ̃− := {y ∈ Rn
∣∣δy1 = −ε

2
− g(y′0 + δy′), |y′| < r̃}.

By (3.42), we can find some universal constant r̃ depending only on ∂D1 and ∂D2, such

that Õ(r̃) is in the image of O(r) under the above transform. Thus we have




∂yi(ã
ij∂yjv(y)) = 0 in Õ(r̃),

ãij∂yjvνi = 0 on Γ̃+ ∪ Γ̃−.

(3.44)

where the coefficients ãij satisfy, for some universal constant C,

‖ãij‖
Cα( eO(er)) ≤ C‖aij‖Cα(O(r)) ≤ CΛ1, λ1|ξ|2 ≤ ãij(y)ξiξj (∀y ∈ Õ(r̃), ∀ξ ∈ Rn).

Next we can construct a map Φ : Õ(r̃) 7−→ Q0, Φ(y) = z with




z1 = δ
δy1 + g(x′0 + δy′) + ε/2

f(x′0 + δy′) + g(x′0 + δy′) + ε
,

z′ =
y′

r̃
.

(3.45)

It can be verified directly that this map is a diffeomorphism from Õ(r̃) to Q0.

Let

w(z) = v(Φ−1(z))

Then from the definition of weak solution, we know that w(z) satisfies the following

equation 



∂zj

(
bij(z)∂ziw(z)

)
= 0 in Q0,

b1i(z)∂ziw(z) = 0 on Γ+
0 ∪ Γ−0 .

(3.46)

where
(
bij(z)

)
=

(∂yz)
(
ãij(y)

)
(∂yz)t

|det(∂yz)|
Therefore, we have transferred the original problem into Equation (3.36).

In order to use Lemma 3.3.1, we have to check that bij(z) is strictly elliptic and

‖bij‖Cα(Q0) is bounded by some universal constant. First we show that there exists a

universal constant λ2 such that

ξt
(
bij(z)

)
ξ ≥ λ2|ξ|2(∀ξ ∈ Rn, ∀z ∈ Q0) (3.47)
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Notice that the eigenvalues of (∂yz) are 1
er with multiplicity n − 1 and ∂y1z1. By

(3.42), we can prove that

1
C

< |∂y1z1| = ∂y1z1 =
δ2

f(x′0 + δy′) + g(x′0 + δy′) + ε
< C (3.48)

where C is some universal constant.

Based on (3.48),we have

ξt
(
bij(z)

)
ξ = ξt(∂yz)

(
ãij(y)

)

|det(∂yz)|(∂yz)tξ > λ2|ξ|2

where λ2 > 0 is some universal constant

The boundedness of ‖bij‖Cα(Q0) can be checked similarly.

Now applying Lemma 3.3.1, we have

‖∇w‖L∞(Q0( 1
2
)) ≤ C‖w‖L∞(Q0)

Tracing back to u0 through the transforms, we have, for any point x ∈ O( r
2),

|∇u0(x)| ≤ C‖u0‖L∞(O(r))

δ
≤ C‖u0‖L∞(O(r))√

|x′|2 + ε
.

¤

3.4 Appendix

Some elementary results for the insulated conductivity problem

Assume that in Rn, Ω and ω are bounded open sets with C2,α boundaries, 0 < α < 1,

satisfying, for some m < ∞,

ω =
m⋃

s=1

ωs ⊂ Ω,

where {ωs} are connected components of ω. Clearly ωs is open for all 1 ≤ s ≤ m.

Given ϕ ∈ C2(∂Ω), the conductivity problem we consider is the following transmission

problem with Dirichlet boundary condition:




∂xj

{[(
kaij

1 (x)− aij
2 (x)

)
χω + aij

2 (x)
]
∂xiuk

}
= 0 in Ω,

uk = ϕ on ∂Ω,

(3.49)
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where 0 < k < 1, and χω is the characteristic function of ω.

The n×n matrixes A1(x) :=
(
aij

1 (x)
)

in ω, A2(x) :=
(
aij

2 (x)
)

in Ω\ω are symmetric

and ∃ a constant Λ ≥ λ > 0 such that

λ|ξ|2 ≤ aij
1 (x)ξiξj ≤ Λ|ξ|2 (∀x ∈ ω), λ|ξ|2 ≤ aij

2 (x)ξiξj ≤ Λ|ξ|2 (∀x ∈ Ω\ω)

for all ξ ∈ Rn and aij
1 (x) ∈ C2(ω), aij

2 (x) ∈ C2(Ω\ω).

Equation (3.49) can be rewritten in the following form to emphasize the transmission

condition on ∂ω:




∂xj

(
aij

1 (x) ∂xiuk

)
= 0 in ω,

∂xj

(
aij

2 (x) ∂xiuk

)
= 0 in Ω\ω,

uk|+ = uk|−, on ∂ω,

aij
2 (x)∂xiukνj

∣∣
+

= kaij
1 (x)∂xiukνj

∣∣
− on ∂ω,

uk = ϕ on ∂Ω.

(3.50)

It is well known that equation (3.49) has a unique solution uk in H1(Ω), and the

solution uk is in C1(Ω\ω) ∩ C1(ω) and satisfies equation (3.50). On the other hand,

if uk ∈ C1(Ω\ω) ∩ C1(ω) is a solution of equation (3.50), then uk ∈ H1(Ω) satisfies

equation (3.49).

For k ∈ (0, 1), consider the energy functional

Ik[v] : =
k

2

∫

ω
aij

1 (x)∂xiv∂xjv +
1
2

∫

Ω\ω
aij

2 (x)∂xiv∂xjv, (3.51)

defined on

H1
ϕ(Ω) := {v ∈ H1(Ω)| v = ϕ on ∂Ω}.

It is well known that for k ∈ (0, 1), the solution uk of (3.49) is the minimizer of the

minimization problem:

Ik[uk] = min
v∈H1

ϕ(Ω)
Ik[v].
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For k = 0, the insulated conducting problem is:




∂xj

(
aij

2 (x) ∂xiu0

)
= 0 in Ω\ω,

aij
2 (x)∂xiu0νj

∣∣
+

= 0 on ∂ω,

u0 = ϕ on ∂Ω,

∂xj

(
aij

1 (x) ∂xiu0

)
= 0 in ω,

u0|+ = u0|−, on ∂ω.

(3.52)

Equation (3.52) has a unique solution u0 ∈ H1(Ω), which can be solved in Ω \ ω by

the first three lines in (3.52), and then, with u0|∂ω, be solved in ω using the fourth line

in (3.52). It is well known that u0 ∈ C1(Ω \ ω) ∩ C1(ω).

Define the energy functional

I0[v] :=
1
2

∫

Ω\ω
aij

2 (x)∂xiv∂xjv, (3.53)

where v belongs to the set

A0 :=
{
v ∈ H1(Ω \ ω)

∣∣ v = ϕ on ∂Ω}.

It is well known that there is a unique v0 ∈ A0 which is the minimizer to the

minimization problem:

I0[v0] = min
v∈A0

I0[v].

Moreover, v0 = u0 a.e. in Ω \ ω, where u0 is the solution of (3.52).

Now, we give the relationship between uk and u0.

Theorem 3.4.1. For 0 < k < 1, let uk and u0 in H1(Ω) be the solutions of equations

(3.50) and (3.52), respectively. Then

uk ⇀ u0 in H1(Ω), as k → 0, (3.54)

and, consequently,

lim
k→0

Ik[uk] = I0[u0]. (3.55)

Proof : We will first show that

sup
0<k<1

‖∇uk‖L2(Ω) < ∞. (3.56)
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Since uk is the minimizer of Ik in H1
ϕ(Ω) and v0 := u0|Ω\ω is the minimizer of I0 in

A0, we have

λk

2
‖∇uk‖L2(ω) + I0[v0] ≤ k

2

∫

ω
aij

1 (x)∂xiuk∂xjuk + I0[v0]

≤ k

2

∫

ω
aij

1 (x)∂xiuk∂xjuk + I0[uk|Ω\ω] = Ik[uk]

≤ Ik[u0] =
k

2

∫

ω
aij

1 (x)∂xiu0∂xju0 + I0[v0],

≤ Λk

2
‖∇u0‖L2(ω) + I0[v0].

Thus

sup
0<k<1

‖∇uk‖L2(ω) < ∞.

On the other hand,

λ

2
‖∇uk‖L2(Ω\ω) ≤ Ik[uk] ≤ Ik[u] ≤ Λ

2
‖∇u0‖L2(Ω).

Estimate (3.56) follows from the above.

Since uk = ϕ on ∂Ω, we derive from (3.56) that sup0<k<1 ‖uk‖H1(Ω) < ∞. Let

uk ⇀ u∗0 in H1
ϕ(Ω) along a subsequence of k → 0 (still denoted as k → 0).

We will show that u∗0 is a solution of equation (3.52). Therefore, u∗0 = u0.

We only need to establish the following three properties:

∂xj

(
aij

2 (x) ∂xiu
∗
0

)
= 0 in Ω\ω, (3.57)

∂xj

(
aij

1 (x) ∂xiu
∗
0

)
= 0 in ω, (3.58)

u∗0 ∈ C1(Ω \ ω), aij
2 (x)∂xiu

∗
0νj

∣∣
+

= 0 on ∂ω. (3.59)

(i) For k ∈ (0, 1), we see from equation (3.49) that

∂xj

(
aij

2 (x) ∂xiuk

)
= 0, in Ω \ ω,

∂xj

(
aij

1 (x) ∂xiuk

)
= 0, in ω.

Since uk converges to u∗0 weakly in H1(Ω), (3.57) and (3.58) follow from the above.

(ii) For any w ∈ A0, we extend it to w̃ ∈ H1
ϕ(Ω) (i.e. w̃ = w in Ω \ ω). By the

minimality of uk,

Ik(uk) ≤ Ik(w̃).



66

Sending k to 0 leads to

I0(u∗0|Ω\ω) ≤ I0(w).

Thus u∗0 = u0 a.e. in Ω \ ω. (3.59) follows.

We have proved (3.54). Theorem 3.4.1 is established.
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Chapter 4

Gradient estimates for elliptic systems

In this chapter, we study the elliptic systems in a narrow domain bounded by two

quadratic hypersurfaces. By utilizing the well known L2 estimates and W 2,p estimates,

we are able to establish the gradient estimates in this kind the special domains. Next,

we apply our estimates into the systems of linear elasticity .

4.1 Elliptic systems and main results

Before stating results we first describe more precisely the domain with which this paper

is concerned. For r ≤ 1, we consider the domain

Ωr := {x ∈ Rn
∣∣ − ε− g(x′) < xn < ε + h(x′), |x′| < r},

with top and bottom boundary denoted, respectively, as

Γ+
r = {x ∈ Rn

∣∣ xn = ε + h(x′), |x′| < r},

and

Γ−r = {x ∈ Rn
∣∣ xn = −ε− g(x′), |x′| < r},

where g, h are C2 convex functions and satisfy

g(0) = h(0) = 0, g′(0) = h′(0) = 0,

1
κ
|x′|2 ≤ g(x′), h(x′) ≤ κ|x′|2, and |∇ g(x′)|, |∇h(x′)| ≤ κ.

Now suppose u = (u1, · · · , uN ) ∈ H1(Ω1,RN ) satisfies the following problem




∂α(Aαβ
ij (x)∂βuj) = 0 in Ω1,

u = a on Γ+
1 , u = b on Γ−1 ,

u = ϕ on ∂Ω1\(Γ+
1 ∪ Γ−1 ),

(4.1)
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where 0 ≤ α, β ≤ n, 0 ≤ i, j ≤ N , the coefficients Aαβ
ij (x) ∈ C∞(Ω1) satisfy the weak

ellipticity condition

λ

∫

Ω1

|∇ψ|2 ≤
∫

Ω1

Aαβ
ij ∂αψi∂βψj ≤ Λ

∫

Ω1

|∇ψ|2, for any ψ ∈ H1
0 (Ω1,RN ),

a,b are constant vectors and the value of u is equal to the vector-valued function

ϕ ∈ H1(Ω1) on the lateral boundary of Ω1.

Now we state our main results. When a = b, we can obtain the Ck estimate of the

potential.

Theorem 4.1.1. When a = b, suppose u ∈ H1(Ω1,RN ) satisfies (4.1), then for any

positive integer k,

‖u‖Ck(Ω1/2) ≤ C

( ∫

Ω1

|∇u|2
)1/2

where C depends on k, n,N, λ, Λ, κ, A, but does not depend on ε.

Remark 4.1.1. In fact, our proof yields a more explicit dependence. For any positive

integer k,

|∇ku(z)| ≤ Cε1−k−n
2 µ

9√
ε
− 4|z′|

ε

( ∫

Ω1

|∇u|2
)1/2

, for 0 ≤ |z′| ≤ √
ε,

and

|∇ku(z)| ≤ C|z′|2−2k−nµ
5
|z′|

( ∫

Ω1

|∇u|2
)1/2

, for
√

ε ≤ |z′| < 1
2
,

where µ is some constant less than 1, and C depends on n,N, λ, Λ, but does not depend

on ε.

When a 6= b, we can obtain the gradient estimates of u.

Theorem 4.1.2. When a 6= b, if u ∈ H1(Ω1,RN ) satisfy (4.1) and
∫
Ω1
|∇u|2 ≤ cρn(ε)

for some constant c, where ρn is defined in (2.2), then we have

‖∇u(x)‖L∞(Ω1/2) ≤
C

ε
,

where C depends only on λ, Λ, κ, n,N,a,b, c, A, but does not depend on ε.
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4.2 Proof of Theorem 4.1.1

In this section, we intend to derive the Ck estimates for the solutions of elliptic system

(4.1) when a = b. Without loss of generality, we suppose that a = b = 0 and
∫
Ω1
|∇u|2 = 1. Before proving Theorem 4.1.1, we first show that the energy decays

exponentially.

Lemma 4.2.1. Suppose u ∈ H1(Ω1,RN ) satisfies (4.1), then for any
√

ε < t < 1,
∫

Ωt

|∇u|2 ≤ C(
1
4
)

1
4t . (4.2)

where C depends on N, λ, Λ, but does not depend on ε.

Proof. For any 0 ≤ t < s ≤ 1, we introduce a cutoff function η ∈ C∞(Ω1) satisfying

0 ≤ η ≤ 1, η = 1 in Ωt, η = 0 in Ω1\Ωs, and |∇η| ≤ C
s−t . By multiplying the test

function uη2 on both sides of the equation in (4.1), and in virtue of the weak ellipticity

condition, we have the inequality

λ

∫

Ωs

|∇u|2η2 ≤
∫

Ωs

Aαβ
ij (η∂βuj)(η∂αui) = −2

∫

Ωs

η Aαβ
ij ∂βuj∂αη ui

≤ λ

2

∫

Ωs

|∇u|2η2 + C

∫

Ωs

u2|∇η|2,

By Hölder inequality, we have
∫

Ωs

u2dx ≤ 4(ε + s2)2
∫

Ωs

|∇u|2dx.

So that
∫

Ωs

|∇u|2η2 ≤ C

∫

Ωs

u2|∇η|2 ≤ C

(
ε + s2

s− t

)2 ∫

Ωs

|∇u|2,

where C depends only on λ, Λ. For simplicity of notation, in the following we denote

F (t) =
∫
Ωt
|∇u|2 and take C = 1, then we have the iterative formula,

F (t) ≤
(

ε + s2

s− t

)2

F (s). (4.3)

For
√

ε ≤ t < s ≤ 1, take t0 = t < 1/8, and ti+1 = 1
4(1−√1− 8ti) if ti ≤ 1/8. It is

clear that {ti} is an increasing sequence. Let k be the integer such that tk ≤ 1/8 and

tk+1 > 1/8, then tk+1 ≤ 1/4. For 0 ≤ i ≤ k,

F (ti) ≤
(

t2i+1

ti+1 − ti

)2

F (ti+1) =
1
4
F (ti+1),
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Iterating the above inequality k times, we have

F (t0) ≤ (
1
4
)k+1F (tk+1) ≤ (

1
4
)k+1F (

1
4
) ≤ (

1
4
)k+1.

Now we estimate how large k should be. From the iterating formula, for 0 ≤ i ≤ k,

1
2ti

=
1

2ti+1
+

1
1− 2ti+1

,

then
1

2t0
− 1

2tk+1
=

k+1∑

i=1

1
1− 2ti

.

Since 0 < ti < 1
4 for 1 ≤ i ≤ k + 1, and 1

8 < tk+1 < 1
4 , we have

1
4t
− 3 < k <

1
2t
− 3.

Therefore, we obtain that
∫

Ωt

|∇u|2 ≤ (
1
4
)k+1 ≤ C(

1
4
)

1
4t .

So the energy decays exponentially.

Proof of Theorem 4.1.1. Step 1. Given a point (y′, yn) ∈ Ω1 with |y′| = a < 1
2 , by

rotation of coordinates, we can assume y′ = (a, 0, · · · , 0, ). Define

Ω̂s := {x ∈ Ω1

∣∣ − ε− g(x′) < xn < ε + h(x′), |x′ − (a, 0, · · · , 0)| < s}.

For 0 < t < s < 1, we choose another cutoff function ζ ∈ C∞(Ω1) satisfying 0 ≤ ζ ≤ 1,

ζ = 1 in Ω̂t, ζ = 0 in Ω1 \ Ω̂s, and |∇ζ| ≤ C
s−t . By the same way, multiplying the test

function uζ2 on both sides of the equation in (4.1), by Cauchy inequality and Hölder

inequality, we have
∫
bΩs

|∇u|2ζ2 ≤ C

∫
bΩs

u2|∇ζ|2 ≤ C

(
ε + (s + a)2

s− t

)2 ∫
bΩs

|∇u|2.

denote F̂ (t) =
∫
bΩt
|∇u|2, then we have another iterative formula,

F̂ (t) ≤ C

(
ε + (s + a)2

s− t

)2

F̂ (s). (4.4)

Step 2. For 0 ≤ a <
√

ε and 0 < s < t < 2
√

ε− a, we have

F̂ (t) ≤ C
ε2

(s− t)2
F̂ (s).
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For the purpose of simplicity, we assume C = 1.

Let t0 = ε, ti+1 − ti = 2ε, then

F̂ (ti) ≤ 1
4
F̂ (ti+1).

By iteration and Lemma 4.2.1, we obtain

F̂ (ε) ≤ C(
1
4
)

2
√

ε−a
2ε F̂ (2

√
ε− a) ≤ C(

1
4
)

2
√

ε−a
2ε F (2

√
ε) < C(

1
4
)

9
8
√

ε
− a

2ε .

Then by Poincarè inequality and Lemma 4.2.1 , we have
∫
bΩε

u2 ≤ Cε2

∫
bΩε

|∇u|2 ≤ Cε2(
1
4
)

9
8
√

ε
− a

2ε .

Now taking a point z with |z′| = a, we do the following scaling




εy′ = x′ − z′,

εyn = xn.

Let û(y) = u(εy′ + z′, εyn), then û(y) satisfies

∂α

(
Aαβ

ij (y)∂βûj(y)
)

= 0 in Q1,

where Q1 := {y
∣∣ − 1− g(εy′ + z′)/ε < yn < 1 + f(εy′ + z′)/ε, |y′| < 1}., namely, Q1 is

the image of Ω̂ε under the above rescaling so that Q1 is of size 1.

Using L2 estimates on the new equation on Q1 and Sobolev Imbedding Theorems, we

have

‖∇kû‖L∞(Q1/2) ≤ C‖û‖L2(Q1) ≤ Cε−n/2‖u‖
L2(bΩε)

≤ Cε1−n/2(
1
2
)

9
8
√

ε
− a

2ε .

In particular, for z ∈ Ω1 with 0 ≤ |z′| < √
ε,

|∇ku(z)| ≤ Cε1−k−n
2 (

1
2
)

9
8
√

ε
− |z′|

2ε .

Step 3. For
√

ε ≤ a < 1
2 and 0 < s < t < a, we have

F̂ (t) ≤ C

(
a2

s− t

)2

F̂ (s).

As we did in Step 2, we assume C = 1 for simplicity. Let t0 = a2 and ti+1 − ti = 2a2,

then we have the iterative formula

F̂ (ti) ≤ 1
4
F̂ (ti+1).
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Therefore, by iteration and (4.2), we have

F̂ (a2) = F̂ (t0) ≤ C(
1
4
)

a
2a2 F̂ (a) ≤ C(

1
4
)

1
2a F (2a) ≤ C(

1
4
)

5
8a ,

By Poincarè inequality, we know that

∫
bΩa2

u2 ≤ C(ε + a2)2
∫
bΩa2

|∇u|2 ≤ C(ε + a2)2(
1
4
)

5
8a .

Now taking a point z with |z′| = a, we do the following scaling




a2y′ = x′ − z′,

a2yn = xn.

Let û(y) = u(a2y′ + z′, a2yn), then û(y) satisfies

∂α

(
Aαβ

ij (y)∂βûj(y)
)

= 0, in Q1,

where Q1 := {y
∣∣ − ε

a2 − g(a2y′ + z′)/a2 < yn < ε
a2 + f(a2y′ + z′)/a2, |y′| < 1}.

Using L2 estimates and Sobolev Imbedding Theorems, we have

‖∇kû‖L∞(Q1/2) ≤ C‖û‖L2(Q1) <
C(ε + a2)

an
(
1
2
)

5
8a .

In particular, for z ∈ Ω1/2 with
√

ε ≤ |z′| < 1
2 ,

|∇ku(z)| < C(ε + |z′|2)
|z′|2k+n

(
1
2
)

5
8|z′| ≤ C|z′|2−2k−n(

1
2
)

5
8|z′| .

Taking µ = (1
2)1/8, the proof is completed.

4.3 Proof of Theorem 4.1.2

Let Ωr, Γ±r defined as in Section 4.1, we consider the gradient estimates for the case

a 6= b. Without loss of generality, we take a = (1, 0, · · · , 0) and b = (0, 0, · · · , 0). The

proof of Theorem 4.1.2 consists the following steps.

Proof of Theorem 4.1.2: Step 1. we first construct

ū1 =
xn + g(x′) + ε

g(x′) + h(x′) + 2ε
+

Anγ
i1 (x)(gγ(x′) + hγ(x′))

8Ann
i1 (x)

((
2xn + g(x′)− h(x′)
g(x′) + h(x′) + 2ε

)2

− 1

)
,
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for 2 ≤ j ≤ n,

ūj =
Anγ

ij (x)(gγ(x′) + hγ(x′))
8Ann

ij (x)

((
2xn + g(x′)− h(x′)
g(x′) + h(x′) + 2ε

)2

− 1

)
,

where 1 ≤ γ ≤ n− 1. gγ(x′), hγ(x′) are denoted as the partial derivatives of g and h.

Denote

ū = (ū1, · · · , ūN ). (4.5)

It is clear that ū = (1, 0, · · · , 0) on Γ+
1 , ū = (0, · · · , 0) on Γ−1 .

For 1 ≤ α, β ≤ n− 1, by direct computation, we have

∂ūj

∂xα
=

gα

g + h + 2ε
− (xn + g + ε)(gα + hα)

(g + h + 2ε)2

+
Anγ

ij (x)(gγ + hγ)
4Ann

ij (x)

(
(2xn + g − h)(gα − hα)

(g + h + 2ε)2
− (2xn + g − h)2(gα + hα)

(g + h + 2ε)3

)

+
((Anγ

ij )α(gγ + hγ) + Anγ
ij (gαγ + hαγ)

8Ann
ij (x)

− Anγ
ij (gγ + hγ)(Ann

ij )α

8(Ann
ij )2

)((2xn + g − h

g + h + 2ε

)2 − 1
)

,

∂ūj

∂xn
=

1
g + h + 2ε

+
Anγ

ij (x)(gγ + hγ)
2Ann

ij (x)

(
(2xn + g − h)
(g + h + 2ε)2

)

+
((Anγ

ij )n(gγ + hγ)
8Ann

ij (x)
− Anγ

ij (gγ + hγ)(Ann
ij )n

8(Ann
ij )2

)((2xn + g − h

g + h + 2ε

)2 − 1
)

,

∂2ūj

∂xα∂xn
= − (gα + hα)

(g + h + 2ε)2
+

Anγ
ij (x)(gγ + hγ)

2Ann
ij (x)

(
(gα − hα)

(g + h + 2ε)2
− 2(2xn + g − h)(gα + hα)

(g + h + 2ε)3

)

+
((Anγ

ij )α(gγ + hγ) + Anγ
ij (gαγ + hαγ)

2Ann
ij (x)

− Anγ
ij (gγ + hγ)(Ann

ij )α

2(Ann
ij )2

)(
(2xn + g − h)
(g + h + 2ε)2

)

+
((Anγ

ij )n(gγ + hγ)
4Ann

ij (x)
− Anγ

ij (gγ + hγ)(Ann
ij )n

4(Ann
ij )2

)

×
(

(2xn + g − h)(gα − hα)
(g + h + 2ε)2

− (2xn + g − h)2(gα + hα)
(g + h + 2ε)3

)

+
((2xn + g − h

g + h + 2ε

)2 − 1
)
×

{(Anγ
ij )nα(gγ + hγ) + (Anγ

ij )n(gαγ + hαγ)
8Ann

ij (x)

− (Anγ
ij )n(gγ + hγ)(Ann

ij )α + Anγ
ij (gγ + hγ)(Ann

ij )nα

8(Ann
ij )2

− ((Anγ
ij )α(gγ + hγ) + Anγ

ij (gαγ + hαγ))(Ann
ij )n

8(Ann
ij )2

+
2Anγ

ij (gγ + hγ)(Ann
ij )α(Ann

ij )n

8(Ann
ij )3

}
,
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∂2ūj

∂x2
n

=
Anγ

ij (x)
Ann

ij (x)

(
gγ + hγ

(g + h + 2ε)2

)

+
((Anγ

ij )n(gγ + hγ)
Ann

ij (x)
− Anγ

ij (gγ + hγ)(Ann
ij )n

(Ann
ij )2

)(
(2xn + g − h)
(g + h + 2ε)2

)

+
((Anγ

ij )nn(gγ + hγ)
8Ann

ij (x)
− 2(Anγ

ij )n(gγ + hγ)(Ann
ij )n + Anγ

ij (gγ + hγ)(Ann
ij )nn

8(Ann
ij )2

+
2Anγ

ij (gγ + hγ)(Ann
ij )nn(Ann

ij )2n
8(Ann

ij )3

)
×

((2xn + g − h

g + h + 2ε

)2 − 1
)

,

We notice that in

Aαβ
ij ∂αβūj + ∂α(Aαβ

ij )∂βūj ,

the term
gα + hα

(g + h + 2ε)2
,

will be cancelled, while all the other terms can be controlled by

C

ε + |x′|2 ,

where C depending only on Aαβ
ij and κ. By direct computation, we have

∫

Ω1

|∇ū|2dx ≤ Cρn(ε).

Heuristically, u should be very close to the function ū. In the following we give gradient

estimate of u by the estimate for their difference u− ū.

Step 2. Let w := ū− u, then w will satisfy the following equation




∂α(Aαβ
ij (x)∂βwj) = fi(x) in Ω1,

w = 0 on Γ+
1 ∪ Γ−1 ,

∫

Ω1

|∇w|2 dx ≤ Cρn(ε),

where fi(x) = ∂α(Aαβ
ij ∂βūj), and for any x ∈ Ω1,

|f(x)| ≤ C

ε + |x′|2 .

Given a point (y′, 0) ∈ Ω1 with |y′| = a < 1
2 , by rotation of coordinates, we can assume

y′ = (a, 0, · · · , 0, ). Define

Ω̂s := {x ∈ Ω1

∣∣ − ε− g(x′) < xn < ε + h(x′), |x′ − (a, 0, · · · , 0)| < s}.
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We first give energy estimates of w in dimension n = 2.

For 0 < t < s < 1/2, we pick the cutoff function η ∈ C∞(Ωi) satisfying 0 ≤ η ≤ 1,

η = 1 in Ω̂t, η = 0 in Ω1\Ω̂s, and |∇η| ≤ C
s−t . Since w = 0 on Γ−1 , and by Hölder

inequality, we have
∫
bΩs

w2dx =
∫
bΩs

( ∫ x2

−ε−g(x1)

∂ w

∂ x2
dx2

)2

dx

≤ (2ε + g + h)2
∫
bΩs

|∇w|2dx

≤ C(ε + (a + s)2)2
∫
bΩs

|∇w|2dx.

Multiplying the equation by wη2 and integrating by parts, we have
∫

Ωs

|∇w|2η2 + 2
∫

Ωs

w∇wη∇η =
∫

Ωs

fwη2.

By Cauchy inequality and the properties of η, we immediately have
∫
bΩt

|∇w|2 ≤ C

∫
bΩs

w2|∇η|2 +
∫
bΩs

fwη2

≤ C

(
ε + (a + s)2

s− t

)2 ∫
bΩs

|∇w|2 + (s− t)2
∫
bΩs

f2.

Defining F̂ (t) =
∫
bΩt
|∇w|2, we have

F̂ (t) ≤ C

(
ε + (a + s)2

s− t

)2

F̂ (s) + (s− t)2
∫
bΩs

f2. (4.6)

For simplicity, we assume that C = 1 in the following.

Step 2.1. For
√

ε ≤ a < 1
8 , and 0 < s < t < a, by assuming the constant C = 1

for simplicity, we can write the above formula as follows,

F̂ (t) ≤
(

a2

s− t

)2

F̂ (s) + (s− t)2
∫
bΩs

f2.

Since |f(x)| ≤ 1
ε+|x′|2 , let t0 = 2a2 and ti+1 − ti = 2a2, then we have the iterative

formula

F̂ (ti) ≤ 1
4
F̂ (ti+1) + 4a4 · 1

a4
· 2[ε + (a + ti+1)2]ti+1 ≤ 1

4
F̂ (ti+1) + 40a2ti+1.

Claim: we can find a constant c such that

F̂ (ti)− ca2ti ≤ 1
4

(
F̂ (ti+1)− ca2ti+1

)
.
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Indeed, we need only to find c such that

(40 +
c

4
)ti+1 ≤ cti,

that is,

(
40
c

+
1
4
)ti+1 ≤ ti.

Since ti+1 − ti = 2a2 and t0 = 6a2, it follows that ti > 6a2 for i = 1, 2, · · · . Then

ti+1 − ti = 2a2 <
1
3
ti.

Therefore, we can choose c = 80.

Now using the above inequality recursively, we have

F̂ (t0)− ca4 ≤ (
1
4
)i(F̂ (ti)− ca2ti) ≤ C(

1
4
)

1
2a F̂ (a).

Therefore, we have

F̂ (t0) ≤ C(
1
4
)

1
2a

1√
ε

+ ca4,

that is, ∫
bΩ6a2

|∇w|2 ≤ C

(
(
1
4
)

1
2a

1√
ε

+ a4

)
, (4.7)

Step 2.2. For 0 ≤ a <
√

ε, 0 < s < t <
√

ε, we have for simplicity,

F̂ (t) ≤ ε2

(s− t)2
F̂ (s) + (s− t)2

∫
bΩs

f2.

Let t0 = 4ε, ti+1 − ti = 2ε, then

F̂ (ti) ≤ 1
4
F̂ (ti+1) + 4ε2 · 1

ε2
· 4ε ti+1.

By the same way as in Step 2.1, we have, for some constant c,

F̂ (t0) ≤ C(
1
4
)

1√
ε F̂ (

√
ε) + cε t0.

Therefore,

F̂ (4ε) ≤ Cε t0 = Cε2. (4.8)

Similarly, in dimension n = 3 we have, for
√

ε ≤ a < 1/2,

F̂ (6a2) ≤ C(
1
4
)

1
a | ln ε|+ ca6, (4.9)
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for 0 ≤ a <
√

ε,

F̂ (4ε) ≤ Cε t0 = Cε3. (4.10)

In dimension n ≥ 4, we have, for
√

ε ≤ a < 1/2,

F̂ (6a2) ≤ C(
1
4
)

1
a + Ca2n ≤ C a2n, (4.11)

for 0 ≤ a <
√

ε,

F̂ (4ε) ≤ Cε t0 = Cεn. (4.12)

Step 3. We next derive the gradient estimates of w based on the above energy

estimates and the W 1,p estimates.

Step 3.1. We still discuss in dimension n = 2. For
√

ε ≤ a < 1/2, we do the

following change of variables 



x1 − a = a2y1,

x2 = a2y2,

Under this change of variables, Ω̂a2 is mapped into a domain of size 1, Denote this

domain as

Qr = {y ∈ R2
∣∣ − ε

a2
− g(a + a2y1)

a2
< y2 <

ε

a2
+

h(a + a2y1)
a2

, |y1| < r}.

For any (y1, y2) ∈ Q1, define

w̃(y1, y2) =
1
B

w(x1, x2),

where B =
(
a4 + (1

4)
1
2a

1√
ε

) 1
2 , then by (4.7), we have

∫

Q1

|∇w̃|2 ≤ B−2

∫
bΩa2

|∇w|2 ≤ C.

Since w̃ = 0 on the top and bottom boundary of Q1, by Sobolev inequality, we

have ‖w̃‖H1(Q1) ≤ C, then by Sobolev Imbedding Theorem, we have ‖w̃‖Lp(Q1) ≤
C‖w̃‖H1(Q1) ≤ C, for 1 < p < ∞. On the other hand,

∂α

(
Aαβ

ij ∂βw̃j(y)
)

= ∂α

(
Aαβ

ij ∂βūj(y)
)

, (4.13)
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Since the coefficients are in C2, so we can differentiate equation. Apply ∂l to (4.13), we

obtain

∂α

(
Aαβ

ij (y)∂β

(
∂lw̃

j(y1, y2)
))

= −∂α

((
∂lA

αβ
ij (x)

)
∂βwj(x)

)
+ ∂α

(
∂l(A

αβ
ij (x)∂βūj(x))

)
,

and

|fα
i | =

∣∣∣∣
(
− (

∂lA
αβ
ij

)
∂βwj + ∂l(A

αβ
ij ∂βūj)

)∣∣∣∣

≤ C(|∇w|+ |∇ū|+ |∇∂lū|)

≤ C|∇w|+ C,

where C is independent ε. We notice that

∂α(Aαβ
ij ∂βwj) = ∂α(Aαβ

ij ∂βūj).

By the W 1,p estimate for systems, we have

‖∇w‖Lp ≤ ‖∇ū‖Lp ≤ C

ε
1− 1

p

.

Then using W 1,p estimates([10], Theorem 2.2 in Chapter 10) and L2 estimates, we

have

‖∇∂lw̃‖Lp( 1
2
eΩ,RN )

≤ C

ε
1− 1

p

.

So that

‖D2w̃‖
Lp( 1

2
eΩ,RN )

≤ C

ε
1− 1

p

.

By Sobolev Imbedding theorem, for p > 2, we have

‖w̃‖
C1,α( 1

2
eΩ)
≤ C‖w̃‖

W 2,p( 1
2
eΩ)
≤ C

ε
1− 1

p

.

where α = 1− 2/p. So that, for any (y1, y2) ∈ 1
2 Ω̃,

|∇w̃(y1, y2)| = a2

(
a4 + (

1
4
)

1
a

1√
ε

)− 1
2

|∇w(x1, x2)| ≤ C

ε
1− 1

p

.

In particular, for any point (x1, x2) ∈ Ω1 with
√

ε ≤ |x1| = a < 1
2 , we have

|∇w(x1, x2)| ≤ C

ε
1− 1

p

(
a4 + (

1
4
)

1
a

1√
ε

) 1
2 1
a2

<
C

ε
. (4.14)
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Step 3.2. For 0 ≤ a <
√

ε, similarly as the above, we do the following change of

variables 



x1 − a = εy1,

x2 = εy2,

and denote

Ω̃ = {y ∈ R2
∣∣ |y2| < 1 + (

a√
ε

+
√

εy1)2, |y1| < 1}.

For any (y1, y2) ∈ Ω̃, define

w̃(y1, y2) =
1
ε
w(x1, x2)

then by (4.8), we have
∫
eΩ
|∇w̃|2 <

1
ε2

∫
bΩε(a)

|∇w|2 ≤ C.

Since w = 0 on the top and below boundary of Ω̃, by Sobolev inequality, ‖w̃‖
H1(eΩ)

≤ C,

which implies by Sobolev Imbedding Theorem that ‖w̃‖
Lp(eΩ)

≤ C‖w̃‖
H1(eΩ)

≤ C, for

1 < p < ∞. We now have

∂α

(
Aαβ

ij ∂βw̃j(y1, y2)
)

= ∂α

(
Aαβ

ij ∂βūj(a + a2y1, a
2y2)

)
,

Then Similarly as the above, by W 1,p estimates and Sobolev imbedding argument as

above, we have, for p > 2,

‖w̃‖
C1,α( 1

2
eΩ)
≤ C

where α = 1− 2
p . Therefore for any (y1, y2) ∈ 1

2 Ω̃

|∇w̃(y1, y2)| = |∇w(x1, x2)| ≤ C

In particular, for any point (x1, x2) ∈ Ω1 with 0 < |x1| = a <
√

ε, we have

|∇w(x1, x2)| ≤ C (4.15)

Step 3.3. In dimension n = 3, using the same argument as above, for (x′, x3) ∈ Ω1,

we have

|∇w(x′, x3)| ≤ C

(
1 +

1
a2

(
1
4
)

1
2a

√
| ln ε|

)

≤ C
√
| ln ε|, for

√
ε ≤ |x′| < 1/2,
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|∇w(x′, x3)| ≤ C, for 0 ≤ |x′| < √
ε.

For n = 4, based on the energy estimates (4.11) (4.12) and the above argument, we

have

|∇w(x′, xn)| ≤ C, for 0 ≤ |x′| < 1/2. (4.16)

Now we consider in all dimensions. Since

|∇ū(x)| ≤ C

ε
,

combining with all the above estimates, we have for any x ∈ Ω1/2,

‖∇w(x)‖L∞(Ω1/2) ≤
C

ε
.

4.4 Some applications in the systems of linear elasticity

Let Ω be a bounded open set in Rn with C2,α boundary, n ≥ 2, 0 < α < 1, D1 and D2

be two bounded strictly convex open subsets in Ω with smooth boundaries which are ε

apart and far away from ∂Ω, i.e.

D1, D2 ⊂ Ω, the principal curvature of ∂D1, ∂D2 ≥ κ0

ε := dist(D1, D2) > 0, dist(D1 ∪D2, ∂Ω) > r0, diam(Ω) <
1
r0

,
(4.17)

where κ0, r0 > 0 are universal constants independent of ε.

In two dimensions, we can treat Ω as the cross section of one composite material,

where D1 and D2 are the cross sections of the fibers. If this composite material is

homogeneous and isotropic and suppose that the Lamé pair of the surrounding matrix

is (λ, µ) and the Lamé pair of the fibers D1 and D2 is (λ̃, µ̃), then we know from the

introduction that the displacement u satisfies the system of equations (1.8).

Denote R be the linear space of rigid displacements of Rn, i.e. the set of all vector

valued functions η = (η1, η2, . . . , ηn)T such that η = a+Ax, where a = (a1, a2, . . . , an)T

is a constant vector, A is a skew-symmetric n× n matrix, it is easy to see that R is a

linear space of dimension m := n(n + 1)/2.
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Here we consider the extreme case in which the shear modulus of the fibers µ̃ = ∞.

Given the boundary condition ϕ ∈ H1(Ω), then the displacement u = (u1, u2, · · · , un)

satisfies the following equation




Lλ,µu = 0 in Ω̃

∇u +∇uT = 0 in D1 ∪D2

u|+ = u|− on ∂D1 ∪ ∂D2,

u = ϕ on ∂Ω,
∫

∂Di

η
∂u

∂ν
|+ = 0 ∀η ∈ R.

(4.18)

where Lλ,µu := µ∆u + (λ + µ)∇(∇ · u).

Proposition 4.4.1. The solution of (4.18) exists and is unique.

Proof. We first prove the uniqueness of solutions to (4.18). in fact, if u is a solution of

(4.18) with ϕ = 0, then using u as a test function in Ω, we have,
∫

Ω
λ|∇ · u|2 +

µ

2
|∇u +∇uT |2 = 0

Therefore, ∇u +∇uT = 0, i.e. u ∈ R in Ω, since u = 0 on ∂Ω, u = 0 in Ω.

Next we prove the existence of the solution of (4.18). Actually its solution can be

viewed as the minimizer of the functional

I[u] :=
∫

Ω
λ|∇ · u|2 +

µ

2
|∇u +∇uT |2

in the Hilbert space

A := {v ∈ H1
ϕ(Ω)|∇v +∇vT = 0 in D1 ∪D2}.

Now we prove the existence of the minimizer. Let {ui} be a minimizing sequence in

H1
ϕ, then we have ‖∇ui + (∇ui)T ‖L2(Ω) ≤ C for some constant C independent of i.

By Korn’s Inequality, see page 13-14 in [22] for example, we have,

‖∇ui‖2
L2(Ω) ≤

1
2
‖∇ui +∇uiT ‖2

L2(Ω) + ‖ϕ‖2
H1(Ω) ≤ C

Therefore {ui} is bounded in H1(Ω), let ui ⇀ u in H1(Ω). Then u ∈ A since A is

H1 weakly closed. Moreover, u is exactly the minimizer of I[u] since I[u] is a convex

function of the components of ∇u.
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From the second equation in (4.18), we know that u ∈ R in Di(i = 1, 2).

Given {ei} as a basis of R, let vi be the solution of the following system




Lλ,µu = 0 in Ω̃,

u = ei on ∂D1,

u = 0 on ∂D2 ∪ ∂Ω.

(4.19)

ṽi be the solution of the following system




Lλ,µu = 0 in Ω̃,

u = ei on ∂D2,

u = 0 on ∂D1 ∪ ∂Ω.

(4.20)

v0 be the solution of the following system




Lλ,µu = 0 in Ω̃,

u = 0 on ∂D1 ∪ ∂D2

u = ϕ on ∂Ω.

(4.21)

Then we can decompose the solution u of (4.18) as follows

u =
m∑

i=1

Civ
i +

m∑

i=1

C̃iṽ
i + v0

Denote

αij =
∫

∂D1

∂vi

∂ν
ej , α̃ij =

∫

∂D1

∂ṽi

∂ν
ej ; βij =

∫

∂D2

∂ṽi

∂ν
ej , β̃ij =

∫

∂D2

∂vi

∂ν
ej

and

γi =
∫

∂D1

∂v0

∂ν
ei, γ̃i =

∫

∂D2

∂v0

∂ν
ei

Then by the last equation of (4.18), we have

 αij α̃ij

β̃ij βij





 Cj

C̃j


 =


 γi

γ̃i


 (4.22)

To establish the gradient estimate for u, as we did on the perfect conductivity problems,

we first estimate |∇vi|. Next we try to estimate |Cj−C̃j |. As an application of Theorem

4.1.1 and Theorem 4.1.2, we have,
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Corollary 4.4.1. ‖∇v0‖
L∞(eΩ)

< C, ‖∇vi‖
L∞(eΩ)

< C
ε (i = 1, 2, . . . , m), where C is

some constant depending on n, λ,µ, κ0, r0, but independent of ε.

The difficulty here is to estimate |Cj − C̃j |, we conjecture that |Cj − C̃j | < Cερn(ε).
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