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ABSTRACT OF THE DISSERTATION

The classification problem for finite rank dimension
groups

by Paul Ellis

Dissertation Director: Simon Thomas

There has been much work done in the study of the Borel complexity of various naturally

occurring classification problems. In particular, Hjorth and Thomas have shown that

the Borel complexity of the classification problem for torsion-free abelian groups of

finite rank increases strictly with rank.

In this thesis, we extend this result to dimension groups of finite rank. As these

groups are naturally characterized by Bratteli diagrams, we obtain a similar theorem

for Bratteli diagrams. We also obtain a similar result for a class of countable simple

locally finite groups which are also characterized by Bratteli diagrams.
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Chapter 1

Countable Borel Equivalence Relations

1.1 Introduction

The isomorphism problem for countable simple locally finite groups has resisted satis-

factory classification. As evidence that the classification problem is intractable, authors

usually refer to the result of Kegel-Wehrfritz [27, 6.12] that there are 2ℵ0 pairwise noni-

somorphic groups that can be obtained as unions of chains of finite alternating groups.

However, this is far from convincing, since the groups they constructed are of strongly

diagonal type of rank 1, and the present Theorem 6.4 implies that there is an explicit

function which associates to each such group a real number, so that two groups are

assigned the same number if and only if they are isomorphic. On the other hand, we

will show that the isomorphism problem for countable simple locally finite groups of

strongly diagonal type of arbitrary finite rank is in fact intractable, in a sense which is

made precise by the theory of Borel equivalence relations.

The study of Borel equivalence relations allows us to study the relative complexity of

classification problems. We generally encode a classification problem as an equivalence

relation E on a standard Borel space X. A standard Borel space is a Polish space

equipped with its associated σ-algebra of Borel subsets. Then a Borel equivalence

relation E on X is an equivalence relation E ⊆ X2 which is a Borel subset of X2. The

first reason to work in this context is that there is a canonical method for encoding

many naturally occurring classification problems into standard Borel spaces.

Suppose L = {Ri | i ∈ I} is a countable relational language, where Ri is an ni-

ary relation symbol. (If L contains n-ary function symbols or constant symbols, we

consider them as (n + 1)-ary or unary relation symbols.) Let XL =
∏

i∈I

2N
ni . Then XL

is a Polish space whose elements represent countable L-structures as follows. Given

x = (xi) ∈ XL, the structure Mx = 〈N; Rx
i 〉i∈I is defined by

Rx
i (a0, . . . , ani−1) ⇐⇒ xi(a0, . . . , ani−1) = 1

Furthermore, the isomorphism relation on this space is precisely the orbit equivalence

relation of the following natural action of the infinite symmetric group S∞ on XL.
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Definition 1.1. If σ ∈ S∞ is a permutation of N and x = (xi) ∈ XL, then σ.x is

defined by

(σ.x)i(a0, . . . , ani−1) = xi(σ−1(a0), . . . , σ−1(ani−1)).

Definition 1.2. If σ is an Lω1,ω-sentence, then

Mod(σ) = {x ∈ XL | Mx |= σ}.

Theorem 1.3. [24] If σ is an Lω1,ω-sentence, then Mod(σ) is a Borel subset of XL.

Theorem 1.4. (folklore) If X is a Polish space and A ⊆ X is a Borel subset, then

(A,B(X) ¹A) is a standard Borel space, where B(X) ¹A= {Z ∩A | Z ∈ B(X)}.

Corollary 1.5. If σ is an Lω1,ω-sentence, then Mod(σ) is a standard Borel space.

While this method works for any class of structures defined by an Lω1ω-sentence, we

note that it is rather unwieldy. Thus we usually try to find more natural representations

for our classification problems. For example, Hjorth[23] and Thomas[36] studied the

classification problem for torsion-free abelian groups of finite rank. By the rank of a

torsion-free abelian group A, we mean size of the largest linearly independent subset

of A. In this case, it is natural to identify the class of torsion-free abelian groups of

rank n with the set of full-rank subgroups of Qn, denoted R(Qn). Furthermore, there

is a natural way to describe the isomorphism relation on this space, namely, that two

groups A,B ∈ R(Qn) are isomorphic if and only if there is a ϕ ∈ GLn(Q) such that

A = ϕ(B). This illustrates the following definition.

Definition 1.6. Let X be a standard Borel space and let G be a locally compact second

countable group acting on X. Then the orbit equivalence relation EX
G of this action is

given by

xEy ⇐⇒ (∃g ∈ G) (g(x) = y) .

There is a natural way to compare the relative complexity of two equivalence rela-

tions. If E, F are equivalence relations on standard Borel spaces X, Y , we say that E

is Borel reducible to F and write E ≤B F if there exists a Borel map f : X → Y such

that

xEy ⇐⇒ f(x)Ff(y).

We call such a map f a Borel reduction. One standard interpretation of E ≤B F is

that the problem of classifying elements of X up to E is effectively reduced to that of

classifying elements of Y up to F . We say E and F are Borel bireducible and write E ∼B

F if E ≤B F and F ≤B E. Finally, we write E <B F if both E ≤B F and F �B E.

While we usually consider Borel equivalence relations, notice that the notion of Borel

reducibility applies to arbitrary equivalence relations on standard Borel spaces. As an
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example of Borel (non)reducibility, let ∼=n denote the isomorphism relation on the space

of torsion-free abelian groups of rank n, then Hjorth and Thomas proved the following

theorem. (A conjecture of Friedman and Stanley[14] implies that the isomorphism

problem for infinite rank torsion-free abelian groups has maximal complexity, i.e., the

isomorphism relation is Borel complete.)

Theorem 1.7. For all n ≥ 1, (∼=n) <B (∼=n+1).

Remarkably, the classification problem for a certain class of simple locally finite

groups is Borel bireducible with a classification problem involving abelian groups.

Specifically, we examine the isomorphism problem for simple dimension groups, a par-

ticular type of ordered abelian group. By an ordered abelian group, we mean an abelian

group A together with a distinguished subset A+, called the positive cone, such that

1. A+ + A+ ⊆ A+;

2. A+ ∩ (−A+) = {0}; and

3. A+ −A+ = A.

If a, b ∈ A, then we shall write a ≤ b if b− a ∈ A+. If A and B are ordered abelian

groups, then a homomorphism ϕ : A → B is an order homomorphism if a ≤ b implies

ϕ(a) ≤ ϕ(b) for all a, b ∈ A. It follows that a homomorphism ϕ : A → B is an order

homomorphism if and only if ϕ[A+] ⊆ B+.

An ordered abelian group is said to be unperforated if whenever a ∈ A satisfies

na ∈ A+ for some n ≥ 1, then a ∈ A+. An element u ∈ A+ is an order unit if for every

a ∈ A, there exists an integer n ∈ ω such that a ≤ nu.

Definition 1.8. An unperforated ordered abelian group A is a dimension group if

A satisfies the Riesz interpolation property ; ie. given elements a1, a2, b1, b2 ∈ A with

ai ≤ bj for 1 ≤ i, j ≤ 2, then there exists c ∈ A such that ai ≤ c ≤ bj for 1 ≤ i, j ≤ 2.

Notice that if na = n(−a) = 0 for some n ∈ N, then unperforatedness gives a ≥ 0

and a ≤ 0 which implies that a = 0; hence we conclude that a dimension group A must

be torsion free.

Example 1.9. The group Zn is a dimension group with the following positive cone:

(Zn)+ = {(z1, . . . , zn) | zi ≥ 0 for all i}.

To see that this group satisfies the Riesz interpolation property, let a, b, c, d ∈ Zn such

that a, b ≤ c, d. Then, given 1 ≤ i ≤ n, let ei = max{ai, bi} where ai, bi are the ith

coordinates of a, b. Then a, b ≤ (e1, . . . , en) ≤ c, d.
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In this thesis, we will prove an analogue of Theorem 1.7 for simple dimension groups

equipped with a distinguished order unit. Here, as usual, simplicity means the lack of

a nontrivial ideal, where an ideal in a dimension group (A, A+) is a subgroup J ≤ A

satisfying

1. 0 ≤ a ≤ b ∈ J =⇒ a ∈ J , and

2. J = J+ − J+ where J+ = J ∩A+.

We define the standard Borel space of simple dimension groups of rank n as follows.

Definition 1.10. Let n ≥ 1 and consider the standard Borel space R(Qn)×P(Qn)×Qn

where P(Qn) denotes the power set of Qn. Then SDGn denotes the Borel subset of

R(Qn)×P(Qn)×Qn given by those (A,A+, u) such that (A,A+) is a simple dimension

group (of rank n) and u ∈ A+ \ {0} is a distinguished order unit. Let ∼=+
n denote the

isomorphism relation on SDGn.

Then our target theorem about dimension groups is the following.

Theorem 1.11. For all n ≥ 1, (∼=+
n ) <B (∼=+

n+1)

Now what does any of this have to do with locally finite groups? In Chapter 2,

we discuss locally finite groups of strongly diagonal type, which are defined as certain

direct limits of finite groups. These direct limits are in turn described by a class of

infinite graphs, known as Bratteli diagrams. A Bratteli diagram has as its vertex set

a disjoint union of countably many finite levels. Each vertex corresponds to a finite

alternating group, and each level to a (finite) product of finite alternating groups. The

edges, which only lie between successive levels, define a sequence of group embeddings

from one level to the next. The corresponding locally finite group is then the direct

limit of this increasing sequence of finite groups.

However, each Bratteli diagram also defines a dimension group in a similar fashion.

Here each vertex corresponds to a copy of the dimension group Z, and each level to Zm,

where m is the cardinality of the level. The edges now define a sequence of positive

homomorphisms from one level to the next. Then the direct limit of this sequence

is a dimension group, and Effros, Handelman, and Shen[11] have shown that every

dimension group can be constructed in this fashion from some Bratteli diagram.

In each of these two constructions, we may compose two successive homomorphisms

in the sequence without changing either the resulting dimension group or the resulting

locally finite group. This “telescoping” operation, together with isomorphism, generates

an equivalence relation ∼ on the class of Bratteli diagrams. In fact, two dimension

groups (or locally finite groups of strongly diagonal type) are isomorphic if and only if

the corresponding Bratteli diagrams are ∼-equivalent.



5

Now our goal is to prove a result analogous to Theorem 1.11 for simple locally finite

groups of strongly diagonal type, and thus to show that the problem of classifying

the countable simple locally finite groups is intractable. In order to do this, we will

first show that the isomorphism problem for countable simple locally finite groups of

strongly diagonal type is Borel bireducible with the isomorphism problem for simple

dimension groups, by way of the classification problem for simple Bratteli diagrams.

We will then prove Theorem 1.11, relying heavily on the work of Hjorth and Thomas.

Finally, we define a notion of rank for countable simple locally finite groups of strongly

diagonal type, and then show that it corresponds sufficiently well to the notion of rank

for simple dimension groups.

This thesis is organized as follows. In Chapter 1, we will introduce all the rele-

vant notions from the theory of Borel equivalence relations. In Chapter 2, we define

countable simple locally finite groups of strongly diagonal type and simple Bratteli di-

agrams, and we examine the relationship between the two classification problems. In

Chapter 3, we discuss simple dimension groups and show how simple dimension groups

are characterized by simple Bratteli diagrams. In Chapter 4, we will examine the ge-

ometry of simple dimension groups of finite rank. In Chapter 5, we further examine

the relationship between the classification problem for simple dimension groups and

that for simple Bratteli diagrams. In Chapter 6, we prove Theorem 1.11 for two special

cases. In Chapters 7 and 8, Theorem 1.11 is proved for the rest of the cases. Finally,

in Chapter 9, we will show how Theorem 1.11 applies to simple Bratteli diagrams and

simple locally finite groups of strongly diagonal type.

1.2 Countable Borel equivalence relations

Let X be a standard Borel space; i.e., a Polish space equipped with its associated σ-

algebra of Borel subsets. Then a Borel equivalence relation E on X is an equivalence

relation E ⊆ X2 which is a Borel subset of X2. We say that a Borel equivalence relation

is countable if each equivalence class is countable. While we usually consider Borel

equivalence relations, notice that the notion of Borel reducibility applies to arbitrary

equivalence relations on standard Borel spaces. Now consider equivalence relations E

and F on standard Borel spaces X and Y respectively, and a Borel reduction f : X → Y

from E to F . Then the map f̂ : X ×X → Y × Y given by f̂(x1, x2) = (f(x1), f(x2))

is Borel. Thus if F is Borel, then E must also be Borel. Hence the class of Borel

equivalence relations is closed downward under ≤B. However, this closure property is

not shared by the class of countable Borel equivalence relations. This is easily seen by

the case of the trivial equivalence relation E on any standard Borel space X, where

x1Ex2 for all x1, x2 ∈ X. Clearly, this equivalence relation is not countable, but it is
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Borel reducible to any other equivalence relation on a standard Borel space. Thus we

define the following class of equivalence relations which is closed downward under ≤B:

Definition 1.12. An equivalence relation E on a standard Borel space X is essentially

countable if there is a countable Borel equivalence relation F such that E ≤B F .

Let G be a locally compact second countable group. Then a standard Borel G-space

is a standard Borel space X equipped with a Borel action (g, x) 7→ g · x of G on X.

The Borel equivalence relation EX
G on X, called the G-orbit equivalence relation, is then

defined by

x1E
X
G x2 ⇐⇒ there exists g ∈ G such that g · x1 = x2.

By Kechris [26], EX
G is Borel bireducible with a countable Borel equivalence relation.

Conversely, we have the following theorem of Feldman and Moore:

Theorem 1.13. [13] If E is an arbitrary countable Borel equivalence relation on the

standard Borel space X, then there exists a countable group G and a Borel action of G

on X such that E = EX
G .

The notion of Borel reducibility gives a partial pre-order on the collection of Borel

equivalence relations. While much of the structure of this hierarchy is unknown, there

are some benchmarks, especially within the realm of countable Borel equivalence rela-

tions. The first step to understanding Borel equivalence relations is the following result

of Kuratowski.

Theorem 1.14. [28] There exists a unique uncountable standard Borel space up to

isomorphism.

Thus we may naturally think of the identity equivalence relation on R, denoted idR,

as the identity relation on whichever standard Borel space we happen to be working

with. Silver has shown that idR is ≤B-minimal.

Theorem 1.15. [31] If E is a Borel equivalence relation with uncountable many classes,

then idR ≤B E.

Definition 1.16. A Borel equivalence relation E is smooth if E ≤B idX for some (and

thus every) uncountable standard Borel space X.

One example of a countable Borel equivalence relation which is not smooth is the

following:

Definition 1.17. E0 is the Borel equivalence relation defined on 2N by

xE0y ⇐⇒ x(n) = y(n) for all but finitely many n ∈ N.
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Furthermore, we have the following remarkable result, which says that E0 is an

immediate ≤B-successor of idR:

Theorem 1.18. [21] If E is a nonsmooth Borel equivalence relation, then E0 ≤B E.

We also have a nice characterization of the countable Borel equivalence relations E

such that E ≤B E0.

Definition 1.19. A Borel equivalence relation F is said to be finite if all of the

equivalence classes of F are finite. A Borel equivalence relation E is hyperfinite if

E =
⋃

n∈N Fn, where each Fn is a finite Borel equivalence relation, and for each n ∈ N,

Fn ⊆ Fn+1.

For example, E0 is hyperfinite. To see this, note that E0 =
⋃

n∈N Fn, where we

define the sequence of equivalence relations Fn on 2N by

xFny ⇐⇒ x(i) = y(i) for all i > n.

In fact, every nonsmooth hyperfinite Borel equivalence relation is Borel bireducible with

E0. Furthermore, if F is hyperfinite and E ≤B F , then E is also hyperfinite. Also, by

a result of Dougherty, Jackson, and Kechris[7], if E is a countable Borel equivalence

relation, then E is hyperfinite if and only if E can be realized as the orbit equivalence

relation of a Borel Z-action. A recent result of Gao and Jackson[16] shows that the

orbit equivalence relations of arbitrary countable abelian groups are hyperfinite, and

it is conjectured that the orbit equivalence relations of arbitrary countable amenable

groups are hyperfinite.

At the other end of the spectrum, the following Borel equivalence relation turns out

to be ≤B-universal for the class of countable Borel equivalence relations:

Definition 1.20. Let Fω be the free group on infinitely many generators and define a

Borel action of Fω on

(2N)
Fω = {p | p : Fω → 2N}

by setting

(g · p)(h) = p(g−1h), p ∈ (2N)
Fω

.

Let Eω be the resulting orbit equivalence relation.

Lemma 1.21. [25] If E is a countable Borel equivalence relation, then E ≤B Eω.

Proof. Let X be a standard Borel space, and let E be a countable Borel equivalence

relation on X. Since every countable group is a homomorphic image of Fω, Theorem

1.13 implies that E is the orbit equivalence relation of a Borel action of Fω. Let {Ui}i∈N
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be a sequence of Borel subsets of X which separates points and define f : X → (2N)Fω

by x 7→ fx where

fx(h)(i) = 1 iff x ∈ h(Ui).

Then f is injective and

(g · fx)(h)(i) = 1 iff fx(g−1h)(i) = 1

iff x ∈ g−1h(Ui)

iff g · x ∈ h(Ui)

iff fg·x(h)(i) = 1

Thus there is some g ∈ Fω such that x = g · y if and only if there is some g ∈ Fω such

that fx = g · fy. Hence f is a Borel reduction from E to Eω.

Let F2 denote the free group on 2 generators and consider the action of F2 on 2F2

given by setting (g · f)(h) = f(g−1h). Then by [7], E∞ = E2F2
F2

is also a universal

countable Borel equivalence relation.

Finally, we note that Adams and Kechris[1] have shown that there exist uncountably

many countable Borel equivalence relations up to Borel bireducibility. Thus, we have

the following picture for countable Borel equivalence relations.

x

xE0 = hyperfinite

id2N = smooth

Eω ∼B E∞ = universalx

Uncountably
many

relations

Let R(Qn) be the standard Borel space consisting of the additive subgroups of Qn of

rank n, and let ∼=n be the isomorphism relation on R(Qn). It is easy to check that ∼=n is

the orbit equivalence relation given by the natural action of GLn(Q) on R(Qn). In 1937,

Baer essentially showed that ∼=1∼B E0. In 1998, Hjorth [23] proved that (∼=1) <B (∼=2).

Two years later, making essential use of earlier work of Adams-Kechris [1], Thomas [37]

proved that (∼=n) <B (∼=n+1) for all n ≥ 2. Thus the equivalence relations ∼=n form an
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increasing chain in the middle of the above picture, anchored at ∼=1∼B E0. Thomas

[34] has also shown that the union of this chain does not reach the top, i.e., that the

isomorphism relation on the space of all torsion-free abelian groups of finite rank is not

countable universal.

1.3 Ergodicity

Given a standard Borel G-space X and a standard Borel H-space Y , and letting E =

EX
G and F = F Y

H , it is generally more difficult to prove results of the form E �B F

rather than results of the form E ≤B F . A significant tool in this endeavor is an

invariant ergodic probability measure on X.

Definition 1.22. Let X be a standard Borel G-space. Throughout this thesis, a prob-

ability measure on X will always mean a Borel probability measure, i.e., a countably-

additive measure which is defined on the collection of Borel subsets of X. Then a

probability measure µ on X is said to be nonatomic if µ({x}) = 0 for all x ∈ X, and µ

is said to be G-invariant if µ(g(A)) = µ(A) for each g ∈ G and Borel subset A ⊆ X.

A G-invariant probability measure µ is ergodic if for every G-invariant Borel subset

A ⊆ X, either µ(A) = 0 or µ(A) = 1. In this case, we say that G acts ergodically on

(X,µ).

Lemma 1.23 (folklore). Suppose G is a countable group and X is a standard Borel

G-space with G-invariant probability measure µ. Then the following are equivalent:

(a) µ is ergodic.

(b) If Y is a standard Borel space and f : X → Y is a G-invariant Borel function

(i.e., f(g.x) = f(x) for every x ∈ X and every g ∈ G), then there exists a

G-invariant Borel subset M ⊆ X with µ(M) = 1 such that f ¹M is a constant

function.

Notice that this says that the existence of an ergodic invariant probability measure

on the standard Borel G-space X implies that EX
G is not smooth.

Proof. (b) =⇒ (a). Let A ⊆ X be a G-invariant Borel subset. Consider the character-

istic function χA : X → {0, 1}, where {0, 1} is the standard Borel space that arises from

the discrete topology on the set of 2 elements. Then χA is clearly Borel and G-invariant.

Thus there is a G-invariant Borel subset M ⊆ X such that µ(M) = 1 and χA ¹M is

constant. If χA(M) = 1, then µ(A) = 1, and if χ(M) = 0 then µ(A) = 0.

(a) =⇒ (b). Let f : X → Y be a G-invariant Borel function. Let {Un | n ∈ ω}
enumerate a countable basis for a topology τ on Y such that B(Y ) = B(τ). Then
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{Un | n ∈ ω} separates the points of Y , i.e., for all a, b ∈ Y , if a 6= b then there is some

n ∈ ω with a ∈ Un and b /∈ Un. Next, for each n ∈ ω, define

A1
n = f−1(Un)

A0
n = X\f−1(Un) = f−1(Y \Un)

Notice that A1
n and A0

n are Borel since f is Borel. Furthermore, they are both G-

invariant subsets of X. Thus, for each n ∈ ω, either µ(A1
n) = 1 or µ(A0

n) = 1. If

µ(A1
n) = 1 set A′n = A1

n, otherwise set A′n = A0
n. Finally, set M =

⋂
A′n. Then

µ(M) = 1, and since {Un | n ∈ ω} separates the points of Y , f(M) must be a single

point.

We will make use of the following Theorem in Chapter 7. However we must first

define the notion of a Borel homomorphism.

Definition 1.24. If E, F are Borel equivalence relations on standard Borel spaces X,

Y , then we say the Borel map f : X → Y is a Borel homomorphism from E to F if

xEy implies f(x)Ff(y).

In order to prove the nonexistence of a Borel reduction, it is often useful to examine

Borel homomorphisms and show that none can be a Borel reduction. The following

result is a special case of Hjorth-Kechris [24, 10.5].

Theorem 1.25. Let n ≥ 3 and let X be a standard Borel SLn(Z)-space with an invari-

ant ergodic probability measure µ. Suppose that Y is a standard Borel space and that F

is a hyperfinite equivalence relation on Y . If f : X → Y is a Borel homomorphism from

EX
SLn Z to F , then there exists an SLn(Z)-invariant Borel subset M with µ(M) = 1 such

that f maps M into a single F -class.

1.4 Fréchet-amenable equivalence relations

As mentioned above, it is known that every orbit equivalence relation arising from a

Borel action of an abelian group is hyperfinite. On the other hand, while the same is

conjectured for arbitrary amenable groups, we currently only have some partial results

involving the notion of Fréchet-amenable equivalence relations, which were introduced

by Jackson, Kechris, and Louveau. The following account of Fréchet-amenability is

based upon Section 2.4 of [25].

A countable group G is amenable if there exists a finitely additive G-invariant

probability measure ν : P(G) → [0, 1] defined on every subset of G. In Chapter 6, we

shall make use of the fact that solvable groups are amenable, and we shall also make

use of the fact that if a countable group contains an isomorphic copy of F2, the free

group on two generators, then it is not amenable.
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Example 1.26. To see that F2 is not amenable, suppose that µ is a finitely additive

F2-invariant probability measure on F2 = 〈a, b〉. First notice that the measure of a single

element must be 0. Then given a reduced word σ in the alphabet {a, b, a−1, b−1}, let

Xσ be the set of all reduced words of F2 for which σ is an initial segment. Then

1 = µ(F2)

= µ(Xa) + µ(Xb) + µ(Xa−1) + µ(Xb−1)

= µ(bXa) + µ(bXb) + µ(bXa−1) + µ(Xb−1)

= µ(Xba) + µ(Xbb) + µ(Xba−1) + µ(Xb−1)

= µ(Xb) + µ(Xb−1).

Similarly, 1 = µ(Xa) + µ(Xa−1). But then

µ(F2) = µ(Xa) + µ(Xa−1) + µ(Xb) + µ(Xb−1) = 2,

a contradiction. It is also easy to see that if a group G contains a subgroup isomorphic

to F2, then the same argument shows that G is not amenable.

The definition of Fréchet-amenable equivalence relations is motivated by the follow-

ing characterization of the amenability of countable groups due to Day.

Theorem 1.27. [6] Let G be a countable group. Then G is amenable iff there is a

sequence (fn), fn ∈ l1(G), fn ≥ 0, ||fn||1 = 1, such that for all g ∈ G, ||fn − fg
n||1 → 0,

where fg
n(h) = fn(hg).

A free filter on N is a filter containing the Fréchet filter

Fr = {A ⊆ N : A is cofinite}.

A filter F on N is said to be Borel if it is Borel when viewed as a subset of 2N.

Definition 1.28. Let E be a countable Borel equivalence relation on a standard Borel

space X. Let F be a free filter on N. We say that E is F-amenable if there is a sequence

fn : E → R+ of nonnegative Borel functions such that letting fx
n (y) = fn(x, y) we have:

1. For all x ∈ X, fx
n ∈ l1([x]E) and ||fx

n ||1 = 1

2. xEy implies ||fx
n − fy

n ||1 →F 0

If Y is a topological space and yn, y ∈ Y , then yn →F y means that for every

neighborhood U of y, there is A ∈ F such that n ∈ A ⇒ yn ∈ U . Note that yn →Fr y

if and only if yn → y.

Define the partial order ≤ on filters on N by

F ≤ G ⇔ there exists h : N→ N such that h−1(F) ⊆ G
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and the corresponding equivalence relation by

F ≡ G ⇔ F ≤ G and G ≤ F .

Lemma 1.29. If E is F-amenable and if F and G are filters such that F ≤ G, then E

is G-amenable.

Proof. Let E be F-amenable, F ≤ G, and let fn : E → R+ be a sequence of Borel

functions satisfying

(1) For all x ∈ X, fx
n ∈ l1([x]E) and ||fx

n ||1 = 1

(2) xEy implies ||fx
n − fy

n ||1 →F 0.

Then let h : N → N be a function satisfying h−1(F) ⊆ G, and for each n ∈ N, let

gn = fh(n). Certainly each of the functions gn satisfies (1). Since h−1(F) ⊆ G, we have

that yn →F y implies yh(n) →G y for any yn, y ∈ R. Thus ||fx
n − fy

n ||1 →F 0 implies

||gx
n − gy

n||1 →G 0, and so xEy implies ||gx
n − gy

n||1 →G 0. Hence E is G-amenable.

Thus, the notion of F-amenability only depends on the ≡-equivalence class of F .

We will now define a canonical transfinite iteration of the Frèchet filter. Fix a bijection

ϕ : N → N2. Also, for m ∈ N, A ⊆ N2, let Am = {n ∈ N : (m,n) ∈ A}. For two filters

F ,G on N, their (Fubini) product F ⊗ G is defined by

ϕ (F ⊗ G) = {A ⊆ N2 : {m ∈ N : Am ∈ G} ∈ F}.

It is easily checked that F ⊗ G is a filter on N. We also define for each sequence (Fn)

of filters, the filter F ⊗ (Fn) by

ϕ (F ⊗ (Fn)) = {A ⊆ N2 : {m ∈ N : Am ∈ Fm} ∈ F}.

Now fix, for each countable limit ordinal λ, an increasing sequence α0 < α1 < . . . < λ

whose limit is λ and inductively define the αth iterated Frèchet filter Frα as follows:

Fr1 = Fr

Frα+1 = Fr ⊗ Frα

Frλ = Fr ⊗ (Frαn).

It is clear that this definition depends on the choice of ϕ and the choice of the sequences

(αn), but it is a simple exercise to check that it is independent up to ≡ and therefore

the following definition makes sense.
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Definition 1.30. Let E be a countable Borel equivalence relation. We say that E is

α-amenable if E is Frα-amenable and Frèchet-amenable if it is α-amenable for some

α < ω1.

To see how this notion approximates hyperfiniteness, we note the following results,

all from Section 2.4 of [25], which we will employ here in Chapter 6.

Theorem 1.31. Suppose G is a countable amenable group, and EG is the orbit equiv-

alence relation induced by some Borel action of G. Then EG is 1-amenable.

Thus, since each hyperfinite equivalence relation can be realized as the orbit equiv-

alence relation of a Borel Z-action, we note

Corollary 1.32. Hyperfinite equivalence relations are 1-amenable.

Theorem 1.33. Suppose G is a countable group acting in a Borel way on X, µ is a

G-invariant probability measure on X, and the action is free on an invariant Borel set

of measure 1. If EX
G is Frèchet-amenable, then G is amenable.

Theorem 1.34. Let E, F be countable Borel equivalence relations. If E ≤B F and F

is α-amenable, then E is also α-amenable.

1.5 Constructing the measure space (X, µ)

A key ingredient in Thomas’ proof that (∼=n−1) <B (∼=n), for n ≥ 3 was that given a

Borel homomorphism f : R(Qn) → R(Qn−1) from ∼=n to ∼=n−1, he was able to reduce

the analysis to the situation where the domain of f was a standard Borel SLn(Z)-space

X with an invariant ergodic probability measure µ. The proof of our main theorem

will require the same thing. The following construction of an appropriate standard

Borel SLn(Z)-space X and invariant ergodic probability measure µ is condensed from

Sections 3 and 4 of [35].

Definition 1.35. Let P denote the set of primes. If p ∈ P, then a group A ∈ R(Qn) is

said to be p-local iff A = qA for every prime q 6= p; i.e., A is a Z(p)-module, where

Z(p) =
{a

b
∈ Q | a, b ∈ Z and b is relatively prime to p

}
.

Let R(p)(Qn) denote the p-local subgroups of Qn of rank n.

Suppose that K is a compact second countable group and that L is a closed sub-

group. Then there exists a unique K-invariant probability measure µ on the standard

Borel K-space K/L. The measure µ is called the Haar probability measure on K/L

and can be described explicitly as follows. Suppose ν is the Haar probability measure
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on K and let π : K → K/L be the canonical surjection. Then µ = π∗ν, that is,

given A ⊆ K/L, then µ(A) = ν(π−1(A)). Below, we shall make use of the following

observation.

Lemma 1.36. [37, 2.2(a)] Let K be a compact second countable group, let L 6 K be a

closed subgroup and let µ be the Haar probability measure on K/L. If Γ is a countable

dense subgroup of K, then µ is an ergodic Γ-invariant probability measure on K/L.

For the rest of this section, fix an integer n ≥ 3, and let p be any prime number.

To obtain our measure space, we will examine the action of PSLn(Z) on the standard

Borel space Sn(Qp) of nontrivial proper subspaces of the n-dimensional vector space

Qn
p over the p-adic field.

Definition 1.37. If 0 ≤ k ≤ n, then V (k)(n,Qp) denotes the standard Borel space

consisting of the k-dimensional vector subspaces of Qn
p .

It is easily checked that the compact group PSLn(Zp) acts transitively on each

V (k)(n,Qp). (For example, see [37, 6.1]) Thus we can identify V (k)(n,Qp) with the coset

space PSLn(Zp)/L, where L is a suitably chosen closed subgroup of PSLn(Zp). Let µn,k

be the corresponding Haar probability measure on V (k)(n,Qp). Since PSLn(Z) is a

dense subgroup of PSLn(Zp), the above lemma shows that PSLn(Z) acts ergodically on

(V (k)(n,Qp), µn,k). Thus, since a set X ⊆ V (k)(n,Qp) is PSLn(Z)-invariant if and only if

it is SLn(Z)-invariant, it follows that SLn(Z) also acts ergodically on (V (k)(n,Qp), µn,k).

Now we will discuss how this space relates to the isomorphism relation on R(p)(Qn).

Definition 1.38. For each A ∈ R(p)(Qn), let Â = Zp ⊗A

We shall regard each Â as a subgroup of Qn
p in the usual way; i.e., Â is the subgroup

consisting of all finite sums

γ1a1 + γ2a2 + . . . + γtat,

where γi ∈ Zp and ai ∈ A for 1 ≤ i ≤ t. By Lemma 93.3 [15], there exist integers

0 ≤ k, l ≤ n with k + l = n and elements vi, wj ∈ Â such that

Â =
k⊕

i=1

Qpvi ⊕
l⊕

j=1

Zpwj .

Definition 1.39. For each A ∈ R(p)(Qn), let VA =
⊕k

i=1Qpvi.

Theorem 1.40. [35, 4.3 and 4.4] Suppose A ∈ R(p)(Qn) and that dimVA = n − 1.

Then for each B ∈ R(p)(Qn), we have that A ∼= B if and only if there exists π ∈ GLn(Q)

such that π(VA) = VB.
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Definition 1.41. Let e1, . . . , en be the standard basis of Qn
p . Suppose that S is a

Qp-subspace of Qn
p of dimension 0 ≤ k ≤ n. Then

σ(S) = (S ⊕ Zpei1 ⊕ . . .⊕ Zpein−k
) ∩Qn

where i1 < . . . < in−k is the lexicographically least sequence such that

Qn
p = 〈S, ei1 , . . . , ein−k

〉.

Theorem 1.42. [35, 4.6] If S is a Qp-subspace of Qn
p of dimension 0 ≤ k ≤ n, then

(a) σ(S) ∈ R(p)(Qn);

(b) Vσ(S) = S.

Definition 1.43. For n ≥ 3, set

• Xn = V (n−1)(n,Qp),

• µn = µn,n−1, and

• σn : Xn → R(Qn) by S 7→ σ(S).

Then Theorems 1.40 and 1.42 imply that σn is a countable-to-one Borel homomor-

phism from EXn

SLn(Z) to ∼=n (In particular, σn does not map a measure one subset of X

to a single ∼=n-class). We will use this as well as the fact that SLn(Z) acts ergodically

on (Xn, µn) in Chapters 7 and 8, while the fact that all the abelian groups in the range

of this map are p-local will be used in Chapter 9. (Notice that our construction did not

depend on the choice of the prime p.)

1.6 Cocycles

Let G be a locally compact second countable (lcsc) group, and let X be a standard

Borel G-space with invariant probability measure µ. Let H be an lcsc group. A cocycle

of the G-space X into H is a Borel map α : G×X → H such that for all g, h ∈ G,

α(hg, x) = α(h, g · x)α(g, x) µ-a.e.(x).

If this equation holds for all x, then we say that α is a strict cocycle. If β : G×X → H

is also a cocycle, we say that α is equivalent to β, written α ∼ β, if there is a Borel

map A : X → H such that for all g ∈ G,

α(g, x) = A(g · x)β(g, x)A(x)−1 µ-a.e.(x).

In addition to being the only type of cocycle which we will encounter in this thesis,

the following canonical example motivates the above definitions. Suppose E = EX
G and
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F = EZ
H , where H acts freely on Z. Let f : X → Z be a Borel function such that xEy

implies f(x)Ff(y), i.e., f is a Borel homomorphism from E to F . Then the function

α : G×X → H defined by f(g · x) = α(g, x) · f(x) is a strict cocycle. (There exists a

unique such element α(g, x) ∈ H since the action of H on Z is free.)

Some of our proofs will proceed by considering the cocycles associated with various

Borel homomorphisms. There are various cocycle reduction results which say that,

under certain hypotheses, cocycles α are equivalent to cocycles β, whose range β(G×X)

is contained in a “small” subgroup of H. In Chapters 7 and 8 we shall make essential

use of the following such theorem.

Theorem 1.44. [36, 2.3] Let n ≥ 3 and let X be a standard Borel SLn(Z)-space with an

invariant ergodic probability measure. Suppose that G is an algebraic Q-group such that

dimG < n2−1 and that H ≤ G(Q). Then for every Borel cocycle α : SLn(Z)×X → H,

there exists an equivalent cocycle β such that β(SLn(Z) × X) is contained in a finite

subgroup of H.

1.7 Relative ergodicity of equivalence relations

Recall that in order to construct the cocycle associated with a Borel homomorphism,

we required that the action of H on Y is free. In the case of Thomas’ proof that

(∼=n) <B (∼=n+1), this corresponds to the action of GLn(Q) on R(Qn). However, this

action is far from free. Thomas’ innovation was to work with the coarser equivalence

relation of quasi-isomorphism, defined here in Chapter 7, which enabled him to obtain

a free action of a quotient of a suitable subgroup of GLn(Q) on a suitable quotient of

R(Qn). While working with this coarser equivalence relation, Thomas implicitly proved

the following lemma.

Definition 1.45. Suppose that X is a standard Borel G-space with invariant ergodic

probability measure µ, and that F is a countable Borel equivalence relations on a stan-

dard Borel space Y . Then E is F -ergodic if for any Borel homomorphism f : X → Y

from E to F , there is a Borel subset X1 ⊆ X with µ(X1) = 1 such that f maps X1 into

a single F -class.

Lemma 1.46. [33] Let G be a countable group. Suppose X is a standard Borel G-

space with invariant ergodic probability measure µ, and that F and F ′ are countable

Borel equivalence relations on a standard Borel space Y such that F ⊆ F ′. Suppose

that E = EX
G is F ′-ergodic. Then E is F -ergodic.

Proof. Suppose that E = EX
G is F ′-ergodic. Let f : X → Y be a Borel homomorphism

from E to F . Then since F ⊆ F ′, it follows that f is also a Borel homomorphism from

E to F ′. Hence there is a Borel subset X ′ ⊆ X such that µ(X ′) = 1 and f(X ′) is
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contained in a single F ′-class, say C. Since C is countable, there exists a Borel subset

Z ⊆ X ′ with µ(Z) > 0 and a fixed element y ∈ C such that f(x) = y for all x ∈ Z.

Since µ is ergodic, the G-invariant Borel subset M = G.Z satisfies µ(M) = 1, and

clearly f maps M into the F -class containing y. Hence E is F -ergodic.
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Chapter 2

Groups of strongly diagonal type and Bratteli diagrams

In this chapter, we shall define the countable locally finite groups of strongly diagonal

type, as well as the notion of a Bratteli diagram. We show that every Bratteli diagram

gives rise to a countable locally finite group of strongly diagonal type via a canonical

construction, and also that every countable simple locally finite group of strongly diag-

onal type can be constructed from a Bratteli diagram in this way. We determine when

two Bratteli diagrams yield isomorphic groups, and show that a Bratteli diagram is

simple if and only if the corresponding group is simple.

2.1 Countable locally finite groups of strongly diagonal type

Definition 2.1. Let G be a countable locally finite group and let

G0 ≤ G1 ≤ ... ≤ Gn ≤ ...

be an increasing chain of finite groups such that G =
⋃

n∈ω Gn. Suppose further that

for each n ≥ 1,

Gn = An,1 × ...×An,dn

where each An,i is an alternating group on a finite set Ωn,i. For each 1 ≤ i ≤ dn, let

Bn,i = An,1 × ...× Ân,i × ...×An,dn

where Ân,i indicates that An,i has been omitted from the product.

(a) The above chain is said to be of diagonal type if whenever n < m and Σ is a

nontrivial orbit of Gn on some Ωm,k, then there exists 1 ≤ i ≤ dn such that

(1) |Σ| = |Ωn,i|;
(2) An,i acts naturally on Σ; and

(3) Bn,i acts trivially on Σ.

(b) The above chain is said to be of strongly diagonal type if it is of diagonal type

and whenever n < m and 1 ≤ k ≤ dm, then each element of Ωm,k lies in some

nontrivial Gn-orbit.
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(c) The above chain is said to be of regular type if whenever n < m, then there exists

1 ≤ k ≤ dm such that Gn has at least one regular orbit on Ωm,k.

Whenever we have an embedding of two finite products of alternating groups which

satisfies (a) above, we say that the embedding is diagonal. To understand (c), recall

that a permutation group H ≤ Alt(Ω) is said to act regularly if H acts transitively on

Ω, and

• If h ∈ H, x ∈ Ω, and hx = x, then h = 1.

In particular, given a diagonal embedding of finite products of alternating groups

Alt(Ωi,1)×Alt(Ωi,2)× . . .×Alt(Ωi,di) ↪→ Alt(Ωj,1)×Alt(Ωj,2)× . . .×Alt(Ωj,dj ),

then Alt(Ωi,1)×Alt(Ωi,2)× . . .×Alt(Ωi,di) cannot have any regular orbits on
⊔dj

k=1 Ωj,k.

The following theorem is much stronger. It shows that a simple locally finite group

cannot be expressed as both the union of a chain of diagonal type and the union of a

chain of regular type.

Theorem 2.2. [22] Let G be a countably infinite simple locally finite group, and suppose

that G is the union of an increasing chain

G0 ≤ G1 ≤ . . . ≤ Gn ≤ . . .

of finite groups, each of which is a direct product of alternating groups. Let K be an

algebraically closed field of characteristic 0.

(a) If the above chain is of diagonal type, then the group algebra KG has at least four

ideals.

(b) If the above chain is of regular type, the group algebra KG has exactly three ideals.

The next theorem shows that when studying simple locally finite groups which can

be expressed as the unions of chains of finite groups, each of which is the direct product

of alternating groups, we may restrict our attention to chains of either diagonal type

or regular type.

Theorem 2.3. [22] Let G be a countably infinite simple locally finite group, and suppose

that G is the union of an increasing chain

G0 ≤ G1 ≤ . . . ≤ Gn ≤ . . .

of finite groups, each of which is a direct product of alternating groups. Then there

exists a subsequence {in | n ∈ ω} such that the chain

Gi0 ≤ Gi1 ≤ . . . ≤ Gin ≤ . . .

is either of diagonal type or of regular type.
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Thus it is natural to define a countable locally finite group G to be of (strongly)

diagonal type if G is isomorphic to the union of a chain of (strongly) diagonal type.

2.2 Bratteli Diagrams

Definition 2.4. A Bratteli diagram (V, E) consists of a vertex set V and an edge set

E, where V and E can be written as countable disjoint unions of nonempty finite sets

V =
⊔

n≥0 Vn and E =
⊔

n≥1 En such that the following conditions hold.

1. V0 = {v} is a singleton set.

2. There exist range and source maps r, s from E to V such that r[En] ⊆ Vn and

s[En] ⊆ Vn−1. Furthermore, s−1(v) 6= ∅ for all v ∈ V and r−1(v) 6= ∅ for all

v ∈ V \ V0.

For each n ≥ 1, the edge set En determines a corresponding incidence matrix Mn =

(mu,v), with rows indexed by Vn and columns indexed by Vn−1, such that

mu,v = |{e ∈ En | r(e) = u and s(e) = v}|

is the number of edges joining v to u.

Definition 2.5. If 0 ≤ k ≤ l, then

Ek+1 ◦ ... ◦ El = {(ek+1, ..., el) | ei ∈ Ei, r(ei) = s(ei+1)}

denotes the set of all paths from Vk to Vl. We define range and source maps on

Ek+1 ◦ . . . ◦ El by r((ek+1, ..., el)) = r(el) and s((ek+1), ..., el)) = s(ek+1).

For each Bratteli diagram (V, E), we shall now define a countable locally finite group

G(V,E) =
⋃

n≥0 Gn of strongly diagonal type in such a way that

1. the factors of the direct product Gn = Alt(Ωn,1)× ...×Alt(Ωn,dn) are indexed by

the set of vertices Vn = {vn,i | 1 ≤ i ≤ dn}; and

2. the subgroup Alt(Ωn,i) has exactly

mvn+1,j ,vn,i = |{e ∈ En+1 | r(e) = vn+1,j and s(e) = vn,i}|

nontrivial orbits on each Ωn+1,j .

Definition 2.6. If (V, E) is a Bratteli diagram, then we define the locally finite group

G(V,E) as follows. First, let Ω0 = {1, 2, 3, 4, 5} and let G0 = Alt(Ω0). Then, for each

n ≥ 1, let Vn = {vn,i | 1 ≤ i ≤ dn}. Let

Pn,i = {(e1, ...en) ∈ E1 ◦ ... ◦En | r(en) = vn,i}
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be the set of all paths from V0 = {v0} to vn,i and let

Ωn,i = {(e0, e1, ..., en) | 1 ≤ e0 ≤ 5 and (e1, ..., en) ∈ Pn,i}.

Then let

Gn = Alt(Ωn,1)× ...×Alt(Ωn,dn).

We regard Gn as a subgroup of Gn+1 by identifying each element π ∈ Gn with the

permutation π̃ ∈ Gn+1 defined by

π̃(e0, e1, ..., en, en+1) = (f0, f1, ..., fn, en+1)

where π(e0, e1, ..., en) = (f0, f1, ..., fn). Then G(V, E) is the union of the strongly diag-

onal chain of finite groups:

G0 ≤ G1 ≤ ... ≤ Gn ≤ ...

Next we shall consider the question of when two Bratteli diagrams yield isomorphic

groups. Firstly, there is an obvious notion of isomorphism between two Bratteli dia-

grams (V, E) and (V ′, E′); namely there exists a bijection ϕ : V → V ′ such that for all

n ∈ ω,

1. ϕ[Vn] = V ′
n; and

2. mϕ(u),ϕ(v) = mu,v for all v ∈ Vn and u ∈ Vn+1. (This implies that ϕ can be

extended to include a bijection ϕ : E → E′ which preserves the range and source

maps.)

And clearly if (V, E) and (V ′, E′) are isomorphic, then G(V, E) ∼= G(V ′, E′). Secondly,

let G(V, E) =
⋃

n≥0 Gn be as in Definition 2.6; and let

0 = m0 < m1 < ... < mn < ...

be an increasing sequence of natural numbers. Then the strongly diagonal chain

Gm0 ≤ Gm1 ≤ ... ≤ Gmn ≤ ...

corresponds to the Bratteli diagram (V ′, E′) which is obtained from (V, E) by the

“telescoping” operation of the following definition.

Definition 2.7. Given a Bratteli diagram and an increasing sequence

0 = m0 < m1 < ... < mn < ...

of natural numbers, we define the corresponding telescoping (V ′, E′) of (V, E) to the

sequence (mn | n ∈ ω) by V ′
n = Vmn and E′

n = Emn−1+1 ◦ ... ◦ Emn , together with the

range and source maps as defined in Definition 2.5.
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Definition 2.8. We define ∼ to be the equivalence relation on Bratteli diagrams gen-

erated by the isomorphism and telescoping relations.

Theorem 2.9. If (V,E), (V ′, E′) are Bratteli diagrams, then G(V,E) ∼= G(V ′, E′) if

and only if (V, E) ∼ (V ′, E′).

Proof. By the discussion preceding Definition 2.7, it is clear that if (V ′, E′) is a tele-

scoping of (V,E), then G(V ′, E′) ∼= G(V, E). Thus, (V ′, E′) ∼ (V, E) implies that

G(V ′, E′) ∼= G(V,E).

Conversely, let us suppose that (V, E), (W,F ) are Bratteli diagrams, and that

f : G(W,F ) ∼= G(V, E) is a group isomorphism. Let G0 ≤ G1 ≤ ... ≤ Gn ≤ ... be

the strongly diagonal chain of groups defined from (V, E) as in definition 2.6. Similarly,

let H0 ≤ H1 ≤ ... ≤ Hn ≤ ... be the strongly diagonal chain of groups defined from

(W,F ). Then since G(V, E) is the union of the increasing sequence of the subgroups

G0 ≤ G1 ≤ ... ≤ Gn ≤ ..., for each p ∈ ω, there is some p′ > p such that f(Hp) ⊆ Gp′ .

Similarly, for each m ∈ ω, there is some m′ > m such that f−1(Gm) ⊆ Hm′ . Thus there

are telescopings (V ′, E′) of (V, E) to (mn | n ∈ ω) and (W ′, F ′) of (W,F ) to (pn | n ∈ ω)

such that the following chain of embeddings exists

G0
θ0→ Hp0

ψ0→ Gm1

θ1→ Hp1

ψ1→ ...
ψn−1→ Gmn

θn→ Hpn

ψn→ Gmn+1

θn+1→ ...

where ψn = f ¹ Hpn and θn = f−1 ¹ Gmn .

Claim 1. Each of the maps θn and ψn are diagonal embeddings.

Claim 2. If n ≥ 1, then both θn and ψn satisfy part (b) of definition 2.1.

Assuming these two claims, we have that the chain of embeddings

G0 ↪→ Gm1

θ1→ Hp1

ψ1→ ...
ψn−1→ Gmn

θn→ Hpn

ψn→ Gmn+1

θn+1→ ...

is of strongly diagonal type. Furthermore, it naturally defines a Bratteli diagram (U,H),

such that (V ′, E′) and (W ′, F ′) are each isomorphic to telescopings of (U,H). Then it

is clear that (V, E) ∼ (V ′, E′) ∼ (U,H) ∼ (W ′, F ′) ∼ (W,F ), and we are done.

Proof of claim 1. In order to prove this, we will make use of the following theorem of

Zalesskii [39, Lemma 10].

Lemma 2.10. Suppose m > l > k > 4. Let τ1 : A(k) → A(l) and τ2 : A(l) → A(m) be

embeddings of alternating groups, and let τ = τ2 ◦ τ1. If τ is diagonal, then both τ1 and

τ2 are diagonal.
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Let us suppose that there is some θn : Gmn → Hpn which is not a diagonal embed-

ding. (The argument for ψn is similar.) To simplify notation, let

Gmn = Alt(Ωa,1)× ...×Alt(Ωa,da),

Hpn = Alt(Ωb,1)× ...×Alt(Ωb,db
),

Gmn+1 = Alt(Ωc,1)× ...×Alt(Ωc,dc).

Then for any 1 ≤ i ≤ da, consider θn ¹ Alt(Ωa,i).

We shall first show that this map is a diagonal embedding. For any 1 ≤ j ≤ db,

let πb,j be the projection map of Hpn onto the j-th factor, and for any 1 ≤ k ≤ dc, let

πc,k be the projection map of Gmn+1 onto the k-th factor. Then, for any 1 ≤ j ≤ db,

φk = (πc,k ◦ ψn) ◦ (πb,j ◦ θn) ¹ Alt(Ωa,i) is a homomorphism from Alt(Ωa,i) to Alt(Ωc,k)

passing through Alt(Ωb,j).

φk : Alt(Ωa,i)
πb,j◦θn−→ Alt(Ωb,j)

πc,k◦ψn−→ Alt(Ωc,k)

Note that every orbit of Alt(Ωa,i) on Ωc,k given by φk must be included in some orbit

of Alt(Ωa,i) on Ωc,k given by ψn ◦ θn. Since ψn is one-to-one, there must be some

1 ≤ k ≤ dc such that some orbit of Alt(Ωa,i) on Ωc,k given by φk is nontrivial. Fix such

a value of k. Then, since the action of Alt(Ωa,i) on each of its orbits in Ωc,k given by

ψn ◦ θn is either natural or trivial, then the action of Alt(Ωa,i) on each of its orbits in

Ωc,k given by φk is either natural or trivial, i.e., φk is diagonal. Since we chose k so

that at least one of these orbits is non-trivial, we have that φk is an embedding. Thus

by Lemma 2.10, the map πb,j ◦ θn ¹ Alt(Ωa,i) is a diagonal embedding. Since our choice

of j was arbitrary, we have that πb,j ◦ θn ¹ Alt(Ωa,i) is a diagonal embedding for every

1 ≤ j ≤ db, and thus θn ¹ Alt(Ωa,i) is a diagonal embedding.

Now assume that θn is not a diagonal embedding. Since for each 1 ≤ i ≤ da,

θn ¹ Alt(Ωa,i) is a diagonal embedding, there exists 1 ≤ i < j ≤ da and 1 ≤ k ≤ db

such that the orbits of Alt(Ωa,i) and Alt(Ωa,j) on Ωb,k are not disjoint. However, since

the above argument applies also to ψn ¹ Alt(Ωb,k), we have that ψn ¹ Alt(Ωb,k) is a

diagonal embedding. Thus after applying ψn, the orbits of Alt(Ωa,i) and Alt(Ωa,j) on

Ωc,1 t Ωc,2 t . . . t Ωc,dc are not disjoint. However, this violates the diagonality of the

embedding ψn ◦ θn : Gmn → Gmn+1 .

Proof of claim 2. Fix some n ≥ 1. Notice that the map θn ◦ ψn−1 : Hpn−1 → Hpn is

the inclusion map given from the definition of H. Thus, given 1 ≤ i ≤ dpn and some

x ∈ Ωpn,i, there is some π ∈ Hpn−1 which moves x. Thus ψn−1(π) ∈ Gmn also moves x.

The proof for ψn is similar.
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Definition 2.11. Given a Bratteli diagram (V, E), an ideal is a subset V ∗ ⊆ V such

that whenever e ∈ En and s(e) ∈ V ∗, then r(e) ∈ V ∗. An ideal V ∗ is then said to be

proper if for every n < ω, V ∗ ∩ Vn 6= Vn. A Bratteli Diagram is said to be simple if it

has no nonempty proper ideals.

Notice that if (V,E) is a Bratteli diagram, V ∗ ⊆ V is an ideal, and if there exists

n ∈ ω for which V ∗ ∩ Vn = Vn, then since r−1(v) 6= ∅ for all v ∈ V \V0, we have that

V ∗ ∩ Vm = Vm for every m ≥ n. Thus, an ideal V ∗ ⊆ V is proper if and only if V \V ∗

is infinite.

Theorem 2.12. Let (V,E) be a Bratteli diagram, and let G(V, E) be the corresponding

locally finite group of strongly diagonal type. Then (V, E) is simple if and only if G(V, E)

is simple.

Proof. We will show that (V,E) has a nonempty proper ideal if and only if G(V, E)

has a nontrivial normal subgroup. First assume that V ∗ is a nonempty proper ideal of

(V, E). Then we can define a normal subgroup H CG(V, E) as follows. For each n ∈ ω,

let

Gn = Alt(Ωn,1)× ...×Alt(Ωn,dn)

be as in the definition of G(V,E). Then let Hn =
∏

i∈V ∗∩Vn
Alt(Ωn,i). Since V ∗ is an

ideal, we have that Hn < Hn+1 for every n ∈ ω. Then let H =
⋃

n∈ω Hn.

First, let us show that H CG(V, E). Let g ∈ G(V,E) and h ∈ H be arbitrary. Then

there is some n ∈ ω, such that g ∈ Gn and h ∈ Hn. Then it is clear that ghg−1 ∈ Hn,

so ghg−1 ∈ H.

Now we shall show that H 6= G(V, E). Since V ∗ is a proper ideal, there is a sequence

of vertices {vin,n | n ∈ ω} such that vin,n ∈ Vn\V ∗ for each n ∈ ω. Now let g0 ∈ Alt(Ω0)

be any nontrivial permutation. Then g0 acts nontrivially on each Ωin,n. So for each

n ∈ ω, g0 6∈ Hn. Hence, g 6∈ H.

Conversely, suppose {1} 6= H C G(V, E). We will first show that for any n ∈ ω,

H ∩Gn is a subproduct of

Gn = Alt(Ωn,1)× ...×Alt(Ωn,dn).

Suppose that there is some n ∈ ω and some 1 6= g ∈ H ∩ Gn, and that we can

write g = (g1, ..., gdn) ∈ ∏
1≤i≤dn

Alt(Ωn,i). Choose 1 ≤ i ≤ dn such that gi 6= 1.

Then since Alt(Ωn,i) is simple, for any a ∈ Alt(Ωn,i), there is h ∈ H ∩ Gn such

that h = (h1, ..., hdn) ∈ ∏
1≤i≤dn

Alt(Ωn,i) and hi = a. Since |Ωn,i| ≥ 5, we can

choose a so that a 6= a−1 and such that a is conjugate to a−1 (For example, let

a = (123)). Now since H is a subgroup of G(V,E), h−1 ∈ H. Then since H C G(V, E),

there is some b ∈ Alt(Ωn,i) such that bh−1b−1 = h∗ = (h−1
1 , . . . , a, . . . , h−1

dn
) ∈ H.
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Then h∗h = (1, . . . , 1, aa, 1, . . . , 1) ∈ H, and h∗h 6= 1. Now, since Alt(Ωn,i) is simple,

Alt(Ωn,i) ≤ H. This implies that for every n, there is some I ⊆ {1, ..., dn} such that

{g ∈ ∏
1≤i≤dn

Alt(Ωn,i) | g ∈ H} =
∏

I Alt(Ωn,i).

Now, let {vn,i, vn+1,j} ∈ E. Assume that Alt(Ωn,i) ≤ H. Then, given some ele-

ment 1 6= g ∈ Alt(Ωn,i), we have that the image of g in Gn+1 can be expressed as

(g1, . . . , gdn+1) where gj 6= 1. Thus, by the above argument, Alt(Ωn+1,j) ≤ H. Hence,

V ∗ = {vn,i | Alt(Ωn,i) ≤ H} is an ideal of (V, E).

Finally, {1} 6= H implies ∅ 6= V ∗, and if V ∗ were not a proper ideal, then there

would be some n ∈ ω such that H ∩ Gm = Gm for every m > n, and then we would

have H = G(V, E).

Notice that we have also shown that the following type of subgroup of a locally finite

group of diagonal type is always normal.

Definition 2.13. Let G be a countable locally finite group which is the union of the

diagonal chain

G0 ≤ G1 ≤ . . . ≤ Gn ≤ . . .

where each Gn is the product of finite alternating groups

Gn = Alt(Ωn,1)× ...×Alt(Ωn,dn).

Then for each n < m and 1 ≤ k ≤ dn, let

In,k,m = {1 ≤ i ≤ dm | Alt(Ωn,k) has a nontrivial orbit on Ωm,i},

and define

dAlt(Ωn,k)e =
⋃

m>n


 ∏

i∈In,k,m

Alt(Ωm,i)


 .

2.3 The corresponding standard Borel spaces

Definition 2.14. Let L = (1, ·) be the language of group theory, and consider XL as in

the paragraph preceeding Definition 1.1. We will let SDT be the subspace of countable

simple locally finite groups of strongly diagonal type. Then denote the isomorphism

relation on SDT by ∼=SDT .

The next two results show that the class of countably infinite simple locally finite

groups of (strongly) diagonal type can be axiomatized by an Lω1ω-sentence, and thus

by Corollary 1.5 is a standard Borel space.

Theorem 2.15. A countably infinite simple locally finite group G is of diagonal type

if and only if the following conditions are satisfied.
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(a) Every finite subset X of G is contained in a finite subgroup of G which is a direct

product of alternating groups.

(b) There exists a finite subgroup F of G such that whenever

F ≤ A1 × . . .×An < G

where each Ai is an alternating group on a finite set Ωi, then F has no regular

orbits on any of the Ωi.

Proof. Assume that G satisfies conditions (a) and (b). Then condition (a) allows us

to express G as the increasing union of finite subgroups, each of which is the direct

product of alternating groups, say

G0 ≤ G1 ≤ . . . ≤ Gn ≤ . . .

Theorem 2.3 implies that we may then select a subchain which is either of diagonal

type or of regular type. However, condition (b) implies that G is not expressible as a

union of a chain of regular type. Thus G must be of diagonal type.

Conversely, let G be the union of the diagonal chain of finite subgroups, each of

which is the direct product of alternating groups,

G0 ≤ G1 ≤ . . . ≤ Gn ≤ . . .

Then G clearly satisfies condition (a). Moreover, there exists an m ≥ 0 such that Gm

has a factor of the form Alt(Ω) for some finite set |Ω| ≥ 5. Otherwise, G would be

locally solvable, and there are no infinite locally solvable simple groups. (For exam-

ple, this follows directly from [27, Corollary 1.B.5]). So let Alt(Ω) be such a factor.

Since dAlt(Ω)e C G, we actually have that dAlt(Ω)e = G. Thus we may assume that

G0 = Alt(Ω). Now suppose that G0 ≤ A1×. . .×An < G, where each Ai is a finite alter-

nating group. Then there is some l > 0 so that G0 ≤ A1× . . .×An < Gl. Then arguing

as in the proof of Claim 1 of Theorem 2.9, we see that the embedding G0 ≤ A1×. . .×An

is diagonal. Thus G satisfies condition (b) with respect to F = G0.

Corollary 2.16. A countably infinite simple locally finite group G is of strongly diag-

onal type iff the following conditions are satisfied.

(a) There exists a finite subgroup G0 such that every finite subset X of G is contained

in a finite subgroup

G0 ∪X ⊆ A1 × . . .×An < G,

where each Ai is an alternating group on a finite set Ωi and each element of tΩi

lies in some nontrivial G0-orbit.
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(b) There exists a finite subgroup F of G such that whenever

F ≤ A1 × . . .×An < G,

where each Ai is an alternating group on a finite set Ωi, then F has no regular

orbits on any of the Ωi.

Proof. As before, condition (a) allows us to build an appropriate chain of subgroups,

and condition (b) together with Theorem 2.2 ensure that it is of diagonal type. The

new clause in condition (a) ensures that the chain is strongly diagonal. On the other

hand, if G is the union of the strongly diagonal chain of finite subgroups

G0 ≤ G1 ≤ . . . ≤ Gn ≤ . . .

then G clearly satisfies condition (a). Arguing as in the previous theorem, we see that

G must also satisfy condition (b).

We now work to encode the class of simple Bratteli diagrams into an appropriate

standard Borel space, which we call BD. We then show that ∼=SDT and the relation ∼
on BD are Borel bireducible.

Definition 2.17. We encode BD, the standard Borel space of simple Bratteli diagrams,

as follows. First we encode each Bratteli diagram as a member of the standard Borel

space (N × N)N. Fix a particular Bratteli diagram (V, E). We will associate to it a

function f ∈ (N × N)N. We may assume that V = {n ∈ N | n even} with V0 = {0}
and that E = {n ∈ N | n odd}. Then encode the source and range maps by setting, for

each edge e ∈ E, f(e) = (s(e), r(e)). Next encode the levels of V by setting, for each

v ∈ Vn, f(v) = (0, n). Finally, we let ∼ denote the equivalence relation on BD given by

Definition 2.8.

Lemma 2.18. BD is a standard Borel space.

Proof. Given a function f ∈ (N × N)N and f(n) = (i, j), use lf (n) = i and rf (n) = j

to denote the corresponding projections. Then notice that BD is the set of functions

f ∈ (N× N)N which satisfy the following conditions:

• If n is even, then lf (n) = 0.

• f(n) = (0, 0) if and only if n = 0.

• For each odd n ∈ N, if f(n) = (i, j), then i, j are even and rf (j) = rf (i) + 1.

• For each j ∈ N, {n ∈ N | n is even and rf (n) = j} is nonempty and finite.

• For each even i ∈ N, {n ∈ N | n is odd and lf (n) = i} is nonempty and finite.
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• For each even j ∈ N\{0}, {n ∈ N | n is odd and rf (n) = j} is nonempty and

finite.

It is now evident that we may similarly express the following condition, which

defines simplicity for Bratteli diagrams.

• (∀v ∈ Vn)(∃m > n)(∀w ∈ Vm)(there is a path in En+1 ◦ . . . ◦Em from v to w).

Clearly BD is a Borel subset of the Polish space (N×N)N, and so by Theorem 1.4 is a

standard Borel space.

Lemma 2.19. (∼) ≤B (∼=SDT )

Proof. Theorems 2.9 and 2.12 show that the map (V,E) 7→ G(V, E) is a Borel reduction

from ∼ to ∼=SDT

Lemma 2.20. (∼=SDT ) ≤B (∼)

Proof. Given a group G ∈ SDT together with a chain of strongly diagonal type

G0 ≤ G1 ≤ . . . ≤ Gn ≤ . . . ≤ G

such that G is the limit of the Gn, we may naturally choose a Bratteli diagram (V, E)

so that G ∼= G(V, E). Thus if we show how, given a group G ∈ SDT , to explicitly

choose an appropriate chain of subgroups, then Theorems 2.9 and 2.12 imply that this

assignment would give us a Borel reduction from ∼=SDT to ∼.

Since each G ∈ SDT has N as its underlying set we may, after fixing a well order on

the finite subsets of N, refer to the least finite subset of G satisfying a given property.

So we begin by choosing as G0 the least subset of G which satisfies part (b) of Corollary

2.16. Then given Gn we choose as Gn+1 the least subset of G which satisfies part (a) of

Corollary 2.16 with respect to Gn∪{0, 1, . . . , n}. Then Theorem 2.3 together with part

(b) of Corollary 2.16 tell us that we may choose a subchain of diagonal type. Finally,

the second clause of part (a) of Corollary 2.16 assures us that this subchain is strongly

diagonal.
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Chapter 3

Dimension groups

In this chapter, for each Bratteli diagram (V,E), we shall define an associated di-

mension group K0(V, E). We note that, for any Bratteli diagrams (V, E) and (W,F ),

(V, E) ∼ (W,F ) if and only if K0(V, E) and K0(W,F ) are isomorphic. We then show

that (V, E) is simple if and only if K0(V, E) is simple.

Definition 3.1. If (V, E) is a Bratteli diagram, then we can explicitly define an as-

sociated dimension group K0(V, E), equipped with a distinguished order unit, as fol-

lows. For each integer n ∈ ω, let ZVn be the free abelian group on the set of vertices

Vn = {vn,i | 1 ≤ i ≤ dn}. We regard ZVn as an ordered abelian group with positive cone

(
ZVn

)+
=

{
dn∑

i=1

zivn,i | zi ≥ 0 for all 1 ≤ i ≤ dn

}
.

For each n ≥ 1, let ϕn : ZVn−1 → ZVn be the homomorphism given by matrix multi-

plication by the incidence matrix Mn from Definition 2.4. Since all of the entries of

Mn are nonnegative, ϕn[(ZVn−1)+] ⊆ (ZVn)+. Then we define K0(V, E) to be the direct

limit of the system of ordered groups

ZV0
ϕ1→ ZV1

ϕ2→ ZV2
ϕ3→ . . .

ϕn→ ZVn
ϕn+1→ . . .

endowed with the induced order. Given a group element a ∈ ZVn for some n ∈ N, we

define [a] = lim
m≥n

(ϕm ◦ . . . ◦ ϕn+1)(a) ∈ K0(V, E). Thus, if there are n, m ∈ N such that

a ∈ ZVn and b ∈ ZVm , then [a] = [b] if and only if there is some l > n, m such that

(ϕl ◦ . . . ◦ϕn+1)(a) = (ϕl ◦ . . . ◦ϕm+1)(b). Notice also that x ∈ (K0(V, E))+ if and only

if there is some n ∈ ω and a ∈ (
ZVn

)+ such that x = [a].

Lemma 3.2. [9] K0(V, E) is a dimension group.

Proof. It is routine to check that K0(V,E) is an unperforated ordered abelian group, so

we will only verify the Riesz interpolation property. Let ai, bj ∈ K0(V, E) where ai ≤ bj

(1 ≤ i, j ≤ 2). Then since bj − ai ∈ K0(V, E)+ for 1 ≤ i, j ≤ 2, there is some n ∈ N and

some a′i, b
′
j ∈ ZVn such that [a′i] = ai, [b′j ] = bj , and b′j − a′i ∈

(
ZVn

)+ for 1 ≤ i, j ≤ 2.

That is, a′i ≤ b′j for 1 ≤ i, j ≤ 2. Since ZVn is a dimension group, there is some c′ ∈ ZVn

such that a′i ≤ c′ ≤ b′j for 1 ≤ i, j ≤ 2. Thus, letting c = [c′], we have that ai ≤ c ≤ bj

for 1 ≤ i, j ≤ 2.



30

Finally, the distinguished order unit is the element of K0(V, E)+ corresponding to

the element v0 ∈ ZV0 .

Theorem 3.3. [8] If (V,E) and (V ′, E′) are Bratteli diagrams, then (V, E) ∼ (V ′, E′)

if and only if the ordered groups K0(V, E) and K0(V ′, E′) are isomorphic via a map

sending the distinguished order unit v0 of K0(V,E) to the distinguished order unit v′0
of K0(V ′, E′).

Theorem 3.4. Let (V, E) be a Bratteli diagram, and let K0(V, E) be the corresponding

dimension group. Then (V,E) is simple if and only if K0(V, E) is simple.

Proof. First, let V ∗ ⊂ V be a nonempty proper ideal of (V,E), and let

X =
⋃
n∈ω

{
dn∑

i=1

zivn,i ∈ ZVn | zi 6= 0 ⇒ vi,n ∈ V ∗
}

.

Note that X is “upward closed” in the sense that if a ∈ X ∩ ZVn , b ∈ ZVn+1 , and

b = ϕn+1(a), then b ∈ X. We show that J = {[a] | a ∈ X} is an ideal of A.

We first prove that J is in fact a subgroup of K0(V, E). Clearly, a ∈ X implies

a−1 ∈ X, and so [a] ∈ J implies [a−1] ∈ J . Now let [a], [b] ∈ J , where a ∈ X ∩ Vm and

b ∈ X ∩ Vl. Then there is some n ≥ m, l and some c, d ∈ ZVn such that [a] = [c] and

[b] = [d]. Then c, d ∈ X, and so c+d ∈ X ∩ZVn , and so [a]+ [b] = [c]+ [d] = [c+d] ∈ J .

Now suppose 0 ≤ a ≤ b ∈ J . Then a = [x] where x ∈ ZVm for some m, and b = [y]

where y ∈ X ∩ ZVn for some n. Then there is some l ≥ m,n and x′, y′ ∈ ZVl such that

a = [x′], and b = [y′] and 0 ≤ x′ ≤ y′. Then y′ ∈ X implies x′ ∈ X. Thus a ∈ J .

If we let

X+ =
⋃
n<ω

{
dn∑

i=1

zivn,i ∈
(
ZVn

)+ | zi 6= 0 ⇒ vi,n ∈ V ∗},

then J+ = {[a] | a ∈ X+}, and clearly J = J+ − J+. Thus J is an ideal of K0(V,E).

Note that ∅ 6= V ∗ implies {0} 6= J . To show that J 6= K0(V, E), consider the element

of K0(V, E) corresponding to v0 ∈ ZV0 . We claim that [v0] /∈ J . Otherwise, there is

some a ∈ X such that [a] = [v0]. Suppose n ∈ N and a =
∑dn

i=1 zivn,i ∈ ZVn . Then there

must be some l > n such that (ϕl ◦ . . . ◦ ϕn+1)(a) = (ϕl ◦ . . . ◦ ϕ1)(v0). However, since

all of the source maps associated with (V, E) are nonempty, (ϕl ◦ . . . ◦ ϕ1)(v0) has all

positive coordinates. But since (ϕl ◦ . . . ◦ ϕn+1)(a) ∈ X, this implies that V ∗ ∩ Vl = Vl

and this contradicts the assumption that V ∗ is a proper ideal.

Conversely, let J 6= {0} be an ideal of K0(V, E) and let

V ∗ = {vn,i | ∃a =
dn∑

i=1

aivn,i ∈
(
ZVn

)+
such that [a] ∈ J+ and ai > 0}.
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Then V ∗ has the property that whenever e ∈ En and s(e) ∈ V ∗, then r(e) ∈ V ∗. Since

J = J+ − J+ and J 6= {0}, then J+ 6= {0}, and so V ∗ 6= ∅.
Now assume that V ∗ is not a proper ideal. Then there is some n ∈ N such that

V ∗ ∩Vm = Vm for every m ≥ n. It is clear that if V ∗ ∩Vm = Vm, then ZVm ⊆ J . Hence

ZVm ⊆ J for all m ≥ n, and thus J = K0(V,E).
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Chapter 4

The positive cone of a simple dimension group

We now turn our attention to the structure of dimension groups. The beginning of

this chapter follows Chapter 4 of [10]. First we observe that if a ≤ b and c ≤ d, then

a + c ≤ b + d, and if na ≤ nb for some n ∈ N, then a ≤ b. The following lemma gives

a useful characterization of the Riesz interpolation property. The proof follows that of

Effros [10, Lemma A3.1].

Lemma 4.1. [29, pp. 175-6][3, Theorem 49] Let A be an unperforated ordered group.

Then the following are equivalent properties for A:

(1) Given ai ≤ bj (1 ≤ i, j ≤ 2) there exists some c ∈ A with ai ≤ c ≤ bj for all i, j.

(2) Given ai ≤ bj (i = 1, ..., r; j = 1, ..., s) there is some c ∈ A with ai ≤ c ≤ bj for

all i, j.

(3) If 0 ≤ a ≤ b1 + · · ·+bs, and 0 ≤ bi (1 ≤ i ≤ s), then there exist ai ∈ A (1 ≤ i ≤ s)

with 0 ≤ ai ≤ bj (1 ≤ i, j ≤ s) and a = a1 + · · ·+ as.

(4) If
∑r

i=1 ai =
∑s

j=1 bj , ai, bj ≥ 0, then there exist cij ∈ A+ with ai =
∑

j cij and

bj =
∑

i cij.

Proof. First let

[0, b] = {a ∈ A | 0 ≤ a ≤ b},

rewrite (3) as

[0, b1 + . . . + bs] = [0, b1] + . . . + [0, bs],

and represent (4) as a table as follows:
b1 . . . bs

a1 c11 . . . c1s

a2 c21 . . . c2s

...
... . . .

...

ar cr1 . . . crs

In (1) or (2), we say that the element c ∈ A interpolates, or that we can interpolate

with c. We refer to either (3) or (4) as the Riesz decomposition property.
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(1) ⇒ (2). We assume (1) and prove (2) by induction on r + s. If r + s ≤ 4, then

either a1 interpolates (if r = 1), b1 interpolates (if s = 1), or (2) follows immediately

from (1) (if r = s = 2). Assume then that r + s ≥ 5. Assume r ≥ 3 (otherwise

s ≥ 3 and the proof is similar). Then by induction there is some c′ ∈ A such that

a1, a2, . . . , ar−1 ≤ c′ ≤ b1, b2, . . . , bs. Then again by induction there is some c ∈ A such

that c′, ar ≤ c ≤ b1, b2, . . . , bs. Then a1, a2, . . . , ar ≤ c ≤ b1, b2, . . . , bs.

(2) ⇒ (3). We assume (2) and prove (3) by induction on s. If s = 2 then

0, a− b1 ≤ a, b2. Thus there is some c ∈ A such that 0, a − b1 ≤ c ≤ a, b2. Then

0 ≤ c ≤ b2 and 0 ≤ a − c ≤ b1 and clearly a + (a − c) = a. Thus we have shown that

[0, b1 + b2] = [0, b1] + [0, b2]. Then [0, b1 + . . . + bs] = [0, b1] + . . . + [0, bs] follows by

induction.

(3) ⇒ (4). Once again, we use induction on r + s. If r + s = 2, then (4) is trivial, so

assume that r + s ≥ 3. Assume r ≥ 2 (otherwise s ≥ 2 and the proof is similar). Then

0 ≤ ar ≤
∑s

j=1 bj , and so by (3) there are cr1, cr2, . . . , crs such that 0 ≤ crj ≤ bj for

each 1 ≤ j ≤ s and that cr1 +cr2 + . . .+crs = ar. Then by induction we can decompose∑r−1
i=1 ai =

∑s
j=1(bj − csj) as

b1 − cr1 . . . bs − crs

a1 c11 . . . c1s

a2 c21 . . . c2s

...
... . . .

...

ar−1 c(r−1)1 . . . c(r−1)s

Then we obtain (4) by adding the row

ar cr1 . . . crs

to the bottom of the above matrix.

(4) ⇒ (1). Assume a1, a2 ≤ b1, b2. Then (b1 − a1), (b1 − a2), (b2 − a1), (b2 − a2) ≥ 0

and (b1 − a1) + (b2 − a2) = (b2 − a1) + (b1 − a2). Then by (4) we have the following

decomposition:
b1 − a2 b2 − a1

b1 − a1 c11 c12

b2 − a2 c21 c22

where cij ≥ 0. We claim that c = b1 − c11 interpolates. c ≤ b1 is immediate. Then

c11 ≤ b1−a1 implies c ≥ a1, and c11 ≤ b1−a2 implies c ≥ a2. Finally, b1−a1 = c11+c12

implies that c = b1 − c11 = a1 + c12 ≤ a1 + (b2 − a1) = b2.

Recall that if A is a dimension group, then a subgroup J is an ideal if J = J+−J+

(where J+ = J ∩A+) and 0 ≤ a ≤ b ∈ J implies a ∈ J . Now a face F in A+ is defined

to be a subset F ⊆ A+ satisfying F + F ⊆ F and 0 ≤ a ≤ b ∈ F implies a ∈ F . It

is easy to check that J 7→ F = J+ provides a one-to-one correspondence between the
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ideals in A and the faces in A+. In particular if b ∈ A+ and we let

[b] = {a ∈ A | 0 ≤ a ≤ nb for some n ∈ N}

then [b] is a face, and J = [b]− [b] is the smallest ideal containing b. Recall that given a

dimension group A, an element u ∈ A+ is an order unit if [u] = A+. In particular, if A

is a simple dimension group, then a ∈ A+ \{0} implies the ideal [a]− [a] is the whole of

A, i.e., every element of A+ \ {0} is an order unit. Similarly, if every a ∈ A+ \ {0} is an

order unit, then A must be simple. (There are, in fact, non-simple dimension groups

which have no order units.)

If A is a dimension group, we say an element b ∈ A is minimal if b > 0 and 0 ≤ a ≤ b

implies a = 0 or a = b. If b ∈ A+ is minimal then [b] = Z+b. To see this, note that

if 0 ≤ a ≤ nb, then a = a1 + · · · + an where 0 ≤ ai ≤ b (see Lemma 4.1(3)), and thus

ai = 0 or ai = b for each i. Thus if A is a simple dimension group with a minimal

positive element, then A is isomorphic to Z as a group. Since there are exactly two

orderings on Z, we see that (A,A+) ∼= (Z,Z+) as a dimension group. In other words,

if (A,A+) � (Z,Z+) is simple, then A contains no minimal positive elements. The

following is included in [11, Corollary 1.2].

Lemma 4.2. If (A,A+) � (Z,Z+) is a simple dimension group, then (A,A+) satisfies

the strong Riesz interpolation property: given elements a, b, c, d ∈ A, if a, b < c, d, then

there is some e ∈ A so that a, b < e < c, d.

Proof. By the usual Riesz interpolation property, we know that there is some f ∈ A

with a, b ≤ f ≤ c, d. If a, b < f < c, d, then we are done, so assume for example that

f = b (the other cases are similar). Then a ≤ b = f < c, d, and 0 < (c − f), (d − f).

But then since (A,A+) is simple, (c− f) is an order unit, and so there is some positive

n ∈ N such that 0 < (d − f) < n(c − f). Now, since (A,A+) contains no minimal

positive element, there is some ε ∈ A with 0 < ε < (d − f) < n(c − f). Then by the

Riesz Decomposition Property, there are ε1, . . . , εn ∈ A+ so that ε = ε1 + . . . + εn, and

εi ≤ (c − f) for each 1 ≤ i ≤ n. Next fix i so that εi > 0. Again since (A,A+) has

no minimal positive elements, there is some δ ∈ A+ such that 0 < δ < εi. Then we

interpolate with e = f + δ. Clearly a, b < e, since δ > 0. Furthermore e < c, d, since

(d− f), (c− f) > δ.

We will soon see that the existence of an order unit allows much insight into the

structure of dimension groups. So from now on, we will work with the standard Borel

space of simple dimension groups with a distinguished order unit, whose definition we

restate here.

Definition 4.3. Let n ≥ 1 and consider the standard Borel space R(Qn)×P(Qn)×Qn

where P(Qn) denotes the power set of Qn. Let SDGn denote the Borel subset of
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R(Qn)×P(Qn)×Qn given by those (A,A+, u) such that (A,A+) is a simple dimension

group (of rank n) and u ∈ A+ \ {0}. (Here we see that simplicity may be encoded

by an Lω1ω-sentence, since it is equivalent to asserting that every non-zero element of

A+ is an order unit.) Let ∼=+
n denote the isomorphism relation on SDGn. Since this

is the orbit equivalence relation given by the diagonal action of GLn(Q) on SDGn ⊆
R(Qn)× P (Qn)×Qn, we see that ∼=+

n is a countable Borel equivalence relation.

Our focus for the remainder of this thesis is the following theorem. We prove it for

n = 1, 2 in Chapter 6, and for the rest of the cases in Chapters 7 and 8. In Chapter 9,

we use it to prove similar theorems about simple Bratteli diagrams and simple locally

finite groups of strongly diagonal type.

Theorem 4.4. For all n ≥ 1, (∼=+
n ) <B (∼=+

n+1)

In order to prove this for n ≥ 3, we will first need to study the space of states of a

simple dimension group of finite rank. Fix n ≥ 3 and some (A,A+, u) ∈ SDGn. We

say that a homomorphism p : A → R is a state if p is positive (i.e., p(A+) ≥ 0), and

p(u) = 1. We let Su(A,A+) be the set of all states on (A,A+, u), and we give it the

weakest topology for which each of the functions â : f 7→ f(a) (a ∈ A) is continuous.

It is clear that Su(A,A+) is convex. Since A has finite rank, it follows that Su(A,A+)

is compact. To see this, let ei (1 ≤ i ≤ k) be a maximally linearly independent set

of elements of A+. Then since A = A+ − A+, any state p is determined by p(ei),

(1 ≤ i ≤ k). Also there is some integer zi ∈ N such that 0 ≤ ei ≤ ziu. Thus

0 ≤ p(ei) ≤ zi, regardless of the choice of p. Hence any sequence of states must have a

convergent subsequence, and it follows that Su(A,A+) is compact.

Now since Su(A,A+) is a convex compact subset of the locally convex space RA of

all functions f : A → R equipped with the product topology, the Krein-Milman theorem

says that Su(A,A+) is the convex hull of its extreme points. Let E(Su(A,A+)) be this

set of extreme points. Our goals for the remainder of this chapter are

1. to show that E(Su(A,A+)) is finite, and

2. to explore the manner in which E(Su(A,A+)) determines the positive cone A+.

Understanding the nature of E(Su(A,A+)) will be crucial in Chapter 8.

4.1 E(Su(A,A+)) is finite.

Fix n ≥ 3 and some (A, A+, u) ∈ SDGn. Following Chapter 10 of Goodearl [18], we

define a classical simplex to be the convex hull of finitely many affinely independent

points in a real vector space. We define below an infinite-dimensional analogue of a
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classical simplex which we will call a simplex. In particular, a classical simplex will be

a simplex, and the extreme points of a simplex will be affinely independent. Then we

will show that Su(A,A+) is a simplex, and thus the extreme points of Su(A,A+) are

affinely independent.

Assume for a moment that the extreme points of a Su(A,A+) are affinely indepen-

dent. Let ei, (1 ≤ i ≤ n) be linearly independent elements of A, and define homomor-

phisms fi : A → R by fi(ej) = 1 if i = j and fi(ej) = 0 if i 6= j. Since the elements

of Su(A,A+) are linear combinations of the functions fi, E(Su(A,A+)) must be finite.

(Notice that this actually means that Su(A,A+) is a classical simplex.) In order to

generalize the definition of a classical simplex, we need some notions from convexity

theory.

Definition 4.5. (a) A convex cone in a real vector space E is any subset C such

that C + C ⊆ C and aC ⊆ C for all a ∈ R+. A convex cone C is strict if

C ∩ (−C) = {0}.

(b) A partially ordered set is a lattice if any two elements have a least upper bound

and greatest lower bound.

(c) A lattice cone of a real vector space is any strict cone C that is a lattice under

the order defined by a ≤ b ⇐⇒ b− a ∈ C.

(d) A base of a convex cone C is any subset K so that every nonzero element of C

can be uniquely expressed as αx for some α ∈ R+ and x ∈ K.

(e) A simplex in a real vector space E is a compact subset of E which is affinely

isomorphic to a base for a lattice cone in some real vector space.

First, note that if K is an l-dimensional classical simplex, then it is affinely isomor-

phic to the convex hull (in Rl+1) of the basis vectors

(1, 0, . . . , 0) (0, 1, . . . , 0) . . . (0, 0, . . . , 1)

and this is the base for the usual positive cone of Rl+1, which is lattice-ordered. Thus

any classical simplex is a simplex. The next proposition is folklore for convexity theo-

rists. (See, for example, Proposition 10.7 and Corollary 10.8 in Goodearl [18].)

Proposition 4.6. If K is a simplex in a real vector space E, then the set of extreme

points of K is an affinely independent subset of E.

In the remainder of this section, we show that Su(A,A+) is a simplex. We say that

a homomorphism f from A to R is relatively bounded if, given any bounded subset

K ⊂ A, then f(K) is bounded as well. Notice that the set of relatively bounded

homomorphisms from A to R forms a real vector space.
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Claim. The set of positive homomorphisms from A to R forms a strict cone in the

space of relatively bounded homomorphisms f : A → R.

Proof. The set of positive homomorphisms is clearly closed under addition and scalar

multiplication by r ∈ R+. So we need to show that if f is a positive homomorphism

from A to R, then f is relatively bounded. Let X ⊆ A be a bounded set, and let a ∈ A+

be a bound for X. That is, x ∈ X implies −a ≤ x ≤ a. Then there is some natural

number n such that a ≤ nu, and thus f(a) ≤ n. Thus f(X) is bounded by −n and

n.

Claim. The state space Su(A,A+) forms a base of this cone.

Proof. If f is a positive homomorphism from A to R such that f 6= 0, then f(u) > 0.

Thus f(u)−1f ∈ Su(A,A+), and f = f(u)[f(u)−1f ] is the unique way to represent f as

a scalar multiple of an element of Su(A, A+).

Thus we are only left to show:

Lemma 4.7. [12] Let (A,A+) be a dimension group, and let hom(A,R)+ be the space

of positive homomorphisms from A to R partially ordered by

f ≤ g ⇐⇒ f(a) ≤ g(a) for all a ∈ A+.

Then hom(A,R)+ is lattice ordered.

Proof of Lemma 4.7. Let f1, f2 ∈ hom(A,R)+ be any two positive homomorphisms.

We construct a least upper bound by setting, for each a ∈ A+

(f1 ∨ f2)(a) = sup{f1(a1) + f2(a2) | a1 + a2 = a and a1, a2 ∈ A+}.

Then, (f1∨ f2) has a unique extension to A, since A = A+−A+. We then claim that if

a + b = c (a, b ∈ A+), then (f1 ∨ f2)(a) + (f1 ∨ f2)(b) = (f1 ∨ f2)(c). Certainly we have

that (f1 ∨ f2)(a) + (f1 ∨ f2)(b) ≤ (f1 ∨ f2)(c), since for any decomposition a = a1 + a2

and b = b1 + b2 (a1, a2, b1, b2 ∈ A+), we have

(f1 ∨ f2)(c) ≥ f1(a1 + b1) + f2(a2 + b2) = [f1(a1) + f2(a2)] + [f1(b1) + f2(b2)].

On the other hand, to show that (f1 ∨ f2)(a) + (f1 ∨ f2)(b) ≥ (f1 ∨ f2)(c), we need to

find, given some decomposition c = c1 + c2 (c1, c2 ∈ A+), decompositions a1 + a2 = a

and b1 + b2 = b (a1, a2, b1, b2 ∈ A+) such that

f1(c1) + f2(c2) ≤ [f1(a1) + f2(a2)] + [f1(b1) + f2(b2)].

However, the Riesz decomposition property tells us that since c1 + c2 = a + b, then

there are a1, a2, b1, b2 ∈ A+ such that a1 + a2 = a, b1 + b2 = b, a1 + b1 = c1, and
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a2 + b2 = c2, and the above inequality (actually, equality) holds. It is then easily

checked that (f1 ∨ f2)(a) + (f1 ∨ f2)(b) = (f1 ∨ f2)(c) for arbitrary a, b, c ∈ A such that

a + b = c.

Since (f1∨f2)(a) ≥ f1(a)+f2(0) = f1(a) for all a ∈ A+, it is clear that (f1∨f2) ≥ f1.

Similarly, (f1 ∨ f2) ≥ f2. On the other hand, if f1, f2 ≤ h ∈ hom(A,R)+, then for any

a1 + a2 = a where a1, a2 ∈ A+, we have

f1(a1) + f2(a2) ≤ h(a1) + h(a2) = h(a)

and so (f1 ∨ f2)(a) ≤ h(a). Hence (f1 ∨ f2) ≤ h, and in fact (f1 ∨ f2) = sup{f1, f2}.
It then follows that (f1∧f2) := (f1+f2)−(f1∨f2) is also an element of hom(A,R)+,

and in fact it is the greatest lower bound of f1 and f2. To see this, let a ∈ A+. Then

(f1 ∧ f2)(a) = f1(a) + f2(a)− (f1 ∨ f2)(a) ≤ f1(a) + f2(a)− [f1(0) + f2(a)] = f1(a)

and so (f1 ∧ f2) ≤ f1. Similarly (f1 ∧ f2) ≤ f2. Also, if f1, f2 ≥ h ∈ hom(A,R)+, then

for any a1 + a2 = a where a1, a2 ∈ A+, we have

f1(a)+f2(a)− [f1(a1)+f2(a2)] = f1(a−a1)+f2(a−a2) ≥ h(a−a1)+h(a−a2) = h(a)

and so (f1 ∧ f2)(a) ≥ h(a).

4.2 E(Su(A,A+)) determines the positive cone.

If X is a compact Hausdorff space, we let CR(X) denote the Banach space of continuous

functions h : X → R with the norm ‖h‖∞ = sup{|h(x)| : x ∈ X}, and we define the

ordinary and strict orderings on CR(X) by

CR(X)+ = {h ∈ CR(X) : h(x) ≥ 0 for all x ∈ X},

CR(X)++ = {h ∈ CR(X) : h(x) > 0 for all x ∈ X} ∪ {0},
using the notation ¿ for the latter cone.

If K is a compact convex subset of a locally convex space, we let Aff K be the affine

functions in CR(K), i.e., the continuous functions h ∈ CR(K) such that

h(αp + (1− α)q) = αh(p) + (1− α)h(q) for all p, q ∈ K and 0 ≤ α ≤ 1.

Aff K is a closed subspace of CR(K) and we let (Aff K)+ = Aff K ∩ CR(X)+, and

(Aff K)++ = Aff K ∩ CR(X)++. In particular, if K is a classical simplex, Aff K may

be identified with CR(E(K)) where E(K) is the set of extreme points as follows. Let

E(K) = {k1, . . . , kd} be the extreme points of K. Then for any h ∈ Aff K and

any element α1k1 + . . . + αdkd ∈ K such that α1 + . . . + αd = 1, we have that
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h(α1k1 + . . . + αdkd) = α1h(k1) + . . . + αdh(kd). Thus we may identify h with the

function fh ∈ CR(E(K)) defined by fh(ki) = h(ki) for all 1 ≤ i ≤ d.

Thus we have an ordinary and strict order, norm, and linear isomorphism

Aff K = CR(E(K)) ∼= Rd.

Now fix some n ∈ N and (A,A+, u) ∈ SDGn. Then we define a positive homo-

morphism θ : A → Aff Su(A,A+) : a 7→ â by letting â(p) = p(a). In particular, we have

that û = 1. To see that â is an affine function, note that

â(αp + (1− α)q) = (αp + (1− α)q)(a) = αp(a) + (1− α)q(a) = αâ(p) + (1− α)â(q).

The range of the function â may be calculated by comparing a with u. More precisely,

we have the following result of Goodearl and Handelman, based on their ordered group

analogue of the Hahn-Banach Theorem.

Theorem 4.8. [19] Suppose that A is an ordered group with order unit u. Then for

any a ∈ A+,

inf{â(p) : p ∈ Su(A, A+)} = sup{α ∈ Q+ : αu ≤ a}.

The inequality on the right is interpreted as follows. If α = p/q with p, q ∈ N, then

αu ≤ a means that pu ≤ qa.

Definition 4.9. Suppose that u is an order unit in an unperforated order group A.

We say that a ∈ A is infinitesimal if −u ≤ na ≤ u for all n ∈ N.

Notice that the infinitesimal elements do not depend on the choice of u, and that the

set of infinitesimals forms a subgroup of A. For example, if a, b ∈ A are infinitesimal,

then 2n(a + b) = 2na + 2nb ≤ u + u = 2u, and so n(a + b) ≤ u, for all 0 < n ∈ N.

Corollary 4.10. [11, Corollary 1.5] If (A,A+, u) is a simple dimension group, then

the map

θ : A → Aff Su(A,A+)

determines the order on A in the sense that A+ = {a ∈ A : â À 0}∪{0}. Furthermore,

we have a ∈ ker θ (i.e., â = 0) if and only if a is infinitesimal.

Proof. If a ∈ A+\{0}, then since (A,A+, u) is simple, a is an order unit and na ≥ u for

some n. But then nâ ≥ û = 1, i.e., â À 0. Conversely if â À 0, then since Su(A,A+) is

compact, â ≥ εû for some ε > 0. Thus by Theorem 4.8, there exists an p/q ∈ Q+ such

that qa ≥ pu. Thus qa ∈ A+, and since (A,A+, u) is unperforated, a ∈ A+.

If −u ≤ na ≤ u for all n ∈ N, then −1 ≤ np(a) ≤ 1 for all p ∈ Su(A,A+) and n ∈ N.

Thus â = 0. Conversely, if â = 0, then given ε > 0, ε ∈ Q, ̂(a + εu) = â + ε̂u À 0

implies that a+εu ≥ 0, i.e., a ≥ −εu. Since the same applies to −a, −εu ≤ a ≤ εu.
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Corollary 4.11. Let n ≥ 1 and let (A,A+, u), (B, B+, v) ∈ SDGn. Suppose that

A = B and u = v. Then the following are equivalent:

1. A+ = B+

2. Su(A,A+) = Sv(B,B+)

3. E(Su(A, A+)) = E(Sv(B, B+))

Proof. Clearly (1) =⇒ (2) =⇒ (3). So assume that E(Su(A,A+)) = E(Sv(B, B+)).

Then since each of Su(A,A+) and Sv(B,B+) is the set of affine combinations of elements

of E(Su(A,A+)), they must be equal as well. Now assume that there is some a ∈
A+\B+. Then Corollary 4.10 implies that p(a) > 0 for every p ∈ Su(A,A+), but

that there is some q ∈ Sv(B,B+) such that q(a) ≤ 0. This contradicts Su(A, A+) =

Sv(B, B+).
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Chapter 5

Countable dimension groups of finite rank are
characterized by Bratteli diagrams.

In this chapter, we shall present Effros’ proof [10] of the surprising theorem of Effros-

Handelman-Shen [11] that every countable dimension group arises from a suitably cho-

sen Bratteli diagram via the construction in Definition 3.1. Using Theorems 3.3 and

3.4, this will give, for each n ≥ 1, a Borel reduction from the isomorphism relation ∼=+
n

on SDGn to the relation ∼ on BD.

Theorem 5.1. [10] Fix n ≥ 1. For every dimension group (A,A+, u) ∈ SDGn, there

is a Bratteli diagram (V, E) such that (A,A+) ∼= K0(V, E). Furthermore, (V, E) can be

chosen in a Borel way.

The first step in proving this theorem is to note that the Riesz interpolation property

can be applied in a Borel fashion. That is, we fix a well-ordering on Qn, so that given

a dimension group (A,A+) such that A ≤ Qn, and a, b, c, d ∈ A such that a, b ≤ c, d,

we can pick the least element x of A ⊆ Qn such that a, b ≤ x ≤ c, d. We also note that

since in the proof of Theorem 4.1, all of our constructions were explicit, each of the

reformulations the Riesz interpolation property can be applied in a Borel fashion.

Next we shall need the following lemma, which gives a necessary and sufficient

condition (Shen’s condition) for an unperforated ordered group to be isomorphic to

K0(V,E) for some Bratteli diagram (V, E).

Lemma 5.2. [30] Suppose that (A,A+) is a countable unperforated ordered group.

Then there is a Bratteli diagram (V, E) such that (A, A+) ∼= K0(V, E) if and only if

for every positive homomorphism ϕ : Zr → A, there exists an s ∈ N, and positive

homomorphisms σ : Zr → Zs, ϕ′ : Zs → A such that the following diagram commutes

Zs

Zr ϕ -σ -A

ϕ′

?

(5.1)

and kerσ = kerϕ. Furthermore, in the case that (A,A+) satisfies Shen’s condition,

there exists a Borel choice of a corresponding Bratteli diagram (V, E).



42

We will only use the harder ‘if’ direction of this lemma in the proof of Theorem 5.1,

but we include the easier direction to help the reader understand the meaning of Shen’s

condition.

Proof of Lemma 5.2. Let (V, E) be a Bratteli Diagram and (A,A+) = K0(V, E) the

associated dimension group. Let r ≥ 1 and let ϕ : Zr → A be any positive homomor-

phism. Then since Zr is finitely generated, so is ϕ(Zr). Choose the least n ∈ N so that

ϕ(Zr) ⊆ ZVn , where Vn is the n-th level of V . Then we obtain the following commuting

diagram of positive maps:

ZVn

Zr ϕ -ϕ
′

-A
?

(5.2)

It is clear that kerϕ′ ⊆ kerϕ. However, kerϕ is again finitely generated, so we can just

increase n until all of the generators of kerϕ are mapped to 0 by ϕ′. Then kerϕ = kerϕ′.

Conversely, let (A,A+) be an unperforated ordered group which satisfies Shen’s

condition. We construct a Bratteli diagram (V, E) such that (A,A+) ∼= K0(V, E)

as follows. Enumerate A+ = {a1, a2, . . .}. Then we actually construct a commuting

diagram of positive maps

Zr(1) θ1 - A

Zr(2)

ϕ1

?
θ2 - A

id

?

...

ϕ2

?
...

id

?

(5.3)

so that for each n ≥ 1, ker θn = kerϕn and

{a1, a2, . . . , an} ⊆ θn

(
(Zr(n))+

)
. (5.4)

Then (V, E) will be determined by letting |Vn| = r(n) for each n ∈ N, and for each

v ∈ Vn the edges between v and Vn+1 will be determined by reading off the coordinates

of ϕn(v). But before we construct this diagram, we show that

Claim. (A,A+) is isomorphic to the direct limit K0(V, E) of the Zr(n).
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Proof of claim. First, define An = θn(Zr(n)) for each n ≥ 1 Then since ker θn = kerϕn

for each n ≥ 1, we obtain a sequence of (not necessarily positive) maps ηn : An → Z(r(n+1))

so that the following diagram commutes.

Zr(1) θ1 - A1

Zr(2)

ϕ1

?
θ2 -¾ η1

A2

?

Zr(3)

ϕ2

?
θ3 -¾ η2

A3

?

...

?
...

?

(5.5)

Since this diagram commutes, and since K0(V, E), (A,A+) are the direct limits implicit

in this diagram (the latter because of Formula (5.4)), we naturally obtain homomor-

phisms f : K0(V, E) → (A,A+) and g : (A,A+) → K0(V, E). Since all the θn are

positive, so is f . On the other hand, let a ∈ A+. Then by Formula (5.4) there is some

n ≥ 1 where a ∈ An and a = θn(α) for some α ∈ (Zr(n))+. However, ηn(a) = ϕn(α)

and ϕn is positive, so ηn(a) = ϕn(α) ∈ (Zr(n+1))+. Thus g is also positive.

Finally, we show that f and g are inverse maps. Let b ∈ K0(V, E). Then there is

some n ≥ 1 such that b = ϕn∞(bn) for some bn ∈ Zr(n). (Here ϕn∞ denotes the natural

map from Zr(n) to K0(V, E).) Then

(gf)(b) = (gθn)(bn) = (ϕ(n+1)∞ηnθn)(bn) = (ϕ(n+1)∞ϕn)(bn) = (ϕn∞)(bn) = b.

Next let a ∈ A. Then there is some n ≥ 1 and some α ∈ Zr(n) such that a = ϕn(α).

Then

g(a) = (ϕ(n+1)∞ηn)(a) = (ϕ(n+1)∞ηnθn)(α),

and we calculate f(g(a)) by applying θn+1 to an element of Zr(n+1) which has g(a) as

a limit:

(fg)(a) = (θn+1ηnθn)(α) = (θn)(α) = a.

Finally, we construct Diagram 5.3 by induction on n. First, let r(1) = 1 and

define θ1 : Z → A by setting θ1(1) = a1. Next assume we have defined θ1, . . . , θn and
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ϕ1, . . . , ϕn−1. Then set ϕ′n : Zr(n) → Zr(n)+1 as the natural inclusion map, and define

θ′n+1 : Zr(n)+1 → A by defining θ′n+1(e0), . . . , θ′n+1(er(n)) according to θn and setting

θ′n+1(er(n)+1) = an+1. So we have the following commutating diagram, but we still

desire the appropriate kernel condition.

Zr(n) θn - A

Zr(n)+1

ϕ′n
?

θ′n+1 - A

id

?

(5.6)

However Shen’s condition gives us maps σ and θn+1 so that kerσ = ker θ′n+1 and so

that the following diagram commutes

Zr(n) θn - A

Zr(n)+1

ϕ′n
?

θ′n+1 - A

id

?

Zr(n+1)

σ

?
θn+1 - A

id

?

(5.7)

We then let ϕn = σ ◦ ϕ′n and (noting that kerϕ′n = {0}) finally obtain

kerϕn = kerσ = ker θ′n+1 = ker(θ′n+1 ◦ ϕ′n) = ker(id ◦ θn) = ker θn.

Now, to prove Theorem 5.1, we only need to verify that dimension groups satisfy

Shen’s condition.

Proof of Theorem 5.1. Let (A, A+) be a dimension group and let ϕ : Zr → A be a

positive homomorphism. We begin by noting that diagrams such as (5.1) may be

composed, i.e., given two commuting diagrams of positive homomorphism

Zs Zt

Zr ϕ -σ -A

ϕ′

?
Zs ϕ′ -τ -A

ψ

?

(5.8)
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then composing the ascending maps we obtain another commuting diagram of positive

homomorphisms

Zt

Zr ϕ -τ ◦ σ -A

ψ

?

(5.9)

It follows that if we wish to verify Shen’s condition, it suffices to construct a diagram in

which σ(α) = 0 for a single α ∈ kerϕ. This is the case since kerϕ is finitely generated,

and we may annihilate its generators (and their images) one at a time.

If α = ei for some 0 ≤ i ≤ r, then we may accomplish this by defining σ : Zr → Zr−1

via σ(ej) = ej for j < i, σ(ei) = 0, and σ(ej) = ej−1 for j > i, and defining

ψ : Zr−1 → A so that the following diagram commutes

Zr−1

Zr ϕ -σ -A

ψ

?

(5.10)

Otherwise, we work inductively on deg(α), which is defined below. First express

α as α = Σmifi − Σnjgj , where mi, nj ∈ N+ and f1, . . . , fs, g1, . . . , gt, h1, . . . , hu is a

rearrangement of the basis elements of Zr. We may assume that m1 ≥ m2 ≥ . . . ≥ ms

and (by considering −α instead of α if necessary) that m1 ≥ n1 ≥ n2 ≥ . . . ≥ nt. Then

the degree of α is deg(α) = (m, d), where m = m1 and d is the number of times that m1

appears among the mi and nj . We order the degrees lexicographically, and note that

deg(α) = (1, 1) corresponds to the case that α = ei for some 0 ≤ i ≤ r. Thus, since

we can compose diagrams, we only need to construct a commuting diagram of positive

homomorphisms

Zq

Zr ϕ -σ -A

ψ

?

(5.11)

so that the minimum degree of σ(α) ∈ kerψ is less than that of α ∈ kerϕ.

So let α ∈ kerϕ have minimal degree, and again let α = Σmifi − Σnjgj as above.

Then let ai = ϕ(fi) for 1 ≤ i ≤ s, bj = ϕ(gj) for 1 ≤ j ≤ t, and ck = ϕ(hk) for

1 ≤ k ≤ u. Then since ϕ(α) = 0, we obtain

m1a1 + . . . + msas = n1b1 + . . . + ntbt,
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and since m1 ≥ n1 ≥ n2 ≥ . . . ≥ nt,

m1a1 ≤ n1b1 + . . . + ntbt ≤ m1b1 + . . . + m1bt.

Thus a1 ≤ b1 + . . . + bt, and a1, b1, . . . , bt ≥ 0 since ϕ is positive. So we can apply

the Riesz Decomposition Property to obtain a11, . . . , a1t so that 0 ≤ a1j ≤ bj for all

1 ≤ j ≤ t and a11 + . . . + a1t = a1.

Now let Zq have basis elements f ′11, . . . , f
′
1t, f

′
2, . . . , f

′
s, g

′
1, . . . , g

′
t, h

′
1, . . . , h

′
u, and de-

fine σ : Zr → Zq and ψ : Zq → A by

σ(f1) = f ′11 + . . . + f ′1t ψ(f ′1j) = ϕ(a1j) 1 ≤ j ≤ t

σ(fi) = f ′i ψ(f ′i) = ai 2 ≤ i ≤ s

σ(gj) = f ′1j + g′j ψ(g′j) = bj − a1j 1 ≤ j ≤ t

σ(hk) = h′k ψ(h′k) = ck 1 ≤ k ≤ u

Then it is clear that σ and ψ are positive and that the above diagram commutes. Also,

σ(α) = m1σ(f1) + m2σ(f2) + . . . + msσ(fs)− [n1σ(g1) + . . . + ntσ(gt)]

= m1(f ′11 + . . . + f ′1t) + m2f
′
2 + . . . + msf

′
s

− [n1f
′
11 + . . . + ntf

′
1t + n1g1 + . . . + ntgt]

= (m1 − n1)f ′11 + . . . + (m1 − nt)f ′1t + m2f
′
2 + . . . + msf

′
s − [n1g1 + . . . + ntgt].

and since (m1 − n1), . . . , (m1 − nt) are all nonnegative and less than m1, we have

deg(σ(α)) < deg(α) and we are done.

In order to be able to relate SDGn to BD, we will need to incorporate the extra

structure of the order unit into the above theorem. The following is a condensed version

of [17, 21.9 and 21.10].

Theorem 5.3. [17] Fix some n ≥ 1. For every dimension group with order unit

(A,A+, u) ∈ SDGn, there is a Bratteli diagram (V, E) such that (A,A+, u) ∼= K0(V,E).

Furthermore, (V,E) can be chosen in a Borel way.

Proof. Theorem 5.1 gives us a Borel choice of a Bratteli diagram (V, E), such that

(A,A+) ∼= K0(V, E). Letting Hm = ZVm , we have a sequence of positive maps

H0
ϕ0→ H1

ϕ1→ H2
ϕ2→ . . .

ϕm−1→ Hm
ϕm→ . . .

so that there is an isomorphism g : (A,A+) ∼= lim−→(Hm,H+
m). Set v = g(u). Then v is

an order unit of lim−→(Hm,H+
m). Thus, there is some k ∈ N and some v′ ∈ H+

k such that

[v′] = v. Contracting levels 1 through k of (V, E), we may assume that v′ ∈ H1. Next

set u1 = v′, and for m > 1, um = ϕm−1(um−1). Then for each m ≥ 1, let

Gm = {x ∈ Hm | −tum ≤ x ≤ tum for some t ∈ N}.
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Notice that Gm ≤ Hm and um ∈ H+
m. Thus Gm is precisely ZWm , where Wm ⊆ Vm is

the set of non-zero coordinates of um.

Claim. lim−→(Hm,H+
m) = lim−→(Gm, G+

m).

Proof. Given x ∈ lim−→(Hm,H+
m), we have that there is some m ∈ N and some y ∈ Hm

such that x = [y]. Since v is an order unit for lim−→(Hm,H+
m), there is some t ∈ N such

that −tv ≤ x ≤ tv, and thus [−tum] ≤ [y] ≤ [tum]. After increasing m if necessary, we

may assume that −tum ≤ y ≤ tum, and so y ∈ Gm. Thus x ∈ lim−→(Gm, G+
m).

Finally, set |W0| = 1, G0 = ZW0 , and place edges between W0 and W1 so that

ϕ0 : G0 → G1 is the unique positive map with ϕ0(1) = u1. Then the Bratteli diagram

induced from the Wm fulfills our purpose.

Theorem 5.4. For each n ≥ 1, (∼=+
n ) ≤B (∼).

Proof. Theorem 5.3 gives a Borel map from f : SDGn → BD so that for each dimension

group (A,A+, uA) ∈ SDGn, (A,A+, uA) ∼= K0(f(A,A+, uA)). Theorem 3.3 implies that

f is a Borel reduction.
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Chapter 6

(∼=+
1 ) <B (∼=+

2 ) <B (∼=+
3 )

Proposition 6.1. Let n ≥ 2. The map fn : SDGn → SDGn+1 given by fn((A,A+, uA)) =

(B,B+, uB) where

1. B = A⊕Q

2. B+ = {(a, q) ∈ A⊕Q : a ∈ A+\{0} and q > 0} ∪ {(0, 0)}

3. uB = (uA, 1)

is a Borel reduction from ∼=+
n to ∼=+

n+1.

Proof. We first need to check that (B, B+, uB) ∈ SDGn+1. It is easy to check that

(B,B+, uB) is an unperforated ordered group. For example, to see that B+−B+ = B,

let (a, q) be any element of B. Then there are a1, a2 ∈ A+ so that a = a1−a2. If either

a1 or a2 are 0, then replace them with a1 + uA and a2 + uA so that they both lie in

A+\{0}. Next let q1, q2 be any two positive rational numbers so that q1− q2 = q. Then

(a, q) = (a1, q1)− (a2, q2) and (a1, q1), (a2, q2) ∈ B+.

To see that (B, B+, uB) satisfies the Riesz interpolation property, consider elements

(ai, qi), (bj , pj) ∈ B (1 ≤ i, j ≤ 2) such that (ai, qi) ≤ (bj , pj). First note that if qi = pj

for some i, j ∈ {1, 2}, then it must be the case that ai = bj and then we can choose

(ai, qi) to interpolate. Thus we can assume that q1, q2 < p1, p2, and so a1, a2 < b1, b2.

Then let q be some rational number such that q1, q2 < q < p1, p2. Now applying Lemma

4.2 to (A,A+, uA), there exists c ∈ A with ai < c < bj for 1 ≤ i, j ≤ 2, and so we can

choose (c, q) to interpolate.

To see that (B, B+, uB) is simple, let J be a nontrivial ideal of (B, B+, uB), and let

(a, q) ∈ J+\{0}. Now let (b, r) be any other element of B+. Since (A,A+, uA) is simple

and a ∈ A+\{0}, we know that a is an order unit in (A,A+). That is, there is some

natural number n ∈ N such that na−b ∈ A+. Since q > 0, there is some natural number

n′ ∈ N such that n′q − r > 0. Then letting m = max{n, n′}, m(a, q)− (b, r) ∈ B+, and

so (b, r) ∈ J+. Thus J+ = B+ and so J = B.

We now need to check that fn is a Borel reduction. If (A,A+, uA) ∼= (C, C+, uC),

then there exists some ϕ ∈ GLn(Q) so that ϕ(A,A+, uA) = (C, C+, uC). Then

(ϕ⊕ 1)(fn(A,A+, uA)) = fn(C, C+, uC), and so fn(A,A+, uA) ∼= fn(C, C+, uC)
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On the other hand, suppose that (A,A+, uA), (C,C+, uC) ∈ SDGn and also that

fn(A,A+, uA) ∼= fn(C, C+, uC). Let (B,B+, uB) := fn(A,A+, uA) and (D, D+, uD) :=

fn(C, C+, uC). Let ϕ : (B, B+, uB) → (D, D+, uD) be an isomorphism, identify A, Q
with the corresponding factors of B, and identify C, Q with the corresponding factors

of D. Consider the set

B◦ = {b ∈ B | b /∈ B+ and for every b′ ∈ B+\{0}, b + b′ ∈ B+} ∪ {(0, 0)}
= {(0, q) ∈ B | q ∈ Q+} ∪ {(a, 0) ∈ B | a ∈ A+}.

Then the first equality above shows that ϕ(B◦) = D◦. Notice that uA+1Q is the unique

way to express uB as a sum of two elements of B◦. Thus ϕ({uA, 1Q}) = {uC , 1Q}. Notice

also that if g ∈ B◦, then

• g ∈ A+ iff (∃n ≥ 1)(nuA − g ∈ B0)

• g ∈ Q+ iff (∃n ≥ 1)(n1Q − g ∈ B0)

Thus we either have that

(1) ϕ(uA) = uC and ϕ(A+) = C+, and ϕ extends linearly to an isomorphism

ϕ : (A,A+, uA) ∼= (C,C+, uC); or

(2) ϕ(uA) = 1Q and ϕ(A+) = Q+, and ϕ extends linearly to an isomorphism

ϕ : (A,A+, uA) ∼= (Q,Q+, 1Q). However, this is impossible since n ≥ 2.

Proposition 6.2. Let n ≥ 1. The map gn : R(Qn) → SDGn+1 given by gn(G) =

(A,A+, u) where

1. A = G⊕Q

2. A+ = {(h, q) ∈ G⊕Q : q > 0} ∪ {(0, 0)}

3. u = (0, 1)

is a Borel reduction from ∼=n to ∼=+
n+1.

Proof. It is easily seen that gn does map each group G to a dimension group. To see

that (A,A+, uA) is simple, let J ⊆ A be a nontrivial ideal, fix some (g, q) ∈ J+\{0}
and choose any (h, r) ∈ A+. Now choose n ∈ N so that nq > r. Then since we have

n(g, q) ≥ (h, r) ≥ 0, it must be the case that (h, r) ∈ J+. Since our choice of (h, r) was

arbitrary, J+ = A+, and so J = A.
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It is clear that G ∼= H implies gn(G) ∼= gn(H). Conversely, if gn(G) ∼= gn(H), then

G ∼= G⊕ {0} = infin(gn(G)) ∼= infin(gn(H)) = H ⊕ {0} ∼= H,

where infin((A,A+, u)) is the group of infinitesimals of (A,A+, u).

We will begin our analyses of ∼=+
1 and ∼=+

2 by giving Thomas’ [33] description of

Baer’s [2] classification of the rank 1 torsion-free abelian groups. Let P be the set of

primes. If G is a torsion-free abelian group and 0 6= x ∈ G, then the p-height of x is

defined to be

hx(p) = sup{n ∈ N | There exists y ∈ G such that pny = x} ∈ N ∪ {∞},

and the characteristic χ(x) of x is defined to be the function

〈hx(p) | p ∈ P〉 ∈ (N ∪ {∞})P.

Two functions χ1, χ2 ∈ (N ∪ {∞})P are said to be similar or belong to the same type,

written χ1 ≡ χ2, iff

(a) χ1(p) = χ2(p) for all but finitely many primes p; and

(b) if χ1(p) 6= χ2(p), then both χ1(p) and χ2(p) are finite.

Clearly ≡ is an equivalence relation on (N∪{∞})P. If G is a torsion-free abelian group

and 0 6= x ∈ G, then the type τ(x) is defined to be the ≡-equivalence class containing

the characteristic χ(x).

Now suppose that G ∈ R(Q) is a rank 1 group. Then it is easily checked that

τ(x) = τ(y) for all 0 6= x, y ∈ G. Hence we can define the type τ(G) of G to be τ(x)

where x is any non-zero element of G. In [2], Baer proved the following:

Theorem 6.3. If G,H ∈ R(Q), then G ∼= H iff τ(G) = τ(H).

In other words, (∼=1) ≤B ((N ∪ {∞})P,≡). We also have ((N ∪ {∞})P,≡) ≤B (∼=1),

via χ 7→ Gχ, where Gχ is the group generated by {1/(pn) | n ∈ N, p ∈ P, n ≤ χ(p)}.
Thus (∼=1) ∼B ((N∪{∞})P,≡). Hence, since ((N∪{∞})P,≡) ∼B E0 and (∼=1) ≤B (∼=+

2 ),

we know that ∼=+
2 is not smooth.

On the other hand, ∼=+
1 is smooth, since for any rank 1 simple dimension groups

(A,A+, uA), (B,B+, uB) ∈ SDG1, (A, uA) ∼= (B, uB) if and only if χ(uA) = χ(uB). In

fact, since

A+\{0} = {a ∈ A | (∃q ∈ Q+) a = quA},

it follows that (A,A+, uA) ∼= (B, B+, uB) if and only if χ(uA) = χ(uB). Thus, we have

shown:
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Theorem 6.4. (id2N) ∼B (∼=+
1 ) <B (∼=+

2 ).

Next, we will show that (∼=+
2 ) <B (∼=+

3 ) by examining the group actions which give

rise to these equivalence relations. Instead of analyzing ∼=+
2 , we first note that it is

enough to analyze the Borel equivalence relation obtained by restricting ∼=+
2 to those

dimension groups (A,A+, uA) for which uA = (1, 0) ∈ Q2. Denote this space of rank 2

dimension groups by SDG
(e0)
2 and the resulting equivalence relation by (∼=+

2 )<e0>. Then

we have a Borel reduction from ∼=+
2 to (∼=+

2 )<e0> via (A, A+, uA) 7→ g(A,A+, uA), where

g is some element of GL2(Q) such that g(uA) = (1, 0). Now we have that (∼=+
2 )<e0> is

the orbit equivalence relation of the natural action of the group

H = {
(

a b

c d

)
∈ GLn(Q) | a = 1, c = 0}

on SDG
(e0)
2 . Since H is solvable and hence amenable, we have by Theorem 1.31 that

(∼=+
2 )<e0> is Frèchet-amenable.

Now suppose that (∼=+
3 ) ≤B (∼=+

2 ), and thus (∼=2) ≤B (∼=+
3 ) ≤B (∼=+

2 ) ≤B (∼=+
2 )<e0>.

Then by Theorem 1.34, we would have that ∼=2 is Frèchet-amenable. However, in

[23, Section 5], Hjorth has constructed a PSL2(Z)-invariant measure µ on R(Q2), and

a Borel subset X ⊂ R(Q2) with µ(X) = 1 such that PSL2(Z) = SL2(Z)/{1,−1}
acts freely on X. Thus Theorem 1.33 would imply that PSL2(Z) is amenable. How-

ever, this is not the case, since PSL2(Z) contains an isomorphic copy of F2, namely,〈(
1 1

0 1

)
,

(
1 0

1 1

)〉
/{−1, 1}. Thus we have shown:

Theorem 6.5. (∼=+
2 ) <B (∼=+

3 ).
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Chapter 7

The relationship between dimension groups and
torsion-free abelian groups.

In order to prove Theorem 1.11 for the case n ≥ 3, we will first reduce the analysis

to the case of a Borel homomorphism f : SDGn+1 → SDGn whose image is a single

isomorphism class of the underlying torsion-free abelian group. Let gn : R(Qn) →
SDGn+1 be the Borel reduction from ∼=n to ∼=+

n+1 defined in Proposition 6.2, and let

π′n : SDGn → R(Qn) be the forgetful map π′n(A,A+, u) = A. Consider initially a Borel

homomorphism f : SDGn+1 → SDGn−1 (recall n ≥ 3). Then composing these maps,

we obtain a Borel homomorphism h = π′n−1 ◦ f ◦ gn from ∼=n to ∼=n−1; and examining

Thomas’ proof that (∼=n) <B (∼=n+1), we see that, with respect to a suitable invariant

ergodic probability measure, h maps a measure one subset of an SLn(Z)-invariant Borel

subset of R(Qn) to a single isomorphism class of R(Qn−1). This implies that f maps

this subset to a collection of dimension groups with isomorphic underlying torsion-free

abelian groups.

This is how we would start to prove Theorem 1.11 for n ≥ 3, except that our Borel

homomorphism f should be a map from SDGn+1 to SDGn. To fix this, we observe

that by first adjusting by an appropriate element of GLn(Q), we can assume that the

order unit of every dimension group in the image of f is u = e0, thus shrinking the

group which acts on SDGn. It will also turn out to be useful to reduce the analysis to

the case when the group of infinitesimals of every dimension group in the image of f is

identical. Notice that the group of infinitesimals is always a torsion-free abelian group

of rank less than that of the associated dimension group. To realize these two goals

simultaneously, we proceed as follows:

Given n ≥ 1, let S(Qn) be the space of all subgroups of Qn. Then the isomorphism

relation on this space is the orbit equivalence relation of the action of the group GLn(Q).

Next let Mat〈e0〉
n (Q) ⊂ Matn(Q) be the subset of all n × n matrices which fix the one-

dimensional subspace 〈e0〉. Let GL〈e0〉
n (Q) = GLn(Q) ∩ Mat〈e0〉

n (Q). Let ∼=〈e0〉
n∗ be the

orbit equivalence relation of the diagonal action of GL〈e0〉
n (Q) on R(Qn)× S(Qn).

Theorem 7.1. Let n ≥ 3 and let X be a standard Borel SLn(Z)-space with an invariant

ergodic probability measure µ. Suppose that f : X → R(Qn)×S(Qn) is a Borel function

such that xEy ⇒ f(x) ∼=〈e0〉
n∗ f(y). Then there exists an SLn(Z)-invariant Borel subset
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M ⊂ X with µ(M) = 1 such that f maps M into a single ∼=〈e0〉
n∗ -class.

We will use this theorem in the next chapter in the case when f is the composition

of the following Borel homomorphisms:

1. The Borel homomorphism σn from EXn

SLn(Z) to ∼=n, where (Xn, µn) is the measure

space given by Definition 1.43,

2. The Borel reduction gn : R(Qn) → SDGn+1 from ∼=n to ∼=+
n+1, defined in Propo-

sition 6.2,

3. An arbitrary Borel homomorphism h : SDGn+1 → SDGn from ∼=+
n+1 to ∼=+

n ,

4. A Borel function which replaces each dimension group (A,A+, u) ∈ SDGn by

ϕ(A,A+, u) for some ϕ ∈ GLn(Q) so that ϕ(u) = e0.

5. The function which takes a dimension group (A,A+, u) ∈ SDGn and gives the

element of R(Qn) × S(Qn) corresponding to the underlying torsion-free abelian

group and the group of infinitesimals of (A,A+, u).

Our goal for the rest of this chapter is to prove Theorem 7.1. In order to accomplish

this, we will first prove an analogous theorem for the quasi-isomorphism relation.

Definition 7.2. Suppose that A,B ∈ S(Qn). Then A is said to be quasi-contained in

B, written A ≺n B, if there exists an integer m > 0 such that mA ≤ B. If A ≺n B and

B ≺n A, then A and B are said to be quasi-equal and we write A ≈n B.

It is well-known that if A ∈ S(Qn) and m > 0, then [A : mA] < ∞. This implies

that if A,B ∈ S(Qn), then A ≈n B if and only if A ∩B has finite index in both A and

B.

Theorem 7.3. [36, Lemma 3.2] For all n ≥ 1, ≈n is a countable Borel equivalence

relation on S(Qn).

Proof. It is clear that ≈n is a Borel equivalence relation. We must check that for each

group A ∈ S(Qn), there are only countably many groups B ∈ S(Qn) such that A ≈n B.

Fix some A ∈ S(Qn) and assume that A ≈n B. Then there are finite positive integers

m, l so that mB ≤ A and lA ≤ B. However, this implies that mlA ≤ mB ≤ A.

Thus since [A : mlA] < ∞, there are only finitely many choices for mB, and thus only

countably many choices for B.

We will rely on the following highly nontrivial result of Thomas.

Theorem 7.4. [36, Theorem 3.8] For each n ≥ 1, the relation ≈n is hyperfinite.
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Definition 7.5. Suppose that A, B ∈ S(Qn). Then A and B are said to be quasi-

isomorphic, written A ∼n B, if there exists ϕ ∈ GLn(Q) such that ϕ(A) ≈n B. We

shall write A ∼〈e0〉
n B iff there exists some ϕ ∈ GL〈e0〉

n (Q) such that ϕ(A) ≈n B.

Given (A,A′), (B,B′) ∈ R(Qn) × S(Qn), we write (A, A′) ∼〈e0〉
n∗ (B,B′) if there exists

ϕ ∈ GL〈e0〉
n (Q) such that ϕ(A) ≈n B and ϕ(A′) ≈n B′.

Since ∼〈e0〉
n∗ is the smallest equivalence relation on R(Qn)×Rk(Qn) containing both

≈n¹R(Qn) × ≈n and ∼=〈e0〉
n∗ , then it is also a countable Borel equivalence relation. In par-

ticular, since
(∼=〈e0〉

n∗

)
⊆

(
∼〈e0〉

n∗

)
, Theorem 7.1 is an immediate consequence of Lemma

1.46 and the following result.

Theorem 7.6. Let n ≥ 3 and let X be a standard Borel SLn(Z)-space with an invariant

ergodic probability measure µ. Suppose that f : X → R(Qn)×S(Qn) is a Borel function

such that xEy ⇒ f(x) ∼〈e0〉
n∗ f(y). Then there exists an SLn(Z)-invariant Borel subset

M ⊂ X with µ(M) = 1 such that f maps M into a single ∼〈e0〉
n∗ -class.

To prove this, we first need a few definitions. For each A ∈ S(Qn), let [A] be the ≈n-

class containing A. If A ∈ S(Qn), then a linear transformation ϕ ∈ Matn(Q) is said to

be a quasi-endomorphism of A if ϕ(A) ≺n A. Equivalently, ϕ is a quasi-endomorphism

of A if and only if there exists an integer m > 0 such that mϕ ¹A∈ End(A). It is easily

checked that the collection QE(A) of quasi-endomorphisms of A is a Q-subalgebra of

Matn(Q) and that if A ≈n B, then QE(A) = QE(B). Let

RQE(A) = QE(A) ∩Mat〈e0〉
n (Q).

Note that if A ≈n B, then RQE(A) = RQE(B), and that RQE(A) is also aQ-subalgebra

of Matn(Q). A linear transformation ϕ ∈ Matn(Q) is said to be a quasi-automorphism

of A if ϕ is a unit of the Q-algebra QE(A). The group of quasi-automorphisms of A is

denoted by QAut(A). Let RQAut(A) = QAut(A)∩Mat〈e0〉
n (Q) = the group of units of

RQE(A)

Lemma 7.7. If A ∈ S(Qn), then RQAut(A) is the setwise stabilizer of [A] in GL〈e0〉
n (Q).

Proof. First, suppose that ϕ ∈ RQAut(A) ⊆ QAut(A). Then there exists an integer

m > 0 such that ψ = mϕ ∈ End(A). Clearly, ψ is also a unit of QE(A) and so ψ

is a monomorphism. Hence, by Exercise 92.5 [15], ψ(A) has finite index in A and so

ψ(A) ≈n A. Since ψ(A) = mϕ(A), it follows that ψ(A) ≈n ϕ(A). Thus, ϕ(A) ≈n A

and so ϕ stabilizes [A].

Conversely, suppose that ϕ ∈ GL
〈e0〉
n (Q) stabilizes [A]. Then ϕ(A) ≈n A and so there

exists an integer m > 0 such that mϕ(A) ≤ A. Since mϕ ∈ End(A) is a monomorphism,

it follows that mϕ ∈ QAut(A) and so ϕ ∈ QAut(A). Thus ϕ ∈ RQAut(A).
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Now to prove Theorem 7.6, we will follow closely the proof of Theorem 3.5 of Thomas

[33]. So let n ≥ 3 and let X be a standard Borel SLn(Z)-space with an invariant ergodic

probability measure µ. Suppose that f : X → R(Qn)× S(Qn) is a Borel function such

that xEX
SLn(Z)y implies f(x) ∼〈e0〉

n∗ f(y). Let E = EX
SLn(Z) and for each x ∈ X, let

(Ax, Ix) = f(x) ∈ R(Qn) × S(Qn). First, notice that there are only countably many

possibilities for the Q-algebra QE(Ax). Thus, since RQE(Ax) = QE(Ax)∩Mat<e0>
n (Q),

there are only countably many possibilities for RQE(Ax). Hence, there exists a Borel

subset X1 ⊆ X with µ(X1) > 0 and a fixed Q-subalgebra S′ of Matn(Q) such that

RQE(Ax) = S′ for all x ∈ X1. By the ergodicity of µ, we have that µ(SLn(Z).X1) = 1.

In order to simplify notation, we shall assume that SLn(Z).X1 = X. After slightly

adjusting f if necessary, we can also assume that RQE(Ax) = S′ for all x ∈ X. (That

is, let c : X → X be a Borel function such that c(x)Ex and c(x) ∈ X1 for all x ∈ X.

Then we can replace f with f ′ = f ◦ c.) By a similar argument, we can assume that

there is a fixed Q-subalgebra S′′ of Matn(Q) such that RQE(Ix) = S′′ for all x ∈ X.

Finally, let S = S′ ∩ S′′. Then, letting S∗ denote the group of units of S, we have

S∗ = RQAut(Ax) ∩ RQAut(Ix) for each x ∈ X.

Now suppose that x, y ∈ X and that xEy. Then (Ax, Ix) ∼〈e0〉
n∗ (Ay, Iy) and so there

exists ϕ ∈ GL〈e0〉
n (Q) such that ϕ(Ax) ≈n Ay and ϕ(Ix) ≈n Iy. Notice that

ϕSϕ−1 = ϕ(RQE(Ax) ∩ RQE(Ix))ϕ−1

= RQE(ϕ(Ax)) ∩ RQE(ϕ(Ix))

= RQE(Ay) ∩ RQE(Iy)

= S

and so ϕ ∈ N = N
GL

〈e0〉
n (Q)

(S). Clearly we also have ϕ([Ax]) = [Ay] and ϕ([Ix]) = [Iy].

By Lemma 7.7, for each x ∈ X, the stabilizer of [Ax] (resp. [Ix]) in GL
〈e0〉
n (Q) is

RQAut(Ax) (resp. RQAut(Ix)). Thus for each x ∈ X, the stabilizer of [Ax] × [Ix] in

GL
〈e0〉
n (Q) is RQAut(Ax) ∩ RQAut(Ix) = S∗

Let H = N/S∗ and for each ϕ ∈ N , let ϕ = ϕS∗. Then we can define a cocycle

α : SLn(Z)×X → H by

α(g, x) = the unique element ϕ ∈ H such that ϕ([Ax]× [Ix]) = [Ag.x]× [Ig.x]

Lemma 7.8. There exists an algebraic Q-group G with dimG < n2 − 1 such that

H ≤ G(Q).

Proof. Let Ω be a fixed algebraically closed field containing R and all of the p-adic

fields Qp. Let

Λ = Ω⊗ S ⊆ Matn(Ω)
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be the associated Ω-algebra. Then Λ is an affine Q-variety; and the Cayley-Hamilton

Theorem implies that the group of units of Λ is given by

Λ∗ = {ϕ ∈ Λ | det(ϕ) 6= 0}.
Thus Λ∗ is an algebraic Q-group and Λ∗(Q) = S∗. Furthermore, by Proposition 1.7 [4],

Γ = N
GL

〈e0〉
n (Ω)

(Λ) is also an algebraic Q-group and clearly Γ(Q) = N . By Theorem 6.8

[4], G = Γ/Λ∗ is an algebraic Q-group and

H = Γ(Q)/Λ∗(Q) ≤ G(Q).

Finally note the following, where the last inequality holds because n ≥ 3.

dimG ≤ dimΓ ≤ dimGL〈e0〉
n (Ω) = n2 − (n− 1) < n2 − 1

By Theorem 1.44, α is equivalent to a cocycle β such that β(SLn(Z)×X) is contained

in a finite subgroup K of H. To simplify notation, we shall assume that β = α. Then

for each x ∈ X,

Φ(x) = {ϕ([Ax]× [Ix]) | ϕ = α(g, x) for some g ∈ SLn(Z)}
= {[Az]× [Iz] | zEx}

is a nonempty finite set of ≈n × ≈n-classes; and clearly if xEy, then Φ(x) = Φ(y). By

the ergodicity of µ, we can assume that there exists an integer 1 ≤ l ≤ |K| such that

|Φ| = l for all x ∈ X. Now let x 7→ (x1, . . . , xl) be a Borel function from X to X l such

that for each x ∈ X,

(a) xiEx for all 1 ≤ i ≤ l; and

(b) Φ(x) = {[Ax1 ]× [Ix1 ], . . . , [Axl
]× [Ixl

]}.
Finally, let f̃ : X → (R(Qn)× S(Qn))l be the Borel function defined by

f̃(x) = (Ax1 × Ix1 , . . . , Axl
× Ixl

);

and let F be the countable Borel equivalence relation on (R(Q)× S(Qn))l defined by

(A1 × I1, . . . , Al × Il)F (B1 × J1, . . . , Bl × Jl)

⇐⇒ {[A1]× [I1], . . . , [Al]× [Il]} = {[B1]× [J1], . . . , [Bl]× [Jl]}.

Since the relation ≈n on R(Qn) and the relation ≈n on S(Qn) are both hyperfinite,

it follows that F is also hyperfinite. (For example, see [25, Section 1].) Notice that if

xEy, then Φ(x) = Φ(y) and so f̃(x)F f̃(y). By Theorem 1.25, there exists an SLn(Z)-

invariant Borel subset M ⊆ X with µ(M) = 1 such that f̃ maps M into a single F -class;

and this implies that f maps M into a single ∼〈e0〉
n∗ -class. This completes the proof of

Theorem 7.6.
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Chapter 8

Proof of Theorem 1.11

Let n ≥ 3 and assume toward a contradiction that f : SDGn+1 → SDGn is a Borel

reduction from ∼=+
n+1 to ∼=+

n . Let gn : R(Qn) → SDGn+1 be the Borel reduction defined

in Proposition 6.2. Then h = f ◦ gn is a Borel reduction from ∼=n to ∼=+
n . Letting

X = Xn, µ = µn, and σ = σn as in Definition 1.43, we have that

(a) X is a standard Borel SLn(Z)-space with SLn(Z)-invariant ergodic probability

measure µ,

(b) σ is a Borel homomorphism from EXn

SLn(Z) to ∼=n, and

(c) σ is countable-to-one and hence does not map a measure one subset of X to a

single ∼=n-class.

Adjusting by the appropriate elements of GLn(Q), we may assume that the order unit

of every element in the range of h is u = e0. Now let π : SDGn → R(Qn) × S(Qn)

be the map π(A,A+, u) = (A, infin(A,A+, u)). Then Theorem 7.1 implies that we may

assume that π ◦ h ◦ σ maps X into a single ∼=〈e0〉
n∗ -class. Hence, after adjusting by the

appropriate elements of GL〈e0〉
n (Q), we can assume that π ◦ h ◦ σ maps X to a single

pair, say (A, I). So we have reduced our analysis to the case when all the dimension

groups in the image of h◦σ have the same underlying torsion-free abelian group A, the

same group of infinitesimals I, and the same distinguished order unit u = e0.

In both of the following cases, we will use (a) and (b) above to show that h◦σ maps

a measure-one subset of X to a single ∼=+
n -class. However, this violates (c), and thus

completes the proof of Theorem 1.11.

8.1 Case I: I = {0}

Fix some x ∈ X. Let (A,A+
x , u) = (h ◦ σ)(x), and let Sx be the stabilizer of (A,A+

x , u)

in GL
〈e0〉
n (Q).

Claim. Sx is finite.

Proof. We examine the action of Sx on the state space Su(A,A+
x ) defined by

ϕ.p(a) = p(ϕ−1(a)) for p ∈ Su(A, A+
x ) and ϕ ∈ Sx.
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Notice that ϕ ∈ Sx implies that ϕ−1(a) ∈ A for each a ∈ A, and so the above is

well-defined. Notice also that

1. ϕ.p(u) = p(ϕ−1(u)) = p(u) = 1; and

2. for any a ∈ A+, ϕ−1(a) ∈ A+, and so ϕ.p(a) = p(ϕ−1(a)) ∈ R+.

Thus ϕ.p ∈ Su(A,A+
x ). Notice also that, for any ϕ ∈ Sx, p, q ∈ Su(A,A+

x ), and

0 ≤ α ≤ 1,

ϕ.(αp + (1− α)q) = αϕ.p + (1− α)ϕ.q.

Thus since any ϕ ∈ Sx is an affine permutation of the classical simplex Su(A,A+
x ),

it must permute the elements of the finite set E(Su(A,A+
x )). Hence the following

statement implies that Sx is finite.

Subclaim. If ϕ ∈ Sx, and ϕ acts as the identity on E(Su(A,A+
x )), then ϕ = id.

Proof. In this case, since each p ∈ Su(A, A+
x ) is an affine combination of elements of

E(Su(A,A+
x )), ϕ fixes every state p ∈ Su(A,A+

x ). Now given any a ∈ Ax, recall that

â ∈ Aff(Su(A,A+
x )) is defined by â(p) = p(a). So choose any state p ∈ Su(A,A+

x ) and

any a ∈ A. Then p(a) = ϕ−1.p(a). Thus p(a) = p(ϕ(a)), and so p(a− ϕ(a)) = 0. This

implies that ̂a− ϕ(a)(p) = 0, and since our choice of p was arbitrary, ̂a− ϕ(a) = 0.

But since I = {0}, Corollary 4.10 implies a−ϕ(a) = 0. Thus a = ϕ(a) for every a ∈ A,

and so ϕ = id.

Thus there are only countably many possibilities for the stabilizer of (h ◦ σ)(x) =

(A,Ax, u) in GL〈e0〉
n (Q) and we can proceed as in the proof of Theorem 7.6. For the rest

of this case, let E = EX
SLn(Z). Since µ is countably-additive, there exists a Borel subset

X1 ⊆ X with µ(X1) > 0 and a fixed finite subgroup S of GL〈e0〉
n (Q) such that Sx = S

for all x ∈ X1. By the ergodicity of µ, we have that µ(SLn(Z).X1) = 1. In order to

simplify notation, we shall assume that SLn(Z).X1 = X. After slightly adjusting h ◦ σ

if necessary, we can also assume that Sx = S for all x ∈ X. (That is, let c : X → X be

a Borel function such that c(x)Ex and c(x) ∈ X1 for all x ∈ X. Then we can replace

h ◦ σ with h ◦ σ ◦ c.)

Now suppose that x, y ∈ X and that xEy. Then (A,A+
x , u) ∼= (A,A+

y , u) and so

there exists ϕ ∈ GL〈e0〉
n (Q) such that ϕ(A,A+

x , u) = (A,A+
y , u). Notice that

ϕSϕ−1 = ϕSxϕ−1 = Sy = S

and so ϕ ∈ N = N
GL

〈e0〉
n (Q)

(S). Let H = N/S and for each ϕ ∈ N , let ϕ = ϕS. Then

we can define a cocycle α : SLn(Z)×X → H by

α(g, x) = the unique element ϕ ∈ H such that ϕ(A,A+
x , u) = (A,A+

g·x, u).
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Now since S is finite, it is a closed subgroup of N , and so H is a algebraic Q-

group (See for example [32, 5.5.10]). Furthermore we have the following, where the last

inequality holds because n ≥ 3,

dimH ≤ dimGL〈e0〉
n (Ω) = n2 − (n− 1) < n2 − 1.

Thus, by Theorem 1.44, α is equivalent to a cocycle β such that β(SLn(Z) × X)

is contained in a finite subgroup K of H. To simplify notation, we shall assume that

β = α. Then for each x ∈ X,

Φ(x) = {ϕ(A,A+
x , u) | ϕ = α(g, x) for some g ∈ SLn(Z)}

= {(A,A+
z , u) | zEx}

is finite; and clearly if xEy, then Φ(x) = Φ(y). But this means that Φ is a Borel

homomorphism from E to the identity relation on the standard Borel space of finite

subsets of SDGn. Hence, by Theorem 1.23, there exists a Borel subset X2 ⊆ X with

µ(X2) = 1 such that Φ(x) = Φ(y) for all x, y ∈ X2; and this means that h ◦ σ maps X2

into a single ∼=+
n -class, as desired.

Of course, after a suitable adjustment of h ◦ σ, we can assume that h ◦ σ maps X2

to a single dimension group. This observation will be helpful in our analysis of Case II.

8.2 Case II: I 6= {0}

Consider some x ∈ X and the dimension group (A, A+
x , u) = (h ◦ σ)(x). Consider the

quotient group A/I. Theorem 4.10 implies

a ∈ A+
x \{0} and b ∈ I =⇒ a + b ∈ A+

x \{0},

since in this case (̂a + b) = â+ b̂ = â À 0. It is easy to see that (A/I, C+
x , v) is a simple

dimension group, where C+
x = {a + I | a ∈ A+

x } and v = u + I. We check the Riesz

Interpolation Property. Consider a, b, c, d ∈ A such that a+I, b+I ≤ c+I, d+I. Then

c−a+I, c−b+I, d−a+I, d−b+I ∈ C+
x . This implies that c−a, c−b, d−a, d−b ∈ A+

x ,

and so we may apply the Riesz Interpolation Property to obtain some e ∈ A such that

a, b ≤ e ≤ c, d. Then a + I, b + I ≤ e + I ≤ c + I, d + I, and we are done.

So by Case I, we may assume that there is a subset X1 ⊆ X with µ(X1) = 1 such

that for every x, y ∈ X1, (A/I,C+
x , v) = (A/I, C+

y , v). Notice that if p ∈ Su(A,A+
x ),

then p∗(a+I) = p(a) defines a state p∗ ∈ Sv(A/I, C+
x ). In fact, this defines a one-to-one

correspondence between Su(A,A+
x ) and Sv(A/I, C+

x ). Thus for x, y ∈ X1, we have the
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following, where the last implication is due to Corollary 4.11:

(A/I,C+
x , v) = (A/I, C+

y , v) =⇒ Sv((A/I, C+
x )) = Sv((A/I, C+

y ))

=⇒ Su(A, A+
x ) = Su(A, A+

y )

=⇒ (A,A+
x , u) = (A,A+

y , u).

And so h ◦ σ maps X1 to a single dimension group.
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Chapter 9

The rank of a Bratteli diagram

In Chapter 5, we gave an explicit construction which assigned to each countable dimen-

sion group a Bratteli diagram. What we have not done, however, is to understand what

kind of Bratteli diagrams correspond to dimension groups of a given finite rank. A first

guess would be that the following notion of rank in a Bratteli diagram corresponds to

the rank of the resulting dimension group.

Definition 9.1. Given a Bratteli diagram (V,E) where V =
⊔

n∈N
Vn, we define

rank(V,E) = lim inf
n→∞ |Vn|.

However, there are ∼-equivalent Bratteli diagrams with different ranks. For example

the rank 1 diagram:

• • • . . .

• - -• - • - -

-

• - • - -

-

• . . .

(9.1)

telescopes to the rank 2 diagram:

• - • - • . . .

• - -• - -• - -

-

•

-

. . .

(9.2)

Thus we define:

Definition 9.2. Let BDn denote the standard Borel space of simple Bratteli diagrams

which are ∼-equivalent to a Bratteli diagram of rank at most n. That is, we let

BDn = {(V,E) ∈ BD | ∃(W,F ) ∼ (V,E) with rank(W,F ) ≤ n}.

Let BDn be the equivalence relation obtained by restricting ∼ to BDn.
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Notice that for any Bratteli diagram (V, E), rank(V,E) ≥ rank(K0(V, E)). Thus

Theorems 3.3 and 3.4 imply that Definition 3.1 gives us a Borel function Φ : BDn →
n⊔

i=0

SDGi such that (V, E) ∼ (W,F ) if and only if Φ((V, E)) ∼=+ Φ((W,F )). Hence

we have that BDn is an essentially countable Borel equivalence relation, and clearly

BDn ≤B BDn+1.

While it is true that rank(V, E) ≥ rank(K0(V, E)), there are simple dimension

groups whose rank is strictly less than that of each of the Bratteli diagrams which

generate them.

Example 9.3. [9, 2.7] Consider the simple dimension group A = Z[13 ] ⊕ Z (here Z[13 ]

denotes the triadic rationals) with positive cone A+ = {(a, b) ∈ A | a > 0} ∪ {(0, 0)}.
We will show that (A,A+) 6= K0(V, E) for every Bratteli diagram (V,E) such that

rank(V, E) = 2. Assume otherwise, and let (A,A+) = K0(V, E) where rank(V, E) = 2.

Then there must be some n ∈ ω, such that |Vn| = 2, and (a1, b1), (a2, b2), (a3, b3) ∈ (ZVn)+

such that [(a1, b1)] = (1,−1), [(a2, b2)] = (1, 0), and [(a3, b3)] = (1, 1).

Then let (c1, d1) = [(1, 0)] and (c2, d2) = [(0, 1)] where (1, 0) and (0, 1) are the basis

elements of ZVn . Since (1, 0), (0, 1) ∈ (ZVn)+, we have (c1, d1), (c2, d2) ∈ A+. Now, for

i = 1, 2, 3, we have

(ai, bi) = mi(1, 0) + ni(0, 1) for some mi, ni ∈ Z+,

which gives us the following set of equations:

m1(c1, d1) + n1(c2, d2) = (1,−1) where m1, n1 ∈ Z+; (9.3)

m2(c1, d1) + n2(c2, d2) = (1, 0) where m2, n2 ∈ Z+; (9.4)

m3(c1, d1) + n3(c2, d2) = (1, 1) where m3, n3 ∈ Z+. (9.5)

(9.3) and (9.5) imply that d1 and d2 are nonzero and have opposite signs. Then since

(c1, d1), (c2, d2) ∈ A+\(0, 0), it follows that c1, c2 > 0. Subtracting (9.3) from (9.4), we

obtain

(m2 −m1)(c1, d1) + (n2 − n1)(c2, d2) = (0, 1),

and so (m2 −m1)c1 + (n2 − n1)c2 = 0. But then since c1, c2 > 0 either (i) (m2 −m1)

and (n2 − n1) are both zero, or (ii) neither are zero and they have opposite signs. If

they are both zero, then (m2 −m1)d1 + (n2 − n1)d2 = 0, a contradiction. If they have

opposite signs, then (m2 −m1)d1 and (n2 − n1)d2 are non-zero integers with the same

sign, and then |(m2 −m1)d1 + (n2 − n1)d2| ≥ 2, a contradiction.

It can be calculated that this dimension group is generated by the Bratteli diagram
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whose incidence matrices are all



1 1 1

2 1 0

0 1 2




Note that this matrix is singular, and that the corresponding map ϕn is not one-to-one.

For example, 


1 1 1

2 1 0

0 1 2







3

0

3


 =




1 1 1

2 1 0

0 1 2







2

2

2


 =




6

6

6


 .

However, we will find it convenient to ignore these types of dimension groups:

Definition 9.4. If a dimension group (A,A+, u) may be written as K0(V, E) for some

Bratteli diagram (V, E) where all the maps ϕn are one-to-one, then (A,A+, u) is said

to be ultrasimplicial.

Lemma 9.5. If (V, E) is a Bratteli diagram such that all the maps ϕn are one-to-one,

and K0(V,E) is a finite rank dimension group, then rank(V, E) = rank(K0(V,E)), and

there exists N ≥ 1 such that |Vn| = rank(K0(V, E)), for all n > N .

Proof. Set r = rank(V,E). Let N ≥ 1 be the least natural number such that |VN | =

lim infn→∞ |VN | = r. We claim that if n > N , then |Vn| = |VN |. Otherwise, either

|Vn| < |VN | and then ϕn ◦ . . . ◦ϕN+1 is not injective, or else |Vn| > |VN | and then there

is some m > n such that |Vm| = |VN | < |Vn| and ϕm ◦ . . . ◦ ϕn+1 is not injective.

Finally, if e1, e2, . . . , er ∈ ZVN are the natural basis elements, and α1e1 + α2e2 +

. . . + αrer 6= 0 (αi ∈ Z, 1 ≤ i ≤ r) is any nontrivial linear combination, then α1[e1] +

α2[e2] + . . . + αr[er] 6= [0]. Otherwise, we would have [α1e1 + α2e2 + . . . + αrer] = [0]

which would violate the injectivity of the maps ϕn. Thus rank(K0(V, E)) ≥ r.

We shall show that the dimension groups involved in the proof of Theorem 1.11 are

all ultrasimplicial.

Theorem 9.6. Suppose G is a p-local torsion-free abelian group of rank n, where p > n.

Then the dimension group gn(G) given by Lemma 6.2 is ultrasimplicial.

Before we prove this, we show how this gives the analogue of Theorem 1.11 for

simple Bratteli diagrams.

Corollary 9.7. For n ≥ 3, BDn <B BDn+1

Proof. Suppose that f : BDn+1 → BDn is a Borel reduction from BDn+1 to BDn. Let

gn : R(Qn) → SDGn+1 be the Borel reduction from ∼=n to ∼=+
n+1 defined in Lemma 6.2.
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As in Chapter 8, we consider X = Xn, µ = µn, and σ = σn from Definition 1.43. If we

pick p > n when defining X, µ, and σ, then Theorem 9.6 says that every group in the

image of gn ◦ σ is ultrasimplicial.

Hence combining Lemma 9.5 and Theorem 5.4, we obtain a Borel reduction

j : (gn ◦ σ)(X) → BDn+1

from ∼=+
n+1¹(gn◦σ)(X) to BDn+1. Next, Definition 3.1 gives a Borel reduction

h : BDn →
⊔

i≤n

SDGi

from BDn to
⊔

i≤n
∼=+

i . Then the following composition is a Borel homomorphism from

EX
SLn(Z) to

⊔
i≤n

∼=+
i :

X
σ→ R(Qn) ¹σ(X)

gn→ SDGn+1 ¹(gn◦σ)(X)
j→ BDn+1

f→ BDn
h→

⊔

i≤n

SDGi.

Clearly there exists a subset X1 ⊆ X with µ(X1) > 0 such that the above maps X1

to SDGk for some k ≤ n. Then by the ergodicity of µ, µ(SLn(Z).X1) = 1. Replacing

X by SLn(Z).X1, the analysis of Chapter 8 again shows that there is a measure one

subset of X which maps to a single ∼=+
k -class. This implies that σ maps a measure one

subset of X to a single ∼=n-class, which is a contradiction.

Proof of Theorem 9.6. We will prove that gn(G) satisfies the following criteria for ul-

trasimpliciality:

Lemma 9.8. [20] Let (A,A+, u) be a countable dimension group. Then (A,A+, u) is

ultrasimplicial if and only if for all finite subsets {xi}n
i=1 of A+,

(∗) there exists a finite subset {sj}m
j=1 of A+ such that

1. {sj}m
j=1 is rationally independent;

2. there exist mij in N ∪ {0} with xi =
∑

mijsj, for all i.

Below we will use the following extension of the notion of gcd to the rationals.

Definition 9.9. Given a finite set of positive rational numbers {q1, q2, . . . , qn}, define

gcd{q1, q2, . . . , qn} to be the greatest positive rational number q such that for every

1 ≤ i ≤ n, qi = miq for some mi ∈ N.

Let G be a p-local torsion-free abelian group of rank n, where p > n. (The condition

p > n will allow us to divide any element of G by n.) Let (G ⊕ Q, (G ⊕ Q)+, (0, 1))

be the dimension group defined by (G ⊕ Q)+ = {(h, q) ∈ G ⊕ Q : q > 0} ∪ {(0, 0)}.
Recall that G ≤ Qn, and let {xi = (xi

0, x
i
1, x

i
2, . . . , x

i
n−1) ⊕ (xi

n)}i≤m be a finite set of
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elements of (G⊕Q)+. Let yk =
1
n

gcd
i≤m

{∣∣xi
k

∣∣} for all 0 ≤ k ≤ n. Next, for 0 ≤ j ≤ n− 1,

let sj = (0, 0, . . . , yj , . . . , 0) ⊕ ( yn

nN ), where yj is in the j-th slot, and N ∈ N is some

constant determined below. Finally, let sn = (−y0,−y1, . . . ,−yj , . . . ,−yn−1)⊕ ( yn

nN ).

We claim that if N is large enough, then {sj}n
i=0 fulfills (∗). Clearly, the {sj} are

rationally independent. Given i ≤ m, we want to express xi as a sum of nonnegative

integer multiples of the sj . First, note that the sum
n−1∑

k=0

(
xi

k

yk

)
sk does the trick, but

only on the first n coordinates. We can then add some multiple M i of
n∑

j=0

sj to this

sum without changing the first n coordinates. So we just solve for M i. We have that

xi = M i
n∑

j=0

sj +
∑

k

(
xi

k

yk

)
sk

thus,

xi
n = M in

yn

nN
+

∑

k

xi
k

yk

yn

nN

Then,

M i =
xi

n −
∑

k
xi

k
yk

yn

nN

n yn

nN

=
xi

n

yn
nN−1 −

(∑

k

xi
k

yk

)
1
n

Now, by the definition of the yk, (
∑

k
xi

k
yk

) 1
n and xi

n
yn

are positive integers. Finally, if

we choose N large enough, then M i is positive for all 0 ≤ i ≤ m.

9.1 Simple groups of strongly diagonal type

We will now see how our analysis can be applied to the classification problem for simple

countable locally finite groups of strongly diagonal type.

Definition 9.10. Given a countable locally finite group of strongly diagonal type G,

define rank(G) = min{rank(V,E) | G(V,E) ∼= G}.

Definition 9.11. For each n ≥ 1, let SDT n ⊆ SDT be the standard Borel space of

countable simple locally finite groups of strongly diagonal type of rank at most n. That

is, let

SDT n = {G ∈ SDT | ∃(V, E) ∈ BDn such that G ∼= G(V, E)}.

Then let ∼=s
n be the equivalence relation obtained by restricting ∼=SDT to SDT n.

Then Theorems 2.9 and 2.12 imply that the assignment (V,E) 7→ G(V, E) gives a

Borel reduction from BDn to SDTn, and that the map defined in the proof of Theorem

2.20 gives a Borel reduction from SDTn to BDn. Thus we have shown:
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Theorem 9.12. For each n ≥ 1, ∼=s
n∼B BDn.

Corollary 9.13. For each n ≥ 3, (∼=s
n) <B (∼=s

n+1).

9.2 Questions

Bratteli diagrams also characterize other naturally occurring structures, such as ap-

proximately finite-dimensional (AF) C∗-algebras and AF -relations on Cantor sets.

Question 9.14. For which other classes of structures that are described by Bratteli

diagrams can we obtain a result similar to Theorem 1.11?

Recall that ∼=n is the isomorphism relation on the space of torsion free abelian groups

of rank n, and that E∞ is the universal countable Borel equivalence relation. In [34],

Thomas showed that
(⊔

n≥1
∼=n

)
<B E∞.

Conjecture 9.15.
(⊔

n≥1
∼=+

n

)
<B E∞.

It is natural to define the class of Bratteli diagrams of rank exactly n as

BD∗n = {(V,E) ∈ BD | ∃(W,F ) ∼ (V,E) with rank(W,F ) = n},

and then to define BD∗
n as ∼¹BD∗n . It is easy to rewrite the proof of Corollary 9.7 to

show that, for n ≥ 3, BD∗
n+1 �B BD∗

n. However, the intuitively “easy” fact below is

not currently known.

Conjecture 9.16. For n ≥ 1, BD∗
n ≤B BD∗

n+1. Thus, for n ≥ 3, BD∗
n <B BD∗

n+1.
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