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ESSAYS ON SEMIPARAMETRIC COX PROPORTIONAL 

HAZARD MODELS   

 

by HUIYING ZHANG 

Dissertation Director: Hiroki Tsurumi 

 

 In this dissertation I study different versions of the semiparametric proportional 

hazard duration model and their practical applications under both frequentist and Bayesian 

econometrics frameworks. I use the unemployment spell data set that is created from the 

Panel Study of Income Dynamics (PSID). 

 In Chapter 1 I study the effects of unemployment compensation and other 

important sociodemographic factors on unemployment duration. Whether duration 

dependence follows a particular function form is also examined. Discrete, semiparametric, 

proportional hazard models are used and compared among different specifications. I allow 

for nonparametric estimation of the effect of time on the unemployment exit rate. Because 

unobserved individual heterogeneity has the potential to bias the estimation results, we also 

consider gamma heterogeneity as an additional source of error in the hazard model (i.e., the 

so called mixed proportional hazard model, MPH). I find that the nonparametric baseline 

hazard estimations capture very well the shape of the empirical duration, which often does 

not belong to a specific parametric family; and unemployment insurance and 
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socio-demographic aspects have significant impacts on the unemployment spell. 

 In the second chapter I test whether different ways to resume work, such as new job 

and recall, have different duration behaviors. Hence a semiparametric dependent 

competing risks proportional hazard model is specified. Identifiability of such model is 

also discussed. By assuming linearity on the baseline hazard at each time interval, I allow 

for unrestricted correlation between the competing risks. My model guarantees that the 

unobserved failure occurs later than the observed failure at any possible time point, and 

censored observations are accommodated explicitly in the model specification. The 

estimated correlation coefficient suggests that recall duration and new job duration have a 

positive relationship that may not be negligible. We also find that there is significant 

difference in the hazard structure of returning to the same employer and a different 

employer. 

 Different from the first two chapters, in the third chapter I investigate the ordered 

probit duration model semiparametrically using the Bayesian Markov Chain Monte Carlo 

(MCMC) methods. I develop and estimate the model without considering unobserved 

heterogeneity, and noninformative priors are assumed for both the baseline hazard and 

regressor parameters. Hybrid Metropolis-Hastings/Gibbs sampler is employed to speed up 

chain mixture. Convergence of the chains is assessed by the Gelman-Rubin scale reduction 

factor. Applications on the PSID unemployment duration data demonstrate that the 

proposed model and estimation method perform well. 
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Introduction 
 

 
 Over the last few decades, duration models have been broadly used to analyze 

event history data in a wide range of disciplines. Originated from biostatistics and 

engineering fields, duration analysis has become a main subject of econometrics. There are 

hundreds of empirical studies applying duration models to examine economics issues. For 

example, in labor economics, duration models are used to study the unemployment 

duration and the duration of jobs (e.g., Meyer 1990, Baker and Rea 1998); in financial 

economics, duration models are used to study credit risks and the time period between 

stock market share transactions (e.g., Deng, Quigley and Order 2000, Engle and Russell 

1998); in macroeconomics, duration models are used to study the duration of business 

cycles (e.g., Diebold and Rudebusch 1990); in political economics, duration models are 

used to study adverse selection in insurance markets (e.g., Finkelstein and Poterba 2004); 

and in health economics, duration models are used to examine the effect of ill health on 

retirement decisions (e.g.,  Disney, Emmerson and Wakefield 2006). 

 Among these applications, a reduced-form duration model, or the so-called 

Proportional Hazard (PH) model has received extensive attention. Basically, the PH model 

has two to three multiplicative components: the baseline hazard that determines the shape 

of duration, the particular function form that highlights the effects of observed explanatory 

variables on the hazard rate, and the heterogeneity term that represents unobserved 
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differences across sample units. When heterogeneity is added on, the PH model is often 

referred as the MPH (Mixed Proportional Hazard) model. 

Applications of lifetime distributions to labor economics have become widely since 

about 1980; early references include Flinn and Heckman (1982), Lancaster (1979), Butler 

and McDonald (1986), Butler and Worrall (1985), Moffitt (1985). The proportional hazard 

model is broadly used in the empirical analysis of unemployment duration. Three key 

issues of these analyses are: 

1) How unemployment insurance policies (and other factors) affect the duration of 

unemployment, especially at the time points close to benefits exhaustion? 

2) When there are two or more ways of exiting unemployment, what is the 

duration behavior for each type of exit? Are they similar to each other, or quite 

different? 

3) Whether it is important to consider unobserved heterogeneity when there is 

nonparametric baseline specification? Is gamma distribution accurate enough 

to describe the unobserved heterogeneity? What could we find if both the 

baseline hazard and the unobserved heterogeneity are estimated 

nonparametrically? 

 Han and Hausman (1990) specified and estimated a semiparametric (mixed) 

proportional hazard model to find answers to the first two questions and part of the third 

issue. They concluded that the baseline hazard does not follow a monotonic trend, and 

hazards become higher around unemployment insurance exhaustion points which are 

usually at 26 and 39 weeks. Besides, the duration behaviors of finding a new job and 

returning to a former employer are very different. Meyer (1990) also studied the first and 
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the third issues using time-variant covariates and nonparametric baseline hazard 

specification. The conclusions he drew are close to those in Han and Hausman (1990). 

Other works in the large literature that try to address issues related to the above three 

include Fallick and Ryu (2006), Baker and Rea (1998), Hausman and Woutersen (2005), 

Heckman and Singer (1984), and Van den Berg (2001). 

 The reason why the proportional hazard model becomes so popular is largely due to 

the common characters that exist in most empirical data and several estimation advantages 

inherent in the model itself. Duration data (or event history data) often provide appropriate 

empirical information on a particular process under study. Through application of 

appropriate estimation methods, one is able to describe the process of change, to discover 

the causal relationships in one event or among events, and to evaluate their importance. 

The popularity of the proportional hazard model comes from the fact that it has been 

recognized as a suitable approach to studying such data.  

First, by the baseline hazard specification, we can separate duration dependence 

from individual regressors’ effects. Furthermore, one can capture changes in hazard over 

the spell given a flexible manner of time effect. This is very useful if we want to check how 

some factors (such as unemployment compensation) affect a unit’s spell (e.g., 

unemployment duration). Unlike the simple assumption that the baseline hazard belongs to 

a specific parametric family, non-parametric baseline specification will allow the shape of 

duration determined by information in the empirical datasets.  

Second, duration data usually include censored data. Proportional hazard duration 

model, different from conventional regression models (see Flinn and Heckman 1982 for a 

convincing critique of the application of regression methods in duration studies), can 
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accommodate censored spells without too restrictive baseline assumption. Covariate 

coefficients estimated under the semiparametric methodology will be consistent even if the 

distribution of baseline hazard is unknown.  

Third, the proportional hazard model allows the inclusion of time dependent 

regressors.  In many situations, time-variant covariates are important since their changes 

will reflect current or future changes in hazards.  

Fourth, unobserved heterogeneity is easy to be added on in the duration model. In 

empirical studies, we are not always able to have information on all important factors.  

Moreover, sometimes we do not know what is important. Therefore, introducing 

heterogeneity into the duration model will help us capture unobserved individual 

differences and hence improve our model estimations. 

 Given the advantages and potentials of the proportional hazard model, many 

important works have been done to improve its estimation power. Mainly the purpose is to 

put as less restrictive distribution assumptions as possible on the hazard shape and the 

heterogeneity so that valuable information can be released from dataset without 

interruption. These works focus on either nonparametric baseline hazard, or nonparametric 

heterogeneity, or both. See Heckman and Singer (1984), Meyer (1990), Han and Hausman 

(1990), McCall (1996), Horowitz (1999), Hong and Chernozhukov (2002), Hausman and 

Woutersen (2005), Honoré and Lleras-Muney (2006), Abbring and Van den Berg (2007), 

and Khan and Tamer (2007) among others for references on the refinement of estimation 

methods. 

 This dissertation analyzes unemployment duration data by using semiparametric 

classical and Bayesian estimation approaches. In the maximum likelihood estimation 
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chapters (Chapter 1 and 2), we use the duration models specified in Han and Hausman 

(1990), Meyer (1990) and Sueyoshi (1992) to examine the effect of unemployment 

compensation on duration hazard. The baseline hazard is estimated nonparametrically, and 

gamma heterogeneity is considered in the mixed proportional hazard model. Competing 

risks duration model is also studied for different exiting paths, new job and recall. 

 In Chapter 3, the Bayesian estimation chapter, we develop a hierarchical single risk 

proportional hazard model without considering unobserved heterogeneity. Priors on the 

baseline hazard and the covariate coefficients are both assumed to be noninformative in 

order to maintain objectivity in the results.  

 Currently we are working on the MPH model with nonparametric baseline hazard 

and either normal or nonparametric heterogeneity. Dirichlet process prior is applied to 

specify heterogeneity so that different sources of random effects will be taken into account. 

Although there are related works in the literature (e.g., Campolieti 2001), based on our best 

knowledge, our Bayesian model specification seems more flexible, especially on the 

baseline hazard. 
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Chapter 1 

Semiparametric Estimation of Single Risk Proportional Hazard 

Models with Applications in Unemployment Duration 

 

1.1 Introduction 

In duration modeling, there are three categories of estimation methods: 

nonparametric estimation, parametric estimation and semiparametric estimation. 

Situations sometimes arise in which there is no covariate when analyzing duration 

data. In that case, it is appropriate to estimate the model using nonparametric methodology, 

such as the Kaplan-Meier estimate (also known as product limit estimate) and 

Nelson-Aalen estimate (sometimes called the empirical cumulative hazard function), based 

on all the observations. However, situations often arise in which there are some covariates, 

and people wonder how to allow observed covariates to be linked to subsequent outcomes. 

Therefore, it is not surprising to see that over the last 20 years, hazard rate models rather 

than nonparametric estimates, have increasingly been used in practical research for 

analyses of duration data. 

On the other hand, fully parametric hazard models suffer from several drawbacks. 

First, although selecting a specific parametric model based on its tractability and how well 

it fits the data seems to be a good strategy, rather large samples are often needed before one 

can tell the superiority of one model over another, and severe right censoring usually limits 
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the comparison of models (see Lawless 2003). Also, a particular model chosen based on 

comparisons may be hard to apply generally on other studies because different data sets 

might have different underlying true distributions. Second, duration models (especially the 

proportional hazard model) usually have two components: the baseline hazard and a 

particular function form that includes effects of the observed covariates. Fully parametric 

hazard models typically impose a smooth shape on the baseline hazard function. This 

commonly leads to models that do not adequately capture features of the lifetime 

distribution that are apparent in empirical data, hence they are inappropriate for testing 

hypotheses on the effects of interested covariates. Third, available duration data often 

represent discrete observations of a continuous process and it may be important to take the 

discreteness into account. Therefore, nonparametric estimation of the baseline hazard rate 

may be recommended. 

Semiparametric models specify the dependence of time on covariates 

parametrically, but leave the actual distribution of duration unconstrained. This is realized 

by using a nonparametric baseline hazard function specification. There are several event 

history models under semiparametric framework (e.g., Cox and Snell 1989, McCullagh 

and Nelder 1989, and Honoré and Lleras-Muney 2006), including log-location-scale 

(accelerated failure time) models, logistic models and discrete-time hazard-based models. 

But the best-known semiparametric lifetime regression model may be the proportional 

hazard (PH) model introduced by Cox (1972). The Cox model, also called Relative Risk 

model, is a reasonable compromise between the nonparametric estimators and the possibly 

excessively restricted parametric models. It can be extended for multi-spell data, and for 

data with multiple origin and destination states. 
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Cox (1972) and Cox (1975) developed the partial likelihood method to estimate 

covariate parameters without having to consider the baseline hazard explicitly. Although 

this method has great simplicity and usefulness, it is theoretically and computationally 

difficult for the correct treatment of tied, completed durations. In addition, useful 

information about the shape of the hazard function, which is given by the baseline hazard, 

is important for the study of duration behavior. 

After the seminal work on unemployment duration by Lancaster (1979), many 

researches in labor economics have been done with applications of the proportional hazard 

duration model. Among them, Katz (1986) specified a one-parameter Weibull distribution 

for the baseline hazard, while Ham and Rea (1987) assumed that the baseline hazard 

follows a six-order polynomial function and they also investigated the robustness of their 

results with a step function. Another two outstanding works are Meyer (1990) and Han and 

Hausman (1990). Their techniques resolve the deficiency inherent in Cox’s partial 

likelihood method. That is, the parameters of the (log-integrated) baseline hazard are 

estimated flexibly and simultaneously with the covariate parameters. In their papers, the 

continuous duration variable is discretized into time intervals and tied observations are 

easy to deal with. 

In this chapter I study the effects of unemployment compensation and other 

important sociodemographic factors on unemployment duration. Whether duration 

dependence follows a particular function form is also examined by estimating the baseline 

hazard nonparametrically.  

The data set used in this study is created from the Panel Study of Income Dynamics 

(PSID). It includes unemployment duration in weeks for each observation, information on 
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whether one received unemployment insurance when unemployed, and other personal 

information such as age, gender and so on. 

Discrete, semiparametric, proportional hazard models are used and compared 

among different specifications. Following Meyer (1990), Han and Hausman (1990) and 

Sueyoshi (1992), we allow for nonparametric estimation of the effect of time on the 

unemployment exit rate. This specification is more realistic than the monotonic 

assumption (such as Weibull) on duration dependence. Cutler (1995) also indicated that 

nonparametric specification will generate true baseline hazard, therefore more accurate 

hazard function. By diagnosing estimation results of the baseline hazard, we are able to test 

the null hypothesis that duration dependence distribution belongs to a specific parametric 

family. 

Because unobserved individual heterogeneity has the potential to bias the 

estimation results, both Meyer (1990) and Han and Hausman (1990) considered gamma 

heterogeneity as an additional source of error in the hazard model (i.e., the so called mixed 

proportional hazard model, MPH). Though assuming gamma distribution for unobserved 

heterogeneity produces a likelihood function with a closed form, it is more reasonable to 

estimate the distribution of heterogeneity nonparametrically (see, for example, Horowitz 

1999, Hausman and Woutersen 2005). This is beyond the scope of this chapter and awaits 

future research. 

There are a number of findings from this empirical study. Our nonparametric 

baseline hazard estimations have the ability to represent perceived features of the hazard 

function. This is very important since without providing a good description of the observed 

data, a model may not be considered as a good one. One of the perceived features in the 
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analysis of empirical duration data is positive jumps near the point of UI benefits 

exhaustion. These jumps are reflected in the estimated baseline hazard. In addition, UI 

benefits are found to have a strong negative effect on the probability of leaving 

unemployment. Some sociodemographic characters, such as race and marital status, also 

have strong effects on this probability. Besides, we find that it is very important to account 

for unobserved heterogeneity in the regression specification if one wants to reveal 

informative duration distribution. 

 The plan of this chapter is as follows. Section 1.2 presents the (mixed) proportional 

hazard model specifications for single risk unemployment durations. In Section 1.3 we 

describe the data set used in this dissertation and report Kaplan-Meier estimates of the 

hazard function. Section 1.4 provides analyses of model estimation results. Concluding 

remarks and future research directions are given in Section 1.5. 

 

1.2  Ordered logit/probit duration models without and with 

 unobserved heterogeneity  

 Suppose that the time axis is partitioned into a finite number of disjoint intervals, 

say 1, 2, … T, and each interval represents its corresponding week, i.e., t means tth week. 

And we observe a set of failure times for a group of individuals i, i = 1, 2, … N. Denote the 

failure times with time intervals, t = 1, 2, …, T, we now have an event history/duration data 

set with the failure time serves as dependent variable. The dependent variable studied in 

this paper, Ti, is unemployment duration, which is measured as the length of time the 

unemployment lasts until one gets employed or is censored. 
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 Very often observations of event histories are censored. Censorship occurs when 

the information about the duration is not completely recorded. There are different types of 

censoring (see, for example, Lawless 2003 and Hougaard 2000). In our study, we do not 

have a problem with left censoring since we know the beginning of an individual’s 

unemployment spell; but we must be concerned with right censoring. There are individuals 

who are still not employed on the date interviewed. For these persons, unemployment 

duration is right censored because we do not know the end of their unemployment spells. 

This kind of censoring is also called “type I censoring” (Kalbfleisch and Prentice 1980) 

and is unproblematic so it can be handled with event history methods. 

 Let λi(t) be the hazard function, the probability that person i with characteristics Xi 

exits unemployment status at time t, conditional upon staying unemployed until t. The 

equation for λi(t) is (see Prentice and Gloeckler 1978): 

))(exp()(
)(

lim)( 00
βλλ tXt

t
tTttTtP

t i
ii

ti −=
Δ

≥Δ+<≤
=

+→Δ
.   (1.1) 

 The above function is called the proportional hazard model. It assumes that hazard 

function λi(t) can be decomposed into a baseline hazard λ0(t) and a “shift factor” 

))(exp( βtX i− . The shift factor represents the proportional shift in the hazard caused by 

explanatory covariates Xi with unknown parameters β. Values of independent variable 

vector Xi could change over time intervals. But here we assume Xi is constant over time.  

  If we let  

∫=
t

t d
0 0 )(log ττλδ , t = 1, …, T,     (1.2) 

denote the log-integrated baseline hazard, the proportional hazard model in (1.1) becomes  

βδε iti x−= ,        (1.3) 
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where t = 1, 2, …, T, i = 1, 2, …, N and ∫=
t

ii d
0

)(log ττλε . 

 Suppose that the probability density function of T is f(t), then the probability that 

the length of a duration falls between [t-1, t) is  

∫−=<≤−
t

t ii dftTtP
1

)()1( ττ .      (1.4) 

Another interpretation of (1.4) is that it represents the probability of failure in period t for 

person i. Now replace f(t) with λ(t)S(t) and transform the integration bounds accordingly. It 

is easy to see that  

∫
−

−−
−

=−<≤−=<≤−
βδ

βδ
εεβδεβδ it

it

X

Xitiiti dfXXPtTtP
1

)()()1( 1 , (1.5) 

where )]exp(exp[)( εεε −=f . This means if followed strictly from the definition of hazard 

function, ε has a standard minimum extreme value distribution. Hence (1.5) can be 

rewritten as  

)]exp(exp[)]exp(exp[)1( 1 βδβδ ititi XXtTtP −−−−−=<≤− − . (1.6) 

 The likelihood function for a sample of N individuals can be written as a function of 

terms such as (1.6). 

{

} ,)]}exp(exp[1{

)]}exp(exp[)]exp({exp[),(
1 1

1
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βδβδβδ
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−−−−−=∏∏
= =

−
−

 (1.7) 

where yit is an indicator variable that equals one if individual i fails or is censored in period 

t and zero elsewhere; Ci is another indicator variable that equals one if individual i  is 

censored and zero otherwise. Under this specification, we assume censorings occur at the 

end of time intervals. δt is constant in its corresponding time period [t-1, t). That is, T is 
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assumed to have a piecewise-constant hazard function. Xi is a 1×k vector of observed 

explanatory variables, and β is a k×1 vector of unknown coefficients.  

 The corresponding log-likelihood function is  

)8.1()]}}.exp(exp[1log{

)]}exp(exp[)]exp(log{exp[)1{(),(log 1
1 1

βδ

βδβδβδ

iti

ititi

N

i

T

t
it

XC

XXCyL

−−−+

−−−−−−= −
= =
∑∑

  

 Since we know the intervals during which spells end, though exact spell lengths are 

unknown, the log-likelihood function (1.8) is correct for both failure and censored data. 

Survivor functions (one minus the cumulative distribution function) are used for censored 

spells to describe that person i survives longer than t if the spell is censored at some point in 

[t-1, t].  

 Because the standard normal distribution is very similar to the standard extreme 

value distribution except in the extreme tails, unless we are dealing with large enough data 

set, we can hardly tell the difference on the estimation (e.g., Greene 2000). Therefore, we 

suppose that in our study, standard normal ε will be a good approximation to the extreme 

value ε.  

Accordingly, the log-likelihood function is given by  

.)(1log
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11 1
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                  (1.9) 

The only difference between log-likelihood functions in (1.8) and (1.9) is that in (1.9), ε 

follows a standard normal rather than standard extreme value distribution and therefore the 

integration has no closed form. Both yit and Ci are indicator variables with same functions 
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as those in (1.8). Based on the definition of δt in (1.2), the δ s are in order. That is, δ0 = -∞ 

< δ1 < … < δT < δT+1 = ∞. Therefore, the log-likelihood (1.8) takes an ordered logit form 

and log-likelihood (1.9) takes an ordered probit form. 

 To make sure hazard rate in the last duration interval T (in this paper T = 40) 

reasonable, one must censor any observations still ongoing after T. Here, observations 

lasting longer than 41 weeks are censored at 40 because the last time interval of interest is 

40th week. About 10.86 percent of the spells survive until the end of our sample duration of 

40 weeks. The log-likelihood functions (1.8) and (1.9) are now functions of β and 40 δ, 

where δ = [δ1, δ2, …, δ40]. Here we write ),(log δβL rather than ),(log 0λβL because it is 

simpler to work with δ, the unknown logarithm of baseline cumulative hazard function, in 

a maximum likelihood approach. Interpretation of δ is easy since these estimates are 

parameters of a continuous time hazard model. The probability of either failing in or 

surviving each time period lies in the unit interval.  Meanwhile, with these model 

specifications, the problem of treating ties is eliminated; β are estimated consistently with 

nonparametric baseline hazard parameters δ. Another advantage is that we can examine 

whether the baseline hazard indeed falls in any parametric distribution family once we 

have the estimates and asymptotic covariance matrix of the δ. 

 Importance of considering unobservable differences across individuals is discussed 

in literature (for example, Heckman and Singer 1984, Horowitz 1999). Suppose 

heterogeneity is present and takes a multiplicative form the hazard model is then written as  

iii Xtt ηβλλ )exp()()( 0 −= ,      (1.10) 
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where ηi denotes the unobserved heterogeneity and is a random variable that is assumed to 

be independent of Xi (see the Hausman’s test for fixed or random effects 1978, and Greene 

2000). Now the probability of failure in period t for person i is  

)()1()1( tStStTtP iii −−=<≤− ,      (1.11) 

where S represents unconditional survivor function. To find these unconditional survivor 

functions, one must integrate conditional survivor functions over the distribution of η, the 

unobserved heterogeneity. That is  

ηηηβδηηη ηη dfXdftStS itii )(])exp(exp[)()|()( ∫ ∫ −−== .  (1.12) 

 Let η follow a gamma distribution with expectation E(η) = 1 (see Hougaard 2000). 

As implied by this assumption, the density function of η becomes 

0,0),exp(
)(

)(
1

>>−
Γ

=
−

θηθη
θ
ηθη

θθ

ηf .    (1.13) 

The variance of this distribution is
θ

η 1)var( = . The calculation is now easy for (1.12) (see 

Lancaster 1990) and the unconditional survivor function is  

[ ] θβδθ −−⋅+= )exp(11)( iti XtS .      (1.14) 

 As we can see, choosing gamma distribution as the distribution of unobservable 

heterogeneity avoids numerical integrations that may be necessary if the assumed 

distribution is normal. Unfortunately, this choice is justified on the grounds of simplicity, 

the availability of likelihood based inference procedures and ease of use for description, 

prediction and decision (e.g., Heckman and Singer 1984, Lawless 2003). Hence, though 

gamma distribution may be a good choice, more general distribution assumptions and 

estimation methods are desired to control for unobserved heterogeneity. 



 

 

16

Next we obtain the likelihood function for a sample of N units  
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where yit is an indicator variable that equals one if individual i fails or is censored in period 

t and zero elsewhere; Ci is another indicator variable that equals one if individual i  is 

censored and zero if failure. Again here we assume censorings occur at the end of time 

intervals. 

 The corresponding log-likelihood function is 
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By assuming unobserved heterogeneity with a gamma distribution, we have a closed form 

expression for the log-likelihood without dealing with numerical integration. 

 The usual asymptotic property of the maximum likelihood estimator (MLE) (see 

Han and Hausman 1986) )ˆ,ˆ,ˆ(ˆ θδβ=B is  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
′∂∂

∂
⎯→⎯−

−

→∞

12

0
log1lim,0)ˆ(

BB
L

N
NBBN

N

A ,    (1.17) 

where logL are log-likelihood functions specified in (1.8), (1.9) and (1.16), respectively. 

The covariance matrix in (1.17) is just the inverse of the Hessian of the log-likelihood 

function. Based on (1.17), we can derive large sample inference for the unknown 

parameters. 

Conventional approaches usually assume parametric forms for the hazard term that 

determines duration dependence. However, estimated covariate coefficients β  are often 

sensitive to such restrictions and become inconsistent if the assumed baseline hazard 
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distribution is incorrect (e.g., Moffitt 1985). Furthermore, it may be difficult to judge 

which assumed baseline is correct due to the lack of theoretical support for any particular 

shape. 

Unlike traditional methods, all the model specifications in (1.8), (1.9) and (1.16) 

estimate the baseline hazard nonparametrically using standard maximization techniques. 

Estimates of β  are consistent even though the distribution of baseline hazard is unknown. 

One can check whether the baseline hazard follows some particular functional form after 

getting estimation results for δ. Moreover, estimated δ can even help detect possible 

neglected variables (see Meyer 1990). Specified as discrete time duration models, models 

(1.8), (1.9) and (1.16) are not only easy to be maximized but also retain interpretations as 

incompletely observed continuous time hazard models. Compared to the results found in 

Heckman and Singer (1984), inclusion of heterogeneity and choice of its distribution seem 

to have few effects on the estimation results when there is nonparametric baseline hazard 

(see both Han and Hausman 1990 and Meyer 1990). But to make sure both δ and β can be 

estimated consistently, a better choice may be leaving the distribution of η unknown too. 

Hausman and Woutersen (2005) argued that if the true distribution for heterogeneity is not 

gamma, estimates for all parameters could be biased. Interestingly, Abbring and Van den 

Berg (1998) propose that under mild regularity conditions, the heterogeneity distribution 

among individuals at long durations can be approximated well by a gamma distribution. 

We report and compare estimates without heterogeneity and with gamma distributed 

heterogeneity in this paper. Further researches on normal distributed or nonparametric 

heterogeneity using the Bayesian estimation method are currently in progress. 
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1.3 Data description 
 
 Our data set is extracted from waves 15 and 16 of the Panel Study of Income 

Dynamics (PSID) conducted by University of Michigan. Similar but different data sets are 

used in Katz (1986) and Han and Hausman (1990). We choose waves 15 and 16 because 

these two are the most recent data that distinguish new job transitions from recalls, which is 

key to the construction of a competing risks model. Note that in this chapter only single 

risk models are considered, studies on competing risks model could be found in next 

chapter. 

The dependent variable is the unemployment duration in weeks for each individual, 

no matter the spell finally ends through recall (that is, returning to former employer), 

taking a new job or is censored at the interview date. Thus, we consider only complete or 

right-censored spells to avoid the problems caused by left censorship and other initial 

conditions issues (see, for example, Heckman and Singer 1984). Given this sampling 

scheme, the formulation of the likelihood functions should cover both types of 

unemployment durations. 

 Except information on the most recent unemployment duration, waves 15 and 16 

include other detailed questions on socio-demographic characteristics, such as age, sex, 

race, years of education, number of dependents, marital status. These characteristics serve 

as explanatory variables in our model. An extra explanatory variable is whether an 

individual received unemployment compensation when he was unemployed most recently. 

Unemployment compensation is a key part of the social insurance system in the US. Like 

any insurance program, it can potentially influence the behavior of insured persons.  
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However, we can only decide if an individual received unemployment 

compensation (UI) or not. Calculation of weekly UI benefit rate, a variable that is 

commonly used in job search models and other related researches, is unavailable based on 

the PSID information. Though we cannot examine the theory that weekly UI leads to 

longer duration of unemployment, we expect the estimated UI coefficient to be positive 

since receiving unemployment compensation may reduce an individual’s motivation to get 

employed again.  Another potential problem in our data is that long-duration spells will be 

over-sampled due to the PSID sampling frame---only those unemployment spells at least 

partially contained in 1981 and at least partially contained in 1982 are included. Katz 

(1986) discussed the problems and concluded that they were too minor to affect his results. 

Since the same interview scheme is adopted to collect the data sets in Katz (1986) and the 

data applied in this paper, we would like to draw a same conclusion. 

 The following conditions are to be satisfied if a unit of observation (i.e., a subject’s 

last spell of unemployment) is included in our sample: 

1. The observation is on a household head; 

2. The household head is the same head as in previous year; 

3. The age of the household head is between 20 and 65; 

4. The household head belongs to labor force participants; 

5. Observations with missing values are deleted; 

6. (a) The duration ended through returning to the former employer;  

Or 

(b) The duration ended through finding a new job and the last unemployment 

spell was initiated by layoff or firing;  
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Or 

(c) The duration was censored and the household head claimed him/her on 

temporary layoff or unemployed but looking for work at the time of interview. 

The unemployment in either case was initiated by layoff or firing. 

 To summarize the data, we present variable definitions and statistical descriptions 

in Table 1.1. In Table 1.2, unemployment duration in weeks are listed one by one with 

corresponding number of observations for each type of ending (recall, new job or 

censored). 

 The data set consists of 1114 observations. Like the sample used in Han and 

Hausman (1990), only about 50 percent of individuals claim they are whites. This 

oversampling of non-whites is due to the sample frame adopted by the PSID. The most 

important way to exit unemployment is returning to one’s previous employer (i.e., recall). 

Except 53 percent of the unemployment spells end in recall, 25 percent end in finding a 

new job and 22 percent are censored at the date interviewed. UI receiving rate is 63.7 

percent for the whole sample. This is kind of low as Burtless (1983) and others pointed out. 

The possible reasons for such low coverage are about half size of this sample are 

non-whites and either they do not apply for compensation or are not qualified for this 

benefit. And some workers, no matter they are white or not, have poor employment history 

hence it is impossible for them to get unemployment insurance when they became 

unemployed again. 

 Next, we present Kaplan-Meier estimates of the hazard functions (Kaplan and 

Meier, 1958). Table 1.3 gives the empirical hazard for the data, and Figures 1.1 and 1.2 plot 

weekly and monthly hazards for single risk (meaning new job and recall are considered as 
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one failure), respectively. The hazard Ht in Table 1.3 is simply the ratio of the number of 

spells ending in week t, Dt, to the number of spells lasting at least t weeks, Rt. Failures 

include both new job and recall. The number of baseline hazard parameter estimated in this 

paper is 40, one for each week. Therefore, 121 observations that are still ongoing between 

41 and 70 weeks have to be censored. The hazard is higher in weeks 26 and 30 and then 

weeks 35 and 39. These jumps possibly highlight the UI exhaustion effect. 

 The high hazard in the first several weeks is mainly caused by the high frequency of 

recalls when unemployment spells are in their early stage. It is easy to observe this when 

one separates the new job hazard from the recall hazard in Figure 1.3. Shorter length of 

eligible benefits for some people may also contribute to the hazard spikes that happened 

before the UI exhaustion points. Typical job search theories may assume that the new job 

hazard is monotonically increasing and the recall hazard is monotonically decreasing. 

However, from Figure 1.3, we see new job finding rate is not strong positive duration 

dependent. Recall hazard is basically decreasing but involves fluctuations during the 

process. Such details could not be shown if one just puts some parametric restrictions (e.g., 

Weibull distribution) on the baseline hazard. 

 Figures 1.4 and 1.5 display hazard functions of new job and recall when people 

receive UI benefits while unemployed; figures 1.6 and 1.7 are for people who do not 

receive UI benefits. The jumps appeared around benefit exhaustion points are less obvious 

for people without receiving UI, especially in the recall hazard. There are several spikes 

between 26 and 39 weeks in Figure 1.5. Employers may want to keep their skilled workers 

when their businesses shrink, so they dismiss their employees temporarily and get them 

back later by asking workers to take advantage of the UI benefits during their 
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unemployment. In such case, length of unemployment duration is predetermined and 

people get back to work before benefit is exhausted. Meanwhile, different states have 

different lengths of regular benefits when this data set is collected. The minimum is 26 

weeks, and in some states whose unemployment rates were above a trigger level, the 

maximum could be 39 weeks (see Meyer 1990 for an example of the variety). But the 

length of benefits often changes in the course of unemployment duration. This may help 

explain why there are several jumps between 26 and 39 weeks. It is because there is 

variability in benefit lengths across states and people. 

 In some situations, one can get additional benefit from other programs. For 

example, the Federal Supplementary Compensation program started to provide up to 62 

weeks of benefits in the fall of 1982. Possibly the big jump around 15 months (60 weeks) in 

Figure 1.5 is caused by the extra length of benefits since part of our data overlap the fall of 

1982. 

 For UI recipients who finally find a new job, basically the hazard is climbing up 

while for non-UI receivers there is no such trend (see Figures 1.5 and 1.7). This might 

reflect the fact that even if workers receiving no benefits have stronger incentives to 

become employed, they are not competitive with UI receivers who might be more skilled 

or might have other advantages. 

 

1.4 Estimation results 

 Estimation results for ordered logit and ordered probit single risk models without 

heterogeneity are reported in Table 1.4 and Table 1.5. Table 1.4 gives covariate coefficient 

estimates. The effects of unemployment insurance are measured using a dummy variable 
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“UI” which is equal to one if an individual receives compensation when he is unemployed. 

Theories predict that high benefits are expected to lower the hazard because the 

opportunity cost of having no job is decreased. The UI coefficients in all the three model 

estimations have the expected signs and are well estimated. These coefficient estimates 

indicate that receiving benefits during unemployment is associated with around 24 percent 

decrease in the hazard. 

 Table 1.4 also shows that except the coefficient of UI, parameters for 

socio-demographic variables, particularly race and marital status, are significant. If an 

individual is non-white, he has 28 percent less chance of exiting unemployment. Married 

persons have more incentives to find jobs so their spells are shorter. Both race and marital 

status affect the hazard at almost the same magnitude as UI does. This again proves the 

importance of considering such characters when studying unemployment duration. The 

coefficients on age and education have the expected signs and are significantly different 

from zero. Older workers may have more experiences than younger ones; hence for them it 

is easier to resume employment. In ordered probit model (1), the implied effect of a 10 

percent increase in education is 0.1 percent increase in the hazard. 

 Unemployment durations look longer for the family heads that have more 

dependents. One possible explanation is that they may have received special welfare for 

families with several children. To test this assumption, one must have other information 

such as how many benefits in total a family receives during the head’s unemployment. 

Another problematic coefficient is related to sex. In ordered probit model (2), it indicates 

that females become employed more quickly than males. This probably is due to the 

addition of the ‘dependents’ variable in the model. Note the variance of the sex coefficient 
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is much larger than the other two in ordered probit model (1) and the ordered logit model. 

Therefore, we would like to predict that males are more possible than females to quit 

unemployment status. 

 The nonparametric baseline hazard parameters are in Table 1.5. For each model 

specification, there are 40 weekly estimated baseline hazards. These estimates are in right 

order, meaning the values increase over time. Their variances fell well within one unit. 

Figure 1.8 plots the monthly cumulative baseline hazard using the estimates from three 

different model specifications. Compare Figure 1.8 with Figure 1.2, the Kaplan-Meier 

monthly cumulative hazard for single risk case, we find that our baseline hazard 

estimations capture very well the shape of the duration. There are hazard jumps in 5, 7 and 

10 months, reflecting the effects of benefit exhaustions and possible recall or new job 

arrangements that are made before benefits run out. The basic trend of going up and down 

exists similarly in both the Kaplan-Meier estimates and the semiparametric proportional 

hazard duration models estimates. 

 Different locations of the three baseline hazards in Figure 1.8 are mainly caused by 

the different estimated values of “shift factor” exp(-Xiβ). Directly, this can be observed for 

the ordered probit (1) and (2) models. For ordered logit model, the fact that the distribution 

of ε is extreme value but not standard normal, may also contribute to the difference in 

scale. For similar reasons, we may not be able to do model selection by simply comparing 

their log-likelihood values, which are shown in Table 1.4, because ordered probit and 

ordered logit have different likelihood functions. But if we assume ordered probit is a very 

good approximation for ordered logit except in the extreme tails, and the sample size is not 
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large enough to tell the difference, then ordered probit model (2) would be the one that 

wins. 

 Next, we allow unobserved heterogeneity in our maximum likelihood estimations. 

The results are given in Table 1.6 and 1.7. 

 Note that all the estimated proportional effects of explanatory variables on the 

population hazard rate have the expected signs except ‘sex’ when the ‘dependents’ variable 

is also included. This problem is similar to that one happens earlier in Ordered Probit (2) 

model and may need further examination or adjustment. Another point of interest is these 

coefficients tend to be larger in absolute values than those in the models specified without 

accounting for unobserved heterogeneity. For example, the estimate of the elasticity of 

unemployment duration (i.e., the logarithmic derivatives of the hazard, see Meyer 1990) 

with respect to the UI is about 0.39 while previous estimate is about 0.24. This is not 

dissimilar to the findings reported in Lancaster (1979) who observed that the regression 

coefficients in the heterogeneity specification are all greater in modulus than those without 

considering unobserved errors. He also concluded that failure to account for omitted 

regressors would make the covariates’ proportionate effect diminish in modulus over time. 

Simply based on the log-likelihood values, one might say the improvement on the model fit 

is negligible for the heterogeneity consideration; however, the heterogeneity variance is 

respectively 0.9641 and 0.8197, both are significantly different from zero. We shall 

examine the baseline hazard estimates before discussing more on whether it is necessary to 

identify unobserved heterogeneity. 

 Table 1.7 presents estimates of the baseline hazard arising from the heterogeneity 

specification. Calculated monthly cumulative baseline hazard based on Table 1.7 is plotted 
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in Figure 1.9. Spikes in the hazard remain at 7 and 10 months, reflecting the benefit 

exhaustion points at 26 and 39 weeks. However, if we put both Figure 1.8 and 1.9 in one 

figure---Figure 1.10, we will see that the time patterns derived from the heterogeneity 

model are different with those we estimate earlier. Even though still exhibiting rises and 

falls at the same time points, the estimated baseline hazard becomes definitely upward 

sloping when gamma distributed heterogeneity is allowed. 

 These results confirm the intuitive argument in Lancaster (1979). He pointed out 

that though it is important to allow the data to inform us about the baseline hazard 

functional form, omitting regressors would cause the estimated/observed duration 

dependence rate to fall more rapidly than that in a model in which there is a complete 

regressor list. Consequently the estimated (“apparent”) hazard rate will decrease faster or 

increase less fast than the “true” hazard over the duration. Similar results are given in 

Figure 1.11, in which the baseline hazard estimates under different model specifications in 

Meyer (1990) Table VII have been plotted. Also see Hausman and Woutersen (2005) for 

discussions on this issue. 

 As we mention earlier, our estimated behavior of baseline hazard in Figure 1.8 

captures the shape of the Kaplan-Meier hazard in Figure 1.2 very well; compare Figure 

1.11 with Figure 1.3, which also shows Kaplan-Meier empirical hazard, in Meyer (1990), 

we again find that the nonparametric baseline hazards estimated under models 1 and 3 

(both do not account for unobserved heterogeneity) show very close duration distribution 

to that in Meyer’s Figure 3. This interesting observation may be due to the fact that none of 

these models allowing for omission of regressors. In both cases, Meyer’s and mine, the 
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shape of the estimated falling hazard changes dramatically when the heterogeneity is 

considered, and we can no longer simply contribute the difference to a shift factor effect. 

 In the process of resuming work, individuals in the sample may adopt different 

ways to find their jobs, they may face different environment, hold different levels of 

reservation wages, and even for people with same observed regressors, they may return to 

work at diverse times. Hence, it is obvious that many sources of variation between 

individuals are blind to the researchers. Furthermore, unless one can prove that such 

variations are of negligible magnitude, we ought to include an error term to allow for the 

influence coming from possibly individually small but collectively significant causal 

factors.  

One typical example is that some workers may resume employment faster than the 

rest because of unobserved regressors. For these persons, they have higher failure rates. 

Their returning to work will cause the average hazard of the survivors to fall more rapidly 

with time. Since the estimated hazard rate at any point of time will be an average of the 

failure rates of the surviving individuals at that time, it is unsurprised to see that, without 

accounting for unobserved heterogeneity, the baseline hazard distribution falls much faster 

through time. Such spurious duration dependence is possibly uninformative about the 

policy and experience of particular searching individuals. Therefore, to avoid erroneous 

inferences, it is necessary to make allowance for unobserved heterogeneity. 

  

1.5 Conclusion remarks and future directions 

 In this chapter we have applied a semiparametric maximum likelihood approach to 

proportional hazard modeling for duration data and illustrated it for a publicly available 
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data set from the Panel Study of Income Dynamics (PSID). The methodology enables 

relaxation of restrictive parametric assumption on the baseline hazard, so that informative 

results can be attained from the data with as little deviation as possible. Gamma distributed 

unobserved heterogeneity is ready to be allowed in such model framework. 

 In both no heterogeneity and heterogeneity model specifications, estimates appear 

to capture the qualitative effects of explanatory variables, though those in the heterogeneity 

specification have larger absolute values. However, even both sets of baseline hazard 

estimates reflect similar patterns of jumps and falls, when accounting for unobserved 

heterogeneity, the estimated baseline hazard may better approximate the true shape of 

duration distribution. This implies that if we are to obtain inferences with confidence, we 

had better attempt to allow for error in our duration model specification because of the 

quite possibly omitted regressors. 

 Based on this consideration, estimates from the first heterogeneity specification 

(the left column in Table 1.6) are used to summarize the results. The coefficient on the UI 

reception has the expected sign and indicates that receiving unemployment compensation 

will lower the possibility of resuming work for about 39 percent. The estimated elasticity 

of unemployment duration with respect to race and marital status is around 0.47 and –0.42, 

respectively. Older, more experienced workers and more educated workers will return to 

work faster than those who are younger and less educated. And quite possibly males will 

take shorter time periods to resume employment compared to females. 

 In literature it has been suggested, either that inclusion of unobserved error is 

negligible when the baseline hazard is nonparametrically estimated (e.g., Han and 

Hausman 1990), or that heterogeneity plays an important role in duration model if 
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assuming functional form baseline (see Heckman and Singer 1984). The estimation results 

in this chapter (also refer to Meyer 1990 and Lancaster 1979) point out need for allowing 

an error term in the specification even when the baseline hazard is estimated without 

functional form restrictions (for example, Sueyoshi 1992). 

 The omission of regressors not only affects the time variation in the probability of 

individuals leaving unemployment, but also produces less pronounced estimates of the 

effects of observed regressors. Inferences derived in such case may be misleading and 

could not provide valuable information on policy making and individual job search 

behavior (such as, the estimated hazard keeps falling while in reality, individuals resume 

work with increasing probability). Unfortunately, misspecified error term may still lead to 

biased estimation results (Hausman and Woutersen 2005). Therefore, the development of 

nonparametric methods on both baseline hazard and heterogeneity seems necessary if we 

want to have more precise estimations of the duration dependence shape and the effect of 

causal factors. Further work on this issue with MCMC-based Bayesian approach is 

currently ongoing. 

 We also attempt to extend single risk model to competing risks model. Since 

different unemployment exiting ways, such as new job and recall, have different time 

patterns as one can see from the Kaplan-Meier estimates, it is meaningful to consider 

competing risks duration model. Studies of dependent bivariate competing risks model will 

be reported in next chapter. 

 Other possible extensions of the models specified in this paper include:  

(1) Allowing for time-varying covariates. Due to limitations on data availability, 

regressors are treated constant over the spell in this dissertation. But extensions to 
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include time-dependent covariates are straightforward by using the model 

specifications in Meyer (1990) and Sueyoshi (1992). When time-varying covariates 

are considered, it is especially important to specify the time pattern of the hazard 

correctly, because the coefficients of such regressors are more likely to be biased than 

other coefficients due to their dependence on time. In this case, it may be desirable to 

introduce regression error into the specification. Moreover, allowing for unobserved 

heterogeneity will make the proportionate effect of time dependent regressors on the 

probability of returning to work not diminish over time (see Lancaster 1979). 

(2) Allowing for time-varying covariate coefficients and dealing with dependent 

multivariate competing risks duration model (for example, McCall 1996). 

(3) Allowing for the examination of multiple-duration data (as in Van den Berg 2001 and 

many other works). 
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Table 1.1 Variable definitions and mean-standard deviations of the PSID unemployment duration 
sample (n=1114) 

 

    Mean 

Variable Description (standard deviation) 

   

Duration = observed unemployment duration in weeks 16.847  

  (16.658) 

Age = age of individuals in years 34.232  

  (10.420) 

Sex = 1 if female 0.175  

  (0.380) 

Education = years of schooling 11.388  

  (2.250) 

Dependents = number of dependents 3.105  

  (1.654) 

Race = 1 if non-white 0.496  

  (0.500) 

UI = 1 if individual received compensation during spell 0.637  

  (0.481) 

Married = 1 if married 0.618  

  (0.486) 

  
 
 Source: Author's calculation from the PSID sample. 
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Table 1.2 Unemployment duration in weeks and number of observations for each failure type (recall, new job 

or censored)* 

Duration in weeks Recall New job Censored Total 

     

1 98 6 3 107 

2 108 13 3 124 

3 43 8 4 55 

4 56 21 4 81 

5 18 3 0 21 

6 25 14 1 40 

7 11 5 0 16 

8 34 12 1 47 

9 18 7 4 29 

10 13 5 1 19 

11 6 2 0 8 

12 23 9 0 32 

13 25 13 13 51 

14 3 1 2 6 

15 12 5 3 20 

16 5 5 3 13 

17 12 19 19 50 

18 3 5 4 12 

19 1 4 8 13 

20 10 4 2 16 

21 6 5 2 13 

22 7 7 10 24 

23 2 2 0 4 

24 2 7 4 13 

25 0 1 2 3 

26 12 19 27 58 

27 1 0 2 3 

28 1 2 2 5 

29 1 0 2 3 

30 6 13 11 30 

31 0 1 3 4 

32 3 1 4 8 

33 1 0 0 1 

34 1 2 3 6 
35 1 10 11 22 

     
(to be continued) 
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Table 1.2 (continued) 

Duration in weeks Recall New job Censored Total 

     

36 1 2 1 4 

37 1 0 2 3 

38 0 2 1 3 

39 3 7 10 20 

40 0 4 2 6 

41 0 0 1 1 

42 0 0 1 1 

43 3 2 3 8 

44 0 0 1 1 

45 0 1 0 1 

46 0 1 1 2 

47 0 1 2 3 

48 2 4 4 10 

49 1 2 1 4 

50 1 0 0 1 

51 0 0 0 0 

52 0 5 40 45 

53 0 1 0 1 

54 0 1 1 2 

55 0 1 1 2 

56 1 1 3 5 

57 0 1 2 3 

58 0 0 2 2 

59 0 0 0 0 

60 0 5 2 7 

61 0 0 2 2 

62 0 0 4 4 

63 0 0 0 0 

64 0 1 0 1 

65 2 2 2 6 

66 1 1 0 2 

67 2 0 0 2 

68 0 0 1 1 

69 0 1 2 3 

70 0 0 1 1 
     

Totals 586 277 251 1114 

*Here ‘recall’ means returning to a former employer, ‘new job’ means finding a position in a new  
employer, and ‘censored’ refers to right-censored durations. 
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Table 1.3 Failures, Censorings, and the Kaplan-Meier Empirical Hazard 

 
Week Risk Set Failures Censorings Hazard Standard 

t Rt Dt Ct Ht error 

      
1 1114 104 3 0.09336 0.0087 
2 1007 121 3 0.12016 0.0102 
3 883 51 4 0.05776 0.0079 
4 828 77 4 0.09300 0.0101 
5 747 21 0 0.02811 0.0060 
6 726 39 1 0.05372 0.0084 
7 686 16 0 0.02332 0.0058 
8 670 46 1 0.06866 0.0098 
9 623 25 4 0.04013 0.0079 

10 594 18 1 0.03030 0.0070 
11 575 8 0 0.01391 0.0049 
12 567 32 0 0.05644 0.0097 
13 535 38 13 0.07103 0.0111 
14 484 4 2 0.00826 0.0041 
15 478 17 3 0.03556 0.0085 
16 458 10 3 0.02183 0.0068 
17 445 31 19 0.06966 0.0121 
18 395 8 4 0.02025 0.0071 
19 383 5 8 0.01305 0.0058 
20 370 14 2 0.03784 0.0099 
21 354 11 2 0.03107 0.0092 
22 341 14 10 0.04106 0.0107 
23 317 4 0 0.01262 0.0063 
24 313 9 4 0.02875 0.0094 
25 300 1 2 0.00333 0.0033 
26 297 31 27 0.10438 0.0177 
27 239 1 2 0.00418 0.0042 
28 236 3 2 0.01271 0.0073 
29 231 1 2 0.00433 0.0043 
30 228 19 11 0.08333 0.0183 
31 198 1 3 0.00505 0.0050 
32 194 4 4 0.02062 0.0102 
33 186 1 0 0.00538 0.0054 
34 185 3 3 0.01622 0.0093 
35 179 11 11 0.06145 0.0180 
36 157 3 1 0.01911 0.0109 
37 153 1 2 0.00654 0.0065 
38 150 2 1 0.01333 0.0094 
39 147 10 10 0.06803 0.0208 
40 127 4 2 0.03150 0.0155 

      
 
Note: The variance of hazard is Ht(1- Ht)/ Rt, where Rt is the number of spells that last 
at least t weeks. 121 observations are censored after 40 weeks. 
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Table 1.4 Hazard Model Estimatesa 

 

Variable Ordered Probit (1) Ordered Probit (2) Ordered Logit 

 
   

age -0.0135  -0.0136  -0.0132  

 (0.0027) (0.0026) (0.0029) 

sex 0.0101  -0.0204  0.0139  

 (0.0373) (0.1510) (0.0740) 

education -0.0116  -0.0099  -0.0151  

 (0.0078) (0.0089) (0.0092) 

dependents  0.0419  0.0566  

  (0.0226) (0.0256) 

race 0.2838  0.2645  0.2835  

 (0.0630) (0.0640) (0.0710) 

UI 0.2421  0.2364  0.2660  

 (0.0677) (0.0650) (0.0752) 

married -0.2808  -0.3741  -0.4100  

 (0.0693) (0.1123) (0.0962) 

    

sample size 1114 1114 1114 

    

log-likelihood -3034.1608 -3032.5708 -3035.2983 

    
     

aStandard variances are shown in parentheses. The log-likelihood functions for  
each model, from right to left, are equations (1.8), (1.9) and (1.9), respectively, in Section  
1.2. Baseline hazard parameters are reported in Table 1.5. 
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Table 1.5 Baseline Hazard Estimates from Model Specifications in Table 1.4 
 

 
           Ordered Probit (1)    Ordered Probit (2)              Ordered Logit 

Week Hazard Std. Error Hazard Std. Error Hazard Std. Error 

1 -1.842  0.087  -1.771  0.081  -2.751  0.111  
2 -1.340  0.080  -1.269  0.073  -1.910  0.083  
3 -1.183  0.078  -1.112  0.071  -1.674  0.078  
4 -0.969  0.076  -0.898  0.069  -1.376  0.072  
5 -0.914  0.076  -0.844  0.068  -1.303  0.071  
6 -0.815  0.075  -0.745  0.067  -1.174  0.069  
7 -0.775  0.075  -0.705  0.066  -1.123  0.068  
8 -0.662  0.074  -0.591  0.065  -0.983  0.066  
9 -0.601  0.073  -0.530  0.064  -0.910  0.065  

10 -0.557  0.073  -0.486  0.064  -0.858  0.064  
11 -0.537  0.072  -0.466  0.064  -0.835  0.064  
12 -0.459  0.072  -0.388  0.063  -0.746  0.062  
13 -0.366  0.071  -0.295  0.061  -0.642  0.061  
14 -0.356  0.071  -0.285  0.061  -0.631  0.061  
15 -0.313  0.070  -0.242  0.060  -0.584  0.060  
16 -0.287  0.070  -0.216  0.060  -0.557  0.060  
17 -0.207  0.069  -0.136  0.059  -0.472  0.058  
18 -0.186  0.068  -0.114  0.058  -0.449  0.058  
19 -0.172  0.068  -0.100  0.058  -0.434  0.058  
20 -0.132  0.067  -0.060  0.057  -0.393  0.057  
21 -0.100  0.067  -0.028  0.057  -0.361  0.056  
22 -0.059  0.066  0.013  0.055  -0.319  0.056  
23 -0.046  0.066  0.026  0.055  -0.306  0.055  
24 -0.018  0.065  0.054  0.056  -0.279  0.055  
25 -0.015  0.065  0.057  0.056  -0.275  0.055  
26 0.086  0.068  0.158  0.059  -0.177  0.053  
27 0.089  0.068  0.162  0.059  -0.173  0.052  
28 0.101  0.068  0.173  0.059  -0.163  0.052  
29 0.104  0.069  0.177  0.059  -0.159  0.052  
30 0.178  0.070  0.251  0.061  -0.089  0.050  
31 0.183  0.071  0.255  0.061  -0.085  0.050  
32 0.200  0.071  0.273  0.062  -0.069  0.049  
33 0.204  0.071  0.277  0.062  -0.064  0.049  
34 0.218  0.071  0.291  0.062  -0.052  0.049  
35 0.269  0.073  0.342  0.064  -0.005  0.047  
36 0.284  0.073  0.357  0.064  0.009  0.047  
37 0.289  0.073  0.362  0.064  0.014  0.048  
38 0.300  0.074  0.373  0.065  0.023  0.048  
39 0.353  0.075  0.427  0.066  0.071  0.050  
40 0.377  0.076  0.451  0.067  0.092  0.051  
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Table 1.6 Hazard Model Estimatesb 

 

Variable Ordered Logit w/ Error (1) Ordered Logit w/ Error (2) 

 
  

age -0.0244 -0.0233 

 (0.0065) (0.0064) 

sex 0.0260 -0.0181 

 (0.0809) (0.0583) 

education -0.0183 -0.0152 

 (0.0161) (0.0144) 

dependents  0.0691 

  (0.0364) 

race 0.4747 0.4222 

 (0.1139) (0.1098) 

UI 0.3920 0.3668 

 (0.1127) (0.1092) 

married -0.4244 -0.5577 

 (0.1255) (0.1413) 

theta 1.0372 1.2200 

 (0.1718) (0.3016) 

   

sample size 1114 1114 

   

log-likelihood -3033.6529 -3031.9965 

   
     

bStandard variances are shown in parentheses. The log-likelihood function for these models is 
 equation (1.16) in Section 1.2. Baseline hazard parameters are reported in Table 1.7. 
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Table 1.7 Baseline Hazard Estimates from Model Specifications in Table 1.6 
 

 
                  Ordered Logit w/ Heterogeneity (1)     Ordered Logit w/ Heterogeneity (2)             

Week Hazard Std. Error Hazard Std. Error 

1 -3.178  0.306  -3.024  0.263  
2 -2.261  0.275  -2.119  0.228  
3 -1.990  0.263  -1.854  0.216  
4 -1.634  0.246  -1.507  0.196  
5 -1.544  0.242  -1.420  0.191  
6 -1.383  0.233  -1.263  0.181  
7 -1.319  0.229  -1.201  0.176  
8 -1.136  0.219  -1.024  0.164  
9 -1.037  0.213  -0.929  0.157  

10 -0.966  0.209  -0.861  0.152  
11 -0.935  0.208  -0.831  0.150  
12 -0.810  0.201  -0.711  0.142  
13 -0.661  0.194  -0.569  0.133  
14 -0.645  0.193  -0.553  0.132  
15 -0.576  0.191  -0.488  0.128  
16 -0.535  0.189  -0.449  0.126  
17 -0.406  0.186  -0.327  0.121  
18 -0.371  0.185  -0.294  0.120  
19 -0.349  0.185  -0.273  0.119  
20 -0.285  0.184  -0.212  0.118  
21 -0.233  0.184  -0.164  0.118  
22 -0.166  0.184  -0.101  0.118  
23 -0.146  0.184  -0.082  0.118  
24 -0.101  0.185  -0.039  0.119  
25 -0.096  0.185  -0.035  0.119  
26 0.068  0.191  0.119  0.131  
27 0.074  0.191  0.125  0.131  
28 0.093  0.193  0.142  0.133  
29 0.099  0.193  0.148  0.134  
30 0.221  0.204  0.262  0.147  
31 0.228  0.205  0.268  0.148  
32 0.257  0.208  0.295  0.152  
33 0.264  0.209  0.302  0.153  
34 0.286  0.212  0.323  0.156  
35 0.372  0.222  0.402  0.168  
36 0.397  0.226  0.426  0.172  
37 0.406  0.227  0.434  0.173  
38 0.424  0.229  0.450  0.176  
39 0.515  0.243  0.535  0.191  
40 0.556  0.250  0.572  0.198  
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Figure 1.1 Subsample (from weeks 1 to 60) weekly hazard for resuming work. Single risk  

model (i.e., recall risk not distinguished from new job risk). 
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Figure 1.2 Sample monthly hazard functions for re-employment, single risk model. 
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Figure 1.3 Sample monthly hazard rates for re-employment, dual-risk model. 
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Figure 1.4 Sample weekly hazard functions for re-employment, dual-risk model---individuals who 

receive UI. 
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Figure 1.5 Sample monthly hazard functions for re-employment, dual-risk model---individuals who 

receive UI. 

0 5 10 15 20 25 30 35 40 45 50 55 60
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

Pr
ob

ab
ili

ty

Weeks

 new job
 recall

 
 

Figure 1.6 Sample weekly hazard functions for re-employment, dual-risk model---individuals who 

do not receive UI. 
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Figure 1.7 Sample monthly hazard functions for re-employment, dual-risk model---individuals who 

do not receive UI. 
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Figure 1.8 Estimated monthly cumulative baseline hazard in single risk for various models. 
See Table 1.4 for differences on model specifications. 
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Figure 1.9 Estimated monthly cumulative baseline hazard in single risk for various models. 

See Table 1.6 for differences on model specifications. 
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 Figure 1.10 Estimated monthly cumulative baseline hazard in single risk for various models. See 
 Tables 1.4 and 1.6 for differences on model specifications. 
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Figure 1.11 Estimated weekly baseline hazard under different model specifications. Data for this figure 

comes from Table VII in Meyer (1990). 
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Appendix 1. Summary of Gauss Maxlik program for the ordered probit 

duration model without heterogeneity 

Step I. Generate log-likelihood function for failure data 

1. First, we select observations with observed failure from the whole sample 1114 

observations. Observations that have durations equal or longer than 41 weeks are all 

treated as censored no matter their true endings are censored or not. Therefore, in failure 

data the maximum spell length is 40 weeks. If one observation, here means unemployment 

duration, ends with going back to former employer or finding a new job then it is 

considered as failure data. 

2. Next, we generate indicator matrix for individual failure order, i.e., matrix 

indicating at which time period t person i failed. Here for simplicity, we explain the process 

by using a small sample with size 9. Suppose there are four failure observations (implying 

that the other five should be treated as censored data), person 1 fails at week 1, person 2 

fails at week 2, person 3 fails at week 3, and person 4 fails at week 4. The generated 

indicator matrix is A4×4: 

 

⎥
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44A . 

The row of the matrix represents the number of individuals in the failure dataset and the 

column number corresponds to the longest duration in weeks. The process is in week 1, 
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only person 1 fails therefore 
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=A  and so 

on. Each time (meaning for each week) there is a column vector generated until the final 

week, here say week 4. Merge the four columns horizontally and we have the complete 

indicator matrix A4×4 for the 4 observations in the failure data set. 

3. Now we calculate failure probabilities for each person at each week. Suppose the 

model is ordered probit then in week 1 we have the column vector 
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. Repeating the same procedure until 

week 4 and merging B1 to B4 horizontally, we have the complete failure probability matrix 

B4×4: 
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Penalty function is added if δt > δt+1, t = 1, 2, 3, to make sure δ1 ≤ δ2 ≤ δ3 ≤ δ4. Note that the 

values of δ come from Maxlik output in each iteration. Starting values of δ are provided as 

one of the inputs required by the Maxlik procedure. 
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4. Next we calculate the log-likelihood vector for failure data. To do so, first 

multiply matrix A4×4 with B4×4 element-by-element. Now for each observation we have its 

probability of failure at the time the failure occurs and zero in other time periods. Let Cij = 

Aij × Bij, i=j=1, 2, 3, 4, and do summation over the rows in matrix C, we have a column 

vector D4×1: 

⎥
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This vector is ready to serve as the input argument “vector of log-likelihood” in the Maxlik 

procedure once it is merged with the corresponding vector for censored data vertically. 

Step II. Generate log-likelihood function for censored data 
 

1. First, we select observations that are censored. In our explanatory sample here, if 

we want to estimate 4 weekly δ, then all observations lasting longer than 4 weeks are 

treated as censored at week 4. 

2.  Suppose persons 5-8 are censored accordingly in weeks 1-4, and observation 9 

fails in week 6, then the indicator matrix for censored data is  

⎥
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⎥
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45E .  

E5×4 is generated with ways similar to those in failure data. 

3. Probabilities of surviving longer than the censored time for person i, i=5, 6, 7, 8, 

9, are generated in matrix F5×4:  
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⎥
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⎥
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Again, penalty function is added if δt > δt+1, t = 1, 2, 3, to make sure δ1 ≤ δ2 ≤ δ3 ≤ δ4. 

4. Now multiply matrix E5×4 with F5×4 element by element and follow the other 

steps in step I-4, we have a column vector  
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Add G5×1 vertically on D4×1 and this is the return of the “log-likelihood procedure” that is 

one of the mandatory inputs in the Maxlik. 

Step III. Call the Maxlik procedure and do the estimation 

Next, call the Maxlik procedure, load the dataset, choose variables that one wants 

to use in the Maxlik procedure from the dataset, and set parameters’ starting values. The 

Maxlik will do the rest of the work and return coefficient estimates, the mean 

log-likelihood value, first-order gradients and second-order gradients evaluated at the 

estimated parameters, and a return code indicating whether the calculation converges. 

 

 
 



 

 

49

 

 

Chapter 2 

Semiparametric Competing Risks Proportional Hazard Model 

and Unemployment Duration 

 
2.1 Introduction 

 In the previous chapter we consider different model specifications for single risk 

case. We have not distinguished between different types or modes of failure though we do 

allow for the possibility of random censoring. Here censoringship means withdrawal from 

study for some reason independent of the failure process, such as preplanned termination 

of unemployment duration at the interview date. We consider in this chapter the different, 

although related, matter of analysis when there is a single lifetime for each individual, but 

failure may be of various modes.  

 The failure modes often refer to causes of failure, for example, an unemployment 

spell may end with finding a new job (briefly, new job) or returning to one’s former 

employer (briefly, recall); a marriage may end due to divorce, death of one or even both 

partners. In such cases the term “competing risks” is usually used. A competing risks 

model is a duration model where the observed duration is the minimum of k durations. 

Studies of multivariate failure time problems, in which situation there are two or more 

observed failure times on each unit, are beyond the scope of this chapter.  

 The ideas in competing risks have a long history and can go back to the study of the 

potential consequences of smallpox inoculation in Daniel Bernoulli (1760). Early 
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fundamental works and reviews in this literature include Gail (1975), Seal (1977), David 

and Moeschberger (1978), Cox (1959, 1962), Tsiatis (1975), Peterson (1976) and so on. 

 Significant applications of the competing risks model are to studies of human 

mortality, actuarial science and demography. For instance, Honoré and Lleras-Muney 

(2006) derived bounds for aspects of the underlying dependent competing risks 

distributions and then estimated changes in cardiovascular and cancer mortality since 

1970; Berrington and Diamond (2000) studied age at first-time marriage or cohabitation; 

Cornfield (1957) considered applications of actuarial techniques in medical contexts. In 

economics, such applications include: Han and Hausman (1990), Katz and Meyer (1990) 

studied the probability of leaving unemployment through new job or recall; Flinn and 

Heckman (1982) examined the duration of unemployment where one can resume work 

either by leaving the labor force or by finding a new job; and Deng, Quigley and Van Order 

(2000) investigated mortgage termination via prepayment and default. 

 One approach to dealing with competing risks models is to assume that the risks are 

independent conditional on a set of observed variables. This is equivalently to study the 

distribution of failure time for, say, type 1 failure, and other types of failure have been 

eliminated. Under such assumption, estimation of competing risks duration models then 

amounts to estimation of duration models with random censoring.  

 Unfortunately, the assumption of independence may be reasonable when the 

different Tk refer to separate subsystems; in other cases, as for example in connection with 

human survival, the independence is suspect and even implausible. Estimates of the 

cause-specific hazard rates and of the covariate effects on those hazards may be 

inconsistent, when the underlying risks are indeed dependent but independence is imposed 
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(e.g., Honoré and Lleras-Muney 2006). Therefore, very cautious interpretation has to be 

given since the estimation results in this instance could be misleading. 

 Bearing in mind that different ways of exiting unemployment might imply different 

duration behaviors, which cannot be identified if only one convoluted risk is observed, we 

apply the competing risks model to study unemployment duration in the current chapter. 

Since we are not sure whether different Tk belong to separate subsystems, no dependence 

restriction is imposed on the joint distribution of Tk.  

 For simplicity, let k take values 1 and 2 corresponding to just two distinct failure 

types, say, type 1 and type 2. In our studies, one could define “new job” as type 1 failure, 

“recall” as type 2 failure, or vice versa. We also suppose that observations may be censored 

in the sense outlined above.  

 The full joint distribution of T1 and T2 given a set of covariates X becomes of 

interest in the present chapter, since we do not single out one variable as a response hence 

correlationship will be considered. Knowledge of such joint distribution is of considerable 

importance and it allows us to answer policy questions that could not be answered based 

only on the distribution of (T, K) given X (see, Honoré and Lleras-Muney 2006).  

 We find that the time patterns for recall risk and new job risk are significantly 

different, which is not observable if they are treated as one single risk. Further, none of the 

duration dependence is monotonic increasing or decreasing, implying that parametric 

functions may not be suitable to describe such time behavior. Unemployment insurance 

does induce longer unemployment spell; and demographic variables also play important 

and intriguing roles in both risks. The correlation between recall duration and new job 

duration is shown to be positive.  
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 This chapter is organized as follows. A discussion of the identification conditions 

of competing risks models is presented in section 2.2. Section 2.3 contains semiparametric 

competing risks duration model specification. The estimation results are reported in 

section 2.4. Section 2.5 is concluding remarks. 

 

2.2 Identification 

 One main concern when analyzing competing risk data is the model identifiability. 

The identification problems arise because only the first occurred failure on any subject is 

observed, this effectively censoring the remaining time to another failure. In 

unemployment duration analysis this corresponds to the ways people get employed again 

through, so that the entire spell ends as soon as any possible way happens. More 

specifically, consider there are K = 2 possible ways of resuming employment, and let Tk 

denote the lifetime or failure time of risk K (K = 1, 2). The duration ends when the first risk 

happens, so its lifetime is T = min (T1, T2), where the failure mode K indicates which risk 

happens to each duration so that T = Tk if K = k.  

 This framework seems promising since it appears that we can consider bivariate 

models F(t1, t2) for the joint distribution of T1 and T2. Unfortunately, this is entirely 

notional because all that is ever observed or realized is the pair (T, K). Cox (1959, 1962) 

and Tsiatis (1975) claimed the nontestability of dependence in the competing risks model. 

Their key result is that, for any dependent distribution of (T1, T2), one can find an 

observationally equivalent independent distribution. That is, for every distribution having 

nonindependent Tk, there exists a unique pair of univariate distributions with independent 

Tk that gives the same distribution of (T, K) (see Lawless 2003, Honoré and Lleras-Muney 

2006). 
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 Due to the fact that data of the form (T, K) do not allow one to discriminate between 

an independent competing risks model and an infinitude of dependent model, many authors 

have either assumed independence for the competing risks model, or relaxed this 

assumption but considered parametric models for competing risks data. Some references 

are listed here: Katz (1986) assumed that the time patterns for different risks are 

independent from each other so he specified two standard duration models; besides, he 

utilized Weibull baseline hazard model. Diamond and Hausman (1984) allowed for 

dependence by using bivariate log-normal distribution for the competing risks model. Katz 

and Meyer (1990) specified a semiparametric independent competing risks model. 

 However, as we mention earlier, if some underlying factors that cause the failure of 

an event are common to both risk types, assuming independence on the competing risks 

model would be inappropriate and the estimation results could be biased. On the other 

hand, the discussions in Cox (1962) and Tsiatis (1975) are based on the case when there is 

no covariate present in the model. Nevertheless, their “nonidentifiable dependence” 

conclusion can be extended to the situation with a set of covariates X.   

 In order to identify some features of the conditional distribution of (T1, T2) given the 

explanatory variables X, one has to impose restrictions on these conditional distributions. 

One extreme approach is to assume fully parametric form on the model. However, 

estimation results may be entirely driven by the functional form assumptions. Therefore, it 

will be of value to study identifiability of dependent, semiparametric competing risks 

models. In other words, additional assumptions are necessary to be made on identification 

so that one can answer questions that require knowledge of the joint distribution of T1 and 

T2.  



 

 

54

 Following the approach of, for example, Han and Hausman (1990) and Sueyoshi 

(1992), we can estimate the semiparametric competing risks model relatively easily 

without having to assume independence. In the case that the explanatory variables are 

different for each risk, i.e., X1 and X2 do not have identical variables, the model is identified 

because an independent distribution that is observationally equivalent cannot be found. 

Unfortunately, often X1 and X2 are identical in empirical analyses. Han and Hausman 

(1988) demonstrated that even under such instance, as long as at least two covariates are 

continuous and some other regularity conditions are satisfied, the identification of the 

bivariate competing risks model is possible.  

 The important strategy is to assume linearity on the dynamics of the baseline 

hazards over the discrete time interval. This identifying assumption is similar in spirit to 

the bounds technique discussed in Cox and Oaks (1984). Basically, they pointed out that if 

one wants to determine the marginal distribution of observed failure times, the best one can 

hope for is bounds. Two extreme cases of the bounds are treating the unobserved failure 

time as being either slightly greater than the observed failure time, or being effectively 

infinite. Nevertheless, they noted that the bounds would often be too wide to draw 

conclusions. Peterson (1976) studied and formulated the bounds on the underlying 

distribution function. However, Honoré and Lleras-Muney (2006) found that generally the 

nonparametric bounds are so wide that they may have none practical value.  

 In our present case, the assumption of linearity on intra-interval hazard shapes is 

just identifying and the probabilities can be calculated exactly. But there are a couple of 

points to keep in mind. First, imposing the identification assumption is equivalent to 

placing parametric restrictions on the shapes of hazards within intervals. Hence the 
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baseline hazard is no longer fully nonparametric with respect to the complete time pattern. 

Second, the identifying assumption will be violated more easily in longer sampling 

intervals, such as monthly basis but not weekly basis. So the semiparametric estimator will 

be sensitive to the length of time intervals (e.g., Sueyoshi 1992).  

 Recent articles studying identifiability of semiparametric competing risks model 

are: Heckman and Honoré (1989), Abbring and Berg (2003), Crowder (2001) and Honoré 

and Lleras-Muney (2006) among others. Note that these works do not claim they have 

“solved” the nonidentification of competing risks model. Indeed, identification is studied 

under additional assumptions on the model; so do we in this chapter. 

 

2.3 Competing risks proportional hazard model 
 
 Most of the competing risk literature define latent or conceptual failure times 

corresponding to each failure type. Let T1, …, Tk denote such conceptual times. The actual 

failure time is defined to be T = min{T1, …, Tk}, and the corresponding failure type is J = { 

j |Tj ≤ Tk, k = 1, …, k}. Hence, a (T, J) pair is defined for each individual. It is assumed that 

T is a continuous random variable and that J takes on values in the set {1, …, k}. 

Frequently, the latent failure time framework is also used to study the association between 

particular failure types and predetermined covariates (e.g. Kalbfleisch and Prentice 1980, 

David and Moeschberger 1978). 

 For simplicity, consider the case when there are two competing risks (k = 1, 2). 

These two risks are exiting unemployment through either new job or recall, with T 

representing the length of unemployment duration before any failure occurs. Suppose we 

observe that person i fails in time t with risk type 1, and suppose that the joint probability 
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density function of t1 and t2 is f(t1, t2), then the probability that the length of a duration falls 

between [t-1, t) in type 1 is  

∫ ∫−

∞
=<<≤−

t

t t iiii dtdtttfTTtTtP
1 1221211

1

),(),1( .    (2.1) 

 Note that if the actual failure type is 1, we must insure that the latent failure time T2 

is greater than the observed failure time T1, for every point in the time interval [t-1, t). 

Covering all the possible time points type 2 failure may occur at and integrating them out, 

we have Eq. (2.1) as the failure probability in type 1 given there is another possible failure 

type 2. Also note that since we want to examine whether these two risks are dependent 

from each other, we consider the joint distribution of (T1, T2) rather than formulate two 

duration models for T1 and T2, respectively. 

 Applying the same method used to derive Eq. (1.5) in Chapter I, we know that Eq. 

(2.1) is equivalent to   
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When there are two or more competing risks, the baseline hazard δ, the covariates X and 

the coefficients β all may differ across failure types. Therefore, when the observed failure 

is type 1, the baseline hazard should be specified accordingly as δ1, and so as X1 and β1. 

Nevertheless, we do not have to distinguish X1 from X2 in this paper based on the 

identification conditions proposed in Han and Hausman (1988). In other words, X1 and X2 

can be identical. 

 Now the joint distribution of T1 and T2 is represented as the joint distribution of ε1 

and ε2, with ∫=
t

d
0

)(log ττλε , ε1 and ε2 are both distributed as standard normal, and 

corr(ε1, ε2) = ρ. The distributions of ε1 and ε2 do not come directly from the duration model 
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specification considered in Chapter I. We use standard normal distribution, but not extreme 

value distribution, for both ε1 and ε2 because the former one seems to be a very good 

approximation to the latter one based on our earlier estimation results. Because what we 

study presently are binomial outcomes, the similarity still exists. If there are numerous 

outcomes, the estimation results using probit or logit models could be very different (see 

Han and Hausman 1990). Hence we call (2.2) a bivariate ordered probit competing risk 

model and the orders/categories are defined by the failure times, of which the δs are 

functions.  

 The g(ε1) in (2.2) is a function to insure that the required relationship between the 

potential and the observed failure times hold everywhere in the discrete time intervals. 

Now comes the problem --- what kind of function form g(ε1) should take? Finding answers 

to this question is just finding the identification conditions for the competing risks model. 

Without loss of generality, we assume that the baseline hazards, δ1 and δ2, are linear in each 

time interval, although the change rate may be different over risks and intervals. 

 Suppose that type 1 failure occurs at some time point ),1[*
1 ttt −∈ . We then have  
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based on the linearity assumption on δ1. 

 Next, suppose that type 2 failure may happen at another time point ),1[*
2 ttt −∈ . 

Similarly, we have  
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Now if failure type 1 rather than type 2 is observed, it implies that *
1

*
2 tt ≥ . Hence from (2.3) 

and (2.4), we know  
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After some manipulation on (2.5) and replace δ with Xiβ +ε, the function g(ε1) is defined as  
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Inequality (2.6) gives the support of ε2
 when the observed failure is type 1. Note that ε2

* is 

a function of ε1
*. That is, we make sure that for any possible value of ε1 in 

),( 1
1

1
1

1 βδβδ itit XX −−− , its corresponding value of t is less than that of ε2. 

 Hence, the probability of type 1failure in period t for person i is  
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 Accordingly, the probability of type 2 failure in period t for person i is  
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 The linearity assumption provides advantages in computational simplicity. The 

spirit here is to use such assumption/function to tighten the bounds of the parameters of 

interest. Without assuming linearity, one would not be able to identify the competing risks 

model. Though strictly speaking, the estimated baseline hazard is no longer fully 

nonparametric. Nevertheless, the unrestricted pattern of dependence between two different 

risks is allowed through the joint density specification f(ε1, ε2). 

 If an observation is censored in period t, then it means that neither type 1 nor type 2 

failure occurs before the duration is censored. Alternatively, we could say that failure times 

of both risk modes are greater than t. Therefore, the probability of an observation censored 

at time t is 

∫ ∫
∞ ∞

t t
dtdtttf 2121 ),(  ,       (2.9) 

or equivalently  

∫ ∫
∞ ∞

t t
dtdtttf 1221 ),( . 

Remember that when a subject is censored in [t-1, t), we consider the censoring time is at 

the end of an interval. 

 We rewrite (2.9) in a way similar to that for (2.1) as  
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or equivalently  
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 We do not consider heterogeneity in the competing risks model. This does not 

mean that the individuals in our sample form a homogeneous population. Heterogeneity is 

suppressed tentatively due to computation complications. Another possible way to deal 
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with heterogeneity is to replace ε with ε + V, where V summarizes the unobserved 

regressors (Sueyoshi 1992). However, Sueyoshi found that the biases associated with 

assuming bivariate normality on (ε1 + V1, ε2 + V2) are quite large, and so future work on 

correct specification of the bivariate distribution is necessary. 

 Equations (2.7), (2.8) and (2.10) may be used to formulate a likelihood function 

which corresponds to the competing risks model specification. 
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and h1 and h2 are defined as above. Here yit is an indicator variable that equals one if 

individual i fails (in either type 1 or type 2) or is censored in period t and zero otherwise; ci 

is another indicator variable that is equal to one if subject i is censored and zero if failure 

with type 1 or type 2; and ai is a third indicator variable that equals one if the failure type is 

2 and zero if it is type 1 failure. So this is the likelihood function associated with 

observations that are obtained on n independent individuals in the form (T(1), K(1); X(1)), 

…, (T(n), K(n); X(n)), where T(i) and K(i) represent individual i’s duration length and 

failure type respectively, and X(i) is a vector of explanatory variables for the ith individual. 

 The log-likelihood function is  
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 The form (2.12) arises because each individual in the sample contributes to the 

likelihood a factor, no matter whether a specific failure type is observed or not. That means 

censored observations, which is usually an important feature in duration study, are also 

considered explicitly. 

 According to Han and Hausman (1986), large sample inferences for the maximum 

likelihood estimators )ˆ,ˆ,ˆ,ˆ,ˆ(ˆ 21
21 ρδδββ=B  follow from 
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where ρ is a finite parameter that characterizes the correlation of the error terms ε1 and ε2. 

 

2.4 Application and empirical results 

 We employ the same data set, which is described in Section 1.3 of Chapter I, to 

examine the effect of measurable differences on the unemployment duration under 

different hazards. The log-likelihood function used to do the maximization is equation 

(2.12) in previous section. The joint distribution of (ε1, ε2) is assumed to be bivariate 

ordered probit not only because, based on our estimates in Chapter I, the ordered probit 

provides a good approximation to the ordered logit; but it permits unrestricted correlation 

between ε1 and ε2 (e.g., Han and Hausman 1990). However, one should keep in mind that if 

the observed outcomes are multinomial rather than binomial, such assumption will be 
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problematic since in these situations probit and logit specifications can yield very different 

estimates. 

 The results of the computation are displayed in Table 2.1 and 2.2. These two tables 

summarize the parameter estimates for the same employer hazard (recall) and the different 

employer hazard (new job). For each risk, we allow for 40 parameters to describe the 

duration pattern nonparametrically. The correlation coefficient, ρ, is also estimated 

simultaneously without restriction imposed. Figures 2.1 and 2.2 plot estimated weekly 

baseline hazard and monthly cumulative baseline hazard, respectively. 

 The estimates in Table 2.1 show some consistencies. The coefficients associated 

with the unemployment compensation, being white or non-white, and with the marital 

status, all take on the same sign across risks. Obviously the unemployment insurance has 

an important effect for both recalls and new jobs. And as we have expected, the estimated 

elasticity of unemployment duration with respect to receiving compensation is higher in 

the different employer hazard than that in the same employer hazard. Although 

unemployment insurance will induce longer time periods without having jobs, the 

estimates in Table 2.1 confirm the hypothesis that recalls could be prearranged by the 

employers hence they are less dependent on the compensation received. Meanwhile, if one 

is not white, this will put him at a disadvantage no matter he is seeking a new job or trying 

to return to his former employer. On the other hand, being married will strengthen the 

workers’ motivation to resume employment; therefore as expected the coefficients are 

negative in both risks. 

 The age coefficient and sex coefficient are negative for the same employer and 

positive for the different employer, while the education coefficient is positive for the same 
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employer and negative for the different employer. These opposite signs may be striking at 

first glance. However, they might have revealed some informative inferences that are not 

possible to show if both risks just treated as one way to leave unemployment. Elder 

workers are supposed to be more experienced and master the techniques better. For such 

group, the employers are more likely to temporarily dismiss them because of the lack of 

new orders and other reasons that cause business shrinkage. On the contrary, getting older 

may not be a good signal for the new employer. Higher education would put the workers in 

an awkward position if they want to be recalled. Usually higher education implies higher 

salary, higher benefits and higher positions. But when businesses turn down, hiring these 

persons means more costs and sometimes is even unnecessary to the employers. Hence, 

though stronger education background will increase one’s opportunity on finding a new 

job, it may potentially do more harm than good on the chance of getting back to his/her 

former employer. Additionally, females are more possible to be recalled than males; but 

males have much more advantages in finding new jobs. 

 The one variable that stands out as having the greatest impact on the recall hazard 

rate is marital status. The negative coefficient implies that if one is married, his possibility 

to be recalled will be 34 percent higher than those who are single. This is consistent with 

what we have noted earlier: the recall is negotiable and can be prearranged. Receiving 

unemployment compensation is a good strategy to keep valuable employees; but married 

workers will resume work quickly possibly due to the fact that there are dependents in their 

families. The marital status plays the most important role in making recall decision, based 

on our study. 
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 The corresponding variable in the new job case is race. Whether or not a person is 

married now has a much smaller impact on the different employer hazard. Although 

unemployment insurance significantly extends the unemployment duration, its effect is not 

as strong as race: the positive coefficient implies that if one is non-white, he is 36 percent 

less likely to find a new job. This could express an informational aspect with respect to 

hiring. New job opportunities become available to market independent of the workers’ 

marital status, but emphasize more on one’s gender, education background, age, and 

especially race. For non-whites, it is difficult for them to resume their old works, and the 

situation will be tougher if they plan to seek new employers. 

 The effects of both the unemployment compensation and the demographic 

variables in the competing risks model have the same signs as those in Han and Hausman 

(1990), except ‘sex’, which they did not include in their competing risks model. The 

magnitudes of these effects are also very close, in particular those related to insurance, 

race, education and age. The marital status in our study has a much larger effect in recall 

hazard than it does in new job hazard. One explanation is that married workers are given an 

impetus to return to work sooner, but this can be realized much more easily in the same 

employer case because the employers will take this factor into serious consideration when 

they lay people off; while it is almost impossible for new employers to hire one simply 

because he is married.  

 The estimated correlation coefficient, ρ, is about 0.30. This means ε1 and ε2 are 

positively correlated. Based on ε’s definition in Chapter I, implicitly it indicates positive 

correlation between T1 and T2. One reasonable explanation is that the longer one has to wait 

before he is recalled, the more time he is supposed to spend on finding a new job, or vice 
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versa. Our estimation result confirms at some level the importance to consider risks 

dependence. First, there are several observed risk factors that are common to both recall 

and new job risks. Second, there is evidence of unobserved differences across individuals 

with respect to their possibility of resuming work (see Chapter I). For example, if 

circumstances/nature of one’s job changed, he might not be able to return to his former 

position but to get a new job instead. Hence, the decision for a new job may be correlated 

with the chance of being recalled, especially when the recall waiting takes longer and 

longer time period. 

 Using the estimated baseline hazard in Table 2.2, we can plot weekly baseline 

hazard and monthly cumulative baseline hazard in Figure 2.1 and 2.2, respectively. In 

Figure 2.1, the same employer baseline hazard starts at a higher value and ends at a lower 

value than that for the different employer, a decrease about 87.5 percent, implying a higher 

probability of staying with the employer at the beginning of unemployment spell but a 

much lower chance of eventual returning. This result could be indicative of taking 

advantage of unemployment insurance. Indeed, after week 30, the typical length that one 

can be covered by compensation, there is little chance to be recalled. 

 In contrast, the baseline hazard for different employer starts at a lower value and 

ends at a higher value. There are jumps perceived at weeks 26, 30, 35 and 39. This implies 

that individuals may arrange the start of a new job to be the benefits exhaustion points, 

since the new job hazard increases significantly after week 26 compared to those in weeks 

1-25. Another possibility is that while time goes on, things change and those who initially 

expect to return to former employers have to find new jobs, though they do receive benefits 

during unemployment. 
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 Figure 2.2 also displays that the structure of the monthly baseline hazard rates for 

recall and new jobs is significantly different. Basically, the recall hazard decreases over 

time, while the new job hazard decreases first and then increases. Such estimated basic 

trends are close to the patterns shown in Figure 1.3 of Chapter I, which are calculated using 

the Kaplan-Meier estimator. At somewhere between 4 months and 5 months, the new job 

hazard catches the recall hazard and becomes much higher than the latter one during the 

remaining unemployment spell. This is similar to what we have noticed from the 

correlation coefficient estimate: the longer the recall process takes, the less likely one can 

return to same employer, so the more possible that he would have to find a new job.  

 On the other hand, an individual whose purpose is to resume work from different 

employer may face disadvantages in the job market, such as non-white, asking for higher 

pay and so on. These “bad” characters may induce longer job searching period. That is why 

we see in Figure 2.1 and 2.2 that new job hazard becomes higher while time passes, but 

neither recall nor new job risk shows monotonic increasing or decreasing pattern, 

especially the weekly baseline hazards.  

 Therefore, parametric functional assumptions are not recommended because they 

can give inconsistent estimates of the hazard rates and the covariate effects on these rates. 

If the covariance matrix for the baseline hazard is available (though our calculation does 

show convergence), then we will be able to do some formal test to determine whether any 

parametric specification (e.g., Weibull) is consistent with our nonparametric baseline 

estimates (for example, Han and Hausman 1990)1.  

                                                           
 1 Han and Hausman did not report the baseline hazard estimates and their corresponding standard 
errors. Instead, they presented the estimated cumulative distribution functions calculated on the baseline 
estimates. 
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 Thus, we conclude that both the unemployment insurance and the demographic 

variables have important effects on the hazard of resuming work. Meanwhile, the 

estimated effects and the duration patterns are quite different between the same employer 

and the different employer hazards. By estimating a competing risks model without 

restrictions on the dependence, we are able to retrieve meaningful information from the 

data, which cannot be told if only single risk considered. 

 

2.5 Conclusion remarks and future directions 

 This chapter studies unemployment duration using a sample drawn from the PSID 

and described in Section 1.3 of Chapter I. The method of analysis used is a semiparametric 

dependent competing risks proportional hazard model. The model is semiparametric in the 

sense that the log-cumulative baseline hazard is left unparameterized while the effect of the 

explanatory covariates takes a particular functional form. The two risks specified are: 1) 

returning to work for the same employer, and 2) returning to work for a different employer. 

Furthermore, we allow for unrestricted correlation between the competing risks. This is 

realized by assuming linearity on the baseline hazard at each time interval. Monte Carlo 

experiments performed in Han and Hausman confirmed that the linearity design is accurate 

enough for estimation when we use discrete interval data to approximate an underlying 

continuous baseline hazard process. Meanwhile, as long as at least one explanatory 

variable in our study is continuous, we are able to identify the competing risks model even 

if the covariates in both risks are identical (Han and Hausman 1990). Our model guarantees 

that the unobserved failure occurs later than the observed failure at any possible time point, 

and censored observations are accommodated explicitly in the model specification. 
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 It is shown that unemployment benefits do induce longer durations unemployed in 

both risks. Further, the variables that appear to have the greatest impacts on recall hazard 

and new job hazard rates are marital status and race, respectively. Other variables 

considered (age, sex, education) indicate that they may have opposite effects on different 

hazard rates. For those variables that have same signs in both risks, their magnitudes of 

effects are not close to each other. The correlation coefficient 0.30 suggests that recall 

duration and new job duration have a positive relationship that may not be negligible. 

 We also find that there are significant differences in the hazard structure of 

returning to the same employer and a different employer. The probability of being recalled 

basically decreases over time, while chances of finding a new job decline first and 

eventually increase. Therefore, we conclude that it is important to consider dependent 

competing risks, at least when there is more than one way to resume work and we are not 

sure whether these ways are independent of each other (also see Honoré and Lleras-Muney 

2006 for interesting findings when dependent risks are allowed). Our estimated baseline 

hazards suggest that nonparametric approach is preferred if one wants to capture the 

perceived features of duration dependence, and so to avoid biased estimates of the hazard 

rates and of the covariate effects. 

 In future work we could analyze some time interactions (such as interactions in 

weeks 26 and 39, two representative benefits exhaustion points) and undertake tests on a 

given parametric specification for the baseline hazard via a minimum chi-square 

framework as proposed in Han and Hausman (1990). We could also allow for unobserved 

heterogeneity so that the model would become more realistic. When heterogeneity is 

considered, the bivariate standard normal distribution may not be reasonable (e.g., 
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Sueyoshi 1992) hence further work is needed to find correct specification of the combined 

error distribution. 
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Table 2.1 Competing Risks Hazard Model Estimatesa 

 

Variable Recall Risk New Job Risk 

 
  

Age -0.0182 0.0140 

   

Sex -0.0720 0.1787 

   

Education 0.0161 -0.1171 

   

Race 0.2354 0.3669 

   

UI 0.2082 0.2722 

   

Married -0.3439 -0.0679 

   

   

ρ 0.2998  

   

sample size 1114  

   

log-likelihood -3395.3539  

   
     

aThe log-likelihood function for the model is equation (2.12) in section 2.3. Baseline hazard 
 parameters are reported in Table 2.2. 
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Table 2.2 Competing Risks Baseline Hazard Estimates from Model Specification in Table 2.1 

 
 
             Recall Risk            New Job Risk   
          

Week Hazard Hazard 

1 -1.826  -3.204  
2 -1.346  -2.667  
3 -1.200  -2.476  
4 -1.024  -2.135  
5 -0.970  -2.095  
6 -0.895  -1.931  
7 -0.863  -1.879  
8 -0.761  -1.760  
9 -0.708  -1.694  
10 -0.669  -1.649  
11 -0.651  -1.631  
12 -0.581  -1.551  
13 -0.505  -1.443  
14 -0.495  -1.435  
15 -0.457  -1.393  
16 -0.441  -1.352  
17 -0.401  -1.206  
18 -0.390  -1.168  
19 -0.386  -1.138  
20 -0.348  -1.108  
21 -0.324  -1.069  
22 -0.296  -1.015  
23 -0.287  -0.999  
24 -0.279  -0.944  
25 -0.279  -0.937  
26 -0.223  -0.791  
27 -0.218  -0.791  
28 -0.212  -0.774  
29 -0.207  -0.774  
30 -0.172  -0.661  
31 -0.172  -0.652  
32 -0.153  -0.642  
33 -0.146  -0.642  
34 -0.140  -0.623  
35 -0.132  -0.524  
36 -0.125  -0.503  
37 -0.117  -0.503  
38 -0.117  -0.482  
39 -0.091  -0.406  
40 -0.091  -0.360  
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Figure 2.1 Estimated weekly baseline hazard in competing risks model; the specified risks are 
recall and new job. 
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Figure 2.2 Estimated monthly cumulative baseline hazard in competing risks model; the specified 
risks are recall and new job. 
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Chapter 3 

Bayesian Estimation of the Ordered Probit Unemployment 

Duration Model without Unobserved Heterogeneity 
 

3.1 Introduction 

 As discussed in chapter I, one main issue in the study of duration models is the 

duration dependence, or the so-called baseline hazard. Over the past two decades there has 

been considerable interest to distinguish the effect of time on unemployment hazard rate 

from the effects of observed and unobserved heterogeneity. Two representative works are 

Meyer (1990) and Han and Hausman (1990), who estimated semi-parametric duration 

models by specifying the baseline hazard nonparametrically. Han and Hausman also 

demonstrated that the parametric assumption (more specifically, Weibull distribution) 

applied in Katz (1986) was overly restrictive and misleading. 

 In this chapter we try to estimate the ordered probit duration model without 

heterogeneity in the Bayesian paradigm. The primary purpose is to study the ordered probit 

model with either normal or nonparametric random effect using the Bayesian estimation 

procedure. Previous researches found that it is important to consider unobserved 

heterogeneity in the duration model (e.g., Heckman and Singer 1984). For computational 

convenience, some assumed that the random effect follows a gamma distribution. 

However, if the underlying distribution is not gamma, biased parameter inferences may be 
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obtained (see Hausman and Woutersen 2005). If normal random effect assumed, it will 

raise a number of challenges for the frequentist estimation due to the high-dimensional 

integration required in large sample datasets, which may lead to intractability of the 

likelihood function.  

 But many of the computational problems encountered in frequentist econometrics 

have been largely overcome in the Bayesian framework. Particularly, using the Bayesian 

simulation method, we can specify normal or nonparametric random effect. Such works 

are meaningful as Sueyoshi (1992) pointed out that nonparametric methods for both the 

baseline hazard and the unobserved heterogeneity should be developed to achieve 

satisfactory estimation of duration models. Studies on the duration model with random 

effect are currently in progress.  

 Both the standard Gibbs sampler and the hybrid Metropolis-Hastings/Gibbs 

sampler are used to estimate the ordered probit model without heterogeneity (Albert and 

Chib 1993, Cowles 1996, Johnson and Albert 1999). The standard Gibbs sampler is easy to 

apply. However, because at a single iteration there may be limited space for the cutpoints 

in our model to move, and by the very nature of the Gibbs sampler’s iterative updating 

scheme, Gibbs sampler draws of a parameter are highly positively autocorrelated leading 

to slow convergence. Therefore the hybrid Metropolis-Hastings/Gibbs sampler is 

introduced so that the cutpoints will have more room to move and consequently speed up 

convergence. 

To allow the data to suggest the appropriate mixing distributions, we assume 

uniform priors on both the regressor parameters and the cutpoints that formulate the 
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baseline hazard. While MLE estimates can be set as sequences’ starting values, in order to 

explore the Bayesian method we use randomly chosen data as the initial parameter values. 

 Favorable features in our model specification and estimation include: uncertainty 

on the distributions of the baseline hazard and the covariate coefficients can be handled in 

the Bayesian paradigm under a tractable way; we have exact finite sample inference; 

extension to mixed effects ordered model is feasible and straightforward; other studies, 

such as time-varying covariates and unbalanced data, are easy to accommodate. 

 The plan of the paper is as follows. Section 3.2 presents the specification of the 

ordered probit duration model without random effects in the Bayesian framework. Section 

3.3 is concerned with our MCMC based fitting methods. An application to the 

unemployment duration data retrieved from the PSID and studied in the first two chapters 

is reported in Section 3.4. Section 3.5 concludes. 

 

3.2 Bayesian ordered probit duration model without unobserved 

 heterogeneity  

 In this section we consider the ordered probit duration model without random 

effects. It is a generalization of the proportional hazard model proposed by Han and 

Hausman (1990), and Meyer (1990). However, we would like to study this model in the 

Bayesian paradigm. 

Suppose that T represents the length of a spell of unemployment, and that Yi is 

observed and takes one of T ordered categories or time intervals {1, … , T} for i=1, … , N. 

Letting pit = P(Yi=t) represent the probability of event occurrence in time interval t for 

person i, we denote the cumulative probabilities over the t time intervals of the outcome Yi 
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as Pi,t = P(Yi≤ t) =∑ =

t

s isp
1

. The ordered probit model, introduced by Aitchison and Silvey 

(1957), defines Pi,t = Φ(δt - Xiβ), i=1, … , N, t=1, … , T. Here Xi is a 1×k vector of 

observations on a set of explanatory variables, β is a k×1 vector of unknown parameters, 

and δt is a series of unknown strictly increasing model cutpoints or thresholds (i.e., δ0 = -∞ 

< δ1 < … < δT-1 < δT < δT+1 = ∞) that allows the cumulative response probabilities to differ 

from each other.  

Now, the probability of ‘getting employed’ in time period t for person i is  

∫
−
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where ε follows the standard normal distribution. Equation (3.1) is exactly the first 

duration model specified in Han and Hausman (1990), which steps from the proportional 

hazard model proposed in Prentice (1976) and Kalbfleisch and Prentice (1980). The δ 

vector is a set of unknown parameters that forms the nonparametric log-integrated baseline 

hazard specification. Each δ corresponds to the tth of T mutually exclusive and exhaustive 

time intervals, and is assumed to be constant in that time period. 

 By imagining there is a latent variable V that underlies the generation of the ordered 

outcomes (e.g., Tanner and Wong 1987), we consider the latent variable representation of 

the ordered probit model: 
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             (3.2) 

for i=1, … , N. Here Edu stands for years of education received, while UI and MS refer to 

unemployment insurance and marital status, respectively. The data sources and variable 

descriptions are given in chapter I of this dissertation. 
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 Suppose Vi
  is linked to observed Yi as follows: 
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with δt  being a vector of cutoffs that classify an observation into an ordered category t, t = 

1, …, T. The probability of a particular observed outcome, namely, the probability of 

failure in time period t for person i is given by the same form as Equation (3.1). 

 The above formulation is for failure observations only. Note that duration data 

often contains censored samples. For right-censored spells, the link is 
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Hence c
iY = t means an unemployment duration is censored at sometime in (t-1, t]. 

Again, we assume censorings occur at the end of time intervals. Other types of censorship 

are not considered in this chapter since our data set only covers complete and 

right-censored durations. 

Now the probability for an individual agent’s spell lasting longer than period t is  
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         (3.5) 

By further assuming that the observed outcomes for a sample of n individuals are 

independent of one another given probabilities (3.1) and (3.5), we can specify a 
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multinomial distribution for the sample data Yi (see, Johnson and Albert 1999). Next, we 

adopt the notation in Albert and Chib (1993) and formulate the likelihood function for a 

sample of N individuals as  
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where  
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for the ordered probit duration model without heterogeneity. Notice that because there is 

no constant intercept included in the regression function Xiβ, we do not face the usual 

identification problem on the parameters δ and β (e.g., Albert and Chib 1993). 

 If we introduce the latent variable Vi, the likelihood function (3.6) will become  
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The definitions for ci and I(Yi = t) are same as those defined above. When I(Yi = t)=1, it 

indicates that Vi falls between the cutpoints δt-1 and δt for failures, and for censored cases Vi 

).[ , ∞∈ tδ Note that equations (3.6) and (3.7) actually refer to the same model from 

different perspectives. 
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 The regression parameters and the cutoff points are assumed to be a priori 

independent, and uniform priors are taken for both δ and β. Using the latent variable 

representation for the likelihood function (3.7), the joint posterior density of the model 

parameters and the latent variables is then given by  
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where φ  denotes the standard normal density, and δ subject to the constraint that δ0 = -∞ < 

δ1 < … < δT-1 < δT < δT+1 = ∞. Note that the joint posterior is simply proportional to the 

likelihood function (3.7). 

 Equation (3.6) can be used to search for the maximum likelihood estimates of the 

regression parameters β, and the nonparametric baseline hazard δ ( Han and Hausman 

1990). Another version of the same model, equation (3.7) lends itself to full Bayesian 

analysis by Markov Chain Monte Carlo (MCMC) methods. Samples from the joint 

posterior of (3.8) can be obtained via the standard Gibbs sampler or the hybrid 

Metropolis-Hastings/Gibbs sampler. One of the first such algorithms was proposed by 

Albert and Chib (1993). Here, combined with the conjugacy of the prior specification, our 

Gaussian-linear structure model makes all of its full conditional posteriors easily available 

in closed form (as normal and uniform. See next section for details). Under mild regularity 

conditions, the draws from the full conditional posterior distributions will converge to 

those from the desired joint posterior distribution. Therefore, the MCMC algorithms 

involving use of latent data will allow us to estimate and examine the posterior quantities 
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of interest straightforward without putting parametric assumptions on the baseline hazard 

and the covariate coefficients. 

 

3.3 The standard Gibbs sampler and the hybrid Metropolis-

 Hastings/Gibbs sampler 

3.3.1 Standard sampling scheme for the ordered probit model without heterogeneity 

 Because the full conditional posteriors for (V, β, δ) all have analytically tractable 

forms, as we will see next, it is possible to implement a standard Gibbs sampling approach 

to the simulation of the joint posterior (V, β, δ). 

(1) Generate the latent variable V 

 The latent variable Vi is sampled from its complete posterior conditional: 
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for i=1, …, N. Here the notation ( ]( )ωμ,,ULTN  denotes a normal distribution with mean 

μ  and variance ω  truncated to the interval ( ]UL, . 

(2) Generate the covariate coefficient β 

 The prior information for β is assumed to be diffuse. In particular, a uniform prior is 

taken. This choice of prior results in a multivariate normal conditional posterior for β 

with mean and covariance matrix that are identical to its least squares estimates, 

namely 

  ),(~,,| βββδβ DdDNyV k , 

where ( ) 1−′= XXDβ , VXd ′=β , X is an N×k matrix and V is an N×1 latent vector. 
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 (3) Generate the baseline parameters δ 

 We also assume flat prior on the log-integrated baseline hazard parameter. For the 

complete posterior conditional for the cutpoints, note that when the data includes only 

failures, 

  ( ) ( )∏∏
+=

+
=

−− ≤<≤<∝
1:

1
:

1,,,|
tyi

tit
tyi

tittt
f

i
f

i

VIVIyV δδδδβδδ . 

 It follows that 
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where  

  
⎭
⎬
⎫

⎩
⎨
⎧=

=
− i

tyi
t VS

f
i:

11 max,max δ , 

  
⎭
⎬
⎫

⎩
⎨
⎧=

+=
+ i

tyi
t VS

f
i 1:

12 min,min δ , 

and U denotes uniform distribution; t−δ  refers to all the other δs except δt. 

 When an observation is censored in tth time interval, it means that  

  tiV δ≥          And      11 +− << ttt δδδ . 

Similarly, we know that δt should fall in 

  ⎥⎦
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⎡
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=
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tt V
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Since our data set contains both failure and right-censored observations, the full 

posterior conditional distribution for δt is 

  ⎥⎦
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where  
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(4) Repeat steps (1) to (3) using the most recent values of the conditioning variables. 

 Blocking steps may be used to improve the mixing of the chain. For example, we 

can update all the latent variables Vi  in one block. In this case we have to draw directly 

from a multivariate truncated normal (Geweke 1991). Such drawing is nontrivial in 

general, however, a Gibbs sampler itself has to be implemented in order to generate a 

sample from the multivariate truncated normal density. Subsequently the computational 

cost is very high although an improvement in convergence may be achieved. In order to 

reach comparable convergence results, the time needed for the grouping method increases 

in such a level that the overall improvement may be negligible (see Geweke 1991, 1996, 

Robert 1995, Muller and Czado 2005). Besides, this blocking strategy does not address a 

typical problem encountered in the ordered probit model when simulation-based 

estimation method is employed. See next for discussions on the problem and its solution. 

Therefore, we stick to our algorithm that samples the latent variable individually and use an 

efficient procedure (the so-called inverse transform method) for sampling from the 

univariate truncated normal. 

 A problem associated with the ordered probit model is very slow mixing in the 

standard Gibbs sampling scheme developed above. Mixing refers to the dependence 

between one simulated value and that of j iterations away. It is measured by the 

autocorrelation among the Gibbs draws. Rapid mixing means that the dependence decays 

quickly as j increases. Conversely, slow mixing occurs when the autocorrelation is still 

significant even as j becomes large. Slow chain mixing induces slow convergence. A 

leading cause of slow convergence is multimodality of the underlying, possibly unknown 
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joint posterior distribution. In this case, the Gibbs sequence may get stuck in a small subset 

of the sample space and many iterations are required to recover, which may represent as 

slow chain mixing. 

 The slow mixing in our case is mostly due to the following reason. We simulate the 

cutpoints δ from a uniform distribution with boundaries S1 and  2

_

S  given before. When 

there is large number of observations in categories, the interval 12

_

SS − becomes very 

narrow, so δt has very little room to move in one iteration. Because of the distorted cutpoint 

values, convergence of the regressor coefficients β is also retarded. Several hybrid 

Metropolis-Hastings/Gibbs algorithms have been proposed for sampling from the posterior 

distribution on ordered probit regression parameters. Two notable algorithms are Cowles 

(1996), and Nandram and Chen (1996). We next use Cowles’ method to speed up the 

convergence of the standard Gibbs sampler. As noted in Johnson and Albert (1999), 

Cowles’ algorithm is relatively easy to apply, displays good mixing and is suitable for 

models with arbitrary constraints on the interval cutoffs. The reparameterization method 

suggested in Nandram and Chen (1996) can also be implemented when there are more than 

three bins. But this method may be more complicated so we leave it for future exercise. 

 

3.3.2 Hybrid Metropolis-Hastings/Gibbs sampler for the ordered probit model without 

heterogeneity 

 The algorithm developed below is based on the work presented in Cowles (1996), 

and Johnson and Albert (1999). Revision is made to accommodate our data characteristics. 

This method can be applied on models with non-Gaussian link functions straightforward, 

though some significant changes are required.  
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(1) Generate a candidate δ* for updating δ (s-1) 

a. In the sth iteration, for t = 1, …, T, sample ),(~ 2)1(*
δσδδ −s

tt N  truncated to the 

interval ),( )1(
1

*
1

−
+−
s

tt δδ . Note that we take −∞=*
0δ and ∞=+

*
1Tδ . The truncated 

normal is our candidate generating density and random draws are taken from it. We 

adopt the rule of thumb wherein 2
δσ  = 0.05/T. Adjustments to 2

δσ  may be necessary 

so that appropriate acceptance rates for δ, approximately between 0.25 and 0.5, are 

obtained. 

b. Compute the acceptance probability AR according to 
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 The first two terms on the right hand side are the contributions from the likelihood 

function for both failure and right-censored observations; while the 3rd term comes 

from the transformation of the proposal density for δ. We assume the prior for δ 

still to be uniform. Of course, the ratio of the prior evaluated at candidate values 

and last cycle values should be multiplied if nonuniform prior on δ  is employed. 

c. Set *)( δδ =s with probability AR. 

(2) Generate the latent variable V 

 The full conditional density for Vi is 
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 for i = 1, 2, …, N. In this revised sampling method, we use current cycle cutoff 

values rather than those from last cycle to define truncation boundaries for the 

latent variable, conditional on the acceptance of the candidates δ*. 

(3) Generate the regression coefficient β 

 The conditional posterior of β is unchanged and its sampling follows the same way 

specified in the standard Gibbs sampling. 

(4) Repeat steps (1) to (3) using the most recent values of the conditioning variables. 

 Convergence of the chains may be assessed using the Gelman-Rubin scale 

reduction factor (SRF). To apply this check, one runs a number of chains simultaneously, 

say M chains with n realizations in each chain, and compares variations in the generated 

parameter values between and within chains.  

 Define 

 ∑
=

−
−

=
M

m
mM

nB
1

2)(
1

ωω  

as the variability of the parameter of interest ω between the M parallel chains. Then the 

within chain variance is  

 ∑∑
= =

−
−

=
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i
mimnM
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1 1
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1 ωω ,  
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The posterior marginal variance, var(ω|y), is a weighted average of B and W. The estimated 

variance is  
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Then the potential scale reduction factor (PSRF) is given by  

 )11()11(
ˆ

MnW
B

nW
VR +

⋅
+−== . 

If R is close to 1, it may indicate that convergence has been reached. Note that this is 

indicative of convergence but does not prove it. Further details can be found in Gelman and 

Rubin (1992), and Brooks and Gelman (1998). 

 

3.4 Application and results  

 We apply the Bayesian ordered probit duration model to study the effect of 

unemployment insurance, along with other socio-demographic factors, on the 

unemployment duration. Descriptions on the data set can be found in Section 1.3 of 

Chapter I. The number of time intervals is reduced to be 11 rather than 41 as used in 

chapters 1 and 2. Extension to arbitrary number of time intervals is feasible but also 

time-consuming, so we leave it for future exercise. In fact, if we use the MLE estimates as 

the initial values of the Markov chains, it is fairly easy to get satisfactory MCMC results 

for even 46 parameters. However, to better explore how to estimate the ordered probit 

model in the Bayesian paradigm, we use randomly generated numbers as the starting 

values of the sampling sequences. 

 Estimated results for the ordered probit duration model without considering 

heterogeneity are presented in Table 3.1 and Figures 3.1 to 3.11. Figures 3.1 to 3.4 come 

from the standard Gibbs sampling scheme for such a model. As one can directly tell from 

Figures 3.1 and 3.2, the convergence has not yet been reached even after 300,000 
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iterations. For each interested parameter, five parallel chains are run with relative diffuse 

beginning values. Generally speaking, all the β parameters converge better than the 

cutpoints, especially for the dummy variables’ coefficients. Trajectory patterns for all the 

cutpoints δ are similar, quite possibly because there is order restriction present among 

them. Hence, three representative δ trajectories are reported, one from the beginning, one 

from the middle, and the other from the right end. None of these three shows sign of 

convergence. 

 Consequently, the Gelman-Rubin factors (following the literature, we call them R 

factors afterwards) in Figures 3.3 and 3.4 are all larger than 2, except the one for sex 

parameter, which indicates failure of convergence. It is not a good idea to compute the R 

factor from the very beginning of a chain. The values will be relatively large at the start and 

make it difficult to see what happens after the chains tend to converge because of the graph 

scale. Therefore, we begin to calculate the R factors after 150,000 iterations. 

 This experiment confirms the difficulty mentioned in Cowles (1996). She noted 

that standard Gibbs sampler would become inefficient in the estimation of the ordered 

probit model due to the slow move of the cutoffs δ; and the more the cutpoints, the more 

severe the problem is.  

 In other words, because of the Markovian updating nature of the Gibbs sampler, the 

poor estimates can not be recovered even after many replications. Moreover, the sample 

data studied in Cowles (1996) is generated from a linear model; while our real data may not 

follow a linear relationship. Therefore, estimation based on the standard Gibbs sampler and 

data augmentation will be affected adversely given the complexity of our data and model. 
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 Naturally we apply the hybrid Metropolis-Hastings/Gibbs sampler proposed in 

Cowles (1996) to improve the speed of convergence. As Cowles claimed, the 

autocorrelation functions for all of the series will die out quickly. So the chain mixing is 

faster. This can be seen from Figures 3.5 to 3.8. Now all six β converge fast, particularly 

the coefficients for the dummy variables. Age parameter shows mixture at around 40,000th 

iteration, while the one for education at about 80,000th iterate. The mixing of δ parameters 

is not as fast as the regression coefficients, but unlike draws simulated under the standard 

Gibbs sampling, they do show signs of mixture after 120,000 iterates. The R factors are 

also calculated to double check the convergence of the chains. At 150,000 iterates, all 

factors are valued less than 1.8; as iterations increase, the values continue to drop and all of 

them fall below 1.25, which indicate sequence convergence (Gelman and Rubin 1992). 

The acceptance rate in the Metropolis-Hastings step is around 0.33 for each parallel chain. 

 As the question of how many initial draws to discard so that sufficient mixing of the 

iterates is achieved, we make our choice based on both the sampling trajectory and the R 

factor value. That is, for each chain, the first 150,000 samples are dropped to allow for the 

proper amount of ‘burn-in’. Since five chains are run for each parameter, it means that our 

inference is then based on a total of 750,000 iterates. 

 The posterior means and standard deviations are presented in Table 3.1, along with 

the MLE estimates. All the regression parameters have the expected signs and level of 

significance. Aside from slight differences, the posterior means of the cutpoints have the 

same sign of those MLE estimates and fulfill their order constraint. Recall that such results 

are realized under noninformative prior assumptions for both β and δ. That is, we allow the 

data itself to tell the story without putting subjective directions on the estimation. 
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 The posterior marginal densities derived from the hybrid MH/Gibbs sampling are 

presented in Figures 3.9 and 3.10. We report the densities for all βs and three typical δ. The 

figures show that all the densities are concentrated around their respective posterior means. 

Moreover, the β densities display normal curve while it is difficult to assign the distribution 

of δ to a parametric family. Our experiment with uniform priors on both β and δ proposes 

that it is reasonable to assume normal prior for regressor parameters but better leave the 

log-integrated baseline hazard’s distribution unspecified. 

 Once again the MCMC estimates address the important negative effect of 

unemployment benefit on the length of duration without a job. Race and marital status also 

have significant effects on the unemployment spell. Interestingly, the magnitude of the 

effects of the covariates does stay almost the same in spite of different time intervals 

chosen, which has been noted in Han and Hausman (1990). While the cutpoint estimates do 

change, their plots in Figure 3.11 show excellent catch of the duration shape perceived 

from empirical data (see Chapter I for details). This is true for both the MLE and MCMC 

results, though there exists a small ‘shift’ factor between them.  

 

3.5 Conclusions and future research directions 

 In this chapter we have developed the Bayesian paradigm to estimate the ordered 

probit duration model without heterogeneity. The Bayesian estimation method that we 

propose can be used to examine models with arbitrary cutpoints and extended to study the 

ordered model with normal or nonparametric random effect. 

 The estimation procedure for the ordered probit model includes two MCMC 

methods. The first method we employ is the standard Gibbs sampler. However, under such 
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method the sampling sequences will not converge after 300,000 iterates. Hence we conduct 

our analysis via the hybrid Metropolis-Hastings/Gibbs sampler. Both simulation trajectory 

and the Gelman-Rubin factor show that convergence does speed up once the refined 

sampler is used. As the prior on the parameters of the ordered probit model, we propose 

uniform priors to avoid the problem of improper information and meanwhile make sure the 

model is identifiable. 

 The ordered probit model without heterogeneity is applied to analyze the effect of 

unemployment insurance, along with other economic variables, on the unemployment 

duration. We find that race, unemployment compensation and one’s marital status all have 

significant effects on the length of unemployment spell, though the first two characteristics 

will prolong the duration while the last one will make the length shorten. The kernel 

density estimates of the parameters show that assuming normal prior on βs may be 

reasonable. However, to estimate δs correctly, we should not assign them any parametric 

prior. That says, if we let the data itself tell us the story, we can capture very well the 

perceived feature of the unemployment duration. 

 Currently we are studying the ordered probit hazard model with heterogeneity. The 

prior for the unobserved heterogeneity is assumed to be either normal or Dirichlet Process. 

The latter specification allows us to estimate both the baseline hazard and the unobserved 

heterogeneity nonparametrically, which is an important issue in the study of the mixed 

proportional hazard (MPH) model. We believe that the proposed MPH models will be 

appropriate to detect the clustering existing among subjects. 
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Table 3.1 The Ordered Probit Model w/o Heterogeneity MLE and Posterior Estimatesa 

 
   

Variable MLE results MCMC posterior results 
  mean mean std. error 
age -0.0155 -0.0161 0.0032 
sex -0.0017 -0.0038 0.1068 
education -0.0153 -0.0193 0.0142 
race 0.2825 0.2766 0.0685 
UI 0.2551 0.2530 0.0697 
married -0.2679 -0.2740 0.0841 
Delta1 -1.0660 -1.1491 0.2251 
Delta2 -0.7572 -0.8397 0.2244 
Delta3 -0.5547 -0.6359 0.2243 
Delta4 -0.3853 -0.4652 0.2240 
Delta5 -0.2334 -0.3121 0.2236 
Delta6 -0.1211 -0.1979 0.2233 
Delta7 -0.0039 -0.0786 0.2234 
Delta8 0.0941 0.0220 0.2235 
Delta9 0.1768 0.1082 0.2235 
Delta10 0.2674 0.2028 0.2239 

 

aThe estimates are for the ordered probit model without considering heterogeneity. The sampling scheme 
used is the hybrid Metropolis-Hastings/Gibbs sampler presented in section 3.3.2. MLE estimates are presented on 

the left column for the purpose of comparison. 
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Figure 3.1 Iteration trajectories of the covariate parameters in the standard Gibbs sampling scheme. The 
covariates respective to 1β  to 6β  are age, sex, education, race, unemployment insurance and marital 
status. 
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Figure 3.2  Iteration trajectories of three representative cutpoints in the standard Gibbs sampling scheme. 
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Figure 3.3 Evolution of the Gelman-Rubin factors for the covariate parameters in the standard Gibbs 
sampling scheme. The covariates respective to 1β  to 6β  are age, sex, education, race, unemployment 
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Figure 3.4 Evolution of the Gelman-Rubin factors for three representative cutpoints in the standard Gibbs 
sampling scheme. 



 

 

96

0 1 2 3 (×105)

0

1

2

-1

-2

β 2

iteration
0 1 2 3 (×105)0 1 2 3 (×105)

0

1

2

-1

-2

β 2

iteration

0 1 2 3 (×105)

0

1

2

-1

-2

β 4

iteration
0 1 2 3 (×105)0 1 2 3 (×105)

0

1

2

-1

-2

β 4

iteration

0 1 2 3 (×105)

0

1

2

-1

-2

β 5

iteration
0 1 2 3 (×105)0 1 2 3 (×105)

0

1

2

-1

-2

β 5

iteration
0 1 2 3 (×105)

0

1

2

-1

-2

β 6

iteration
0 1 2 3 (×105)0 1 2 3 (×105)

0

1

2

-1

-2

β 6

iteration

Figure 3.5  Iteration trajectories of the covariate parameters in the hybrid Gibbs sampling scheme. The 
covariates respective to 1β  to 6β  are age, sex, education, race, unemployment insurance and marital 
status. 
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Figure 3.6 Iteration trajectories of three representative cutpoints in the hybrid Gibbs sampling scheme. 
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Figure 3.7 Evolution of the Gelman-Rubin factors for the covariate parameters in the hybrid Gibbs 
sampling scheme. The covariates respective to 1β  to 6β  are age, sex, education, race, unemployment 
insurance and marital status. 
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Figure 3.8 Evolution of the Gelman-Rubin factors for three representative cutpoints in the hybrid Gibbs 
sampling scheme. 
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Figure 3.9  Estimates of the marginal posterior pdf for the regressor coefficients. 
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Figure 3.11 Estimated monthly cumulative baseline hazard for the ordered probit model 

        without heterogeneity under the MLE and Bayesian paradigms. 
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