
 

 

INTERACTION EFFECTS IN HIGH-MOBILITY Si MOSFETs  

AT ULTRA-LOW TEMPERATURES 

by 

NIKOLAI N. KLIMOV 

 

A Dissertation submitted to the 

Graduate School-New Brunswick 

Rutgers, The State University of New Jersey 

in partial fulfillment of the requirements 

for the degree of 

Doctor of Philosophy 

Graduate Program in Physics and Astronomy 

written under the direction of 

Prof. Michael Gershenson 

and approved by 

 

_____________________________________ 

_____________________________________ 

_____________________________________ 

_____________________________________ 

_____________________________________ 

 

 

 

New Brunswick, New Jersey 

October, 2008 

  



 

 

ii 

 

 ABSTRACT OF THE DISSERTATION 

 
Interaction effects in high-mobility Si MOSFETs at ultra-low 

temperatures 
 

By Nikolai N. Klimov 

Dissertation Directors: Michael Gershenson 

 

 This dissertation focuses on the experimental study of the anomalous “metallic” 

behavior of the conductivity observed in high-mobility two-dimensional (2D) electron 

systems at low carrier densities (n) and temperatures (T). This intriguing phenomenon 

seems to defy one of the paradigms of our understanding of electron transport in 2D, 

the scaling theory of localization that claims that all electron states in 2D are 

localized. Our experimental object is the high-mobility silicon metal-insulator-oxide 

field effect transistor (Si MOSFET) in which this anomalous behavior is the most 

pronounced in comparison with other high-mobility devices.  

We have explored in details the conductivity ( )σ  in high-mobility Si MOSFETs 

over wide ranges of electron densities 11 2(2-30) 10 cmn −= × , temperatures 

30 mK 4 K,T = −  and magnetic fields 0-5TB = .  The low-temperature behavior of 

σ  in these systems is shaped by the interaction effects, which are amplified by the 

valley degeneracy and the interaction-driven renormalization of electron parameters. 

While exploring the temperature and magnetic field dependences of σ  far from the 

strongly localized regime ( 2( ),e hσ we observed for the first time the crossover 

between the “metallic” ( 1)d dTσ < and “insulating” ( 1)d dTσ >  regimes with 
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lowering temperature below ~0.3 K. We have attributed this crossover to the 

modification of the interaction correction to σ at low T caused by a non-zero valley 

splitting and inter-valley scattering.  All relevant quantities have been measured in 

independent experiments. In particular, the intervalley scattering rate 1
Vτ
−  has been 

extracted from the analysis of weak localization magnetoresistance. We found that the 

intervalley scattering rate is temperature-independent and the ratio Vτ τ  increases 

monotonically with decreasing the electron density (τ is the momentum relaxation 

time).  These observations suggest that the roughness of the Si-SiO2 interface plays 

the major role in intervalley scattering.  The detailed analysis of the ( , )T Bσ  data 

conducted with no adjustable parameters shows that the theory of interaction 

corrections to the conductivity of disordered systems adequately describes the 

experimental data at intermediate temperatures. At the same time, our data indicate 

that for better agreement with the experiment at low temperatures, the theory should 

take into account inter-valley scattering that strongly affect the interaction corrections 

in multi-valley systems.  
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1. Introduction  

1.1. Semiconductor electronics 

Today it is impossible to imagine our life without electronic devices. They are 

everywhere: televisions, VCRs, stereos, telephones, refrigerators, washers and dryers, 

microwave ovens, alarm systems, fax machines, not to mention a vast number of 

electronic devices used in the high-tech industry. Many people know that electronic 

circuits, or microchips, are underneath the fancy covers of these devices, but not 

everyone realizes that millions of tiny semiconductor devices, called transistors, are 

hidden from our eyes inside every microchip. A school textbook can give a definition 

of a transistor as follow: “Transistor is a tiny electronic device to control the flow of 

electricity. It has two key abilities: the first is to amplify an electric signal, and the 

second is to switch on or off (1 or 0), letting current through or blocking it as 

necessary.”  

The first point-contact transistor was invented at Bell Telephones Laboratories in 

1947 by William Shockley, John Bardeen and Walter Brattain.1  Prior to the invention 

of the transistor the only alternative to current regulation and switching functions was 

a vacuum tube, which could only be miniaturized to a certain extent, and wasted a lot 

of energy in the form of heat. Figure 1.1 shows the first point-contact transistor. It 

consisted of germanium and gold contacts, held in place by a plastic frame. The 

transistor could amplify an electric current like a vacuum tube but its power 

consumption was very low.  Later, William Shockley developed a p-n junction and a 

bipolar transistor,2 which were both easier to understand theoretically and 
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could be fabricated more reliably. The invention of the transistor was probably the 

most important discovery of the 20th century. This invention ignited a huge research 

effort in solid state electronics. Bardeen, Shockley and Brattain received the Nobel 

Prize in Physics, 1956, “for the research in semiconductors and a discovery of the 

transistor effect”. After the invention of bipolar transistor the number of 

semiconductor devices has increased tremendously. Today, semiconductor devices 

serve as a foundation as one of the largest industries in the world – the electronics 

industry.  

1.2. Si Metal-Oxide-Semiconductor Field Effect Transistor 

Since the discovery of the first transistor in 1947 its size has decreased 

dramatically.  For example, a modern Intel Pentium IV processor has about 55 million 

transistors, which are fabricated using 160 nm technology. The smallest transistor 

 

 

 

Figure 1.1. The first point contact 
transistor3, developed in 1947 by 
researchers at the US Bell Telephone 
Laboratories. (Adopted from Ref. 4) 

 Figure 1.2. Transmission electron 
micrograph of Intel 65 nm 
Si MOSFET. (Adopted from Ref. 5). 
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currently used in industry is 65 nm in length (Figure 1.2), which is about five orders 

of magnitude smaller than the very first transistor. 

Among all electronic components in digital and analog circuits a Si metal–oxide–

semiconductor field effect transistor, or Si MOSFET, is by far the most common 

transistor in use.  A transistor is formed of p- or n-type semiconductor, an oxide layer, 

and a metal film deposited on top of the oxide [Figure 1.3(a)]. The MOSFET has also 

two additional terminals, the source (S) and the drain (D), which are connected to 

highly doped regions. Those regions have a type (p- or n-) opposite to the type of a 

bulk semiconductor, and serve as a source of charge carries. Two p-n junctions facing 

each other, formed by the highly doped regions (located under the source and the 

drain terminals) and the bulk semiconductor, block an electrical current ( )SDI  

between S and D when the device is “off”.  

When a sufficient electric voltage gV  is applied between the gate and source 

terminals, the bottom of the conduction band CE  bends below the Fermi level FE  

near the Si-SiO2 interface and a triangular potential well is formed between the Si-

SiO2 interface and the conduction band [Figure 1.3(b)]. Electrons near the interface 

occupy the states with C FE E E< <  in this potential well, forming the inversion layer. 

The energy spectrum of electrons in the well is quantized and consists of energy 

subbands. Within each subband, electrons can move freely only in the xy-plane 

parallel to the interface. At low temperatures and not-too-high electron densities, only 

the lowest subband is occupied, and a two-dimensional electron gas (2DEG) is 

formed. Thus, at thgV V≥ , where thV  is the threshold voltage,  the source and the 

drain are connected by a conducting 2D inversion layer.  
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Figure 1.3. Si MOSFET: (a) schematic diagram; (b) band-edge diagram. 

With applying an electrical field between the source and the drain, the current flows 

through this 2D layer. The concentration of charge carriers in the inversion layer is 

directly related to an applied gate voltage. Thus, by varying gV  it is possible to control 

continuously SDI .a 

1.3. Anomalous “metallic” conductivity in high-mobility low-density 

Si MOSFETs 

Besides being the main building block of the modern electronic5 industry, 

semiconductor devices are wonderful tools for studying low-dimensional physics. The 

                                                 
a A detailed description of the principles of operation of Si MOSFET will be presented in Sec. 3.1. 
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quantum phenomena discovered in two-dimensional (2D) carrier devices are 

fascinating. Despite their technological importance, some of the fundamental 

electronic properties of these 2D systems are not yet fully understood.  Although 

people have been studying such devices for more than half a century,6 Si MOSFETs 

bring many surprises. 

According to the scaling theory of localization, which describes the flow of the 

dimensionless conductance g  with the system size L ,7,8 at 0T =  all electron states 

are localized in 2D, and the ground state is an insulator. Depending on the degree of 

disorder the conductivity decreases either logarithmically (in the case of weak 

disorder), or exponentially (in the case of strong disorder) as temperature is decreased.  

A logarithmic decrease of the conductivity in 2D as 0T →  is governed jointly by two 

mechanisms: a quantum interference of electron wavefunctions propagating along 

loop-like trajectories in opposite directions, the weak localization effect (WL),7,8 and 

an electron-electron interaction (EEI).9,10 The localization behavior was 

experimentally observed in many low-mobility 2D systems (see for example Ref. 11) 

and was consistent with WL and EEI theories. This left no doubt in the validity of the 

scaling theory for the weakly interacting systems,7,8 and the statement “there is no true 

metallic state, and, hence, there is no a metal-to-insulator transition (MIT) in 2D” was 

well accepted in the scientific community until the mid-1990s. 

The progress in technology allowed the fabrication of Si MOSFETs with a very 

high mobility. These devices have shown an unexpected anomalous “metallic” 

behavior at low temperatures below /F F BT E k≡ : at relatively high electron densities 

the resistivity ρ  of such devices decreases with cooling12,13.  This decrease of the  
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Figure 1.4. Temperature dependences of the resistivity of Si MOSFET for different 
electron densities ranging from 11 20.707 10 cm−× to 11 235 10 cm−× . The red curves 
correspond to the “metallic” regime ( / 0d dTρ > ), the blue curves correspond to the 
insulating regime ( / 0d dTρ < ). The dashed curve corresponds to a critical density 
range Cnδ . The inset shows the resistivity as a function of electron density at 
different fixed temperatures ranging from 0.3 K to 0.4 K.  (Adopted from Pudalov et 
al. circa 2000). 

resistivity in dilute Si MOSFETs at some densities could be as large as a factor of 5-6 

in magnitude12,13.  It turned out that there exists a narrow critical density range Cnδ  

(for high mobility Si MOSFETs this critical range lays between 11 20.8 10 cm−×   and 

11 21 10 cm )−×  such that with decreasing an electron density below Cnδ  the 

temperature dependence of ρ  changes its sign from positive ( 0d dTρ > , which 

corresponds to the metallic behavior) to negative ( 0d dTρ < , which corresponds to  
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Figure 1.5. (a) In-plane magnetoresistance at T 0.29 K=  for a Si MOSFET with the 
peak mobility 2

peak 2 m Vsμ . Different symbols correspond to different electron 

densities varying from 11 21.01 10 cm−×  (the top curve) to 11 22.17 10 cm−× (the bottom 
curve). (Adopted from Pudalov et al.15) (b) The longitudinal resistivity of a 
Si MOSFET 2

peak( 2.4 m Vs)μ = as a function of electron density at different 
temperatures. Closed and open symbols corresponds to 0B =  and 9 T=B , 
respectively. (Adopted from Okamoto et al.16) 

 the “insulating” behavior), thus showing the apparent 2D MIT.  Typical temperature 

dependences for high-mobility Si MOSFET for different carrier densities are shown in 

Figure 1.4.  Here the blue curves correspond to the “insulator” regime, whereas the 

red curves – to the metallic regime. A dashed curve corresponding to 11 20.94 10 cm−×  

belongs to Cnδ . The inset to Figure 1.4 shows the density dependence of the 

resistivity at several fixed temperatures. It is clear that the transition from 0d dTρ / <  

to 0d dTρ / >  takes place in a narrow density range around  11 2
c 0.94 10 cm .−×n   

Another puzzle of 2D systems is their response to the in-plane magnetic field.  It 

was found that an applied in-plane magnetic field causes an unexpected strong 
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magnetoresistance (MR) and suppresses the metallic behavior (Figure 1.5).14-19 This 

observation indicated the importance of the spin effects. 

The anomalous metallic behavior, the apparent MIT and the strong MR was later 

observed in practically all high mobility, low disorder, 2D systems in the low density 

regime.20-31  The discovery of these phenomena defied a paradigm of the scientific 

community regarding the transport properties of 2D systems. It should be noted that 

the puzzle is the metallic behavior rather than the apparent MIT, since according the 

localization theory7 there should be no metallic state in 2D.  Although the metallic 

behavior was observed in many 2D systems, it is the most pronounced in high-

mobility Si MOSFETs. 

1.4. Theoretical approach to the problem of the “metallicity” in 2D 

EEI has always been the primary suspect in the metallic behavior of the 

conductivity in 2D.  Indeed, as one goes deeper into the dilute regime (low n) the 

energy of EEI eeE  becomes much larger than the Fermi energy FE .  The strength for 

unscreened Coulomb interactions between electrons can be characterized by the 

Wigner-Seitz parameter Sr , which is the average inter-electron spacing expressed in 

the Bohr radius Ba .  The ratio of the energy of Coulomb interaction between two 

electrons at an average distance S Br a  to their Fermi energy can be expressed in terms 

of Sr .  In 2D Sr  is equal to ee FE E   and varies with density as 1 n∝ .6  The 

metallic region in high-mobility Si MOSFETs corresponds to low electron densities 

11 12 2(10 -10 cm )− and, hence, high Sr  (varying from 2 to ~8). This shows that EEI in 

Si MOSFETs are strong. 
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One of the first theories that described the EEI corrections to the conductivity of 

disordered 2D systems was developed by Altshuler and Aronov9 and, later, 

Finkelstein10.  The theory developed for weak interaction predicts a logarithmic 

decrease of ( )Tσ  as 0T →  and is applicable only in the diffusive regime, 

corresponding to a condition 1Tτ b, where τ  is the elastic scattering time. In 

contrast, at not-too-low temperatures almost linear increase of ( )Tσ  with temperature 

cooling is observed in high-mobility 2D systems mostly in the ballistic regime, 

corresponding to a condition 1Tτ b. 

Early theoretical works, describing the metallic behavior of 2D systems in the 

ballistic regime, were developed by Stern,32 Gold and Dolgopolov,33 and Das Sarma34.  

The theories32-34 explain the “metallicity” by considering the temperature-dependent 

screening of disorder by electrons, at relatively high temperatures ( 1)Tτ .c  

In 2001 Zala, Narozhny and Aleiner35 (ZNA) bridged the gap between the ballistic 

and the diffusive regimes.  The theory considers the interference between electron 

waves, scattered back by the short-range scattering centers (this case is relevant to 

Si MOSFETs) and by the associated Friedel oscillations36 of the electron density.  

Quantum corrections (QC) to the conductivity in the theory 35 are expressed in terms 

of the Fermi-liquid (FL) interaction parameter 0F σ for an arbitrary value of Tτ  

( )FT E . Later Gornyi and Mirlin37 extended the ZNA theory35 for the case of a 

long-range scattering potential. 

The temperature and magnetic behavior of the conductivity is affected by 

material-dependent details of a given structure, which is used for forming a 2D 

                                                 
b Here and below we set 1Bk = = . 
c For high-mobility Si MOSFETs this corresponds to T ≥  0.5 K. 
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electron or hole system. In particular, the transport properties of 2DEG in 

Si MOSFET is influenced by the band structure of Si.  Although the conduction band 

of Si consists of six valleys, only two of them with major axes perpendicular to the 

(001) surface are relevant to an electron transport in (001) Si MOSFETs at ultralow 

temperatures and low carrier densities.6  These two valleys strongly enhance the 

metallic behavior of ( )Tσ  in Si MOSFETs compared to other 2D systems, where only 

one valley is present.38  In actual inversion layers: the valleys are split with an energy 

splitting VΔ .  Besides valley splitting, there exists intervalley scattering between the 

two valleys, which also influences the behavior of the conductivity in Si MOSFETs: 

at temperatures comparable to the intervalley scattering rate 1
Vτ
−  a crossover occurs 

between a band with two distinct valleys and a band where these two valleys are 

effectively unified due to intervalley scattering. The values of VΔ  and Vτ  set the 

boundaries between regions, where the effect of valley splitting and intervalley 

scattering on ( )Tσ  should be taken into account 1( , )V VT τ −Δ , and where this effect 

can be neglected 1( , )V VT τ −Δ . Thus, it is important to know the values of VΔ  and 

Vτ . 

1.5. Summary of the results obtained in this dissertation 

The aim of this work is to study the quantum effects in the transport properties of 

strongly-correlated disordered 2D systems, with a focus on a better understanding of 

the anomalous metallic conductivity observed in high-mobility Si MOSFETs. The 

relevant range of study of the anomalous metallicity corresponds to (i) low electron 

densities 11 2( (2-30) 10 cm )−= ×n , not too close to the critical density of the apparent 

2D MIT, where the conductivity is relatively high 2( / )e hσ , whereas QC are 
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small, compared to σ ; (ii) a wide temperature range ( 30 mK 4 K)= −T  which is 

much lower than Fermi energy, but includes both the diffusive ( 1)Tτ  and the 

ballistic ( 1)Tτ  regimes, and (iii) a wide range of magnetic field 0 5 T)= −(B  

which is lower than the field of complete spin polarization ( 2pol F BB E gμ= , here g 

and Bμ  are Landé g-factor and the Bohr magneton, respectively).  Within these 

ranges of parameters ( 2 /e hσ , σ σΔ , Cn n , { }, 2 )B FT g B Eμ , the 

experimentally measured conductivity can be compared with the theoretical 

prediction35. 

We have measured the temperature and the magnetic field dependence of the 

conductivity in the metallic regime.40 Extending the experimental temperature down 

to 30 mK allowed us to observe a nonmonotonic behavior of the conductivity at 

millikelvin temperatures (Figure 1.6) (prior to this result a saturation of ( )Tσ  was 

observed at the lowest T most likely due to overheating of 2DEG by external noise).  

To compare our results with the ZNA theory35 we measured the parameters that 

are relevant in low-temperature electron transport in independent experiments, in 

particular, we have measured the intervalley scattering rate39 and valley splitting40 in 

Si MOSFETs.  

The intervalley scattering plays an important role in the low-temperature 

phenomena in Si MOSFETs: it may determine the low-temperature cut-off of the 

metallic-like transport and could also modify 2D MIT in these structures. However, 

the systematic studies of the intervalley scattering in Si MOSFETs were missing until 
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Figure 1.6. Temperature dependences of conductivity ( , 0)T Bσ =  for the 
Si MOSFET sample Si6-14 at various electron densities n= 15.1, 10.0, 5.5, 4.0, 2.9, 
1.8, in units of 11 210 cm− , from top to bottom. Circles show the experimental data, red 
curves - the theoretical fits with the ZNA theory.  The dashed blue curve corresponds 
to the temperature of the crossover between ballistic and diffusive regimes, 

0(1 ) 2T F σ πτ∗ = + .The dash-dot green curve corresponds to 1
VT τ −= . On the left 

panel the dashed-dot-dot line corresponds to 2
00.5(1 ) FT F Eσ= + , the applicability of 

the ZNA theory is violated at a higher T.   The right panel shows the same data set 
within a narrower temperature interval. 

recently39. We studied in details the intervalley scattering rate in Si MOSFET samples  

with different mobilities. Our experiments have shown that (i) the intervalley 

scattering is an elastic and temperature independent process, (ii) the intervalley 

scattering time Vτ  measured in units of transport time τ  increase monotonically as 

the electron density decreases (this observation suggests that the intervalley scattering 

is governed by the disorder at the Si-SiO2 interface); and (iii) there is no simple 
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Figure 1.7.(a-c) Intervalley scattering time (averaged over temperature) for samples 
Si6-14, Si39, Si40. (d-f) Temperature dependence of Vτ  in units of τ  (left axes) and 
in picoseconds (right axes) for samples Si6-14, Si39, Si40. The densities are given in 
unit of 11 210 cm− . Solid horizontal lines show the average Vτ . 

correlation between the intervalley scattering rate and the sample mobility. The latter 

observation points to a sample-specific rather than universal mechanism of the 

intervalley scattering (Figure 1.7). 

The intervalley scattering rate 1
Vτ
−  measured in our Si MOSFET samples 

coincides with the temperature of the crossover (0.35 K to 0.7 K) from the ballistic to 

the diffusive regime (Figure 1.6).  Thus, the intervalley scattering can affect the 

electron transport in the diffusive regime, and should be taken into account in 

comparison with the theory.  

We estimated the valley splitting from the analysis of Shubnikov-de Haas (SdH) 

oscillations40; it turned out that its value is sample-dependent and, similar to the 
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Figure 1.8. Renormalization of Fermi-liquid parameter 0Fσ
 in n-channel (001) 

Si MOSFETs. Circles and squares depict the 0Fσ values obtained from fitting the 
( )Tσ  and ( )Bσ  dependences, respectively, with the ZNA theory35. The shaded 

region shows the 0 ( )SF rσ  dependence (with the experimental uncertainty) extracted 
from the SdH data41.  

intervalley scattering rate, is of the same order of magnitude as the temperature 

corresponding to the ballistic-diffusive crossover, what outlines the importance of 

taking VΔ  into consideration in the analysis of ( , )T Bσ  data.  

We have compared our data with ZNA theory35 and conclude that the metallic 

increase of σ  with cooling, observed in the ballistic regime, as well as the downturn 

of ( )Tσ  at low temperatures,  are in-line with the theoretical predictions35 and can be 

accounted for by the interaction effects in the electron liquid. However, for a 

quantitative analysis, especially at ultra-low temperatures, the thorough theory should  
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take into account the finite intervalley scattering rate. Our observation suggests that 

the anomalous metallic conduction in 2D, at least for densities not-too-close to the 

critical density, is the finite-temperature phenomenon rather than a signature of a new 

ground state.  

The 0F σ values, obtained from the fitting ( , )T Bσ 40 with the ZNA theory35, are 

consistent with those obtained in independent measurements of SdH oscillations41 in 

Si MOSFET samples (Figure 1.8).  

In addition to the study of anomalous metallicity not-too-close to the apparent  

 

 

 

Figure 1.9. Temperature dependence 
of the resistivity for four different 
cooldowns. The densities, which 
correspond to curves 1 to 10, are as 
follow: 0.827, 0.0882, 0.942, 0.972, 
1.00, 1.038, 1.07, 1.18, 1.31, 1.53 in 
units of 11 210 cm− . 5

cn  and 25
cn  mark 

two critical dependences for 
cooldowns at 5gV =  and 25 V, 
respectively. 

 Figure 1.10. Examples of the 
dependences 2 )Bρ(  at 0.3T K=  

for carrier density 11 21.20 10 cm−×  
(a) and 11 21.34 10 cm−×  (b). The 
insets blow up the low-field region 
of the quadratic behavior. The 
values of coolV  are indicated for 
each curve. 
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Figure 1.11. Temperature dependences of the frequency of SdH oscillations at two 
fixed values of the gate voltage. The different curves within each panel are shifted in 
y-axis for clarity.  

2D MIT, we have explored the universality of the temperature and magnetic 

dependences of the resistivity in its vicinity of the MIT.  In particular we studied the 

electron transport in the same Si MOSFET device after cooling it down to 4K at 

different fixed values of the gate voltage coolV .  We believe that this allows us to vary 

fine details of disorder – the structure of the resonant (localized) states – without  

affecting the type of disorder (the short-ranged), the scattering rate, and the strength of 

EEI in the system of mobile electrons.d 

We have found that in the vicinity of the MIT 2( ~ )h eρ , the cooldown specific 

effects strongly affect ( )Tρ  (Figure 1.9); these effects vanish only when ρ  is 

decreased below 2~ 0.1h e  with increasing electron density.  

                                                 
d We have verified that both electron mobility (and thus the elastic scattering time), as well as the 

renormalization of the electron spin susceptibility and effective mass (and thus two Fermi-liquid 

coupling parameters) do not change for different cooldowns to within 5%. This indicated that EEI is 

not affected by different Vcool.  
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The non-universal behavior is also observed in in-plane magnetic fields B  at not 

too high electron densities (Figure 1.10). The effect of disorder on magnetoresistance 

becomes more pronounced as B  is increased and/or the electron density is decreased 

and approaches the critical density cn of the 2D MIT.  

We have also observed that the frequency of the weak field SdH oscillations varies 

with temperature and in-plane magnetic field (Figure 1.11); these variations grow as 

the density approaches cn . 

The observed temperature variation of the frequency of SdH oscillations 

demonstrates a weak exchange in electrons between the reservoirs of mobile electrons 

and resonant localized states. The large changes of ( )Tρ  at elevated temperature 

signify the development of a spatial inhomogeneity of the 2D system, which may 

result from either EEI or disorder. Our observation provides direct experimental 

evidence that near the 2D MIT the electron transport at finite temperatures in dilute 

systems becomes sample-specific and dependent on more subtle details of disorder. 
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2. Quantum effects in the conductivity of two-dimensional 
systems 

At low temperatures, the “residual” resistance (i.e. classical resistance that does 

not take into account quantum effects) of disordered conductors (normal metals and 

strongly-doped (degenerate) semiconductors) is mostly determined by elastic 

scattering of electron from quenched disorder (impurities and defects).  The elastic 

scattering from disorder is characterized by an average time between collisions - the 

transport elastic mean free time τ .  The residual conductivity in the case of weak 

disorder can be derived from the standard Fermi-liquid approach and the Boltzmann 

theory, and is given by the well known Drude formula: 

2

D
e n
m
τσ =  ,    (2.1) 

where  Fυ  is a Fermi velocity, m  and n  denote  electron effective mass and density, 

respectively.  Taking into account that in 2D the diffusion constant D and the density 

of states at the Fermi level ν  have the forms 2 / 2FD υ τ=  and 22S Vg g mν π= , 

respectively (here Sg  and Vg  are the spin and valley degeneracy, respectively), the 

expression (2.1) in the case of 2D can be rewritten as follow: 

2
0D Fe D G g k lυσ ν π= = ,    (2.2) 

here 2 2
0 / 2G e π= , 1/2(4 )F S Vk g g nπ=  is the Fermi wavevector in 2D, and 

Fl υ τ=  is the mean free path. 

Different quantum effects modify the Drude result (2.1) by adding quantum 

corrections to the conductivity.9  Conventional theories of quantum corrections are 

developed for the case when the Fermi wavelength 2 /F Fkλ π=  is much smaller than 
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the mean free path l, or equivalently, 1Fk l . Under this condition the QC are much 

smaller than Dσ . Even when QC are small, they determine all the temperature and 

magnetic field dependences of the conductivity at low temperatures.  

According to their physical origin, QC can be divided into two distinct groups.9 

Both types of QC increase with decreasing temperature and/or increasing disorder and 

largely determine the low temperature transport in 2D systems. The first type of QC, 

known as the weak localization (WL) correction, is a single electron effect, which is 

caused by the quantum interference of electron wavefunctions propagating along a 

loop-like trajectory in opposite directions. For 2D systems without spin-spin and spin-

orbit scattering, the WL QC is negative and logarithmically diverges as 0T → . This 

divergence can be regularized either by a magnetic field, external high-frequency 

electromagnetic radiation, or by some other T-independent dephasing mechanism.  At 

low T, electron-electron collisions govern the phase coherence (also known as phase 

relaxation, dephasing, or decoherence) time ϕτ , the characteristic time over which the 

phase coherence of electron wavefunction is preserved. The second type of QC, 

known as electron-electron interaction corrections, is determined by the interaction 

between electrons in the presence of disorder. The EEI can be interpreted35 as 

interference between electron waves backscattered by single impurities and by Friedel 

oscillations36 (oscillating inhomogeneous distribution of an electron density) induced 

by these impurities around themselves.  These two types of QC can be separated from 

each other experimentally using the measurements in a magnetic field. EEI 

contributes to the longitudinal conductivity xxσ  only,9 and this contribution does not 

depend on a magnetic field at b Bg B Tμ <  (here bg  and Bμ  are the band value of 

Landé g-factor and Bohr magneton, respectively), whereas the WL correction has a 
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sharp specific dependence in classically weak magnetic fields.  The Hall resistivity 

xyρ  is another quantity that helps separate experimentally the WL and interaction 

effects. In particular, there is no WL correction to the Hall resistivity42, whereas the 

interaction theory9 predicts that 2xy xy xx xxδρ ρ δσ σ= − , since EEI does not 

contribute to xyδσ  (here xxδσ  is the EEI correction to the longitudinal conductivity 

xxσ ).  

2.1. Non-interacting 2D electron systems 

2.1.1. Weak localization 

There are two types of elementary scattering events, elastic and inelastic.  In the 

case of elastic scattering, an electron conserves its energy, and, hence, a phase 

coherence of its wavefunction before and after a scattering event.  Other than elastic 

processes, there exists inelastic scattering, e.g., collisions of electrons with phonons or 

other electrons. In such processes, in each scattering event an electron changes its 

energy, and, as a result, ”forgets” about its quantum state over a phase coherence time 

ϕτ . At low temperatures in the absence of magnetic impurities, the main source of 

inelastic scattering is the Coulomb electron-electron interaction.  The characteristic 

length scale Lϕ  over which an electron looses the coherence of its wavefunction, is 

given by 

/L D lϕ ϕ ϕτ τ τ= .    (2.3) 

If not limited by scattering from magnetic impurities, the phase coherence time is 

typically proportional to some power of temperature:  

pTϕτ
−∝ .      (2.4) 
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The power p in Eq. (2.4) depends on the scattering mechanism, determined by the 

temperature range and the degree of disorder.  Accordingly, the phase coherence 

length depends on T as  

/2pL Tϕ
−∝ .    (2.5) 

The WL QC is introduced under the condition that electrons move diffusively 

between the acts of inelastic scattering: 

ϕτ τ  or L lϕ .    (2.6) 

A qualitative physical interpretation of WL is given by the following argument.  

Consider an electron that moves diffusively in a good conductor ( 1)Fk l .  The total 

probability for a transfer from A to B is determined by a squared modulus of the sum 

of all amplitudes iA  of the probability for an electron to pass along all possible paths, 

connecting points A and B:  

2
2 ∗

≠

= = +∑ ∑ ∑AB i i i j
i i i j

w A A A A .   (2.7) 

The first sum in the right-hand part of Eq. (2.7) corresponds to the classical diffusion 

probability, whereas the second describes the quantum interference.  For most paths, 

the interference is not essential, since their lengths differ strongly, and, hence, the 

corresponding phases of wave function differ substantially on these paths.  As a result, 

after summing over all such paths, the interference term will vanish because of its 

oscillation nature. There are, however, paths of specific kind, namely, self-intersecting 

paths (Figure 2.1).  Each such path can be assigned a pair of coherent amplitudes, A+  

and A− , corresponding to the passage of the loop clock- and counterclockwise.  For a 

self-intersecting path, the probability of finding an electron at some intermediate point 

O is twice the classical result: 
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Figure 2.1. Mechanism of weak localization. The rectangular area depict the phase 
volume ,dV within which two reverse paths A+  and A−  meet. 

2 2 2 2
2 Re 4A A A A A A A+ − + − + − ±+ = + + = .   (2.8) 

On the other hand, the enhancement of the probability of finding an electron at point 

O, reduces the probability of finding a particle at point B (the point of observation). 

This mechanism reduces the diffusion constant and, hence, the conductivity. 

An explicit form of the interference quantum correction to the conductivity was 

obtained by Gor’kov, Larkin and Khmelnitskii43 by summing the singular 

backscattering terms of the perturbation expansion in powers of the impurity 

concentration. The WL correction is small compared to Drude conductivity  in the 

region of applicability of the perturbation theory: 

WL Dσ σΔ .    (2.9) 

  Without going into details of the perturbation theory, the magnitude of WL QC 

can be estimated in the following way.  Suppose that an electron moves diffusively 

with the mean free time τ  and the diffusion coefficient D.  Over a time interval t τ  

an electron will move over a distance  

L Dt .      (2.10) 
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Starting from a point O an electron will return over time t to the phase volume dV  

around the starting point O (Figure 2.1) with the probability  

( )2
dVdP
Dt

= .      (2.11) 

For the interference between two reverse paths A+ and A− to be effective, the phase 

volume dV  should be of the order ( )F Fdtλ υ . To get a WL QC we need to sum over 

all self-intersecting trajectories:  

F FdtdP
Dt

ϕτ

τ

δσ λ υ
σ

− −∫ ∫ .   (2.12) 

The integration in Eq. (2.12) should done from the minimum time necessary for an 

electron to return to the origin O (the elastic scattering time τ ) to the  phase 

coherence time ϕτ . 

After the integration, QC has the form: 

0 0ln 2 lnWL
L

G G
l

ϕ ϕτ
σ

τ
Δ = − = − .    (2.13) 

Lϕ  and l appear as natural cutoffs  for the size of closed electrons path when 

summing over all closed paths corresponding to a coherent electron propagation.  

According to Eqs. (2.4, 2.5, 2.13), the WL correction depends logarithmically on Tτ  

and diverges as 0T → : 

0 ln( )WL G Tσ τΔ ∝ ,    (2.14) 

The WL correction is negative 0WLσΔ <  and diverges (decreases) with cooling.  

It should be noted that for an actual high-mobility sample the phase coherence 

length Lϕ  with decreasing temperature can become greater that the sample size L .  
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As a result the upper cutoff in Eq. (2.13) is given by L (as soon as L Lϕ > ) and the 

WL QC does not depend on temperature. 

Effect of a magnetic field on weak localization 

An application of a weak magnetic field B, normal to the plane of a 2D system, 

suppresses the WL correction. This occurs due to the breaking of the time reversal 

symmetry  –  a magnetic field B introduces a phase difference between clock- and 

counterclockwise paths along a loop-like trajectory: 

1 1 2 2

1
0

1 1( ) ( )

2 2 ,

e edr p A dr p A
c c

e Adr
c

ϕ

π

Δ = + − +

Φ
= =

Φ

∫ ∫

∫
  (2.15) 

where Φ  is a magnetic flux that threads a loop, and 0 / 2hc eΦ =
 
is a magnetic flux 

quantum.  Since a magnetic flux threading a loop with a transverse dimension L is of 

an order of 2BLΦ , the Eq. (2.15) can be written as 

2

0

( , ) 2 BLB Lϕ πΔ
Φ

.     (2.16) 

Equation (2.16) shows that the phase difference of the order ( , ) ~1B LϕΔ  will occur 

for the loops with dimensions of an order of the magnetic length BL : 

0

2 2B
cL

B eBπ
Φ

= = .    (2.17) 

The phase difference between two time-reverse paths along of the same loop 

modifies the relation (2.8): 

( )

2 2 2

2

2 cos ( , )

2 1 cos ( , ) .

A A A A A A B L

A B L

ϕ

ϕ

+ − + − + −

±

+ = + + Δ

= + Δ
  (2.18) 
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For small loops BL L<  the corresponding phase shift is negligible ( , ) 1B LϕΔ , and 

the right-hand sides of Eq. (2.18) is given by 

( )2 2
2 1 cos ( , ) 4A B L Aϕ± ±+ Δ ≈ .   (2.19) 

On the other hand, the phase shift for large loops BL L>  is not small 

( ( , ) 1)B LϕΔ >  and, hence, cannot be neglected. As a result of averaging over such 

loops the second term on the right-hand side of Eq. (2.18) vanishes since cos 0ϕ = .  

Thus, an applied magnetic field B eliminates the interference contribution of all loops, 

whose transverse size is larger than the magnetic length BL . Since BL  depends on 

magnetic field as 1 B  [Eq. (2.17)], an increase of B reduces the number of self-

intersecting trajectories on which the interference of electron wave functions can 

occur, leading to a decrease of the resistivity, the phenomenon of negative 

magnetoresistance (NMR).   A typical example of NMR in 2D is shown in Figure 2.2, 

which illustrates a magnetoresistance of Mg films at different temperatures.44 If we 

recall that a loop size cannot be smaller than the mean free path l and that only loops 

with L Lϕ<  (and thus BL Lϕ≤ )  can contribute to the WL, than it is clear that the 

range where the WL magnetoresistance can be observed is determined by the 

condition: 

0 0
2 22 2trB B B

L lϕ
ϕπ π

Φ Φ
≡ ≤ ≤ ≡ .    (2.20) 

Since at low temperature Lϕ  typically depends on T as 2pL Tϕ
−∝ , Bϕ  decreases as 

0T → .  Thus, the conductivity depends on B in the interval ( ) trB T B Bϕ ≤ ≤  and only 

the low-field edge of this interval is temperature dependent. With decreasing 

temperature ( )B Tϕ  decreases and the suppression of WL becomes more pronounced. 
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Figure 2.2. Magnetoresistance of thin Mg film for different temperatures. (Adopted 
from Ref. 44.) 

In relatively weak magnetic fields trB B , the magnetoconductance is described 

by Hikami-Larkin-Nagaoka (HLN) theory45:  

0
1 ln
2HLN

B BG
B B
ϕ

ϕ

σ ψ
⎡ ⎤⎛ ⎞

Δ = + +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

,   (2.21) 

here ψ  is the digamma-function.  It can be shown that 

2
1
2

BB L
B b L
ϕ

ϕ ϕ

τ
τ

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
,    (2.22) 

where  / trb B B≡ . 

2.1.2. Scaling theory of localization 

The fundamental difference between metals and disordered insulators is that 

electrons at the Fermi level in metals are mobile, whereas in insulators they are 

localized. Corresponding electron wavefunctions for metals are extended 

( ( ) cos( ))r krΨ ∝ , whereas for insulators they are spatially localized 



27 

 

 

( )0( ( ) exp /r r r ξΨ ∝ − − , where ξ  is a localization length – the length scale on 

which the localized wavefunction decays exponentially) (Figure 2.3).   

A transition between these two ground states, metal and insulator, as some 

system’s parameter (disorder, electron density, pressure, etc.) is continuously varied is 

called a metal-insulator transition (MIT).46 

There are two main factors that affect the electron wavefunctions of the ground state, 

and whose variation can give rise to the MIT.  These are electron-electron interaction 

and disorder. Mott demonstrated that EEI can induce MIT even in the absence of 

disorder.46,47 Anderson discovered that disorder, such as strong spatial fluctuations in 

the electrostatic potential caused by impurities, can cause localization of electrons 

and, thus the MIT, in a system of noninteracting electrons.48  The situation when both 

effects, disorder and EEI, are present is one of the main unsolved problems in 

condensed matter physics. In 1979 Abrahams, Anderson, Licciardello and 

Ramakrishnan shed light on a problem of a ground state of disordered systems by 

developing the scaling theory of localization7 based on the ideas proposed by 

Touless49.  

The scaling theory describes localization by considering the behavior of the 

dimensionless conductance 2( / )g G e=  (here G  is the system conductance) as a 

function of only one parameter – the system size L .  (It is assumed that the system 

size is large enough to have the well-defined mean free path l, i.e. L l .  In this case, 

the electron motion is diffusive.)  The scaling theory of localization examines what 

would happen to the conductance of a system of noninteracting particles as L  is 

gradually increased, i.e. how ( )g bL  is related to ( )g L , where b  is a scaling factor.  

In other words the main physical idea behind the scaling approach7,49,50 is a gradual  
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Figure 2.3. The wavefunctions corresponding to the extended (left) and localized 
(right) states. 

transition from small cells of a system in the coordinate space, for which the problem 

can be solved at least approximately, to larger cells. 

The authors of Ref. 7 proposed that the new ( )g bL  function is given by a function 

of the old ( )g L  and b only: 

[ ]( ) , ( )g bL f b g L= .    (2.23) 

Scaling assumption (2.23) can be expressed in a differential form by putting 1b ε= + : 

[ ] 1( , )ln ( )( )
ln ( )

bf b g bd g Lg
d L g L

β =∂ ∂
≡ = ,   (2.24) 

where a scaling function β , being a universal function of g  solely, reflects the idea 

of the dependence of  the conductance on only one parameter. 

The asymptotic behavior of ( )gβ  was calculated for very high and very low 

values of g. In the weakly localized regime ( )Lξ > corresponding to high g  (weak 

disorder), the perturbation theory shows that the function β  has the following 

form7,43,51:  

2

1( ) 2 , 1dcg d O g
g g

β ⎛ ⎞
= − + + ⎜ ⎟

⎝ ⎠
.    (2.25) 
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The constant dc  is given by51 ( ) ( )2 2 d
d dc Sπ π⎡ ⎤= ⎣ ⎦ , where dS  is a surface of the 

d-dimensional unit sphere.  Equation (2.25) is consistent with the value of the 

conductance in the case of weak disorder, when the conductance of d-dimensional 

hypercube of size L l  is given by Ohm’s law 2( ) dg L L −∝ .   

In the case of strong disorder all electrons are localized and their wavefunctions 

fade away within the localization length ξ : ( )0( ) exp | |r r r ξΨ ∝ − − . In the regime 

of strong localization ( )Lξ < , the DC conductance falls exponentially within the size 

of the system: ( ) exp( 2 / )g L L ξ∝ −   ( )l Lξ , and the scaling function has the 

following asymptotic: 

( )( )1( ) ln ln ln , 1g g O g gβ −= + .   (2.26) 

One may expect that between these two limits (weak and strong localization) the 

scaling function β  should vary smoothly.e Figure 2.4 shows the behavior of the 

scaling function β  as a function of its argument ln g . Arrows show the flow of 

logarithmic conductance ln g  with an increase of L . According to the scaling 

hypothesis, this flow is controlled by only one parameter – the dimensionless 

conductance g.  

In 3D there is a region where the scaling function changes its sign.  The 

corresponding critical point cg  is a repulsion point or an “unstable critical point” in 

the renorm-group terminology.  For low initial cg g< , an increase of the size of the 

system  will  cause  g  to decrease  and the  behavior  of the  system  corresponds to  

                                                 
e This assumption comes from the fact that with increasing disorder the system evolves 

continuously to the localized behavior.48 
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Figure 2.4. Schematic behavior of scaling function for non-interacting electrons in 
different dimensions. 

localized states (insulator).  In contrast, when the initial conductance is high cg g>  

an increase of the system size will lead to Ohmic regime (metallic conductance).  

Thus, the point on a flow diagram (Figure 2.4) where 3Dβ  changes its sign 

corresponds to the MIT. 

In 2d ≤  β  is always negative, and there is no true metallic conduction, i.e., in 

the limit of infinite system size, all states are localized no matter how weak the 

disorder is. For a finite system, the conductance can be non-zero.  However , the state 

of such system approaches to a localization  The flow diagram (Figure 2.4)  shows 

that for any initial system size 0L , the system moves towards strongly localized 

regime with increasing system size L .  

Equations (2.25) shows that in the weakly localized regime in 2D, the scaling 

function is equal to 21 gβ π= − , and thus the conductance is given by  



31 

 

 

2

2
0

lnD
e LG

L
σ

π
= − .    (2.27) 

The scaling results, presented so far, are obtained for zero temperature.  The 

theory can be extended to the case of non-zero T by replacing L with the phase 

dephasing length Lϕ .  Since the length Lϕ  depends on temperature [in the absence of 

magnetic impurities Lϕ  is given by  Eq. (2.5)], the predictions of Ref. 7 can be tested 

by varying temperature without actually changing the sample size. 

It is worth to emphasize that in the scaling theory the dimensionality 2D is special 

in the sense that this is the lowest critical dimensionality, above which both the 

localized and extended states can exist.  In contrast to 1D where the scaling function 

has a substantially larger amplitude 1β ≥ , in 2D in the region of high conductance 

1g  the scaling function is very close to zero and minor corrections, e.g. due to 

EEI10 or spin-orbit scattering45, may potentially change the sign of β . Therefore, the 

problem of the 2D MIT and the metallic phase in 2D requires special attention. 

2.2. Interacting 2D electron systems  

2.2.1. Wigner-Seitz radius and the role of interaction in 2D systems 

In 2D the average area occupied by each quasiparticle is the inverse density 1n−  of 

2D electron or hole gas.  The dimensionless Wigner-Seitz parameter Sr  is defined as 

the average dimensionless distance between charge carriers measured in units of the 

effective Bohr radii Ba : 

1
S

B

r
naπ

= .     (2.28) 
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Using the expression for the effective Bohr radius in semiconductor 2 2
B ba m eε=  

(where ε  and bm  are dielectric permittivity and electron (or hole) effective band 

mass, respectively), Eq. (2.28) can be represented as follows: 

( )
2

2 22 2
1 1

2
ee

S
FF bB b

e n Er
Ek mna n m e

π ε
π π ε

= = = = ,  (2.29) 

where the Fermi wavevector 1 2(4 )F S Vk g g nπ=   is for two-spin ( 2)sg =  and one-

valley ( 1)Vg = system.  Eq. (2.29) shows that the parameter Sr  can be interpreted as 

the ratio of the energy of Coulomb interaction eeE  between two electrons at an 

average inter-electron distance 1 nπ  to their Fermi energy. 

For the 2DEG formed at the interface between (001) Si and amorphous SiO2, the 

band electron mass, dielectric constant, and the effective Bohr radius are equal to 

0.19b em m≈ , ε = 7.7 , and 21.45Ba = Α , respectively.6 Thus, 

1/2( ) 8.319sr n n−= ,     (2.30) 

where n is expressed in units of 11 210 cm− . 

In high-mobility Si MOFETs, where the most pronounced metallicity is observed, 

the metallic behavior corresponds to electron densities of the order of 11 12 210 -10 cm− , 

and the apparent MIT occurs in a narrow critical range of electron densities around 

11 2
c 1 10 cm−×n .  The corresponding  values of ~ 2 8Sr −  are quite large.52 Thus, the 

EEI might play an important role in the metallic behavior of the conductivity of high-

mobility 2D systems. 

Potentially, a strong interaction can modify the ground state of the system.  

Figure 2.5 shows a schematic phase diagram for 2DEG in Si MOSFETs.  With  
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Figure 2.5. Phase diagram for Si MOSFETs. 

variation of disorder and the strength of electron-electron interactions, a 2D system 

may go through several ground states that might exist between the limiting cases of a 

conventional paramagnetic Fermi-liquid53 (high densities), electron solid - the Wigner 

crystal54 characterized by spatial and spin ordering (low densities, weak disorder), and 

paramagnetic strongly localized state55,46 (strong disorder).  According to numerical 

simulations56, Wigner crystallization is expected to occur in a 2D system when 

disorder is weak and when Sr  reaches ~ 37 .  One of the candidates for the ground 

state that occurs prior to Wigner crystallization is a strongly correlated ferromagnetic 

Fermi-liquid with spontaneous spin ordering. In a clean system the ferromagnetic 

instability is described by the Stoner criterion57, which defines the critical value of the 

spin-exchange interaction constant at which the system becomes unstable with respect 

to ferromagnetic ordering (the transition to a state with a non-zero total spin S).  

Attaccalite et al.58 showed in their numerical simulations that the Stoner instability 

should take place prior to Wigner crystallization in the range of interaction parameter 
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25 35Sr≤ ≤ . Besides the ferromagnetic instability, other ground states have been 

suggested between a conventional Fermi-liquid and the Wigner crystal.59 

To enable observation of different quantum states the disorder should be weak.  

Since the mobility of 2D carriers at low temperature is inversely proportional to the 

strength of static disorder, the mobility should be high.  Thus, only high mobility 

samples can give access to new physics and new possible ground states. 

2.2.2. Electron-electron interaction in the diffusive regime 

In addition to weak localization correction, interaction between electrons also 

modifies the conductivity of disordered 2D systems. Let us first consider the 

interaction between electrons that coherently diffuse due to impurity scattering and 

have close momenta and energies.  For a degenerate electron gas only the electrons 

with energies that lie within the layer of width T  near the Fermi level 

( )F FE T E E T− ≤ ≤ +  can be scattered. The average energy difference EΔ  between 

two such electrons is of the order of T. The electrons can interfere with each other 

during a time shorter or equal than the reciprocal difference in their energies 

1 1( ) ~ee E Tτ − −Δ , since during that time electrons’ states are indistinguishable. In 

the diffusive regime two interacting particles diffuse coherently, i.e. are scattered 

many times by impurities before they exchange an energy by ~ .E TΔ  In this regime 

the elastic momentum relaxation time τ  is small compared to the characteristic time 

1
ee Tτ −=  required for two interacting quasi-particles to change their energy by T : 

1Tτ .     (2.31) 

At finite temperatures in the presence of EEI the characteristic length scale on 

which the phase coherence of two electrons is preserved and the interference can 
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occur is the thermal diffusion length /TL D T≡ . This length scale along with the 

phase relaxation length Lϕ  determine the crossover from higher to lower dimensions: 

the crossover occurs when one dimension is of the order ~ min( , )Td L Lϕ . For 

example, if a film thickness  d  is much smaller than min( , )TL Lϕ , than the effective 

dimension is 2D.  

The effect of interference between electrons that moves diffusively in disordered 

systems was first considered by Altshuler and Aronov9 in the framework of the 

conventional Fermi-liquid (FL) theory. A more general approach to interacting 

systems based on generalization of the non-linear σ -model theory has been 

developed by Finkelstein10. It was discovered that the Coulomb interaction, enhanced 

by the diffusive motion of electrons, gives rise to quantum correction to the 

conductivity and tunneling density of states in the diffusive regime.9,10  QC due to EEI 

in the diffusive regime ( 1)Tτ  can be written as follow:9,10 

( ) ( )
0

1 2 ln 1 2
1 3 1 ln(

2
F F

G T
F

δσ τ
⎡ ⎤+ +⎧ ⎫

= + − )⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦

.  (2.32) 

The first term in square brackets is the exchange term or the Fork contribution (the 

singlet channel that corresponds to interactions between two electrons with total spin 

zero), while the second is the Hartree contribution (the triplet channel that 

corresponds to interactions between two electrons with total spin one).  Factor of 3 in 

front of the triplet channel corresponds to three different projection of total spin: 

1,0, 1− + . The interaction parameter F in the triplet channel is an angular average over 

the statically screened Coulomb interaction, which depends on the ratio of the inverse 

screening length κ  2( 2 2 )V Be v g aκ π ε= =  to the Fermi wave vector Fk : 



36 

 

 

( )

2

0

1
2 1 2 sin 2F

dF
k

π θ
π κ θ

=
+∫ .     (2.33) 

Since the ratio / 2 Fkκ  depends on Wigner-Seitz radius Sr  ( )3/2 1/22 2F Sk g rυκ −= ,  

F can be considered as a function of that depends Sr . Thus, the EEI correction in the 

diffusive regime has a ln Tτ  dependence, and the sign of the correction depends on 

the relative magnitude of the exchange and the Hartree terms, the latter being a 

function of F . The interaction parameter F  is related to the Landau interaction 

parameter 0Fσ  as 

0

02 1
F FZ

F

σ

σ= −
+

,     (2.34) 

where Z is a temperature (energy) renormalization parameter.10  The Eq. (2.32) written 

in terms of 0Fσ  has the form: 

( )0
0

0

ln 1
1 3 1 ln(

F
G T

F

σ

σδσ τ
⎡ ⎤⎧ ⎫+⎪ ⎪⎢ ⎥= + − )⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

.   (2.35) 

For a weak screening ( / 2 , 1)F Sk rκ , the factor F is small 

( ~ ( / ) ln( / ) 1)F FF k kκ κ  and the conductivity correction is dominated by the 

exchange term and is negative (since in the diffusive regime ln 0Tτ < ). This leads to 

the logarithmic decrease of the conductivity in the diffusive regime with cooling: 

0 lnee
xx G Tδσ τ≈ .     (2.36) 

Equation (2.36) shows that EEI correction in the diffusive regime is similar to WL 

correction (2.13-2.14), though the characteristic length scale here is TL  rather than 

Lϕ .  It is important that the EEI correction (2.36) in contrast to WL correction (2.14), 
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is independent of magnetic field at / 1Bg B Tμ < . This allows one to distinguish these 

two types of corrections by applying a weak magnetic field  ( ) trB T B Bϕ ≤ ≤ . 

2.2.3. Electron-electron interaction in the ballistic regime 

In the ballistic regime 1Tτ  the EEI in mediated by a single impurity scattering.  

The effect of EEI on the conductivity of 2D systems in the ballistic regime was first 

considered by Stern (1980),32 Gold and Dolgopolov (1985),33 and Das Sarma 

(1986),34 who analyzed the correction to the conductivity in terms of the T-dependent 

screening32 of the impurity potential.  

The screening theory explains the anomalous metallic conductivity (an increase of 

σ  as 0T → ) observed in high-mobility 2D systems in terms of a temperature-

dependent effective disorder arising from the strong temperature dependence of 

screening at low densities. The low temperature behavior of ( )Tσ  is derived in terms 

of Boltzmann transport theory with random phase approximation screened disorder 

scattering and is described by a smooth and universal function of two variables: the 

dimensionless temperature / Ft T E=  and the dimensionless screening parameter 

0 Fq kκ≡ . 

In the limit 0t →  interaction correction to the conductivity has the following 

form:33,34,60 

3/2
1 0 3/2 0( ) / ( ) ( )DT C q t C q tσ σΔ ≈ − − .   (2.37) 

The coefficients 1C  and 3/2C , being smooth functions of 0q , were first calculated by 

Gold and Dolgopolov33 and later corrected by Das Sarma and Hwang34,60. Neglecting 

the higher order term in Eq. (2.37), the correction to the conductivity is linear in 

temperature and can be written as follows:  
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0( ) ( )s
F

TT G f r
E

δσ = − ,    (2.38) 

where ( )sf r  is a smooth function of sr . 

According to the screening theory,33,34,60 the effect of the anomalous 2D 

metallicity is not a signature of a new ground state, rather it is a finite-temperature 

effect.  The theory33,34,60 explains linear behavior of resistivity, which in Si MOSFETs 

occurs at a temperature range 0.5-4Kf, as well as nonmonotonicity at relatively high 

temperature ( 0.1 FT T≥ ), where )Tρ(  seems to slowly decrease with increasing 

temperature.  It is worth mentioning that the theory33,34,60 is only valid for 

D FT T E , where 1 2D qT πτ=  (here qτ  is the elastic quantum scattering time) is 

the Dingle temperature.  Thus, the screening theory applies to the ballistic regime and 

describes the behavior of 2D systems on the metallic side of the 2D MIT.  

2.2.4. EEI in the crossover between the ballistic and diffusive regimes 

In 2001 a considerable progress has been achieved in the theory of QC: Zala, 

Narozhny and Aleiner (ZNA)35 calculated EEI corrections to the Drude conductivity 

[Eq. (2.1)] beyond the diffusive regime (for arbitrary value of Tτ ), in terms of FL 

interaction parameters.  ZNA showed that the temperature-dependent screening32-34 

has in fact a common physical origin with the Altshuler-Aronov effect9,10 but that the 

calculation in the screening theory32-34 took only the Hartree term into account and 

missed the exchange contribution. Thus, according to the ZNA theory, EEI corrections 

in the ballistic ( 1)Tτ , diffusive ( 1)Tτ  and intermediate ( 1)Tτ  regimes are 

                                                 
f As electron density approaches to the critical density of MIT (from the metallic side of the 

transition), the temperature range, corresponding to linear temperature behavior of resistivity, narrows 

down. 
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due to the same physical process: elastic scattering of electrons by the self-consistent 

potential from all other electrons.  The ZNA theory has been developed for the short-

range scattering potential (which is relevant to Si MOSFETs); later Gornyi and Mirlin 

(GM)37 extended this theory for the case of the long-range scattering potential. The 

theories of Refs. 35,37 naturally incorporate the logarithmically divergent Altshuler-

Aronov correction9,10 to the conductivity [Eq. (2.35)] in the diffusive regime, and  the 

linear temperature dependence of σ 32-34 in the ballistic regime [Eq. (2.38)].  The ZNA 

theory also makes specific predictions on the correction to the Hall coefficient xy Bρ  

at 0B → , and the magnetoresistance in a parallel magnetic field.35 

Recently the renormalization group (RG) based theory10 that describes EEI in the 

diffusive interaction regime 1Tτ  was extended in the first order in 1 πσ  and in all 

orders in interaction38. The results of Refs. 10,38 have been compared with the 

conductivity of Si MOSFETs at low electron densities61-63. The RG equations10,38,64,65 

describe the length scale (temperature) evolution of the resistivity and interaction 

parameter for a 2D electron system in the diffusive regime. However, at high electron 

densities, the temperature range corresponding to the diffusive regime shrinks which 

limits the applicability of RG theory.  In contrast, the theory of interaction 

corrections35,37 is applicable in a wide T range provided 2e hσ  and σ σΔ 1 ; 

these assumptions are well justified at high densities.  

The ZNA and GM theories offer the expressions for ( , )T BσΔ  that are valid in a 

wide range of T, including ballistic the and diffusive interaction regimes.  According 

to the theories of Ref. 35,37 the magnitude and sign of the qausi-linear ( )Tσ  

dependence is determined by the value of the Fermi-liquid parameter 0Fσ  (which can 

be found by measuring the Shubnikov-de Haas oscillations in weak magnetic fields 
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normal to the plane of 2D structure16,41 or the magnetoresistance in strong in-plane 

magnetic fields105-107).  In particular, it is expected that ( )Tσ  dependence becomes 

more metallic when 0Fσ  is negative and its absolute value exceeds a certain threshold. 

Since the ZNA theory35 is relevant to Si MOSFETs (it takes into account the short-

range random potential), we provide a more detailed overview of this theory below. 

2.2.5. Interaction corrections to the conductivity within Zala-Narozhny-Aleiner 

theory 

Temperature dependence of the conductivity in zero magnetic field 

In a clean infinite system, electron density is homogeneous.  In disordered or 

finite systems, however, electron density in the vicinity of impurities is modulated by 

the impurity potential and has an inhomogeneous term, which oscillates on the scale 

of the order of the Fermi wavelength Fλ .  This oscillating term, called the Friedel 

oscillation36, can be considered as an additional scattering potential.  The main 

mechanism leading to QC due to EEI is interference between two electrons: one 

scattered back by the impurity and the other scattered back by the Friedel oscillations 

induced by this impurity around itself (Figure 2.6).  

In the case of a one-valley systemg  there are four spin channels that contribute to 

the conductivity: one “single” (the total spin of two electrons is zero) and three triplet 

channels (the total spin of two electron equals to unity), which are different from each 

other by a z-component of the total spin.  EEI corrections ( , 0)ee T Bδσ =  to the Drude 

                                                 
g The situation in the case of two valley system will be considered below. 
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conductivity Dσ  in zero magnetic field can be considered as combination of the 

“charged” Cδσ  term,  which combines the Fock correction and the singlet  part of the 

  

 

Figure 2.6. Scattering by Friedel oscillation. Paths A and B are due backscattering 
from Friedel oscillation, path C is due to backscattering from the impurity. 
Interference between A and B gives QC. (Adopted from Zala at al.35) 

Hartree correction, and three equivalent “triplet” contributions Tδσ  due to the triplet 

part of Hartree term: 

( ) ( ) ( )3ee C TT T Tσ δσ δσΔ = + .    (2.39) 

The charge term does not depend on detail of interaction:35  

2 3 11 ( ) ln
8 2

F
C

e ET f T
T

δσ τ τ
π π

⎧ ⎫⎡ ⎤ ⎛ ⎞= − −⎨ ⎬⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎩ ⎭
,   (2.40) 

whereas the magnitude and sign of the triplet term is governed by the FL interaction 

parameter 0Fσ :35 

 
2

0
0 0

0 0

3 1 11 ( ; ) 1 ln(1 ) ln
1 8 2

F
T

e F ET t T F F
F F T

σ
σ σ

σ σδσ τ τ
π π

⎧ ⎫⎛ ⎞⎪ ⎪⎛ ⎞ ⎛ ⎞= − − − +⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
  (2.41) 

Figure 2.7 shows the dimensionless functions (f x)  and 0( ; )t x Fσ , which describe the 

crossover between the diffusive ( ln )ee TσΔ ∝  and the ballistic ( )ee TσΔ ∝  regimes; 
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outside the crossover region, f- and t-functions change the value of eeσΔ  by a few 

 

 

 

Figure 2.7. Dimensionless ( )f x  (left) and 0( ; )t x Fσ  (right) functions. (Adopted from 
Ref. 35.) 

percents.h  In the ballistic regime the correction is linear in T, and the slope 

d T dTσ ( )  is determined by 0F σ . The overall sign of the total correction to the 

conductivity is also determined by 0F σ and can be both positive and negative 

(Figure 2.8). 

The diffusive-ballistic crossover is expected over some temperature range near 

( )01
*

2
F

T
σ

πτ
+

= .     (2.42) 

Equations (2.40-2.41) describe the quantum corrections in a system with 

conductance 2e hσ  and at temperatures well below the Fermi energy 

( )2

01 FT F Eσ⎡ ⎤<< +⎢ ⎥⎣ ⎦
. 

                                                 
h The explicit expressions ( )f Tτ  and 0( , )g T Fστ  functions are given in Appendix B. 
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Equations (2.39-2.41) were derived for a single-valley system.  To adopt the 

theoretical result35 to the case of (001) Si MOSFETs, one should take into account 

that the electron spectrum in this system has two almost degenerate valleys6.  In the 

case of  a  two-valley  system, the valley index can be considered as a  pseudo-spin,38 

 

 

Figure 2.8. Total correction to conductivity for different parameters 0F σ  (left panel). 
Blow-up of curves with 0 0.3F σ = −  and 0 0.4F σ = − (right panel). (Adopted from Ref. 
35.) 

and the valley degeneracy determines the number of triplet terms due to the spin 

exchange processes between electrons in different valleys.  For a system with two 

degenerate valleys, the total number of channels of interaction is 4 4 16× = , among 

them 1 singlet and 15 triplet terms (for comparison, there are  1 singlet and 3 triplet 

terms for a single-valley system). Thus for a two-valley systems in the absence of 

intervalley scattering, EEI correction will be modified by changing the number of 

triplets channels from 3 to 15: 

( ) ( ) ( )15ee C TT T Tσ δσ δσΔ = +     (2.43) 

Equations (2.40), (2.41) and (2.43) represent eeσΔ  in terms of one fitting 

parameter, the Fermi-liquid constant 0F σ , which can be found in independent 
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experiments (see Sec. 5.3 for details).  The sign and magnitude of eeσΔ  in both 

ballistic and diffusion regimes is controlled by the Fermi-liquid parameter  0F σ .  For a 

rough estimate, deeply in the ballistic regime the lnT  terms and the crossover 

functions t and f in Eqs. (2.40, 2.41) can be omitted.  For example, at 10Tτ = , the 

function f and t contribute 4%≈  and 11%≈ , respectively, to the linear-in-Tτ  ballistic 

terms of Eqs. (2.40, 2.41).  By neglecting these terms, one finds that for a single-

valley system the linear dependence ( )ee TσΔ  in the ballistic regime becomes metallic 

( 0)d dTσ <  at ( )0 03 1 1F Fσ σ+ < −  or 0 0.25Fσ < − , whereas for a system with two 

degenerate valleys, the metallic ( )ee TσΔ  dependence are expected at 

( )0 015 1 1F Fσ σ+ < −  or 0 0.06Fσ < − . Thus, the valley degeneracy extends the range 

of 0 ( )F nσ , and hence, the range of carrier densities n where the conduction exhibits 

the metallic behavior. 

Magnetoconductivity in the in-plane magnetic field 

The in-plane magnetic field, being coupled to electron spins, provides a useful 

tool for exploring the interaction effects in the low-temperature conductivity of 

Si MOSFETs.  One of the factors that affect the interaction correction to the 

conductivity is the magnetic field14,15.  When the Zeeman energy Z b BE g Bμ=  

b(g 2=  is the bare g-factor, Bμ  is the Bohr magneton) becomes much greater than T, 

the number of triplet terms that contribute to ( )ee TσΔ  is reduced from 15 to 7.  

Similar reduction of triplet terms is expected for a valley splitting V TΔ > .  These two 

effects have been accounted by the theory of interaction correcions35; in the presence 
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of a magnetic field and/or valley splitting the interaction correction to the conductivity 

can be expressed as follows:66 

( ) ( )

( ) ( ) ( )
0, , , , ( ) 2 ,

2 , , , ,

Z
ee V ee Z

Z Z Z
V Z V Z V

T F B T E T

T E T E T

σσ τ σ σ

σ σ σ

Δ Δ = Δ + Δ

+ Δ Δ + Δ + Δ + Δ − Δ
  (2.44) 

where ( )ee TσΔ  is given by Eq. (2.43)  and all the terms ( , )Z Z TσΔ  have a form 
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b d
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ZK F m Z T F
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σ

σ

σ σ

σ σ σ δσ δσ

τ
π
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π

Δ ≡ − = +

⎡⎧ ⎫⎛ ⎞= ⎨ ⎬⎢ ⎜ ⎟+ ⎝ ⎠⎩ ⎭⎣
⎤⎧ ⎫⎛ ⎞+ +⎨ ⎬⎜ ⎟ ⎥⎝ ⎠⎩ ⎭ ⎦

  (2.45) 

if the relevant energies FZ E  ( Z  stands for ,Z VE Δ  and combinations ).Z VE ± Δ  

The explicit expressions for the functions bK  and dK  are given in the Appendix B. In 

particular, Eq. (2.45) describes the interaction-driven magnetoconductivity in the 

magnetic fields which are much weaker than the field of a full spin polarization of a 

system. The function 0(0, ; )m T Fστ , which describes the crossover between the 

ballistic and diffusive regimes, can be neglected - it appears to be numerically small 

and does not modify the value of ( , )Z TσΔ outside the ballistic-diffusive crossover 

region by more than one percent.  

It is worth mentioning that in the framework of the RG theory, the 

magnetoconductance can also be described by the Castellani-Di Castro-Lee 

formula65,67 which is equivalent to Eq. (2.44) in the diffusive limit at 0VΔ = . 

However, for the analysis of our magnetoconductivity data measured over a wide T-

range that includes both diffusive and ballistic regimes, the interaction correction 

theory35 is more appropriate than the RG theory65. 
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The interaction correction theory35 (as well as the RG theory38) does not take into 

account intervalley scattering. This approximation is valid when the intervalley 

scattering rate 1
Vτ
−  is much smaller than T . In the low-temperature limit 1

VT τ − , the 

electron states in different valleys are completely intermixed at the time scale 1~ T −  

and the correction ( )ee TσΔ  for a two-valley system is expected to coincide with that 

for a single-valley system.  

Since the interaction corrections to the conductivity ( , )ee T BσΔ  depend on several 

parameters such as 0, , VFστ Δ  and Vτ , for testing the theoretical results, it is crucial to 

determine these parameters in independent measurements. This program is discussed 

in Sections 4.2.3, 5.3, 6, and 7.1. 
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3. Metal Oxide Semiconductor Field Effect Transistor 

3.1. Si MOSFET device 

One of the most important semiconductor devices is a Si Metal-Oxide-

Semiconductor Field Effect Transistor (Si MOSFET), which was successfully 

fabricated by Kahng and Atalla in 1960.68 The integrated circuits based on this device 

now constitute about 90% of the semiconductor device market. This 2D electron 

system consists of a charge carriers confined within a two-dimensional potential well; 

the latter is formed at the interface between a semiconductor and an insulator.6 

3.1.1. Basic principles of operation of n-channel Si MOSFET 

 Let consider how a n-channel Si MOSFET operates. A prospective view of a 

Si MOSFET is shown in Figure 3.1. A device consists of a p-doped Si substrate, a 

thermally grown silicon oxide on top of the Si-substrate, a thin metal (aluminum) film 

deposited on top of SiO2, and  two heavily n+-doped regions at the Si surface. The 

metal film (or a gate) and two other electrodes called the source (S) and the drain (D) 

located on top of the heavily doped regions form three terminals of the device.  

A small negative bias 0gV <  applied to the metal gate relative to the source 

terminal (which is usually at a ground potential) causes the accumulation (induction) 

of the positively charged majority carriers at Si-SiO2.  On the other hand, a small 

positive bias 0gV >  leads to a surface depletion near the metal-oxide interface, i.e. 

removing of the majority carriers near the Si-SiO2  interface from the valence band (or  
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Figure 3.1. Si MOSFET: schematic (a) and the band-edge (b) diagrams. 

from the neutral acceptors near the interface when they are deionized) leaving 

negatively charged ions. As a result, a space charge is created [Figure 3.1(b)], this 

depletion layer has a high electrical resistivity.  An electrostatic potential associated 

with this negative space charge causes the conduction and valence band edges to bend 

downward at the interface.  With increasing the positive gate voltage, the depletion 

layer and the corresponding bending of the energy levels near the interface increase 

further.  At some point, the end of the conduction band crosses the Fermi level, and 

electrons near the interface will start occupying the states in the conduction band that 
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lies below the Fermi level, forming an inversion layer [Figure 3.1(b)]. The onset of 

strong inversion occurs when the electron concentration near the Si-SiO2 interface 

exceeds the density of electron traps at the Si-SiO2 interface and the substrate doping 

level. This happens when the gate voltage reaches the threshold voltage thV .  The 

typical width of the inversion layer is of the order 10 nm , whereas the width of the 

depletion layer is of the order of a few microns. 

Electrons in the inversion layer are trapped in a triangular potential well 

[Figure 3.1(b)].69  The energy levels of electrons are grouped in two-dimensional 

subbands, each of which corresponds to a quantized level ( )z
nE   for the motion in the 

z-direction, with a continuum for the motion in the plane parallel to the Si-SiO2 

interface: 

2 2
( )( )

2
z

nE E
m

= +
k

k ,    (3.1) 

here ( , )x yk k=k  and m  are the wave-vector and the electron effective mass for the 

motion parallel to the surface, respectively.  Only those subbands that lie below the 

Fermi level can be occupied.  As will be shown in the next section, at ultralow 

temperatures and not too high electron densities 11 2( (4-5) 10 cm )−< ×n , only the 

lowest energy subband is populated, and the confined electrons are able to move only 

parallel to the Si-SiO2 interface, forming a pure two-dimensional electron gas 

(2DEG).   

The n-channel Si MOSFET operates as follow.70  When no voltage is applied to 

the gate, two facing each other p-n junctions, formed by the heavily doped regions 

(located under S and D terminals) and the bulk semiconductor, block the current 

between the source and the drain and the device is in the “off” state.  When a 
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sufficiently large positive bias is applied to the gate, a surface inversion layer (or 

channel) is formed between the two heavily n+-doped regions.  Electrons that form the 

inversion layer are trapped in the triangular potential well, at the Si-SiO2 interface. 

The depth of the well, and thus the number of electrons that can be trapped by it, is 

controlled externally by the potential of the gate.  Thus, the source and the drain are 

connected by a conducting 2D n-channel with a low resistivity when a positive 

g thV V>  is applied (the “on” state of the device).  With applying a small positive 

voltage DV  to the drain (relative to the source), a source-drain current SDI  flows 

though the inversion layer [Figure 3.1(a)]. 

A metal gate and a thin inversion layer form a parallel-plane capacitor.  Since gV  

drops partially across SiO2 oxide and partially across a space-charge layer in 

semiconductor, the MOSFET’s differential capacitance per unit area gC dQ dV=  

(where Q is a semiconductor space charge per unit area) is given by 

1 1 1

ox scC C C
= + ,     (3.2)  

here ox ox oxC dε= is the capacitance of the oxide with a thickness oxd  and a 

dielectric constant oxε , sc sC dQ dψ=  is the semiconductor capacitance ( sψ is a 

potential at the interface). In the regime of strong inversion the charge induced by a 

further increase of gV  goes almost entirely into the inversion layer.  As a result, the 

total capacitance C  approaches the oxide capacitance oxC . As a result, the density of 

electrons in the inversion layer depends on the applied gate voltage as follows 

g( ) ( )ox
g g th

Cn V V A V V
e
δ= = − ,    (3.3) 

here a linear coefficient A  is given by ox oxA edε= . 
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3.1.2. Band structure of (001) Si MOSFET 

Silicon is a multivalley system – there are six valleys in the conduction band that 

lie on the six equivalent Δ -lines along [001]-directions, about 85% on the way from 

Γ  to the six X points6  [Figure 3.2(a)]. For each valley, the long axis corresponds to a 

longitudinal electron effective mass 0.92l em m≈ , whereas the short axis corresponds  

to a transverse mass 0.19t em m≈ .   

On a (001) surface of Si, the degeneracy of six conduction valleys is removed by 

quantization in the surface potential well:71 on this surface the electrons in the 

inversion layer occupy two different types of subbands.  The confinement energy 

depends on the effective mass perpendicular to the Si-SiO2 interface. Two valleys 

(shown by a red color on Figure 3.2) with long axes perpendicular to the surface give 

rise to one set of subbands (0,1,2,...)  with a heavy mass heavy 0.42 ,l t em m m m= ≈  

for motion perpendicular to the (001) surface: 

2 2

heavy
( ) , ( , )

2n x yE E k k
m

= + =
k

k k .   (3.4) 

The other four valleys (shown by a blue color on Figure 3.2(a)), whose long axes lie 

in the plane of the Si-SiO2 interface, determine another set of subbands (0 ,1 ,2 ,...)′ ′ ′  

with a lighter mass light tm m=  for motion perpendicular to the (001) surface: 

2 2

light
( ) , ( , )

2n x yE E k k
m

= + =
k

k k .   (3.5) 

A schematic representation of the constant-energy ellipses and the Brillouin zone 

for the (001) surface of Si is shown in Figure 3.2(b).  Here two red concentric 
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Figure 3.2  (a) Constant energy surfaces in k space for silicon. Each ellipsoid 
corresponds to a valley in the conduction band and a polyhedron represent the first 
Brillouin zone. The long axis of each ellipsoid corresponds to the longitudinal 
electron effective mass 0.92l em m≈ , the short axis corresponds to the transverse 
effective mass 0.19t em m≈ . For a (001) surface two valleys shown by red color have 
lower ground energy compared to the other four ellipsoids. (b) Constant energy 
ellipses and the Brillouin zone for a (001) surface of Si. Concentric ellipses show 
double degenerate levels.  

ellipsoids correspond to two almost equivalent light-mass valleys, whereas four other 

dashed ellipsoids represent the heavy-mass valleys.  

Thus, for a (100) Si surface there are two types of subbands: twofold subbands 

associated with two light-mass valleys, and fourfold subbands associated with four 

heavy-mass valleys.  Both the fourfold degenerate ground subband 0E ′  and the first 

excited twofold degenerate subband 1E  are above the minima for the twofold 

degenerate ground subband 0E  by (20 25) meV (200 300) KΔ ≈ − ≈ −E (see, e.g., 

Ando et al.6 and references therein).  This indicates that the population of the higher 

subbands starts at 11 2(4-5) 10 cm−> ×n . To ensure that only the lowest size 
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quantization subband is filled, all measurements in this work were performed at

11 24 10 cm .−×n <  

In a (001) Si MOSFET for a typical density 12 2~ 10 cm−  the corresponding Fermi 

energy is of the order 6 meV 70 K≈FE , what is smaller than 1 0 0{ , }E E E E′Δ = − .  

At not-too-high electron densities (such that FE E< Δ ) and ultralow temperatures 

( )FT E  only the ground-state subband associated with two light-mass valleys is 

occupied. Thus, only two valleys, whose long axes lie along the [001] direction, 

participate in the low temperature electron transport in a (001) Si MOSFET. 

The valley degeneracy 2Vg =  distinguishes (001) Si MOSFETs from other 2D 

systems: it significantly enhances the EEI effects in Si, which, in turn, gives rise to a 

large amplification of the temperature behavior of the conductivity of high-mobility 

Si MOSFET samples at low electron densities.38 

Although the two valleys relevant in the low temperature transport of 

(001) Si MOSFETs are almost equivalent, there exists a relatively small energy 

splitting VΔ  between them.  This VΔ  can be caused, for instance, by a slight 

misorientation of the plane of a 2D layer from the (001) crystallographic plane.6 

The other important parameter of (001) Si inversion layers is the intervalley 

scattering between the two almost degenerate valleys.  At temperatures comparable to 

the rate of the intervalley scattering, 1
Vτ
− , a crossover occurs between a band with two 

distinct valleys and a band where the two valley are effectively unified due to the 

intervalley scattering. As will be shown in Sections 4.2.3 and 6, in a typical 

Si MOSFET sample the values of 1
Vτ
−  and VΔ  fall within the experimentally relevant 

temperature interval.  Thus, it is important to characterize those parameters and to 

know how they affect the electron transport. 
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3.2. Transport properties of Si MOSFETs 

3.2.1. Low µ, high n Si MOSFETs 

 Si MOSFET devices with rather low mobility μ  and high carrier density n  

supported the scaling theory of localization7 and Altshuler-Aronov9 interaction theory. 

In 1980 Bishop et al.72 studied the transport properties of low mobility  

2( ~ 0.2 m Vsμ  at 4.2 K ) n-channel Si MOSFETs in high density range 

11 2( (1.8-5.6) 10 cm ).−×n The authors of Ref. 72 observed an increase of the 

resistivity with temperature cooling (Figure 3.3(a)]: a smooth and graduate crossover 

from an exponential ( )1/3
0( ~ exp )R R A T  to a logarithmic ( ~ ln )R T  behavior 

occurred at 10R k≈ Ω� .  Thus, in the studied density range, no evidence for the 

metallic state was observed.  The saturation of the resistance at millikelvin 

temperatures was attributed to the heating effects. 

Similar results were reported by Uren et al.73 for low-mobility Si MOSFETs

2( ~ (0.25-0.65) m Vs)μ . The authors of Ref. 73 also observed both strong and weak 

localization regimes.  In the weak localization regime, the logarithmic decrease of the 

resistivity [Figure 4.6(b)] was consistent with interaction and localization theories7,9. 

The magnetoconductance data73-76 obtained for low-μ devices have also supported 

the scaling theory of localization7.  The positive magnetoconductance due to the 

suppression of the WL correction by a magnetic field B⊥  normal to the plane of a 2D 

system was observed by Kawaguchi and Kawaji74 and Wheeler75 on n-channel (100) 

Si MOSFETs (Figure 3.4). The ( )Bσ ⊥  dependences were consistent with the Hikami-

Larkin-Nagaoka theory45. 
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Figure 3.3. Zero magnetic field temperature dependence of the resistance for the 
inversion layers in Si MOSFETs (a) with densities of 11 22.03 10 cm−× (right) and 

11 25.54 10 cm−×  (left) (Bishop at al.72); (b) with peak mobility 20.65 m Vs≈μ  and 
electron density 11 28.8 10 cm−×  (Uren et al.73). 

 

 

Figure 3.4. Magnetoconductance of the n-channel (100) Si MOSFET at different 
temperatures. The symbols represent the experimental data, the solid curves represent 
the fit with HLN formula. Reproduced from (a) Kawaguchi and Kawaji.74  
(b) Wheeler.75 
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Many other measurements77-79 on low-mobility Si MOSFETs have also shown that 

both weak localization7 and interaction9 effects were present in Si inversion layers, 

and have confirmed the statement that there is no true metal state in 2D.  However, 

though these data have supported qualitatively the theories of Refs. 7,9, there were 

quantitative discrepancies: unreasonably high value of the interaction parameter F, 

obtained in the parallel-field magnetoconductivity experiments78,79; lack of B T  

scaling in the magnetoconductance data77, etc.   

 

3.2.2. High µ, high n Si MOSFETs 

Although a number of experiments on low-mobility 2D systems supported the 

scaling theory of localization, the experiments on Si MOSFETs with higher mobility 

have brought some doubts in the validity of this theory.  

In 1980, Cham and Wheeler80 studied the transport properties of Si MOSFET with 

mobilities ranging from 20.24 m Vs  to 22.2 m Vs  at relatively high electron 

densities (of the order of 12 21 10 cm−× ).  In the experiments, a negative substrate bias 

subV  was applied to increase the quality of the devices81,i. The authors of Ref. 80 

observed that the resistivity of Si MOSFET decreased almost linearly with cooling 

instead of a logarithmic increase (Figure 3.5) as was predicted by the interaction and 

localization theories.7,9 

 

                                                 
i The increase of the quality of low-μ Si MOSFETs with applying 0subV <   has been attributed to 

the reduction of scattering processes by electrons that occupy very long band tails associated with 

upper subbands. The reverse 0subV <  increases the subband splitting and makes this scattering 

mechanism less important.81 
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Figure 3.5. The temperature dependence of the resistivity of Si MOSFETs.  
circles - lower quality device 2

max sub( (4.2 K, 0) 0.4 m Vs),= ≈μ V  11 21.2 10 cm−= ×n , 

sub 9.42 V= −V ; triangulars - higher quality device max sub( (4.2 K, 0)= ≈μ V  
21.5 m Vs), 11 21.3 10 cm−= ×n , sub 17.6 V= −V . (Adopted from Cham and Wheeler.80)

 

 

 

Figure 3.6. The temperature dependence of a (100) Si MOSFET with the peak 
mobility 2

peak 1.6 m Vs≈μ  (Adopted from Kawaguchi et al.82) 
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Figure 3.7. The temperature dependence of the conductivity of Si MOSFETs at 
different electron densities. Data from (a) Dorozhkin and Dolgopolov83 for the sample 
with the peak mobility 2

peak 2.1 m Vs≈μ ; (b)  Virodov, Dolgopolov, Dorozhkin, 

Zhitenev85 for the sample samples with the peak mobility 2
peak 1.7 m Vs≈μ . 

Kawaguchi et al.82 have also reported a decrease of the resistivity of high-mobility 

Si MOSFETs with cooling (Figure 3.6). 

Dorozhkin and Dolgopolov83 have measured the conductivity of high-mobility 

Si MOSFETs (the peak mobilities of the studied samples were in the range 

2
peak (1.2-2.5) m Vs)≈μ  at high electron densities  11 2( (3-8) 10 cm ).−≈ ×n  Similar to 

the results of Cham and Wheeler80 and Kawaguchi et al.,82 the data obtained in 

Ref. 83 contradicted the expectations based on the WL theory: the conductivity 

increased almost linearly in a the studied temperature range (1.3 4.2) K−  (Figure 

3.7). The peculiar behavior of the conductivity of high-mobility Si MOSFETs was 

also reported in other experiments84,85.   
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Figure 3.9. The electrical conductivity σ�  versus reciprocal temperature in silicon 

inversion channels with various carrier densities n  (in units of 11 210 cm− ). (Left 
panel). Electrons: 1–10; 2–6; 3–3.8; 4–2.1; 5–1.6; 6–1.25; 7–1.05; 8-11 – less than 1. 
(Right panel). Holes: 1–12; 2–8; 3–6; 4–5; 5–4.5; 6-11 – less than 4. (Adopted from 
Ref. 12.) 

conductivity86, was observed previously in 2D systems. At carrier densities slightly 

smaller than cn  the behavior of the conductivity was completely different: σ  

increased substantially with cooling. In both n- and p-inversion channels there was 

observed a critical conductivity 2
C e hσ  that corresponded to the crossover 

between two regions: (i) the region Cσ σ≥� , where the conductivity increased with 

cooling; and (ii) the region Cσ σ≤� , corresponding to the decrease of the 
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Figure 3.10. (a) The temperature dependence of the resistivity at 0B =  of a high-
mobility Si MOSFET (samples Si-12b) with the peak mobility 2

peak 3 m Vs=μ  at 

different electron densities ranging from 10 217.12 10 cm−×  (the top curve) to 
10 213.7 10 cm−×  (the bottom curve). (b) The dependences of the resistivity on electron 

density for different temperatures at 0B =  for sample Si-12b. (Adopted from 
Ref. 13.) 

conductivity as 0T → .  Authors of Ref. 12 observed that in the devices with weaker 

disorder the metallic behavior was more pronounced.  To our best knowledge, this 

was the first observation of the apparent 2D metal-to-insulator transition.   

In 1994 the apparent 2D MIT in Si MOSFETs was rediscovered by  

Kravchenko et al.13, who conducted a more detailed study of the temperature 

dependence of the resistivity of high-mobility (up to 27.1 m Vs) Si MOSFETs at zero 

magnetic field.  The authors of Ref. 13 have reported the apparent 2D MIT at the 

critical carrier density 11 2(0.85-0.96) 10 cm .−×   
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Figure 3.11. The resistivity vs. temperature for disordered Si MOSFET samples with 
the peak mobilities (a) 21.5 m Vs=μ  and  (b) 

22.9 m Vs.=μ  The densities (in units 

of 11 210 cm− ) spam (from top to bottom) (a) 3.85 to 37.0, (b) from 0.6936 to 1.326. 
(Adopted from Ref. 87.) 

The main result of Ref. 13 is presented on Figure 3.10(a), which shows the 

temperature dependences of the resistivity at 0B =  of a high-mobility Si MOSFET 

2
peak( 3.0 m Vs)=μ  for different electron densities varying from 11 20.7 10 cm−×   to 

11 21.4 10 cm .−×  At low electron densities 11 2
c 0.96 10 cm−< = ×n n  the resistivity 

monotonically increases as 0T → ; at cn n>  the temperature behavior of ρ  becomes  

nonmonotonic: the resistivity increases at T 2 K≥ , whereas below 2 K it  decreases 

dramatically (by a factor of 5-7)  with cooling.  The presence of the critical density 

Cn  is clearly seen on Figure 3.10(b), which shows the resistivity as a function of 

electron density for several temperatures. Here all )nρ(  curves intersect each other 

within a narrow density range around 11 20.96 10Cn cm−= × . Here all )nρ(  curves 
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Figure 3.12. The resistivity versus in-plane magnetic field at 0.29 K=T  fro a 
Si MOSFET sample. Different symbols correspond to gate voltages from 1.55 to 
2.6 V,  or, equivalently electron density from 1.01  to 11 22.17 10 cm−× . (adopted from 
Ref. 15.) 

intersect each other within a narrow density range around 11 2
cn 0.96 10 cm ,−≈ ×  

which separates two regimes: insulating ( 0)<dρ dT  at cn n<  and metallic 

( 0)d dTρ >  at cn n> . 

Pronounced metallicity is peculiar to the samples with high mobility.  Figure 3.11 

shows for comparison the temperature dependences of the resistivity of low- and 

high-mobility samples.88   

Later, the “metallic’ behavior has been observed in practically all high-mobility 

systems in the low density regime: in conventional Si MOSFETs with low-mobilities 

2(0.5-0.8 m Vs) 20, p-type21-24 and n-type25,26 GaAs heterostructures, Si/SiGe27-29, 

AlAs quantum wells30, inverted Si-on-insulator structures31.  
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Magnetoresistance of high-mobility 2D systems in a parallel magnetic field 

An applied in-plane magnetic field causes dramatic increase of the resistivity of a 

high-μ 2D system.14-18  This magnetoresistance is especially pronounced in high-

mobility Si SMOFETs: ρ  varies by almost three orders of magnitude14,15. An 

example of MR data15 is shown in Figure 3.12.  In relatively weak fields, the 

resistivity increases abruptly depending on the electron density (by a factor of 4 for 

11 2n 2.6 10 cm ,−≈ ×  and more than an order of magnitude for 11 2n 1.55 10 cm ).−= ×  

The resistivity saturates at high fields ranging from 2 T  (for the lowest measured 

density) to 9 T  (for the highest density), and remains almost constant up to highest 

field of 12 Tesla.15 This giant positive magnetoresistance in Si MOSFETs varies 

continuously across the MIT:89 it is qualitatively the same for carries densities above 

and below the zero-field critical density cn . 

Suppression of the metallic state by a magnetic field  

It was found that a magnetic field applied parallel to the plane of 2DEG in 

Si MOSFET destroys the metallic state: a high magnetic field drives a 2D system 

from a zero-field metallic behavior ( 0)xxd dTρ >  into a high-field insulating 

behavior ( / 0xxd dTρ < ).14-19 The suppression of the metallic state is shown in Figure 

1.5(b), taken from Okamoto et al.16 Similar to the data presented on Figure 3.10(b) an 

apparent MIT at 0B =  is clearly observed at 11 2
cn 1.0 10 cm ;−≈ ×  the metallic 

behavior of the resistivity ( 0)xxd dTρ >  corresponds to the density range cn n> . An 

in-plane magnetic field of 9 T  destroys the metallic state: in the 
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Figure 3.13. The resistivity versus temperature for five different magnetic fields 
applied parallel to the plane of a low-disordered Si MOSFET. The electron density is 

10 28.83 10 cm .−×  The critical density of the MIT for this sample is 
10 2

cn 8.5 10 cm .−≈ ×  (Adopted from Ref. 14.) 

whole studied density range the resistivity shows only the insulating behavior 

( / 0)xxd dTρ < .  

Another example of the suppression of the metallic behavior of a 2D system by a 

magnetic field is shown in Figure 3.13, where the resistivity is plotted as a function of 

temperature for different in-plane magnetic fields for a high-mobility Si MOSFET at 

an electron density slightly higher than the critical density for this sample.14  For a 

zero-field (the lowest curve) the resistivity is slightly increasing with cooling down to 

2 K≈T , then it decreases sharply as T continues to decrease. Applied in-plane 

magnetic field suppresses the metallic behavior completely:  at 1.4 T=B  (the upper 

curve) the insulating behavior is observed over the entire temperature range.  It was 
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suggested in Ref. 14 that the metallic state observed at densities cn n>  is unstable 

against an arbitrary weak magnetic field in the limit of 0T → . 

Full spin polarization 

Okamoto et al.16 and Vitkalov et al.90,91 concluded from the analysis of 

Shubnikov-de Haas oscillations in Si MOSFETs at relatively high densities that the 

onset of the saturation of MR corresponds to the field of complete spin polarization 

.polB :  

. 2pol Zg B Eμ∗ = ,     (3.6) 

where g∗ , μ , ZE  are effective g-factor, the Bohr magneton and the Fermi energy, 

respectively.  Pudalov et al.92 shown that, although the saturation field .satB  is close to 

the field of full spin polarization . .( )sat polB B≈ , .satB  is actually a sample-dependent 

parameter: for different samples the saturation might occur at fields that lower, as well 

higher than polB . In low-mobility Si MOSFETs, in which a metallic regime was not 

observed, a strong response to a parallel magnetic field is not observed either 93. 

Similar results have been reported in x 1 xp GaAs / Al Ga −−  heterostructures94 

confirming that strong MR is a characteristic of dilute conducting 2D systems93. 
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4. Experimental technique  

4.1. Experimental set-up 

The study of quantum effects in the conductivity of Si MOSFETs requires 

ultralow temperatures, strong magnetic fields, oriented both perpendicular and 

parallel to the plane of a 2D system. To get a reliable experimental data, the sample, 

and all parts of the electronic set-up have to be properly isolated from external 

electrical noise.  

To cool the sample down to 30 mK , we have uses S.H.E. He3/He4 dilution 

refrigerator (model DRS-523), equipped with a gas handling system. The temperature 

can be controlled within the range 30 mK 1.2 K.−  The sample and the ruthenium 

oxide (RO) thermometer are placed in a mixing chamber of the refrigerator. They are 

wired to the electronic set-up through two stages of low-pass filters. The electronic 

set-up consists of (i) LR-700 resistance bridge for measuring the sample’s resistancej 

at 13 Hz AC;k (ii) AVS-47 resistance bridge for measuring the thermometer’s 

resistancej; (iii) Keithley 2400 voltage source for applying a DC voltage to the gate 

contact of the sample; (iv) American Magnetics AMI-420 and Criomagnetics CS-4 

bipolar superconducting magnet power supplies for running a DC currentl through 

                                                 
j The resistance is measured using the standard four-terminal AC technique. 
k Measurements of sample’s resistance on our experimental set-up can be also done with a SR-830 

lock-in amplifier in combination with differential preamplifier. This allows us to record not only the 

amplitude, but also the phase shift of the measured voltage across the sample. Besides that, the 

frequency of AC measurement current can be varied. 
l American Magnetics AMI-420 and Criomagnetics CS-4 are able to provide a DC current of  

+/-100A. 
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two superconducting solenoids, which provide in-plane and normal magnetic fields. 

All the electronic devices are connected to a computer through GPIB cables.  

Our experimental set-up allows us to measure (i) the temperature dependence of 

the resistivity at fixed magnetic fields [ ( ;{ , } const)],⊥ =ρ T B B ,  

(ii) a magnetoresistance (in-plane or perpendicular) at fixed temperature 

[ ( ;{ , } const)⊥ =ρ B T B  or [ ( ;{ , } const)],⊥ =ρ B T B  (iii)  the dependence of the 

resistivity on the gate voltage at fixed temperature and magnetic field 

g[ ( ;{ , } const)].⊥ =ρ V T,B B  We implemented full automatization of each experiment 

through a set of LabVIEW programs to control all measurements remotely from a 

computer or even through the Internet.  

Some details of the experimental set-up are given below. 

4.1.1. Ruthenium oxide thermometer 

The temperature of He3/He4 mixture is determined by a ruthenium oxide (RuO2) 

temperature sensor RO2254. This thick film resistor has a nominal resistance of 

1000Ω  at room temperature and about 230 kΩ  at 30 mK.  The sensor can reliably 

measure temperature from 40 K down to 10 mK.  Ruthenium oxide sensors have 

relatively small magnetoresistance: an error of determining millikelvin temperature 

due to a magnetoresistance effect is less than 3-4% at a magnetic field of 5 T.95-97  We 

have calibrated RO2254 using another calibrated RuO2 thermometer (RO600) over a 

temperature range 50 mK 0.8 K−  (Figure 4.1). 
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Figure 4.1. Calibration curve of RuO2 thermometer RO2254. 

4.1.2. Cross-magnetic field technique 

In order to study orbital and spin effects in 2D electron systems we have used the 

cross-magnetic field technique98, which allowed us to independently control the in-

plane component of the magnetic field, B , which is coupled to the electron spins, and 

the perpendicular component B⊥ , which affects both spins and orbital motion of 

electrons. This technique compares favorably with a more standard method that 

requires tilting the sample with respect to a fixed direction of the magnetic field (the 

latter method requires very accurate control of the sample position, which is 

challenging at ultra-low temperatures). The cross-field set-up consists of two 

superconducting solenoids made from Ni-Ti superconducting wire (Figure 4.2 and the 

inset to Figure 4.4). The smallest solenoid has a split-coil form.  The axes of these 

solenoids are oriented at the right angle with respect to each other.  
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Figure 4.2. Cross-magnetic field set-up. (Adopted from Ref. 98.) 

The large solenoid produces an in-plane magnetic field up to 8T, whereas a small  

split-coil solenoid generates a normal field up to 1.4 T. Two components B  and B⊥   

can be varied independently from each other.  The solenoids were calibrated at 300K 

and 4.2 K using calibrated Hall-effect probes. The magnet constants for large and 

small solenoids are 0.138 T A  and 0.0270 T A,  respectively.  The accessible range 

of magnetic fields is shown in Figure 4.3.  The normalized magnetic field profiles 

inside solenoids are shown in Figure 4.4. In can be seen that in the center region of 

two solenoids the in-plane (x-direction) and normal (z-direction) fields vary by less 

than 10% within the volume of 310 10 20 mm ,× ×  in the center of the sample holder.  

These variations are much smaller across our Si MOSFET samples with in-plane 

dimensions 0.256 2.5×  and 20.8 5.0 mm .×   The described technique facilitates the 

analysis of the magnetic field dependence of the resistivity. 
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Figure 4.3. Available range of magnetic fields B  and B⊥ . 

 

 

Figure 4.4. Magnetic field profiles for the split coil and the large solenoid. Thin solid 
lines correspond to the extension of the large solenoid in x-direction. Dash and dotted 
lines correspond to the dimensions of the sample space inside the split coil in x/y- and 
z-direction, respectively. The inset shows the schematic picture of two solenoids and a 
tailpiece of the mixing chamber (m.c.).  
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4.1.3. Isolation of the experimental set-up from external electromagnetic noise 

(grounding and filtering) 

External electromagnetic noise can affect detrimentally the low-temperature 

measurements:  it not only decrease the signal-to-noise ratio, but also might overheat 

the 2D electrons with respect to the He3/He4 mixture.  

There are numerous sources of noise in our laboratory environment, such as high-

power machinery, as electrical 3He and 4He pumps and high-frequency radiation.  

Improper grounding of the experimental set-up can lead to parasitic currents in ground 

loops, and, thus also presents a source of noise. 

To suppress the noise in our experimental set-up we (i) eliminated all possible 

ground loops by proper grounding of all electronic devices and the dilution 

refrigerator itself and made sure that there is only one common ground; 

(ii) galvanically isolated the pumps from the experimental set-up; (iii) isolated two 

power lines (for the electronic devices and the power supplies of the superconducting 

solenoids) from the main power line in the laboratory through uninterrupted power 

supply (UPS) and through two isolation transformers; (iv) installed an additional 

small isolation transformer for the LR-700 resistance bridge; (v) optically isolated the 

GPIB cable from a computer through GPIB-140 fiber optics extender; (vi) isolated a 

computer from the power line by installing a small UPS. 

To improve thermal anchoring of all wires at the base temperature, and to reduce 

possible overheating of the sample by noise, we installed three silver-powder heat 

exchangers on Source, Drain and Gate contacts of our Si MOSFET samples. To 

further reduce the noise level in our dilution refrigerator, we added two stages of low-

pass RC filters, at 1K stage, and inside the mixing chamber.  The RC filters were  
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Figure 4.5. Filtering of wires connected to the Si MOSFET sample. 

made from the metal film chip resistors (10 kΩ each) and NPO type capacitors (4 nF 

each) with a low temperature coefficient of capacitance. The cut-off frequency of RC 

filter was ~4 kHz. Both filter stages were placed in shielded brass boxes to reduced a 

microwave noise. To suppress the noise from the magnet power supplies, we installed 

DC feed-through filters at the current leads of the superconducting solenoids. 

Proper grounding of the experimental set-up, as well as careful sample’s wiring 

significantly improved the signal-to-noise ratio and eliminated the overheating of 

2DEG.m Only after these modifications of our experimental set-up the lowest electron 

temperature of 30 mK  was achieved. Previously in our set-up 2DEG had not been 

cooled down below ~150 mK. 

                                                 
m See more on electron overheating in Sec. 4.2.2. 
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4.1.4. Samples studied in this work 

The high-mobility Si MOSFET samples were provided by V. M. Pudalov 

(Lebedev Physical Institute, Moscow, Russia). The carrier density can be varied 

continuously by the top gate. The samples, studied in this dissertation are Si6-14  

2( 2 m Vs≈μ at 0.1 K), Si1-46 2( 2 m Vs≈μ  at 0.1 K), Si39 2( 0.45 m Vs≈μ at 

0.3 K), Si40 2( 0.18 m Vs≈μ  at 4.2 K).<T  Typical parameters of 2DEG are listed 

in Table 1.  

Our samples show the apparent 2D MIT at sample depending critical density ranging 

from 11 20.9 10 cm−×  (for high-mobility samples) to 11 23.5 10 cm−×  (for low mobility 

samples). For all samples, the oxide thickness is 190 20 nm±  and the aluminum gate 

thickness is approximately 0.1 m.μ  The samples were fabricated on (001) Si wafer 

and had a source-drain orientation along [100]. All samples have a Hall bar geometry 

with in-plane dimensions 20.256 2.5 mm×  (for the sample Si6-14) and 20.8 5.0 mm×  

(for the other samples) (Figure 4.6).  Besides the source and the drain contacts, each 

sample has four potential contacts p1, p3, p4 and p5
n (Figure 4.6). Contacts p1, p3, p5 

were used for measurements of the longitudinal resistance /xx xx SDR V I= , whereas 

contacts p3 and p4 were used for measurements the Hall resistance /xy xy SDR V I= . The 

homogeneity of the 2D system can be tested by comparing the longitudinal resistivity 

measured between contacts (p1p3), (p3p5) and (p1p5).  

Zero magnetic field measurements are complicated below 1.2 K because of 

superconductivity in  aluminum  current/voltage contacts  pads and  gate  electrode. 

                                                 
n To provide a good Ohmic contact to the inversion layer the regions under all terminals  

(S, D, p1, p3, p4 and p5) were heavy n+-doped. 
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Band electron mass down bm  0.19 em  
Dielectric constant at Si- ε  07.7ε  

Effective Bohr radius 2 2
B ba m eε= 2.1 nm

Density at the MIT cn  11 21.22 10 cm−×  

Fermi wavevector 
Fk nπ=  6 1(0.8 - 2.2) 10 cm−×

Fermi wavelength 2F Fkλ π= /   (84-30) nm 

Fermi velocity /F Fk mυ =  7(0.4-1.2) 10 cm / s×  

Fermi energy 2( ) / 2F FE k m=  
1.0-8.8 meV 

12-100 K 

Drude resistivity Dρ  4.4-0.30 kΩ  

Transport time 2/ Dm n eτ ρ=   (0.9-1.6) ps 

Diffusion constant 2 / 2FD υ τ=  2(8.3 120) cm / s−  

Mean free path Fl υ τ=   (39-200) nm 

Phase coherence time  ϕτ 56-800 ps

Phase coherence length 1/2( )L Dϕ ϕτ=  
1/2(210 3100) nm( / K)−− T

Thermal length 1/2( / )T BL D k T=  1/2(80 310) nm( / K)−− T
Magnetic length 1/2( / 2 )BL eB=  1/218 nm( / K)−T  

 Fk l  3-43 

Table 1. Electron properties of 2DEG in high-mobility Si MOSFET  
(sample Si6-14, the electron density range 11 2(1.8-15) 10 cm−× ). 

To quench the superconductivity in the Al contacts, the in-plane magnetic field 

B 0.02 T  was applied for any “zero magnetic field” measurements below 1.2 K. 

4.2. Sample characterization 

As we emphasized in Section 2.2.5, several parameters are to be determined for 

the detailed comparison of the low-T behavior of the conductivity of Si MOSFETs 

with the ZNA theory35. 
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Figure 4.6. Si MOSFET sample: (a) schematic diagram; (b) Hall bar geometry. 

A very useful tool in characterizing 2D systems is Shubnikov-de Haas 

oscillationso - SdH oscillation of longitudinal resistivity in a magnetic field, normal to 

the plane of a 2D system. SdH oscillations also allow us to control the temperature of 

electrons and, thus, avoid their overheating by measuring current (or noise).  

4.2.1. Density of 2D electrons 

Electron density from the analysis of SdH oscillations 

The density of 2DEG confined at the interface is controlled by a gate voltage gV  

and is given by Eq. (3.3). The oxide capacitance oxC  and thus ox oxA edε= ,p is 

determined mostly by the oxide thickness oxd  and is fixed; whereas threshold voltage 

                                                 
o An overview of the phenomenon of Shubnikov-de Haas oscillations is given in Appendix A. 
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thV  can change (within 0.3 V) for different cooldowns  (depending on how fast the 

sample was cooled from room temperature to 4K, at what applied gate voltage this 

cooling was done, etc.) and remains fixed as long as the sample is maintained at low 

temperatures (up to a few months). Thus, for every experiment it is crucial to 

determine these parameters: A and thV .  The procedure of obtaining A and thV  is 

based on the analysis SdH oscillations using the Lifshitz-Kosevich (LK) formula  

[Eq. (A.6)]99. According to Eqs. (3.3) and (A.8), for a fixed density 0 0( )n V   and 

varied B⊥  the longitudinal resistivity xxρ  oscillates with the period  

1

0 0

4( )B
n

−
⊥Δ =

Φ
,     (4.1) 

and, thus, the parameter 0n  can be found as 

0 1
0

4
( )

n
B −
⊥

=
Φ Δ

.     (4.2) 

The result of obtaining electron density 0n  at some specific gate voltage 0V  is shown 

in Figure 4.7(a).  The solid line depicts the fit of using the LK formula [Eq. (A.8)]. 

The insert represents the 1( )B∗ −
⊥ -values, at which xxρ  has local minima versus local 

minima order numbers (# min). The slope of linear fit to 1(# min)∗−
⊥B  dependence 

gives the value of the period 1)B −
⊥Δ( , from which one can calculate 0n  using  

Eq. (4.2). Both fits, shown in Figure 4.7(a) and on the insert to Figure 4.7(a), give the 

same value for the density: 11 2
0 12.25 10 cm .−= ×n  

                                                                                                                                            
p In our Si MOSFET samples this geometric capacitance is of the order of ~700 pF. 
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The expression for the parameter A can be obtained as follows. From the  

Eq. (A.8) one can obtain the period of SdH oscillations gVΔ  for a fixed B⊥  and a 

varied density: 

0

4
g

BV
A

⊥Δ =
Φ

,    (4.3) 

and, thus, 

0

4 1

g

BA
V

⊥=
Φ Δ

.    (4.4) 

The insert on Figure 4.7(b) shows the dependence of the gate voltage values 

corresponding to the minima of the resistivity g { : local min}∗ = =gV V ρ  on the order 

numbers of such minima. The slope of g (# min)∗V gives the value of gVΔ .  

Having determined the electron density 0n  for some specific gate voltage 0V , the 

value of the threshold voltage can be obtained: 

0
0th

nV V
A

= − .    (4.5) 

Electron density from Hall measurements 

Electron density can also be determined from Hall measurements in weak 

magnetic fields. When a magnetic field is applied normally to a 2D sample a flow of 

currents generates a Hall voltage in the direction perpendicular to the current flow. 

When a magnetic field is weak, the Hall voltage changes linearly with changing B. 

The flow of current between the source S and the drain D in the presence of a weak, 

oriented in z-direction, magnetic field (Figure 3.1), generates a Hall voltage xyV  

between the contacts p3 and p4: 

1
xy SDV I B

ne ⊥=      (4.6) 
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Figure 4.7. (a) The SdH oscillations for sample Si6-14 at 30 mK=T  and 0 10 V=V   
(circles) and the fit using the LK formula (A.6). The insert shows the dependence 

1 1{ : local min}∗− −
⊥ ⊥= =B B ρ  as a function of local minimum order number (circles), 

and a linear fit (line). (b) The dependence of xxρ  vs. gV  for sample Si6-14 at 
T 30 mK,=  1.08 T.⊥ =B  The insert shows the dependence of 

g { : local min}∗ = =gV V ρ  as a function of local minimum order number (circles) and a 
linear fit (line). 

According to Eq. (4.6), the Hall resistance ( ) /xy xy SDB V Iρ ⊥ ≡  in a weak magnetic 

field is linear in B⊥ : 

xy
B
ne

ρ ⊥= .      (4.7) 

By measuring the slope /xyd dBρ ⊥  one can determine an electron density.  
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The density of 2DEG in our Si MOSFET samples was found from the period of 

SdH oscillations and the dependence of Hall resistance on a magnetic field. Both 

results were consistent with each other within 2% in the studied range of densities 

11 2(2-30) 10 cm ;−= ×n  this uncertainty of n is insignificant for the analysis of ( , )T Bσ  

dependences. 

4.2.2. Temperature of 2D electrons 

As was mentioned in Section 4.1.3, 2D electrons can be easily overheated by 

external noise. Thus, one has to make sure that the reading of the RO thermometer 

coincide with the electron temperature and that the 2DEG is in a good thermocontact 

with the He3/He4 mixture. 

 As an “internal” thermometer that measure the electron temperature, we have used 

SdH oscillations. For a fixed electron density, an amplitude of oscillations A 

monotonically decreases with temperature (Figure 4.8). Thus, to find out how cold the 

electrons are, one can measure the temperature dependence of the amplitude of SdH 

oscillations at some fixed density, and then analyze the result using the LK theory. 

max min
0( ) ( , ) ( , )XX XXT B T B Tδσ δσ σ⊥ ⊥⎡ ⎤Α = −⎣ ⎦     (4.8) 

In Eq. (4.8) minB⊥  and maxB⊥  determine the positions of the minimum and the maximum 

of a single oscillation. Each term in given by Eq. (A.8). Figure 4.9 shows that the 

temperature dependences of an amplitude of SdH oscillation for two different samples 

(circles) follow the theoretical dependences (solid curves) down to 30mK. Prior to the 

modification to the experimental set-up that evolved through filtering of all wires, the 

lowest achievable electron temperature  was ~ 150 mK (an experimental  curve A(T)  
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Figure 4.8. SdH oscillations for sample Si6-14 11 2( 6.1 10 cm )−= ×n  at different 
temperatures ranging from 800 mK (red curve) down to 30 mK (blue curve). 

 

 

Figure 4.9. The temperature dependence of the amplitude of SdH oscillations for 
(a) Si6-14 11 2( 5.5 10 cm ),−= ×n  and (b) Si1-46 11 26.1 10 cm ).−= ×(n  Points show the 
experimental data, solid curves - the fits using the Lifshitz-Kosevich theory99. 
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saturated below 150 mK ). Thus, Figure 4.9 indicates that filtering and proper 

grounding indeed significantly reduces heating of 2D electrons in our samples. 

Since other than external noise high measuring current SDI  can also overheat 

2DEG100, in resistivity measurements we always choose  (based on the temperature 

dependence of the amplitude of SdH oscillations) sufficiently small SDI  not to 

overheat 2DEG: of the order 1-5 nA  depending on electron density. 

4.2.3. Valley splitting in (001) Si MOSFET 

As it was mentioned in Sec. 3.1.2, only two valleys in the electron spectrum are 

relevant to the transport properties of (001) Si MOSFET at millikelvin temperatures. 

Those two valleys are in the “ideal” case degenerate: however, a non-zero energy 

splitting VΔ  between the valleys can be caused, for instance, by a slight 

misorientation of the plane of a 2D layer with respect to the (001) crystallographic 

plane.6   

Since a non-zero valley splitting results in the appearance of the beatings in SdH 

oscillation pattern101, the analysis of these beatings using the LK formula [Eq. (A.8)] 

allows us to estimate the energy splitting VΔ .40  Figure 4.10 shows the SdH patterns 

for samples Si6-14 and Si1-46 (the electron densities are 11 26.1 10 cm−×  and 

12 210 10 cm ,−×  respectively).  The amplitude of SdH oscillations normalized by the 

first harmonic A1 is expected to be field-independent if VΔ =0.  However, as 

Figure 4.10 shows, a noticeable reduction of the SdH amplitude is observed for both 

samples at small fields, which can be attributed to a finite valley splitting.  Although 

the node of SdH oscillations (expected at B 0.15 T)≈  cannot be resolved  at mobility 
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Figure 4.10. Shubnikov-de Haas oscillations normalized by the amplitude of the first 
harmonic A1: (a) sample Si6-14, 11 26.1 10 cm ,−= ×n 36 mK;=T  (b) sample Si1-46,  

12 21 10 cm ,−= ×n 200 mK.=T  Dots represent the experimental data, solid curves – 
the theoretical dependences  (A.8) modified for a finite VΔ  and calculated for 

V 0.4 KΔ =  and 0.7 K for samples Si6-14 and Si1-46, respectively.  

22 m Vs,≈μ  VΔ  can be estimated from fitting of the B-dependence of the SdH 

amplitude with  the equation (A.8), modified for the case of a finite VΔ :  ΔV ≅ 0.4K 

for sample Si6-14 and 0.7K for Si1-46 (Figure 4.10). The estimate provides the upper 

limit for  VΔ  at 0B = : in non-zero B⊥  fields, VΔ  may be enhanced by inter-level 

interaction effects6,102. 
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5. Renormalization of electron parameters due to 
electron-electron interactions 

To understand the nature of the metallic behavior and the MIT in 2D, it is very 

important to characterize quantitatively electron-electron interactions, which are 

believed to be the main driving force in these phenomena35,38.  Within the Fermi-

liquid theory, the interaction-driven renormalization of electron parameters (such as 

spin susceptibility χ ∗ , effective mass m∗  and Landé factor g∗),53 are described by 

the Fermi-liquid parameters 

0 11, 2 1
∗

∗

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠

sb

b

g mF F
mg

σ .    (5.1) 

0Fσ  describes the interaction in the in triplet channel, 1
sF – in the singlet channel.  

(Here bg  and bm  are  the band values of  g-factor and mass, respectively.) Below we 

present a brief review of the experimental data on renormalization of the effective 

quasiparticle parameters in Si MOSFETs.  These data were obtained by different 

experimental technique and on different samples. 

5.1. Spin susceptibility 

The spin susceptibility can be expressed in terms of the effective mass and 

effective g-factor: 

1

0

2
1

∗ ∗ ∗ +
= =

+

s

b b b

g m F
g m Fσ

χ
χ

    (5.2) 

where bχ  is the band value of the spin susceptibility. 
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Figure 5.1. Renormalized  spin susceptibility, obtained by different experimental 
groups on different Si MOSFET samples in tiled or crossed magnetic fields (“thick 
solid line” – Fang and Stiles104, ”thick dashed line” -  Okamoto et al.16,  

 - Pudalov et al.41,115,103,  - Shashkin et al.114); in strong in-plane magnetic field  
(★ - Vitkalov et al.106,  - Shashkin et al.105); in magnetization measurements  
(  - Shashkin et al.).  Red bars depict the upper and lower limits on χ∗values, 
determined in Ref. 103. Dashed thin curve shows a polynomial fit of the data 
measured by Pudalov et al.41,115,103. 

Renormalized spin susceptibility in Si MOSFETs has been measured in different 

experiments: (i) the analysis of the beating pattern of SdH oscillations in tilted or 

crossed weak magnetic fields,16,104,41 (ii) the magnetoresistance (MR) and 

magnetoconductivity (MC) analysis in strong in-plane magnetic field,92,105-107  

(iii) measuring of a thermodynamic magnetization108-110.  The synopsis of the data is 

shown in Figure 5.1.  

 Taking into account that the data were obtained on different samples (fabricated 

by different manufactures16,41,104,105,107) with the values of peak mobility ranging 
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between 21.5 m Vs  and 23.4 m Vs v, there is a remarkable consistency among those 

data. This indicates that the effect of disorder on renormalization of χ ∗  in the metallic 

regime is negligible, or at least weak.115  Below we give an overview of the 

experimental results on renormalization of χ∗ . 

5.1.1. χ* from the analysis of SdH oscillations 

Analysis of oscillation of the longitudinal resistivity in tilted16,104,114, or crossed 

(where perpendicular and in-plane field components can be varied independently)41 

weak magnetic fields provides information on renormalization of the spin 

susceptibility.  

Fang and Stile104 measured the spin susceptibility by analyzing the SdH 

oscillations in a tilted magnetic field. With varying a total magnetic field totB  and the 

tilt angle θ  tot( cos )⊥ =B B θ  the authors were able to resolve the spin splitting by 

observing the beating in the SdH pattern and the phase reversal of the fundamental 

(first harmonic) oscillations related to Landau quantization. The node of beatings and 

the phase reversal were noticed at some critical angle 1θ . Since the value of 1θ  

corresponds to the situation, when the spacing between two adjacent Landau levels is 

twice that of the spin splitting 

12 cosc Z eE g m mω θ∗ ∗= ⇒ = ,    (5.3) 

the 1( )nθ  dependence gave the authors the renormalized values of 1( ) cos ( )n nχ θ∗ ∝ . 

Okamoto et al.16 studied the dependence of ( )Srχ∗  over an extended range of Sr  

also using measurements of SdH oscillations in a tilted magnetic field. The authors16  
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Figure 5.2. Examples of fitting SdH oscillations normalized by the first harmonic 

1( )A B⊥  using the LK formula [Eq. (A.6)]: (a) 11 210.6 10 cm ,−= ×n  0.35 K,=T  

4.5 T;=B  (b) 11 29.75 10 cm ,−= ×n  1.5 T;=B  (c) 11 22.02 10 cm ,−= ×n  0.2 K,=T  
0.34 T.=B The experimental data for samples Si6-14/10 are shown by the solid 

curves, the fit (with parameters shown) - by dashed curves. (Adopted from Ref. 41.)  

extracted g m∗ ∗  values from the measuring of a critical tilt angle, at which the energy 

gap even tot/ BE eB m g Bμ∗ ∗
⊥Δ = − , corresponding to even values of / 2v   

( 0 /v n B⊥= Φ  - filling factor), was equal to the energy gap odd totBE g Bμ∗Δ = , 

corresponding to odd values of / 2v : 

even odd tot/eE E g m m B B∗ ∗
⊥Δ = Δ ⇒ = .   (5.4) 
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Pudalov et al.41 have measured the spin susceptibility for a wide range of Sr  by 

analyzing a beating pattern of SdH oscillations in weak perpendicular and in-plane 

magnetic fields using a cross-magnetic field technique98.   According to LK formula 

[Eq. (A.8)], the interference pattern (including the position of nodes) of SdH 

oscillations is determined by a term 

tot( ) cos cos
2 2

Z
s Z

F e

n E g m BZ E s s
eB E m B
ππ π

∗ ∗

⊥ ⊥

⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞
= = ⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
,   (5.5) 

which is a function of the product g m∗ ∗ , and, hence, χ∗ . A systematic study of this 

interference patters allowed the authors of Ref. 41 to determine g m∗ ∗  values as a 

function of electron density with a high accuracy (~2-5%).  An example of a fitting 

procedure used in Ref. 41 is shown in Figure 5.2. 

5.1.2. χ* from measurement of the field of complete spin polarization 

Another technique used to obtain χ∗  is based on the analysis of the field of 

complete spin polarization.16,90-92,105-107 All electrons become fully spin polarized 

when 

pol 2Z B FE g B Eμ∗≡ =     (5.6) 

(here ZE  and FE  are the Zeeman and Fermi energies, respectively). Taking into 

account that the Fermi energy in 2D is equal to 

2

F
V

nE
g m
π

∗= ,     (5.7) 

(the valley degeneracy 2Vg = on a (001) surface of Si), one can relate the spin 

susceptibility to the field of full spin polarization as 
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2

pol

2

V B

ng m
B g

π
μ

∗ ∗ = .    (5.8) 

Monotonic MR in the in-plane magnetic field exhibits a well-defined saturation at 

satB B>  for the n-type Si MOSFETs.14-18,92,90  Okamoto et al.16 have shown that the 

saturation field satB  corresponds to the field of complete spin polarization: 

sat pol 2 /F BB B E g μ∗≈ = .    (5.9) 

The authors16 observed that the position ( 0/B n⊥ Φ ) of xxρ  minima, 

corresponding to the filling factors 4 and 6 (these minima are produced by spin-up 

electrons), increased linearly with tot polB B  at, tot pol 1B B <  but saturated for 

tot pol 1B B >  where the spin polarization is expected to be complete (see Fig. 6 from 

Ref. 16). Vitkalov et al.90,91 also argued that the saturation of xxρ  corresponds to the 

complete spin polarization.  The authors of Refs. 90,91 drew this conclusion from the 

analysis of SdH oscillations in a tilted magnetic field: they observed an increase by a 

factor of 2 of the frequency of SdH oscillations (versus filling factor v ) for parallel 

fields  greater than the saturation field satB . The abrupt changes in the period was 

attributed to the onset of full polarization of electron spins. 

Another approach to the high-field measurements of χ∗ is based on the scaling of 

in-plane MR105 or MC106,107 data: the normalized magnetoresistivity ( , ) ( ,0)n B nρ ρ  

or magnetoconductivity ( , ) ( ,0)n B nσ σ  can be collapsed onto a single curve if a 

magnetic field is scaled to a density dependent field Bρ  (in case of MR 

measurements) or Bσ  (in case of MC measurements).  The scaling parameters ( Bρ  

and Bσ ) were attributed to the field of complete spin polarization. The authors of 
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Ref. 105 also claimed that their analysis of MR data shows that g-factor  is practically 

density independent and is equal to 2.8g∗ ≈  (this is in odd with our observations, see 

below). 

5.1.3. χ* from the analysis of magnetization 

Thermodynamic magnetization measurements was performed recently by 

Prus et al.108, Shashkin et al.109, and Anissimova et al.110  The method is based on 

modulation the in-plane magnetic field, and measuring the imaginary component of 

AC current between the metal gate and a 2D electron system. This induced current is 

proportional to Bμ∂ / ∂ , where μ  is a chemical potential). Using Maxwell relation 

/ /M n Bμ∂ ∂ = −∂ ∂ , and then integrating /M n∂ ∂  over electron density, one can 

obtain the magnetization ( , )M B n . The spin susceptibility χ  was calculated from the 

slope ( . )M B n versus B at small fields. 

Magnetization, obtained by Prus et al.,108 has shown a large (7.5 fold) 

enhancement of the susceptibility at critical density cn .  This enhancement is in good 

agreement with the one obtained from SdH measurements41 (in the latter case, the 

upper estimate / 2 7bg m m∗ ∗ ≈  at 10 2(7.7 9) 10 cm-n −= ×  was obtained from the phase 

of SdH oscillations115): spin susceptibility χ ∗  remains finite at cn .   

5.2. Effective mass 

In many experiments the data on renormalization of the effective mass m∗  in 2D 

have been obtained from the temperature dependence of SdH oscillations. 

Renormalization of the effective mass in Si MOSFETs, obtained in different 

experiments,111-115,41 is shown in Figure 5.3.  
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Figure 5.3. Renormalization of effective mass in Si MOSFET, obtained in different 
experiments. D const :=T -Pudalov et al.41, -Smith and Stiles111,  

□-Pan et al.113, -Shashkin et al.114; [1 ( ) ]D DT Tδσ σ∗ ≈ − : -Pudalov et al.41; 

[1 ( ) 2 ]D DT Tδσ σ∗ ≈ − : ★-Ref. 40. 

Whereas observation  of the beating of SdH oscillations in crossed magnetic fields 

offers a straightforward (model-independent) method of finding g m∗ ∗ 41,98, an 

estimate of m∗  is based on model-dependent analysis of the damping factor for the 

first harmonic of SdH oscillations, 1A (T, B const)⊥ =  given by Eq. (A.8).  According 

to Lifshitz-Kosevich (LK) theory99, the damping factor 1A (T, B const)⊥ =   in the 

limit of cT ω  can be expressed as 

12 ln ( , ) ( )
2

LK
D

e A T B B m T T
π

∗
⊥ ⊥⎡ ⎤− ≈ +⎣ ⎦ .   (5.10) 
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Conventional procedure of calculating the effective mass is based on the assumption 

that the Dingle temperature DT  that describes broadening of the Landau levels due to 

collisions  [Eq. (A.5)] is T- independent111-114 

( )DT f T≠ .    (5.11) 

Open symbols on Figure 5.3 correspond to this scenario. However the observed 

linearity of the dependence 1ln A T∝ 41 does not prove the applicability of the LK 

theory, which disregards the interaction effects.  The assumption (5.11) becomes 

dubious at high Sr , where EEI is strong, and the conductivity varies significantly with 

temperature41 owing to the interaction corrections35.  

 To take into account the interaction-induced temperature dependence of elastic 

scattering, Pudalov et al.41 suggested that Dingle temperature should follow the 

temperature dependence of the conductivity 

( )( ) 1 xx
D D

D

TT T T δσ
σ

∗ ⎡ ⎤
≈ −⎢ ⎥

⎣ ⎦
.   (5.12) 

The conjecture (5.12) was supported by the theoretical work of Martin et al.116 

according to which the damping of the magneto-oscillation is induced by the interplay 

of interaction and disorder. 

Although the authors of Ref. 116 made an important step in understanding the 

effect of interaction and disorder on magneto-oscillations in 2DEG, their work is 

incomplete, as was pointed out in a more recent work of Adamov et al.117  In 

particular, the authors of Ref. 117 have shown that the temperature dependence of 

damping of SdH oscillations stems from the temperature dependences of both the 

effective mass and the quantum scattering time ; whereas Martin et al.116 argued that 
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the nonlinear T-dependence of the damping factor may be attributed either to a T-

dependent renormalization of m∗  or to a T-dependent DT . 

Recently, we reanalyzed the SdH data40 previously measured by Pudalov et al.41 

with the theory of Adamov et al.117. The result of this analysis is presented below. 

According to calculations of Adamov et al.117 the damping factor acquires an 

additional term in both the diffusive and ballistic regimes due to the interference 

between electron-electron and electron-impurity interaction 

[ ]12 ln ( , )
2

1 ( )(1 2 ) 1 ,
2D D

D

e A T B B m

TT T T T T

π
δσπ τ
σ

∗
⊥ ⊥− =

⎛ ⎞
= + − = + −⎜ ⎟

⎝ ⎠
A

  (5.13) 

where  

( ) q
D

q

m mT T T
m m

δτδ δα
τ

∗∗ ∗

∗ ∗ ∗

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠
,   (5.14) 

and 

0
2

0

( ) ln ,

2 ln ,

15 11 ,
1 4

F

q F

q

D

m T E
Tm

ET
T

F
F

σ

σ

δ

δτ
π τ

τ

π σ

∗

∗

∗

∗

⎛ ⎞= − × ⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞= × − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞
= +⎜ ⎟

+⎝ ⎠

A

A

A

   (5.15) 

for a system with two degenerate valleys. 

The equation for ( )m T mδ ∗ ∗  resembles the one-loop renormalization of the 

effective mass (or Z) in the RG theory10,38,64,65. Our numerical simulations show that 

within the relevant interval (0.03 0.8) K= −T  and 6Sr ≤ , the lnT  terms in 

Eqs. (5.15) can be replaced with a T-independent constant.  By combining the LK 



94 

 

 

result within our limited T range, we obtain the following equation in the ballistic 

regime for the short-range scattering ( ~qτ τ ): 

[ ]12 ln ( , )
2

1 ( )(1 2 ) 1 .
2D D

D

e A T B B m

TT T T T T

π
δσπ τ
σ

∗
⊥ ⊥− =

⎛ ⎞
= + − = + −⎜ ⎟

⎝ ⎠
A

  (5.16) 

In this case, the T-dependent correction to the Dingle temperature, ( )D DT T Tδ , is one 

half of the interaction correction to the conductivityq ( )Tδσ σ  (the factor 1 2  

originates from the difference between the interaction corrections to the momentum 

relaxation and quantum scattering timesr). We note that the empirical procedure used 

for of finding m∗  in Ref. 41 was based on the assumption (5.12), which differs from 

Eq. (5.16) by a factor 1 2 . 

Renormalization of m∗
, which follows from the analysis of SdH oscillations data 

measured by Pudalov et al.41 using the theory of Ref. 117, is shown by stars on 

Figure 5.3.  These ( )Sm r∗  can be fitted by a polynomial 

4 4 10 10( ) 0.205 (1 0.035 1.2 10 2 10 )S e S S Sm r m r r r∗ − −= + + × + ×     

The recalculated data lie in between  the m∗ -values obtained from the analysis (of 

the same SdH data41) with the assumptions (5.11) and (5.12), which are shown in 

Figure 5.3 by open and close circles, respectively.   

                                                 
q Interaction correction to the conductivity within the ZNA theory [Eqs. (2.43,2.40,2.41)] has the 

form 0 0( ) 1 15 (1 )D DT T F Fσ σδσ σ τ πσ⎡ ⎤= + +⎣ ⎦ . 

r The quantum correction to the transport scattering rate 1τ −  differs from that for the quantum 

scattering rate 1
qτ
−   by the term (1 cos )φ−   in the integrand, where φ   is the scattering angle. 

According to the ZNA theory35, the interaction corrections to the conductivity are determines by 

backscattering events for which φ π≈ , or (1 cos ) 2φ− ≈ . 
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It is worth mentioning that the scattering of m∗  obtained by different  

groups111-114,41 is caused mainly by different interpretations of practically identical raw 

data. At present, the recipe (5.16) based on the theory [117]  seems to be the best 

approach to the SdH data analysis. As will be shown below, the 0Fσ -values obtained 

from the SdH data using this approach agree with the renormalization of FL parameter 

0Fσ  determined from the temperature dependence of the conductivity ( )Tσ  using the 

interaction theory35  (see Sec. 7.2.5). 

5.3. Renormalization of Landé g-factor and the Fermi-liquid parameter 0Fσ  

Renormalization of the effective g∗-factor can be obtained from independent 

measurements of χ∗  and m∗ :  

/
/

b

b b

g
g m m

χ χ∗ ∗

∗= .     (5.17) 

Given the values of g∗ , one can calculate the Fermi-liquid parameter 0Fσ , using Eq. 

(5.1).  Renormalization of spin susceptibility, effective mass, effective g-factor and 

Fermi-liquid parameter 0F σ  in Si MOSFETs is shown in Figure 5.4.   The values of 

m∗ , g∗  and 0Fσ obtained by Pudalov et al.41 under the assumptions (5.11) and (5.12) 

are  shown in panels (b-d) by open and close circles, respectively.  The χ∗ -values41 

are plotted on panel (a).  The χ∗ values recalculated from the data measured in 

Ref. 41 using the assumption (5.16) are depicted by stars.  On panels (b-d) for 

comparison we also plotted the g∗  and 0Fσ -values obtained in Ref. 114, where only 

the assumption (5.11) was used. 
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Figure 5.4. Renormalization of (a) the spin susceptibility, (b) the effective mass, (c) g-
factor, and (d) the Fermi-liquid parameter 0F σ . Symbols on panels b-d correspond to 
different assumptions as follows:  to assumption (5.11),  - (5.12), 
★ - (5.16). On panels (b-d) - depict the data of Shashkin et al.114  
[assumption (5.11)]. 
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6. Experimental study of intervalley scattering time and 
WL in Si-based 2D structures  

6.1. Introduction 

As was discussed in Sec. 3.1.2, (001) Si MOSFET is a multivalley system.  At low 

temperatures and low electron densities, only two subbands in the electron spectrum 

are occupied. These low-energy valleys are almost equivalent: the valley splitting VΔ  

caused by an asymmetry of the confining potential is typically negligible in 

comparison with the Fermi energy.6  When the intervalley scattering is weak, the 

valley degeneracy strongly affects both electron-electron interaction and weak 

localization effects in the conductivity. In particular, the interaction effects in Si 

MOSFETs are strongly amplified by the valley degeneracy;38 this accounts for the 

anomalous metallic temperature dependence of the resistivity in high-mobility Si 

MOSFETs at intermediate temperatures.13,35 Accordingly, the intervalley scattering 

plays an important role in the low-temperature phenomena in Si MOSFETs: it may 

determine the low-temperature cut-off of the metallic-like transport and could also 

modify the 2D MIT observed in these structures at low electron densities.13,38  

However, prior to our work39, there were no systematic study of the intervalley 

scattering in Si MOSFETs at low T.  

The measurements of WL correction to the conductivity of two-valley systems 

allow one to study intervalley scattering.  The effect of intervalley scattering on WL 

depends on the relationship between the intervalley scattering time, Vτ , and the time 

of dephasing of the electron wave function, ϕτ . For weak intervalley scattering 

( )V ϕτ τ , two valleys contribute independently to the WL correction to the 

conductivity, which is this case is expected to be twice as large that for a system with 
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strong intervalley scattering V ϕτ τ 9,118. In the opposite case ( )V ϕτ τ , the WL 

correction is the same as in a single-valley system because the valleys are completely 

intermixed at the ϕτ  time scale. 

In numerous measurements of the WL MR in Si MOSFETs,74-76,79,119,120 the 

experimental data were fitted using the Hikami-Larkin-Nagaoka (HLN) theory.45
   

Interestingly, the factor-of-two enhancement of the WL correction was never 

observed, indicating that intervalley scattering is rather strong.  In order to extract the 

intervalley scattering time from the WL MR, the measurements should be extended 

towards higher magnetic fields.  However, the HLN theory, which is used for fitting 

the WL MR, was developed within the diffusive approximation (i.e., small magnetic 

fields, see below).  Therefore, for an adequate description of the effect of intervalley 

scattering on WL in Si MOSFETs, a theory applicable over a wider range of magnetic 

fields should be developed.  

Only recently such a theory was developed by Averkiev and Taracenko39 for the 

quantitative analysis of our experiment. 

6.2. Experiment 

The data for intervalley scattering time Vτ  were obtained on three representative 

Si MOSFET samples with high (sample Si6-14) intermediate (Si39) and low (Si40) 

mobilities (see section 4.1.4 for details).  The transport times for these samples within 

the studied range of n were 2, 0.6τ ≈  and 0.2 ps, respectively. 

The WL MR was measured at 0.05 0.6 KT = −  for high-mobility sample Si6-14, 

and at 1.3 4.2 KT = −  for samples Si39 and Si40.  At these temperatures, the phase 

breaking time exceeds the transport time by one to two orders of magnitudes.  The 
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magnetic field aligned perpendicular to the plane of Si MOSFET samples was varied 

from -1 to +1 kG (Si6-14) and from -3 to +3 kG (Si39 and Si40). When sample Si6-14 

was measured at 1 KT < , an additional in-plane field ~ 200 G was applied to quench 

the superconductivity in the current/voltage contact pads and the gate electrode made 

of thin aluminum film. For reliable extraction of the phase relaxation time ϕτ  from 

the WL MR, we have chosen a small field step size: 1 G for Si6-14 and 3 G for Si39 

and Si40.  The examples of ( )Bρ  data for Si6-14, Si29, and Si40 at fixed density and 

various temperatures are shown in Figure 6.1(a-c), respectively. Hereafter throughout 

this chapter we will use magnetoconductance 1 1( ) ( 0)B Bσ ρ ρ− −Δ ≡ − = . 

6.3. Fitting the data with Hikami-Larkin-Nagaoka theory 

It is a common practice74-76,79,119-123 to extract the phase breaking time from the 

WL magnetoconductance using the HLN theory45. The equation (2.21)  can be 

expressed in terms τ  and ϕτ : 

 

2

2

1, ln
2 2HLN

beb
b

ϕ

ϕ ϕ

ττ α τσ ψ
τ π τ τ

⎡ ⎤⎛ ⎞ ⎛ ⎞
Δ = + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

.    ( 6.1) 

Here ψ  is the digamma-function, trb B B=  is the dimensionless magnetic field, 

2
tr 0 2 ,B lπ= Φ  0 ,eπΦ =  and  l is the transport mean free path.s   The prefactor α  

and the dimensionless ratio ϕτ τ   are treated as fitting parameters. Note that with an 

increase of the magnetic field, the crossover from the diffusive regime ( 1b ) to the 

                                                 
s The transport mean free path l  was determined from the formula 2( 2 )D F Ve k l nσ π= × × , 

where 2 / , 2F V Vk n nπ= =   for a two-valley system, Dσ  is the Drude conductivity, which for 

simplicity was taken equal to ( 0)Bσ = , the simplification is justified for 2 / 2eσ π . 
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ballistic regime( ~ 1b ) is expected in the WL correction.  Equation (6.1) with 

prefactor α =1 is the exact result for a single-valley system in the diffusive regime, 

i.e., at ϕτ τ  and for sufficiently small magnetic fields 1b .45
  On the other hand, 

the experimental data are often obtained beyond these limits and, therefore, should be 

described by more general ballistic theories.124,125 

In Ref. 126, the HLN theory was numerically compared with the ballistic theory 

for a single-valley system for various values of ϕτ τ  and magnetic fields b.  It was 

found that both approaches agree with each other within a limited range of fields 

0.15b <  provided that 30ϕτ τ >  and the conductivity is much greater than 

2 22 .e π  Thus, within these limits, Eq. (6.1) can be used for extraction of ϕτ   from 

the WL MR in a single-valley system, and the adjustable parameter α  is 1≈ . For a 

system with two valleys and weak intervalley scattering, the prefactor α  is expected 

to be two times larger, because each valley contributes the term HLNσΔ  with 1α ≈  to 

σΔ . Figure 6.2(a) shows a fit of our typical WL MC curve with Eq. (6.1). The fitting 

performed over the magnetic field range b=0–0.2 gives 133ϕτ τ =  and, contrary to 

the expectation for a two-valley system without intervalley scattering, 1α = .  

Changing the magnetic field range, where the data are fitted, causes only minor 

variations of these parameters [see Figure 6.2(b)].  An attempt to analyze the MC 

curve using Eq. (6.1) with a fixed prefactor 2α =  results in a much worse fit [dashed 

line in Figure 6.2(a)]. Several reasons for the reduction of α  in a single-valley system 

have been considered in Ref. 121, including (i) Maki–Thompson correction, 

(ii) density-of-states correction, (iii) higher order corrections in 1( )Fk l − , where Fk  is  
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Figure 6.1. Examples of magnetoresistance )Bρ(  data for Si6-14, 12 21 10 cmn −= ×  
(a); Si39, 12 23.36 10 cmn −= ×  (b); and Si40, 12 23.5 10 cmn −= ×  (c). The data within 
the hatched regions have been used to extract the ϕτ  value. Upper axes show the 

magnetic field in units of 2
0 / 2trB lπ= Φ , lower axes show the field in Gauss. 

the Fermi wave vector, and (iv) low ϕτ τ   ratio. The corrections (i) and (ii) were 

shown to be small.121  To ensure that the higher order corrections are also small, we 

have studied the WL MC only for large conductances 2 2(~ 100 2 )e π× . When the 

ratio ϕτ τ  decreases, the HLN theory becomes inadequate, and the fitting procedure  
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Figure 6.2. (a) Example of the MC data (points) for sample Si40, T=1.45 K and 
12 23.34 10 cmn −= × . Solid line is calculated using Eq. (6.1) with two fitting 

parameters α =1 and 133ϕτ τ = . The dashed curve is an attempt to fit the same data 
over the same range of b with a fixed prefactor α = 2  and 61ϕτ τ = . 
(b) Dependences of the fitting parameters α (solid squares) and ϕτ τ  (open squares) 
on the magnetic field range 0–b which was used for fitting. 

results in an artificially reduced prefactor. Correspondingly, we performed 

measurements at such low temperatures that the inequality  30ϕτ τ >  was satisfied. 

We conclude, therefore, that the aforementioned reasons cannot account for a low 

value of the prefactor α ≈1 in the studied multi-valley structures. It should be noted 

that α ≈1 in Si MOSFETs was obtained in numerous previous experiments74-76,79,119. 

We show below that the prefactor reduction can be well-described by the theory 

which explicitly takes the intervalley scattering into account.  
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6.4. Fitting the data with the ballistic theory 

6.4.1. Ballistic theory of WL corrections for a two-valley system 

A consistent theory that describes the WL correction over a wide range of 

magnetic fields has been developed by Averkiev and Tarasenko39 in the framework of 

the diagram technique.  The WL QC to the conductivity arise in the first order in the 

parameter 1( )F Fk υ τ − , where the scattering time τ  is controlled by both inter-valley 

( )Vτ  and intra-valley ( )iτ  scattering processes, 

1 / 1 / 1 /V iτ τ τ= +      ( 6.2) 

The WL correction to the conductivity in the magnetic field has the form 

( ) ( )( ) a bBσ σ σΔ = Δ + Δ .      ( 6.3) 

where the terms ( )aσΔ  and ( )bσΔ  correspond to the standard diagrams, which have 

been considered in detail in Refs. 125,127,128.  Below we present the final result of 

calculations of WL QC with the theory of Averkiev and Tarasenko39. (The details of 

the ballistic theory of Averkiev and Tarasenko39 of WL correction for a two-valley 

system is given in Appendix C.)  We neglect both valley and spin-orbit splitting in Si 

MOSFETs.t   Calculations show (see Appendix C) that the corrections  have the form 

2
( ) 2

2
02

a
N N

N

e b C Pσ
π

∞

=

Δ = − ∑ ,    ( 6.4) 

                                                 
t We neglected spin-orbit splitting because no signatures of the antilocalization were observed in 

our Si MOSFETs down to the lowest temperatures. The theory of Averkiev and Tarasenko39 treats the 

valleys as equivalent, assuming 1VτΔ < . From the independent estimates (see Sec. 4.2.3) we have 

verified that the inequality 1VτΔ <  is satisfied for all studied Si MOS structures. For samples Si6-14 

VΔ was estimated to be less than 0.4K, for Si39 – less than 2K, and for Si40 – less than 6K.  In general, 

depending on the valley splitting, the weak localization should be described either by the theory 

developed in Ref. 39 or the theory of Ref. 128 ( 1VτΔ ). 
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=

Δ = +∑ ,    ( 6.5) 
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= + −
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,   ( 6.6) 

where  the coefficients NP  and NQ  are given by 
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= − + −⎢ ⎥⎜ ⎟⎜ ⎟ +⎢ ⎥⎝ ⎠⎣ ⎦

∫

∫
  ( 6.7) 

here NL  and 1
NL  are the Laguerre polynomials. Equations (6.3), (6.4), and (6.5) 

describe the WL MC over the whole range of classically weak magnetic fields 

1c Bω τ μ≡ < .  In the limit of vanishing intervalley scattering  (1 0)Vτ = , Eqs. (6.4) 

and (6.5) are reduced to the conventional expressions for the WL correction to the 

conductivity of a single-valley system127 and, in particular, to the HLN formula45
 in 

the diffusion regime.  The only difference is a prefactor of 2, which accounts for the 

valley degeneracy. To illustrate the effect of intervalley scattering on the 

magnetoconductance, we calculated the )bσΔ (  dependence using Eqs. (6.3), (6.4), 

and (6.5) for a fixed 100ϕτ τ =  and various values of Vτ τ .  The results are shown in 

Figure 6.3(a) by solid lines.  For comparison, we also calculated the MC using a 

similar theory125
 developed for a single-valley system (dotted line). We then fitted 

these dependences over the range 0.15b <  using the HLN theory [Eq. (6.1)] with two 

fitting parameters, the prefactor α  and ϕτ τ .  In other words, we fitted the theoretical 

curve the same way as the experimental data have been fitted above in Sec. 6.3. 

Figure 6.3(b) shows the resultant fitting parameters; for completeness, we also  

 



105 

 

 

 

 

Figure 6.3. WL magnetoconductance calculated for a two-valley system using Eqs. 
(6.3), (6.4), and (6.5) (solid lines) and for a single-valley system (Ref. 125) (dotted 
line). For solid curves from bottom to top, 10, 25, 50, 100, 1000, 10000Vτ τ = , 
respectively. Two upper curves are indistinguishable by eye. For all the curves 

100ϕτ τ = . The hatched region was used for fitting with Eq. (6.1).  (b) Dependences 
of the fitting parameters α , and ϕτ τ , on Vτ τ . The data points at 1Vτ τ =  
correspond to a single-valley system. 

depicted α  and 1ϕτ τ =  for a single-valley system at 1Vτ τ = . The main results of 

the fit are as follows: (i) the extracted phase breaking time ϕτ  coincides with its preset 

value within a few percent (this uncertainty is insignificant for further analysis), and 

(ii) the observed prefactor increases from 1≈  to 2≈  as Vτ  increases and becomes 

greater than ϕτ . Therefore, the approximate equality α ≈1 is simply a consequence of 

a large ratio 1Vϕτ τ . 
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6.4.2. Data analysis using the ballistic theory 

It is intuitively clear and will be discussed in more detail below that the MC in 

low fields 1b  is predominantly determined by ϕτ . In principle, one could use the 

“ballistic” theory for fitting the MC data in the whole range of magnetic fields and, 

thus, for determining both ϕτ  and Vτ  from a single fit. However, the series [Eqs. (6.4) 

and (6.5)] converge very slowly in small b region. Therefore, to determine ϕτ , it is 

more practical to use Eq. (6.1) in low fields. Figure 6.3 shows that this procedure 

provides the correct ϕτ  value. 

Consequently, we have used the following procedure of extracting Vτ  from the 

WL magnetoconductance.  First, we analyzed the MR data in sufficiently weak 

magnetic fields and at low temperatures.  In this regime (the hatched regions in 

Figure 6.1), the dephasing occurs at a time scale much greater than Vτ , and we can 

apply Eq. (6.1) for extracting ϕτ ; the second adjustable parameter, prefactor α , 

appears to be close to 1. At the next stage, we substitute ϕτ  into the “ballistic” 

formulas [Eqs. (6.3), (6.4), and (6.5)] and calculate the MC curves in a wide range of 

fields ( 1b < ) for various Vτ . Figure 6.4 illustrates this procedure using as an example 

the same MC data as in Figure 6.2. We calculate )bσΔ (  using the summation 

technique similar to that described in Ref. 129 for single-valley systems.  

Figure 6.4 shows that the experimental MC (circles) is smaller than the MC for a 

system with two unmixed degenerate valleys (curve 1) and larger than MC for a 

single valley system (curve 5). This observation again indicates that the MC in the 

studied Si MOSFETs is affected by valley mixing. Curves 2, 3, and 4 in Figure 6.4  
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Figure 6.4. Comparison between the WL magnetoconductance for sample Si40, 
11 233.4 10 cmn −= × , T=1.45K, and the ballistic theory. Different MC curves are 

calculated using Eqs. (6.3), (6.4), and (6.4): 1–for two unmixed valleys ( Vτ = ∞ ); 2–
15Vτ τ = ; 3– 12Vτ τ = ; 4– 9Vτ τ = ; 5–MC for a single-valley system (equal to 

curve 1 divided by 2). Inset blows up the data in the range b<0.15. Curve 6 is the 
HLN theory [Eq. (6.1)] with a prefactor 1α =  see Figure 6.2(a). 133ϕτ τ = for all 
calculated curves.  

correspond to Vτ τ  =15, 12, and 9, respectively. Note that in the magnetic field range 

b < 0.15, these three curves, the experimental data, the HLN formula, and the ballistic 

result for a single valley system are almost indistinguishable from each other (see the 

inset to Figure 6.4). Therefore, Vτ  cannot be reliably found from the MC in low 

fields. 

Figure 6.4 shows that the discrepancy between the curve 5 for a single-valley 

system and the curves, 2,3,4 for two mixed valleys ( Vτ τ =15, 12, and 9) grows as b 

increases.  This observation has a transparent physical explanation: with increasing b, 
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the typical size of electron trajectories, which contribute to the WL correction 

diminishes, and the valley mixing over the time of travel along these trajectories 

becomes small when 0 Vb Dτ> Φ . As a result, the WL magnetoconductance in strong 

magnetic fields approaches the theoretical prediction for a two-valley system with no 

intervalley scattering. 

We also note that all calculated curves deviate from the experimental data. As 

Figure 6.4 shows, curve 4 calculated for 9Vτ τ =  at b > 0.4 is approximately parallel 

to but lower than the experimental data in magnetic fields b > 0.4. On the other hand, 

curve 2 calculated for 15Vτ τ =  almost coincides with the data in low magnetic fields 

b < 0.4, though deviates substantially from them in higher fields.  The minimal mean-

square deviation of the calculated curve from the data is realized for 12Vτ τ =  

(curve 3). 

Thus, the value of Vτ  depends on the magnetic field interval (b1, b2) within which 

the MC data is fitted.  The  Vτ τ  values, obtained from fitting the difference 

1 2) )b bσ σΔ ( − Δ (  as a function of (b1, b2), decrease as b=(b1+b2)/2 increases (see 

Figure 6.5).  This monotonic dependence has been reproduced for all samples and 

temperatures.  We believe that this apparent ( )V bτ   dependence is an artifact of the 

fitting procedure.  In all above calculations we assumed ϕτ  to be field independent. 

However, ϕτ should depend on a perpendicular magnetic field.35 To the best of our 

knowledge, there are neither experimental nor theoretical systematic studies of this 

dependence beyond the diffusive limit. Ignoring this dependence in our fitting could 

lead to the observed monotonic variation in Vτ  with b.  
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Figure 6.5. Intervalley scattering time determined from fitting the difference, 
1 2) )b bσ σΔ ( − Δ ( , for the same magnetoresistance curve as in Figure 6.4. The fitting 

ranges (b1, b2) are shown by the horizontal bars. 133ϕτ τ = . 

A question arises, therefore: what range of magnetic fields should be chosen for 

Vτ extraction?  To answer this question we have analyzed errors of our method; the 

resulting root-mean-square sum of all errors is shown by the error bars in Figure 6.5.  

The error analysis is presented in detail in Sec. 6.5.5, where it is shown that neither 

small fields (b < 0.1) nor large fields (b ~ 1) should be used for Vτ  extraction.  In 

weak fields, the MC is insensitive to Vτ , whereas in strong fields one approaches the 

limits of applicability of the theory described in Sec 6.4.1. 

Therefore, we conclude that an intermediate range of magnetic fields is most 

suitable for extracting .Vτ   For the further analysis, we choose the range b=0.2–0.4.  

We have verified that our conclusions on the temperature and density dependences of 

Vτ  are not affected if this range is changed. 
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6.5. Results and discussion 

6.5.1. Phase breaking time 

As we have already mentioned, at the first stage of the analysis we estimated the 

phase breaking time ϕτ .  Comparison of the ( )Tϕτ  dependences with the theory of 

interaction effects35 is shown in Figure 6.6(a-c).  The uncertainty in the values of α  

and ϕτ  (shown as the error bars in Figure 6.6) reflects mainly the uncertainty in )bσ (  

in the weak fields b < 0.01.  The magnitude of the phase breaking time and its 

temperature dependence are in good agreement with the theory for all samples within 

the studied ranges of electron density [Si6-14: 12 2(0.28 1.5) 10 cm ,n - −= ×  Si39: 

12 2(2 2.5) 10 cm ,n - −= ×  Si40: 12 2(3 4) 10 cm ].n - −= ×   Note that no adjustable 

parameters are involved in this comparison, since the Fermi-liquid parameter 0Fσ   

was obtained in independent measurements.41
 

The theoretical curves (solid lines in Figure 6.6) are calculated following Ref. 35 

for 15 triplet channels,38
 which implies small valley splitting and relatively weak 

intervalley scattering 1( , )V V Tτ −Δ < .  For samples Si6-14 and Si39 1~ ,V VT τ − Δ , over 

the major part of the studied temperature range. Whether or not the condition 

1,V V Tτ −Δ <  is fulfilled for low mobility samples Si39 and Si40 is not important, 

because the measurements were performed at such high densities that the amplitude of 

the triplet term in the interaction corrections to ϕτ  was small in comparison with the 

singlet term: changing the number of triplet terms from 15 (two-valley case) to 3 

(single-valley case) caused variation of ϕτ  by less than 5% (dashed line in Figure 6.6). 

Interestingly, though the condition 1,V V Tτ − Δ <  is violated at temperatures lower than  
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Figure 6.6. Temperature dependence of the extracted ϕτ  value in units of τ  (left axes) 

and in picoseconds (right axes): (a) Si6-14, 11 29.98 10 cmn −= × , (b) Si39, 
11 229.4 10 cm ,n −= ×  (c) Si40, 11 233.4 10 cm .n −= ×  Solid lines show the ( )Tϕτ  

dependence predicted by the theory of interaction corrections (Ref. 35) with 15 triplet 
terms, dashed line, with three triplet terms. The insets show the corresponding 
temperature dependences of the prefactor α . 

0.4K for sample Si6-14, the ( )Tϕτ  data still agree better with theory when 15 

rather than 3 triplet terms are taken into account.  The observed quantitative 

agreement of the experimental values of ϕτ  with the theory suggests that ϕτ  is weakly 

affected by intervalley scattering near the crossover ~ 1VTτ .  

It is worth mentioning that the temperature dependence of the phase breaking time 

in Si MOSFETs has been previously investigated in Refs. 74-76,79,119. Our 
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agreement with theory35
 that takes more accurately EEI into account seems to be in-

line with previous results. 

6.5.2. Prefactor α 

By fitting the weak-field MC data with the HLN theory, we obtained the prefactor 

α  that is close to 1 for all samples (see the insets to Figure 6.6); this suggests that the 

valleys are intermixed on the ϕτ  time scale. The decrease of α  from 0.9 to 0.6 with 

increasing temperature, obtained for sample Si39 (see the inset to Figure 6.6(b), we 

believe, is an artifact, because relatively small values ~ 30ϕτ τ , observed for this 

sample at high temperatures, make Eq. (6.1) inadequate.  The complete theory 

described in Sec. 6.4.1 explains that small value of α  is a consequence of a fast phase 

relaxation.  For the same reason, there is a larger scattering in the values of )Tα(  for 

samples Si6-14 and Si40 at the highest temperatures (Figure 6.6), where ϕτ  is small. 

It is worth noting that the smallness of prefactor α  has been attributed to the 

intervalley scattering in Ref. 74.  However, the MC data in this experiment were fitted 

with the theory,130
 which does not take into account the nonbackscattering correction 

Eq. (6.5). Our estimates show that for the parameters of samples studied in Ref. 74  

( 20ϕτ τ = , 4Vτ τ = , and b=0.5–7), the non-backscattering correction contributes 

about 50% to the extracted value of  Vτ . 

6.5.3. Intervalley scattering time: Independence of temperature 

Following the procedure described in Sec. 6.4.2, we have extracted Vτ  by fitting 

the WL MC data with “ballistic” Eqs. (6.3), (6.4), and (6.5). Figure 6.7 shows that the 

values of Vτ  are   temperature-independent within the accuracy of our measurements. 
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Figure 6.7. Temperature dependence of Vτ in units of τ  (left axes) and in picoseconds 
(right axes): (a) Si6-14, 11 29.98 10 cmn −= × , (b) Si39, 11 229.4 10 cm ,n −= ×  (c) Si40, 

11 233.4 10 cm .n −= ×  Solid horizontal lines show the average Vτ . 

 

Figure 6.8. Density dependence of the intervalley scattering time (averaged over 
temperature) for samples Si6-14 (a), Si39 (b), and Si40 (c). 
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This observation suggests that the intervalley scattering is elastic, i.e., governed 

by static disorder.  Similar conclusion can be also drawn from the fact that α  remains 

close to 1, while the extracted ϕτ  exceeds Vτ  by far and grows without saturation as 

T decreases (see Figure 6.6).  Indeed, were the intervalley scattering inelastic, one 

would have observed a prefactor α ∼ 2  because the dephasing would occur in two 

valleys independently and the intervalley scattering would be just an additional 

dephasing mechanism.  In the latter case, a cut-off of the dephasing time at the level 

Vϕτ τ=  is also expected. The two observations, the absence of the cut-off and 1α ≈ , 

support the self-consistency of our analysis. 

The intervalley transitions are expected to be elastic for the following reason.  The 

intervalley scattering requires a large momentum transfer comparable to the vector of 

reciprocal lattice  
8 22 ~ 10 cmaπ −  (a is the interatomic distance).  At liquid helium 

temperatures, only static disorder can cause these transitions, as the momenta of 

electrons 6 1~ 10 cmFk − 6 1~ 10Fk cm −

 for the studied range of densities and phonons 

~ ( )ph sk T υ  (here sυ  is the sound velocity) are much smaller than 2 aπ .  Static 

disorder can lead only to elastic scattering because it changes momentum of scattered 

electrons but does not change their energy. 

6.5.4. Intervalley scattering time: density and sample dependence 

Figure 6.8 shows the density dependence of Vτ  values averaged over the 

temperature.  For all three samples, the relative rate of the intervalley transitions (with 

respect to the momentum relaxation rate) increases with density. This points to the 

dominant role of the Si-SiO2 interface in the intervalley transitions.  The electron wave 

function Ψ  in Si MOSFETs is positioned mostly in the bulk silicon and exponentially 
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decays in SiO2.6 When the gate voltage (and, hence, the density n) is increased, the 

electrons are “pushed” towards the Si-SiO2 interface, and the amplitude of the wave 

function at the interface, 0Ψ , increases. The probability of the interface scattering is 

proportional to 2
0Ψ  and increases with n;6 this is in line with the behavior shown in 

Figure 6.8. 

In the experiments we used samples with the mobilities, which vary over a 

decade. We find no correlation between Vτ   and the mobility for different samples. 

This suggests that the intervalley scattering is determined by a sample-specific 

interface disorder, namely, the surface roughness at the atomic length scale, which 

might be different for the samples fabricated on different wafers.  In contrast to the 

intervalley scattering, the mobility is governed mostly by impurities in the bulk and 

by the interface roughness at a large length scale, ~ Fkπ2 . 

The measured values of Vτ  for all samples are within the interval (3 12)- τ , which 

indicates that the valley index remains a good quantum number at the time scale ~τ . 

6.5.5. Analysis of possible errors in τv 

We present here an analysis of errors in the fitting procedure, which determine the 

size of error bars in Figure 6.5.  As discussed in Section 6.4.1, Vτ  was found from the 

following equation: 

1 exp 2 exp 1

2

) ) , / )

, / )
V th

V th

b b b

b
ϕ

ϕ

σ σ σ τ τ τ τ

σ τ τ τ τ

Δ ( − Δ ( = Δ ( ,

−Δ ( ,
  (6.8) 

Here subscript “exp” denotes experimental data, subscript “th” denotes calculation 

using Eqs. (6.3), (6.4), and (6.5).  Consequently, the uncertainty in Vτ  is determined 

by (i) uncertainty in b, (ii) uncertainty in ϕτ , and (iii) uncertainty in the conductivity.  
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To estimate each contribution to the error, we varied the corresponding parameter (b, 

ϕτ , or σΔ ) within its uncertainty and determined the variation in Vτ  by solving Eq. 

(6.8). 

The uncertainty bδ in 2
02b lπ= Φ value is determined by the uncertainty in the 

mean free path l.s The latter is about 2–3% due to the uncertainties in electron density 

n and Drude conductivity.  However, bδ  affects Vτ  rather weakly for the following 

reason: MC in the studied magnetic field range behaves approximately as ln b , 

therefore 1 2 1 2 1 2) ) ~ ln( ) ln( )b b b b B Bσ σΔ ( − Δ ( = . 

The error related to the uncertainty in ϕτ  is essential in low magnetic fields where 

magnetoconductance is sensitive to ϕτ . Correspondingly, the error bars in low fields b 

< 0.15 in Figure 6.5 are determined predominantly by the uncertainty in ϕτ . 

Another source of errors is related to the precision of the absolute value of WL 

MC (“calibration error”).  Indeed, the accuracy of our measurements of the absolute 

magnetoresistance value is ~0.5%. Higher order corrections, Maki–Thompson and 

DoS corrections121
 can modify MC by approximately 2–3% (as shown in Ref. 121, 

2 2( ) 2 0.25Deδ σ σ ρ πΔ Δ ≈ 2 ≈ ).  In order to estimate this error, we artificially 

changed our experimental data by 3% and studied the corresponding change in Vτ .  

The error appears to grow in small magnetic field where magnetoconductance is 

weakly sensitive to Vτ .  Therefore, small fields should not be used for the extraction 

of Vτ . In large magnetic fields (b ~ 1) MC becomes again weakly sensitive to Vτ , 

and the latter error grows as b increases, as shown by the error bars in Figure 6.5.  The 

calibration error is minimal in intermediate magnetic fields, where MC is most 

sensitive to Vτ . 
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Our attempts to analyze the WL MC data in strong fields b > 1 using Eqs. (6.3), 

(6.4), and (6.5) resulted in a large uncertainty of the fitting parameter Vτ τ  (large 

scattering of extracted Vτ τ  for various electron densities and temperatures). In large 

magnetic fields, there are several other error mechanisms, which are difficult to take 

into account. For example, at b ~ 1, ϕτ  differs from its small-field value.35
  Moreover, 

in Ref. 133 the MC for b > 1 was shown to behave in a nonuniversal manner: it 

strongly depends on details of scattering potential, whereas our theory assumes an 

uncorrelated short-range disorder. Some other mechanisms of magnetoconductance 

(such as classical memory effects, interaction corrections, Maki–Thompson 

corrections, etc.)  may also become essential in large fields where the shape of WL 

MC curve flattens. Therefore, we believe that the intermediate field range b=0.2–0.4 

is optimal for the extraction of the intervalley scattering rate. 

6.6. Conclusions 

To summarize, we have studied the weak localization magnetoconductance in 

Si MOSFETs over wide ranges of the electron densities, mobilities, and temperatures.  

In order to quantitatively analyze the experimental data, we have used the theory of 

weak localization for two-dimensional multivalley systems, which is valid in both the 

diffusion and ballistic regimes.  The theory of Averkiev and Tarasenko39, which 

explicitly takes the intervalley scattering into account, allowed us to conduct the first 

detailed study of the intervalley scattering in the Si MOSFETs. It was found that: 

(1) Intervalley scattering in Si MOSFETs is an elastic and temperature-

independent process. 
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(2) The ratio Vτ τ  monotonically increases as the electron density decreases. This 

observation suggests that the intervalley scattering is governed by the disorder at the 

Si-SiO2  interface. 

(3) There is no simple correlation between the intervalley scattering rate and the 

sample mobility (or the momentum relaxation rate); this points to a sample-specific 

rather than universal mechanism of the intervalley scattering. 

(4) The smallness of the prefactor ~α 1, that is obtained from fitting the 

experimental WL data with the HLN formula, is a consequence of a fast intervalley 

relaxation rate, which exceeds the phase relaxation rate. 

(5) The temperature dependence of the phase relaxation time in Si MOSFETs is in 

quantitative agreement with the theory of EEI effects in disordered 2D systems.35
 

We note that the approach of the analysis of WL MC can be used for studies of 

intervalley relaxation in other multi-valley 2D electron systems, such as AlAs-

AlGaAs heterostructures,131
 Si MOX structures,132

 and Si-SiGe quantum wells.133 
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7. Experimental study of the low-temperature 
conductivity of high-μ Si MOSFETs 

7.1. Introduction 

This chapter is devoted to a detailed study of the conductivity of 2D electron 

liquid in high-mobility (001) Si MOSFETs over a wide temperature range 

( 0.03 4.2 K)-T =  that includes both the diffusive and  ballistic regimes. In particular, 

we observed for the first time that the metallic increase of σ  with cooling is followed 

by the downturn of  ( )Tσ   at lower temperatures.  For the purpose of comparison 

with the ZNA theory35, we studied the range of not-too-low densities,  

11 2(1.8 15) 10 cm ,n - −= ×  where the temperature and magnetic  field dependences   

( , )T BσΔ  can still be treated as small corrections  to the Drude conductivity  Dσ .  In 

principle, no fitting parameters are required for comparison with the theory, because 

we have measured 0Fσ , VΔ , and Vτ  in independent experiments (see Secs. 4.2.3, 

5.3, 6 for details). However, below we take a slightly different approach: we obtain 

the 0 ( )F nσ  values from fitting the ( , )T BσΔ  dependences with the ZNA theory35, 

and show that these values are consistent with the corresponding values extracted 

from the analysis of SdH oscillations41,40.  We have also revealed shortcomings of 

earlier analysis of ( )TσΔ , reanalyzed the available data, and  compared the extracted 

values of 0 ( )F nσ  with corresponding values from other measurements.  We conclude 

that the experimental data are well described by the theory of interaction corrections35 

at intermediate temperatures 0.03 4.2 K.-T ≈   For a quantitative analysis at ultra-low 
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temperatures ( 0.3 K)T ≤ , the interaction correction theory should be modified by 

taking into account finite intervalley scattering rates. 

7.2. Sample characterization and data analysis 

7.2.1. Samples characterization 

We have studied the temperature and magnetic field dependences of the 

conductivity for high-mobility (001) Si MOSFETs, which demonstrated the metallic 

quisi-linear ( )Tσ  dependences at intermediate temperatures over a wide range of 

electron densities n.  Below we present the data for high-μ (001) Si MOSFET 

samples, Si6-14 and Si1-46, (see Sec. 4.1.4 for samples’ description). The ( , )T Bσ

dependences were measured in a wide ranges of temperatures ( 0.03 4 K),T = −  

magnetic fields ( 5 T)B ≤  and electron densities 11 2( (1.8 15) 10 cm ).-n −= × u  

Electron density n was determined from the period of SdH oscillations (Sec. 

4.2.1).  Analysis of SdH oscillations was also used to verify that electrons are in a 

good thermocontact with He3/He4 mixture and are not overheated by external noise 

and/or measuring current (Sec. 4.2.2). Figure 4.9 shows that temperature dependence 

of amplitude of SdH oscillation for samples Si6-14 and Si1-46 follow Lifshitz-

Kosevich theory99 down to 30 mK, the base temperature of our dilution He3/He4 

refrigerator. 

                                                 
u The experimental technique is described in Chapter 4.  
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Valley splitting and intervalley scattering 

We have estimated the energy splitting VΔ between two valleys from the analysis 

of SdH oscillations: 0.4 KVΔ ≅  for sample Si6-14 and 0.7 K for Si1-46 (see 

Sec. 4.2.3 for details). 

We have measured the intervalley scattering rate for sample Si6-14 (see Chapter 6 

for more details)  by analyzing the WL magnetoresistance. It was found that Vτ  is 

temperature-independent and the ratio Vτ τ  decreases monotonically with increasing 

electron density.  For Si6-14 at 11 2(3-6) 10 cm ,n −= ×  1( 0.36 K)Vτ
− ≅  20V psτ ≅  is 

approximately ten times greater than the transport time 2 ps.τ ≅  

Relaxation time τ and the band mass 

The momentum relaxation time τ  was determined  from the Drude conductivity 

2 ,D be n mσ τ=  which was found by extrapolating the quasi-linear ( )Tσ  dependence 

observed in the ballistic regime to 0T = . Note that in order to extract τ  from the 

Drude conductivity, one should use the bare mass bm : according to the Kohn theorem, 

the response of a translationally-invariant system to the electromagnetic field is 

described by bm  in the presence of electron-electron interactions; this result also 

holds for weak disorder ( 1FE τ ).  It is worth mentioning that several prior 

publications66,134,135, incorrectly used m∗  instead of bm  to estimate τ  from Dσ ; this 

affects the value of the fitting parameters extracted from comparison with the ZNA 

theory35 as shown below. 
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The textbook value6  for the light electron mass in a bulk Si is (3 ) 0.19D
ebm m≈ .  

For inversion layers on (001) Si-surface, Kunze and Lautz136 have obtained 

(2 ) / (0.19-0.22) 0.02D
ebm m = ±   from tunneling measurements.  The recent ( )m n∗  

data obtained from the analysis of SdH oscillations over a wide range of densities 

11 2(1-35) 10 cmn −= ×  ( 1.4-8.5sr = )41,40 can be fitted with a polynomial  

4 4 10 10( ) 0.205 (1 0.035 1.2 10 2 10 ).S e S S Sm r m r r r∗ − −= + + × + ×    

These  em m∗  data agree well with earlier values of m∗  extracted from SdH 

oscillations104,111,112 in narrower ranges of densities. By extrapolating the polynomial 

( )sm r∗  to 0sr =  we obtain (2 ) 0.205 0.005D
ebm m = ± , the value, which we adopted 

for the analysis ( , )T Bσ v; available measurements of the cyclotron resonancew do not 

contradict and do not refine this value. 

In principle, the aforementioned complete characterization of samples allows us to 

compare the ( , )T BσΔ  dependences with the ZNA theory35 without any fitting 

parameters (with a caveat that the theory35 does not take into account the intervalley 

scattering, see the discussion below). However, we adopt an equivalent, but more 

convenient procedure: for each electron density, 0 ( )F nσ  will be considered as a single 

                                                 
v Our revision of the analysis of SdH data40 (described in the subsection 5.2)  modifies the m* 

values only at low densities rS>4 and does not affect m*( rS  0)=0.205me, adopted as the best estimate 

for mb. 
w The chosen value mb=0.205me does not contradict the cyclotron resonance data.  Due to the 

Kohn theorem, the mass measured in the cyclotron resonance experiments is believed to be 

unrenormalized and equal to the band mass  (and hence, independent of density). Abstreiter et al. 

[Phys. Rev. B 14, 2480 (1976)] observed the far-infrared cyclotron resonance and obtained 

mc=(0.197±0.005)me independent of n for n > 1 1012 cm-2. However, for n > 1 1012 cm-2, they 

observed a sample-dependent noticeable increase of cm  with decreasing density (up to 0.215me  at n = 

5 1012 cm-2), which was attributed to the localization effects. 
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parameter for fitting ( , )T BσΔ , and these values of 0 ( )F nσ  will be compared with the 

corresponding values obtained from the SdH oscillations41,40. 

7.2.2. Temperature dependence of the conductivity at B||=0 

The temperature dependences of the conductivity ( )Tσ   for sample Si6-14 are 

shown in Figure 7.1. In these measurements, we applied a fixed 0.1B T⊥ =  that is 

sufficient to suppress the temperature dependence of the WL correction in the studied 

temperature range.  The ( )Tσ  dependences are non-monotonic for all studied 

densities [ 11 2[ (1.8-15) 10 cmn −= ×  for Si6-14 and 11 2[ (10-15) 10 cmn −= ×   for Si1-46]: 

a quasi-linear increase of σ  with cooling, observed down to ~ 0.5K , is replaced at 

lower T with a decrease of σ .  Note that in the previous experiments of ( )Tσ -study 

in high-μ Si MOSFETs (including Si6-14 – the sample studied in this work)135, a 

trend of ( )Tσ  saturation was observed  at  0.4 KT <  rather than the decrease of the 

conductivity.  One of the reasons for this might have been “heating” of electrons by 

high frequency noise: only after thorough filtering of all leads connected to the 

sample were we able to decrease the  electron temperature down to ~30 mK (see 

Secs. 4.1.3 and 4.2.2).  Similar downturn of ( )Tσ , although at much lower 

temperatures, has been recently observed in high-μ  GaAs FETs at low electron 

densities137. 

Below we use the following strategy for analyzing the ( )TσΔ  dependences. First, 

we find 0Fσ  by fitting the quasi-linear ( )Tσ  dependences observed in the ballistic 

regime (  0.5K)T >  with Eqs. (2.43), (2.40), (2.41). The effect of valley splitting and 
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Figure 7.1. Temperature dependences of the conductivity ( , 0)T Bσ =  for the sample 
Si6-14 at various electron densities n= 15.1, 10.0, 5.5, 4.0, 2.9, 1.8, in units of 

11 210 cm ,−  from top to bottom. Circles show the experimental data, red  curves - the 
theoretical dependences Eq. (2.44) calculated with  0.4V KΔ = .  On the left panel the 

dashed blue curve corresponds to 2
00.5(1 ) FT F Eσ= + , the applicability of the ZNA 

theory is violated at a higher T. The right panel shows the same data set within a 
narrower temperature interval, the thin arrows correspond to  1

VT τ −=  and the thick 
arrows - to the temperature of the crossover between ballistic and diffusive regimes, 

0(1 ) 2T Fσ πτ∗ = + .  The dash-dotted green curves on the right panel were calculated 
with three triplet components [Eq. (2.39)] (the valleys are completely intermixed), the 
blue dashed  curves - triplet( , ) ( ) ( )D C V TT B N T Tσ σ δσ τ δσ= + + ×   with tripletN   

continuously varying between 3  (for 1,V VT τ − Δ ) and 15 (for 1,V VT τ − Δ ). 

intervalley scattering on  ( )ee TσΔ  can be  neglected at 1,V VT τ −Δ  and the analysis  

is significantly simplified.  The corresponding values of  0 ( )F nσ  are shown in 

Figure 7.4.  The T range available for fitting in this regime “shrinks” rapidly at low n:  

the growth of 0| |Fσ   and decrease of FE  with decreasing n, lead to violation of the 
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condition 2
0(1 ) FT F Eσ+  (e.g., at 11 21.8 10 cmn −= ×   this occurs at temperatures 

above 2K).  This might be one of the reasons for the observed deviation of the high-

temperature ( )Tσ  from the linear-in- ( )FT E  theory35. Also, the higher-order 

corrections might become significant at low n when ( ) ~ 1DTσ σΔ  (see Figure 7.1). 

After finding the 0Fσ   values (which are temperature-independent in the studied 

temperature range), we proceed with the analysis of the low-T part of the ( )Tσ  

dependences, where the crossover from 0d dTσ <  to 0d dTσ >  was observed.  We 

note that the crossover occurs when temperature becomes smaller than two 

characteristic temperature scales - VΔ  and 1
Vτ
−   - which are of the same order of 

magnitude for the studied structures.  We emphasize that according to the ZNA 

theory35, the ballistic-diffusive crossover should not lead to the change of the sign of 

d dTσ .  In contrast, the valley splitting and the intervalley scattering may result in 

the sign change for d dTσ  because these processes reduce the number of triplet 

components at VT < Δ  and 1
VT τ −< . 

The theory35 takes into account a finite  VΔ  but not  1
Vτ
− .  The solid red curves in 

Figure 7.1 are calculated for 0.4 K,VΔ =  the estimated value of VΔ  for sample Si6-

14 (see Sec. 4.2.3 for details), and 1 0Vτ
− = . It is clear that the change in the number of 

triplet components from 15 ( )VT Δ  to 7 ( )VT Δ 66,x [see also Eq. (2.44)] is not 

sufficient to explain the shape of the ( )Tσ  downturn. The effect of strong intervalley 

scattering is illustrated in Figure 7.1 by dashed  green curves calculated with 3 triplet 

                                                 
x For a two-valley system with ΔV⨠T, the total number of interaction channels is 4 4=8, among 

them 1 singlet and 7 triplet terms. 
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components (to model roughly the  case of 1
VT τ −   when the valleys are completely 

intermixed).  In  the absence of a detailed theory that would account  for intervalley 

mixing, we attempted to fit the experimental data with an  empirical crossover 

function for the number of triplet components 

triplet ( ) 9 6[exp( 0.3 / ) exp( 30 )]N x x x= + − − −     

where Vx Tτ= . This crossover function provides correct asymptotic limits for 

triplet :N  3 at 1
VT τ −  and 15 at 1

VT τ − . Figure 7.1 shows that using this function, 

we can reasonably well describe the shape of experimental ( )Tσ  dependences for all 

studied electron densities. Qualitatively, the data agree with the theoretical 

dependences ( )ee TσΔ , calculated for the experimentally determined VΔ  value. In 

particular, the downturn of σ(T) at 0.4 KT <  temperature can be explained by 

suppression of the triplet contribution to ( )ee TσΔ  due to valley splitting and/or 

intervalley scattering.  We stress that in the above analysis we modeled the theoretical 

dependences only qualitatively. For a more detailed quantitative analysis of the 

experimental data at low T, one needs a rigorous theory extended to the case of a 

finite intervalley scattering rate.  

7.2.3. Temperature dependence of the conductivity at non-zero B|| 

Better understanding of different contributions to ( )TσΔ  can be achieved by 

measuring the conductivity in strong in-plane magnetic fields b BB T g μ . The 

evolution of experimental dependences ( )TσΔ  with B  is shown in Figure 7.2 for 

two samples at different electron densities. The steps in B  were chosen in such a way 

that the corresponding increase of the Zeeman energy Z b BE g Bμ=   was of the order  
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Figure 7.2. Temperature dependences of the conductivity for samples Si1-46 [(a) and 
(b)] and Si1-46 [(c)-(h)] in different in-plane magnetic fields (from top to bottom, 

0, 0.6,1, 2, 3 T).B =  Experimental data are shown as circles, the solid  curves show 
the theoretical dependences calculated for sample Si6-14 with 0.4 KVΔ =  and for 

sample Si1-46 with 0.7 K.VΔ = . The 0Fσ  value is the only fitting parameter in 

comparison with the theory35, the corresponding values of 0Fσ are shown in 

Figure 7.4. The values of n are shown in units of 11 210 cm .−  

of 1K.  The theoretical curves in Figure 7.2 were calculated using the 0 ( )F nσ  values 

extracted from the analysis of ( , 0)ee T Bδσ = (see Figure 7.1). The transport time τ  

was calculated for each B  value from the Drude conductivity ( )D Bσ , which in turn 

was estimated by extrapolating the quasi-linear part of the ( , )T Bσ dependence  to 

0T = . The observed behavior is in line with our analysis of the ( )Tσ  dependences in 

Section 7.2.2. Indeed, the magnitude of the triplet contribution is expected to be 

reduced when the Zeeman energy becomes greater than T. This effect is more 

pronounced within the range 1{ , }V V b BT g Bτ μ−Δ < < , where  a strong magnetic  field 
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reduces the number of triplet components from 15 to 7. For example, at 

11 21 10 cmn −= ×  [see Figure 7.2(d)] the metallic behavior disappears at 1 KT <  and 

3 T,B =  which is in agreement with the theory35. At lower T, the number of triplet 

components  is smaller than 15 even at 0B =  due to valley splitting and intervalley 

scattering, and the effect of B  on ( )TσΔ  is less prominent. 

7.2.4. Magnetoconductivity 

To test the theoretical predictions on the magnetoconductivity induced by in-plane 

magnetic fields, we also measured the ( )Bσ  dependences at fixed T. Similar 

measurements have been performed in the past (see, e.g., Refs. 66,135,138), but no 

detailed comparison with the theory was carried out at that time. The MC for sample 

Si6-14 over the field range 4.5 4.5 TB− < <  is shown for different densities and 

temperatures in Figure 7.3.  In these measurements, special care was taken to reduce 

the magnetic field component perpendicular to the plane of the structure: even a 1°  

misalignment between the sample's plane and the magnet axis (which results in

~ 50 GB⊥  at ~ 3 T)B ) may be sufficiently strong for suppressing the WL 

corrections at low T.  To eliminate B⊥ , we used the cross-magnetic-field set-up98 (see 

Sec. 4.1.2 for details).  For each value of B , we measured the dependence ( )Bσ ⊥  by 

sweeping B⊥  and recorded the minimum value of ( )Bσ ⊥  which corresponded to the 

zero WL magnetoconductance and, thus, 0B⊥ = .  This method allowed us to 

compensate B⊥  with accuracy better than 10G. 

The theoretical ( )BσΔ  dependences [Eqs. (2.44), (2.45)], plotted in Figure 7.3 as 

solid curves,  describe the observed MC very well in not-too-strong magnetic fields 
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Figure 7.3. Magnetoconductance for sample Si6-14 at different electron densities and 
temperatures. Experimental data are shown by dots, the theoretical dependences 
calculated according to Eqs. (2.44), (2.45),  - by solid  curves.  The 0Fσ  value is the 
only fitting parameter in comparison with the theory35, the corresponding values of 

0Fσ  are shown in Figure 7.4.  Arrows indicate the fields corresponding to the 
condition 2 0.1B Fg B Eμ = . The values of n are shown in units of 11 210 cm .−  
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0.2b B Fg B Eμ < .  Again, as in the case of fitting the ( )TσΔ  dependences, the only 

adjustable parameter was the 0 ( )F nσ   value extracted for each density from fitting the 

MC at high temperatures (~0.7K) where the effects of valley splitting or intervalley 

scattering on ( , )ee T BσΔ  can be neglected. Note that all the theoretical curves plotted 

in Figure 7.3 for the same n were calculated for a fixed 0 ( )F nσ , i.e. neglecting 

possible dependence 0 ( )F Bσ .  The detailed analysis of the spin susceptibility  

g mχ∗ ∗ ∗∝  in strong magnetic field, presented in Ref. 115, shows that the product 

g m∗ ∗  decreases with an increase of B  by as much as ~20%. Our estimate shows that 

by ignoring the ( )g B∗  dependence, we might reduce the value of 0| |Fσ  by ~10% 

(see below), which is close to the accuracy of extraction of 0Fσ  from the data in 

strong magnetic fields.  As B  grows and/or n decreases, the data start deviating from 

the theoretical curves [see Figure 7.3(d)]; this deviation can be attributed to the 

violation of the condition b B Fg B Eμ  required for applicability of Eqs. (2.44) and  

(2.45). 

7.2.5. The σ
0F (n)  dependence 

The 0Fσ  values obtained from fitting the ( )TσΔ  and ( )BσΔ  dependences with 

the theory35 are shown in Figure 7.4.  For comparison, we have also plotted the 0Fσ  

values obtained from the analysis of SdH oscillations (measured for sample Si6-14) 

using the theories of Refs. 99,117 (see Section 5.3). The 0Fσ  values obtained from 

fitting ( )TσΔ  are in good agreement with the corresponding values extracted from 

the analysis of SdH data. 
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Figure 7.4. The 0Fσ values obtained from fitting the ( )Tσ  and ( )Bσ  dependences 
with the ZNA theory35 (blue and red symbols, respectively). Open red squares show 
the shift of several 0Fσ  values extracted from ( )Bσ  if one takes into account the 

( )g B  dependence and the suppression of the WL corrections by B  (see the text). 

The dashed curve corresponds to 0 ( )sF rσ  extracted from the SdH data41 using the LK 
theory99, the dash-dotted curve - to the empirical approach used in Ref. 41.  The 
shaded regions in panels (a) and (b) show the 0 ( )sF rσ  dependence (with the 
experimental uncertainty) obtained from fitting the SdH data (measured by Pudalov et 
al.41) with the theory117. (b) Comparison of 0Fσ  values calculated from ( )Bσ  and 

( )Tσ  using the same fitting procedure (see the text): ,  - present work,  
☆ and  - 0Fσ  reported in Refs. 134 and 66, respectively; ★ and  - 0Fσ  
recalculated from ( )Bσ  and ( )Tσ  data134, respectively;  - 0Fσ  recalculated from 

( )Tσ  data66. 

At the same time, the 0| |Fσ  values obtained from fitting the ( )BσΔ  dependences 

at 4Sr >  are systematically smaller than the corresponding values obtained from 
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fitting  ( )TσΔ  and SdH oscillations.  This trend was earlier reported in Refs. 66,135. 

There are at least two factors that can reduce this discrepancy. One of them, a 

potential decrease of g ∗ in strong B , was mentioned in Section 7.2.4.  The other 

factor is more subtle. In our analysis, we neglected the dependence of the WL 

correction  WLδσ  on B . However, our measurements show that WLδσ  decreases with 

an increase of the in-plane magnetic field, which leads to a positive 

magnetoconductance.  There are at least two potential reasons for this dependence: 

(a) the Si-SiO2 interface roughness transforms a uniform in-plane field into a random 

perpendicular field (see, e.g., Refs. 139,140,141 and references therein), and (b) a 

finite extent of electron wave  functions in the direction perpendicular to the plane of 

a 2D system causes sub-band mixing by the magnetic field and disorder (see, e.g., 

Ref. 142 and references therein). 

Phenomenologically, both effects can be described in terms of a decrease of the 

dephasing length Lϕ  with B . For example, from the analysis of the WL 

magnetoresistance measured for different values of B  for sample Si6-14 at 

11 21 10 cmn −= ×  and T=0.3 K, we have extracted ( 0) 1.3μmL Bϕ = =  and 

( 3 T) 0.8 μm.L Bϕ = =  Our estimates show that the positive magnetoconductance 

associated with the suppression of WLδσ  by B  can account for ~10% 

magnetoconductance. After taking the dependences ( )g B∗  and WL ( )Bδσ  into 

account, the 0| |Fσ  values extracted from the MC should be increased by ~20%. The 

corresponding downshift of the 0Fσ  values extracted from the ( )BσΔ  data is shown 

by arrows in Figure 7.4(a), it significantly reduces the discrepancy between the values 

of 0Fσ  extracted from the 0B =  data and the data measured at 1-5 T.B =  
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Finally, in order to compare our data with other available ( )TσΔ  data for high-

mobility Si MOSFETs, we have used Eqs. (2.40-2.45) to estimate the 0Fσ  values from 

the quasi-linear ( , 0)T Bσ =  dependences measured by Shashkin et al.134 and Vitkalov 

et al.66. We also reanalyzed ( )Bσ  data presented in Ref. 66.  In this analysis, we 

estimated τ  from ( 0)Tσ →  using the band mass rather than m∗ .  As for the valley 

splitting, we have used 0.6 KVΔ and 1 K for the analysis of data from Ref. 134 and 

66, respectively.  (The value ~ 1-2 KVΔ used in Ref. 134  seems to be too large, as it 

would lead to the  appearance of beating of SdH oscillations in the field range studied 

in Ref. 143).  We have also taken into account the WL correction neglected in both 

Ref. 134 and 66.  Figure 7.4(b) shows that the 0 ( )sF rσ  values estimated for ( )Tσ  data 

measured on different Si MOSFETs using the ZNA theory35 are in good agreement 

with each other. The values of 0| |Fσ  extracted from MC data of Vitkalov et al.66 are 

smaller compared to 0| |Fσ  estimated from ( , 0)T Bσ = .  

The 0Fσ values obtained on the basis of the interaction correction theory and 

plotted in Figure 7.4 may be compared also with the values of 0 2 2(1 )Fσ γ γ= − +   

predicted by the RG theory and measured experimentally in Refs. 61,62. 

Extrapolation of our 0 ( )sF rσ  data to lower densities, provides the value 0 0.5Fσ ≈ −  at 

11 21 10 cmn −≈ ×  ( 8)sr ≈ , which is smaller than the value 0 0.31Fσ = −  2( 0.45)γ =  

predicted by the one-loop RG theory for the temperature maxT  corresponding to the 

( )Tρ maximum38,61,62 (e.g., max 3 KT ≈  For 11 21.2 10 cm ).n −= ×  

The experimental test61,62 of the RG theory was conducted at temperatures higher 

than that in the experiments described in the present work.  Within the framework of 
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the RG theory, the interaction parameter 2γ  is expected to increases with decreasing  

T 38,61,62 and, in principle, it can reach at T<1K the value of ~1 which corresponds to

0 0.5Fσ = − . (Note that the factor-of-two increase of 2γ  (from 0.45 to 1) is beyond the 

range of the applicability of the one-loop RG theory.)  However, the spin 

susceptibility g mχ∗ ∗ ∗∝  obtained from the SdH data is almost T-independent115, in 

contrast to the expected increase of 2γ  (and, hence, 0| |Fσ and g ∗ ) with cooling. This 

contradiction can be resolved if the T-dependence of  g ∗  is exactly compensated by 

the opposite T-dependence of m∗ , so that g mχ∗ ∗ ∗∝  remains almost constant. The 

reason for this compensation is not clear and requires both experimental and 

theoretical studies. 

7.3. Conclusion 

Our experiments show that the low-T behavior of the conductivity of high-

mobility (001) Si MOSFETs is well described by the theory of interaction effects in 

systems with short-range disorder35.  Over a wide range of intermediate temperatures 

1 )( , ,V V b B Fg B T Eτ μ−Δ < , the interaction effects are strongly enhanced in 

Si MOSFETs due to the presence of two valleys in the electron spectrum.  This factor, 

in combination with the interaction-driven renormalization of the Fermi-liquid  

parameter 0Fσ , leads to an increase of σ  with decreasing T.  At lower temperatures 

1( , , , )V V b B FT g B Eτ μ−< Δ , the triplet contribution to ( )ee TσΔ  is significantly reduced 

due to valley splitting and/or intervalley scattering. As a result, the metallic behavior 

of σ  is replaced with a more conventional, insulating behavior. The 0Fσ  values 

obtained from fitting the experimental data with the theory35 agree well with the 0Fσ  
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data obtained from the analysis of SdH oscillations in these samples. However, it 

remains unclear how to reconcile the 0Fσ  values obtained at low n from fitting the 

( )Tσ  and SdH data by using the interaction correction theory with the corresponding 

values obtained within framework of the RG theory. 

 We emphasize the detailed analysis of the interaction-induced contributions to the 

conductivity, it is important to measure such parameters as the valley splitting and 

intervalley scattering rate in independent experiments. 

Finally, for a quantitative description of the interaction effects to the conductivity 

eeσΔ  at low temperatures, both the interaction correction theory and RG theory 

should be extended to the case of a finite intervalley scattering rate. 
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8. Quenched disorder effects in electron transport in Si 
MOSFETs in the dilute regime 

8.1. Introduction 

One of the central problems in the phenomenon of the apparent 2D MIT and 

related metallic behavior is an understanding of the individual roles of the two major 

driving forces: disorder and EEI. A great body of experimental data demonstrates that, 

at sufficiently large carrier densities, the low-temperature behavior of disordered 

systems is governed by the universal quantum interaction corrections to the 

conductivity.9,35,37 These interaction effects between mobile 2D electrons have been 

intensively studied both theoretically9,10,35-38,60,64,65 and experimentally41,66,135,144,145.  

Much less frequently another important issue is addressed, namely the interactions 

between localized and mobile electrons.46,93,146-148 There are clear observations that, 

near the apparent 2D MIT, the behavior of dilute systems is very rich and does not 

necessarily follow the same pattern.92,93,149  Also one might expect that the sample-

specific disorder might become more important as the electron density decreases and 

approaches the critical density of the 2D MIT. 

Usually, the presence of the localized states themselves in 2D transport is masked 

by mobile electrons. In order to reveal their contribution in the vicinity of the 2D 

MIT, we have studied electron transport in the same Si MOSFET sample that was 

slowly cooled down from room temperature to  4 KT =  at different fixed values of 

the gate voltage  cool.gV V=  Changing the cooling conditions primarily affects the 
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thickness of the potential well.y We believe that this allowed us to vary the fine details 

of disorder - the structure of the resonant (localized) states - without affecting the type 

of disorder (short-ranged), the scattering rate, and the strength of EEI in the system of 

mobile electrons. We focused on two key features of the 2D MIT: the strong 

dependences of the resistivity on temperature and the parallel magnetic field, and 

studied them in the density range 11 2(0.7 3) 10 cm .n - −= ×  

We have observed that, at relatively high densities (where the resistivity is smaller 

20.1h eρ ≤ ), the dependences ( )Tρ  and )Bρ(  in weak parallel magnetic fields B  

are very similar for different cooldowns. This “universal” behavior of transport at 

high densities agrees with earlier observation135 of the sample-independent ( , )T nρ τ  

for samples with different mobility ( )μ τ∝ . In contrast, at low densities 

2[ (0.1 1) ]- h eρ ∼ , or in moderate and strong parallel fields ~B Fg B E Tμ ≥ , the 

cooling conditions dramatically affect transport even though the main parameters of 

disorder and of the electron interactions remain unchanged. This observation provides 

direct experimental evidence that, near the 2D MIT, electron transport at finite 

temperatures in dilute systems becomes sample-specific and dependent on more 

subtle details of disorder.  

We have also observed that the frequency of SdH oscillations varies with 

temperature and in-plane field; these variations (of the order of a few %) grow as the 

density approaches the 2D MIT critical density. The SdH frequency is directly related 

to the density of mobile electrons, regardless of the  interaction strength. Therefore, 

                                                 
y Vcool determines the depth of the confining potential well and, simultaneously, the number of 

interface traps sunk under the Fermi level. At low temperatures, as Vg  
is varied, the potential well 

coolV = 0, 5, 10, 18 and 25 V. The peak mobility for different coolV  varies by less than remains almost 

unchanged and “memorizes” the quenched disorder formed during the cooldown. 
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the observed variations of the mobile charge density at a fixed total charge in the 

metal-oxide-semiconductor capacitor gives evidence for the redistribution of electrons 

between mobile and localized states. The weak T dependence of this electron 

exchange, if it is attributed to activation processes, indicates the presence of very low 

energy barriers (~1 K) between the mobile and localized electron states.  We relate the 

finite temperature cooldown effects to the hybridization of the mobile and (spatially 

separated) resonant localized states present at the Fermi energy at low densities. 

8.2. Experiment 

The resistivity measurements were performed on a high-mobility Si MOSFET 

sample Si6-14 (see Sec. 4.1.4 for details) in a temperature range of 0.05-1.2 K. The 

crossed magnetic field technique98 was used to accurately align the magnetic field 

parallel to the plane of the 2D electron system (for more details see Sec. 4.1.2). The 

resistance was measured using the standard four-terminal AC technique using 

resistance bridge LR700. Five different cooldowns were performed with 

cool 0, 5,10,18V =  and 25 V. The electron density, found from the period of SdH 

oscillations (Sec. 4.2.1), varied linearly with gV : ( )g thn A V V= − , where A  

( 11 21.2 10 / (Vcm )×  for the studied sample) is determined by the oxide thickness. The 

threshold voltage thV  varied little (within 0.15 V) for different cooldowns and 

remained constant (within a few %) in the overall studied range of densities.   

8.3. Temperature dependence of resistivity for different cooldowns 

Figure 8.1 shows the mobility μ  versus gV  for five different cooldowns with 

~7%; this demonstrates that the momentum relaxation time τ  is not strongly affected 
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by the cooling conditions. Comparing the )nμ(  curves with the conventional 

transport theory6,150 we concluded that the density of charged impurities varies by less 

than 10 210 cm−  for different cooldowns. We also observed that the amplitudes of the 

SdH oscillations are similar for different cooldowns, as shown in the inset to 

Figure 8.1. These two observations are consistent with each other since the quantum 

lifetime qτ  in nearly equal to τ  for Si MOSFETs.  

Figure 8.2 shows that the ( )Tρ  dependences for several different cooldowns and 

different electron densities (in the vicinity and far from the 2D MIT). Far from the 

transition 2( )h eρ  (see, e.g., curves 8-10). However, in the vicinity of the 

transition 2( ~ )h eρ , a dramatically different behavior is observed as temperature is 

decreased.  The irreproducibility of ( )Tρ  for different cooldowns is clearly seen for 

curves in Figure 8.2, which correspond to nearly the same ρ  at the lowest T: these 

curves, being different at higher temperatures, converge with decreasing T.  We have 

verified that renormalized spin susceptibility and effective mass (and, thus, the two 

Fermi-liquid coupling parameters [Eq. (5.1)] do not change for different cooldowns to 

within 5%. Thus, EEI effects also cannot account for the change in )Tρ( .  

The sample specific variations vanish at sufficiently low temperatures: this 

suggests that, in addition to universal effects, a sample-specific mechanism, which 

strongly affects the resistivity, comes into play at intermediate T. 

If the behavior shown in Figure 8.2 were characterized by the critical density cn , 

which correspond to the transition, the latter would have been cooldown-dependent.  

The labels on Figure 8.2 mark two )Tρ(  dependences, which correspond to cn n=  

for two different cooldowns: they were estimated from linear extrapolation to zero of 
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Figure 8.1. Mobility versus the gate voltage for different cooldowns. The coolV for 
both the main panel and the inset are shown in figure. Examples of the SdH 
oscillations, shown in the inset for the same gate 1.15 V, 0.1 K, 0.03 T,gV T B= = = , 
demonstrate that the quantum time qτ  in not very sensitive to the cooling conditions. 
The carrier densities are (from top to bottom) 1.081, 1.092, 1.070n =  in units 

11 210 cm .−
. 

the activation energy )nΔ(  measured in the insulating regime149,151  

) exp( / )T Tρ( ∝ Δ away from the critical regime. It is clear that the critical 

dependences ( , )cT n nρ =  are nonmonotonic (see also Ref. 151,100). The 

nonmonotonicity is not caused by electron overheating: we applied sufficiently low 

source-drain current in order to reduce the excess electron temperature eTδ  to a few 

mK. For example, for the curve 25" "cn  (the source-drain resistance are 150kΩ  each; 
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Figure 8.2. Temperature dependence of the resistivity for four different cooldowns. 
The densities, which correspond to curves 1 to 10, are as follow: 0.827, 0.0882, 0.942, 
0.972, 1.00, 1.038, 1.07, 1.18, 1.31, 1.53 in units of 11 210 cm .− . 5

cn  and 25
cn  mark two 

critical dependences for cooldowns at 5gV =  and 25 V, respectively. 

the channel resistance ~ 30 /kΩ ), the chosen the source-drain excitation 10 μV

corresponds to the dissipation 15~ 10 W,−  which might cause electron overheating  

≲1 mK.100 

Since the cooldown-specific changes in ( )Tρ  vanish with decreasing 

temperature, we have attempted to analyze the variations 

cool cool
1 2( , ) ( , )T V T V Tδρ ρ ρ( ) = −  in terms of exponential exp( / )T−Δ  dependence as 

demonstrated in Figure 8.3.  The corresponding activation energy Δ  is very low: it 

varies within the range ~ (0.7 1) K.- . 
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Figure 8.3. Difference between resistivity values for two different cooldowns (shown 
in Figure 8.2) versus inverse temperature. The numbers label the curves for the 
densities the same as in Figure 8.2. 

This proves that the low-lying band of localized states (located close to the bottom 

of the conduction band, 8 K≈  below the Fermi level) is irrelevant. The smallness of 

Δ , therefore, points to the involvement of localized states that are located close to the 

Fermi Level.  Similar resonant localized states are known in narrow band-gap 

semiconductors and must be spatially separated from the mobile states. 

8.4. In-plane magnetoresistance for different cooldowns 

The in-plane MR data for different cooldowns are shown in Figure 8.4 and 

Figure 8.5.  This MR is associated with spin effects.115,152,92  In the theoretical models 

that describe in-plane MR in terms of EEI35,37, the MR is controlled by the FL 

parameter and the momentum relaxation time .τ  An important advantage of our 

method is that, as was mentioned above, cooling of the same sample at different coolV  

does not affect these parameters. Thus, one might expect to observe a sample-
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independent behavior if the MR is controlled solely by the universal interaction 

effects. 

Firstly, we consider the range of field much weaker than the field of complete spin 

polarization ( ).Bg Bμ  The insets to Figure 8.4 show that the MR is proportional to 

2B  at 1.Bg Bμ ≤  We found that the slope 2d dBρ  is nearly cooldown independent 

(i.e., universal) only for densities 11 21.3 10 cmn −> ×  (which are 30% greater than the 

critical density cn ) or for the resistivity 2h eρ(0) < 0.16  (compare two insets to 

Figure 8.4): this is consistent with earlier observation135.  With approaching ,cn  this 

university vanishes: Figure 8.4(a) shows that even when the zero-field resistivity is as 

small as 20.22h e , the slope varies be a factor 1.3 for different coolV . 

For intermediate field, ,B FT g B Eμ< <  the )Bρ(  behavior is not universal over 

the whole density range 11 2(1-3) 10 cmn −= ×  (Figure 8.4).  As n decreases and 

approaches cn , the cooldown dependent variations of ( )Bρ  increases progressively.  

The influence of the cooldown conditions on the MR becomes even more dramatic in 

strong field; .F BB E gμ>  Despite the fact that the dependences ( ) ( )n nμ τ∝  for 

different cooldowns were very similar (Figure 8.1), we observed very large variations 

in the high-field MR. Figure 8.5 shows ( )Bρ  for two different cooldowns at two 

values of n.  The cooldown conditions cause factor-of-five changes in MR in strong 

field and factor-of-two changes in the values of satB B=  at which the MR saturates at 

a given electron density.  The latter quantity was determined from the intercept of the 

tangents at the field below and above the MR saturation.92  

The nonuniversal, sample-dependent behavior ( )Bρ  agrees with earlier 
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Figure 8.4. Examples of the dependences 2 )Bρ(  at 0.3 KT =  for carrier density 

(a) 11 21.2 10 cm−×  and (b) 11 21.34 10 cm−× . The insets blow up the low-field region of 
the quadratic behavior. The values of coolV  are indicated for each curve. 

observations made on different samples.92  We emphasize that the curves for different 

coolV  [in both Figure 8.5(a,b)] nominally correspond to the same density.  The fact 

that satB  is a cooldown dependent parameter proves that the MR in strong parallel 

fields is not solely related to the spin-polarization of mobile electrons.  The fact that 

the variations arise in strong fields ~B Fg B Eμ  hints that a deep tail of localized 

states located near the bottom of the conduction band (or near the bottom of the upper 
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Figure 8.5. Resistivity vs. in-plane magnetic field for three cooldowns at two 
densities: (a) 11 21.09 10 cm−×  and (b) 11 21.33 10 cm−× .  

spin subband)46,148,106,153 is responsible for the magnetoresistance variations. We note 

that, at low temperatures 1 K FT E≤  and at zero field, temperature activation of 

carriers from the tail of localized states to the Fermi level (across the energy gap 

~ FE ) is negligibly weak and could not affect the data shown in Figure 8.2. In 

contrast, at higher temperatures ~ FT E , the thermal activation of carriers from the 

tail of localized states to the Fermi level produces noticeable effects, which are 

detected in the Hall voltage.154 

It is worth mentioning that the influence of variable disorder on transport and 

magnetotransport in Si MOSFETs has been studied earlier.  Both temperature 

dependence ( )Tρ  and magnetoresistance ( )Bρ  were found to be different in 

samples with different mobility,149,92 in samples cooled down with different values of  
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Figure 8.6. Typical SdH oscillations at six temperatures (indicated on the main panel) 
and in in-plane field 0.02 TB = . The nominal density value is 11 22 10 cm .n −≈ × . The 
lower left inset demonstrates the precise control of the zero magnetic field position, 
and upper inset magnifies one of the oscillations to show its shifting with T. 

the substrate bias voltage,155 and with an intentionally varied oxide charge.6  In 

contrast, in our studies, we kept constant the scattering time, the quantum time, the 

phase breaking time, the interface charge, and the parameters relevant to EEI. Even 

under such conditions, strong nonuniversal variations in ( )Tρ  and ( )Bρ  occur. 

In order to elucidate the origin of the observed variations in disorder, we have 

analyzed SdH oscillations at weak perpendicular magnetic fields versus temperature  
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Figure 8.7. Temperature dependences of the frequency of SdH oscillations at four 
fixed values of the gate voltage. The different curves within panels (c) and (d) are 
shifted in y-axis for clarity.  

and in-plane magnetic field. Figure 8.6 shows typical ( )xx Bρ ⊥  curves for six  

temperatures that were measured during the same cooldown for a fixed gate voltage 

value.  The xxρ  minima occur when the Fermi energy coincides with the middle of the 

energy gap. The upper-left inset clearly shows that the minima of the oscillations shift 

with temperature, thereby, providing evidence for the changes in the density of mobile 

carriers. The lower-left inset demonstrates that the shift of the xxρ  minima is not 

caused by variations in the residual field of the superconducting magnet (maintained 

at 4 K).  

We fitted the total oscillatory picture with the theoretical dependence (similar to that  
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In Ref. 41) using the frequency of oscillations SdHn  for each of the curves as a fitting 

parameter. The resulting temperature dependences of SdHn  are shown in Figure 8.7. 

The error bars on the figure correspond to relative changes of the frequency with 

temperature; the absolute frequencies are determined with about three times lower 

precision. At a higher density 11 2n 5 10 cm−> ×  the oscillation frequency was 

independent of temperature within the 0.5% uncertainty. The SdH ( )n T  changes 

become noticeable at a density 11 24 10 cm−≤ ×  (which is four times larger than the 

critical density of the 2D MIT); they increase progressively with an in-plane field, as 

Figure 8.7(c,d) shows. 

8.5. Conclusions 

The measured density values SdHn  refer to the density of mobile electrons that 

participate in the Landau quantization. The weak temperature variations of the density 

of mobile electrons do not involve a large energy scale on the order of ~ 8 K.FE  This 

points to the presence of resonant localized states at the Fermi level, which are 

separated spatially and by a small energy barrier from the mobile states. The density 

variations are then caused by exchange of electrons between those two states via 

either overbarrier transitions, or tunneling. 

The temperature induced exchange of electrons between the bands of mobile and 

localized states, by itself, cannot produce a significant effect on the resistivity. Indeed, 

the appearance (disappearance) of 9 210 cm−  charged scatterrers (which corresponds to 

the 0.5% variations of density in Figure 8.7) may, correspondingly, cause 0.5% 

changes in ρ . However, in the critical regime, the localized states are expected to 

occupy a significant share of the total 2D layer by forming clusters.  The periphery of 
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the cluster is assumed to consist of the resonant states that may emit and absorb 

electrons. As a result, the overall area available for motion of mobile electrons 

changes with temperature, similar to that in the known percolation picture156.  The 

resonant states, thus, may control transport through the saddle points separating 

neighboring areas occupied by mobile electrons and, thus, indirectly trigger the strong 

changes in .ρ  

In the B  field, the resonant state should split and move relative to the band of 

mobile states. This model can potentially explain both the strong variations of )Tρ(  

and )Bρ(  in the critical regime and the weak changes in the mobile carrier density. 

Formation of the two-phase state may be caused by either disorder or EEI.  

Spontaneous formation of the heterophase state in the vicinity of the phase transition 

was established for quasi-1D systems;157 in 2D electron systems, the two-phase state 

is also intrinsic to some theoretical models.158 

To summarize, by cooling the same high-mobility Si MOSFET sample at different 

fixed values of the gate voltage, we tested the universality of temperature and 

magnetic field dependences of the resistivity near the 2D MIT.  An important 

advantage of this approach is that the different cooldown procedures do not alter the 

interaction effects between mobile carriers. It has been found that, in the vicinity of 

the transition ( 2h eρ ∼ ), the specific cooldown effects strongly affect )Tρ( ; these 

effects vanish only when ρ decreases below 2~ 0.1h e  with increasing electron 

density; they also vanish as T decreases.  The nonuniversal behavior is especially 

dramatic in strong B  fields, where it extends to much higher electron densities (we 

observed pronounced nonuniversality of ( )R B  over a range of 11 2(1 3) 10 cm ).n −= − ×  
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Our results reveal the existence of the resonant (shallow) localized states near the 

Fermi energy.  The observed temperature variation of the frequency of SdH 

oscillations demonstrates a weak exchange of electrons between the reservoirs of 

mobile and resonant localized states. The large changes of )Tρ(  at elevated 

temperature signify the development of a spatial inhomogeneity of the 2D system, 

which may result from either interactions between electrons or disorder. 



151 

 

 

9. Summary 

INTERACTION EFFECTS IN HIGH-MOBILITY Si MOSFETs  

AT ULTRA-LOW TEMPERATURES 

The experimental observation of the metallic behavior and the apparent 2D MIT 

in almost all dilute 2D electron and hole systems studied so far defies the main 

statement of the scaling theory of localization that in 2D at zero temperature all 

electron states are localized and there exists no true metallic phase. 

A high-mobility Si MOSFET stands out of all other 2D systems since its transport 

properties are especially pronounced. In particular, two almost degenerate valleys 

strongly amplify the anomalous metallic dependence of ( )Tσ .  

Recently, Zala, Narozhny and Aleiner35 have explained the metallic behavior of 

the conductivity in terms of EEI using the Fermi-liquid approach.  The authors of 

Ref. 35 linked the theory of Altshuler and Aronov9 and Finkelstein10 (diffusive 

regime) and the screening theory32,33,34 (ballistic regime). The ZNA theory predicts 

that the magnitude and sign of interaction correction , )T BσΔ (  is determined by the 

value of the Fermi-liquid parameter 0Fσ . The metallicity in various low-carrier-

density 2D systems is enhanced at low n due to the renormalization of 0Fσ .  

In the present work, we have studied the interaction effects responsible for the 

anomalous metallic conductivity over wide ranges of electron densities, temperatures 

and magnetic fields. 

The interaction theory predicts the conductivity to depend on several parameters 

such as the elastic transport scattering timeτ , the Fermi-liquid parameter 0Fσ  and the 
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valley splitting VΔ . Although the effect of the intervalley scattering is not considered 

in the interaction theory35, it might also affect the behavior of ( , )T Bσ  since at 

temperatures smaller than intervalley scattering rate 1
Vτ
−  two valleys are effectively 

unified and the enhancement of the metallicity is diminished.  As a result, with 

decreasing of T, the metallic dependence of ( )Tσ  is expected to become weaker or 

even to be replaced with the insulating one.  Thus, it is crucial to determine these 

parameters in independent experiments. 

 Before analyzing the temperature and magnetic behavior of the conductivity with 

the existing interaction theory35 we have measured in independent experiments the 

parameters, which might affect the low-temperature transport: valley splitting and 

intervalley scattering. 

The analysis of SdH oscillations allowed us to estimate the energy splitting VΔ  

between two valleys. In particular, a noticeable reduction of the SdH amplitude was 

attributed to a non-zero valley splitting. The measured values of VΔ  (0.4K and 0.7K) 

for two our samples indicate that the effect of the valley splitting on σ  is indeed 

important at low temperatures. 

Based on the analysis of measured WL magnetoresistance, we have studied in 

details the intervalley scattering in Si MOSFET samples with different mobilities. In 

the analysis of our WL MR data we used a recent theory developed by Averkiev and 

Tarasenko39 that extends the ballistic (i.e., applicable to arbitrary classically-weak 

magnetic fields) theory of WL QC to the case of two degenerate valleys. Our 

experiments have shown that the intervalley scattering is elastic and rather strong. The 

intervalley scattering rate is temperature independent and the ratio Vτ τ  decreases 

monotonically with increasing the electron density. We found no simple correlation 
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between Vτ  and the mobility of different samples, what points to a sample specific 

mechanism of the intervalley scattering. The measured 1
Vτ
−  values correspond 

(0.4-0.8) KT =  what indicates the importance of extending the existent interaction 

theories to the case of finite intervalley scattering rate. 

We have also reanalyzed previously measured SdH oscillations using the available 

theory of magneto-oscillations117 that extends the Lifshitz-Kosevich theory99 to 2D 

interacting systems. This allowed us to correct previously reported 0 ( )F nσ -values. 

Proper grounding of the experimental set-up and filtering of all leads connected to 

the sample extended the experimental temperature down to 30 mK , what, in turn, 

allowed us to observe the nonmonotonic behavior of the conductivity at millikelvin 

temperatures. In particular, we observed for the first time that the metallic increase of 

σ  with cooling in Si MOSFETs is followed by the downturn of ( )Tσ  at lower 

temperatures.  

We made a thorough comparison of our experimental ( , )T Bσ  dependences with 

the interaction theory35 in both the ballistic and diffusive regimes [ ~ (0.1 15)]Tτ − . 

We have also revealed shortcoming of the earlier analysis of ( )TσΔ , reanalyzed the 

available data, and compared the 0 ( )F nσ  extracted from the fitting ( , )T BσΔ  with 

corresponding values from other measurements. Our experiments show that the low-T 

behavior of the conductivity in high-mobility (001) Si MOSFETs is well described by 

the theory of interaction effects in systems with short-range disorder. For a 

quantitative description of the EEI corrections the conductivity eeσΔ  at low 

temperatures ( 0.3 K)T ≤  the theory should be modified by taking into account a 

finite intervalley scattering rate. We conclude that the metallic behavior of the 
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conductivity not-too-close to the apparent 2D MIT can be accounted for by the 

interaction effects in 2D systems at intermediate temperatures including both the 

ballistic and diffusive regimes.  

In addition to the study of the anomalous metallicity not-too-close to the apparent 

2D MIT, we have explored the universality of the temperature and magnetic 

dependencies of the resistivity in the vicinity of the transition. We have varied fine 

details of the effective disorder (the structure of the localized states) in 2DEG by 

cooling down the same Si MOSFET sample at different fixed values coolV  of the gate 

voltage. (We have shown that different values of coolV  do not alter the type of 

disorder (short-ranged), the scattering rate, and the strength of EEI between mobile 

electrons.) 

Our experiments have shown that at relatively high densities 11 2( 1.3 10 )n cm−≥ ×  

the dependences ( )Tρ  and ( )Bρ  in the fields that are much weaker than the field of 

complete spin polarization ( 2 )B Fg B Eμ  are “universal”, i.e. practically 

independent of the coolV value. On the other hand, at low n or in moderate and strong 

magnetic fields this universality is violated. This observation provides direct 

experimental evidence that near the 2D MIT the electron transport at finite 

temperatures in dilute systems becomes sample-specific and dependent on more 

subtle details of disorder. 

We have also observed that the frequency of SdH oscillations varies with 

temperature and magnetic field; these variations grows as n is decreased towards cn . 

This points to the presence of the resonant localized states at the Fermi level, 

separated spatially and by a small energy barrier from the mobile states. 
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APPENDIX A (Shubnikov-de Haas oscillations)  

Shubnikov-de Haas (SdH) effect is an oscillatory behavior of the longitudinal 

resistivity xxρ  in varied magnetic field normal to the plane of a 2D sample.  This 

phenomenon is caused by the changing occupation of Landau levels in the vicinity of 

the Fermi level.  Below we present the main formulas used in the analysis of 

Shubnikov-de Haas oscillations. 

In the presence of magnetic field B⊥ , normal to a 2D sample, the electron 

spectrum is quantized; the Landau levels are formed at energies: 

 
1 , 0,1,2,...
2k cE k kω⎛ ⎞= + =⎜ ⎟

⎝ ⎠
   (A.1) 

where c eB mω ⊥=  is a cyclotron frequency (Figure A1).  The number of degenerate 

states Ln  in each Landau level per unit area is proportional to a magnetic field:  

2
0 2L c

B eB mn
h

ω
π

⊥ ⊥= = =
Φ

.    (A.2) 

Here 0 h eΦ =  is the magnetic flux quantum. The gap between two consecutive 

Landau levels cω  increases with increasing magnetic field, so does the “capacity” 

Ln of each Landau level. Thus, an applied magnetic field transforms a continuous 

density of states for 2DEG 2( 2 )m π  into a series of δ-functions of weights Ln  at 

the energies ( 1 2) ck ω+  as shown in Figure A1.  Each Landau state contains the 

same number of states as the original 2D band over a range of cω .  

In a disordered system, δ -functions are smeared: they acquire a finite width Γ  

because of scattering of electrons by impurities [Figure A1(b)].  
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Figure A1. Density of states in a perpendicular magnetic field (spin splitting is 
neglected). (a) for an ideal system (without scattering processes), (b) realistic picture 
with finite level broadening. The Landau levels in case (b) are distinct when the 
interlevel distance cω  is greater than the level width Γ : cω > Γ . 

The number of occupied Landau levels is characterized by a filling factor ν , 

which is the ration of the density of a 2DEG 2Dn  to the number of states in each 

Landau level Ln : 

22 2 0 2
22D D D

B D
L

n hn nv l n
n eB B

π
⊥ ⊥

Φ
= = = = .   (A.3) 

Here 22 Blπ  is a an area occupied by each state in Landau level ( Bl eB⊥= is called 

the magnetic length). The integer part of the filling factor [ ]ν , is the number of 

completely filled Landau levels, while the reminder [ ]ν ν−  determines the population 

of the highest occupied Landau level, partially filled by electrons.  

As electron density or magnetic field is varied, the number of occupied Landau 

levels changes as well.  Usually in the experiments it is easier to keep electron density 

constant and to vary a magnetic field.  Suppose that 2Dn  is maintained constant and 

B⊥  is varied.  Let us also assume that at a given magnetic field 0B⊥  the number of 
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Figure A2. Occupation of Landau levels in a perpendicular magnetic field (spin 
splitting is neglected). 

 filled Landau levels is an integer number 0
0iν = .  In this case the Fermi energy lies 

in region between Landau levels, corresponding to zero density of states  ( ) 0DoS E =

and is equal to its value 0
FE  before a magnetic field was applied  [Figure A2(a)]. With 

increasing B⊥  the separation between Landau levels cω  and the degeneracy of each 

level Ln will increase.  This will result in depopulating the upper (i0 –th) Landau 

level: the number of occupied states will become ( [ ]) Lnν ν−  instead of Ln  

[Figure A2(b)].  The Fermi level will move with the density of states to keep the 

number of electrons constant.  When B⊥  is increased slightly 0 0( 1 )i iν− < <  the 

Fermi level is approximately equal to 0( 1)F cE i ω≈ +  and lies inside the i0-th level 

within the width Γ , i.e. FE  rises linearly with B⊥ .  With further increase of B⊥  the 

i0-th level will become completely depopulated 0( 1)iν = − , at this point FE  falls 

back to (i0-1)-th level. The movement of FE  with magnetic field is schematically 

shown in a fan diagram (Figure A3) for a perfect system with δ-function Landau 

levels. 
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Figure A3. Variation of Fermi level as a function of magnetic field for 2DEG. The fan 
of thin lines shows Landau levels, while the discontinuous thick line is FE . (This 
picture corresponds to an ideal 2D system in the absence of scattering (δ -function 
Landau levels). For a realistic system the sharp jumps are smeared by Landau level 
broadening.) 

When the Landau levels are broadened due to different scattering mechanisms we 

expect the longitudinal conductivity xxσ  roughly to follow the density of state at the 

Fermi level with a maximum when each level is half-filled.  The density of state at the 

Fermi level and, hence, xxσ  have a periodic structure when considered as a function 

of 1 B⊥ - the Shubnikov-de Haas effect. 

The Shubnikov-de Haas oscillations are described by Lifshitz-Kosevich (LK) 

formula99, which is valid for non-interacting 2D electrons if the amplitude of 

oscillations is small116: 

2 2

2

( , ) 2( , )cos ,

2 (2 / )( , ) 4exp .
sinh(2 / )

LKXX c F
s c

sD c

LK D c
s c

c c

T EA T s s

sT sTA T
sT

δσ ω ω π π
σ ω

π π ωω
ω π ω

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

∑
  (A.4) 
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Figure A4. Zeeman splitting of Landau levels for spin up (red lines) and spin down 
(blue lines) states. Grey lines represent Landau levels neglecting spin-splitting. 

 

Here 2
D be n mσ τ=  is the Drude resistivity ( bm  - electron band mass), c eB mω ∗

⊥=  

is the cyclotron frequency expressed through the effective mass m∗ , 2 2F bE n mπ=  

is the Fermi energy. Parameter DT  is the Dingle temperature,6,159 that describes a 

broadening of Landau levels due to collisions: 

1
2 2D

q
T

π πτ
Γ

= = .     (A.5) 

Here qτ  is the elastic quantum scattering time. While only backscattering processes 

contribute to the transport timeτ , all scattering processes enter the qτ . The ratio qτ τ  

was studied in Ref. 160-162. 
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Figure A5. Typical SdH oscillations with and without in-plane magnetic field for 
electron density 11 210.6 10 cmn −= ×  (sample Si6-14/10) at T=0.35K. (Adopted from 
Ref. 41.) 

The in-plane magnetic field B  lifts the spin degeneracy by introducing an energy 

splitting for spin-up and spin-down electrons equal to the Zeeman energy 

Z B totE g Bμ=  (See Figure A4), where Bμ  is a Bohr magneton and 2 2
totB B B⊥= +  

is a total magnetic field. 

Although the two valleys relevant to the low temperature transport of 

(001) Si MOSFETs are almost equivalent, there exists a relatively small energy 

splitting VΔ  between them. 

Nonzero B  and VΔ  modify Eq. (A.1) as follow 

1 1 1 , 0,1,2,...
2 2 2k c Z VE k E kω⎛ ⎞= + ± ± Δ =⎜ ⎟

⎝ ⎠
  (A.6) 

This results in appearance of beating in the SdH pattern (Figure A5).  
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The complete expression of the LK formula ( , 0VB Δ ≠ ) is given by 

( , ) 2( , )cos ( ) ( ),

( ) cos .
2

LKXX c F
s c s z s V

sD c

s
F

T EA T s s Z E Z

n XZ X s
eB E

δσ ω ω π π
σ ω
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⊥
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⎝ ⎠
⎡ ⎤⎛ ⎞
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∑
  (A.7) 

Or equivalently 
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⎝ ⎠

∑ .(A.8)z 

To summarize, SdH oscillations is a valuable tool in characterizing electronic 

structure in 2D: it can provide information on electron effective mass, spin 

susceptibility, electron density and electron temperature. A detailed analysis of 

extracting renormalized effective mass and g-factor is given in Ref. 41. 

                                                 
z For small values of xxδσ σ the corrections to the longitudinal resistivity xxρ  can be expressed 

as xx xxδρ ρ δσ σ= − . 
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 APPENDIX B (ZNA theory)  

f- and t-functions: 

Explicit formulas for f- and t-function 

0
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Kd and Kb functions: 

The exact formulas for dK  and bK  are the following. 
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Here 0.577...C =  is Euler’s constant, ( )xψ  is the digamma function. 

Although in the analysis of our experimental data we used exact formulas from 

ZNA theory, here we present the asymptotics for Kb, Kd, f and t :35 
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xζ ( )  is the Riemann zeta-function ( (3) 1.202...ζ = ). 
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 APPENDIX C (WL theory for a two-valley system) 

In this section we give a short review of the theory of Averkiev and Tarasenko39 

that describes the WL magnetoconductance of a two-valley system over the whole 

range of classically weak magnetic fields 1c Bω τ μ≡ < . 

The WL QC to the conductivity in the magnetic field has the form 

( ) ( )( ) a bBσ σ σΔ = Δ + Δ     (C.1) 

where the terms ( )aσΔ  and ( )bσΔ  correspond to the diagrams, which have been 

considered in detail in Refs. 125,127,128.  For the short-range scattering potential,aa
 

one obtains 

( ) 2 (3)
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ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

  (C.2) 

Here ,α β γ δ, , = 1, 2  are the valley indices; ( , )xJ ′ρ ρ is the x-component of the 

current vertex, which is defined as 

( , ) [ ( ) ( )]A RF
x

kJ ie G G
m
τ
∗

′−′ ′ ′= , + ,
′−

ρ ρρ ρ ρ ρ ρ ρ
ρ ρ

.   (C.3) 

( )AG ′,ρ ρ  and ( )RG ′,ρ ρ  are the advanced and related Green functions, 

, ,( )

,

( ) ( )
( )

/ (2 / (2 )
y y

y

s k s kR A

s k F s

G
E E i i ϕ

ψ ψ

τ τ

∗ ′
′, =

− ± ) ±∑
ρ ρ

ρ ρ .   (C.4) 

                                                 
aa As follows from our SdH measurements for all samples, as well from numerous other 

experiments,6 the ratio of the large-angle scattering time τ to the quantum time (or any-angle scattering 

time) τq  is close to unity in the studied range of electron densities. This result implies that the 

scattering in the studied samples is short-range. 
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, ( )
ys kψ ρ is the wave function of an electron subject to an external magnetic field B, 

which is normal to the plane of a 2D structure, s and ky are the quantum numbers (s is 

the Landau level number and ky is the in-plane wave vector), 1 / 2( )s cE sω= +  is the 

energy of the sth Landau level; 
(2) ( )C αβ
γδ ′,ρ ρ , and (3) ( )C αβ

γδ ′,ρ ρ  are the Cooperons 

which depend on four valley indices.  The parameters W αβ
γδ , are determined by 

intervalley and intravalley correlators of the scattering potential and are defined by 

 
1 2 3 4 1 2 3 4, ,,k k k k imp k k k kV V N W αβ

α β γ δ γδ δ + + += ,   (C.5) 

where 
1 2,k kVα β  is the matrix element of scattering between electron states ( , )β 2k  and 

( )α, 1k  in zero magnetic field, ( 1, ..., 4)jk j =  are wave vectors in the plane of a 2D 

system, Nimp is the two-dimensional density of impurities, and the angle brackets stand 

for the averaging over impurity spatial distribution. The Cooperons (2) ( )C αβ
γδ ′,ρ ρ  and 

(3) ( )C αβ
γδ ′,ρ ρ  represent the sums of internal parts of the fan diagrams starting with two 

and three lines, respectively.125,127,128 They can be found from the following equations: 

(2)
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ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

   (C.6) 

where ( ) ( ) ( )A RP G G′ ′ ′, = , ,ρ ρ ρ ρ ρ ρ . 

It is assumed that the impurity potential is the same for particles in different 

valleys and, thus, the electron scattering in the valleys is strongly correlated.  In 

particular, in the (001)-oriented Si-based structures the nonzero correlators are 

11 22 22 11 21 12
11 22 11 22 12 21,W W W W W W= = = = .   (C.7) 
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Other correlators vanish due to averaging over the impurity positions because the 

lowest conduction-band valleys in silicon are located in the Δ -points of the Brillouin 

zone and, therefore, the Bloch functions contain oscillatory factors.  The intravalley 

and intervalley scattering times are determined by these correlators: 

11 3 21 3
11 121 / / , 1 / /i Vm W m Wτ τ∗ ∗= = . Using the standard procedure (see Refs. 127 

and 130), one can expand ( , )P ′ρ ρ  and the Cooperons in the series of eigenfunctions 

of a particle with the double charge in a magnetic field and derive equations for the 

WL correction ( )aσΔ  and ( )bσΔ . 

Calculations show that the correction have the form 
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where NP  and NQ  are coefficients which are given by 
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here NL  and 1
NL  are the Laguerre polynomials. 
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