
INVARIANT THEORY IN CAUCHY-RIEMANN

GEOMETRY AND APPLICATIONS TO THE STUDY

OF HOLOMORPHIC MAPPINGS

BY YUAN ZHANG

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Mathematics

Written under the direction of

Xiaojun Huang

and approved by

New Brunswick, New Jersey

October, 2009



ABSTRACT OF THE DISSERTATION

Invariant Theory in Cauchy-Riemann Geometry and

Applications to the Study of Holomorphic Mappings

by Yuan Zhang

Dissertation Director: Xiaojun Huang

In this dissertation, proper holomorphic maps between some types of CR manifolds

have been studied. For non-degenerate holomorphic Segre maps between Hn and HN ,

the complexifications of Heisenberg hypersurfaces, we show that they possess a partial

rigidity property when N ≤ 2n− 2. As an application under the same assumption, we

prove that the holomorphic Segre non-transversality for these maps propagates along

Segre varieties. this propagation property fails when N > 2n−2. For any proper ratio-

nal holomorphic map between complex balls, we derive a simple and explicit criterion

when it is equivalent to a holomorphic polynomial map. This criterion is used to show

that proper rational holomorphic maps from B
2 into B

N of degree two are equivalent

to polynomial maps. For general smooth CR embeddings from a Levi non-degenerate

hypersurface into another one with the same signature, a monotonicity property of the

Chern-Moser-Weyl curvature along directions in the null space of the Levi-form has

been obtained.
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Chapter 1

Introduction to CR geometry

1.1 Preliminaries

Let M be a real submanifold of C
n of codimension d. Namely, for any point p ∈ M ,

there exists a neighborhood U of p so that M ∩ U = {z ∈ C
n : ρ(z, z̄) = 0} for some

neighborhood U of p, where ρ = (ρ1, . . . , ρd) is a real vector-valued functions in U and

dρ 6= 0 on M . ρ is called the local defining function of M . We say M is a Ck (real

analytic) submanifold if ρ ∈ Ck (real analytic).

For p ∈ C
n, write TpC

n = TpR
n =

{∑n
j=1 aj

∂
∂xj

|p +
∑n

j=1 bj
∂

∂yj
|p : aj , bj ∈ R

}
. We

say X ∈ TpC
n is tangent to M at p if

Xρk(p) =

n∑

j=1

aj
∂ρk

∂xj
(p, p̄) +

n∑

j=1

bj
∂ρk

∂yj
(p, p̄) = 0 for 1 ≤ k ≤ d.

Denote TpM to be the subspace of all real vectors tangent to M at p and T (M) =

⊔p∈MTp(M) the corresponding vector bundle over M . The space of all smooth sections

in T (M) is denoted by Γ∞(T (M)). By allowing the coefficients aj and bj in the above

expressions to be complex numbers we can define the complexified tangent spaces CTC
n

and CTp(M) = Tp(M) ⊗ C. Specifically, if we write

∂

∂zj
=

1

2
(
∂

∂xj
− i

∂

∂yj
),

∂

∂z̄j
=

1

2
(
∂

∂xj
+ i

∂

∂yj
),

Then

CTpC
n =

{ n∑

j=1

aj
∂

∂zj
|p +

n∑

j=1

bj
∂

∂z̄j
|p : aj , bj ∈ C

}
,

CTp(M) =

{
X =

n∑

j=1

aj
∂

∂zj
|p +

n∑

j=1

bj
∂

∂z̄j
|p : aj, bj ∈ C,Xρk(p) = 0 for 1 ≤ k ≤ d

}
.

We can also denote the smooth sections on CT (M) by Γ∞(CT (M)).

We are about to introduce the concept of CR manifold in the general sense.
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Definition 1.1.1 Let M be a real smooth manifold. M is called a CR manifold if there

exists a complex subbundle T (1,0)M of the complexified tangent bundle CTM = TM⊗C

such that

1. T (1,0)M ∩ T (1,0)M = {0},

2. [X,Y ] := XY − Y X ∈ Γ∞(T (1,0)M) X,Y ∈ Γ∞(T (1,0)M).

Here Γ∞(T (1,0)M) is the collections of sections on T (1,0)M . The bundle T (1,0)M is

called the CR structure of M .

We also call the above T (1,0)M the CR tangent bundle of M . Notice in the sense

of the above definition, the CR structure for a general CR manifold can be highly

abstract. If we restricts merely on submanifold of some complex manifold, say C
n, the

CR structure of the CR manifold will be naturally induced by the complex structure

of the ambient manifold and hence, the definition of CR manifolds in those cases may

be simplified. In detail, let M be a real smooth submanifold in C
n. Denote T (1,0)

C
n to

be the subbundle of CTC
n whose sections are complex linear combinations of the ∂

∂zj
’s

and T (0,1)
C

n to be its conjugate. Then CTC
n has a natural decomposition:

CTC
n = T (1,0)

C
n ⊕ T (0,1)

C
n.

We denote T (1,0)M , the bundle of (1, 0) vectors, to be the intersection

T (1,0)M = CTM ∩ T (1,0)
C

n.

Respectively one can define its conjugate T (0,1)M , the bundle of (0, 1) vectors. Fur-

thermore, it may be easily verified T (1,0)M satisfies the following three properties:

1. T (1,0)M ∩ T (0,1)M = {0}.

2. [X,Y ] := XY − Y X ∈ T (1,0)M X,Y ∈ Γ∞(T (1,0)M).

3. T (1,0)M = T (0,1)M.

Therefore, the definition of CR manifolds for manifolds in C
n can be rephrased as

follows:
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Definition 1.1.2 A real submanifold M ⊂ C
n is a CR submanifold if dimC T

(1,0)
p M is

constant for p ∈M . The constant is called the CR dimension of M .

On those CR manifolds we introduce a special type of functions, which are called

CR functions:

Definition 1.1.3 A continuous function f : M → C is said to be a CR function on

CR manifold M if X̄f = 0 (in the sense of distribution) for all X ∈ T (1,0)M .

Note the notion of CR functions on CR manifolds in C
n is a generalization of

holomorphic functions in C
n. Precisely speaking, given a holomorphic function f on

U ⊂ C
n. Since ∂̄f ≡ 0 on U , the restriction of f on M ∩ U naturally induces a

CR function. However on the other hand, not all CR functions on M come from the

restriction of a holomorphic function on M . See the following example:

Example 1.1.4 Let M = {(z1, z2) ∈ C
2 : ℑz2 = 0}. It is obvious that M is a CR

manifold and { ∂
∂z1

} forms a global basis for Γ∞(T (1,0)M). Consider any non real-

analytic function which depends only on ℜz2, say f(ℜz2). By definition, it is always a

CR function. However it cannot be written as a restriction of a holomorphic function

on M , which is always real analytic by Schwarz reflection principle.

It has been discussed in [BER] that ’minimality’ of M is a necessary and sufficient

condition for holomorphic extension of CR functions to one side of M . In other words,

if M does not contain a proper CR submanifold of the same CR dimension, then any

CR function can be extended as a holomorphic function on at least one side of M .

Mappings between two CR manifolds can also be defined.

Definition 1.1.5 Let (M,T (1,0)M) and (N,T (1,0)N) be two CR manifolds. A CR map-

ping F : (M,T (1,0)M) → (N,T (1,0)N) (of class Ck) is a Ck mapping F : M → N such

that for each p ∈ M , F∗(T
(1,0)
p M) ⊆ T

(1,0)
F (p)N . If in addition the mapping is an embed-

ding, namely, F is a one-to-one mapping and the Jacobian of F is of full rank on M ,

then we call F is a CR embedding.
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Simply speaking, a CR map from a CR manifold to another is a map preserving

the CR structures. A straight forward conclusion of the definition is F : (T (1,0)M) →

(CN , T (1,0)
C

N ) is a CR mapping if and only if each component Fj , j = 1, . . . ,N is a

CR function.

Throughout this thesis, since we are interested in the smooth boundaries of domains

in C
n+1, from now on we will focus the attention only on smooth hypersurfaces, sub-

manifolds with real codimension one in C
n+1. Later we will show smooth hypersurfaces

always admit CR structures and hence are called the CR manifolds of hypersurface

type or CR hypersurfaces. The structure of CR hypersurfaces can even be explicitly

written down under certain well chosen local coordinate. Let us first describe such a

local coordinate for a given hypersurface.

Lemma 1.1.6 Let M be a real smooth hypersurface in C
n+1 through p. Then there

exists a holomorphic change of local coordinates near p such that under the new coor-

dinates (z,w) ∈ C
n × C, M near p is given by

0 = ℑw − φ(z, z̄,ℜw) (1.1)

for some smooth function φ(z, z̄, s) defined near 0 with φ(0) = 0 and dφ(0) = 0.

Proof of Lemma 1.1.6: Let ρ(z̃, ¯̃z) be a local defining function for M near p. After

making a translation, we can assume p is the origin. Then the real smooth function ρ

can be written as:

ρ(z̃, ¯̃z) = ℑ
n+1∑

j=1

aj z̃j +O(2).

Here O(k) denotes terms of vanishing order at least k. Since dρ(0) 6= 0, without loss of

generality we can assume an+1 = 2i ∂ρ
∂z̃n+1

(0) 6= 0. Take the linear transformation:

zj = z̃j , j = 1, . . . , n.

w =
n+1∑

j=1

ajzj.

Then under the new coordinates (z1, . . . , zn, w), the defining equation of M near p can

be written as: ρ(z,w) = ℑw + O(2) = 0. Applying Implicit function theorem one can
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solve for ℑw in terms of z, z̄,ℜw by ℑw = φ(z, z̄,ℜw) near 0. φ(0) = 0 is obvious.

Moreover, since ρ(z,w) = ℑw + O(2) = 0 on M , X(ρ(z,w)) = X(ℑw) +X(O(2)) = 0

for any X ∈ CT0M . On the other hand, ∂
∂z ,

∂
∂z̄ and ∂

∂ℜw form a basis for CT0M .

Therefore dφ(0) = 0. �

Under the above local coordinates of M , its CR vector bundle can be explicitly

formulated as follows:

Lemma 1.1.7 Suppose a real smooth hypersurface M in C
n+1 is given by (1.1) near

0. Consider smooth sections in CTM :

Lj =
∂

∂zj
+ 2i

φzj

1 + iφs

∂

∂w
; j = 1, . . . , n. (1.2)

T =
2

1 + iφs

∂

∂w
+

2

1 − iφs

∂

∂w̄
. (1.3)

Then CTM = SpanC{T,Lj , Lj , j = 1, . . . , n}. Moreover, the following holds:

1. [Lj, Lk] ∈ SpanC{Lj , j = 1, . . . , n}. (1.4)

2. [Lj, Lk] = λjk̄T. (1.5)

3. dimC SpanC{Lj , j = 1, . . . , n} = n. (1.6)

Therefore M is a CR manifold of hypersurface type and its CR bundle T (1,0)M is given

by SpanC{Lj , j = 1, . . . , n}.

Proof of Lemma 1.1.7: Straight forward computation shows that Ljρ = Ljρ =

Tρ = 0 and Lj, Lj , T are C-linear independent. Therefore T,Lj, Lj consists of a local

basis for CTM and [Lj , Lk] ∈ CTM . Furthermore, note Lj ∈ T (1,0)
C

n+1. Then

T (1,0)M = SpanC{Lj , j = 1, . . . , n} and its CR dimension is equal to n. On the

other hand, since Lj ∈ T (1,0)
C

n+1, we also have [Lj , Lk] ∈ T (1,0)
C

n+1. Therefore

[Lj , Lk] ∈ T (1,0)
C

n+1 ∩ CTM = T (1,0)M = SpanC{Lj , j = 1, . . . , n}. The proof for the

rest of the results is obvious. �

Denote H(M) := T (1,0)M ∪T (0,1)M . It is a subbundle of CTM of codimension one.

Along M there exists a globally defined nonvanishing real one form θ, which vanishes

on H(M). We call θ to be contact form. If M is defined by (1.1), then one may check
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θ0 = i∂r is a contact form and θ0(T ) = 1. Given any contact form θ, there exists a

nonvanishing function c on M such that θ = cθ0.

Definition 1.1.8 The Levi form with respect to a given contact form θ at p ∈ M is

the Hermitian form on T
(1,0)
p M defined by

Lθ|p(L,K) = −dθ|p(L,K), for L ∈ Γ∞(T (1,0)M),K ∈ Γ∞(T (0,1)M) near p.

We call the real hypersurface M to be Levi nondegenerate at a point p ∈ M if Lθ|p is

nondegenerate.

Since dθ(L,K) = L(θ(K))−K(θ(L))−θ([L,K]) and θ(K) = θ(L) = 0, the definition

of Levi form is also given by

Lθ(L,K) = 〈θ, [L,K]〉.

Using Lemma 1.1.7, the matrix of the levi form with respect to θ under the basis

(1.2) can be written to be (cλjk̄) for some nonzero function c. Therefore M is Levi

nondegenerate at p ∈ M if and only if rank(λjk̄) = n at p. Denote ν+ and ν− to be

the number of positive and negative eigenvalues of λjk̄, respectively, then

Definition 1.1.9 A Levi nondegenerate hypersurface is called of signature ℓ if

min(ν+, ν−) = ℓ.

A Levi non-degenerate smooth hypersurface Mℓ in C
n+1 is of signature ℓ near the

origin if it locally is defined by an equation of the form: r(z,w) = ℑw −∑ℓ
j=1 |zj |2 +

∑n
j=ℓ+1 |zj |2 + ◦(|z|2 + |z · ℜw|) = 0 for (z,w) ∈ C

n × C. Another remark mentioned

here is by multiplying −1 to the contact form θ if necessary, we can always assume

min(ν+, ν−) = ν−.

Example 1.1.10 Consider the boundary of the unit ball in C
n+1: S

n = {z ∈ C
n+1 :

|z|2 = 1}. Here we use the notation 〈a, b̄〉 =
∑

j aj b̄j and |z|2 = 〈z, z̄〉. In order to write

the defining function near the origin to be of the form in Lemma 1.1.6, we introduce

the Cayley Cayley transformation:

ρ(z,w) =

(
2z

1 − iw
,

1 + iw

1 − iw

)
.
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One can check ρ−1 biholomorphically maps S
n\{(0, 1)} onto H

n+1, where H
n+1 =

{(z,w) ∈ C
n × C : 0 = ℑw − |z|2}. We call H

n+1 to be the standard Heisenberg

Hypersurface in C
n+1. Apparently it is a Levi nondegenerate hyperquadrics of signature

0 in C
n+1. Applying Lemma 1.1.7 to H

n+1, We have a global basis for CTH
n+1:

Lj =
∂

∂zj
+ 2iz̄j

∂

∂w
, j = 1, . . . , n. (1.7)

Lj =
∂

∂z̄j
− 2izj

∂

∂w̄
, j = 1, . . . , n. (1.8)

T = 2(
∂

∂w
+

∂

∂w̄
). (1.9)

and a special contact form

θ =
1

2
∂w − iz̄j∂zj .

Moreover,

[Lj , Lk] = −2iδjk,

where δjk = 1 if j = k and 0 otherwise.

On H
n+1, there are three special self maps of interests:

1. Given any point p0 = (z0, w0) ∈ H
n+1, define:

σ0
p0

(z,w) = (z + z0, w + w0 + 2i〈z, z̄0〉).

2. Given an n× n unitary matrix U and a nonzereo scalar λ ∈ R, define:

(z,w) → (λUz, λ2w)

3. Given a vector a ∈ C
n, r ∈ R define:

(z,w) →
( z − aw

1 + 2i〈z, ā〉 + (r − i|a|2)w,
w

1 + 2i〈z, ā〉 + (r − i|a|2)w
)

It is not hard to verify the above three self maps of H
n+1 are also one-to-one. We

denote the group consisting of all bimeromorphic self maps of H
n+1 by Aut(Hn+1) and

denote by Aut0(H
n+1) the subgroup of Aut(Hn+1) consisting of those who preserve the

origin. It’s worth mentioning that any element in Aut(Hn+1) can always be written as

a combination of the above three mappings.
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We will continue to discuss the application of the properties of H
n in the next

section. Similar results may also hold on the generalized Heisenberg hypersurfaces

H
n+1
ℓ = {(z,w) ∈ C

n+1 : 0 = ℑw − |z|2ℓ} - hyperquadrics of signature ℓ. Here our

notation is 〈a, b̄〉ℓ = −∑j≤ℓ aj b̄j +
∑

j>ℓ aj b̄j and |z|2ℓ = 〈z, z̄〉ℓ.

Definition 1.1.11 Let D1 and D2 be two domains in C
n and C

n, respectively. A

holomorphic map F : D1 → D2 is said to be a proper holomorphic map if for any

compact subset K ∈ D2, the inverse image F−1(K) is compact in D2.

Remark 1.1.12 Given a holomorphic map F : D1 → D2. Suppose F extend con-

tinuously to the boundary of D1. Then F is proper if and only if F maps ∂D1 into

∂D2.

The next lemma is about polarization (or complexification). This technique allows

us to replace the dependent conjugate variable to another independent variable in cer-

tain identities. It has been shown quite useful when dealing with proper holomorphic

maps between CR hypersurfaces.

Lemma 1.1.13 Let D be a domain in C
n and let D̄ = {z : z̄ ∈ D} be its conjugate

domain. Suppose that H : D × D̄ → C is a holomorphic mapping and H(z, z̄) = 0 for

any z ∈ D. Then H(z,w) ≡ 0 on D × D̄.

Proof of Lemma 1.1.13: Without loss of generality, we can assume D is the unit

disk in C
n. For z ∈ C

n, we can write z = (r1e
iθ1 , . . . , rne

iθn) := reiθ for some vectors

r, θ and write the Taylor expansion of H(z,w) to be H(z,w) =
∑

α,β aαβz
αwβ . Plug

the expression of z into the above Taylor expansion, we get

∑

α,β

aαβr
α+βeiθ(α−β) = 0

for any r, θ. Collect terms containing rk, we have

∑

α

aα(k−α)e
iθ(2α−k) = 0.

Since θ is arbitrary, we immediately have aαβ = 0. �
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We call H(z,w) = 0 to be the complexification of H(z, z̄) = 0. Another approach

of the proof is to show M = {(z, z̄) : z ∈ D} is a totally real submanifold of maximal

dimension, i.e. dimT (1,0)M = 0 and dimM = n. Therefore M is a uniqueness set for

holomorphic functions in D × D̄.

Suppose M = {z ∈ D : r(z, z̄) = 0} and dr 6= 0. We also call the complexification

of M to be M = {(z, ξ) ∈ D × Conj(D) : r(z, ξ) = 0}.

Corollary 1.1.14 Let M and M̃ be two real real-analytic hypersurafaces in C
n and

C
N , respectively locally defined by real analytic functions r, r̃. F : M → M̃ . Then

r̃(f(z), f̄(w)) = 0 on r(z,w) = 0.

Proof of Corollary 1.1.14: By the assumption, we already have

r̃(f(z), f(z)) = 0 on r(z, z̄) = 0

and dr, dr̃ 6= 0 along M . This implies there exists some holomorphic function h(z,w)

such that

r̃(f(z), f(z)) − h(z, z̄)r(z, z̄) = 0. (1.10)

Now apply Lemma 1.1.13 to holomorphic function r̃(f(z), f̄(w)) − h(z,w)r(z, w̄). The

Corollary is then straight forward by (1.10). �

Suppose M and M̃ are two CR hypersurfaces in C
n+1 and in C

N+1, respectively.

F : C
n+1 → C

N+1 is holomorphic and F (M) ⊂ M̃ . We have the definition of CR

transversality of F to M̃ as follows:

Definition 1.1.15 A holomorphic map F : M(∈ C
n+1) → M̃(∈ C

N+1) is said to be

CR transversal at p ∈M if

T
(1,0)
F (p) M̃ + dF (T (1,0)

p C
n+1) = T

(1,0)
F (p) C

N+1

In the following lemma, we will show CR transversality of the mapping is equivalent to

the fact that the derivatives of normal components along normal direction is nonvan-

ishing.
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Lemma 1.1.16 Consider a holomorphic map F : M(∈ H
n+1) → M̃(∈ H

N+1) and

F (0) = 0. M and M̃ are given under the local coordinates as in (1.1). Write F = (f̃ , g).

Then F is CR transversal to M̃ at 0 if and only if ∂g
∂w (0) = 0.

Proof of Lemma 1.1.16: Denote (z,w) and (z̃, w̃) to be the local coordinates

for M and M̃ . Obviously T
(1,0)
0 M̃ = { ∂

∂z̃j
|0, j = 1, . . . , n}. In order that F is CR

transversal to M̃ at 0, we just need to show ∂
∂w̃ ∈ dF (T

(1,0)
p C

n+1) by definition. On the

other hand, recall

dF (
∂

∂w
)|0 =

∑

j≤N

∂f̃j

∂w
|0
∂

∂z̃j
+
∂g

∂w
|0
∂

∂w̃
≡ ∂g

∂w
|0
∂

∂w̃
mod (T

(1,0)
0 M̃).

The Lemma thus holds. �

1.2 Normalization on proper holomorphic maps between balls

In this section, we will introduce a useful normalization process given by Huang [Hu].

Let M ∈ H
n+1 and M̃ ∈ H

N+1 be two germs of H
n+1 and H

N+1 near the origin. As is

shown in Lemma 1.1.7, a choice of a global basis for T (1,0)M is {Lj = ∂
∂zj

+2iz̄j
∂

∂w , j =

1, . . . , n}. Let

F = (f̃ , g) = (f, φ, g) = (f1, . . . , fn, φ1, . . . , φN−n, g)

be a smooth nontrivial CR map from M to M̃ with F (0) = 0. It’s known by Lewy

extension theorem F can be extended holomorphically to one side of M denoted by

D ∈ C
n+1.

Next, we assign the weight of z and w to be 1 and 2, respectively. For a non-negative

integer m, We say a function h(z,w) defined in a small neighborhood U of 0 to be in

owt(m), if h(tz, t2w)/|t|m → 0 as t→ 0. For a smooth function h(z,w) defined in U , we

also denote by h(k)(z,w) terms of weighted degree k in the Taylor expansion of h at 0.

Since F (M) ⊂ M̃ , we have

g − ḡ

2i
= |f |2 + |φ|2 (1.11)
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Write f̃ = zA + wa + O((z,w)2) where A is an n × N matrix and a ∈ C
n. Applying

Lα = Lα1
1 Lα2

2 · · ·Lαn
n to (1.11), we have

Lαg

2i
= 〈Lαf̃ ,

¯̃
f〉,

Letting (z,w) = 0, it follows Lαg|0 = 0 and therefore

g(z, 0) ≡ 0.

Write g(z,w) = λw + O((z,w)2). We claim λ 6= 0. Indeed, consider subharmonic

function u = ℑg − |f̃ |2 on {(z,w) ∈ C
n+1 : ℑw − |z|2 > 0}. By Hopf lemma, 0 6=

∂u
∂n

(0) = ∂(ℑg)
∂(ℑw)(0), where n is the normal direction of M at 0. Therefore λ = ∂g

∂w (0) 6= 0.

Apply LkLj to (1.11),

LkLjg

2i
= 〈LkLj f̃ ,

¯̃
f〉 + 〈Lj f̃ , Lkf̃〉.

Let (z,w) = 0 and notice LkLjg|0 = δjkλ. This then leads to

λIn = AĀt

and hence λ > 0. Extend A/
√
λ to a Unitary matrix of size N ×N , denoted by Ã/

√
λ

and consider a new map F ∗ given by:

F ∗ = (f̃∗, g∗) = (f∗, φ∗, g∗) =
1√
λ
F ·


Ã

t 0

0 1√
λ


 .

Then F ∗(M1) ∈ H
N+1 and

f̃∗(z,w) = (z, 0) + aw + f̃∗(2)(z) + owt(2)

g∗(z,w) = w + dw2 +O(|zw|, |z2w|) + owt(4),

Here a ∈ C
N and d ∈ C. Now write r = ℜd and define G ∈ Aut0(H

N+1) by:

G(z,w) = (
z∗ − aw∗

1 + 2i〈z∗, ā〉 + (r − i|a|2)w∗ ,
w∗

1 + 2i〈z∗, ā〉 + (r − i|a|2)w∗ ).

We then define the second normalization F ∗∗ by

F ∗∗ = (f̃∗∗, g∗∗) = (f∗∗, φ∗∗, g∗∗) := G ◦ F ∗.
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Still we have F ∗∗(M) ∈ H
N+1 and

f̃∗∗(z,w) = (z, 0) + f̃∗∗(2)(z) + owt(2), (1.12)

g∗∗(z,w) = w + iew2 +O(|zw|, |z2w|) + owt(4). (1.13)

Here e ∈ R. Moreover, we have the following Lemma:

Lemma 1.2.1 [Hu] After composing F with certain Aut(HN+1), the map F = (f, φ, g)

can be assumed to take the following normal form:

f(z,w) = z + a(1)(z)w + owt(3),

φ(z,w) = φ(2)(z) + owt(2),

g(z,w) = w + owt(4)

with

−2i〈z̄, a(1)(z)〉|z|2 = |φ(2)(z)|2. (1.14)

Proof of Lemma 1.2.1: First according to the above normalization process we

already have

f(z,w) = z + a(2)(z) + a(1)(z)w + a(3)(z) + owt(3),

φ(z,w) = φ(2)(z) + owt(2),

g(z,w) = w + iew2 + c(1)(z)w + c(2)(z)w + owt(4)

and (f, φ, g) satisfy (1.11) on w = u+i|z|2. Plugging the above into (1.11) and replacing

w = u+ i|z|2 we have:

v + e(u2 − |z|4) + uℑ(c(1)(z) + c(2)(z)) + |z|2ℜ(c(1)(z) + c(2)(z))

=〈z + a(2)(z), z + a(2)(z)〉 + 2ℜ〈z, a(1)(z)(u− i|z|2) + a(3)(z)〉

+ 〈φ(2)(z), φ(2)(z)〉 + owt(4).

Collecting terms containing u2, we have e = 0. Collect terms of uz2 and uz, then

c(2)(z) = c(1)(z) = 0. Collect terms of the form z3z̄ and z2z̄, we get a(3)(z) = a(2)(z) = 0.

Finally, the above identity becomes:

0 = 2ℜ〈z, a(1)(z)(u− i|z|2)〉 + 〈φ(2)(z), φ(2)(z)〉 + owt(4).
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Since u is an independent variable, we then get

ℜ〈z, a(1)(z)〉 = 0

and therefore

−2i〈z, a(1)(z)〉|z|2 = 〈φ(2)(z), φ(2)(z)〉.

The proof of Lemma 1.14 is thus complete. �

The above argument may also be used to proper holomorphic maps between hyper-

quadrics of the same signature ℓ > 0 ([BH]).

In order to obtain the results of Chapter 2, the next lemma will be used. It was

proved in [Hu], Lemma 3.2 for ℓ = 0. It turns out the same proof also applies with no

change to ℓ > 0 case.

Lemma 1.2.2 [Hu] Let k, ℓ, n be nonnegative integers such that 1 ≤ k < n. Assume

that g1, . . . , gk, f1, . . . , fk are germs at 0 ∈ C
n of holomorphic functions such that

k∑

i=1

gi(z)fi(z) = A(z, z̄)|z|2ℓ ,

where A(z, ξ) is a germ at 0 ∈ C
n × C

n of a holomorphic function. Then A(z, z̄) ≡ 0.

Applying Lemma 1.1.13 by taking complexification, we can rephrase the above

lemma as follows.

Remark 1.2.3 Let 1 ≤ k < n. Assume g1, . . . , gk, f1, . . . , fk are germs at 0 ∈ C
n of

holomorphic functions and A(z, ξ) is a germ at 0 ∈ C
n×C

n of a holomorphic function.

Then
k∑

i=1

gi(z)fi(ξ) = A(z, ξ)〈z, ξ〉ℓ

implies A(z, ξ) ≡ 0.
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1.3 Chern-Moser normal form and Chern-Moser-Weyl curvature ten-

sor

Before stating the Chern-Moser’s normal coordinates, some notations will be explained

in advance. For any analytic function F (z, z̄, u), we decompose F to be of the form

F =
∑

k,j≥0

Fkl,

where Fkj(λz, µz̄, u) = λkµjFkj(z, z̄, u) for all complex numbers λ, µ, and call (k, j) the

”type” of Fkj . For any analytic function of type (k, j), we can introduce a contraction

operation ’tr’ as follow:

tr(Fkj) = −
ℓ∑

i=1

∂2Fkj

∂zi∂z̄i
+

n∑

i=ℓ+1

∂2Fkj

∂zi∂z̄i
.

tr(Fkj) is a function of type (k − 1, j − 1).

Theorem 1.3.1 [CM]: Given a real real analytic Levi-nondegenerate hypersurface M

in C
n+1 of signature ℓ, there exists a unique holomorphic transformation of local coor-

dinates such that under the new coordinates M can be written as:

ℑw = 〈z, z〉ℓ +
∑

i≥2,j≥2

Fij(z, z̄,ℜw).

What’s more,

trF22 = (tr)3F33 = 0, (tr)2F32 = 0.

It’s worth noting that the equations trF22 = (tr)3F33 = 0 and (tr)2F32 = 0 remain

meaningful for smooth manifolds. Indeed, if M is C6-smooth, one can achieve the above

normal forms up to terms of order 6.

In the same paper when studying the equivalence problems of real analytic CR hy-

persurfaces, Chern-Moser introduced a 4-th order tensor S on T (1,0)M ⊗ T (0,1)M ⊗

T (1,0)M ⊗ T (0,1)M . S is what we called Chern-Moser-Weyl curvature tensor. Its coef-

ficients at a given p ∈ M with respect to some well-chosen 1-forms ωα, θ satisfies the

following properties:

(Sθ|p)αβ̄γδ̄ = (Sθ|p)γβ̄αδ̄ = (Sθ|p)γδ̄αβ̄,

(Sθ|p)αβ̄γδ̄ = (Sθ|p)βᾱδγ̄ ,
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and the following trace-free condition:

n∑

β,α=1

gβ̄α(Sθ|p)αβ̄γδ̄ = 0.

Here (gβ̄α) is the diagonal matrix whose first ℓ entries are -1 and rest 1. Chern-Moser-

Weyl curvature tensor S in local coordinates realizes as the 4-th degree power series

of the defining function. The above trace-free condition is equivalent to trF22 = 0

in Theoerem 1.3.1. Later Webster [We2] developed the pseudo Hermitian connection

with respect to an admissible coframe θ, θα, θᾱ and induced the corresponding curvature

tensor Rαβ̄γδ̄. He showed that the S given in [CM] indeed is the traceless component

of the curvature tensor in the sense of pseudo Hermitian connection. It is pseudo

conformally invariant in the sense that if given any two contact forms θ̃ and θ, then

(Sθ̃)
ᾱ
β̄γδ̄ = (Sθ)

ᾱ
β̄γδ̄.

He also gave the explicit formula for the conformally invariant Chern-Moser-Weyl cur-

vature tensor:

Sαβ̄γδ̄ =Rαβ̄γδ̄ −
1

n+ 2
(Rαβ̄gγδ̄ +Rγδ̄gαβ̄ + δαβ̄Rγδ̄ + δγδ̄Rαβ̄)

+
R

(n+ 1)(n + 2)
(δαβ̄gγδ̄ + δγδ̄gαβ̄)

Here (gαβ̄) is the pseudo Hermitian metric induced by the admissible coframe, Rαβ̄ and

R are Ricci and Scalar tensors. S vanishes identically when n = 1.

Another stunning result in [CM] is that locally spherical hypersurfaces are the only

strongly pseudoconvex hypersurfaces with vanishing Chern-Moser-Weyl tensors.

Theorem 1.3.2 [CM] When n > 1, S vanishes if and only if M is locally equivalent

to the generalized Heisenberg hypersurface in C
n+1.
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Chapter 2

Rigidity and holomorphic Segre transversality for

holomorphic Segre mappings

2.1 Background

In the category of several complex variables, the following problems are fundamental

and of great importance.

Question 2.1.1 : Given two complex manifolds M1 and M2, classify proper holomor-

phic mappings from M1 into M2, modulo automorphisms of the source and the target

manifolds.

Question 2.1.2 : (CR Version of Problem 2.1.1): Given two CR manifolds M1 and

M2, classify smooth CR mappings from M1 into M2, modulo CR automorphisms of the

source and the target manifolds.

There have been extensive studies in the past for Problem 2.1.1 especially when

M1 and M2 are bounded symmetric domains in complex Euclidean spaces of different

dimensions or when M1 and M2 are of the same complex dimension. (See [Mok], [For],

[Mir], [BER], [DA2], [EL], [LM], [LM2] etc). When the complex manifolds in Problem

2.1.1 have smooth boundary and when the mappings also extend smoothly up to the

boundary, Problem 2.1.1 can be reduced to the study of Problem 2.1.2.

In the context of Problem 2.1.2, due to the existence of CR invariants, for two

generic M1 and M2, there is no non-trivial smooth CR map between M1 and M2.

Hence, one often focuses on mappings between CR manifolds with vanishing invariants–

namely, the boundary of generalized spheres or their unbounded realization - hyper-

quadrics (through Cayley transformation). Denote the unbounded realization - Heisen-

berg hypersurface - of the unit sphere in C
n by H

n := {(z1, . . . , zn−1, w) ∈ C
n : ℑw =
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∑n−1
j=1 |zj |2}. A general result of Forstnerič states that all CN−n+1-smooth CR mappings

from H
n into H

N are rational mappings, the quotients of polynomials.

An important but special case of Problem 2.1.1 and Problem 2.1.2 can then be

phrased as follows:

Question 2.1.3 : Classify proper (rational) holomorphic maps f from the unit ball

B
n ⊂ C

n into the unit ball B
N ⊂ C

N up to the automorphisms of the target and source

domains.

The study of the above problem dates back to Poincaré. He proved that rational

proper holomorphic maps from B
2 into itself must be automorphisms of B

2. Since

then, much attention has been paid to this study. Alexander [Al] showed any proper

holomorphic self-map of B
n (n > 1) is an automorphism, hence completing with the

equal dimensional case. Webster [We] was the first one studying proper holomorphic

maps between balls of different dimension. He showed any proper holomorphic map

from B
n to B

n+1 with C3-smoothness up to the boundary is indeed a linear embed-

ding modulo automorphisms of balls. Cima-Suffridge [CS] later reduced the boundary

regularity to C2 smoothness in Webster’s result. For larger codimensional case, Faran

[Fa] proved any proper holomorphic map from B
n to B

N with N < 2n − 1, that is

analytic up to the boundary, is a linear embedding. Later Huang [Hu] relaxed the

boundary assumption and proved the same conclusion holds provided the map is C2-

smooth up to the boundary. When N ≥ 2n− 1, the proper mapping is no longer rigid.

When N = 2n − 1, n > 2 for instance, if the map is C2-smooth up to the boundary,

Huang-Ji [HJ] shows there are only two possibilities: linear embedding or Whitney map

W : z = (z1, . . . , zn) → (z1, . . . , zn−1, znz). Interesting readers may find more about

the classifications of proper holomorphic maps between balls of higher codimensions in

[HJX], [DA] etc.

From a slightly different point of view, consider the complexifications of balls and

some appropriate type of mappings between them. The appropriate mapping over

those complex analyitic varieties of dimension 2n− 1 is the so called holomorphic Segre

mapping. For these types of mappings, the rigidity properties no longer holds. However,
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one may still expect a semi-rigidity property and transversality property. The basic

setting is given in the next section.

2.2 Setup and Main Theorem

Let D be an open subset in C
n and M be a real analytic hypersurface in D with a real

analytic defining function r. Namely, M = {z ∈ D : r(z, z̄) = 0} and dr 6= 0. The

complexification of M is defined as: M = {(z, ξ) ∈ D × Conj(D) : r(z, ξ) = 0}. Here

for a set E ⊂ Cn, Conj(E) := {z̄ : z ∈ E}. Assume that dr 6= 0 over M. Then M

is a complex submanifold of complex codimension one in D × Conj(D) which contains

{(z, z̄) : z ∈ M} as a maximally totally real submanifold. Define complex analytic

varieties Qξ := {z ∈ D : r(z, ξ) = 0} for ξ ∈ Conj(D) and Q̂z := {ξ ∈ Conj(D) :

r(z, ξ) = 0} for z ∈ D. We call Qξ and Q̂z the Segre variety of M with respect to

ξ and z, respectively. (See [We]). Notice that M is then holomorphically foliated by

{Qξ × {ξ}} and also by {{z} × Q̂z} for ξ ∈ Conj(D) and z ∈ D. As in the literature

(see, for instance, [Ch] [Fa2] [HJ2]), we call M the Segre family associated with M .

A fundamental fact for the Segre family is its invariant property by holomorphic

maps. (See the famous paper of S. Webster [We]). More precisely, let M̃ be another

real analytic hypersurface in D̃ ⊂ CN and let M̃ be its Segre family. f is a holomorphic

map from D into D̃ sending M into M̃ . Then f(Qξ) ⊂ Q̃f(ξ) and f(Q̂z) ⊂ ˆ̃
Qf(z) for

ξ ∈ Conj(D) and z ∈ D. Here, for instance, we write Q̃f(ξ) for the Segre variety of

M̃ with respect to f(ξ). In particular, f induces a holomorphic map F := (f(z), f(ξ))

from M into M̃. Here, as usual, we write f̄(z) for ¯f(¯)z. More generally, we introduce

the following notion as in [HJ2]:

Definition 2.2.1 : Φ is called a holomorphic Segre map from M into M̃ if Φ is a

holomorphic map from M to M̃ such that Φ sends each Qξ × {ξ} of M into a certain

Qeξ
×{ξ̃} of M̃ and sends each {z}× Q̂z into a certain {z̃}× ˆ̃

Qez of M̃ for ξ ∈ Conj(D)

and z ∈ D.

We remark that there is another important but very different class of real-analytic

maps closely related to the Segre families introduced by Baouendi-Ebenfelt-Rothschild



19

(See [BER1]), which are called the Segre maps in many references. A holomorphic Segre

map Φ is called a holomorphic Segre embedding if it is also a holomorphic embedding.

Holomorphic Segre maps from M into M̃ are the natural generalizations of holomorphic

mappings from M into M̃ . As already demonstrated by E. Cartan, holomorphic Segre

maps play a very role in the study of holomorphic equivalence problems and many other

related fields. (See [Car] [Ch] [BER3] [Hu2] and the references therein, for instance).

In this chapter, we focus our attention on holomorphic Segre maps between the Segre

family of the model manifolds: Heisenberg hypersurfaces. Holomorphic Segre maps are

much less restricted than holomorphic maps induced from CR maps between Heisen-

berg hypersurfaces. It is thus not surprising that many properties for the latter are no

longer true for holomorphic Segre maps. For instance, it is an easy consequence of the

classical Hopf lemma that any non-constant holomorphic map between Heisenberg hy-

persurfaces must have non-vanishing normal derivative in its normal component. (This

property is called the Hopf Lemma property by Baouendi-Rothschild [BR2] or the CR

transversality by Ebenfelt-Rothschild [ER] and Ebenfelt-Huang-Zaitsev [EHZ]). How-

ever, such a property does not hold anymore for general holomorphic Segre maps. Also,

easy examples show that there are many non-rational holomorphic Segre embeddings

from Hn into HN for N ≥ n + 1, which can not occur for holomorphic maps between

the Heisenberg hypersurfaces as is well known from the work of Forstneric [For]. (See

below for the precise definition of Hn and Remark 5.3 for related examples.)

Making use of the recent work of Baouendi-Huang [BH] and Ebenfelt-Huang-Zaitsev

[EHZ], we will provide, in this chapter, two theorems for holomorphic Segre maps from

Hn into HN with N ≤ 2n − 2. As was done in those papers, we first normalize the

holomorphic Segre maps by composing the maps with automorphisms in the source

and in the target. For those normalized holomorphic Segre maps, we then prove that

although full linearity fails, linearity for certain components still holds. Afterwards,

we use this semi-linearity property to prove a propagation theorem concerning the

failure of a holomorphic notion of the Hopf lemma. Namely, we will show that if the

transversality breaks down at one point, then it breaks down along one of the two Segre

varieties through this point. One may compare this with the work of Baouendi-Huang
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[BH], where the transversality breaks down at one point if and only if it does for all

points.

Theorem 2.2.2 [BH] Let M be a small neighborhood of 0 in H
n
ℓ with 0 < ℓ < n. Sup-

pose that F = (f1, . . . , fN−1, g) is a holomorphic map from a neighborhood U of M in

C
n into C

N with F (M) ⊂ H
N
ℓ , N ≥ n, and F (0) = 0. Suppose ℓ ≤ (n − 1)/2. Then,

the following hold:

(i) If ∂g
∂w (0) 6= 0, then F is linear fractional. Moreover, there exists τ ∈ Aut0(H

N
ℓ ) such

that τ ◦ F (z1, ..., zn−1, w) = (z1, ..., zn−1, 0, ..., 0, w).

(ii) If ∂g
∂w (0) = 0, then F (U) ⊂ H

N
ℓ . More precisely, there is a constant (N − ℓ −

1, ℓ − 1) complex matrix V , with V V t = IdN−ℓ−1, such that g ≡ 0, (f1, ..., fℓ) ≡

(fℓ+1, ..., fN−1)V .

We next give more notation to state our main theorems.

Recall the Heisenberg hypersurface in Cn is given by

H
n := {(z1, . . . , zn−1, w) ∈ Cn : ℑw =

n−1∑

j=1

zj z̄j}.

Then its complexification is

Hn := {(z1, . . . , zn−1, w, ξ1, . . . , ξn−1, η) ∈ C2n : w − η = 2i
n−1∑

j=1

zjξj}.

Hn is the Segre family associated with H
n. Hn is holomorphically foliated by

{Q(ξ,η)×{(ξ, η)}} and also by {{(z,w)}×Q̂(z,w)} where Q(ξ,η) = {(z,w) ∈ Cn : w−η =

2i
∑n−1

j=1 zjξj} for any (ξ, η) ∈ Cn and Q̂(z,w) = {(ξ, η) ∈ Cn : w − η = 2i
∑n−1

j=1 zjξj}

for any (z,w) ∈ Cn.

Next let Φ be a holomorphic Segre map from an open piece M of Hn into HN . It is

known that Φ takes the following form: Φ(z,w, ξ, η) = (Φ1(z,w),Φ2(ξ, η)) for certain

holomorphic maps Φ1,Φ2 defined in a neighborhood of M in C2n into C2N . (See [Fa2]

[Hu2] [HJ2]). In the following, we always assume that N ≥ n.

We say σ ∈ Aut(Hn) if σ is a bimeromorphic self-map of Hn which is also a holomor-

phic Segre map away from its pole. Further, we write σ ∈ Aut0(Hn) if σ ∈ Aut(Hn), σ is
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holomorphic near 0 and σ(0) = 0. For any p0 = (z0, w0, ξ0, η0) ∈ Hn, define σ0
p0

by send-

ing (z,w, ξ, η) ∈ Cn−1×C1×Cn−1×C1 to (z+z0, w+w0+2iz ·ξ0, ξ+ξ0, η+η0−2iξ ·z0).

Then σ0
p0

∈ Aut(Hn) with σ0
p0

(0) = p0. (See Theorem 6.3 of [HJ2] for the explicit for-

mula for elements in Aut(Hn))

Theorem 2.2.3 Let M be a connected neighborhood of p0 in Hn. Let Φ be a holo-

morphic Segre map from M into HN and write Φ(z,w, ξ, η) = (Φ1(z,w),Φ2(ξ, η)) =

(f̃1(z,w), . . . , f̃N−1(z,w), g(z,w), h̃1(ξ, η), . . . , h̃N−1(ξ, η), e(ξ, η)) for (z,w, ξ, η) ∈ M.

Assume that Φ is holomorphic in a neighborhood U of M in C2n, p0 ∈ M with Φ(p0) =

p̃0 and N ≤ 2n−2. For p ∈ M, write Φp = ((f̃1)p, . . . , (f̃N−1)p, gp, (h̃1)p, . . . , (h̃N−1)p, ep)

:= (σ̃0
Φ(p))

−1 ◦ Φ ◦ σ0
p. Then the following holds:

(1). If
∂gp0
∂w (0) 6= 0, then there exists a τ ∈ Aut0(HN ) such that

τ ◦ Φp0(z,w, ξ, η) = (z, φ(z,w), w, ξ, ψ(ξ, η), η)

with φj(z,w)ψj(ξ, η) ≡ 0 for (z,w, ξ, η) ∈ U for each j = 1, · · · ,N − n.

(2). If
∂gp

∂w (0) = 0 for all p ∈ M near p0, then gp0 ≡ ep0 ≡ 0 and
∑N−1

j=1 (f̃j)p0(z,w)(h̃j)p0

(ξ, η) ≡ 0 for (z,w, ξ, η) ∈ U .

Motivated by the concept of CR transversality, we introduce the following notion:

Definition 2.2.4 A holomorphic Segre map F : (M, p)(⊂ (C2n, p)) → (M̃, p̃)(⊂

(C2N , p̃)) with F(p) = p̃ = (q1, q2) ∈ CN × CN is called to be holomorphic Segre

transversal to M at p if:

dF(T (1,0)
p M) + T

(1,0)
ep Q̃q2 + T

(1,0)
ep

ˆ̃
Qq1

= T
(1,0)
ep HN ,

where T
(1,0)
p M is the holomorphic tangent space of M at p.

In §5, we shall show that the assumption in Theorem 2.2.3 (1) is equivalent to the

statement that Φ is holomorphic Segre transveral to HN at p0.
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Definition 2.2.5 Let M be an open subset of Hn. A connected non-empty complex

analytic variety E ⊂ M is called a holomorphic Segre-related set of M if either for any

(z0, w0, ξ0, η0) ∈ E, the connected component of {(z0, w0, ξ, η) ∈ M : (ξ, η) ∈ Q̂(z0,w0)}

containing (z0, w0, ξ0, η0) is a subset of E, or for any (z0, w0, ξ0, η0) ∈ E, the connected

component of {(z,w, ξ0, η0) ∈ M : (z,w) ∈ Q(ξ0,η0)} containing (z0, w0, ξ0, η0) is a

subset of E.

Write Hol(M,C) for the collection of holomorphic functions from M into C. Then

as an immediate application of Theorem 2.2.3, we have the following characterization

of holomorphic non-transversal points of a holomorphic Segre map:

Theorem 2.2.6 Let M be a connected open piece in Hn. Let Φ be a holomorphic Segre

map from M into HN and write Φ(z,w, ξ, η) = (Φ1(z,w),Φ2(ξ, η)) = (f̃1(z,w), . . . , f̃N−1

(z,w), g(z,w), h̃1(ξ, η), . . . , h̃N−1(ξ, η), e(ξ, η)) for (z,w, ξ, η) ∈ M. Assume that Φ is

holomorphic in a neighborhood U of M in C2n, p0 ∈ M with Φ(p0) = p̃0 and N ≤ 2n−2.

Let EΦ be the collection of points, where Φ fails to be holomorphically Segre transversal.

Then the following holds:

(1) EΦ, if not empty nor the whole space M, must be a complex analytic variety of

codimension one, whose irreducible components are holomorphic Segre-related sets of

codimension one in M. Moreover for each irreducible component Ej of EΦ, there is

a point (z0, w0, ξ0, η0) ∈ M such that Φ(Ej) ⊂ Q̃Φ2(ξ0,η0) × {Φ2(ξ0, η0)} or Φ(Ej) ⊂

{Φ1(z0, w0)} × ˆ̃
QΦ1(z0,w0).

(2)When N = n+1, n ≥ 3, either there is a χ1 ∈ Hol(M,C) depending only on (z,w)-

variables such that EΦ is precisely the zero set of χ1, or there is a χ2 ∈ Hol(M,C)

depending only on (ξ, η)-variables such that EΦ is precisely the zero set of χ2.

(3)When 2n − 2 ≥ N > n + 1, there are a χ1 ∈ Hol(M,C) depending only on (z,w)-

variables and a χ2 ∈ Hol(M,C) depending only on (ξ, η)-variables such that EΦ is

precisely the union of the zero sets of χ1 and χ2.

Proposition 2.2.7 Let E ⊂ M be a holomorphic Segre-related set of M of codimen-

sion one, where M is a connected open subset of Hn (n ≥ 2). Suppose that either
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E = {(z,w, ξ, η) ∈ M : χ1(z,w) = 0, χ1 ∈ Hol(M,C)} or E = {(z,w, ξ, η) ∈

M : χ2(ξ, η) = 0, χ2 ∈ Hol(M,C)}. Assume that χ1(M) 6= C in the first case and

χ2(M) 6= C in the latter. Then there is a holomorphic Segre map Φ from M into HN

with N = n + 1 such that E is precisely the collection of points, where Φ fails to be

holomorphic Segre transversal.

Proposition 2.2.8 Let M is a connected open subset of Hn (n ≥ 2). Suppose that

E = {(z,w, ξ, η) ∈ M : χ1(z,w) = 0, χ1 ∈ Hol(M,C)}∪{(z,w, ξ, η) ∈ M : χ2(ξ, η) =

0, χ2 ∈ Hol(M,C)}, where χ1(M) 6= C and χ2(M) 6= C. Then there is a holomorphic

Segre map Φ from M into HN with N = n+ 2 such that E is precisely the collection of

points, where Φ fails to be holomorphic Segre transversal.

The new phenomenon in Theorem 2.2.6 is the propagation property for the holomor-

phic Segre non-transversality along the Segre varieties for the case of N ≤ 2n−2. Inter-

estingly, the following example shows that this property does not hold for N > 2n− 2:

Example 2.2.9 Let Φ be the holomorphic Segre embedding Φ : Hn → HN with N =

2n− 1, where

Φ(z1, · · · , zn−1, w, ξ1, · · · , ξn−1, η) =

(z1w, · · · , zn−1w, z1, · · · , zn−1, w
2, ξ1, · · · , ξn−1, ξ1η, · · · , ξn−1η, η

2).

We will see at the end of §5 that Φ fails to be holomorphic Segre transversal at (z,w, ξ, η) ∈

Hn if and only if w+ η = 0. We also shows there, however, the connected complex sub-

manifold of codimension one defined by w + η = 0 is not a holomorphic Segre-related

set of Hn.

2.3 Normalization and a curvature equation

In this section, we shall use the strategy of Huang([Hu]) and Huang-Ji([HJ]). One can

also refer Chapter 1 for related material. Let n ≥ 2 and M be a connected open piece
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of Hn containing the origin. Let

Φ = (Φ1(z,w),Φ2(ξ, η)) : M(⊂ Hn) → HN

be a holomorphic Segre map, where

Φ := (f̃ , g, h̃, e) = (f̃1, . . . , f̃N−1, g, h̃1, . . . , h̃N−1, e)

which is also written as Φ = (f, φ, g, h, ψ, e) = (f1, . . . , fn−1, φ1, . . . , φN−n, h1, . . . , hn−1,

ψ1, . . . , ψN−n, e). Write

Lj = 2iξj
∂

∂w
+

∂

∂zj
, Kj = −2izj

∂

∂η
+

∂

∂ξj
, T =

∂

∂w
+

∂

∂η
.

Then {Lj ,Kj ,T } n
j=1 forms a global basis for the space of sections of the complex tangent

bundle T (1,0)Hn of Hn.

Notice that Φ(M) ⊂ HN gives the following equation:

g(z,w) − e(ξ, η) = 2if̃(z,w) · h̃(ξ, η) over w − η = 2iz · ξ (2.1)

where a · b :=
∑m

j=1 ajbj for a, b ∈ C
m.

Let Z+ be the set of non-negative integers. Then applying Lα, Kα, T and KjLk to (),

respectively, where α = (α1, . . . , αn−1) ∈ Zn−1
+ and Lα = Lα1

1 · · · Lαn−1

n−1 , we have

Lαg = 2iLαf̃ · h̃, Kαe = 2if̃ · Kαh̃, (2.2)

∂g

∂w
− ∂e

∂η
= 2i

∂f̃

∂w
· h̃+ 2if̃ · ∂h̃

∂η
, δk

j

∂g

∂w
= 2iδk

j

∂f̃

∂w
· h̃+ Lkf̃ · Kj h̃ (2.3)

where δk
j is the standard Kronecker function. Assuming that Φ(0) = 0 and letting

(z,w, ξ, η) = (0, 0, 0, 0) in (2.2),(2.3), we have

e(ξ, 0) ≡ 0,
∂g

∂w
(0) =

∂e

∂η
(0) =Lj f̃(0) · Kj h̃(0), Lj f̃ · Kkh̃ = 0 (j 6= k). (2.4)

Let Mn×N (n ≤ N) denote the set of n by N matrixes with all entries in C. We then

have the following elementary lemma:

Lemma 2.3.1 Let A, B ∈Mn×N and A ·Bt = Idn×n. Then there exist Ã, B̃ ∈MN×N

whose first n rows are A and B, respectively, such that Ã · B̃t = IdN×N .
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Proof of Lemma 2.3.1: Consider the linear equation A · yt = 0 with y ∈ C
N . Then

its solution space has dimension N − n. Choose a basis {y1, · · · , yN−n} and define

D to be the matrix whose kth-row is precisely yk. Then A · Dt = 0. Considering

the new matrix


B

D


, it has full rank. In fact, suppose that


B

D




t

· yt = 0 with

y = (y1, · · · , yN ) ∈ C
N . Then multiplying from the left by A, we obtain yj = 0 for

j ≤ n. Hence, we get (yn+1, · · · , yN ) ·D = 0. Since D has rank N−n, we conclude that

y = 0. Similarly, we can construct C ∈M(N−n)×N with rank N−n such that C ·Bt = 0

and Rank


A

C


 = N . Since


A

C


 ·


B

D




t

=


Id 0

0 C ·Dt


, C ·Dt is invertible. Let

Ã =


 A

(C ·Dt)−1 · C


 , B̃ =


B

D


. Then we see the proof of the Lemma. �

Now assume λ := ∂g
∂w (0) 6= 0. Write

A =




K1(h̃)(0)/
√
λ

...

Kn−1(h̃)(0)/
√
λ



, B =




L1(f̃)(0)/
√
λ

...

Ln−1(f̃)(0)/
√
λ



.

Then (2.3) immediately gives that A · Bt = Id(n−1)×(n−1). Applying Lemma 2.3.1

to A and B, we obtain Ã and B̃ with Ã · B̃t = Id(N−1)×(N−1).

Next let τ(z∗, w∗, ξ∗, η∗) = ( 1√
λ
z∗Ãt, 1

λw
∗, 1√

λ
ξ∗B̃t, 1

λη
∗). Obviously τ ∈ Aut0(HN ).

By composing Φ with τ , we obtain the first normalization of Φ as follows:

Φ∗ = (f̃∗, g∗, h̃∗, e∗) :

= τ ◦ Φ =
1√
λ

Φ ·




Ãt 0 0 0

0 1√
λ

0 0

0 0 B̃t 0

0 0 0 1√
λ




, with

∂f̃∗j
∂zk

(0) =
∂h̃∗j
∂ξk

(0) = δk
j for 1 ≤ k ≤ n− 1 , 1 ≤ j ≤ N − 1, (2.5)

∂g∗

∂w
(0) =

∂e∗

∂η
(0) = 1. (2.6)
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Write

u =
1

2

∂2e∗

∂η2

∣∣∣∣
0

,

~a = (
∂f̃∗1
∂w

, . . . ,
∂f̃∗N−1

∂w
)

∣∣∣∣∣
0

,

~s = 2i(
∂h̃∗1
∂η

, . . . ,
∂h̃∗N−1

∂η
)

∣∣∣∣∣
0

and let G ∈ Aut0(HN ) be defined by G(z∗, w∗, ξ∗, η∗) :=
(

z∗ − ~aw∗

1 + z∗ · ~s+ uw∗ ,
w∗

1 + z∗ · ~s+ uw∗ ,
ξ∗ + i

2~sη
∗

1 − 2iξ∗ · ~a+ (u+ ~a · ~s)η∗ ,
η∗

1 − 2iξ∗ · ~a+ (u+ ~a · ~s)η∗

)
.

(See Theorem 6.3 of [HJ2]).

We then get the second normalization Φ∗∗ as follows:

Φ∗∗ = (f̃∗∗, g∗∗, h̃∗∗, e∗∗) = (f∗∗, φ∗∗, g∗∗, h∗∗, ψ∗∗, e∗∗) := G ◦ Φ∗ = G ◦ τ ◦ Φ.

Simple computation shows that

∂f̃∗∗

∂w
(0) =

∂h̃∗∗

∂η
(0) = 0,

∂f∗∗

∂z
(0) =

∂h∗∗

∂ξ
(0) = Id, (2.7)

∂φ∗∗

∂z
(0) =

∂ψ∗∗

∂ξ
(0) = 0,

∂g∗∗

∂w
(0) =

∂e∗∗

∂η
(0) = 1,

∂2e∗∗

∂η2
(0) = 0. (2.8)

Now we assign the weight of (z, ξ) to be 1 and of (w, η) to be 2. In the following, we

use (·)(l) for a homogeneous polynomial of weighted degree l. For a function f on Hn

we say that f ∈ owt(k) if lim
t→0

f(tz,t2w,tξ,t2η)
tk

= 0 uniformly for (z,w, ξ, η) in any compact

subset of Hn.

Next we do the weighted Taylor series expansion of Φ∗∗:

Lemma 2.3.2 Write Φ for the Φ∗∗ above. Then Φ has the following form:

f∗∗j = zj + J
(1)
j (z)w + owt(3),

φ∗∗j = B
(2)
j (z) + owt(2),

g∗∗ = w + owt(4),

h∗∗j = ξj +M
(1)
j (ξ)η + owt(3),

ψ∗∗
j = F

(2)
j (ξ) + owt(2),

e∗∗ = η + owt(4), with
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2i(J (1)(z) · ξ)(z · ξ) = −B(2)(z) · F (2)(ξ).

Proof of Lemma 2.3.2: First applying (2.7), (2.8) to Φ∗∗, we get the following

weighted expansion:

f∗∗j = zj +A
(2)
j (z) + I

(3)
j (z) + J

(1)
j (z)w + owt(3),

φ∗∗j = B
(2)
j (z) + owt(2),

g∗∗ = w +Cw2 +D(1)(z)w +N (2)(z)w + owt(4),

h∗∗j = ξj + E
(2)
j (ξ) + L

(3)
j (ξ) +M

(1)
j (ξ)η + owt(3),

ψ∗∗
j = F

(2)
j (ξ) + owt(2),

e∗∗ = η +H(1)(ξ)η + P (2)(ξ)η + owt(4)

and

g∗∗ − e∗∗ = 2i(f∗∗ · h∗∗ + φ∗∗ · ψ∗∗). (2.9)

Collecting terms of weighted degree 3 in (2.9), we have:

D(1)(z)w −H(1)(ξ)η = 2i(z ·E(2)(ξ) +A(2)(z) · ξ) over w = η + 2iz · ξ.

Hence, (D(1)(z) − H(1)(ξ))η + 2iz · ξ(1)(z) = 2i(z · E(2)(ξ) + A(2)(z) · ξ). Collecting

coefficients of terms of the form: η, z2ξ and zξ2 in the above, we have:

D(1)(z) = H(1)(ξ) = 0,

A(2)(z) = 0,

E(2)(ξ) = 0.

Collecting terms of weighted degree 4 in (2.9), we have:

Cw2+N (2)(z)w−P (2)(ξ)η = 2i(z·L(3)(ξ)+z·M (1)(ξ)η+I(3)(z)·ξ+J (1)(z)w·ξ+B(2)(z)·F (2)(ξ))

where w = η + 2iz · ξ.
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Similar arguments then show that the following holds:

C = 0, (2.10)

N (2)(z) = P (2)(ξ) = 0, (2.11)

L(3)(ξ) = I(3)(z) = 0, (2.12)

2i(J (1)(z) · ξ)(z · ξ) = −B(2)(z) · F (2)(ξ), (2.13)

z ·M (1)(ξ) + J (1)(z) · ξ = 0. (2.14)

This completes the proof of Lemma 2.3.2. �

If we assume N − n ≤ n − 2, i.e. N ≤ 2n − 2, then applying [Lemma 3.2, [Hu]] to

(2.13), we immediately get:

J (1)(z) = 0,

B(2)(z) · F (2)(ξ) = 0.

Hence, we have the following:

Lemma 2.3.3 With the same assumption as above, if we further assume that N ≤

2n−2, then for the Φ in Lemma 2.3.2, we have the following weighted Taylor expansion:

f∗∗j = zj + owt(3), (2.15)

φ∗∗j = B
(2)
j (z) + owt(2), (2.16)

g∗∗ = w + owt(4), (2.17)

h∗∗j = ξj + owt(3), (2.18)

ψ∗∗
j = F

(2)
j (η) + owt(2), (2.19)

e∗∗ = η + owt(4) (2.20)

with

B(2)(z) · F (2)(ξ) = 0. (2.21)
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2.4 A partial linearity for Φ

We assume in this section that N ≤ 2n − 2. Let Φ satisfies (2.15) through (2.21) in

Lemma 2.3.3. Write

Φ = (z + f̂(z,w), φ̂(z,w), w + ĝ(z,w), ξ + ĥ(ξ, η), ψ̂(ξ, η), η + ê(ξ, η)). (2.22)

Theorem 2.4.1 : With the above notation, we have f̂ = ĥ = 0, ĝ = 0 on M and

φ̂ · ψ̂ ≡ 0 over U . Moreover, after composing an element τU ∈ Aut0(HN ) from the left

onto Φ, if necessary, there is a non-negative integer k such that φj ≡ 0 for j > k and

ψj ≡ 0 for j ≤ k.

Proof of Theorem 2.4.1: We will follow the approach used in [EHZ]. Since Φ(M) ⊂

HN , from (2.22), we have:

w+ ĝ(z,w)−η− ê(ξ, η) = 2i(z+ f̂ (z,w))·(ξ+ĥ(ξ, η))+2iφ̂(z,w)·ψ̂(ξ, η), w−η = 2iz ·ξ.

Therefore,

ĝ(z,w) − ê(ξ, η) − 2iξ · f̂(z,w) − 2iz · ĥ(ξ, η) = 2iφ̂(z,w) · ψ̂(ξ, η) + 2if̂(z,w) · ĥ(ξ, η)

:= 2iA(z,w, ξ, η) over w − η = 2iz · ξ. (2.23)

In view of the normalization obtained in Lemma 2.3.3, we have the following expansions:

f̂(z,w) =
∑

µ+ν≥2

fµν(z)wν , ĥ(ξ, η) =
∑

µ+ν≥2

hµν(ξ)ην ,

φ̂(z,w) =
∑

µ+ν≥2

φµν(z)wν , ψ̂(ξ, η) =
∑

µ+ν≥2

ψµν(ξ)ην ,

ĝ(z,w) =
∑

µ+ν≥2

gµν(z)wν , ê(ξ, η) =
∑

µ+ν≥2

eµν(ξ)ην ,

A(z,w, ξ, η) =
∑

α+β+µ+ν≥4

Aαµβν(z, ξ)wµην

where (·)µν(z)wν and (·)µν(ξ)ην are homogeneous polynomials of degree (µ, ν) with

respect to (z,w) and (ξ, η), respectively, and (·)αµβν(z, ξ)wµην is a homogeneous poly-

nomial of degree (α, µ, β, ν) with respect to (z,w, ξ, η). Letting w = 0, i.e. η = −2iz · ξ
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in (2.23) and collecting terms of a fixed bi-degree (α, β) with respect to (z, ξ), we obtain:

β = 1 ⇒ f̂(z, 0) = 0, (2.24)

β = 0 ⇒ ĝ(z, 0) = 0. (2.25)

Similarly, we also have

ĥ(ξ, 0) = 0, ê(ξ, 0) = 0. (2.26)

We will use an induction argument to prove that f̂(z,w) = ĥ(ξ, η) = 0 and ĝ(z,w) =

ê(ξ, η) = 0. First by Lemma 2.3.3, we have f̂(z,w) = owt(3), ĥ(ξ, η) = owt(3), ĝ(z,w) =

owt(4), ê(ξ, η) = owt(4). Now, suppose that for l with k − 1 ≥ l ≥ 3, f̂ (l)(z,w) =

ĥ(l)(ξ, η) = 0 and ĝ(l+1)(z,w) = ê(l+1)(ξ, η) = 0. We then need to show that f̂ (k)(z,w) =

ĥ(k)(ξ, η) = 0 and ĝ(k+1)(z,w) = ê(k+1)(ξ, η) = 0. Collecting terms of a fixed bi-degree

(α, β) with respect to (z, ξ) with β ≥ 2 and α+ β ≤ k + 1 and letting w = 0 in (2.23),

we get

−eβ−α,α(ξ)ηα − 2iz · hβ−α+1,α−1(ξ)η
α−1

= 2i

α−2∑

p=0

Aα−p,0,β−p,p(z, ξ)η
p

= 2i
α−2∑

p=0

φα−p,0(z)ψβ−p,p(ξ)η
p + 2i

α−2∑

p=0

fα−p,0(z)hβ−p,p(ξ)η
p. (2.27)

By the induction assumption, we have for k − 1 ≥ l ≥ 3, f̂ (l)(z,w) = ĥ(l)(ξ, η) = 0. We

thus obtain
∑α−2

p=0 fα−p,0(z)hβ−p,p(ξ)η
p = 0 for α+ β ≤ k + 1. Then (2.27) becomes:

−eβ−α,α(ξ)ηα − 2i z · hβ−α+1,α−1(ξ)η
α−1

= 2i
α−2∑

p=0

Aα−p,0,β−p,p(z, ξ)η
p

= 2i

α−2∑

p=0

φα−p,0(z)ψβ−p,p(ξ)η
p (2.28)

where η = −2iz · ξ.

Since we assumed that N ≤ 2n− 2, i.e. N −n ≤ n− 2. Applying Lemma 3.2, [EHZ] to

(2.28), we have

Aµ0νδ = 0 for µ+ γ + 2δ ≤ k + 1. (2.29)
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Hence

−eβ−α,α(ξ)ηα − 2iz · hβ−α+1,α−1(ξ)η
α−1 = 0 where η = −2iz · ξ. (2.30)

Similarly

Aµδν0 = 0 for µ+ γ + 2δ ≤ k + 1 (2.31)

and

gβ−α,α(z)wα − 2iξ · fβ−α+1,α−1(z)w
α−1 = 0 where w = 2iz · ξ. (2.32)

Applying Lj and Kj to (2.23), we have

Lj ĝ(z,w) − 2iξ · Lj f̂(z,w) − 2iĥj(ξ, η) = 2iLjA(z,w, ξ, η), (2.33)

−Kj ê(ξ, η) − 2iz · Kj ĥ(ξ, η) − 2if̂j(z,w) = 2iKjA(z,w, ξ, η) (2.34)

over w − η = 2iz · ξ.

By (2.24),(2.25),(2.26),(2.29) and (2.31), we have

Lj(f̂ , ĝ)(z, 0) = 2iξj
∑

µ≥2

(fµ1, gµ1)(z), (2.35)

(Lj(A))(l)(z, 0, ξ, η) = 2iξj
∑

µ+ν+2δ=l−1

Aµ1νδ(z, ξ)η
δ for 0 ≤ l ≤ k, (2.36)

Kj(ĥ, ê)(ξ, 0) = −2izj
∑

µ≥2

(hµ1, eµ1)(ξ), (2.37)

(Kj(A))(l)(z,w, ξ, 0) = −2izj
∑

µ+ν+2δ=l−1

Aµδν1(z, ξ)w
δ for 0 ≤ l ≤ k. (2.38)

where in (2.36), η = −2iz · ξ; in (2.38), w = 2iz · ξ.

Substituting (2.35),(2.36),(2.37) and (2.38) to (2.33) and (2.34), we have

β = 2 ⇒ 2iξjξ · fα1(z) + hj;2−α,α(ξ)ηα = 0 for α ≤ 2 over η = −2iz · ξ, (2.39)

β = 1 ⇒ gµ1(z) = 0 for µ ≤ k − 1, (2.40)

β ≥ 3 and α+ β = k ⇒

−hj;β−α,α(ξ)ηα = ξj

α−1∑

p=0

Aα−p,1,β−p−1,p(z, ξ)η
p
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= ξj

α−1∑

p=0

φα−p,1(z)ψβ−p−1,p(ξ)η
p where η = −2iz · ξ. (2.41)

Applying Lemma 3.2, [EHZ] again, we conclude:

hµν(ξ) = 0 for µ+ ν ≥ 3 and µ+ 2ν = k.

Back to (2.30), we get

eµν(ξ) = 0 for µ+ ν ≥ 3 and µ+ 2ν = k + 1.

Similarly, we have

fµν(z) = 0 for µ+ ν ≥ 3 and µ+ 2ν = k,

gµν(z) = 0 for µ+ ν ≥ 3 and µ+ 2ν = k + 1.

Notice that for k ≥ 4, {(µ, ν) : µ + ν ≥ 3 and µ + 2ν = k} = {(µ, ν) : µ +

2ν = k} − {(0, 2)}. On the other hand, substituting f21(z) = 0 into (2.39) yields

h02 = 0. Similarly we have f02 = 0. Hence, we proved that f̂ (k)(z,w) = ĥ(k)(ξ, η) =

0, ĝ(k+1)(z,w) = ê(k+1)(ξ, η) = 0.

By induction, we conclude that

τ ◦ Φ(z,w, ξ, η) = (z, φ̂(z,w), w, ξ, ψ̂(ξ, η), η)

with
N−n∑

j=1

φ̂j(z,w)ψ̂j(ξ, η) = 0 over M.

Next we prove that
∑N−n

j=1 φ̂j(z,w)ψ̂j(ξ, η) ≡ 0. To this aim, we need only to prove

the following lemma, whose proof follows the same line as in Lemma 4.2, [EHZ]:

Lemma 2.4.2 If A(z,w, ξ, η) :=
∑k0

j=1 φj(z,w)ψj(ξ, η) = 0 over w − η = 2iz · ξ, k0 ≤

n− 2. then A(z,w, ξ, η) ≡ 0 as a formal power series in (z,w, ξ, η).

Proof of Lemma 2.4.2: Write

φj(z,w) =
∑

µ,ν

φj;µν(z)w
ν , ψj(ξ, η) =

∑

µ,ν

ψj;µν(ξ)η
ν
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where (·)µν(z)wν , (·)µν(ξ)ην are homogeneous polynomials of degree (µ, ν) with respect

to (z,w) and (ξ, η). Denote Aαν1βν2(z, ξ)w
ν1ην2 to be terms of degree (α, ν1, β, ν2) with

respect to (z,w, ξ, η), respectively, for A. Assume A(z,w, ξ, η) 6= 0. Then there is a

smallest nonnegative l0 such that Aαν1βl0(z, ξ) 6= 0 for some α, β, ν1. We are going to

reach a contradiction. In fact, since A(z,w, ξ, η) = 0 on w − η = 2iz · ξ or equivalently
∑

α,β,ν1,ν2
Aαν1βν2(z, ξ)(η+ 2iz · ξ)ν1ην2 = 0. By factoring out ηl0 and setting η = 0, we

have

∑

α,β,ν1

Aαν1βl0(z, ξ)(2iz · ξ)ν1 ≡ 0. (2.42)

Collecting terms of bi-degree (µ1, µ2) with respect to (z, ξ) in (2.42), we obtain

∑

ν1

Aµ1−ν1,ν1,µ2−ν1,l0(z, ξ)(2iz · ξ)ν1 ≡ 0.

On the other hand

Aµ1−ν1,ν1,µ2−ν1,l0(z, ξ) =

k0∑

j=1

φj;µ1−ν1,ν1(z)ψj;µ2−ν1,l0(ξ)

where k0 ≤ n− 2. It now follows from Lemma 3.2, [EHZ] that for any α, β, ν1,

Aαν1βl0(z, ξ) = 0,

which contradicts the choice of l0. This completes the proof of the lemma. �

Now, for simplicity of notation, assume that {φ1, · · · , φk} is basis for the vector

space spanned by {φj}N−n
j=1 over C with k > 0. Then there is an (N − n) × (N − n)

invertible matrix U such that

(φ1, · · · , φk, 0, · · · , 0) = (φ1, · · · , φN−n) · U.

Now, define τU ∈ Aut0(HN ) by mapping (z1, · · · , zN−1, w, ξ1, · · · , ξN−1, η) to

(
z1, · · · , zn−1, (zn, · · · , zN−1) · U, ξ1, · · · , ξn−1, (ξn, · · · , ξN−1) · (U−1)t

)
.

Then τU ◦ Φ has the same form as above but with the extra property:
∑k

j=1 φjψj ≡ 0.

Since {φj}k
j=1 is a linearly independent system, we get that ψj ≡ 0 for j = 1, · · · , k.

The proof of Theorem 2.4.1 is complete. �
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2.5 Holomorphic Segre Transversality

For any p ∈ Hn close to the origin, recall in the introduction:

Φp = (f̃p, gp, h̃p, ep) = (fp, φp, gp, hp, ψp, ep) := (σ̃0
Φ(p))

−1 ◦ Φ ◦ σ0
p,

where for each p = (z0, w0, ξ0, η0) ∈ Hn, σ0
p ∈ Aut(Hn) and

σ0
p(z,w, ξ, η) = (z + z0, w + w0 + 2iz · ξ0, ξ + ξ0, η + η0 − 2iξ · z0)

for any (z,w, ξ, η) ∈ Hn. Easy computation tells that for any (z∗, w∗, ξ∗, η∗) ∈ HN ,

(σ̃0
Φ(p))

−1(z∗, w∗, ξ∗, η∗) : = (z∗ − f̃(z0, w0), w
∗ − e(ξ0, η0) − 2iz∗ · h̃(ξ0, η0),

ξ∗ − h̃(ξ0, η0), η
∗ − g(z0, w0) + 2iξ∗ · f̃(z0, w0)).

Obviously Φp(0) = 0. Without loss of generality, we may assume in this section p0 =

0, p̃0 = 0 in Theorem 2.2.3.

Lemma 2.5.1 Φ is defined as in Theorem 2.2.3. Then Φ is holomorphic Segre transver-

sal at the origin if and only if ∂g
∂w (0) 6= 0.

Proof of Lemma 2.5.1: Write the coordinate of HN to be (z̃, w̃, ξ̃, η̃). It is straightfor-

ward then { ∂
∂ezj

∣∣∣
0
}N−1

j=1 and { ∂

∂eξj

∣∣∣
0
}N−1

j=1 span T
(1,0)
0 Q̃0 and T

(1,0)
0

ˆ̃
Q0, respectively. On the

other hand, dΦ(( ∂
∂w + ∂

∂η )
∣∣∣
0
) = ∂g

∂w (0) · ( ∂
∂ ew + ∂

∂eη )
∣∣∣
0
mod( ∂

∂eξj

∣∣∣
0
, ∂

∂ezj

∣∣∣
0
, j = 1, . . . ,N−1)

by the second equality of (2.4). The proof is thus complete by the definition of holo-

morphic Segre transversality. �

Since holomorphic Segre transversality is invariant under the composition of holo-

morphic automorphisms, we see that Φ is holomorphic Segre transversal at p if and

only if Φp is holomorphic Segre transversal at 0. This is equivalent to (gp)w(0) =

gw(z0, w0)− 2if̃w(z0, w0) · h̃(ξ0, η0) 6= 0 where (·)w := ∂(·)
∂w by the above Lemma. Hence,

write EΦ for the set of points where Φ fails to be holomorphic Segre transversal. Then

we have

EΦ = {(z,w, ξ, η) ∈ M : gw(z,w) − 2if̃w(z,w) · h̃(ξ, η) = 0}.
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In particular if EΦ 6= M, then we conclude EΦ is either empty or a complex analytic

variety of codimension one in M.

Proof of Proposition 2.2.7: We keep the same notation as in Proposition 2.2.7.

Without loss of generality, we assume that E is defined by χ1(z,w) = 0 with χ1(z,w)

holomorphic over M and χ1(z,w) 6= −K0 for any (z,w, ξ, η) ∈ M for some constant

K0 ∈ C. Define

Φ(z,w, ξ, η) =

(
χ1(z,w)z

K0 + χ1(z,w)
,

K0

K0 + χ1(z,w)
,

χ1(z,w)w

K0 + χ1(z,w)
, ξ,

i

2
η, η

)
.

Then, one can verify that Φ is a holomorphic Segre map from M into HN with N =

n+ 1. Also, we can verify that EΦ is precisely the complex analytic variety defined by

χ1(z,w) = 0.

Notice that when E is defined by χ2(ξ, η) = 0 where χ2(ξ, η) is holomorphic over

M and χ2(ξ, η) 6= −K0 for any (z,w, ξ, η) ∈ M for some constant K0 ∈ C, then the

holomorphic Segre map Φ with EΦ = E is given as follows:

Φ(z,w, ξ, η) =

(
z,− i

2
w,w,

χ2(ξ, η)ξ

K0 + χ2(ξ, η)
,

K0

K0 + χ2(ξ, η)
,

χ2(ξ, η)η

K0 + χ2(ξ, η)

)
.

This proves Proposition 2.2.7. �

Proof of Proposition 2.2.8: If we assume χ1(z,w) 6= K1 and χ2(ξ, η) 6= K2 for

any (z,w, ξ, η) ∈ M for some constants K1,K2 ∈ C, then the holomorphic Segre map

defined below meets the requirement:

Φ(z,w, ξ, η) =

(
χ1(z,w)z

K1 + χ1(z,w)
,

K1

K1 + χ1(z,w)
,− i

2

χ1(z,w)w

(K1 + χ1(z,w))
,

χ1(z,w)w

K1 + χ1(z,w)
,

χ2(ξ, η)ξ

K2 + χ2(ξ, η)
,
i

2

χ2(ξ, η)η

(K2 + χ2(ξ, η))
,

K2

K2 + χ2(ξ, η)
,

χ2(ξ, η)η

K2 + χ2(ξ, η)

)

This proves Proposition 2.2.8. �

Proof of Theorem 2.2.6: Notice that a holomorphic Segre-related set is mapped to a

holomorphic Segre-related set by a holomorphic automorphism of the complexification

of the Heisenberg hypersurface. Without loss of generality, we can assume that 0 ∈ M

and Φ is holomorphic Segre transversal at 0 and Φ satisfies first normalization condition
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(2.5) and (2.6). Consider the Φp defined above. Assume that EΦ 6= ∅. Then it is of

codimension one. By Theorem 2.4.1, there exists τ ∈ Aut0(HN ) such that Φ∗∗ = τ ◦ Φ

and

Φ∗∗(z,w, ξ, η) = (z, φ∗∗(z,w), w, ξ, ψ∗∗(ξ, η), η) with φ∗∗(z,w) · ψ∗∗(ξ, η) ≡ 0 over U .

(2.43)

Notice that for any (N − n) × (N − n) invertible matrix U , Φ = (f, φ, g, h, ψ, e),

Φ̂ = (f, φ, 0, g, h, ψ, 0, e) and
ˆ̂
Φ := (f, φ · U, g, h, ψ · (U−1)t, e) all have the same set of

non-holomorphic Segre transversal points. Making use of the same argument as in the

last paragraph in the proof of Theorem 2.4.1, we can assume, without loss of generality,

that both {φ} and {ψ} are linearly independent over C and φjψj ≡ 0 for 1 ≤ j ≤ N−n.

Write E for the set of points in M, whose image under Φ is contained in the pole

of τ . Suppose that p = (z0, w0, ξ0, η0) 6∈ E. We have (g∗∗)p = g∗∗ ◦ σ0
p − e∗∗(ξ0, η0) −

2i(f̃∗∗ ◦ σ0
p) · h̃∗∗(ξ0, η0). Hence

((g∗∗)p)w(0) = (g∗∗w )(z0, w0) − 2if̃∗∗w (z0, w0) · h̃∗∗(ξ0, η0). (2.44)

Since φj
∗∗
w (z,w) · ψ∗∗

j (ξ, η) ≡ 0 on M, we thus get:

((g∗∗)p)w(0) = 1 6= 0 for any p ∈ M.

This shows that Φ∗∗ and thus Φ are holomorphic Segre transversal at p. Therefore, we

get that EΦ ⊂ E.

From the construction in §3, we notice that Φ∗∗ = τ ◦ Φ is given by the following

expression:
(

f̃ − ~ag

1 + f̃ · ~s+ ug
,

g

1 + f̃ · ~s+ ug
,

h̃+ i
2~se

1 − 2ih̃ · ~a+ (u+ ~a · ~s)e
,

e

1 − 2ih̃ · ~a+ (u+ ~a · ~s)e

)

(2.45)

for certain ~a,~s ∈ C
N−1.

Now write χ1 := 1+f̃ ·~s+ug, χ2 := 1−2ih̃·~a+(u+~a·~s)e, A := φ−~ag andB := ψ− i
2~se

in (4.3). Then φ∗∗(z,w) = A(z,w)
χ1(z,w) , ψ

∗∗(ξ, η) = B(ξ,η)
χ2(ξ,η) for any (z,w, ξ, η) ∈ M. Write

E1 := {(z,w, ξ, η) ∈ M : χ1(z,w) = 0}, E2 := {(z,w, ξ, η) ∈ M : χ2(ξ, η) = 0}. Then

E = E1 ∪ E2.
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claim 2.5.2 {E1 − E2} ∪ {E2 − E1} ⊂ EΦ.

Since E1 ∩ E2 is of codimension 2 in M, together with what we obtained above,

Claim 4.2 leads to the following:

Corollary 2.5.3 E = EΦ.

Assuming Claim 2.5.2 for the moment, we next complete the proof of Theorem

2.2.6. Since each irreducible component of E is obviously a holomorphic Segre-related

set of codimension one, we see that EΦ must be a locally finite union of holomorphic

Segre-related sets of codimension one.

Back to (2.45), for any p ∈ EΦ, we have either p ∈ E1 or p ∈ E2. Without loss

of generality, assume the first one. Then g(p) = 0. Now replacing Φ by Φp0 for any

p0 ∈ M near the origin, then the holomorphic Segre transversality breaks down for Φp0

over (σ0
p0

)−1(E1). By a similar argument as above, we may also assume, without loss

of generality, that gp0(p) = 0 for p ∈ (σ0
p0

)−1(E1) and p0 is in a certain connected open

subset U of M with 0 in its closure.

Since gp0 = g◦σ0
p0
−e(p0)−2if̃ ◦σ0

p0
· h̃(p0), we have gp0((σ

0
p0

)−1(p)) = g(p)−e(p0)−

2if̃(p) · h̃(p0). Let p ∈ E1, then we have

e(p0) = −2if̃(p) · h̃(p0) for any p ∈ E1, p0 ∈ U. (2.46)

Notice that Φ satisfies the first normalization condition. Hence we have

hj = ξj + owt(1), ψj = owt(1), e = owt(1).

Substituting the above into (2.46), we get

fj(p) = 0 for j = 1, . . . , n− 1, p ∈ E1.

Therefore (2.46) becomes

e(p0) = −2i

N−n∑

j=1

φj(p)ψj(p0) for p ∈ E1, p0 ∈ U.
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Since {ψk}N−n
l=1 is a linearly independent system and U is a uniqueness set for holo-

morphic functions over M, we immediately get φk ≡ constant over E1. This proves

that Φ(E1) ⊂ {q} × ˆ̃
Qq with Φ1(E1) ≡ q. Similarly we can prove that Φ(E2) ⊂

Q̃Φ2(E2) × {Φ2(E2)}, where Φ2 ≡ constant on E2. Hence, to complete the proof of

Theorem 2.2.6, we need only to give a proof for Claim 2.5.2.

Proof of Claim 2.5.2: We write HN
proj for the compactification of HN in CP

N ×CP
N

with the following homogeneous coordinates and defining equation:

[z1, · · · , zN , t; ξ1, · · · , ξN , γ], γzN − tξN = 2i

N−1∑

j=1

zjξj.

Then the τ in (2.43) extends naturally to a new mapping, denoted by τ̂ , from HN to

HN
proj. Write Φ̂ = τ̂ ◦Φ. Then Φ̂ is a holomorphic map from M into HN

proj. Apparently,

Φ is holomorphic Segre transversal at p ∈ M if and only if Φ̂ is holomorphic Segre

transversal in a similar way.

For a fixed p0 ∈ E1 − E2, there exists a j ∈ {1, . . . ,N − n} such that Aj(p) 6= 0 by

(2.45) and the definition of E1. Without loss of generality, assume that j = 1. We next

use the following local holomorphic coordinates chart of CP
N × CP

N near Φ̂(p0):

σn
N ([z1, . . . , zN−1, w, t; ξ1, · · · , ξN−1, η, 1]) :=

(
z1
zn
,
z2
zn
, . . . ,

zn−1

zn
,
zn+1

zn
,
zN−1

zn
,
w

zn
,
t

zn
, ξ1, . . . , ξN−1, η).

Then, with the new coordinates, the image of HN
proj under this coordinate transforma-

tion is locally defined by the following equation:

ĤN = {(ẑ, ŵ, t̂, ξ̂, η̂) ∈ C
N−2×C×C×C

N−1×C : ŵ−t̂η̂ = 2i(

n−1∑

j=1

ẑj ξ̂j+ξ̂n+

N−1∑

j=n+1

ẑj−1ξ̂j)}.

An easy computation shows that {L̂j , K̂j , T̂ }N−1
j=1 forms a global basis of the sections of

holomorphic tangent bundle T (1,0)ĤN of ĤN and that

〈θ̂, T̂ 〉 = 1, 〈θ̂, L̂j〉 = 〈θ̂, K̂j〉 = 0,
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where

L̂j =
∂

∂ẑj
+ 2iξ̂j

∂

∂ŵ
, K̂j = − ∂

∂ξ̂j
+ ẑj

∂

∂ξ̂n
, j = 1, . . . , n− 1,

L̂n =
∂

∂t̂
+ η̂

∂

∂ŵ
, K̂n = −t̂ ∂

∂ξ̂n
+ 2i

∂

∂η̂
,

L̂j =
∂

∂ẑj−1
+ 2iξ̂j

∂

∂ŵ
, K̂j = − ∂

∂ξ̂j
+ ẑj−1

∂

∂ξ̂n
, j = n+ 1, . . . ,N − 1,

T̂ = 2i
∂

∂ŵ
+

∂

∂ξ̂n
, θ̂ =

n−1∑

j=1

ẑjdξ̂j + dξ̂n +

N−1∑

j=n+1

ẑj−1dξ̂j +
t̂

2i
dη̂.

Write F(z,w, ξ, η) := σn
N ◦ Φ̂(z,w, ξ, η) = σn

N ◦ τ̂ ◦ Φ(z,w, ξ, η) = (χ1(z,w)z
A1(z,w) ,

A2(z,w)
A1(z,w) , . . . ,

AN−n(z,w)
A1(z,w) , χ1(z,w)w

A1(z,w) ,
χ1(z,w)
A1(z,w) , ξ, ψ

∗∗(ξ, η), η) for (z,w, ξ, η) ∈ M. Notice that σn
N is bi-

holomorphic near Φ̂(p0). Hence Φ is holomorphic Segre transversal at p0 if and only if

F is holomorphic Segre transversal at p0. However,

〈θ̂, dF(T )〉
∣∣∣
p0

= (
∂ψ∗∗

1

∂η
+

N−n∑

j=2

Aj

A1

∂ψ∗∗
j

∂η
)

∣∣∣∣∣∣
p0

= 0,

where we used the facts that χ1(p0) = 0, ψ∗∗
1 ≡ 0 and Aj ·ψ∗∗

j ≡ 0 for j ≥ 2. This yields

that F and thus Φ are not holomorphic Segre transversal at p0. Hence, p0 ∈ EΦ.

Similarly we can prove that E2 − E1 ∈ EΦ. this completes the proof of Claim 2.5.2

and thus the proof of Theorem 2.2.6. �

As we pointed out before, Φ is holomorphic Segre transversal at p if Φp is holomor-

phic Segre transversal at 0 or equivalently (gp)w(0) 6= 0. It then follows in Example

2.2.9 that Φ is not holomorphic Segre transversal at p = (z,w, ξ, η) iff w + η = 0

by using (2.44). Note that the submanifold G = {(z,w, ξ, η) ∈ Hn : w + η = 0} is

not a holomorphic Segre-related set of Hn. In fact, for any point (z0, w0, ξ0, η0) ∈ G,

{(z0, w0)} × Q̂(z0,w0) = {(z0, w0, ξ, w0 − 2iz0 · ξ) : ξ ∈ C
n−1}, which is not contained in

G. Similarly one can show that Q(ξ0,η0) × {(ξ0, η0)} is not totally contained in G. Thus

G is not a holomorphic Segre-related set by definition. This example shows that the

condition N ≤ 2n− 2 is critical for Theorem 2.2.6.

2.6 Proof of Theorem 2.2.3

We keep the same notation set up before.
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Lemma 2.6.1 Let M be a connected neighborhood of 0 in Hn. Suppose that the holo-

morphic Segre map Φ maps a neighborhood U of M in C2n into C2N with Φ(M) ⊂

HN ,Φ(0) = 0 and write Φ(z,w, ξ, η) = (Φ1(z,w),Φ2(ξ, η)) := (f̃1(z,w), . . . , f̃N−1(z,w),

g(z,w), h̃1(ξ, η), . . . , h̃N−1(ξ, η), e(ξ, η)) for (z,w, ξ, η) ∈ M. Assume that N ≤ 2n − 2.

If there exists a neighborhood V of 0 in M, such that for every p ∈ V , (gp)w(0) = 0,

then g ≡ 0, e ≡ 0 and f̃ · h̃ ≡ 0 over U .

To prove Lemma 2.6.1, we need the following:

Lemma 2.6.2 : Suppose that A,B ∈ M(n−1)×(N−1) where N ≤ 2n − 2 satisfy that

A · B̄t = 0. Then either A or B has rank less than n− 1.

Proof of Lemma 2.6.2: Suppose A has rank n − 1. Then the linear equation

A · yt = 0 has at most N − 1 − (n− 1) = N − n linearly independent solutions, which

implies that rank(B) ≤ N − n < n− 1. �

Proof of Lemma 2.6.1: We follows the same approach in [BH] for the proof of the

Lemma. By the definition of Φp, we have:

gp = g ◦ σ0
p − e(ξ0, η0) − 2if̃ ◦ σ0

p · h̃(ξ0, η0). (2.47)

Hence it follows that

(gp)w(0) = gw(z0, w0) − 2if̃w(z0, w0) · h̃(ξ0, η0),

where p = (z0, w0, ξ0, η0) ∈ M. By the assumption, gw(z,w) = 2if̃w(z,w) · h̃(ξ, η) on

V, i.e.,

gw(z, η + 2iz · ξ) = 2if̃w(z, η + 2iz · ξ) · h̃(ξ, η). (2.48)

Let ξ = 0, η = 0, we have

gw(z, 0) = 0.

Applying ∂
∂ξj
, j = 1, . . . , n− 1 to (2.48) and letting ξ = 0, η = 0, we get

zjgw2(z, 0) = f̃w(z, 0) · h̃ξj
(0). (2.49)
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On the other hand, applying KjLk to gp − ep = 2if̃p · h̃p and letting (z,w, ξ, η) = 0, we

have

δk
j (gp)w(0) = (f̃p)zk

(0) · (h̃p)ξj
(0) for any j, k = 1, . . . , n− 1. (2.50)

Applying Lemma 2.6.2 and making use of the assumption (gp)w(0) = 0 for p ∈ V on

(2.50), we get that

V = A ∪B,

where A = {p : {(h̃p)ξj
(0)}n−1

j=1 are linearly dependent};

B = {p : {(f̃p)zj
(0)}n−1

j=1 are linearly dependent}.

Then either A or B contains an open neighborhood of V . Without loss of generality,

assume that V1(∋ p0) ⊂ V is an open piece of M that is contained in A. By considering

Φp0 instead of Φ, we assume, without loss of generality, that p0 = 0.

Therefore {(h̃p)ξj
(0)}n−1

j=1 are linearly dependent for p in some small neighborhood

of M near 0. Take a non-zero (n − 1)-tuple (a1, . . . , an−1) such that
∑n−1

j=1 aj h̃ξj
(0) =

0. It thus follows from (2.49) that
∑n−1

j=1 ajzjgw2(z, 0) = 0. Since
∑n−1

j=1 ajzj 6= 0,

we conclude gw2(z, 0) = 0. Now applying the previous argument to Φp, we then get

(gp)w2(z, 0) = 0 for p in some small neighborhood in M. An induction argument then

shows that gwk(z, 0) = 0 for k ≥ 0. Since we also have gzk(0, 0) = 0 for k ≥ 0, we then

proved that g ≡ 0. Similarly we have gp ≡ 0. Substituting g ≡ 0 and gp ≡ 0 into (2.47),

we have

e(ξ0, η0) = −2if̃ ◦ σ0
p(z,w) · h̃(ξ0, η0)

for any p = (z0, w0, ξ0, η0) in M. Choose (z,w) = (σ0
p)

−1(0) in the above, then we have

e ≡ 0. Again by (2.47) we see f̃ · h̃ ≡ 0 in U . The proof is complete. �

Proof of Theorem 2.2.3: Theorem 2.2.3 (1) follows from Theorem 2.4.1 and Theorem

2.2.3 (2) is an easy consequence of Lemma 2.6.1. �

Remark 2.6.3 When Φ2(z,w) = Φ̄1(z,w) in Theorem 2.2.3, a super-rigidity can be

deduced. Namely, one further concludes that φ(z,w) and ψ(ξ, η) must be identically
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zero and Theorem 2.2.3 (2) can not occur. Theorem 2.2.3 in this case then reduces to

a Theorem of Faran and Huang (See [Fa] [Hu]). When Φ2(z,w) 6= Φ̄1(z,w), one can

easily write down the following example, showing that Φ does not have to be linear nor

rational: Φ : H3 → H4, where

Φ(z1, z2, w, ξ1, ξ2, η) = (z1, z2, cos z1, w, ξ1, ξ2, 0, η).
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Chapter 3

Polynomial and rational maps between balls

3.1 Introduction

Let B
n be the unit ball in the complex space C

n. Write Rat(Bn,BN ) for the space

of proper rational holomorphic maps from B
n into B

N and Poly(Bn,BN ) for the set

of proper holomorphic polynomial maps from B
n into B

N . We say that F and G ∈

Rat(Bn,BN ) are equivalent if there are automorphisms σ ∈ Aut(Bn) and τ ∈ Aut(BN )

such that F = τ ◦G ◦ σ.

Proper holomorphic maps from B
n into B

N with N ≤ 2n − 2, that are sufficiently

smooth up to the boundary, are equivalent to the identity map ([Fa] [For3] [Hu]).

In [HJX], it is shown that F ∈ Rat(Bn,BN ) with N ≤ 3n − 4 is equivalent to a

quadratic monomial map, called the D’Angelo map. However, when the codimension is

sufficiently large, there is plenty of room to construct rational holomorphic maps with

certain arbitrariness by the work in Catlin-D’Angelo [CD]. Hence, it is reasonable to

believe that after lifting the codimension restriction, many proper rational holomorphic

maps are not equivalent to proper holomorphic polynomial maps. In the last paragraph

of the paper [DA], D’Angelo gave a philosophic discussion on this matter.

However, the problem of determining if an explicit proper rational holomorphic map

is equivalent to a polynomial map does not seem to have been studied so far.

This chapter is concerned with such a problem. We will first give a simple and

explicit criterion when a rational holomorphic map is equivalent to a holomorphic poly-

nomial map. With the help of the classification result in [CJX], this criterion is used

in §3 to show that proper rational holomorphic maps from B
2 into B

N of degree two

are equivalent to polynomial maps. On the other hand, making use of the criterion, we
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construct in §4 rational holomorphic maps of degree 3 that are ‘almost’ linear but are

not equivalent to holomorphic polynomial maps.

3.2 A criterion

Let F = P
q = (P1,...,PN)

q be a non-constant rational holomorphic map from the unit ball

B
n ⊂ C

n into the unit ball B
N ⊂ C

N , where (Pj)
N
j=1, q are holomorphic polynomial

functions and (P1, ..., PN , q) = 1. We define deg(F ) = max{deg(Pj)
N
j=1, deg(q)}. Then

F induces a rational map from CP
n into CP

N given by

F̂ ([z1 : · · · : zn : t]) =

[
tkP (

z

t
) : tkq(

z

t
)

]

where z = (z1, ..., zn) ∈ C
n and deg(F ) = k > 0.

F̂ may not be holomorphic in general. Denote by Sing(F̂ ) the singular set of F̂ ,

namely, the collection of points where F̂ fails to be (or fails to extend to be) holomorphic.

Then Sing(F̂ ) is an algebraic subvariety of codimension two or more in CP
n. For

instance, we have the following:

Example 3.2.1 I. Let Fθ(z,w) = (z, cosθ w, sinθ zw, sinθ w2) be the proper monomial

map from B
2 into B

4 (called the D’Angelo map), where 0 < θ < π
2 . Then Sing(F̂θ) of

F̂θ consists of one point: {[z : w : t] ∈ CP
2 : w = 0, t = 0} = {[1 : 0 : 0]}.

II. Let Gα = (z2,
√

1 + cos2α zw, cosα w2, sinα w) be the proper monomial map

from B
2 into B

4 where 0 ≤ α < π
2 . Then Gα induces

Ĝα = [z2 :
√

1 + cos2α zw : cosα w2 : sinα wt : t2].

There are no singular points for Ĝα. Hence Ĝα is holomorphic.

Write B
n
1 = {[z1 : · · · : zn : t] ∈ CP

n :
∑n

j=1 |zj |2 < |t|2}, which is the projective

realization of B
n. Write U(n+1, 1) for the collection of the linear transforms A : [Z](∈

CP
n) 7→ [ZA](∈ CP

n) such that

AEn+1,1A
t
= En+1,1
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where

En+1,1 =


In 0

0 −1


 .

Then U(n+ 1, 1)/{±Id} = Aut(Bn
1 ) ≈ Aut(Bn).

Lemma 3.2.2 For any hyperplane H ⊂ CP
n with H∩Bn

1 = ∅, there is a σ ∈ U(n+1, 1)

such that σ(H) = H∞ = {[z1 : · · · : zn : 0] ∈ CP
n}.

Proof of Lemma 3.2.2: Assume thatH :
∑n

j=1 ajzj−an+1t = 0 with ~a = (a1, ..., an+1) 6=

0. Under the assumption that H∩Bn
1 = ∅, we have an+1 6= 0. Without loss of generality,

we can assume that an+1 = 1. Let U be an n× n unitary matrix such that

(a1, ..., an)U = (λ, 0, ..., 0),

for some λ ∈ C. Let σ =


U 0

0 I


. Then σ(H) = {[z : t] ∈ CP

n | λz1 − t = 0} with

|λ| < 1. Let T ∈ Aut(Bn) be defined by

T (z1, z
′) =

(
z1 − λ

1 − λz1
,

√
1 − |λ|2z′
1 − λz1

)

with z′ = (z2, ..., zn). Then T̂ ∈ U(n+ 1, 1) is defined by

T̂ ([z1 : z′ : t]) = [z1 − λt :
√

1 − |λ|2z′ : t− λz1].

Now, it is easy to see that T̂ ◦ σ maps H to H∞. �

Our criterion can be stated as follows:

Theorem 3.2.3 Let F be a non-constant rational holomorphic map from B
n into B

N

with N,n ≥ 1. Then F is equivalent to a holomorphic polynomial map from B
n into B

N ,

namely, there are σ ∈ Aut(Bn) and τ ∈ Aut(BN ) such that τ ◦ F ◦ σ is a holomorphic

polynomial map from B
n into B

N , if and only if there exist (complex) hyperplanes

H ⊂ CP
n and H ′ ⊂ CP

N such that H ∩ Bn
1 = ∅, H ′ ∩ BN

1 = ∅ and

F̂ (H \ Sing(F̂ )) ⊂ H ′, F̂
(

CP
n\(H ∪ Sing(F̂ ))

)
⊂ CP

N\H ′.
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Proof of Theorem 3.2.3: If F is a non-constant holomorphic polynomial map, then

F̂ = [tkF (z
t ), t

k] with deg(F ) = k > 0. Let H = H∞ and H ′ = H ′
∞. Then they satisfy

the property described in the theorem.

If F is equivalent to a holomorphic polynomial map G, then there exist σ̂ ∈ U(n +

1, 1), τ̂ ∈ U(n + 1, 1) such that F̂ = τ̂ ◦ Ĝ ◦ σ̂. Let H = σ̂−1(H∞) and H ′ = τ̂(H ′
∞).

Then they are the desired ones.

Conversely, suppose that F̂ , H and H ′ are as in the theorem. By Lemma 3.2.2, we

can find σ̂ ∈ U(n+ 1, 1) and τ̂ ∈ U(n + 1, 1) such that σ̂(H) = H∞ and τ̂(H ′) = H ′
∞.

Let Q̂ = τ̂ ◦ F̂ ◦ σ̂−1. Then Q̂ induces a rational holomorphic map Q from B
n into B

N .

If Q = P
q where (P, q) = 1 and deg(Q) = k > 0, then

Q̂ = [tkP (
z

t
) : tkq(

z

t
)].

Suppose that q 6≡ constant. Let z0 ∈ C
n be such that q(z0) = 0 but P (z0) 6= 0. Then

[z0 : 1] 6∈ Sing(Q̂) ∪H∞ and Q̂([z0 : 1]) ∈ H ′
∞. Notice that Q̂(H∞ \ Sing(Q̂)) ⊂ H ′

∞

and Q̂
(
CP

n\(H∞ ∪ Sing(Q̂))
)
⊂ CP

N\H ′
∞. This is a contradiction. Thus, we showed

that Q is a polynomial. �

Remark 3.2.4 (A) Suppose that F̂ = [F1 : · · · : FN : F0] is a non-constant rational

map from CP
n into CP

N , where F0, . . . , FN are homogeneous polynomials in (z, t) of

degree k > 0 with

(F1, . . . , FN , F0) = 1.

Assume that H := {[z1 : · · · : zn : t] ∈ CP
n :

∑n
j=1 ajzj+a0t = 0, aj ∈ C, (a0, . . . , an, a0) 6=

0}, H ′ := {[z′1 : · · · : z′N : t′] ∈ CP
N :

∑N
j=1Ajz

′
j+A0t

′ = 0, Aj ∈ C, (A0, . . . , AN , A0) 6=

0} are (complex) hyperplanes. Also assume that H ∩ B
n
1 = ∅ and H ′ ∩ B

N
1 = ∅. We

easily see that a0, A0 6= 0 ( thus we can always make a0, A0 = 1). Under such a set-up,

by the basic division property for polynomials, we can easily conclude that

F̂ (H \ Sing(F̂ )) ⊂ H ′, F̂
(

CP
n\(H ∪ Sing(F̂ ))

)
⊂ CP

N\H ′

if and only if

N∑

j=1

AjFj +A0F0 ≡ C · (
n∑

j=1

ajzj + a0t)
k,
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where C 6= 0 is a constant and k(> 0) is the degree of F . This observation will be used

for our later application of Theorem 3.2.3.

(B): From the argument of Theorem 3.2.3, it is clear that a similar result can also

be proved for non-constant rational maps from CP
n into CP

N .

Write the Cayley transformation

ρn(z′, zn) =

(
2z′

1 − izn
,

1 + izn
1 − izn

)
.

Then ρn biholomorphically maps ∂H
n to ∂B

n\{(0, 1)}, where H
n = {(z′, zn) ∈ C

n :

ℑ(zn) > |z′|2}. ρn induces a linear transformation of CP
n:

ρ̂n = [2z′ : t+ izn : t− izn].

ρ̂n maps Sn
1 = {[z′ : zn : t] ∈ CP

n : znt−tzn

2i > |z′|2} to B
n
1 .

Now let G be a non-constant rational holomorphic map from an open piece of ∂H
n

into ∂H
N . Then ρN ◦ G ◦ ρ−1

n extends to a proper rational holomorphic map from B
n

to B
N . By Theorem 3.2.3, we have the following:

Theorem 3.2.5 ρN ◦ G ◦ ρ−1
n is equivalent to a proper holomorphic polynomial map

from B
n into B

N if and only if there are (complex) hyperplanes H ⊂ CP
n, H ′ ⊂ CP

N

such that Ĝ(H \ Sing(Ĝ)) ⊂ H ′ and Ĝ(CP
n \ (H ∪ Sing(Ĝ)) ⊂ CP

N \H ′ with

H ∩ Sn
1 = ∅, H ′ ∩ SN

1 = ∅.

3.3 Proper rational holomorphic maps from B2 into BN of degree two

As a first application of Theorem 3.2.3, we prove the following:

Theorem 3.3.1 A map F ∈ Rat(B2,BN ) of degree two is equivalent to a polynomial

proper holomorphic map in Poly(B2,BN ).

Proof of Theorem 3.3.1: By [HJX], we know that any rational holomorphic map of

degree 2 from B
2 into B

N is equivalent to a map of the form (G, 0), where the map G is
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from B
2 into B

5. Hence, to prove Theorem 3.3.1, we need only to assume that N = 5.

After applying Cayley transformations and using the result in [CJX], we can assume

that F = (f, φ1, φ2, φ3, g) is from H
2 into H

5 with either

(I)

f =
z + i

2zw

1 + e2w2
, φ1 =

z2

1 + e2w2
, φ2 =

c1zw

1 + e2w2
, φ3 = 0, g =

w

1 + e2w2

where −e2 = 1
4 + c21 and c1 > 0 or

(II)

f =
z + ( i

2 + ie1)zw

1 + ie1w + e2w2
, φ1 =

z2

1 + ie1w + e2w2
,

φ2 =
c1zw

1 + ie1w + e2w2
, φ3 =

c3w
2

1 + ie1w + e2w2
, g =

w + ie1w
2

1 + ie1w + e2w2

where −e1,−e2 > 0, c1, c3 > 0 and

e1e2 = c23, −e1 − e2 =
1

4
+ c21.

Write [z : w : t] for the homogeneous coordinates of CP
2. In Case (I) the map F induces

a rational map F̂ : CP
2 → CP

5 given by

F̂ ([z : w : t]) = [tz +
i

2
zw : z2 : c1zw : 0 : tw : t2 + e2w

2] ∀[z : w : t] ∈ CP
2.

In Case (II), F induces a rational map F̂ : CP
2 → CP

5 given by

F̂ ([z : w : t]) = [tz+ (
i

2
+ ie1)zw : z2 : c1zw : c3w

2 : tw+ ie1w
2 : t2 + ie1wt+ e2w

2]

∀[z : w : t] ∈ CP
2. In terms of Theorem 3.2.5, we will look for H = {−t = µ1z1+µ2z2} ⊂

CP
2 and H ′ = {−t′ =

∑5
j=1 λjz

′
j} ⊂ CP

5 such that H ∩ S2
1 = ∅, H ′ ∩ S5

1 = ∅ with

F̂ (H \ Sing(F̂ )) ⊂ H ′ and F̂
(
CP

2 \ (H ∪ Sing(F̂ ))
)
⊂ CP

5 \H ′.

We next prove the following lemma:

Lemma 3.3.2 Let H = {−t =
∑n

j=1Kjzj} ⊂ CP
n. Then H ∩ Sn

1 = ∅ if and only if

4ℑ(Kn) +

n−1∑

j=1

|Kj |2 < 0.
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Proof of Lemma 3.3.2: Suppose for zj and t = −∑n
j=1Kjzj, we have

wt− tw

2i
<

n−1∑

j=1

|zj |2.

Here we identify zn = w. We then get

−Kn|w|2 +Kn|w|2
2i

+

n−1∑

j=1

−Kjzjw +Kjzjw

2i
<

n−1∑

j=1

|zj |2.

Hence

|w|2ℑ(Kn) <

n−1∑

j=1

{|zj |2 − 2ℜ(
Kj

2i
zjw)},

or

|w|2
(
ℑ(Kn) +

n−1∑

j=1

|Kj |2
4

)
<

n−1∑

j=1

|zj −
i

2
Kjw|2.

Since {zj , w} are independent variables, this can only happen if and only if

ℑ(Kn) +
n−1∑

j=1

|Kj |2
4

< 0.

This proves the lemma. �

We first consider Case (I). Here, we need only to find out µ1, µ2, λ1, ..., λ5 ∈ C such

that

4ℑ(µ2) + |µ1|2 < 0, 4ℑ(λ5) +

4∑

j=1

|λj |2 < 0

and

λ1(tz +
i

2
zw) + λ2z

2 + λ3c1zw + λ5tw + (t2 + e2w
2) = (t+ µ1z + µ2w)2,

∀[z : w : t] ∈ CP
2. It is easy to verify that λ1 = λ2 = λ3 = λ4 = µ1 = 0, λ5 = −2

√
|e2|i

and µ2 = −
√

|e2|i satisfy the above conditions. Hence in Case (I), the map is always

equivalent to a holomorphic polynomial map in Poly(B2,B5).

We next consider the second case. Similar to Case (I), it suffices for us to find

µ1, µ2, λ1, ..., λ5 ∈ C
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such that

4ℑ(µ2) + |µ1|2 < 0, 4ℑ(λ5) +

4∑

j=1

|λj |2 < 0

and

λ1(tz + i(
1

2
+ e1)zw) + λ2z

2 + λ3c1zw + λ4c3w
2 + λ5(tw + ie1w

2)

+(t2 + ie1tw + e2w
2) = (t+ µ1z + µ2w)2, ∀[z : w : t] ∈ CP

2.

Comparing the coefficients, we get

λ1 = 2µ1, λ2 = µ2
1, λ3 =

1

c1
[−i(1 + 2e1)µ1 + 2µ1µ2],

λ4 =
1

c3
(µ2

2 − e2 − 2ie1µ2 − e21), λ5 = 2µ2 − ie1.

By Theorem 3.2.5 and Remark 3.2.4, we thus obtain the following statement:

ρN ◦ F ◦ ρ−1
n is equivalent to a holomorphic polynomial map if and only if there are

µ1, µ2 ∈ C such that 4ℑ(µ2) + |µ1|2 < 0 and that

−4e1+8ℑ(µ2)+4|µ1|2+|µ1|4+
1

c21
|2µ1µ2−i(1+2e1)µ1|2+

1

c23
|µ2

2−e2−e21−2ie1µ2|2 < 0.

We will look for µ1 and µ2 with µ1 = 0 and µ2 = iy (y < 0).

To prove that ρN ◦ F ◦ ρ−1
n is equivalent to a polynomial map, it suffices for us to

show that there exists y < 0 such that

−4e1 + 8y +
1

c23
(−y2 − e2 − e21 + 2e1y)

2 < 0,

or

J(y) := (−4e1+8y)e1e2+(y2−2e1y+e21+e2)
2 = (8y−4e1)e1e2+((y−e1)2+e2)

2 < 0.

Notice that as a function in y < 0,

lim
y→−∞

J(y) = +∞, J(0) = (e21 − e2)
2 > 0.

We need to show that

min
y≤0

J(y) < 0.
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Notice that J ′(y) = 8e1e2 + 4((y − e1)
2 + e2)(y − e1). Setting J ′(y) = 0, we get

(y − e1)
3 + e2(y − e1) + 2e1e2 = 0.

J ′(y) = 0 thus has a root y0 ∈ (−∞, 0); for

lim
y→−∞

J ′(y) = −∞, J ′(0) = 4(−e31 + e1e2) > 0.

Let ζ0, ζ1, ζ2 be the solution of

ζ3 + e2ζ + 2e1e2 = 0 with ζ0 = y0 − e1.

Then ζ0 +ζ1+ζ2 = 0, ζ0ζ1 +ζ0ζ2+ζ1ζ2 = e2 and ζ0ζ1ζ2 = −2e1e2. Hence ζ0 = −ζ1−ζ2.

We get

−ζ2
0 + ζ1ζ2 = e2,

or ζ1ζ2 = e2 + ζ2
0 , and

1

ζ1ζ2
= − ζ0

2e1e2
.

In particular, 1
ζ1ζ2

∈ R\{0}.

Now J(y0) = (−4e1 + 8ζ0 + 8e1)e1e2 + (ζ2
0 + e2)

2 = 2e1e2(4ζ0 + 2e1) + (ζ1ζ2)
2 =

−ζ0ζ1ζ2(4ζ0 + 2e1) + (ζ1ζ2)
2.

Notice that 4ζ3
0 = −8e1e2 − 4e2ζ0. We see that

2e1e2
J(y0)

(ζ1ζ2)2
= 2e1e2 + ζ2

0 (4ζ0 + 2e1) = 2e1e2 − 8e1e2 − 4e2ζ0 + 2e1ζ
2
0

= −6e1e2 − 4e2ζ0 + 2e1ζ
2
0 = −2e2(3e1 + 2ζ0) + 2e1ζ

2
0 .

Since ζ0 = y0 − e1 < −e1, 3e1 + 2ζ0 < e1 < 0. Therefore J(y0)
(ζ1ζ2)2

2e1e2 < 0. Hence we

showed that J(y0) < 0. This also completes the proof of Theorem 3.3.1. �

Our proof of Theorem 3.3.1 is, in fact, a constructive proof, which can be used to

find precisely polynomial maps equivalent to the original ones. In the following, we

demonstrate this by giving an explicit example:
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Proposition 3.3.3 Let F = (f, φ1, φ2, φ3, g) : H
2 → H

5 be defined as follows:

f(z,w) =
z − i

2zw

1 − iw − 1
3w

2
, φ1(z,w) =

z2

1 − iw − 1
3w

2
,

φ2(z,w) =

√
13
12zw

1 − iw − 1
3w

2
, φ3(z,w) =

√
3

3 w
2

1 − iw − 1
3w

2
, g(z,w) =

w − iw2

1 − iw − 1
3w

2
.

It is equivalent to the proper polynomial holomorphic map G from B
2 into B

5:

G(z,w) =

(√
3

9
(−2+4z+z2),−

√
6

9
(1+z+z2),

√
3

12
(5+3z)w,

√
6

6
w2,

√
13

12
i(1−z)w

)
.

Proof of Proposition 3.3.3: In fact, for the map F given above, e1 = −1, e2 =

−1
3 , c1 =

√
13
12 , c3 =

√
3

3 . From the proof of Theorem 3.3.1, the hyperplanes H ⊂

CP
2, H ′ ⊂ CP

5 are defined by

H : t = −y0iw, or
w

t
=

i

y0
,

H ′ : t′ = −λ4z
′
4 − λ5w

′, or − λ4
z′4
t′

− λ5
w′

t′
= 1.

Here y0 < 0 is a solution for (y0 + 1)3 − 1
3(y0 + 1) + 2

3 = 0, λ4 = 1
c3

[−(y0 − e1)
2 − e2] =

− (y0−e1)2+e2√
e1e2

and λ5 = 2iy0 − e1i. Therefore y0 = −2, λ4 = − 2√
3

and λ5 = −3i. Thus

we see that

H : t = 2iw, or
w

t
=

1

2i
,

H ′ : t′ =
2√
3
z′4 + 3iw′, or

2√
3

z′4
t′

+
3iw′

t′
= 1.

Consider F̃ := ρ5 ◦ F ◦ ρ−1
2 : B

2 → B
5 where ρi are the corresponding Cayley transfor-

mations. An easy computation shows that the projectivization of F̃ , denoted by ˆ̃F , is

as follows:

ˆ̃F ([z : w : t]) =

[
z(3t+ w) : 2z2 : 2i

√
13

12
z(t− w) : −2

√
3

3
(t− w)2

:
1

3
(t2 + 10tw + w2) :

1

3
(13t2 − 2tw + w2)

]

and

ˆ̃H := ρ̂2(H) : t =
1

3
w,

ˆ̃
H ′ := ρ̂5(H

′) : t′ =

√
3

6
z′4 +

1

2
w′.
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We have ˆ̃H ⊂ CP
2 and

ˆ̃
H ′ ⊂ CP

5, that satisfy the property:

ˆ̃H ∩ B2
1 = ∅, ˆ̃

H ′ ∩ B5
1 = ∅ and

ˆ̃F ( ˆ̃H) ⊂ ˆ̃
H ′, ˆ̃F (CP

2\ ˆ̃H) ⊂ CP
5\ ˆ̃
H ′.

According to Lemma 3.2.2, let

σ̂1([z : w : t]) =

[
2
√

2

3
w : z +

t

3
: t+

z

3

]

σ̂2([z
′
1 : z′2 : z′3 : z′4 : w′ : t′]) =

[
1

2
(z′4 +

√
3w′) −

√
3

3
t′ :

√
6

6
(w′ −

√
3z′4)

:

√
6

3
z′1 :

√
6

3
z′2 :

√
6

3
z′3 : t′ −

√
3

6
(z′4 +

√
3w′)

]
,

then σ̂1 ∈ U(3, 1) and σ̂2 ∈ U(6, 1) with σ̂1(
ˆ̃H∞) = ˆ̃H and σ̂2(

ˆ̃
H ′) =

ˆ̃
H ′

∞. The desired

proper polynomial holomorphic map G is thus induced by σ̂2 ◦ ˆ̃F ◦ σ̂1, which has the

expression given in Proposition 3.3.3. �

Remark 3.3.4 : It may be interesting to notice that the map G in Proposition 3.3.3

does not preserve the origin and is not equivalent to a map of the form (G′, 0). We do

not know other examples of proper polynomial maps between balls of this type.

3.4 Examples of proper rational holomorphic maps that are not equiv-

alent to proper polynomial maps

In this section, we apply Theorem 3.2.3 to construct examples of rational holomorphic

maps which are not equivalent to proper holomorphic polynomial maps.

Example 3.4.1 : Let G(z,w) =

(
z2,

√
2zw,w2( z−a

1−az ,

√
1−|a|2w

1−az )

)
, |a| < 1, be a map

in Rat(B2, B
4). Then G is equivalent to a proper holomorphic polynomial map in

Poly(B2,B4) if and only if a = 0.

Proof of Example 3.4.1: Indeed, we have

Ĝ =

[
(t− az)z2 : (t− az)

√
2zw : w2(z − at) : w2

√
1 − |a|2w : (t3 − at2z)

]
.



54

Suppose there exist hyperplanes H = {µ1z1 + µ2w + µ0t = 0} ⊂ CP
2 and H ′ =

{∑4
j=1 λjz

′
j + λ0t

′ = 0} ⊂ CP
4 such that

H∩B2
1 = ∅, H ′∩B4

1 = ∅, Ĝ(H\Sing(Ĝ)) ⊂ H ′, Ĝ
(

CP
2\(H ∪ Sing(Ĝ))

)
⊂ CP

4\H ′.

Then

λ1(t− az)z2 + λ2(t− az)
√

2zw + λ3w
2(z − at) + λ4w

2
√

1 − |a|2w

+λ0(t
3 − at2z) = (µ1z + µ2w + µ0t)

3 ∀[z : w : t] ∈ CP
2.

Apparently λ0 6= 0. Hence we can assume that λ0 = 1, µ0 = 1. By comparing the

coefficient of z3, w3, wt2, zt2, z2t, zwt, z2w, zw2, w2t, respectively, in the above equation,

we get

µ3
1 = −aλ1, µ

3
2 = λ4

√
1 − |a|2, 3µ2 = 0, 3µ1 = −a, 3µ2

1 = λ1,

6µ1µ2 =
√

2λ2, 3µ2
1µ2 = −

√
2λ2a, 3µ1µ

2
2 = λ3, 3µ2

2 = −aλ3.

We then have λ2 = λ3 = λ4 = µ2 = 0. If a 6= 0, then µ1, λ1 6= 0. From µ3
1 = −aλ1 and

3µ2
1 = λ1, we get µ1 = −3a. Since 3µ1 = −a, we get a = 0. This is a contradiction.

Notice that when a = 0, F is a polynomial. By Theorem 3.2.3, we see the conclusion.

�

Example 3.4.2 : Let F (z′, w) =

(
z′, wz′, w2(

√
1−|a|2z′

1−aw , w−a
1−aw )

)
with |a| < 1 be a map

in Rat(Bn,B3n−2). Then F has geometric rank 1 and is linear along each hyperplane

defined by w = constant. F is equivalent to a proper polynomial map in Poly(Bn,B3n−2)

if and only if a = 0.

Proof of Example 3.4.2: The projectivization of F is

F̂ =
[
tz′(t− aw) : twz′ : w2

√
1 − |a|2z′ : w2(w − at) : t2(t− aw)

]
.

Assume a 6= 0 and suppose there exist hyperplanes H ⊂ CP
n and H ′ ⊂ CP

3n−2 such

that

H∩Bn
1 = ∅, H ′∩B

3n−2
1 = ∅, F̂ (H\Sing(F̂ )) ⊂ H ′, F̂

(
CP

n\(H ∪ Sing(F̂ ))
)
⊂ CP

3n−2\H ′.
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Then

λ′1tz
′(t−aw)+λ′2twz

′+λ′3w
2
√

1 − |a|2z′+λnw
2(w−at)+λ0t

2(t−aw) = (µ0t+µ
′z′+µnw)3

for some λ′1, λ
′
2, λ

′
3, µ

′ ∈ C
n−1 and λn, λ0, µ0, µn ∈ C.

Then λ0 = µ3
0 6= 0. We thus can assume at the beginning that λ0 = µ0 = 1.

Since there are no terms like z3
j (j < n) on the left hand side, we conclude that µ′ = 0.

Thus we get

λnw
2(w − at) + t2(t− aw) = (t+ µnw)3.

Therefore −a = 3µn, −λna = 3µ2
n, λn = µ3

n or µn = −a
3 and µn = − 3

a . This contradicts

the assumption that 0 < |a|2 < 1. �
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Chapter 4

Monotonicity for the Chern-Moser-Weyl curvature tensor

and CR embeddings

4.1 Introduction

Our research in this direction is motivated by the following problems:

Question 4.1.1 (Embedding problem): Let M be a strongly pseudoconvex hypersurface

in C
n+1 with n ≥ 1 defined by a real polynomial. For any p ∈ M , does there exist a

sufficiently large positive integer N , which may depend on p, such that a small piece

of M near p can be holomorphically embedded into the Heisenberg hypersurface H
N+1

(with signature 0)?

Question 4.1.2 (CR transversality problem): Let M and M̃ be smooth Levi non-

degenerate hypersurfaces in C
n+1 and C

N+1, respectively, with N > n. Assume that

both M and M̃ have the same signature ℓ with 0 < ℓ ≤ [n2 ]. Let U be a (connected)

neighborhood of M in C
n+1. Suppose that F is not a totally degenerate holomorphic

map from U into C
N+1 with F (M) ⊂ M̃ . Is then F CR transversal (or equivalently a

local holomorphic embedding) along M?

Here recall a Levi non-degenerate smooth hypersurface Mℓ in C
n+1 is of signature

ℓ near the origin if it locally is defined by an equation of the form: r(z,w) = ℑw −
∑ℓ

j=1 |zj |2 +
∑n

j=ℓ+1 |zj |2 + ◦(|z|2 + |z · ℜw|) = 0 for (z,w) ∈ C
n × C.

Question 4.1.1 is more along the lines of the general embedding problem, which asks

when a Levi non-degenerate hypersurface Mℓ in C
n+1 of signature ℓ with 0 ≤ ℓ ≤ n/2

can be embedded into a hyperqradric H
N+1
ℓ in C

N+1 of the same signature for N >> n.
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By the general invariant theory and a Baire category argument, Forstnerič [For2] showed

that there exist real analytic strictly pseudoconvex hypersurfaces in C
n+1 which cannot

be smoothly embedded into H
N+1 for any N . (See also a recent paper of Zaitsev [Zait]

on the related issue). On the other hand, 30 years ago, Webster in [We] showed that a

Levi non-degenerate hypersurface in C
n+1 of signature ℓ, defined by a real polynomial,

can always be embedded into the hyperquadric H
n+2
ℓ+1 of signature ℓ + 1 but in the

(n+2)-complex space. This has then led to an interesting open problem to understand

whether any algebraic Levi non-degenerate hypersurface in C
n+1 can be embedded into

a hyperquadric of the same signature but in a much higher dimensional complex space.

In this chapter, jointly with Huang, we gave a checkable necessary condition whether

Mℓ can be embedded into H
N+1
ℓ when ℓ ∈ (0, [n/2]]. Our criterion is based on a mono-

tonicity property for the Chern-Moser-Weyl tensor along the cone defined by tangent

vectors of type (1,0) in the null space of the Levi form. Roughly speaking, our mono-

tonicity property says that a CR embedding from a Levi non-degenerate hypersurface

into another one with the same signature decreases the Chern-Moser-Weyl curvature.

This phenomenon may be compared with various monotonicity properties for (some

type of ) curvatures under the application of holomorphic maps, initiated from the

classical Ahlfors-Pick-Schwarz lemma (see [GH] and [Yau], for instance). In the CR

setting, the natural curvature tensor to be considered is the Chern-Moser-Weyl curva-

ture tensor and the mappings to be involved are CR mappings. Unfortunately, there

is no monotonicity phenomenon in general. Our crucial observation is that the mono-

tonicity exists along directions in the null space of the Levi-form. Since the null space

of the Levi-form may be regarded as the ‘largest’ holomorphic subspace inside T (1,0)M ,

our result may be considered as a generalization of those results on complex manifolds.

In our investigation, we have to exclude the important strongly pseudoconvex case:

ℓ = 0; for the null space of the Levi-form in this setting is the 0-space.

Since the hyperquadrics have vanishing Chern-Moser-Weyl tensor, our criterion

makes it possible to construct many algebraic Levi non-degenerate hypersurfaces which

can not be embedded into a hyperquadric of the same signature ℓ > 0 in a complex

space of higher dimension. However, Question 4.1.1 still remains open.
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Question 4.1.2 is to ask when a holomorphic map between Levi non-degenerate

real analytic hypersurfaces of complex spaces of different dimensions is CR transversal.

The problem follows trivially from the classical Hopf lemma when the signature is 0.

However, it appears to be a quite difficult problem in the general signature setting, even

in the hyperquadrics case (See [BH], [BR], [BR2], [BER], [BER2] etc). In the following

sections, we proposed a geometric method to approach this problem. We showed that

the Hopf lemma can fail at most at those points with a pseudo semi-negative Chern-

Moser-Weyl curvature tensor.

4.2 Chern-Moser-Weyl curvature tensor on a Levi non-degenerate hy-

persurface

We use (z,w) ∈ C
n ×C for the coordinates of C

n+1. We always assume that n ≥ 2 and

ℓ ≤ n/2. Let M be a smooth real hypersurface. Recall that M is Levi non-degenerate

at p ∈M with signature ℓ ≤ n/2 if there is a local holomorphic change of coordinates,

that maps p to the origin, such that in the new coordinates, M is defined near 0 by an

equation of the form:

r = v − |z|2ℓ + o(|z|2 + |zu|) = 0 (4.1)

Here, we write u = ℜw, v = ℑw and 〈a, b̄〉ℓ = −∑j≤ℓ aj b̄j +
∑n

j=ℓ+1 aj b̄j, |z|2ℓ =<

z, z̄ >ℓ . When ℓ = 0, we regard
∑

j≤ℓ aj = 0.

Assume that M is Levi non-degenerate with the same signature ℓ at any point. A

contact form θ over M is said to be appropriate if the Levi form Lθ|p associated with θ

at any point p ∈M has ℓ negative eigenvalues and n− ℓ positive eigenvalues. (See (4.2)

for our definition of the Levi form.) Since our consideration in this chapter is local, we

only focus on a small piece of M with 0 ∈ M and M is defined by an equation as in

(4.1). In particular, θ0 = i∂r is appropriate near 0. When ℓ < n/2, a contact form θ is

appropriate if and only if θ = k0θ0 with k0 > 0.

Let θ be an appropriate contact form over M . Then from the Chern-Moser Theory,

there is a unique 4th order curvature tensor Sθ associated with θ ([CM], [We]), which we
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call the Chern-Moser-Weyl tensor with respect to the contact form θ over M or along

the contact form θ. (One can also use (4.3) and (4.4) as the definition of S|θ|0. The

invariant property or the transformation law is given in (4.18).) Sθ can be regarded

as a section over T ∗(1,0)M ⊗ T ∗(0,1)M ⊗ T ∗(1,0)M ⊗ T ∗(0,1)M . We write Sθ|p for the

restriction of Sθ at p ∈ M . For a basis {Xα}n
α=1 of T

(1,0)
p M with p ∈ M , write

(Sθ|p)αβ̄γδ̄ = Sθ|p(Xα,Xβ,Xγ ,Xδ). We then have the following symmetric properties:

(Sθ|p)αβ̄γδ̄ = (Sθ|p)γβ̄αδ̄ = (Sθ|p)γδ̄αβ̄

(Sθ|p)αβ̄γδ̄ = (Sθ|p)βᾱδγ̄ ,

and the following trace-free condition:

n∑

β,α=1

gβ̄α(Sθ|p)αβ̄γδ̄ = 0.

Here

gαβ̄ = Lθ|p(Xα,Xβ) := −i < dθ|p,Xα ∧Xβ >= − < ∂∂̄r|p,Xα ∧Xβ > (4.2)

is the Levi form of M associated with θ at p ∈ M and (gβ̄α) is the inverse matrix of

(gαβ̄). For a different contact form θ̃ = k̃θ smooth along M with k̃ > 0, we have the

following transformation formula:

Sθ̃|p(Xα,Xβ,Xγ ,Xδ) = k̃Sθ|p(Xα,Xβ,Xγ ,Xδ)

This implies S is conformal invariant with respect the metric gαβ̄ . For a smooth vector

field X,Y,Z,W of type (1, 0) and a smooth contact form along M , Sθ(X, Ȳ , Z, W̄ ) is

also a smooth function along M . One easy way to see this is to use the Webster-Chern-

Moser-Weyl formula obtained in [We] through the curvature tensor of the Webster

pseudo-Hermitian metric, whose constructions are done by only applying the algebraic

and differentiation operations on the defining function of M .

Sθ is described in terms of the normal coordinates for M as follows: First, by the

Chern-Moser normal form theory [CM], we can find a coordinate in which M is defined

near 0 by an equation of the following form (see (6.25), (6.30), [CM]):

r = v−|z|2ℓ +
1

4
s(z, z̄)+ o(|z|4) = v−|z|2ℓ +

1

4

∑
sαβ̄γδ̄zαz̄βzγ z̄δ + o(|z|4) = 0. (4.3)
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Here s(z, z̄) =
∑
sαβ̄γδ̄zαz̄βzγ z̄δ , i∂r|0 = θ|0, sαβ̄γδ̄ = sγβ̄αδ̄ = sγδ̄αβ̄, sαβ̄γδ̄ = sβᾱδγ̄ and

∑n
α,β=1 sαβ̄γδ̄g

β̄α = 0 where gβ̄α = 0 for β 6= α, gβ̄β = 1 for β > ℓ, gβ̄β = −1 for β ≤ ℓ.

Then

Sθ|0(
∂

∂zα
|0,

∂

∂z̄β
|0,

∂

∂zγ
|0,

∂

∂z̄δ
|0) = sαβ̄γδ̄ . (4.4)

Write △ℓ = −∑j≤ℓ
∂2

∂zj∂z̄j
+
∑n

j=ℓ+1
∂2

∂zj∂z̄j
and also write sθ|0(z, z̄) for s(z, z̄). Then

the trace-free condition above is equivalent to

△ℓsθ|0(z, z̄) ≡ 0.

Indeed, this follows from the following fact: Let ∆H =
∑n

l,k=1 h
lk̄∂l∂̄k with

¯
hl

¯
k = hkl̄

for any l, k. Then

∆Hsθ|0(z, z̄) = 4

n∑

γ,δ=1

n∑

α,β=1

hαβ̄sαβ̄γδ̄zγ z̄δ . (4.5)

For the rest of this section, we assume that ℓ > 0 and define

Cℓ = {z ∈ C
n : |z|ℓ = 0}.

Then Cℓ is a real algebraic variety of real codimension 1 in C
n with the only singularity

at 0. For each p ∈ M , write CℓT
(1,0)
p M = {vp ∈ T

(1,0)
p M : 〈dθp, vp ∧ v̄p〉 = 0}.

Apparently, ClT
(1,0)
p M is independent of the choice of θ. Let F be a CR diffeomorphism

from M to M ′. We also have F∗(CℓT
(1,0)
p M) = CℓT

(1,0)
F (p)M

′. (We will explain this in

details in the later discussion). Write CℓT
(1,0)M =

∐
p∈M CℓT

(1,0)
p M with the natural

projection π to M . We say that X is a smooth section of CℓT
(1,0)M if X is a smooth

vector field of type (1, 0) along M such that X|p ∈ CℓT
(1,0)
p M for each p ∈ M . Later,

we will see that CℓT
(1,0)M is a kind of smooth bundle with each fiber isomorphic to Cℓ.

(See Remark 4.3.5.)

We say that the Chern-Moser-Weyl curvature tensor Sθ is pseudo semi-positive

definite (or pseudo semi-negative definite) at p ∈ M if Sθ|p(X, X̄,X, X̄) ≥ 0 for

any X ∈ CℓT
(1,0)
p M (or Sθ|p(X, X̄,X, X̄) ≤ 0, respectively, for all X ∈ CℓT

(1,0)
p M).

We say that Sθ is pseudo positive-definite (or pseudo negative-definite) at p ∈ M if

Sθ|p(X, X̄,X, X̄) > 0 for all X ∈ CℓT
(1,0)
p M \ 0 (or Sθ|p(X, X̄,X, X̄) < 0, respectively,
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for all X ∈ CℓT
(1,0)
p M \ 0). We use the terminology pseudo semi-definite to mean either

pseudo semi-positive definite or pseudo semi-negative definite. We can similarly define

the notion of pseudo definiteness.

Cℓ is obviously a uniqueness set for holomorphic functions. The following lemma

shows that it is also a uniqueness set for the Chern-Moser-Weyl curvature tensor.

Lemma 4.2.1 (I). Suppose that H(z, z̄) is a real real-analytic function in (z, z̄) near

0. Assume that △ℓH(z, z̄) ≡ 0 and H(z, z̄)|Cℓ
= 0. Then H(z, z̄) ≡ 0 near 0.

II). Assume the above notation. If Sθ|p(X, X̄,X, X̄) = 0 for any X ∈ CℓT
(1,0)
p M ,

then Sθ|p ≡ 0.

Proof of Lemma 4.2.1: (I) Write H(z, z̄) =
∑∞

m=1H
(m)(z, z̄) with H(m)(z, z̄)

homogeneous polynomials in (z, z̄) of degree m. Then we easily see that △ℓH(z, z̄) ≡ 0

if and only if △ℓH
(m)(z, z̄) ≡ 0 for each m. For q ∈ Cℓ, since tq ∈ Cℓ for t ∈ R

+,

we see that H(tp, tp) =
∑∞

m=1 t
mH(m)(p, p̄) and H(tp, tp) = 0 for each t ∈ R if and

only if H(m)(p, p̄) = 0 for each m. Hence we see that H(z, z̄)|Cℓ
= 0 if and only if

H(m)(z, z̄) = 0 along Cℓ for each m. Therefore, to prove Lemma 2.1, we can assume

that H(z, z̄) is already a homogeneous polynomial of degree m in (z, z̄). Next, notice

that

V = {(z, ξ) ∈ C
n × C

n : 〈z, ξ〉ℓ = −
ℓ∑

j=1

zjξj +
n∑

j=ℓ+1

zjξj = 0}

is a complex analytic variety defined by 〈z, ξ〉ℓ = 0 with 〈z, ξ〉ℓ irreducible as an element

in O(p,q) for each (p, q) ∈ V . Hence, we easily see that H(z, ξ) = h(z, ξ)〈z, ξ〉ℓ for a

certain holomorphic function h(z, ξ) in (z, ξ) ∈ C
n×C

n. Then it follows that h(z, ξ) is a

homogeneous polynomial of degree m− 2. Now by a well-known argument in harmonic

analysis (see [SW], pp140), we can prove H ≡ 0 as follows:

First, write H(z, z̄) =
∑

α+β=m aαβ̄z
αz̄β . Then

∑

α+β=m

|aαβ̄|2α!β! = H(∂z, ∂z̄)(H(z, z̄))

= h(∂z , ∂z̄)(△ℓ(H(z, z̄)))

= 0
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Thus H(z, z̄) ≡ 0.

(II): By the transformation law for the Chern-Moser-Weyl curvature tensor, we

can assume that p = 0 and M near 0 is given in normal coordinates as in (4.3) with

θ|0 = i∂r. Write X =
∑n

j=1 zj
∂

∂zj
|0. Then X ∈ CℓT

(1,0)
0 M if and only if |z|ℓ = 0.

Moreover Sθ|0(X, X̄,X, X̄) = sθ|0(z, z̄) with ∆ℓsθ|0(z, z̄) ≡ 0. Now, since sθ|0(z, z̄) = 0

for |z|ℓ = 0, we have, by Part I of the Lemma, sθ|0(z, z̄) = 0 for any z. Namely,

Sθ|0(X, X̄,X, X̄) ≡ 0. This then immediately shows that Sθ|0 ≡ 0. �

Write H
n+1
ℓ := {(z,w) ∈ C

n × C : ℑw = 〈z, z̄〉ℓ} for the Levi non-degenerate real

hyperquadric with signature ℓ > 0. By the Chern-Moser theory, M is locally CR

equivalent to H
n+1
ℓ if and only if Sθ ≡ 0. Together with the above lemma, we have the

following:

Theorem 4.2.2 Let M be a Levi non-degenerate hypersurface of signature ℓ with 0 <

ℓ ≤ n
2 . Then M is locally CR equivalent to the hyperquadric H

n+1
ℓ of signature ℓ if and

only if for any contact form θ and any vector Xp ∈ CℓT
(1,0)
p M with p ∈ M , it holds

that Sθ|p(Xp, X̄p,Xp, X̄p) = 0.

4.3 Monotonicity for the Chern-Moser-Weyl tensor and CR embed-

dings

Next, we let M̃ ⊂ CN+1 = {(z,w) ∈ CN × C} be also a Levi non-degenerate smooth

real hypersurface near 0 of signature ℓ ≥ 0 defined by an equation of the form:

r̃ = ℑw̃ − |z̃|2ℓ + o(|z̃|2 + |z̃ũ|) = 0. (4.6)

Assume that N ≥ n and let F := (f̃ , g) = (f1, . . . , fN , g) : M → M̃ be a smooth CR

map. We say that F is CR transversal at a point p ∈ M , if the normal component of

F has a non-vanishing normal derivative at p. Assume that F (0) = 0. Then F is CR

transversal at 0 if and only if ∂g
∂w |0 6= 0.
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In the consideration of this chapter, namely, when M and M̃ are both Levi non-

degenerate hypersurfaces with the same signature, the CR transversality of F is equiv-

alent to the local embeddability. More precisely, F is CR transversal at p if and only if

F is a CR embedding from a small neighborhood of p in M into M̃ . When F extends

to a holomorphic map to a neighborhood of p in C
n+1, which is automatically the case

when 0 < ℓ ≤ n/2 by the Lewy extension theorem, this is further equivalent to the

property that F is a local holomorphic embedding from a neighborhood of p in C
n+1

into C
N+1. To see this, we can assume, without loss of generality, that p = 0. Since

by the classical Hopf lemma, when ℓ = 0, either F is a constant map or F is a local

CR embedding at any point in M , we thus assume that 0 < ℓ ≤ n/2. When F is CR

transversal at p = 0, by the following (4.7), we easily see that F is a local embedding

from a neighborhood of 0 in C
n+1. Conversely, if F is not CR transversal at 0, then

near 0, we have g = O(|(z,w)|2) and f̃ = zU +~aw+O(|(z,w)|2), where U is an n×N

matrix and ~a ∈ C
N . Since F (M) ⊂ M̃ , we have

ℑg = |f̃ |2ℓ +O(3), (z,w) ∈M.

We easily see that U ·Eℓ ·Ū t = 0. Here Eℓ is the diagonal matrix with the first ℓ diagonal

elements −1 and the rest diagonal elements 1. Hence, by Lemma 4.2 in [BH], the rank

of U is strictly less than n. Thus the Jacobian matrix of F at 0 can at most have rank

n < n+ 1. Namely, F can not be a holomorphic embedding near 0 in C
n+1.

Since the set of points where a holomorphic map fails to be local embedding is a

complex analytic variety in a neighborhood of M where F is holomorphic, the above

observation has an immediate consequence: When 0 < ℓ < n/2, either F fails to be CR

transversal at any point in M or the set of CR non-transversal points of F in M is an

intersection of a certain proper holomorphic variety with M and thus is a thin set in

M . In particular, when M is real analytic, it has codimension at least 2 in M . Hence,

in this situation, the complement of the set of the CR non-transversal points of F is an

open dense and connected subset of M . (We always assume M,M̃ to be connected.)
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Now, assume that F is CR transversal at 0. Then, as in §2, [BH], we can write

z̃ = f̃(z,w) = (f1(z,w), . . . , fN (z,w)) = λzU + ~aw +O(|(z,w)|2)

w̃ = g(z,w) = σλ2w +O(|(z,w)|2).
(4.7)

Here U can be extended to an N ×N matrix Ũ ∈ SU(N, ℓ) (namely 〈XŨ, Y Ũ〉ℓ =

〈X,Y 〉ℓ for any X,Y ∈ C
N ). Moreover, ~a ∈ C

N , λ > 0 and σ = ±1 with σ = 1 for ℓ <

n
2 . When σ = −1, by considering F◦τn/2 instead of F , where τn

2
(z1, . . . , zn

2
, zn

2
+1, . . . , zn, w) =

(zn
2
+1, . . . , zn, z1, . . . , zn

2
,−w), we can make σ = 1. Hence, we will assume in what fol-

lows that σ = 1.

Write r0 = 1
2ℜ{g

′′

ww(0)}, q(z̃, w̃) = 1 + 2i〈z̃, λ−2~a〉ℓ + λ−4(r0 − i|~a|2ℓ)w̃,

T (z̃, w̃) =
(λ−1(z̃ − λ−2~aw̃)Ũ−1, λ−2w̃)

q(z̃, w̃)
. (4.8)

Then

F ♯(z,w) = (f̃ ♯, g♯)(z,w) := T ◦ F (z,w) = (z, 0, w) +O(|(z,w)|2) (4.9)

with ℜ{g♯′′
ww(0)} = 0.

Assume that M̃ is also defined in the Chern-Moser normal form up to the 4th order:

r̃ = ℑw̃ − |z̃|2ℓ +
1

4
s̃(z̃, ¯̃z) + o(|z̃|4) = 0. (4.10)

Then M ♯ = T (M̃) is defined by

r♯ = ℑw♯ − |z♯|2ℓ +
1

4
s♯(z♯, z̄♯) + o(|z♯|4) = 0 (4.11)

with s♯(z♯, z̄♯) = λ−2s̃(λz♯Ũ , λz♯Ũ) = λ2s̃(z♯Ũ , z♯Ũ).

One can verify that

(−
ℓ∑

j=1

∂2

∂z♯
j∂z̄

♯
j

+
N∑

j=ℓ+1

∂2

∂z♯
j∂z̄

♯
j

)s♯(z♯, z♯) = 0. (4.12)

Therefore (4.11) is also in the Chern-Moser normal form up to the 4th order. Now we

assign the weight of z, z̄ to be 1, and that of w to be 2. We use the standard notation

h(k) and owt(k) to denote terms in the Taylor expansion for the function h of weighted
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degree k and terms vanishing to the weighted degree higher than k, respectively. Write

F ♯(z,w) =
∑∞

k=1 F
♯(k)(z,w). Since F ♯ maps M into M ♯ = T (M̃), we get the following

ℑ{
∑

k≥2

g♯(k)(z,w) − 2i
∑

k≥2

〈f ♯(k)(z,w), z̄〉ℓ}

=
∑

k1, k2≥2

〈f ♯(k1)(z,w), f ♯(k2)(z,w)〉ℓ +
1

4
(s(z, z̄) − s♯((z, 0), (z, 0))) + owt(4)

(4.13)

over ℑw = |z|2ℓ .

Here, we write F ♯(z,w) = (f̃ ♯(z,w), g♯(z,w)) = (f ♯(z,w), φ♯(z,w), g♯(z,w)).

Collecting terms of weighted degree 3 in (4.13), we get

ℑ{g♯(3)(z,w) − 2i〈f ♯(2)(z,w), z̄〉ℓ} = 0 on ℑw = |z|2ℓ .

By [Hu], we get g♯(3) ≡ 0, f ♯(2) ≡ 0.

Collecting terms of weighted degree 4 in (4.13), we get

ℑ{g♯(4)(z,w) − 2i〈f ♯(3)(z,w), z̄〉ℓ} = |φ♯(2)(z)|2 +
1

4
(s(z, z̄) − s♯((z, 0), (z, 0))).

Similar to the argument in [Hu] and making use of the fact that ℜ{∂2g♯(4)

∂w2 (0)} = 0, we

get the following:

g♯(4) ≡ 0, f ♯(3)(z,w) =
i

2
a(1)(z)w,

〈a(1)(z), z̄〉ℓ|z|2ℓ = |φ♯(2)(z)|2+1

4
(s(z, z̄) − s♯((z, 0), (z, 0))), or

〈a(1)(z), z̄〉ℓ|z|2ℓ = |φ♯(2)(z)|2+1

4
(s(z, z̄) − λ2s̃((z, 0)Ũ , (z, 0)Ũ )).

(4.14)

We assume in the following (except in Proposition 4.3.1 and Remark 4.3.2) that

ℓ > 0. Letting z ∈ Cℓ, we get

4|φ♯(2)(z)|2 = s♯((z, 0), (z, 0)) − s(z, z̄)

= λ−2s̃((λz, 0)Ũ , (λz, 0)Ũ ) − s(z, z̄)

= λ2s̃((z, 0)Ũ , (z, 0)Ũ ) − s(z, z̄).

(4.15)

We claim that, for vp ∈ CℓT
(1,0)
p M, F∗(vp) ∈ CℓT

(1,0)
F (p) M̃ and F ♯

∗(vp) ∈ CℓT
(1,0)

F ♯(p)
M ♯.

Indeed, to see this, we need only to notice that for any contact form θ̃ along M̃ , F ∗(θ̃)

is also a contact form of M and

〈d(F ∗(θ̃))|p, vp ∧ v̄p〉 = 〈dθ̃F (p), F∗(vp) ∧ F∗(vp)〉.
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Thus, if vp ∈ CℓT
(1,0)
p M , then 〈dθ̃F (p), F∗(vp) ∧ F∗(vp)〉 = 0 and hence F∗(vp) ∈

CℓT
(1,0)
F (p) M̃ . Next, if we identify z with the (1, 0) vector v =

∑
zj(

∂
∂zj

|0), then (λz, 0)Ũ

is identified with the vector F∗(v). Moreover, z ∈ Cℓ if and only if v ∈ CℓT
(1,0)
0 M .

Set θ = i∂r and θ̃ = i∂r̃. Then

F ∗(θ̃)|0 =
1

2
dg|0 = λ2θ|0.

Write F ∗(θ̃) = kθ, then k(0) = λ2. Hence (4.15) can now be written as:

S̃θ̃|0(F∗(v), F∗(v), F∗(v), F∗(v)) = λ2Sθ|0(v, v̄, v, v̄) + 4λ2|φ♯(2)(z)|2,

or S̃θ̃|0(F∗(v), F∗(v), F∗(v), F∗(v)) = SF ∗(θ̃)|0(v, v̄, v, v̄) + 4λ2|φ♯(2)(z)|2, (4.16)

where v =
∑n

j=1 zj
∂

∂zj
∈ T

(1,0)
0 M. Summarizing the above, we have the following: (In

Proposition 4.3.1 and Remark 4.3.2, ℓ can be 0.)

Proposition 4.3.1 Let M and M̃ be defined by (4.3) and (4.10), respectively. Let

F (z̃, w̃) = (f̃(z,w), g(z,w)) = (f1(z,w), · · · , fN−1(z,w), g(z,w))

be a smooth CR map sending M into M̃ , satisfying the normalization in (4.7) with

σ = 1. Let T be given as in (4.8) and write F# = T ◦ F = (f̃#, g#) as in (4.9). Then,

for any v =
∑n

j=1 zj
∂

∂zj
∈ T

(1,0)
0 M , the following holds:

g♯(2) − w = g♯(3) = g♯(4) ≡ 0, f ♯(2) = 0, f ♯(3)(z,w) =
i

2
a(1)(z)w, and

4〈a(1)(z), z̄〉ℓ|z|2ℓ =4|φ♯(2)(z)|2 − λ−2S̃θ̃|0(F∗(v), F∗(v), F∗(v), F∗(v))

+ Sθ|0(v, v̄, v, v̄). (4.17)

Remark 4.3.2 (1). We notice that when N = n, φ♯(2)(z) ≡ 0. Since the left hand

side of the second equation in (4.17) is divisible by |z|2ℓ and the right hand side of the

second equation in (4.17) is annihilated by ∆ℓ, we conclude that both sides have to be

identically zero and thus we have:

S̃θ̃|0(F∗(v), F∗(v), F∗(v), F∗(v)) = SF ∗(θ̃|0)(v, v̄, v, v̄) for any v ∈ T
(1,0)
0 M. (4.18)

This is the Chern-Moser invariant property (or the biholomoprhic transformation law)

of the Chern-Moser Weyl tensor in the case of N = n.
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(2). Our proof of the above proposition uses the same argument as that first appeared

in [Hu], where a certain version of Proposition 4.3.1 was obtained. We repeated it here

due to the reason that we have to trace precisely how the tangent vectors of type (1,0)

and others are transformed when we normalize the map, which will be crucial for our

later application. Indeed, as in [Hu], in the case of ℓ = 0, we can just assume that the

map F is only a C2-smooth CR map. We should mention that some other versions of

the second equation in Proposition 3.1 were also obtained in the later work (see [EHZ]

[BH], for instance), where this type of the results was called (the CR version of) the

Gauss equation.

Notice that when θ̃ is an appropriate contact form along M̃ , then F ∗(θ̃) is also an

appropriate contact form. From (4.16), we get the following monotonicity property for

the Chern-Moser-Weyl curvature tensor under a CR embedding:

Theorem 4.3.3 Let M ⊂ C
n+1 and M̃ ⊂ C

N+1 be two Levi non-degenerate smooth

real hypersurfaces with the same signature 0 < ℓ < n
2 . Suppose that F : M → M̃ is

a CR transversal mapping (or, equivalently, a local holomorphic embedding). For an

appropriate contact form θ̃ along M̃, p ∈M and vp ∈ CℓT
(1,0)
p M , we have

SF ∗(θ̃)|p(vp, v̄p, vp, v̄p) ≤ S̃θ̃|F (p)
(F∗(vp), F∗(vp), F∗(vp), F∗(vp)).

When ℓ = n
2 , after replacing M by τn

2
(M) and F by F ◦τn

2
(to make F ∗(θ̃) = k̃θ with k̃ >

0) if necessary, we also have the same statement as above. Here τn
2
(z1, . . . , zn

2
, zn

2
+1, . . . ,

zn, w) = (zn
2
+1, . . . , zn, z1, . . . , zn

2
,−w).

Now, assume that F is a holomorphic mapping from a domain U ⊂ C
n+1 into C

N+1.

F is said to be totally degenerate if F fails to be a local holomorphic embedding at any

point inside U , namely, if the rank of the Jacobian matrix of F is less than n + 1 at

any point p ∈ U . Hence, F is not totally degenerate over U if and only if it is a local

holomorphic embedding away from a proper holomorphic variety. Now, let M,M̃ be as

above with M ⊂ U , F ∈ Hol(U,CN+1) and F (M) ⊂ M̃ . If F is not totally degenerate,

then we apparently have F (U) 6⊂ M̃ . Conversely, in case M,M̃ are real analytic, if
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F (U) 6⊂ M̃ , by a result of Baouendi-Ebenfelt-Rothschild [BER] (see already the paper

of Baouendi-Huang [BH] for a related investigation), F is not totally degenerate over

U and thus is CR transversal over a connected dense open subset of M .

As the first application of Theorem 4.3.3, we have the following:

Corollary 4.3.4 Let M ⊂ C
n+1 be a smooth Levi non-degenerate hypersurface of sig-

nature ℓ. Suppose that F is not a totally degenerate holomorphic mapping defined in a

neighborhood U of M in C
n+1 that sends M into H

N+1
ℓ ⊂ C

N+1. Then when ℓ < n
2 ,

the Chern-Moser-Weyl curvature tensor with respect to any appropriate contact form

θ is pseudo semi-negative. When ℓ = n
2 , along any contact form θ, Sθ is pseudo semi-

definite.

Proof of Corollary 4.3.4: By the observation above, since F is not totally non-

degenerate, F is CR transversal over an open dense subset EF of M . Without loss

of generality, we assume that ℓ < n
2 . Since the Chern-Moser-Weyl pseudo-conformal

curvature tensor for the hyperquadric H
N+1
ℓ vanishes, by the previous theorem, we have

for p ∈ EF ,

SF ∗(θ̃)|p(vp, v̄p, vp, v̄p) ≤ 0

when vp ∈ CℓT
(1,0)
p M and θ̃ is an appropriate contact form of H

N+1
ℓ near F (p). This

implies that S is pseudo semi-negative definite at each point p ∈ EF .

When p /∈ EF , let θ be an appropriate contact form at p and X1, . . . ,Xn an orthonormal

basis of T (1,0)M with respect to Lθ on some neighborhood of p, say Up. Indeed, ∀p ∈M ,

choose X1(p), . . . ,Xn(p) to be an orthonormal basis of T
(1,0)
p M with respect to Lθ|p ,

i.e.,

〈Xj(p),Xk(p)〉Lθ|p
=





−1 if j = k ≤ ℓ;

1 if j = k > ℓ;

0 otherwise.

Applying the Gram-Schmidt process if necessary, one can always extend {Xj(p)}n
j=1 to

an orthonormal basis {Xj}n
j=1 (with respect to the Levi form Lθ) of T (1,0)M on some



69

small neighborhood Up of p. Moreover, a straightforward computation shows that for

any vector-valued smooth function ~a(q) = (a1(q), . . . , an(q)) along M near p,

n∑

j=1

ajXj is a smooth section of CℓT
(1,0)Up ⇔ |~a(q)|2ℓ = 0 for all q ∈ Up.

Now for the above p /∈ EF and any vp =
∑n

j=1 ajXj |p ∈ CℓT
(1,0)
p M with aj ∈ C, take

a sequence {qk}∞k=1 ∈ EF converging to p. By the previous argument,
∑n

j=1 ajXj |qk
∈

CℓT
(1,0)
qk

M and Sθ|qk
(vqk

, v̄qk
, vqk

, v̄qk
) ≤ 0 for any k. Moreover, Sθ|q depends smoothly

on q as we mentioned before. Letting k → ∞, we then obtain the desired inequality at

p. �

Remark 4.3.5 From the above, we see the following fact: For any point p ∈M , there

is an open neighborhood Up of p in M and a smooth frame {X1, · · · ,Xn} of T (1,0)Up

such that the diffeomorphism Ψ from T (1,0)Up to Up×Cn defined by Ψ(
∑n

j=1 ajXj |q) =

(q, (a1, · · · , an)) maps CℓT
(1,0)
q Up to {q} × Cℓ for each q ∈ Up.

In Theorem 4.3.3, suppose we only assume that F is not a totally degenerate holo-

morphic map in a neighborhood U of M . Then F is CR transversal along an open dense

subset of M , as observed at the beginning of this section. Assume that F fails to be CR

transversal at p ∈ M . Choose a sequence of points {qj} ⊂ M with qj → p, where the

CR transversality holds. Apply a standard procedure to normalize M and M̃ at q ∈M

and F (q) up to 4th order, respectively, for any q ≈ p. Notice that we can make the

normalizations to depend continuously (or even smoothly) on q and F (q), respectively.

Now, we can similarly define λ(q) as in (4.7). Then λ(q) depends continuously on q

and thus converges to 0 as q → p, by the assumption that F is not CR transversal at

p. Now, applying (4.15) with q = qj and then letting qj → p, we see the following:

Sθ|p(vp, vp, vp, vp) ≤ 0, for vp ∈ CℓT
(1,0)
p M. (4.19)

Here when ℓ < n/2, we have assumed that θ is appropriate and when ℓ = n/2, we have

assumed that F ∗(θ̃|F (qj)) = k̃(qj)θ|qj
with k̃(qj) > 0 for a certain choice of the sequence

qj → p. Hence, we get another application of Theorem 4.3.3:
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Corollary 4.3.6 Let M ⊂ C
n+1 and M̃ ⊂ C

N+1 be two smooth Levi non-degenerate

hypersurfaces with the same signature 0 < ℓ ≤ n
2 . Suppose that F is not a totally

degenerate holomorphic map defined over a neighborhood U of M in C
n+1 with F (M) ⊂

M̃ . Let p ∈M . If F fails to be CR transversal at p (or, equivalently, if F fails to be a

local holomorphic embedding near p), then the following holds:

(I) If 0 < ℓ < n/2, then the Chern-Moser-Weyl tensor at p with respect to any

appropriate contact form is pseudo semi-negative definite.

(II) If ℓ = n/2, then the Chern-Moser-Weyl tensor of M (with respect to any contact

form) at p is pseudo semi-definite.

Corollary 4.3.4 can be used to construct many examples which fail to be embeddable

into hyperquadrics. Here we provide one example as follows.

Example 4.3.7 (1). Suppose that P (z, z̄) is a real-valued homogeneous polynomial of

bidegree (2, 2) for z ∈ Cn (n ≥ 3)and P (z, z̄) > 0 for z 6= 0. Let 0 < ℓ < n/2. Let

M ⊆ C
n+1 be defined by

ℑw = |z|2ℓ −N4(z, z̄) (4.20)

for (z,w) ∈ C
n × C, where N4 is obtained from the following decomposition

P (z, z̄) = N4(z, z̄) +N2(z, z̄)|z|2ℓ

with ∆ℓN4(z, z̄) = 0. Then M cannot be CR embedded into HN
ℓ for any N .

(2). Suppose that P (z, z̄) is a real-valued homogeneous polynomial of bidegree (2, 2) for

z ∈ C
n (n = 2k ≥ 4) and P (z, z̄) does not have a fixed sign for |z|ℓ = 0. (Namely,

neither P ≥ 0 for all |z|ℓ = 0 nor P ≤ 0 for all |z|ℓ = 0.) Let 0 < ℓ = k. Let M ⊆ C
n+1

be defined by

ℑw = |z|2ℓ −N4(z, z̄) (4.21)

as above. Then M cannot be CR embedded into HN
ℓ for any N .

Indeed, (4.20) and (4.21) are already of the Chern-Moser normal form near the origin

and their corresponding Chern-Moser-Weyl curvature tensor Sθ|0(z, z̄) = 4N4(z, z̄).
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Moreover, by the construction of N4, it is pseudo positive-definite in (4.20) and not

pseudo semi-definite in (4.21). Corollary 4.3.4 then directly implies that M cannot be

CR embedded into H
N
ℓ . In particular, the following two real hypersurfaces M1 and M2

can not be CR embedded into real hyperquadrics of the same signature in any C
N :

M1 ⊂ C
4 : ℑw = |z|2ℓ − 1

2(|z1|4 + |z2|4 + |z3|4 + 2|z1z2|2 + 2|z1z3|2 − 2|z2z3|2), ℓ = 1;

M2 ⊂ C
5 : ℑw = |z|2ℓ − 1

3(|z1|4 − |z3|4 − 2|z1z2|2 + 2|z1z4|2 − 2|z2z3|2 + 2|z3z4|2), ℓ = 2.

(4.22)

One may verify that, for M1, the corresponding P (z, z̄) = |z1|4 + |z2|4 + |z3|4 and

N4(z, z̄) = P (z, z̄) − 1
2 |z|4ℓ , which falls into Case (1); while for M2, the corresponding

P (z, z̄) = |z1|4 − |z3|4 and N4(z, z̄) = P (z, z̄) + 2
3 (|z1|2 + |z3|2)|z|2ℓ , which falls into Case

(2).

We conclude this chapter with the following two open problems related to our Corol-

lary 4.3.4, Example 4.3.7 and Crollary 4.3.6:

Question 4.3.8 Let M be a strongly pseudoconvex hypersurface in C
n+1 with n ≥ 1

defined by a real polynomial. For any p ∈ M , does there exist a sufficiently large

positive integer N , which may depend on p, such that a small piece of M near p can be

holomorphically embedded into the Heisenberg hypersurface H
N+1
0 (with signature 0)?

Question 4.3.9 Let M and M̃ be smooth Levi non-degenerate hypersurfaces in C
n+1

and C
N+1, respectively, with N > n. Assume that both M and M̃ have the same

signature ℓ with 0 < ℓ ≤ [n2 ]. Let U be a (connected) neighborhood of M in C
n+1.

Suppose that F is not a totally degenerate holomorphic map from U into C
N+1 with

F (M) ⊂ M̃ . Is then F a local holomorphic embedding along M?
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