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ABSTRACT OF THE DISSERTATION

Towards a Local-Global Visual Feature-Based Framework for

Recognition

by ZHIPENG ZHAO

Dissertation Director: Ahmed Elgammal

General object and activity recognition is a fundamental problem in computer vision, which has

been the subject of much research. Traditional approaches include model-based and appearance

template-based methods. Recently, inspired by methods from the text retrieval literature, local

visual feature-based models have shown a lot of success for recognition of objects or activities

with large within-class geometric variability.

There are several challenges in this approach, namely feature selection and target modeling

using these features. This thesis proposes a local-global visual feature-based framework for

general object and activity recognition with novel methods for these problems:

1) Combinatorial and statistical methods for selecting informative parts to build statistical

models for part-based object recognition. First a combinatorial optimization formulation is

used for clustering on a weighted multipartite graph. Second, a statistical method for selecting

discriminative parts from positive images is used to localize objects.

2) An entropy based vocabulary selection method for “bag-of-words” models for activity

recognition.

3) Integrating both spatial and temporal information with appearance features for human

activity recognition. This method models the human motions with the distribution of local

motion features and their spatial-temporal arrangements.
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The effectiveness of the proposed methods is demonstrated by several object recognition

and activity recognition data sets, which include human facial expressions and hand gestures,

etc.

This thesis also covers an interesting project regarding a framework of applying Discrete

Fourier Transform to detect salient regions in images and video sequences. This framework

generalizes the previous saliency detection methods and can be applied for saliency detection

in the video sequences.
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Chapter 1

Introduction

1.1 Motivations

With recent advance of technology, huge amount of digital multimedia data, such as images

and video clips, are produced by digital cameras, camcorders and cell phones. For example, in

the financial district of London, many surveillance digital cameras are deployed on the streets

to monitor suspicious activities. Every day and night, they keep feeding continuous video data

into the security surveillance systems for analysis. Ordinary people are also important contrib-

utors for digital data. Thanks to the cheap prices, more and more people can afford consumer

level cameras and camcorders. They can produce, post and share their photos and video clips

on their own web sites, blogspace and other online media sharing services, such as image

sharing service from Flickr (http://www.flickr.com), video clips sharing service from youtube

(http://www.youtube.com), personal web space such as facebook (http://www.facebook.com)

and myspace (http://www.myspace.com).

All these digital medial data generated everyday motivates people to explore possible busi-

ness opportunities from these data. A common approach is to extract the information contained

in these images and videos. However, it is very difficult and expensive to manually annotate

the content for them. Currently, these data are simply too large to be handled by human ex-

perts. And even if we could do it, the expense will be very high. So automatic analysis for

digital images and videos is the possible solution. Some commercial products have already

been developed for analyzing these multimedia data. For example, in the field of video data

analysis, On-Net Surveillance System, Inc (http://www.onssi.com/) has developed a complete

suite of softwares which support video capture, content analysis and video intelligence. For

image analysis, most of the famous search engines, such as Google (http://www.google.com),

Yahoo Inc (http://www.yahoo.com) and Bing (http://www.bing.com) have support for image
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search, though most of these search are based on the text information surrounding the image

to infer the content. Unlike the above, Like.com (http://www.like.com) has built one of the

earliest visual-based search engines, where the visual content of the photos are used to retrieve

similar items.

However, current state-of-art systems are still limited in their capabilities in handing com-

plicated data. So how to automatically recognize the content of the media and later extract the

information contained inside remains a big challenge for computer vision scientist around the

world. And successfully solving this problem will lead to many applications far beyond what

we previously mentioned. For examples:

1) Human computer interaction: Human gestures can be recognized by computers so that

we will no longer solely reply on the traditional input devices such as keyboard and mouse

to communicate with computers. Human computer interaction can be applied in applications

such as signaling in high noise environment including airports and factories, sign language

translation and gesture driven control for people with disability.

2) Manufacturing: The recognition of defects can be used in visual inspection for quality

control during the manufacture of parts in the automotive industry or in the inspection of semi-

conductors. In a broader scope, the recognition of objects can help the visual control of robots

during assembly of parts from pieces or during the calibration of robot control system.

3) Media analysis: Media analysis has many applications in the content-based indexing of

sports video footage, personalized training in sports and image analysis for clinical study of

patients.

4) Defense: The future “smart weapon” will have the recognition capability. Automatic

target recognition system on these weapons can help navigate the cruise missiles or guide the

air to surface missiles for targets.

1.2 The Goal and the Current Approaches

1.2.1 Goal

In order to extract the information from these multimedia data, a common approach is to recog-

nize the objects in the images or the activities from the video sequences. Here the recognition
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is categorization in a more strict sense, because we want the computers to recognize all the

instances in the same category, even for those the computers have not learnt before.

In the last two decades, extensive research has been conducted on general object or activity

recognition in the field of computer vision. However, the state-of-art computer systems for

analyzing and understanding these multi-media data are still quite limited and in many cases can

only work in a constrained environment. The challenge comes from the following difficulties

existing in this problem:

1) Variability within specificity: There might be large variability within the same cate-

gory. For example, there are chairs with different size, style, color and texture within the same

category. How to learn a generalized representation for all these different chairs in the same

category from a finite number of training data is a big challenge.

2) Variations in scale, orientation and visibility: Even for the same instance of the target,

the different scale caused by the distance between the object and the camera when the image

is taken, the different pose which leads to the different orientations in the image, the different

illumination conditions when the image is taken or the video is recorded, and whether part of

the target is hidden all lead to very different intensity representation of the target in the image

or video. Recognizing the target regardless those factors is very difficult.

3) Target of interest might have to be recognized in the context of multiple instances of the

same or the different target and against the cluttered background: The introduction of other

objects and the cluttered background makes the already difficult problem even worse. The

cluttered background adds noises for the target recognition. The inclusion of other instances of

objects might occlude the target and might have negative impact when inference of the target is

based on the knowledge of spatial location and arrangement of the target.

Facing all these difficulties, the goal for research in the field of recognition is to find a gen-

eral framework to recognize both object and the activity within the difficult context regardless

of all the variations in the target class.

1.2.2 Current Approaches

Current approaches for object and activity recognition can be broadly divided into three cate-

gories: model based methods, appearance template search based methods and the local feature
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based methods.

In the model based methods, we learn the geometric models from the training data and infer

the geometrically transformed target from the model. For object recognition in the image, we

learn a geometric model for the object and later try to match the target in the test image with

the geometric transformed projection of the model. For activity recognition, we can first build

a three dimensional model then use it to locate and track the movement of limbs in the video

sequences prior to the recognition of the activity.

However, for this method to work, we need to first obtain an accurate geometric model,

which by itself is a difficult problem. And learning such a model could be an overshot for

recognition. For example, for activity recognition, we might not need to track all limbs before

we do the recognition. This motivates research on obtaining descriptor directly from the image

or video without building the geometric model for recognition.

Appearance template search based method belongs to such methods. In this approach,

appearance templates are directly learnt from the training data. For activity recognition, spa-

tiotemporal descriptor, which could be motion energy image (MEI) and motion history image

(MHI) [7] or is based on optical flow[14], is directly learnt from the data without tracking the

limbs. For object recognition from the images, the appearance templates can work as classifier

to search the image at different locations and scales for the best match of the target class.

However, such approaches are only successful in modeling the target with wide within-

class appearance variation. These templates are often rigid and limited when the within-class

geometric variation is large, such as in the case of recognizing a deformable target. An extreme

example is that these approaches have difficulty in handling the occlusion problem.

Recently, local visual feature based methods for recognition have gained much attentions.

In these approaches, the target is modeled as a collection of image patches or local motion

features with distinctive appearance and spatial arrangements. The recognition is inferring

the target class label based on the similarity in features’ appearance and their arrangements.

The spatial arrangements of the local visual features can be modeled as either fully connected

model [17] or star model [18] or simply ignored such that all local visual features follow the

“bag-of-words” model [94].

The local visual features based approach directly models the appearance and the spatial
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arrangements of local visual features, so it can avoid the difficult geometric modeling building

process in model based method. Typically, it model the target object class on the statistical

properties of the local visual features, so it is not rigid and can handle deformable target in

some occlusion cases.

1.3 Our Approach and Contributions

Our approach is in line with the local visual feature based approach. We aim to build a model

with both global and local, both appearance and spatiotemporal information from the local

visual features for the target class. And this is a general framework, which is not be limited to

specific object or action classes, and it can recognize object and action in the same fashion.

Typically, the whole process of local feature based recognition can be divided into four

stages, as shown in Figure 1.1. The first stage is feature extraction and representation. Usually

in this stage, low level vision feature detectors are applied to extract and represent the salient

local visual features from the images or the videos. The next step is to select the informative

local features that best characterize the target, because many of local features could come from

the cluttered background and are irrelevant to the target. Then we try to model the target using

the selected local features. In the fourth step, with the local features detected from the testing

data, we will perform recognition using the model we learnt from the training data.

The work presented in this thesis address problems in all stages of the whole process.

1.3.1 Local Visual Features Selection and Its Application in Probabilistic Object

Recognition Model

In this project, we try to learn a local visual feature based model for the target object in the

image. The experimental setting is semi-supervised. So the training images are not segmented

and we only know whether or not target objects exist in the images but not their locations.

In most cases, the target objects coexist with cluttered backgrounds. So the initial salient local

visual features, which are detected by low level vision detectors applied to the images, are large

in number, redundant and often correspond to the clutters in the images. Finding actual object

features coming from the target is essential for learning a representative object class model.
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Figure 1.1:The workflow for a typical local visual feature based recognition framework

In our work, we introduce two complementary approaches for unsupervised selection of

discriminative local features:

1) A combinatorial approach: In this approach, we want to find the best subsets of local

visual features common to the positive examples but distant from the negative ones. This is a

combinatorial problem because we want to find out the best subsets out of all possible com-

binations. We apply Akshay’s [87] clustering method on a multipartite graph for this problem

and obtain the optimal solution inO(|E|+ |V | ∗ log|V |) time, given the defined score function

for the subset.

2) A Statistical approach: In this approach, we want to find the local visual features that best

discriminate between the positive and the negative classes. Inspired by the boosting method,

we build classifiers upon local visual features and use their performance on the evaluation data

sets as the criteria for choosing the characteristic local features.
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3) Sequential combination of the above approaches: Since the above two approaches com-

plement each other, we experiment with the sequential combination of these two methods and

find it yields the best performance.

Because the above approaches do not use any property specific for computer vision prob-

lem, they can be applied for general feature selection in other applications as pre-process meth-

ods to remove noise from the original data and obtain the features from the target.

1.3.2 Vocabulary Selection for ”Bag-of-Words” Model

“Bag-of-words” model is a common modeling method for local visual features, which origi-

nated from text document representation. In this approach, words are modeled as independent

from each other with the naive Bayesian assumption. And the document is represented as the

joint distribution of words contained in the document. Typically, the joint distribution is ap-

proximated by the relative frequency of the words, which is the normalized histogram of the

words.

Similarly, in computer vision, local features are quantized into visual words, typically via

clustering on the local visual features and later assigning visual word labels to them. And the

target is represented by these visual words in a “bag-of-visual-words” model similar to those in

the text document representation.

However, not every visual word is equally important to represent the target. For a particular

domain, some visual words are more characteristic than the others in describing the target. In

our work, we introduce entropy based vocabulary selection methods for the “bag-of-words”

model where the visual words are chosen based on the entropy of the clusters they come from.

In our work, we explore two methods for entropy based vocabulary selection:

1) Hard selection: In this method, we discard a certain percentage (defined as discard rate)

of the least important visual words in the vocabulary. For different applications, we experiment

with different discard rates for an optimal value.

2) Soft selection: In this method, we keep all the visual words in the vocabulary but assign

different weights to them according to the their importance measured by the entropy.

Our approaches are different from the local visual features selection. The latter is selecting
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the local visual features coming directly from the data detected by the low-level vision feature

detector. Our approaches are selecting clusters of local visual features based on their entropy.

Since we assign visual word label to each of the cluster, this vocabulary selection is in a higher

level in the recognition framework and has semantic meaning.

1.3.3 Integrating of Spatiotemporal Information into the “Bag-of-Words” Model

Similar to the original model in the text document representation, the traditional “bag-of-

words” model used in computer vision also assumes the spatial and temporal independence

among local visual features and ignores the spatial and temporal arrangements of local visual

features. However, such arrangements could be very helpful for recognition because they pro-

vide the global context information for the local visual features.

In our work, we present two methods to capture the spatial and the temporal information

in the representation for local visual features . Together with the appearance information con-

tained in the local visual features, such rich representation has more discriminative power and

can lead to better recognition performance:

1) Model the video sequence as the distribution of local visual features in a spatial-temporal

pyramid structure. In this method, we recursively partition the visual features detected in a

sequence along the x-y-t dimensions and use the concatenated weighted histogram from each

subdivision as the representation for the sequence.

2) Model the key frames in the video sequence as the distribution of temporal integration

of local visual features in a pyramid structure. In this method, we first select key frames based

on the sum of the discriminative power of the visual words contained in them. Then for the

key frame i, we recursively partition the visual features, which are detected in it and integrated

from temporal adjacent frames, along the x-y dimension and use the concatenated weighted

histogram from each subdivision as the representation for the sequence.

Because we have extended the “bag-of-words” model along two directions, namely the vo-

cabulary selection and the integration of spatiotemporal information, we also test the sequential

combination of both extensions. Experiments have shown the combination approach slightly

improve the performance in most cases.
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1.3.4 Salience Detection via Discrete Fourier Transform

Salience detection is an important early step in the recognition process. It indicates the regions

where human usually pay attention to before the recognition takes place. Correct salience

detection can lead to faster recognition in the image or from the video because the later stage

of recognition, including feature detection, selection and the modeling, only need to be applied

to the detected salient region.

In our work, we present a method for saliency detection from the frequency domain using

Discrete Fourier Transform (DFT). This approach addresses the saliency detection as a redis-

tribution of energy for the components with different frequency in the amplitude spectrum.

After Discrete Fourier Transform of the original data, we apply logarithmic transform to the

amplitude components such that the components at higher frequency can be comparable to

those at lower frequency. After such transform, the amplitude components at higher frequency

is no longer dominated by those from lower energy such that the reconstructed data from the

transformed amplitude components with the corresponding phase components will indicate the

salience regions.

This method explains other previously published methods and introduces its own logarith-

mic transform for the amplitude components. It can also be applied to the three dimensional

data, e.g. video sequences, for salience detection.
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Chapter 2

Related Work

In the last four decades, extensive research has been conducted on general object or activity

recognition in the field of computer vision. One of the earliest computer vision experiments

was carried out in M.I.T in the summer of 1965 [58]. It involved locating and recognizing

individual block from a small database of blocks. It turned out that the recognition problem is

much more difficult than people had previously expected, as the project was originally planned

to be finished in a summer. Its difficulty lies in the following perspectives:

1) Large variability within the category.

2) Variations in scale, orientation and visibility for the same object.

3) Target might have to be recognized in context of multiple instances of the same or the

different target and against cluttered background.

To address these difficulties, current approaches for recognition can be broadly divided into

three categories:

1) Model based methods.

2) Appearance template search based methods.

3) Local visual feature based methods.

Since the research on recognition is a fundamental problem which has been studied for

many years with huge amount of literature, I will only briefly review the related work in this

chapter.

2.1 Model Based Method

Everyday experience tells that human usually recognizes a target by comparing it to the knowl-

edge stored in the memory. One of the possible forms of the knowledge is the geometric
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model. Thus the model based approaches for object or activity recognition arise naturally. In

these model based methods, we learn the geometric models from the training data and compare

the target with the geometrically transformation from the model.

For object recognition in the image, we learn a geometric model for the object and later try

to match the target in the test image by a geometrically transformed projection. The geometric

model is typically obtained through integration of data points from several viewpoints of the

training objects for information from all viewing angles. Then these data points are integrated

in a coherent fashion to provide a two dimensional or three dimensional model for the target

class.

Once geometric model is established, the recognition for object in the test image is carried

out by matching the model and the object. This is usually performed in two steps. In the first

stage, a correspondence is established between the model and the object. Such match tasks are

usually solved by searching for all promising matches. Various attempts, which mainly using

the geometric constrains, have been tested for reducing the search complexity. In the second

stage, with the correspondence, a geometric transformation is derived such that the model can

be projected onto the target in the image.

Grimsonet al. [26, 27] proposed an object recognition system which used tree search to

test all possible correspondences between the data and the model. Geometric constrains were

applied to prune the search tree and avoid testing all combinations of possible correspondences.

However, the number of combinations still increased rapidly with the complexity of the objects

and the scenes, so it could only be used for recognition within limited conditions.

Ullman and Huttenlocheret al. [34, 35] suggested using a minimum amount of informa-

tion with highly descriptive features in their alignment approach. Assuming pose consistency,

they used a small number of pairs of model and image features to align the model with the

image. Then the aligned model was compared directly with the image for verification by back

projecting the object model to the image.

Other methods based on geometric hashing were suggested by Lamdan and Wolfsonet al.

[95, 43]. In these methods, an object was represented as geometric information about groups of

model coordinates in a transformation invariant form and stored in hash table. At recognition

phase, groups of target coordinates were used to index into the hash table and vote for possible
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correspondence with the model.

For activity recognition, typically a three dimensional model is built and used to locate and

track the movement of limbs in the video sequences prior to the recognition of the activity.

This requires a model of the body, whether a three dimensional model or a two dimensional

view based model. Different models for human bodies, such as stick figures, two dimensional

contours or volumetric model, are used for motion analysis of human body parts through video

sequence. Usually, the the process for motion analysis can be divided into three steps [3]:

1) Feature extraction.

2) Finding feature correspondence.

3) High-level processing.

In the finding feature corresponding step, geometric model is used to establish correspon-

dences between the images and the model data such that the tracking of features between the

consecutive frames is automatically achieved.

Chen and Leeet al. [9] has used a stick figure to represent human body parts. This model

includes 17 line segments and 14 joints. Both torso and hip parts were assumed to be rigid.

Various kinetics and kinematics constraints were imposed for the analysis of the gait. Given

a two dimensional projection, this method tried to recover three dimensional configuration by

searching all possible combinations to locate the three dimensional coordinates of the joints

and find their angles. So this method was computational expensive and required an accurate

extraction of two dimensional stick figures.

Leung and Yanget al. [47] modeled the poses of human performing gymnastic move-

ments with a two dimensional ribbon model. This model was made up with a body trunk, 5

U shaped ribbons, 7 joint points and several mid-points of the segments. The human outlines

were extracted and used to interpret human motion. A complete outline of moving object was

generated by edge detection and the side of the moving edge belongs to the moving object was

determined by a spatiotemporal relaxation process. Then a description of the body parts and

the appropriate body joints were obtained.

A collection of elliptical cylinders is one of the most commonly used volumetric models

for human forms. Hogget al. [30] has used such cylinder model to represent the human

body parts with 14 elliptical cylinders. Each cylinder had three parameters: the length of the
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axis, the major and the minor axes of the ellipse cross section. Given the video sequence, a

differentiating algorithm was applied to produce isolated regions of the moving object, which

served as indications of the object’s size, location and rough posture. Next, a Sobel filter [78]

with a fixed threshold was used to extract the outline of the object. Then an exhaustive search

was applied to find the corresponding posture, which was the best match for the image, to

generate a three dimensional structural description for the walking person.

However, for these model based methods to work, we need to first obtain an accurate model,

which by itself is a difficult problem. Firstly, errors present in the data acquisition step, such

as digitization noise and system distortions can affect the modeling step, which in turn, could

further complicate the matching step. Secondly, we need technique to register the data obtained

from different view angles to generate the model in a coherent fashion. This may also introduce

additional error. Thirdly, we need to incorporate all possible viewpoints to build a complete

model. So the model construction phase might be difficult.

And the model based method requires geometric identification and location of the joints

and body segments, which is difficult. On the other hand, learning such a model could be

an overshot for recognition. For example, as pointed out by Polana and Nelsonet al. [67],

we might not need to track all limbs before we do activity recognition. In their work, they

found that the movements of the torso was sufficient and they bound the walking object by

a rectangle box, of which the centroid is used for tracking. So it is computationally more

efficient to recognize the human activities by directly using the uninterpreted low-level visual

features. This motivates research on obtaining descriptor directly from the image or video

without building the geometric model prior to the recognition phase.

2.2 Appearance Template Search Based Method

Appearance template search based methods belongs to the school of methods without geometric

models. In this approach, appearance templates are directly learnt from the low level visual

features extracted from the training data without a geometric model. Then the appearance

templates can be used to match the same low level visual features in the same representation

from the testing data. The matching can be carried out using correlation or other classification
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methods such as support vector machine (SVM).

Another advantage of appearance template search based methods over the geometric model

based methods is that the former contains appearance information, which is important for

recognition while the later mostly depends on shape information, which is not sufficient. And

acquiring the appearance model can be easier than acquiring the geometric models.

For object recognition from the images, the appearance template can work as a classifier

to search the image at different locations and scales for the best match of the target class. H.

Schneiderman and T. Kanadeet al. [74] built a successful system to recognize faces from

the images. Multiple face templates were built for different poses. And the templates were

sliding across the image at different locations for the best match. Michael Orenet al. [65]

used a similar approach to detect pedestrian by using wavelet templates. Normalized wavelet

coefficients were used as templates and the detection window was shifted across all possible

locations and scales. The matching value was the ratio of the coefficients in agreement or the

comparison was done using support vector machine.

To speed up the process, Paul Violaet al. [89] adopted a variant of AdaBoosting method for

feature selection and classification. In their approach, an attentional cascade of classifiers based

on appearance templates, with their complexity from simpler to more sophisticate, was applied

to the image. In this framework, simple, boosted classifiers could reject many of negative

sub-widows, leaving the tasks of detecting all positive instances to more sophisticate classi-

fiers. And series of such simple classifiers could achieve good detection performance which

eliminated the need for further processing of negative sub-windows.

Eigen based representation is a common approach to represent target with different factors,

such as poses, shapes and illumination conditions. In this approach, the eigen space, which is

a lower dimensional feature subspace with image basis, is learnt from the training data. And

the object, which is described as a linear combination of the image basis, can be represented as

the projection into this feature space. M. Turk and A. Pentlandet al. [84] used this approach

to learn ”eigen faces”, which were the image basis in the eigen space, from the training data

in a face recognition system. Then all the faces could be represented as a linear combination

of these eigen faces. This approach could be further extended for learning both content and

the style factors. W. Freemanet al. [80] have applied a bilinear model to factor out the style
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and the content information for recognizing letters with different styles and head poses from

different persons. The work from Lee and Elgammal [46] has explored separating the style and

content factors in a non linear manifold space.

Active shape and appearance model is another approach to statistically learn deformable

objects through linear models of certain landmarks. In active shape model, Tooteset al. [11]

learned a statistical model for the shape of the objects from the statistical distribution of the

landmark points in the training data set. In the recognition phase, the model was iteratively

deformed to fit the object in the test image. In active appearance model [10], statistical model

for both object shape and appearance was learnt from the landmark distribution in the training

data.

For activity recognition, spatiotemporal descriptor can be directly learnt from the data with-

out tracking the limbs. Bobicket al. [7] used two temporal templates, Motion-Energy Images

(MEI) and Motion-History Images (MHI) to represent activities. MEI indicated where there

was motion and MHI indicated how the motion was happening. The template matching was

done by using seven Hu moments [33] as features, which were reasonable discriminative in a

translation and scale invariant setting.

Optical flow [31] is another commonly used low level motion feature. In the work of

Polana and Nelsonet al. [67], optical flow fields were computed between consecutive frames

and partitioned into spatial grids in both X and Y directions. The motion magnitude in each

cell was summed to form a high dimensional feature vectors for recognition. Efros et al [14]

also proposed a spatiotemporal descriptor based on the global optical flow measurement.

However, appearance template search based approaches are only successful in modeling

the target with large within-class appearance variation. These templates are often rigid and are

limited when the within-class geometric variation is large, such as in the case of recognizing

deformable target. An extreme example is that these approaches have difficulty in handling

occlusion problems.
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2.3 Local Visual Feature Based Method

Recently, the local visual feature based methods for recognition have seen many successful

results [19, 50, 73, 96, 2, 8, 17, 18, 82]. In these approaches, the target is modeled as a collection

of image patches or local motion features with distinctive appearance and spatial arrangements.

The recognition is inferring the target class label based on the similarity of features’ appearance

and their arrangements. The spatial arrangements of the local visual features can be modeled

either as fully connected model or star model [18] or simply ignored such that all local visual

features follow the “bag-of-words” model [94].

Because these approaches directly model the appearance and the spatial arrangements of

local visual features, they can avoid the difficult geometric model building process in model

based methods. Typically, they model the target object class based on the statistical properties

of the local visual features, so they are not rigid and can handle deformable target in some

occlusion cases.

Historically, extensive research has been conducted in this direction. Here I will briefly

mention a few milestones along the way. The paper by M. Fischler and R. Elschlager [19]

was one of the earliest papers introducing the concept of pictorial structure, which modeled

the target as a collection of local visual features. Schmidet al. [73] proposed a local feature

based model with voting scheme. A series of papers from David Lowe [50, 51] described SIFT

feature detector and representation, which is the current state-of-art local feature representation

for objects in the image. Dorkoet al. [13] introduced a part selection method, which aimed

to remove local visual features detected from noisy background. For modeling of target by

using local visual features, Jutta Willamowskiet al. [94] suggested “bag-of-words” model,

which originated from text document representation and Ferguset al. [17, 18] pioneered a

probabilistic part based model.

Roughly speaking, there are four phases in the process of local feature based recognition:

feature extraction and representation, feature selection, target modeling and target recognition.

I will review each of them in the following subsections.
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2.3.1 Feature Extraction and Representation

There are a large amount of literature regarding local visual feature detection and representa-

tion. Please refer to [49] for a comprehensive review.

Generally speaking, local visual features are meaningful, detectable parts of image or video

sequence. Usually they are located in places where there exist sudden changes, such as edges,

corners and where the information content is rich. For a good feature detection algorithm, it is

desirable to have the following characteristics:

1) They can detect local visual features at highly informative regions such that most of the

information from the image or video sequence are still retained in this sparse representation of

image or video by using local visual features.

2) The number of visual features they can detect is sufficient to build robust statistical model

for the target and at the same time, not too large for the propose of reducing the computational

burden.

Moravec’s corner detector [60] was one of the earliest corner detectors. It seeked the lo-

cal maximum of the intensity changes by shifting a binary rectangle window over an image.

However, the response of this detector was noisy and sensitive to edges. To reduce these short-

comings, Harris corner detector [29] was developed. This detector first computed the Harris

matrix A, which was the second moment matrix and related to the derivatives of image inten-

sity. Then the detector computed Harris matrix eigen valuesλ1 andλ2, which indicated the

principal curvature ofA. To reduce the computational complexity, the Harris corner metric

mk = det(A)− kTr2(A) replaced the eigenvalues for corner indication: i) ifmk is small, the

pixel is in a uniform intensity region. ii) ifmk < 0, the pixel is on the edge. iii) ifmk > 0, the

pixel is a corner. The detected feature point was invariant to rotation, but it failed to deal with

scale changes.

David Lowet al. [50, 51] pioneered a scale invariant local feature named the scale invariant

local feature (SIFT). It included both detector and descriptor. The SIFT detector found the

local maxima/minima of a series of difference of Gaussian (DoG) that occurred at multiple

scales of the image. And the interest points were represented as the histograms of the gradient

orientations in the scale of the points. Milolajczyk and Schmidet al. [57] developed the
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Harris-Laplace detector by combining i) Harris corner detector. ii) the Laplace function for

characteristic scale selection.

Another interesting approach for feature detection is based on salient region detection.

Kadir and Brady [40] proposed the saliency region detector, which was based on the proba-

bility of density function of intensity valuesp(I) computed over an elliptical region. The scale

was selected to maximize the entropy density of the detected region.

Similar methods can be applied to video sequence for local motion feature detection, only

with additional consideration for the changes in the temporal domains. These local visual

features can be trajectories [98], flow vectors of corners [15, 79] or spatiotemporal interest

points. Among them, spatiotemporal interest points can be obtained more reliably and thus be

used widely in motion classification.

Schuldtet al. [76] generalized Harris corner detection to detect spatiotemporal features

in the video sequences. The basic idea was to find gradients along x, y and t dimensions

and the spatiotemporal corners were represented as local gradient vectors point in orthogonal

directions spanning x, y and t dimensions. The second moment matrix was now3 × 3 matrix

and the response function was again based on the rank of this matrix. This feature detection

algorithm was simple and elegant, however, the features it generated might be too sparse in

some cases. To over this shortcomings, Dollaret al. [12] proposed a motion detector based on

the application of separable linear filter. Two dimensional Gaussian kernel was applied along

spatial dimensions and a quadrature pair of one dimensional gabor filter was applied along

temporal dimension. Then the spatiotemporal was detected if the magnitude of the response

function is larger than a threshold.

Typically, feature detection stage is followed by feature description stage. A good feature

representation is desired to have the following characteristics:

1) The representation is robustic to the view point change and translation, scale and orien-

tation transformation.

2) The representation is robustic to the change of illumination condition.

3) The representation is tolerant of object deformation and partial occlusion.

One of the earliest local descriptors used local derivatives [42]. Schmid and Mohret al.

[73] extended the local derivatives and used the local gray value invariants for image retrieval.
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Freeman and Adelsonet al. [20] proposed steerable filters, which were linear combination of a

number of basis filters, for orientation and scale selection. The 2rd moments of detected image

patches, which were computed based on the derivatives of x and y directions, were used by Van

Coolet al.[24].

Local descriptor can also be used to represent both local and global shapes. After the edge

in the image patch is detected, distance transform, which is the distance from all non-edge

pixels to their nearest edge, can be used as a local shape descriptor. Shape context, introduced

by Belongie [5], described the shape through distribution of the rest of the points in a polar

coordinate system with a reference point as the origin.

The SIFT descriptor has been proved to be effective by many past research. The basic

idea is to compute a histogram of gradient magnitudes and orientations in each cell partitioned

from the neighborhood of interest points detected by SIFT feature detector. PCA-SIFT was

proposed by Ke and Sukthankaret al. [41] to simplify the SIFT descriptor by applying principal

component analysis(PCA) to normalized gradient patches. It can achieve fast matching and is

invariant to image deformations.

2.3.2 Feature Selection

Because the initial number of the extracted features is large, and oftentimes the features are

redundant or correspond to the clutters in the image, feature selection is important as it involves

deciding which extracted features are most suitable for improving recognition rate. Finding

features that come from the actual object can reduce the dimensionality of the problem and is

essential for learning a representative object model to enhance the recognition performance.

Weberet al. [93] suggested the use of clustering algorithm to find the common object

patches and to reject the background clutters from the positive training data. In this approach,

large clusters were retained as they were likely to contain patches from the target object. A

similar approach was used in [48]. However, there is no guarantee that a large cluster will

contain only target object patches.

Dorko and Schmidet al. [13] extended this clustering based local feature selection approach

in a supervised learning setting. In their work, classifiers, which were supporter vector machine

(SVM) and Gaussian Mixture model, were built upon clusters of local features. Then the
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likelihood ratio and mutual information for these classifiers were used as criteria to choose the

more informative cluster of local features.

Other feature selections methods combine feature selection with local feature representa-

tion. Viola and Joneset al. [89] selected rectangle features with an Adaboost trained classifier.

Mahamud and Hebertet al. [54] selected discriminative object parts and developed an optimal

distance measure for nearest neighbor search. Dashan Gao and Nuno Vasconceloset al. [22]

used discriminative saliency, which was defined as mutual information, for selecting the local

visual features.

2.3.3 Target Modeling and Recognition

Since usually the modeling and the recognition phases are highly related, I will review both in

one subsection.

A common approach for local visual features based modeling is to build a statistical model

for the target. Both generative and discriminative models have been applied to local visual fea-

tures. In the generative model, usually a joint probability distribution of the observation and the

target are estimated while discriminative model directly estimates the conditional probability

distribution of target given observation, which is used to predict target from the observation.

A series of work from Caltech vision groups follows the line of generative statistics mod-

eling. Weberet al. [93] modeled objects as a flexible constellations of parts. A generative

probabilistic model was defined through the joint probability density of parts and the hypoth-

esis of the hidden data. This model explicitly accounted for shape variances, the randomness

in the missing data due to detector error or occlusion and the image clutter. In the later work

of [17], they simultaneously modeled all aspects of the object, including appearance, shape,

relative scale and occlusion with a probability representation . In the learning stage, the model

was estimated using expectation-maximization (EM) in a maximum-likelihood setting. In the

recognition stage, this model was used in a Bayesian manner to classify images. In the work

of [18], they proposed a heterogeneous star model(HSM) to simplify the training aspects of

the constellation model. In this work, both learning and the recognition stages had a lower

complexity such that this model could handle substantially increased number of the detected
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features. This enabled it to better model targets with significant intra-class variation in appear-

ance. Xiaoxu Maet al. [53] used a similar approach for vehicle classification. In their work,

a repeatable and discriminative feature based on edge points and modified SIFT descriptors

were used in a modified version of the constellation model. For human action classification,

Niebleset al [62] used a probabilistic Latent Semantic Analysis (pLSA) model for a collection

of spatial-temporal visual feature.

Numerous machine learning algorithms for discriminative models have been applied to the

local visual feature framework. Boosting, which was proposed by Freundet al. [21], have

been successfully used by Violaet al. [90] as the ingredient for a fast face detector and by

Schneidermanet al. [75] to improve an already complex classifier. In the work of Opeltet

al. [64], weak hypotheses were proposed based on different local visual features such as shape

context and SIFT features. Boosting was used as the underlying learning technique. Recently,

support vector machine (SVM) and kernel methods have begun to be used for appearance based

object recognition. Pontilet al. [68] demonstrated the robustness of SVM to noise, bias in the

registration and the moderate amount of partial occlusions. Schuldtet al. [76] used support

vector machine (SVM) classification scheme for local space-time features in the application

of human action recognition. Vidal-Naquetet al. [88] compared different combinations of

features and classification schemes. They found out combining superior informative class-

specific features with linear classification could obtain efficient object recognition than generic

wavelet features with more complex Bayesian Network classification.

“bag-of-words” model is another commonly used model for local visual feature based ap-

proach. Inspired by a similar text retrieval approach, it models the objects by the distribution

of words from a fixed visual code book. This code book is usually obtained by the vector quan-

tization of local image visual features via clustering algorithm, e.g. k-means clustering. The

“bag-of-words” model has been used successfully for object categorization [63, 94, 72, 51].

In the work of Schieleet al. [72], multidimensional receptive field histograms were used to

approximate the probability density function of local appearance. David Loweet al. [51] used

a k-d tree with a best-bin-first modification to find the approximate nearest neighbors to the de-

scriptor of the query. Nisteret al. [63] implemented an hierarchical vocabulary tree to deal with

the scalability of the problem. This tree allowed a larger and more discriminative vocabulary
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to be used efficiently. Lazebniket al. [45] extended this line of work by using a hierarchical

histogram to integrate the spatial information into the appearance information.

Recently, “bag-of-words” methods have also been applied in activity recognition, as demon-

strated by [12, 76, 81]. In these methods, the local visual features are spatiotemporal motion

features. Many work focused on a good local feature detection and representation [12, 76].

Typically they model the target with the histogram representation, ignoring the spatial tempo-

ral arrangements among the local visual features.

2.4 Saliency Detection

Saliency detection plays an important role when visual recognition must be performed in clut-

tered scenes. It has been a subject of research for a few decades. Broadly speaking, the saliency

detection approaches can be divided into three major classes.

The first one treats the problem as detecting specific visual attributes such as edge and

corners. These are usually edge and corner detectors and their detections have roots in the

structure-from-motion literature. There are also approaches which use other low-level visual

attributes such as contour [86]. A major limitation for these approaches is that they do not

generalize well. For example, a corner detector will respond in a region that is strongly textured

than a smooth region, even though the textured regions are not necessarily more salient than

the smooth one.

Some of these limitations are addressed by more recent and generic formulation of saliency.

One of the recent definitions for saliency is based on image complexity. Various complexity

measures have been proposed in this vein. Loweet al. [50] measured the complexity by

computing the intensity variation in an image using the difference of Gaussian function. Sebe

et al. [77] measured the absolute value of the coefficients of a wavelet decomposition of the

image. And KaDiret al. [40] relied on the entropy of the distribution of local intensities. These

definitions are flexible as they can detect any low-level attributes such as corners, contours and

smoothed edges.

Recently, another approach for saliency detection from Fourier Frequency domain analysis
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has brought much attention. In the work of Xiaodi Houet al. [32], the saliency regions were de-

fined as spectral residual, which was the difference between the original signal and a smoothed

one in the log amplitude spectrum. And the saliency map was obtained by transforming the

spectral residual back to spatial domain. Chenlei Guoet al. [28] extended this line of work

by transforming the amplitude components into one and only used phase spectrum of Fourier

Transform for discovering the saliency region.

2.5 Summary

General object and activity recognition is one of the fundamental problems of computer vi-

sion and has been intensively studied for several decades, which leads to a large amount of

literature. Traditional methods include geometric model based and appearance template search

based methods. Recently, local visual feature based methods have gained their popularity. Be-

cause they are based on statistical properties of the local visual features, they are robust to large

within-class geometric and appearance variance.

Typically, the process of local visual feature based methods for general object and activ-

ity can be divided into four stages, namely local feature detection and representation, local

feature selection, target modeling with local features and the recognition via the model. For

the modeling and recognition phases, both generative and discriminative approaches have been

studied.

My work is in the vein of the local features based approach and addresses the problems

in all phases of this framework. I explore the problem in the feature detection phase by in-

troducing a method for saliency detection. I apply both statistical and combinatorial methods

for local visual feature selection. For target modeling, I study a generative probabilistic model

and different aspects of “bag-of-words” model for the vocabulary selection and integration of

spatiotemporal information. So my work is in line with a promising approach to a fundamental

problem in computer vision.



24

Chapter 3

Feature Selection

In this chapter, we introduce a framework that aims to select informative local visual features

to build a probabilistic model for detection and categorization of target object, which is rep-

resented as a constellation of these features. The feature selection is a two stage method for

choosing the local visual features which characterize the target object class and are capable of

discriminating between the positive images containing the target object and the complemen-

tary negative ones. The first stage selection is done using a novel combinatorial optimization

formulation on a weighted multipartite graph representing similarities between images patches

across different instances of the target object. The following stage is a statistical method for

selecting those images patches from the positive images which, when used individually, have

the power of discriminating between the positive and negative images in the evaluation data.

The individual methods have a performance competitive with the state of the art methods on

a popular benchmark data set and their sequential combination consistently outperforms the

individual methods and most of the other known methods while approaching the best known

results.

3.1 Motivations

Object detection and class recognition is a classical fundamental problem in computer vision

which has been the subject of much research. This problem has two critical components: rep-

resentation of the images (image features) and recognition of the object class using this repre-

sentation which requires learning models of objects that relate the object geometry to the image

representation. Both the representation problem, which attempts to extract features capturing

the essence of the object, and the subsequent classification problem are active areas of research

and have been widely studied from various perspectives. The methods for recognition stage
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can be broadly divided into three categories: 3D model-based methods, appearance template

search-based methods, and patch-based methods. 3D model-based methods [96] are successful

when we can describe accurate geometric models for the object. Appearance based matching

approaches are based on searching the image at different locations and different scales for the

best match to an object “template” where the object template can be learned from training data

and act as a local classifier [89, 74]. Such approaches are highly successful in modeling objects

with wide within-class appearance variations such as in the case of face detection [89, 74] but

they are limited when the within-class geometric variations are large, such as in detecting a

motorbike.

In contrast, object recognition based on dense local “invariant” image features have shown

a lot of success recently [19, 50, 73, 93, 2, 8, 17, 82, 18] for objects with large within-class

variability in shape and appearance. In such approaches objects are modeled as a collection

of patches or local features and the recognition is based on inferring object class based on

similarity in patches’ appearance and their spatial arrangement. Typically, such approaches find

interest points using some operator such as [40] and then extract local image descriptors around

such interest points. Several local image descriptors have been suggested and evaluated, such

as Lowe’s scale invariant features (SIFT) [50], entropy-based scale invariant features [40, 17]

and other local features which exhibit affine invariance such as [4, 85, 71]. Other approaches

that model objects using local features include graph-based approaches such as [16].

An important subtask in object recognition lies at the interface between feature extraction

and their use for recognition. It involves deciding which extracted features are most suitable for

improving recognition rate [93], because the initial set of features is large, and often features

are redundant or correspond to the clutter in the image. Finding such actual object features

reduces the dimensionality of the problem and is essential to learn a representative object model

to enhance the recognition performance. This is precisely the focus of this paper: selecting

the “best” features from the already extracted image features that are both exclusive and well

represented in different images of the target object.

Unsupervised selection of discriminative patches is a fundamental problem for learning

object models. Weberet al. [93] suggested the use of clustering to find common object patches

and to reject background clutter from the positive training data. In such an approach large
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clusters are retained as they are likely to contain patches on the target object. A similar approach

has been used in [48]. However, there is no guarantee that a large cluster will contain only

object patches. Since the success of recognition is based on using many local features, such

local features typically correspond to low level features rather than actual high level object

parts. In this paper we introduce two complementary approaches to select discriminative object

patches from a pool of patches extracted from the training images.

3.1.1 Contributions

We introduce two novel approaches for unsupervised selection of discriminative patches that

explicitly takes into account the contrast between positive and negative examples in the train-

ing data. The first is a combinatorial optimization approach which optimally finds the best

subsets of features common to the positive examples and distant from the negative examples.

The second is a statistical approach which finds features that best discriminate the positive and

negative examples. Experimental results show that each of the approaches enhances the recog-

nition rate significantly. Since the two approaches are complementary in the way they select

features, combining the two approaches in a sequential manner enhances the results even fur-

ther. Finally, we use a probabilistic Bayesian approach for recognition where the object model

does not need a reference patch [17]. Instead, object patches are related to a common reference

frame.

The organization of this chapter is as follows. Section 3.2 formulates the problem of finding

distinctive image patches from the positive images as a combinatorial optimization problem

and a statistical problem, which are our main foci and are described in sections 3.3 and 3.4,

respectively. Section 3.5 describes our recognition method and section 5.6 presents the results

of applying the proposed methods on a benchmark dataset. Section 3.7 is the conclusion.

3.2 Problem Formulation and Framework

The problem we address can be stated as: Given a pool of local features (patches) extracted

from a set of labelled training images containing positive and negative images of the target

class, how can we choose (in an unsupervised way) the best features representing the object.
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As feature extraction is not the primary focus of our investigation, we used the popular Kadir

and Brady’s feature extractor [40] to get the initial set of image patches for representing an

image. Also we used a probabilistic method similar (in spirit) to [17, 61] for modeling the

object class and for recognition. These choices allow us to focus on selecting the distinctive

image patches from the positive class. The proposed selection algorithms are not tied by any

means to the chosen feature extractor or recognition algorithm used in this paper and therefore

can be used with any features and any recognition algorithm.

Undoubtedly, there can be many approaches for selecting a collection of image patches

from images in the training data. Naively, it seems plausible to select patches from both the

negative images and positive images, and classify a test image in the class to which it is clos-

est. However, the space of negative images, devoid of any instance of the target image, is

prohibitively large to allow any generalization on the negative class. So, one should rather

train the classifier on the positive images using patches which are common to most of the pos-

itive images. This is based on the assumption that salience features of the target object will be

present and captured from most of the positive images, and form a good representation for it. A

potential side effect of focusing entirely on the positive images is the selection of undesirable

patches corresponding to the background. A solution to this is by simultaneously considering

the positive and negative images for selection the image patches representing both the salien-

cies of the target object while at the same time being exclusive/discriminative to the positive

class. We present two approaches for realizing such a selection - a combinatorial approach and

a statistical approach.

The combinatorial approach involves finding the subset of similar image patches shared

in most of the positive images. To endow a discriminative power to the selected patches, we

also consider their similarity to patches from the negative images. Thus, we wish to find such

a subset of patches from the positive images where every patch is distant from the negative

patches in the training data but highly similar to patches (in the selected subset) from other

images in the positive images. Such selection is formulated as a combinatorial optimization

problem on multipartite graph and is described in details in section 3.3.

Whereas the above described approach is a subset selection approach, the statistical ap-

proach analyzes an individual image patch from positive patches in an attempt to find patches
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which are both detectable and distinctive to the object class. This is achieved by determining if

the patch has the power of discriminating between the positive and negative images in the eval-

uation data. Every patch from the positive training data is evaluated based on its performance in

separating the positive and negative images in the evaluation data which was set aside from the

training data a priori. If the image patch accurately predicts a significant number of evaluation

images, it is selected. A detailed description of this procedure is provided in section 3.4.

The two approaches complement each other - apart from the obvious combinatorial and

statistical nature of the formulation, the first does not involve any evaluation while evaluation

is an integral part of the latter approach. Combinatorial selection mostly focuses on selecting

patches which are over-represented in an ensemble of images of the target object, in contrast the

statistical selection focuses on finding class-specific patches. From this perspective, combina-

torial selection can be characterized as a method which has a low probability of losing a typical

patch present in an image of the target object. On the other hand, the statistical selection is a

method for eliminating, with high probability, patches which do not strongly belong to the tar-

get object. Due to their complementarity, one expects to gain by combining them. One way of

combining them retaining advantages of both the methods is to initially use the combinatorial

method for selecting the over-represented patches, and subsequently use the statistical method

for filtering out the patches (from those selected at the first stage), which are not specific to the

target object.

3.3 Combinatorial Selection of Characteristic Image Patches

We formulate the problem of finding the set of image patches that can help in discriminating

between image with and without the target object as an combinatorial optimization problem

on a multipartite graph. We first introduce some notations which will help in formalizing this

problem. Suppose we are given a setV + = {V +
1 , V +

2 , . . . , V +
p } of p images (positive class)

containing the instances of the target object, and a setV − = {V −
1 , V −

2 , . . . , V −
n } of n images

(negative class) which do not contain the target object. Recall that any arbitrary image is

represented as a set ofm salient image patches, so the imageith from the positive class can be

denoted asV +
i = {v+

i1 , v+
i2 , . . . , v+

is , . . . , v+
im}, wherev+

is is thesth image patch. Further, we
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also useV + to denote the set of all patches inV +
1 throughV +

p , i.e. V + = ∪p
`=1V

+
` ; similarly,

V − = ∪n
`=1V

+
` . The usage will become clear from the context.

We are interested in finding the subset of image patches from the setV + which are very

similar to each other and, at the same time, distant from those in the setV −. Furthermore,

while finding image patches that characterize the target object, it is best to focus on similar-

ities between image patches across different instances of the target object, rather than sim-

ilarities between patches from the same image although they may be very similar. These

two informal requirements can be conveniently expressed in a multipartite graph representa-

tion of the similarities between image patches from different images, as shown in Fig. 3.1.

The right part of this figure shows an undirected edge weighted vertex weighted multipartite

graph,G = (V +, E,W,N), with p partite setsV +
1 throughV +

p so that, as described earlier,

V + = ∪p
`=1V

+
` . The edges in the setE ⊆ ∪i6=jV

+
i × V +

j , represent similarity between the

image patches from different images while the weightwab on the edge connecting the vertices

corresponding to the patchesa andb represents the strength of their similarity. Each vertex

in V + is also associated with a weightN : V + → R+ which reflects its aggregated similar-

ity to images patches inV −. For any vertexi ∈ V +, its vertex weightN(i) is calculated as

N(i) =
∑

s∈V − m2
is, wheremis is the similarity between image patchi and the image patchs

from a negative image.

We consider the situation where the negative the images in training set do not contain any

instance of the target object, and the positive images contain exactly one instance of the target

object. Of course, it is possible to model more complex situations where the postive images

contain multiple instances of the target object. However, we have focused on modeling the

simpler situation. We now formulate the optimization problem for finding the subset of image

patches which are characteristic of positive images and distant from patches in the negative

images. In other words, we want to find a subsetH ⊆ V + (so,H = ∪p
`=1H`, whereH` ⊆ V +

`

) of image patches from the positive images in which patches are very similar to each other

and at the same time different from image patches in the negative images. To achieve this,

any subsetH is assigned score theF (H) which measures the degree of similarity between the

patches from different images inH and also their distinction from patches inV −. This score

is designed to be higher, as described later, for desirable subsets. The best subset,H∗ is the
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V +
1 . . . V +

i . . . V +
p

v+
11

v+
12

...
v+
1m

v+
i1

v+
i2

...
v+

im

v+
p1

v+
p2

...
v+

pm

V −

v−11 . . .
v−n1

. . .

v−1m

. . .
v−nm

Figure 3.1: A multipartite graph representation for expressing similarity relationships between
the image patches. Ellipse corresponding toV +

i represents theith instance of target image,
and them points inside this ellipse represent the image patches from this image. The patches
from the images that do not contain the target object are represented inside the ovalV − without
distinguishing between the images of those patches. The straight lines connecting the images
patches across different instances of images represent the weighted similarity between them,
while the thick curved lines represent the aggregated (weighted) similarity between an image
patch from positive image to all image patches in the negative class. For visual clarity, weights
are not shown on the edges.

globally optimal solution for the following criterion.

H∗ = arg max
H⊆V +

F (H) (3.1)

The scoreF (H) is defined using a linkage functionπ(i,H) which measures the degree of

similarity of the patchi to patches from the other images inH.

F (H) = min
i∈H

π(i,H) (3.2)

Thus, the scoreF (H) for the subsetH is linkage function value,π(i,H), for the least similar

patch inH. Then, the optimal solutionH∗ described in (3.1) corresponds to the subset of image

patches where the similarity of the least similar patch is maximum.

The design of the linkage function is critical for a suitable problem formulation. It must be

remarked that we only have the pairwise similarities between the image patches from different

images and using this we must design the functionπ(i,H). Also, recall thatH is a multipartite

subset, i.e.H = ∪p
`=1H` whereH` ⊆ V +

` is a subset of patches from the imageV +
` . If wij is

the similarity value between the image patch fromi from the imageI(i) and the image patchj

from the imageI(j), then the linkage function is defined as:

π(i,H) =
p∑

`=1

` 6=I(i)


 ∑

j∈H`

w2
ij −

∑
k∈V +

` \H`

w2
ik


− βN(i) (3.3)
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whereβ ∈ R+ is a constant factor for scalingN(i), the weight associated with the vertex(i),

defined as the aggregated similarity ofi to the patches from the negative images. This scaling

factor β serves to account for any imbalance between the number of positive and negative

instances of the target object. The first term (
∑

j∈H`
w2

ij) in the linkage function aggregates the

similarity of the patchi from imageI(i) to patches from other images present inH. The second

term (
∑

k∈V +
` \H`

w2
ik) estimates how the patchi is related to patches not included inH`. A

large positive value of the linkage functionπ(i,H) indicates thati is very similar to patches in

H and different from the patches in the negative images or the patches from the positive images

not included inH. According to this definition of linkage function, the optimal solution,H∗

corresponds to a collection of image patches from different positive images each of which is

highly similar to each other (as the least similar patch is highly similar to other patches) and

very different from the patches in the negative images. So, such a formulation indeed serves

our purpose of selecting characteristic and discriminative image patches.

This combinatorial optimization problem has been studied in [87] and it has been shown

that an efficient algorithm exists for finding the global optimal solutionH∗ if the linkage func-

tion π(i,H) is monotone increasing. The monotone increasing property requires that the value

of the linkage function for the vertexi can only increase when the second argumentH in-

creases in a set theoretic sense, i.e. monotone increasing linkage function satisfies the condi-

tion: π(i,H) ≤ π(i,H ∪ {k}) for all i ∈ H and for allk ∈ V + \ H. Indeed the linkage

function defined in (3.3) satisfies this property. Observe that the third termβN(i) is the vertex

weight fori and is independent ofH, so it does not affect the monotonicity property. Consider

the effect of augmenting the subsetH, by includingk /∈ H, on the linkage function value for

the elementi: whenk is included inH, the valuewik is deducted from the second term and

added to the first term. So,π(i,H ∪ {k})− π(i,H) = 2w2
ik ≥ 0, or π(i, H) ≤ π(i,H ∪ {k}).
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Algorithm 3.3.1: ALGORITHM FOR FINDING H∗()

t ← 1; Ht ← V +; H∗ ← V +;

F (H∗) ← min
i∈V +

π(i, V +)

while (Ht 6= ∅)

do





Mt ← {α ∈ Ht : π(α,Ht) = min
j∈Ht

π(j, Ht)};

F (Ht) ← min
j∈Ht

π(j, Ht);

if (Ht \Mt) = ∅) ∨ (π(i,Ht) = 0 ∀i ∈ Ht)

then





outputH∗ as the optimal set and

F (H∗) as the optimal value.

else





Ht+1 ← Ht \Mt;

t ← t + 1;

if (F (Ht) > F (H∗))

then
{

H∗ = Ht;

The algorithm for solving this combinatorial optimization problem is given [87], and is de-

scribed in the pseudocode form in Algorithm 3.3.1 . This iterative algorithm begins by calcu-

latingF (V +) and finds the setM1 containing the set of vertices fromV + which have the min-

imum value of the linkage function i.e.M1 = {α ∈ V + : π(α, V +) = minj∈V + π(j, V +)}.
The vertices in the setM1 are removed fromV + and the setH2 is constructed asH2 =

V + \M1. At this point, the second iteration begins with the calculation ofF (H2) and finds the

setM2. At the iterationt, the algorithm considers the setHt as the input, calculatesF (Ht−1),

finds the subsetMt such thatF (Ht−1) = π(j, Ht−1), ∀j ∈ Mt, and removes this subset from

Ht−1 to produceHt = Ht−1 \Mt. Finally, the algorithm terminates at the iterationT , when

HT = ∅ or whenπ(i,HT ) = 0 ∀i ∈ HT . It outputsH∗ as the subsetHj with the smallestj

such thatF (Hj) ≥ F (Hl) ∀l ∈ {1, 2, . . . , T}.
This problem formulation gives us one subset of similar image patches from the positive

images and likely corresponds to some characteristic in the target object in those images. How-

ever, often an object has multiple salient characteristics, and these disjoint subset of patches
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corresponding to different characteristics of the target object can be found by removing the

optimal solutionH∗ from the setV + and solving the optimization problem on the reduced set

V + \H∗. Thus, sequentially solving this optimization problem until we get optimal solutions

with large values allows us to find the desired groups of image patches.

A complexity analysis of the method can be found in [87]. It runs inO(|E|+ |V | log |V |)
time, where E and V are the set of edges and vertices, respectively, in the graph.

3.4 Statistical Image Patch Selection

In the previous section we had focused on a combinatorial optimization formulation for finding

subsets of patches characterizing the images from the positive class, and hopefully correspond-

ing to salient regions in the target object. In this section, we formulate the same problem in a

statistical framework by selecting, in isolation, those patches from the positive images which

consistently appear in multiple instances of the positive images but only rarely appear in the

negative images (barring some hypothetical and pathological cases). Intuitively, if an individual

image patch from a positive image performs well in recognizing the images of the target object,

a combination of a number of such image patches is likely to enhance the overall performance.

This is because, barring a few pathological cases, the individual classifiers, although weak, can

synergistically guide the combined classifier in producing statistically better results.

Our approach is different from the Boosting method [82]. Boosting is originally a way of

combining classifiers and its use as feature selection is an overkill. In contrast, our statistical

method does not boost the previous stage but filters out the over-represented and undesirable

clusters of patches corresponding to background. In spirit, our approach is similar to [13].

We formalize this intuitive statistical idea in the following straightforward yet effective method

for selecting the characteristic image patches, as complementary to the combinatorial selection

method, which is the main contribution of this paper.

We select an image patchv ∈ V + from the positive images in the training data if it is

able to discriminate between the positive and negative images in the evaluation data,Ve =

{V +
e , V −

e } with a certain accuracy. A complete description of this method requires description

the classification method using a single image patch and the accuracy threshold. For classifying
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an imageV ∈ Ve in the evaluation set, using a single image patchv ∈ V +, we first calculate

the distance,D(V, v) = minν∈V d(ν, v), betweenV andv defined as the Euclidean distance

betweenv and the closest image patch fromV. For classifying the images in the evaluation

data, we use a threshold,t on distanceD(V, v); if D(V, v) < t, the imageV is predicted

to contain the target object, otherwise not. Accordingly we can associate an error function,

Er(V, v, t) (defined below 6.19), which assumes a value 1 if and only if the classifier makes a

mistake.

Er(V, v, t) =





0, if (D(V, v) < t ∧ V ∈ V +
e ) ∨

(D(V, v) ≥ t ∧ V ∈ V −
e )

1, otherwise

(3.4)

The performance depends on the parametert, so we find an optimal circular region of radius

tv aroundv which minimizes the error rate of the classifier on the evaluation data. Finally,

only those image patches from the positive images are selected which have recognition rate

above a threshold,θ. A description of this algorithm, in the form of a pseudocode, is given

in Algorithm 3.4.1. This algorithm takes the positive image patchesV +, patches from the

evaluation dataVe, and the thresholdθ as input and outputŝH ⊆ V +, the subset of selected

image patches.

Algorithm 3.4.1: SELECT PATCHES, Ĥ(V +, Ve, θ)

Ĥ ← ∅;
for eachv ∈ V +

do





for eachV ∈ Ve

do
{

D(V, v) = min
ν∈V

d(ν, v);

tv ← argmin
t∈R+

∑
V∈Ve

Er(V, v, t)

err ← 1
|Ve|

∑
V∈Ve

Er(V, v, tv)

if (err < θ)

then
{

Ĥ ← Ĥ ∪ {v}
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3.5 Patches Based Probabilistic Model

Following the selection of characteristic image patches from the positive images, we used a

probabilistic method for object class recognition. The selected image patches were used, si-

multaneously, to build a probabilistic model for the object class and the object reference frame.

We assumed that a correctly classified object should also have a good approximated reference

frame. In our work, we use centroid as the reference frame. Using them observed image

patchesvk, (k = 1, . . . , m), the problem of estimating the probabilityP (O, C|V ) of object

classO and its centroidC given the imageV can be formulated as (assuming independence

between the patches and using Bayes’ rule):

P (O,C|V ) =
P (V |O,C)P (O, C)

P (V )
= P (O, C)

m∏

k=1

P (vk|O,C)
P (vk)

(3.5)

We wish to approximate the probabilityP (vk|O, C) as a mixture-of-Gaussians model using

the observed patches from the training data. We simplify this by clustering all the patches

selected from the training data inton clusters,Ai, i = 1, . . . , n and decomposeP (vk|O, C) as

P (vk|O, C) =
n∑

i=1

P (vk|Ai)P (Ai|O,C)

=
∑n

i=1 P (vk|Ai)P (O,C|Ai)P (Ai)
P (O,C)

(3.6)

Substituting (3.6) in (5.5), we get

P (O,C|V ) ∝
m∏

k=1

∑n
i=1 P (vk|Ai)P (O, C|Ai)P (Ai)

P (vk)
(3.7)

While performing recognition, the termP (vk) can be ignored. Assuming thatP (C) and

P (O) are independent, we have

P (O, C|V ) ∝
m∏

k=1

n∑

i=1

P (vk|Ai)P (O|Ai)P (C|Ai)P (Ai) (3.8)

Since the clusters contain similar good features, we can assume that both the patchvk and

the centroidC from a cluster follow normal distribution. By calculating the sample mean

and the sample covariance of these clusters, we can approximate the probability ofvk andC

for each clusterAi, i = 1, . . . , n. We useµv
i andµc

i to denote the sample means forvk and

C, respectively, andΣv
i andΣc

i to denote the sample covariances forvk andC, respectively.

Then for clusterAi we haveP (vk|Ai) ∼ N(vk|µv
i , Σ

v
i ) andP (C|Ai) ∼ N(C|µc

i , Σ
c
i ). The
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rest of the terms in (3.8), can be approximated using the statistics from each of the cluster

Ai, i = 1, . . . , n. If the ClusterAi hasni points of whichnij belong to the ClassOj , we can

estimate the following:P (Ai) = ni/
∑n

i=1 ni andP (Oj |Ai) = nij/ni
1.

Now we can calculate equation (3.8). The result will give us an estimate for the probability

of finding an object class centroid. If it is larger than a threshold, it will indicate the presence of

an instance of the object class in the image. Equation 3.8 can be interpreted as a probabilistic

voting where each patch gives a weighted vote for the object class and centroid given its simi-

larity to each of the clusters. This formulation extends to handle scale variations by considering

each pair of patches instead of each individual patch.

3.6 Experiment

3.6.1 Data Set

We applied the proposed image patch selection methods for recognizing images from the Cal-

tech database (http://www.vision.caltech.edu/html-files/archive.html). This database contains

four classes of objects: motorbikes, airplanes, faces, car rear end which have to be distin-

guished from image in the background data set, also available in the database. Each object

class is represented by 450 different instances of the target object, which were randomly and

evenly split into training and testing images. Of the 225 positive images set aside for selecting

the characteristic image patches, 175 were used as the training images and the remaining 50

were spared to be used as evaluation data. In addition, the evaluation data also consisted of 50

negative images. The combinatorial and the statistical methods used the training and evalua-

tion images slightly differently - while the combinatorial method selected images patches by

simultaneously analyzing 175 positive (remaining 50 positive images from the evaluation data

were not used in this method) and 50 negative images from the evaluation data, the statistical

method selected patches from 175 positive images by judging their performance on 50 positive

and 50 negative images in the evaluation data. The details of the data sets are summarized in

table 3.1 and some samples from the data sets are shown in figure 3.2.

1It must be remarked that this model can be extended for modeling multiple object classes directly, however,
since our problem consists of only one class, we haveP (Oj |Ai) = 1.
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Figure 3.2:Sample images from the experiment data sets.

Train Evaluate Test
Positive Positive Negative Positive Negative

Each class 175 50 50 225 225

Table 3.1:Details of the data sets used in our experiments.

3.6.2 Image Patch Detection and the Intensity Representation

We used region-based detector[40] for detecting informative image patches. This method finds

regions that are salient over both location and scale. For each point on the image, an intensity

histogramP (I) is computed from a circular region of radiuss. The entropyH(s) of this

histogram is then calculated and the local maxima ofH(s) are candidate scale for the region.

The saliency of the region is measured by the entropy density, which is the entropy of the region

over the area of the region. Then the region with the highest entropy density will provide the

feature for learning and recognition. And each feature is defined by the location of the interest

point and the scale for the maximum entropy density.

In our experiment, this region based local visual feature detector gives stable identification

of features over different sizes and copes well with intra-class variability. The saliency measure

is designed to be scaling invariant, the experiments have shown this is not the case because
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of aliasing and other effects. Please not that we turned the image to gray level image for

representation to remove the bias in color.

Once we find the location and the scale for the image patch, we performed normalization for

intensity and re-scaled the image patches to 11×11 pixels, and thus representing them as a 121

dimension intensity vectors. Then, principal component analysis (PCA), which is a common

linear method for dimension reduction, was applied on these vectors to get a more compact 18

dimension intensity representation.

3.6.3 Experiment Setting

We extracted 100 image patches for each of the 175 training images, and 100 evaluation im-

ages. Following this, we applied the combinatorial and statistical methods individually and in

a combination for removing the image patches from the background.

For the combinatorial image patch selection, we converted the Euclidean distance,d(i, j)

between the features from the patchesi and j from different images to the similarity value

wij = dmax−dij . The similarity values were thresholded using an empirically calculated value

to convert the complete multipartite graph into a sparse graph containing 10% of the original

edges. The same similarity threshold was used for considering similarity between patches from

positive and negative images. We usedβ = 3.0 in the linkage function (3.3) to account for

the imbalance in the number of positive images (175) and the negative images (50) used in the

training data.

For statistical image patch selection, we built a simple classifier from each image patch in

the training images and selected the one which led to a classifier with classification error rate

less than 24%, an empirically calculated value.

We also used a sequential combination of the two methods. Figure 3.3 shows results from

the three methods (statistical, combinatorial and their combination) for selecting image patches.

The results show that both approaches are successful in removing a significant number of

patches corresponding to background and the sequential combination of the methods performs

the best.

After the image patch selection process, we computed the centroid for each object in the

image. We used a 2D offset between the image patch and the object centroid as the spatial
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Figure 3.3:Image patch selection. The image patches are shown using a yellow circle on the images.
The first column shows the image patches extracted by Kadir & Brady’s feature detector. The second and
third columns show image patches selected by combinatorial and the statistical methods, respectively.
The patches selected by the sequential combination of the method are shown in column four.

feature for the image patch and concatenated it with the intensity feature vector as the feature

representation for each image patch. We then used k-means algorithm for clustering them into

70 clusters (this number was empirically chosen) and calculated the statistics for them.

3.6.4 Experimental Result

In the testing phase, we used Kadir & Brady’s feature detector for extracting the image patches.

Then we calculated the probability of the centroid of a possible object in the image as an

indicator of its presence.

Figure 3.4 shows the computationally estimated centroid for the object along with the image

patches which contributed towards estimating this centroid. Observe that the estimated centroid

was mainly voted by the image patches located on the object. It also shows some examples of

misclassification. There are three major reasons for such misclassification. The first is the

presence of multiple target objects in the image, as shown in the airplane example. In this

scenario, there is no centroid which gets a strong probability estimation from the matched

patches. The second is poor illumination conditions which seriously limits the number of initial

image patches extracted from the object, as illustrated by the face example. Finally, as shown
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Figure 3.4:This figure demonstrates the estimation of object centroid in some typical testing image
using the sequential combination of combinatorial and statistical approach. The estimated centroid is
indicated by a dot with color contrast to the object. All the image patches contributed to this estimation
are indicated by yellow circles. The bottom row of the images are some misclassification examples.

Dataset No combinatorial statistical combination Fergus Opelt

selection method method [17] [64]

Airplane 54.2 88.9 94.4 95.8 90.2 88.9
Motorbike 67.8 92.9 94.9 95.8 92.5 92.2
Face 62.7 97.6 98.4 98.9 96.4 93.5
Car (rear) 65.6 97.8 96.7 99.3 90.3 n/a

Table 3.2:ROC equal error rates using different methods.

in the motorbike example, when the background is cluttered the initial patches are extracted

from all over the image leading and, thereby, confusing the estimator.

We compared our result to the state of the art results from [17] and[64]. Table 3.2 gives

the ROC equal error rates of our different approach and results from other recent methods.

This shows our approaches yield comparable or better performance. The results are shown for

no selection, combinatorial method only, statistical method only and the sequential combina-

tion of combinatorial and statistical methods. These results are also compared to other recent

methods reporting equal error rate using this data set. We see that both the proposed methods

perform well and their combination improves the recognition rates even further and yielding

better results, quite often by a significant margin, than previous methods.
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3.7 Summary

In this chapter, we have presented a combinatorial and a statistical method for selecting infor-

mative image patches for patch-based object detection and class recognition. The combinatorial

visual feature selection method formulates problem as a combinatorial optimization problem

on a weighted multipartite graph representing similarities between images patches across dif-

ferent instances of the target object. The statistical method selects those images patches from

the positive images which, when used individually, have the power of discriminating between

the positive and negative images in the evaluation data. Both of these methods when used

alone and in combination, yield competitive recognition rates, and surpass the performance of

many existing methods. Although these methods have been demonstrated in the context of

image patch selection, they are general methods suitable for selecting a subset of features in

other applications, which might be applied in other domain, e.g. for noise reduction in the

preprocessing phase for data analysis.

Once we have the selected informative local visual features, we build a probabilistic model

for object detection and recognition. This model is a generative model, which also incorporates

into the representation the simple spatial information as two dimensional offset of each selected

local features to the centroid of the object. Because we model the joint distribution of the object

class and its location, we can detect and recognize the target object simultaneously.
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Chapter 4

Vocabulary Selection

In this chapter, we present an entropy based vocabulary selection method which is used in the

“bag-of-words” model for human action recognition. Inspired by the stop-words list concept

in the text retrieval literature, this approach learns a list of insignificant and uncharacteristic

visual words measured by their conditional entropy in the application domain and selects the

more meaningful words for the representation of human action. The resulted model of “bag-

of-meaningful-words” will be more compact and better representation for the target.

Our approach attacks the problem of visual word vocabulary selection in the middle level of

“bag-of-words” framework and is different from other low level visual features selection meth-

ods. Instead of selecting each local visual feature detected by feature detector, this approach

chooses clusters of local visual features based on their semantic meaning. Experiments have

demonstrated improved performance over the baseline “bag-of-words” model and exceed or

close to other known methods on the popular benchmark data sets.

4.1 Motivations

Recognizing human action from video sequences is a classical fundamental problem in com-

puter vision with many applications including motion capture, human-computer interaction,

environmental control and security surveillance. In this chapter, we focus on recognizing the

actions of a person in a video sequence from the meaningful local visual word learnt in the

application domain.

Our approach is motivated by the recent success of the “bag-of-words” model for general

object recognition in computer vision [63, 94]. This representation, which is adapted from

the text retrieval literature, models the objects by the distribution of words from a fixed visual

code book. This code book is usually obtained by the vector quantization of local image visual
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features via clustering algorithm, e.g. k-means clustering. However, not every visual word

in the vocabulary is equally important in characterizing the underlying actions. In the text

retrieval literature, a search engine typically filters out a list of stop-words before it builds

the representation for the article or web page. This stop-words list, which includes frequently

occurring, insignificant and uncharacteristic words in the articles or web pages, is learnt from

the training data. Similarly, after building the visual code book, we also need to learn a stop-

words list to filter out meaningless visual words before we build a better representation for the

human action in the video sequence.

In our approach, we first apply a spatiotemporal feature detector to the video sequences and

obtain the local motions features. Then we generate a visual word code book by clustering the

local motion features and assign a word label to each cluster. Next, we apply an entropy based

method to measure the information contained in each cluster and generate a list of stop-words

that do not characterize the underlying action in our application domain. Thus when we use the

“bag-of-words” model for the action recognition, we can filter out the stop-words and represent

the action only with the distribution of more meaningful visual words.

The contribution of our work lies in learning a visual stop-words list using an entropy-based

method and generating a more discriminative representation for the action. This vocabulary se-

lection process exists in the middle level of the “bag-of-words” framework and is different from

other low level visual features selection. Experiments has shown that this “bag-of-meaningful-

words” model leads to better performance than the popular “bag-of-words” approach and ex-

ceed or close to results from other published methods.

4.2 Related Work

Extensive research has been done in recognizing human activities. These approaches can be

broadly categorized as model based, spatiotemporal template based and “bag-of-words” based.

Model based approaches for activity recognition depend on locating and tracking body limbs

in order to recognize the activity. That requires a model of the body, whether a 3D model

or a 2D view-based model. We refer the reader to excellent surveys covering this topic, such
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as [3, 23, 59]. However, for the task of activity recognition, tracking the limbs is not neces-

sary. That motivates research on obtaining spatiotemporal descriptors directly from the mo-

tion to recognize the activity without limb tracking. One of the earliest work on spatiotem-

poral descriptor was carried out by Polana and Nelson [66]. In Bobick and Davis’s work [7],

Motion-Energy-Image and Motion-History-Image are introduced as templates for different mo-

tion recognition. Efroset al. [14] also proposed a spatiotemporal descriptor based on global

optical flow measurements. Spatiotemporal template approaches are holistic approaches where

global descriptors are used with no local features extracted.

In contrast, “bag-of-words” based approaches detect local salient descriptors as visual

words, which are then used to recognize the activity. The “bag-of-words” model has been used

successfully for object categorization [63, 94]. Inspired by text categorization, it represents an

object as a histogram of local features. Recently, “bag-of-words” methods have been used in

activity recognition [12, 76, 81]. However, these approaches do not differentiate the importance

of each word in the vocabulary. In the KWIC( Key word in context) indexing, H.P.Luhn first

introduced the concept of stop-words list, which is a list of non-informing words to be ignored

in the text retrieval [55]. Similarly, in the representation for human actions, there are also cer-

tain visual words which occur with similar frequency across different actions. The existence of

such visual words gives us little information about the underlying actions. Including them in

the representation for the action will only add noise for the recognition in the later stage.

An example of less meaningful visual words is illustrated in Figure 4.1, which shows three

sequences of actions from the experimental data set. Though these sequences belong to differ-

ent category, they share the same visual words, which are indicated by the colored cubic in the

figure. Since such visual words appear across different classes, detecting them does not help

much in the recognition of the underlying action classes. So they should be excluded from the

vocabulary or be assigned less weights when we want to represent the underlying actions.

The approach we propose here tries to learn such visual stop-words list from the training

data of the action video sequences. Since each visual word is a label assigned to the visual

features cluster, we use the conditional entropy of the cluster to measure the importance of

the word. By using the stop words list, we can only choose the meaningful words for the

representation of the action.
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Figure 4.1:Less meaningful visual words. Three colored cuboid which belong to the same visual word
appear across three different actions sequences. So the detection of such visual words does not help
much in recognizing the underlying action in the sequence.

Other related directions and extensions for “bag-of-words” in the context of action recog-

nition include [36, 92, 97, 99, 69]. In [36]’s work, the spatial orientation information were

captured in the local features. In [92, 97], latent semantic model was applied to discover the

activity types as topics in the hidden layer between the visual features and the video sequence.

In [69], spatial-temporal correlograms were used to encode flexible long range temporal infor-

mation into the spatial-temporal motion features.

4.3 Entropy Based Vocabulary Selection for “Bag-of-Word” Model

4.3.1 Feature Extraction

There are various methods for local motion feature detection and representation. Blanket

al. [6] represent actions as space-time shapes and extract space-time features such as local

space-time saliency, action dynamics, shape structure and orientation for action recognition.
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Laptev and Lindeberg [44] propose an extended version of the interest points detection in the

spatial domain [29] into space-time domain by requiring image values in space-time to have

large variations in both dimensions. As noticed by [12] and observed by our experiments, the

interest points detected using the generalized space-time interest point detector are too sparse

to characterize and build model for complex actions. Therefore, we use the feature extractor

from Dollar [12], which has been proven successful in [12, 62, 97, 69], for the detection and

representation of the local motion features.

Like many interest point detectors, in [12], the space-time interest points are detected by

applying separable linear filter to the video sequences. We are grateful that Dollaret al. have

let us to use their code for location motion detection and representation. Here we will give a

brief review of this method using the same notion as in [12].

With the assumption of a stationary camera or a preprocess to account for the camera mo-

tion, the response function has the following form:

R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2 (4.1)

whereg(x, y; σ) is the2D Gaussian smoothing kernel applying along the spatial dimension

(x, y), with parameterσ corresponding to the spatial scale of the detector.hev andhod are a

quadrature pair of1D Gabor filter applying along the temporal dimension. They are defined

ashev(t; τ, ω) = −cos(2πtω)e−t2/τ2
andhod(t; τ, ω) = −sin(2πtω)e−t2/τ2

, with parameter

τ corresponding to the temporal scale of the detector. In all cases, we choseω = 4/τ , as did

in [12]. To handle multiple scales, one must run the detector over a set of spatial and temporal

scales. For simplicity, we run the detector using only one scale and rely on the code book to

encode the few chances in scale that are observed in the data set.

It is noted in [12] that any region with spatially distinguishing characteristics undergoing

a complex action can induce a strong response. To represent the motion feature, a cuboid

of spatiotemporally windowed data surrounding the detected interest point (local maxima of

response function) is extracted. In our experiments, it is set to be six times the scale of the

detector to contain the volume contributing to the response function. We then compute the

gradients of the intensities in the cuboid and flatten them into a vector. Finally, we project the

vectors into a low dimensional space by PCA (Principal component analysis) and use the more
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compact representations as the motion features for the video sequences.

4.3.2 Build Visual Code Book

After the local motion feature detection and representation, we explored the detected data in the

feature space by unsupervised clustering. By clustering, we can get a compact representation

of the data, which is the visual code book and its related statistics.

The size of the code book is an important parameter for the representation. Because typi-

cally we will assume the resulted clusters follow Gaussian distribution such that the mean and

variance will be sufficient statistics. If the cluster size is too small, we might put many un-

related data into one cluster such that the cluster does not follow normal distribution and the

mean and variance are not sufficient for the description of the data in the cluster. If the cluster

size is too large, the number of the data in one cluster might be too small such that the mean

and the variance we compute from the samples are not good approximations for the true mean

and variance in the cluster. So we need to find a balanced vocabulary size.

In our experiments, to build the code book, we perform k-means from a random subset of

motion features from the training data. We have tested with different size for clustering and

found out the typical vocabulary size for our experiments isK=250.

4.3.3 Entropy-Based Vocabulary Selection

Similarly to the representation for documents in the text retrieval literature, not all visual words

in the code book are equally meaningful. We only need the informative words which charac-

terize the underlying action for representation. The reasons are:

1) Some visual words occur with similar frequency across different actions. They are irrel-

evant to the underlying actions. Keeping them will only be nuisance for the recognition.

2) Keeping only the important visual words, we can have a more compact representation,

which can speed up the recognition in the later stage.

The features extracted from Dollar[12] are low level visual features which do not contain

higher level information about its relevance to the underlying actions in the video. Thus after

they are clustered to build the code book, it is necessary to learn and generate a more meaningful
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vocabulary.

Each visual word represents the cluster from which it is assigned the word label. The

information contained in the visual word is the information we can get from the cluster. In

a particular application, if most of the local visual features contained in a given cluster come

from one action, we know a visual word from this cluster will give us more information about

this underlying action because this visual word can indicate this underlying action with more

confidence.

A suitable measure for this information is entropy, which measures the uncertainty or the

randomness of such a word. Given the set of actionA1, . . . , AN , we can computeP (Ai|vj), the

conditional probability of each action given wordvj , from the training data. The conditional

entropy given the visual wordvj can then be written as

E(Action|vj) =
N∑

i=1

−P (Ai|vj)logP (Ai|vj) (4.2)

The higher the entropy, the more uniformly distributed the actions are, given the visual

word, therefore, the less information we can gain from knowing this word. The lower the

entropy is, the more discriminative the visual word is. So we can use the reciprocal of the con-

ditional entropy as the measure for the importanceI(vj) of the visual word in the vocabulary.

I(vj) =
1

E(Action|vj)
(4.3)

Thus we can select the vocabulary based on the importance of the visual words.

4.3.4 Two Methods for Vocabulary Selection

In the experiment, we used two methods for selecting the visual words. The first one is a “hard

selection”, in which we discarded the bottomp% most important visual words. In this method,

we removed the noise from the representation using the less meaningful visual words and we

had a more compact representation. However, how to select the best value forp remains a
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parameter tuning problem. In our experiments, we have tested with different value ofp and

chosen the best value for each application.

The second method is a “soft selection”, in which we used the importanceI(vj) as the

weight assigned to the visual wordvj . In this method, we still keep all the words in the vocab-

ulary but with different weights, we differentiate visual words with regard to their importance

in the application domain, measured by their entropy. In this approach, we do not need to tune

the parameter for the number of visual words in the vocabulary.

There are many related research for low level visual feature selection. In the work of Gy.

Dorko and C. Schmid [13], likelihood ratio and mutual information have been used to select

the scale-invariant parts for object class recognition. Zhao and Elgammal et al. [100] have

proposed a two stage of statistical and combinatorial methods for image patches selection for

recognition. However, in the “bag-of-words” model for object recognition, these work are for

the local visual features and are in the low level of the framework. Our approach selects the

vocabulary, which is the middle level of the framework and the selection has more semantic

meaning for the underlying actions.

4.3.5 Recognition Algorithm

Once we extract and select the meaningful visual words, we represent a video sequence as “bag-

of-meaningful-words” and use the histogram of these meaningful visual words to approximate

the distribution as the feature for the underlying action. Because we use Chi-square distance as

the metric for histogram representation in “bag-of-words” model and the Chi-square distance

satisfies

cχ2(a, b) = χ2(ca, cb) (4.4)

wherec is a scalar, in “soft selection” method, we can directly embed the weight to the his-

togram representation.

So briefly, the whole action recognition algorithm is the following. In the training phase,

we first build the code book from clustering the low level visual features. Then we select a

more meaningful vocabulary based on the conditional entropy of the clusters. Next, for each

training video sequence, we represent it as a histogram of “bag-of-meaningful-words” from our
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selected visual words and label the sequence with the underlying action. In the testing phase,

for each testing video sequence, we represent it using the same meaningful vocabulary and

apply the nearest neighbor algorithm for recognition.

The reason we choose nearest neighbor classification instead of more complicated algo-

rithm are the following: Firstly, we aim to do a valid comparison with other published research

using the same data sets. All the published results cited in this paper are obtained using nearest

neighbor algorithm. Secondly, the focus of this paper is on how to better represent the data

using “bag-of-meaningful-words” model instead of the simple “bag-of-words” one. By using

the same simple classification method as other people did but get better results, it demonstrate

the importance of this model, which is our major contribution.

By using more complicated discriminative methods, such as support vector machine (SVM)

or boosting, the similar results might be achieved to some extend. For example, support vector

machine only uses support vectors from the training data set for classification and boosting will

assign less weight to weak classifiers with less discriminative power when the classification

results from each weak classifier are combined. However, our approach addresses this issue as

a representation problem, which is from a different perspective and at an earlier stage of the

recognition process.

4.4 Experiments

4.4.1 Data Sets and Experiments Setting

We carried out our experiments on three data sets, namely facial expression data set from Dollar

et al.[12], hand gesture data set from Wong et al. [97] and KTH human action data set from

Schuldt et al. [76].

The facial expression data sets include two individuals, each expressing six different emo-

tions under two lighting conditions. The expression are anger, disgust, fear, joy, sadness and

surprise. Certain expressions are quite distinct, such as sadness and joy, while others might

be quite similar, such as fear and surprise. Under each lighting condition, each individual is

asked to repeat each of the six expression eight times. The subject always starts with neutral

expression, expresses an emotion and back to neutral in about two seconds.
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Table 4.1:Details of the data sets used in our experiments
Dataset Facial Hand KTH

Expression Gesture
No. of classes 6 9 6
No. of subjects 2 2 25
No. of trials per subject 8 10 1
No. of conditions 2 5 4
Total No. of Samples 192 900 593

The hand gesture data set involves two individuals performing nine hand gestures. The

hand gestures have two components. The first is the shape of the hand, which includes close,

open and v shape. The second is the orientation of the hand movement, which includes left,

right and forward. So the combination is nine.

The KTH human action data are collected by [76]. There are 25 individuals performing

the following six activities: walking, jogging, running, boxing, clapping and waving. Each

individual has performed under four different conditions, the combination of indoor or outdoor

and two different clothing. The clips have been sub-sampled (people are approximated eighty

pixels in height) and contain compression artifacts. (This is the version of the data set available

online). Similar to the facial expression data set, some of the different activities look quite

similar, such as running and jogging.

In all data sets, each video sequence contains one activity. The video sequences were

converted into gray level to avoid the bias in color. The details of the data sets are summarized

in Table 4.1 and some sample images from the video sequences are shown in Figure 4.2.

For comparison in the experiments, we implemented a baseline approach using the “bag-of-

words” representation. This baseline approach does not discard any meaningless visual words

nor assigns different weights to the visual words.

We applied nearest neighbor classification method for the recognition of the underlying

action. The experiments are carried out in leave-one-out cross-validation setting for 30 runs.
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Figure 4.2:Sample images from the experiment data sets.

4.4.2 Code Book Size

The size of the code book, namely the initial vocabulary size, is one of the parameters we need

to consider in the “Bag-of-the-words” model. As previously discussed, too large or too small

will yield unsatisfied performance. It also depends on the specific application domain, as for

different applications, different number of vocabulary is required to sufficiently describe the

knowledge in that domain.

In our experiments, we explored the optimal value for the initial vocabulary sizeK em-

pirically. We used the baseline approach without visual word discard since this was to decide

the initial size of the vocabulary and no selection was involved yet. We adopted the leave-one-

out cross validation setting for 30 times. Because the clustering results depend on the initial

starting points, which are generated randomly, the recognition rates from different runs are dif-

ferent. We use the average recognition rate and its standard deviation as error bar to measure

the performance, which is shown in Figure 4.3.

From the figure, we can see that for all these three applications, recognition rates first im-

prove with the increase of vocabulary size. It is because with larger vocabulary size, the data

are better described by these clusters. It is similar to larger vocabulary has better descriptive

power in a language. Then we observed that the recognition rates do not change much af-

ter the vocabulary size reaches 250. This is because the structure of the language has been

sufficiently explored by the current vocabulary set. Considering that with smaller size of the
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Figure 4.3: Average recognition rate for different initial vocabulary size using “Bag-of-the-words”
model. Standard deviation is used as error bar for different data sets

vocabulary, we can achieve more compact representation, we empirically chosenK=250 as the

initial vocabulary size.

4.4.3 Vocabulary Selection

In the experiments for vocabulary selection, we tested two methods of selection. We have

experimented with “hard selection”, which discarded the bottomp% important visual words.

We also applied “soft selection”, which weighed visual words differently according to their

importance.

We first tested with different discard rates for visual words in the vocabulary. The results

are shown in Figure 4.4. Since the size of stop words list is different for different application,

we can see the discard rate position for the peak of the curve, which is the best recognition
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Figure 4.4:Recognition rate (%) v.s. discard rate (%) for different applications. The recognition rate
peaks at different discard rate for different application. For hand gesture data set, the best recognition
rate is at20% discard rate. Recognition rate achieved best performance at30% discard rate for facial
expression data set and the optimal discard rate for KTH data set is at20%. Standard deviation is
used as error bar for different data sets

rate, is different for the three different data sets. However, they all perform better than the

baseline “bag-of-words” model, which is at0% discard rate without visual words selection.

For each application, the recognition rate first increases with the increase of the discard rate.

This is because with removal of the less meaningful words, we have a more characteristic

representation for the action. Then with further increase of discard rate, we are likely to discard

meaningful visual words, which leads to the decrease of the performance.

In the following discussion, we will use the recognition rate from the optimal discard rate

for the performance of the “hard selection” methods.

We also experimented with “soft selection” method. Together, we compare our vocabulary

methods with other published methods and list the performance of the baseline method, the

best results from the “hard selection” method, the “soft selection” method with other published

results on these data sets in Table 4.2.
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Methods: Base- Our method Our Method Wong Niebles Wang
line (hard selection) (soft selection) [97] [62] [92]

Facial Expressions 91.50 95.41 93.36 83.33 none none
Hand Gestures 85.96 91.52 91.83 91.47 none none
KTH Actions 81.98 87.96 87.47 83.92 81.50 92.43

Table 4.2:The average recognition rates (%) for facial expression, hand gesture and KTH human action
data sets obtained from different algorithms.

The results in Table 4.2 demonstrate that our methods, both “hard selection” method and

“soft selection” method, perform better than the baseline approach. It shows that the words

selections for visual vocabulary are effective for the human action recognition applications and

both proposed methods benefit from the “bag-of-meaningful-words” feature. The performance

from both methods are similar or close to the published results from other methods, some of

them using more complicated model, such as the latent semantic model from [97].

The comparison of “hard selection” method with the “soft selection” method on all three

data sets using confusion matrices is given side by side in Figure 4.5. From these matrices, we

can see some actions are easier to be confused with others, e.g. the jogging and running action

from KTH human data sets. It also shows that in some cases, the “soft selection” method has

better results than the “hard selection” method, and in other cases, it is the opposite. Thus the

choice of selection method depends on the application. .

4.5 Summary

In this chapter, we have presented an entropy based vocabulary selection method for the “bag-

of-words” model in action recognition. In this approach, we measure the importance of visual

words by their conditional entropy learned from the clusters in the training data. Then for

the representation of the action, we tried both “hard selection” method, which discards the

less meaningful visual words, and the “soft selection” method, which weighs the visual words

differently by their importance. Both methods have shown improved performance over the

baseline “bag-of-words” model on a set of benchmark data sets and exceed or close to results

from other published methods.
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This entropy based vocabulary selection method has broader application than activity recog-

nition. This is a general approach to measure the importance of words in the vocabulary and

can be applied to other applications using the “bag-of-words” model, e.g. object recognition.

Another possible application is to integrate our method into other extension of “bag-of-words”

model, e.g. latent semantic model from [97] and the spatiotemporal model from [99]. I will

present the results from this line of research in the next chapter.
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Figure 4.5: With leave-one-out cross-validation experimental setting, the confusion matrices on all
three data sets from both “hard selection” method and “soft selection” method. The first row is for hand
gesture data, the middle row is for facial expression data and the bottom row is for KTH human action
data set. The results from the left column are from the “hard selection” method and the results from the
right column are from the “soft selection” method.



58

Chapter 5

Spatiotemporal Representation

In the previous chapter, I have applied vocabulary selection method to build a “bag-of-meaningful-

words” model for human activity recognition. In this chapter, I will present two approaches for

human activity recognition by modeling the distribution of local visual motion features and

their spatial temporal arrangements.

The first approach uses a spatiotemporal pyramid representation for recognizing facial ex-

pressions and hand gestures. This approach works by partitioning video sequence into increas-

ingly fine subdivisions in the space and time domains and modeling the distribution of the

local motion features inside each subdivision such that the set of motion features are mapped

into spatial and temporal multi-resolution histograms. This spatiotemporal pyramid is built by

weighting the histograms from the different layers of the subdivisions. The proposed approach

is an extension of the orderless “bag-of-words” model by approximately capturing geometric

and temporal arrangements of the local motion features. The experiments on facial expression

and hand gesture data sets have demonstrated the significantly improved performance over state

of art results on human activity recognition tasks by using our representation.

In the second approach, the local motion features used for the representation of a frame are

the ones detected in this frame and others integrated from its temporal neighbors. The features’

spatial arrangements are captured in a hierarchical spatial pyramid structure. By using frame

by frame voting for the recognition, experiments have demonstrated improved performances

over most of the other known methods on the popular benchmark data sets while approaching

the best known results .

The above two approaches try to incorporate spatial and temporal information into the rep-

resentation for local visual features, while the approaches introduced in previous chapter try to

find more informative and relevant words in the vocabulary of “bag-of-words” model. Since
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these two directions are complementary, in this chapter, we also discuss sequential combina-

tions of the methods from these two directions and apply them to human activity data sets,

which generate comparable results.

5.1 Motivations

Recognizing human activities from image sequences is an appealing yet challenging problem

in computer vision which has been intensively researched. In this chapter, we focus on recog-

nizing the activities of a person in an image sequence from local motion features and their

spatiotemporal arrangements.

Like the methods introduced in the previous chapter, our approaches presented in this chap-

ter are also motivated by the recent success of “bag-of-words” model for general object recog-

nition in computer vision[94, 63]. This representation, which is adapted from the text retrieval

literature, models the object by the distribution of words from a fixed visual code book, which

is usually obtained by vector quantization of local image visual features. However, this method

discards the spatial and the temporal relations among the visual features, which could be helpful

in the object recognition.

I have proposed two methods addressing this problem. These methods are inspired by the

work of Lazebniket al.[45], who have used a spatial pyramid to capture the global geometric

information. This method partitions the image into increasingly fine sub-regions and computes

the histogram of visual features from each sub-region. Using the concatenated weight his-

tograms as the feature for the image, this image representation integrates both appearance and

spatial information.

Following the same sprit, our first approach uses a hierarchical structure in the video se-

quence representation to integrate information from the spatial and temporal domains. The

representation for this approach is illustrated in Figure 5.1. We first apply a spatiotemporal

feature detector to the video sequence and obtain the local motion features. Then we generate

a visual word code book by quantization of the local motion features and assign word label

to each of them. Next we divide the data volume spatially and temporally into finer subdivi-

sions and compute the histograms of the visual words in each cell. Finally, we concatenate the
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Figure 5.1: The representation for the action in a video sequence is built from the motion features
detected in it. Then a spatiotemporal pyramid (e.g.L = 2) is applied to model the spatial temporal
arrangements among the features.

histograms from all cells and use it as the feature for the whole video sequence.

The second approach we proposed uses a hierarchical representation for the frames of the

video sequence to integrate information from the spatial and the temporal domains. We also

first apply a spatiotemporal feature detector to the video sequence and obtain the local motion

features. Then we generate a visual word code book by quantization of the local motion features

and assign word label to each of them. Next for each frame, we integrate the visual words from

its nearby frames, divide the frame spatially into finer subdivisions and compute in each cell

the histograms of the visual words detected in this frame and its temporal neighbors. Finally,

we concatenate the histograms from all cells and use it as the feature for this frame. The

representation for a framei is illustrated in Figure 5.2.

The contribution of both approaches lies in that besides the appearance information con-

tained in the local motion features, our representation also captures both the spatial and the

temporal relations among the features, which leads to better performance than the popular

“bag-of-words” approach.
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Figure 5.2:The representation for a framei is built from the motion features detected in it and integrated
from the nearby frames. The closer a features is to framei, the higher weight it is assigned, represented
by a darker circle. Then a spatial pyramid (e.g.L = 2) is applied to model the spatial arrangements
among the features.

The organization of this chapter is as follows. The related work are summaried in Sec-

tion 5.2. In Section 5.3 we introduce the spatiotemporal pyramid representation framework

and its application for recognizing human actions in the video sequences. In Section 5.4, we

introduce our second approach which uses local motion features to build the spatiotemporal

representation for frames in the video sequences. In Section 5.5, we combine the visual word

vocabulary selection methods introduced in previous chapter with the spatiotemporal informa-

tion integration approaches presented in this chapter. Section 5.6 shows the results of applying

the proposed methods on facial expression, hand gesture and human action data sets. Section

5.7 is the summary.

5.2 Related Work

Extensive research has been done in recognizing human activities. The approaches can be

broadly categorized as model based, spatiotemporal template based and local visual features

based methods. Please refer to Chapter 2 and the Related Work section in Chapter 4 for detailed

discussion.

“Bag-of-words” based approach belongs to the school of local visual feature based meth-

ods. In this approach, local visual features are detected and represented as visual words, which
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are used to recognize human activities. “bag-of-words” has been used successfully for ob-

ject categorization[94, 63]. Originally used in text categorization, it represents the object as

histogram of local features. Recently, “bag-of-words” methods have been used in activity

recognition[76, 12, 81]. However, these approaches lack the relations between the features

in the spatial and the temporal domains which are helpful for recognition. There are many

recent research on extending “bag-of-words” to add the spatial relation in the context of ob-

ject categorization [70, 1, 56, 25, 45]. In particular, pyramid match kernel [25, 45] used the

weighted multi-resolution histogram intersection as a kernel function for classification with

sets of image features.

The approaches we propose here try to simultaneously model the spatial and temporal rela-

tions of the local motion features. In our first approach, we build a hierarchical structure along

both spatial and temporal dimensions for representation. This approach is inspired by [25, 45].

However, our approach is a representation which embeds the spatial and temporal information

while [25, 45] proposed a matching kernel. Our approach uses Chi-square distance as a distance

function while [25, 45] used weighted histogram intersection to satisfy as a kernel function.

In our second approach, the temporal information are captured by integrating the local

motion features from the temporally nearby frames and the spatial information are captured by

using a hierarchical spatial pyramid in the representation.

Other related works for “bag-of-words” in the context of activity recognition include [36,

92, 97]. In [36]’s work, spatial orientation information were captured in the local features.

In [92, 97], latent semantic model was applied to discover the activity types as topics in the

hidden layer between the visual features and the video sequence. Different from them, our

approach uses the spatiotemporal pyramid as a representation and simultaneously integrates

the spatiotemporal relation among visual features with their appearance information.

5.3 Spatial Temporal Pyramid Representation

5.3.1 Pyramid Representation for Sets of Points

The goal of our approach is to find a representation for a set of points in a spatiotemporal space.

This representation should capture the distribution of a set of points in the space in a way that



63

it is suitable for measuring the similarity between the sets. Inspired by [25, 45], we propose a

pyramid representation to capture the spatiotemporal distribution for sets of points.

Let X andY be two sets of points in a d-dimensional space,X = {xi|xi ∈ Rd}, Y =

{yj |yj ∈ Rd}. We recursively partition the space into subdivisions. Intuitively, we measure the

distance betweenX andY as the sum of the distances between the distributions of the points

from each data set in each of the subdivisions. The distributions of the points are approxi-

mated by the number of points in the subdivision whose distances are measured by Chi-square

distance.

We start by constructing a sequence of increasingly finer binary partitions at resolution 0,...,

L, such that the partition at levell has2l cells along each dimension with a total ofD = 2dl

cells for this level. We denote the number of points fromX in theith cell at levell asH l
X(i).

The distance betweenX andY at this level, represented asH l
X ,H l

Y respectively, is the sum of

the distances for each corresponding cell,i.e.:

dist(H l
X ,H l

Y ) =
D∑

i=1

χ2(H l
X(i),H l

Y (i)) (5.1)

whereχ2(·, ·) is the Chi-square distance. This is similar to representing the sets of pointsX

andY at level l by concatenatingH l
X(i) andH l

Y (i) into histograms respectively and mea-

suring their Chi-square distance. Therefore, we can use these concatenated histograms as the

representations forH l
X andH l

Y respectively.

In this pyramid structure, different level captures different scale of variance. The represen-

tation for a set of pointsX should include allH l
X , l = 0, .., L and the distance betweenX and

Y , represented asHX andHY respectively, should include the distances from all levels:

dist(HX ,HY ) =
L∑

l=0

dist(H l
X ,H l

Y ) (5.2)

This is again similar to representingX andY by concatenating their histogram representations

from all levels into a long histogram respectively and measuring their distance. Therefore, we

can use these concatenated histograms as the representations forHX andHY respectively.
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5.3.2 Weighed Pyramid Representation for Sets of Points

Since different information are captured at various levels of the pyramid, different weights

should be assigned for each level of them. At finer resolution, the correspondence between two

sets is captured more accurately. Therefore, we penalize the similarity information gained at a

coarser level and give more weights to the similarity measured by the histogram distance at a

finer resolution. The weight we assign at levell is: weight(l) = 1/2L−l for l = 0, .., L. The

weighted distance betweenX andY is:

dist(HX , HY ) =
L∑

i=0

1
2L−l

dist(H l
X ,H l

Y ) (5.3)

Since Chi-square distance satisfies

cχ2(a, b) = χ2(ca, cb) (5.4)

wherec is a scalar, we can directly embed the weight to the histogram representation. Putting

everything together, our representation for a set of pointsX is the concatenated weighted his-

togram from all levels of the pyramid.

Since the distance between these representations is the sum of the Chi-square distances

between each element, which by themselves are metric, it is easy to prove that:

1) dist(HX ,HX) = 0

2) dist(HX ,HY ) = dist(HY ,HX)

3) dist(HX ,HZ) ≤ dist(HX ,HY ) + dist(HY , HZ)

Therefore, the distance defined on our representation is a metric.

Our representation is suitable for the set of points in a spatiotemporal space because it is an

approximation of the distribution of the points in the spatiotemporal space. Since it is histogram

based representation, Chi-square distance is suitable for measuring the similarity between the

sets of points.

In Lazebnik et al.’s work[45], pyramid match kernels are proposed to use a pyramid struc-

ture to find approximate correspondence at different levels between two sets. Our work differs

from them in that:
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1) Our goal is to find a suitable representation to integrate the spatial and temporal relation

for a set of points. It embeds the weights in the representation to reflect the importance of

different pyramid layers. The work in [45] is seeking a suitable kernel function for two sets of

points.

2) Because our representation is a concatenated histogram, we measure the distance by Chi-

square distance. The pyramid match kernels use histogram intersection as the distance function

to satisfy the Mercer’s condition.

3) Our representation captures the distribution of the points in both spatial and temporal

space, so it can be applied for human action recognition in the spatiotemporal domain. The

pyramid matching kernels are only used for natural scene categorization in 2-D images.

5.3.3 Pyramid Representation for Human Action

Motivated by the “bag-of-words” approach while still considering the spatial and temporal

arrangements of the features, we model human activity as a set of local motion features points

located in the three dimensional spatiotemporal space. Then the spatiotemporal pyramid rep-

resentation can be used for the set of feature points. We divide the video sequence spatially

and temporally into increasingly finer subdivisions and compute the distribution of the feature

points in each cell for all levels. The final representation for the activity is the concatenated

weighted histogram from all levels.

We also want to consider the appearance information of the local motion features and model

them as words. We applyk-means clustering in the visual feature space to quantize all local mo-

tion features intoK discrete types and assign word label to each of them. In each subdivision,

we use the histogram of the visual words instead of the number of points as the approximation

for the point distribution. This representation contains both appearance information, as the his-

togram in each cell, and the spatiotemporal information, which comes from the spatiotemporal

pyramid structure.

This representation is a straightforward extension of the popular “bag-of-words” method.

In each subdivision, all the local motion features are modeled as “bag-of-words”. WhenL = 0,

it reduces to the standard “bag-of-words” representation. For better computation efficiency, we

normalize the vector by the total weights of all elements.
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The complexity of this representation is linear with the size of motion words vocabu-

lary. ForL level andK motion words, the dimensionality of the resulting representation is

K
∑L

l=0 8l = K 1
7(8L+1 − 1). In our experiments we observe that the performance does not

improve much whenL > 2. In previous chapter, we have observed that the vocabulary size

K = 250 has optimal performance. Therefore, we use the setting ofK = 250 andL = 2,

which leads to a18250-dimension vector for the activity representation.

5.3.4 Feature Extraction

I have discussed our feature extraction method used in the experiments in previous chapter. To

make this section self contained, I will reiterate it briefly.

There are various methods for motion feature detection and representation, such as pre-

sented in [76] and [12]. As noticed by [12] and observed from our experiments, the interest

points detected by generalized space-time interest points detector from [76] are too sparse to

build model for many complex activities. Therefore, we utilized the one from Dollar[12], which

has been proven successful in [12, 62, 97].

Like many interest point detectors, in [12], the space-time interest points are detected by

applying separable linear filter to the video sequences. With the assumption of a stationary

camera or a preprocess to account for the camera motion, the response function has the follow-

ing form:

R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2 (5.5)

whereg(x, y; σ) is the2D Gaussian smoothing kernel applying along the spatial dimension

(x, y), with parameterσ corresponding to the spatial scale of the detector.hev andhod are a

quadrature pair of1D Gabor filter applying along the temporal dimension. They are defined as

hev(t; τ, ω) = −cos(2πtω)e−t2/τ2
andhod(t; τ, ω) = −sin(2πtω)e−t2/τ2

, with parameterτ

corresponding to the temporal scale of the detector. In all cases, we choseω = 4/τ , as did in

[12].

To represent the motion feature, a cuboid of spatiotemporally windowed data surrounding

the detected interest point (local maxima of response function) is extracted. In our experiments,
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it is set to be six times the scale of the detector to contain the volume contributing to the

response function. We then compute the gradients of the intensities in the cuboid and flatten

them into a vector. Finally, we project the vectors into a low dimensional space by principle

component analysis (PCA) and use the more compact representations as the motion features

for the video sequences.

To build the code book, we perform k-means from a random subset of motion features from

the training data. As experimented and reported in previous chapter, the typical vocabulary size

for our experiments isK=250.

5.3.5 Recognition Algorithm

Since the video sequences’ representations contain rich information in the spatiotemporal and

the appearance domains, they can serve as classifiers for the underlying activity types. Here we

employ nearest neighbor classification algorithm. For test video sequence, we label it with the

same label from the most similar sequence in the training data sets.

5.4 Spatiotemporal Representation for the Frame

5.4.1 Feature Extraction

We use the feature extractor from Dollar[12] for the local motion features’ detection and repre-

sentation, which has been proven successful in [12, 62, 97]. In this method, the motion features

are detected by applying separable linear filter to the video sequences. They are represented by

the intensity gradients of a cuboid of spatiotemporally windowed data surrounding the detected

interest point. To build the code book, we perform k-means from a random subset of motion

features from the training data. The typical vocabulary size for our experiments isK=250.

5.4.2 Key Frames Selection by Their Discriminative Power

Intuitively, not all frames from a video sequence are equally important. We only need a few

informative frames that characterize the activity for recognition. The reasons are:

1) Some video frames are irrelevant to the underlying activity, e.g. the frames with no

action in them. They could be nuisance for the recognition.
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2) We can greatly speed up the recognition process if we only use the informative key

frames without losing important information..

The feature exactor from Dollar[12] can detect the local informative motion features for

each frame. They are encoded by the visual wordsv1, . . . , vK , obtained from the clustering,

whereK is the vocabulary size. We can measure the discriminative power of each visual word.

Entropy is a suitable measure for the discriminative power of a given visual word since it mea-

sures the uncertainty or the randomness of such a word. Given the set of activitiesA1, . . . , AN ,

we can computeP (Ai|vj), the conditional probability of each activity given visual wordvj ,

from the training data. The conditional entropy given the visual wordvj can then be computed

as

E(Activity|vj) =
N∑

i=1

−P (Ai|vj)logP (Ai|vj) (5.6)

The higher the entropy, the more uniformly distributed the activities are given the visual

word, therefore, the less discriminative at the visual word. The lower the entropy is, the more

discriminative the visual word is. We can use the conditional entropy of the visual words to

measure the discriminative power of a given frame F. To do that, we use a functiong(·) which

is defined as:

g(F ) =
KF∑

j=1

1
E(Activity|vj)

(5.7)

whereKF is the number of the visual words in frameF . The higher the score ofg(F ), the

more discriminative the frameF is.

We selected the topp% most discriminative frames for recognition.p is set to25 in the

experiment, which is an empirical chosen number. These top discriminative frames are called

the key frames.

5.4.3 Temporal Integration of the Motion Features

Since a frame is correlated to its temporal neighbors, we build its representation from the mo-

tion features detected in it and its neighbor frames, weighed by the features’ temporal distance

to this frame. Intuitively, the further the distance is, the less weight it should be assigned to.

Therefore, for a framei, the weights assigned to the motion features from framej are:
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Weight(i, j) = e−
dist(i,j)

σ2 (5.8)

wheredist(i, j) is the first norm distance between framei andj andσ is the bandwidth for a

smooth weight, which is empirically set to be 5 in our experiments. Thus the temporal relations

of the features to framei are captured by the different weights. The weights are 1 for the motion

features detected at framei and are close to 0 for those from the distant frames. Therefore, only

the motion features from nearby frames contribute significantly to the integration.

5.4.4 Spatial Representation for the Frame

With all the temporally weighted motion features for the frame, our next goal is to find a

representation to model the spatial relations of these features in a way that it is suitable for

measuring the similarity between the frames.

Let X andY be two sets of motion features from two frames respectively. Inspired by [45],

we represent the frame in a spatial pyramid. For each levell, l = 0, . . . , L, we divide the frame

alongx andy dimensions into22×l subdivisions. Intuitively, we measure the distance between

X andY as the sum of the distances between the corresponding cells of all levels fromX and

Y . Each cell can be described as the histogram of the weighted motion features in it and the

distances between them are measured by Chi-square distance. So the distance betweenX and

Y is formulated as:

dist(X, Y ) =
L∑

l=0

22×l∑

i=1

χ2(H l
X(i),H l

Y (i)) (5.9)

whereH l
X(i) is the histogram of the weighted motion features from theith cell in level

l from X andχ2(·, ·) is the Chi-square distance. This is similar to representingX andY by

concatenating their histogram representations from all cells in all levels into a long histogram

respectively and measuring their distance. Therefore, we can use these concatenated histograms

as the representations for the frames.

Since different information are captured at various levels of the pyramid, different weights

should be assigned to each of them. At finer resolution, the correspondence between two sets
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are captured more accurately. Therefore, we penalize the similarity information gained at a

coarser level and give more weights to the similarity measured by the histogram distance at a

finer resolution. The weight we assign at levell is: weight(l) = 1/2L−l for l = 0, . . . , L. The

weighted distance betweenX andY is:

dist(X, Y ) =
L∑

l=0

1
2L−l

×
22×l∑

i=1

χ2(H l
X(i),H l

Y (i)) (5.10)

Because Chi-square distance satisfies

cχ2(a, b) = χ2(ca, cb) (5.11)

wherec is a scalar, we can directly embed the weight to the histogram representation.

Putting everything together, our representation for a frame is the concatenated weighted his-

togram from all cells in all levels of the pyramid. In our representation, the temporal relations

are modeled as the different weights assigned to the motion features and the spatial relations

are captured in the spatial pyramid structure. With the motion features as the visual words, our

representation simultaneously integrate appearance, spatial and temporal information.

Our representation for the frame is a straightforward extension of the popular “bag-of-

word”. In each subdivision, all the local motion features are modeled as “bag-of-words”. When

L = 0 andσ = 0, it reduces to the standard “bag-of-word” representation. In our experiments

we observe that the performance does not improve much whenL > 1. Therefore, we use

the setting ofK = 250 andL = 1, which leads to a1250-dimension vector for the frame

representation. For better computation efficiency, we normalize the vector by the total weight

of all elements.

5.4.5 Recognition Algorithm

Since the frames’ representations contain rich information in the spatiotemporal and the appear-

ance domains, they can serve as classifiers for the underlying activity types. For each frame

from the test frame, we label it with the closest frame in the training data sets and employ a

majority voting throughout the sequence.
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5.5 Combination of Vocabulary Selection and Integrating Spatiotemporal Infor-

mation Method

We have extended the “bag-of-words” approach for general recognition framework in two di-

rections. In the previous chapter, we introduce visual word selection methods, which aims to

select the most important words in a specific application domain to build more informative code

book. In the previous sections of this chapter, we conduct research on integrating spatiotem-

poral information among these visual words into the representation of the underlying activities

in the video sequences. Since these two directions are complement to each other, naturally, we

experiment with the sequential combinations of them.

Since such combinational approach is built upon previous approach, we adopt the previous

tuned up parameters as the setting for this approach. For example, the initial vocabulary size is

set tok=250. Andσ is also set to 5 as the smoothing weight for the temporal distance in the

spatiotemporal representation for the frame.

I will briefly review these approaches. For visual word selection, we have experimented

with two approaches. Both methods use the conditional entropy of visual words to measure

their importance. The first one is “hard selection” method, which discards an empirically se-

lected percentage of initial less important visual words for a more compact representation.

Different application has different discard rate. The second one is a “soft selection” method,

which does not discard any visual words but assigns different weights to different visual words

measured by their conditional entropy. These weights later will be embedded into the represen-

tation for the “bag-of-words” model.

In the spatiotemporal integration approaches, the first one is to represent the whole activity

as visual words distribution approximated by histogram in three dimensional spatial tempo-

ral space. The second approach is to represent the informatively selected key frames as the

distribution of temporally integrated visual words in a spatial pyramid.

We combine these methods, which results four combination approaches. We will discuss

the performances from these approaches in details in Section 5.6.
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Dataset Facial Hand KTH
Expression Gesture

No. of classes 6 9 6
No. of subjects 2 2 25
No. of trials per subject 8 10 1
No. of conditions 2 5 4
Total No. of Samples 192 900 593

Table 5.1:Details of the data sets used in our experiments.

5.6 Experiments

5.6.1 Data Sets and Experimental Setting

We carried out our experiments in three data sets, namely facial expressions data set from

Dollar et al.[12], hand gestures data set from Wong et al.[97] and KTH human action data

set from Schuldt et al.[76]. In all data sets, each video sequence contains one activity. These

data sets are public data sets and have been widely used for activities recognition. For detailed

description of these data sets, please refer to the experiment section of previous chapter.

In our experiments, the video sequences were converted into gray level to avoid bias in

color. The details of the data sets are summarized in Table 5.1 and some sample images from

the video sequences are shown in Figure 5.3. In the experiments, we implemented a baseline

approach using the “bag-of-words” representation for comparison. The recognition rates were

obtained using leave-one-out cross-validation unless noted otherwise.

5.6.2 Pyramid Representation Approach for Human Action

Facial Expression

With the same experiment setting as in [12], we trained on one subject under one of the two

lighting conditions and tested on: (1) the same subject under the same illumination, (2) the same

subject under different illumination, (3) a different subject under the same illumination, and (4)

a different subject under different illumination. Since Dollar’s implementation[12] used a “bag

of words” approach, we used it as the baseline algorithm. We compared the confusion matrices

in the first two scenarios from the two approaches in Figure 5.4. In the same subject under
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Figure 5.3:Sample images from the experiment data sets.

Methods Same Sub. Same Sub. Diff Sub. Diff Sub.
Same Illu. Diff. Illu. Same Illu. Diff Illu.

Baseline 98.83 90.46 58.67 47.71
1 level
Pyramid 99.33 95.29 78.33 69.29
2 level
Pyramid 98.17 94.75 78.92 73.67

Table 5.2: The facial expression recognition rates(%)in different scenarios from the baseline
“bag-of-words” algorithm and the spatiotemporal pyramids with different number of levels.

the same illumination scenario, the recognition task was easy. The baseline algorithm already

achieved very hight recognition rate, so our approach only slightly improved the results. In the

same subject under different illumination scenario, our approach has shown great improvements

for all facial expression types.

We also show in Table 5.2 the recognition rates in all four different scenarios from the base-

line “bag-of-words” algorithm and spatiotemporal pyramid representation with different num-

ber of layers. From the baseline algorithm, the average recognition rate across different scenar-

ios is73.92%. Both recognition rates from our pyramid representation with different number

of levels have shown significantly improved performance. And the best result is86.38% from

the 2-level configuration.

We also tested on the facial expressions data set with the same experiment setting as in

[97], which was the leave-one-out cross-validation. The average recognition rates along with



74

.97 .03 .00 .01 .00 .00

.00 1.0 .00 .00 .00 .00

.00 .03 .97 .00 .00 .00

.00 .00 .00 1.0 .00 .00

.00 .00 .00 .00 1.0 .00

.00 .00 .00 .00 .00 1.0

anger

disgust

fear

joy

sadness

surprise
anger

disgust

fear
joy sadness

surprise

Same Sub., Same Illu.

.94 .03 .02 .00 .01 .00

.01 .77 .07 .00 .14 .00

.00 .20 .75 .00 .03 .02

.00 .00 .00 1.0 .00 .00

.00 .00 .01 .00 1.0 .00

.00 .00 .02 .00 .00 .98

anger

disgust

fear

joy

sadness

surprise
anger

disgust

fear
joy sadness

surprise

Same Sub., Diff Illu.

1.0 .00 .00 .00 .00 .00

.03 .97 .00 .00 .00 .00

.00 .00 1.0 .00 .00 .00

.00 .00 .00 1.0 .00 .00

.00 .00 .03 .00 .97 .00

.00 .00 .00 .00 .00 1.0

anger

disgust

fear

joy

sadness

surprise
anger

disgust

fear
joy sadness

surprise

confusion matrix

1.0 .00 .00 .00 .00 .00

.03 .94 .03 .00 .00 .00

.00 .19 .81 .00 .00 .00

.00 .00 .00 1.0 .00 .00

.00 .00 .00 .00 1.0 .00

.00 .00 .00 .00 .00 1.0

anger

disgust

fear

joy

sadness

surprise
anger

disgust

fear
joy sadness

surprise

Same Sub. Diff. Illu

Figure 5.4: Comparison of recognition rates in the first two scenarios. The top row shows the
confusion matrices from Dollar’s implementation[12] and the bottom row shows the confusion
matrices from our 1 level spatiotemporal pyramid representation.

Methods Accuracy (%) Std. Deviation

Base line 91.50 1.09
Pyramid (1 level) 95.24 1.35
Pyramid (2 level) 94.29 1.56
pLSA [97] 50.00 none
pLSA-ISM [97] 83.33 none

Table 5.3: The facial expression recognition rates along with their standard deviations obtained
from different algorithms with leave-one-out cross-validation experiment setting.

their standard deviations from the different algorithms for the six types of facial expressions

are listed in Table 5.3. This has shown the pyramid representation can improve on the “bag-of-

words” baseline model and even achieve better performance than the complicated probabilistic

latent semantic models[97]. Their standard deviations are not very large, which indicate that

our results are not very sensitive to the randomness caused by clustering algorithm in our ap-

proaches.
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(b) Confusion Matrix using 2 level spatial-temporal pyramid

Figure 5.5: The confusion matrices for recognizing the nine types of hand gestures. The top
confusion matrix is obtained by using pLSA-ISM[97] and the bottom confusion matrix is from
our work by using 2 level spatiotemporal pyramid representation.

Hand Gesture

We used the leave-one-out cross-validation experiment setting, which is the same as in [97], for

hand gesture recognition. In this experiment, the video from one objects under one capturing

condition was used in testing and the remaining was used in training.

The confusion matrices for recognizing the nine types of hand gestures are shown in Figure

5.5. The top confusion matrix is obtained by using pLSA-ISM[97] and the bottom confusion

matrix is obtained from our approach by using 2 level spatiotemporal pyramid representation.

It shows that by using the pyramid representation, the recognition rate has improved on every

categories except the last one.
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Methods Accuracy (%) Std. Deviation

Base line 85.96 0.68
Pyramid (1 level) 95.57 0.65
Pyramid (2 level) 96.75 0.61
pLSA [97] 76.94 none
pLSA-ISM [97] 91.94 none

Table 5.4: The hand gesture recognition rates obtained from different algorithms.

The average recognition rates along with their standard deviations from different algorithms

for all hand gestures are shown in Table 5.4. This has shown the pyramid representation can

achieve much better recognition rate than the “bag-of-words” approach and even exceed the

results from complicated probabilistic latent semantic models[97]. The standard deviations

from our methods are not very large, which indicate that our results are not very sensitive to the

randomness caused by clustering algorithm in our approaches.

From experiments on both data sets, we do not observe any significant increase in perfor-

mance beyond 2-level pyramid configuration. This is because whenl = 2, the 64 subdivisions

of the whole video sequence already roughly capture the sets of points’ locations in the spa-

tiotemporal domain while maintain tolerance for the locations variance in each cell. With more

levels, the number of features points falling into each cell will be decreased, so the histograms

might not be a good approximation for the feature distribution.

5.6.3 Frame Spatiotemporal Representation Approach

We set the parameters for the experiments empirically. The bandwidth for a smooth temporal

weight, σ, is set to 5. The vocabulary sizeK, which is the cluster number in the k-means

clustering algorithm, is set to 250. In our experiments, we observe that the performance does

not improve much when the level of the spatial pyramidL > 1. Therefore, we use the setting

of K = 250 andL = 1 or L = 2, which leads to a1250-dimension or5250-dimension vector

for the key frame representation.
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Methods same sub. same sub. diff sub. diff sub.
same illu. diff. illu. same illu. diff illu.

Baseline 98.83 90.46 58.67 47.71
Our method
(L=1) 100.00 96.25 74.38 71.71
Our method
(L=2) 98.37 93.13 74.83 73.25

Table 5.5:The facial expression recognition rates(%) in different scenarios from the baseline “bag-of-
words” algorithm and from our spatiotemporal representations with different spatial levels.

Experimental Results

With the same experimental setting on facial expression data set as in [12], we trained on one

subject under one of the two lighting conditions and tested on: (1) the same subject under

the same illumination, (2) the same subject under different illumination, (3) a different sub-

ject under the same illumination, and (4) a different subject under different illumination. The

recognition rates in each scenario from Dollar’s implementations[12], which is the baseline

“bag-of-words” approach, and from our approaches are shown in Table 5.5. We can see that

in the first scenario, the recognition task is easy. The baseline algorithm already achieved very

high recognition rate, therefore our approaches only slightly improved the results. For the rest

of the cases, our approaches with both configurations have demonstrated significant improve-

ments.

As an example, the confusion matrices of the six facial expressions in the second scenario

from the baseline implementation and our spatiotemporal representation withL=1 are reported

in Figure 5.6. It shows improvements on recognition rates in every category of the facial ex-

pressions.

From the experiment on facial expression data set, we do not observe any significant in-

crease in performance beyond 1-level spatial pyramid configuration. This is because when

l = 1, the 4 subdivisions of the key frame already roughly capture the sets of feature points’

locations in the spatial domain while maintain tolerance for the locations variance in each cell.

With more levels, the number of features points falling into each cell will be decreased, so the

histograms might not be a good approximation for the feature’s distribution. So we will use
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Figure 5.6:Comparison of the confusion matrices in the second scenario on the facial expression data
set. The left confusion matrix is from Dollar’s implementation[12] and the right confusion matrix is
from our spatiotemporal representation withL=1.

Methods: Base- Our method Wong Niebles Wang
line [97] [62] [92]

Facial Expressions 91.50 94.83 83.33 none none
Hand Gestures 85.96 95.83 91.47 none none
KTH Actions 81.98 91.17 83.92 81.50 92.43

Table 5.6: The average recognition rates (%) for facial expression, hand gesture and KTH human
action data sets obtained from different algorithms. Our method is frame spatiotemporal representation
approach

l = 1 for the rest of the experiments.

With leave-one-out cross-validation experimental setting, we tested the baseline and our

proposed methods on all data sets. The confusion matrices from our method withL=1 are

shown in Figure 5.7.The average recognition rates for all data sets, compared with other pub-

lished results, are reported in Table 5.6. This demonstrates that our approach improves the

“bag-of-words” baseline model and outperforms most of the other known methods while ap-

proaching the best known result.

To show the sensitivity of recognition rates of our methods on different data sets, the stan-

dard deviation along with the recognition rate is shown in Table 5.7
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Figure 5.7: With leave-one-out cross-validation experimental setting, the confusion matrices on all
three data sets from our spatiotemporal representation withL=1.

Data set Recognition Rate Standard Deviation

Facial Expressions 94.83 0.83
Hand Gestures 95.83 1.21
KTH Actions 91.17 1.54

Table 5.7:The average recognition rates (%) and standard deviation for facial expression, hand ges-
ture and KTH human action data sets obtained from our method. Our method is frame spatiotemporal
representation approach

5.6.4 Combinations of Previous Approaches for Human Action

This section I list the experimental results from the four combinations of previous approaches

in the direction of “bag-of-meaningful-words” model and spatiotemporal model for the under-

lying activities in the video sequences. The recognition rates for all data sets are shown in

Figure 5.8.

For comparison, I also list results from the original approaches. Because our approach for

spatiotemporal representation for the whole video sequence can not handle the global motion

case, there is no result for the KTH data sets, which contains global movement of human figure

in the sequence. Thus, we also did not experiment with the combination of soft selection and
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Methods: Facial Hand KTH
Expression Gesture Actions

Hard Selection 95.41 91.52 87.96
Soft Selection 93.36 91.83 87.47
Representation for sequence 95.24 96.75 none
Representation for key frame 94.83 95.83 91.17
Soft selection + Rep. for sequence 95.00 97.25 none
Soft selection + Rep. for key frame 95.70 96.33 91.16
Hard selection + Rep. for sequence 93.33 95.53 none
Hard selection + Rep. for key frame 95.30 95.70 91.50

Table 5.8:The average recognition rates (%) for facial expression, hand gesture and KTH human action
data sets obtained from different combinations of “bag-of-meaningful-words” model and spatiotemporal
models.

hard selection with such approach for KTH data set.

The results have shown that in most cases, the sequential combinations of approaches from

previous this chapter and previous chapter produce comparable and even slightly better recog-

nition rates. These make sense because the combinations have the benefits from both methods.

5.7 Summary

In this chapter, we addressed the human action recognition problem by incorporating spatial

temporal information into the “bag-of-words” model. We present two approaches. In the

first approach, we used a spatiotemporal pyramid representation for human activity recogni-

tion. This approach simultaneously integrates the spatiotemporal relation among local motion

features with their appearance information and embeds these rich information in the pyramid

representation for the video sequence. However, in this approach, we are only working on

video sequences which contain activity starting and ending in a neutral position without global

motion. This makes it easy to partition the sequence in the spatial and temporal domains. In

the future, we intend to investigate methods to detect periodicity of the activity and compensate

for global motion such that our approach can be applied in more general scenario.

In the second approach, we have presented a spatiotemporal key frame representation for

human activity recognition. First, our approach selects the key frames of the video sequences
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based on their discriminative power. Next, our approach simultaneously integrates the spa-

tiotemporal relations among local motion features with their appearance information and em-

beds these rich information in the representation for the selected key frames.

Our work differs from the pyramid match kernels[25, 45] in that: 1) Our goal is to find a

suitable representation to integrate the spatiotemporal relations among motion features. The

work in [25, 45] is seeking a suitable kernel function for two sets of image features. 2) Because

our representation is a concatenated histogram, we measure the distance by Chi-square dis-

tance. The pyramid match kernels use histogram intersection as the distance function to satisfy

the Mercer’s condition.

Experiments have been conducted for the sequential combinations of methods from this

chapter and previous chapter. The results show comparable and slight better recognition rates

on all experimental data sets, which can be explained as the combination of methods have

benefits from both schools of approaches.
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Chapter 6

Saliency Detection

In the research of digital signal processing, a common approach for analyzing the digital signal

in time domain is to transform it into frequency domain via Fourier transform. From the theory

of Fourier transform, we know that any signal can be represented as an infinite weighted sum

of an infinite number of sinusoids at different frequency. By using the Fourier transform, we

change the basis in the time domain to a set of sinusoids in the frequency domain, which gives

us new perspectives to study the signal as the sum of sinusoids with different frequency.

Fourier transform (FT) has been applied in computer vision in a similar way. Because the

majority of the research subjects in computer vision are images and video sequence, which

can be seen as the two dimensional x-y signal and three dimensional x-y-t signal respectively,

we can use the same signal processing technique and apply 2-D Fast Fourier Transform (FFT)

and 3-D FFT to them. After the transformation, we have new representation for the objects in

frequency domain, which give us new insights from the frequency and energy perspectives.

In this chapter, we will use a Fourier Transform based method to detect saliency region

in two dimensional images and three dimensional video sequences. Saliency detection is very

important processing stage in the general object recognition framework, which can help fast

local visual feature detection and representation.

6.1 Motivation

When human does object recognition, typically, the first step is object detection, which aims

at extracting an object from its background before recognition[32]. Many traditional methods

model this process as the detection of specific categories of objects [17], [74]. These approaches

are based on the training of the particular features of the target. However, this is different

from what human vision system does. When human detects object, he does not have the prior
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information about what he expects to see. And human can achieve this efficiently. Usually at a

glance, people can detect what he is interested in, which is much faster than most of traditional

methods based on complicated training models.

So how does the human visual system work to efficiently detect a general interesting loca-

tion, where the object is likely to exist? It is believed to be a two step procedure [83, 52]. The

first step is a fast and simple pre-attentive process and the second step is a slow and complex

attention process. It is during the first step that low level vision features such as orientation,

edges and corners ”pop-up” to human eyes as salient regions. These regions contain general

features which catch human’s attention and not specific for a particular object category. And

the detection of these regions should be very efficient and fast.

Saliency detection has many potential applications. As the first step in object recognition,

saliency detection can help us choose the locations where we will apply more complex algo-

rithms for recognition. This approach can increase the speed for the processing of the images

and videos.

Saliency detection can also be applied to image and video compression. After we detect

the salient regions, we can compress them with less information loss and the other regions,

which are likely to be the background, with more information loss. Since human pays more

attention to the salient region, this approach will lead to better perceptual results with the same

information loss. Saliency detection can also help in image segmentation. Saliency detection is

to find the regions which catch human’s attention. The result is inline with human’s perception

of segmentation for the interesting regions against the uninterested background.

To find the salient regions in a given image, many models have been proposed in the field

of machine vision. In [39, 37, 38], Itti and Koch proposed a saliency model to stimulate the

visual search process of human based on [83] and built a system called Neuromorphic Vision

C++ Toolkit. Recently, Walther [91] further extended this model to create Saliency tool box

and applied it for object recognition task. However, these models demand high computational

cost and tuning for various parameters.

Recently, Xiaodi Hou [32] proposed an approach to detect the saliency region from the fre-

quency domain based on Fourier Transform. This method first computes the spectral residual,
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which is the difference between the original image and its smoothed version in the log am-

plitude spectrum. Together with the phase spectrum, the spectral residual is transformed back

to spatial domain to construct the saliency map, which marks the salient region. This method

does not rely on parameters and can detect salient regions rapidly. Chenlei Guo [28] extends

this method by only keeping the phase spectrum, which contains the location information for

the inverse transform. This method also achieved promising results.

In this chapter, we will first discuss a general framework for the saliency detection in the

frequency domain. This approach models the saliency detection as an enhancement method for

the amplitude of the high frequency components in the Fourier spectrum of the digital signal.

In this approach, the salient region, where many varying sinusoidal components exist, will be

enhanced by re-distribution of the energy in the frequency domain. This framework explains the

methods from [32] and Chenlei Guo [28] as special cases and introduces a new method which

achieves similar results as those from [32] and [28]. Secondly, we will extend this framework

to apply to the three dimensional data and detect salient region from video sequences by using

Fourier Transform along the temporal dimension.

In section 6.2, we will introduce the general framework and apply it for image and video

data in section 6.3. Experiments in section 6.4 will demonstrate this framework and the discus-

sion and conclusion are given in section 6.5.

6.2 A General Framework for Saliency Detection

6.2.1 Background in Discrete Fourier Transform

Typically, a video clips is a series of consecutive frames. Letft(x, y) be the 2D image of size

H ×W at framet, the video clips ofN frames can be stacked along time axis and constructed

as a 3D spatial-temporal image of sizeH ×W × N :

f(x, y, t) = ft(x, y) (6.1)

for x = 0, 1, 2W − 1, y = 0, 1, 2H − 1, t = 0, 1, 2, , N − 1. In this representation, we can

process 3D video clips in the same way as 2D images.

The formal definition of Fourier transform of a three dimensional signalf(x, y, t) is
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F (u, v, w) =
∫ ∫ ∫ +∞

−∞
f(x, y, t)e−i2π(ux+vy+wt)dxdydz (6.2)

In computer vision research, the images and video are discrete digital signal. So three-

dimensional discrete Fourier Transform is used to transfer a 3D spatial-temporal image of size

H ×W × N :

F (u, v, w) =
W−1∑

x=0

H−1∑

y=0

N−1∑

t=0

f(x, y, t)e−i2π(ux/W+vy/H+wt/N) (6.3)

After the Fourier transform is applied, image or video sequence, which is typically a real

function in the spatial space, is transformed into frequency domain, typically as a complex

function:

F (u, v, w) = R(u, v, w) + j ∗ I(u, v, w) (6.4)

whereR(u, v, w) andI(u, v, w) are the real and imaginary components ofF (u,w, w), i.e.

R(u, v, w) =
1

W ∗H ∗N

W−1∑

x=0

H−1∑

y=0

N−1∑

t=0

f(x, y, t) ∗ cos[2π(
ux

W
+

vy

H
+

wt

N
)] (6.5)

I(u, v, w) =
1

W ∗H ∗N

W−1∑

x=0

H−1∑

y=0

N−1∑

t=0

f(x, y, t) ∗ sin[2π(
ux

W
+

vy

H
+

wt

N
)] (6.6)

The Fourier transform can also be represented in polar form, as pair of amplitude compo-

nentAmplitude(u, v, w) and phase componentsPhase(u, v, w):

Amplitude(u, v, w) = R2(u, v, w) + I2(u, v, w) (6.7)
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Figure 6.1:The left one is the original signal. The middle one is the amplitude spectrum and the right
one is the phase spectrum of the original signal by Fourier Transform.

Phase(u, v, w) = tan−1(
I(u, v, w)
R(u, v, w)

) (6.8)

In the Fourier frequency spectrum, the phase components contain the location information

and the amplitude components contain the spatial structure information.

6.2.2 Saliency Detection for One-Dimensional Signal

Let’s first discuss a one dimensional positive impulse signal as an example and give its wave-

form, amplitude and phase spectrum from Fourier Transform in figure 6.1.

From the theory of Fourier Transform, we know that a signal in spatial domain can be trans-

formed into frequency domain and decomposed into amplitude spectrum and phase spectrum.

Usually, the amplitude at lower frequency is much larger than those from the higher frequency.

Since the energy is indicated by the amplitude, we can also say the energy is concentrated more
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at the lower frequency portion of the spectrum.

The saliency region of the signal is where many irregularities exist. These irregularities are

composed by many sinusoidal components with different frequency in the spectral domain. To

make it even more obvious, we need to enhance the high frequency components by scaling their

amplitude such that their scales are more comparable to those in low frequency components.

From the energy perspective, this is to redistribute the energy so that the energy from high

frequency components is no longer dominated by those from the low frequency components.

From statistics, we know Logarithmic transformation can be applied for skewed data to re-

duce the variability. To enhance the high frequency component, we can also apply Logarithmic

transformation to the amplitude spectrum of the signal to reduce its variability.

Formally, we formulate our approach of saliency detection as enhancing the high frequency

components by applying logarithmic transformation to the amplitude spectrum of the signal

and reconstructing the saliency map by Inverse Fourier Transform from these enhanced com-

ponents. LetS(t) denotes the signalS at time t, FFT (S) andFFT−1(s) denote Fourier

and Inverse Fourier Transform respectively andR(s) andP (s) for the amplitude and phase

spectrum respectively. Our approach is:

1. Fourier transform of signalS:

s(f) = FFT (S(t)) (6.9)

2. Take the amplitude and phase spectrum respectively:

Amplitude(f) = R(s(f)) = R(FFT (S(t))) (6.10)

Phase(f) = P (s(f)) = P (FFT (S(t))) (6.11)

3. Apply logarithmic transformation toAmplitude(f) for enhancement:

Enhance(f) = log(Amplitude(f)) (6.12)
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4. Construct saliency map by Inverse Fourier Transform from the enhanced amplitude

spectrum and the corresponding phase spectrum:

SaliecyMap(t) = FFT−1(Enhance(f)exp(iPhase(f))) (6.13)

= FFT−1(log(Amplitude(f))exp(iPhase(f))) (6.14)

The results of applying our method to the signal in Figure 1 are shown in the second row of

Figure 2. The salient region are at aroundx = 0.45 andx = 0.6 as indicated by the two peaks

at those locations in the saliency map.

6.2.3 The Relations with Other Methods

Both Xiaodi Hou [32] and Chenlei Guo[28] methods are similar to this framework. They just

use different transformation to enhance the high frequency components. In the work of Xiaodi

Hou [32], the log spectral residual is defined as

Residual(f) = log(Amplitude(f))− h(f) ∗ log(Amplitude(f)) (6.15)

In which the second term is smoothinglog(Amplitude(f)) in its local neighborhood with

a linear average filterh(f). Usually the second term is close tolog(Amplitude(f)), so we

can assume a frequencyf ′ close tof whose log amplitude spectral can approximate the second

term. Thus theResidual(f) can be rewritten as

s(x) = log(Amplitude(f))− log(Amplitude(f ′))

= log(
Amplitude(f)
Amplitude(f ′)

) (6.16)

The construction of the saliency map from [9] can be rewritten as:

s(x) = F−1(eResidual(f)+i∗Phase(f))2

= F−1(eResidual(f) ∗ ei∗Phase(f))2

= F−1(
Amplitude(f)
Amplitude(f ′)

∗ ei∗Phase(f))2 (6.17)
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Figure 6.2:The saliency detection for a one dimensional signal. The first row is the amplitude spectrum
and the original signal. The second row results from using our proposed transform. The third row results
from using transform from [32] and the forth row results from using transform from [28]. For the bottom
three rows, the left column is the transformed amplitude spectrum and the right column is the constructed
saliency map.

So instead of applying logarithmic transformation to the amplitude spectrum, this method

uses the ratio of amplitude component and its average from its neighborhood. In this way, the

amplitude components are normalized locally and the values of the components at both low

frequency and high frequency are comparable. So this is a way to enhance the components at

high frequency. The result of applying this method to the signal in Figure 6.1 are shown in the

third row in Figure 6.2 for comparison.

In the work of [28], the information from amplitude information is ignored and the ampli-

tudes at all frequencies are set to one. The construction of saliency region is:

s(x) = F−1(ei∗Phase(f))2 (6.18)
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This is also an enhancement for high frequency components because now the energy is

uniformly distributed and the impact for saliency map construction from high frequency com-

ponents is no longer dominated by those from the low frequency. The result of applying this

method to the signal in Figure 6.1 is shown in the forth row in Figure 6.2 for comparison.

6.3 Saliency Detection for Images and Video Sequences

6.3.1 Saliency Detection for Images

The image can be seen as a two dimensional digital signal and the salient regions in the image

are the places where many varying sinusoidal components locate. As in the same way for one-

dimensional signals, we can detect the salient region in images by enhancing the high frequency

components.

Since the saliency, such as edges, corners etc, can come from both x and y dimensions,

we first apply two-dimensional Fourier Transform to get the amplitude and phase spectrum.

We then apply logarithmic transformation to the components from amplitude spectrum for en-

hancement. In the end, we construct the saliency map from these enhanced amplitude compo-

nents and their corresponding phase components. The comparison with the results from other

transform from [32] and [28] is in section 6.4.

6.3.2 Saliency Detection for Video Sequences

Saliency detection can also be applied to video sequences for motion detection. Motions are at

the places where there are many changes in the temporal domain. If we model the frames of a

video sequence as a group of signals changing along the temporal dimension, the motion can

also be detected as the saliency region when we enhance the high frequency components in the

amplitude spectrum along the temporal dimension.

To detect the saliency, we first apply Fourier Transform along the temporal dimension to the

three dimensional video sequence data. Then we apply logarithmic transform to the amplitude

spectrum to enhance the high frequency components. In the end, we construct the saliency map

by Inverse Fourier Transform from the enhanced amplitude and phase spectrum. Some motion

detection samples are shown in section 6.4.
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6.4 Experiments

We have carried out experiments on both still images and video clips. Because saliency detec-

tion plays an important role in identifying the regions for object or motion detection, we use

the object or motion detection to measure the results as in [32] and [28].

Since saliency map is an explicit representation for the possible object or motion locations,

we use a simple threshold segmentation method for detection. Give the saliency mapS(x) of

an image, the object map is obtained:

Os(x) =





0, if S(x) > Threshold

1, otherwise
(6.19)

Empirically, we setthreshold = cE(S(x)), whereE(S(x)) is the average intensity of the

saliency map and c is a constant we can change. The selection of the threshold is a tradeoff

problem between false alarm and the neglect of the object.

6.4.1 Still Image

In our experiments for still images, we adopted the same setting from [32] for comparison. In

this experiment, 62 images of natural scene are downsized to320×240 to test the performance

of our proposed method and the methods from [32] and [28]. The ground truth is the object

regions hand labeled by human.

Samples for the saliency maps constructed from various methods are shown in Figure 6.3.

It is shown that the saliency maps are similar across different methods and are compatible with

the object regions labeled by human.

6.4.2 Video Sequences

We used a video sequence capturing passing vehicles on a street in a rainy day for experiment.

This clip has 181 frames, each of which is120 × 160 pixels. This clip captures a streetlight

pole, which is periodically partially occluded by rain. This might lead to false motion detection

from other methods that detect motion by comparing the frame by frame pixel difference. Our

method suppresses this low frequency periodicity by enhancing high frequency components for
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Figure 6.3:Saliency map from different methods. The first column is the original images. The second
column is the saliency map constructed from our method. The third column is the saliency map from
[32], the fourth column is the saliency map from [28] and the fifth column is the object map hand labeled
by human.

more irregularity, such as the passing cars. Four snapshots of the video sequence with passing

cars are shown in Figure 6.4, together with the corresponding saliency maps and the object

maps.

6.5 Summary

In this chapter, we propose a framework for general object saliency detection. Our approach

addresses the saliency detection problem in frequency domain as an enhancement problem for

high frequency components. Our contributions are:

1. Model the saliency detection problem in a more general enhancement framework, which

explains other saliency detection methods from [9] and [10] and introduces a new method which

has similar results.
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2. Extend the saliency detection framework for video sequences via Fourier Transform

along the temporal dimension.

Saliency detection is an important step in the local visual feature framework for object and

activity recognition. Successfully solving this problem can help fast detection of local visual

features.
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Figure 6.4:Saliency map and the object map from a video sequence. These are four snapshots of the
video sequence. The left frames are from the original clip. The middle frames are the corresponding
saliency maps and the right frames are the object maps built from saliency maps by threshold segmen-
tation
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Chapter 7

Conclusions

Recognition is one of the essential problems in computer vision with many applications. Recent

advances of the computer power of modern computers also push the progress of research on

recognition. Traditional methods such as model-based methods, appearance template based

methods have been intensively studied and gained success in many applications. Recently,

local visual features based methods, which usually infer the recognition results from statistical

models of local visual features, have gained much attention from computer vision researchers.

This statistical based methods can model target class without accurate geometric model, which

is difficult to obtain, and handle more complicated scenarios, such as deformable target, partial

occlusion. Because of these advantages, local visual features based methods can work on many

problems which can not be successfully solved by traditional methods.

This thesis follows the local visual feature framework and addresses some important prob-

lems in this framework. Namely, they are:

1) How to select good local visual features in the images and build a statistical model that

model the target class and location simultaneously.

2) In the popular “bag-of-words” model, how to select the vocabulary for this model such

that the resulting model is more compact and contains less irrelevant words for the representa-

tion.

3) Also for the “bag-of-words” model, which is based on the naive Bayesian assumption

of independence among local visual features, how to improve this model by integrating spatial

and temporal information into the representation for activity recognition in a three-dimensional

space.

For the first problem, we propose a general object recognition system featuring a two stage

method for selecting local image features, which characterize the target object class. The
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first stage uses a combinatorial optimization formulation for clustering a weighted multipar-

tite graph. The following stage is a statistical method for selecting discriminative local visual

features from the positive images. This recognition system integrates spatial information of

local feature into recognition by estimating the joint probability of the target class and its rel-

ative location. This work improves the recognition rate over the other known methods on a

benchmark data set.

To choose a more compact and relevant vocabulary for the “bag-of-words” model, we need

metrics to measure the importance of visual words in the representation of an application. Con-

ditional entropy comes naturally because it indicates the purity of the distribution of activity

given a cluster of local visual features, which typically corresponds to a visual word. So in

chapter 4 of this thesis, we introduce conditional entropy based vocabulary selection methods

to build “bag-of-meaningful-words”. Both hard selection, which simply discards some irrel-

evant words in the vocabulary, and soft selection, which assigns different conditional entropy

based weights to visual words in the vocabulary have been proposed. Experiments on various

representative human action data sets, which include facial expression, hand gesture and gen-

eral human activities in KTH data sets, have shown improved performance over the traditional

“bag-of-words” model.

To further integrate spatial and temporal information into the “bag-of-words” model for

human activity recognition, we model the human motion with the distribution of local motion

feature and their spatial-temporal arrangements. Instead of applying histogram to approximate

the distribution in the traditional local visual feature space, we also consider both the spatial

and the temporal space and use the histogram in a three-dimensional space to approximate the

joint distribution.

Two methods have been proposed. The first approach uses a spatiotemporal pyramid rep-

resentation for human activity. This approach works by partitioning video sequence into in-

creasingly fine subdivisions in the space and time domains and modeling the distribution of the

local motion features inside each subdivision such that the set of motion features are mapped

into spatial and temporal multi-resolution histograms. This spatiotemporal pyramid is built by

weighting the histograms from the different layers of the subdivisions. The proposed approach

is an extension of the orderless “bag-of-words” model by approximately capturing geometric
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and temporal arrangements of the local motion features.

However, this approach assumes the target human actions do not have global motion or the

locations of local motion features in the three-dimensional spatial temporal space are normal-

ized, for example by estimating the global motion, to cancel its impact such that the spatial

temporal location of local motion features are comparable. So we introduce the second ap-

proach, in which the local motion features used for the representation of a frame are the ones

detected in this frame and others integrated from its temporal neighbors. The features’ spatial

arrangements are captured in a hierarchical spatial pyramid structure. Since for this approach,

only local visual features from neighboring frames are considered, the global motion among

them will be small and can be assumed to be zero when modeling. By using frame by frame

voting for the recognition, experiments have demonstrated improved performances over most

of the other known methods on the popular benchmark data sets while approaching the best

known results. One of the drawbacks from frame by frame voting scheme is that it is compu-

tational expensive. Again we used entropy as the measure to select the informative frames for

voting. Since the voting from frames are independent from each other, we believe we can use

parallel computing to help solve this problem.

We also explored analyzing computer vision problem from the frequency domain. The

problem we are addressing is saliency detection, which is to detect the places where human

usually pay attention to at the first glance. Successfully solving this problem can help fast

detection of local visual features. The salient regions typically contain more information than

other places and will pop up to the human eyes. From frequency analysis perspective, these

regions are places where many varying sinusoidal components exist. However, typically, these

high frequency sinusoidal components are dominated by low frequency components. If these

places are enhanced by re-distribution of the energy in the frequency domain and compared

with the original images, the large difference indicates the possible location for saliency. In

this thesis, we explain the previous two methods for frequency analysis of saliency detection

as special cases of a school of a more general approach and present our own transformation for

re-distribution of energy in frequency domain.

Therefore, some very important problems in different phases of the global local visual fea-

tures framework for recognition have been addressed in this thesis in various ways. They are
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salience detection in the local visual detection and representation phase, local visual feature

selection in the feature selection phase, entropy based words selection in vocabulary for “bag-

of-more-meaningful” words, and integration of spatial temporal information into the represen-

tation in the target modeling and recognition phases. So my thesis is in line with a promising

approach to recognition, a fundamental problem in computer vision.
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