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ABSTRACT OF THE THESIS

Automated Image-based Detection and Grading of Lymphocytic

Infiltration in Breast Cancer Histopathology

By Ajay Basavanhally

Thesis Director:

Dr. Anant Madabhushi

The identification of phenotypic changes in breast cancer (BC) histopathology is of signifi-

cant clinical importance in predicting disease outcome and prescribing appropriate therapy.

One such example is the presence of lymphocytic infiltration (LI) in histopathology, which

has been correlated with a variety of prognoses and theragnoses (i.e. response to treat-

ment) in BC patients. In this thesis work a computer-aided diagnosis (CADx) system is

detailed for quantitatively measuring the extent of LI from hematoxylin and eosin (H &

E) stained histopathology. The CADx system is subsequently applied to BC patients ex-

pressing the HER2 gene (HER2+ BC), where LI extent has been found to correlate with

nodal metastasis and distant recurrence. Although LI may be graded qualitatively by BC

pathologists, there is currently no quantitative and reproducible method for measuring LI

extent in HER2+ BC histopathology. Hence, a CADx system that performs this task will

potentially help clinicians predict disease outcome and allow them to make better ther-

apy recommendations for HER2+ BC patients. The CADx methodology comprises three
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key steps. First, a combination of region-growing and Markov Random Field algorithms

is used to detect individual lymphocyte nuclei and isolate areas of LI in digitized H & E

stained histopathology images. The centers of individual detected lymphocytes are used

as vertices to construct a series of graphs (Voronoi Diagram, Delaunay Triangulation, and

Minimum Spanning Tree) and a total of 50 architectural features describing the spatial

arrangement of lymphocytes are extracted from each image. By using Graph Embedding, a

non-linear dimensionality reduction method, to project the high-dimensional feature vectors

into a reduced 3D embedding space, it is possible to visualize the underlying manifold that

represents the continuous nature of the LI phenotype. Over a set of 100 randomized cross-

validation trials, a Support Vector Machine classifier shows that the architectural feature

set distinguishes HER2+ BC histopathology samples containing high and low levels of LI

with a classification accuracy greater than 90%.
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Chapter 1

Introduction

1.1 Clinical Motivation

Breast cancer (BC) is the second leading cause of cancer-related deaths in women, with more

than 192,000 new cases of invasive BC predicted in the United States for 2009 alone [1].

Although it is a common cancer diagnosis in women, the fact that BC exhibits an excep-

tionally heterogeneous phenotype in histopathology [2] leads to a variety of prognoses and

therapies. One such phenotype is the presence of lymphocytic infiltration (LI), which may

have a variety of prognostic implications for BC patients [3, 4, 5, 6]. The function of LI

as a potential anti-tumor mechanism in BC was first shown by Aaltomaa et al. [3]. In [4],

it was shown that the presence of LI after treatment may predict a patient’s response to

therapy and long-term disease outcome. Further, Rody et al. [6] suggested that LI extent

has the potential to discriminate between estrogen receptor-negative tumors that have good

and poor prognoses.

Recently, Alexe et al. [5] demonstrated a correlation between the presence of LI and

improved distant recurrence-free survival rates in invasive BC tumors that exhibit amplifi-

cation of the HER2 gene (HER2+ BC). Since most HER2+ BC is currently treated with

agents that specifically target the HER2 protein, the characterization of LI extent may aid

clinicians in identifying patients with poor prognoses who may require adjuvant treatments

such as chemotherapy. Consequently, it is surprising that pathologists do not routinely



2

report on the presence of LI, especially in HER2+ BC. A possible reason for this is that

pathologists currently lack the automated image analysis tools to accurately, efficiently,

and reproducibly quantify the presence and degree of LI in BC histopathology. The ability

to automatically detect LI would be invaluable to BC pathologists and oncologists, since

manual detection of individual lymphocyte nuclei in BC histopathology is a tedious and

time-consuming process that is not feasible in the clinical setting. The availability of a

computerized image analysis system for automated quantification of LI extent in HER2+

BC will enable development of an inexpensive image-based system for predicting disease

survival and outcome.

Automated 

lymphocyte 

detection

Graph-based 

feature 

extraction

Non-linear 

dimensionality 

reduction of 

features

Support Vector 

Machine 

classifier

 

 

Figure 1.1: A flowchart illustrating the 4 main steps in the CADx scheme. Automated lym-
phocyte detection is followed by extraction of architectural features. The high-dimensional
feature space is then non-linearly embedded into a reduced dimensional space via Graph
Embedding, which allows for data visualization and subsequent evaluation via a SVM clas-
sifier.

1.2 Brief Outline and Novel Contributions of the Work

In this work, a fully automated CADx system for detecting and grading LI on digitized,

hematoxylin and eosin (H & E) stained histopathology is presented. The main components

of the CADx methodology is illustrated in the flowchart in Figure 1.1. The methodology

comprises three specific aims;



3� Aim 1: Automatically detect LI on digitized histopathology images,� Aim 2: Extract quantitative image-based features to describe LI extent, and� Aim 3: Visualize the data in a reduced dimensional space based on their LI extent.

Aim 1 is accomplished through an automated detection system that combines a region-

growing algorithm with Maximum a Posteriori (MAP) estimation and Markov Random

Field (MRF) theory [7]. First, all candidate BC and lymphocyte nuclei are detected via

a region-growing algorithm that uses contrast measures to find optimal boundaries [8, 7].

By growing outward from the center of each nucleus, this technique is robust to artifacts

outside of the nuclei (Figures 2.1(d)-(f)). The region-growing algorithm has a high de-

tection sensitivity, resulting in a large number of lymphocyte and non-lymphocyte nuclei

being detected. MAP estimation improves detection specificity by incorporating size and

luminance information from each detected object to temporarily label it as either a BC

or lymphocyte nucleus (these being the 2 main classes of objects detected). MRF theory

[9, 7] then allows us to improve lymphocyte detection specificity by modeling the infiltration

phenomenon in terms of spatial proximity, whereby an object is more likely to be labeled

as a lymphocyte nucleus if it is surrounded by other lymphocyte nuclei. The application of

MRF is a unique step that exploits the spatial properties of LI to (1) distinguish nuclei that

would be otherwise misclassified (Figure 2.1(a)) and (2) isolate infiltrating lymphocytes

from the surrounding baseline level of lymphocytes. MAP estimation is achieved by using

the Iterated Conditional Modes algorithm, a fast and simple method for maximizing the

posterior probability that a detected object is indeed a lymphocyte [10, 7].

Detection of LI alone, however, cannot completely characterize the abnormal LI pheno-

type because a baseline level of lymphocytes is present in all tissues. Hence, quantitative
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features must be defined to describe the spatial arrangement of the lymphocyte nuclei. In

Aim 2, the centers of individual detected lymphocytes are used as vertices to construct a

series of graphs (Voronoi Diagram, Delaunay Triangulation, and Minimum Spanning Tree)

and a variety of quantitative signatures describing the spatial arrangement of lymphocytes

are extracted from each image [11]. The 50 features used in this CADx system are outlined

in Table 3.2. Traditional textural signatures such as first order gray level features, second

order Haralick statistics, and Gabor filter features were not considered in this paper because

they have been shown to be unsuitable for CADx applications in breast and prostate cancer

that rely on spatial information [12, 11].

In Aim 3, a non-linear dimensionality reduction scheme, Graph Embedding [13], is

used to project the high-dimensional feature vector into a reduced 3D embedding space

for visualization. While a large set of descriptive features is certainly desirable for mod-

eling biological processes such as LI, a high-dimensional feature space also presents two

main problems for data classification analysis: (1) the curse of dimensionality [14] affects

computational efficiency due to the exponential increase in data volume required for each

additional feature and (2) it is impossible to directly visualize the relationships between

images in a high-dimensional space. Both of these issues are addressed by dimensionality

reduction (DR), which refers to a class of techniques that reduce high-dimensional data

into a low-dimensional subspace while preserving object-class relationships from the high-

dimensional space [15]. Thus two objects that are close to one another in the original feature

space will be mapped to adjacent locations in the low-dimensional subspace. The projec-

tion of the image-derived features into a reduced dimensional space via Graph Embedding

allowed for the visualization of a smooth manifold which revealed a continuum between low,

intermediate, and high levels of LI.
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1.3 Organization of the Thesis

The rest of the thesis work is organized as follows. In Chapter 2 previous related work in

CADx for BC histopathology is discussed. The details of the methodology are explained

in Chapter 3 and a variety of methods for evaluating the efficacy of the CADx system are

outlined in Chapter 4. In Chapter 5 quantitative and qualitative results from a cohort of

41 H & E stained, HER2+ BC histopathology images are presented. Concluding remarks

and directions for future research are presented in Chapter 6.
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Chapter 2

Related Work in Computer-Aided Diagnosis for Digitized

Histopathology

Although there has been no significant research into the automated and computerized char-

acterization of LI in H & E stained histopathology imagery, a number of computer-aided

diagnosis (CADx) tools have previously been developed for the analysis of BC histopathol-

ogy.

CADx refers to the quantitative, computerized analysis of biomedical data to assist a

physician in characterizing a patient’s malignancy. The majority of automated image analy-

sis systems for BC have been limited to computer-aided detection techniques for radiological

studies [16, 17]. More recently, researchers [18, 19, 20, 21, 22, 23, 11] have begun to develop

computer-aided diagnosis (CADx) schemes for the analysis of digitized BC histopathol-

ogy; however, their work has mostly focused on either finding suspicious regions of interest

(ROI) [18, 21] or has attempted to determine cancer grade from manually isolated ROIs

[19, 20, 11]. The methods for both applications use image-based features to discriminate

between 2 classes: either normal and benign regions or low and high grade ROIs. Specif-

ically, the size and shape of cancer nuclei have been shown to distinguish low and high

grade histology images [18, 11]. Textural features and filter banks have also been employed

[18, 19, 20, 21, 23] to model the phenotypic appearance of BC histopathology.
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2.1 Automated Nuclear Detection

An important prerequisite for extracting histopathological image attributes to model BC

appearance is the ability to automatically detect and segment histological structures. Conse-

quently the ability of an image analysis system to grade the extent of LI in a BC histopathol-

ogy image is dependent on the algorithm’s ability to automatically detect lymphocytes. Au-

tomated LI detection, however, is a non-trivial task complicated by the intrinsic similarity

in appearance of BC nuclei and lymphocyte nuclei on H & E stained breast biopsy samples

(Figure 2.1(a)). In addition, even within a particular slide, the morphology of BC nuclei is

highly heterogeneous due to variations in cancer grade and mitotic phase (Figures 2.1(b),

(c)) [24]. Biological differences such as the presence of fat deposits (Figure 2.1(d)) can

confound algorithms that rely on boundary detection alone. Preparation issues such as

“cutting artifact” (Figure 2.1(e)) and digitization misalignment (Figure 2.1(f)) lead to sim-

ilar problems, but are more difficult to predict and correct for since they are unrelated to

the underlying biology.

While several researchers have been developing algorithms for detection of nuclei [25,

26, 27, 20, 28, 29, 30, 31] in digitized histopathology, there have been no significant at-

tempts to automatically detect LI in BC histopathology. Some popular approaches to

automated nuclear detection are based on adaptive thresholding [25, 20] and fuzzy c-means

clustering [27, 29]. These techniques rely on differences in staining to distinguish nuclei

from surrounding tissue. However, they are not appropriate for the task of LI detection

due to the similarity in appearance between BC and lymphocyte nuclei (Figure 2.1(a)).

Techniques such as active contours [26, 30, 31] have utilized gradient (edge) information

to automatically isolate nuclei in histological images. These methods, however, might be

limited in their ability to handle variations in the appearance of BC nuclei (Figures 2.1(b),
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: There are several challenges in automated LI detection including (a) the sim-
ilarity in appearance between a cancer cell nucleus (circled in green) and a lymphocyte
nucleus (circled in red). In general, lymphocyte nuclei are distinguished from cancer cell
nuclei by their smaller size, more circular shape, and a darker, homogeneous staining. Ad-
ditional challenges include variations in the appearance of (b), (c) BC nuclei within a single
histopathology slide, (d) the presence of fat among cancerous tissue, (e) histological fixing,
and (f) slide digitization artifacts.

(c)) and image acquisition artifacts (Figures 2.1(e), (f)). Some researchers have developed

hybrid techniques in order to improve nuclear detection and segmentation results. For ex-

ample, Glotsos et al. [30] used Support Vector Machine clustering to improve initialization

for active contour models. More recently, semi-automated probabilistic models have used

pixel-wise intensity information to detect cancer [28] and lymphocyte nuclei [32] in digitized

BC histopathology. Probabilistic models, however, are usually limited by the availability of

expert-annotated training data.
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2.2 Feature Extraction

The need to quantify the morphology and arrangement of histological structures has been

addressed in previous work. In [33], Sudbo et al. constructed graphs to model tissue

architecture in oral mucosa, whereby a graph is defined as a set of vertices (nuclei) with

corresponding edges connecting all nuclei. Similarly, Gunduz et al. [22] explored automated

cancer diagnosis in brain cancer by using hierarchical graphs. Doyle et al. [12, 11] have

previously shown the importance of using graphs to describe the spatial arrangement of

nuclei in distinguishing cancer grade in both prostate cancer and BC histopathology. In [11],

quantitative features derived from graphs (Voronoi Diagram, Delaunay Triangulation, and

Minimum Spanning Tree) constructed using BC nuclei as vertices were used to successfully

stratify low, intermediate, and high BC grade on digitized histopathology.

Textural features have also been applied successfully to specific applications in comput-

erized histopathology analysis. Traditional methods such as first order gray-level, second-

order Haralick statistics [34], and Gabor filter features have been used to identify cancerous

regions in both breast [11] and prostate cancer [12] histopathology. Other textural features

based on wavelets have been used in the computerized analysis of BC histopathology [19].

Additionally, texton signatures [35] have been used successfully in applications related to

content-based image retrieval [36] and computer-aided classification [37] of digitized cancer

histopathology.

2.3 Non-linear Dimensionality Reduction

The digital pathology field is known to generate large amounts of data; hence, dimensionality

reduction (DR) methods can be used to distill the most relevant components of the data
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and make further analysis more feasible. Linear DR methods such as principal component

analysis assume linear relationships between all data in the high-dimensional space. Since it

has previously been demonstrated that biomedical data is non-linear in nature [15], the use

of linear DR methods may produce suboptimal results. Conversely, non-linear DR methods

such as Graph Embedding [13], Locally Linear Embedding [38], and Isometric Mapping [39]

embed the data into a low-dimensional embedding while attempting to preserve the global

structure of the data manifold by maintaining geodesic distances between objects. The role

of non-linear dimensionality reduction as a visualization tool for the analysis of digitized

histopathology has previously been demonstrated by Doyle et al. in both prostate cancer

grading [12] and breast cancer grading [11] tasks.
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Chapter 3

Methodology

3.1 Notation

A dataset Z = {C1, C2, . . . , CM} is defined as a set of M images. An image scene C ∈ Z

is defined as C = (C, g), where C is a 2D set of pixels c ∈ C and g is the associated

luminance function from the CIE-Lab color space [40]. The CIE-Lab color space is used in

this work because it has the advantage of being more perceptually uniform and more robust

to variations in staining and digitization than RGB space (Figure 2.1(a)) [40, 21]. A list of

symbols and notation commonly used in this thesis is shown in Table 3.1.

3.2 Aim 1: Automated Detection of Lymphocytic Infiltration

Beginning with a set of N candidate lymphocyte nuclear centers N = {n1, n2, . . . , nN}, a

set of L finalized lymphocyte nuclei is identified with centers given by O = {o1, o2, . . . , oL},

such that O ⊆ N. The following sections detail the region-growing, Maximum a Poste-

riori (MAP) estimation, and Markov Random Field (MRF) algorithms that comprise the

lymphocyte detection module of the CADx system (Figure 3.1).
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Symbol Description

Z = {C1, C2, . . . , CM} HER2+ BC histopathology dataset comprising M digitized im-
ages

C = (C, g) Image scene defined by a set of pixels (C) and luminance func-
tion (g)

N = {n1, n2, . . . , nN} N candidate lymphocyte nuclei centers in image scene C

R = {r1, r2, . . . , rN} N candidate regions grown from N

O = {o1, o2, . . . , oL} L finalized lymphocyte nuclei centers in image scene C, where
O ⊆ N

R Set of pixels representing lymphocyte nucleus region S∗
CR

Xr ∈ {ωb, ωℓ} Random variable denoting class BC (ωb) or lymphocyte (ωℓ)
nucleus for each region r ∈ R

Yr = [Ar, σr]
T ∈ R

+2 Random variable denoting features square root of area (A) and
std. dev. intensity (σ) for each region r ∈ R

xr, yr Specific instances of Xr and Yr

x,y Sets of xr,∀r ∈ R and yr,∀r ∈ R

G = {O,E,W} Graph with vertex-set O, edge-set E, and weights W

F(C) Architectural feature set for image scene C

F′(C) Low-dimensional embedding of architectural feature set for im-
age scene C

Y(C) ∈ {+1,−1} True label for image scene C as determined by expert pathologist,
such that +1 represents high LI and −1 represents low LI.

Table 3.1: A list of key notation used in this thesis.

3.2.1 Candidate Lymphocyte Detection via Region-Growing

First, candidate image locations that could represent centers of lymphocytic nuclei are

identified. The region-growing algorithm exploits the fact that lymphocyte nuclei in the lu-

minance channel are identified as continuous, circular regions of low intensity circumscribed

by sharp, well-defined boundaries (Figure 2.1). The image scene C is convolved with a Gaus-

sian (smoothing) kernel at multiple scales σG ∈ {6, 7, 8} µm to account for variations in

lymphocyte size. After convolution at each scale, valleys (i.e. the darkest pixels) are found

on the smoothed image based on local differences in luminance. These valleys define a

set of seed points N = {n1, n2, . . . , nN} that represent candidate lymphocyte centers on

the original scene C. Each n ∈ N is grown into a corresponding region r ∈ R using the
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Figure 3.1: A flowchart illustrating the main steps in the automated lymphocyte detection
scheme.

4-step procedure described below. Additional details on the region-growing algorithm can

be found in [8].

Step 1: A set of current pixels SCR = {n} is initialized as shown in Figure 3.2(a). The

current boundary SCB is defined as the set of 8-connected pixels surrounding SCR. A square

bounding box SBB containing all pixels within a 12σG × 12σG neighborhood around n is

then constructed.

Step 2: The pixel c ∈ SCB with the lowest intensity in the current boundary is identified.

Pixel c is removed from SCB and added to SCR. The current boundary SCB is updated to

include every pixel d ∈ SBB that is an 8-connected neighbor of c and d /∈ SCR. A set of

internal boundary pixels SIB ⊂ SCR (Figures 3.2(b), (c)) is defined as all pixels in SCR that

are 8-connected to any pixel in SCB.

Step 3: gIB and gCB are computed as the mean intensity of pixels in SIB and SCB,

respectively. The boundary strength is computed at each iteration as gIB − gCB.

Step 4: Steps 2 and 3 are iterated until the current region SCR tries to add a pixel outside

the bounding box SBB. The optimal lymphocyte region S∗
CR is identified at the iteration
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for which the boundary strength gIB − gCB is maximum (Figures 3.4(b), (f)).

Since the region-growing procedure is repeated with seed points from a variety of smooth-

ing scales σG ∈ {6, 7, 8} µm, overlapping regions are resolved by discarding the region with

the lower boundary strength. For the sake of convenience the symbol R ≡ S∗
CR will be used

through the rest of this thesis.

(a) (b)

(c)

Figure 3.2: Schematic illustrating the iterative growth of a region r. After initialization of
the current region SCR (Figure 3.2(a)), current boundary SCB, and bounding box SBB, new
pixels are added iteratively (Figure 3.2(b)). When a new pixel (outlined in white) is added
to SCR, the boundaries SCB and SIB are adjusted accordingly (Figure 3.2(c)).

3.2.2 Bayesian Modeling of Lymphocytic Infiltration via Maximum a

Posteriori Estimation

The initial lymphocyte detection is refined by incorporating domain knowledge regarding

lymphocyte size, luminance, and spatial proximity. Each r ∈ R has two associated random

variables: Xr ∈ Λ ≡ {ωb, ωℓ} indicating its classification as either a breast cancer (ωb) or
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lymphocyte (ωℓ) nucleus and Yr ≡ [Ar, σr]
T ∈ R

+2 denoting the two observed features

Ar =
√

|R|, (3.1)

σr =

√
1

|R|

∑

c∈R

(g(c) − g)2, (3.2)

where Ar is the square root of nuclear area (Equation 3.1), σr is the standard deviation

of luminance in the nuclear region (Equation 3.2), |R| is the cardinality of R, and g =

1

|R|

∑
c∈R g(c) is the average pixel intensity of R. The choice of the two features (Ar and

σr) is motivated by the fact that (a) BC nuclei are typically larger than lymphocyte nuclei

and (b) BC and lymphocyte nuclei are significantly different in terms of the homogeneity of

their luminance values. Specific instances of the random variables Xr and Yr are denoted

by xr ∈ Λ and yr = [Ar, σr]
T ∈ R

+2, respectively. The random variables are defined

collectively for all r ∈ R as X = {X1,X2, . . . ,XN} and Y = {Y1, Y2, . . . , YN} with state

spaces Ω = ΛN and R
+2×N , respectively. Instances of X and Y are denoted by variables

x = (x1, x2, . . . , xN ) ∈ Ω and y = (y1, y2, . . . , yN ) ∈ R
+2×N .

The labels X = x, given the feature vectors Y = y, are estimated using Maximum

a Posteriori (MAP) estimation [41], which advocates finding the x that maximizes the

posterior probability

p(x|y) =
p(y|x)p(x)

p(y)
∝ p(y|x)p(x), (3.3)

where p(y|x) is the likelihood term and p(x), p(y) are prior distributions for x and y respec-

tively. Since maximization of Equation 3.3 is only with respect to x, the prior distribution

p(y) is ignored.

Modeling Lymphocyte Features via Trained Probability Distributions

The likelihood term p(y|x) in Equation 3.3 is calculated from probability density functions

(PDFs), where x is provided by manual delineation of lymphocytes in a training set. Under
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Figure 3.3: Probability density functions (PDFs) estimated from empirical training data
and modeled via weighted sum of gamma distributions for (a), (c) ωℓ and (b), (d) ωb classes
for (a), (b) square root of area and (c), (d) variance in luminance of each r ∈ R. In each
distribution (a)-(d), the estimated parametric model is overlaid.

the assumption that y is independent and identically distributed, the likelihood term in

Equation 3.3 can be simplified such that

p(y|x) =
∏

r∈R

p(yr|xr). (3.4)

Each 2-dimensional probability density function (PDF) is modeled as the product of two

independent distributions: p(yr|xr) = F(Ar|xr)F(σr|xr). Thus four one-dimensional PDFs

F(Ar|ωb), F(Ar|ωℓ), F(σr|ωb), and F(σr|ωℓ) are required as shown in Figure 3.3. To reduce

local irregularities and create a smooth, continuous distribution, the one-dimensional PDFs
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: (a), (e) Luminance channels of two different HER2+ BC histopathology studies
and corresponding results for (b), (f) initial region-growing based lymphocyte detection,
(c), (g) preliminary Bayesian refinement showing detected BC nuclei in green and detected
lymphocyte nuclei in red, and (d), (h) final lymphocyte detection result after the MRF
pruning step.

are modeled by mixtures of Gamma distributions [42]

Γ(z; δ,φ, t) = δzt1−1 e−z/φ1

φt1
1 Γ(t1)

+ (1 − δ)zt2−1 e−z/φ2

φt2
2 Γ(t2)

, (3.5)

where z ∈ R
+, δ ∈ [0, 1] is the mixing parameter, t1, t2 > 0 are the shape parameters,

φ1φ2 > 0 are the scale parameters, and Γ is the Gamma function [42]. Thus Equation 3.3

can be estimated by calculating p(y|x) and tentative classes xr ∈ {ωb, ωℓ} can be assigned

to each r ∈ R (Figures 3.4(c), (g)).

Modeling Lymphocyte Proximity via Markov Random Fields

The prior distribution p(x) (Equation 3.3) is defined by a Markov Random Field (MRF).

The Markov property [9] states that

p(xr|x−r) = p(xr|xηr
), (3.6)
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where the neighborhood ηr is empirically assumed to contain all regions within a 30 µm

radius of r, x−r = {xs : s ∈ R, s 6= r}, and xηr
= {xs : s ∈ ηr}. The Iterated Conditional

Modes (ICM) algorithm [10], a deterministic relaxation procedure, is used to perform MAP

estimation (Equation 3.3) and assign a hard label xr ∈ {ωb, ωℓ} to each r ∈ R. Thus each

object is classified as either a BC or lymphocyte nucleus (Figures 3.4(d), (h)). The objects

labeled as BC nuclei are discarded, while centers of the L lymphocyte nuclei regions are

computed and stored as O = {o1, o2, . . . , oL}.

3.3 Aim 2: Architectural Feature Extraction

The complete, undirected graph G = (O,E,W), where O = {o1, o2, . . . , oL} is the set of

vertices corresponding to the set of lymphocyte nuclear centroids, E = {E1, E2, . . . , Em} is

the set of edges connecting the nuclear centroids such that {(oi, oj) ∈ E : ∀oi, oj ∈ O, i, j ∈

{1, 2, . . . , L}, i 6= j}, and W = {W1,W2, . . . ,Wm} is a set of weights proportional to the

length of each E ∈ E. To extract information about the arrangement of lymphocyte nuclei,

subgraphs are constructed representing the Voronoi Diagram GV , Delaunay Triangulation

GD, and Minimum Spanning Tree GMST (Figure 3.5). In addition, statistics describing the

number and density of nuclei are calculated directly from O.

3.3.1 Voronoi Diagram

The Voronoi graph GV = (O,EV ,WV) (Figures 3.5(b), (f)) is a spanning subgraph of G

defined as a set of polygons P = {P1, P2, . . . , PL} surrounding all nuclear centroids O

[33, 11]. Each pixel c ∈ C is linked with the nearest centroid o ∈ O (via Euclidean

distance) and added to the associated polygon P ∈ P. The mean, standard deviation,

minimum/maximum (min/max) ratio, and disorder (i.e. standard deviation divided by the
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mean) are calculated for the area, perimeter length, and chord length over all P, yielding a

set of 13 features (fV) for each scene C (Table 3.2).

3.3.2 Delaunay Triangulation

The Delaunay graph GD = (O,ED,WD) (Figures 3.5(c), (g)) is a spanning subgraph of

G and the dual graph of GV [11]. It is constructed such that if Pi, Pj ∈ P share a side,

where i, j ∈ {1, 2, . . . , L}, their nuclear centroids oi, oj ∈ O are connected by an edge

(oi, oj) ∈ ED. The mean, standard deviation, min/max ratio, and disorder are calculated

for the side length and area of all triangles in GD, yielding a set of 8 features (fD) for each

scene C (Table 3.2).

3.3.3 Minimum Spanning Tree

A spanning tree GS = (O,ES ,WS) refers to any spanning subgraph of G [11]. The total

weight ŴS for each subgraph is determined by summing all individual weights W ∈ WS .

The Minimum Spanning Tree GMST (Figures 3.5(d), (h)) is the spanning tree with the

lowest total weight such that GMST = arg minGS∈G

[
ŴS

]
. The mean, standard deviation,

min/max ratio, and disorder of the branch lengths in GMST yield a set of 4 features (fMST)

for each scene C (Table 3.2).

3.3.4 Nuclear Features

The global density L
|C| of lymphocyte nuclei is calculated for each scene C, where L is the

total number of detected lymphocytes and |C| represents the number of pixels (cardinality)

in C. For any nuclear centroid oi ∈ O, a corresponding nuclear neighborhood ηζ(oi) = {oj :

‖oi − oj‖2 < ζ, oj ∈ O, oj 6= oi} is defined, where ζ ∈ {10, 20, . . . , 50} and ‖ · ‖2 is the
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L2 norm. The mean, standard deviation, and disorder of ηζ(oi),∀oi ∈ O are calculated.

Additionally the minimum radius ζ∗ is found such that |ηζ∗(oi)| ∈ {3, 5, 7} and the mean,

standard deviation, and disorder are calculated over all oi ∈ O. A total of 25 nuclear

features (fNF) are extracted for each scene C (Table 3.2).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Two different HER2+ breast cancer histopathology images with (a) high and (b)
low levels of LI. Figures 3.5((b), (f)) show the corresponding Voronoi Diagrams constructed
using the automatically detected lymphocyte centers as vertices of the graph. Corresponding
Delaunay Triangulation and Minimum Spanning Tree graphs are shown in Figures 3.5((c),
(g)) and 3.5((d), (h)), respectively.

3.4 Aim 3: Non-linear Dimensionality Reduction via Graph Embedding

Graph Embedding (GE) is employed to non-linearly transform the high-dimensional set

of image features into a low-dimensional embedding while preserving relative distances

between images from the original feature space [11]. For each scene C, a 50-dimensional

image feature set is defined as the superset F = {fV , fD, fMST, fNF} containing all features

derived from the Voronoi Diagram, Delaunay Triangulation, Minimum Spanning Tree, and
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Feature Set Description No. of features

fV

Total area of all polygons

13
Polygon area: mean, std dev., min/max ratio, dis-
order
Polygon perimeter: mean, std dev., min/max ra-
tio, disorder
Polygon chord length: mean, std dev., min/max
ratio, disorder

fD
Triangle side length: mean, std dev., min/max ra-
tio, disorder

8

Triangle area: mean, std dev., min/max ratio, dis-
order

fMST Edge length: mean, std dev., min/max ratio, dis-
order

4

fNF

Density of nuclei
25Distance to {3, 5, 7} nearest nuclei: mean, std dev.,

disorder
Nuclei in ζ ∈ {10, 20, . . . , 50} pixel radius: mean,
std dev., disorder

Table 3.2: A breakdown of the 50 architectural features, comprising 25 graph-based and 25
nuclear attributes.

nuclear statistics. Given histopathology images Ca and Cb with corresponding image feature

sets F(Ca) and F(Cb), where a, b ∈ {1, 2, . . . ,M}, a M×M confusion matrix WF(a, b) =

exp(−‖F(Ca) − F(Cb)‖2) ∈ R
M×M is constructed. The optimal embedding vector F′ is

obtained from the maximization of the following function,

E(F′) = 2(M− 1) · trace

[
F′T(A−WF)F′

F′TAF′

]
, (3.7)

where A is a diagonal matrix defined ∀a ∈ {1, 2, . . . ,M} as A(a, a) =
∑

b [WF(a, b)]. The

lower-dimensional embedding space is defined by the Eigen vectors corresponding to the β

smallest Eigen values of (A − WF)F′ = λAF′. The matrix F′(Z) ∈ R
M×β of the first β

Eigen vectors is constructed such that F′(Z) = {F′(C1),F
′(C2), . . . ,F

′(CM)}.
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Chapter 4

Evaluation Methods

4.1 Quantitative Evaluation of Automated LI Detection via Hausdorff

Distance

The automated lymphocyte detection algorithm is evaluated by the Hausdorff distance [43],

a similarity measure used to compare the fidelity of automated detection against the “gold

standard” obtained by manual inspection. For each image scene C, lymphocyte centroids

from the automated (v ∈ Oauto) and manual (u ∈ Oman) detection schemes are identified.

The centroid locations in Oman were estimated exhaustively by an expert pathologist who

manually annotated the individual lymphocyte nuclei in each scene. The partial, directed

Hausdorff distance is calculated for Oauto with respect to Oman as,

ΦH(Oauto,Oman) = min
u∈Oman

‖v − u‖2,∀v ∈ Oauto. (4.1)

4.2 Quantitative Evaluation of Architectural Features via Support Vector

Machine Classifier

The SVM classifier [44] is employed to evaluate the ability of the image descriptors to dis-

criminate between high and low levels of LI in histopathology images. The SVM classifier

is constructed by using a Gaussian kernel function to project training data Ztra ⊂ Z onto



23

a higher-dimensional space. This high-dimensional representation allows the SVM to con-

struct a hyperplane to separate the two classes (i.e. high and low LI). The classifier is

then evaluated by projecting testing data Ztes ⊂ Z into the same space and recording the

locations of the newly embedded samples with respect to the hyperplane.

Given BC histopathology images Ca, Cb ∈ Ztra with corresponding low-dimensional em-

bedding vectors F′(Ca) and F′(Cb), a, b ∈ {1, 2, . . . ,M}, respectively, the Gaussian kernel

Π(F′(Ca),F
′(Cb)) = exp(−ǫ (‖F′(Ca) − F′(Cb)‖2)

2), where ǫ is a scaling factor that normal-

izes F′(Ca) and F′(Cb), is used to project the data into the high-dimensional SVM space

[28]. The general form of the SVM is given as,

Θ(Ca) =

τ∑

γ=1

ξγY(Cγ)Π(F′(Ca),F
′(Cγ)) + b, (4.2)

where γ ∈ {1, 2, . . . , τ} represents the τ marginal training samples (i.e. support vectors),

b is the hyperplane bias estimated for Ztra, and ξγ is the model parameter determined

by maximizing the objective function [44, 15]. The true image label Y(Cb) ∈ {+1,−1}

represents a high or low level of LI as determined by an expert pathologist. The output of

the SVM classifier, Θ(Ca), represents the distance from image scene Ca to the hyperplane. A

testing image scene Ca ∈ Ztes is determined to be classified correctly if Y(Ca) = sign [Θ(Ca)].

The Gaussian kernel has recently become popular for classification in a number of

biomedical image processing applications [28, 45]. This CADx algorithm uses the Gaus-

sian kernel instead of the traditional linear kernel [15] because its non-linear projection

helps create additional separation between the data points in the high-dimensional SVM

space and hence, simplifies the classification task.

One problem with the SVM classifier is that it is susceptible to bias from the arbitrary

selection of training and testing samples [41]. A k-fold cross-validation scheme [41] is used

to mitigate this bias by selecting training samples in a randomized manner and running the
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SVM classifier multiple times. First Z is divided randomly into k subsets, while ensuring

that images from each class Y ∈ {+1,−1}, are proportionally represented in each of the k

subsets. All samples from k−1 subsets are pooled together to obtain Ztra and the remaining

subset is used as Ztes. For each of the k iterations, an SVM classifier is trained with Ztra

and evaluated on Ztes; a new Ztes and Ztra being chosen at each iteration so that all samples

are evaluated. Using a value of k = 3, the entire cross-validation algorithm is repeated over

100 trials and the resulting mean (µACC) and standard deviation (σACC) of the classification

accuracy obtained. Classification accuracy is defined as the ratio between the number of

correctly classified images and the total number of images in the dataset.

4.3 Formulation of Textural Features

To verify the significance of the architectural features (Section 3.3) to the performance of

CADx system, two different sets of texture signatures (Varma-Zisserman textons [35] and

global textures [11]) are considered in this work.

4.3.1 Varma-Zisserman Texton-Based Classifier

The Varma-Zisserman (VZ) texton-based features [35] used to distinguish histopathology

images with high and low LI extent are calculated as described in the steps below. The

reader is referred to [35] for additional details regarding VZ textons.

Step 1: All Ctra ∈ Ztra are first convolved with the Maximum Response 8 (MR8) filter

bank [35], which contains edge and bar filters at several orientations and scales. An 8-

dimensional MR8 feature vector ftext(c) is defined for each c ∈ C,∀Ctra ∈ Ztra.

Step 2: Feature vectors ftext of all c ∈ C,∀Ctra ∈ Ztra are clustered using the K-means

algorithm [41] and the K cluster centers {c∗1, c
∗
2, . . . , c

∗
K} are defined as textons.
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Step 3: For each c ∈ Ctra, the closest corresponding texton c∗j , j ∈ {1, 2, . . . ,K} is iden-

tified based on arg minj ‖ftext(c) − ftext(c
∗
j )‖2. A texton histogram is constructed for each

Ctra ∈ Ztra as H(Ctra) = (H, h) where H is a 1D grid of K bins and h(j) represents the

number of c ∈ Ctra identified as being closer to c∗j than any other texton.

Step 4: For each novel image scene Ctes ∈ Ztes, a corresponding texton histogram H(Ctes)

is computed. The training image scene C∗
tra ∈ Ztra that is most similar to Ctes is identified

based on

C∗
tra = argmin

Ctra∈Ztra

[
χ2(H(Ctra),H(Ctes))

]
, (4.3)

where χ2(H(Ctra),H(Ctes)) is the Chi-squared distance [46] between the histograms of Ctra

and Ctes. If Y(Ctes) = Y(C∗
tra), Ctes is said to have been correctly classified; otherwise

incorrectly classified. Additional details on the VZ texton approach can be found in [35].

The mean µACC and standard deviation σACC of the classification accuracy of the VZ-

texton approach are calculated over 100 randomized 3-fold cross-validation trials (Table

5.1). These experiments are repeated for each K ∈ {2, 3, 5, 10}.

4.3.2 Global Texture Features

Three types of global texture features are extracted in this work: (1) first order gray-level

features, (2) second order Haralick statistics, and (3) Gabor filter features. In each image,

these signatures are calculated for each channel in the HSI (hue, saturation, intensity) color

space at three window sizes (3x3, 5x5, and 7x7 pixels) [12, 11].

First order gray-level features: First order gray-level features are calculated directly from

the HSI values in each C [12]. The mean, standard deviation, minimum-to-maximum ratio

(min/max), and mode are calculated over all c ∈ C to yield a total of 540 features for each

image scene C [11].
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Second order Haralick statistics: Second-order co-occurrence texture features are de-

scribed by the 16 Haralick statistics presented in [34]. For each image scene C, a co-

occurrence matrix is generated and 16 Haralick scenes are calculated. The average, stan-

dard deviation, min/max ratio, and mode of the values in each Haralick scene are calculated

to yield 576 second order features for each C [11].

Gabor filter features: Steerable Gabor filters respond to a variety of textural differences

in an image. A unique filter kernel G is defined as shown in [12]. A total of 64 Gabor filter

responses are generated by varying the orientation parameter over {0, π
8
, 2π

8
, . . . , 7π

8
} and

scale parameter over {0, 1, . . . , 7}. The average, standard deviation, min/max ratio, and

mode over all c ∈ C are calculated to yield a total of 2,304 Gabor feature values for each

C [11].
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Chapter 5

Results and Discussion

5.1 Dataset

A total of 41 H & E stained breast biopsy samples from 12 patients at The Cancer Institute

of New Jersey (CINJ) were obtained and scanned into a computer using a high resolution

whole slide scanner at 20x optical magnification (0.33 µm spatial resolution). The size of

each image falls within 600 ≤ UX ≤ 700 and 500 ≤ UY ≤ 600, where UX and UY are

the width and height, respectively, in pixels. These images were separated into 3 classes

by a BC oncologist based on LI extent. The dataset comprises 22 low, 10 medium, and 9

high LI samples. For the purpose of quantitative classification (as described in Section 4.2),

the oncologist separated the images into two classes comprising 22 low LI and 19 high LI

samples, respectively.

5.2 Performance of Automated LI Detection

Over a total of |Oauto| = 42, 000 automatically detected lymphocyte nuclei for all C ∈ Z, the

median partial Hausdorff distance was determined to be 3.70 µm (Figure 5.1). Considering

an average lymphocyte diameter of approximately 7 µm, these results verify the ability of

the algorithm to accurately detect LI in HER2+ BC histopathology imagery. Furthermore,

the validity of the detection scheme is implicitly borne out in the quantitative classification

results discussed in Section 5.3 and Table 5.1.
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Figure 5.1: A histogram of the partial, directed Hausdorff distances ΦH(Oauto,Oman)
between automatically and manually detected lymphocyte nuclei in all 41 HER2+ BC
histopathology images. The red dashed line denotes the median of the errors of the auto-
mated lymphocyte detection scheme.

5.3 Performance of Architectural Features

Table 5.1 shows the classification accuracies of the 3-dimensional reduced feature set F′(Z)

resulting from both automated and manual LI detection via the SVM classifier. Note that

the classification accuracies and variances obtained from the automated detection (90.41%±

2, 97%) and manual detection (94.59% ± 1.72%) schemes are comparable, reflecting the

efficacy of the LI detection algorithm. Table 5.1 also reveals that the original architectural

features F(Z) (via automated LI detection) achieve a classification accuracy of 89.71% ±

2.83%, suggesting in turn that GE does not lead to any significant loss in class discriminatory
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information.

Feature Set Classification Accuracy (%)

F′(Z) (automated detection) 90.41 ± 2.97

F′(Z) (manual detection) 94.59 ± 1.72

F(Z) (automated detection) 89.71 ± 2.83

F(Z) (manual detection) 99.59 ± 0.92

VZ (K = 2) 48.17 ± 6.08

VZ (K = 3) 60.20 ± 5.66

VZ (K = 5) 58.63 ± 7.17

VZ (K = 10) 56.17 ± 7.63

Gray-level 50.22 ± 6.22

Haralick 50.88 ± 7.62

Gabor filter 54.22 ± 6.48

Table 5.1: Results of SVM classification accuracy (µACC, σACC) for 41 BC histopathology
images using 100 3-fold cross-validation trials for automated and manual lymphocyte de-
tection with the architectural (both reduced F′ and unreduced F), VZ texton classifier, and
global texture features.

In order to determine the optimal dimensionality for performing classification, the archi-

tectural feature set F(Z) was reduced to various dimensionalities {2, 3, . . . , 10} via Graph

Embedding. For each dimensionality, the corresponding µACC and error bars (σACC) over

100 trials of randomized 3-fold cross-validation were calculated (Figure 5.2). Figure 5.2

suggests that classification accuracy is stable at lower dimensionality and drops off slightly

at higher dimensionality.

5.4 Performance of Textural Features

The classification results (Table 5.1) show that the Varma-Zisserman (VZ) textural fea-

tures did not perform as well as the architectural features in distinguishing between BC

histopathology samples with high and low levels of LI, with a maximum classification ac-

curacy of 60.20% ± 5.66%. Similarly, the best performance by the global texture features

resulted in a classification accuracy of 54.22% ± 6.48%. These result suggests that texture
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Figure 5.2: The mean (µACC) classification accuracy over 100 trials of 3-fold cross-validation
is shown for different dimensionalities {2, . . . , 10} obtained via Graph Embedding. The error
bars represent standard deviation (σACC) of the classification accuracy.

descriptors are unable to quantitatively describe phenotypic changes due to variation in LI

extent. Furthermore, both natural variations in histology and imperfections arising from

slide preparation (Figure 2.1) may have adversely affected the performance of textural fea-

tures, since the dataset was not screened to exclude such samples. Conversely, architectural

features remain unaffected by these issues because they exploit intrinsic properties such

as lymphocyte size, shape, intensity, and arrangement to classify the BC histopathology

images.

5.5 Low-Dimensional Manifold Visualization

Apart from helping to deal with the curse of dimensionality problem for classification, an-

other important application of GE is in its ability to help visualize the underlying structure

of the data. Figure 5.3 shows the reduced dimensional representation (β = 3 dimensions)

of the high dimensional architectural and VZ-texture feature spaces. Note that the 3 axes
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in each of Figures 5.3(a)-(d) reflect the principal Eigen vectors obtained embedding the

data via GE. Reducing the architectural feature set to 3 dimensions via Graph Embedding

reveals the progression from low to medium to high degrees of LI on a smooth, continuous

manifold (Figures 5.3(a), (b)). Conversely, the VZ features (Figure 5.3(c)) and global tex-

ture features (Figure 5.3(d)) neither produce a continuous manifold, nor appear to stratify

samples based on LI extent. The plots in Figure 5.3 further validate the quantitative clas-

sification results shown in Table 5.1 and reflect the efficacy of architectural image features

in stratifying extent of LI.
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Low infiltration
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(a) (b)
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Figure 5.3: All 41 images plotted in the Graph Embedding (GE) reduced 3-dimensional
Eigen space for the architectural feature set derived from (a) manual and (b) automated
lymphocyte detection. Embeddings of the (c) Varma-Zisserman features with K = 3 and
(d) Gabor filter features are also shown. The labels denote samples with low LI (blue cir-
cles), medium LI, (green squares), and high LI (red triangles) as determined by an expert
oncologist. Note that GE with the architectural features reveals the presence of an under-
lying manifold structure showing a smooth continuum of BC samples with low, medium,
and high levels of LI.
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Chapter 6

Concluding Remarks and Directions for Future Research

The primary objective of this thesis is to develop an automated CADx system for detecting

and stratifying the extent of LI in digitized BC histopathology. The three specific aims

addressed are the ability to:� Aim 1: Automatically detect LI in digitized BC histopathology images,� Aim 2: Extract image-based features to quantify LI extent, and� Aim 3: Visualize the stratification of LI extent on a low-dimensional data manifold.

The CADx system has demonstrated the ability to isolate LI from the surrounding BC

nuclei, stroma, and baseline level of lymphocytes using a region-growing algorithm followed

by an MRF-based refinement. Additionally, the architectural (graph-based and nuclear)

features were found to be more successful than textural (VZ) features in distinguishing

LI extent. Furthermore, non-linearly reducing the high-dimensional architectural image

feature space reveals the presence of a smooth, continuous manifold on which BC samples

are arranged with progressively increasing LI extent. While applying Graph Embedding to

the high-dimensional feature space allowed for the visualization of a smooth data manifold,

it did not adversely affect the classification accuracy of the SVM classifier. A similar

manifold was not reproducible with the VZ features, reflecting that the architectural and

morphological features accurately captured class-discriminatory information regarding the
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spatial extent of LI. The LI classification results were comparable for automated and manual

detection, reflecting the robustness of automated LI detection algorithm.

In future research, the work presented in this thesis can be extended in two major

directions. First, due to the clinical importance of LI in HER2+ BC, the ability of this CADx

algorithm to stratify LI extent into low, medium, and high grades may have translational

significance, whereby a prognostic test could be developed for predicting disease outcome

and patient survival. Second, since the methods presented in this thesis are generalizable,

the CADx system could be developed into a framework for the characterization of LI extent

in other tissues and diseases.
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