THE CLASSIFICATION PROBLEM FOR FINITE RANK DIMENSION GROUPS

BY PAUL ELLIS

A dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Mathematics
Written under the direction of Simon Thomas and approved by

\qquad
\qquad
\qquad
\qquad

New Brunswick, New Jersey
January, 2010

ABSTRACT OF THE DISSERTATION

The classification problem for finite rank dimension groups

by Paul Ellis
Dissertation Director: Simon Thomas

There has been much work done in the study of the Borel complexity of various naturally occurring classification problems. In particular, Hjorth and Thomas have shown that the Borel complexity of the classification problem for torsion-free abelian groups of finite rank increases strictly with rank.

In this thesis, we extend this result to dimension groups of finite rank. As these groups are naturally characterized by Bratteli diagrams, we obtain a similar theorem for Bratteli diagrams. We also obtain a similar result for a class of countable simple locally finite groups which are also characterized by Bratteli diagrams.

Acknowledgements

This thesis would not have happened without years of mathematical instruction from Sam Coskey, Scott Schneider, and Simon Thomas, or years of personal support from my wife, Elizabeth Coggshall, and my parents, William and Sheralyn Ellis. I would also like to thank Gregory Cherlin, Diane Maclagan, Sikimeti Ma'u, Sridhar Ramesh, Michael Richter, and Philip Scowcroft for some helpful conversations.

Table of Contents

Abstract ii
Acknowledgements iii

1. Countable Borel Equivalence Relations 1
1.1. Introduction 1
1.2. Countable Borel equivalence relations 5
1.3. Ergodicity 9
1.4. Fréchet-amenable equivalence relations 10
1.5. Constructing the measure space (X, μ) 13
1.6. Cocycles 15
1.7. Relative ergodicity of equivalence relations 16
2. Groups of strongly diagonal type and Bratteli diagrams 18
2.1. Countable locally finite groups of strongly diagonal type 18
2.2. Bratteli Diagrams 20
2.3. The corresponding standard Borel spaces 25
3. Dimension groups 29
4. The positive cone of a simple dimension group 32
4.1. $E\left(S_{u}\left(A, A^{+}\right)\right)$is finite. 35
4.2. $E\left(S_{u}\left(A, A^{+}\right)\right)$determines the positive cone. 38
5. Countable dimension groups of finite rank are characterized by Brat- teli diagrams. 41
6. $\left(\cong_{1}^{+}\right)<_{B}\left(\cong_{2}^{+}\right)<_{B}\left(\cong_{3}^{+}\right)$ 48
7. The relationship between dimension groups and torsion-free abelian groups. 52
8. Proof of Theorem 1.11 57
8.1. Case I: $I=\{0\}$ 57
8.2. Case II: $I \neq\{0\}$ 59
9. The rank of a Bratteli diagram 61
9.1. Simple groups of strongly diagonal type 65
9.2. Questions 66
References 67
Vita 70

Chapter 1

Countable Borel Equivalence Relations

1.1 Introduction

The isomorphism problem for countable simple locally finite groups has resisted satisfactory classification. As evidence that the classification problem is intractable, authors usually refer to the result of Kegel-Wehrfritz [27, 6.12] that there are $2^{\aleph_{0}}$ pairwise nonisomorphic groups that can be obtained as unions of chains of finite alternating groups. However, this is far from convincing, since the groups they constructed are of strongly diagonal type of rank 1, and the present Theorem 6.4 implies that there is an explicit function which associates to each such group a real number, so that two groups are assigned the same number if and only if they are isomorphic. On the other hand, we will show that the isomorphism problem for countable simple locally finite groups of strongly diagonal type of arbitrary finite rank is in fact intractable, in a sense which is made precise by the theory of Borel equivalence relations.

The study of Borel equivalence relations allows us to study the relative complexity of classification problems. We generally encode a classification problem as an equivalence relation E on a standard Borel space X. A standard Borel space is a Polish space equipped with its associated σ-algebra of Borel subsets. Then a Borel equivalence relation E on X is an equivalence relation $E \subseteq X^{2}$ which is a Borel subset of X^{2}. The first reason to work in this context is that there is a canonical method for encoding many naturally occurring classification problems into standard Borel spaces.

Suppose $\mathcal{L}=\left\{R_{i} \mid i \in I\right\}$ is a countable relational language, where R_{i} is an $n_{i^{-}}$ ary relation symbol. (If \mathcal{L} contains n-ary function symbols or constant symbols, we consider them as $(n+1)$-ary or unary relation symbols.) Let $X_{\mathcal{L}}=\prod_{i \in I} 2^{\mathbb{N}^{n} i}$. Then $X_{\mathcal{L}}$ is a Polish space whose elements represent countable \mathcal{L}-structures as follows. Given $x=\left(x_{i}\right) \in X_{\mathcal{L}}$, the structure $\mathcal{M}_{x}=\left\langle\mathbb{N} ; R_{i}^{x}\right\rangle_{i \in I}$ is defined by

$$
R_{i}^{x}\left(a_{0}, \ldots, a_{n_{i}-1}\right) \Longleftrightarrow x_{i}\left(a_{0}, \ldots, a_{n_{i}-1}\right)=1
$$

Furthermore, the isomorphism relation on this space is precisely the orbit equivalence relation of the following natural action of the infinite symmetric group S_{∞} on $X_{\mathcal{L}}$.

Definition 1.1. If $\sigma \in S_{\infty}$ is a permutation of \mathbb{N} and $x=\left(x_{i}\right) \in X_{\mathcal{L}}$, then $\sigma . x$ is defined by

$$
(\sigma . x)_{i}\left(a_{0}, \ldots, a_{n_{i}-1}\right)=x_{i}\left(\sigma^{-1}\left(a_{0}\right), \ldots, \sigma^{-1}\left(a_{n_{i}-1}\right)\right) .
$$

Definition 1.2. If σ is an $\mathcal{L}_{\omega_{1}, \omega}$-sentence, then

$$
\operatorname{Mod}(\sigma)=\left\{x \in X_{\mathcal{L}} \mid M_{x} \models \sigma\right\} .
$$

Theorem 1.3. [24] If σ is an $\mathcal{L}_{\omega_{1}, \omega}$-sentence, then $\operatorname{Mod}(\sigma)$ is a Borel subset of $X_{\mathcal{L}}$.
Theorem 1.4. (folklore) If X is a Polish space and $A \subseteq X$ is a Borel subset, then $\left(A, \mathcal{B}(X) \upharpoonright_{A}\right)$ is a standard Borel space, where $\mathcal{B}(X) \upharpoonright_{A}=\{Z \cap A \mid Z \in \mathcal{B}(X)\}$.

Corollary 1.5. If σ is an $\mathcal{L}_{\omega_{1}, \omega}$-sentence, then $\operatorname{Mod}(\sigma)$ is a standard Borel space.
While this method works for any class of structures defined by an $\mathcal{L}_{\omega_{1} \omega}$-sentence, we note that it is rather unwieldy. Thus we usually try to find more natural representations for our classification problems. For example, Hjorth[23] and Thomas[36] studied the classification problem for torsion-free abelian groups of finite rank. By the rank of a torsion-free abelian group A, we mean size of the largest linearly independent subset of A. In this case, it is natural to identify the class of torsion-free abelian groups of rank n with the set of full-rank subgroups of \mathbb{Q}^{n}, denoted $R\left(\mathbb{Q}^{n}\right)$. Furthermore, there is a natural way to describe the isomorphism relation on this space, namely, that two groups $A, B \in R\left(\mathbb{Q}^{n}\right)$ are isomorphic if and only if there is a $\varphi \in \mathrm{GL}_{n}(\mathbb{Q})$ such that $A=\varphi(B)$. This illustrates the following definition.

Definition 1.6. Let X be a standard Borel space and let G be a locally compact second countable group acting on X. Then the orbit equivalence relation E_{G}^{X} of this action is given by

$$
x E y \Longleftrightarrow(\exists g \in G)(g(x)=y)
$$

There is a natural way to compare the relative complexity of two equivalence relations. If E, F are equivalence relations on standard Borel spaces X, Y, we say that E is Borel reducible to F and write $E \leq_{B} F$ if there exists a Borel map $f: X \rightarrow Y$ such that

$$
x E y \Longleftrightarrow f(x) F f(y)
$$

We call such a map f a Borel reduction. One standard interpretation of $E \leq_{B} F$ is that the problem of classifying elements of X up to E is effectively reduced to that of classifying elements of Y up to F. We say E and F are Borel bireducible and write $E \sim_{B}$ F if $E \leq_{B} F$ and $F \leq_{B} E$. Finally, we write $E<_{B} F$ if both $E \leq_{B} F$ and $F \not \leq_{B} E$. While we usually consider Borel equivalence relations, notice that the notion of Borel reducibility applies to arbitrary equivalence relations on standard Borel spaces. As an
example of Borel (non)reducibility, let \cong_{n} denote the isomorphism relation on the space of torsion-free abelian groups of rank n, then Hjorth and Thomas proved the following theorem. (A conjecture of Friedman and Stanley[14] implies that the isomorphism problem for infinite rank torsion-free abelian groups has maximal complexity, i.e., the isomorphism relation is Borel complete.)

Theorem 1.7. For all $n \geq 1,\left(\cong_{n}\right)<_{B}\left(\cong_{n+1}\right)$.
Remarkably, the classification problem for a certain class of simple locally finite groups is Borel bireducible with a classification problem involving abelian groups. Specifically, we examine the isomorphism problem for simple dimension groups, a particular type of ordered abelian group. By an ordered abelian group, we mean an abelian group A together with a distinguished subset A^{+}, called the positive cone, such that

1. $A^{+}+A^{+} \subseteq A^{+}$;
2. $A^{+} \cap\left(-A^{+}\right)=\{0\}$; and
3. $A^{+}-A^{+}=A$.

If $a, b \in A$, then we shall write $a \leq b$ if $b-a \in A^{+}$. If A and B are ordered abelian groups, then a homomorphism $\varphi: A \rightarrow B$ is an order homomorphism if $a \leq b$ implies $\varphi(a) \leq \varphi(b)$ for all $a, b \in A$. It follows that a homomorphism $\varphi: A \rightarrow B$ is an order homomorphism if and only if $\varphi\left[A^{+}\right] \subseteq B^{+}$.

An ordered abelian group is said to be unperforated if whenever $a \in A$ satisfies $n a \in A^{+}$for some $n \geq 1$, then $a \in A^{+}$. An element $u \in A^{+}$is an order unit if for every $a \in A$, there exists an integer $n \in \omega$ such that $a \leq n u$.

Definition 1.8. An unperforated ordered abelian group A is a dimension group if A satisfies the Riesz interpolation property; ie. given elements $a_{1}, a_{2}, b_{1}, b_{2} \in A$ with $a_{i} \leq b_{j}$ for $1 \leq i, j \leq 2$, then there exists $c \in A$ such that $a_{i} \leq c \leq b_{j}$ for $1 \leq i, j \leq 2$.

Notice that if $n a=n(-a)=0$ for some $n \in \mathbb{N}$, then unperforatedness gives $a \geq 0$ and $a \leq 0$ which implies that $a=0$; hence we conclude that a dimension group A must be torsion free.

Example 1.9. The group \mathbb{Z}^{n} is a dimension group with the following positive cone:

$$
\left(\mathbb{Z}^{n}\right)^{+}=\left\{\left(z_{1}, \ldots, z_{n}\right) \mid z_{i} \geq 0 \text { for all } i\right\} .
$$

To see that this group satisfies the Riesz interpolation property, let $a, b, c, d \in \mathbb{Z}^{n}$ such that $a, b \leq c, d$. Then, given $1 \leq i \leq n$, let $e_{i}=\max \left\{a_{i}, b_{i}\right\}$ where a_{i}, b_{i} are the i th coordinates of a, b. Then $a, b \leq\left(e_{1}, \ldots, e_{n}\right) \leq c, d$.

In this thesis, we will prove an analogue of Theorem 1.7 for simple dimension groups equipped with a distinguished order unit. Here, as usual, simplicity means the lack of a nontrivial ideal, where an ideal in a dimension group $\left(A, A^{+}\right)$is a subgroup $J \leq A$ satisfying

1. $0 \leq a \leq b \in J \Longrightarrow a \in J$, and
2. $J=J^{+}-J^{+}$where $J^{+}=J \cap A^{+}$.

We define the standard Borel space of simple dimension groups of rank n as follows.
Definition 1.10. Let $n \geq 1$ and consider the standard Borel space $R\left(\mathbb{Q}^{n}\right) \times \mathcal{P}\left(\mathbb{Q}^{n}\right) \times \mathbb{Q}^{n}$ where $\mathcal{P}\left(\mathbb{Q}^{n}\right)$ denotes the power set of \mathbb{Q}^{n}. Then $S D G_{n}$ denotes the Borel subset of $R\left(\mathbb{Q}^{n}\right) \times \mathcal{P}\left(\mathbb{Q}^{n}\right) \times \mathbb{Q}^{n}$ given by those $\left(A, A^{+}, u\right)$ such that $\left(A, A^{+}\right)$is a simple dimension group (of rank n) and $u \in A^{+} \backslash\{0\}$ is a distinguished order unit. Let \cong_{n}^{+}denote the isomorphism relation on $S D G_{n}$.

Then our target theorem about dimension groups is the following.
Theorem 1.11. For all $n \geq 1,\left(\cong_{n}^{+}\right)<_{B}\left(\cong_{n+1}^{+}\right)$
Now what does any of this have to do with locally finite groups? In Chapter 2, we discuss locally finite groups of strongly diagonal type, which are defined as certain direct limits of finite groups. These direct limits are in turn described by a class of infinite graphs, known as Bratteli diagrams. A Bratteli diagram has as its vertex set a disjoint union of countably many finite levels. Each vertex corresponds to a finite alternating group, and each level to a (finite) product of finite alternating groups. The edges, which only lie between successive levels, define a sequence of group embeddings from one level to the next. The corresponding locally finite group is then the direct limit of this increasing sequence of finite groups.

However, each Bratteli diagram also defines a dimension group in a similar fashion. Here each vertex corresponds to a copy of the dimension group \mathbb{Z}, and each level to \mathbb{Z}^{m}, where m is the cardinality of the level. The edges now define a sequence of positive homomorphisms from one level to the next. Then the direct limit of this sequence is a dimension group, and Effros, Handelman, and Shen[11] have shown that every dimension group can be constructed in this fashion from some Bratteli diagram.

In each of these two constructions, we may compose two successive homomorphisms in the sequence without changing either the resulting dimension group or the resulting locally finite group. This "telescoping" operation, together with isomorphism, generates an equivalence relation \sim on the class of Bratteli diagrams. In fact, two dimension groups (or locally finite groups of strongly diagonal type) are isomorphic if and only if the corresponding Bratteli diagrams are \sim-equivalent.

Now our goal is to prove a result analogous to Theorem 1.11 for simple locally finite groups of strongly diagonal type, and thus to show that the problem of classifying the countable simple locally finite groups is intractable. In order to do this, we will first show that the isomorphism problem for countable simple locally finite groups of strongly diagonal type is Borel bireducible with the isomorphism problem for simple dimension groups, by way of the classification problem for simple Bratteli diagrams. We will then prove Theorem 1.11, relying heavily on the work of Hjorth and Thomas. Finally, we define a notion of rank for countable simple locally finite groups of strongly diagonal type, and then show that it corresponds sufficiently well to the notion of rank for simple dimension groups.

This thesis is organized as follows. In Chapter 1, we will introduce all the relevant notions from the theory of Borel equivalence relations. In Chapter 2, we define countable simple locally finite groups of strongly diagonal type and simple Bratteli diagrams, and we examine the relationship between the two classification problems. In Chapter 3, we discuss simple dimension groups and show how simple dimension groups are characterized by simple Bratteli diagrams. In Chapter 4, we will examine the geometry of simple dimension groups of finite rank. In Chapter 5, we further examine the relationship between the classification problem for simple dimension groups and that for simple Bratteli diagrams. In Chapter 6, we prove Theorem 1.11 for two special cases. In Chapters 7 and 8, Theorem 1.11 is proved for the rest of the cases. Finally, in Chapter 9, we will show how Theorem 1.11 applies to simple Bratteli diagrams and simple locally finite groups of strongly diagonal type.

1.2 Countable Borel equivalence relations

Let X be a standard Borel space; i.e., a Polish space equipped with its associated σ algebra of Borel subsets. Then a Borel equivalence relation E on X is an equivalence relation $E \subseteq X^{2}$ which is a Borel subset of X^{2}. We say that a Borel equivalence relation is countable if each equivalence class is countable. While we usually consider Borel equivalence relations, notice that the notion of Borel reducibility applies to arbitrary equivalence relations on standard Borel spaces. Now consider equivalence relations E and F on standard Borel spaces X and Y respectively, and a Borel reduction $f: X \rightarrow Y$ from E to F. Then the map $\hat{f}: X \times X \rightarrow Y \times Y$ given by $\hat{f}\left(x_{1}, x_{2}\right)=\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)$ is Borel. Thus if F is Borel, then E must also be Borel. Hence the class of Borel equivalence relations is closed downward under \leq_{B}. However, this closure property is not shared by the class of countable Borel equivalence relations. This is easily seen by the case of the trivial equivalence relation E on any standard Borel space X, where $x_{1} E x_{2}$ for all $x_{1}, x_{2} \in X$. Clearly, this equivalence relation is not countable, but it is

Borel reducible to any other equivalence relation on a standard Borel space. Thus we define the following class of equivalence relations which is closed downward under \leq_{B} :

Definition 1.12. An equivalence relation E on a standard Borel space X is essentially countable if there is a countable Borel equivalence relation F such that $E \leq_{B} F$.

Let G be a locally compact second countable group. Then a standard Borel G-space is a standard Borel space X equipped with a Borel action $(g, x) \mapsto g \cdot x$ of G on X. The Borel equivalence relation E_{G}^{X} on X, called the G-orbit equivalence relation, is then defined by

$$
x_{1} E_{G}^{X} x_{2} \Longleftrightarrow \text { there exists } g \in G \text { such that } g \cdot x_{1}=x_{2} .
$$

By Kechris [26], E_{G}^{X} is Borel bireducible with a countable Borel equivalence relation. Conversely, we have the following theorem of Feldman and Moore:

Theorem 1.13. [13] If E is an arbitrary countable Borel equivalence relation on the standard Borel space X, then there exists a countable group G and a Borel action of G on X such that $E=E_{G}^{X}$.

The notion of Borel reducibility gives a partial pre-order on the collection of Borel equivalence relations. While much of the structure of this hierarchy is unknown, there are some benchmarks, especially within the realm of countable Borel equivalence relations. The first step to understanding Borel equivalence relations is the following result of Kuratowski.

Theorem 1.14. [28] There exists a unique uncountable standard Borel space up to isomorphism.

Thus we may naturally think of the identity equivalence relation on \mathbb{R}, denoted $\mathrm{id}_{\mathbb{R}}$, as the identity relation on whichever standard Borel space we happen to be working with. Silver has shown that $\mathrm{id}_{\mathbb{R}}$ is \leq_{B}-minimal.

Theorem 1.15. [31] If E is a Borel equivalence relation with uncountable many classes, then $\operatorname{id}_{\mathbb{R}} \leq_{B} E$.

Definition 1.16. A Borel equivalence relation E is smooth if $E \leq_{B}$ id X_{X} for some (and thus every) uncountable standard Borel space X.

One example of a countable Borel equivalence relation which is not smooth is the following:

Definition 1.17. E_{0} is the Borel equivalence relation defined on $2^{\mathbb{N}}$ by

$$
x E_{0} y \Longleftrightarrow x(n)=y(n) \text { for all but finitely many } n \in \mathbb{N} .
$$

Furthermore, we have the following remarkable result, which says that E_{0} is an immediate \leq_{B}-successor of id ${ }_{\mathbb{R}}$:

Theorem 1.18. [21] If E is a nonsmooth Borel equivalence relation, then $E_{0} \leq_{B} E$.
We also have a nice characterization of the countable Borel equivalence relations E such that $E \leq_{B} E_{0}$.

Definition 1.19. A Borel equivalence relation F is said to be finite if all of the equivalence classes of F are finite. A Borel equivalence relation E is hyperfinite if $E=\bigcup_{n \in \mathbb{N}} F_{n}$, where each F_{n} is a finite Borel equivalence relation, and for each $n \in \mathbb{N}$, $F_{n} \subseteq F_{n+1}$.

For example, E_{0} is hyperfinite. To see this, note that $E_{0}=\bigcup_{n \in \mathbb{N}} F_{n}$, where we define the sequence of equivalence relations F_{n} on $2^{\mathbb{N}}$ by

$$
x F_{n} y \Longleftrightarrow x(i)=y(i) \text { for all } i>n .
$$

In fact, every nonsmooth hyperfinite Borel equivalence relation is Borel bireducible with E_{0}. Furthermore, if F is hyperfinite and $E \leq_{B} F$, then E is also hyperfinite. Also, by a result of Dougherty, Jackson, and Kechris[7], if E is a countable Borel equivalence relation, then E is hyperfinite if and only if E can be realized as the orbit equivalence relation of a Borel \mathbb{Z}-action. A recent result of Gao and Jackson[16] shows that the orbit equivalence relations of arbitrary countable abelian groups are hyperfinite, and it is conjectured that the orbit equivalence relations of arbitrary countable amenable groups are hyperfinite.

At the other end of the spectrum, the following Borel equivalence relation turns out to be \leq_{B}-universal for the class of countable Borel equivalence relations:

Definition 1.20. Let \mathbb{F}_{ω} be the free group on infinitely many generators and define a Borel action of \mathbb{F}_{ω} on

$$
\left(2^{\mathbb{N}}\right)^{\mathbb{F}_{\omega}}=\left\{p \mid p: \mathbb{F}_{\omega} \rightarrow 2^{\mathbb{N}}\right\}
$$

by setting

$$
(g \cdot p)(h)=p\left(g^{-1} h\right), \quad p \in\left(2^{\mathbb{N}}\right)^{\mathbb{F}_{\omega}} .
$$

Let E_{ω} be the resulting orbit equivalence relation.
Lemma 1.21. [25] If E is a countable Borel equivalence relation, then $E \leq_{B} E_{\omega}$.
Proof. Let X be a standard Borel space, and let E be a countable Borel equivalence relation on X. Since every countable group is a homomorphic image of \mathbb{F}_{ω}, Theorem 1.13 implies that E is the orbit equivalence relation of a Borel action of \mathbb{F}_{ω}. Let $\left\{U_{i}\right\}_{i \in \mathbb{N}}$
be a sequence of Borel subsets of X which separates points and define $f: X \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{F}_{\omega}}$ by $x \mapsto f_{x}$ where

$$
f_{x}(h)(i)=1 \text { iff } x \in h\left(U_{i}\right) .
$$

Then f is injective and

$$
\begin{aligned}
\left(g \cdot f_{x}\right)(h)(i)=1 & \text { iff } f_{x}\left(g^{-1} h\right)(i)=1 \\
& \text { iff } x \in g^{-1} h\left(U_{i}\right) \\
& \text { iff } g \cdot x \in h\left(U_{i}\right) \\
& \text { iff } f_{g \cdot x}(h)(i)=1
\end{aligned}
$$

Thus there is some $g \in \mathbb{F}_{\omega}$ such that $x=g \cdot y$ if and only if there is some $g \in \mathbb{F}_{\omega}$ such that $f_{x}=g \cdot f_{y}$. Hence f is a Borel reduction from E to E_{ω}.

Let \mathbb{F}_{2} denote the free group on 2 generators and consider the action of \mathbb{F}_{2} on $2^{\mathbb{F}_{2}}$ given by setting $(g \cdot f)(h)=f\left(g^{-1} h\right)$. Then by $[7], E_{\infty}=E_{\mathbb{F}_{2}}^{\mathbb{F}_{2}}$ is also a universal countable Borel equivalence relation.

Finally, we note that Adams and Kechris[1] have shown that there exist uncountably many countable Borel equivalence relations up to Borel bireducibility. Thus, we have the following picture for countable Borel equivalence relations.

Let $R\left(\mathbb{Q}^{n}\right)$ be the standard Borel space consisting of the additive subgroups of \mathbb{Q}^{n} of rank n, and let \cong_{n} be the isomorphism relation on $R\left(\mathbb{Q}^{n}\right)$. It is easy to check that \cong_{n} is the orbit equivalence relation given by the natural action of $\mathrm{GL}_{n}(\mathbb{Q})$ on $R\left(\mathbb{Q}^{n}\right)$. In 1937, Baer essentially showed that $\cong_{1} \sim_{B} E_{0}$. In 1998, Hjorth [23] proved that $\left(\cong_{1}\right)<_{B}\left(\cong_{2}\right)$. Two years later, making essential use of earlier work of Adams-Kechris [1], Thomas [37] proved that $\left(\cong_{n}\right)<_{B}\left(\cong_{n+1}\right)$ for all $n \geq 2$. Thus the equivalence relations \cong_{n} form an
increasing chain in the middle of the above picture, anchored at $\cong_{1 \sim_{B}} E_{0}$. Thomas [34] has also shown that the union of this chain does not reach the top, i.e., that the isomorphism relation on the space of all torsion-free abelian groups of finite rank is not countable universal.

1.3 Ergodicity

Given a standard Borel G-space X and a standard Borel H-space Y, and letting $E=$ E_{G}^{X} and $F=F_{H}^{Y}$, it is generally more difficult to prove results of the form $E \not \mathbb{Z}_{B} F$ rather than results of the form $E \leq_{B} F$. A significant tool in this endeavor is an invariant ergodic probability measure on X.

Definition 1.22. Let X be a standard Borel G-space. Throughout this thesis, a probability measure on X will always mean a Borel probability measure, i.e., a countablyadditive measure which is defined on the collection of Borel subsets of X. Then a probability measure μ on X is said to be nonatomic if $\mu(\{x\})=0$ for all $x \in X$, and μ is said to be G-invariant if $\mu(g(A))=\mu(A)$ for each $g \in G$ and Borel subset $A \subseteq X$. A G-invariant probability measure μ is ergodic if for every G-invariant Borel subset $A \subseteq X$, either $\mu(A)=0$ or $\mu(A)=1$. In this case, we say that G acts ergodically on (X, μ).

Lemma 1.23 (folklore). Suppose G is a countable group and X is a standard Borel G-space with G-invariant probability measure μ. Then the following are equivalent:
(a) μ is ergodic.
(b) If Y is a standard Borel space and $f: X \rightarrow Y$ is a G-invariant Borel function (i.e., $f(g \cdot x)=f(x)$ for every $x \in X$ and every $g \in G$), then there exists a G-invariant Borel subset $M \subseteq X$ with $\mu(M)=1$ such that $f \upharpoonright_{M}$ is a constant function.

Notice that this says that the existence of an ergodic invariant probability measure on the standard Borel G-space X implies that E_{G}^{X} is not smooth.

Proof. $(b) \Longrightarrow(a)$. Let $A \subseteq X$ be a G-invariant Borel subset. Consider the characteristic function $\chi_{A}: X \rightarrow\{0,1\}$, where $\{0,1\}$ is the standard Borel space that arises from the discrete topology on the set of 2 elements. Then χ_{A} is clearly Borel and G-invariant. Thus there is a G-invariant Borel subset $M \subseteq X$ such that $\mu(M)=1$ and $\chi_{A} \upharpoonright_{M}$ is constant. If $\chi_{A}(M)=1$, then $\mu(A)=1$, and if $\chi(M)=0$ then $\mu(A)=0$.
$(a) \Longrightarrow(b)$. Let $f: X \rightarrow Y$ be a G-invariant Borel function. Let $\left\{U_{n} \mid n \in \omega\right\}$ enumerate a countable basis for a topology τ on Y such that $\mathcal{B}(Y)=\mathcal{B}(\tau)$. Then
$\left\{U_{n} \mid n \in \omega\right\}$ separates the points of Y, i.e., for all $a, b \in Y$, if $a \neq b$ then there is some $n \in \omega$ with $a \in U_{n}$ and $b \notin U_{n}$. Next, for each $n \in \omega$, define

$$
\begin{aligned}
& A_{n}^{1}=f^{-1}\left(U_{n}\right) \\
& A_{n}^{0}=X \backslash f^{-1}\left(U_{n}\right)=f^{-1}\left(Y \backslash U_{n}\right)
\end{aligned}
$$

Notice that A_{n}^{1} and A_{n}^{0} are Borel since f is Borel. Furthermore, they are both G invariant subsets of X. Thus, for each $n \in \omega$, either $\mu\left(A_{n}^{1}\right)=1$ or $\mu\left(A_{n}^{0}\right)=1$. If $\mu\left(A_{n}^{1}\right)=1$ set $A_{n}^{\prime}=A_{n}^{1}$, otherwise set $A_{n}^{\prime}=A_{n}^{0}$. Finally, set $M=\bigcap A_{n}^{\prime}$. Then $\mu(M)=1$, and since $\left\{U_{n} \mid n \in \omega\right\}$ separates the points of $Y, f(M)$ must be a single point.

We will make use of the following Theorem in Chapter 7. However we must first define the notion of a Borel homomorphism.

Definition 1.24. If E, F are Borel equivalence relations on standard Borel spaces X, Y, then we say the Borel map $f: X \rightarrow Y$ is a Borel homomorphism from E to F if $x E y$ implies $f(x) F f(y)$.

In order to prove the nonexistence of a Borel reduction, it is often useful to examine Borel homomorphisms and show that none can be a Borel reduction. The following result is a special case of Hjorth-Kechris [24, 10.5].

Theorem 1.25. Let $n \geq 3$ and let X be a standard Borel $S L_{n}(\mathbb{Z})$-space with an invariant ergodic probability measure μ. Suppose that Y is a standard Borel space and that F is a hyperfinite equivalence relation on Y. If $f: X \rightarrow Y$ is a Borel homomorphism from $E_{\mathrm{SL}_{n} \mathbb{Z}}^{X}$ to F, then there exists an $S L_{n}(\mathbb{Z})$-invariant Borel subset M with $\mu(M)=1$ such that f maps M into a single F-class.

1.4 Fréchet-amenable equivalence relations

As mentioned above, it is known that every orbit equivalence relation arising from a Borel action of an abelian group is hyperfinite. On the other hand, while the same is conjectured for arbitrary amenable groups, we currently only have some partial results involving the notion of Fréchet-amenable equivalence relations, which were introduced by Jackson, Kechris, and Louveau. The following account of Fréchet-amenability is based upon Section 2.4 of [25].

A countable group G is amenable if there exists a finitely additive G-invariant probability measure $\nu: \mathcal{P}(G) \rightarrow[0,1]$ defined on every subset of G. In Chapter 6 , we shall make use of the fact that solvable groups are amenable, and we shall also make use of the fact that if a countable group contains an isomorphic copy of \mathbb{F}_{2}, the free group on two generators, then it is not amenable.

Example 1.26. To see that \mathbb{F}_{2} is not amenable, suppose that μ is a finitely additive \mathbb{F}_{2}-invariant probability measure on $\mathbb{F}_{2}=\langle a, b\rangle$. First notice that the measure of a single element must be 0 . Then given a reduced word σ in the alphabet $\left\{a, b, a^{-1}, b^{-1}\right\}$, let X_{σ} be the set of all reduced words of \mathbb{F}_{2} for which σ is an initial segment. Then

$$
\begin{aligned}
1 & =\mu\left(\mathbb{F}_{2}\right) \\
& =\mu\left(X_{a}\right)+\mu\left(X_{b}\right)+\mu\left(X_{a^{-1}}\right)+\mu\left(X_{b^{-1}}\right) \\
& =\mu\left(b X_{a}\right)+\mu\left(b X_{b}\right)+\mu\left(b X_{a^{-1}}\right)+\mu\left(X_{b^{-1}}\right) \\
& =\mu\left(X_{b a}\right)+\mu\left(X_{b b}\right)+\mu\left(X_{b a^{-1}}\right)+\mu\left(X_{b^{-1}}\right) \\
& =\mu\left(X_{b}\right)+\mu\left(X_{b^{-1}}\right) .
\end{aligned}
$$

Similarly, $1=\mu\left(X_{a}\right)+\mu\left(X_{a^{-1}}\right)$. But then

$$
\mu\left(\mathbb{F}_{2}\right)=\mu\left(X_{a}\right)+\mu\left(X_{a^{-1}}\right)+\mu\left(X_{b}\right)+\mu\left(X_{b^{-1}}\right)=2,
$$

a contradiction. It is also easy to see that if a group G contains a subgroup isomorphic to \mathbb{F}_{2}, then the same argument shows that G is not amenable.

The definition of Fréchet-amenable equivalence relations is motivated by the following characterization of the amenability of countable groups due to Day.

Theorem 1.27. [6] Let G be a countable group. Then G is amenable iff there is a sequence $\left(f_{n}\right), f_{n} \in l_{1}(G), f_{n} \geq 0,\left\|f_{n}\right\|_{1}=1$, such that for all $g \in G,\left\|f_{n}-f_{n}^{g}\right\|_{1} \rightarrow 0$, where $f_{n}^{g}(h)=f_{n}(h g)$.

A free filter on \mathbb{N} is a filter containing the Fréchet filter

$$
\operatorname{Fr}=\{A \subseteq \mathbb{N}: A \text { is cofinite }\} .
$$

A filter \mathcal{F} on \mathbb{N} is said to be Borel if it is Borel when viewed as a subset of $2^{\mathbb{N}}$.
Definition 1.28. Let E be a countable Borel equivalence relation on a standard Borel space X . Let \mathcal{F} be a free filter on \mathbb{N}. We say that E is \mathcal{F}-amenable if there is a sequence $f_{n}: E \rightarrow \mathbb{R}^{+}$of nonnegative Borel functions such that letting $f_{n}^{x}(y)=f_{n}(x, y)$ we have:

1. For all $x \in X, f_{n}^{x} \in l_{1}\left([x]_{E}\right)$ and $\left\|f_{n}^{x}\right\|_{1}=1$
2. $x E y$ implies $\left\|f_{n}^{x}-f_{n}^{y}\right\|_{1} \rightarrow \mathcal{F} 0$

If Y is a topological space and $y_{n}, y \in Y$, then $y_{n} \rightarrow_{\mathcal{F}} y$ means that for every neighborhood U of y, there is $A \in \mathcal{F}$ such that $n \in A \Rightarrow y_{n} \in U$. Note that $y_{n} \rightarrow_{F r} y$ if and only if $y_{n} \rightarrow y$.

Define the partial order \leq on filters on \mathbb{N} by

$$
\mathcal{F} \leq \mathcal{G} \Leftrightarrow \text { there exists } h: \mathbb{N} \rightarrow \mathbb{N} \text { such that } h^{-1}(\mathcal{F}) \subseteq \mathcal{G}
$$

and the corresponding equivalence relation by

$$
\mathcal{F} \equiv \mathcal{G} \Leftrightarrow \mathcal{F} \leq \mathcal{G} \text { and } \mathcal{G} \leq \mathcal{F} .
$$

Lemma 1.29. If E is \mathcal{F}-amenable and if \mathcal{F} and \mathcal{G} are filters such that $\mathcal{F} \leq \mathcal{G}$, then E is \mathcal{G}-amenable.

Proof. Let E be \mathcal{F}-amenable, $\mathcal{F} \leq \mathcal{G}$, and let $f_{n}: E \rightarrow \mathbb{R}^{+}$be a sequence of Borel functions satisfying
(1) For all $x \in X, f_{n}^{x} \in l_{1}\left([x]_{E}\right)$ and $\left\|f_{n}^{x}\right\|_{1}=1$
(2) $x E y$ implies $\left\|f_{n}^{x}-f_{n}^{y}\right\|_{1} \rightarrow \mathcal{F} 0$.

Then let $h: \mathbb{N} \rightarrow \mathbb{N}$ be a function satisfying $h^{-1}(\mathcal{F}) \subseteq \mathcal{G}$, and for each $n \in \mathbb{N}$, let $g_{n}=f_{h(n)}$. Certainly each of the functions g_{n} satisfies (1). Since $h^{-1}(\mathcal{F}) \subseteq \mathcal{G}$, we have that $y_{n} \rightarrow_{\mathcal{F}} y$ implies $y_{h(n)} \rightarrow_{\mathcal{G}} y$ for any $y_{n}, y \in \mathbb{R}$. Thus $\left\|f_{n}^{x}-f_{n}^{y}\right\|_{1} \rightarrow_{\mathcal{F}} 0$ implies $\left\|g_{n}^{x}-g_{n}^{y}\right\|_{1} \rightarrow \mathcal{G} 0$, and so $x E y$ implies $\left\|g_{n}^{x}-g_{n}^{y}\right\|_{1} \rightarrow \mathcal{G} 0$. Hence E is \mathcal{G}-amenable.

Thus, the notion of \mathcal{F}-amenability only depends on the \equiv-equivalence class of \mathcal{F}. We will now define a canonical transfinite iteration of the Frèchet filter. Fix a bijection $\varphi: \mathbb{N} \rightarrow \mathbb{N}^{2}$. Also, for $m \in \mathbb{N}, A \subseteq \mathbb{N}^{2}$, let $A_{m}=\{n \in \mathbb{N}:(m, n) \in A\}$. For two filters \mathcal{F}, \mathcal{G} on \mathbb{N}, their (Fubini) product $\mathcal{F} \otimes \mathcal{G}$ is defined by

$$
\varphi(\mathcal{F} \otimes \mathcal{G})=\left\{A \subseteq \mathbb{N}^{2}:\left\{m \in \mathbb{N}: A_{m} \in \mathcal{G}\right\} \in \mathcal{F}\right\}
$$

It is easily checked that $\mathcal{F} \otimes \mathcal{G}$ is a filter on \mathbb{N}. We also define for each sequence $\left(\mathcal{F}_{n}\right)$ of filters, the filter $\mathcal{F} \otimes\left(\mathcal{F}_{n}\right)$ by

$$
\varphi\left(\mathcal{F} \otimes\left(\mathcal{F}_{n}\right)\right)=\left\{A \subseteq \mathbb{N}^{2}:\left\{m \in \mathbb{N}: A_{m} \in \mathcal{F}_{m}\right\} \in \mathcal{F}\right\}
$$

Now fix, for each countable limit ordinal λ, an increasing sequence $\alpha_{0}<\alpha_{1}<\ldots<\lambda$ whose limit is λ and inductively define the α th iterated Frèchet filter $F r_{\alpha}$ as follows:

$$
\begin{aligned}
F r_{1} & =F r \\
F r_{\alpha+1} & =F r \otimes F r_{\alpha} \\
F r_{\lambda} & =F r \otimes\left(F r_{\alpha_{n}}\right) .
\end{aligned}
$$

It is clear that this definition depends on the choice of φ and the choice of the sequences $\left(\alpha_{n}\right)$, but it is a simple exercise to check that it is independent up to \equiv and therefore the following definition makes sense.

Definition 1.30. Let E be a countable Borel equivalence relation. We say that E is α-amenable if E is $F r_{\alpha}$-amenable and Frèchet-amenable if it is α-amenable for some $\alpha<\omega_{1}$.

To see how this notion approximates hyperfiniteness, we note the following results, all from Section 2.4 of [25], which we will employ here in Chapter 6.

Theorem 1.31. Suppose G is a countable amenable group, and E_{G} is the orbit equivalence relation induced by some Borel action of G. Then E_{G} is 1-amenable.

Thus, since each hyperfinite equivalence relation can be realized as the orbit equivalence relation of a Borel \mathbb{Z}-action, we note

Corollary 1.32. Hyperfinite equivalence relations are 1-amenable.
Theorem 1.33. Suppose G is a countable group acting in a Borel way on X, μ is a G-invariant probability measure on X, and the action is free on an invariant Borel set of measure 1. If E_{G}^{X} is Frèchet-amenable, then G is amenable.

Theorem 1.34. Let E, F be countable Borel equivalence relations. If $E \leq_{B} F$ and F is α-amenable, then E is also α-amenable.

1.5 Constructing the measure space (X, μ)

A key ingredient in Thomas' proof that $\left(\cong_{n-1}\right)<_{B}\left(\cong_{n}\right)$, for $n \geq 3$ was that given a Borel homomorphism $f: R\left(\mathbb{Q}^{n}\right) \rightarrow R\left(\mathbb{Q}^{n-1}\right)$ from \cong_{n} to \cong_{n-1}, he was able to reduce the analysis to the situation where the domain of f was a standard Borel $\mathrm{SL}_{n}(\mathbb{Z})$-space X with an invariant ergodic probability measure μ. The proof of our main theorem will require the same thing. The following construction of an appropriate standard Borel $\mathrm{SL}_{n}(\mathbb{Z})$-space X and invariant ergodic probability measure μ is condensed from Sections 3 and 4 of [35].

Definition 1.35. Let \mathbb{P} denote the set of primes. If $p \in \mathbb{P}$, then a group $A \in R\left(\mathbb{Q}^{n}\right)$ is said to be p-local iff $A=q A$ for every prime $q \neq p$; i.e., A is a $\mathbb{Z}_{(p)}$-module, where

$$
\mathbb{Z}_{(p)}=\left\{\left.\frac{a}{b} \in \mathbb{Q} \right\rvert\, a, b \in \mathbb{Z} \text { and } b \text { is relatively prime to } p\right\} .
$$

Let $R^{(p)}\left(\mathbb{Q}^{n}\right)$ denote the p-local subgroups of \mathbb{Q}^{n} of rank n.
Suppose that K is a compact second countable group and that L is a closed subgroup. Then there exists a unique K-invariant probability measure μ on the standard Borel K-space K / L. The measure μ is called the Haar probability measure on K / L and can be described explicitly as follows. Suppose ν is the Haar probability measure
on K and let $\pi: K \rightarrow K / L$ be the canonical surjection. Then $\mu=\pi_{*} \nu$, that is, given $A \subseteq K / L$, then $\mu(A)=\nu\left(\pi^{-1}(A)\right)$. Below, we shall make use of the following observation.

Lemma 1.36. [37, 2.2(a)] Let K be a compact second countable group, let $L \leqslant K$ be a closed subgroup and let μ be the Haar probability measure on K / L. If Γ is a countable dense subgroup of K, then μ is an ergodic Γ-invariant probability measure on K / L.

For the rest of this section, fix an integer $n \geq 3$, and let p be any prime number. To obtain our measure space, we will examine the action of $\operatorname{PSL}_{n}(\mathbb{Z})$ on the standard Borel space $S_{n}\left(\mathbb{Q}_{p}\right)$ of nontrivial proper subspaces of the n-dimensional vector space \mathbb{Q}_{p}^{n} over the p-adic field.

Definition 1.37. If $0 \leq k \leq n$, then $V^{(k)}\left(n, \mathbb{Q}_{p}\right)$ denotes the standard Borel space consisting of the k-dimensional vector subspaces of \mathbb{Q}_{p}^{n}.

It is easily checked that the compact group $\operatorname{PSL}_{n}\left(\mathbb{Z}_{p}\right)$ acts transitively on each $V^{(k)}\left(n, \mathbb{Q}_{p}\right)$. (For example, see $\left.[37,6.1]\right)$ Thus we can identify $V^{(k)}\left(n, \mathbb{Q}_{p}\right)$ with the coset space $\operatorname{PSL}_{n}\left(\mathbb{Z}_{p}\right) / L$, where L is a suitably chosen closed subgroup of $\operatorname{PSL}_{n}\left(\mathbb{Z}_{p}\right)$. Let $\mu_{n, k}$ be the corresponding Haar probability measure on $V^{(k)}\left(n, \mathbb{Q}_{p}\right)$. Since $\mathrm{PSL}_{n}(\mathbb{Z})$ is a dense subgroup of $\operatorname{PSL}_{n}\left(\mathbb{Z}_{p}\right)$, the above lemma shows that $\mathrm{PSL}_{n}(\mathbb{Z})$ acts ergodically on $\left(V^{(k)}\left(n, \mathbb{Q}_{p}\right), \mu_{n, k}\right)$. Thus, since a set $X \subseteq V^{(k)}\left(n, \mathbb{Q}_{p}\right)$ is $\operatorname{PSL}_{n}(\mathbb{Z})$-invariant if and only if it is $\mathrm{SL}_{n}(\mathbb{Z})$-invariant, it follows that $\mathrm{SL}_{n}(\mathbb{Z})$ also acts ergodically on $\left(V^{(k)}\left(n, \mathbb{Q}_{p}\right), \mu_{n, k}\right)$.

Now we will discuss how this space relates to the isomorphism relation on $R^{(p)}\left(\mathbb{Q}^{n}\right)$.
Definition 1.38. For each $A \in R^{(p)}\left(\mathbb{Q}^{n}\right)$, let $\hat{A}=\mathbb{Z}_{p} \otimes A$
We shall regard each \hat{A} as a subgroup of \mathbb{Q}_{p}^{n} in the usual way; i.e., \hat{A} is the subgroup consisting of all finite sums

$$
\gamma_{1} a_{1}+\gamma_{2} a_{2}+\ldots+\gamma_{t} a_{t},
$$

where $\gamma_{i} \in \mathbb{Z}_{p}$ and $a_{i} \in A$ for $1 \leq i \leq t$. By Lemma 93.3 [15], there exist integers $0 \leq k, l \leq n$ with $k+l=n$ and elements $v_{i}, w_{j} \in \hat{A}$ such that

$$
\hat{A}=\bigoplus_{i=1}^{k} \mathbb{Q}_{p} v_{i} \oplus \bigoplus_{j=1}^{l} \mathbb{Z}_{p} w_{j}
$$

Definition 1.39. For each $A \in R^{(p)}\left(\mathbb{Q}^{n}\right)$, let $V_{A}=\bigoplus_{i=1}^{k} \mathbb{Q}_{p} v_{i}$.
Theorem 1.40. [35, 4.3 and 4.4] Suppose $A \in R^{(p)}\left(\mathbb{Q}^{n}\right)$ and that $\operatorname{dim} V_{A}=n-1$. Then for each $B \in R^{(p)}\left(\mathbb{Q}^{n}\right)$, we have that $A \cong B$ if and only if there exists $\pi \in \mathrm{GL}_{n}(\mathbb{Q})$ such that $\pi\left(V_{A}\right)=V_{B}$.

Definition 1.41. Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ be the standard basis of \mathbb{Q}_{p}^{n}. Suppose that S is a \mathbb{Q}_{p}-subspace of \mathbb{Q}_{p}^{n} of dimension $0 \leq k \leq n$. Then

$$
\sigma(S)=\left(S \oplus \mathbb{Z}_{p} \mathbf{e}_{i_{1}} \oplus \ldots \oplus \mathbb{Z}_{p} \mathbf{e}_{i_{n-k}}\right) \cap \mathbb{Q}^{n}
$$

where $i_{1}<\ldots<i_{n-k}$ is the lexicographically least sequence such that

$$
\mathbb{Q}_{p}^{n}=\left\langle S, \mathbf{e}_{i_{1}}, \ldots, \mathbf{e}_{i_{n-k}}\right\rangle
$$

Theorem 1.42. [35, 4.6] If S is a \mathbb{Q}_{p}-subspace of \mathbb{Q}_{p}^{n} of dimension $0 \leq k \leq n$, then
(a) $\sigma(S) \in R^{(p)}\left(\mathbb{Q}^{n}\right)$;
(b) $V_{\sigma(S)}=S$.

Definition 1.43. For $n \geq 3$, set

- $X_{n}=V^{(n-1)}\left(n, \mathbb{Q}_{p}\right)$,
- $\mu_{n}=\mu_{n, n-1}$, and
- $\sigma_{n}: X_{n} \rightarrow R\left(\mathbb{Q}^{n}\right)$ by $S \mapsto \sigma(S)$.

Then Theorems 1.40 and 1.42 imply that σ_{n} is a countable-to-one Borel homomorphism from $E_{\mathrm{SL}_{n}(\mathbb{Z})}^{X_{n}}$ to \cong_{n} (In particular, σ_{n} does not map a measure one subset of X to a single \cong_{n}-class). We will use this as well as the fact that $\mathrm{SL}_{n}(\mathbb{Z})$ acts ergodically on $\left(X_{n}, \mu_{n}\right)$ in Chapters 7 and 8 , while the fact that all the abelian groups in the range of this map are p-local will be used in Chapter 9. (Notice that our construction did not depend on the choice of the prime p.)

1.6 Cocycles

Let G be a locally compact second countable (lcsc) group, and let X be a standard Borel G-space with invariant probability measure μ. Let H be an lcsc group. A cocycle of the G-space X into H is a Borel map $\alpha: G \times X \rightarrow H$ such that for all $g, h \in G$,

$$
\alpha(h g, x)=\alpha(h, g \cdot x) \alpha(g, x) \quad \mu \text {-a.e. }(x) .
$$

If this equation holds for all x, then we say that α is a strict cocycle. If $\beta: G \times X \rightarrow H$ is also a cocycle, we say that α is equivalent to β, written $\alpha \sim \beta$, if there is a Borel map $A: X \rightarrow H$ such that for all $g \in G$,

$$
\alpha(g, x)=A(g \cdot x) \beta(g, x) A(x)^{-1} \quad \mu \text {-а.е. }(x) .
$$

In addition to being the only type of cocycle which we will encounter in this thesis, the following canonical example motivates the above definitions. Suppose $E=E_{G}^{X}$ and
$F=E_{H}^{Z}$, where H acts freely on Z. Let $f: X \rightarrow Z$ be a Borel function such that $x E y$ implies $f(x) F f(y)$, i.e., f is a Borel homomorphism from E to F. Then the function $\alpha: G \times X \rightarrow H$ defined by $f(g \cdot x)=\alpha(g, x) \cdot f(x)$ is a strict cocycle. (There exists a unique such element $\alpha(g, x) \in H$ since the action of H on Z is free.)

Some of our proofs will proceed by considering the cocycles associated with various Borel homomorphisms. There are various cocycle reduction results which say that, under certain hypotheses, cocycles α are equivalent to cocycles β, whose range $\beta(G \times X)$ is contained in a "small" subgroup of H. In Chapters 7 and 8 we shall make essential use of the following such theorem.

Theorem 1.44. [36, 2.3] Let $n \geq 3$ and let X be a standard Borel $S L_{n}(\mathbb{Z})$-space with an invariant ergodic probability measure. Suppose that G is an algebraic \mathbb{Q}-group such that $\operatorname{dim} G<n^{2}-1$ and that $H \leq G(\mathbb{Q})$. Then for every Borel cocycle $\alpha: S L_{n}(\mathbb{Z}) \times X \rightarrow H$, there exists an equivalent cocycle β such that $\beta\left(S L_{n}(\mathbb{Z}) \times X\right)$ is contained in a finite subgroup of H.

1.7 Relative ergodicity of equivalence relations

Recall that in order to construct the cocycle associated with a Borel homomorphism, we required that the action of H on Y is free. In the case of Thomas' proof that $\left(\cong_{n}\right)<_{B}\left(\cong_{n+1}\right)$, this corresponds to the action of $G L_{n}(\mathbb{Q})$ on $R\left(\mathbb{Q}^{n}\right)$. However, this action is far from free. Thomas' innovation was to work with the coarser equivalence relation of quasi-isomorphism, defined here in Chapter 7, which enabled him to obtain a free action of a quotient of a suitable subgroup of $G L_{n}(\mathbb{Q})$ on a suitable quotient of $R\left(\mathbb{Q}^{n}\right)$. While working with this coarser equivalence relation, Thomas implicitly proved the following lemma.

Definition 1.45. Suppose that X is a standard Borel G-space with invariant ergodic probability measure μ, and that F is a countable Borel equivalence relations on a standard Borel space Y. Then E is F-ergodic if for any Borel homomorphism $f: X \rightarrow Y$ from E to F, there is a Borel subset $X_{1} \subseteq X$ with $\mu\left(X_{1}\right)=1$ such that f maps X_{1} into a single F-class.

Lemma 1.46. [33] Let G be a countable group. Suppose X is a standard Borel G space with invariant ergodic probability measure μ, and that F and F^{\prime} are countable Borel equivalence relations on a standard Borel space Y such that $F \subseteq F^{\prime}$. Suppose that $E=E_{G}^{X}$ is F^{\prime}-ergodic. Then E is F-ergodic.

Proof. Suppose that $E=E_{G}^{X}$ is F^{\prime}-ergodic. Let $f: X \rightarrow Y$ be a Borel homomorphism from E to F. Then since $F \subseteq F^{\prime}$, it follows that f is also a Borel homomorphism from E to F^{\prime}. Hence there is a Borel subset $X^{\prime} \subseteq X$ such that $\mu\left(X^{\prime}\right)=1$ and $f\left(X^{\prime}\right)$ is
contained in a single F^{\prime}-class, say C. Since C is countable, there exists a Borel subset $Z \subseteq X^{\prime}$ with $\mu(Z)>0$ and a fixed element $y \in C$ such that $f(x)=y$ for all $x \in Z$. Since μ is ergodic, the G-invariant Borel subset $M=G . Z$ satisfies $\mu(M)=1$, and clearly f maps M into the F-class containing y. Hence E is F-ergodic.

Chapter 2

Groups of strongly diagonal type and Bratteli diagrams

In this chapter, we shall define the countable locally finite groups of strongly diagonal type, as well as the notion of a Bratteli diagram. We show that every Bratteli diagram gives rise to a countable locally finite group of strongly diagonal type via a canonical construction, and also that every countable simple locally finite group of strongly diagonal type can be constructed from a Bratteli diagram in this way. We determine when two Bratteli diagrams yield isomorphic groups, and show that a Bratteli diagram is simple if and only if the corresponding group is simple.

2.1 Countable locally finite groups of strongly diagonal type

Definition 2.1. Let G be a countable locally finite group and let

$$
G_{0} \leq G_{1} \leq \ldots \leq G_{n} \leq \ldots
$$

be an increasing chain of finite groups such that $G=\bigcup_{n \in \omega} G_{n}$. Suppose further that for each $n \geq 1$,

$$
G_{n}=A_{n, 1} \times \ldots \times A_{n, d_{n}}
$$

where each $A_{n, i}$ is an alternating group on a finite set $\Omega_{n, i}$. For each $1 \leq i \leq d_{n}$, let

$$
B_{n, i}=A_{n, 1} \times \ldots \times \widehat{A_{n, i}} \times \ldots \times A_{n, d_{n}}
$$

where $\widehat{A_{n, i}}$ indicates that $A_{n, i}$ has been omitted from the product.
(a) The above chain is said to be of diagonal type if whenever $n<m$ and Σ is a nontrivial orbit of G_{n} on some $\Omega_{m, k}$, then there exists $1 \leq i \leq d_{n}$ such that
(1) $|\Sigma|=\left|\Omega_{n, i}\right|$;
(2) $A_{n, i}$ acts naturally on Σ; and
(3) $B_{n, i}$ acts trivially on Σ.
(b) The above chain is said to be of strongly diagonal type if it is of diagonal type and whenever $n<m$ and $1 \leq k \leq d_{m}$, then each element of $\Omega_{m, k}$ lies in some nontrivial G_{n}-orbit.
(c) The above chain is said to be of regular type if whenever $n<m$, then there exists $1 \leq k \leq d_{m}$ such that G_{n} has at least one regular orbit on $\Omega_{m, k}$.

Whenever we have an embedding of two finite products of alternating groups which satisfies (a) above, we say that the embedding is diagonal. To understand (c), recall that a permutation group $H \leq \operatorname{Alt}(\Omega)$ is said to act regularly if H acts transitively on Ω, and

- If $h \in H, x \in \Omega$, and $h x=x$, then $h=1$.

In particular, given a diagonal embedding of finite products of alternating groups

$$
\operatorname{Alt}\left(\Omega_{i, 1}\right) \times \operatorname{Alt}\left(\Omega_{i, 2}\right) \times \ldots \times \operatorname{Alt}\left(\Omega_{i, d_{i}}\right) \hookrightarrow \operatorname{Alt}\left(\Omega_{j, 1}\right) \times \operatorname{Alt}\left(\Omega_{j, 2}\right) \times \ldots \times \operatorname{Alt}\left(\Omega_{j, d_{j}}\right)
$$

then $\operatorname{Alt}\left(\Omega_{i, 1}\right) \times \operatorname{Alt}\left(\Omega_{i, 2}\right) \times \ldots \times \operatorname{Alt}\left(\Omega_{i, d_{i}}\right)$ cannot have any regular orbits on $\bigsqcup_{k=1}^{d_{j}} \Omega_{j, k}$. The following theorem is much stronger. It shows that a simple locally finite group cannot be expressed as both the union of a chain of diagonal type and the union of a chain of regular type.

Theorem 2.2. [22] Let G be a countably infinite simple locally finite group, and suppose that G is the union of an increasing chain

$$
G_{0} \leq G_{1} \leq \ldots \leq G_{n} \leq \ldots
$$

of finite groups, each of which is a direct product of alternating groups. Let K be an algebraically closed field of characteristic 0 .
(a) If the above chain is of diagonal type, then the group algebra $K G$ has at least four ideals.
(b) If the above chain is of regular type, the group algebra $K G$ has exactly three ideals.

The next theorem shows that when studying simple locally finite groups which can be expressed as the unions of chains of finite groups, each of which is the direct product of alternating groups, we may restrict our attention to chains of either diagonal type or regular type.

Theorem 2.3. [22] Let G be a countably infinite simple locally finite group, and suppose that G is the union of an increasing chain

$$
G_{0} \leq G_{1} \leq \ldots \leq G_{n} \leq \ldots
$$

of finite groups, each of which is a direct product of alternating groups. Then there exists a subsequence $\left\{i_{n} \mid n \in \omega\right\}$ such that the chain

$$
G_{i_{0}} \leq G_{i_{1}} \leq \ldots \leq G_{i_{n}} \leq \ldots
$$

is either of diagonal type or of regular type.

Thus it is natural to define a countable locally finite group G to be of (strongly) diagonal type if G is isomorphic to the union of a chain of (strongly) diagonal type.

2.2 Bratteli Diagrams

Definition 2.4. A Bratteli diagram (V, E) consists of a vertex set V and an edge set E, where V and E can be written as countable disjoint unions of nonempty finite sets $V=\bigsqcup_{n \geq 0} V_{n}$ and $E=\bigsqcup_{n \geq 1} E_{n}$ such that the following conditions hold.

1. $V_{0}=\{v\}$ is a singleton set.
2. There exist range and source maps r, s from E to V such that $r\left[E_{n}\right] \subseteq V_{n}$ and $s\left[E_{n}\right] \subseteq V_{n-1}$. Furthermore, $s^{-1}(v) \neq \emptyset$ for all $v \in V$ and $r^{-1}(v) \neq \emptyset$ for all $v \in V \backslash V_{0}$.

For each $n \geq 1$, the edge set E_{n} determines a corresponding incidence matrix $M_{n}=$ ($m_{u, v}$), with rows indexed by V_{n} and columns indexed by V_{n-1}, such that

$$
m_{u, v}=\mid\left\{e \in E_{n} \mid r(e)=u \text { and } s(e)=v\right\} \mid
$$

is the number of edges joining v to u.
Definition 2.5. If $0 \leq k \leq l$, then

$$
E_{k+1} \circ \ldots \circ E_{l}=\left\{\left(e_{k+1}, \ldots, e_{l}\right) \mid e_{i} \in E_{i}, r\left(e_{i}\right)=s\left(e_{i+1}\right)\right\}
$$

denotes the set of all paths from V_{k} to V_{l}. We define range and source maps on $E_{k+1} \circ \ldots \circ E_{l}$ by $r\left(\left(e_{k+1}, \ldots, e_{l}\right)\right)=r\left(e_{l}\right)$ and $\left.s\left(\left(e_{k+1}\right), \ldots, e_{l}\right)\right)=s\left(e_{k+1}\right)$.

For each Bratteli diagram (V, E), we shall now define a countable locally finite group $G(V, E)=\bigcup_{n \geq 0} G_{n}$ of strongly diagonal type in such a way that

1. the factors of the direct product $G_{n}=\operatorname{Alt}\left(\Omega_{n, 1}\right) \times \ldots \times \operatorname{Alt}\left(\Omega_{n, d_{n}}\right)$ are indexed by the set of vertices $V_{n}=\left\{v_{n, i} \mid 1 \leq i \leq d_{n}\right\}$; and
2. the subgroup $\operatorname{Alt}\left(\Omega_{n, i}\right)$ has exactly

$$
m_{v_{n+1, j}, v_{n, i}}=\mid\left\{e \in E_{n+1} \mid r(e)=v_{n+1, j} \text { and } s(e)=v_{n, i}\right\} \mid
$$

nontrivial orbits on each $\Omega_{n+1, j}$.
Definition 2.6. If (V, E) is a Bratteli diagram, then we define the locally finite group $G(V, E)$ as follows. First, let $\Omega_{0}=\{1,2,3,4,5\}$ and let $G_{0}=\operatorname{Alt}\left(\Omega_{0}\right)$. Then, for each $n \geq 1$, let $V_{n}=\left\{v_{n, i} \mid 1 \leq i \leq d_{n}\right\}$. Let

$$
P_{n, i}=\left\{\left(e_{1}, \ldots e_{n}\right) \in E_{1} \circ \ldots \circ E_{n} \mid r\left(e_{n}\right)=v_{n, i}\right\}
$$

be the set of all paths from $V_{0}=\left\{v_{0}\right\}$ to $v_{n, i}$ and let

$$
\Omega_{n, i}=\left\{\left(e_{0}, e_{1}, \ldots, e_{n}\right) \mid 1 \leq e_{0} \leq 5 \text { and }\left(e_{1}, \ldots, e_{n}\right) \in P_{n, i}\right\} .
$$

Then let

$$
G_{n}=\operatorname{Alt}\left(\Omega_{n, 1}\right) \times \ldots \times \operatorname{Alt}\left(\Omega_{n, d_{n}}\right) .
$$

We regard G_{n} as a subgroup of G_{n+1} by identifying each element $\pi \in G_{n}$ with the permutation $\tilde{\pi} \in G_{n+1}$ defined by

$$
\tilde{\pi}\left(e_{0}, e_{1}, \ldots, e_{n}, e_{n+1}\right)=\left(f_{0}, f_{1}, \ldots, f_{n}, e_{n+1}\right)
$$

where $\pi\left(e_{0}, e_{1}, \ldots, e_{n}\right)=\left(f_{0}, f_{1}, \ldots, f_{n}\right)$. Then $G(V, E)$ is the union of the strongly diagonal chain of finite groups:

$$
G_{0} \leq G_{1} \leq \ldots \leq G_{n} \leq \ldots
$$

Next we shall consider the question of when two Bratteli diagrams yield isomorphic groups. Firstly, there is an obvious notion of isomorphism between two Bratteli diagrams (V, E) and $\left(V^{\prime}, E^{\prime}\right)$; namely there exists a bijection $\varphi: V \rightarrow V^{\prime}$ such that for all $n \in \omega$,

1. $\varphi\left[V_{n}\right]=V_{n}^{\prime}$; and
2. $m_{\varphi(u), \varphi(v)}=m_{u, v}$ for all $v \in V_{n}$ and $u \in V_{n+1}$. (This implies that φ can be extended to include a bijection $\varphi: E \rightarrow E^{\prime}$ which preserves the range and source maps.)

And clearly if (V, E) and $\left(V^{\prime}, E^{\prime}\right)$ are isomorphic, then $G(V, E) \cong G\left(V^{\prime}, E^{\prime}\right)$. Secondly, let $G(V, E)=\bigcup_{n \geq 0} G_{n}$ be as in Definition 2.6; and let

$$
0=m_{0}<m_{1}<\ldots<m_{n}<\ldots
$$

be an increasing sequence of natural numbers. Then the strongly diagonal chain

$$
G_{m_{0}} \leq G_{m_{1}} \leq \ldots \leq G_{m_{n}} \leq \ldots
$$

corresponds to the Bratteli diagram (V^{\prime}, E^{\prime}) which is obtained from (V, E) by the "telescoping" operation of the following definition.

Definition 2.7. Given a Bratteli diagram and an increasing sequence

$$
0=m_{0}<m_{1}<\ldots<m_{n}<\ldots
$$

of natural numbers, we define the corresponding telescoping $\left(V^{\prime}, E^{\prime}\right)$ of (V, E) to the sequence ($m_{n} \mid n \in \omega$) by $V_{n}^{\prime}=V_{m_{n}}$ and $E_{n}^{\prime}=E_{m_{n-1}+1} \circ \ldots \circ E_{m_{n}}$, together with the range and source maps as defined in Definition 2.5.

Definition 2.8. We define \sim to be the equivalence relation on Bratteli diagrams generated by the isomorphism and telescoping relations.

Theorem 2.9. If $(V, E),\left(V^{\prime}, E^{\prime}\right)$ are Bratteli diagrams, then $G(V, E) \cong G\left(V^{\prime}, E^{\prime}\right)$ if and only if $(V, E) \sim\left(V^{\prime}, E^{\prime}\right)$.

Proof. By the discussion preceding Definition 2.7, it is clear that if $\left(V^{\prime}, E^{\prime}\right)$ is a telescoping of (V, E), then $G\left(V^{\prime}, E^{\prime}\right) \cong G(V, E)$. Thus, $\left(V^{\prime}, E^{\prime}\right) \sim(V, E)$ implies that $G\left(V^{\prime}, E^{\prime}\right) \cong G(V, E)$.

Conversely, let us suppose that $(V, E),(W, F)$ are Bratteli diagrams, and that $f: G(W, F) \cong G(V, E)$ is a group isomorphism. Let $G_{0} \leq G_{1} \leq \ldots \leq G_{n} \leq \ldots$ be the strongly diagonal chain of groups defined from (V, E) as in definition 2.6. Similarly, let $H_{0} \leq H_{1} \leq \ldots \leq H_{n} \leq \ldots$ be the strongly diagonal chain of groups defined from (W, F). Then since $G(V, E)$ is the union of the increasing sequence of the subgroups $G_{0} \leq G_{1} \leq \ldots \leq G_{n} \leq \ldots$, for each $p \in \omega$, there is some $p^{\prime}>p$ such that $f\left(H_{p}\right) \subseteq G_{p^{\prime}}$. Similarly, for each $m \in \omega$, there is some $m^{\prime}>m$ such that $f^{-1}\left(G_{m}\right) \subseteq H_{m^{\prime}}$. Thus there are telescopings (V^{\prime}, E^{\prime}) of (V, E) to ($m_{n} \mid n \in \omega$) and (W^{\prime}, F^{\prime}) of (W, F) to ($p_{n} \mid n \in \omega$) such that the following chain of embeddings exists

$$
G_{0} \xrightarrow{\theta_{0}} H_{p_{0}} \xrightarrow{\psi_{0}} G_{m_{1}} \xrightarrow{\theta_{1}} H_{p_{1}} \xrightarrow{\psi_{1}} \ldots \xrightarrow{\psi_{n-1}} G_{m_{n}} \xrightarrow{\theta_{n}} H_{p_{n}} \xrightarrow{\psi_{n}} G_{m_{n+1}} \xrightarrow{\theta_{n+1}} \ldots
$$

where $\psi_{n}=f \upharpoonright H_{p_{n}}$ and $\theta_{n}=f^{-1} \upharpoonright G_{m_{n}}$.
Claim 1. Each of the maps θ_{n} and ψ_{n} are diagonal embeddings.
Claim 2. If $n \geq 1$, then both θ_{n} and ψ_{n} satisfy part (b) of definition 2.1.
Assuming these two claims, we have that the chain of embeddings

$$
G_{0} \hookrightarrow G_{m_{1}} \xrightarrow{\theta_{1}} H_{p_{1}} \xrightarrow{\psi_{1}} \ldots \xrightarrow{\psi_{n-1}} G_{m_{n}} \xrightarrow{\theta_{n}} H_{p_{n}} \xrightarrow{\psi_{n}} G_{m_{n+1}} \xrightarrow{\theta_{n+1}} \ldots
$$

is of strongly diagonal type. Furthermore, it naturally defines a Bratteli diagram (U, H), such that $\left(V^{\prime}, E^{\prime}\right)$ and $\left(W^{\prime}, F^{\prime}\right)$ are each isomorphic to telescopings of (U, H). Then it is clear that $(V, E) \sim\left(V^{\prime}, E^{\prime}\right) \sim(U, H) \sim\left(W^{\prime}, F^{\prime}\right) \sim(W, F)$, and we are done.

Proof of claim 1. In order to prove this, we will make use of the following theorem of Zalesskii [39, Lemma 10].

Lemma 2.10. Suppose $m>l>k>4$. Let $\tau_{1}: A(k) \rightarrow A(l)$ and $\tau_{2}: A(l) \rightarrow A(m)$ be embeddings of alternating groups, and let $\tau=\tau_{2} \circ \tau_{1}$. If τ is diagonal, then both τ_{1} and τ_{2} are diagonal.

Let us suppose that there is some $\theta_{n}: G_{m_{n}} \rightarrow H_{p_{n}}$ which is not a diagonal embedding. (The argument for ψ_{n} is similar.) To simplify notation, let

$$
\begin{gathered}
G_{m_{n}}=\operatorname{Alt}\left(\Omega_{a, 1}\right) \times \ldots \times \operatorname{Alt}\left(\Omega_{a, d_{a}}\right) \\
H_{p_{n}}=\operatorname{Alt}\left(\Omega_{b, 1}\right) \times \ldots \times \operatorname{Alt}\left(\Omega_{b, d_{b}}\right) \\
G_{m_{n+1}}=\operatorname{Alt}\left(\Omega_{c, 1}\right) \times \ldots \times \operatorname{Alt}\left(\Omega_{c, d_{c}}\right)
\end{gathered}
$$

Then for any $1 \leq i \leq d_{a}$, consider $\theta_{n} \upharpoonright \operatorname{Alt}\left(\Omega_{a, i}\right)$.
We shall first show that this map is a diagonal embedding. For any $1 \leq j \leq d_{b}$, let $\pi_{b, j}$ be the projection map of $H_{p_{n}}$ onto the j-th factor, and for any $1 \leq k \leq d_{c}$, let $\pi_{c, k}$ be the projection map of $G_{m_{n+1}}$ onto the k-th factor. Then, for any $1 \leq j \leq d_{b}$, $\phi_{k}=\left(\pi_{c, k} \circ \psi_{n}\right) \circ\left(\pi_{b, j} \circ \theta_{n}\right) \upharpoonright \operatorname{Alt}\left(\Omega_{a, i}\right)$ is a homomorphism from $\operatorname{Alt}\left(\Omega_{a, i}\right)$ to $\operatorname{Alt}\left(\Omega_{c, k}\right)$ passing through $\operatorname{Alt}\left(\Omega_{b, j}\right)$.

$$
\phi_{k}: \operatorname{Alt}\left(\Omega_{a, i}\right) \xrightarrow{\pi_{b, j} \theta_{n}} \operatorname{Alt}\left(\Omega_{b, j}\right) \xrightarrow{\pi_{c, k} \circ \psi_{n}} \operatorname{Alt}\left(\Omega_{c, k}\right)
$$

Note that every orbit of $\operatorname{Alt}\left(\Omega_{a, i}\right)$ on $\Omega_{c, k}$ given by ϕ_{k} must be included in some orbit of $\operatorname{Alt}\left(\Omega_{a, i}\right)$ on $\Omega_{c, k}$ given by $\psi_{n} \circ \theta_{n}$. Since ψ_{n} is one-to-one, there must be some $1 \leq k \leq d_{c}$ such that some orbit of $\operatorname{Alt}\left(\Omega_{a, i}\right)$ on $\Omega_{c, k}$ given by ϕ_{k} is nontrivial. Fix such a value of k. Then, since the action of $\operatorname{Alt}\left(\Omega_{a, i}\right)$ on each of its orbits in $\Omega_{c, k}$ given by $\psi_{n} \circ \theta_{n}$ is either natural or trivial, then the action of $\operatorname{Alt}\left(\Omega_{a, i}\right)$ on each of its orbits in $\Omega_{c, k}$ given by ϕ_{k} is either natural or trivial, i.e., ϕ_{k} is diagonal. Since we chose k so that at least one of these orbits is non-trivial, we have that ϕ_{k} is an embedding. Thus by Lemma 2.10, the map $\pi_{b, j} \circ \theta_{n} \upharpoonright \operatorname{Alt}\left(\Omega_{a, i}\right)$ is a diagonal embedding. Since our choice of j was arbitrary, we have that $\pi_{b, j} \circ \theta_{n} \upharpoonright \operatorname{Alt}\left(\Omega_{a, i}\right)$ is a diagonal embedding for every $1 \leq j \leq d_{b}$, and thus $\theta_{n} \upharpoonright \operatorname{Alt}\left(\Omega_{a, i}\right)$ is a diagonal embedding.

Now assume that θ_{n} is not a diagonal embedding. Since for each $1 \leq i \leq d_{a}$, $\theta_{n} \upharpoonright \operatorname{Alt}\left(\Omega_{a, i}\right)$ is a diagonal embedding, there exists $1 \leq i<j \leq d_{a}$ and $1 \leq k \leq d_{b}$ such that the orbits of $\operatorname{Alt}\left(\Omega_{a, i}\right)$ and $\operatorname{Alt}\left(\Omega_{a, j}\right)$ on $\Omega_{b, k}$ are not disjoint. However, since the above argument applies also to $\psi_{n} \upharpoonright \operatorname{Alt}\left(\Omega_{b, k}\right)$, we have that $\psi_{n} \upharpoonright \operatorname{Alt}\left(\Omega_{b, k}\right)$ is a diagonal embedding. Thus after applying ψ_{n}, the orbits of $\operatorname{Alt}\left(\Omega_{a, i}\right)$ and $\operatorname{Alt}\left(\Omega_{a, j}\right)$ on $\Omega_{c, 1} \sqcup \Omega_{c, 2} \sqcup \ldots \sqcup \Omega_{c, d_{c}}$ are not disjoint. However, this violates the diagonality of the embedding $\psi_{n} \circ \theta_{n}: G_{m_{n}} \rightarrow G_{m_{n+1}}$.

Proof of claim 2. Fix some $n \geq 1$. Notice that the map $\theta_{n} \circ \psi_{n-1}: H_{p_{n-1}} \rightarrow H_{p_{n}}$ is the inclusion map given from the definition of H. Thus, given $1 \leq i \leq d_{p_{n}}$ and some $x \in \Omega_{p_{n}, i}$, there is some $\pi \in H_{p_{n-1}}$ which moves x. Thus $\psi_{n-1}(\pi) \in G_{m_{n}}$ also moves x. The proof for ψ_{n} is similar.

Definition 2.11. Given a Bratteli diagram (V, E), an ideal is a subset $V^{*} \subseteq V$ such that whenever $e \in E_{n}$ and $s(e) \in V^{*}$, then $r(e) \in V^{*}$. An ideal V^{*} is then said to be proper if for every $n<\omega, V^{*} \cap V_{n} \neq V_{n}$. A Bratteli Diagram is said to be simple if it has no nonempty proper ideals.

Notice that if (V, E) is a Bratteli diagram, $V^{*} \subseteq V$ is an ideal, and if there exists $n \in \omega$ for which $V^{*} \cap V_{n}=V_{n}$, then since $r^{-1}(v) \neq \emptyset$ for all $v \in V \backslash V_{0}$, we have that $V^{*} \cap V_{m}=V_{m}$ for every $m \geq n$. Thus, an ideal $V^{*} \subseteq V$ is proper if and only if $V \backslash V^{*}$ is infinite.

Theorem 2.12. Let (V, E) be a Bratteli diagram, and let $G(V, E)$ be the corresponding locally finite group of strongly diagonal type. Then (V, E) is simple if and only if $G(V, E)$ is simple.

Proof. We will show that (V, E) has a nonempty proper ideal if and only if $G(V, E)$ has a nontrivial normal subgroup. First assume that V^{*} is a nonempty proper ideal of (V, E). Then we can define a normal subgroup $H \triangleleft G(V, E)$ as follows. For each $n \in \omega$, let

$$
G_{n}=\operatorname{Alt}\left(\Omega_{n, 1}\right) \times \ldots \times \operatorname{Alt}\left(\Omega_{n, d_{n}}\right)
$$

be as in the definition of $G(V, E)$. Then let $H_{n}=\prod_{i \in V^{*} \cap V_{n}} A l t\left(\Omega_{n, i}\right)$. Since V^{*} is an ideal, we have that $H_{n}<H_{n+1}$ for every $n \in \omega$. Then let $H=\bigcup_{n \in \omega} H_{n}$.

First, let us show that $H \triangleleft G(V, E)$. Let $g \in G(V, E)$ and $h \in H$ be arbitrary. Then there is some $n \in \omega$, such that $g \in G_{n}$ and $h \in H_{n}$. Then it is clear that $g h g^{-1} \in H_{n}$, so $g h g^{-1} \in H$.

Now we shall show that $H \neq G(V, E)$. Since V^{*} is a proper ideal, there is a sequence of vertices $\left\{v_{i_{n}, n} \mid n \in \omega\right\}$ such that $v_{i_{n}, n} \in V_{n} \backslash V^{*}$ for each $n \in \omega$. Now let $g_{0} \in \operatorname{Alt}\left(\Omega_{0}\right)$ be any nontrivial permutation. Then g_{0} acts nontrivially on each $\Omega_{i_{n}, n}$. So for each $n \in \omega, g_{0} \notin H_{n}$. Hence, $g \notin H$.

Conversely, suppose $\{1\} \neq H \triangleleft G(V, E)$. We will first show that for any $n \in \omega$, $H \cap G_{n}$ is a subproduct of

$$
G_{n}=\operatorname{Alt}\left(\Omega_{n, 1}\right) \times \ldots \times \operatorname{Alt}\left(\Omega_{n, d_{n}}\right) .
$$

Suppose that there is some $n \in \omega$ and some $1 \neq g \in H \cap G_{n}$, and that we can write $g=\left(g_{1}, \ldots, g_{d_{n}}\right) \in \prod_{1 \leq i \leq d_{n}} \operatorname{Alt}\left(\Omega_{n, i}\right)$. Choose $1 \leq i \leq d_{n}$ such that $g_{i} \neq 1$. Then since $\operatorname{Alt}\left(\Omega_{n, i}\right)$ is simple, for any $a \in \operatorname{Alt}\left(\Omega_{n, i}\right)$, there is $h \in H \cap G_{n}$ such that $h=\left(h_{1}, \ldots, h_{d_{n}}\right) \in \prod_{1 \leq i \leq d_{n}} A l t\left(\Omega_{n, i}\right)$ and $h_{i}=a$. Since $\left|\Omega_{n, i}\right| \geq 5$, we can choose a so that $a \neq a^{-1}$ and such that a is conjugate to a^{-1} (For example, let $a=(123))$. Now since H is a subgroup of $G(V, E), h^{-1} \in H$. Then since $H \triangleleft G(V, E)$, there is some $b \in \operatorname{Alt}\left(\Omega_{n, i}\right)$ such that $b h^{-1} b^{-1}=h^{*}=\left(h_{1}^{-1}, \ldots, a, \ldots, h_{d_{n}}^{-1}\right) \in H$.

Then $h^{*} h=(1, \ldots, 1, a a, 1, \ldots, 1) \in H$, and $h^{*} h \neq 1$. Now, since $\operatorname{Alt}\left(\Omega_{n, i}\right)$ is simple, $\operatorname{Alt}\left(\Omega_{n, i}\right) \leq H$. This implies that for every n, there is some $I \subseteq\left\{1, \ldots, d_{n}\right\}$ such that $\left\{g \in \prod_{1 \leq i \leq d_{n}} \operatorname{Alt}\left(\Omega_{n, i}\right) \mid g \in H\right\}=\prod_{I} \operatorname{Alt}\left(\Omega_{n, i}\right)$.

Now, let $\left\{v_{n, i}, v_{n+1, j}\right\} \in E$. Assume that $\operatorname{Alt}\left(\Omega_{n, i}\right) \leq H$. Then, given some element $1 \neq g \in \operatorname{Alt}\left(\Omega_{n, i}\right)$, we have that the image of g in G_{n+1} can be expressed as $\left(g_{1}, \ldots, g_{d_{n+1}}\right)$ where $g_{j} \neq 1$. Thus, by the above argument, $\operatorname{Alt}\left(\Omega_{n+1, j}\right) \leq H$. Hence, $V^{*}=\left\{v_{n, i} \mid \operatorname{Alt}\left(\Omega_{n, i}\right) \leq H\right\}$ is an ideal of (V, E).

Finally, $\{1\} \neq H$ implies $\emptyset \neq V^{*}$, and if V^{*} were not a proper ideal, then there would be some $n \in \omega$ such that $H \cap G_{m}=G_{m}$ for every $m>n$, and then we would have $H=G(V, E)$.

Notice that we have also shown that the following type of subgroup of a locally finite group of diagonal type is always normal.

Definition 2.13. Let G be a countable locally finite group which is the union of the diagonal chain

$$
G_{0} \leq G_{1} \leq \ldots \leq G_{n} \leq \ldots
$$

where each G_{n} is the product of finite alternating groups

$$
G_{n}=\operatorname{Alt}\left(\Omega_{n, 1}\right) \times \ldots \times \operatorname{Alt}\left(\Omega_{n, d_{n}}\right)
$$

Then for each $n<m$ and $1 \leq k \leq d_{n}$, let

$$
I_{n, k, m}=\left\{1 \leq i \leq d_{m} \mid \operatorname{Alt}\left(\Omega_{n, k}\right) \text { has a nontrivial orbit on } \Omega_{m, i}\right\},
$$

and define

$$
\left\lceil A l t\left(\Omega_{n, k}\right)\right\rceil=\bigcup_{m>n}\left(\prod_{i \in I_{n, k, m}} \operatorname{Alt}\left(\Omega_{m, i}\right)\right)
$$

2.3 The corresponding standard Borel spaces

Definition 2.14. Let $\mathcal{L}=(1, \cdot)$ be the language of group theory, and consider $X_{\mathcal{L}}$ as in the paragraph preceeding Definition 1.1. We will let $\mathcal{S D} \mathcal{T}$ be the subspace of countable simple locally finite groups of strongly diagonal type. Then denote the isomorphism relation on $\mathcal{S D \mathcal { T }}$ by $\cong_{\mathcal{S D T}}$.

The next two results show that the class of countably infinite simple locally finite groups of (strongly) diagonal type can be axiomatized by an $\mathcal{L}_{\omega_{1} \omega}$-sentence, and thus by Corollary 1.5 is a standard Borel space.

Theorem 2.15. A countably infinite simple locally finite group G is of diagonal type if and only if the following conditions are satisfied.
(a) Every finite subset X of G is contained in a finite subgroup of G which is a direct product of alternating groups.
(b) There exists a finite subgroup F of G such that whenever

$$
F \leq A_{1} \times \ldots \times A_{n}<G
$$

where each A_{i} is an alternating group on a finite set Ω_{i}, then F has no regular orbits on any of the Ω_{i}.

Proof. Assume that G satisfies conditions (a) and (b). Then condition (a) allows us to express G as the increasing union of finite subgroups, each of which is the direct product of alternating groups, say

$$
G_{0} \leq G_{1} \leq \ldots \leq G_{n} \leq \ldots
$$

Theorem 2.3 implies that we may then select a subchain which is either of diagonal type or of regular type. However, condition (b) implies that G is not expressible as a union of a chain of regular type. Thus G must be of diagonal type.

Conversely, let G be the union of the diagonal chain of finite subgroups, each of which is the direct product of alternating groups,

$$
G_{0} \leq G_{1} \leq \ldots \leq G_{n} \leq \ldots
$$

Then G clearly satisfies condition (a). Moreover, there exists an $m \geq 0$ such that G_{m} has a factor of the form $\operatorname{Alt}(\Omega)$ for some finite set $|\Omega| \geq 5$. Otherwise, G would be locally solvable, and there are no infinite locally solvable simple groups. (For example, this follows directly from [27, Corollary 1.B.5]). So let $\operatorname{Alt}(\Omega)$ be such a factor. Since $\lceil\operatorname{Alt}(\Omega)\rceil \triangleleft G$, we actually have that $\lceil\operatorname{Alt}(\Omega)\rceil=G$. Thus we may assume that $G_{0}=\operatorname{Alt}(\Omega)$. Now suppose that $G_{0} \leq A_{1} \times \ldots \times A_{n}<G$, where each A_{i} is a finite alternating group. Then there is some $l>0$ so that $G_{0} \leq A_{1} \times \ldots \times A_{n}<G_{l}$. Then arguing as in the proof of Claim 1 of Theorem 2.9, we see that the embedding $G_{0} \leq A_{1} \times \ldots \times A_{n}$ is diagonal. Thus G satisfies condition (b) with respect to $F=G_{0}$.

Corollary 2.16. A countably infinite simple locally finite group G is of strongly diagonal type iff the following conditions are satisfied.
(a) There exists a finite subgroup G_{0} such that every finite subset X of G is contained in a finite subgroup

$$
G_{0} \cup X \subseteq A_{1} \times \ldots \times A_{n}<G,
$$

where each A_{i} is an alternating group on a finite set Ω_{i} and each element of $\sqcup \Omega_{i}$ lies in some nontrivial G_{0}-orbit.
(b) There exists a finite subgroup F of G such that whenever

$$
F \leq A_{1} \times \ldots \times A_{n}<G
$$

where each A_{i} is an alternating group on a finite set Ω_{i}, then F has no regular orbits on any of the Ω_{i}.

Proof. As before, condition (a) allows us to build an appropriate chain of subgroups, and condition (b) together with Theorem 2.2 ensure that it is of diagonal type. The new clause in condition (a) ensures that the chain is strongly diagonal. On the other hand, if G is the union of the strongly diagonal chain of finite subgroups

$$
G_{0} \leq G_{1} \leq \ldots \leq G_{n} \leq \ldots
$$

then G clearly satisfies condition (a). Arguing as in the previous theorem, we see that G must also satisfy condition (b).

We now work to encode the class of simple Bratteli diagrams into an appropriate standard Borel space, which we call $\mathcal{B D}$. We then show that $\cong_{\mathcal{S D} \mathcal{I}}$ and the relation \sim on $\mathcal{B D}$ are Borel bireducible.

Definition 2.17. We encode $\mathcal{B D}$, the standard Borel space of simple Bratteli diagrams, as follows. First we encode each Bratteli diagram as a member of the standard Borel space $(\mathbb{N} \times \mathbb{N})^{\mathbb{N}}$. Fix a particular Bratteli diagram (V, E). We will associate to it a function $f \in(\mathbb{N} \times \mathbb{N})^{\mathbb{N}}$. We may assume that $V=\{n \in \mathbb{N} \mid n$ even $\}$ with $V_{0}=\{0\}$ and that $E=\{n \in \mathbb{N} \mid n$ odd $\}$. Then encode the source and range maps by setting, for each edge $e \in E, f(e)=(s(e), r(e))$. Next encode the levels of V by setting, for each $v \in V_{n}, f(v)=(0, n)$. Finally, we let \sim denote the equivalence relation on $\mathcal{B D}$ given by Definition 2.8.

Lemma 2.18. $\mathcal{B D}$ is a standard Borel space.
Proof. Given a function $f \in(\mathbb{N} \times \mathbb{N})^{\mathbb{N}}$ and $f(n)=(i, j)$, use $l_{f}(n)=i$ and $r_{f}(n)=j$ to denote the corresponding projections. Then notice that $\mathcal{B D}$ is the set of functions $f \in(\mathbb{N} \times \mathbb{N})^{\mathbb{N}}$ which satisfy the following conditions:

- If n is even, then $l_{f}(n)=0$.
- $f(n)=(0,0)$ if and only if $n=0$.
- For each odd $n \in \mathbb{N}$, if $f(n)=(i, j)$, then i, j are even and $r_{f}(j)=r_{f}(i)+1$.
- For each $j \in \mathbb{N},\left\{n \in \mathbb{N} \mid n\right.$ is even and $\left.r_{f}(n)=j\right\}$ is nonempty and finite.
- For each even $i \in \mathbb{N},\left\{n \in \mathbb{N} \mid n\right.$ is odd and $\left.l_{f}(n)=i\right\}$ is nonempty and finite.
- For each even $j \in \mathbb{N} \backslash\{0\},\left\{n \in \mathbb{N} \mid n\right.$ is odd and $\left.r_{f}(n)=j\right\}$ is nonempty and finite.

It is now evident that we may similarly express the following condition, which defines simplicity for Bratteli diagrams.

- $\left(\forall v \in V_{n}\right)(\exists m>n)\left(\forall w \in V_{m}\right)\left(\right.$ there is a path in $E_{n+1} \circ \ldots \circ E_{m}$ from v to $\left.w\right)$.

Clearly $\mathcal{B D}$ is a Borel subset of the Polish space $(\mathbb{N} \times \mathbb{N})^{\mathbb{N}}$, and so by Theorem 1.4 is a standard Borel space.

Lemma 2.19. $(\sim) \leq_{B}\left(\cong_{\mathcal{S D T}}\right)$
Proof. Theorems 2.9 and 2.12 show that the map $(V, E) \mapsto G(V, E)$ is a Borel reduction from \sim to $\cong_{\mathcal{S D I}}$

Lemma 2.20. $\left(\cong_{\mathcal{S D T}}\right) \leq_{B}(\sim)$
Proof. Given a group $G \in \mathcal{S D \mathcal { I }}$ together with a chain of strongly diagonal type

$$
G_{0} \leq G_{1} \leq \ldots \leq G_{n} \leq \ldots \leq G
$$

such that G is the limit of the G_{n}, we may naturally choose a Bratteli diagram (V, E) so that $G \cong G(V, E)$. Thus if we show how, given a group $G \in \mathcal{S D} \mathcal{T}$, to explicitly choose an appropriate chain of subgroups, then Theorems 2.9 and 2.12 imply that this assignment would give us a Borel reduction from $\cong_{\mathcal{S D I}}$ to \sim.

Since each $G \in \mathcal{S D} \mathcal{T}$ has \mathbb{N} as its underlying set we may, after fixing a well order on the finite subsets of \mathbb{N}, refer to the least finite subset of G satisfying a given property. So we begin by choosing as G_{0} the least subset of G which satisfies part (b) of Corollary 2.16. Then given G_{n} we choose as G_{n+1} the least subset of G which satisfies part (a) of Corollary 2.16 with respect to $G_{n} \cup\{0,1, \ldots, n\}$. Then Theorem 2.3 together with part (b) of Corollary 2.16 tell us that we may choose a subchain of diagonal type. Finally, the second clause of part (a) of Corollary 2.16 assures us that this subchain is strongly diagonal.

Chapter 3

Dimension groups

In this chapter, for each Bratteli diagram (V, E), we shall define an associated dimension group $K_{0}(V, E)$. We note that, for any Bratteli diagrams (V, E) and (W, F), $(V, E) \sim(W, F)$ if and only if $K_{0}(V, E)$ and $K_{0}(W, F)$ are isomorphic. We then show that (V, E) is simple if and only if $K_{0}(V, E)$ is simple.

Definition 3.1. If (V, E) is a Bratteli diagram, then we can explicitly define an associated dimension group $K_{0}(V, E)$, equipped with a distinguished order unit, as follows. For each integer $n \in \omega$, let $\mathbb{Z}^{V_{n}}$ be the free abelian group on the set of vertices $V_{n}=\left\{v_{n, i} \mid 1 \leq i \leq d_{n}\right\}$. We regard $\mathbb{Z}^{V_{n}}$ as an ordered abelian group with positive cone

$$
\left(\mathbb{Z}^{V_{n}}\right)^{+}=\left\{\sum_{i=1}^{d_{n}} z_{i} v_{n, i} \mid z_{i} \geq 0 \text { for all } 1 \leq i \leq d_{n}\right\}
$$

For each $n \geq 1$, let $\varphi_{n}: \mathbb{Z}^{V_{n-1}} \rightarrow \mathbb{Z}^{V_{n}}$ be the homomorphism given by matrix multiplication by the incidence matrix M_{n} from Definition 2.4. Since all of the entries of M_{n} are nonnegative, $\varphi_{n}\left[\left(\mathbb{Z}^{V_{n-1}}\right)^{+}\right] \subseteq\left(\mathbb{Z}^{V_{n}}\right)^{+}$. Then we define $K_{0}(V, E)$ to be the direct limit of the system of ordered groups

$$
\mathbb{Z}^{V_{0}} \xrightarrow{\varphi_{1}} \mathbb{Z}^{V_{1}} \xrightarrow{\varphi_{2}} \mathbb{Z}^{V_{2}} \xrightarrow{\varphi_{3}} \ldots \xrightarrow{\varphi_{n}} \mathbb{Z}^{V_{n}} \xrightarrow{\varphi_{n+1}} \ldots
$$

endowed with the induced order. Given a group element $a \in \mathbb{Z}^{V_{n}}$ for some $n \in \mathbb{N}$, we define $[a]=\lim _{m \geq n}\left(\varphi_{m} \circ \ldots \circ \varphi_{n+1}\right)(a) \in K_{0}(V, E)$. Thus, if there are $n, m \in \mathbb{N}$ such that $a \in \mathbb{Z}^{V_{n}}$ and $b \in \mathbb{Z}^{V_{m}}$, then $[a]=[b]$ if and only if there is some $l>n, m$ such that $\left(\varphi_{l} \circ \ldots \circ \varphi_{n+1}\right)(a)=\left(\varphi_{l} \circ \ldots \circ \varphi_{m+1}\right)(b)$. Notice also that $x \in\left(K_{0}(V, E)\right)^{+}$if and only if there is some $n \in \omega$ and $a \in\left(\mathbb{Z}^{V_{n}}\right)^{+}$such that $x=[a]$.

Lemma 3.2. [9] $K_{0}(V, E)$ is a dimension group.
Proof. It is routine to check that $K_{0}(V, E)$ is an unperforated ordered abelian group, so we will only verify the Riesz interpolation property. Let $a_{i}, b_{j} \in K_{0}(V, E)$ where $a_{i} \leq b_{j}$ $(1 \leq i, j \leq 2)$. Then since $b_{j}-a_{i} \in K_{0}(V, E)^{+}$for $1 \leq i, j \leq 2$, there is some $n \in \mathbb{N}$ and some $a_{i}^{\prime}, b_{j}^{\prime} \in \mathbb{Z}^{V_{n}}$ such that $\left[a_{i}^{\prime}\right]=a_{i},\left[b_{j}^{\prime}\right]=b_{j}$, and $b_{j}^{\prime}-a_{i}^{\prime} \in\left(\mathbb{Z}^{V_{n}}\right)^{+}$for $1 \leq i, j \leq 2$. That is, $a_{i}^{\prime} \leq b_{j}^{\prime}$ for $1 \leq i, j \leq 2$. Since $\mathbb{Z}^{V_{n}}$ is a dimension group, there is some $c^{\prime} \in \mathbb{Z}^{V_{n}}$ such that $a_{i}^{\prime} \leq c^{\prime} \leq b_{j}^{\prime}$ for $1 \leq i, j \leq 2$. Thus, letting $c=\left[c^{\prime}\right]$, we have that $a_{i} \leq c \leq b_{j}$ for $1 \leq i, j \leq 2$.

Finally, the distinguished order unit is the element of $K_{0}(V, E)^{+}$corresponding to the element $v_{0} \in \mathbb{Z}^{V_{0}}$.

Theorem 3.3. [8] If (V, E) and $\left(V^{\prime}, E^{\prime}\right)$ are Bratteli diagrams, then $(V, E) \sim\left(V^{\prime}, E^{\prime}\right)$ if and only if the ordered groups $K_{0}(V, E)$ and $K_{0}\left(V^{\prime}, E^{\prime}\right)$ are isomorphic via a map sending the distinguished order unit v_{0} of $K_{0}(V, E)$ to the distinguished order unit v_{0}^{\prime} of $K_{0}\left(V^{\prime}, E^{\prime}\right)$.

Theorem 3.4. Let (V, E) be a Bratteli diagram, and let $K_{0}(V, E)$ be the corresponding dimension group. Then (V, E) is simple if and only if $K_{0}(V, E)$ is simple.

Proof. First, let $V^{*} \subset V$ be a nonempty proper ideal of (V, E), and let

$$
X=\bigcup_{n \in \omega}\left\{\sum_{i=1}^{d_{n}} z_{i} v_{n, i} \in \mathbb{Z}^{V_{n}} \mid z_{i} \neq 0 \Rightarrow v_{i, n} \in V^{*}\right\} .
$$

Note that X is "upward closed" in the sense that if $a \in X \cap \mathbb{Z}^{V_{n}}, b \in \mathbb{Z}^{V_{n+1}}$, and $b=\varphi_{n+1}(a)$, then $b \in X$. We show that $J=\{[a] \mid a \in X\}$ is an ideal of A.

We first prove that J is in fact a subgroup of $K_{0}(V, E)$. Clearly, $a \in X$ implies $a^{-1} \in X$, and so $[a] \in J$ implies $\left[a^{-1}\right] \in J$. Now let $[a],[b] \in J$, where $a \in X \cap V_{m}$ and $b \in X \cap V_{l}$. Then there is some $n \geq m, l$ and some $c, d \in \mathbb{Z}^{V_{n}}$ such that $[a]=[c]$ and $[b]=[d]$. Then $c, d \in X$, and so $c+d \in X \cap \mathbb{Z}^{V_{n}}$, and so $[a]+[b]=[c]+[d]=[c+d] \in J$.

Now suppose $0 \leq a \leq b \in J$. Then $a=[x]$ where $x \in \mathbb{Z}^{V_{m}}$ for some m , and $b=[y]$ where $y \in X \cap \mathbb{Z}^{V_{n}}$ for some n . Then there is some $l \geq m, n$ and $x^{\prime}, y^{\prime} \in \mathbb{Z}^{V_{l}}$ such that $a=\left[x^{\prime}\right]$, and $b=\left[y^{\prime}\right]$ and $0 \leq x^{\prime} \leq y^{\prime}$. Then $y^{\prime} \in X$ implies $x^{\prime} \in X$. Thus $a \in J$.

If we let

$$
X^{+}=\bigcup_{n<\omega}\left\{\sum_{i=1}^{d_{n}} z_{i} v_{n, i} \in\left(\mathbb{Z}^{V_{n}}\right)^{+} \mid z_{i} \neq 0 \Rightarrow v_{i, n} \in V^{*}\right\},
$$

then $J^{+}=\left\{[a] \mid a \in X^{+}\right\}$, and clearly $J=J^{+}-J^{+}$. Thus J is an ideal of $K_{0}(V, E)$.
Note that $\emptyset \neq V^{*}$ implies $\{0\} \neq J$. To show that $J \neq K_{0}(V, E)$, consider the element of $K_{0}(V, E)$ corresponding to $v_{0} \in \mathbb{Z}^{V_{0}}$. We claim that $\left[v_{0}\right] \notin J$. Otherwise, there is some $a \in X$ such that $[a]=\left[v_{0}\right]$. Suppose $n \in \mathbb{N}$ and $a=\sum_{i=1}^{d_{n}} z_{i} v_{n, i} \in \mathbb{Z}^{V_{n}}$. Then there must be some $l>n$ such that $\left(\varphi_{l} \circ \ldots \circ \varphi_{n+1}\right)(a)=\left(\varphi_{l} \circ \ldots \circ \varphi_{1}\right)\left(v_{0}\right)$. However, since all of the source maps associated with (V, E) are nonempty, $\left(\varphi_{l} \circ \ldots \circ \varphi_{1}\right)\left(v_{0}\right)$ has all positive coordinates. But since $\left(\varphi_{l} \circ \ldots \circ \varphi_{n+1}\right)(a) \in X$, this implies that $V^{*} \cap V_{l}=V_{l}$ and this contradicts the assumption that V^{*} is a proper ideal.

Conversely, let $J \neq\{0\}$ be an ideal of $K_{0}(V, E)$ and let

$$
V^{*}=\left\{v_{n, i} \mid \exists a=\sum_{i=1}^{d_{n}} a_{i} v_{n, i} \in\left(\mathbb{Z}^{V_{n}}\right)^{+} \text {such that }[a] \in J^{+} \text {and } a_{i}>0\right\}
$$

Then V^{*} has the property that whenever $e \in E_{n}$ and $s(e) \in V^{*}$, then $r(e) \in V^{*}$. Since $J=J^{+}-J^{+}$and $J \neq\{0\}$, then $J^{+} \neq\{0\}$, and so $V^{*} \neq \emptyset$.

Now assume that V^{*} is not a proper ideal. Then there is some $n \in \mathbb{N}$ such that $V^{*} \cap V_{m}=V_{m}$ for every $m \geq n$. It is clear that if $V^{*} \cap V_{m}=V_{m}$, then $\mathbb{Z}^{V_{m}} \subseteq J$. Hence $\mathbb{Z}^{V_{m}} \subseteq J$ for all $m \geq n$, and thus $J=K_{0}(V, E)$.

Chapter 4

The positive cone of a simple dimension group

We now turn our attention to the structure of dimension groups. The beginning of this chapter follows Chapter 4 of [10]. First we observe that if $a \leq b$ and $c \leq d$, then $a+c \leq b+d$, and if $n a \leq n b$ for some $n \in \mathbb{N}$, then $a \leq b$. The following lemma gives a useful characterization of the Riesz interpolation property. The proof follows that of Effros [10, Lemma A3.1].

Lemma 4.1. [29, pp. 175-6][3, Theorem 49] Let A be an unperforated ordered group. Then the following are equivalent properties for A :
(1) Given $a_{i} \leq b_{j}(1 \leq i, j \leq 2)$ there exists some $c \in A$ with $a_{i} \leq c \leq b_{j}$ for all i, j.
(2) Given $a_{i} \leq b_{j}(i=1, \ldots, r ; j=1, \ldots, s)$ there is some $c \in A$ with $a_{i} \leq c \leq b_{j}$ for all i, j.
(3) If $0 \leq a \leq b_{1}+\cdots+b_{s}$, and $0 \leq b_{i}(1 \leq i \leq s)$, then there exist $a_{i} \in A(1 \leq i \leq s)$ with $0 \leq a_{i} \leq b_{j}(1 \leq i, j \leq s)$ and $a=a_{1}+\cdots+a_{s}$.
(4) If $\sum_{i=1}^{r} a_{i}=\sum_{j=1}^{s} b_{j}, a_{i}, b_{j} \geq 0$, then there exist $c_{i j} \in A^{+}$with $a_{i}=\sum_{j} c_{i j}$ and $b_{j}=\sum_{i} c_{i j}$.

Proof. First let

$$
[0, b]=\{a \in A \mid 0 \leq a \leq b\},
$$

rewrite (3) as

$$
\left[0, b_{1}+\ldots+b_{s}\right]=\left[0, b_{1}\right]+\ldots+\left[0, b_{s}\right],
$$

and represent (4) as a table as follows:

	b_{1}	\ldots	b_{s}
a_{1}	c_{11}	\ldots	$c_{1 s}$
a_{2}	c_{21}	\ldots	$c_{2 s}$
\vdots	\vdots	\ldots	\vdots
a_{r}	$c_{r 1}$	\ldots	$c_{r s}$

In (1) or (2), we say that the element $c \in A$ interpolates, or that we can interpolate with c. We refer to either (3) or (4) as the Riesz decomposition property.
(1) $\Rightarrow(2)$. We assume (1) and prove (2) by induction on $r+s$. If $r+s \leq 4$, then either a_{1} interpolates (if $r=1$), b_{1} interpolates (if $s=1$), or (2) follows immediately from (1) (if $r=s=2$). Assume then that $r+s \geq 5$. Assume $r \geq 3$ (otherwise $s \geq 3$ and the proof is similar). Then by induction there is some $c^{\prime} \in A$ such that $a_{1}, a_{2}, \ldots, a_{r-1} \leq c^{\prime} \leq b_{1}, b_{2}, \ldots, b_{s}$. Then again by induction there is some $c \in A$ such that $c^{\prime}, a_{r} \leq c \leq b_{1}, b_{2}, \ldots, b_{s}$. Then $a_{1}, a_{2}, \ldots, a_{r} \leq c \leq b_{1}, b_{2}, \ldots, b_{s}$.
(2) \Rightarrow (3). We assume (2) and prove (3) by induction on s. If $s=2$ then $0, a-b_{1} \leq a, b_{2}$. Thus there is some $c \in A$ such that $0, a-b_{1} \leq c \leq a, b_{2}$. Then $0 \leq c \leq b_{2}$ and $0 \leq a-c \leq b_{1}$ and clearly $a+(a-c)=a$. Thus we have shown that $\left[0, b_{1}+b_{2}\right]=\left[0, b_{1}\right]+\left[0, b_{2}\right]$. Then $\left[0, b_{1}+\ldots+b_{s}\right]=\left[0, b_{1}\right]+\ldots+\left[0, b_{s}\right]$ follows by induction.
$(3) \Rightarrow(4)$. Once again, we use induction on $r+s$. If $r+s=2$, then (4) is trivial, so assume that $r+s \geq 3$. Assume $r \geq 2$ (otherwise $s \geq 2$ and the proof is similar). Then $0 \leq a_{r} \leq \sum_{j=1}^{s} b_{j}$, and so by (3) there are $c_{r 1}, c_{r 2}, \ldots, c_{r s}$ such that $0 \leq c_{r j} \leq b_{j}$ for each $1 \leq j \leq s$ and that $c_{r 1}+c_{r 2}+\ldots+c_{r s}=a_{r}$. Then by induction we can decompose $\sum_{i=1}^{r-1} a_{i}=\sum_{j=1}^{s}\left(b_{j}-c_{s j}\right)$ as

	$b_{1}-c_{r 1}$	\ldots	$b_{s}-c_{r s}$
a_{1}	c_{11}	\ldots	$c_{1 s}$
a_{2}	c_{21}	\ldots	$c_{2 s}$
\vdots	\vdots	\ldots	\vdots
a_{r-1}	$c_{(r-1) 1}$	\ldots	$c_{(r-1) s}$

Then we obtain (4) by adding the row

$$
\begin{array}{c|ccc}
a_{r} & c_{r 1} & \ldots & c_{r s}
\end{array}
$$

to the bottom of the above matrix.
$(4) \Rightarrow(1)$. Assume $a_{1}, a_{2} \leq b_{1}, b_{2}$. Then $\left(b_{1}-a_{1}\right),\left(b_{1}-a_{2}\right),\left(b_{2}-a_{1}\right),\left(b_{2}-a_{2}\right) \geq 0$ and $\left(b_{1}-a_{1}\right)+\left(b_{2}-a_{2}\right)=\left(b_{2}-a_{1}\right)+\left(b_{1}-a_{2}\right)$. Then by (4) we have the following decomposition:

	$b_{1}-a_{2}$	$b_{2}-a_{1}$
$b_{1}-a_{1}$	c_{11}	c_{12}
$b_{2}-a_{2}$	c_{21}	c_{22}

where $c_{i j} \geq 0$. We claim that $c=b_{1}-c_{11}$ interpolates. $c \leq b_{1}$ is immediate. Then $c_{11} \leq b_{1}-a_{1}$ implies $c \geq a_{1}$, and $c_{11} \leq b_{1}-a_{2}$ implies $c \geq a_{2}$. Finally, $b_{1}-a_{1}=c_{11}+c_{12}$ implies that $c=b_{1}-c_{11}=a_{1}+c_{12} \leq a_{1}+\left(b_{2}-a_{1}\right)=b_{2}$.

Recall that if A is a dimension group, then a subgroup J is an ideal if $J=J^{+}-J^{+}$ (where $J^{+}=J \cap A^{+}$) and $0 \leq a \leq b \in J$ implies $a \in J$. Now a face F in A^{+}is defined to be a subset $F \subseteq A^{+}$satisfying $F+F \subseteq F$ and $0 \leq a \leq b \in F$ implies $a \in F$. It is easy to check that $J \mapsto F=J^{+}$provides a one-to-one correspondence between the
ideals in A and the faces in A^{+}. In particular if $b \in A^{+}$and we let

$$
[b]=\{a \in A \mid 0 \leq a \leq n b \text { for some } n \in \mathbb{N}\}
$$

then $[b]$ is a face, and $J=[b]-[b]$ is the smallest ideal containing b. Recall that given a dimension group A, an element $u \in A^{+}$is an order unit if $[u]=A^{+}$. In particular, if A is a simple dimension group, then $a \in A^{+} \backslash\{0\}$ implies the ideal $[a]-[a]$ is the whole of A, i.e., every element of $A^{+} \backslash\{0\}$ is an order unit. Similarly, if every $a \in A^{+} \backslash\{0\}$ is an order unit, then A must be simple. (There are, in fact, non-simple dimension groups which have no order units.)

If A is a dimension group, we say an element $b \in A$ is minimal if $b>0$ and $0 \leq a \leq b$ implies $a=0$ or $a=b$. If $b \in A^{+}$is minimal then $[b]=\mathbb{Z}^{+} b$. To see this, note that if $0 \leq a \leq n b$, then $a=a_{1}+\cdots+a_{n}$ where $0 \leq a_{i} \leq b$ (see Lemma 4.1(3)), and thus $a_{i}=0$ or $a_{i}=b$ for each i. Thus if A is a simple dimension group with a minimal positive element, then A is isomorphic to \mathbb{Z} as a group. Since there are exactly two orderings on \mathbb{Z}, we see that $\left(A, A^{+}\right) \cong\left(\mathbb{Z}, \mathbb{Z}^{+}\right)$as a dimension group. In other words, if $\left(A, A^{+}\right) \not \not\left(\mathbb{Z}, \mathbb{Z}^{+}\right)$is simple, then A contains no minimal positive elements. The following is included in [11, Corollary 1.2].

Lemma 4.2. If $\left(A, A^{+}\right) \not \not\left(\mathbb{Z}, \mathbb{Z}^{+}\right)$is a simple dimension group, then $\left(A, A^{+}\right)$satisfies the strong Riesz interpolation property: given elements $a, b, c, d \in A$, if $a, b<c, d$, then there is some $e \in A$ so that $a, b<e<c, d$.

Proof. By the usual Riesz interpolation property, we know that there is some $f \in A$ with $a, b \leq f \leq c, d$. If $a, b<f<c, d$, then we are done, so assume for example that $f=b$ (the other cases are similar). Then $a \leq b=f<c, d$, and $0<(c-f),(d-f)$. But then since $\left(A, A^{+}\right)$is simple, $(c-f)$ is an order unit, and so there is some positive $n \in \mathbb{N}$ such that $0<(d-f)<n(c-f)$. Now, since $\left(A, A^{+}\right)$contains no minimal positive element, there is some $\epsilon \in A$ with $0<\epsilon<(d-f)<n(c-f)$. Then by the Riesz Decomposition Property, there are $\epsilon_{1}, \ldots, \epsilon_{n} \in A^{+}$so that $\epsilon=\epsilon_{1}+\ldots+\epsilon_{n}$, and $\epsilon_{i} \leq(c-f)$ for each $1 \leq i \leq n$. Next fix i so that $\epsilon_{i}>0$. Again since $\left(A, A^{+}\right)$has no minimal positive elements, there is some $\delta \in A^{+}$such that $0<\delta<\epsilon_{i}$. Then we interpolate with $e=f+\delta$. Clearly $a, b<e$, since $\delta>0$. Furthermore $e<c, d$, since $(d-f),(c-f)>\delta$.

We will soon see that the existence of an order unit allows much insight into the structure of dimension groups. So from now on, we will work with the standard Borel space of simple dimension groups with a distinguished order unit, whose definition we restate here.

Definition 4.3. Let $n \geq 1$ and consider the standard Borel space $R\left(\mathbb{Q}^{n}\right) \times \mathcal{P}\left(\mathbb{Q}^{n}\right) \times \mathbb{Q}^{n}$ where $\mathcal{P}\left(\mathbb{Q}^{n}\right)$ denotes the power set of \mathbb{Q}^{n}. Let $S D G_{n}$ denote the Borel subset of
$R\left(\mathbb{Q}^{n}\right) \times \mathcal{P}\left(\mathbb{Q}^{n}\right) \times \mathbb{Q}^{n}$ given by those $\left(A, A^{+}, u\right)$ such that $\left(A, A^{+}\right)$is a simple dimension group (of rank n) and $u \in A^{+} \backslash\{0\}$. (Here we see that simplicity may be encoded by an $\mathcal{L}_{\omega_{1} \omega}$-sentence, since it is equivalent to asserting that every non-zero element of A^{+}is an order unit.) Let \cong_{n}^{+}denote the isomorphism relation on $S D G_{n}$. Since this is the orbit equivalence relation given by the diagonal action of $G L_{n}(\mathbb{Q})$ on $S D G_{n} \subseteq$ $R\left(\mathbb{Q}^{n}\right) \times P\left(\mathbb{Q}^{n}\right) \times \mathbb{Q}^{n}$, we see that \cong_{n}^{+}is a countable Borel equivalence relation.

Our focus for the remainder of this thesis is the following theorem. We prove it for $n=1,2$ in Chapter 6, and for the rest of the cases in Chapters 7 and 8. In Chapter 9, we use it to prove similar theorems about simple Bratteli diagrams and simple locally finite groups of strongly diagonal type.

Theorem 4.4. For all $n \geq 1$, $\left(\cong_{n}^{+}\right)<_{B}\left(\cong_{n+1}^{+}\right)$
In order to prove this for $n \geq 3$, we will first need to study the space of states of a simple dimension group of finite rank. Fix $n \geq 3$ and some $\left(A, A^{+}, u\right) \in S D G_{n}$. We say that a homomorphism $p: A \rightarrow \mathbb{R}$ is a state if p is positive (i.e., $p\left(A^{+}\right) \geq 0$), and $p(u)=1$. We let $S_{u}\left(A, A^{+}\right)$be the set of all states on $\left(A, A^{+}, u\right)$, and we give it the weakest topology for which each of the functions $\hat{a}: f \mapsto f(a)(a \in A)$ is continuous.

It is clear that $S_{u}\left(A, A^{+}\right)$is convex. Since A has finite rank, it follows that $S_{u}\left(A, A^{+}\right)$ is compact. To see this, let $e_{i}(1 \leq i \leq k)$ be a maximally linearly independent set of elements of A^{+}. Then since $A=A^{+}-A^{+}$, any state p is determined by $p\left(e_{i}\right)$, $(1 \leq i \leq k)$. Also there is some integer $z_{i} \in \mathbb{N}$ such that $0 \leq e_{i} \leq z_{i} u$. Thus $0 \leq p\left(e_{i}\right) \leq z_{i}$, regardless of the choice of p. Hence any sequence of states must have a convergent subsequence, and it follows that $S_{u}\left(A, A^{+}\right)$is compact.

Now since $S_{u}\left(A, A^{+}\right)$is a convex compact subset of the locally convex space \mathbb{R}^{A} of all functions $f: A \rightarrow \mathbb{R}$ equipped with the product topology, the Krein-Milman theorem says that $S_{u}\left(A, A^{+}\right)$is the convex hull of its extreme points. Let $E\left(S_{u}\left(A, A^{+}\right)\right)$be this set of extreme points. Our goals for the remainder of this chapter are

1. to show that $E\left(S_{u}\left(A, A^{+}\right)\right)$is finite, and
2. to explore the manner in which $E\left(S_{u}\left(A, A^{+}\right)\right)$determines the positive cone A^{+}.

Understanding the nature of $E\left(S_{u}\left(A, A^{+}\right)\right)$will be crucial in Chapter 8.

4.1 $E\left(S_{u}\left(A, A^{+}\right)\right)$is finite.

Fix $n \geq 3$ and some $\left(A, A^{+}, u\right) \in S D G_{n}$. Following Chapter 10 of Goodearl [18], we define a classical simplex to be the convex hull of finitely many affinely independent points in a real vector space. We define below an infinite-dimensional analogue of a
classical simplex which we will call a simplex. In particular, a classical simplex will be a simplex, and the extreme points of a simplex will be affinely independent. Then we will show that $S_{u}\left(A, A^{+}\right)$is a simplex, and thus the extreme points of $S_{u}\left(A, A^{+}\right)$are affinely independent.

Assume for a moment that the extreme points of a $S_{u}\left(A, A^{+}\right)$are affinely independent. Let $e_{i},(1 \leq i \leq n)$ be linearly independent elements of A, and define homomorphisms $f_{i}: A \rightarrow \mathbb{R}$ by $f_{i}\left(e_{j}\right)=1$ if $i=j$ and $f_{i}\left(e_{j}\right)=0$ if $i \neq j$. Since the elements of $S_{u}\left(A, A^{+}\right)$are linear combinations of the functions $f_{i}, E\left(S_{u}\left(A, A^{+}\right)\right)$must be finite. (Notice that this actually means that $S_{u}\left(A, A^{+}\right)$is a classical simplex.) In order to generalize the definition of a classical simplex, we need some notions from convexity theory.

Definition 4.5. (a) A convex cone in a real vector space E is any subset C such that $C+C \subseteq C$ and $a C \subseteq C$ for all $a \in \mathbb{R}^{+}$. A convex cone C is strict if $C \cap(-C)=\{0\}$.
(b) A partially ordered set is a lattice if any two elements have a least upper bound and greatest lower bound.
(c) A lattice cone of a real vector space is any strict cone C that is a lattice under the order defined by $a \leq b \Longleftrightarrow b-a \in C$.
(d) A base of a convex cone C is any subset K so that every nonzero element of C can be uniquely expressed as αx for some $\alpha \in \mathbb{R}^{+}$and $x \in K$.
(e) A simplex in a real vector space E is a compact subset of E which is affinely isomorphic to a base for a lattice cone in some real vector space.

First, note that if K is an l-dimensional classical simplex, then it is affinely isomorphic to the convex hull (in \mathbb{R}^{l+1}) of the basis vectors

$$
(1,0, \ldots, 0) \quad(0,1, \ldots, 0) \quad \ldots \quad(0,0, \ldots, 1)
$$

and this is the base for the usual positive cone of \mathbb{R}^{l+1}, which is lattice-ordered. Thus any classical simplex is a simplex. The next proposition is folklore for convexity theorists. (See, for example, Proposition 10.7 and Corollary 10.8 in Goodearl [18].)

Proposition 4.6. If K is a simplex in a real vector space E, then the set of extreme points of K is an affinely independent subset of E.

In the remainder of this section, we show that $S_{u}\left(A, A^{+}\right)$is a simplex. We say that a homomorphism f from A to \mathbb{R} is relatively bounded if, given any bounded subset $K \subset A$, then $f(K)$ is bounded as well. Notice that the set of relatively bounded homomorphisms from A to \mathbb{R} forms a real vector space.

Claim. The set of positive homomorphisms from A to \mathbb{R} forms a strict cone in the space of relatively bounded homomorphisms $f: A \rightarrow \mathbb{R}$.

Proof. The set of positive homomorphisms is clearly closed under addition and scalar multiplication by $r \in \mathbb{R}^{+}$. So we need to show that if f is a positive homomorphism from A to \mathbb{R}, then f is relatively bounded. Let $X \subseteq A$ be a bounded set, and let $a \in A^{+}$ be a bound for X. That is, $x \in X$ implies $-a \leq x \leq a$. Then there is some natural number n such that $a \leq n u$, and thus $f(a) \leq n$. Thus $f(X)$ is bounded by $-n$ and n.

Claim. The state space $S_{u}\left(A, A^{+}\right)$forms a base of this cone.
Proof. If f is a positive homomorphism from A to \mathbb{R} such that $f \neq 0$, then $f(u)>0$. Thus $f(u)^{-1} f \in S_{u}\left(A, A^{+}\right)$, and $f=f(u)\left[f(u)^{-1} f\right]$ is the unique way to represent f as a scalar multiple of an element of $S_{u}\left(A, A^{+}\right)$.

Thus we are only left to show:
Lemma 4.7. [12] Let $\left(A, A^{+}\right)$be a dimension group, and let $\operatorname{hom}(A, \mathbb{R})^{+}$be the space of positive homomorphisms from A to \mathbb{R} partially ordered by

$$
f \leq g \Longleftrightarrow f(a) \leq g(a) \text { for all } a \in A^{+} .
$$

Then $\operatorname{hom}(A, \mathbb{R})^{+}$is lattice ordered.
Proof of Lemma 4.7. Let $f_{1}, f_{2} \in \operatorname{hom}(A, \mathbb{R})^{+}$be any two positive homomorphisms. We construct a least upper bound by setting, for each $a \in A^{+}$

$$
\left(f_{1} \vee f_{2}\right)(a)=\sup \left\{f_{1}\left(a_{1}\right)+f_{2}\left(a_{2}\right) \mid a_{1}+a_{2}=a \text { and } a_{1}, a_{2} \in A^{+}\right\} .
$$

Then, $\left(f_{1} \vee f_{2}\right)$ has a unique extension to A, since $A=A^{+}-A^{+}$. We then claim that if $a+b=c\left(a, b \in A^{+}\right)$, then $\left(f_{1} \vee f_{2}\right)(a)+\left(f_{1} \vee f_{2}\right)(b)=\left(f_{1} \vee f_{2}\right)(c)$. Certainly we have that $\left(f_{1} \vee f_{2}\right)(a)+\left(f_{1} \vee f_{2}\right)(b) \leq\left(f_{1} \vee f_{2}\right)(c)$, since for any decomposition $a=a_{1}+a_{2}$ and $b=b_{1}+b_{2}\left(a_{1}, a_{2}, b_{1}, b_{2} \in A^{+}\right)$, we have

$$
\left(f_{1} \vee f_{2}\right)(c) \geq f_{1}\left(a_{1}+b_{1}\right)+f_{2}\left(a_{2}+b_{2}\right)=\left[f_{1}\left(a_{1}\right)+f_{2}\left(a_{2}\right)\right]+\left[f_{1}\left(b_{1}\right)+f_{2}\left(b_{2}\right)\right] .
$$

On the other hand, to show that $\left(f_{1} \vee f_{2}\right)(a)+\left(f_{1} \vee f_{2}\right)(b) \geq\left(f_{1} \vee f_{2}\right)(c)$, we need to find, given some decomposition $c=c_{1}+c_{2}\left(c_{1}, c_{2} \in A^{+}\right)$, decompositions $a_{1}+a_{2}=a$ and $b_{1}+b_{2}=b\left(a_{1}, a_{2}, b_{1}, b_{2} \in A^{+}\right)$such that

$$
f_{1}\left(c_{1}\right)+f_{2}\left(c_{2}\right) \leq\left[f_{1}\left(a_{1}\right)+f_{2}\left(a_{2}\right)\right]+\left[f_{1}\left(b_{1}\right)+f_{2}\left(b_{2}\right)\right] .
$$

However, the Riesz decomposition property tells us that since $c_{1}+c_{2}=a+b$, then there are $a_{1}, a_{2}, b_{1}, b_{2} \in A^{+}$such that $a_{1}+a_{2}=a, b_{1}+b_{2}=b, a_{1}+b_{1}=c_{1}$, and
$a_{2}+b_{2}=c_{2}$, and the above inequality (actually, equality) holds. It is then easily checked that $\left(f_{1} \vee f_{2}\right)(a)+\left(f_{1} \vee f_{2}\right)(b)=\left(f_{1} \vee f_{2}\right)(c)$ for arbitrary $a, b, c \in A$ such that $a+b=c$.

Since $\left(f_{1} \vee f_{2}\right)(a) \geq f_{1}(a)+f_{2}(0)=f_{1}(a)$ for all $a \in A^{+}$, it is clear that $\left(f_{1} \vee f_{2}\right) \geq f_{1}$. Similarly, $\left(f_{1} \vee f_{2}\right) \geq f_{2}$. On the other hand, if $f_{1}, f_{2} \leq h \in \operatorname{hom}(A, \mathbb{R})^{+}$, then for any $a_{1}+a_{2}=a$ where $a_{1}, a_{2} \in A^{+}$, we have

$$
f_{1}\left(a_{1}\right)+f_{2}\left(a_{2}\right) \leq h\left(a_{1}\right)+h\left(a_{2}\right)=h(a)
$$

and so $\left(f_{1} \vee f_{2}\right)(a) \leq h(a)$. Hence $\left(f_{1} \vee f_{2}\right) \leq h$, and in fact $\left(f_{1} \vee f_{2}\right)=\sup \left\{f_{1}, f_{2}\right\}$.
It then follows that $\left(f_{1} \wedge f_{2}\right):=\left(f_{1}+f_{2}\right)-\left(f_{1} \vee f_{2}\right)$ is also an element of $\operatorname{hom}(A, \mathbb{R})^{+}$, and in fact it is the greatest lower bound of f_{1} and f_{2}. To see this, let $a \in A^{+}$. Then

$$
\left(f_{1} \wedge f_{2}\right)(a)=f_{1}(a)+f_{2}(a)-\left(f_{1} \vee f_{2}\right)(a) \leq f_{1}(a)+f_{2}(a)-\left[f_{1}(0)+f_{2}(a)\right]=f_{1}(a)
$$

and so $\left(f_{1} \wedge f_{2}\right) \leq f_{1}$. Similarly $\left(f_{1} \wedge f_{2}\right) \leq f_{2}$. Also, if $f_{1}, f_{2} \geq h \in \operatorname{hom}(A, \mathbb{R})^{+}$, then for any $a_{1}+a_{2}=a$ where $a_{1}, a_{2} \in A^{+}$, we have
$f_{1}(a)+f_{2}(a)-\left[f_{1}\left(a_{1}\right)+f_{2}\left(a_{2}\right)\right]=f_{1}\left(a-a_{1}\right)+f_{2}\left(a-a_{2}\right) \geq h\left(a-a_{1}\right)+h\left(a-a_{2}\right)=h(a)$
and so $\left(f_{1} \wedge f_{2}\right)(a) \geq h(a)$.

4.2 $E\left(S_{u}\left(A, A^{+}\right)\right)$determines the positive cone.

If X is a compact Hausdorff space, we let $C_{\mathbb{R}(\mathbb{X})}$ denote the Banach space of continuous functions $h: X \rightarrow \mathbb{R}$ with the norm $\|h\|_{\infty}=\sup \{|h(x)|: x \in X\}$, and we define the ordinary and strict orderings on $C_{\mathbb{R}(X)}$ by

$$
\begin{gathered}
C_{\mathbb{R}}(X)^{+}=\left\{h \in C_{\mathbb{R}}(X): h(x) \geq 0 \text { for all } x \in X\right\}, \\
C_{\mathbb{R}}(X)^{++}=\left\{h \in C_{\mathbb{R}}(X): h(x)>0 \text { for all } x \in X\right\} \cup\{0\},
\end{gathered}
$$

using the notation \ll for the latter cone.
If K is a compact convex subset of a locally convex space, we let Aff K be the affine functions in $C_{\mathbb{R}}(K)$, i.e., the continuous functions $h \in C_{\mathbb{R}}(K)$ such that

$$
h(\alpha p+(1-\alpha) q)=\alpha h(p)+(1-\alpha) h(q) \text { for all } p, q \in K \text { and } 0 \leq \alpha \leq 1 .
$$

Aff K is a closed subspace of $C_{\mathbb{R}}(K)$ and we let $(\operatorname{Aff} K)^{+}=\operatorname{Aff} K \cap C_{\mathbb{R}}(X)^{+}$, and (Aff $K)^{++}=$Aff $K \cap C_{\mathbb{R}}(X)^{++}$. In particular, if K is a classical simplex, Aff K may be identified with $C_{\mathbb{R}}(E(K))$ where $E(K)$ is the set of extreme points as follows. Let $E(K)=\left\{k_{1}, \ldots, k_{d}\right\}$ be the extreme points of K. Then for any $h \in \operatorname{Aff} K$ and any element $\alpha_{1} k_{1}+\ldots+\alpha_{d} k_{d} \in K$ such that $\alpha_{1}+\ldots+\alpha_{d}=1$, we have that
$h\left(\alpha_{1} k_{1}+\ldots+\alpha_{d} k_{d}\right)=\alpha_{1} h\left(k_{1}\right)+\ldots+\alpha_{d} h\left(k_{d}\right)$. Thus we may identify h with the function $f_{h} \in C_{\mathbb{R}}(E(K))$ defined by $f_{h}\left(k_{i}\right)=h\left(k_{i}\right)$ for all $1 \leq i \leq d$.

Thus we have an ordinary and strict order, norm, and linear isomorphism

$$
\text { Aff } K=C_{\mathbb{R}}(E(K)) \cong \mathbb{R}^{d}
$$

Now fix some $n \in \mathbb{N}$ and $\left(A, A^{+}, u\right) \in S D G_{n}$. Then we define a positive homomorphism $\theta: A \rightarrow \operatorname{Aff} S_{u}\left(A, A^{+}\right): a \mapsto \hat{a}$ by letting $\hat{a}(p)=p(a)$. In particular, we have that $\hat{u}=1$. To see that \hat{a} is an affine function, note that

$$
\hat{a}(\alpha p+(1-\alpha) q)=(\alpha p+(1-\alpha) q)(a)=\alpha p(a)+(1-\alpha) q(a)=\alpha \hat{a}(p)+(1-\alpha) \hat{a}(q) .
$$

The range of the function \hat{a} may be calculated by comparing a with u. More precisely, we have the following result of Goodearl and Handelman, based on their ordered group analogue of the Hahn-Banach Theorem.

Theorem 4.8. [19] Suppose that A is an ordered group with order unit u. Then for any $a \in A^{+}$,

$$
\inf \left\{\hat{a}(p): p \in S_{u}\left(A, A^{+}\right)\right\}=\sup \left\{\alpha \in \mathbb{Q}^{+}: \alpha u \leq a\right\} .
$$

The inequality on the right is interpreted as follows. If $\alpha=p / q$ with $p, q \in \mathbb{N}$, then $\alpha u \leq a$ means that $p u \leq q a$.

Definition 4.9. Suppose that u is an order unit in an unperforated order group A. We say that $a \in A$ is infinitesimal if $-u \leq n a \leq u$ for all $n \in \mathbb{N}$.

Notice that the infinitesimal elements do not depend on the choice of u, and that the set of infinitesimals forms a subgroup of A. For example, if $a, b \in A$ are infinitesimal, then $2 n(a+b)=2 n a+2 n b \leq u+u=2 u$, and so $n(a+b) \leq u$, for all $0<n \in \mathbb{N}$.

Corollary 4.10. [11, Corollary 1.5] If $\left(A, A^{+}, u\right)$ is a simple dimension group, then the map

$$
\theta: A \rightarrow \operatorname{Aff} S_{u}\left(A, A^{+}\right)
$$

determines the order on A in the sense that $A^{+}=\{a \in A: \hat{a} \gg 0\} \cup\{0\}$. Furthermore, we have $a \in \operatorname{ker} \theta$ (i.e., $\hat{a}=0$) if and only if a is infinitesimal.

Proof. If $a \in A^{+} \backslash\{0\}$, then since $\left(A, A^{+}, u\right)$ is simple, a is an order unit and $n a \geq u$ for some n. But then $n \hat{a} \geq \hat{u}=1$, i.e., $\hat{a} \gg 0$. Conversely if $\hat{a} \gg 0$, then since $S_{u}\left(A, A^{+}\right)$is compact, $\hat{a} \geq \varepsilon \hat{u}$ for some $\varepsilon>0$. Thus by Theorem 4.8, there exists an $p / q \in \mathbb{Q}^{+}$such that $q a \geq p u$. Thus $q a \in A^{+}$, and since $\left(A, A^{+}, u\right)$ is unperforated, $a \in A^{+}$.

If $-u \leq n a \leq u$ for all $n \in \mathbb{N}$, then $-1 \leq n p(a) \leq 1$ for all $p \in S_{u}\left(A, A^{+}\right)$and $n \in \mathbb{N}$. Thus $\hat{a}=0$. Conversely, if $\hat{a}=0$, then given $\varepsilon>0, \varepsilon \in \mathbb{Q},(\widehat{a+\varepsilon u})=\hat{a}+\widehat{\varepsilon u} \gg 0$ implies that $a+\varepsilon u \geq 0$, i.e., $a \geq-\varepsilon u$. Since the same applies to $-a$, $-\varepsilon u \leq a \leq \varepsilon u$.

Corollary 4.11. Let $n \geq 1$ and let $\left(A, A^{+}, u\right),\left(B, B^{+}, v\right) \in S D G_{n}$. Suppose that $A=B$ and $u=v$. Then the following are equivalent:

1. $A^{+}=B^{+}$
2. $S_{u}\left(A, A^{+}\right)=S_{v}\left(B, B^{+}\right)$
3. $E\left(S_{u}\left(A, A^{+}\right)\right)=E\left(S_{v}\left(B, B^{+}\right)\right)$

Proof. Clearly (1) $\Longrightarrow(2) \Longrightarrow(3)$. So assume that $E\left(S_{u}\left(A, A^{+}\right)\right)=E\left(S_{v}\left(B, B^{+}\right)\right)$. Then since each of $S_{u}\left(A, A^{+}\right)$and $S_{v}\left(B, B^{+}\right)$is the set of affine combinations of elements of $E\left(S_{u}\left(A, A^{+}\right)\right.$), they must be equal as well. Now assume that there is some $a \in$ $A^{+} \backslash B^{+}$. Then Corollary 4.10 implies that $p(a)>0$ for every $p \in S_{u}\left(A, A^{+}\right)$, but that there is some $q \in S_{v}\left(B, B^{+}\right)$such that $q(a) \leq 0$. This contradicts $S_{u}\left(A, A^{+}\right)=$ $S_{v}\left(B, B^{+}\right)$.

Chapter 5

Countable dimension groups of finite rank are characterized by Bratteli diagrams.

In this chapter, we shall present Effros' proof [10] of the surprising theorem of Effros-Handelman-Shen [11] that every countable dimension group arises from a suitably chosen Bratteli diagram via the construction in Definition 3.1. Using Theorems 3.3 and 3.4, this will give, for each $n \geq 1$, a Borel reduction from the isomorphism relation \cong_{n}^{+} on $S D G_{n}$ to the relation \sim on $\mathcal{B D}$.

Theorem 5.1. [10] Fix $n \geq 1$. For every dimension group $\left(A, A^{+}, u\right) \in S D G_{n}$, there is a Bratteli diagram (V, E) such that $\left(A, A^{+}\right) \cong K_{0}(V, E)$. Furthermore, (V, E) can be chosen in a Borel way.

The first step in proving this theorem is to note that the Riesz interpolation property can be applied in a Borel fashion. That is, we fix a well-ordering on \mathbb{Q}^{n}, so that given a dimension group $\left(A, A^{+}\right)$such that $A \leq \mathbb{Q}^{n}$, and $a, b, c, d \in A$ such that $a, b \leq c, d$, we can pick the least element x of $A \subseteq \mathbb{Q}^{n}$ such that $a, b \leq x \leq c, d$. We also note that since in the proof of Theorem 4.1, all of our constructions were explicit, each of the reformulations the Riesz interpolation property can be applied in a Borel fashion.

Next we shall need the following lemma, which gives a necessary and sufficient condition (Shen's condition) for an unperforated ordered group to be isomorphic to $K_{0}(V, E)$ for some Bratteli diagram (V, E).

Lemma 5.2. [30] Suppose that $\left(A, A^{+}\right)$is a countable unperforated ordered group. Then there is a Bratteli diagram (V, E) such that $\left(A, A^{+}\right) \cong K_{0}(V, E)$ if and only if for every positive homomorphism $\varphi: \mathbb{Z}^{r} \rightarrow A$, there exists an $s \in \mathbb{N}$, and positive homomorphisms $\sigma: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{s}, \varphi^{\prime}: \mathbb{Z}^{s} \rightarrow A$ such that the following diagram commutes

and $\operatorname{ker} \sigma=\operatorname{ker} \varphi$. Furthermore, in the case that $\left(A, A^{+}\right)$satisfies Shen's condition, there exists a Borel choice of a corresponding Bratteli diagram (V, E).

We will only use the harder 'if' direction of this lemma in the proof of Theorem 5.1, but we include the easier direction to help the reader understand the meaning of Shen's condition.

Proof of Lemma 5.2. Let (V, E) be a Bratteli Diagram and $\left(A, A^{+}\right)=K_{0}(V, E)$ the associated dimension group. Let $r \geq 1$ and let $\varphi: \mathbb{Z}^{r} \rightarrow A$ be any positive homomorphism. Then since \mathbb{Z}^{r} is finitely generated, so is $\varphi\left(\mathbb{Z}^{r}\right)$. Choose the least $n \in \mathbb{N}$ so that $\varphi\left(\mathbb{Z}^{r}\right) \subseteq \mathbb{Z}^{V_{n}}$, where V_{n} is the n-th level of V. Then we obtain the following commuting diagram of positive maps:

It is clear that $\operatorname{ker} \varphi^{\prime} \subseteq \operatorname{ker} \varphi$. However, $\operatorname{ker} \varphi$ is again finitely generated, so we can just increase n until all of the generators of $\operatorname{ker} \varphi$ are mapped to 0 by φ^{\prime}. Then $\operatorname{ker} \varphi=\operatorname{ker} \varphi^{\prime}$.

Conversely, let $\left(A, A^{+}\right)$be an unperforated ordered group which satisfies Shen's condition. We construct a Bratteli diagram (V, E) such that $\left(A, A^{+}\right) \cong K_{0}(V, E)$ as follows. Enumerate $A^{+}=\left\{a_{1}, a_{2}, \ldots\right\}$. Then we actually construct a commuting diagram of positive maps

so that for each $n \geq 1, \operatorname{ker} \theta_{n}=\operatorname{ker} \varphi_{n}$ and

$$
\begin{equation*}
\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subseteq \theta_{n}\left(\left(\mathbb{Z}^{r(n)}\right)^{+}\right) . \tag{5.4}
\end{equation*}
$$

Then (V, E) will be determined by letting $\left|V_{n}\right|=r(n)$ for each $n \in \mathbb{N}$, and for each $v \in V_{n}$ the edges between v and V_{n+1} will be determined by reading off the coordinates of $\varphi_{n}(v)$. But before we construct this diagram, we show that

Claim. $\left(A, A^{+}\right)$is isomorphic to the direct limit $K_{0}(V, E)$ of the $\mathbb{Z}^{r(n)}$.

Proof of claim. First, define $A_{n}=\theta_{n}\left(\mathbb{Z}^{r(n)}\right)$ for each $n \geq 1$ Then since $\operatorname{ker} \theta_{n}=\operatorname{ker} \varphi_{n}$ for each $n \geq 1$, we obtain a sequence of (not necessarily positive) maps $\eta_{n}: A_{n} \rightarrow \mathbb{Z}^{(r(n+1)}$) so that the following diagram commutes.

Since this diagram commutes, and since $K_{0}(V, E),\left(A, A^{+}\right)$are the direct limits implicit in this diagram (the latter because of Formula (5.4)), we naturally obtain homomorphisms $f: K_{0}(V, E) \rightarrow\left(A, A^{+}\right)$and $g:\left(A, A^{+}\right) \rightarrow K_{0}(V, E)$. Since all the θ_{n} are positive, so is f. On the other hand, let $a \in A^{+}$. Then by Formula (5.4) there is some $n \geq 1$ where $a \in A_{n}$ and $a=\theta_{n}(\alpha)$ for some $\alpha \in\left(\mathbb{Z}^{r(n)}\right)^{+}$. However, $\eta_{n}(a)=\varphi_{n}(\alpha)$ and φ_{n} is positive, so $\eta_{n}(a)=\varphi_{n}(\alpha) \in\left(\mathbb{Z}^{r(n+1)}\right)^{+}$. Thus g is also positive.

Finally, we show that f and g are inverse maps. Let $b \in K_{0}(V, E)$. Then there is some $n \geq 1$ such that $b=\varphi_{n \infty}\left(b_{n}\right)$ for some $b_{n} \in \mathbb{Z}^{r(n)}$. (Here $\varphi_{n \infty}$ denotes the natural map from $\mathbb{Z}^{r(n)}$ to $K_{0}(V, E)$.) Then

$$
(g f)(b)=\left(g \theta_{n}\right)\left(b_{n}\right)=\left(\varphi_{(n+1) \infty} \eta_{n} \theta_{n}\right)\left(b_{n}\right)=\left(\varphi_{(n+1) \infty} \varphi_{n}\right)\left(b_{n}\right)=\left(\varphi_{n \infty}\right)\left(b_{n}\right)=b
$$

Next let $a \in A$. Then there is some $n \geq 1$ and some $\alpha \in \mathbb{Z}^{r(n)}$ such that $a=\varphi_{n}(\alpha)$. Then

$$
g(a)=\left(\varphi_{(n+1) \infty} \eta_{n}\right)(a)=\left(\varphi_{(n+1) \infty} \eta_{n} \theta_{n}\right)(\alpha)
$$

and we calculate $f(g(a))$ by applying θ_{n+1} to an element of $\mathbb{Z}^{r(n+1)}$ which has $g(a)$ as a limit:

$$
(f g)(a)=\left(\theta_{n+1} \eta_{n} \theta_{n}\right)(\alpha)=\left(\theta_{n}\right)(\alpha)=a
$$

Finally, we construct Diagram 5.3 by induction on n. First, let $r(1)=1$ and define $\theta_{1}: \mathbb{Z} \rightarrow A$ by setting $\theta_{1}(1)=a_{1}$. Next assume we have defined $\theta_{1}, \ldots, \theta_{n}$ and
$\varphi_{1}, \ldots, \varphi_{n-1}$. Then set $\varphi_{n}^{\prime}: \mathbb{Z}^{r(n)} \rightarrow \mathbb{Z}^{r(n)+1}$ as the natural inclusion map, and define $\theta_{n+1}^{\prime}: \mathbb{Z}^{r(n)+1} \rightarrow A$ by defining $\theta_{n+1}^{\prime}\left(e_{0}\right), \ldots, \theta_{n+1}^{\prime}\left(e_{r(n)}\right)$ according to θ_{n} and setting $\theta_{n+1}^{\prime}\left(e_{r(n)+1}\right)=a_{n+1}$. So we have the following commutating diagram, but we still desire the appropriate kernel condition.

However Shen's condition gives us maps σ and θ_{n+1} so that $\operatorname{ker} \sigma=\operatorname{ker} \theta_{n+1}^{\prime}$ and so that the following diagram commutes

We then let $\varphi_{n}=\sigma \circ \varphi_{n}^{\prime}$ and (noting that $\operatorname{ker} \varphi_{n}^{\prime}=\{0\}$) finally obtain

$$
\operatorname{ker} \varphi_{n}=\operatorname{ker} \sigma=\operatorname{ker} \theta_{n+1}^{\prime}=\operatorname{ker}\left(\theta_{n+1}^{\prime} \circ \varphi_{n}^{\prime}\right)=\operatorname{ker}\left(i d \circ \theta_{n}\right)=\operatorname{ker} \theta_{n} .
$$

Now, to prove Theorem 5.1, we only need to verify that dimension groups satisfy Shen's condition.

Proof of Theorem 5.1. Let $\left(A, A^{+}\right)$be a dimension group and let $\varphi: \mathbb{Z}^{r} \rightarrow A$ be a positive homomorphism. We begin by noting that diagrams such as (5.1) may be composed, i.e., given two commuting diagrams of positive homomorphism

then composing the ascending maps we obtain another commuting diagram of positive homomorphisms

It follows that if we wish to verify Shen's condition, it suffices to construct a diagram in which $\sigma(\alpha)=0$ for a single $\alpha \in \operatorname{ker} \varphi$. This is the case since $\operatorname{ker} \varphi$ is finitely generated, and we may annihilate its generators (and their images) one at a time.

If $\alpha=e_{i}$ for some $0 \leq i \leq r$, then we may accomplish this by defining $\sigma: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{r-1}$ via $\sigma\left(e_{j}\right)=e_{j}$ for $j<i, \sigma\left(e_{i}\right)=0$, and $\sigma\left(e_{j}\right)=e_{j-1}$ for $j>i$, and defining $\psi: \mathbb{Z}^{r-1} \rightarrow A$ so that the following diagram commutes

Otherwise, we work inductively on $\operatorname{deg}(\alpha)$, which is defined below. First express α as $\alpha=\Sigma m_{i} f_{i}-\Sigma n_{j} g_{j}$, where $m_{i}, n_{j} \in \mathbb{N}^{+}$and $f_{1}, \ldots, f_{s}, g_{1}, \ldots, g_{t}, h_{1}, \ldots, h_{u}$ is a rearrangement of the basis elements of \mathbb{Z}^{r}. We may assume that $m_{1} \geq m_{2} \geq \ldots \geq m_{s}$ and (by considering $-\alpha$ instead of α if necessary) that $m_{1} \geq n_{1} \geq n_{2} \geq \ldots \geq n_{t}$. Then the degree of α is $\operatorname{deg}(\alpha)=(m, d)$, where $m=m_{1}$ and d is the number of times that m_{1} appears among the m_{i} and n_{j}. We order the degrees lexicographically, and note that $\operatorname{deg}(\alpha)=(1,1)$ corresponds to the case that $\alpha=e_{i}$ for some $0 \leq i \leq r$. Thus, since we can compose diagrams, we only need to construct a commuting diagram of positive homomorphisms

so that the minimum degree of $\sigma(\alpha) \in \operatorname{ker} \psi$ is less than that of $\alpha \in \operatorname{ker} \varphi$.
So let $\alpha \in \operatorname{ker} \varphi$ have minimal degree, and again let $\alpha=\Sigma m_{i} f_{i}-\Sigma n_{j} g_{j}$ as above. Then let $a_{i}=\varphi\left(f_{i}\right)$ for $1 \leq i \leq s, b_{j}=\varphi\left(g_{j}\right)$ for $1 \leq j \leq t$, and $c_{k}=\varphi\left(h_{k}\right)$ for $1 \leq k \leq u$. Then since $\varphi(\alpha)=0$, we obtain

$$
m_{1} a_{1}+\ldots+m_{s} a_{s}=n_{1} b_{1}+\ldots+n_{t} b_{t}
$$

and since $m_{1} \geq n_{1} \geq n_{2} \geq \ldots \geq n_{t}$,

$$
m_{1} a_{1} \leq n_{1} b_{1}+\ldots+n_{t} b_{t} \leq m_{1} b_{1}+\ldots+m_{1} b_{t} .
$$

Thus $a_{1} \leq b_{1}+\ldots+b_{t}$, and $a_{1}, b_{1}, \ldots, b_{t} \geq 0$ since φ is positive. So we can apply the Riesz Decomposition Property to obtain $a_{11}, \ldots, a_{1 t}$ so that $0 \leq a_{1 j} \leq b_{j}$ for all $1 \leq j \leq t$ and $a_{11}+\ldots+a_{1 t}=a_{1}$.

Now let \mathbb{Z}^{q} have basis elements $f_{11}^{\prime}, \ldots, f_{1 t}^{\prime}, f_{2}^{\prime}, \ldots, f_{s}^{\prime}, g_{1}^{\prime}, \ldots, g_{t}^{\prime}, h_{1}^{\prime}, \ldots, h_{u}^{\prime}$, and define $\sigma: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{q}$ and $\psi: \mathbb{Z}^{q} \rightarrow A$ by

$$
\begin{array}{lll}
\sigma\left(f_{1}\right)=f_{11}^{\prime}+\ldots+f_{1 t}^{\prime} & \psi\left(f_{1 j}^{\prime}\right)=\varphi\left(a_{1 j}\right) & 1 \leq j \leq t \\
\sigma\left(f_{i}\right)=f_{i}^{\prime} & \psi\left(f_{i}^{\prime}\right)=a_{i} & 2 \leq i \leq s \\
\sigma\left(g_{j}\right)=f_{1 j}^{\prime}+g_{j}^{\prime} & \psi\left(g_{j}^{\prime}\right)=b_{j}-a_{1 j} & 1 \leq j \leq t \\
\sigma\left(h_{k}\right)=h_{k}^{\prime} & \psi\left(h_{k}^{\prime}\right)=c_{k} & 1 \leq k \leq u
\end{array}
$$

Then it is clear that σ and ψ are positive and that the above diagram commutes. Also,

$$
\begin{aligned}
\sigma(\alpha)= & m_{1} \sigma\left(f_{1}\right)+m_{2} \sigma\left(f_{2}\right)+\ldots+m_{s} \sigma\left(f_{s}\right)-\left[n_{1} \sigma\left(g_{1}\right)+\ldots+n_{t} \sigma\left(g_{t}\right)\right] \\
= & m_{1}\left(f_{11}^{\prime}+\ldots+f_{1 t}^{\prime}\right)+m_{2} f_{2}^{\prime}+\ldots+m_{s} f_{s}^{\prime} \\
& -\left[n_{1} f_{11}^{\prime}+\ldots+n_{t} f_{1 t}^{\prime}+n_{1} g_{1}+\ldots+n_{t} g_{t}\right] \\
= & \left(m_{1}-n_{1}\right) f_{11}^{\prime}+\ldots+\left(m_{1}-n_{t}\right) f_{1 t}^{\prime}+m_{2} f_{2}^{\prime}+\ldots+m_{s} f_{s}^{\prime}-\left[n_{1} g_{1}+\ldots+n_{t} g_{t}\right] .
\end{aligned}
$$

and since $\left(m_{1}-n_{1}\right), \ldots,\left(m_{1}-n_{t}\right)$ are all nonnegative and less than m_{1}, we have $\operatorname{deg}(\sigma(\alpha))<\operatorname{deg}(\alpha)$ and we are done.

In order to be able to relate $S D G_{n}$ to $\mathcal{B D}$, we will need to incorporate the extra structure of the order unit into the above theorem. The following is a condensed version of [17, 21.9 and 21.10].

Theorem 5.3. [17] Fix some $n \geq 1$. For every dimension group with order unit $\left(A, A^{+}, u\right) \in S D G_{n}$, there is a Bratteli diagram (V, E) such that $\left(A, A^{+}, u\right) \cong K_{0}(V, E)$. Furthermore, (V, E) can be chosen in a Borel way.

Proof. Theorem 5.1 gives us a Borel choice of a Bratteli diagram (V, E), such that $\left(A, A^{+}\right) \cong K_{0}(V, E)$. Letting $H_{m}=\mathbb{Z}^{V_{m}}$, we have a sequence of positive maps

$$
H_{0} \xrightarrow{\varphi_{0}} H_{1} \xrightarrow{\varphi_{1}} H_{2} \xrightarrow{\varphi_{2}} \ldots \xrightarrow{\varphi_{m-1}} H_{m} \xrightarrow{\varphi_{m}} \ldots
$$

so that there is an isomorphism $g:\left(A, A^{+}\right) \cong \underline{\longrightarrow}\left(H_{m}, H_{m}^{+}\right)$. Set $v=g(u)$. Then v is an order unit of $\underset{\longrightarrow}{\lim }\left(H_{m}, H_{m}^{+}\right)$. Thus, there is some $k \in \mathbb{N}$ and some $v^{\prime} \in H_{k}^{+}$such that $\left[v^{\prime}\right]=v$. Contracting levels 1 through k of (V, E), we may assume that $v^{\prime} \in H_{1}$. Next set $u_{1}=v^{\prime}$, and for $m>1, u_{m}=\varphi_{m-1}\left(u_{m-1}\right)$. Then for each $m \geq 1$, let

$$
G_{m}=\left\{x \in H_{m} \mid-t u_{m} \leq x \leq t u_{m} \text { for some } t \in \mathbb{N}\right\} .
$$

Notice that $G_{m} \leq H_{m}$ and $u_{m} \in H_{m}^{+}$. Thus G_{m} is precisely $\mathbb{Z}^{W_{m}}$, where $W_{m} \subseteq V_{m}$ is the set of non-zero coordinates of u_{m}.

Claim. $\xrightarrow{\lim }\left(H_{m}, H_{m}^{+}\right)=\underset{\longrightarrow}{\lim }\left(G_{m}, G_{m}^{+}\right)$.
Proof. Given $x \in \xrightarrow{\lim }\left(H_{m}, H_{m}^{+}\right)$, we have that there is some $m \in \mathbb{N}$ and some $y \in H_{m}$ such that $x=[y]$. Since v is an order unit for $\underset{\longrightarrow}{\lim }\left(H_{m}, H_{m}^{+}\right)$, there is some $t \in \mathbb{N}$ such that $-t v \leq x \leq t v$, and thus $\left[-t u_{m}\right] \leq[y] \leq\left[t u_{m}\right]$. After increasing m if necessary, we may assume that $-t u_{m} \leq y \leq t u_{m}$, and so $y \in G_{m}$. Thus $x \in \underline{\longrightarrow}\left(G_{m}, G_{m}^{+}\right)$.

Finally, set $\left|W_{0}\right|=1, G_{0}=\mathbb{Z}^{W_{0}}$, and place edges between W_{0} and W_{1} so that $\varphi_{0}: G_{0} \rightarrow G_{1}$ is the unique positive map with $\varphi_{0}(1)=u_{1}$. Then the Bratteli diagram induced from the W_{m} fulfills our purpose.

Theorem 5.4. For each $n \geq 1$, $\left(\cong_{n}^{+}\right) \leq_{B}(\sim)$.
Proof. Theorem 5.3 gives a Borel map from $f: S D G_{n} \rightarrow \mathcal{B D}$ so that for each dimension $\operatorname{group}\left(A, A^{+}, u_{A}\right) \in S D G_{n},\left(A, A^{+}, u_{A}\right) \cong K_{0}\left(f\left(A, A^{+}, u_{A}\right)\right)$. Theorem 3.3 implies that f is a Borel reduction.

Chapter 6

$$
\left(\cong_{1}^{+}\right)<B\left(\cong_{2}^{+}\right)<B\left(\cong_{3}^{+}\right)
$$

Proposition 6.1. Let $n \geq 2$. The map $f_{n}: S D G_{n} \rightarrow S D G_{n+1}$ given by $f_{n}\left(\left(A, A^{+}, u_{A}\right)\right)=$ $\left(B, B^{+}, u_{B}\right)$ where

1. $B=A \oplus \mathbb{Q}$
2. $B^{+}=\left\{(a, q) \in A \oplus \mathbb{Q}: a \in A^{+} \backslash\{0\}\right.$ and $\left.q>0\right\} \cup\{(0,0)\}$
3. $u_{B}=\left(u_{A}, 1\right)$
is a Borel reduction from \cong_{n}^{+}to \cong_{n+1}^{+}.
Proof. We first need to check that $\left(B, B^{+}, u_{B}\right) \in S D G_{n+1}$. It is easy to check that $\left(B, B^{+}, u_{B}\right)$ is an unperforated ordered group. For example, to see that $B^{+}-B^{+}=B$, let (a, q) be any element of B. Then there are $a_{1}, a_{2} \in A^{+}$so that $a=a_{1}-a_{2}$. If either a_{1} or a_{2} are 0 , then replace them with $a_{1}+u_{A}$ and $a_{2}+u_{A}$ so that they both lie in $A^{+} \backslash\{0\}$. Next let q_{1}, q_{2} be any two positive rational numbers so that $q_{1}-q_{2}=q$. Then $(a, q)=\left(a_{1}, q_{1}\right)-\left(a_{2}, q_{2}\right)$ and $\left(a_{1}, q_{1}\right),\left(a_{2}, q_{2}\right) \in B^{+}$.

To see that (B, B^{+}, u_{B}) satisfies the Riesz interpolation property, consider elements $\left(a_{i}, q_{i}\right),\left(b_{j}, p_{j}\right) \in B(1 \leq i, j \leq 2)$ such that $\left(a_{i}, q_{i}\right) \leq\left(b_{j}, p_{j}\right)$. First note that if $q_{i}=p_{j}$ for some $i, j \in\{1,2\}$, then it must be the case that $a_{i}=b_{j}$ and then we can choose $\left(a_{i}, q_{i}\right)$ to interpolate. Thus we can assume that $q_{1}, q_{2}<p_{1}, p_{2}$, and so $a_{1}, a_{2}<b_{1}, b_{2}$. Then let q be some rational number such that $q_{1}, q_{2}<q<p_{1}, p_{2}$. Now applying Lemma 4.2 to $\left(A, A^{+}, u_{A}\right)$, there exists $c \in A$ with $a_{i}<c<b_{j}$ for $1 \leq i, j \leq 2$, and so we can choose (c, q) to interpolate.

To see that $\left(B, B^{+}, u_{B}\right)$ is simple, let J be a nontrivial ideal of $\left(B, B^{+}, u_{B}\right)$, and let $(a, q) \in J^{+} \backslash\{0\}$. Now let (b, r) be any other element of B^{+}. Since $\left(A, A^{+}, u_{A}\right)$ is simple and $a \in A^{+} \backslash\{0\}$, we know that a is an order unit in $\left(A, A^{+}\right)$. That is, there is some natural number $n \in \mathbb{N}$ such that $n a-b \in A^{+}$. Since $q>0$, there is some natural number $n^{\prime} \in \mathbb{N}$ such that $n^{\prime} q-r>0$. Then letting $m=\max \left\{n, n^{\prime}\right\}, m(a, q)-(b, r) \in B^{+}$, and so $(b, r) \in J^{+}$. Thus $J^{+}=B^{+}$and so $J=B$.

We now need to check that f_{n} is a Borel reduction. If $\left(A, A^{+}, u_{A}\right) \cong\left(C, C^{+}, u_{C}\right)$, then there exists some $\varphi \in \mathrm{GL}_{n}(\mathbb{Q})$ so that $\varphi\left(A, A^{+}, u_{A}\right)=\left(C, C^{+}, u_{C}\right)$. Then $(\varphi \oplus 1)\left(f_{n}\left(A, A^{+}, u_{A}\right)\right)=f_{n}\left(C, C^{+}, u_{C}\right)$, and so $f_{n}\left(A, A^{+}, u_{A}\right) \cong f_{n}\left(C, C^{+}, u_{C}\right)$

On the other hand, suppose that $\left(A, A^{+}, u_{A}\right),\left(C, C^{+}, u_{C}\right) \in S D G_{n}$ and also that $f_{n}\left(A, A^{+}, u_{A}\right) \cong f_{n}\left(C, C^{+}, u_{C}\right)$. Let $\left(B, B^{+}, u_{B}\right):=f_{n}\left(A, A^{+}, u_{A}\right)$ and $\left(D, D^{+}, u_{D}\right):=$ $f_{n}\left(C, C^{+}, u_{C}\right)$. Let $\varphi:\left(B, B^{+}, u_{B}\right) \rightarrow\left(D, D^{+}, u_{D}\right)$ be an isomorphism, identify A, \mathbb{Q} with the corresponding factors of B, and identify C, \mathbb{Q} with the corresponding factors of D. Consider the set

$$
\begin{aligned}
B^{\circ} & =\left\{b \in B \mid b \notin B^{+} \text {and for every } b^{\prime} \in B^{+} \backslash\{0\}, b+b^{\prime} \in B^{+}\right\} \cup\{(0,0)\} \\
& =\left\{(0, q) \in B \mid q \in \mathbb{Q}^{+}\right\} \cup\left\{(a, 0) \in B \mid a \in A^{+}\right\} .
\end{aligned}
$$

Then the first equality above shows that $\varphi\left(B^{\circ}\right)=D^{\circ}$. Notice that $u_{A}+1_{\mathbb{Q}}$ is the unique way to express u_{B} as a sum of two elements of B°. Thus $\varphi\left(\left\{u_{A}, 1_{\mathbb{Q}}\right\}\right)=\left\{u_{C}, 1_{\mathbb{Q}}\right\}$. Notice also that if $g \in B^{\circ}$, then

- $g \in A^{+}$iff $(\exists n \geq 1)\left(n u_{A}-g \in B^{0}\right)$
- $g \in \mathbb{Q}^{+}$iff $(\exists n \geq 1)\left(n 1_{\mathbb{Q}}-g \in B^{0}\right)$

Thus we either have that
(1) $\varphi\left(u_{A}\right)=u_{C}$ and $\varphi\left(A^{+}\right)=C^{+}$, and φ extends linearly to an isomorphism $\varphi:\left(A, A^{+}, u_{A}\right) \cong\left(C, C^{+}, u_{C}\right)$; or
(2) $\varphi\left(u_{A}\right)=1_{\mathbb{Q}}$ and $\varphi\left(A^{+}\right)=\mathbb{Q}^{+}$, and φ extends linearly to an isomorphism $\varphi:\left(A, A^{+}, u_{A}\right) \cong\left(\mathbb{Q}, \mathbb{Q}^{+}, 1_{\mathbb{Q}}\right)$. However, this is impossible since $n \geq 2$.

Proposition 6.2. Let $n \geq 1$. The map $g_{n}: R\left(\mathbb{Q}^{n}\right) \rightarrow S D G_{n+1}$ given by $g_{n}(G)=$ $\left(A, A^{+}, u\right)$ where

1. $A=G \oplus \mathbb{Q}$
2. $A^{+}=\{(h, q) \in G \oplus \mathbb{Q}: q>0\} \cup\{(0,0)\}$
3. $u=(0,1)$
is a Borel reduction from $\cong_{n} t o \cong_{n+1}^{+}$.
Proof. It is easily seen that g_{n} does map each group G to a dimension group. To see that $\left(A, A^{+}, u_{A}\right)$ is simple, let $J \subseteq A$ be a nontrivial ideal, fix some $(g, q) \in J^{+} \backslash\{0\}$ and choose any $(h, r) \in A^{+}$. Now choose $n \in \mathbb{N}$ so that $n q>r$. Then since we have $n(g, q) \geq(h, r) \geq 0$, it must be the case that $(h, r) \in J^{+}$. Since our choice of (h, r) was arbitrary, $J^{+}=A^{+}$, and so $J=A$.

It is clear that $G \cong H$ implies $g_{n}(G) \cong g_{n}(H)$. Conversely, if $g_{n}(G) \cong g_{n}(H)$, then

$$
G \cong G \oplus\{0\}=\operatorname{infin}\left(g_{n}(G)\right) \cong \operatorname{infin}\left(g_{n}(H)\right)=H \oplus\{0\} \cong H,
$$

where $\operatorname{infin}\left(\left(A, A^{+}, u\right)\right)$ is the group of infinitesimals of $\left(A, A^{+}, u\right)$.
We will begin our analyses of \cong_{1}^{+}and \cong_{2}^{+}by giving Thomas' [33] description of Baer's [2] classification of the rank 1 torsion-free abelian groups. Let \mathbb{P} be the set of primes. If G is a torsion-free abelian group and $0 \neq x \in G$, then the p-height of x is defined to be

$$
h_{x}(p)=\sup \left\{n \in \mathbb{N} \mid \text { There exists } y \in G \text { such that } p^{n} y=x\right\} \in \mathbb{N} \cup\{\infty\}
$$

and the characteristic $\chi(x)$ of x is defined to be the function

$$
\left\langle h_{x}(p) \mid p \in \mathbb{P}\right\rangle \in(\mathbb{N} \cup\{\infty\})^{\mathbb{P}} .
$$

Two functions $\chi_{1}, \chi_{2} \in(\mathbb{N} \cup\{\infty\})^{\mathbb{P}}$ are said to be similar or belong to the same type, written $\chi_{1} \equiv \chi_{2}$, iff
(a) $\chi_{1}(p)=\chi_{2}(p)$ for all but finitely many primes p; and
(b) if $\chi_{1}(p) \neq \chi_{2}(p)$, then both $\chi_{1}(p)$ and $\chi_{2}(p)$ are finite.

Clearly \equiv is an equivalence relation on $(\mathbb{N} \cup\{\infty\})^{\mathbb{P}}$. If G is a torsion-free abelian group and $0 \neq x \in G$, then the type $\tau(x)$ is defined to be the \equiv-equivalence class containing the characteristic $\chi(x)$.

Now suppose that $G \in R(\mathbb{Q})$ is a rank 1 group. Then it is easily checked that $\tau(x)=\tau(y)$ for all $0 \neq x, y \in G$. Hence we can define the type $\tau(G)$ of G to be $\tau(x)$ where x is any non-zero element of G. In [2], Baer proved the following:

Theorem 6.3. If $G, H \in R(\mathbb{Q})$, then $G \cong H$ iff $\tau(G)=\tau(H)$.
In other words, $\left(\cong_{1}\right) \leq_{B}\left((\mathbb{N} \cup\{\infty\})^{\mathbb{P}}, \equiv\right)$. We also have $\left((\mathbb{N} \cup\{\infty\})^{\mathbb{P}}, \equiv\right) \leq_{B}\left(\cong_{1}\right)$, via $\chi \mapsto G_{\chi}$, where G_{χ} is the group generated by $\left\{1 /\left(p^{n}\right) \mid n \in \mathbb{N}, p \in \mathbb{P}, n \leq \chi(p)\right\}$. Thus $\left(\cong_{1}\right) \sim_{B}\left((\mathbb{N} \cup\{\infty\})^{\mathbb{P}}, \equiv\right)$. Hence, since $\left((\mathbb{N} \cup\{\infty\})^{\mathbb{P}}, \equiv\right) \sim_{B} E_{0}$ and $\left(\cong_{1}\right) \leq_{B}\left(\cong_{2}^{+}\right)$, we know that \cong_{2}^{+}is not smooth.

On the other hand, \cong_{1}^{+}is smooth, since for any rank 1 simple dimension groups $\left(A, A^{+}, u_{A}\right),\left(B, B^{+}, u_{B}\right) \in S D G_{1},\left(A, u_{A}\right) \cong\left(B, u_{B}\right)$ if and only if $\chi\left(u_{A}\right)=\chi\left(u_{B}\right)$. In fact, since

$$
A^{+} \backslash\{0\}=\left\{a \in A \mid\left(\exists q \in \mathbb{Q}^{+}\right) a=q u_{A}\right\},
$$

it follows that $\left(A, A^{+}, u_{A}\right) \cong\left(B, B^{+}, u_{B}\right)$ if and only if $\chi\left(u_{A}\right)=\chi\left(u_{B}\right)$. Thus, we have shown:

Theorem 6.4. $\left(\mathrm{id}_{2^{\mathbb{N}}}\right) \sim_{B}\left(\cong_{1}^{+}\right)<_{B}\left(\cong_{2}^{+}\right)$.

Next, we will show that $\left(\cong_{2}^{+}\right)<_{B}\left(\cong_{3}^{+}\right)$by examining the group actions which give rise to these equivalence relations. Instead of analyzing \cong_{2}^{+}, we first note that it is enough to analyze the Borel equivalence relation obtained by restricting \cong_{2}^{+}to those dimension groups $\left(A, A^{+}, u_{A}\right)$ for which $u_{A}=(1,0) \in \mathbb{Q}^{2}$. Denote this space of rank 2 dimension groups by $S D G_{2}^{\left(e_{0}\right)}$ and the resulting equivalence relation by $\left(\cong_{2}^{+}\right)^{<e_{0}>}$. Then we have a Borel reduction from \cong_{2}^{+}to $\left(\cong_{2}^{+}\right)^{<e_{0}>}$ via $\left(A, A^{+}, u_{A}\right) \mapsto g\left(A, A^{+}, u_{A}\right)$, where g is some element of $\mathrm{GL}_{2}(\mathbb{Q})$ such that $g\left(u_{A}\right)=(1,0)$. Now we have that $\left(\cong_{2}^{+}\right)^{<e_{0}>}$ is the orbit equivalence relation of the natural action of the group

$$
H=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{n}(\mathbb{Q}) \right\rvert\, a=1, c=0\right\}
$$

on $S D G_{2}^{\left(e_{0}\right)}$. Since H is solvable and hence amenable, we have by Theorem 1.31 that $\left(\cong_{2}^{+}\right)^{<e_{0}>}$ is Frèchet-amenable.

Now suppose that $\left(\cong_{3}^{+}\right) \leq_{B}\left(\cong_{2}^{+}\right)$, and thus $\left(\cong_{2}\right) \leq_{B}\left(\cong_{3}^{+}\right) \leq_{B}\left(\cong_{2}^{+}\right) \leq_{B}\left(\cong_{2}^{+}\right)^{<e_{0}>}$. Then by Theorem 1.34, we would have that \cong_{2} is Frèchet-amenable. However, in $\left[23\right.$, Section 5], Hjorth has constructed a $\mathrm{PSL}_{2}(\mathbb{Z})$-invariant measure μ on $R\left(\mathbb{Q}^{2}\right)$, and a Borel subset $X \subset R\left(\mathbb{Q}^{2}\right)$ with $\mu(X)=1$ such that $\operatorname{PSL}_{2}(\mathbb{Z})=\operatorname{SL}_{2}(\mathbb{Z}) /\{1,-1\}$ acts freely on X . Thus Theorem 1.33 would imply that $\mathrm{PSL}_{2}(\mathbb{Z})$ is amenable. However, this is not the case, since $\operatorname{PSL}_{2}(\mathbb{Z})$ contains an isomorphic copy of \mathbb{F}_{2}, namely, $\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)\right\rangle /\{-1,1\}$. Thus we have shown:

Theorem 6.5. $\left(\cong_{2}^{+}\right)<_{B}\left(\cong_{3}^{+}\right)$.

Chapter 7

The relationship between dimension groups and torsion-free abelian groups.

In order to prove Theorem 1.11 for the case $n \geq 3$, we will first reduce the analysis to the case of a Borel homomorphism $f: S D G_{n+1} \rightarrow S D G_{n}$ whose image is a single isomorphism class of the underlying torsion-free abelian group. Let $g_{n}: R\left(\mathbb{Q}^{n}\right) \rightarrow$ $S D G_{n+1}$ be the Borel reduction from \cong_{n} to \cong_{n+1}^{+}defined in Proposition 6.2, and let $\pi_{n}^{\prime}: S D G_{n} \rightarrow R\left(\mathbb{Q}^{n}\right)$ be the forgetful map $\pi_{n}^{\prime}\left(A, A^{+}, u\right)=A$. Consider initially a Borel homomorphism $f: S D G_{n+1} \rightarrow S D G_{n-1}$ (recall $n \geq 3$). Then composing these maps, we obtain a Borel homomorphism $h=\pi_{n-1}^{\prime} \circ f \circ g_{n}$ from \cong_{n} to \cong_{n-1}; and examining Thomas' proof that $\left(\cong_{n}\right)<_{B}\left(\cong_{n+1}\right)$, we see that, with respect to a suitable invariant ergodic probability measure, h maps a measure one subset of an $S L_{n}(\mathbb{Z})$-invariant Borel subset of $R\left(\mathbb{Q}^{n}\right)$ to a single isomorphism class of $R\left(\mathbb{Q}^{n-1}\right)$. This implies that f maps this subset to a collection of dimension groups with isomorphic underlying torsion-free abelian groups.

This is how we would start to prove Theorem 1.11 for $n \geq 3$, except that our Borel homomorphism f should be a map from $S D G_{n+1}$ to $S D G_{n}$. To fix this, we observe that by first adjusting by an appropriate element of $\mathrm{GL}_{n}(\mathbb{Q})$, we can assume that the order unit of every dimension group in the image of f is $u=e_{0}$, thus shrinking the group which acts on $S D G_{n}$. It will also turn out to be useful to reduce the analysis to the case when the group of infinitesimals of every dimension group in the image of f is identical. Notice that the group of infinitesimals is always a torsion-free abelian group of rank less than that of the associated dimension group. To realize these two goals simultaneously, we proceed as follows:

Given $n \geq 1$, let $S\left(\mathbb{Q}^{n}\right)$ be the space of all subgroups of \mathbb{Q}^{n}. Then the isomorphism relation on this space is the orbit equivalence relation of the action of the group $\mathrm{GL}_{n}(\mathbb{Q})$. Next let $\operatorname{Mat}_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q}) \subset \operatorname{Mat}_{n}(\mathbb{Q})$ be the subset of all $n \times n$ matrices which fix the onedimensional subspace $\left\langle e_{0}\right\rangle$. Let $\mathrm{GL}_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})=\mathrm{GL}_{n}(\mathbb{Q}) \cap \operatorname{Mat}_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})$. Let $\cong{ }_{n^{*}}^{\left\langle e_{0}\right\rangle}$ be the orbit equivalence relation of the diagonal action of $\mathrm{GL}_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})$ on $R\left(\mathbb{Q}^{n}\right) \times S\left(\mathbb{Q}^{n}\right)$.

Theorem 7.1. Let $n \geq 3$ and let X be a standard $\operatorname{Borel} \mathrm{SL}_{n}(\mathbb{Z})$-space with an invariant ergodic probability measure μ. Suppose that $f: X \rightarrow R\left(\mathbb{Q}^{n}\right) \times S\left(\mathbb{Q}^{n}\right)$ is a Borel function such that $x E y \Rightarrow f(x) \cong{ }_{n^{*}}^{\left\langle e_{0}\right\rangle} f(y)$. Then there exists an $\mathrm{SL}_{n}(\mathbb{Z})$-invariant Borel subset
$M \subset X$ with $\mu(M)=1$ such that f maps M into a single $\cong_{n^{*}}^{\left\langle e_{0}\right\rangle}-$ class.
We will use this theorem in the next chapter in the case when f is the composition of the following Borel homomorphisms:

1. The Borel homomorphism σ_{n} from $E_{\mathrm{SL}_{n}(\mathbb{Z})}^{X_{n}}$ to \cong_{n}, where $\left(X_{n}, \mu_{n}\right)$ is the measure space given by Definition 1.43,
2. The Borel reduction $g_{n}: R\left(\mathbb{Q}^{n}\right) \rightarrow S D G_{n+1}$ from \cong_{n} to \cong_{n+1}^{+}, defined in Proposition 6.2,
3. An arbitrary Borel homomorphism $h: S D G_{n+1} \rightarrow S D G_{n}$ from \cong_{n+1}^{+}to \cong_{n}^{+},
4. A Borel function which replaces each dimension group $\left(A, A^{+}, u\right) \in S D G_{n}$ by $\varphi\left(A, A^{+}, u\right)$ for some $\varphi \in \mathrm{GL}_{n}(\mathbb{Q})$ so that $\varphi(u)=e_{0}$.
5. The function which takes a dimension group $\left(A, A^{+}, u\right) \in S D G_{n}$ and gives the element of $R\left(\mathbb{Q}^{n}\right) \times S\left(\mathbb{Q}^{n}\right)$ corresponding to the underlying torsion-free abelian group and the group of infinitesimals of $\left(A, A^{+}, u\right)$.

Our goal for the rest of this chapter is to prove Theorem 7.1. In order to accomplish this, we will first prove an analogous theorem for the quasi-isomorphism relation.

Definition 7.2. Suppose that $A, B \in S\left(\mathbb{Q}^{n}\right)$. Then A is said to be quasi-contained in B, written $A \prec_{n} B$, if there exists an integer $m>0$ such that $m A \leq B$. If $A \prec_{n} B$ and $B \prec_{n} A$, then A and B are said to be quasi-equal and we write $A \approx_{n} B$.

It is well-known that if $A \in S\left(\mathbb{Q}^{n}\right)$ and $m>0$, then $[A: m A]<\infty$. This implies that if $A, B \in S\left(\mathbb{Q}^{n}\right)$, then $A \approx_{n} B$ if and only if $A \cap B$ has finite index in both A and B.

Theorem 7.3. [36, Lemma 3.2] For all $n \geq 1, \approx_{n}$ is a countable Borel equivalence relation on $S\left(\mathbb{Q}^{n}\right)$.

Proof. It is clear that \approx_{n} is a Borel equivalence relation. We must check that for each group $A \in S\left(\mathbb{Q}^{n}\right)$, there are only countably many groups $B \in S\left(\mathbb{Q}^{n}\right)$ such that $A \approx_{n} B$. Fix some $A \in S\left(\mathbb{Q}^{n}\right)$ and assume that $A \approx_{n} B$. Then there are finite positive integers m, l so that $m B \leq A$ and $l A \leq B$. However, this implies that $m l A \leq m B \leq A$. Thus since $[A: m l A]<\infty$, there are only finitely many choices for $m B$, and thus only countably many choices for B.

We will rely on the following highly nontrivial result of Thomas.
Theorem 7.4. [36, Theorem 3.8] For each $n \geq 1$, the relation \approx_{n} is hyperfinite.

Definition 7.5. Suppose that $A, B \in S\left(\mathbb{Q}^{n}\right)$. Then A and B are said to be quasiisomorphic, written $A \sim_{n} B$, if there exists $\varphi \in \mathrm{GL}_{n}(\mathbb{Q})$ such that $\varphi(A) \approx_{n} B$. We shall write $A \sim_{n}^{\left\langle e_{0}\right\rangle} B$ iff there exists some $\varphi \in \mathrm{GL}_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})$ such that $\varphi(A) \approx_{n} B$. Given $\left(A, A^{\prime}\right),\left(B, B^{\prime}\right) \in R\left(\mathbb{Q}^{n}\right) \times S\left(\mathbb{Q}^{n}\right)$, we write $\left(A, A^{\prime}\right) \sim_{n^{*}}^{\left\langle e_{0}\right\rangle}\left(B, B^{\prime}\right)$ if there exists $\varphi \in \mathrm{GL}_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})$ such that $\varphi(A) \approx_{n} B$ and $\varphi\left(A^{\prime}\right) \approx_{n} B^{\prime}$.

Since $\sim_{n^{*}}^{\left\langle e_{0}\right\rangle}$ is the smallest equivalence relation on $R\left(\mathbb{Q}^{n}\right) \times R^{k}\left(\mathbb{Q}^{n}\right)$ containing both $\approx_{n} \upharpoonright_{R\left(\mathbb{Q}^{n}\right)} \times \approx_{n}$ and $\cong_{n^{*}}^{\left\langle e_{0}\right\rangle}$, then it is also a countable Borel equivalence relation. In particular, since $\left(\cong{ }_{n}^{\left\langle e_{0}\right\rangle}\right) \subseteq\left(\sim_{n^{*}}^{\left\langle e_{0}\right\rangle}\right)$, Theorem 7.1 is an immediate consequence of Lemma 1.46 and the following result.

Theorem 7.6. Let $n \geq 3$ and let X be a standard $\operatorname{Borel} \mathrm{SL}_{n}(\mathbb{Z})$-space with an invariant ergodic probability measure μ. Suppose that $f: X \rightarrow R\left(\mathbb{Q}^{n}\right) \times S\left(\mathbb{Q}^{n}\right)$ is a Borel function such that $x E y \Rightarrow f(x) \sim_{n^{*}}^{\left\langle e_{0}\right\rangle} f(y)$. Then there exists an $\mathrm{SL}_{n}(\mathbb{Z})$-invariant Borel subset $M \subset X$ with $\mu(M)=1$ such that f maps M into a single $\sim_{n^{*}}^{\left\langle e_{0}\right\rangle}$-class.

To prove this, we first need a few definitions. For each $A \in S\left(\mathbb{Q}^{n}\right)$, let $[\mathrm{A}]$ be the $\approx_{n^{-}}$ class containing A. If $A \in S\left(\mathbb{Q}^{n}\right)$, then a linear transformation $\varphi \in \operatorname{Mat}_{n}(\mathbb{Q})$ is said to be a quasi-endomorphism of A if $\varphi(A) \prec_{n} A$. Equivalently, φ is a quasi-endomorphism of A if and only if there exists an integer $m>0$ such that $m \varphi \upharpoonright_{A} \in \operatorname{End}(A)$. It is easily checked that the collection $\mathrm{QE}(A)$ of quasi-endomorphisms of A is a \mathbb{Q}-subalgebra of $\operatorname{Mat}_{n}(\mathbb{Q})$ and that if $A \approx_{n} B$, then $\operatorname{QE}(A)=\operatorname{QE}(B)$. Let

$$
\operatorname{RQE}(A)=\operatorname{QE}(A) \cap \operatorname{Mat}_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q}) .
$$

Note that if $A \approx_{n} B$, then $\operatorname{RQE}(A)=\operatorname{RQE}(B)$, and that $\operatorname{RQE}(A)$ is also a \mathbb{Q}-subalgebra of $\operatorname{Mat}_{n}(\mathbb{Q})$. A linear $\operatorname{transformation~} \varphi \in \operatorname{Mat}_{n}(\mathbb{Q})$ is said to be a quasi-automorphism of A if φ is a unit of the \mathbb{Q}-algebra $\operatorname{QE}(A)$. The group of quasi-automorphisms of A is denoted by $\operatorname{QAut}(A)$. Let $\operatorname{RQAut}(A)=\operatorname{QAut}(A) \cap \operatorname{Mat}_{n}^{\left\langle e e^{\ell}\right\rangle}(\mathbb{Q})=$ the group of units of RQE(A)

Lemma 7.7. If $A \in S\left(\mathbb{Q}^{n}\right)$, then $\operatorname{RQAut}(A)$ is the setwise stabilizer of $[A]$ in $\mathrm{GL}_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})$.
Proof. First, suppose that $\varphi \in \operatorname{RQAut}(A) \subseteq \operatorname{QAut}(A)$. Then there exists an integer $m>0$ such that $\psi=m \varphi \in \operatorname{End}(A)$. Clearly, ψ is also a unit of $\operatorname{QE}(A)$ and so ψ is a monomorphism. Hence, by Exercise $92.5[15], \psi(A)$ has finite index in A and so $\psi(A) \approx_{n} A$. Since $\psi(A)=m \varphi(A)$, it follows that $\psi(A) \approx_{n} \varphi(A)$. Thus, $\varphi(A) \approx_{n} A$ and so φ stabilizes $[A]$.

Conversely, suppose that $\varphi \in G L_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})$ stabilizes $[A]$. Then $\varphi(A) \approx_{n} A$ and so there exists an integer $m>0$ such that $m \varphi(A) \leq A$. Since $m \varphi \in \operatorname{End}(A)$ is a monomorphism, it follows that $m \varphi \in \operatorname{QAut}(A)$ and so $\varphi \in \operatorname{QAut}(A)$. Thus $\varphi \in \operatorname{RQAut}(A)$.

Now to prove Theorem 7.6, we will follow closely the proof of Theorem 3.5 of Thomas [33]. So let $n \geq 3$ and let X be a standard Borel $S L_{n}(\mathbb{Z})$-space with an invariant ergodic probability measure μ. Suppose that $f: X \rightarrow R\left(\mathbb{Q}^{n}\right) \times S\left(\mathbb{Q}^{n}\right)$ is a Borel function such that $x E_{S L_{n}(\mathbb{Z})}^{X} y$ implies $f(x) \sim_{n^{*}}^{\left\langle e_{0}\right\rangle} f(y)$. Let $E=E_{S L_{n}(\mathbb{Z})}^{X}$ and for each $x \in X$, let $\left(A_{x}, I_{x}\right)=f(x) \in R\left(\mathbb{Q}^{n}\right) \times S\left(\mathbb{Q}^{n}\right)$. First, notice that there are only countably many possibilities for the \mathbb{Q}-algebra $\mathrm{QE}\left(A_{x}\right)$. Thus, since $\operatorname{RQE}\left(A_{x}\right)=\mathrm{QE}\left(A_{x}\right) \cap \mathrm{Mat}_{n}^{<e_{0}>}(\mathbb{Q})$, there are only countably many possibilities for $\operatorname{RQE}\left(A_{x}\right)$. Hence, there exists a Borel subset $X_{1} \subseteq X$ with $\mu\left(X_{1}\right)>0$ and a fixed \mathbb{Q}-subalgebra S^{\prime} of $\operatorname{Mat}_{n}(\mathbb{Q})$ such that $\operatorname{RQE}\left(A_{x}\right)=S^{\prime}$ for all $x \in X_{1}$. By the ergodicity of μ, we have that $\mu\left(S L_{n}(\mathbb{Z}) \cdot X_{1}\right)=1$. In order to simplify notation, we shall assume that $S L_{n}(\mathbb{Z}) \cdot X_{1}=X$. After slightly adjusting f if necessary, we can also assume that $\operatorname{RQE}\left(A_{x}\right)=S^{\prime}$ for all $x \in X$. (That is, let $c: X \rightarrow X$ be a Borel function such that $c(x) E x$ and $c(x) \in X_{1}$ for all $x \in X$. Then we can replace f with $f^{\prime}=f \circ c$.) By a similar argument, we can assume that there is a fixed \mathbb{Q}-subalgebra $S^{\prime \prime}$ of $\operatorname{Mat}_{n}(\mathbb{Q})$ such that $\operatorname{RQE}\left(I_{x}\right)=S^{\prime \prime}$ for all $x \in X$. Finally, let $S=S^{\prime} \cap S^{\prime \prime}$. Then, letting S^{*} denote the group of units of S, we have $S^{*}=\operatorname{RQAut}\left(A_{x}\right) \cap \operatorname{RQAut}\left(I_{x}\right)$ for each $x \in X$.

Now suppose that $x, y \in X$ and that $x E y$. Then $\left(A_{x}, I_{x}\right) \sim_{n^{*}}^{\left\langle e_{0}\right\rangle}\left(A_{y}, I_{y}\right)$ and so there exists $\varphi \in \mathrm{GL}_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})$ such that $\varphi\left(A_{x}\right) \approx_{n} A_{y}$ and $\varphi\left(I_{x}\right) \approx_{n} I_{y}$. Notice that

$$
\begin{aligned}
\varphi S \varphi^{-1} & =\varphi\left(\operatorname{RQE}\left(A_{x}\right) \cap \operatorname{RQE}\left(I_{x}\right)\right) \varphi^{-1} \\
& =\operatorname{RQE}\left(\varphi\left(A_{x}\right)\right) \cap \operatorname{RQE}\left(\varphi\left(I_{x}\right)\right) \\
& =\operatorname{RQE}\left(A_{y}\right) \cap \operatorname{RQE}\left(I_{y}\right) \\
& =S
\end{aligned}
$$

and so $\varphi \in N=N_{G L_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})}(S)$. Clearly we also have $\varphi\left(\left[A_{x}\right]\right)=\left[A_{y}\right]$ and $\varphi\left(\left[I_{x}\right]\right)=\left[I_{y}\right]$. By Lemma 7.7, for each $x \in X$, the stabilizer of $\left[A_{x}\right]$ (resp. $\left[I_{x}\right]$) in $G L_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})$ is $\operatorname{RQAut}\left(A_{x}\right)$ (resp. $\operatorname{RQAut}\left(I_{x}\right)$). Thus for each $x \in X$, the stabilizer of $\left[A_{x}\right] \times\left[I_{x}\right]$ in $G L_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})$ is $\operatorname{RQAut}\left(A_{x}\right) \cap \operatorname{RQAut}\left(I_{x}\right)=S^{*}$

Let $H=N / S^{*}$ and for each $\varphi \in N$, let $\bar{\varphi}=\varphi S^{*}$. Then we can define a cocycle $\alpha: \mathrm{SL}_{n}(\mathbb{Z}) \times X \rightarrow H$ by

$$
\alpha(g, x)=\text { the unique element } \bar{\varphi} \in H \text { such that } \varphi\left(\left[A_{x}\right] \times\left[I_{x}\right]\right)=\left[A_{g . x}\right] \times\left[I_{g . x}\right]
$$

Lemma 7.8. There exists an algebraic \mathbb{Q}-group G with $\operatorname{dim} G<n^{2}-1$ such that $H \leq G(\mathbb{Q})$.

Proof. Let Ω be a fixed algebraically closed field containing \mathbb{R} and all of the p-adic fields \mathbb{Q}_{p}. Let

$$
\Lambda=\Omega \otimes S \subseteq \operatorname{Mat}_{n}(\Omega)
$$

be the associated Ω-algebra. Then Λ is an affine \mathbb{Q}-variety; and the Cayley-Hamilton Theorem implies that the group of units of Λ is given by

$$
\Lambda^{*}=\{\varphi \in \Lambda \mid \operatorname{det}(\varphi) \neq 0\}
$$

Thus Λ^{*} is an algebraic \mathbb{Q}-group and $\Lambda^{*}(\mathbb{Q})=S^{*}$. Furthermore, by Proposition 1.7 [4], $\Gamma=N_{G L_{n}^{\left\langle e_{0}\right\rangle}(\Omega)}(\Lambda)$ is also an algebraic \mathbb{Q}-group and clearly $\Gamma(\mathbb{Q})=N$. By Theorem 6.8 [4], $G=\Gamma / \Lambda^{*}$ is an algebraic \mathbb{Q}-group and

$$
H=\Gamma(\mathbb{Q}) / \Lambda^{*}(\mathbb{Q}) \leq G(\mathbb{Q})
$$

Finally note the following, where the last inequality holds because $n \geq 3$.

$$
\operatorname{dim} G \leq \operatorname{dim} \Gamma \leq \operatorname{dim} G L_{n}^{\left\langle e_{0}\right\rangle}(\Omega)=n^{2}-(n-1)<n^{2}-1
$$

By Theorem 1.44, α is equivalent to a cocycle β such that $\beta\left(\mathrm{SL}_{n}(\mathbb{Z}) \times X\right)$ is contained in a finite subgroup K of H. To simplify notation, we shall assume that $\beta=\alpha$. Then for each $x \in X$,

$$
\begin{aligned}
\Phi(x) & =\left\{\varphi\left(\left[A_{x}\right] \times\left[I_{x}\right]\right) \mid \bar{\varphi}=\alpha(g, x) \text { for some } g \in \operatorname{SL}_{n}(\mathbb{Z})\right\} \\
& =\left\{\left[A_{z}\right] \times\left[I_{z}\right] \mid z E x\right\}
\end{aligned}
$$

is a nonempty finite set of $\approx_{n} \times \approx_{n}$-classes; and clearly if $x E y$, then $\Phi(x)=\Phi(y)$. By the ergodicity of μ, we can assume that there exists an integer $1 \leq l \leq|K|$ such that $|\Phi|=l$ for all $x \in X$. Now let $x \mapsto\left(x_{1}, \ldots, x_{l}\right)$ be a Borel function from X to X^{l} such that for each $x \in X$,
(a) $x_{i} E x$ for all $1 \leq i \leq l$; and
(b) $\Phi(x)=\left\{\left[A_{x_{1}}\right] \times\left[I_{x_{1}}\right], \ldots,\left[A_{x_{l}}\right] \times\left[I_{x_{l}}\right]\right\}$.

Finally, let $\tilde{f}: X \rightarrow\left(R\left(\mathbb{Q}^{n}\right) \times S\left(\mathbb{Q}^{n}\right)\right)^{l}$ be the Borel function defined by

$$
\tilde{f}(x)=\left(A_{x_{1}} \times I_{x_{1}}, \ldots, A_{x_{l}} \times I_{x_{l}}\right) ;
$$

and let F be the countable Borel equivalence relation on $\left(R(\mathbb{Q}) \times S\left(\mathbb{Q}^{n}\right)\right)^{l}$ defined by

$$
\begin{aligned}
& \left(A_{1} \times I_{1}, \ldots, A_{l} \times I_{l}\right) F\left(B_{1} \times J_{1}, \ldots, B_{l} \times J_{l}\right) \\
\Longleftrightarrow & \left\{\left[A_{1}\right] \times\left[I_{1}\right], \ldots,\left[A_{l}\right] \times\left[I_{l}\right]\right\}=\left\{\left[B_{1}\right] \times\left[J_{1}\right], \ldots,\left[B_{l}\right] \times\left[J_{l}\right]\right\} .
\end{aligned}
$$

Since the relation \approx_{n} on $R\left(\mathbb{Q}^{n}\right)$ and the relation \approx_{n} on $S\left(\mathbb{Q}^{n}\right)$ are both hyperfinite, it follows that F is also hyperfinite. (For example, see [25, Section 1].) Notice that if $x E y$, then $\Phi(x)=\Phi(y)$ and so $\tilde{f}(x) F \tilde{f}(y)$. By Theorem 1.25 , there exists an $S L_{n}(\mathbb{Z})$ invariant Borel subset $M \subseteq X$ with $\mu(M)=1$ such that \tilde{f} maps M into a single F-class; and this implies that f maps M into a single $\sim_{n^{*}}^{\left\langle e_{0}\right\rangle}$-class. This completes the proof of Theorem 7.6.

Chapter 8
 Proof of Theorem 1.11

Let $n \geq 3$ and assume toward a contradiction that $f: S D G_{n+1} \rightarrow S D G_{n}$ is a Borel reduction from \cong_{n+1}^{+}to \cong_{n}^{+}. Let $g_{n}: R\left(\mathbb{Q}^{n}\right) \rightarrow S D G_{n+1}$ be the Borel reduction defined in Proposition 6.2. Then $h=f \circ g_{n}$ is a Borel reduction from \cong_{n} to \cong_{n}^{+}. Letting $X=X_{n}, \mu=\mu_{n}$, and $\sigma=\sigma_{n}$ as in Definition 1.43, we have that
(a) X is a standard Borel $\mathrm{SL}_{n}(\mathbb{Z})$-space with $\mathrm{SL}_{n}(\mathbb{Z})$-invariant ergodic probability measure μ,
(b) σ is a Borel homomorphism from $E_{\mathrm{SL}_{n}(\mathbb{Z})}^{X_{n}}$ to \cong_{n}, and
(c) σ is countable-to-one and hence does not map a measure one subset of X to a single \cong_{n}-class.

Adjusting by the appropriate elements of $G L_{n}(\mathbb{Q})$, we may assume that the order unit of every element in the range of h is $u=e_{0}$. Now let $\pi: S D G_{n} \rightarrow R\left(\mathbb{Q}^{n}\right) \times S\left(\mathbb{Q}^{n}\right)$ be the map $\pi\left(A, A^{+}, u\right)=\left(A, \operatorname{infin}\left(A, A^{+}, u\right)\right)$. Then Theorem 7.1 implies that we may assume that $\pi \circ h \circ \sigma$ maps X into a single $\cong \bigcap_{n^{*}}^{\left\langle e_{0}\right\rangle}$-class. Hence, after adjusting by the appropriate elements of $\mathrm{GL}_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})$, we can assume that $\pi \circ h \circ \sigma$ maps X to a single pair, say (A, I). So we have reduced our analysis to the case when all the dimension groups in the image of $h \circ \sigma$ have the same underlying torsion-free abelian group A, the same group of infinitesimals I, and the same distinguished order unit $u=e_{0}$.

In both of the following cases, we will use (a) and (b) above to show that $h \circ \sigma$ maps a measure-one subset of X to a single \cong_{n}^{+}-class. However, this violates (c), and thus completes the proof of Theorem 1.11.

8.1 Case I: $I=\{0\}$

Fix some $x \in X$. Let $\left(A, A_{x}^{+}, u\right)=(h \circ \sigma)(x)$, and let S_{x} be the stabilizer of $\left(A, A_{x}^{+}, u\right)$ in $G L_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})$.

Claim. S_{x} is finite.
Proof. We examine the action of S_{x} on the state space $S_{u}\left(A, A_{x}^{+}\right)$defined by

$$
\varphi \cdot p(a)=p\left(\varphi^{-1}(a)\right) \text { for } p \in S_{u}\left(A, A_{x}^{+}\right) \text {and } \varphi \in S_{x}
$$

Notice that $\varphi \in S_{x}$ implies that $\varphi^{-1}(a) \in A$ for each $a \in A$, and so the above is well-defined. Notice also that

1. $\varphi \cdot p(u)=p\left(\varphi^{-1}(u)\right)=p(u)=1$; and
2. for any $a \in A^{+}, \varphi^{-1}(a) \in A^{+}$, and so $\varphi \cdot p(a)=p\left(\varphi^{-1}(a)\right) \in \mathbb{R}^{+}$.

Thus $\varphi \cdot p \in S_{u}\left(A, A_{x}^{+}\right)$. Notice also that, for any $\varphi \in S_{x}, p, q \in S_{u}\left(A, A_{x}^{+}\right)$, and $0 \leq \alpha \leq 1$,

$$
\varphi \cdot(\alpha p+(1-\alpha) q)=\alpha \varphi \cdot p+(1-\alpha) \varphi \cdot q .
$$

Thus since any $\varphi \in S_{x}$ is an affine permutation of the classical simplex $S_{u}\left(A, A_{x}^{+}\right)$, it must permute the elements of the finite set $E\left(S_{u}\left(A, A_{x}^{+}\right)\right)$. Hence the following statement implies that S_{x} is finite.

Subclaim. If $\varphi \in S_{x}$, and φ acts as the identity on $E\left(S_{u}\left(A, A_{x}^{+}\right)\right)$, then $\varphi=\mathrm{id}$.
Proof. In this case, since each $p \in S_{u}\left(A, A_{x}^{+}\right)$is an affine combination of elements of $E\left(S_{u}\left(A, A_{x}^{+}\right)\right), \varphi$ fixes every state $p \in S_{u}\left(A, A_{x}^{+}\right)$. Now given any $a \in A_{x}$, recall that $\hat{a} \in \operatorname{Aff}\left(S_{u}\left(A, A_{x}^{+}\right)\right)$is defined by $\hat{a}(p)=p(a)$. So choose any state $p \in S_{u}\left(A, A_{x}^{+}\right)$and any $a \in A$. Then $p(a)=\varphi^{-1} \cdot p(a)$. Thus $p(a)=p(\varphi(a))$, and so $p(a-\varphi(a))=0$. This implies that $\widehat{a-\varphi(a)}(p)=0$, and since our choice of p was arbitrary, $\widehat{a-\varphi(a)}=0$. But since $I=\{0\}$, Corollary 4.10 implies $a-\varphi(a)=0$. Thus $a=\varphi(a)$ for every $a \in A$, and so $\varphi=\mathrm{id}$.

Thus there are only countably many possibilities for the stabilizer of $(h \circ \sigma)(x)=$ $\left(A, A_{x}, u\right)$ in $\mathrm{GL}_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})$ and we can proceed as in the proof of Theorem 7.6. For the rest of this case, let $E=E_{\mathrm{SL}_{n}(\mathbb{Z})}^{X}$. Since μ is countably-additive, there exists a Borel subset $X_{1} \subseteq X$ with $\mu\left(X_{1}\right)>0$ and a fixed finite subgroup S of $\mathrm{GL}_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})$ such that $S_{x}=S$ for all $x \in X_{1}$. By the ergodicity of μ, we have that $\mu\left(\mathrm{SL}_{n}(\mathbb{Z}) \cdot X_{1}\right)=1$. In order to simplify notation, we shall assume that $\mathrm{SL}_{n}(\mathbb{Z}) \cdot X_{1}=X$. After slightly adjusting $h \circ \sigma$ if necessary, we can also assume that $S_{x}=S$ for all $x \in X$. (That is, let $c: X \rightarrow X$ be a Borel function such that $c(x) E x$ and $c(x) \in X_{1}$ for all $x \in X$. Then we can replace $h \circ \sigma$ with $h \circ \sigma \circ c$.)

Now suppose that $x, y \in X$ and that $x E y$. Then $\left(A, A_{x}^{+}, u\right) \cong\left(A, A_{y}^{+}, u\right)$ and so there exists $\varphi \in \mathrm{GL}_{n}^{\left\langle e_{0}\right\rangle}(\mathbb{Q})$ such that $\varphi\left(A, A_{x}^{+}, u\right)=\left(A, A_{y}^{+}, u\right)$. Notice that

$$
\varphi S \varphi^{-1}=\varphi S_{x} \varphi^{-1}=S_{y}=S
$$

and so $\varphi \in N=N_{\mathrm{GL}_{n}^{\langle e\rangle}(\mathbb{Q})}(S)$. Let $H=N / S$ and for each $\varphi \in N$, let $\bar{\varphi}=\varphi S$. Then we can define a cocycle $\alpha: \mathrm{SL}_{n}(\mathbb{Z}) \times X \rightarrow H$ by

$$
\alpha(g, x)=\text { the unique element } \bar{\varphi} \in H \text { such that } \varphi\left(A, A_{x}^{+}, u\right)=\left(A, A_{g \cdot x}^{+}, u\right)
$$

Now since S is finite, it is a closed subgroup of N, and so H is a algebraic \mathbb{Q} group (See for example $[32,5.5 .10]$). Furthermore we have the following, where the last inequality holds because $n \geq 3$,

$$
\operatorname{dim} H \leq \operatorname{dim} G L_{n}^{\left\langle e_{0}\right\rangle}(\Omega)=n^{2}-(n-1)<n^{2}-1
$$

Thus, by Theorem $1.44, \alpha$ is equivalent to a cocycle β such that $\beta\left(S L_{n}(\mathbb{Z}) \times X\right)$ is contained in a finite subgroup K of H. To simplify notation, we shall assume that $\beta=\alpha$. Then for each $x \in X$,

$$
\begin{aligned}
\Phi(x) & =\left\{\varphi\left(A, A_{x}^{+}, u\right) \mid \bar{\varphi}=\alpha(g, x) \text { for some } g \in \mathrm{SL}_{n}(\mathbb{Z})\right\} \\
& =\left\{\left(A, A_{z}^{+}, u\right) \mid z E x\right\}
\end{aligned}
$$

is finite; and clearly if $x E y$, then $\Phi(x)=\Phi(y)$. But this means that Φ is a Borel homomorphism from E to the identity relation on the standard Borel space of finite subsets of $S D G_{n}$. Hence, by Theorem 1.23, there exists a Borel subset $X_{2} \subseteq X$ with $\mu\left(X_{2}\right)=1$ such that $\Phi(x)=\Phi(y)$ for all $x, y \in X_{2}$; and this means that $h \circ \sigma$ maps X_{2} into a single \cong_{n}^{+}-class, as desired.

Of course, after a suitable adjustment of $h \circ \sigma$, we can assume that $h \circ \sigma$ maps X_{2} to a single dimension group. This observation will be helpful in our analysis of Case II.

8.2 Case II: $I \neq\{0\}$

Consider some $x \in X$ and the dimension group $\left(A, A_{x}^{+}, u\right)=(h \circ \sigma)(x)$. Consider the quotient group A / I. Theorem 4.10 implies

$$
a \in A_{x}^{+} \backslash\{0\} \text { and } b \in I \Longrightarrow a+b \in A_{x}^{+} \backslash\{0\}
$$

since in this case $\widehat{(a+b)}=\widehat{a}+\widehat{b}=\widehat{a} \gg 0$. It is easy to see that $\left(A / I, C_{x}^{+}, v\right)$ is a simple dimension group, where $C_{x}^{+}=\left\{a+I \mid a \in A_{x}^{+}\right\}$and $v=u+I$. We check the Riesz Interpolation Property. Consider $a, b, c, d \in A$ such that $a+I, b+I \leq c+I, d+I$. Then $c-a+I, c-b+I, d-a+I, d-b+I \in C_{x}^{+}$. This implies that $c-a, c-b, d-a, d-b \in A_{x}^{+}$, and so we may apply the Riesz Interpolation Property to obtain some $e \in A$ such that $a, b \leq e \leq c, d$. Then $a+I, b+I \leq e+I \leq c+I, d+I$, and we are done.

So by Case I, we may assume that there is a subset $X_{1} \subseteq X$ with $\mu\left(X_{1}\right)=1$ such that for every $x, y \in X_{1},\left(A / I, C_{x}^{+}, v\right)=\left(A / I, C_{y}^{+}, v\right)$. Notice that if $p \in S_{u}\left(A, A_{x}^{+}\right)$, then $p^{*}(a+I)=p(a)$ defines a state $p^{*} \in S_{v}\left(A / I, C_{x}^{+}\right)$. In fact, this defines a one-to-one correspondence between $S_{u}\left(A, A_{x}^{+}\right)$and $S_{v}\left(A / I, C_{x}^{+}\right)$. Thus for $x, y \in X_{1}$, we have the
following, where the last implication is due to Corollary 4.11:

$$
\begin{aligned}
\left(A / I, C_{x}^{+}, v\right)=\left(A / I, C_{y}^{+}, v\right) & \Longrightarrow S_{v}\left(\left(A / I, C_{x}^{+}\right)\right)=S_{v}\left(\left(A / I, C_{y}^{+}\right)\right) \\
& \Longrightarrow S_{u}\left(A, A_{x}^{+}\right)=S_{u}\left(A, A_{y}^{+}\right) \\
& \Longrightarrow\left(A, A_{x}^{+}, u\right)=\left(A, A_{y}^{+}, u\right) .
\end{aligned}
$$

And so $h \circ \sigma$ maps X_{1} to a single dimension group.

Chapter 9

The rank of a Bratteli diagram

In Chapter 5, we gave an explicit construction which assigned to each countable dimension group a Bratteli diagram. What we have not done, however, is to understand what kind of Bratteli diagrams correspond to dimension groups of a given finite rank. A first guess would be that the following notion of rank in a Bratteli diagram corresponds to the rank of the resulting dimension group.

Definition 9.1. Given a Bratteli diagram (V, E) where $V=\bigsqcup_{n \in \mathbb{N}} V_{n}$, we define

$$
\operatorname{rank}(V, E)=\liminf _{n \rightarrow \infty}\left|V_{n}\right| .
$$

However, there are ~-equivalent Bratteli diagrams with different ranks. For example the rank 1 diagram:

telescopes to the rank 2 diagram:

Thus we define:
Definition 9.2. Let $\mathcal{B D}_{n}$ denote the standard Borel space of simple Bratteli diagrams which are \sim-equivalent to a Bratteli diagram of rank at most n. That is, we let

$$
\mathcal{B D}_{n}=\{(V, E) \in \mathcal{B D} \mid \exists(W, F) \sim(V, E) \text { with } \operatorname{rank}(W, F) \leq n\} .
$$

Let $B D_{n}$ be the equivalence relation obtained by restricting \sim to $\mathcal{B} \mathcal{D}_{n}$.

Notice that for any Bratteli diagram $(V, E), \operatorname{rank}(V, E) \geq \operatorname{rank}\left(K_{0}(V, E)\right)$. Thus Theorems 3.3 and 3.4 imply that Definition 3.1 gives us a Borel function $\Phi: \mathcal{B D}_{n} \rightarrow$ $\bigsqcup_{i=0}^{n} S D G_{i}$ such that $(V, E) \sim(W, F)$ if and only if $\Phi((V, E)) \cong+\Phi((W, F))$. Hence we have that $B D_{n}$ is an essentially countable Borel equivalence relation, and clearly $B D_{n} \leq_{B} B D_{n+1}$.

While it is true that $\operatorname{rank}(V, E) \geq \operatorname{rank}\left(K_{0}(V, E)\right)$, there are simple dimension groups whose rank is strictly less than that of each of the Bratteli diagrams which generate them.

Example 9.3. [9, 2.7] Consider the simple dimension group $A=\mathbb{Z}\left[\frac{1}{3}\right] \oplus \mathbb{Z}$ (here $\mathbb{Z}\left[\frac{1}{3}\right]$ denotes the triadic rationals) with positive cone $A^{+}=\{(a, b) \in A \mid a>0\} \cup\{(0,0)\}$. We will show that $\left(A, A^{+}\right) \neq K_{0}(V, E)$ for every $\operatorname{Bratteli}$ diagram (V, E) such that $\operatorname{rank}(V, E)=2$. Assume otherwise, and let $\left(A, A^{+}\right)=K_{0}(V, E)$ where $\operatorname{rank}(V, E)=2$. Then there must be some $n \in \omega$, such that $\left|V_{n}\right|=2$, and $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right) \in\left(\mathbb{Z}^{V_{n}}\right)^{+}$ such that $\left[\left(a_{1}, b_{1}\right)\right]=(1,-1),\left[\left(a_{2}, b_{2}\right)\right]=(1,0)$, and $\left[\left(a_{3}, b_{3}\right)\right]=(1,1)$.

Then let $\left(c_{1}, d_{1}\right)=[(1,0)]$ and $\left(c_{2}, d_{2}\right)=[(0,1)]$ where $(1,0)$ and $(0,1)$ are the basis elements of $\mathbb{Z}^{V_{n}}$. Since $(1,0),(0,1) \in\left(\mathbb{Z}^{V_{n}}\right)^{+}$, we have $\left(c_{1}, d_{1}\right),\left(c_{2}, d_{2}\right) \in A^{+}$. Now, for $i=1,2,3$, we have

$$
\left(a_{i}, b_{i}\right)=m_{i}(1,0)+n_{i}(0,1) \text { for some } m_{i}, n_{i} \in \mathbb{Z}^{+}
$$

which gives us the following set of equations:

$$
\begin{array}{ll}
m_{1}\left(c_{1}, d_{1}\right)+n_{1}\left(c_{2}, d_{2}\right)=(1,-1) & \text { where } m_{1}, n_{1} \in \mathbb{Z}^{+} ; \\
m_{2}\left(c_{1}, d_{1}\right)+n_{2}\left(c_{2}, d_{2}\right)=(1,0) & \text { where } m_{2}, n_{2} \in \mathbb{Z}^{+} ; \\
m_{3}\left(c_{1}, d_{1}\right)+n_{3}\left(c_{2}, d_{2}\right)=(1,1) & \text { where } m_{3}, n_{3} \in \mathbb{Z}^{+} . \tag{9.5}
\end{array}
$$

(9.3) and (9.5) imply that d_{1} and d_{2} are nonzero and have opposite signs. Then since $\left(c_{1}, d_{1}\right),\left(c_{2}, d_{2}\right) \in A^{+} \backslash(0,0)$, it follows that $c_{1}, c_{2}>0$. Subtracting (9.3) from (9.4), we obtain

$$
\left(m_{2}-m_{1}\right)\left(c_{1}, d_{1}\right)+\left(n_{2}-n_{1}\right)\left(c_{2}, d_{2}\right)=(0,1),
$$

and so $\left(m_{2}-m_{1}\right) c_{1}+\left(n_{2}-n_{1}\right) c_{2}=0$. But then since $c_{1}, c_{2}>0$ either $(i)\left(m_{2}-m_{1}\right)$ and $\left(n_{2}-n_{1}\right)$ are both zero, or (ii) neither are zero and they have opposite signs. If they are both zero, then $\left(m_{2}-m_{1}\right) d_{1}+\left(n_{2}-n_{1}\right) d_{2}=0$, a contradiction. If they have opposite signs, then $\left(m_{2}-m_{1}\right) d_{1}$ and $\left(n_{2}-n_{1}\right) d_{2}$ are non-zero integers with the same sign, and then $\left|\left(m_{2}-m_{1}\right) d_{1}+\left(n_{2}-n_{1}\right) d_{2}\right| \geq 2$, a contradiction.

It can be calculated that this dimension group is generated by the Bratteli diagram
whose incidence matrices are all

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 0 \\
0 & 1 & 2
\end{array}\right)
$$

Note that this matrix is singular, and that the corresponding map φ_{n} is not one-to-one. For example,

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 0 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
3 \\
0 \\
3
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 0 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)=\left(\begin{array}{l}
6 \\
6 \\
6
\end{array}\right) .
$$

However, we will find it convenient to ignore these types of dimension groups:
Definition 9.4. If a dimension group $\left(A, A^{+}, u\right)$ may be written as $K_{0}(V, E)$ for some Bratteli diagram (V, E) where all the maps φ_{n} are one-to-one, then $\left(A, A^{+}, u\right)$ is said to be ultrasimplicial.

Lemma 9.5. If (V, E) is a Bratteli diagram such that all the maps φ_{n} are one-to-one, and $K_{0}(V, E)$ is a finite rank dimension group, then $\operatorname{rank}(V, E)=\operatorname{rank}\left(K_{0}(V, E)\right)$, and there exists $N \geq 1$ such that $\left|V_{n}\right|=\operatorname{rank}\left(K_{0}(V, E)\right)$, for all $n>N$.

Proof. Set $r=\operatorname{rank}(V, E)$. Let $N \geq 1$ be the least natural number such that $\left|V_{N}\right|=$ $\liminf _{n \rightarrow \infty}\left|V_{N}\right|=r$. We claim that if $n>N$, then $\left|V_{n}\right|=\left|V_{N}\right|$. Otherwise, either $\left|V_{n}\right|<\left|V_{N}\right|$ and then $\varphi_{n} \circ \ldots \circ \varphi_{N+1}$ is not injective, or else $\left|V_{n}\right|>\left|V_{N}\right|$ and then there is some $m>n$ such that $\left|V_{m}\right|=\left|V_{N}\right|<\left|V_{n}\right|$ and $\varphi_{m} \circ \ldots \circ \varphi_{n+1}$ is not injective.

Finally, if $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{r} \in \mathbb{Z}^{V_{N}}$ are the natural basis elements, and $\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+$ $\ldots+\alpha_{r} \mathbf{e}_{r} \neq 0\left(\alpha_{i} \in \mathbb{Z}, 1 \leq i \leq r\right)$ is any nontrivial linear combination, then $\alpha_{1}\left[\mathbf{e}_{1}\right]+$ $\alpha_{2}\left[\mathbf{e}_{2}\right]+\ldots+\alpha_{r}\left[\mathbf{e}_{r}\right] \neq[0]$. Otherwise, we would have $\left[\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\ldots+\alpha_{r} \mathbf{e}_{r}\right]=[0]$ which would violate the injectivity of the maps φ_{n}. Thus $\operatorname{rank}\left(K_{0}(V, E)\right) \geq r$.

We shall show that the dimension groups involved in the proof of Theorem 1.11 are all ultrasimplicial.

Theorem 9.6. Suppose G is a p-local torsion-free abelian group of rank n, where $p>n$. Then the dimension group $g_{n}(G)$ given by Lemma 6.2 is ultrasimplicial.

Before we prove this, we show how this gives the analogue of Theorem 1.11 for simple Bratteli diagrams.

Corollary 9.7. For $n \geq 3, \mathrm{BD}_{n}<B \mathrm{BD}_{n+1}$
Proof. Suppose that $f: \mathcal{B D}_{n+1} \rightarrow \mathcal{B D}_{n}$ is a Borel reduction from BD_{n+1} to BD_{n}. Let $g_{n}: R\left(\mathbb{Q}^{n}\right) \rightarrow S D G_{n+1}$ be the Borel reduction from \cong_{n} to \cong_{n+1}^{+}defined in Lemma 6.2.

As in Chapter 8, we consider $X=X_{n}, \mu=\mu_{n}$, and $\sigma=\sigma_{n}$ from Definition 1.43. If we pick $p>n$ when defining X, μ, and σ, then Theorem 9.6 says that every group in the image of $g_{n} \circ \sigma$ is ultrasimplicial.

Hence combining Lemma 9.5 and Theorem 5.4, we obtain a Borel reduction

$$
j:\left(g_{n} \circ \sigma\right)(X) \rightarrow \mathcal{B} \mathcal{D}_{n+1}
$$

from $\cong_{n+1}^{+} \upharpoonright_{\left(g_{n} \circ \sigma\right)(X)}$ to $B D_{n+1}$. Next, Definition 3.1 gives a Borel reduction

$$
h: \mathcal{B} \mathcal{D}_{n} \rightarrow \bigsqcup_{i \leq n} S D G_{i}
$$

from $B D_{n}$ to $\bigsqcup_{i \leq n} \cong_{i}^{+}$. Then the following composition is a Borel homomorphism from $E_{\mathrm{SL}_{n}(\mathbb{Z})}^{X}$ to $\bigsqcup_{i \leq n} \cong_{i}^{+}$:

$$
X \xrightarrow{\sigma} R\left(\mathbb{Q}^{n}\right) \upharpoonright_{\sigma(X)} \xrightarrow{g_{n}} S D G_{n+1} \upharpoonright_{\left(g_{n} \circ \sigma\right)(X)} \xrightarrow{j} \mathcal{B} \mathcal{D}_{n+1} \xrightarrow{f} \mathcal{B} \mathcal{D}_{n} \xrightarrow{h} \bigsqcup_{i \leq n} S D G_{i} .
$$

Clearly there exists a subset $X_{1} \subseteq X$ with $\mu\left(X_{1}\right)>0$ such that the above maps X_{1} to $S D G_{k}$ for some $k \leq n$. Then by the ergodicity of $\mu, \mu\left(\mathrm{SL}_{n}(\mathbb{Z}) \cdot X_{1}\right)=1$. Replacing X by $\mathrm{SL}_{n}(\mathbb{Z}) \cdot X_{1}$, the analysis of Chapter 8 again shows that there is a measure one subset of X which maps to a single \cong_{k}^{+}-class. This implies that σ maps a measure one subset of X to a single \cong_{n}-class, which is a contradiction.

Proof of Theorem 9.6. We will prove that $g_{n}(G)$ satisfies the following criteria for ultrasimpliciality:

Lemma 9.8. [20] Let $\left(A, A^{+}, u\right)$ be a countable dimension group. Then $\left(A, A^{+}, u\right)$ is ultrasimplicial if and only if for all finite subsets $\left\{x_{i}\right\}_{i=1}^{n}$ of A^{+},
(*) there exists a finite subset $\left\{s_{j}\right\}_{j=1}^{m}$ of A^{+}such that

1. $\left\{s_{j}\right\}_{j=1}^{m}$ is rationally independent;
2. there exist $m_{i j}$ in $\mathbb{N} \cup\{0\}$ with $x_{i}=\sum m_{i j} s_{j}$, for all i.

Below we will use the following extension of the notion of gcd to the rationals.
Definition 9.9. Given a finite set of positive rational numbers $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, define $\operatorname{gcd}\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ to be the greatest positive rational number q such that for every $1 \leq i \leq n, q_{i}=m_{i} q$ for some $m_{i} \in \mathbb{N}$.

Let G be a p-local torsion-free abelian group of rank n , where $p>n$. (The condition $p>n$ will allow us to divide any element of G by n.) Let $\left(G \oplus \mathbb{Q},(G \oplus \mathbb{Q})^{+},(0,1)\right)$ be the dimension group defined by $(G \oplus \mathbb{Q})^{+}=\{(h, q) \in G \oplus \mathbb{Q}: q>0\} \cup\{(0,0)\}$. Recall that $G \leq \mathbb{Q}^{n}$, and let $\left\{x^{i}=\left(x_{0}^{i}, x_{1}^{i}, x_{2}^{i}, \ldots, x_{n-1}^{i}\right) \oplus\left(x_{n}^{i}\right)\right\}_{i \leq m}$ be a finite set of
elements of $(G \oplus \mathbb{Q})^{+}$. Let $y_{k}=\frac{1}{n} \underset{i \leq m}{\operatorname{gcd}}\left\{\left|x_{k}^{i}\right|\right\}$ for all $0 \leq k \leq n$. Next, for $0 \leq j \leq n-1$, let $s_{j}=\left(0,0, \ldots, y_{j}, \ldots, 0\right) \oplus\left(\frac{y_{n}}{n^{N}}\right)$, where y_{j} is in the j-th slot, and $N \in \mathbb{N}$ is some constant determined below. Finally, let $s_{n}=\left(-y_{0},-y_{1}, \ldots,-y_{j}, \ldots,-y_{n-1}\right) \oplus\left(\frac{y_{n}}{n^{N}}\right)$.

We claim that if N is large enough, then $\left\{s_{j}\right\}_{i=0}^{n}$ fulfills ($*$). Clearly, the $\left\{s_{j}\right\}$ are rationally independent. Given $i \leq m$, we want to express x^{i} as a sum of nonnegative integer multiples of the s_{j}. First, note that the sum $\sum_{k=0}^{n-1}\left(\frac{x_{k}^{i}}{y_{k}}\right) s_{k}$ does the trick, but only on the first n coordinates. We can then add some multiple M^{i} of $\sum_{j=0}^{n} s_{j}$ to this sum without changing the first n coordinates. So we just solve for M^{i}. We have that

$$
x^{i}=M^{i} \sum_{j=0}^{n} s_{j}+\sum_{k}\left(\frac{x_{k}^{i}}{y_{k}}\right) s_{k}
$$

thus,

$$
x_{n}^{i}=M^{i} n \frac{y_{n}}{n^{N}}+\sum_{k} \frac{x_{k}^{i}}{y_{k}} \frac{y_{n}}{n^{N}}
$$

Then,

$$
M^{i}=\frac{x_{n}^{i}-\sum_{k} \frac{x_{k}^{i}}{y_{k}} \frac{y_{n}}{n^{N}}}{n \frac{y_{n}}{n^{N}}}=\frac{x_{n}^{i}}{y_{n}} n^{N-1}-\left(\sum_{k} \frac{x_{k}^{i}}{y_{k}}\right) \frac{1}{n}
$$

Now, by the definition of the $y_{k},\left(\sum_{k} \frac{x_{k}^{i}}{y_{k}}\right) \frac{1}{n}$ and $\frac{x_{n}^{i}}{y_{n}}$ are positive integers. Finally, if we choose N large enough, then M^{i} is positive for all $0 \leq i \leq m$.

9.1 Simple groups of strongly diagonal type

We will now see how our analysis can be applied to the classification problem for simple countable locally finite groups of strongly diagonal type.

Definition 9.10. Given a countable locally finite group of strongly diagonal type G, define $\operatorname{rank}(G)=\min \{\operatorname{rank}(V, E) \mid G(V, E) \cong G\}$.

Definition 9.11. For each $n \geq 1$, let $\mathcal{S D} \mathcal{T}_{n} \subseteq \mathcal{S D \mathcal { T }}$ be the standard Borel space of countable simple locally finite groups of strongly diagonal type of rank at most n. That is, let

$$
\mathcal{S D} \mathcal{T}_{n}=\left\{G \in \mathcal{S D \mathcal { D }} \mid \exists(V, E) \in \mathcal{B D}_{n} \text { such that } G \cong G(V, E)\right\} .
$$

Then let \cong_{n}^{s} be the equivalence relation obtained by restricting $\cong_{\mathcal{S D} \mathcal{T}}$ to $\mathcal{S D} \mathcal{T}_{n}$.
Then Theorems 2.9 and 2.12 imply that the assignment $(V, E) \mapsto G(V, E)$ gives a Borel reduction from $B D_{n}$ to $S D T_{n}$, and that the map defined in the proof of Theorem 2.20 gives a Borel reduction from $S D T_{n}$ to $B D_{n}$. Thus we have shown:

Theorem 9.12. For each $n \geq 1, \cong_{n}^{s} \sim_{B} B D_{n}$.
Corollary 9.13. For each $n \geq 3$, $\left(\cong_{n}^{s}\right)<_{B}\left(\cong_{n+1}^{s}\right)$.

9.2 Questions

Bratteli diagrams also characterize other naturally occurring structures, such as approximately finite-dimensional (AF) C^{*}-algebras and $A F$-relations on Cantor sets.

Question 9.14. For which other classes of structures that are described by Bratteli diagrams can we obtain a result similar to Theorem 1.11?

Recall that \cong_{n} is the isomorphism relation on the space of torsion free abelian groups of rank n, and that E_{∞} is the universal countable Borel equivalence relation. In [34], Thomas showed that $\left(\bigsqcup_{n \geq 1} \cong_{n}\right)<_{B} E_{\infty}$.

Conjecture 9.15. $\left(\bigsqcup_{n \geq 1} \cong_{n}^{+}\right)<_{B} E_{\infty}$.
It is natural to define the class of Bratteli diagrams of rank exactly n as

$$
\mathcal{B D}_{n}^{*}=\{(V, E) \in \mathcal{B D} \mid \exists(W, F) \sim(V, E) \text { with } \operatorname{rank}(W, F)=n\},
$$

and then to define $B D_{n}^{*}$ as $\sim\left\lceil_{\mathcal{B} D_{n}^{*}}\right.$. It is easy to rewrite the proof of Corollary 9.7 to show that, for $n \geq 3, B D_{n+1}^{*} \not \mathbb{Z}_{B} B D_{n}^{*}$. However, the intuitively "easy" fact below is not currently known.

Conjecture 9.16. For $n \geq 1, B D_{n}^{*} \leq_{B} B D_{n+1}^{*}$. Thus, for $n \geq 3, B D_{n}^{*}<_{B} B D_{n+1}^{*}$.

References

[1] S. R. Adams and A. R. Kechris, Linear algebraic groups and countable Borel equivalence relations, J. Amer. Math. Soc. 13 (2000), 909-943.
[2] R. Baer, Abelian groups without elements of finite order, Duke Math. Journal 3 (1937), 68-122.
[3] G. Birkhoff, Lattice-ordered groups, Ann of Math. (2) 43 (1942), 298-331.
[4] A. Borel, Linear Algebraic Groups: Second Enlarged Edition, Graduate Texts in Mathematics 126, Springer-Verlag, 1991.
[5] O. Bratteli, Inductive limits of finite dimensional C^{*}-algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234.
[6] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544.
[7] R. Dougherty, S. Jackson, A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc. 341 (1)(1994), 193-225.
[8] G. A. elliott, On the classification of inductive limits of sequences of semisimple finite dimensional algebras, J. Algebra 38 (1976), 29-44.
[9] G. A. elliott, On totally ordered groups and K_{0}, in "Ring Theory, Waterloo 1978" (edited by D. Handelman and J. Lawrence), Springer Lecture Notes 734 (1979), 1-49.
[10] E. G. Effros, Dimensions and C*-algebras, CBMS Regional Conference Series in Mathematics, No.46, A.M.S., Providence, 1981
[11] E. Effros, D. Handelman, C.-L. Shen, Dimension groups and their affine representations, Amer. J. Math 102 (1980), 191-204.
[12] E. Effros, C.-L. Shen, The geometry of finite rank dimension groups, Illinois J. Math. 25 (1981), 27-38.
[13] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology and Von Neumann algebras, I, Trans. Amer. Math. Soc. 234 (1977), 289-324.
[14] H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable structures, J. Symbolic Logic 54 (1989) 894-914.
[15] L. Fuchs, Infinite abelian groups, Pure and Applied Mathematics Vol. 36, Academic Press 1970.
[16] S. Gao and S. Jackson, Countable abelian group actions and hyperfinite equivalence relations, preprint, 2007.
[17] K. Goodearl, Notes on real and complex C^{*}-algebras, Shiva/Birkhäuser, Nantwich, 1982.
[18] K. Goodearl, Partially Ordered Abelian Groups With Interpolation, American Mathematical Society, Providence, 1986.
[19] K. Goodearl and D. Handelman, Rank functions and K_{0} of regular rings, J. Pure Appl. Algebra 7 (1976), 195-216.
[20] D. Handelman, Ultrasimplicial dimension groups, Arch. Math. (Basel) 40 (1983), no. 2, 109-115.
[21] L. Harrington, A. S. Kechris, A Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (4)(1990), 903-928.
[22] B. Hartley and A. E. Zalesskii, Confined subgroups of simple locally finite roups and ideals of group rings, J. London Math. Soc. (2) 55 (1997), 210-230
[23] G. Hjorth, Around nonclassifiability for countable torsion-free abelian groups, in Abelian Groups and Modules (Dublin, 1998), Trends Math., Birkhäuser, Basel, 1999, 269-292.
[24] G. Hjorth, A. S. Kechris, Borel equivalence relations and classification of countable models, Annals of Pure and Applied Logic 82 (1996), 221-272.
[25] S. Jackson, A. S Kechris, and A. Louveau, Countable Borel equivalence relations, Annals of Pure and Applied Logic 82 (1996), 221-272.
[26] A. S. Kechris, Countable sections for locally compact group actions, Ergodic Theory and Dynamical Systems 12 (1992), 283-295.
[27] O. H. Kegel and B. A. F. Wehrfritz, Locally Finite Groups, North-Holland, Amsterdam, 1973.
[28] K. Kuratowski, Sur une généralisation de la notion d'homéomorphie, Fund. Math 22 (1934), 206-220.
[29] F Riesz, Sur quelques notions fondamentales dans la théorie générale des opérations linéaires, Ann. of Math. 41 (1940), 174-206.
[30] C.-L. Shen, On the classification of the ordered groups associated approximately finite dimensional C^{*}-algebras, Duke Math. J. 46 (1979), 613-633.
[31] J. Silver, Counting the number of equivalence classes of Borel and co-analytic equivalence relations, Ann. Math. Logic, 18 (1980), 1-28.
[32] T. A. Springer, Linear Algebraic Groups, 2nd. Edition, Birkhäuser, Boston, 1998.
[33] S. Thomas, On the complexity of the classification problem for torsion-free abelian groups of finite rank, Bull. Symbolic Logic 7 (2001), 329-344.
[34] S. Thomas, Popa superrigidity and countable Borel equivalence relations, Ann. Pure Appl. Logic 158 (2009), 175-189.
[35] S. Thomas, The classification problem for p-local torsion-free abelian groups of finite rank, preprint
[36] S. Thomas, The classification problem for torsion-free abelian groups of finite rank, J. Amer. Math. Soc. 16 (2003), 233-258.
[37] S. Thomas, Superrigidity and countable Borel equivalence relations, Annals Pure Appl. Logic 120 (2003), 237-262.
[38] V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc., 109 (1963), 191-220
[39] A. E. Zalesskii, Group rings of inductive limits of alternating groups, Algebra i Analiz. 2 (1990), 132-149; Leningrad Math. J. 2 (1991), 1287-1303.
[40] R. Zimmer, Ergodic Theory and Semisimple Groups, Birkhauser, Boston, 1984

Vita

Paul Robert Ellis

1998-2002 A.B., Mathematics and Philosophy, The University of Chicago.

2008-2010 Assistant Professor in Residence, Department of Mathematics, The University of Connecticut.

2002-2008 Teaching Assistant, Department of Mathematics, Rutgers University.

