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ABSTRACT OF THE THESIS

Interaction of Heated Filaments with a Blunt Body in

Supersonic Flow

by KELLIE ANDERSON

Thesis Director: Doyle D. Knight

Two computational studies are performed to examine the influence of energy deposition

on a blunt body in supersonic flow. The first objective is to determine the effect of increasing

filament diameter on the efficiency and effectiveness of drag reduction to a blunt body. The

second objective is to evaluate the influence of the energy filaments on the heat transfer

to the blunt body. The energy deposition is modeled as a low density, high temperature

filament that is injected in the freestream and interacts with the blunt body. A code is

written to solve the compressible Navier Stokes equations to evaluate these effects.

Keywords: blunt body, stand–off distance, bow shock, recompression shock, expansion

fan, microwave filament, contact discontinuity, heat transfer, viscous, Richtmeyer–Meshkov

instability, lensing effect, vortex region, recirculation area, drag reduction, CFD
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Chapter 1

Introduction

1.1 Motivation

Two of the greatest impediments to high speed aircraft today are high drag and heat loads.

From fighter jets to space shuttles, drag forces and heat loads limit vehicle speed, range,

fuel efficiency and performance [1]. One way to mitigate heat loads in hypersonic flows is to

use blunt body vehicle designs. A disadvantage of blunt body designs is a higher pressure

drag on the vehicle. Developing viable techniques to reduce drag on high speed blunt body

vehicles is necessary to design more sophisticated air and space vehicles.

One effective means of drag reduction for blunt bodies is the use of energy deposition.

Energy deposition is the injection of heat to the flow in front of the blunt body shock by

means of laser, microwave, electron beam, glow discharge or plasma arcs. The mechanism

behind the drag reduction is the creation of high temperature, low density filaments that

interact with the shock wave to create vortices behind the shock. The vortices generate a

lower pressure region at the front of the body. Energy deposition has been widely studied

for shock wave modification [2, 3].

Microwave energy deposition, in particular, is an effective means of drag reduction for

blunt bodies. Microwave induced plasmas can be created at distances from the microwave

generator [4]. Because the wavelength of the microwave is on the same order as the plasma

length of interest, the plasma shape and size can be manipulated more than other plasma

generation techniques [4].
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1.2 Literature Survey

Flow control by means of energy deposition has a long history. Microwave energy deposi-

tion is attractive because energy deposition can be created at a distance from the energy

generating source. Successes with microwave generation have been accomplished fairly re-

cently. Preceeding microwave energy deposition, a bounty of research was performed using

laser energy deposition. Though the physical mechanisms by which breakdown is achieved

is fundamentally different between microwave and laser induced plasma generation, drag

reduction is primarily a thermal phenomenon [5]. Thus the mechanism by which the plasma

is created has a secondary effect on the plasma-shock interaction. Both microwave and laser

induced energy deposition research is presented here to illustrate the flow physics and to

demonstrate the strong agreement between computational modeling and experiments of the

filament/shock interaction.

Computational modeling of microwave energy filaments in supersonic flows has received

significant attention in the past few years. Computational results can provide physical

data difficult to measure in laboratory tests and is a means of obtaining quick results

prior to performing experiments. Previous computational studies by Azarova et al [6],

Georgivsky and Levin [7], and Farzan et al [8] have shown microwave energy deposition to

reduce pressure drag. Farzan’s [8] investigation showed the effect on the aerodynamic drag

characteristics of varying the nondimensional filament length.

The research summary presented in this section is by no means comprehensive. Sum-

maries are provided of selected research in recent years. Both computational and exper-

imental research is discussed. Surveys in this area are Knight et al [2], Fomin et al [9],

Knight et al [10], Bletzinger et al [11] and Knight [12].

Adelgren et al 2001

Adelgren, Elliot, Knight, Zheltodov and Beutner [13] performed experiments using laser

energy deposition upstream of a sphere in Mach 3.45 flow. Their research showed momentary

reduction in surface pressure on the surface of the sphere. The intent of the experiments

was to evaluate the capability of laser energy deposition to reduce surface pressure induced
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by an Edney IV shock-shock interaction. An Edney Type IV shock-shock interaction is an

oblique shock which crosses a blunt body shock at the body centerline, as illustrated in

Figure 1.1.

Four tests were performed, the first two in quiescent air, the second two in Mach 3.45

flow. The quiscent air tests were performed with an Nd:YAG laser with a wavelength of

532 nm. The laser was focused through a lens to initiate breakdown in air. The first test

studied energy deposition in quiescent air. The second test investigated microwave energy

deposition in the presence of an under-expanded jet. Rayleigh scattering images were used

to visualize the flow in each test. The images show an initial blast wave generated by the

energy deposition. For the under-expanded jet test, the interaction of the energy deposition

and the Mach disc show significant alteration of the Mach disk, which resulted in a vortex

ring behind the Mach disc.

The third and fourth tests were performed on a sphere in Mach 3.45 air. For these

tests an Nd:YAG laser was focused through a lens to generate the energy deposition. The

laser had a pulse duration of 10 nanoseconds, and was capable of energy levels up to 150-

200 milli-Joules per pulse. The tests were performed in a Mach 3.45 wind tunnel, with a

stagnation pressure of 1.4 MPa, a stagnation temperature of 290 K, a test section area of

15 cm by 15 cm, with a test section length of 30 cm. The third test showed the effect of

laser induced energy deposition on the shock structure of the sphere. The fourth test was

a study on a Edney Type IV shock-shock interation. An Endevco 8530C − 100 pressure

transducer measured pressure within the 25.4 mm sphere behind a 1.32 mm diameter port,

1.78 mm behind the sphere front surface.

In the third experiment, the laser energy deposition reduced the surface pressure on the

sphere by 40%. For the case of the shock-shock interaction, surface pressure was momen-

tarily reduced by 30%. These results indicated the excellent potential of energy deposition

for the purpose of shock control.

Exton et al 2001

Exton et al [14] demonstrated the capability to generate a microwave plasma upstream of

a Mach 6 bow shock by an on-board Ku-band horn. The intent of the research was to
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Figure 1.1: Types of Edney Shock-Shock Interactions

demonstrate the capability of generating a plasma from microwaves at the surface of the

test body.

Experiments were performed in the Langley 15 inch High Temperature Wind Tunnel.

The tunnel has a cylindrical test section with an internal diameter of 1.5 m and is 1.8 m

long. The model was an 8.26 cm diameter aluminum cylinder. The model was affixed with

Ku-band horn, as is shown in Figure 1.2.

A time-averaged schlieren image is shown from these experiments in Figure 1.3. The

primary plasma is shown just upstream of the bow shock. Subsidiary plasmas form upstream

of the main plasma. The primary plasma is overexposed in the photo; in real time it was

much thinner. The thin plasma was not sufficiently large to affect the shape of the shock

and alter the flow structure. The research succesfully generated a precurser plasma ahead of

the shock. In order to reduce surface pressure on the cylinder, however, the plasma region

would have needed to be spatially and temporally larger.
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Figure 1.2 : Schematic diagram of a

Ku-band microwave horn on-board a model

in Mach 6 flow field. [14]

Figure 1.3 : Time-averaged schlieren image

of precurser plasma at Mach 6. [14]
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(a) Edney Type IV Shock-Shock Configuration

(b) Oblique Shock-Shock Configuration

Figure 1.4: Shock Crossing Configurations Studied in Adelgren et at 2003

Adelgren et al 2003

Adelgren, Yan, Elliot, Knight and Beutner [15] performed both experimental and computa-

tional experiments to study the effect of energy deposition on wave structures in Mach 3.45

flow. Three configuractions were studied. The first case studied the interaction of energy

deposited upstream of a sphere. The second case evaluated the interaction of laser energy

deposition on an Edney type IV configuration, as illustrated in Figure 1.4(a). The final

configuration studied the effect of laser energy deposition on crossing oblique shocks gener-

ated by two wedges in Mach 3.45 flow. The oblique shock crossing configuration is shown in

Figure 1.4(b). The stagnation pressure was 1.4 MPa and the stagnation temperature was

290 K.
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The experiments were performed in a Mach 3.45 wind tunnel at Rutgers University. The

laser used to create the energy deposition was a Nd:YAG 532 wavelength laser beam, with

a 10 nanosecond duration and pulsed at a frequency of 10 Hz. The energy deposition was

applied at both one diameter and 0.6 diameters upstream of the sphere. The test model

was a 25.4 mm diameter sphere. The crossing shock was created by a 15 degree wedge

mounted at the top of the test section. Heat transfer and temperature were measured along

the surface of the sphere using thin film gauges made from platinum. The pressure was

measured by a single Endevco 8560C-100 pressure transducer located in the center of the

sphere, mounted 1.78 mm from the front of the sphere, behind a port with a 1.32 mm

diameter.

The computations were performed with a three-dimensional Euler code. The General

Aerodynamic Simulation Program (GASP) was used to perform the computations. The

laser was modeled through an energy source term with an initially Gaussian temperature

distribution.

The computed stagnation pressure agreed with the experimental stagnation pressure to

within the experimental uncertainty for the steady state condition as well as the Edney

IV blunt body shock- oblique shock configuration. For the case of the sphere in the Mach

3.45 flow without the crossing shock, the stagnation pressure was reduced 40% during the

50 microseconds of the thermal spot interaction with the sphere. During that time, the

heat transfer rate and temperature at the surface of the sphere increased dramatically. In

the Edney IV case, the peak surface pressure was reduced by 30%, but the heat transfer

rate and temperature at the surface of the sphere was not reduced. The heat transfer rates

for the surface of the sphere, with energy deposition applied at one diameter upstream of

the model, for both sphere and Edney IV interaction can be found in Figures 1.5 and 1.6,

respectively. The oblique shock crossing configuration demonstrated a 80% reduction in

Mach stem. The numerical and experimental results were similar on a quantitative basis.
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Figure 1.5 : Heat Transfer at Surface of

Sphere for Case of Energy Deposition

Applied One Diameter Upstream of Cylinder

[15].

Figure 1.6 : Heat Transfer at Surface of

Sphere for Case of Energy Deposition

Applied One Diameter Upstream of

Cylinder, Edney IV Type Shock Crossing

Configuration [15].

Zaidi et al 2004

Zaidi, Shneider and Miles [16] performed a computational and experimental study of a wedge

in Mach 2.4 flow with laser energy deposition. The study was performed to evaluate the

surface pressure effects of the laser energy deposition, primarily for sonic boom reduction.

Reduced shock strength and near-field pressure is an indication of reduction in wave drag.

The experiments were performed in a blow-down type wind tunnel with free stream

Mach number 2.4. The laser energy deposition was obtained with a YAG laser pulsed

at 10 Hz, capable of 350 mJ/pulse. The energy deposition was applied 10 mm upstream

and 10 mm below the model centerline axis. The stagnation pressure in the tunnel is one

atmosphere and the stagnation temperature was 136 K, using air as the test gas. The

model was a 15 mm length 20 degree wedge. To avoid flow instabilities at the trailing edge,

an inclined rear region was used, such that the test section was more diamond shaped.

Schlieren and shadowgraph images were used to visualize the flow. The computational code

was a two-dimensional Euler solver using a second order MacCormack scheme.

The computational and experimental flow structures were qualitatively very similar.

The computational results showed similar shock bending and weakening as the experimental

results. A numerical case was run modeling the blast wave from the laser energy deposition



9

and a separate case was run without modeling the blast wave. The case with the energy

deposition blast wave modeled showed much higher pressure peaks than the case in the

absense of the blast wave, as seen in Figure 1.7. This result is an indicator that energy

deposition must be generated far enough upstream of the body shock that the blast wave

from the energy deposition generation has sufficiently dissipated.

Figure 1.7 : Computational Prediction of Maximum Relative Pressures at Bottom of Test

Section [16]

Kolesnichenko et al 2007

Kolesnichenko, Khmara, Brovkin and Afansas’ev evaluated different types of laser pulses

in combination with microwave fields to generate a more efficient drag reducing energy

deposition shape [17]. The most efficient energy deposition geometry for flow control is a

long hot cylindrical filament. The shape of the laser induced plasmas, however are more

spherical, and the microwave induced filaments are very irregular in shape. The article

sought to combine the two technologies to create an optimally shaped energy deposition

filament. Both experimental and computational analyses were performed.

For the experiments, sparks were generated with an Nd:YAG laser with a wavelength of
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532 nanometers, pulse energy up to 130 mJ, with a pulse duration of 15 ns. The microwaves

were generated at a pulse rate of 13.5 GHz, a pulse power of 500 kW and a pulse duration of

3−70 microseconds. The laser in this experiment was aligned with electric field vector of the

electromagnetic waves. Previous research had microwaves perpendicular to the flow. It was

found that sparks could be initiated at lower microwave fields with the parallel orientation.

Computational simulations modeled both thermal and non-equilibrium laser plasmas

as initiators for the microwave breakdown. The thermal mode model demonstrated decay

rates independent of air pressure. Also, the spark transparency only existed for a distinct

period of time, which decreased as ambient air pressure increased. It was shown that the

non-equilibrium laser initiator achieved a thermal filament along the path of the laser.

However, to achieve this configuration, simultaneous application of the microwave and the

laser would be necessary. Additionally, an electric field would have to be present to prevent

recombination and attachment, which would otherwise rapidly decay the energy deposition

filament.

Lashkov et al 2007

Lashkov, Mashek, Anisimov, Ivanov, Kolesnichenko and Azarova [18] investigated the effect

of microwave energy deposition in combination with an aerodynamic spike generated by

counterflow at the front of a body. Both experimental and computational methods were

employed in this study.

In the computational study, a sphere in Mach 3 flow was evaluated for different filament

densities relative to the freestream density, and length of filament. The reduction in pressure

upon interaction of the shock wave was greater for the lower density filament and longer

length filament. The reduction in force on the front of the body was shown to be insensitive

to the filament density. This was thought to be a sign that the distance between data points

sampled on the front face of the sphere was not small enough to capture differences. The

computational study illustrated the presence of a standing shock wave in the stagnation

region after the microwave energy deposition had passed through the flow domain.

The experiments investigated a 25 mm diameter sphere in Mach 1.2 flow with a stag-

nation pressure of 40 Torr. The experimental apparatus can be seen in Figure 1.8. A 1
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mm diameter spike was placed at the front of the sphere. The first experiment injected

microwave energy deposition to the flow in front of the sphere with the spike, but no air

injection. In this case, the microwave energy deposition increased the pressure at the front

of the sphere. The second case was run with air injected through the spike at a flow rate

of 4 · 10−5 kg/s. The interaction of the microwave energy deposition and the spike/shock

increased the pressure on the sphere, but far less than the case without air injection. The

pressure on the sphere is shown in Figure 1.9.

Figure 1.8 : Apparatus of Spike on Sphere

Figure 1.9 : Relative Pressure on Surface of

Sphere With and Without Air Injection

Through the Spike

Knight, Azarova, Kolesnichenko 2009

A computational study of microwave energy deposition in supersonic flow was presented

for axially symmetrically applied and asymmetrically applied energy deposition [19]. The

configuration was a right cylinder in Mach 1.89 and Mach 3 flow, for various filament

geometries. The ratio of filament diameter to cylinder diameter ranged from 0.1 to 0.26,

the length of pulsed filament nondimensionalized by the cylinder diameter varied from 3 to

infinitely long, and the off-axis location was varied for the different configurations.

The computational study used two codes, both of which solved the Euler equations.

One code solved the Euler equations in cylindrical coordinates, while the other solved the

Euler equations in plane coordinates. Both codes were second order accurate in both space

and time.
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The symmetrically located filament reduced the drag on the cylinder, while the asym-

metrically located filament cases increased the drag on the cylinder. The mechanism by

which the drag increased was described as a heat piston. The asymmetrically located fila-

ment induced an asymmetric vortex, which collided with the cylinder and compressed the

air near the cylinder face. The result was an increase in drag on the cylinder. The flow field

around the heat piston is illustrated in Figure 1.10.

The off-axis filaments were shown to induce a pitching moment on the cylinder. The

pitching moment was a function of how far off axis the energy deposition is positioned.

Figure 1.10 : Asymmetrically Located Filament / Shock Layer Interaction Density Isochors

and Pressure Contours [19]

1.3 Statement of Objectives

There are two objectives of this research. The first objective is to investigate how variations

in the energy deposition filament diameter affect aerodynamic drag. This work extends the

research of Farzan et al [8]. Their work demonstrated that a pulsed energy filament in the

region of the bow shock generates a sustained vortex region that reduces drag on the body

in inviscid supersonic flow [8]. It was concluded that shorter pulses generated a higher

efficiency and lower effectiveness than longer pulses, which generated the converse. This

research will show the relations between filament radius and drag reduction efficiency and

effectiveness. The drag reduction efficiency is the ratio of the power saved due to drag

reduction by introduction of the microwave filament to the power necessary to create the

microwave filament. The effectiveness is the ratio of the average frontal drag reduction due

to the presence of the filament to the frontal drag in the absence of the filament.

The second objective of this research is to study the viscous effects of energy deposition.

Inviscid computational studies of energy deposition have shown that microwave energy
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deposition can be effective and efficient for drag reduction. The viscous effects of energy

deposition, so far, have been limited to experimental work [15]. This research solves the

Navier Stokes equations to compute the heat transfer rate to the front of the blunt body

with and without energy deposition.
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Chapter 2

Problem Definition

Two problems are solved in this research. The first problem is an inviscid study of energy

deposition in Mach 1.89 flow past a right cylinder. This study looks at the effect of a varying

energy deposition filament diameter. The second problem is a study of the heat transfer

effects of microwave energy deposition to blunt bodies in supersonic flow. The same flow

configuration is used in both studies.

2.1 Inviscid Simulations

The problem of a cylinder of diameter D in supersonic flow with continuous energy deposi-

tion is solved in this research. The energy deposition is applied along the axis of symmetry

of the cylinder. One wedge of the axisymmetric problem is solved. The energy deposition

is modeled by a lower density than the freestream. The ratio of energy deposition density

to freestream density will be referred to as the reduced density and denoted by α. The

problem dimensions are depicted in Figure 2.1. The flow and energy deposition filament

parameters are defined in Table 2.1. The flow parameters and filament density ratio match

those of Farzan et al [8]. The dimensionless filament diameter is varied to study the effect

on drag efficiency and effectiveness. The filament diameters versus case numbers are shown

in Table 2.2. The filaments are chosen to be infinitely long. The effect of the filament pulse

frequency on drag reduction was previously studied by Farzan et al [8].

2.1.1 Solution Domain

The problem of a cylinder in supersonic flow with energy deposition is axisymmetric. The

geometry of the computational domain is shown in Figure 2.1. A cylindrical control volume

is used to evaluate the flow around the cylinder. The energy deposition is applied along
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Energy Pulses

d

L

l

D

Figure 2.1: Computational domain

Table 2.1: Dimensionless Flow Parameters for Filament Diameter Study
Type Description Definition Value
Flow Mach M∞ 1.89

Specific heat ratio γ 1.4
Filament Density ratio α 0.5

Diameter d
D varies

Length (Duration) l
D infinitely long

the centerline of the cylinder in the freestream flow. The solution domain and boundary

conditions are axisymmetric. The problem can be reduced to a wedge of the solution domain

shown in Figure 2.2.

2.1.2 Boundary Conditions

The compressible Euler equations represent a hyperbolic system of equations requiring

initial and boundary conditions. The steady state solution to flow over the body (at the same

freestream conditions as the energy deposition problem) is used for the initial condition.

Each face that corresponds to a flow domain boundary is given a unique number as shown

in Figure 2.2. The boundary condition applied at each boundary face is listed in Table 2.3.

Symmetry boundary conditions are applied on azimuthal boundaries to ensure that the flow

maintains axisymmetry. The inflow boundary condition is modeled as uniform supersonic

Table 2.2: Filament Diameters for Three Cases of Filament Diameter Study
Case Filament Diameter d

D

1 0.25
2 0.50
3 1.0
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flow with energy deposition imposed via a reduced density. The reduced density is modeled

as α = ρfilament/ρ∞. Pressure in the filament is the freestream pressure and temperature

is increased by 1
α , where α is less than one. The velocity of the filament is equal to the

freestream velocity. The reduced density reduces the Mach number in the filament by a

factor of
√
α.

3

0 15
4

2

7

6

flow domain

cylinder

energy pulse

CL

Figure 2.2: Axisymmetric wedge solution domain

Table 2.3: Boundary Conditions for Inviscid Filament Diameter Study
Boundary Boundary Condition

0 Freestream flow and energy deposition
1 Outflow (zero-gradient)
2 Axisymmetric
3 Symmetry
4 Symmetry
5 Symmetry
6 Symmetry
7 Symmetry
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2.1.3 Details of Computation

Each calculation was performed with three processors, with uniform grid cells in each di-

rection. The grid spacing in the axial direction was uniform with ∆x/D=0.02. The radial

spacing was uniform with ∆r/D=0.02. The chosen cell size ensures 23 cells between the

cylinder face and the normal shock and 5 cells across the diameter of the heated filament.

The computations were run on prigogine, a 24 node Linux cluster with two single-core pro-

cessors per node at 2.2 GHz, 1MByte RAM per processor, Debian Linux. Each computation

ran for 92 hours wall clock time, 276 hours processor time (92 hours on 3 processors).

2.2 Viscous Simulation

The problem of a blunt cylinder in supersonic flow with periodic energy deposition with

viscous effects is solved for this research. One wedge of the axisymmetric problem is solved.

The flow and energy deposition filament parameters are defined in Table 2.4. The problem

dimensions are depicted in Figure 2.1. The flow parameters match those of Farzan et al

[8]. The freestream Reynolds number is chosen to approximate experiments performed by

Kolesnichenko et at [20]. Typical experimental values are listed in Table 2.4. Sutherland’s

law was used to approximate freestream viscosity. The pulse period, L/D is varied from

4/3 to infinitely long, as was done in Farzan et al [8]. The effect of the filament on the

heat transfer to the face is evaluated.

2.2.1 Solution Domain

The flow domain used to compute the viscous cases is shown in Figure 2.2. The blunt

body is taken to be a perfect cylinder. The effect of the microwave pulses is known to

have the greatest effect at the front of the cylinder body. Therefore, only the first two

cylinder diameters in length of the body are included in the flow domain. The height of

the domain extends two diameters above the body. The inviscid computations provided

verification that this height is sufficient to capture the effect of the microwave filaments

on the flow. The blunt body shock is expected to lense forward upon interaction with

the microwave filaments based on previous inviscid cases. To include the lensing, the flow
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Table 2.4: Flow Parameters for Heat Transfer Study
Type Description Definition Value
Dimensionless Flow Mach M∞ 1.89

Specific heat ratio γ 1.4
Reynolds number Re 7.0 · 104

Dimensional Flow Freestream Pressure P∞ 25-50 Torr
Freestream Temperature T∞ 155 K
Freestream Viscosity µ∞ 1.06 · 10−5 kg

m·s
Dimensionless Filament Density ratio α 0.5 all cases

Diameter d
D 0.1 all cases

Length l
D 1.0, 1.0, 1.0, ∞

Pulse (Period) L
D

4
3 , 2.0, 4.0, n/a

Cylinder Temperature Tw/T∞ 2.0 all cases
Cylinder Diameter D 20-40 mm

domain is chosen to begin two cylinder diameters in length before the front of the body.

Because the microwave filaments are applied along the axis of symmetry of the flow domain,

both the domain and the boundary conditions are axisymmetric about the x-axis. Thus it

is feasible to compute only a 1/32 wedge of the flow domain to reduce computation times.

2.2.2 Boundary Conditions

The compressible Navier Stokes equations represent a parabolic system of equations requir-

ing initial and boundary conditions. The steady state solution to flow over the body (at

the same freestream conditions as the pulsed energy deposition problem) is used for the

initial condition. Each face that corresponds to a flow domain boundary is given a unique

number as shown in Figure 2.2. The boundary condition applied at each boundary face is

listed in Table 2.5. Symmetry boundary conditions are applied on the boundary tangent

to the radial direction of the cylinder to ensure that the wedge maintains axisymmetry to

the remaining domain. The inflow boundary condition is modeled as uniform supersonic

flow with pulsed energy imposed via a reduced density. The reduced density is modeled

as α = ρfilament/ρ∞. Pressure in the filament is the freestream pressure and temperature

is increased by 1
α , where α is less than one. The velocity of the filament is equal to the

freestream velocity. The reduced density reduces the Mach number in the filament by a

factor of
√
α. The outflow boundary condition is modeled as a zero gradient condition. In
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supersonic flow, disturbances do not propagate upstream, thus the outflow boundary does

not affect the upstream flow field. The dimensionless surface temperature of the cylinder is

chosen to be Tw/T∞ = 2.0 to ensure a hot cylinder. The adiabatic wall temperature would

be Tw/T∞ = 1.7 at the stagnation point.

Table 2.5: Boundary Conditions for Heat Transfer Study
Boundary Boundary Condition

0 Freestream flow and pulsed energy
1 Outflow (zero-gradient)
2 Axisymmetric
3 Symmetry
4 Symmetry
5 Symmetry
6 No slip, T/T∞ = 2.0
7 No slip, T/T∞ = 2.0

2.2.3 Details of Computation

The grid spacing was chosen to ensure at least five cells in the boundary layer at the front

face of the cylinder. The boundary layer at the front face of the cylinder was calculated

using the boundary layer thickness calculation for stagnation flows [21]. For Hiemenz flow,

the boundary layer thickness, δ, is given by

δ = 2.4
√
ν

ε
(2.1)

where ε = U
D The quantities are taken from the conditions behind the shock, using the

normal shock relations.

The boundary layer height is nondimensionalized by the diameter of the cylinder, which,

for this calculation is chosen to be unity. The nondimensional boundary layer height is

δ

D
= 2.4

√
µ

ρUD
= 0.011 (2.2)

Thus the grid spacing in the direction normal to the front face of the cylinder is ∆x
D =

0.002. Therefore, there are six cells in the boundary layer at the front face of the cylinder.
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The grid spacing in the radial direction was chosen to be ∆r
D = 0.00175. This ensured

twenty nine cells within the radius of the energy deposition filament.

If the shock wave left the upper boundary, it would reflect back and affect the calculation.

The height of the domain was chosen by evaluating the inviscid computation to determine

the height such that the bow shock exits the domain at the back corner. The nondimensional

height of the computed domain is 3.1.

The grid above the cylinder is stretched in the radial direction at a stretching rate of

1.01. Stretching in the radial direction significantly reduces computing times by reducing

the number of cells.

To further reduce computing time, the computational domain was divided into twenty-

five zones. Each zone was run on a separate processor. The zones in front of the cylinder

face, with uniform grid spacing in each direction are 100x286x1 cells in the axial, radial and

azimuthal directions, respectively. The remaining fifteen zones which are stretched in the

radial direction are 100x89x1 cells in the axial, radial and azimuthal directions, respectively.

The grid is shown in Figure 2.3. Each zone is outlined in the figure. The cylinder body,

which is not included in the computational flow domain, is shaded. The lengths are shown

in terms of the cylinder diameter.

Each computation required 25 processors, one for each zone. The total run time of each

computation varied from approximately 272-388 hours for the transient cases.
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Figure 2.3: Computational Domain
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Chapter 3

Methodology

3.1 Governing Equations

The fluid motion is described by the conservation of mass, momentum and energy. The di-

mensional governing equations are described by equations (3.1) to (3.3), where the Einstein

summation notation is used. The viscous terms are included in this section; however, these

terms were deactivated for the inviscid computations.

Conservation of Mass
∂ρ

∂t
+
∂ρuj
∂xj

= 0 (3.1)

Conservation of Momentum

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

(3.2)

Conservation of Energy

∂ρe

∂t
+
∂(ρe+ p)uj

∂xj
=
∂qj
∂xj

+
∂τijuj
∂xi

(3.3)

For a Newtonian fluid, the stress tensor is written as

τij = µ

[
∂ui
∂xj

+
∂uj
∂xi

]
− 2

3
µδij

∂uk
∂xk

(3.4)

The heat flux, is given by Fourier’s Law

qj = cp
µ

Pr

∂T

∂xj
(3.5)

The total energy per unit mass is given by

e = cvT +
1
2
ujuj (3.6)
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The total enthalpy is

H = h+
1
2
uiui (3.7)

where h is the static enthalpy, defined as

h = e+
p

ρ
(3.8)

3.1.1 Nondimensionalization

The governing equations are rewritten in dimensionless form. The dimensional variables

are denoted with a starred superscript ∗ in the following definitions. The indices represent

the component of a vector.

ρ =
ρ∗

ρ∞
(3.9)

ui =
u∗i
u∞

(3.10)

e =
e∗

u2
∞

(3.11)

p =
p∗

ρ∞u2
∞

(3.12)

τij =
τ∗ij

ρ∞u2
∞

(3.13)

qi =
q∗i

ρ∞u3
∞

(3.14)

xi =
x∗i
L

(3.15)

t =
t∗

L∗

u∞

(3.16)

µ =
µ∗

µ∞
(3.17)

T =
T ∗

T∞
(3.18)

h =
h∗

u2
∞

(3.19)

H =
H∗

u2
∞

(3.20)
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3.1.2 Nondimensional Governing Equations

The governing equations in terms of the non-dimensional parameters are as follows.

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (3.21)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

(3.22)

∂ρe

∂t
+
∂(ρe+ p)uj

∂xj
=

∂qj
∂xj

+
∂τijuj
∂xi

(3.23)

Where the dimensionless auxiliary relations become

p =
ρT

γM2
∞

=
a2ρ

γ
(3.24)

τij =
µ

Re∞

(
∂uj
∂xj

+
∂uj
∂xi
− 2

3
∂uj
∂xj

δij

)
(3.25)

qi =
µ

M2
∞

1
(γ − 1)PrRe∞

∂T

∂xi
(3.26)

a2 =
T

M2
∞

(3.27)

e =
1

γ(γ − 1)
T

M2
∞

+
ujuj

2
=

a2

γ(γ − 1)
+
ujuj

2
(3.28)

Re∞ =
ρ∞u∞L

µ∞
(3.29)

Pr =
cpµ∞
k∞

(3.30)
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3.1.3 Conservative Form of Governing Equations

A coordinate transformation is performed from the x, y, z basis to general coordinates ξ, η, ζ.

The general coordinates describe the directions of the cell faces, as shown in Figure 3.1.

The general coordinates are not necessarily orthogonal, but each cell is restricted to a

parallelepiped.

Figure 3.1: General Coordinate Axes

The strong form of the differential governing equations is

∂Q̂

∂t
+
∂(Ê − Êv)

∂ξ
+
∂(F̂ − F̂v)

∂η
+
∂(Ĝ− Ĝv)

∂ζ
= 0 (3.31)

where

Q̂ = J−1Q = J−1



ρ

ρu

ρv

ρw

ρe


(3.32)

Ê = J−1



ρU ′

ρuU ′ + ξxp

ρvU ′ + ξyp

ρwU ′ + ξzp

(ρe+ p)U ′


, F̂ = J−1



ρV ′

ρuV ′ + ηxp

ρvV ′ + ηyp

ρwV ′ + ηzp

(ρe+ p)V ′


, Ĝ = J−1



ρW ′

ρuW ′ + ζxp

ρvW ′ + ζyp

ρwW ′ + ζzp

(ρe+ p)W ′


(3.33)

U ′ = ξxu+ ξyv + ξzw

V ′ = ηxu+ ηyv + ηzw

W ′ = ζxu+ ζyv + ζzw
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where

ξx =
∂ξ

∂x
, ξy =

∂ξ

∂y
, ξz =

∂ξ

∂z
(3.34)

ηx =
∂η

∂x
, ηy =

∂η

∂y
, ηz =

∂η

∂z

ζx =
∂ζ

∂x
, ζy =

∂ζ

∂y
, ζz =

∂ζ

∂z

Integrating over a cell volume, we find the conservative form of the governing equations in

integrated form.

∂

∂t

∫
V
Qdxdydz + (E − Ev)|

i+ 1
2

i− 1
2

+ (F − Fv)|
j+ 1

2

j− 1
2

+ (G−Gv)|
k+ 1

2

k− 1
2

= 0 (3.35)

where the fluxes are evaluated at the cell faces, i + 1
2 and i = 1

2 , as shown in Figure 3.2

where the inviscid fluxes are

Figure 3.2: Cell Face Location

E =



ρU

ρuU + lxp

ρvU + lyp

ρwU + lzp

(ρe+ p)U


F =



ρV

ρuV +mxp

ρvV +myp

ρwV +mzp

(ρe+ p)V


G =



ρW

ρuW + nxp

ρvW + nyp

ρwW + nzp

(ρe+ p)W


(3.36)

where

U = ~v ·~l, V = ~v · ~m, W = ~v · ~n (3.37)

The vectors l, m and n are defined as normals to the ξ,η, and ζ faces, respectively, with

magnitudes equal to the surface area.

~l = J−1
−→
∇ξ dηdζ = n̂ dA|ξ-face,
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~m = J−1
−→
∇η dξdζ = n̂ dA|η-face, (3.38)

~n = J−1
−→
∇ζ dξdη = n̂ dA|ζ-face,

and the viscous fluxes are

Ev =



0

lxτxx + lyτxy + lzτxz

lxτyx + lyτyy + lzτyz

lxτzx + lyτzy + lzτzz

lxβx + lyβy + lzβz


Fv =



0

mxτxx +myτxy +mzτxz

mxτyx +myτyy +mzτyz

mxτzx +myτzy +mzτzz

mxβx +myβy +mzβz


(3.39)

Gv =



0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxβx + nyβy + nzβz


The heat flux terms are written as

qx =
µ

M2
∞

1
(γ − 1)Pr∞Re∞

∂T

∂x
(3.40)

qy =
µ

M2
∞

1
(γ − 1)Pr∞Re∞

∂T

∂y

qz =
µ

M2
∞

1
(γ − 1)Pr∞Re∞

∂T

∂z

and β terms in the energy conservation equation are defined as follows

βx = qx + τxxu+ τxyv + τxzw (3.41)

βy = qy + τyxu+ τyyv + τyzw

βz = qz + τzxu+ τzyv + τzzw
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3.2 Numerical Algorithm

3.2.1 Inviscid Flux Formulation

The inviscid flux terms are solved using Van Leer’s flux vector splitting method [22]. A

three-dimensional Van Leer scheme is proposed following [23]. The scheme is validated by

showing the scheme is equivalent to the integrated equations of motion, Equation (3.36).

The scheme is evaluated for the flux component perpendicular to the ξ face. A similar

evaluation holds for the flux components perpendicular to the η and ζ faces.

E =


El for M > 1

(f+ + f−) dAξ-face for −1 ≤ M ≤ 1

Er for M < −1

(3.42)

where n̂ = (n̂x, n̂y, n̂z) is the unit normal to the face, M = (~v · n̂) /a, U = ~v · n̂, and

f± = f±m



ρ

ρu+ ρn̂x
(
−U ± 2a

)
/γ

ρv + ρn̂y
(
−U ± 2a

)
/γ

ρw + ρn̂z
(
−U ± 2a

)
/γ

ρf±e

where

f±m = ±a
4

(
M± 1

)2

f±e = ±ho −

(
−U ± a

)2

γ + 1

ho = e+
p

ρ

The system is evaluated to demostrate that it is equivalent to the integrated form of the

laminar Navier Stokes equations, Equation (3.36). The cases of M < −1 and M > 1 are

the flux evaluated at the flow conditions taken from the appropriate side of the cell face.

For example, El indicates that the flux vector E is evaluated using the flow conditions on

the left side of the cell. The equivalence to Equation (3.36) is therefore inherent to the

definition of these. The subsonic cases, −1 ≤ M ≤ 1, are proven below.
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The mass equation, from Van Leer’s scheme, Equation (3.42), evaluated for the subsonic

case, is

ρ

(
a

4

(
M + 1

)2
− a

4

(
M− 1

)2
)
dAξ-face

ρ
a

4

((
M2 + 2M + 1

)
−
(
M2 − 2M + 1

))
dAξ-face

ρaMdAξ-face

ρa
(~v · n̂)
a

dAξ-face

ρ~v · n̂dAξ-face

ρ~v ·~l

ρU (3.43)

which is identical to the first term in E in Equation (3.36). The momentum equation, from

Van Leer’s scheme, evaluated for −1 ≤ M ≤ 1 is

=
a

4

(
M + 1

)2
(
ρu+ ρn̂x

−U + 2a
γ

)
− a

4

(
M− 1

)2
(
ρu+ ρn̂x

−U − 2a
γ

)
dAξ-face

=
a

4

[(
M2 + 2M + 1

)(
ρu+ ρn̂x

−U + 2a
γ

)
−
(
M2 − 2M + 1

)(
ρu+ ρn̂x

−U − 2a
γ

)]
dAξ-face

=
a

4

[
M2 4a

γ
ρn̂x + Mρu−M

ρn̂xU

γ
+
a

γ
ρn̂x

]
dAξ-face

where Ma = U

=

(
U

2
ρn̂x
γ

+ Uρu− U
2
ρn̂x
γ

+
a2ρn̂x
γ

)
dAξ-face

=

(
Uρu+

a2ρn̂x
γ

)
dAξ-face

and, from Equation (3.39),

n̂ =
~∇ξ
J

=
1
J

(
∂ξ

∂x
î+

∂ξ

∂y
ĵ +

∂ξ

∂z
k̂

)

implies

n̂x = n̂ · î =
1
J

∂ξ

∂x
=
ξx
J
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Additionally, in dimensionless form, p = a2ρ/γ, thus the momentum equation in the x

direction for the flux in the ξ direction is

=
(
Uρu+

pξx
J

)
dAξ-face

= ρuU + plx

= ρuU + lxp (3.44)

The derivation for the y and z momentum parallels this derivation, and is omitted here.

The energy equation is

(
f+ + f−

)
dAξ-face = ρ

a

4

(
M + 1

)2

ho −
(
−U + a

)2

γ + 1

− ρa
4

(
M− 1

)2

ho −
(
−U − a

)2

γ + 1

 dAξ-face

= ρ
a

4

(M2 + 2M + 1
)ho −

(
−U + a

)2

γ + 1

− (M2 − 2M + 1
)ho −

(
−U − a

)2

γ + 1


 dAξ-face

=
ρa

4

4Mho −
(
M2 + 2M + 1

)
(
−U + a

)2

γ + 1

+
(
M2 − 2M + 1

)
(
−U − a

)2

γ + 1


 dAξ-face

=
ρa

4

[
4Mho −

(
M2 + 2M + 1

)(U2 − 2Ua+ a2

γ + 1

)
+
(
M2 − 2M + 1

)(U2 + 2Ua+ a2

γ + 1

)]
dAξ-face

=
ρa

4

[
4Mho +

4M2
Ua

γ + 1
− 4MU

2

γ + 1
− 4Ma2

γ + 1
+

4Ua
γ + 1

]

= ρa

[
Mho +

MU
2

γ + 1
− MU

2

γ + 1
− Ma2

γ + 1
+

Ma2

γ + 1

]
= ρaMhodAξ-face

= ρUhodAξ-face

= Uho

= U (ρe+ p) (3.45)

Putting together Equations (3.43), (3.44) and (3.47), the following is obtained, for −1 ≤

M ≤ 1

E =



ρU

ρuU + lxp

ρvU + lyp

ρwU + lzp

U (ρe+ p)


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3.2.2 Viscous Flux Formulation

The viscous flux terms in equations (3.39) can be written as

Ev = T̃ · l Fv = T̃ ·m Gv = T̃ · n (3.46)

where we define T̃ as

T̃ =



0 0 0

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

βx βy βz


(3.47)

Thus it remains only to find the components of T̃ at each face. From equation (3.24),

τij =
µ

Re∞

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
∂uk
∂xk

δij

)
The derivatives are evaluated with a second order approximation at each face. The chain

rule is used to evaluate the derivatives in terms of the grid parameters.

∂ui
∂xj

=
∂ui
∂ξ

∂ξ

∂xj
+
∂ui
∂η

∂η

∂xj
+
∂ui
∂ζ

∂ζ

∂xj
(3.48)

The derivatives ∂η
∂x are expressed in terms the Jacobian, J = J( ξ,η,ζx,y,z ) as ∂ηi

∂xj
= 1

J
∂xj
∂ηi

.

The velocity gradients are evaluated by the central difference scheme evaluated at each face.

For the fluxes in the ξ direction, the velocity gradients are computed as follows,

∂u
∂ξ i−1/2

= ui,j,k − ui−1,j,k

∂u
∂η i−1/2

= 1
4 (ui,j+1,k + ui−1,j+1,k − ui−1,j−1,k − ui,j−1,k)

∂u
∂ζ i−1/2

= 1
4 (ui,j,k+1 + ui−1,j,k+1 − ui−1,j,k−1 − ui,j,k−1)

For the fluxes in the η direction, the velocity gradients are computed as follows,

∂u
∂ξ j−1/2

= 1
4 (ui+1,j,k + ui+1,j−1,k − ui−1,j−1,k − ui−1,j,k)

∂u
∂η j−1/2

= ui,j,k − ui,j−1,k

∂u
∂ζ j−1/2

= 1
4 (ui,j,k+1 + ui,j−1,k+1 − ui,j−1,k−1 − ui,j,k−1)

For the fluxes in the ζ direction, the velocity gradients are computed as follows,

∂u
∂ξ k−1/2

= 1
4 (ui+1,j,k + ui+1,j,k−1 − ui−1,j,k−1 − ui−1,j,k)

∂u
∂η k−1/2

= 1
4 (ui,j+1,k + ui,j+1,k−1 − ui,j−1,k − ui,j−1,k−1)

∂u
∂ζ k−1/2

= ui,j,k − ui,j,k−1
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The derivatives are centered at the cell face perpendicular to the direction of the flux

being computed and at the center of the cell in the remaining two directions. The derivative

center is indicated by a red cross in the figures above.

The temperature gradients for the heat flux are evaluated similarly with a second order

central difference scheme evaluated at each face.

3.2.3 Reconstruction

Essentially Non-Oscillatory Method

For the viscous computations, a third order accurate Essentially Non-Oscillatory (ENO)

Method is to reconstruct the conserved variables, Q defined in Equation (3.35). As proposed

by Harten and Chakravarthy [24], the ENO method reduces the number of oscillations near

the shock, by satisfying three conditions:

Q(x) = Q(x) +O(∆x3) (3.49)

Qi =
∫ x

i+1
2

x
i− 1

2

Qi(x)dx (3.50)

TV (Qi(x)) ≤ TV (Q) +O(∆x3) (3.51)

where TV is the Total Variation of a function, as defined in [25] :

TV (Q) =
∫ x

i+1
2

x
i+1

2

∣∣∣∣dQdx
∣∣∣∣ dx (3.52)

The primitive function is used to integrate the conserved variables, Q, from xi− 1
2

to an

arbitrary x within a given cell according to

I(x) =
∫ x

x
i−a− 1

2

Qdx (3.53)

for xi−a− 1
2
≤ x ≤ xi−a+ 5

2
. The cell locations are shown in Figure 3.3.

The integer a moves a stencil of three cells to the region that minimizes oscillation, by the

following method. The one-dimensional formulation is shown here, however, an extension

to three-dimensions for a non-uniform grid is utilized in the code.
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Figure 3.3: Location of Cell Faces

The integrated quantity is interpolated to third order accuracy by a polynomial inter-

polation with Newton basis. The interpolation scheme is

P (x) = a0 + a1(x− xi−a− 1
2
) + a2(x− xi−a− 1

2
)(x− xi−a+ 1

2
) (3.54)

+a3(x− xi−a− 1
2
)(x− xi−a+ 1

2
)(x− xi−a+ 3

2
) (3.55)

where the coefficients, a0,a1,a2 and a3 are found via divided differences [24].

The reconstruction of Q is obtained by differentiating the interpolated integral with

respect to x :

Qi(x) =
dP

dx
(3.56)

for xi− 1
2
≤ x ≤ xi+ 1

2
and

Qi(x) = a1 + a2

[
(x− xi−a+ 1

2
) + (x− xi−a− 1

2
)
]

+

a3

[
(x− xi−a+ 1

2
)(x− xi−a+ 3

2
) + (x− xi−a− 1

2
)(x− xi−a+ 3

2
)

(x− xi−a− 1
2
)(x− xi−a+ 1

2
)
]

(3.57)

The variable a is chosen to minimize oscillations within the cell. The Total Variation

of the derivitive of Q is minimized to ensure minimum oscillations, as defined in equation

3.54. The derivative of Q can be interpreted as the following,

dQi
dx

=
α

∆x
+

β

∆x2

(
x− xi+k− 1

2

)
(3.58)

α,β and k are defined in Table 3.1
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Table 3.1: Constants of Derivative of Q for Determination of Parameter a
a α β k

0 ∆Qi+1/2 ∆Qi+3/2 −∆Qi+1/2 1
1 ∆Qi+1/2 ∆Qi+1/2 −∆Qi−1/2 1
1 ∆Qi−1/2 ∆Qi+1/2 −∆Qi−1/2 0
2 ∆Qi−1/2 ∆Qi+1/2 −∆Qi−3/2 0

Thus,

TV (Qi(x)) =
∫ xi+1/2

xi−1/2

‖dQi
dx
‖dx

≤
∫ xi+1/2

xi−1/2

|α|
∆x

+
∫ xi+1/2

xi−1/2

|β|
∆x2
|(x− xi+k−1/2)|dx

= |α|+ 1
2
|β| (3.59)

Then, a is selected to minimize α and β in turn, as shown in Table 3.2

Table 3.2: Criteria for Selection of Parameter a
1st Criterion 2nd Criterion k a

|∆Qi+1/2| ≤ |∆Qi−1/2| |∆Qi+3/2 −∆Qi+1/2| ≤ |∆Qi+1/2 −∆Qi−1/2| 1 0
|∆Qi+3/2 −∆Qi+1/2| > |∆Qi+1/2 −∆Qi−1/2| 1 1

|∆Qi+1/2| > |∆Qi−1/2| |∆Qi+1/2 −∆Qi−1/2| ≤ |∆Qi−1/2 −∆Qi−3/2| 0 1
|∆Qi+1/2 −∆Qi−1/2| > |∆Qi−1/2 −∆Qi−3/2| 0 2

The different stencils with which Qi are determined for the different values of a are

shown in Figure 3.4.

Modified Upwind Scheme for Conservation Laws

For the inviscid computation, a second order accurate Modified Upwind Scheme for Conser-

vation Laws (MUSCL) scheme is used to reconstruct the conserved variable vector, Q. As

proposed by Anderson et al [26], the MUSCL scheme is an upwind scheme that minimizes

oscillations at discontinuities by limiting the reconstructed values based on the following

conditions :

min(Qi−1, Qi, Qi+1) ≤ Ql
i+ 1

2
≤ max(Qi−1, Qi, Qi+1) (3.60)

min(Qi−1, Qi, Qi+1) ≤ Qr
i− 1

2
≤ max(Qi−1, Qi, Qi+1) (3.61)

The one-dimensional formulation is shown here; an extension to three dimensions is

utilized in the code.
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cells used to define Qi(x) for cell i for a=2

i− 2 i− 1 i i+ 1 i+ 2

xi− 5
2

xi− 3
2

xi− 1
2

xi+ 1
2

xi+ 3
2

xi+ 5
2

x

................................
........

...........
.......... .....................

cells used to define Qi(x) for cell i for a=1

i− 2 i− 1 i i+ 1 i+ 2

xi− 5
2

xi− 3
2

xi− 1
2

xi+ 1
2

xi+ 3
2

xi+ 5
2

x

................................
........

...........
.......... .....................

cells used to define Qi(x) for cell i for a=0

i− 2 i− 1 i i+ 1 i+ 2

xi− 5
2

xi− 3
2

xi− 1
2

xi+ 1
2

xi+ 3
2

xi+ 5
2

x

Figure 3.4: Possible Cell Stensils to Construct Qi(x)

The primitive function is used to integrate the conserved variables, Q, from xi− 3
2

to an

arbitrary x within a given cell.

I(x) =
∫ x

x
i− 3

2

Q dx (3.62)

for xi− 3
2
≤ x ≤ xi+ 1

2

The integrated quantity is interpolated to second order accuracy by a polynomial inter-

polation with Newton Basis. The interpolation scheme is

P (x) = a0 + a1(x− xi− 3
2
) + a2(x− xi− 1

2
)(x− xi− 3

2
) (3.63)

where the coefficients, a0, a1, and a2 are found via divided differences [27].

The reconstruction of Q, then, is obtained by differentiating the interpolated integral

with respect to x :

Qi(x) =
dP

dx
(3.64)
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for xi− 1
2
≤ x ≤ xi+ 1

2
and

Qi(x) = a1 + a2

[
(x− xi− 1

2
) + (x− xi− 3

2
)
]

(3.65)

The reconstruction values for the Q at the cell face are

Ql
i+ 1

2
= Qi +

1
4

[
(1− κ)∆̂Qi− 1

2
+ (1 + κ)∆̂Qi+ 1

2

]
(3.66)

Qr
i+ 1

2
= Qi −

1
4

[
(1− κ)∆̂Qi+ 1

2
+ (1 + κ)∆̂Qi− 1

2

]
(3.67)

For a value of κ = 1
3 the following values of ∆̂Qi+ 1

2
are used where b = (3− κ)/(1− κ).

When ∆Qi+ 1
2
≥ 0 and ∆Qi− 1

2
≥ 0

∆̂Qi− 1
2

=

 ∆Qi− 1
2

if ∆Qi− 1
2
≤ b∆Qi+ 1

2

b∆Qi+ 1
2

if ∆Qi− 1
2
> b∆Qi+ 1

2

(3.68)

∆̂Qi+ 1
2

=

 ∆Qi+ 1
2

if ∆Qi+ 1
2
≤ b∆Qi− 1

2

b∆Qi− 1
2

if ∆Qi+ 1
2
> b∆Qi− 1

2

(3.69)

When ∆Qi+ 1
2
≥ 0 and ∆Qi− 1

2
≤ 0

∆̂Qi− 1
2

=

 ∆Qi− 1
2

if ∆Qi− 1
2
≥ −2∆Qi+ 1

2

−2∆Qi+ 1
2

if ∆Qi− 1
2
< −2∆Qi+ 1

2

(3.70)

∆̂Qi+ 1
2

=

 ∆Qi+ 1
2

if ∆Qi+ 1
2
≤ −2∆Qi− 1

2

−2∆Qi− 1
2

if ∆Qi+ 1
2
> −2∆Qi− 1

2

(3.71)

When ∆Qi+ 1
2
≤ 0 and ∆Qi− 1

2
≤ 0

∆̂Qi− 1
2

=

 ∆Qi− 1
2

if ∆Qi− 1
2
≥ b∆Qi+ 1

2

b∆Qi+ 1
2

if ∆Qi− 1
2
< b∆Qi+ 1

2

(3.72)

∆̂Qi+ 1
2

=

 ∆Qi+ 1
2

if ∆Qi+ 1
2
≥ b∆Qi− 1

2

b∆Qi− 1
2

if ∆Qi+ 1
2
< b∆Qi− 1

2

(3.73)

When ∆Qi+ 1
2
≤ 0 and ∆Qi− 1

2
≥ 0

∆̂Qi− 1
2

=

 ∆Qi− 1
2

if ∆Qi− 1
2
≤ −2∆Qi+ 1

2

−2∆Qi+ 1
2

if ∆Qi− 1
2
> −2∆Qi+ 1

2

(3.74)
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∆̂Qi+ 1
2

=

 ∆Qi+ 1
2

if ∆Qi+ 1
2
≥ −2∆Qi− 1

2

−2∆Qi− 1
2

if ∆Qi+ 1
2
< −2∆Qi− 1

2

(3.75)

3.2.4 Time Integration

The two-stage explicit Runge-Kutta scheme [28] is used to march forward in time. The

scheme is applied as follows:

Q0
i = Qni

Q1
i = Q0

i +
∆t
2
R0
i

Q2
i = Q0

i + ∆tR1
i

Qn+1
i = Q2

i (3.76)

where R0
i is the flux evaluated at Q0

i and R1
i is the flux evaluated at Q1

i .

Computing Q1
i is an intermediate step that ensures second order accuracy of the scheme.

The time step is determined by the Courant-Friedrichs-Lewy (CFL) condition for viscous

flows. The inviscid timestep criterion is given by Equation (3.79) in terms of dimensionless

variables. The viscous timestep criterion in terms of dimensionless variables is given by

Equation (3.80).

∆tx =
CFL ∆x
u+ a

, ∆ty =
CFL ∆y
v + a

, ∆tx =
CFL ∆z
w + a

(3.77)

∆tx =
CFL ∆x2ρ

µ
, ∆ty =

CFL ∆y2ρ

µ
, ∆tz =

CFL ∆z2ρ

µ
(3.78)

where CFL< 1. The final timestep is the minimum timestep required by the inviscid and

viscous criteria in every direction.

3.2.5 Parallelization

The code has been parallelized to handle large grids. The Message Passing Interface (MPI)

has been used to run jobs on parallel computers.
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The message passing scheme in this software is limited to only pass information between

zone faces of the same size. Zones are limited to hexahedrons that pass to zones with

adjacent faces of the same size (number of cells). A two dimensional depiction is shown in

Figure 3.5.

Figure 3.5: Adjacent Zones Must Have Faces of Equal Sizes

The fluid cells are updated by the finite volume scheme. The ghost cells are updated

during after each stage of the Runge-Kutta time iteration scheme (twice for each time step).

The ghost cells across zone boundaries are swapped at the time the ghost cells are updated

internally to each zone. A depiction of the cell updating is shown in Figure 3.6. Fluid

cells from the upstream (closer to (x, y, z)=(0,0,0)) zone provide flow data to the ghost cells

in the adjacent zone in each direction (ξ, η, ζ) simultaneously. Then the higher (farther

from (x, y, z)=(0,0,0)) provide flow data to the ghost cells in the adjacent zones in all three

directions (ξ, η, ζ).

3.2.6 Corner Corrections

Entropy Fix

The cylinder edge (Figure 2.1) creates a local singularity in the flow. Near regions of high

gradients, such as quickly accelerating flow, the ENO scheme chooses a = 1, which equates

the ENO scheme to an upwind scheme, specifically, MUSCL with k = 1
3 . Upwind schemes
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Figure 3.6: Transfer of Ghost Cells Between Three Zones

are not required to conserve entropy. Any numerical entropy production near the expansion

is made further unstable by the singularity. Woodward and Collela introduced an imposed

entropy fix near the step [29], which was later summarized by Marquina and Donat [30].

The entropy is first corrected in six cells in the vicinity of the step, as shown in Figure 3.7.
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Figure 3.7: Cells Used to Correct Entropy and Enthalpy Around Corner Singularity

The following equation makes use of the isentropic relations for a perfect gas:

ρb = ρa(
pb
pa

)
1
γ (3.79)

The enthalpy is corrected for the same cells using the following relation for the conservative

vector:

α̂ =
1
2q

2
a + γ

γ−1A(ργ−1
a − ργ−1

b )
1
2q

2
b

(3.80)
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=
(
qa
qb

)2 (
1 +

2
M2
a (γ − 1)

)
− 2

(γ − 1)M2
b

(3.81)

where q2
b is the sum of squares of velocities from cell b.

Q =



ρb

α̂
1
2 (qb)x

α̂
1
2 (qb)y

α̂
1
2 (qb)z

1
γ−1ρb + 1

2ρbα̂q
2
b


(3.82)

where Q is vector of dependant variables from equation 3.32. The quantity α̂ is dimen-

sionless, thus vector of dependant variables, Q, is represented in terms of dimensionless

variables.

It is shown in Marquina and Donat [30] that the adiabatic constant, A= p
ργ , is conserved

over the step with this correction, and thus entropy is conserved over the step.

Density and Pressure Relaxing

In the vicinity of the corner, singularity can create computational errors despite the entropy

fix. For the larger period cases of the viscous computation (L = 2 and L = 4), the density

and pressure were relaxed in time in the event that the density in one of the cells in the

viscinity of the corner was computed to be negative. An average density between the current

computed density and the density from the previous Runge Kutta stage. This fix was only

implemented for the two closest cells the corner.
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Chapter 4

Code Validation

4.1 Comparison to Blasius Flat Plate Boundary Layer

To verify the accuracy of the viscous algorithms in the code, computations of known solu-

tions are performed for comparison. The Dorodnistyn-Howarth transformation is utilized to

find an ODE that is the same as the Blasius flat plate boundary layer incompressible case.

The derivation is provided in Appendix A. The solution to the Blasius flat plate boundary

layer case is well documented (for instance, [31]).

To gauge the accuracy of every viscous and heat transfer term, twelve cases are com-

puted. For both isothermal and adiabatic flat plate in Mach 2 flow three cases of plates

aligned with the three axes, and three plates at 10 degree inclements to the three axes are

computed. The six different geometries are shown in Figure 4.1. Each axis refers to one of

the six faces of the cell, as is shown in Figure 4.2.

The flat plate is modelled with a no-slip condition on the velocity, and either a con-

stant heat flux or temperature, depending on the case. The isothermal wall is a hot wall,

Tw/T∞=2.0, as the adiabatic wall is approximately Tw/T∞=1.8.

All cases are run with non-uniform ENO reconstruction and Van Leer’s flux algorithm.

Each case was run on one processor.

The grid for each case was stretched in the direction perpendicular to the plate, with

a stretching factor of 1.01. At the plate, the ∆x/L was 0.01, where L is the length of the

plate and x is taken to be the direction of the flow, parallel to the plate. The smallest cell

occurs at the bottom of the domain, just above the plate, with a ∆y/L of 0.0005, where y

is taken to be the direction perpendicular to the plate. At the back of the plate, x/L=1,

there would be approximately 44 cells in the boundary layer.
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(a) Flat Plate Aligned with ξ Axis (b) Flat Plate Aligned with η Axis

(c) Flat Plate Aligned with ζ Axis (d) Flat Plate at 10 degree angle with ξ Axis

(e) Flat Plate at 10 degree angle with η Axis (f) Flat Plate at 10 degree angle with ζ Axis

Figure 4.1: Six Geometries Run to Verify Viscous and Heat Transfer Terms
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The freestream parameters for the calculations are displayed in Table 4.1.

Table 4.1: Dimensionless Flow Parameters for Blasius Flat Plate Case
Description Definition Value
Mach M∞ 2.0
Specific heat ratio γ 1.4
Reynolds number ReL 100,000
Prandtl number Pr 1

4.1.1 Skin Friction Calculation

The skin friction is defined as

Cf =
τ∗w

1
2ρ
∗
eU
∗2
e

=
τw

1
2ρeU

2
e

(4.1)

where ρe is the dimensionless density at the edge of the boundary layer and Ue is the

dimensionless velocity at the edge of the boundary layer. In the subsonic case, the freestream

and edge conditions are the same. Because of the weak leading edge shock wave caused

by the boundary layer displacement thickness, the edge and freestream conditions are not

exactly the same. The stress term is non-dimensionalized by ρ∞U
2
∞, and thus the skin

friction equation is the same in terms of its non-dimensional parameters.

The skin friction from the computation was calculated from the stress term, as calcu-

lated in the viscous terms in the flow solver. The height of the boundary layer cannot be

determined exactly, and thus edge conditions were taken at a location qualitatively selected

where the velocity gradient had dropped nearly to zero.

The Blasius skin friction was calculated with the following equation :

Cf =
2f ′′(η)√
Rex

(4.2)

where Rex is the Reynolds number taken at the edge of the boundary layer, and f ′′(η) refers

to the solution of the Blasius equation, which was taken from White [31].

Rex =
ρ∗eU

∗
e x
∗

µ∗
=
ρeUex

µ
Re∞ (4.3)



44

4.1.2 Stanton Number Calculation

The Stanton Number is defined as

St =
q∗w

ρ∗eU
∗
eC
∗
p(T ∗w − T ∗ad)

(4.4)

where T ∗ad is the dimensional adiabatic wall temperature. In terms of nondimensional vari-

ables, this becomes

St =
−∂T
∂y w

Pr∞Re∞ρeUeCp(Tw − Tad)
(4.5)

where the subscript e refers to the edge condition, at the edge of the boundary layer.

The adiabatic wall temperature was determined from the equation derived by Crocco

for a Pr = 1,

Tad = Te(x)
(

1 +
γ − 1

2
M2
e

)
(4.6)

The Stanton number from the code is calculated using the heat transfer rate, as calcu-

lated in the viscous terms in the flow solver, and the conditions at the edge of the boundary

layer, as described above. The Stanton number was only computed for the isothermal cases.

The Stanton number in terms of the Blasius solution is calculated as half the skin friction,

by the Reynolds’ analogy, derived in Appendix B.

4.1.3 Results

The profiles of velocity are shown in Figures 4.3 through 4.14. Subfigures (a) - (c) show the

velocity parallel to the plate, u/U∞. The computed parallel velocities are within 1% of the

Blasius predicted velocities. The profiles of velocity perpendicular to the flat plate, v/U∞,

are shown in Figures 4.3 through 4.14, subfigures (d)-(f). The magnitude of the velocity

perpendicular to the plate is very small compared to velocity parallel to the plate. Thus,

the perpendicular velocities, v, are highly sensitive to perturbations in the flow. The ENO

scheme minimizes oscillations across the shock; however, it does not entirely prevent all

numerical oscillations. Due to small numerical perturbations, the perpendicular velocities

oscillate very slightly in time. The oscillations of velocity perpendicular to the plate are
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shown in Figure 4.15. The velocity is taken from the x/L = 0.4 location on the plate at

η = 6, near the edge of the boundary layer. The mean of velocity in the dimensionless time

range shown, is vmean = 0.00495. The Blasius solution at η = 6 is vBlasius = 0.0045. It is

shown that the mean of the oscillations is 10% lower than the Blasius solution. The 10%

difference can be attributed to small oscillations in the expansion fan at the leading edge

of the plate.

The temperature profiles, nondimensionalized by the freestream temperature, are shown

in Figures 4.16 through 4.27 plotted against the Blasius temperature in the boundary layer.

It can be seen that the temperatures agree very well.

The skin friction coefficient is graphed in Figures 4.28 through 4.31. The calculated skin

friction is within 2% of the Blasius skin friction. This indicates the viscous terms in the

code are accurate.

The Stanton number is graphed for the isothermal cases in Figures 4.32 and 4.33. The

Stanton number falls within the 2% of the Blasius predicted Stanton number in each case.

This is lower than the error that can be expected from experimental measurement of heat

transfer.
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Figure 4.2: Direction of Axes Determined by Cell Geometry



47

(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8 (d) x/L = 0.4

(e) x/L = 0.6 (f) x/L = 0.8

Figure 4.3: Adiabatic Flat Plate Perpendicular to η Axis.



48

(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8 (d) x/L = 0.4

(e) x/L = 0.6 (f) x/L = 0.8

Figure 4.4: Adiabatic Flat Plate Perpendicular to ζ Axis.
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8 (d) x/L = 0.4

(e) x/L = 0.6 (f) x/L = 0.8

Figure 4.5: Adiabatic Flat Plate Perpendicular to ξ Axis.
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8 (d) x/L = 0.4

(e) x/L = 0.6 (f) x/L = 0.8

Figure 4.6: Isothermal Flat Plate Perpendicular to η Axis.
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8 (d) x/L = 0.4

(e) x/L = 0.6 (f) x/L = 0.8

Figure 4.7: Isothermal Flat Plate Perpendicular to ζ Axis.
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8 (d) x/L = 0.4

(e) x/L = 0.6 (f) x/L = 0.8

Figure 4.8: Isothermal Flat Plate Perpendicular to ξ Axis.
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8 (d) x/L = 0.4

(e) x/L = 0.6 (f) x/L = 0.8

Figure 4.9: Adiabatic Flat Plate At Ten Degree Incline from ξ Axis.
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8 (d) x/L = 0.4

(e) x/L = 0.6 (f) x/L = 0.8

Figure 4.10: Adiabatic Flat Plate At Ten Degree Incline from η Axis.
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8 (d) x/L = 0.4

(e) x/L = 0.6 (f) x/L = 0.8

Figure 4.11: Adiabatic Flat Plate At Ten Degree Incline from ζ Axis.
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8 (d) x/L = 0.4

(e) x/L = 0.6 (f) x/L = 0.8

Figure 4.12: Isothermal Flat Plate At Ten Degree Incline to ξ Axis.
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8 (d) x/L = 0.4

(e) x/L = 0.6 (f) x/L = 0.8

Figure 4.13: Isothermal Flat Plate At Ten Degree Incline to η Axis.
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8 (d) x/L = 0.4

(e) x/L = 0.6 (f) x/L = 0.8

Figure 4.14: Isothermal Flat Plate At Ten Degree Incline to ζ Axis.
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Figure 4.15: Oscillations in Time of Velocities Perpendicular to Flat Plate at η = 6, at x/L
= 0.4 on the Plate
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8

Figure 4.16: Temperature in Boundary Layer for Adiabatic Flat Plate Perpendicular to η
Axis
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8

Figure 4.17: Temperature in Boundary Layer For Adiabatic Flat Plate Perpendicular to ζ
Axis
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8

Figure 4.18: Temperature in Boundary Layer For Adiabatic Flat Plate Perpendicular to ξ
Axis



63

(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8

Figure 4.19: Temperature in Boundary Layer For Isothermal Flat Plate Perpendicular to η
Axis
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8

Figure 4.20: Temperature in Boundary Layer For Isothermal Flat Plate Perpendicular to ζ
Axis
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8

Figure 4.21: Temperature in Boundary Layer For Isothermal Flat Plate Perpendicular to ξ
Axis
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8

Figure 4.22: Temperature in Boundary Layer for Adiabatic Flat Plate At Ten Degree Incline
from η Axis
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8

Figure 4.23: Temperature in Boundary Layer For Adiabatic Flat Plate At Ten Degree
Incline from ζ Axis
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8

Figure 4.24: Temperature in Boundary Layer For Adiabatic Flat Plate At Ten Degree
Incline from ξ Axis
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8

Figure 4.25: Temperature in Boundary Layer For Isothermal Flat Plate At Ten Degree
Incline to η Axis
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8

Figure 4.26: Temperature in Boundary Layer For Isothermal Flat Plate At Ten Degree
Incline to ζ Axis
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(a) x/L = 0.4 (b) x/L = 0.6

(c) x/L = 0.8

Figure 4.27: Temperature in Boundary Layer For Isothermal Flat Plate At Ten Degree
Incline to ξ Axis



72

(a) Flat Plate Perpendicular to η Axis

(b) Flat Plate Perpendicular to ζ Axis

(c) Flat Plate Perpendicular to ξ Axis

Figure 4.28: Skin Friction Versus Re for Adiabatic Flat Plate Cases
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(a) Flat Plate Perpendicular to η Axis

(b) Flat Plate Perpendicular to ζ Axis

(c) Flat Plate Perpendicular to ξ Axis

Figure 4.29: Skin Friction Versus Re for Isothermal Flat Plate Cases
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(a) Flat Plate 10 Degree Incline to ξ Axis

(b) Flat Plate 10 Degree Incline to η Axis

(c) Flat Plate 10 Degree Incline to ζ Axis

Figure 4.30: Cf Versus Re for Adiabatic Inclinded Flat Plate Cases
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(a) Flat Plate 10 Degrees from ξ Axis

(b) Flat Plate 10 Degrees from η Axis

(c) Flat Plate 10 Degrees from ζ Axis

Figure 4.31: Skin Friction Versus Re for Inclined Isothermal Flat Plate Cases
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(a) Flat Plate Perpendicular to η Axis

(b) Flat Plate Perpendicular to ζ Axis

(c) Flat Plate Perpendicular to ξ Axis

Figure 4.32: Stanton Number Versus Re for Isothermal Flat Plate Cases
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(a) Flat Plate 10 Degrees from ξ Axis

(b) Flat Plate 10 Degrees from η Axis

(c) Flat Plate 10 Degrees from ζ Axis

Figure 4.33: Stanton Number Versus Re for Isothermal Flat Plate Cases
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4.2 Second Order Accuracy Check

The following method shows second order accuracy of the code independent of the exact

solution. The following derivation follows the second order accuracy based on the skin

friction; however, the same argument applies for the Stanton number.

For a second order scheme,

Ch
f − C0

f = a1 (∆y)2 + h.o.t. (4.7)

Cm
f − C0

f = a1 (∆ym)2 + h.o.t. (4.8)

where the superscripts indicate the following

h = grid cell size

0 = exact solution

m = minimum grid size

and h.o.t. indicates higher order terms.

Subtracting Equation (4.8) from (4.7),

Cf − Cm
f = a1

[
(∆y)2 − (∆ym)2

]
+ h.o.t. (4.9)

= a1 (∆ym)2

[(
∆y

∆ym

)2

− 1

]
+ h.o.t. (4.10)

Taking the logarithm of the absolute value of each side,

log10

∣∣∣Ch
f − Cm

f

∣∣∣ = log10

∣∣∣a1 (∆ym)2
∣∣∣+ log10

∣∣∣∣∣
(

∆y
∆ym

)2

− 1

∣∣∣∣∣+ h.o.t. (4.11)

Defining

∆y = ∆ym (1 + Λ) (4.12)(
∆y

∆ym

)2

= 1 + 2Λ + Λ2 (4.13)

where Λ ≥ 0. Thus,

log10

∣∣∣Ch
f − Cm

f

∣∣∣ = log10

∣∣∣a1 (∆ym)2
∣∣∣+ log10

∣∣∣2Λ + Λ2
∣∣∣+ h.o.t. (4.14)
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Evaluating (4.14) at ∆y = 1.25 (∆ym) and thus Λ = 0.25, also, replacing superscript m

with Λ = 0,

log10

∣∣∣CΛ=0.25
f − CΛ=0

f

∣∣∣ = log10

∣∣∣a1 (∆y)2
min

∣∣∣+ log10

∣∣∣2 · 0.25 + 0.252
∣∣∣+ h.o.t. (4.15)

Subtracting (4.15) from (4.14),

log10

∣∣∣∣∣ Ch
f − CΛ=0

f

CΛ=0.25
f − CΛ=0

f

∣∣∣∣∣ = log10

∣∣∣∣∣ 2Λ + Λ2

2 · 0.25 + 0.252

∣∣∣∣∣ (4.16)

Thus, if the left hand side of equation (4.16), using values from the computation, and it

matches the right hand side, the computation is second order accurate. For larger grid cell

sizes, error in the higher order terms are significant. However, if the code converges to the

second order values as the grid cell size is reduced, then the code achieves second order

accuracy. Figures 4.34 and 4.35 show that second order accuracy is achieved. The code

calculated values converge to the second order accurate expected solution for small enough

values of Λ.

The approximate number of cells in the boundary layer is calculated by the following

method. The boundary layer height is approximated by the analytical solution using the

Dorodnitsyn-Howarth Transformation, using the freestream parameters instead of the edge

of the boundary layer parameters.

For the adiabatic case :

δ(x)
L

=
1
Rex

[
5 + 1.19(γ − 1)M2

∞

]
(4.17)

For the isothermal case :

δ(x)
L

=
1
Rex

[
5 + 1.19(γ − 1)M2

∞

]
+

1.717∆Twall√
RexT∞

(4.18)

The number of cells in the largest grid case, n, is found for the stretched grid with the

following equation. The smaller grids divide the cells of the largest grid equally. The

stretch factor, s, of the largest grid case is 1.01.

n = logsf

[
1 + (s− 1)

(
δ

∆y0

)]
(4.19)
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Figure 4.34: 2nd Order Study of Cf , Adia-

batic Wall

Cells in
∆y Λ Boundary Layer
0.001 4.0 20
0.0005 1.5 40
0.000333 0.6650 60
0.00025 0.25 80
0.0002 0 100

Table 4.2. Calculation Details of

Cf 2nd Order Study.

Figure 4.35: 2nd Order Study of St, Isother-

mal Wall

Cells in
∆y Λ Boundary Layer

0.001 4 21
0.0005 1.5 42

0.000333 0.67 63
0.00025 0.25 84
0.0002 0 105

Table 4.3. Calculation Details of

St 2nd Order Study.
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4.3 Performance

The code’s performance is evaluated by the fixed grid speedup and the scaled grid efficiency.

The fixed grid speedup is a measure of the speedup of the code attained by using more

processors for a fixed grid size.

Speedupfixedgrid =
wallclocktime1processor

wallclocktimenprocessors
(4.20)

The scaled grid efficiency, η, is a measure of the efficiency of increasing the code using

n processors, for the same number of grid cells for each processor.

ηscaledgrid =
1
n

wallclocktime1processor

wallclocktimenprocessors
· 100 (4.21)

The results of this study are shown in Figures 4.36(a) and 4.36(b) for speedup and

efficiency respectively. The fixed grid speedup, Figure 4.36(a), shows a 20% loss of speedup

at 16 processors. The inability to speed up the calculation linearly with increased number of

processors is due to communication time between the processors. The greater the number of

processors, the cells involved in data transfer to cells involved in calculation time increases.

This limits the speedup from added processors. The scaled grid efficiency shows a 25% drop

in efficiency at 16 processors. This is also due to the increases data transfer to calculation

ratio.

4.4 Residual

The residual is defined by the difference between a quantity the prediction of that quantity.

This accomplished, in this code by the difference of the predictor and corrector step in the

Runga Kutta scheme. This difference represents the

ρcorrector − ρpredictor = residual[0]

ρucorrector − ρupredictor = residual[1]

ρvcorrector − ρvpredictor = residual[2]

ρwcorrector − ρwpredictor = residual[3]
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ρecorrector − ρepredictor = = residual[4] (4.22)

where nondimensional values are used. To ensure the residual represents a gauge of the all

variables in all cells, the residual at timestep, n, is calculated by a sum over all dependant

variables in all cells,

residualn =
∑
cell

4∑
k=0

(residualik)
2 (4.23)

The total residual is normalized by the residual at the first timestep,

residual =
residualn

residual0
(4.24)

Figure 4.37 shows the residual for the adiabatic flat plate perpendicular to the η axis.

The residual drops to 10−6. The smallest dimensionless parameter evaluated in the Blasius

cases is the perpendicular velocity, which is of order 10−3, thus the error in the code has

converged sufficiently to resolve the flow variables.
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(a) Fixed Grid Performance

(b) Scaled Grid Efficiency

Figure 4.36: Scaled Grid Efficiency Versus Number of Processors
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Figure 4.37: Residual for Adiabatic Flat Plate Perpendicular to Zeta Axis.
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Chapter 5

Results

5.1 Inviscid Simulations

5.1.1 Steady State

The steady state contours are shown in Figure 5.1. The cylinder body is shown in dark

blue. The the distance between the cylinder face and the blunt body shock, or standoff

distance, is within 5% of the experimental results [32]. The stagnation pressure on the

centerline at the front of the body is compared to the theoretical results obtained from

the Rankine-Hugoniot conditions. A comparison between the calculated conditions and the

aforementioned predictions is shown in Table 5.1. The axial cell size ∆x/D = 0.02 and thus

the standoff distance is one cell off from the experimentally obtained standoff distance. The

nondimensional stagnation pressure is within one percent of the theoretical result.

Table 5.1: Steady State Values Compared to Known Results
Standoff Distance / D Stagnation Pressure / ρ∞U2

∞
Computation 0.42 1.01
Predicted 0.40 1.02
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(a) Pressure Contours (b) Density Contours

(c) Temperature (d) Pressure Contours with Streamlines

Figure 5.1: Steady State Contours
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5.1.2 Energy Deposition Results

The problem of an infinitely long filament with varying filament diameters is considered.

The filament parameters are shown in Table 5.2. The flow contours are shown in Figures

5.2, 5.3 and 5.4 for d/D=0.25, 0.5, and 1.0, respectively. The distances are nondimen-

sionalized by the cylinder diameter, D. The pressure, density and temperature are shown

in terms of their dimensionless parameters, p/ρ∞U2
∞, ρ/ρ∞ and T/T∞, respectively. The

nondimensional freestream pressure is 1/γM2
∞, and the nondimensional freestream density

and temperature are equal to one. The case of nondimensional filament diameter of 0.25

shows a sustained eddy behind the shock. The other two cases do not demonstrate this

behavior. The larger diameter filament cases create a large enough density variation that

the flow just before the body encounters a uniform density and temperature region. The

smaller diameter filament cases create a large density gradient which generates instability

in the flow in front of the body. The result is an eddy that remains in front of the body.

Table 5.2: Dimensionless Flow Parameters for Filament Diameter Study
Type Description Definition Value
Flow Mach M∞ 1.89

Specific heat ratio γ 1.4
Filament Density ratio α 0.5

Diameter d
D 0.25, 0.5, 1.0

Length (Duration) l
D infinitely long
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(a) Pressure Contours (b) Density Contours

(c) Temperature (d) Pressure Contours with Streamlines

Figure 5.2: d/D = 0.25 Contours After 45 Nondimensional Time Units
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(a) Pressure Contours (b) Density Contours

(c) Temperature (d) Pressure Contours with Streamlines

Figure 5.3: d/D = 0.50 Contours After 34 Nondimensional Time Units
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(a) Pressure Contours (b) Density Contours

(c) Temperature (d) Pressure Contours with Streamlines

Figure 5.4: d/D = 1.0 Contours After 48 Nondimensional Time Units
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The pressure at the center of the cylinder face of the three cases, nondimensionalized by

ρ∞U
2
∞, is graphed in Figure 5.5. The d/D=0.25 case is periodic in time. The interaction

of the low density filament and the bow shock generates a vortex. The vortex convects

toward the corner. This vortex generation and convection was also observed by Farzan et

al [8] for the d/D = 0.25 case. The vortex creation and convection is periodic in time.

This periodicity can be seen in the graphs of pressure at the centerline in Figure 5.5. The

nondimensional pressure variation due to this eddy is on the order of 0.01. The d/D=0.5 and

1.0 cases show oscillatory behavior that is much smaller in magnitude, with a much higher

frequency, as can be seen in Figure 5.5. The vortex creation and convection phenomenon

does not occur for these cases.

Numerical Schlieren images are presented in Figures 5.6, 5.7 and 5.8. The filament, bow

shock, reattachment shock, cylinder body and lensing area of the shock are labeled on the

graphs. The numerical Schlieren is computed by the density magnitude gradient plotted on

a gray scale.

(a) d/D=0.25 (b) d/D=0.50

(c) d/D=1.0

Figure 5.5: Pressure at Centerline
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Figure 5.6: Schlieren Images of d/D = 0.25 at 34 Nondimensional Time Units

Figure 5.7: Schlieren Images of d/D = 0.5 at 34 Nondimensional Time Units

Figure 5.8: Schlieren Images of d/D = 1.0 at 47 Nondimensional Time Units



93

5.1.3 Mean Pressure

The mean pressure on the cylinder face is found with

pmean =
∫ τ
0 pcenterline(t)dt

τ
(5.1)

where the pressure is non-dimensionalized by ρ∞U2
∞, and τ is the period of integration.

The mean pressures at the centerline are computed for each case and shown in Figure

5.9. It is shown that the mean pressure reaches a steady value after typically 25 nondimen-

sional time units, where time is nondimensionalized by D/U∞. The mean pressure in cases

d/D=0.5 and d/D=1.0 smoothly asymptote to a steady value. The mean pressure in the

d/D=0.25 case, however, oscillates at 5 nondimensional time units. This corresponds to the

time when the shock lenses upstream due to the interaction with the microwave filament.

The d/D=0.25 case has a large eddy that forms behind the shock at this time. The eddy

sweeps air into the region in front of the body that is the stagnation region in the steady

state case, lowering the pressure at the front of the body.

The mean pressure versus filament diameter is graphed in Figure 5.10. The mean pres-

sure at the front of the cylinder face is uniform for these filament diameters. Because the

pressure at the front of the face is not sensitive to a changing filament diameter above

d/D = 0.25, the drag reduction is not sensitive to filament diameter above d/D = 0.25.
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Figure 5.9: Mean Pressure at Centerline Versus Nondimensional Time Units

Figure 5.10: Mean Pressure at Centerline Versus d/D
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5.1.4 Drag Reduction Efficiency and Effectiveness

The efficiency is the ratio of the power saved due to drag reduction by introduction of the

microwave filament to the power necessary to create the microwave filament. Following

Farzan et al [8] for an infinitely long filament, the efficiency is obtained by dividing the

average thrust power saved due to the filament divided by the power used to create the

filament. The average power saved due to the presence of the filament is the reduction in

work to overcome drag due to the filament over a time period, τ∗ :

dimensional work due to drag = l∗ ·
∫
A∗
p∗dA∗

dimensional thrust power to overcome drag =
l∗

τ∗
·
∫
A∗
p∗dA∗

where l∗ is the distance that the cylinder moves in time τ∗. The body is moving at the

freestream velocity, in the frame of the freestream velocity, and thus l∗/τ∗ = U∞.

dimensional thrust power to overcome drag = U∞

∫
A∗
p∗dA∗

The thrust power saved in the presence of the filament is then

dimensional thrust power saved due to filament = U∞

∫
A∗

(p∗ − p∗o)dA∗

= U∞

∫ 2π

0

∫ D/2

0
(p∗ − p∗o)r∗dr∗dθ∗

The average power saved over time is the power integrated in time, divided by the time

period :

dimensional average thrust power saved due to filament =
1
τ∗
U∞

∫ τ∗

0

∫ 2π

0

∫ D/2

0
(p∗−p∗o)r∗dr∗dθ∗dt∗

As the problem is axisymmetric, the azimuthal integration is simplified,

dimensional average thrust power saved due to filament =
1
τ∗
U∞

∫ τ∗

0
2π
∫ D/2

0
(p∗−p∗o)r∗dr∗dt∗

Power is nondimensionalized by ρ∞U3
∞D

2, the nondimensional pressure becomes :

average thrust power saved due to filament =
1

ρ∞U3
∞D

2

1
τ∗
U∞

∫ τ∗

0
2π
∫ D/2

0
(p∗−p∗o)r∗dr∗dt∗

=
1
U∞

1
τ∗
U∞

∫ τ∗

0
2π
∫ 1/2

0
(

p∗

ρ∞U2
∞
− p∗o
ρ∞U2

∞
)
r∗

D
d
r∗

D
dt∗
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Ps =
2π
τ

∫ τ

0

∫ 1/2

0
(p− po)r dr dt (5.2)

The power required to create the filament is determined by the following :

Pc = power to create filament

P ∗c =
∆E
τ∗

=
m∗cp∆T ∗

τ∗

= ρ∗∞l
∗πd

2

4
1
τ∗
cp
(
T ∗f − T ∗∞

)
To obtain the dimensionless power, the power is divided by ρ∞U3

∞D
2,

Pc =
P ∗

ρ∞U3
∞D

2
=
ρ∞
ρ∞

l∗

D

π

4

(
d

D

)2

D
1
τ∗

cp
(
T ∗f − T ∗∞

)
U3
∞

=
l

D

(
d

D

)2 π

4
D

τ∗
cp (α− 1)

T ∗∞
U3
∞

The Mach number can be written as

M2
∞ =

U2
∞

γRT∞

rearranging,
T∞
U2
∞

=
1

γRM2
∞

substituting into the power equation,

Pc =
l

D

(
d

D

)2 π

4
D

τ∗
cp(α− 1)

1
γRM2

∞

1
U∞

=
(
d

D

)2 π

4
l

τ∗
cp
γR

(α− 1)
1
M2
∞

1
U∞

=
(
d

D

)2 π

4
l

τ∗
1

γ − 1
(α− 1)

1
M2
∞

1
U∞

where the τ∗ is the time for one period τ∗ = L/U∞, pluggin in,

Pc =
(
d

D

)2 π

4
l

L
U∞

1
γ − 1

(α− 1)
1
M2
∞

1
U∞

=
(
d

D

)2 π

4
l

L

1
γ − 1

(α− 1)
1
M2
∞
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for an infinitely long filament, the length of the filament is equal to the distance between

filaments l = L,

Pc =
(
d

D

)2 π

4
1

γ − 1
(α− 1)

1
M2
∞

Finally, the efficiency is the ratio of the time averaged power saved due to presence of the

filament to the power required to create the filament,

η =
Ps
Pc

=
2π
τ

∫ τ

0

∫ 1/2

0
(p− po)rdrdt

(
D

d

)2 4
π

γ − 1
α− 1

M2
∞

Switching signs of the pressure term and the density ratio term, the efficiency of drag

reduction in terms of dimensionless variables is achieved,

η =
8(γ − 1)M2

∞
1− α

(
D

d

)2 1
τ∞

∫ τ∞

0

∫ 1/2

0
(po − p)rdrdt (5.3)

where the pressure is nondimensionalized by ρU2
∞ and the subscript o indicates the absence

of the filament.

The effectiveness is the ratio of the average frontal drag reduction due to the presence

of the filament to the frontal drag in the absence of the filament. The dimensional frontal

drag reduction is given by

dimensional frontal drag reduction =
∫ 2π

0

∫ D/2

0
(p∗ − p∗o)r∗dr∗dθ∗

The time averaged dimensional frontal drag reduction is obtained by integrating over time

period, τ∗ and dividing by τ∗,

time averaged dimensional

frontal drag reduction
=

1
τ∗

∫ τ∗

0

∫ 2π

0

∫ D/2

0
(p∗ − p∗o)r∗dr∗dθ∗dt∗

The dimensionless quantity is obtained by dividing by ρ∞U2
∞D

2

time averaged dimensionless

frontal drag reduction
=

1
ρ∞U2

∞D
2

1
τ∗

∫ τ∗

0

∫ 2π

0

∫ D/2

0
(p∗ − p∗o)r∗dr∗dθ∗dt∗

=
1
τ∗

∫ τ∗

0

∫ 2π

0

∫ D/2

0
(

p∗

ρ∞U2
∞
− p∗o
ρ∞U2

∞
)
r∗

D
d
r∗

D
dθ∗dt∗

Due to symmetry about its axis, the azimuthal integration is constant

=
1
τ∗

∫ τ∗

0
2π
∫ 1/2

0
(

p∗

ρ∞U2
∞
− p∗o
ρ∞U2

∞
)
r∗

D
d
r∗

D
dt∗
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Simplifying,

time averaged dimensionless

frontal drag reduction
=

2π
τ

∫ τ

0

∫ 1/2

0
(p− po)rdrdt

The denominator of the effectiveness is the dimensionless drag in the absense of the filament,

which is given by

Simplifying,

dimensionless drag in

absense of filament
=

2π
τ

∫ τ

0

∫ 1/2

0
pordrdt

The effectiveness is

ζ =
∫ τ∞

0

∫ 1/2
0 (po − p)rdrdt
τ∞
∫ 1/2

0 pordr
(5.4)

The drag efficiency and effectiveness are computed for the three cases. The effectiveness

is shown in Figure 5.11(a). The effectiveness slightly increases with filament diameter. The

efficiency is displayed in Figure 5.11(b). It is evident that the efficiency decreases rapidly

with increasing filament diameter.

(a) Effectiveness of Drag Reduction (b) Efficiency of Drag Reduction

Figure 5.11: Effectiveness and Efficiency of Drag Reduction
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5.2 Viscous Simulations, Heat Transfer Effects of Pulsed Energy Depo-

sition

The problem of a blunt cylinder in supersonic flow with periodic energy deposition with

viscous effects is solved in this section. The flow and energy deposition filament parameters

are defined in Table 5.3. The problem dimensions are depicted in Figure 2.1. The pulse

period, L/D is varied from 4/3 to infinitely long, as was done in Farzan et al [8]. As the

pulse period is increased, the length of the pulse remains the same, so the distance between

pulses is greater. Thus, the pulsed case with a period of L/D = 4 has the largest distance

between pulses, and the infinitely long case (which corresponds to a case with L/D = 1)

has no distance between pulses. The heat transfer to the face of the cylinder is evaluated

in the presense of the filament for varying pulse periods.

Table 5.3: Dimensionless Flow Parameters for Heat Transfer Study
Type Description Definition Value
Flow Mach M∞ 1.89

Specific heat ratio γ 1.4
Reynolds number Re 7.0 · 104

Filament Density ratio α 0.5 all cases
Diameter d

D 0.1 all cases
Length l

D 1.0, 1.0, 1.0, ∞
Pulse (Period) L

D
4
3 , 2.0, 4.0, n/a

Cylinder Temperature Tw/T∞ 2.0 all cases

5.2.1 Additional Parameters Calculated

Heat Transfer To Body

The objective of performing the viscous computation is to determine if the heat flux comes

with a penalty of additional heat transfer to the body by addition of the microwave filaments.

To see this effect, the parameter Φ is studied as defined below. The heat transfer parameter

Φ is the average heat transfer over a region of the body divided by the heat transfer in the

same region in the absence of the filament. For a Φ value greater than one, the microwave

filaments create additional heat transfer to the body. For a Φ less than one, the microwave
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filaments reduce the heat transfer to the body for the region evaluated.

The heat transfer is studied at the front of the blunt body on the face normal to the

oncoming flow.

Φ =
Qfil

Qnofil
(5.5)

where

Q =
1
τ

∫ τ

0

∫ 1/2

0
qwrdrdt (5.6)

where τ is the dimensionless time at which the integral is taken, and qw is the dimensionless

heat flux at the wall.

Statistically Stationary State

The pulsed filament cases will reach a stochastically stationary state when the variables of

interest, primarily the pressure and heat transfer at the front of the body, reach constant

mean and root mean square values.

The mean is defined for a variable h as

h =
1
τ

∫ τ

0

∫ D/2

0
h rdrdt (5.7)

The root mean square of the perturbation of a variable is defined for an arbitrary variable,

h, as

hrms =
√
h′2 (5.8)

and h′ is the perturbation from the mean

h′ = h− h (5.9)

where the mean is taken to be the mean at the time the root mean square is taken, and the

time period of interest is the period, τ = L/D, for the periodic cases, and the time over

which the mean is taken for the infinitely long filament case.

Power Spectrum

The power spectrum is calculated for the heat transfer rate to the front of the face. The

power spectrum is analyzed to determine when the flowfield becomes statistically stationary.
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When the power spectrum is dominated by only a few peaks, the varying frequencies from

the transient associated with the initial interaction have died out and the flow is statistically

stationary. The dominant peaks are the frequencies associated with the vortices created in

the shear layer changing the heat transfer rate to the front of the cylinder face.

To use the Fast Fourier Transform to obtain the power spectrum, the heat transfer rate

is interpolated using a third order polynomial interpolation to even time intervals. An

evenly spaced time interval chosen was 0.04 dimensionless time units.

The power spectrum is calculated according to the equation :

Power =
|ck|2

(N/2)2
for k = 1, 2, ...,

(
N

2
− 1

)
(5.10)

where the ck are the Fourier coefficients

ck =
N−1∑
j=0

cje
2πijk/N (5.11)

where cj = q(∆tj) is the heat flux on the face evaluated at the particular time instant.

The frequencies are given by

fn =
n

N∆t
where n = 0, ...,

N

2
(5.12)
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5.2.2 Infinitely Long Filament

Statistically Stationary State

The heat transfer to the front face, nondimensionalized by ρ∞U
3
∞, is analyzed for the

infinitely long filament in Figures 5.12 and 5.13. The former is the instantaneous and

running time average of the heat transfer integrated over the entire face and the latter is

the root mean square of the heat transfer over the cylinder face. The instantaneous value

of heat transfer to the cylinder face oscillates in time without decay. These oscillations are

attributed to the creation, shedding and subsequent convection past the cylinder face of

vortices, generated in the shear layer. The running time average of the face heat transfer is

initially high, as the filament and shock wave first interact. After the initial interaction, the

running time average of heat transfer then decays to a nearly steady value. The time average

shows minor oscillations, due to the oscillating instaneous value. By 30 dimensionless time

units, a statistically stationary state has been reached. The root mean square of heat

transfer to the front face of the cylinder is also steady and neither increasing nor decreasing

by 40 dimensionless time units.

The instantaneous and time averaged centerline pressure and root mean square stag-

nation pressure are graphed in Figures 5.14 and 5.15, respectively. The pressure is nondi-

mensionalized by ρ∞U
2
∞. The stagnation pressure shows continued oscillations due to the

creation and convection of vortices from the shear layer just past the bow shock. As the

vortices convect past the front face of the cylinder, the pressure on the face is reduced,

and restores as the vortices convect over the corner of the cylinder. The local peaks in

pressure at time units 22, 32 and 38 are attributed ot a shock wave which moves between

the cylinder face and the bow shock. The shock moves back toward the cylinder face and is

reflected at the face. The shock then moves toward the bow shock, and is again reflected,

as no perturbation can move upstream in the supersonic flow ahead of the bow shock. The

shock wave moves back and forth between the bow shock and cylinder face, losing strength

in time due to interferences diffusing the strength. The mean of the pressure perturbation

is initially high at first interaction of the filament and bow shock, and reduces to a steady

value after 30 dimensionless time units. The root mean square of the stagnation pressure
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also reaches a steady state be 30 dimensionless time units. The stagnation pressure has

reached a statistically stationary state by 30 dimensionless time units.

The power spectrum of the heat transfer to the front face of the cylinder is graphed in

Figure 5.16. The power spectrum shows most of the energy between a frequency of zero

and two. The infinitely long filament case has no frequency associated with the filament;

however, there is a frequency associated with the vortex shedding from the shear layer. The

vortex shedding frequency is very likely between zero and two, as the vortices convecting

past the cylinder face create the periodicity in the heat transfer to the face seen in Figure

5.12. The higher frequencies have powers two to three orders of magnitude smaller than

the dominant frequencies. This is a good indication that a statistically stationary state has

been reached in the flow.

Figure 5.12: Mean and Instantaneous Heat Transfer to Front of Body of the Infinitely Long
Filament
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Figure 5.13: Root Mean Square of Heat Transfer to Front of Body of the Infinitely Long
Filament

Figure 5.14: Mean and Instantaneous Stagnation Pressure of the Infinitely Long Filament

Figure 5.15: Infinite Filament Root Mean Square of Stagnation Pressure
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Figure 5.16: Infinite Filament Power Spectrum of Variable q
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Efficiency, Effectiveness and Heat Transfer

The efficiency, effectiveness and heat transfer for the cases are graphed in Figures 5.17, 5.18,

and 5.19, respectively. The plots of efficiency and effectiveness begin at 10 dimensionless

time units to exclude the transient associated with the initial interaction of the heated

filament and bow shock. The efficiency of the filament is 108. The infinite filament energy

deposition reduces drag on the cylinder body by 40%. The heat transfer rate to the front

is reduced by 3%. The vortex structures created by the interaction between the energy

filaments and the bow shock reduce the heat transfer. This hypothesis is further explained

with the contour graphs in the following subsection.

Figure 5.17: Infinite Filament Efficiency Parameter
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Figure 5.18: Infinite Filament Effectiveness Parameter

Figure 5.19: Infinite Filament Heat Transfer to Front Face Parameter
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Contours of Flow at Stochastically Stationary State

Contours of Flow

The flow contours for the infinitely long filament are presented at the statistically stationary

state. Figures 5.20 through 5.22 show a series of images taken over a frame of 1.0 dimen-

sionless time units. The contour plots are used to describe the flow structure, vorticity

structure, flow direction and heat transfer rate in the flow in the following paragraphs.

The density gradient contours, Figures 5.20 through 5.22, show gradients in density that

occur at contact surfaces and shock waves. The wave structure and contact surfaces are

labeled in Figure 5.20(a). The bow shock from the cylinder in the freestream flow is shown.

The low density filament is coming into the flow domain from the inflow boundary in Figure

5.20(a). At the intersection of the filament and the bow shock the shock is lensed forward.

The contact surface between the heated filament and the freestream flow behind the shock

wave can also be seen in the figures. The lower density filament becomes a lower velocity

flow downstream from the shock. The lower velocity filament to higher velocity free stream

contact surface creates a shear layer. This shear layer is unconditionally unstable to small

perturbations; subsequently a vortex sheet is formed at the contact surface. Vortices trailing

the vortex sheet are also labeled. An expansion fan appears where the flow accelerates

around the corner. Smaller flow structures can be seen in the flow. These are discussed in

the paragraphs that follow.

Numerically generated Schlieren images are shown in Figures 5.23 through 5.25. Regions

of high density gradients can represent either contact surfaces or shocks waves. Three such

high density gradients behind the bow shock are labeled in Figure 5.23(a). These are

identified as shocks, due to the jump in pressure that correspond with the sharp density

gradient. Shock 1 can be followed through the time progression shown in the contour plots.

Shock 1 is shown to convect over the cylinder shoulder. Shock 2 is also followed in time.

In Figure 5.24(a) shock 2 has distorted under the influence of the vortices formed after the

shear layer. In Figures 5.24(b) through (f), shock 2 moves toward the front face of the

cylinder, weakening in strength as it aproaches the bow shock. In Figures 5.25 (a) through

(f), shock 2 reflects off the cylinder face towards the symmetry boundary. Shock 3, which
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is near the center of the flow domain at Figure 5.23 (a), is suspected to be moving in the

direction of the axis of symmetry in the first figure because in the subsequent figure, Figure

5.23 (b), the aft portion of shock 3 has reflected off of the axis of symmetry. The front

and aft portion of shock 3 then meet each other and move as a stronger shock toward the

bow shock. As shock 3 moves toward the bow shock, the density gradient across the shock,

or strength of the shock, weakens. This weakening of the shock is likely attributed to the

interaction with the vortices near the shear layer. The vortex entrains most of the flow from

the shock, diffusing the strength of the shock.

The contact surfaces and shock waves are indistinguishable in the Schlieren images

and density gradient contours; the dimensionless pressure contours, Figures 5.26 through

5.28, are used to distinguish the shock waves and contact surfaces. The pressure is nondi-

mensionalized by ρ∞U
2
∞. Shock waves exhibit a large pressure jump, while the contact

discontinuities can separate regions of the same pressure. In Figure 5.26 (a), the bow shock

is seen as a large pressure discontinuity the farthest upstream in the computational domain.

Shocks 1, 2 and 3 are seen to have large pressure jumps across them. The pressure contours

show that the vortices correspond to regions of low pressure. In Figures 5.27 the vortices

reduce the pressure on the front face of the cylinder as they sweep by the cylinder.

The existance of the shear layer is verified by the dimensionless velocity magnitude plots

shown in Figures 5.29 through 5.31. The velocity is nondimensionalized by the freestream

velocity, U∞. The lower density filament, upon interaction with the normal shock becomes

a lower velocity fluid than the free stream. This shear layer is unstable to any infinitesimally

small perturbation and thus a vortex sheet is created.

The vorticity contours are shown in Figures 5.32 through 5.34. The vorticity is generated

in Tecplot using the dimensionless velocity vector. Three of the vortices are labeled to track

their progression. Vortex 1 becomes entrained in the vortices just ahead of the cylinder,

as seen in graph 5.33(a). The vortices ahead of the shock create one larger vortex system,

as seen in Figure 5.34(a). Vortex 2 is pulled along the front face of the cylinder face, as is

evident if Figure 5.33(c). Vortex 3 is carried over the shoulder of the cylinder, as can be

seen in Figure 5.34(f).

The streamlines are plotted with the dimensionless velocity magnitude contours, shown
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in Figure 5.35 through 5.37. The flow moves in from the inflow boundary parallel to the

centerline. The bow shock deflects the flow upward. The region between the bow shock and

cylinder face is seen to have a shear layer where the velocity magnitude contours transition

sharply from blue (lower velocity) to green (higher velocity). The streamlines show vortices

forming at this shear layer. The flow just above the cylinder corner is shown to speed up

rapidly. This illustrates the expansion fan around the corner.

Figures 5.38 through 5.40 show the temperature contours. It be seen in Figure 5.38(a)

that the individual vortices do not have a significantly lower temperature than the flow in

the stagnation region ahead of the cylinder face. As the vortices collect into a larger vortex

system, as in Figure 5.39(a), the vortex system has a much lower temperature than the

surrounding flow. The presence of the larger vortex system reduces the heat transfer to the

face, as this time corresponds to a drop in pressure in Figure 5.12.

The density contours are shown in Figures 5.41 through 5.43. The density contours

show spots of reduced density between the intersection of the heated filaments and bow

shock and the cylinder corner. These reduced density spots represent the vortices formed

at the shear layer which convect toward the cylinder corner. The density contours show

a pronounced shock wave just ahead of the cylinder. This is due to the presence of the

vortices ahead of the corner. As the vortices collect ahead of the cylinder corner, the flow

above the line of vortices is drawn down in the momentum of the vortex system. This

is seen in the streamline plot, Figure 5.35(c). A clockwise rotating vortex just ahead of

the cylinder corner has pulled the flow above the vortex line down. Just upstream of the

cylinder corner, the flow above the vortex line turns upward. A shock wave appears where

the flow turns upward.
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(a) t = 27.42 (b) t = 27.47

(c) t = 27.53 (d) t = 27.58

(e) t = 27.64 (f) t = 27.70

Figure 5.20: Infinitely Long Filament Density Gradient Contours
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(a) t = 27.77 (b) t = 27.83

(c) t = 27.88 (d) t = 27.94

(e) t = 28.00 (f) t = 28.06

Figure 5.21: Infinitely Long Filament Density Gradient Contours
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(a) t = 28.11 (b) t = 28.17

(c) t = 28.23 (d) t = 28.29

(e) t = 28.35 (f) t = 28.41

Figure 5.22: Infinitely Long Filament Density Gradient Contours
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(a) t = 27.42 (b) t = 27.47

(c) t = 27.53 (d) t = 27.58

(e) t = 27.64 (f) t = 27.70

Figure 5.23: Infinitely Long Filament Numerical Schlieron Images
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(a) t = 27.77 (b) t = 27.83

(c) t = 27.88 (d) t = 27.94

(e) t = 28.00 (f) t = 28.06

Figure 5.24: Infinitely Long Filament Numerical Schlieron Images
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(a) t = 28.11 (b) t = 28.17

(c) t = 28.23 (d) t = 28.29

(e) t = 28.35 (f) t = 28.41

Figure 5.25: Infinitely Long Filament Numerical Schlieron Images



117

(a) t = 27.42 (b) t = 27.47

(c) t = 27.53 (d) t = 27.58

(e) t = 27.64 (f) t = 27.70

Figure 5.26: Infinitely Long Filament Pressure Contours
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(a) t = 27.77 (b) t = 27.83

(c) t = 27.88 (d) t = 27.94

(e) t = 28.00 (f) t = 28.06

Figure 5.27: Infinitely Long Filament Pressure Contours
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(a) t = 28.11 (b) t = 28.17

(c) t = 28.23 (d) t = 28.29

(e) t = 28.35 (f) t = 28.41

Figure 5.28: Infinitely Long Filament Pressure Contours
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(a) t = 27.42 (b) t = 27.47

(c) t = 27.53 (d) t = 27.58

(e) t = 27.64 (f) t = 27.70

Figure 5.29: Infinitely Long Filament Velocity Magnitude Contours
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(a) t = 27.77 (b) t = 27.83

(c) t = 27.88 (d) t = 27.94

(e) t = 28.00 (f) t = 28.06

Figure 5.30: Infinitely Long Filament Velocity Magnitude Contours
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(a) t = 28.11 (b) t = 28.17

(c) t = 28.23 (d) t = 28.29

(e) t = 28.35 (f) t = 28.41

Figure 5.31: Infinitely Long Filament Velocity Magnitude Contours
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(a) t = 27.42 (b) t = 27.47

(c) t = 27.53 (d) t = 27.58

(e) t = 27.64 (f) t = 27.70

Figure 5.32: Infinitely Long Filament Vorticity Contours
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(a) t = 27.77 (b) t = 27.83

(c) t = 27.88 (d) t = 27.94

(e) t = 28.00 (f) t = 28.06

Figure 5.33: Infinitely Long Filament Vorticity Contours



125

(a) t = 28.11 (b) t = 28.17

(c) t = 28.23 (d) t = 28.29

(e) t = 28.35 (f) t = 28.41

Figure 5.34: Infinitely Long Filament Vorticity Contours
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(a) t = 27.42 (b) t = 27.47

(c) t = 27.53 (d) t = 27.58

(e) t = 27.64 (f) t = 27.70

Figure 5.35: Infinitely Long Filament Streamlines
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(a) t = 27.77 (b) t = 27.83

(c) t = 27.88 (d) t = 27.94

(e) t = 28.00 (f) t = 28.06

Figure 5.36: Infinitely Long Filament Streamlines
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(a) t = 28.11 (b) t = 28.17

(c) t = 28.23 (d) t = 28.29

(e) t = 28.35 (f) t = 28.41

Figure 5.37: Infinitely Long Filament Streamlines
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(a) t = 27.42 (b) t = 27.47

(c) t = 27.53 (d) t = 27.58

(e) t = 27.64 (f) t = 27.70

Figure 5.38: Infinitely Long Filament Temperature Contours
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(a) t = 27.77 (b) t = 27.83

(c) t = 27.88 (d) t = 27.94

(e) t = 28.00 (f) t = 28.06

Figure 5.39: Infinitely Long Filament Temperature Contours
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(a) t = 28.11 (b) t = 28.17

(c) t = 28.23 (d) t = 28.29

(e) t = 28.35 (f) t = 28.41

Figure 5.40: Infinitely Long Filament Temperature Contours
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(a) t = 27.42 (b) t = 27.47

(c) t = 27.53 (d) t = 27.58

(e) t = 27.64 (f) t = 27.70

Figure 5.41: Infinitely Long Filament Density Contours



133

(a) t = 27.77 (b) t = 27.83

(c) t = 27.88 (d) t = 27.94

(e) t = 28.00 (f) t = 28.06

Figure 5.42: Infinitely Long Filament Density Contours
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(a) t = 28.11 (b) t = 28.17

(c) t = 28.23 (d) t = 28.29

(e) t = 28.35 (f) t = 28.41

Figure 5.43: Infinitely Long Filament Density Contours
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5.2.3 L = 4/3 Filament

Statistically Stationary State

The instantaneous and running time average of the dimensionless heat transfer to the front

face of the cylinder is analyzed in Figure 5.44, and the root mean square of heat transfer to

the front of the cylinder face is plotted in Figure 5.45. The instantaneous heat transfer to the

face demonstrates periodic behavior. The energy deposition interacts with the bow shock

for a duration of 1 dimensionless time units every 4/3 dimensionless time units. Thus, there

is an inherent periodicity to the flow. The time average of the heat transfer rate, however,

shows a peak upon the initial interaction, but decays to a steady value by 40 dimensionless

time units. The root mean square of the heat transfer rate to the front face of the flow has

also reached a steady periodicity by 40 dimensionless time units.

The instantaneous and time averaged dimensionless centerline pressure is graphed in

Figure 5.46 and the root mean square of the dimensionless centerline pressure is graphed in

Figure 5.47. The pressure is nondimensionalized by ρ∞U
2
∞. The instantaneous centerline

pressure shows a steady periodicity after 35 dimensionless time units and the mean of the

centerline pressure has reached a steady value in 30 dimensionless time units. The root

mean square has also reached a steady value with slight perturbations. The perturbations

exist as the mean is taken over the total time, and not over one period. The centerline

pressure is determined to be at the statistically stationary state.

The power spectrum of the dimensionless heat transfer to the face of the cylinder is

shown in Figure 5.48. The highest powers occur at the low frequencies, between zero and

one. The dimensionless frequency of pulsations is 3/4, so it is expected that the heat

transfer frequencies will be near these low frequencies. Higher frequencies have power five

orders of magnitude smaller than the lower frequencies. This is a good indicator that the

random oscillations from the initial transient have decayed and the steady state frequencies

dominate. Thus the heat transfer to the front face of the cylinder has reached a statistically

stationary state by 40 dimensionless time units, when the power spectrum was taken.
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Figure 5.44: L/D = 4
3 Mean and Instantaneous Heat Transfer to Front of Body

Figure 5.45: L/D = 4
3 Root Mean Square of Heat Transfer to Front of Body
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Figure 5.46: L/D = 4
3 Filament Mean and Instantaneous Stagnation Pressure

Figure 5.47: L/D = 4
3 Filament Root Mean Square of Stagnation Pressure
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Figure 5.48: L/D = 4
3 Filament Power Spectrum of Dimensionless q
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Efficiency, Effectiveness and Heat Transfer

The pulsed case with a filament period of 4/3 is shown to reduce drag on the cylinder

face. The efficiency and effectiveness are 104 and 0.29, as seen in Figures 5.49 and 5.50,

respectively. The heat transfer ratio Φ to the front of the cylinder face is 0.71 at the

statistically stationary state, as seen in Figure 5.51. The mean heat transfer to the face

of the cylinder is reduced with the pulsed energy deposition. The reduction is due to

the creation and convection of vortex structures in the shock layer. This phenomenon is

explored in detail in this section.

Figure 5.49: L/D = 4
3 Filament Efficiency Parameter
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Figure 5.50: L/D = 4
3 Filament Effectiveness Parameter

Figure 5.51: L/D = 4
3 Filament Heat Transfer to Front Face Parameter
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Contours of Flow

Flow contours are presented for the pulsed filament case with a pulse period of 4/3. The

contours are shown at the statistically stationary state. The images represent fourteen

instances of time through one heat transfer cycle. At the statistically stationary state,

the heat transfer to the front face is periodic. One heat transfer cycle is taken to be the

dimensionless time between peaks in Figure 5.51. The heat transfer cycle is 2.6 dimensionless

time units.

The prominent features in the flow structure can be observed in the density gradient

and pressure contours, Figures 5.52 through 5.54 and 5.55 through 5.57, respectively. The

pressure is nondimensionalized by ρ∞U
2
∞, and the density is nondimensionalized by the

freestream density. The density gradient contours highlight both shock waves and contact

surfaces. The pressure contours distinguish the two flow features, as shock waves are coinci-

dent with large pressure jumps and the contact surfaces have uniform pressure. The major

flow features are labeled in Figure 5.52(a). The density gradient at the bottom of Figure

5.52(a) has uniform pressure in the pressure contour, Figure 5.55(a). This density gradient

is the contact surface between the heated filament and the freestream flow. The bow shock

formed by the cylinder body is shown in Figure 5.52(a). The bow shock is confirmed as

a shock wave, as it occurs at the same location as a pressure jump in the corresponding

pressure graph, Figure 5.55(a). At the intersection of the bow shock and the heated fila-

ment, the bow shock lenses upstream. The heated filament is at a lower Mach number than

the freestream flow. At lower Mach numbers, bow shocks have larger stand off distances

from blunt bodies. Thus, the heated filament induces an upstream lensing of the shock

wave. Two contact surfaces emerge at the top and bottom of the filament within the shock

layer. The contact surfaces are confirmed by the uniform pressure in Figure 5.55(a). As the

heated filament interacts with the shock wave, the lower Mach number flow in the filament

becomes a lower velocity flow within the shock layer, as confirmed by the Rankine Hugoniot

conditions. Therefore, the contact surfaces between the heated flow and the unheated flow

behind the bow shock is a shear layer. The shear layer is unstable and forms clockwise

rotating vortices shortly downstream from the bow shock. Two other vortices created by
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previous heated filaments are seen downstream within the shock layer. As the vortices were

generated by the shear layer, they will be referred to as shear layer vortices. As the flow

expands around the corner of the cylinder body, it speeds up, creating an expansion fan just

above the cylinder corner. The flow must turn to become parallel to the cylinder behind

the expansion fan. A recompression shock facilitates the turning of the flow.

The smaller flow features through the heat transfer cycle can be seen in the numerical

Schlieren images. The Schlieren images are shown in Figures 5.58 through 5.60. The

progression of the filament at the bottom of Figure 5.58(a) is followed through a heat

transfer cycle to see how the weaker flow features develop.

Figure 5.58(a) The heated filament lenses the bow shock forward at their intersection. In

the shock layer, the filament creates two contact surfaces, each representing a shear

layer. The shear layers have initiated a counterclockwise rotating vortex downstream

of the shock.

Figure 5.58(b) The lensing at the bow shock and heated filament interaction remains

present. The vortex created by the incoming filament has moved toward the cylinder

coner.

Figure 5.58(c) The heated filament has moved entirely inside the shock layer. The

contact surfaces behind the vortex have become parallel to the bow shock center. The

bow shock lensing has subsided. Weak shock waves at the top of the vortex have begun

to form. The weak shocks at the top of the vortex are formed because the flow over the

top of this vortex is forced to turn upward as it approaches the downstream vortex.

Both vortices are counterclockwise so the flow coming off the front of the upstream

vortex is moving in the opposite direction as the flow coming from the bottom of the

downstream vortex. The opposing flows abruptly change direction, and thus shock

waves are formed. Figure 5.61 shows the streamlines at the top of the vortex that has

just entered the shock layer. The streamlines wind around downstream over the top

of the vortex. As they approach the downstream vortex, they encounter flow moving

upward. The weak shock waves facilitate the turning of the flow from downstream,

nearly parallel to the symmetry boundary, to upward, nearly parallel to the cylinder
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face. The flow at the bottom of the vortex is parallel to the symmetry boundary. The

vortex, however, is pulling the flow upward around the upstream side of the vortex.

Again, the flow makes a 90◦ turn to move around the upstream side of the cylinder.

The weak shock waves at the bottom of the vortex facilitate this turn.

Figure 5.58(d) The vortex has progressed further toward the cylinder corner. The con-

tact surfaces at the back of the vortex remain parallel to the front of the bow shock.

The vortex and contact surface is a disk with a circular vortex ring around its outer

edge.

The weak shocks at the top and bottom of the vortex structure have become more

pronounced. Also, the shape of the bow shock has rounded near the vortex. This is

because the flow between the bow shock and the vortex is subsonic. As the vortex

induces a circular flow around itself, the bow shock adjusts to turn the upstream flow

accordingly. The bow shock exhibits a change in curvature just upstream of the weak

shock at the top of the vortex.

Figure 5.58(e) The contact surface behind the vortex remains intact with the symmetry

boundary at the bottom of the computational domain. The weak shock at the top of

the vortex now extends all the way to the bow shock. A lambda shock has emerged

at point where the bow shock changes in radius of curvature. The weak shock at the

top of the vortex has stretched between the vortex and the downstream vortex, which

can be seen in the corresponding pressure contour, Figure 5.55(e).

Figure 5.58(f) The vortex has convected to 0.2 cylinder diameters above the line of

symmetry. The contact surface has become weaker near the vortex, though remains

attached to the line of symmetry. The weak shock at the bottom of the vortex is

more pronounced. The shock at the top of the vortex has arched upstream toward

the lambda shock.

Figure 5.59(a) The vortex forming at the bow shock has begun to entrain the contact

discontinuity from the downstream vortex.

Figure 5.59(b) The contact discontinuity has become fully enveloped into the vortex
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forming upstream. The three-dimensional disk has been broken, leaving the vortex

ring, and trailing contact surface which connects to the upstream vortex. The vortex

has convected to 0.25 diameters above the line of symmetry. The lambda shock and

the shock turning the flow at the top of the vortex have merged, creating one stronger

shock. The weak shock at the shock at the bottom of the vortex has increased in

strength, as the vortex upstream vortex has influenced the flowfield.

Figure 5.59(c) The vortex has progressed toward the corner of the cylinder. The weak

shocks at the top and bottom of the vortex have followed the movement of the vortex.

Figure 5.59(d) - Figure 5.60(b) The vortex has reached the cylinder face by the final

frame. One heat transfer cycle is the time it takes for partial forming and convection

of a vortex from the bow shock to the cylinder face.

The dimensionless velocity magnitude contours are shown in Figures 5.62 through 5.64.

The velocities are nondimensionalized by the freestream velocity, U∞. In Figure 5.62(a), the

contact surfaces are at the bottom of the computed domain, just inside the bow shock. The

contact surfaces show sharp velocity gradients. The flow above the top contact surface has

a greater velocity than the flow bounded by the contact surfaces. The flow at the bottom

of the contact surface has a lower velocity than the flow bounded by the contact surfaces.

This velocity gradient creates a clockwise rotating vortex. As the vortex grows and convects

toward the cylinder corner in Figures 5.62(b) through 5.62(f), a very low velocity exists at

the core of the vortex. The flow on the top of the vortex, however is at a very high velocity.

As the flow encounters the weak shock at the top of the vortex, however, the flow is quickly

decelerated. The flow accelerates around the downstream side fo the vortex and slows down

dramatically at the weak shock at the bottom of the vortex. The flow below the line of

shear layer vortices is much slower than the fluid above the vortex line. The low velocity

flow at the bottom of the shear layer vortices will be referred to as the stagnation region.

The path through which the vortex travels from the bow shock at the bottom of the domain

to the cylinder corner will be referred to as the vortex layer.
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The vortex structure established by the heated filament and bow shock interaction re-

duces heat transfer to the cylinder face. The contours of vorticity, streamlines and tem-

perature illustrate this point. These are shown in Figures 5.65 through 5.67, Figures 5.68

through 5.70 and 5.71 through 5.73, respectively. One cycle of heat transfer to the cylinder

face is shown in Figure 5.74. Six points of significance to the heat transfer cycle have been

labeled in Figure 5.74. The contour plots begin at point 1, the minimum of the heat transfer

cycle. These six points are discussed to understand the flow features that contribute to the

heat transfer cycle. Three vortices are labeled in Figure 5.65.

Point 1 Point 1 is the minimum for the entire heat transfer cycle. Figure 5.65(a) shows

that vortex 0 sits just above the cylinder corner. Vortex 1 is midway between the

bow shock and the cylinder face. Vortex 2 is forming as the heated filament enters

the shock layer. The streamline plot, Figure 5.68(a), shows that Vortex 1 is sweeping

flow from the top of the vortex layer into the stagnation region and up the cylinder

face. The corresponding temperature contour, Figure 5.71(a), illustrates that the

flow above the vortex layer is much cooler than the flow within the stagnation region.

Thus, vortex 1 is sweeping cooler, faster flow from the top of the vortex layer into the

stagnation layer and over the face of the cylinder. This increases both advection and

conduction of heat from the cylinder face.

Point 2 The heat transfer to the cylinder face begins to increase dramatically at point 2.

From the vorticity contour, Figure 5.65(e), it can be seen that vortex 1 has approached

the cylinder face. The streamlines, Figures 5.68(b) through 5.68(d), show that the

vortex 1 pulls flow from above the vortex layer over the cylinder face. In Figure

5.68(e), however, the flow from the top of the vortex flows over the cylinder corner

without sweeping over the cylinder face. At this point, a stagnation region begins

to grow at the cylinder face below vortex 1. Thus, advection decreases dramatically

from this point on, increasing heat transfer to the cylinder face.

Point 3 Point 3 represents a local peak of heat transfer to the front face of the cylinder. The

heat transfer to the front face of the cylinder was previously rising due to the growing

stagnation region below vortex 1. At point 3, the expansion fan at the downstream
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side of the vortex begins to interact with the wall. From Figure 5.66(a), the vortex is

just upstream of the cylinder face. The high velocity region downstream of the vortex

begins to interact with the cylinder face, as shown in Figure 5.69(a). The expansion

fan is a region of decreased temperature, which begins to contact the cylinder face in

Figure 5.72(a).

Point 4 Between points 3 and 4, the expansion fan at the downstream side of vortex 1

moves toward the cylinder corner, continually decreasing heat transfer to the cylinder

face. At point 4, however, vortex 1 convects over the cylinder corner. The position of

the vortex can be tracked toward the cylinder corner in Figures 5.66(b) through 5.66(d)

where it finally convects over the corner. The streamlines and velocity magnitude

contour plots show evidence of this as well, in Figures 5.69(b) through 5.69(d). Finally,

the low temperature region downstream of the vortex is seen to convect over the corner

just ahead of vortex 1, in Figures 5.66(b) through 5.66(d). After vortex 1 has moved

over the cylinder corner, vortex 2 is the primary means of heat transfer reduction at

the cylinder face. As vortex 2 approaches the face, however, it tends to convect heat

away from a smaller and smaller portion of the cylinder face and a stagnation region

grows at the cylinder face below it. Thus, the heat transfer to the front of the face

increases after point 4.

Point 5 Finally, at point 5, the expansion fan at the front of vortex 2 begins to interact

with the cylinder face. This is seen in the streamline/velocity magnitude plot in Figure

5.69(e). The increasing heat transfer to the cylinder face ends when the expansion

fan intersects the cylinder face. The gradient of dimensionless heat transfer to the

cylinder face changes from positive (increasing) to negative (decreasing) at point 5

and thus point 5 is a peak in heat transfer. As the expansion fan moves closer to

the cylinder corner, it increases convection, reducing heat transfer to the corner of

the cylinder. The cylinder corner exhibits peak heating at the steady state and the

expansion fan has the greatest effect of cooling the cylinder from the corner.
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(a) t = 42.0 (b) t = 42.2

(c) t = 42.4 (d) t = 42.6

(e) t = 42.8 (f) t = 42.9

Figure 5.52: L/D = 4
3 Filament Density Gradient Contours
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(a) t = 43.2 (b) t = 43.4

(c) t = 43.5 (d) t = 43.8

(e) t = 44.0 (f) t = 44.2

Figure 5.53: L/D = 4
3 Filament Density Gradient Contours
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(a) t = 44.4 (b) t = 44.5

Figure 5.54: L/D = 4
3 Filament Density Gradient Contours
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(a) t = 42.0 (b) t = 42.2

(c) t = 42.4 (d) t = 42.6

(e) t = 42.8 (f) t = 42.9

Figure 5.55: L/D = 4
3 Pressure Contours
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(a) t = 43.2 (b) t = 43.4

(c) t = 43.5 (d) t = 43.8

(e) t = 44.0 (f) t = 44.2

Figure 5.56: L/D = 4
3 Pressure Contours
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(a) t = 44.4 (b) t = 44.5

Figure 5.57: L/D = 4
3 Pressure Contours



153

(a) t = 42.0 (b) t = 42.2

(c) t = 42.4 (d) t = 42.6

(e) t = 42.8 (f) t = 42.9

Figure 5.58: L/D = 4
3 Numerical Schlieren Images
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(a) t = 43.2 (b) t = 43.4

(c) t = 43.5 (d) t = 43.8

(e) t = 44.0, point 5 (f) t = 44.2

Figure 5.59: L/D = 4
3 Numerical Schlieren Images
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(a) t = 44.4 (b) t = 44.5, point 6

Figure 5.60: L/D = 4
3 Numerical Schlieren Images

Figure 5.61: Streamlines Between Two Vortices
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(a) t = 42.0 (b) t = 42.2

(c) t = 42.4 (d) t = 42.6

(e) t = 42.8 (f) t = 42.9

Figure 5.62: L/D = 4
3 Velocity Magnitude Contours
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(a) t = 43.2 (b) t = 43.4

(c) t = 43.5 (d) t = 43.8

(e) t = 44.0 (f) t = 44.2

Figure 5.63: L/D = 4
3 Velocity Magnitude Contours
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(a) t = 44.4 (b) t = 44.5

Figure 5.64: L/D = 4
3 Velocity Magnitude Contours
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(a) t = 42.0, point 1 (b) t = 42.2

(c) t = 42.4 (d) t = 42.6, point 2

(e) t = 42.8, point 2 (f) t = 42.9

Figure 5.65: L/D = 4
3 Vorticity Magnitude Contours
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(a) t = 43.2 (b) t = 43.4, point 3

(c) t = 43.5 (d) t = 43.8

(e) t = 44.0, point 4 (f) t = 44.2

Figure 5.66: L/D = 4
3 Vorticity Magnitude Contours
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(a) t = 44.4, point 5 (b) t = 44.5

Figure 5.67: L/D = 4
3 Vorticity Magnitude Contours
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(a) t = 42.0, point 1 (b) t = 42.2

(c) t = 42.4 (d) t = 42.6, point 2

(e) t = 42.8 (f) t = 42.9

Figure 5.68: L/D = 4
3 Streamlines of Flow
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(a) t = 43.2 (b) t = 43.4, point 3

(c) t = 43.5 (d) t = 43.8

(e) t = 44.0, point 4 (f) t = 44.2

Figure 5.69: L/D = 4
3 Streamlines of Flow
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(a) t = 44.4, point 5 (b) t = 44.5

Figure 5.70: L/D = 4
3 Streamlines of Flow
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(a) t = 42.0, point 1 (b) t = 42.2

(c) t = 42.4 (d) t = 42.6, point 2

(e) t = 42.8 (f) t = 42.9

Figure 5.71: L/D = 4
3 Filament Temperature Contours
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(a) t = 43.2 (b) t = 43.4, point 3

(c) t = 43.5 (d) t = 43.8

(e) t = 44.0, point 4 (f) t = 44.2

Figure 5.72: L/D = 4
3 Filament Temperature Contours
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(a) t = 44.4, point 5 (b) t = 44.5

Figure 5.73: L/D = 4
3 Filament Temperature Contours

Figure 5.74: L/D = 4
3 Heat Transfer Over One Period
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(a) t = 42.0, point 1 (b) t = 42.2

(c) t = 42.4 (d) t = 42.6

(e) t = 42.8, point 2 (f) t = 42.9, point 3

Figure 5.75: L/D = 4
3 Filament Density Contours
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(a) t = 43.2 (b) t = 43.4

(c) t = 43.5, point 4 (d) t = 43.8

(e) t = 44.0, point 5 (f) t = 44.2

Figure 5.76: L/D = 4
3 Filament Density Contours
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(a) t = 44.4 (b) t = 44.5, point 6

Figure 5.77: L/D = 4
3 Filament Density Contours
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5.2.4 L/D = 2 Filament

Statistically Stationary State

The heat transfer to the front face of the cylinder is plotted in Figures 5.78 and 5.79. Figure

5.78 shows the mean and instantaneous heat transfer to the front face of the cylinder. The

instantaneous heat transfer to the front face of the cylinder are periodic after 30 dimension-

less time units. The root mean square of the heat transfer to the front face of the cylinder,

graphed in Figure 5.79, is periodic after 35 dimensionless time units. These two parameters

are good evidence that the case has reached a statistically stationary state by t = 35.

The instantanous, mean and root mean square of dimensionless centerline pressure are

graphed in Figures 5.80 and 5.81. The instantaneous pressure is oscillatory. The mean of the

centerline pressure in time has reached a steady state value, with minor oscillations about

a stable mean, in 40 dimensionless time units. The root mean square of the dimensionless

centerline pressure also reaches a statistically stationary point by 45 dimensionless time

units. The statistically stationary state for the dimensionless centerline pressure has been

reached in 45 dimensionless time units.

The power spectrum of the dimensionless heat transfer is shown in Figure 5.82. Two

peak frequencies are seen. The highest frequency occurs at zero because the power spectrum

was performed on the dimensionless heat transfer variable and not of the perturbation. The

mean frequency is represented at the zero frequency. The other peak frequncy occurs at 0.25,

which is the vortex shedding frequency behind the shock layer. This number is confirmed

later in this section.
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Figure 5.78: L/D = 2 Mean and Instantaneous Heat Transfer to Front of Body

Figure 5.79: L/D = 2 Root Mean Square of Heat Transfer to Front of Body
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Figure 5.80: L/D = 2 Mean and Instantaneous Stagnation Pressure

Figure 5.81: L/D = 2 Root Mean Square of Stagnation Pressure
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Figure 5.82: L/D = 2 Filament Power Spectrum of Dimensionless q
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Efficiency, Effectiveness and Heat Transfer

The drag reduction efficiency, effectiveness and heat transfer to cylinder face parameters

are graphed in Figures 5.83, 5.84 and 5.85, respectively. The total drag is reduced by 20%.

The effectiveness of the drag reduction is lower than the L/D = 4/3 case and the efficiency

is 111, higher than the L/D = 4/3 case. The heat transfer to the front face is reduced by

12%. The heated filament reduces the heat transfer to the front face of the cylinder. This

result is explained further in the analysis of the flow contours.

Figure 5.83: L/D = 2 Filament Efficiency Parameter
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Figure 5.84: L/D = 2 Filament Effectiveness Parameter

Figure 5.85: L/D = 2 Filament Heat Transfer to Front Face Parameter
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Contours of Flow

The contours for the pulsed case of period 2 are displayed in Figures 5.86 through 5.107.

The contours over one heat transfer cycle are shown at the statistically stationary state.

One cycle of heat transfer is determined by the graph of heat transfer versus time. One

heat transfer cycle for this case is 4 dimensionless time units.

The major flow features are depicted in the density gradient and pressure contours,

Figures 5.86 through 5.88 and 5.89 through 5.91, respectively. Shock waves and contact

surfaces are visible in the density gradient contours. The major flow features at the be-

ginning of the heat transfer cycle are labeled in Figure 5.86(a). The heated filament is

entering from the inflow boundary. Where the heated filament intersects the bow shock,

an upstream lensing of the bow shock occurs. Behind the bow shock, the contact surfaces

between the heated filament and surrounding flow are shown. According to the Rankine

Hugoniot conditions, because the heated filament is at a reduced Mach number, its velocity

behind the bow shock is lower than the surrounding flow. The contact surface at the top

of the heated filament within the shock layer is, therefore, a shear layer. The shear layer

is unstable to small perturbations and create a vortex downstream of the bow shock. This

is seen in Figures 5.86(a) through 5.86(f). Each filament generates a vortex with a trailing

contact surface in the shear layer. The vortices convect toward the cylinder corner. Two

such vortices from previous heated filaments are seen in Figure 5.86(a). As the flow passes

over the cylinder corner, it accelerates, and an expansion fan is created at the top of the

cylinder corner. Downstream of the expansion fan a recompression shock is formed to turn

the flow parallel to the cylinder.

The flow features can be seen in the numerical Schlieren images in Figures 5.92 through

5.94. The progression in time of the heated filament entering the shock layer seen in Figure

5.92(a) is followed through one heat transfer cycle, 4 dimensionless time units, to understand

how the flow features develop. One heat transfer cycle is defined as the dimensionless time

between peaks in the heat transfer to the front face of the cylinder or Φ (Figure 5.85).

Figure 5.92(a) The heated filament approaches the cylinder from the left boundary. As

the heated filament contacts the bow shock, the bow shock lenses forward.
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Figure 5.92(c) As the heated filament progresses into the shock layer, the contact surfaces

within the shock layer begin to roll into a vortex. A small lambda shock stems from

the bow shock at the point where the lensed part of the shock meets the unlensed

shock.

Figure 5.92(f) A vortex has formed behind the shock layer at the downstream side of the

contact surface. The contact surface meets the symmetry boundary. This represents

a disk with a vortex ring at its outer edge. A shock wave between the new vortex

and the downstream vortex is shown. This shock turns the flow coming off the front

(downstream side) of the new vortex upward, to progress over the back (upstream

side) of the downstream vortex. A weak shock at the bottom of the new vortex begins

to form. Because the flow near the symmetry boundary is parallel to the symmetry

boundary, the flow must turn to flow over the upstream side of the new vortex. A

weak shock appears where the flow turns.

Figure 5.93(b) The new vortex has convected toward the cylinder corner. The shock

between the vortices has progressed upstream and is now sitting atop the new vortex.

This weak shock at the top of the vortex turns the flow at top of the vortex to progress

down over the front side of the vortex. The flow at the front of the vortex expands into

a lower pressure area, thus an expansion fan sits at the front of the vortex. The contact

surface that trails the vortex remains attached to the symmetry boundary. The density

gradient across the contact surface weakens as the vortex convects away from the

symmetry boundary. The contact surface from the downstream vortex remains in the

flow after the vortex has convected over the cylinder corner.

Figure 5.93(c) The contact surface from the vortex that has passed over the cylinder

corner remains ahead of the cylinder face. A weak shock wave forms just ahead of the

cylinder corner, where clockwise rotating flow from the upstream vortex must turn to

progress over the cylinder corner.

Figure 5.93(d) The weak shock turning flow over the cylinder corner has retracted and

now sits on top of the vortex approaching the corner. The vortex forces the flow

around it to curve in a clockwise motion. The direction of the flow influences the
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shape of the bow shock around the vortex. The bow shock curves in the vicinity of

the vortex. Where the curved part of the bow shock meets the uncurved part of the

bow shock, a lambda shock forms. The lambda shock is seen stemming from the bow

shock above the vortex.

Figure 5.94(b) The vortex has progressed toward the cylinder corner. The weak shock

at the top of the vortex has merged with the lambda shock stemming from the bow

shock. The contact surface trailing the vortex has become entrained in the upstream

vortex.

Figure 5.94(f) Finally, the vortex contacts the cylinder corner. The weak shock at the

bottom of the vortex can be seen interacting with the corner. The trailing contact

surface has become very weak, mostly sucked in to the vortex upstream. The contact

surface does not remain ahead of the cylinder face, as was the case with the previous

vortex.

The velocity magnitude contours are shown in Figures 5.95 through 5.97. It can be seen

in Figure 5.95(a), that the vortices form a line between the lensed part of the bow shock

and the cylinder corner. This will be referred to as the vortex layer. The region below

the vortex layer is a very low velocity region. This will be referred to as the stagnation

region. A vortex sits at the center of the vortex layer in Figure 5.95(a). The core of the

vortex is at a very low velocity. The top of the vortex has a high velocity. The high velocity

flow decelerates immediately just ahead of the downstream side of the vortex. This is the

location of the contact surface from the downstream vortex. Below the contact surface is

low velocity flow, which accelerates as it winds around the bottom of the vortex. The flow

quickly decelerates again at the bottom upstream side of the vortex, as it encounters the

weak shock at the bottom of the vortex. The contact surface at the upstream side of the

vortex separates the low velocity flow from the higher velocity flow at the top of the vortex.

The formation and convection of vortices over the cylinder corner reduce the heat transfer

to the front face of the cylinder. This is seen through one period of the heat transfer cycle.

The major points in a heat transfer cycle are labeled in Figure 5.98. The relation of heat

transfer cycle to the vortex formation and convection is illustrated through the contour plots
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of vorticity magnitude, streamlines of flow and temperature contours, shown in Figures 5.99

through 5.101, Figures 5.102 through 5.104 and Figures 5.105 through 5.107, respectively.

Vortices labeled in Figure 5.99(a) are referred to in the descriptions that follow.

Point 1 Point 1 represents a maximium point of heat transfer to the cylinder face. Pre-

viously, vortex 0 had been approaching the cylinder face. As vortex 0 approached the

face, the area of influence of the convection by vortex 0 on the cylinder face was re-

ducing and a stagnation region was growing below vortex 0 at the cylinder face. Point

1 represents the maximum heat transfer, which occurs just before the expansion fan

that sits in front of vortex 0 contacts the cylinder face. As the expansion fan interacts

with the cylinder face, it dramatically increases conduction and advection of heat

away from the cylinder face. At point 1 vortex 0 is just ahead of the cylinder corner,

this can be seen in Figure 5.99(a). The graph of streamlines and velocity magnitude

show that the area of high velocity in front of the corner begins to interact with the

cylinder corner at this instant in Figure 5.102(a). The temperature plot shows that an

area of reduced pressure sits just downstream of the vortex. At point 1, the reduced

temperature region, the expanion fan, intersects the cylinder face. This is seen in

Figure 5.105(a).

Point 2 As vortex 0 moves up and over the corner, the expansion fan approaches the point

of maximum heat transfer, the cylinder corner. Thus, point 2 is the point where the

expansion fan is at the cylinder corner. The vortex is seen sitting at the edge of the

corner in Figure 5.99(b). The streamlines around vortex 0 have ceased to interact

with the cylinder face, as seen in Figure 5.102(b). The low temperature region is no

longer in front of the cylinder face in Figure 5.105(b)

Point 3 Point 3 is a minor jump in the heat transfer to the cylinder. This is due to the

weak shock from the top of vortex 0 interacting with the cylinder corner.

Point 4 After vortex 0 convects over the cylinder corner, vortex 1 is the primary influence

on heat transfer to the front face of the cylinder. It pulls flow from above the vortex

layer down to the region ahead of the cylinder face. In Figure 5.102(b), the stream-

lines from the top of vortex 0 sweep across 15% of the total diameter of the cylinder.
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By Figure 5.102(d), however, the streamlines pulling flow from above the vortex layer

only interact with 5% of the cylinder face. A stagnation region is growing over the

cylinder face. The temperature contours show an increasing temperature at the cylin-

der face over the period of time in Figures 5.105(b) through 5.105(d). The increase in

temperature across the face ceases when the expansion fan just downstream of vortex

1 contacts the cylinder face. Evidence of this is seen in the streamline and velocity

magnitude plot, as the high velocity aread upstream of vortex 1 contacts the cylinder

face in Figure 5.102(e). The temperature profile confirms this in Figure 5.105(e). The

low temperature region just downstream of vortex 0 is at the cylinder face.

Point 5 As the expansion fan convects up and over the cylinder corner, it approaches the

peak heating on the cylinder. Thus, as the expansion fan convects over the corner,

the maximum cooling of the face occurs. This corresponds to point 5 in the graph.

The vortex is seen just above the cylinder corner in Figure 5.100(a).

Point 6 Point 6 begins the climb in heat transfer to the front face of the cylinder. No

significant flow structure is seen in the velocity magnitude, streamline or temperature

graph at point 6. However, the density gradient contour shows that this is the point

where the contact surface interacts with the cylinder face, Figure 5.87(e). This figure

is at a time just before point 6 occurs. The contact surface is seen just ahead of the

cylinder face. The contact surface separates regions of different density. The density

following vortex 1 is less than the density ahead of vortex 2. Thus, the climb in heat

transfer begins again after the contact discontinuity has contacted the cylinder face.
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(a) t = 49.5 (b) t = 49.7

(c) t = 49.9 (d) t = 50.2

(e) t = 50.4 (f) t = 50.6

Figure 5.86: L/D = 2 Filament Density Gradient Contours



183

(a) t = 50.9 (b) t = 51.2

(c) t = 51.5 (d) t = 51.7

(e) t = 51.9 (f) t = 52.2

Figure 5.87: L/D = 2 Filament Density Gradient Contours
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(a) t = 52.4 (b) t = 52.6

(c) t = 52.9 (d) t = 53.1

(e) t = 53.4 (f) t = 53.5

Figure 5.88: L/D = 2 Filament Density Gradient Contours
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(a) t = 49.5 (b) t = 49.7

(c) t = 49.9 (d) t = 50.2

(e) t = 50.4 (f) t = 50.6

Figure 5.89: L/D = 2 Pressure Contours
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(a) t = 50.9 (b) t = 51.2

(c) t = 51.5 (d) t = 51.7

(e) t = 51.9 (f) t = 52.2

Figure 5.90: L/D = 2 Filament Pressure Contourss
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(a) t = 52.4 (b) t = 52.6

(c) t = 52.9 (d) t = 53.1

(e) t = 53.4 (f) t = 53.5

Figure 5.91: L/D = 2 Filament Pressure Contours
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(a) t = 49.5 (b) t = 49.7

(c) t = 49.9 (d) t = 50.2

(e) t = 50.4 (f) t = 50.6

Figure 5.92: L/D = 2 Numerical Schlieren Images
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(a) t = 50.9 (b) t = 51.2

(c) t = 51.5 (d) t = 51.7

(e) t = 51.9 (f) t = 52.2

Figure 5.93: L/D = 2 Filament Numerical Schlieren Images
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(a) t = 52.4 (b) t = 52.6

(c) t = 52.9 (d) t = 53.1

(e) t = 53.4 (f) t = 53.5

Figure 5.94: L/D = 2 Filament Numerical Schlieren Images
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(a) t = 49.5 (b) t = 49.7

(c) t = 49.9 (d) t = 50.2

(e) t = 50.4 (f) t = 50.6

Figure 5.95: L/D = 2 Velocity Magnitude Contours



192

(a) t = 50.9 (b) t = 51.2

(c) t = 51.5 (d) t = 51.7

(e) t = 51.9 (f) t = 52.2

Figure 5.96: L/D = 2 Filament Velocity Magnitude Contourss
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(a) t = 52.4 (b) t = 52.6

(c) t = 52.9 (d) t = 53.1

(e) t = 53.4 (f) t = 53.5

Figure 5.97: L/D = 2 Filament Velocity Magnitude Contours
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Figure 5.98: L/D = 2 Heat Transfer to Cylinder Face
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(a) t = 49.5, point 1 (b) t = 49.7, point 2

(c) t = 49.9, point 3 (d) t = 50.2

(e) t = 50.4, point 4 (f) t = 50.6

Figure 5.99: L/D = 2 Vorticity Contours
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(a) t = 50.9, point 5 (b) t = 51.2

(c) t = 51.5 (d) t = 51.7

(e) t = 51.9, point 6 (f) t = 52.2

Figure 5.100: L/D = 2 Filament Vorticity Contours
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(a) t = 52.4 (b) t = 52.6

(c) t = 52.9 (d) t = 53.1

(e) t = 53.4 (f) t = 53.5

Figure 5.101: L/D = 2 Filament Vorticity Contours
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(a) t = 49.5, point 1 (b) t = 49.7, point 2

(c) t = 49.9, point 3 (d) t = 50.2

(e) t = 50.4 (f) t = 50.6

Figure 5.102: L/D = 2 Streamlines
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(a) t = 50.9 (b) t = 51.2

(c) t = 51.5 (d) t = 51.7

(e) t = 51.9, point 6 (f) t = 52.2

Figure 5.103: L/D = 2 Filament Streamlines
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(a) t = 52.4 (b) t = 52.6

(c) t = 52.9 (d) t = 53.1

(e) t = 53.4 (f) t = 53.5

Figure 5.104: L/D = 2 Filament Streamlines
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(a) t = 49.5, point 1 (b) t = 49.7, point 2

(c) t = 49.9, point 3 (d) t = 50.2

(e) t = 50.4, point 4 (f) t = 50.6, point 5

Figure 5.105: L/D = 2 Temperature Contours
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(a) t = 50.9 (b) t = 51.2

(c) t = 51.5 (d) t = 51.7

(e) t = 51.9, point 6 (f) t = 52.2

Figure 5.106: L/D = 2 Filament Temperature Contours
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(a) t = 52.4 (b) t = 52.6

(c) t = 52.9 (d) t = 53.1

(e) t = 53.4 (f) t = 53.5

Figure 5.107: L/D = 2 Filament Temperature Contours
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5.2.5 L/D = 4 Filament

Statistically Stationary State

The dimensionless heat transfer to the front face of the cylinder and its root mean square

are plotted in Figures 5.108 and 5.109. Figure 5.108 shows the mean and instantaneous

heat transfer to the front face of the cylinder. The instantaneous heat transfer to the front

face of the cylinder are periodic at 20 dimensionless time units. The root mean square of

the heat transfer to the front face of the cylinder, graphed in Figure 5.109, is periodic at

30 dimensionless time units. These two parameters are good evidence that the case has

reached a statistically stationary state by a dimensionless time of 30.

The instantanous, mean and root mean square of dimensionless centerline pressure are

graphed in Figures 5.110 and 5.111. The instantaneous pressure is periodic in time. The

mean of the centerline pressure in time has reached a steady value in 40 dimensionless

time units. The root mean square of the dimensionless centerline pressure also reaches a

statistically stationary point by 40 dimensionless time units. The statistically stationary

state for the dimensionless centerline pressure has been reached in 40 dimensionless time

units.

The power spectrum of the dimensionless heat transfer is shown in Figure 5.112. Two

peak frequencies are seen. The highest frequency occurs at zero because the power spectrum

was performed on the dimensionless heat transfer variable and not of the perturbation. The

mean frequency is represented at the zero frequency. The other peak frequncy occurs at

0.25, which is the vortex shedding frequency behind the shock layer. This implies that each

filament pulse consitutes one cycle of heat transfer to the front face of the cylinder.
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Figure 5.108: L/D = 4 Mean and Instantaneous Heat Transfer to Front of Body

Figure 5.109: L/D = 4 Root Mean Square of Heat Transfer to Front of Body
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Figure 5.110: L/D = 4 Filament Mean and Instantaneous Stagnation Pressure

Figure 5.111: L/D = 4Filament Root Mean Square of Stagnation Pressure
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Figure 5.112: L/D = 4 Filament Power Spectrum of Dimensionless q



208

Efficiency, Effectiveness and Heat Transfer

The drag reduction efficiency, effectiveness and heat transfer to cylinder face parameters are

graphed in Figures 5.113, 5.114 and 5.115, respectively. The total drag is reduced by 10%.

The effectiveness of the drag reduction is lower than the previous cases and the efficiency

is 104, lower than the L/D = 2 case. The heat transfer to the front face is reduced by 9%.

The heated filament reduces the heat transfer to the front face of the cylinder. This result

is explained further in the analysis of the flow contours.

Figure 5.113: L/D = 4 Filament Efficiency Parameter
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Figure 5.114: L/D = 4 Filament Effectiveness Parameter

Figure 5.115: L/D = 4 Filament Heat Transfer to Front Face Parameter
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Contours of Flow

The contours for the pulsed case of period 4 are shown in Figures 5.116 through 5.130. The

contours over one heat transfer cycle are shown at the statistically stationary state. One

cycle of heat transfer is determined by the graph of heat transfer versus time. One heat

transfer cycle for this case is 4 dimensionless time units.

The major flow features are depicted in the density gradient and pressure contours,

Figures 5.116 through 5.117 and 5.118 through 5.119, respectively. Shock waves and contact

surfaces are both visible in the density gradient contours. The pressure contours distinguish

the two flow features. The major flow features at the beginnning of the heat transfer cycle

are labeled in Figure 5.116(a). The heated filament can be seen entering from the inflow

boundary at the centerline. An upstream lensing of the bow shock occurs where the heated

filament intersects the bow shock. Behind the bow shock, the contact surfaces between

the heated filament and surrounding flow are shown. Because the heated filament is at a

reduced Mach number, its velocity behind the bow shock is lower than the surrounding flow,

which makes the contact surface at the top of the heated filament a shear layer within the

shock layer. This can be verified with the Rankine Hugoniot conditions. The shear layers

create a vortex downstream of the bow shock. This is seen in Figures 5.116(a) through

5.116(f). Each filament becomes a vortex with a trailing contact surface behind the bow

shock. These vortices convect with the surrounding flow toward the cylinder corner. A

vortex from the previous fillament is near the cylinder corner in Figure 5.116(a). The flow

accelerates as it passes over the cylinder corner. An expansion fan sits at the top of the

cylinder corner. Downstream of the expansion fan a recompression shock is formed. The

recompression shock turns the flow parallel to the cylinder.

The minor flow features can be seen in the numerical Schlieren images in Figures 5.120

through 5.121. The progression in time of the heated filament entering the shock layer

seen in Figure 5.120(a) is followed through a cycle to understand how minor flow features

develop.

Figure 5.120(a) The heated filament encounters the the bow shock. Because of the re-

duced Mach number within the heated filament, the shock wave lenses forward upon



211

contact.

Figure 5.120(c) The shear layer contact surface is unstable and creates a vortex down-

stream of the bow shock. A small lambda shock is seen where the lensed shock meets

the unlensed shock.

Figure 5.120(f) The end of the filament has entered the shock layer. The filament has

become a vortex trailed by a contact boundary from the end of the filament. The

lensing of the bow shock has decreased. The bow shock has not yet returned to its

undisturbed state. The bow shock is curved around the area surrounding the vortex

just downstream of the bow shock. A small shock appears ahead of the cylinder

corner. To explore how this shock is created, the same image is shown with the

steady state bow shock location and streamlines in Figure 5.122. The bow shock of

the current case is upstream of the steady state bow shock location. The streamlines

of the current case are shown in black and the steady state streamlines emanating from

the same locations are shown in white. Compared to the steady state streamlines, the

streamlines of this case are less inclinded after the bow shock. The current streamlines

near the corner bend upward just ahead of the expansion fan. At the same location

the steady state streamlines smoothly expand in the vicinity of the corner. The shock

appears just ahead of the cylinder corner where the streamlines turn.

Figure 5.121(a) The new vortex has convected toward the cylinder corner. The bow

shock lensing has reduced and the entire bow shock has moved downstream. The

shock ahead of the corner has grown and moved upstream toward the bow shock.

A weak shock has formed at the bottom of the vortex downstream of the contact

boundary. This is due to the flow under the vortex meeting the flow coming in

through the bow shock.

Figure 5.121(b) The shock ahead of the corner has moved upstream and merged with

the bow shock. The bottom of the shock has become entrained in the vortex.

Figure 5.121(c) The vortex has convected toward the cylinder corner. The vortex in-

fluences the direction of the flow behind the bow shock. Because the bow shock
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determines the amount of turning of the flow, the direction of the flow behind the

bow shock influences the shape of the bow shock. Thus, as the vortex convects to-

ward the corner, the bow shock changes shape. The circular nature of the flow behind

the bow shock has created a curved bow shock in the vicinity of the vortex. The

most prominent shock downstream of the bow shock is the lambda shock between

the curved part of the bow shock and the vortex. The contact discontinuity remain-

ing from the heated filament trails the vortex, remaining attached to the symmetry

boundary and weakening as it grows.

Figure 5.121(f) By this time the vortex has convected half way to the cylinder face from

the bow shock. The shocks at the top and the bottom of the vortex have weakend

significantly and the bow shock has begun to restore to its steady state shape. There

are some residual density gradients around the vortex, however, the vortex is largely

independent of the vortex that preceeded it in the flow domain. Each heat transfer

cycle represents the convection of one vortex across the shock layer.

The velocity magnitude contours are shown in Figures 5.123 through 5.124. The core

of the vortex is at a very low velocity. The top of the vortex has a high velocity. The high

velocity flow decelerates immediately just before the downstream side of the vortex. This is

the location of the contact surface from the downstream vortex. Below the contact surface

is low velocity flow, which accelerates as it winds around the bottom of the vortex. The

flow quickly decelerates again at the bottom upstream side of the vortex, as it encounters

the weak shock at the bottom of the vortex. The contact surface at the upstream side of

the vortex separates the low velocity flow from the higher velocity flow at the top of the

vortex.

Reduction of heat transfer to the front face of the cylinder is due to the formation and

convection of vortices over the cylinder corner. This can be seen by evaluating the vorticity

magnitude, streamlines of flow and temperature contours, as graphed in Figures 5.125

through 5.126, Figures 5.127 through 5.128 and Figures 5.129 through 5.130, respectively.

The major points in a heat transfer cycle are labeled in Figure 5.131.
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Point 1 Point 1 represents a maximium point of heat transfer to the cylinder face. Pre-

viously, vortex 0 had been approaching the cylinder face. As vortex 0 approached

the face, the area of influence of the convection by vortex 0 on the cylinder face was

reducing and a stagnation region was growing at the center of the cylinder face. Point

1 represents the time of maximum heat transfer, which occurs just before the expan-

sion fan that sits in front of vortex 0 contacts the cylinder face. As the expansion fan

interacts with the cylinder face, it dramatically increases conduction and advection

of heat away from the face. Point 1 is when vortex 0 is just ahead of the cylinder

corner, as seen in Figure 5.125(a). The graph of streamlines and velocity magnitude

show that the area of high velocity in front of the corner begins to interact with the

cylinder corner at this instant in Figure 5.127(a).

Point 2 As the expansion fan just ahead of vortex contacts the cylinder face, the heat

transfer to the cylinder face drops dramatically. The heat transfer reduces more as

the vortex and expansion fan move closer to the corner, as the corner is the point of

maximum heat transfer to the cylinder face. At point 2, however, there is a temporary

increase in heat transfer rate to the cylinder face, as the shock wave at the bottom of

the vortex contacts the cylinder face. This is best seen in the density gradient graph

5.120(b).

Point 3 As vortex 0 convected over the cylinder, vortex 1 was just downstream of the bow

shock. Vortex 1 increased the velocity of the flow just ahead of the cylinder face by

forcing air down at the front of the vortex (the downstream side). The flow was then

forced to sweep over the entire front of the cylinder face. This is seen in Figures

5.127(c) through 5.127(f). At point 3, however, vortex 1 begins to convect upward

toward the cylinder corner. At point 3, the streamlines pulled down in front of the

vortex sweep up a small fraction of the cylinder face. This is seen in Figure 5.128(a).

After point 3, a stagnation region builds across the cylinder face, starting at the center

of the face. This is seen in Figures 5.128(b) through 5.128(c).

Point 4 The stagnation region continues to build, decreasing advection of heat away from

the face and increasing heat transfer to the front of the face until just after point 4.
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At point 4, a small counterclockwise rotating vortex builds just ahead of the cylinder

face. This can be seen in Figure 5.128(d). The counterclockwise vortex moves toward

the center of the cylinder, which temporarily increases advection of heat away from

the center of the cylinder.

Point 5 Though the streamlines of Figure 5.128(f) don’t capture the counterclockwise

vortex near the cylinder wall, it shows up in Figure 5.126(f). The larger vortex,

vortex 1, has drawn the smaller vortex away from the wall. The smaller vortex no

longer exerts an influence on the heat transfer rate to the cylinder away from the

cylinder face. Thus, as vortex 1 moves upward and the stagnation region below it

continues to grow, the heat transfer to the front face of the cylinder increases.
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(a) t = 45.84 (b) t = 46.07

(c) t = 46.17 (d) t = 46.18

(e) t = 46.48 (f) t = 46.79

Figure 5.116: L/D = 4 Filament Density Gradient Contours
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(a) t = 46.99 (b) t = 47.34

(c) t = 47.68 (d) t = 47.96

(e) t = 48.23 (f) t = 48.58

Figure 5.117: L/D = 4 Filament Density Gradient Contours
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(a) t = 45.84 (b) t = 46.07

(c) t = 46.17 (d) t = 46.18

(e) t = 46.48 (f) t = 46.79

Figure 5.118: L/D = 4 Filament Pressure Contours
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(a) t = 46.99 (b) t = 47.34

(c) t = 47.68 (d) t = 47.96

(e) t = 48.23 (f) t = 48.58

Figure 5.119: L/D = 4 Filament Pressure Contours



219

(a) t = 45.84 (b) t = 46.07

(c) t = 46.17 (d) t = 46.18

(e) t = 46.48 (f) t = 46.79

Figure 5.120: L/D = 4 Filament Numerical Schlieren Images
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(a) t = 46.99 (b) t = 47.34

(c) t = 47.68 (d) t = 47.96

(e) t = 48.23 (f) t = 48.58

Figure 5.121: L/D = 4 Filament Numerical Schlieren Images
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Figure 5.122: Density Gradient Magnitude Plot at t = 46.48 with Steady State Streamline
and Bow Shock Location Shown
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(a) t = 45.84 (b) t = 46.07

(c) t = 46.17 (d) t = 46.18

(e) t = 46.48 (f) t = 46.79

Figure 5.123: L/D = 4 Filament Velocity Magnitude Contours
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(a) t = 46.99 (b) t = 47.34

(c) t = 47.68 (d) t = 47.96

(e) t = 48.23 (f) t = 48.58

Figure 5.124: L/D = 4 Filament Velocity Magnitude Contours
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(a) t = 45.84, point 1 (b) t = 46.07, point 2

(c) t = 46.17 (d) t = 46.18

(e) t = 46.48 (f) t = 46.79

Figure 5.125: L/D = 4 Filament Vorticity Contours
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(a) t = 46.99, point 3 (b) t = 47.34

(c) t = 47.68 (d) t = 47.96, point 4

(e) t = 48.23 (f) t = 48.58

Figure 5.126: L/D = 4 Filament Vorticity Contours
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(a) t = 45.84, point 1 (b) t = 46.07, point 2

(c) t = 46.17 (d) t = 46.18

(e) t = 46.48 (f) t = 46.79

Figure 5.127: L/D = 4 Filament Streamlines
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(a) t = 46.99, point 3 (b) t = 47.34

(c) t = 47.68 (d) t = 47.96, point 4

(e) t = 48.23 (f) t = 48.58

Figure 5.128: L/D = 4 Filament Streamlines
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(a) t = 45.84, point 1 (b) t = 46.07, point 2

(c) t = 46.17 (d) t = 46.18

(e) t = 46.48 (f) t = 46.79

Figure 5.129: L/D = 4 Filament Temperature Contours
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(a) t = 46.99, point 3 (b) t = 47.34

(c) t = 47.68 (d) t = 47.96, point 4

(e) t = 48.23 (f) t = 48.58

Figure 5.130: L/D = 4 Filament Temperature Contours
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Figure 5.131: L/D = 4 Dimensionles Heat Transfer to Cylinder Face Over One Cycle
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5.2.6 Summary of Results

The effect of varying the period of the pulsed heated filaments on drag efficiency, effec-

tiveness and heat transfer are evaluated. The efficiency, effectiveness and heat transfer

parameter are graphed on three axes in Figure 5.132. The numbers in the figure correspond

to the different period of pulsation of heated filaments, as shown in Table 5.4. The effi-

ciency has a peak value for L/D = 2. The effectiveness decreases with increasing period.

The heat transfer parameter increases with increasing filament pulsation period, as seen in

Figure 5.133. However, the heat transfer ratio seems to level off between L/D of 2 and 4.

The L/D = 2 and 4 cases have the same heat transfer cycle, thus a similar heat transfer

reduction is plausible. The distance between filaments is larger for larger periods, as the

length of the filaments are the same due to a coupling of the vortices in the L/D = 2 case

and total independence of vortices in the L/D = 4 case. The larger the distance between

filaments, the less effective the vortices are at cooling the cylinder face. This levels off

where the vortices cease to interact with one another ahead of the cylinder face. The excep-

tion to this is the infinitely long filament, which is not as effective at cooling the cylinder

face. The effectiveness of drag reduction is plotted against the filament period in Figure

5.134. The effectiveness decreases with increasing period. The larger gaps in between the

filaments create large gaps between vortices within the shock layer, which translates to a

larger stagnation region in front of the cylinder face. The stagnation region increases the

drag. Finally, the efficiency is graphed against the heated filament pulsation period in Fig-

ure 5.135. The efficiency exhibits a nonlinear relation with filament pulsation period. The

maximum efficiency occurs for a filament period of two.

Table 5.4: Cases Index to Figures
Number in Figure L

D Color
1 4.0 Red
2 2.0 Red
3 1.33 Red

∞ Green
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Figure 5.132: Efficiency, Effectiveness Versus Heat Transfer Parameter

Figure 5.133: Heat Transfer Parameter Versus Period, L
D
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Figure 5.134: Effectiveness Versus Period, L
D

Figure 5.135: Efficiency Versus Period, L
D
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Chapter 6

Conclusions

Two cases of energy deposition to a cylinder in supersonic flow have been evaluated. The

first case was an inviscid simulation, in which energy deposition filament diameters are

evaluated. The second case was a viscous simulation which varied the period of pulses of

energy deposition to evaluate the effect on heat transfer to the body.

6.1 Effect of Large Filament Diameter on Drag

The objective of the analysis was to determine the effect of varying the nondimensional

microwave filament diameter to the drag savings in terms of effectiveness and efficiency.

The case of a cylinder in inviscid supersonic flow at Mach 1.89 was solved. Three cases

were computed with nondimensional filament diameters d/D=0.25, 0.5 and 1.0. It was

shown that an increase in nondimensional filament diameter slightly increases the drag

effectiveness. The drag effectiveness, defined as the ratio of drag savings to the drag in the

absence of the energy deposition, is nearly constant for all three cases and varies from 0.37

to 0.40. The drag efficiency, defined as the ratio of the energy saved to the energy required

to created the filament decreased from 15.4 at d/D=0.25 to 1.0 at d/D=1.0.

6.2 Heat Transfer to Blunt Body with Energy Deposition

The objective of this analysis was to the study the heat transfer to a blunt body in which

energy deposition is applied to the flow ahead of the shock wave. It was shown that for the

four cases studied, the heat transfer to the body was not greater than without the energy

deposition applied to the flow. In face, due to eddies generated behind the shock wave, the

heat transfer to the body was reduced in all of the cases. The greatest reduction in heat
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transfer was for a pulse period of two times the cylinder diameter. The least reduction in

heat transfer to the front face of the blunt body was for the largest pulse period, L/D = 4.
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Appendix A

Compressible Flat Plate Boundary Layer Solution Derivation

We begin with the dimensional steady compressible laminar boundary layer equations

∂ρu

∂x
+
∂ρv

∂y
= 0 (A.1)

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+

∂

∂y

(
µ
∂u

∂y

)
(A.2)

0 = −∂p
∂y

(A.3)

ρucp
∂T

∂x
+ ρvcp

∂T

∂y
= u

∂p

∂x
+

∂

∂y

(
k
∂T

∂y

)
+ µ

(
∂u

∂y

)2

(A.4)

Assume
µ

µ0
= C

T

T0
(A.5)

We require µ(T∞) = µ∞ as y →∞. Then,

µ∞
µ0

= C
T∞
T0

(A.6)

C =
µ∞
µ0

T0

T∞
(A.7)

Then, substituting into equation (A.5),

µ

µ0
=

(
µ∞
µ0

T0

T∞

)
T

T0
(A.8)

µ

µ∞
=

T

T∞
(A.9)

We introduce a transformation to scale the y direction with density,

x̃ = x (A.10)

ỹ =
∫ y

0

ρ(x, y′)
ρ∞

dy′ (A.11)

ũ = u (A.12)

ṽ = to be determined (A.13)
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For any function f(x, y), where x̃(x, y) and ỹ(x, y),

∂f

∂x
=

∂f

∂x̃

∂x̃

∂x
+
∂f

∂ỹ

∂ỹ

∂x
(A.14)

=
∂f

∂x̃
+
∂f

∂ỹ

∂ỹ

∂x
(A.15)

and

∂f

∂y
=

∂f

∂x̃

∂x̃

∂y
+
∂f

∂ỹ

∂ỹ

∂y
(A.16)

and since ∂x̃/∂y = 0

∂f

∂y
=

∂f

∂ỹ

ρ

ρ∞
(A.17)

(A.18)

Evaluating the differentials,

dx =
∂x

∂x̃
dx̃+

∂x

∂ỹ
dỹ (A.19)

dx = dx̃+ 0 (A.20)

dx = dx̃ (A.21)

dy =
∂y

∂x̃
dx̃+

ρ∞
ρ

(
∂ỹ

∂x
dx+

ρ

ρ∞
dy

)
(A.22)

dy =
(
∂y

∂x̃
+
ρ∞
ρ

∂ỹ

∂x

)
dx+ dy (A.23)

(A.24)

thus, in order to satisfy the requirement that dy = dy, the first term on the right hand must

vanish, (
∂y

∂x̃
+
ρ∞
ρ

∂ỹ

∂x

)
dx = 0 (A.25)

∂y

∂x̃
+
ρ∞
ρ

∂ỹ

∂x
= 0 (A.26)

and finally,

∂ỹ

∂x
= − ρ

ρ∞

∂y

∂x̃
(A.27)
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Therefore, for a given function, f ,

∂f

∂x
=

∂f

∂x̃
+
∂f

∂ỹ

(
− ρ

ρ∞

∂y

∂x̃

)
∂f

∂y
=

ρ

ρ∞

∂f

∂ỹ

Consider, first the x-momentum equation, Equation (A.2),

ρu
∂u

∂
+ ρv

∂u

∂
= −dp

dx
+

∂

∂y

(
µ
∂u

∂y

)
(ρũ)

∂ũ

∂x̃
− ρ

ρ∞

∂y

∂x̃

∂ũ

∂ỹ
+
(
ρ∞ṽ + ρũ

∂u

∂x̃

)
ρ

ρ∞

∂ũ

∂ỹ
= −dp

dx̃
− ρ

ρ∞

∂y

∂ỹ

∂p

∂ỹ
+

ρ

ρ∞

∂

∂ỹ

(
µρ

ρ∞

∂ũ

∂ỹ

)
ρũ
∂ũ

∂x̃
+ ρṽ

∂ũ

∂ỹ
= −dp

dx̃
+

ρ

ρ∞

∂

∂ỹ

(
µρ

ρ∞

∂ũ

∂ỹ

)
With the assumption that ρµ = ρ∞µ∞, and Equation (A.9), ρT = ρ∞T∞, and

dp

dx̃
=

dρRT

dx̃

= R
dρT

dx̃

= R
dρ∞T∞
dx̃

= 0

Then, the x-momentum equation becomes,

ρũ
∂ũ

∂x̃
+ ρṽ

∂ũ

∂ỹ
=

ρ

ρ∞

(
µ∞ρ∞
ρ∞

)
∂2ũ

∂ỹ2

ũ
∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
= ν∞

∂2ũ

∂ỹ2
(A.28)

The energy equation becomes

ρũcp

(
∂T

∂x̃
− ρ

ρ∞

∂y

∂x̃

∂T

∂ỹ

)
+
(
ρ∞ṽ + ρũ

∂y

∂x̃

)
cp

ρ

ρ∞

∂T

∂ỹ

= ũ
dp

dx̃
+

ρ

ρ∞

∂

∂ỹ

(
k
ρ

ρ∞

∂T

∂ỹ

)
+ µ

(
ρ

ρ∞

)2 (∂ũ
∂ỹ

)2

ρcp

(
ũ
∂T

∂x̃
+ ṽ

∂T

∂ỹ

)
=

ρ

ρ2
∞

∂

∂ỹ

(
cp
Pr

ρ∞µ∞
∂T

∂ỹ

)
+ µ∞

(
ρ

ρ∞

)(
∂ũ

∂ỹ

)2

where Pr = µcp/k. Introduce κ∞ = k∞/cpρ∞,

cpρ

(
ũ
∂T

∂x̃
+ ṽ

∂T

∂ỹ

)
= µ∞

ρcp
Pr

∂2T

∂ỹ2
+ κ∞

Prρ2cp
cpρ∞

(
∂ũ

∂ỹ

)2

ũ
∂T

∂x̃
+ ṽ

∂T

∂ỹ
=

ν∞
Pr

∂2T

∂ỹ2
+
κ∞Pr

cp

(
∂ũ

∂ỹ

)2

ũ
∂T

∂ỹ
ṽ
∂T

∂ỹ
=

ν∞
Pr

∂2T

∂ỹ2
+
κ∞Pr

cp

(
∂ũ

∂ỹ

)2

(A.29)
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The similarity solution is of the following form

ũ =
∂ψ

∂ỹ
& ṽ =

∂ψ

∂x̃
(A.30)

where

ψ =
√
ν∞U∞x̃f(η) & η = ỹ

√
U∞
ν∞x̃

(A.31)

The mass equation, is automatically satisfied with this transformation. From the trans-

formed variable, ũ,

u =
∂ψ

∂y

ρ∞
ρ

ρu = ρ∞
∂ψ

∂y
(A.32)

From the transformed variable, ṽ,

ṽ = −∂f
∂x
− ∂y

∂x̃

∂ψ

∂y

ρ

ρ∞
v − ρ

ρ∞

∂y

∂x̃
u = −∂f

∂x
− ∂y

∂x̃

ρu

ρinfty

ρv = −ρ∞
∂f

∂x
(A.33)

Plugging Equations (A.32) and (A.33) into the mass equation, (A.1),

ρ∞

(
∂2ψ

∂x∂y
− ∂2ψ

∂y∂y

)
= 0 (A.34)

Thus, the similarity variables and the transformation identically satisfy the mass equation.

∂η

∂ỹ
=

√
U∞
ν∞x̃

∂η

∂ỹ
= −1

2

√
U∞
ν∞x̃3

ỹ

= −1
2

1
x̃
η

ṽ =
1
2

√
ν∞U∞
x̃

f − 1
2
U∞√
x̃
f ′

∂ũ

∂x̃
= −1

2
U∞η

x̃
f ′′

∂ũ

∂ỹ
=

√
U3
∞

ν∞x̃
f ′′

∂2ũ

∂ỹ2
=

U2
∞

ν∞x̃
f ′′′
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The x-momentum equation, is transformed with the similarity variables,

u2
∞f
′
(
−1

2

)
η

x̃
f ′′ +

(
−1

2

)√
ν∞u∞x̃

(
f − ηf ′

)√ u2
∞

ν∞x̃
f ′′ = ν∞

u2
∞

ν∞x̃
f ′′′

−1
2
u2
∞
x̃
ηf ′′f ′ +

1
2
u2
∞
x̃
ηf ′′f ′ − 1

2
u2
∞
x̃
ff ′′ =

u2
∞
x̃
f ′′′

f ′′′ +
1
2
ff ′′ = 0

2f ′′′ + ff ′′ = 0 (A.35)

with boundary conditions

f(0) = 1 (A.36)

f ′(0) = 0 (A.37)

f ′(∞) = 1 (A.38)

Equations (A.35) through (A.38) are exactly the Blasius equations. The solution to this

transformed system is the same as the solution to the Blasius equations.
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Appendix B

Crocco Solution and Reynolds Analogy

Crocco Solution

Starting with the boundary layer equations for compressible flow,

∂ρu

∂x
+
∂ρv

∂y
= 0 (B.1)

ρu
∂u

∂x
+ ρv

∂u

∂y
= −dp

dx
+

∂

∂y

(
µ
∂u

∂y

)
(B.2)

0 = −∂p
∂y

(B.3)

ρucp
∂T

∂x
+ ρvcp

∂T

∂y
= u

∂p

∂x
+

∂

∂y

(
k
∂T

∂y

)
+ µ

(
∂u

∂y

)2

(B.4)

If it assumed that the (i) Prandtl number is constant, and (ii) the specific heat at constant

pressure are constant, the energy equation, equation B.4, becomes

ρucp
∂T

∂x
+ ρvcp

∂T

∂y
= u

dP

dx
+

∂

∂y

(
k
∂T

∂y

)
+ µ

(
∂u

∂y

)2

Seeking an expression of temperature that is solely a function of streamwise velocity T (u),

and plugging in,

ρucp
dT

du

∂u

∂x
+ ρvcp

dT

du

∂u

∂y
= u

dp

dx
+
dT

du

∂

∂y

(
k
∂u

∂y

)
+ k

∂u

∂y

∂

∂y

(
dT

du

)
+ µ

(
∂u

∂y

)2

= u
dp

dx
+
dT

du

∂

∂y

(
k
∂u

∂y

)
+ k

(
∂u

∂y

)2
(
d2T

du2

)
+ µ

(
∂u

∂y

)2

= u
dp

dx
+

1
Pr

dT

du

∂

∂y

(
Prk

∂u

∂y

)
+
(
∂u

∂u

)2

µ

(
1 +

k

µ

d2T

du2

)

= u
dp

dx
+

1
Pr

dT

du

∂

∂y

(
µcp

∂u

∂y

)
+
(
∂u

∂y

)2

µ

(
1 +

cp
Pr

d2T

du2

)

= u
dp

dx
+

cp
Pr

dT

du

∂

∂y

(
µ
∂u

∂y

)
+
(
∂u

∂y

)2

µ

(
1 +

cp
Pr

d2T

du2

)

cp
dT

du

(
ρu
∂u

∂x
+ ρv

∂u

∂y

)
= u

dp

dx
+

cp
Pr

dT

du

∂

∂y

(
µ
∂u

∂y

)
+
(
∂u

∂y

)2

µ

(
1 +

cp
Pr

d2T

du2

)
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Using the x-momentum equation, equation B.2, on the left hand side,

cp
dT

du

(
−dp
dx

+
∂

∂y

(
µ
∂u

∂y

))
= u

dp

dx
+

cp
Pr

dT

du

∂

∂y

(
µ
∂u

∂y

)
+
(
∂u

∂y

)2

µ

(
1 +

cp
Pr

d2T

du2

)

Finally,

dp

dx

(
u+ cp

dT

du

)
+
(
cp
Pr
− cp

)
dT

du

∂

∂y

(
cp
Pr

∂u

∂y

)
+

(
cp
Pr

∂2T

∂u2
+ 1

)
µ

(
∂u

∂y

)2

= 0 (B.5)

Now, if we assume

(iii) Pr = 1

(iv) cp
d2T

du2
+ 1 = 0

(v) u+ cp
dT

du
= 0

or
dp

dx
= 0

Then the mass equation, equation B.1, is exactly satisfied, and we evaluate the momentum

and energy equations, equations B.2 and B.4, respectively, to see if T (u) is a solution. There

are two possible boundary conditions at the wall,

(I) adiabatic wall (II) isothermal wall

dTw/dy = 0 Tw = constant

(I) Adiabatic Wall Integrating assumption (iv),

d2T

du2
= − 1

cp
dT

du
= − u

cp
+A

T (u) = − u2

2cp
+Au+B (B.6)

Using the adiabatic wall condition (I),

dT

dy
|y=0 =

dT

du

∂u

∂y
|y=0,u=0 = 0 (B.7)

Since, the velocity gradient at the wall is not zero,

∂u

∂y
6== 0 (B.8)
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Then dT/du must be equal to zero at the wall, where y = 0 and u = 0.

dT

du
= − u

cp
+A = 0⇒ A = 0 (B.9)

Thus,

T (u) = − u
cp

+B (B.10)

At y →∞, T → T∞ and u→ U∞. Thus,

B = T∞ +
U2
∞

2cp
= total temperature at edge of boundary layer (B.11)

Then, the temperature becomes

T (u) = T∞(x, y) +
1

2cp

(
U2
∞ − u2

)
(B.12)

T +
u2

2cp
= T∞ +

U2
∞

2cp
(B.13)

Tt(x, y) = Tte(x) (B.14)

where Tte is the total temperature at the edge of the boundary layer. equation B.14 demon-

strates that the total temperature, Tt, is constant across the boundary layer. To satisfy

Assumption (v), for a nonzero dp/dx,

dT

dx
=

(
dT∞
dx

+
1

2cp
dU2
∞

dx

)
∂x

∂u
− 1

2cp
2u

=
dTte(x)
dx

− u

cp

Plugging in to Assumption (v) for an arbitrarty dp/dx,

cp
dT

dx
+ u = cp

dTte
dx

∂x

∂u
− u+ u = 0 (B.15)

The last equality follows if Tt is constant in x. Thus, for an adiabatic wall, equation B.12

is a solution to equations B.1, B.2, B.3 and B.4 if

(i) Pr = 1

(ii) cp
d2T
du2 + 1 = 0

(iii) dTte/dx = 0
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(II) Isothermal Wall : Tw = constant For the case of an isothermal wall, we again integrate

assumption (iv) :

T (u) = − u2

2cp
+Au+B (B.16)

At y = 0, u = 0 adn T = Tw, which gives us B = Tw. At y → ∞, u → U∞, T → T∞(x),

thus

T∞ +
U2
∞

2cp
− Tw = AU∞ (B.17)

Thus,

A =
T∞ − T
U∞

+
U∞
2cp

(B.18)

Finally,

T (u) = − u2

2cp
+

u

U∞
(T∞ − Tw) +

uU∞
2cp

+ Tw (B.19)

If we wish to satisfy (v) for an arbitrary dp/dx,

u+ cp
dT

du
= 0 (B.20)

u+ cp

(
− u
cp

+
(T∞ − Tw)

U∞
+
U∞
2cp

)
= 0 (B.21)

and

Tw = T∞ +
U2
∞

2cp
(B.22)

which is the adiabatic wall temperature. Thus, if T =constant and T 6= T∞, then dp/dx = 0

must be true for B.19 to be a solution to equations B.1, B.2, B.3, B.4.

Reynolds Analogy

Define the Stanton number

St =
qw

ρeUecp(Tw − Ta)
(B.23)

where

qw = −k∂T
∂y

= −kdT
du

∂u

∂y
(B.24)

for an isothermal wall, from equation B.19,

∂T

∂u
=
−u
cp

+
T∞ − Tw
U∞

+
U∞
2cp

= −U
cp
− Tw
U∞

+
Ta
U∞

(B.25)
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where the adiabatic wall temperature is Ta = T∞ + U2
∞/2cp from equation B.12. At the

wall,

u = 0⇒ dT

du
= − 1

U∞
(Tw − Ta)

qw = k
∂u

∂y

Tw − Ta
U∞

St =
−k ∂u∂y (Ta − Tw)

ρ∞U2
∞cp (Tw − Ta)

=
k ∂u∂y

ρ∞U2
∞cp

where

τw = τ12 = µ

(
∂u

∂y
=
∂v

∂x

)
0

2
3

(0) = µ
∂u

∂y
(B.26)

the last equation follows from the fact that the vertical velocity, v, is zero at the wall. Thus,

St =
τw
µ

k

ρ∞U2
∞cp

(B.27)

and

Pr =
cpµ

k
= 1 (B.28)

where skin friction is defined as

Cf =
τw

1
2ρeU

2
e

(B.29)

it follows that
τw

ρ∞U2
∞

=
Cf
2

(B.30)

and finally

St =
Cf
2

(B.31)

which is the Reynolds analogy.
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