
PRACTICAL ANALYSIS OF FRAMEWORK-INTENSIVE

APPLICATIONS

by

BRUNO DUFOUR

A DISSERTATION SUBMITTED TO THE

GRADUATE SCHOOL – NEW BRUNSWICK

RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN COMPUTER SCIENCE

WRITTEN UNDER THE DIRECTION OF

BARBARA G. RYDER

AND APPROVED BY

New Brunswick, New Jersey

January 2010

ABSTRACT OF THE DISSERTATION

Practical analysis of framework-intensive applications

by BRUNO DUFOUR

Dissertation director:

Barbara G. Ryder

Many modern applications (e.g., web applications) are composed of a relatively small

amount of application code that calls a large number of third-party libraries and frame-

works. Such framework-intensive systems typically exhibit different characteristics from

traditional applications. Current tools and techniques are often inadequate in analyzing

applications of such scale and complexity. Approaches based on static analysis suffer

problems of insufficient scalability and/or insufficient precision. Purely dynamic analy-

ses, introduce too much execution overhead, especially for production systems, or are too

limited in the information gathered.

The main contribution of this thesis is a new analysis paradigm, blended analysis, com-

bines elements of static and dynamic analyses in order to enable analyses of framework-

intensive applications that achieve good precision at a practical cost. This is accomplished

by narrowing the focus of a static analysis to a set of executions of interest identified us-

ing a lightweight dynamic analysis. We also present an optimization technique that further

reduces the amount of code to be analyzed by removing infeasible basic blocks, and leads

to significant increases in scalability and precision of the analysis. We contribute Elude, a

ii

publicly available framework for blended analysis of Java programs.

We demonstrate the usefuless of blended analysis in practice by applying it to object

churn, a common problem in framework-intensive applications caused by the excessive

usage of temporary objects. We present a set of new metrics to characterize the usage

and complexity of temporaries. We use an instantiation of the blended analysis paradigm,

blended escape analysis, to compute these metrics for a set of real framework-intensive

applications. Using these results we perform a detailed analysis of temporaries in these

applications. We also use our technique to identify a set of problematic scenarios in a

commercial application.

iii

Acknowledgments

I would like to thank my advisor, Barbara Ryder, for her constant encouragement

throughout my studies at Rutgers, her guidance and her commitment to providing a great

learning environment. I am also grateful to Gary Sevitsky for sharing his invaluable expe-

rience, for his stimulating discussions, and his constant dedication to our collaboration.

I extend my thanks to the members of Intelligent Application Analysis group at the

IBM T.J. Watson Research Center, in particular Nick Mitchell and Edith Schonberg for

their suggestions and their support, as well as other IBM Researchers who volunteered

their time and ideas for this project: Marco Pistoia, Omer Tripp, Julian Dolby and Stephen

J. Fink.

I would also like to thank Jan Wloka for his invaluable input and his friendship, as

well as the other Prolangs members at Rutgers and Virginia Tech: Weilei Zhang, Chen Fu,

Xiaoxia Ren, Ophelia Chesley, Marc Fisher II, as well as Shrutarshi Basu and Luke Marrs

for being the first external users of Elude.

This research was funded in part by IBM Research.

I would like to thank my family and friends to whom I am indebted for their much

appreciated support and encouragements. A very special thanks to my fiancée, Arzoo, for

her unconditional love, support, encouragement and patience.

iv

Contents

Abstract ii

Acknowledgments iv

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Thesis organization . 6

2 Related work 7

2.1 Studies of framework-intensive systems 7

2.2 Combinations of static and dynamic analyses 11

3 Blended analysis 16

v

3.1 Paradigm . 17

3.2 Safety . 18

3.3 Calling structure . 19

3.4 Dynamic language features . 24

3.5 Basic block pruning . 25

3.6 Elude . 26

3.6.1 Dynamic analysis . 26

3.6.2 Static analysis . 28

4 Blended escape analysis 31

4.1 Motivation . 31

4.2 Background . 34

4.2.1 Set-based algorithms . 35

4.2.2 Dataflow algorithms . 35

4.2.3 Example of escape analysis . 36

4.3 Blended escape analysis . 40

4.3.1 Postprocessing connection graphs 40

5 Metrics 45

5.1 Measurement goals . 45

5.2 Design factors . 46

5.2.1 Comparability . 46

5.2.2 Object abstraction . 47

5.2.3 Data structure abstraction . 47

vi

5.3 Sources of imprecision . 48

5.4 Metric definitions . 50

5.4.1 Pruning effects . 50

5.4.2 Disposition . 51

5.4.3 Capturing depth . 52

5.4.4 Concentration . 53

5.4.5 Complexity of data structures . 54

6 Empirical evaluation 57

6.1 Experimental setup . 57

6.1.1 Trade 6 . 58

6.1.2 Eclipse JDT Compiler . 60

6.1.3 Jazz server . 60

6.1.4 Commercial document management server (CDMS) 61

6.2 Empirical Results and Interpretation . 61

6.2.1 Pruning effects . 61

6.2.2 Disposition . 66

6.2.3 Capturing depth . 67

6.2.4 Concentration . 69

6.2.5 Complexity of data structures . 71

6.3 Performance understanding in CDMS . 77

7 Conclusions and future work 86

7.1 Blended analysis . 86

vii

7.2 Empirical evaluation . 87

7.3 Future work . 88

7.3.1 Automatic optimizations for the removal of object churn 88

7.3.2 Applying blended analysis to other problems in framework-intensive

applications . 89

7.3.3 Combinations of static and dynamic analyses 90

Bibliography 93

Curriculum Vita 98

viii

List of Figures

3.1 Comparison of safety property of various analysis paradigms 19

3.2 A simple command-line parser example 20

3.3 Calling structures for the ArgParser example 21

3.4 The Elude framework . 27

3.5 A Java model . 29

3.6 A parameterized model . 30

4.1 A simple example for escape analysis . 37

4.2 Call graph for the escape analysis example 38

4.3 Connection graphs for the escape analysis example 39

4.4 Example of reduced connection graph . 44

6.1 Pruned basic blocks . 62

6.2 Speedup due to basic block pruning . 63

6.3 Disposition improvement (by allocation sites) 65

6.4 Disposition breakdown (by object instances) 67

6.5 Capturing depth (by instances) . 68

6.6 Concentration results . 70

ix

6.7 Number of types in data structures . 73

6.8 Number of allocating methods per data structure 74

6.9 Number of merged abstract objects in data structures 75

6.10 Height of data structures . 76

6.11 Maximum capturing distance per data structure 77

6.12 Top capturing contexts, as identified by our analysis. Note that method

names that appear more than once correspond to different call paths leading

to that method (i.e., different calling contexts). 79

6.13 Reduced connection graph for isPropertyPresent 80

6.14 Interesting contexts rooted at isPropertyPresent 81

6.15 Reduced connection graph for String.toLowerCase 81

6.16 Reduced connection graph for hasConnectAccess 83

6.17 Interesting contexts rooted at hasConnectAccess 84

x

List of Tables

6.1 Benchmark characteristics . 59

6.2 Analysis times . 62

6.3 Top allocated types with instance counts in CDMS 78

xi

1

Chapter 1

Introduction

1.1 Motivation

The increasing complexity of tasks accomplished by software has led to the proliferation

of large framework-intensive applications. These applications are typically built by inte-

grating numerous layers of middleware, libraries and frameworks with a relatively small

amount of application code written by a developer. While it eases development effort, this

reliance on code reuse comes at a cost. Developers are usually unfamiliar with the complex

interactions between the various layers of libraries and frameworks used by their applica-

tions, and are therefore unaware of the impact of these libraries on their applications. As a

result, framework-intensive applications often exhibit problems that are difficult to identify

and eliminate. For example, one common performance bottleneck in framework-intensive

applications is object churn, that is the excessive creation of short-lived objects that are the

byproduct of some computation. Object churn can dramatically degrade the performance

of applications due to the combined cost of allocating, initializing and ultimately garbage

collecting temporaries. This problem is exacerbated by the fact that it is seldom localized

1.1. Motivation 2

in a few methods, but rather spans many layers of unfamiliar, complex framework code.

Identifying and eliminating such problems requires a precise understanding of the behavior

of an entire system. Tool support is therefore required to assist developers in improving the

overall quality of their software.

Framework-intensive systems are an unexplored domain for program analysis, differing

sharply in scale and structure from the usual compiler benchmarks currently used in anal-

ysis research. These applications are a challenge to existing analysis techniques. Purely

static analyses, accomplished through examination of code without execution, suffer prob-

lems of insufficient scalability and/or insufficient precision for answering behavioral ques-

tions for these systems. For instance, the common use of dynamic class loading and reflec-

tive mechanisms in Web applications forces static analyses to make worst-case assumptions

about the possible behavior of a program. Purely dynamic analyses, accomplished through

judiciously placed instrumentation in source code, bytecode or by probing the JVM run-

time system, introduce too much execution overhead, especially for production systems, or

are too limited in the information gathered. Limiting the amount of information collected

at runtime severely impacts the usefulness of the analysis. The main contribution of this

thesis is a new analysis paradigm, blended analysis, that avoids individual weaknesses of

pure static and dynamic analyses by combining them in new ways.

There are two main approaches for combining static and dynamic analysis techniques:

• Static analysis can be used to determine where dynamic analysis should be triggered

in an attempt to minimize the runtime overhead. There has been some work in the

literature exploring this alternative. The most common use of this strategy involves

1.2. Contributions 3

using a dynamic analysis to collect facts about a program that could not be deter-

mined statically.

• Dynamic analysis can be used to precisely capture the scope of a problem, and focus a

static analysis on the areas of interest based on one or more concrete executions of the

application. We call analyses that follow this alternative blended analyses because

they commonly rely on a close coupling of the individual analysis components. This

combination of static and dynamic analyses is relatively unexplored.

In both cases, feedback loops can be introduced between the static and dynamic analyses.

For example, the results of a blended analysis can be further refined by post-processing

them with additional dynamic information from a more precise representation of the dy-

namic calling structure.

The present dissertation develops the thesis that blended analysis enables a more pre-

cise and scalable analysis of framework-intensive applications at an acceptable cost, in

comparison to a purely static analysis (i.e., too imprecise) or a purely dynamic analysis

(i.e., too costly because sampling will not provide sufficient precision).

1.2 Contributions

The main goal of this work is to provide useful, detailed analysis results for systems whose

complexity and scale thwart automated analysis today. This thesis makes five main contri-

butions.

First, we define a new analysis paradigm for blending static and dynamic analyses to

achieve high precision at a practical (runtime) cost. Blended analysis is a tightly coupled

1.2. Contributions 4

combination of dynamic and static analyses, in which the dynamic analysis determines the

program region to which the static analysis will be applied. Blended analysis offers many

advantages compared to a purely static or dynamic analysis:

• It limits the scope of the static analysis to calling paths in the code that were exer-

cised at runtime, thus dramatically reducing the cost of a very precise static analysis.

Reducing the focus of the static analysis allows achievement of high precision over

an interesting portion of the program.

• It only requires a lightweight dynamic analysis, thus limiting the amount of over-

head and perturbation during execution. This is essential for analysis of real-world,

deployed applications, for which slowing down execution by more than a few percent

is unacceptable.

• It eliminates the problems of how to handle inherently dynamic features like dynamic

class loading and reflective method calls, as these can be captured by the dynamic

analysis.

Second, we present a novel optimization technique that uses lightweight dynamic infor-

mation (i.e., executed calls and object creations) to prove the infeasibility of basic blocks

in the executions to be analyzed. Such unexecuted basic blocks can then be ignored by the

static analysis. We show in Chapter 6 that this optimization results in significantly lower

analysis cost, improved scalability and increased precision.

Third, we provide Elude, a publicly available software framework for blended analy-

sis. This new tool can lower the barriers to further investigations into framework-intensive

applications by providing a flexible platform to implement new blended analyses. Elude

1.2. Contributions 5

consists of two components: a lightweight dynamic analysis tool as well as a static anal-

ysis engine. Elude leverages WALA1, a popular open-source static analysis infrastructure

for Java developed by IBM. A number of existing analyses are already implemented with

WALA; these analyses could easily be made blended using Elude, or used as building

blocks in new blended analyses.

Fourth, we provide an instantiation of the blended analysis paradigm in a blended es-

cape analysis. This analysis identifies temporary objects by computing bounds on their

effective lifetime (i.e., the period between the object’s creation and its last use during an

execution). The blended escape analysis is tailored to perform a detailed characterization

of the nature and usage of temporary objects in framework-intensive Java applications. It

demonstrates the usefulness of the blended analysis paradigm to study real problems such

as object churn in framework-intensive applications. The details of the analysis are dis-

cussed in Chapter 4.

Finally, we define a set of new metrics that quantify key properties related to the use of

temporary objects. These metrics are computed from the results of the blended escape anal-

ysis. By combining static and dynamic information, we define new data structure abstrac-

tion that supports a rich characterization of temporary data structures. We then use these

metrics to perform a detailed study of the temporaries in a set of representative benchmarks.

We present the result of our findings in Chapter 6.

1http://wala.sourceforge.net

http://wala.sourceforge.net

1.3. Thesis organization 6

1.3 Thesis organization

The remainder of this dissertation is organized as follows. We begin with a survey of the

related work in the next chapter. Chapter 3 presents the blended analysis paradigm and the

optimization technique in details. Chapter 4 discusses background information on escape

analysis, and then presents our blended escape analysis. Chapter 5 provides a description

of the metrics used for studying the characteristics of temporaries in framework-intensive

applications. We use these metrics in Chapter 6 to perform a detailed study of temporaries

in real benchmarks. Finally, Chapter 7 concludes this work, and suggests future directions

for research.

7

Chapter 2

Related work

Blended analysis is related to a large body of existing research. We therefore focus

our discussion of the related work on two major topics. In Section 2.1, we present work

that shares our goal to study framework-intensive applications. In Section 2.2, we survey

existing combinations of static and dynamic analyses.

2.1 Studies of framework-intensive systems

Previous analyses of framework-intensive applications used dynamic analysis to diagnose

and optimize performance problems and to aid in understanding the data structures used.

Ammons et. al. [ACGS04] built the dynamic analysis tool Bottlenecks to explore exe-

cution profiles to find performance bottlenecks. Bottlenecks supports examining call-tree

profiles in two ways: to find expensive call sequences and also to find call sequences which

are more expensive in one call-tree profile than in another. Experiments with Bottlenecks on

Trade 3, the SPECjAppServer2002 and XML, demonstrated the complexity of these frame-

works in terms of their calling structure, by measuring the maximum and mean depths of

call paths (i.e., 77 max, 34 mean depth) and out-degree of method nodes in the dynamic

2.1. Studies of framework-intensive systems 8

call graph (i.e., 74 max, 1.89 mean degree). Fourteen bottlenecks were found by examining

two versions of Trade3 running on Websphere that differed by whether or not security was

enabled. Through optimization, a 23% improvement in throughput with security enabled

was realized.

Srinivas et. al. [SS05] designed a dynamic analysis technique that identifies “interesting

method invocations”, that is, those that account for a specified cumulative percentage of

execution cost, in components selected by the user. The technique was tested successfully

on e-commerce applications built on Websphere and on parts of the Eclipse IDE. The main

problem addressed was how to summarize execution costs in framework-intensive codes in

a meaningful manner. Srinivas et. al. used a combination of base cost (i.e., the cost of an

invocation minus the cost of its callees) and cumulative cost (i.e., the cost of an invocation

plus the cost of its callees).

Two tools have been developed at IBM Research to interpret dynamic heap snapshots

of framework-based programs, for aiding understanding of program memory usage, es-

pecially for longer-lived data. Leakbot [MS03], an automated and scalable memory leak

detection tool, finds the data structures in two successive execution heaps obtained early in

execution, identifies those data structures which are likely to be leaking by using structural

and temporal properties, and then selectively tracks objects in those data structures, allow-

ing identification of potentially leaking structures. YETI [Mit06] is a tool for identifying

and summarizing key data structures in a heap snapshot. It derives an object reference

graph for the heap to show all existing relationships between objects. Clever graph reduc-

tions are applied to highlight the key structural relations; these produce a backbone of the

reduced graph that represents thousands of objects, but contains only tens of nodes. The

2.1. Studies of framework-intensive systems 9

goal is to aid user performance understanding by uncovering the key data structures in the

system.

Mitchell et. al. [MSS06] constructed a characterization of the run-time behavior of

framework-intensive systems, by combining dynamic analysis with manual inspection of

source code. Execution events were presented as a hierarchy of dataflow diagrams, show-

ing a series of logical and physical data transformations. Next the types of input to these

transformations were classified as either carriers (i.e., essentially inputs) or facilitators

(i.e., auxiliary data for the transformation). This characterization was used to organize the

aggregation of operation costs in terms of method calls and object creations. The emphasis

was on developing high-level abstractions of behavior that allow the recognizable grouping

of observed method calls to better understand their function and their cost. Their tech-

nique exposes the ways in which framework-intensive applications expend their resources

massaging data.

Zhao et. al. [ZSZ+09] have studied the impact of excessive object allocations on the

scalability of a number of Java benchmarks to a high number of CPU cores. Specifically,

they were concerned with the bus write traffic caused by the garbage collected memory

management strategy. They found that zeroing the memory of new allocated objects (as

required by the Java memory model) combined with a large memory footprint can saturate

the write bus and cause significant performance degradation.

Recent work by Shankar et. al. [SAB08] addresses object churn in the context of a

production just-in-time (JIT) compiler. They use sampling profiles of object lifetimes to

identify program regions, churn scopes, that encapsulate the lifetime of many objects. Ob-

ject lifetime is computed by monitoring allocations inside the JVM, and forcing garbage

2.1. Studies of framework-intensive systems 10

collections at key points during execution to determine which objects are still reachable.

For a given method f , their technique uses the notions of capture (i.e., the fraction of ob-

jects allocated during the lifetime of f that do not escape it) and control (i.e., the fraction

of objects allocated during the lifetime of f that are captured in f but not in any of its chil-

dren). By using heuristics that carefully balance these parameters, they were able to target

agressive inlining in the JIT, thereby significantly improving the effectiveness of the stan-

dard escape analysis optimizations. While we share a goal of addressing object churn with

the work by Shankar et. al., both approaches are different and complementary. We focus on

performance understanding techniques that allow developers to make high-level changes to

their applications, thus reducing the number of temporary objects and more importantly

their costly initialization. In contrast, Shankar et. al. are concerned with optimizing the

allocation and reclamation costs associated with temporary objects by improving the effi-

ciency of optimizations like stack allocation.

Xu et. al. [XAM+09] have designed a new runtime technique that identifies bloat in

framework-intensive applications caused by excessive copying of data between objects.

Performance defects were found and fixed in a number of benchmarks with great success;

the resulting runtime improvements ranged from 9% to 30%, and the number of object

creations was reduced by up to 65%. Xu et. al. modified the IBM J9 production Java

Virtual Machine (JVM) to perform a detailed monitoring of the execution at the level of

executed instructions. They report execution overheads ranging from 1000% to 6400%.

Their technique also requires a shadow heap for bookkeeping, thereby doubling the mem-

ory requirements for an execution. In constrast, blended analysis aims to minimize the time

and space overhead of the dynamic analysis in order to avoid perturbing the execution of

2.2. Combinations of static and dynamic analyses 11

the application.

Tripp et. al. [TPF+09] have devised a static taint analysis algorithm for Java that specif-

ically targets web applications. Their analysis uses a variety of models that are tailored to

the applications under study, e.g., for reflective calls, Enterprise Java Beans (EJBs), Java

Server Pages (JSPs), and other popular frameworks. Tripp et. al. also used a prioritiza-

tion scheme that focuses the analysis on the subset of code that is likely to participate in

taint propagation. This is a static analogue to blended analysis, since the static analysis is

confined to a specific region of interest. Note that if the analysis is not able to complete

(e.g., because the time budget is exhausted or it runs out of memory), then the results are

unsound. This reinforces our claim that for some problems, unsound results like those

provided by a typical blended analysis are useful.

2.2 Combinations of static and dynamic analyses

Static and dynamic analyses have been combined to solve a wide range of problems. In an

early paper, Ernst [Ern03] discussed various ways in which both techniques can comple-

ment each other.

Typically, static analysis has been used to determine where the dynamic analysis should

be applied. For example, static analysis can be used to minimize the cost of instrumenta-

tion inserted into the program (e.g., [MHM98, RRH02, vPG02]). In contrast, the blended

analysis paradigm uses dynamic analysis results to guide a subsequent static analysis, that

may itself use dynamic information to achieve greater precision. Another difference in

combined analyses is seen in the close or loose coupling between the different types of

2.2. Combinations of static and dynamic analyses 12

analyses used. Blended analysis is closely coupled; other analysis combinations work in a

more pipelined or loosely coupled fashion, with the results of one analysis providing the

input to the next analysis phase.

Gupta et. al. [GSH97] used dynamic information – observed breakpoints at branches

and procedure calls/returns – to prune infeasible control flow while calculating a static slice

to explain program behavior for a specific execution. Similarly, in model checking C pro-

grams, Groce et. al. [GJ06] interpreted failure traces by identifying a subset of executions

consistent with the trace, and then slicing the code while eliminating portions that were in-

consistent with the trace, thus potentially increasing the precision of the slice. While their

goal is similar to the goal of blended analysis, the code under analysis is not framework-

intensive, as they apply this technique to small C programs that they are model checking.

These uses of dynamic analysis to enhance the precision of a subsequent static analysis

are similar to blended analyses. One key difference between hybrid slicing and our work

is the amount of dynamic information that has to be collected at runtime. Hybrid slic-

ing requires instruction-level traces whereas our blended analysis requires only lightweight

method-level tracing.

Mock et. al. [MACE02] designed a static slicing algorithm for C programs which used

observed dynamic points-to relations – a lower bound on the static points-to relations –

instead of computed static points-to relations when forming the slices. The static slices

obtained did not capture all possible execution time behavior, but were suitable for their

debugging task. Their findings were disappointing as they only improved the static slices

for programs with function pointer references which could thereby be exactly resolved. In

this case, the dynamic information did not improve the precision of the static slicing of C

2.2. Combinations of static and dynamic analyses 13

programs. Because the dynamic analysis results were applied to obtain smaller slices, but

not necessarily more precise slices, so this combination of static and dynamic analyses is

different than that of Gupta et. al..

Orso et. al. [OAH03] designed a change impact analysis algorithm that given a program

change at c, (i) calculates the set of tests which execute c (i.e., dynamic information) and (ii)

calculates the forward slice using c as the slicing criterion. The results of (i) and (ii) are in-

tersected to form the impact set, the set of nodes which are affected by the program change

at c. Essentially, the forward slice tracks all things dependent on c, and the intersection with

the trace selects all the things which could have been affected by c on this execution. Here,

the static analysis improves the relevance of the dynamic analysis information reported, but

the combined result is better than either result viewed in isolation.

Godefroid et. al. [GKS05] performed a symbolic execution (i.e., static analysis) on a

test execution path (i.e., dynamic analysis), in order to use the path condition constraints

to generate test cases that would explore alternative paths. If the path condition constraint

problem is not solvable, random concrete values are substituted for symbolic values to

allow solution. This main idea has been expanded by Sen et. al. [SMA05] to form a basis

for concolic testing methodologies which use both symbolic execution and substitution

of concrete values when necessary. The similarity to blended analysis is that a dynamic

execution path is being explored by a static analysis (i.e., symbolic execution). The single-

path symbolic execution technique has recently been extended by Saxena et. al. [SPMS09]

to use a set of concrete executions in conjonction with the symbolic execution in order to

get achieve greater precision in the presence of loops.

Beyer et. al. [BHT08] have described a formalism that allows different explicit and

2.2. Combinations of static and dynamic analyses 14

symbolic analyses to be composed and their precision adjusted dynamically based on the

computed results. For instance, an explicit analysis can keep track of variables or heap

locations precisely, and introduce predicates or symbolic values when the size of the state

being tracked exceeds some predefined limits. This work is a generalization of the previous

approach by Godefroid et. al., because the precision of any of the composed analyses can

be increased or decreased at any point and with arbitrarily fine-grained control (e.g., select

which variables to track explicitly rather than apply the concrete execution to all variables).

Recently there have been several explorations of loosely coupled combined analyses.

The Check ’n’ Crash tool [CS05] provides dynamic testing of the errors/warnings re-

ported by ESC/Java [FLL+02], in order to filter out false positives. This process consists

of a static analysis whose results are checked by a subsequent dynamic analysis. DSD-

Crasher [CS06] additionally runs Daikon, a dynamic analysis tool that finds likely program

invariants, to provide additional assumptions to Check ’n’ Crash. These assumptions help

the tool to generate the tests to check the errors reported by ESC/Java. This newer process

introduces a new dynamic analysis phase before the combined (static followed by dynamic)

analysis used in [CS05].

Tomb et. al. [TBV07] tried to find errors in programs similarly through a combination

of loosely coupled static and dynamic analyses. A variably interprocedural symbolic exe-

cution analysis is used to explore Java program state on interprocedural paths expanded to

a specific maximum call depth associated with each method. For program states that might

result in a run-time exception, the associated constraints gathered by this analysis are then

solved to find test inputs that will expose the possible error on a program execution. Em-

pirical experiments demonstrate the utility of this approach.

2.2. Combinations of static and dynamic analyses 15

Artzi et. al. [AEGK07] described various pipelined combinations of static and dynamic

mutability analyses for Java method parameters. Empirical results obtained showed that a

pipelined combination analysis can exceed the accuracy of a more complex static analysis.

Inoue et. al. [IKN09] described a technique for C that combines a dynamic call path

profile with the result of a static analysis that recovers the source code structure from com-

piled binaries. Their technique uses a looser coupling than blended analysis, but never-

theless shares many of the same concerns. For example, Inoue et. al. have to address the

effects of optimizing compiler transformations when mapping the dynamic information to

source code. Similarly, blended analysis has to address transformations performed by the

Just-in-time (JIT) compiler. This issue will be addressed in more details in Chapter 3.

Sinha et. al. [SSG+09] described a technique for fault localisation and repair that uses

stack traces from faulty concrete executions to guide a static dataflow analysis. The anal-

ysis proceeds backward from the point where an exception was raised in order to identify

the statement that is responsible for the incorrect assignment that caused the exception.

The dynamic information here serves a similar purpose as with blended analysis, but it de-

fines the program region to be analyzed more loosely since the faulty assignments do not

necessarily belong to methods that appear in the provided stack trace.

16

Chapter 3

Blended analysis

There are many problems that require a precise understanding of one or more concrete

executions of a program. For example, when confronted with poor performance in an exe-

cution, it is necessary to understand more about this particular execution in order to locate

the performance bottleneck. When debugging, we often want to study a particular execu-

tion that is known to cause an error. Traditionally, dynamic analysis has been used to solve

these problems. In many cases, however, obtaining all needed information dynamically is

prohibitively expensive or impossible. For instance, tracking pointer relationships between

objects at runtime would require tracking all object allocations and pointer updates. Studies

such as [HBM+06] and [XAM+09] have shown that obtaining such information precisely

can dramatically impact the execution time of a program, and report slowdowns ranging

from several times to two orders of magnitude. Such slow downs not only perturb the ex-

ecution of programs and thus the quality of the information that is collected, but they also

render such dynamic analyses useless for production systems. The goal of blended analysis

is therefore to enable analyses of such systems that achieve a precision comparable to that

of a dynamic analysis while minimizing the runtime cost. This chapter presents the blended

3.1. Paradigm 17

analysis paradigm, its novel aspects as well as the new challenges it raises.

3.1 Paradigm

Traditional static analysis is usually concerned with computing results that are valid for

all possible executions of a program. While there are a large number of potential uses for

general results computed using a static analysis, there are also many practical applications

for an analysis of even a single execution. For instance, when confronted with poor perfor-

mance in an execution, we need to know more about that particular execution to understand

which performance problems have occurred. When debugging, we are concerned with the

specific execution that resulted in an error.

Blended analysis is a new analysis paradigm that performs a static analysis on a subset

of an application that is determined using dynamic analysis. Blended analysis is therefore

designed to capture properties of a finite set of concrete executions rather than all possi-

ble executions. By limiting the scope of a static analysis to the executed portion of the

code, it is possible to analyze programs for which traditional static analysis does not scale.

In addition, excluding unexecuted code from the analysis leads to results that more accu-

rately reflect the observed behavior of the program, and often translates into an increased

precision compared to a traditional all-static analysis.

The blended analysis paradigm allows the analysis design space to be explored. Ad-

ditional dynamic information can be passed from the dynamic analysis component to the

static analysis. For example, an analysis could use dynamic method execution frequencies

to rank results in terms of relevance, rather than relying on purely static heuristics. Ad-

3.2. Safety 18

ditionally, the results of a blended analysis could be used to direct a subsequent dynamic

analysis. There are many potential uses for such a technique. For instance, when a blended

analysis determines that it needs more information about an unexplored portion of the pro-

gram, it could signal the dynamic analysis to collect the necessary data. Alternatively, a

dynamic analysis could leverage the results of a blended analysis to determine which pro-

gram regions should be the focus of a more detailed investigation.

3.2 Safety

The theoretical goal for most analyses is to compute an ideal solution that precisely ac-

counts for all possible executions of a program. In practice, however, this computation is

undecidable, and analysis designers need to resort to computing subsets or supersets of the

ideal solution. A static analysis is considered safe if it always computes a solution that is

valid for all possible executions of a program (i.e., a superset of the ideal solution). Since

blended analysis is only concerned with a finite set of concrete executions of a given appli-

cation, it is not generally safe for all executions. If the static analysis component of a given

analysis is safe, however, the blended analysis is safe for the particular execution(s) being

considered.

Figure 3.1 compares various analysis paradigms in terms of their safety property. No-

tice that unlike dynamic analysis, blended analysis does not always compute a proper sub-

set of the ideal solution. This is due to the conservative approximations made by the static

analysis component of a blended analysis. On the other hand, blended analysis is able to

capture behavior that an unsafe static analysis can miss. For example, many static analyses

3.3. Calling structure 19

Safe static analysis

Ideal solution

Dynamic
analysis

Blended
analysis

Unsafe
static

analysis

Figure 3.1: Comparison of safety property of various analysis paradigms

are unsound in the presence of reflection in order to avoid making worst case assumptions

that lead to scalability issues and loss of precision. In contrast, blended analysis has access

to precise dynamic information about the reflective behavior of an application, and is able

to replace problematic reflective calls with equivalent code in a way that is safe for the

executions being considered.

3.3 Calling structure

Interprocedural static analysis typically explores a program by following calls between

methods, either forward (i.e., from caller to callee) or backward (i.e., from callee to caller).

This requires knowledge about the possible target methods at each call site. The vast

majority of static analyses obtain this information by building a call graph from the an-

alyzed code. A call graph is a directed graph in which nodes represent methods in a

program, and edges represent calls between methods. A basic call graph comprises a

single node for each method in the program. It is however possible for multiple nodes

in the call graph to correspond to the same method. Such nodes are said to represent

3.3. Calling structure 20

public class ArgParser {
public static void main(String[] args)
{
ArgList theList = new ArgList();

for (String arg: args) {
if (arg.charAt(0) == ’-’) {
theList.addSwitch(arg);

} else {
theList.addFilename(arg);

}
}

}
}

interface Argument {
public boolean equals(Object obj);
public int hashCode();

}

class Switch implements Argument {
...

}

class Filename implements Arguments {
...

}

class ArgList {
private Node head;
private Node tail;

public void addSwitch(String name)
{
this.add(new Switch(name));

}

public void addFilename(String name)
{
this.add(new Filename(name));

}

public void add(Argument arg)
{
if (!contains(arg)) {
Node n = new Node();
n.argument = arg;
if (head == null) {
head = tail = n;

} else {
tail.next = n;
tail = n;

}
}

}

private boolean contains(Object obj)
{
Node n = head;
while (n != null) {
if (obj.equals(n.argument)) {
return true;

}
n = n.next;

}

return false;
}

private class Node {
public Object argument;
public Node next;

}
}

Figure 3.2: A simple command-line parser example

that method in different contexts. Examples of common contexts include the caller of a

method [GDDC97] or its associated receiver object [MRR05]. Because of its importance

to static analysis, call graph building is a heavily studied topic. Many call graph building

algorithms have been defined, each with particular tradeoffs between cost and precision

(e.g., [DGC01, TP00, LH03, LH06]).

Consider the simple program shown in Figure 3.2. This application performs rudimen-

tary command-line parsing: for each argument passed to it, it creates either a Switch

object or a Filename object, which is then inserted in a linked list of parsed arguments

3.3. Calling structure 21

ArgParser
main

ArgList String
charAt

ArgList
addSwitch

ArgList
addFilename

Switch ArgList
add Filename

Switch
equals

ArgList
contains

Filename
equals

(a) Static context-insensitive call graph

ArgParser
main

ArgList String
charAt

ArgList
addSwitch

ArgList
addFilename

ArgList
add Switch ArgList

add Filename

ArgList
contains

Switch
equals

Node ArgList
contains

Filename
equals

Node

(b) Static context-sensitive call graph

ArgParser
main

ArgList String
charAt

ArgList
addFilename

ArgList
add Filename

ArgList
contains

Filename
equals

(c) A possible dynamic call graph

Figure 3.3: Calling structures for the ArgParser example

after checking for duplicates. The context-insensitive, static call graph for this program

appears in Figure 3.3a. It captures all of the possible calls in the program (e.g., main

can call four different methods), but it also introduces some imprecision. Specifically, be-

cause both addSwitch and addFilename call ArgList.add, the call graph makes

it appear that calls to addSwitch can lead to calls to Filename.equals, and that

calls to addFilename can lead to calls to Switch.equals. Clearly, this is not the

case. A more precise call graph which maintains calling context, such as the one shown

in Figure 3.3b, addresses that problem at the expense of a larger call graph representation.

3.3. Calling structure 22

Observe that the graph shown in Figure 3.3b contains more nodes due to the added context

(as shown by the highlighted nodes).

In a blended analysis, the call graph only contains calls to methods that were executed,

and excludes calls to all other methods. When used to drive a static analysis, the dy-

namic call graph ensures that only executed methods get analyzed. This allows a blended

analysis to analyze a potentially much smaller portion of the code, and thus compute its

results using less resources. For instance, consider once again the example program in Fig-

ure 3.2. Assuming that only filenames are passed to the program, the resulting dynamic

call graph would look like that in Figure 3.3c. Specifically, calls to addSwitch and

Switch.equals are no longer present because they did not happen during the execution

being considered.

The dynamic call graph in blended analysis is obtained from an execution trace. The

trace is often represented as a call tree. Call trees are similar to call graphs except that

they contain a distinct node for each invocation of a given method at runtime. They are

typically very large, even for relatively short program runs. Fortunately, such detailed

traces often contain more information than may be required. More concise representations

of the calls can easily be obtained by aggregating nodes in the call tree. For example, a basic

(context-insensitive) call graph can be derived from a call tree by merging all nodes that

represent invocations of the same method. Other aggregation schemes that represent calls

more accurately are also possible. For instance, Calling Context Trees (CCTs) [ABL97]

are a popular way to represent dynamic calls. The key idea behind CCTs is to differentiate

between calls of a method based on the full invocation stack that resulted in the call. CCTs

offer a much more precise representation of the calls in a program than a basic call graph,

3.3. Calling structure 23

but without the prohibitively high cost of full call trees. While techniques exist to collect

CCTs directly at runtime (e.g., [ZSCC06]), it is easy to generate them from an existing call

tree by aggregating nodes that share the same method sequence from the beginning on the

trace.

A dynamically obtained calling structure must be modified to become amenable to

static analysis. For instance, calls to static class initializers appear in the trace as part of the

class loading mechanism. For blended analysis, we promote them to program entry points,

as in static analysis. Similarly, calls to runtime support code such as the class loader or

garbage collector are seen explicitly in dynamic traces, but have no associated call site in

bytecode. They are currently discarded from the calling structure used in blended analysis.

In certain cases, however, it could be desirable to analyze this code. For example, class

loaders can perform costly operations and lead to performance problems. Such code can

be promoted to program entry points (as it is done with static initializers) in order to ensure

that it will be analyzed. Alternatively, synthetic call sites can be added in the corresponding

bytecode, thereby enabling the analysis of the runtime support code while preserving its

calling context.

Sometimes, a transaction or a scenario (i.e., a partial transaction with specific function-

ality) of interest is identified in advance and the execution trace is limited to that part of

the application. For example, if a specific set of inputs to a transaction are known to trig-

ger a performance problem, then it is often desirable to trace this transaction in isolation.

The calling structure is therefore restricted to that part of the program that was exercised

at runtime. Because the program region to be examined by the analysis does not include

all natural entry points (e.g., main), the analysis must be started from arbitrary methods

3.4. Dynamic language features 24

that often have reference parameters. While some analyses are unaffected by the presence

of objects created outside of their scope, others require information about these objects.

Currently, a root method is artificially created and used to invoke other non-natural entry

point methods with appropriate parameters. Declared types are not sufficient to appropri-

ately synthesize parameters, since they often correspond to non-instantiatable types (e.g.,

interfaces and abstract classes). Therefore, dynamic information from the execution trace

is used to compute a set of types for each parameter, from which corresponding objects are

synthesized.

3.4 Dynamic language features

Dynamic class loading and reflection are typically difficult problems for a traditional static

analysis. They commonly force analysis designers to make worst-case assumptions or

require user input to specify the set of all possible classes that can be loaded and all possible

targets at each reflective call site. Blended analysis does not require this effort because the

necessary information can be recorded during the execution of the program. For instance,

a profiler can easily collect classes as they are loaded. Even dynamically generated classes

that do not exist statically (e.g., those generated by the JVM to handle certain reflective

features such as proxy classes) can be recorded. The static analysis component of the

blended analysis therefore has access to all loaded classes, and is able to operate under

closed-world assumptions.

Dynamically obtained calling structures contain explicit behavioral information at re-

flection points in the program. By using this information, it is possible to eliminate the need

3.5. Basic block pruning 25

for these assumptions. Specifically, bytecode can be synthesized at each reflection point to

capture the observed dynamic behavior precisely in terms of method calls and allocated

objects. As there are relatively few reflective methods in the Java standard library, it is easy

to manually construct individual models. Model creation is discussed in more details in

Section 3.6.

3.5 Basic block pruning

Most applications only execute a very small portion of their source code during a single

execution. Blended analysis exploits this observation by using a dynamic calling structure

as a basis for the static analysis. This ensures that only methods that were executed are

visited by the analysis, thus reducing the amount of interprocedural propagation. However,

even methods that were exercised during an execution typically contain a significant num-

ber of unexecuted instructions. Based on this observation, we developed a new technique

that employs the collected dynamic information to reduce the amount of intraprocedural

work of the static analysis and to improve precision.

Our technique works by pruning a basic block from the control flow graph of a method if

it can be shown that the block was never executed. Unexecuted basic blocks are identified

using two kinds of dynamic information for each method: observed calls and allocated

types of instances. The dynamic calling structure contains a list of observed targets for

each executed method. We also annotate all nodes in the calling structure with a list of

observed allocated types collected during profiling. Any basic block that contains a call

site that does not match any observed target, or that contains an object allocation that did

3.6. Elude 26

not execute, can be marked as unexecuted. The control flow graph (CFG) for this method

can then be pruned by removing all basic blocks that (i) are found on a path from entry to

exit that contains at least one unexecuted basic block and (ii) are not shared between this

path and other, possibly executed paths.

Pruning unexecuted blocks is a technique that is generally applicable to any blended

analysis. It is particularly compelling in the case of a flow-sensitive analysis that typically

requires state to be maintained at each basic block in the CFG. Each pruned basic block

therefore translates directly into memory savings in addition to reducing the overall amount

of work to be performed by the analysis. Experimental results show that our pruning tech-

nique results in a significant scalability gain in our blended escape analysis. We defer a full

discussion of these results to Chapter 6.

3.6 Elude

We have implemented Elude, a publicly available framework for blended analysis of Java

programs. Figure 3.4 shows the overall architecture of the tool. Elude is composed of two

main components: a dynamic analysis component based on the Jinsight profiler [DJM+02]

and a static analysis component based on the WALA framework [WALA]. Each component

is discussed in more detail next.

3.6.1 Dynamic analysis

The dynamic analysis component of Elude is responsible for two main tasks: collecting

classes that are loaded by the Java virtual machine and generating dynamic calling struc-

3.6. Elude 27

Applica'on
Bytecode

Java Virtual 
Machine

Loaded
classes

Dynamic call graph
   + alloca'ons

Class File
Collector

Profiler (Jinsight)

Sta.c
analysis

Elude
Wala

Reflec.on
Models

Figure 3.4: The Elude framework

tures used by the static analysis component. The class file collector uses the Java instru-

mentation capabilities to intercept class loading and write the data to disk. The dynamic

calling structures are generated from traces collected by the Jinsight profiler. This profiler

is routinely used within IBM for performance diagnosis. Using Jinsight to generate dy-

namic calling structures offers two main advantages. First, it ensures that our technique

can easily be integrated in the normal performance understanding workflow, thus lowering

the cost of adoption. Second, extending the tool to generate dynamic calling structures

from existing, unmodified traces provides easier access to data from real production ap-

plications. Currently, the tool supports the generation of context-insensitive call graphs as

well as other context-sensitive calling structures such as CCTs. Because multiple calling

structures can be generated from a single trace, the modified Jinsight tool does not require

rerunning the program in order to experiment with various levels of aggregation in calling

structures.

3.6. Elude 28

Our choice of profiler also limits the amount of information that can be collected at run-

time. While Jinsight provides the full calling context for each object allocation and method

invocation, it does not record enough information to determine which allocation sites or

call sites correspond to these events. This limitation of the profiler requires conservative

assumptions to be made in cases where a given call or allocation could have originated

from multiple sites in the same method. In such cases, we safely assume that any matching

site was potentially executed. This may force our analysis to consider unexecuted code, but

it ensures analysis of all executed code. Building a specialized profiler for blended analysis

(e.g., using lightweight bytecode instrumentation) could address this limitation, and is a

possible direction for further exploration.

Note that because Jinsight is a proprietary IBM product and not publicly available,

we have chosen to decouple Elude completely from the profiler by using a simple textual

format for its call graphs. Any existing profiler capable of recording dynamic information

that is suitable for generating a dynamic calling structure should be trivial to extend to

produce Elude-compatible call graphs.

3.6.2 Static analysis

The static analysis component in Elude is built on WALA, an open source static analysis

framework. Elude receives as input a dynamic calling structure as well as a set of classes to

analyze from which Elude generates WALA-compatible structures. Therefore, any WALA

analysis can be converted into a blended analysis.1

In order to properly align static and dynamic information, Elude needs precise behav-

1Some modifications to the analysis may be required.

3.6. Elude 29

@Model(
"java.lang.reflect.Array.get(Ljava/lang/Object;I)Ljava/lang/Object;"
)
public static Object java_lang_reflect_Array_get(Object array,

int index) {
return ((Object[]) array)[index];

}

Figure 3.5: A Java model

ioral models of the parts of the program for which no bytecode is available (e.g., native

methods). To this end, Elude contains a complex modeling infrastructure that allow mod-

els to be specified using different formalisms. For instance, models can be generated au-

tomatically by providing Java code that has comparable behavior. Figure 3.5 provides an

example of such a high level model specification for a reflective array access operation.

Specifying models using Java code allows for the very quick development of new models.

Although Elude currently contains a set of models for the IBM 1.4.2 JRE as well as the

IBM J9 1.5 JRE, these models must be updated with new Java releases, or for different

JVM vendors. Note that for maximum flexibility in specifying models, Elude also supports

creating models by directly building a WALA-compatible 3-address code representation.

Elude also supports parameterized model specifications for which code is generated

based on dynamic input. Such specifications are particularly well suited for handling re-

flection. Figure 3.6 shows a simple parameterized model specification for the reflective cre-

ation of array objects. The model code first obtains a list of array types that were allocated

at runtime, and then proceeds to generate code that generates arrays of each of these types.

Note that Java annotations are used extensively as part of the modelling infrastructure to

simplify the specifications as well as improve readability. In this case, the model is applied

3.6. Elude 30

@Model({
"com.ibm.jvm.ExtendedSystem.newArray(Class,int,Object):Object",
"java.lang.reflect.Array.newArray(Class,int):Object"
})
public MethodSummary makeArrayFactoryModel(ReflectionEnvironment env,

CGNode caller, IMethod target) {
// Get the dynamic information for the modeled method
ENode targetNode = env.getUniqueTargetNode(caller, target);
Set<TypeReference> allocTypes = env.getAllocatedTypes(targetNode);

SummaryBuilder builder = new SummaryBuilder(target);
int[] dims = new int[] { builder.getParameter(1) };

// Add an allocation for each array type
BitSet values = new ArrayBitSet();
for (TypeReference type: allocTypes) {

int result = builder.addNewArray(type, dims);
values.add(result);

}

// Create a new variable for the return value
// that contains all created arrays
int result = builder.addPhi(values.toArray());
builder.addReturn(result);

// Create the parameterized model
return builder.build();

}

Figure 3.6: A parameterized model

to two different methods, ExtendedSystem.newArray and Array.newArray.

31

Chapter 4

Blended escape analysis

4.1 Motivation

Understanding performance problems in framework-intensive applications can be difficult

for a number of reasons. Typically, problems are not localized in a few hot methods. More

often there are patterns of problematic activity spanning many frameworks, the combined

result of design choices in each framework [MSS06]. To the user seeking to understand its

performance, an application resembles an iceberg, where only a small portion of the code is

familiar, and performance consequences are hidden under many layers of unfamiliar code

below. The scale of activity (e.g., number of method calls, number of objects created)

adds to the difficulty of understanding even simple features. In one study of framework-

based applications [SS05], in the simplest version of a stock trading application, a simple

transaction that reads 10 records from an external database required 28,747 calls, at an

average calling depth of 39. Clearly, tool support is required to help developers understand

the behavior of their applications.

Much of the work performed by framework-intensive applications involves the creation

4.1. Motivation 32

and initialization of temporaries, short-lived objects that are created as the by-product of

some computation. The excessive usage of temporaries, known as object churn, is a new but

widespread problem in framework-intensive applications. The combined cost of allocating,

initializing and ultimately garbage collecting temporaries can dominate execution time,

and degrade performance dramatically. In extreme cases, object churn can result in almost

continuous calls to the garbage collector, effectively halting execution progress because of

the amount of temporary storage being used and released over short time intervals.

Despite the sophisticated optimizations used by modern just-in-time (JIT) compilers,

object churn remains a problem in many commercial applications. In particular, even at-

tempts to stack-allocate temporary objects at runtime are typically insufficient for elimi-

nating object churn. Temporary object costs are high even with improvements in memory

management such as the use of nursery space in the garbage collector for the allocation

of short-lived objects. While the cost of allocating physical memory for an object may be

low, the initialization of this object is often much more expensive. In addition, object churn

cannot be alleviated solely by optimization of individual frameworks, because often the

temporaries are passed in calls across framework boundaries.

In order to address object churn, it is necessary to understand why temporaries are

created and how they are used within an application. There are two aspects of the behavior

of framework-intensive systems that make studying temporaries difficult. First, temporary

creation and usage is often not localized to a single method, but involves multiple methods,

each contributing a few allocations or making use of temporary objects allocated elsewhere.

Second, temporary objects often appear as part of larger temporary data structures. In

such cases, understanding the purpose of a single object requires studying its role within

4.1. Motivation 33

a data structure. Current profiling tools such as Jinsight [DJM+02], HPROF [HPROF],

Arcflow [ABLU00], and even commercial products like YourKit [YourKit] and CodePro

[CodePro] are inadequate for identifying object churn. While they provide some valuable

information about new objects, such as the context in which they are created and whether

they survive a garbage collection, these tools offer limited information about how these

objects are used.

We show the usefulness of the blended analysis paradigm by obtaining characteriza-

tions of temporaries in framework-intensive applications and of the program regions that

create and use these temporaries. Specifically, by using a blended escape analysis to iden-

tify which objects are local to a program region, the set of temporaries can be approxi-

mated. Program regions can then be ranked in terms of the number of temporaries that they

contain. Moreover, because escape analysis subsumes points-to analysis, this technique

allows us to reason about how object instances become connected during execution, and

thus study temporaries as elements of larger data structures manipulated by the program.

This information allows temporaries to be grouped by their connectivity into data struc-

tures, and can ultimately enable characterization studies as well as better understanding of

specific temporary structures. The ultimate aim of obtaining this information is to provide

a deeper understanding of object churn, in order to devise the appropriate actions for ame-

liorating the problem. This may be accomplished through focused global specialization

optimizations, best practices for framework API design and usage, and/or better diagnosis

and assessment tools for framework-intensive applications.

4.2. Background 34

4.2 Background

Escape analysis computes bounds on the dynamic scope of objects. It was first proposed to

enable compiler optimizations such as stack allocation of objects, which reduces heap frag-

mentation and garbage collection overhead by allocating object on the run-time stack rather

than the heap, and synchronization removal, a technique that avoids costly synchronization

operations when code can be shown to be thread-safe. The former requires information

about objects that escape a particular method invocation; the latter necessitates knowing

which objects escape their allocating thread. More formally, an object is said to escape a

method m if it is reachable beyond the lifetime of an invocation of m during which it is

created. Similarly, an object escapes a thread t if it is reachable from a reference at any

point at a point in execution outside of t. Escape analysis examines assignments and uses

of references to compute an escape state for each object. Each object can be assigned one

of three possible escape states: globally escaping, arg escaping or captured. An object is

marked globally escaping when it becomes globally reachable (e.g., by being assigned to

a static field). Objects that are reachable through parameters or that are returned to caller

methods are labeled arg escaping. Objects that don’t escape are marked as captured. Dur-

ing the analysis, a given object can have different escape states in different methods along

a call path in the program; however, all objects eventually either globally escape or become

captured. We refer to the final escape state of an object as its disposition.

Several escape analysis algorithms have been proposed in the literature. They can be

divided into two main categories: set-based and dataflow algorithms. They are briefly

outlined below.

4.2. Background 35

4.2.1 Set-based algorithms

Set-based algorithms use set constraints as a mechanism to compute escape information.

Three set-based escape algorithms have been proposed for the Java language. All of them

are designed for speed over precision and are both context- and flow-insensitive. Moreover,

they associate escape state with references rather than objects. Bogda and Hölzle [BH99]

proposed an algorithm for synchronization removal that is based on escape analysis. Their

analysis is performed in two stages: the first stage identifies references that get stored in

the heap, while the second stage narrows down the set of references to those that allow

local objects to escape. Gay and Steensgaard [GS00] proposed an algorithm that relies on

assigning a fresh status to a new object, which is then propagated to methods and refer-

ences, and is used to compute escape information. Beers et. al. [BSF04] have proposed

an escape analysis algorithm specifically designed to have its results encoded as class file

attributes and used at runtime by the JIT compiler. Their algorithm uses two passes: the

first computes approximations of run-time types for references, and the second uses the

types computed in the first pass to find captured variables (i.e., variables through which

objects do not escape).

4.2.2 Dataflow algorithms

Dataflow algorithms compute escape information using a set of equations that describe the

effect of each node in the control flow graph of a method on the solution. These equations

are evaluated iteratively until the solution reaches a stable state (fixed point). This process

is repeated for each method in the analyzed part of the application. The dataflow escape

4.2. Background 36

algorithms are commonly accepted as being more precise than the set-based algorithms but

also are more expensive. Two dataflow algorithms have been proposed in the literature: one

by Whaley and Rinard [WR99] and one by Choi et. al. [CGS+99, CGS+03]. Both algo-

rithms build a representation of the relationships between references in a program (similar

to points-to analysis) and associate escape state information with an abstract object. Each

abstract object represents the set of possible objects created at runtime at an allocation

site. These two algorithms differ in their treatment of strong updates and their representa-

tion of data structures (i.e., object aggregates). Both algorithms are context-sensitive and

flow-sensitive [Ryd03].

The algorithm by Choi et. al. relies on connection graphs to represent relationships

between references and abstract objects. The analysis proceeds in a bottom-up manner on

the call graph; cycles in the call graph are handled by iterating until the solution converges.

A connection graph is generated at each call graph node to represent a summary of the

relevant data structures at that node and the (current) escape state of abstract objects. Con-

nection graphs contain two main kinds of nodes: object nodes representing abstract objects

and reference nodes corresponding to variables or fields in the program. Each node is dec-

orated with its current escape property. Objects created before a method invocation can

be introduced into that method through parameter-argument associations. Such objects are

represented by phantom nodes in the connection graph that act as placeholders, and play a

key role in mapping information from callee to caller during the interprocedural analysis.

4.2. Background 37

interface X {...}
class Y implements X {...}
class Z implements X {...}
class G {

public static Object global;
}

public class EscapeExample {
public static X identity(X p1) {

return p1;
}

public static X escape(X p2) {
G.global = p2;
return p2;

}

public static void f() {
X inst;
if (...)

inst = identity(new Y());
else

inst = escape(new Z());
}

}

Figure 4.1: A simple example for escape analysis

4.2.3 Example of escape analysis

The example in Figure 4.1 is designed to illustrate the main features of the escape analysis

algorithm by Choi et. al.; the corresponding call graph appears in Figure 4.2. The example

code contains four leaf methods in its call graph: identity, escape, and the construc-

tors for classes Y and Z. Assuming that Y and Z are default constructors, only identity,

escape and f are interesting from the point of view of escape analysis. Consider the

identity method. The analysis first creates a reference node in the connection graph

4.2. Background 38

f

Y Z identity escape

Figure 4.2: Call graph for the escape analysis example

corresponding to the p1 parameter. Because the object pointed to by p1 is external and

therefore unknown at this point, the analysis models it with a phantom object node. When

processing the return statement, another reference node is created for the return value of the

method, and made to point to p1. At the end of the dataflow computation for the method,

all reference nodes are made to point directly to objects that are transitively reachable from

them, and edges between reference nodes are removed. The final connection graph for the

identity method appears in Figure 4.3a. Note that both reference nodes are marked as

arg-escaping the method, as indicated by their pattern. The analysis proceeds similarly

for the escape method. A reference node is created in the connection graph for p2, and

is made to point to a new phantom node representing the external object passed as argu-

ment. In this case, however, the argument is assigned to a static field. The G object and

its global field are added to the connection graph and marked as globally escaping. The

analysis then proceeds as before. The final connection graph for escape is shown in Fig-

ure 4.3b. Note that escape states are ultimately propagated along connection graph edges,

causing the phantom object node to also be marked as globally escaping (as indicated by

the pattern).

After the analysis has processed all leaf methods, it can process the f method using the

previously computed information. First, it creates a reference node for the inst variable.

4.2. Background 39

returnp1

Phantom
object 1

(a) Connection graph for
identity

returnp1

Phantom
object 2

G

global

(b) Connection graph for escape

inst Y

returnp1

Phantom
object 1

(c) Mapping the connec-
tion graph for identity
into f

inst

Z

G

global Y

(d) Connection graph for f

Figure 4.3: Connection graphs for the escape analysis example

Each branch of the conditional statement is then analyzed sequentially. In the true branch,

a new object node is created for the allocation of a Y object. The call is then analyzed by

mapping actuals to the parameters in the callee (i.e., mapping Y to p1), and processing

assignments from return values if applicable (i.e., assigning the result of identity to

inst). The mapping process, illustrated in Figure 4.3c, results in an edge being added

in the connection graph from inst to Y. Note that arg-escaping objects are marked as

captured in the caller at this point (as indicated by their pattern). The other branch is

analyzed similarly. The final connection graph for f appears in Figure 4.3d. Note that the

Z object is marked as globally escaping since it is referenced by the global field, while

4.3. Blended escape analysis 40

the Y object is never used and thus remains captured.

4.3 Blended escape analysis

We implemented a blended version of the Choi et. al. escape analysis using Elude. The

details of the experiments performed with the tool will be described in Chapter 6. In

framework-intensive applications, object allocations frequently occur in low-level library

methods that are used in many different contexts. We therefore extended the original anal-

ysis to maintain a distinct escape state for each object at every method in the call graph.

This allows our blended escape analysis to distinguish between different escape behaviors

along individual paths in the call graph. As will be shown in Chapter 6, this additional in-

formation is useful for understanding program behavior and data manipulation, in contrast

to previous uses of escape analysis.

Due to the conservative nature of static analysis, it is common for edges that violate

type assignment rules to be created in the connection graphs. To address this issue, we

modified the escape analysis to take advantage of declared types; thus, type-inconsistent

edges are never added to the connection graph. This optimization is well-known in points-

to analysis, and has been shown to significantly increase the precision and to reduce the

execution time cost [LH03].

4.3.1 Postprocessing connection graphs

The precision of the information in the connection graphs can be further improved by a

mapping onto a program representation that retains richer calling context information than

4.3. Blended escape analysis 41

the dynamic call graph used in the escape analysis. Recall from Chapter 3 that a dynamic

calling context tree (CCT) is a context-sensitive calling structure in which method invoca-

tions are differentiated based on their call chain prefix. In other words, two invocations of

the same method are considered equivalent if and only if they are the result of the same

sequence of method calls starting at the program entry point. In contrast, a call graph is

a context-insensitive calling structure where the same node represents all invocations of a

given method. Note that the presence of recursion is a special case that introduces cycles

in a CCT.

The post-processing algorithm effectively overlays information from the connection

graphs onto the CCT. This serves two main purposes: it provides more fine-grained infor-

mation about instances at each CCT node, and it allows behaviors that were merged in the

blended escape analysis to be disambiguated. Note that a similar gain could be achieved by

using a different choice of calling structures for a blended analysis, albeit at a higher cost

for the analysis itself due to the larger size of context-sensitive calling structures as com-

pared to context-insensitive call graphs. Studying the impact of varying the level of context

sensitivity in the calling structure representation on the cost and precision of blended anal-

ysis is an interesting research direction, and is left as future work.

The post-processing phase of the blended escape analysis manipulates both static and

dynamic object abstractions at the same time. For clarity, in this discussion we refer to

the dynamic abstraction of an object as an instance (i.e., an object that was dynamically

allocated at runtime) and reserve the term object to denote abstract objects used by the

static analysis (i.e., allocation sites in our analysis).

For each context node in the CCT, the postprocessing algorithm generates a reduced

4.3. Blended escape analysis 42

connection graph from the connection graph computed by the blended escape analysis for

the corresponding method. The reduced connection graph more accurately represents the

escape behavior at that node. To construct the reduced connection graph, each node in the

original connection graph is first annotated with the number of instances that it possibly

represents. These are the instances allocated during the lifetime of the calls represented

by this context, excluding those captured along every path from the allocation site to this

node. We also remove connection graph nodes representing objects that could not have

been visible in this context, because either no allocation was observed during this context’s

lifetime, or any allocations that did occur were through paths that captured the object. This

is achieved by propagating visible instances backwards in the CCT.1 Note that because

paths in the CCT are more precise representations of call behavior than the paths used to

compute the blended escape analysis, it is possible for objects to be captured earlier than

indicated by the escape analysis results, thereby no longer being visible at a context for

which the original connection graph contained a matching object. Given the dynamic im-

precision in the profiling data about executed allocation sites of the same type within the

same method, we chose to merge objects in the reduced connection graph that are indistin-

guishable dynamically. We therefore use a single object to represent all allocation sites of

the same type in the same method. We refer to these objects as merged abstract objects.

This transformation prevents many of the issues of double-counting instances when they

cannot be mapped to a unique allocation site. Finally, for ease of understanding, we sim-

plify the connectivity in the reduced connection graphs, by eliminating field information

and eliding links other than those relating objects to one another (such as links from ref-

1Cycles in the CCT are handled in the propagation by fixed point iteration.

4.3. Blended escape analysis 43

erence variables and parameters). Figure 4.4 shows an example of a reduced connection

graph generated by the post-processing algorithm. The graph was obtained from Trade, a

financial benchmark for the Websphere Application Server.

The reduced connection graphs are used for two purposes. First, they allow the number

of instances captured at each CCT node to be computed, thus enabling the identification

and ranking of the nodes according to their usage of temporaries. Second, they summarize

the connectivity of objects at a given CCT node using a simple and easily accessible rep-

resentation. In practice, we have found that reduced connection graphs, unlike the original

raw connection graphs, provide a good level of abstraction for understanding and manual

exploration of temporary structures.

4.3. Blended escape analysis 44

CAPTURED

ARG_ESCAPED

8 Unknown[]

2 com.ibm.ws.Transaction.JTA.JTAXAResourceImpl

30 java.lang.Object[]

64 java.util.HashMap$Entry[]

316 java.util.HashMap$Entry

6 java.util.HashMap$Entry[]

2 com.ibm.ws.Transaction.JTA.XidImpl

2 com.ibm.ws.Transaction.JTA.RegisteredResources

2 java.util.ArrayList

2 java.util.HashMap

2 byte[] 2 byte[]

Figure 4.4: Example of reduced connection graph for XATransactionWrapper.en-
list in Trade showing a large number of captured instances. Each node in the graph
shows the type of object represented along with the number of instances of that object
observed at runtime.

45

Chapter 5

Metrics

The blended analysis presented in Chapter 4 exposes previously unexplored character-

istics of framework-intensive applications. In order to evaluate the effectiveness of the

blended analysis paradigm to analyze and understand the behavior of real framework-

intensive applications, it was necessary to develop new metrics that quantify key aspects of

the algorithm and the behavior of framework-intensive applications with respect to tempo-

raries. This chapter presents our new metrics along with a detailed discussion of the various

factors that affected their design.

5.1 Measurement goals

There are three major measurement goals for the new metrics:

(i) To determine the effectiveness of the control-flow graph (CFG) pruning technique on

the blended analysis algorithm,

(ii) To characterize the usage of the temporaries in framework-intensive applications,

(iii) To characterize the nature of the temporary data structures themselves.

5.2. Design factors 46

Each metric addresses one or more of these goals. Metrics covering goal (i) are comparative

measures of the original versus the pruned blended algorithm, and focus on improvements

in analysis scalability and precision. Metrics covering goal (ii) capture properties of the

execution related to the usage of temporaries. Such properties include, for example, the

escape categorization of an object as either captured or escaping, or the distance from

allocation to capture for each object. Metrics covering goal (iii) quantify the complexity of

temporary data structures in terms of the objects they contain and their interconnections.

Note that the first goal applies to all blended analysis algorithms, while the other two are

specific to our blended escape analysis algorithm.

5.2 Design factors

Designing useful metrics requires careful consideration of many factors. In this work, we

are concerned with three main factors that influenced the design of our metrics.

5.2.1 Comparability

Some metrics are intrinsically comparative measures. For instance, metrics that measure

the scalability improvements due to CFG pruning are by definition comparing the pruned

and unpruned versions of a blended analysis. Other metrics could be designed to be com-

pared across several benchmarks, or different executions of the same benchmark. In all

cases, it is important to ensure that the properties that are measured can be meaningfully

compared. Consider a metric that measures the percentage of allocation sites that only cre-

ate temporary (i.e., captured) objects. This metric can meaningfully be compared across

5.2. Design factors 47

different benchmarks in order to assess the relative importance of temporaries in different

applications, or to identify likely targets for code optimizations. The same metric would be

much less useful for comparing pruned and unpruned analysis results for a single bench-

mark, as the absolute number of call sites is subject to change due to the removal of unex-

ecuted basic blocks.

5.2.2 Object abstraction

The nature of a blended analysis introduces a duality in object representations. The ex-

ecution trace contains information about dynamically allocated object instances. Static

analysis, however, typically uses object abstractions such as allocation sites. Because infor-

mation computed for a static abstract object can be mapped to the corresponding dynamic

instances in the trace, a metric pertaining to objects can be defined to use either static ab-

stract objects or dynamic object instances as object representation. There are advantages to

each representation, and the choice between them is often influenced by the intended use

for the metric. Static abstract objects can be useful for characterization metrics or program

understanding tasks, for example. Dynamic instances are often useful to find performance

bottlenecks or to estimate the profitability of compiler optimizations, among other uses.

5.2.3 Data structure abstraction

In object-oriented systems, and framework-intensive applications in particular, individual

objects are often organized into more complex data structures in order to perform a given

task. Understanding the behavior of framework-intensive applications therefore requires

5.3. Sources of imprecision 48

understanding the data structures that they create. In order to study data structures, a clear

definition of what constitutes a data structure is required. In this work, we define data

structures in terms of objects in the reduced connection graphs computed by our blended

escape analysis. More precisely, a data structure is a root object in the reduced connec-

tion graph for a method (i.e., an object with no incoming edges or whose only incoming

edges are back edges), along with all objects reachable from the root. The rich informa-

tion associated with reduced connection graph objects allows a wide array of properties to

be computed for each data structure, such as the distinct object types in a data structure,

the set methods that contributed objects to a data structure, or the capturing path of a data

structure, to name only a few. Because every object has a corresponding set of associated

instances, we can also compute the number of occurrences of a data structure (i.e., the

number of instances of its root) as well as the total number of instances comprising the data

structure (i.e., the sum of the number of instances for each object in the data structure).

5.3 Sources of imprecision

Ideally, the results of a blended analysis would perfectly capture the properties of an ex-

ecution. In practice, however, there are two sources of imprecision that affect its results:

static and dynamic.

Static analysis is often required to make conservative assumptions to ensure a safe solu-

tion. For example, in escape analysis objects may be conservatively classified as escaping

when they are in fact captured, but the analysis is not precise enough to see this. Similarly,

objects may appear to be reachable from a reference in a connection graph, when this can

5.3. Sources of imprecision 49

not occur during program execution. This imprecision in static analysis stems from the fact

that it is impossible to determine in general the infeasibility of an arbitrary path in a static

program representation [MR90]. We term this static imprecision.

Dynamic analysis also contributes imprecision to the analysis results. Dynamic impre-

cision occurs because either the level of detail found in the execution trace adversely affects

the precision of the analysis, or the aggregation of the program trace into a more scalable

program representation results in loss of precision about the calling context of the data.

In the first case, as explained in Section 3.6, Jinsight does not include allocation site

or call site information in the traces it generates. This requires conservative assumptions

to be made when mapping target invocations to potential call sites and instances to possi-

ble allocation sites. Moreover, because multidimensional arrays in Java are represented as

arrays of arrays, Jinsight only reports allocations of single dimension array types. With-

out information about allocation sites, it is therefore not possible to disambiguate between

two instances of type Object[] when, for example, a given method can allocate both

char[][] instances and int[][] instances. Finally, Jinsight is sometimes unable to

resolve array types correctly; such allocations are then reported as arrays of a special un-

known type. Our analysis must therefore conservatively assume that any array type matches

an array of unknown type.

In the second case, in blended analysis the execution trace is aggregated into a call

graph (or a CCT), before being used by the static analysis. This aggregation can conflate

some behaviors that never occur together in practice, by making some unexecuted call paths

appear to be feasible. We term either of these cases dynamic imprecision.

Given the dynamic imprecision in the profiling data about executed allocation sites of

5.4. Metric definitions 50

the same type within the same method, we chose to merge objects in the reduced connection

graph that are indistinguishable dynamically. This means that a set of objects representing

allocation sites of the same type in the same method with the same connectivity in the

reduced connection graph are merged. This transformation prevents many of the issues

of double-counting instances when they cannot be mapped to a unique allocation site. In

all discussions that follow, we use the term object to refer to an object in the reduced

connection graph after this merging transformation has been applied.

5.4 Metric definitions

This section defines a set of new metrics that are useful for computing the effects of our

algorithm optimizations, identifying temporary objects and data structures, and character-

izing them and their uses. A detailed empirical evaluation using these metrics is deferred

until the next chapter.

5.4.1 Pruning effects

In order to measure the impact of the pruning technique on the scalability of the analysis,

we compute two metrics:

Metric 1: Pruned basic blocks

The percentage of basic blocks in the entire application that were marked as unexecuted

and therefore pruned away. Because flow-sensitive analyses like our blended escape

analysis require state to be kept for each basic block while analyzing a given method,

pruned basic blocks translate into time and memory savings for the analysis.

5.4. Metric definitions 51

Metric 2: Execution time

The amount of time required to compute the escape analysis results. To show improve-

ments between algorithms and make the results comparable across different bench-

marks, this metric only includes the analysis phase of the algorithm (i.e., excludes the

time required to perform common operations such as reading the dynamic call graph

from a file or outputting the analysis results).

5.4.2 Disposition

Recall from Chapter 4 that our blended escape analysis assigns an escape state to each ob-

ject at every node in the call graph. Every object also receives a disposition, or final escape

state. The disposition of an object induces the disposition of its corresponding instances

(i.e., as determined by the post-processing). Without dynamic imprecision, every instance

would either globally escape or be captured. However, dynamic imprecision sometimes

introduces ambiguity regarding the path in the dynamic CCT traversed by an instance. In

such cases, the post-processing algorithm is forced to label some instances as both escaping

and captured, a state henceforth referred to as mixed.

We compute two metrics that relate to disposition:

Metric 3: Disposition breakdown (by instances)

The percentage of instances whose disposition is globally escaping, captured or mixed.

This metric is used to characterize the usage of temporaries: a large proportion of

captured instances indicates that an application is probably making an excessive use

of temporaries, and is a prime subject for object churn. This metric could alternatively

5.4. Metric definitions 52

be computed using objects rather than instances in order to compute the proportion of

allocation sites that only allocate temporaries, and therefore provide an upper bound on

the number of allocation sites that could be targeted by compiler optimizations aiming

to ameliorate object churn.

Metric 4: Disposition improvement (by objects)

The percentage of objects (i.e., allocation sites) whose disposition is improved by the

pruning algorithm. The disposition of an object is considered to be improved (i) if its

corresponding allocation site is found to be unexecuted and is pruned away, or (ii) if

the object is assigned a more precise disposition. Note that an object that was labeled

as globally escaping by the original algorithm may have its disposition improved to

mixed, if it is shown to be captured on at least one path in the calling structure. This

metric is used to show precision improvements due to CFG pruning.

5.4.3 Capturing depth

The capturing depth metric is a measure of the nature of the individual regions in the

program calling structure that use temporaries.

Metric 5: Capturing depth

The capturing depth of an instance is the length of the shortest acyclic path from its

allocating context to its capturing context. An instance may have multiple capturing

depths if it is captured by more than one context; in this case, the instance contributes

to the overall capturing depth distribution once for each depth. This metric is used to

characterize the usage of temporaries.

5.4. Metric definitions 53

In essence, capturing depth denotes a lower bound on the number of method calls during

which an instance is live; as such, it helps to describe the program region that uses the

instance. Deeper regions define larger subtrees in the calling structure (i.e., each subtree

has at least d+1 contexts for a capturing depth d). Temporaries that are constrained to small

regions may be easier targets for compiler optimizations. Temporaries that belong to deep

regions are likely to cross framework boundaries and may require interprocedural code

specialization optimizations. Deeper regions also make it more difficult for developers to

identify the source of potential performance problems. For these reasons, we are interested

in knowing how the use of temporaries is distributed in a given application.

5.4.4 Concentration

The previous metric, capturing depth, is a descriptive measure of the individual program

regions that use temporaries. The concentration metric looks at how the object churn costs

are distributed across such regions in the application scenarios we are analyzing. The goal

of this metric is to understand whether object churn behavior is typically concentrated in a

few regions, or is spread out across many regions. This information can guide us toward

solutions, for example, showing whether diagnosis tools that help a user find a few hot

regions of object churn would be sufficient, or if problems are so widespread they can only

be handled by automated optimizations or better API design practices.

Metric 6: Concentration

The concentration metric reports the percentage of captured instances that are explained

by X% of the top capturing methods. This metric uses percentages in order to be

5.4. Metric definitions 54

comparable across benchmarks. In this work, we used 5%, 10% and 20% as values for

X . This metric is used to characterize the usage of temporaries.

5.4.5 Complexity of data structures

Temporaries often are organized into complex data structures that can be expensive to create

not only due to the cost of allocation and initialization of the constituent instances, but also

because of the cost of linking instances together into a data structure. For this reason,

we are interested in characterizing the complexity of temporary data structures in a given

application, using the reduced connection graphs to identify these temporary structures.

Because we are interested in characterizing temporaries, we compute metrics only over

captured data structures. By calculating the number of instances in a data structure, we can

estimate the savings possible through optimization of its usage. Certain optimizations may

be aimed at temporary structures as a whole, such as pulling constant structures out of a

loop, pooling similar structures that have expensive construction for reuse, or specializing

structures for a specific usage pattern.

We investigate the complexity of data structures and characterize them by computing

the following five metrics.

Metric 7: # of types

The number of distinct object types in each data structure. The more types a data

structure contains, the more complex it is.

Metric 8: # of allocating methods

For each data structure, the number of distinct methods that allocate instances that are

5.4. Metric definitions 55

part of this data structure. The complexity of a data structure increases with the number

of allocating methods.

Metric 9: # of merged abstract objects

The number of merged abstract objects in each data structure. Recall that because of

dynamic imprecision, we use merged abstract objects as an approximation of allocation

sites. This metric is therefore an approximation of the number of allocation sites that

contribute to a data structure. Each merged abstract object represents all allocation sites

with the same allocated type in a method (or CCT context). The complexity of a data

structure increases directly with increases in this metric.

Metric 10: Height of data structure

The length of the longest acyclic path in the reduced connection graph from a given

data structure root to any other object in the data structure. The complexity of a data

structure increases with its height.

Metric 11: Maximum capturing distance

The maximum capturing depth of any instance in the data structure. This metric calcu-

lates the longest capturing call chain corresponding to an instance contained in the data

structure. Note that the capturing distance (like the capturing depth metric) computes a

lower bound on the number of calls traversed during the use of the data structure, since

data structures may be passed down to callees as well during execution.

All five data structure metrics can be reported in aggregate form over all data struc-

tures (i.e., by occurrences) or, alternatively, over all instances in data structures (i.e., by

instances). Intuitively, metrics computed by occurrences capture properties of the data

5.4. Metric definitions 56

structures themselves. Metrics computed by instances aim to answer questions regarding

the importance of certain data structures weighted by the number of the instances they

explain. For example, metrics computed by instances could be useful to determine how

profitable a specific compiler optimization could be.

57

Chapter 6

Empirical evaluation

Chapter 5 has introduced a set of new metrics that aim to capture specific properties re-

lated to the usage of temporaries in framework-intensive applications. This chapter presents

empirical results for each metric obtained from a set of representative framework-intensive

applications, including well-established benchmarks as well as commercial applications.

Section 6.1 discusses each of the benchmarks in detail. Section 6.2 presents the metric

results along with an interpretation of the relevant findings. Section 6.3 presents a specific

case study that demonstrates the usefulness of our approach for understanding object churn

and the usage of temporaries, using one commercial application as a subject.

6.1 Experimental setup

For our experiments, we used four framework-intensive applications: Trade, Eclipse, Jazz

and a private commercial application (CDMS). Our escape analysis is built using the WALA

analysis framework.1 To obtain complete call graphs from the trace, all experiments were

performed with an IBM JVM version 1.4.2 with the JIT disabled in order to prevent method

1http://wala.sourceforge.net/

http://wala.sourceforge.net/

6.1. Experimental setup 58

inlining at runtime. Note that different JIT implementations may provide more fine-grained

control over the specific optimizations performed by the JIT, and may allow inlining to be

disabled without requiring the JIT to be turned off completely.2 Our test machine was

a Pentium 4 2.8 GHz machine with 2 GB of memory running the Linux kernel version

2.6.12.

6.1.1 Trade 6

We used version 6.0.1 of the Trade benchmark running on Websphere 6.0.0.1 and DB2

8.2.0. 3 The way in which the Trade benchmark interfaces with the Websphere middleware

can be configured through several parameters. We experimented with four configurations of

Trade by varying two of its parameters: the run-time mode and the access mode. The run-

time mode parameter controls how the benchmark accesses its backing database: the Direct

configuration uses the Java Database Connectivity (JDBC) low-level API, while in the EJB

configuration database operations are performed via Enterprise Java Beans (EJBs).4 The

access mode parameter was set to either Standard or WebServices. The latter setting causes

the benchmark to use the Websphere implementation of web services (e.g., SOAP) to access

transaction results. All other parameters retained their default values.

Each of the four benchmarks was warmed up with 5000 steps of the built-in scenario

before tracing a single transaction that retrieves a user’s portfolio information from a back-

end database into Java objects. Our analysis was applied to the portion of that transaction

that retrieves nine holdings from a database. The warm-up phase is necessary to allow

2Instrumentation-based profiling techniques generate accurate call graphs even in the presence of inlining.
3Trade, Websphere and DB2 are available to academic researchers through the IBM Academic Initiative.
4Trade 6 uses the EJB 2 framework.

6.1. Experimental setup 59

Benchmark Allocated Allocated Methods Calls Max
Types Instances Stack

Depth
Direct-Std 30 186 710 4,484 26
Direct-WS 166 5,522 3,308 127,794 53
EJB-Std 82 1,751 1,978 60,936 62
EJB-WS 210 7,088 4,479 184,288 72
Eclipse 168 53,191 1,411 1,081,927 53
Jazz 181 9,470 2,547 170,311 86
CDMS 254 62,066 3,144 1,495,192 50

Table 6.1: Benchmark characteristics

all required classes to be loaded and caches to be populated. Tracing the benchmark in a

steady state is more representative of the behavior of real Web applications.

Because the Trade application consists of a relatively small user code that interacts

with a large amount of framework and library code, the four configurations of the same

application have very different properties and behavior in practice. Therefore, we use these

four configurations as different benchmarks, as have other researchers [SS05]. These dif-

ferences are confirmed by the data in Table 6.1 that presents benchmark characteristics.

Columns 2 and 3 show the total number of distinct types that were allocated and the total

number of instances (i.e., observed object allocations), respectively. The last three columns

show the total number of distinct methods executed, the total number of method invocations

and the maximum depth of the call stack during execution. The results clearly show a large

variation in the characteristics of each benchmark, illustrating the differences between the

libraries used by the four Trade benchmarks. The results also attest to the complexity of

these framework-intensive benchmarks. Note that when the observed scenario in Direct-

WS runs, it allocates 166 types of objects and experiences call stack depths of over 50.

6.1. Experimental setup 60

6.1.2 Eclipse JDT Compiler

We experimented with the Eclipse JDT compiler by tracing a single regression test from

the XLarge test suite. We ran the XLarge suite using JUnit and traced the execution of

the eighth test in the suite, which compiles a complete Java file. Because a new compiler

is instantiated before each test is executed, the Eclipse JDT trace does not correspond to

a steady state of the application. For example, required classes were loaded during the

execution of the test.

6.1.3 Jazz server

Jazz is a scalable collaborative development platform that integrates a number of fea-

tures including work item management directly in the development process. Jazz uses

a client-server architecture, where the clients are integrated development environments

(IDEs) based on Eclipse and the server is based on Websphere. We traced version 1.0M5a

of the Jazz server while a user was executing a query to list all open work items assigned

to him. The query returned a single item. In order to ensure a steady state of the appli-

cation, we performed the query a first time, then performed a different query (in order to

avoid possible caching optimizations), and finally traced another execution of the original

query. We focused the analysis on the part of the trace that fetches the query results from

the database.

6.2. Empirical Results and Interpretation 61

6.1.4 Commercial document management server (CDMS)

This application is a commercial platform that provides management and workflow for

documents. We traced a part of the test suite responsible for storing 10 documents in the

database. There is no processing of the documents themselves; rather, the system stores

metadata about each document in the database. As this software is proprietary and was

made available to us under a strict non-disclosure agreement, it is not possible to disclose

more information about it. Note that in the rest of the discussion, all package names for

classes in this application have been changed to cdms.

6.2 Empirical Results and Interpretation

In this section we present empirical data for metrics presented in Chapter 5, and discuss

specific findings and observations based on the results.

6.2.1 Pruning effects

Recall from Section 3.5 that calls and object allocations performed by a method at run-

time are used to identify unexecuted basic blocks within a method, which are then removed

from the control-flow graph (CFG) of a method and therefore not analyzed. In order to

measure the effectiveness of the basic block pruning on the escape analysis, we analyzed

each benchmark twice: first with all pruning disabled, then with pruning enabled. We mea-

sure the impact of the pruning technique on the scalability of the blended escape analysis in

terms of three different characteristics: pruned basic blocks, execution time and precision

improvements.

6.2. Empirical Results and Interpretation 62

0%

10%

20%

30%

40%

50%

Direct/Std Direct/WS EJB/Std EJB/WS Eclipse Jazz CDMS

39.3%

27.1%
29.3%

42.5%
46.4%

39.9%

44.6%

%
 o

f
b

a
s
ic

 b
lo

c
k
s
 p

ru
n

e
d

Figure 6.1: Pruned basic blocks

Benchmark Analysis time (hh:mm:ss)
Orig Pruned

Direct-Std 00:00:18 00:00:17
Direct-WS 01:34:01 00:04:41
EJB-Std 00:04:24 00:01:46
EJB-WS N/A 29:23:16
Eclipse 24:37:12 06:37:22
Jazz 02:49:55 00:39:06
CDMS 00:04:35 00:02:05

Table 6.2: Analysis times

Pruned basic blocks. Figure 6.1 shows the percentage of basic blocks over all ex-

ecuted methods that have been identified as unexecuted and therefore pruned away. The

results show that the pruning technique is very effective in practice: on average, 38.4%

of basic blocks were removed. Pruning was most effective for the EJB-Std benchmark, in

which nearly half of the basic blocks (46.4%) were pruned away. Even for the Jazz bench-

mark, for which the pruning rate was the lowest, over one quarter (27.1%) of the basic

blocks were identified as unexecuted.

6.2. Empirical Results and Interpretation 63

0

5

10

15

20

25

Direct/Std Direct/WS EJB/Std Eclipse Jazz CDMS

2.2

4.3
3.7

2.5

20.0

1.1

S
p
e
e
d
u
p

Figure 6.2: Speedup due to basic block pruning

Execution time. Since most flow-sensitive analyses need to associate state with each

basic block, pruning executed basic blocks directly translates into a significant reduction of

the memory footprint of the representation of the application. Also, removing basic blocks

implies that the algorithm has less code to analyze, and thus can be expected to run faster. In

order to study the effect of pruning on the overall scalability of our blended escape analysis,

we recorded the total time required to perform the analysis for each benchmark. Table 6.2

shows the times for each benchmark. Note that EJB-WS exhausted the available 2GB of

memory on our test machine when pruning was disabled, and thus no time is provided for it

in the table. Nevertheless, CFG pruning made it possible to analyze this benchmark, which

constitutes a clear gain in scalability.

Figure 6.2 shows the speedup of the analysis due to basic block pruning. The results

show that, as expected, pruning has a clear impact on the analysis time for all benchmarks,

with speedups ranging from 1.1 to 20, and with an average speedup of 5.65. For example,

5An average is provided for reference despite the high variance in the execution times.

6.2. Empirical Results and Interpretation 64

Direct-WS can be analyzed in less than 5 minutes with pruning enabled as opposed to more

than 90 minutes without pruning.

It is interesting to note that a large percentage of pruned basic blocks does not neces-

sarily translate into a higher speedup of the analysis. For example, EJB-Std has the highest

percentage of pruned basic blocks, but the resulting speedup is only 2.5. In contrast, both

Eclipse and Direct-WS have lower pruning rates (29% and 40% respectively), but their

speedups are higher (3.7 for Eclipse, 20 for Direct-WS). This is due to the fact that not all

basic blocks contribute equally to the total cost of the blended escape analysis. There are

several factors that influence the total runtime cost associated with analyzing a given basic

block. First, the instructions that are contained in a basic block determine its base cost. For

example, call instructions are the most expensive to process. Instructions that manipulate

the heap or reference variables also contribute to the cost associated with a given basic

block. Purely scalar instructions, on the other hand, are ignored by the analysis. Pruning

a basic block containing a call is therefore more profitable in terms of potential speedup

than pruning a block that contains a large number of scalar instructions. Moreover, even for

basic blocks that contain call instructions, the cost of analyzing the basic block normally

increases with the number of potential targets for the call. Pruning a basic block containing

a call with many potential targets is thus more likely to result in a significant speedup of

the analysis.

Second, basic blocks that belong to methods that are analyzed repeatedly (i.e., methods

that belong to a large strongly-connected component (SCC) in the calling structure) are

generally more profitable to prune. For instance, the dynamic call graphs for both Direct-

WS and EJB-WS comprise SCCs that have in excess of 200 methods. It is therefore not

6.2. Empirical Results and Interpretation 65

0%

10%

20%

30%

Direct/Std Direct/WS EJB/Std Eclipse Jazz CDMS

13.7%

2.4%

8.9%7.9%

19.0%19.4%

%
 o

f
a
llo

c
a
ti
o

n
 s

it
e
s

Pruned Otherwise improved

Figure 6.3: Disposition improvement (by allocation sites)

surprising that the pruning technique is particularly effective for these two benchmarks.

Precision improvements. In addition to scalability improvements, pruning away un-

executed basic blocks can also lead to increased precision of the blended analysis results.

Specifically, for our blended escape analysis, removing unexecuted code can improve pre-

cision in two ways. First, the contributions of the pruned code to the computed connection

graphs can obviously be avoided, thereby achieving better focus on the actual execution.

Second, pruning can remove some dynamic ambiguity by removing call sites or allocation

sites for which dynamic information could not be matched precisely. For example, if a

method contains two different allocation sites with the same allocated type T, a limitation

of our profiler prevents us from precisely associating object instances of type T found in the

trace to their corresponding sites. Rather, both sites will be identified as potential allocation

sites for each instance of T. If enough information is available to prune away one of the

sites, however, all instances of T will be correctly matched to the remaining site.

6.2. Empirical Results and Interpretation 66

In order to measure the effect of CFG pruning on the precision of the analysis, we

compute the disposition improvement metric. Recall that the disposition of an object is

the final escape state that is assigned to it by the escape analysis. Figure 6.3 displays the

disposition improvement results tallied by abstract objects (i.e., allocation sites). For each

benchmark, the bottom portion of the bar represents objects corresponding to allocation

sites that the pruning technique marked as unexecuted and that were therefore pruned away.

The top portion of the bar shows the percentage of objects for which the pruned analysis

computed a more precise disposition. The results show that between 4.5% and 25.5% of

the objects benefit from the pruning algorithm. Identification of unexecuted allocation sites

is responsible for 53% to 100% of the improvements, and is clearly the most effective

aspect of the pruning algorithm. However, Figure 6.3 also shows that a small number of

objects are assigned a more precise disposition, up to 6.5% in the case of the Direct-WS

benchmark.

Note that in the remaining sections, we only report the results of the pruned algorithm

in our discussions of the metrics.

6.2.2 Disposition

Recall that in our blended escape analysis objects can receive one of three possible dis-

positions: captured, escaping, and mixed. For the purpose of identifying temporaries, we

are interested in captured objects. In order to assess the relative importance of temporaries

in framework-intensive applications, we measure the disposition breakdown, that is the

percentage of all object instances that correspond to each disposition. Figure 6.4 shows

6.2. Empirical Results and Interpretation 67

0%

25%

50%

75%

100%

Direct/Std Direct/WS EJB/Std EJB/WS Eclipse Jazz CDMS

56.9%

74.3%

26.3%

42.1%

32.3%

51.6%

33.9%

%
 o

f
d

y
n

a
m

ic
 o

b
je

c
t

in
s
ta

n
c
e
s

Captured Mixed Escaping

Figure 6.4: Disposition breakdown (by object instances)

disposition breakdown results across all benchmarks. On average, 45.3% of all object in-

stances never escape globally, clearly indicating that temporaries account for a significant

portion of allocated objects in framework-intensive applications. Moreover, only 2.3% of

instances fall in the mixed category across all benchmarks, showing that a vast majority

of objects can be categorized as either captured or globally escaping, even in the presence

of dynamic imprecision. Eclipse has the highest percentage of mixed disposition instances

with 11% and the lowest percentage of captured instances.

6.2.3 Capturing depth

Because the empirical results for the disposition breakdown metric suggest that tempo-

raries are common in framework-intensive applications, it is necessary to understand how

6.2. Empirical Results and Interpretation 68

0%

25%

50%

75%

0 1 2 3 4 5 6-19

%
 o

f
in

s
ta

n
c
e
s

Capturing depth

Direct/Std Direct/WS
EJB/Std EJB/WS
Eclipse Jazz
CDMS

Figure 6.5: Capturing depth (by instances)

temporaries are used in practice. The capturing depth metric attempts to measure how far

temporaries are propagated from their allocation sites. Recall that this metric measures the

length of the acyclic path in the calling structure from allocation to capture of an object.

Figure 6.5 shows the distribution of capturing depths tallied by object instances for all

benchmarks. On average, 33% of the instances are captured in their allocating methods

(depth 0), and 18.6% are captured in a direct caller of their allocating method (depth 1).

Modern JIT compilers often employ local escape analyses (i.e., within a single method) that

are likely to be effective at identifying and optimizing these temporaries. However, nearly

half of the instances (48.4%) are captured more than one call away from their allocating

methods, requiring an interprocedural escape analysis.

The capturing depth metric also shows that for some benchmarks temporary usage is

very complex. For example, in the EJB-Std benchmark, more than 11% of instances are

captured 6 or more calls away from their allocating method. Also, capturing depths often

6.2. Empirical Results and Interpretation 69

exceed 10 calls (and can reach up to 19 calls). Note that temporaries can also be passed

down transitively to callees, so the capturing depth only represents a lower bound on the

number of methods involved in manipulating a particular instance. Clearly, attempting to

manually explore the behavior of temporaries using either source code inspection or low-

level dynamic traces is a complex and difficult task. Tool support is therefore required

to assist developers in understanding how temporaries flow through framework-intensive

applications.

6.2.4 Concentration

The concentration metric aims to determine if temporaries are concentrated in a few specific

regions of the program, or if their use is spread across multiple program regions. We mea-

sure the percentage of temporaries captured by the top 5%, 10% and 20% of the capturing

methods (or alternatively capturing CCT contexts). Figure 6.6a shows the concentration

results by capturing methods. The results indicate that about half of the temporaries, on

average, are explained by the top 5% capturing methods. To a user trying to identify object

sources of object churn, this means that our analysis can reduce the set of methods to be

examined to 5% of all capturing methods. Note that because the concentration metric only

considers capturing methods, the set of methods to be considered most often represents

even less than 5% of all executed methods.

In the case of Eclipse, the top four capturing methods account for over 75% of the

temporaries, while the top 5% methods explain 88.4% of all captured instances. These

unusual results are largely due to the fact that this benchmark first populates a cache by

6.2. Empirical Results and Interpretation 70

0%

25%

50%

75%

100%

Direct/Std Direct/WS EJB/Std EJB/WS Eclipse Jazz CDMS

66.8%
62.2%

88.4%

51.2%

42.0%

54.3%

29.0%

%
 o

f
c
a
p

tu
re

d
 i
n

s
ta

n
c
e
s

5% 10% 20%

(a) By capturing methods

0%

25%

50%

75%

100%

Direct/Std Direct/WS EJB/Std EJB/WS Eclipse Jazz CDMS

51.1%
46.3%

92.4%

54.5%52.7%55.8%

29.0%

%
 o

f
c
a
p

tu
re

d
 i
n

s
ta

n
c
e
s

5% 10% 20%

(b) By capturing contexts

Figure 6.6: Concentration results

6.2. Empirical Results and Interpretation 71

loading and parsing classes from the disk (e.g., creating temporaries to read compressed

archives). Other benchmarks show a different concentration of temporaries. For example,

in the case of EJB-Std, 42% of the instances are explained by the top 5% of the capturing

methods, or 2 out of the 31 capturing methods. Note that our blended escape analysis

already focuses attention from 1979 observed methods down to just 31 capturing methods.

In all benchmarks, the top 20% of methods explain the majority of captured instances

(between 58.1% and 98.0% for Direct-Std and Eclipse, respectively). In EJB-Std, the top

20% of capturing methods explain 71.4% of the instances.

Figure 6.6b shows the concentration results by capturing CCT contexts rather than by

methods. Clearly, there is a strong similarity between both sets of results. For example,

Direct-WS and Eclipse show very similar concentrations when measured by methods or

contexts. For some benchmarks, however, the difference is more significant. In CDMS, for

instance, the top 5% of capturing methods explain 15% more instances than the top 5% of

capturing contexts. This discrepancy is due to the fact that some methods are called from

many distinct paths, with varied escape behavior. This is typical of applications that make

heavy use of frameworks. A top capturing method therefore explains all of the temporaries

that are captured by each of its corresponding CCT contexts, whether they are top capturing

or not.

6.2.5 Complexity of data structures

Recall that in order to study temporaries as part of larger data structures, we defined five

metrics that quantify various characteristics of each temporary data structure: number of

6.2. Empirical Results and Interpretation 72

types, number of allocating methods, number of merged abstract objects, height of data

structure, and maximum capturing distance. Each metric is computed by occurrences (i.e.,

by only counting instances of the root of a data structure) as well as by instances (i.e., by

counting all object instances that comprise a data structure). Observe that the distinction

between data structure occurrences and instances effectively changes the object popula-

tion being considered (and thus affects percentages computed with respect to the set of all

objects).

Figure 6.7 shows the number of types in captured data structures. While the results tal-

lied by occurrences (a) might at first suggest that most data structures are relatively simple

in structure, the instance-weighted metrics (b) reveal a more nuanced picture. For Jazz,

half of the captured instances occur in data structures containing 4 or more types. Even in

the simpler EJB-Std benchmark, 29.3% of the instances are from temporary structures with

at least 3 types. Direct-WS has the most complex temporaries, with 8.1% of its instances

originating from data structures containing 6 or more distinct types, with some structures

reaching up to 10 types. Despite the relatively low percentage of temporaries in CDMS that

fall into the 6 types or more category, the benchmark features highly complex data struc-

tures. For example, 1480 instances in total are part of data structures with at least 6 distinct

types, including 532 instances in data structures with 10 to 12 types. A more thorough

discussion of temporaries in CDMS is presented is Section 6.3.

Figure 6.8 presents the results for the number of allocating methods in data structures

across all benchmarks, and Figure 6.9 shows the results for the number of merged abstract

objects. Recall from Section 4.3.1 that merged abstract objects are a dynamic object ab-

straction that combines all abstract objects (i.e., allocation sites) of a single type within the

6.2. Empirical Results and Interpretation 73

0%

25%

50%

75%

100%

1 2 3 4 5 6+

%
 o

f
c
a
p

tu
re

d
 o

c
c
u
rr

e
n
c
e
s

Number of types

Direct/Std Direct/WS EJB/Std EJB/WS
Eclipse Jazz CDMS

(a) By occurrences

0%

25%

50%

75%

100%

1 2 3 4 5 6+

%
 o

f
c
a
p

tu
re

d
 i
n
s
ta

n
c
e
s

Number of types

Direct/Std Direct/WS EJB/Std EJB/WS
Eclipse Jazz CDMS

(b) By instances

Figure 6.7: Number of types in data structures

same allocating method. Clearly, there is a strong similarity between the number of types

(Figure 6.7), the number of allocating methods (Figure 6.8) and the number of merged al-

location sites (Figure 6.9). This correlation suggests that most methods creating part of a

data structure allocate instances of a single type during execution.

Figure 6.10 shows the height of data structures for each benchmark.

Figure 6.11 shows the maximum capturing distance metric results for all benchmarks.

Recall that this metric measures the length of the longest acyclic part from allocation to

6.2. Empirical Results and Interpretation 74

0%

25%

50%

75%

100%

1 2 3 4 5 6+

%
 o

f
c
a
p

tu
re

d
 o

c
c
u
rr

e
n
c
e
s

Number of allocating methods

Direct/Std Direct/WS EJB/Std EJB/WS
Eclipse Jazz CDMS

(a) By occurrences

0%

25%

50%

75%

100%

1 2 3 4 5 6+

%
 o

f
c
a
p

tu
re

d
 i
n
s
ta

n
c
e
s

Number of allocating methods

Direct/Std Direct/WS EJB/Std EJB/WS
Eclipse Jazz CDMS

(b) By instances

Figure 6.8: Number of allocating methods per data structure

capture over all objects contained in a data structure. There is again a clear similarity

between the maximum capturing distance in data structures and the capturing depth results

from Figure 6.5. This suggests that most non-trivial data structures (i.e., those with at least

two objects) are composed of objects that were created at similar depths in the capturing

subtrees of the CCT. There are however some notable differences between the capturing

depth results from Figure 6.5 and the maximum depths from Figure 6.11. For instance,

Eclipse has 33.6% and 30.8% of instances that are capturing 1 and 3 levels away from their

6.2. Empirical Results and Interpretation 75

0%

25%

50%

75%

100%

1 2 3 4 5 6+

%
 o

f
c
a
p

tu
re

d
 o

c
c
u
rr

e
n
c
e
s

Number of allocating methods

Direct/Std Direct/WS EJB/Std EJB/WS
Eclipse Jazz CDMS

(a) By occurrences

0%

25%

50%

75%

100%

1 2 3 4 5 6+

%
 o

f
c
a
p

tu
re

d
 i
n
s
ta

n
c
e
s

Number of merged abstract objects

Direct/Std Direct/WS EJB/Std EJB/WS
Eclipse Jazz CDMS

(b) By instances

Figure 6.9: Number of merged abstract objects in data structures

allocation, respectively (as seen in Figure 6.5). However, Figure 6.11b shows that only

3.1% of data structure instances are captured at depth 1, but that 61.1% of them are captured

at depth 3 instead. This suggests that Eclipse builds a large number of data structures

that are allocated at depth 3 and then extended with other objects further up in the CCT.

Also, 37% of data structure occurrences in EJB-Std are captured at least 6 calls away from

their furthest allocation, as compared to 12% of the total instances for the same category.

This means that a developer inspecting the source code to try to identify problematic data

6.2. Empirical Results and Interpretation 76

0%

25%

50%

75%

100%

0 1 2 3 4 5 6

%
 o

f
c
a
p

tu
re

d
 o

c
c
u
rr

e
n
c
e
s

Height of data structure (in calls)

Direct/Std Direct/WS EJB/Std EJB/WS
Eclipse Jazz CDMS

(a) By occurrences

0%

25%

50%

75%

100%

0 1 2 3 4 5 6

%
 o

f
c
a
p

tu
re

d
 i
n
s
ta

n
c
e
s

Height of data structure (in calls)

Direct/Std Direct/WS EJB/Std EJB/WS
Eclipse Jazz CDMS

(b) By instances

Figure 6.10: Height of data structures

structure usage in this benchmark would frequently encounter situations where temporaries

are assembled and propagated through a large number of methods. Such situations are

difficult to discern and handle without proper tool support.

6.3. Performance understanding in CDMS 77

0%

25%

50%

75%

100%

0 1 2 3 4 5 6+

%
 o

f
c
a
p

tu
re

d
 o

c
c
u
rr

e
n
c
e
s

Maximum capturing distance

Direct/Std Direct/WS EJB/Std EJB/WS
Eclipse Jazz CDMS

(a) By occurrences

0%

25%

50%

75%

100%

0 1 2 3 4 5 6+

%
 o

f
c
a
p

tu
re

d
 i
n
s
ta

n
c
e
s

Maximum capturing distance

Direct/Std Direct/WS EJB/Std EJB/WS
Eclipse Jazz CDMS

(b) By instances

Figure 6.11: Maximum capturing distance per data structure

6.3 Performance understanding in CDMS

In this section we demonstrate how blended escape analysis can be used to aid performance

understanding. In our usage scenario we assume the user is exploring dynamic informa-

tion with a tool such as Jinsight or ArcFlow, to identify suspect regions for object churn.

Table 6.3 shows the typical information that is obtained from such profilers6, namely a list

6We used Jinsight to compute the information.

6.3. Performance understanding in CDMS 78

Type Instances % of total
char[] 7732 24.92%
java.lang.String 6841 22.04%
java.lang.StringBuilder 5198 16.75%
byte[] 1489 4.80%
java.lang.StringBuffer 957 3.08%
java.util.HashMap$Entry 908 2.93%
java.lang.Integer 859 2.77%
java.lang.Object[] 678 2.18%
java.util.AbstractList$Itr 457 1.47%
cdms.Id 420 1.35%
(+ 244 more classes. . .)

Table 6.3: Top allocated types with instance counts in CDMS

of types that were most frequently instantiated. Even though this ranked list accounts for

more than half of the allocations recorded in the trace, it yields very little useful informa-

tion. The top allocated types are clearly string-related, but more information is needed in

order to determine how these objects are created and used throughout the program.

We use the results of the blended escape analysis to provide additional insight into

the profiled program region. Recall from Section 4.3.1 that because our blended escape

analysis is based on a static object abstraction, we refine our results using the dynamic

information to reflect allocations that actually occurred. This postprocessing step aids un-

derstanding by removing extraneous objects from consideration at each calling context,

and, more importantly, by providing instance counts with each escape state, so the user

can assess the magnitude of a potential problem. Our aim is to help the user understand

the usage of temporary data, to identify areas that can be optimized. First, by computing

the number of instances captured at each calling context, we can guide the user toward

regions that make the heaviest use of temporaries. We can also expose the connectivity of

temporaries, to enable their understanding as data structures rather than individual objects.

6.3. Performance understanding in CDMS 79

All capturing contexts

Total of 34778 instances

method instances

PropertiesImpl.isPropertyPresent 1120 3%

PropertiesImpl.isPropertyPresent 1120 3%

PropertiesImpl.isPropertyPresent 1120 3%

String.toLowerCase 1120 3%

String.toLowerCase 1120 3%

PropertiesImpl.isPropertyPresent 1120 3%

String.toLowerCase 1120 3%

String.toLowerCase 1120 3%

PutContentHandler.getContentArea 720 2%

DBStatementBase.setBinding 480 1%

PropertiesImpl.get 460 1%

String.toLowerCase 460 1%

String.toLowerCase 440 1%

String.toLowerCase 440 1%

ClassInfo.getPropertyInfoNoError 440 1%

PropertiesImpl.get 440 1%

BaseContentArea.queueRollFwdRequest 404 1%

PropertiesImpl.get 380 1%

RequestBrokerImpl.executeChanges 380 1%

String.toLowerCase 380 1%

SubscriptionProcessor.getSubscriptionStatement 340 1%

MessageFormat.applyPattern 300 1%

AccessControlList.AccessControlList 300 1%

SecurityContext.isSidPresent 240 1%

MessageFormat.format 240 1%

String.toLowerCase 200 1%

SecurityServer.hasConnectAccess 180 1%

IndependentPersister.checkCreatePermissions 180 1%

SecurityDescriptor.getEffectiveAccess 180 1%

db.k 180 1%

b.a 160 0%

LittleEndianUtil.writeInt 160 0%

GeneratedMethodAccessor74.invoke 140 0%

IndependentPersister.prepareNewSecurity 120 0%

Format.format 120 0%

SecurityContext.isSidPresent 120 0%

yg.c 120 0%

Figure 6.12: Top capturing contexts, as identified by our analysis. Note that method names
that appear more than once correspond to different call paths leading to that method (i.e.,
different calling contexts).

Our technique allows users to browse individual details to understand the disposition of

particular objects at each calling context.

Top capturing contexts. Figure 6.12 shows a fragment of the information provided to

the user by our blended escape analysis tool. It consists of a list of the top capturing CCT

contexts and the number of instances they explain. The method names associated with these

contexts already provide some insights into the behavior of the program. Clearly, checking

for the existence of some properties and converting strings to a lowercase result in a very

large number of temporaries being created. Note that the isPropertyPresent method

is called 5370 times in the short trace under investigation. This method appears 4 times

in the top capturing contexts from Figure 6.12 (corresponding to each context in which

is it called), and each context explains 1120 temporaries, for a total of 4480 temporaries

6.3. Performance understanding in CDMS 80

cdms.PropertiesImpl.isPropertyPresent(Ljava/lang/String;)Z (context 15014)

CAPTURED

ARG_ESCAPED

1120 java.lang.String

 (2 possible alloc sites)

1120 char[]

1120 instances:

 1120 java.lang.String

1120 instances:

 1120 char[]

Figure 6.13: Reduced connection graph for PropertiesImpl.isPropertyPresent

(65% of all allocated String instances). A quick investigation of the reduced connection

graphs for each of the four contexts reveals that they are all identical to the one shown in

Figure 6.13.

Figure 6.13 shows that all of the objects captured by the isPropertyPresent

method are strings.7 In order to understand where the strings originate, our tool com-

putes a pruned version of the CCT where only interesting contexts are shown. A context is

considered interesting if it allocates or captures objects; all other contexts are elided from

the CCT. Figure 6.14 shows this reduced CCT representation for one context representing

the isPropertyPresent method.

PropertiesImpl.isPropertyPresent (indirectly) calls String.toLower-

7Note that the char[] objects are not captured because of an optimization in the Java libraries that allows
multiple String objects to share their underlying character arrays.

6.3. Performance understanding in CDMS 81

StringBuilder.<init>
Allocs: 1120

String.toLowerCase
Captures: 1120 Allocs: 1120 

Proper>esImpl.isPropertyPresent
Captures: 1120 

StringBuilder.toString
Allocs: 1120 

Figure 6.14: Interesting contexts rooted at PropertiesImpl.isPropertyPresent

Figure 6.15: Reduced connection graph for String.toLowerCase

Case, which is responsible for creating the String temporaries. Recall from Figure 6.12

that String.toLowerCase is itself a top capturing context. Its reduced connection

graph appears in Figure 6.15. As expected, it allocates a temporary StringBuilder

object which is then discarded, and a freshly created String is returned to the caller, as

shown in Figure 6.15.

The problem illustrated here, while simple in nature, is widespread throughout the ap-

plication. Thousands of temporaries are created simply to ensure that property descriptors

do not contain uppercase letters. It would be much more efficient to enforce this invariant

by sanitizing all inputs only once before being used in the entire system.

6.3. Performance understanding in CDMS 82

Checking for access Continuing the investigation, our analysis points out another

intesting method from the point of view of object churn: SecurityServer.hasCon-

nectAccess, which explains 180 captured instances. The reduced connection graph for

this method appears in Figure 6.16.

The hasConnectAccess method was invoked 20 times in the trace, and as shown in

Figure 6.16, it created 20 SecurityDescriptor structures, one per invocation. While

this looks like a significant overhead, it is only part of the full story. The invocation of

this method triggers a series of calls that result in 1000 objects being created, 880 of which

never escape the hasConnectAccess method. The pruned CCT rooted at this method

appears in Figure 6.178.

Figure 6.17 shows that every time hasConnectAccess is called, a fresh security

descriptor is created and initialized by deserializing a stream of bytes. A quick search

through the results indicates that this behavior is present in two additional parts of the pro-

gram. Because SecurityDescriptor instances are created for specific Id instances,

caching SecurityDescriptors within their associated Id objects would prevent most

of these temporaries from being created repeatedly. It is also worth noting that the behav-

ior described here is guarded by a global flag that determines whether security checks

are enabled. During performance testing, it is conceivable that such checks could be dis-

abled, thus leading to very different performance characteristics for the application. This

kind of situation often happens in practice, and illustrates the importance of comprehen-

sive performance testing as well as the necessity to develop tools and techniques to analyze

applications after deployment.

8Note that due to space limitations, certain allocating contexts have been left out of the figure.

6.3. Performance understanding in CDMS 83

cdms.SecurityServer.hasConnectAccess(Lcdms/Id;)Z (context 16430)

CAPTURED

GLOBALLY_ESCAPED

20 byte[]

40 java.lang.Object[]

40 cdms.AccessControlEntry

20 cdms.Id 40 cdms.AccessControlList

40 java.util.ArrayList

20 cdms.SecurityDescriptor

180 instances:

 20 byte[]

 20 cdms.Id

 40 cdms.AccessControlList

 20 cdms.SecurityDescriptor

 40 java.lang.Object[]

 40 java.util.ArrayList

40 byte[]

40 cdms.SecurityId

120 instances:

 40 byte[]

 40 cdms.AccessControlEntry

 40 cdms.SecurityId

Figure 6.16: Reduced connection graph for SecurityServer.hasConnectAccess

6.3. Performance understanding in CDMS 84

LittleEndianUtil
readInt

40 captured, 40 new

LittleEndianUtil
readInt

80 captured, 80 new

SecurityServer
hasConnectAccess

180 captured

SecurityDescriptor
getEffectiveAccess

60 captured, 40 new

LittleEndianUtil
readIntFromBytes

80 captured

GCDObject
getAttribute

20 captured, 20 new

SecurityDescriptor
deserialize

60 new

PermissionSource
getInstanceFromInt
40 captured, 40 new

AceAccess
getInstanceFromInt
40 captured, 40 new

LittleEndianUtil
readShort

40 captured, 20 new

SecurityDescriptor
loadFromBytes

100 captured, 40 new

AccessControlList
deserialize

80 new

AccessControlEntry
deserialize
120 new

LittleEndianUtil
readIntFromBytes

40 captured

LittleEndianUtil
readShort

80 captured, 40 new

SecurityContext
isSidPresent
80 captured

Figure 6.17: Interesting contexts rooted at SecurityServer.hasConnectAccess
allocate 1000 instances and captures 880 of them.

Discussion By focusing on where objects are used, rather than on where they are al-

located, our technique is able to aggregate disparate events into a single summary for the

user to focus on. By postprocessing the blended escape analysis using the CCT, and by

retaining distinct escape information along different paths in the blended analysis, we are

able to provide results relevant to the region we are studying. The postprocessing step also

allows us to remove extraneous information.

In the future, we would like to automate many of the steps described in this chapter. For

example, automatically identifying subtrees in the CCT that are responsible for significant

6.3. Performance understanding in CDMS 85

object churn (e.g., Figure 6.17), while greatly simplified by our technique, still heavily

relies on manual exploration.

86

Chapter 7

Conclusions and future work

The growing availability of reusable software components has led to faster development

of complex systems at the cost of an increase in runtime complexity. Framework-intensive

applications typically exhibit different runtime characteristics from traditional applications.

Understanding the behavior of framework-intensive applications is often difficult or even

impossible with the current static and/or dynamic analysis tools. We have shown that

blended analysis makes it possible to analyze these applications with great precision and at

practical cost.

7.1 Blended analysis

We have presented the blended analysis paradigm, a new analysis technique that narrows

the focus of a static analysis to a set of executions of interest. This is accomplished by

recording a lightweight dynamic profile from which a calling structure is derived and using

it to limit the scope of a static analysis. Blended analysis preserves many of the advan-

tages of a full dynamic analysis, such as the ability to handle dynamic class loading and

7.2. Empirical evaluation 87

reflection, the increased scalability and precision, while maintaining the amount of runtime

overhead to a minimal level.

We have also developed an optimization technique for blended analyses that further

reduces the amount of code that is examined by pruning away unexecuted basic blocks in-

traprocedurally. The optimization technique relies on observed calls and allocations as ev-

idence of the non-execution of basic blocks. The additional dynamic information required

for this optimization is inexpensive to record, and results in significant analysis speedups

in practice.

Finally, we have designed and implemented Elude, a general framework for blended

analysis of Java applications. Elude allows new blended analyses to be implemented

quickly and easily. By leveraging the popular WALA analysis framework, Elude ensures

that a rich infrastructure is avaible to analysis implementors.

7.2 Empirical evaluation

We have used Elude to instantiate the blended analysis paradigm by developing a blended

escape analysis focused on object churn, a common performance problem in framework-

intensive applications caused by the excessive creation of temporary objects. Blended

escape analysis provides an approximation of object lifetimes during execution, thereby

allowing us to pinpoint excessive temporary usage in large, framework-intensive applica-

tions.

We have defined a set of new metrics that characterize both the usage and complex-

ity of temporary data structures. We have applied them to a set of 7 open-source and

7.3. Future work 88

commercial framework-intensive applications, and performed a detailed analysis of the re-

sults. Furthermore, we have demonstrated the effectiveness of our approach by performing

a detailed investigation of a commercial framework-intensive application, revealing prob-

lematic scenarios.

7.3 Future work

The blended analysis framework that we have developed and presented in Section 3.6 pro-

vides an ideal vehicle for further exploration of the blended analysis paradigm. In the

future, we would like to continue to design new tools and techniques to gain a better un-

derstanding of framework-intensive applications. We intend to start our exploration by

extending the blended analysis work in three ways: (i) designing automated solutions to

the object churn problem, (ii) designing new blended analyses to study and solve other

important problems in framework-intensive applications (e.g. security), and (iii) investi-

gating other possible combinations of static and dynamic analysis techniques, as well as

their benefits and costs.

7.3.1 Automatic optimizations for the removal of object churn

Chapter 6 has demonstrated that blended escape analysis is an effective technique to iden-

tify program locations responsible for significant churn. We plan to extend this work to

provide tools and techniques to automate the discovery and removal of object churn. To

this end, two main problems need to be addressed. First, it is necessary to investigate ways

to identify groups of methods that are collectively responsible for object churn. Often, the

7.3. Future work 89

compound impact of temporary usage in a given program region can be much more sig-

nificant than any of the individual method results indicate. Therefore, is it important to

investigate ways to identify such program regions automatically, and to find effective ways

to present this information to the user.

Also, techniques need to be designed to automatically ameliorate object churn. Cur-

rently, the burden of fixing the problem is still left to the developer. Possible optimization

techniques include code transformations within a software component as well as code spe-

cialization of one or more components to fine tune their interaction. We plan to study and

classify causes of object churn that occur in practice. From this classification, it will be

possible to establish a compendium of best practices for developers, and more importantly

to devise specific solutions for each situation that can be automatically applied. These

techniques will need to be evaluated on larger set of representative framework-intensive

applications.

7.3.2 Applying blended analysis to other problems in framework-

intensive applications

Blended analysis has many potential applications outside of object churn and performance

understanding. For example, it could be applied to the security domain, in particular to

taint analysis. Taint analysis is used to identify a wide range of security vulnerabilities

such as SQL injection and cross-site scripting (XSS), but it is known to be very costly

and thus difficult to scale with reasonable precision to common web applications, either

dynamically [NS05] or statically [TPF+09]. A blended taint analysis would benefit from

7.3. Future work 90

a much improved scalability and provide better information than can be obtained using

current techniques.

Another mostly unexplored use for blended analysis consists of studying the flow of

data in framework-intensive applications. Because the vast majority of web applications

are data-centric in nature, most program understanding techniques that rely on traditional

control flow are inappropriate in this context. It is therefore important to devise new tools

that can accurately represent object usage through the entire program. There are two main

challenges in this work. First, new value-flow analyses that achieve the right balance be-

tween precision and scalability have to be designed. Second, the overwhelming amount

of information computed by these analyses have to be distilled in order to be presented

to developers. We intend to study recent work in large-scale software visualization tech-

niques in order to find ways to present the information that allows developers to quickly

and efficiently gain a better understanding of their applications. Integration with integrated

developments environments (IDEs) is an interesting direction for building research proto-

types for the visualization tools.

7.3.3 Combinations of static and dynamic analyses

We intend to expand the notion of blended analysis and explore the design space of com-

bined static and dynamic analyses. The cost and precision of a blended analysis are influ-

enced by three main factors: (i) the profiling methodology, (ii) the call representation used

to trigger the static analysis, and (iii) the static analysis algorithm itself. Note that these

factors are not independent from each other: the profiling methodology limits the possible

7.3. Future work 91

call representations that can be derived from the execution trace for instance.

We want to explore alternative call representations using the existing dynamic profiles

by designing alternative aggregation strategies. Our current aggregation schemes can pro-

duce call graphs and CCTs from a full call tree. Call graphs are small and easy to analyze,

at the cost of heavily conflated behavior. CCTs are more precise, but are often an order

of magnitude larger than call graphs with respect to the number of nodes they contain.

We therefore intend to devise new, non-uniform aggregation strategies that would provide

precision where needed without the typical increase in the size of the resulting calling struc-

ture. For example, containers in Java are known to cause imprecision in static analyses. By

representing calls from containers in a more precise manner (e.g., using an object-sensitive

representation), this problem could be greatly reduced. While a larger call representation

generally translates into a more costly analysis, the precise impact of each aggregation strat-

egy needs to be evaluated. It is often the case that increasing the precision of an analysis

decreases its running time, because the adverse effects of overapproximations are avoided.

Also, a more precise call representation would contain many copies of the same method.

It is possible to design analyses that exploit this fact (e.g. by reusing previously computed

results) in order to limit the runtime increase due to a larger call representation.

Additionally, the profiling methodology used to collect the execution trace deserves

further exploration. Profiling framework-intensive applications would ideally be almost

invisible to the end users, thereby allowing the collection of large amounts of data from

long-running processes. Intuitively, sampling techniques could greatly reduce the profiling

overhead, but their effect on the precision of the static analysis needs to be evaluated. On

the other hand, it would be interesting to investigate the possibility of collecting more

7.3. Future work 92

information in the profile, such as call sites and allocation sites. The current profiling

technology used in the research prototype does not allow this information to be recorded.

This missing information in turn causes greater imprecision for the static analysis, and can

negatively affect both the cost and the usefulness of the results.

93

Bibliography

[ABL97] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware per-
formance counters with flow and context sensitive profiling. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Las Vegas, Nevada, USA, 1997, pages 85–96. ACM
Press.

[ABLU00] W. P. Alexander, R. F. Berry, F. E. Levine, and R. J. Urquhart. A unifying
approach to performance analysis in the Java environment. IBM Systems Jour-
nal, 39(1):118–134, 2000.

[ACGS04] Glenn Ammons, Jong-Doek Choi, Manish Gupta, and N. Swamy. Finding
and removing performance bottlenecks in large systems. In Proceedings of
the European Conference on Object-Oriented Programming (ECOOP), 2004.

[AEGK07] Shay Artzi, Michael D. Ernst, David Glasser, and Adam Kiezun. Combined
static and dynamic mutability analysis. In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering (ASE), 2007,
pages 104–113.

[BH99] Jeff Bogda and Urs Hölzle. Removing unnecessary synchronization in Java. In
Proceedings of the ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA), 1999, pages 35–46.
ACM Press.

[BHT08] D. Beyer, T. A. Henzinger, and G. Theoduloz. Program analysis with dynamic
precision adjustment. In Proceedings of the IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), 2008, pages 29–38. IEEE
Computer Society Press, Washington, DC, USA.

[BSF04] Matthew Q. Beers, Christian H. Stork, and Michael Franz. Efficiently verifi-
able escape analysis. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), 2004, pages 96–122. Springer.

[CGS+99] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar,
and Sam Midkiff. Escape analysis for Java. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), 1999, pages 1–19. ACM Press.

http://doi.acm.org/10.1145/258915.258924
http://doi.acm.org/10.1145/258915.258924
http://doi.acm.org/10.1145/320384.320388
http://dx.doi.org/10.1109/ase.2008.13
http://dx.doi.org/10.1109/ase.2008.13
http://doi.acm.org/10.1145/320384.320386

Bibliography 94

[CGS+03] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar,
and Samuel P. Midkiff. Stack allocation and synchronization optimizations for
Java using escape analysis. ACM Transactions on Programming Languages
and Systems (TOPLAS), 25(6):876–910, 2003.

[CodePro] Codepro profiler.
<http://www.instantiations.com/codepro/profiler/> .

[CS05] C. Csallner and Yannis Smaragdakis. Check ’n’ Crash: Combining static
checking and testing. In Proceedings of the International Conference on Soft-
ware Engineering (ICSE), 2005.

[CS06] C. Csallner and Yannis Smaragdakis. DSD-Crasher: A hybrid analysis tool for
bug finding. In Proceedings of the ACM SIGSOFT International Symposium
on Software Testing and Analalysis (ISSTA), 2006, pages 245–254.

[DGC01] David David Grove and Craig Chambers. A framework for call graph con-
struction algorithms. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 23(6):685–746, 2001.

[DJM+02] Wim DePauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John Vlissides, and
Jeana Yang. Visualizing the execution of Java programs. In Software Visual-
ization: State of the Art Survey, LNCS 2269, 2002.

[Ern03] Michael Ernst. Static and dynamic analysis: Synergy and duality. In Proceed-
ings of the International Workshop on Dynamic Analysis (WODA), 2003.

[FLL+02] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata.
Extended static checking for Java. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI), 2002,
pages 234–245.

[GDDC97] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph
construction in object-oriented languages. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), Atlanta, Georgia, United States, 1997, pages 108–
124. ACM Press, New York, New York, USA.

[GJ06] Alex Groce and Rajeev Joshi. Exploiting traces in program analysis. In Pro-
ceedings of the International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), 2006.

[GKS05] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random
testing. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2005.

[GS00] David Gay and Bjarne Steensgaard. Fast escape analysis and stack allocation
for object-based programs. In Proceedings of the International Conference on
Compiler Construction (CC), 2000, pages 82–93. Springer-Verlag.

http://doi.acm.org/10.1145/945885.945892
http://doi.acm.org/10.1145/945885.945892
http://www.instantiations.com/codepro/profiler/
http://doi.acm.org/10.1145/506315.506316
http://doi.acm.org/10.1145/506315.506316
http://doi.acm.org/10.1145/263698.264352
http://doi.acm.org/10.1145/263698.264352

Bibliography 95

[GSH97] Rajiv Gupta, Mary Lou Soffa, and John Howard. Hybrid slicing: Integrat-
ing dynamic information with static analysis. ACM Transactions on Software
Engineering and Methodology (TOSEM), 6(4), October 1997.

[HBM+06] Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn S. McKin-
ley, and Darko Stefanovic. Generating object lifetime traces with Merlin. ACM
Transactions on Programming Languages and Systems (TOPLAS), 28(3):476–
516, 2006.

[HPROF] Hprof: A heap/cpu profiling tool.
<http://java.sun.com/developer/technicalarticles/programming/hprof.html> .

[IKN09] Hiroshi Inoue, Hideaki Komatsu, and Toshio Nakatani. A study of memory
management for web-based applications on multicore processors. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2009.

[LH03] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using
Spark. In Proceedings of the International Conference on Compiler Construc-
tion (CC), April 2003, volume 2622 of LNCS, pages 153–169.

[LH06] Ondřej Lhoták and Laurie Hendren. Context-sensitive points-to analysis: is it
worth it? In A. Mycroft and A. Zeller, editors, Proceedings of the Interna-
tional Conference on Compiler Construction (CC), March 2006, volume 3923
of LNCS, pages 47–64. Springer, Vienna.

[MACE02] Markus Mock, Darren Atkinson, Craig Chambers, and Susan Eggars. Im-
proving program slicing with dynamic points-to data. In Proceedings of the
International Symposium on the Foundations of Software Engineering (FSE),
2002.

[MHM98] Sungdo Moon, Mary Hall, and Brian Murphy. Predicated array data-flow anal-
ysis for run-time parallelization. In Proceedings of the International Confer-
ence on Supercomputing (ICS), 1998.

[Mit06] Nick Mitchell. The runtime structure of object ownership. In Proceedings of
the European Conference on Object-Oriented Programming (ECOOP), 2006.

[MR90] Thomas J. Marlowe and Barbara G. Ryder. Properties of data flow frame-
works: A unified model. Acta Informatica, 28:121–163, 1990.

[MRR05] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized ob-
ject sensitivity for points-to analysis for Java. ACM Transactions on Software
Engineering and Methodology (TOSEM), 14(1):1–41, 2005.

[MS03] Nick Mitchell and Gary Sevitsky. LeakBot: An automated and lightweight
tool for diagnosing memory leaks in large Java applications. In Proceedings of
the European Conference on Object-Oriented Programming (ECOOP), 2003.

http://doi.acm.org/10.1145/1133651.1133654
http://java.sun.com/developer/technicalarticles/programming/hprof.html
http://portal.acm.org/citation.cfm?id=1542476.1542520
http://portal.acm.org/citation.cfm?id=1542476.1542520
http://doi.acm.org/10.1145/1044834.1044835
http://doi.acm.org/10.1145/1044834.1044835

Bibliography 96

[MSS06] Nick Mitchell, Gary Sevitsky, and Harini Srinivasan. Modeling runtime be-
havior in framework-based applications. In Proceedings of the European Con-
ference on Object-Oriented Programming (ECOOP), 2006.

[NS05] James Newsome and Dawn Song. Dimensions of precision in reference analy-
sis of object-oriented programming languages. In Proceedings of the Network
and Distributed System Security Symposium, 2005.

[OAH03] Alessandro Orso, Taweewup Apiwattanapong, and Mary Jean Harrold. Lever-
aging field data for impact analysis and regression testing. In Proceedings
of the International Symposium on the Foundations of Software Engineering
(FSE), 2003.

[RRH02] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. Hybrid analysis:
static & dynamic memory reference analysis. In Proceedings of the Interna-
tional Conference on Supercomputing (ICS), 2002.

[Ryd03] Barbara G. Ryder. Dimensions of precision in reference analysis of object-
oriented programming languages. In Proceedings of the International Confer-
ence on Compiler Construction (CC), April 2003, pages 126–137.

[SAB08] Ajeet Shankar, Matthew Arnold, and Rastislav Bodik. JOLT: Lightweight
dynamic analysis and removal of object churn. In Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), 2008. ACM Press.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing
engine for C. In Proceedings of the International Symposium on the Founda-
tions of Software Engineering (FSE), 2005.

[SPMS09] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song.
Loop-extended symbolic execution on binary programs. In Proceedings of the
ACM SIGSOFT International Symposium on Software Testing and Analalysis
(ISSTA), Chicago, IL, USA, 2009, pages 225–236. ACM Press, New York,
NY, USA.

[SS05] Kavitha Srinivas and Harini Srinivasan. Summarizing application performance
from a components perspective. In Proceedings of the International Sympo-
sium on the Foundations of Software Engineering (FSE), September 2005,
pages 136–145.

[SSG+09] Saurabh Sinha, Hina Shah, Carsten Görg, Shujuan Jiang, Mijung Kim, and
Mary Jean Harrold. Fault localization and repair for Java runtime exceptions.
In Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analalysis (ISSTA), Chicago, IL, USA, 2009, pages 153–164.
ACM Press, New York, New York, USA.

http://doi.acm.org/10.1145/1572272.1572299
http://doi.acm.org/10.1145/1572272.1572291

Bibliography 97

[TBV07] Aaron Tomb, Guillaume Brat, and William Visser. Variably interprocedural
program analysis for runtime error detection. In Proceedings of the ACM SIG-
SOFT International Symposium on Software Testing and Analalysis (ISSTA),
July 2007, pages 97–107.

[TP00] Frank Tip and Jens Palsberg. Scalable propagation-based call graph con-
struction algorithms. In Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA), Minneapolis, Minnesota, United States, 2000, pages 281–293. ACM
Press, New York, New York, USA.

[TPF+09] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weis-
man. TAJ: effective taint analysis of web applications. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI), Dublin, Ireland, 2009, pages 87–97. ACM Press, New
York, New York, USA.

[vPG02] Christoph von Praun and Thomas Gross. Static conflict analysis for multi-
threaded object-oriented programs. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI),
2002, pages 115–128.

[WALA] T.J. Watson libraries for analysis (WALA).
<http://wala.sourceforge.net> .

[WR99] John Whaley and Martin Rinard. Compositional pointer and escape analy-
sis for Java programs. In Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA), 1999, pages 187–206. ACM Press.

[XAM+09] Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, and Gary Se-
vitsky. Go with the flow: profiling copies to find runtime bloat. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI), 2009.

[YourKit] Yourkit profiler.
<http://www.yourkit.com/> .

[ZSCC06] Xiaotong Zhuang, Mauricio J. Serrano, Harold W. Cain, and Jong-Deok Choi.
Accurate, efficient, and adaptive calling context profiling. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI), Ottawa Ontario, Canada, 2006, pages 263–271.

[ZSZ+09] Yi Zhao, Jin Shi, Kai Zheng, Haichuan Wang, Haibo Lin, and Ling Shao.
Allocation wall: a limiting factor of Java applications on emerging multi-
core platforms. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA), Or-
lando, Florida, USA, 2009, pages 361–376. ACM Press, New York, NY, USA.

http://doi.acm.org/10.1145/353171.353190
http://doi.acm.org/10.1145/353171.353190
http://doi.acm.org/10.1145/1542476.1542486
http://wala.sourceforge.net
http://doi.acm.org/10.1145/320384.320400
http://doi.acm.org/10.1145/320384.320400
http://portal.acm.org/citation.cfm?id=1542476.1542523
http://www.yourkit.com/
http://doi.acm.org/10.1145/1133981.1134012
http://doi.acm.org/10.1145/1640089.1640116
http://doi.acm.org/10.1145/1640089.1640116

98

Curriculum Vita
Bruno Dufour

1999–2002 B.Sc. in Computer Science, McGill University, Canada.

2002–2004 M.Sc. in Computer Science, McGill University, Canada.

5/2005-8/2005 Summer intern, IBM TJ Watson Research Center, Hawthorne, NY,
USA.

5/2006–8/2006 Summer intern, IBM TJ Watson Research Center, Hawthorne, NY,
USA.

9/2004–5/2005 Teaching assistant, Rutgers, The State University of New Jersey, New
Brunswick, USA.

2003 Qin Wang, Wei Wang, Rhodes Brown, Karel Driesen, Bruno Dufour,
Laurie Hendren and Clark Verbrugge. EVolve: An Open Extensible
Software Visualization Framework. In Proceedings of the ACM Sym-
posium on Software Visualization (SoftVis), pages 37–46, June 2003,
San Diego, CA, USA.

2003 Bruno Dufour, Karel Driesen, Laurie Hendren and Clark Verbrugge.
Dynamic Metrics for Java. In Proceedings of the ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), pages 149–168, October 2003, Anaheim, CA,
USA.

2004 Bruno Dufour, Christopher Goard, Laurie Hendren, Oege de Moor,
Ganesh Sittampalam, and Clark Verbrugge. Measuring the Dynamic
Behaviour of AspectJ Programs. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), pages 150–169, October 2004,
Vancouver, Canada.

2007 Bruno Dufour, Barbara G. Ryder and Gary Sevitsky. Blended Analysis
for Performance Understanding of Framework-based Applications. In
Proceedings of the ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA), July 2007, London, England.

2008 Bruno Dufour. Blended Analysis for Improving the Quality of Frame-
work-intensive Applications. In Foundations of Software Engineering
Doctoral Symposium, November 2008, Atlanta, GA, USA.

2008 Bruno Dufour, Barbara G. Ryder and Gary Sevitsky. A Scalable Tech-
nique for Characterizing the Usage of Temporaries in Framework-inten-
sive Java Applications. In Foundations of Software Engineering (FSE),
November 2008, Atlanta, GA, USA.

99

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Thesis organization

	Related work
	Studies of framework-intensive systems
	Combinations of static and dynamic analyses

	Blended analysis
	Paradigm
	Safety
	Calling structure
	Dynamic language features
	Basic block pruning
	Elude
	Dynamic analysis
	Static analysis

	Blended escape analysis
	Motivation
	Background
	Set-based algorithms
	Dataflow algorithms
	Example of escape analysis

	Blended escape analysis
	Postprocessing connection graphs

	Metrics
	Measurement goals
	Design factors
	Comparability
	Object abstraction
	Data structure abstraction

	Sources of imprecision
	Metric definitions
	Pruning effects
	Disposition
	Capturing depth
	Concentration
	Complexity of data structures

	Empirical evaluation
	Experimental setup
	Trade 6
	Eclipse JDT Compiler
	Jazz server
	Commercial document management server (CDMS)

	Empirical Results and Interpretation
	Pruning effects
	Disposition
	Capturing depth
	Concentration
	Complexity of data structures

	Performance understanding in CDMS

	Conclusions and future work
	Blended analysis
	Empirical evaluation
	Future work
	Automatic optimizations for the removal of object churn
	Applying blended analysis to other problems in framework-intensive applications
	Combinations of static and dynamic analyses

	Bibliography
	Curriculum Vita

