©2008

Sezgin Kiren

ALL RIGHTS RESERVED

I. SPIRODIEPOXIDE APPLICATION: PSYMBERIN II. DIRECT CARBINOLAMIDE SYNTHESIS

By

SEZGIN KIREN

A dissertation submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Chemistry

Written under the direction of

Dr. Lawrence J. Williams Ph.D.

And approved by

New Brunswick, New Jersey

October, 2008

ABSTRACT OF THE DISSERTATION

III. SPIRODIEPOXIDE APPLICATION: PSYMBERIN II. DIRECT CARBINOLAMIDE SYNTHESIS

by SEZGIN KIREN

Dissertation Director:

Professor Lawrence J. Williams

The complete structure of Psymberin was determined with the application of the Universal NMR database approach. A formal synthesis of psymberin was completed with the application of spirodiepoxides. An assembly of a dihydroisocumarin ring was accomplished from a complex aldehyde and an anion derived from a pentasubstituted arene. A new condition to couple an aldehyde and an amide was achieved to reach a carbinolamide moiety. This condition was applied for the synthesis of analogs and hybrid structures. In a separate study, a metal and a ligand were investigated to promote the coupling between thioacids and azides.

ACKNOWLEDGEMENT

I would like to thank to Professor Lawrence J. Williams for his sage advice, guidance and support throughout my career.

I would also like to thank Professor Spencer Knapp, Professor Daniel Seidel and Professor Edmond J. LaVoie for being on my thesis defense committee. I would like to thank Professor Spencer Knapp and Professor Daniel Seidel for their help and stimulating discussions.

I also thank Dr. Tom Emge for obtaining all the crystallographic data.

I would like to thank Dr. Ning Shangguan for his valuable help and Dr. Partha Ghosh for insightful discussions. I would thank all the past and present members of the Williams group for generous support.

Finally, I would like to thank to all my friends and Dr. Ahmet Tarik Baykal for their deepest friendship.

DEDICATION

This thesis is dedicated to my family.

Table of Contents

Abstract of Dissertation	ii
Acknowledgment	iii
Dedication	iv
Chapter I Structure Elucidation of Psymberin	
1.1 Introduction: Pederin Family	1
1.2 A new member of the Pederin Family	3
1.3 Biological Activity	3
1.4 Structural Determination of Irciniastatin A and Psymberin	6
1.4.1 Pettit Group: Irciniastatin A	6
1.4.2 Crew Group: Psymberin	7
1.5 Universal NMR Database Approach	8
1.6 Synthesis of the Anti and Syn Models	9
1.7 Results and Discussions	12
1.8 Coupling Constant Analysis	14
1.9 Degradation Studies	16
1.10 References	18
Chapter II Synthetic Strategies for Pederin Family Members	
2.1 Introduction	22
2.2 Synthesis of Tetrahydropyran ring	26
2.2.1 The Matsumoto Strategy	26

2.2.2 The Hoffmann Strategy	27
2.2.3 The Nakata Strategy	27
2.2.4 The Rawal Strategy	28
2.3 Synthesis of the Trioxadecalin ring	29
2.4 Synthesis of the Psymberic acid	30
2.5 Synthesis of the Right Segment of Psymberin	31
2.5.1 The De Brabander Strategy	31
2.5.2 The Floerancig Strategy	32
2.6 References	35

Chapter III Spirodiepoxide Application: Psymberin

3.1 Background Information for Spirodiepoxides	37
3.2 Spirodiepoxides in Psymberin Synthesis: 1 st generation	42
3.3 Synthesis of the Rawal Intermediate	55
3.4 Completion of the Formal Synthesis of Psymberin	56
3.5 Spirodiepoxides in Psymberin Synthesis: 2 nd generation	61
3.6 References	67

Chapter IV Direct Carbinolamide Synthesis

4.1 Introduction	70
4.2 Direct Aldehyde-Amide Coupling	74
4.3 Results for Boron Imidates with Aldehydes	76
4.4. Complex Amide and Aldehyde Coupling: Analogs	78

4.5. Stability of Carbinolamides	81
4.6 Scope of the boron imidates	83
4.7 References	85
Chapter V Metal Promoted Thioacid-Azide Coupling	
5.1 Introduction	86
5.2 Discussions for the mechanism of the Thioacid-azide coupling	95
5.3 References	103
Experimental Data	
General	104
Chapter I	105
Chapter III	128
Chapter IV	148
Chapter V	159
Selected ¹ H and ¹³ C NMR Spectra	173
Curriculum Vitae	258

List of Tables

Table 1 LC ₅₀ Values for Psymberin	5
Table 2 Optimization of Cupling Reaction	77
Table 3 Screening of Metal Promoter	90
Table 4 Results from Iron (III) Chloride and Thionoester Coupling	91
Table 5 Results from Iron (III) Chloride and Thioacid Coupling	92
Table 6 Results from Using Different Bases	92
Table 7 Results from Thioacid-Azide Coupling	94

List of Figures

Figure 1 Representative Members of the Pederin Family	2
Figure 2 Structural Similarities within the Pederin Family	2
Figure 3 Psymberin	3
Figure 4 Reported Structure of Irciniastatin A by Pettit	6
Figure 5 Reported Structure of Psymberin by Crews	7
Figure 6 Anti and Syn Models	9
Figure 7 Crystal Structure of Anti Model	12
Figure 8 Differences in ¹ H and ¹³ C NMR between Models and Psymberin	13
Figure 9 Coupling Constants Analysis for Psymberin	15
Figure 10 Total Synthesis of Pederin Family Members by Different Groups	23
Figure 11 Disconnections for the Synthesis of Pederin and Mycalamide A	24
Figure 12 Disconnections for Psymberin	25

List of Schemes

Scheme 1 Anti and Syn Products from Grignard and Keck Peaction	10
Scheme 2 Synthesis of Anti (S2.5) and Syn (S2.8) Models	11
Scheme 3 Degradation Studies	17
Scheme 4 The Matsumoto Strategy	26
Scheme 5 The Hoffmann Strategy	27
Scheme 6 The Nakata Strategy	28
Scheme 7 The Rawal Strategy	29
Scheme 8 The Rawal Strategy	30
Scheme 9 The De Brabander Strategy	30
Scheme 10 The De Brabander Strategy	31
Scheme 11 The De Brabander Strategy	32
Scheme 22 The Floerancig Strategy	33
Scheme 22 The Floerancig Strategy	34
Scheme 24 SDE Formation and Opening	37
Scheme 25 SDEs by the Crandall Group	38
Scheme 26 Cyclization of Allenic alcohols	39
Scheme 27 Crystal Structure of SDE	40
Scheme 28 Transition Models for SDE opening	41
Scheme 29 Synthetic Plan: 1 st Generation	43
Scheme 30 Stereoselectivity in Allene Oxidation	44
Scheme 31 Simple Allene Cyclizations	45

Scheme 32 Preliminary Results for Model Allenes	46
Scheme 33 Myers Allene Synthesis	47
Scheme 34 Synthetic Strategy for Allene S29.6	48
Scheme 35 Preparation of Alkyne and Weinreb Amide	49
Scheme 36 Noyori Reduction	50
Scheme 37 Formation of the Key Allene	51
Scheme 38 Cyclization of Allene	52
Scheme 39 SDE formation from Allene	53
Scheme 40 Oxidation of Epimeric Allenes	53
Scheme 41 Stable SDEs	54
Scheme 42 Synthesis of the Rawal Intermediate	55
Scheme 43 Completion of the Pyran Ring	57
Scheme 44 Aromatization of Dimedone	58
Scheme 45 Mechanism of Aromatization	58
Scheme 46 Formation of Arene S44.2	59
Scheme 47 Anion Formation from Arene S42.2	59
Scheme 48 Completion of Formal Synthesis	60
Scheme 49 Synthetic Strategy for 2 nd Generation	62
Scheme 50 DMDO Oxidation of Allene in FR Synthesis	62
Scheme 51 Stability of Arenes	63
Scheme 52 Revised 2 nd Generation Strategy	63
Scheme 53 Synthesis of Ketone S53.3	64
Scheme 54 Paterson Aldol Reaction	64

Scheme 55 Asymmetric Reduction of Hydroxyl Ketone	65
Scheme 56 DMDO Oxidation of Allenes	66
Scheme 57 The Matsumoto Strategy	71
Scheme 58 De Brabander Synthesis of Psymberin	72
Scheme 59 The Roush Strategy	72
Scheme 60 Huang's Strategy	73
Scheme 61 Direct Aldehyde-Amide Coupling	74
Scheme 62 Zampanolide Synthesis	75
Scheme 63 Direct Coupling of Amide S63.1 and S63.3	75
Scheme 64 Simple Aldehyde and Amide Coupling	76
Scheme 65 Examples of Aldehyde-Amide Coupling	78
Scheme 66 Preparation of Complex Amides	79
Scheme 67Complex Aldehydes Preparation	80
Scheme 68 Examples of Complex Amide and Aldehyde Coupling	81
Scheme 69 Elimination Products	81
Scheme 70 Stable Carbinolamides	82
Scheme 71 Methylation of the Carbinolamide S64.3	83
Scheme 72 Examples of Electron Rich and Poor Azides	86
Scheme 73 Mechanism for Electron Withdrawing Azides	87
Scheme 74 Mechanism for Electron Rich Azides	87
Scheme 75 Coupling of Thioacid and Thionoester with Azide	88
Scheme 76 Results for Different Iron Halides	93
Scheme 77 The Azides Failed to Couple	95

Scheme 78 Control Reactions for Azide and Thioacid	95
Scheme 79 Side and by-Products from Amidation	96
Scheme 80 Dimer and Benzyl Azide	96
Scheme 81 Stable and Unstable Hydrosulfamines	98
Scheme 82 The Mechanism for Decomposition S-Aroylhydrosulfamines	98
Scheme 83 Control Reactions on Side Product S79.1	99
Scheme 84 The Proposed Mechanism of the Amide Formation from S79.1	100
Scheme 85 The Mechanism for the Formation of S79.1	101
Scheme 86 The Formation the Intermediate S86.3	102

List of Abbreviations

°C	degrees Celsius
2,6-lut.	2,6-lutidine
Ac	acetate
acac	acetylacetonate
Bn	benzyl
Boc	<i>t</i> -butyloxycarbonyl
Bu	butyl
δ	chemical shift (parts per million)
d	doublet
DCM	dichloromethane
DIAD	diisopropyl azodicarboxylate
DIBAL-H	diisobutylaluminum hydride
DMAP	4-(N,N-dimethylamino)pyridine
DMDO	dimethyldioxirane
DMF	dimethylformamide
ee	enantiomeric excess
FCC	flash column chromatography
h	hour(s)
Hz	hertz
i	iso
imid.	imidazole
LC ₅₀	concentration that will eliminate 50% of a given population when administered as a single dose
m	multiplet
М	molar (moles/liter)

m/z	mass to charge ratio
m-CBA	meta-chlorobenzoic acid
m-CPBA	meta-chloroperoxybenzoic acid
Me	methyl
min	minutes
ml	milliliters
mol	moles
MOM	methoxymethyl
MS	molecular sieves
Ms	methanesulfonyl
MTP	methoxytrifluoromethylphenyl
n-BuLi	n-butyllithium
NMR	nuclear magnetic resonance
Nu	nucleophile
[O]	oxidant
OTf	trifluoromethanesulfonyl
Р	protecting group (generic)
p	para
Pd/C	palladium on carbon
Ph	phenyl
PMB	(4-methoxy)benzyl
PMP	4-methoxyphenyl
ppm	parts per million