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ABSTRACT OF THE THESIS

The interpretation of intentionality from dynamic scenes

By PETER C. PANTELIS

Thesis Director:

Jacob Feldman, Ph.D.

This thesis explores how the mind uses the motion of animate objects to make inferences about

these objects’ underlying mental states, intentions, goals, or dispositions. We present dynamic

scenes to subjects in which autonomously programmed triangular “agents” interact with each

other and—in two of the experiments—an additional agent that is controlled by the subject.

We strive for the autonomous agents to be simple in their underlying programming but to also

engage in a rich array of lifelike behaviors. Subjects watch short simulations populated with

these agents and then are asked questions designed to probe their perceptions of the similarities

among the agents’ behaviors. We use the responses to derive a multidimensional scaling (MDS)

solution for the agents in our set. The aim is to relate this MDS solution to the underlying

programming on one hand, and to also discover interesting structure in subjects’ perception of

the “agent space.” Clusters in this space, for example, could provide insight into the perceptual

biases subjects bring to the experiment for which types of agents are a priori more likely to be

observed. The most robust result from the experiments is that subjects, in making inferences

about an agent’s intentions, pay special attention to how the agent reacts when another agent is

at a “critical distance” of about 10-17.5 agent lengths away.
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1. Introduction

Intelligent beings can and must distinguish between animate and inanimate objects when cog-

nitively processing the world before them. Researchers have made the claim that even infants

make this distinction, and, furthermore, may harbor something akin to a naı̈ve concept or the-

ory of other beings mental states and intentions (e.g. Gergely, Nádasdy, Csibra, & Bı́ró, 1995;

Johnson, 2000, for a review). For us grown-ups, our ability to conceive of others as animate,

mentalistic agents with independent perceptions and motivations is evident. Indeed, adults

will readily infer intentions, thoughts, and goal-directed behavior to the actions even of simple

geometric figures, lines, or points moving in a display, as illustrated by the seminal work of

Heider & Simmel (1944). Yet much remains to be learned about what visual information is

most relevant for the mind’s construal of animacy.

This research explores how people make use of one aspect of a scene—the motion of

objects—to make inferences about other agents’ mental architecture. For this task, motion is

only one cue a person can use among many (Gelman, Durgin, & Kaufman, 1995), but one

that we believe to be both evolutionarily important and quite ancient. Closely related topics

have been examined extensively in fields like developmental psychology, but have rarely been

studied (a) using psychophysics with adult subjects, to better understand the basic features

that underlie the percept of intention, or (b) computationally, to model the inferences subjects

actually make.

A handful of recent studies have ventured in this direction, demonstrating that varying

the motion of simple geometric figures along certain programmable parameters (e.g. speed,

trajectory) can influence peoples subjective percept of how animate they are and what their

intentions might be. Dittrich & Lea (1994), for instance, highlighted the importance of an ob-

served figures interaction with other figures, as context. Tremoulet & Feldman (2000) demon-

strated that subjects can construe the intentionality of an agent from its pattern of motion alone,

even in the absence of such context with which it might interact. Tremoulet & Feldman (2006)

attempted to formally model related mental processes, and their experiments highlighted the

role of a figures perceived passivity or reactivity to its context in the observers attribution of

intention and mental architecture to that figure-agent.
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Baker, Tenenbaum, & Saxe (2006, 2007) take a Bayesian approach to the question of

how the human mind infers the goals of an agent from its actions, a general framework we also

adopt. These authors conceive of this inference as being a sort of “inverse planning”; that is,

the observer tries to find the most likely underlying goals or intentions of an agent given the

observed behavior. In our study, we hope to address the a priori terms—p(A)—in Bayesian

formulae of this flavor:

p(A|motion) ∝ p(motion|A)p(A) (1.1)

where A represents some underlying mental state, behavioral disposition, payoff matrix, or goal

set—i.e. a theory of the other agent’s mind that includes some reference to its intentions.

It could be that the human mind assumes any possible behavioral disposition or set of

intentions to be equally likely within a relatively uniform “agent space”. In this case, the subject

could be said to have a neutral prior across agent types. However, it would be interesting if some

underlying agent mentalities were assigned higher prior probabilities than others. It would be

especially interesting if these higher priors corresponded to certain “natural kinds” that might be

partially innate—the result of evolution. These natural kinds might include chasing, courting,

following, guarding, fighting, or playing (Barrett, Todd, Miller, & Blythe, 2005).

We aim to shed light on the natural mental divisions that arise between categories

of animate, intentional, or goal-directed motion. We ask: Given patterns of motion that are

subjectively construed as reflecting underlying animacy and mentalistic processes, how do these

patterns of motion naturally cluster in the mind of the observer? And, how does the human

mind perform this inference? We hypothesize that when people view objects moving about

a scene, they will tend to perceive certain patterns of behavior as naturally “going together.”

These clusters would represent modes or peaks in a subject’s priors that pertain to his “agent

space.”

This approach to the perception of animacy resembles categorization in spirit. We in-

deed intend to explore how the mind partitions the world of animates into categories relevant to

its behavior. Recent studies have explicitly examined categories of animate motion, presenting

the above-mentioned “natural kinds” as the relevant categories a person employs when observ-

ing a dyadic interaction between agents (Blythe, Todd, & Miller, 1999; Barrett, Todd, Miller, &
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Blythe, 2005; McAleer & Pollick, 2008). That is, these studies presented subjects with scenes

constructed to represent these different categories of interaction, and demonstrated that subjects

were reliably able to categorize these scenes even in degraded forms for which motion was the

only salient cue. Additionally, these studies each reported that subjects seemed to demonstrate

a bias toward categorizing an interaction as “play”—this is the type of bias in which the present

study is explicitly interested.

In contrast to these studies, our aim is to show subjects a broad array of agent interac-

tions, from a richer and more general collection of possibilities, in an attempt to allow subjects’

minds to impose their own structure on the agent space. Another novel aspect of our methodol-

ogy is that the scenes we show subjects have not been constructed beforehand to convey some

category of interaction, as has usually been the case in the previous experimental literature de-

scribed above. Rather, we program the agents inhabiting these scenes to behave autonomously,

resulting in chaotic multi-agent interactions we cannot predict in advance.

In Experiments 1 and 2, we use multidimensional scaling (MDS) in an attempt to ex-

tract the “natural cleavages” present within this stimulus space of animate motion and behavior.

In Experiment 3, we take a different, simulation-intensive approach. In all experiments, we

hope to find and explain clusters in the mental stimulus space that the mind tailors for animate

behaviors.

1.1 General Methodology

Each of the experiments involved subjects watching small isosceles triangles interact with each

other within a simulation environment. All of these experiments were programmed using the

breve Simulation Environment (Klein, 2002), an open-source software package freely available

at http://www.spiderland.org. A snapshot from Experiment 1 is shown in Figure 1.1.

1.1.1 Programming Lifelike Automata

In designing and coding the agent behaviors, we aimed to employ a simple programming

scheme that would impose minimal structure on the agents’ interactions but, nonetheless, would

result in a rich variety of lifelike agent behaviors. This proved to be a difficult task, and we have
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Figure 1.1: A screenshot from Experiment 1 (colors inverted).

not fully resolved this problem at this stage of the research.

It is important to note that the programming scheme we employ here is not the only

possible scheme that we considered or that could be employed in other versions of these ex-

periments. Later, I will discuss future innovations to the design of a richer and more lifelike

space of agent behaviors. However, the problem of designing these automata is somewhat or-

thogonal to the central questions of this research. The automata are tools for addressing these

questions—a pool of stimuli for the psychophysics.

We programmed the triangular agents to behave according to a number of simple rules.

Automata governed by simple rules can produce vividly lifelike behaviors that may result in

observers making complex inferences about their mental states and motivations (e.g., Braiten-

berg, 1984). In theory, these are the types of Braitenberg-inspired automata we aim to present

to subjects.

We programmed each agent to orient one vertex of its triangular body (that which lay

on its axis of symmetry) in the direction of its movement. We hoped this would signal to

the subject that this vertex was the “head” of the agent. The agents reacted the same when

they either collided with the edge of the scene or another agent—they bounced off for a split

second. This sometimes resulted in jerky and unnatural-looking behaviors at collisions, so in

Experiments 2 and 3 we attempted to change collision behavior (more on this later). Each



5

agent started off in the simulation environment with a random velocity and location (within

constraints).

At each iteration of a simulation, an agent would find the closest other agent within the

scene and then accelerate toward or away from it according to a set of parameters. Each agent

had six such parameters, each of which would control the acceleration of the agent depending

on how far away the closest other agent was (0-5 units, 5-10, 10-20, 20-40, 40-70, or > 70).

A schematic of these 6 radii around an agent is shown in Figure 2.1. As an example, one

agent might approach an agent from afar but then veer away as it gets to a closer radius. Or,

it might consistently accelerate away from another agent. Depending on how the other agent

is programmed, their interaction might look like chasing/fleeing, or one pushing the other, or

even one agent circling another.

We constructed a pool of 12 agents, each with 6 randomized parameters within the

programming scheme.
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2. Experiment 1

2.1 Method

2.1.1 Subjects

Eight undergraduate and graduate students between the ages of 18 and 24 participated in the

study, which required one hour-long session. The undergraduates received course credit.

2.1.2 Stimuli

We presented scenes, 15 seconds each in duration, to subjects on a 1440 x 900 LED display,

on a 15 inch MacBook Pro laptop with a 2.2 GHz dual core processor. These scenes were

not pre-made animations; rather, the “agents” behaved autonomously according to a number of

simple rules (described above). At the beginning of a scene, each of seven agents were placed

at a random location in the display, and then the simulation was left to run.

The simulation display was 13 x 6.5 inches, and the viewing distance was approxi-

mately 18 inches. The programming library employed units that were equivalent to 22 units/inch.

Velocities of agents in the simulations were programmed in units/simulation time (40 units of

simulation time about equaled 1 s). The triangular agents had bases of 1 unit length and heights

of 4 unit length.

2.1.3 Procedure

In each 15 second scene, the subject observed 7 agents interacting. 3 were red, 3 were blue, and

1 was white. The reds would behave according to the same parameters as the other reds, the

blues according to a different set of parameters, and the lone white according to a third set of

parameters. The agents were drawn from a larger 12 agent pool; thus, there were 220 possible

triads of these 12 agents.1 For each scene, one of these 220 triads was selected at random, and

1Strictly speaking, because the status of the white agent in each trial is special, and, as a result, during a given
trial the subject cannot respond that he actually believes the blue and red agents to be most alike, 660 possible
arrangements actually exist. Rather than show all 660 possibilities, we randomized the procedure so that no agent
type would be more or less likely to be “white” during a trial. Nevertheless, this presents a source of noise in the
data, and we altered the procedure in Experiment 2 to address this issue.
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1     2         3             4       5          6

Figure 2.1: A schematic of the programming scheme for the automata. The black automaton
accelerates toward or away from the closest other agent in the scene. The direction and mag-
nitude of this acceleration depends on the distance to this closest other agent, with possible
distances divided into six zones. Zone #5 seems to be the most psychologically relevant.

then each of the three programs in the selected triad was randomly assigned to either red, blue,

or white. Each subject saw 220 such scenes, exhausting the possible triads.

Subjects were openly encouraged to construe the triangular agents as animate. At the

end of a 15 second scene, they were asked “Is the white agent behaving more like a red, or

more like a blue?” They answered by pressing a button in a dialog box.

We constructed a 12 x 12 symmetric distance matrix for each subject, to be fed into

the individual differences multi-dimensional scaling (MDS) algorithm (INDSCAL/ALSCAL;

Takane, Young, & de Leeuw, 1977). Within this matrix, an agent was assigned a distance of

0 from itself. As two different agents appeared in the same trial of an experimental session 10

times, the distance in this matrix between any two agents was initially set at 11.

If the subject chose “red,” then the agent whose programming was used for the red

agents in this trial was made to be closer together (more similar) in this distance matrix with

that of the white agent, and likewise for if the subject chose “blue.” That is, the distance

between these two agents in the matrix was reduced by 1. Previous studies have used similar

methodologies to gauge subject similarity ratings of visual stimuli (e.g., Kahana & Bennett,

1994; Pantelis, van Vugt, Sekuler, Wilson, & Kahana, 2008).
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Figure 2.2: The 2-dimensional MDS solution for the 12 agents, fitting data from Experiment 1.

2.2 Results and Discussion

We derived a 2-dimensional MDS solution in order to visualize the space of agents that subjects

(on average) perceived (see Figure 2.2). For this amount of points, the INDSCAL algorithm

allows for fits of 2-5 dimensions. Deriving higher-dimension solutions will always result in

better fits to the experimental data (see Figure 3.4). However, the higher number of dimensions

would be even more difficult to interpret than the two condensed dimensions we present, and

even a 5-dimensional fit would probably be a condensed version of the true amount of psycho-

logically relevant dimensions in this agent space. The true number of dimensions could be even

higher than the total number of agents in our sample.

A 2-dimensional solution allows for the easiest visualization of the inter-agent dis-

tances, an important motivation for using the MDS analysis in the first place. If interesting

structure emerged only in higher-dimensional fits for these data, this might provide greater jus-

tification for using these more complex solutions. However, we actually find the clearest and
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most interesting structure within a 2-dimensional fit.

The most striking aspect of the space is its ring-like structure, which is a result similar

to what one would get if one performed a 2-dimensional MDS on colors in the color wheel, for

instance (demonstrated in Shepard, 1980). The meaning of this ring structure is not perfectly

clear. On one hand, it could be a misleadingly provocative artifact of the statistical analysis

we employed, or the 2-dimensional fit. On the other hand, it could be indicative of an interest-

ing but unknown underlying dimension that—instead of having two extremes—cycles around

without having any true beginning or end. On a third hand, the ring structure might suggest

an interesting sort of correlation between dimensions 1 and 2. That is, for any given agent, if

one is given the value of one of its dimensions, one can almost perfectly predict the absolute

value of the other. Possible meaning behind this ring structure will be revisited in a discussion

following Experiment 2.

Table 2.1: Correlations (r[10]) between programmed parameters (rows) and MDS dimensions
(columns). Bold font represents p < .01

MDS Dimension 1 MDS Dimension 2
Parameter 1 -.070 .384
Parameter 2 -.275 -.074
Parameter 3 .527 .199
Parameter 4 .411 -.375
Parameter 5 -.801 .093
Parameter 6 .459 .197

Subjects’ perception of the agents’ behaviors arises from some complex interaction

of its underlying programming and the chaotic interaction with other agents that arises during

each unique simulation. This contributed to there being many individual differences between

subjects’ results; few subjects’ distance matrices showed obvious correlation. However, one of

the 6 parameters with which we programmed each agent was indeed strongly correlated with

one of the MDS coordinates (see Table 2.1). This parameter controlled how an agent would

behave when the closest other agent in the simulation was between 40 and 70 units (about 1.8 to

3.2 inches) away from it. I discuss this finding in greater detail in the Experiment 2 discussion.
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3. Experiment 2

In Experiment 2 we made some changes to the methodology in Experiment 1 that we hoped

would reduce noise in the data. The most important change was to allow the subject to control

one of the agents in each simulation. We hoped that the subject would use this tool to glean

more information about the various agents in the simulation that would have been possible in

Experiment 1. We also were able to record the movements subjects made over the course of

each simulation.

3.1 Method

3.1.1 Subjects

Seven undergraduate and graduate students between the ages of 18 and 23 participated in the

study, which required one hour-long session. The undergraduates received course credit.

3.1.2 Stimuli

We presented scenes similar to those in Experiment 1, 15 seconds each in duration, to subjects

on an eMac with a 17 inch (16 inches viewable) monitor and a 1152 x 864 display. The monitor

refresh rate was 80 Hz and the computer had a 1.25 GHz processor.

The simulation display was 10 x 6.5 inches. The simulation employed units of length

that were equivalent to 22 units/inch. Velocities of agents in the simulations were expressed in

units/simulation time (40 units of simulation time about equaled 1 s). The triangular agents had

bases of 1 unit length and heights of 4 unit length. The subject controlled one agent with the

mouse, which was a white circle with a 2 unit radius.

We programmed the agents under the same scheme as was employed in Experiment 1,

with one change: When agents collided with other agents, they bounced off each other for .2 s

at some random velocity vector. The automatic agents reacted to the subject-controlled agent

in the same manner as any other triangular agent in the simulation.

We used the same pool of 12 agents from Experiment 1, each which had been created

with 6 randomized parameters within the programming scheme.
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3.1.3 Procedure

In each 15 second scene, the subject observed 6 agents and controlled 1 agent. 2 were red, 2

were green, 2 were blue, and the subject-controlled agent was white. The reds would behave

according to the same parameters as the other reds, the greens according to a different set of

parameters, and the blues according to a third set of parameters. The agents were drawn from

a larger 12 agent pool; thus, there were 220 possible triads of these 12 agents. For each scene,

one of these 220 triads was selected at random, and then each of the three programs in the

selected triad was randomly assigned to red, green, or blue. Each subject saw 220 such scenes,

exhausting the possible triads.

Subjects were openly encouraged to construe the triangular agents as animate, and

were instructed that how agents of a certain color behaved during one trial would have nothing

to do with how they behaved in subsequent trials. At the end of a 15 second scene, they were

asked to determine which color of agent acted least like the other two—that is, which was most

different: red, green, or blue? They answered by pressing “R”, “G”, or “B” on the keyboard, at

which point the next trial began.

As in Experiment 1, we constructed a 12 x 12 symmetric distance matrix for each

subject, to be fed into the individual differences multi-dimensional scaling (MDS) algorithm.

For each trial, the two non-chosen agents in the odd-one-out procedure were made more similar

within this distance matrix.

3.2 Results and Discussion

Once again, we derived a 2-dimensional MDS solution in order to visualize the space of agents

that subjects (on average) perceived (see Figure 3.1). We again observed a ring-like structure in

the space. The two MDS solutions (processed representations of the subjects’ original similar-

ity ratings) were correlated. Dimension 1 in Experiment 1’s MDS was strongly correlated with

Dimension 2 in Experiment 2’s MDS [r(10) = .7125, p < .01]. Dimension 2 in Experiment

1’s MDS was weakly (and negatively) correlated with Dimension 1 in Experiment 2’s MDS

[r(10) =−.5511, p = .0633]. (The direction of these correlations is arbitrary and meaningless,

but helpful in comparing the 2-dimensional MDS spaces presented in Figures 2.2 and 3.1.)
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Figure 3.1: The 2-dimensional MDS solution for the 12 agents, fitting data from Experiment 2.

As shown in Table 3.1, Dimension 2 was correlated with parameter 5 in the agents’ pro-

gramming. This is consistent with the finding from Experiment 1, where Dimension 1 had been

correlated with this same parameter. Apparently, how an automaton reacted to (i.e. accelerated

toward or away from the direction of) its closest other agent in the simulation when that agent

was 40-70 units away (10 to 17.5 times the length of an agent) was the most psychologically

relevant programmed variable.

One might think that this result could have been the result of this inter-agent distance

being the most common situation in the simulations we presented to the subjects. However, as

shown in Figure 3.2, this was actually not the case. In Experiment 2, the two most common

distances between an automaton and its closest other agent during a simulation were 0-5 units

(0-1.25 agent lengths) and 20-40 units (5-10 agent lengths). Therefore, that 10-17.5 agent

lengths would be the most psychologically critical distance is the result of some other cognitive

process.
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Table 3.1: Correlations (r[10]) between programmed parameters (rows) and MDS dimensions
(columns). Bold font represents p < .05

MDS Dimension 1 MDS Dimension 2
Parameter 1 -.129 -.147
Parameter 2 -.529 -.050
Parameter 3 .096 .195
Parameter 4 .548 .200
Parameter 5 -.310 -.619
Parameter 6 .249 .233

3.3 Further Discussion: Experiments 1 and 2

We did not discern any qualitative differences between the results of the two experiments, and

therefore we here choose to pool data from all 15 subjects for the following discussion. The

2-dimensional MDS solution for these pooled subjects reveals an even cleaner ring structure

(see Figure 3.3). But what does it mean as we travel around this ring?

In the combined MDS, Dimension 1 seems pretty clearly connected to how an agent

behaves when the closest other agent is between 10-17.5 agent lengths away (i.e. programmed

parameter #5). In this situation, the agents on the left side of the ring all tend to accelerate

away from the nearest other agent, and the agents on the right side of the ring tend to accelerate

toward the nearest other agent.

The meaning behind Dimension 2 is less straightforward, and furthermore this dimen-

sion is clearly not independent from Dimension 1. Because Dimension 2 does not correlate

with any programmed agent parameter, in the absence of further psychophysics I can only rely

on watching a number of simulations to speculate on its meaning. Ultimately, Dimension 2

alone does not seem represent anything obvious, but it may interact with Dimension 1 to pro-

duce distinct behavioral patterns. Agents around the top left section of the “ring” (Agents 6,

4, 9, 8, and 11) tend to appear generally “friendly.” Most of the other agents, occupying the

majority of the “ring” (Agents 1, 5, 12, 10, 7, 2), could be characterized as generally “hostile”

(Agent 3 seems to be a “friendly” exception to this characterization).

This potential “friendly” versus “hostile” dimension is neither orthogonal nor redun-

dant with whether an agent accelerates toward or away from another agent at a certain distance—

say, the distance with which programmed parameter #5 is concerned. That is, when an agent
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Figure 3.2: During Experiment 2, we recorded the positions of each agent in the simulation
every tenth of a second. This figure shows the proportion of the time the inter-agent distance
between an automaton and its closest other agent was within one of six bins, corresponding to
the six underlying programmed parameters (subjects’ data are pooled).

moves in the direction of another, it may appear to be aggressive or merely curious, and it

is unclear what perceptual features contribute to these subjectively different characterizations.

The two more basic MDS dimensions from Experiments 1 and 2 may interact to produce such

characterizations.
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Figure 3.3: The 2-dimensional MDS solution for the 12 agents, fitting pooled data from Exper-
iments 1 and 2.
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Figure 3.4: A scree plot for possible MDS solutions fitting the pooled data from Experiments
1 and 2. A greater number of dimensions will always result in a better fit, but there is no clear
“elbow” in the plot favoring one particular number of dimensions over another.



16

4. Experiment 3

In Experiments 1 and 2, we used MDS in order to attempt to reconstruct subjects’ psychological

space of animate behaviors from psychophysical data. In Experiment 3, we introduce a different

methodology for approaching the same problem.

As Experiments 1 and 2 illustrate, we could not reasonably have expected to detect

clusters in the agent space by showing each subject only 12 different agents. In even a 2-

dimensional space, 12 points provide insufficient resolution for such an endeavor. In fact, one

rule of thumb for determining an appropriate number of clusters to search for with algorithms

like k-means clustering is k ≈ (n/2)1/2, where k is the number of clusters and n is the number

of data points (Mardia et al., 1979). So with only 12 points, one could only hope to detect 2-3

clusters at best. If more than 5 clusters actually existed in the space, one would need at least 50

points to provide a reasonable amount of resolution for their detection. If more than 7 clusters

actually existed in the space, this would probably require more than 100 data points.

The primary motivation behind Experiment 3 is to address this issue.

4.1 Method

4.1.1 Subjects

Six undergraduate and graduate students between the ages of 18 and 24 participated in one

half-hour experimental session.

4.1.2 Stimuli

We presented scenes to subjects on the same computer utilized in Experiment 1. The program-

ming library employed units that were equivalent to 22 units/inch. Velocities of agents in the

simulations were expressed in units/simulation time (40 units of simulation time about equaled

1 s). The triangular agents had bases of 1 unit length and heights of 4 unit length.

The agents were programmed with the same 6-parameter scheme employed in Exper-

iment 2. We constructed two pools of agents, each with 6 randomized parameters within the

programming scheme. The first pool (of 100 agents) we used as “models” to be analyzed
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offline. From the second pool (of 50 agents), we drew stimuli for the experimental sessions.

4.1.3 Procedure

Each subject watched one green triangle-agent interacting with six randomly-generated red

triangle-agents for 15 s. They were instructed to pay special attention to the green agent, and

were openly encouraged to think of the triangles as living, animate objects interacting with one

another. At the end of this 15 s interval, the green agent disappeared from the scene, the six red

agents were randomly relocated to new locations in the scene, and a new white triangle-agent

appeared, controlled by the subject’s mouse. The subject was instructed to, at this point, begin

to mimic the original green agent, for 15 s. Subjects were discouraged from mimicking the

green agent’s exact trajectory, and instead encouraged to try and learn from what the agent had

done in the previous 15 s and use this information to infer how that agent would react to the

novel situation.

At the end of 15 s, the screen went gray, and the subject began the next trial by pressing

the spacebar. The green triangle-agent to be emulated in each trial was drawn from the above-

mentioned randomly-generated pool of 50, and each subject saw the same 50 agents over 50

trials, in random order.

Every half second, in both the watching and emulating stages of a trial, we recorded

several variables describing how the green agent or subject-controlled agent (respectively) were

moving about the scene. These included x-y position in the simulation, speed, distance to the

closest other agent, speed in relation to the closest other agent, and the relative speed of the

agent and the closest other agent (taking both agents’ velocities into account). In the analyses

below, the primary variable we explore is what the speed of the agent was in relation to the

location of the nearest other agent in the scene.

4.2 Simulation

Offline, we ran 813 simulations of 15-second duration, each of which we populated with 7

randomly-selected agents from the above-mentioned 100-agent pool. We recorded variables

relevant to their behavior in the scene every half-second, resulting in 30 time slices during each
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simulation at which we recorded data for each agent. We used this information (on average,

about 1700 time slices per agent) to empirically determine cumulative probability distributions

(CDFs) for each of these variables, for each of these 100 agents. These CDFs provide a partial

summary of a given agent’s typical behavior across various simulations.

The primary variable we examined was the speed of an agent in relation to the location

of the nearest other agent in the scene. Thus, probabilities were of the form: In a 15 s scene

in which the agent interacts with 6 other arbitrary agents, what is the probability that this agent

takes on a given speed relative to the nearest other agent in the scene?

4.2.1 100 “model” agents

We wanted to get a sense of what the space of 100 “models” looked like, in a manner that was

both easy to visualize and psychologically relevant. In Experiments 1 and 2 we showed that we

could plot agents within a simplified 2-dimensional space that was somewhat robust between

these two experiments. Because a 2D space allows for the visualization of psychological dis-

tances between the various agents, we favor it over MDS solutions of 3 or more dimensions,

even though these solutions may fit the observed data better (Fig. 3.4 demonstrates exactly how

much better).

Using the pooled 2-dimensional MDS solution for the 12 agents we used in Experi-

ments 1 and 2, we employed multiple regression to analyze how these agents’ 6 programmed

parameters mapped onto their 2 MDS dimensions. By this method, we then formed a model for

approximately placing any agent within this 6-parameter scheme into the 2-dimensional MDS

space from Experiments 1 and 2.

Figure 4.2 shows the 100 models plotted in this space. While the two dimensions seem

strongly correlated (and thus, it is possible that these two dimensions could be reduced to one),

there are no discernible clusters among these 100 agents. Rather, the models seem evenly

distributed throughout an elliptical space.

When we show subjects 50 new agents, and map their emulations onto best-fitting

models in this space, we expect to observe clustering. This clustering, we argue, would be the

result of subjects’ observations being filtered by the prejudices of the human mind.
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Figure 4.1: In this analysis, we examine agents’ speed in relation to the position of the closest
other agent in a simulation. The red curve shows the empirically determined cumulative prob-
ability distribution (CDF) for the subject-controlled agent during one trial of his experimental
session. For this experimental trial, the empirically determined CDF for simulation model #12
(blue dashed line) fits the subject’s data better than that of simulation model #3 (green dashed
line). In fact, model #12 fits the data better than any of the other 99 models we simulated
offline.

4.3 Results and Discussion

We empirically determined a cumulative probability distribution for the agent’s speed over a

15 s scene, relative to the nearest other agent’s location, for each of the 100 “models” we

examined offline. Then, for each experimental trial, we compared the cumulative distributions

of this variable for the agent during the trial with each of these 100 models, in order to find

the best fit (by the Kolmogorov–Smirnov statistic). Figure 4.1 provides an illustration of this

analysis, with which we asked: Given the observed behavior of an agent, if we only had this

one variable to go by, which of the 100 models was it most likely to be?

If we pool the data and look at all 300 best-fitting models (50 per subject), (see Fig. 4.3),

we see that some areas of the space were more heavily emulated than others (in the figure, the

size of the blue dot is proportional to how many times this model was the best fit for a subject’s
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Figure 4.2: The 100 “model” agents from Experiment 3, plotted in a psychologically relevant
space obtained from Experiments 1 and 2.

trial.)

Instead of using speed relative to the closest other agent, we could repeat this analysis

using a number of different variables. Figure 4.4 shows the clustered space resulting from using

distance to the closest other agent as the variable of interest.

It is unclear which of these variables, if either, is the appropriate one to use for this

analysis. However, in both analyses there appears to be a cluster in the lower left quadrant of

the space. In this area of the space, the agents are programmed along the critical parameter #5

to have a negative acceleration relative to the closest other agent. This may suggest a cluster of

evasive agents in the subjects’ mental space.
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Figure 4.3: The results of 6 subjects’ pooled mimicking performances in Experiment 3, plotted
onto their best-fitting models in 2-dimensional MDS space, using relative speed to the closest
other agent as the variable of interest. The size of a blue dot is proportional to how many times
this model (one of the 100 that were analyzed offline) came up as the best-fitting one for a
subject’s trial.
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Figure 4.4: The results of 6 subjects’ pooled mimicking performances in Experiment 3, plotted
onto their best-fitting models in 2-dimensional MDS space, using distance from the closest
other agent as the variable of interest. The size of a blue dot is proportional to how many times
this model (one of the 100 that were analyzed offline) came up as the best-fitting one for a
subject’s trial.
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5. General Discussion

Experiments 1 and 2 allowed us to get some sense of how the parameters we used to program

our agents related to how subjects perceived the agent space. In Experiment 3, we attempted to

use this knowledge to detect clusters in this space.

Clusters in this potentially high-dimensional agent space would represent something

interesting but intuitive. When one observes the motion of an animate object, an infinite of

possible intentions harbored by that agent could explain its chosen trajectory. For example,

imagine you observe agent A moving slowly away from agent B. Consider 4 possible explana-

tions for this behavior:

1. Agent A’s behavior has nothing to do with agent B; agent A just happens to be moving

in a direction that leads it away from agent B.

2. Agent A is avoiding a potentially dangerous agent B, and thus slowly retreats.

3. Acknowledging that agent B is also an intentional agent, agent A is trying to momentarily

trick agent B into thinking he is retreating, to set up an ambush.

4. Sizing up agent B, agent A retreats for now. Tomorrow he will come back with 7 allies

and successfully attack agent B.

5. Same as #4, but agent A has additionally made preparations for a catered party after-

wards.

All of these can explain agent A’s behavior. However, as we move down the list the

explanations take on greater detail, and require a greater number of parameters. They require

more inferences about agent A’s mental architecture, and even about this agent’s own “mind-

reading” abilities. Therefore, the “higher order” explanations might be considered, a priori,

less plausible in the mind of a third-party observer.

Ultimately, this may result in explanations like #2 being assigned the highest prior

likelihood within the agent space: Seeing that agent A is moving slowly away from agent B,

the observer concludes that agent A is retreating away from a potentially dangerous agent B.
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Perhaps agent B is drawing the same conclusion about agent A; this is why a strategy like #3

can work in the first place.

5.1 A note about recursion and nested inferences

Inferences made about other mentalistic agents can take on a nested character, and can be

arbitrarily long: e.g., ”I think that he thinks that I think that he thinks...”. A cognitive system

that makes such inferences therefore is at peril of running into a loop of infinite recursion. At

some point, the number of cognitive steps must be truncated.

Similar problems have been examined by economic game theorists. For some games,

the derivation of a rationally optimal strategy or Nash equilibrium is the limit of some iterative

reasoning process taken to infinite. But, empirically, experimental subjects playing these games

seem to use strategies that truncate these processes to a more manageable number of “steps of

iterated strategic reasoning” (Camerer & Fehr, 2006). The number of iterative steps can be

termed the “order” of the strategy.

This manner of thinking can be applied to our line of research. In the above section,

let us revisit the possible explanations for agent A’s behavior. Explanation #1 could perhaps be

considered a 0th order explanation: It presumes very little about agent A’s mental architecture.

Explanation #2 would be an example of a 1st order explanation: It acknowledges that agent A

has intentions, goals, and motivations, but makes no inferences beyond a superficial matching

of behaviors to intentions. Explanations #3-5 are all of a higher order.

And so, another way to ask our primary experimental questions might be: What order

of explanation is most natural for a human observer to make. We imagine the answer is quite

low. In Experiment 3, we potentially found a cluster of “evasion” in subjects’ agent space. For

a simple construct like “evasion,” the order of the inferences the subject makes about the agent

need not be very high at all.

5.2 Future Directions

Future experiments are necessary to determine whether the clusters we observe in Experiment

3 are a.) robust to replication and b.) match previous researchers’ intuitions about the natural
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categories of agent interaction. All three experiments, however, represent novel methodological

approaches to the problem of how to examine subjects’ inferential machinery for interpreting

the interaction of animate agents.

A sensible next step for this experimental programme is to run experiments that show

subjects dyadic interactions between agents. Much of the most relevant literature deals with

dyadic interactions, and therefore this approach would help connect this work with previous

studies. A better approach to having agents be the unit of analysis for the MDS might be to

have subjects instead judge and compare the dyadic interactions.

But a more pressing task will be to develop a richer and more lifelike pool of agents

with which we can populate our simulations. There is room for improvement.

5.3 A Better Pool of Agents

The programming of the next agents will take advantage of insights about cognition and action

from the work of David A. Rosenbaum (e.g. Rosenbaum et al., 2001; Vaughan et al., 2001).

When the motor system plans actions, it often does so in terms of achieving a goal end posture.

Then, in reaching this goal state, it seems to obey certain principles, for example minimizing

jerk. Most of Rosenbaum’s research deals with motor actions like grasping, but the same

principles might also apply to locomotion.

Consider an interaction between two agents. Under the previous programming scheme,

the agent determines how far away the other agent is, and then accelerates toward or away from

it based on this distance. Under the new programming scheme, the agent would have a set of

subgoal points in an x-y plane (centered on the other agent—an aspect of the programming

that we imagine will make the interaction seem more lifelike). The agent will then attempt to

cycle through this sequence of subgoal points based on principles like minimizing jerk, and

randomized parameters like its minimum/maximum speed or preferred curvature of path.

Now, these “subgoal points” would not be synonymous with the agent’s internal, higher-

order goals or intentions. But having an agent cycle in a lifelike way through a queue of such

points has the potential to result in programmed behaviors that are both less structured and

much more vivid that in our previous experiments.
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The next agents may also have a capacity for first making a classification of another

agent (its “kind”), and then reacting based on that classification. And, obstacles could be added

into the simulations to provide additional context for the agent interactions.
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