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In measurement research, data simulations are a commonly used analytical technique. 

While simulation designs have many benefits, it is unclear if these artificially generated 

datasets are able to accurately capture real examinee item response behaviors. This 

potential lack of comparability may have important implications for administration of 

computer adaptive tests (CAT) which display proficiency-targeted items to examinees. In 

addressing this problem, this study sought to compare results from real testing data to 

that of simulated data to determine the extent to which simulated data are an accurate 

representation of real-world testing data. Specifically, this study matched real examination 

data from multiple administrations of the Law School Admission Test to create a single 

large dataset with 534 items and 5,000 synthetic examinees. From this dataset examinee 

proficiency estimates and item parameters were obtained, which were used to create 100 

simulated item response datasets.  Both real and simulated data were utilized in two post-

hoc testing formats: CAT and linear format examinations. The CAT administrations used 

the item-level adaptive method; the linear tests were constructed by selecting items using 

stratified random sampling.  In addition to the two data types and two test administration 

formats, the impact of three varying test lengths (25, 35, and 50 items) on proficiency 
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estimation was examined. For linear tests, results demonstrated that replication of original 

proficiency estimates from simulated data was variable, depending on test length, items 

selected, and examinee proficiency levels. Randomly constructed linear tests with extreme 

item parameter values resulted in test instability which yielded less accurate proficiency 

recovery. For most datasets, CAT format tests yielded improved true proficiency 

recovery as compared to their linear test counterparts. Generally, the longest length 50-

item CAT simulated data tests yielded the best replication of original real data proficiency 

estimates. CAT format tests performed well given real or simulated data, whereas linear 

tests displayed more performance variation compared to their CAT counterparts. The 

tails of the distributions showed the greatest variation between data types and conditions.  

The results of this dissertation support the use of simulated data when the items used to 

construct the tests reflect non-extreme item parameter values.  
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CHAPTER I. INTRODUCTION 

 

 Educational measurement is concerned with the assessment of knowledge or skills 

of individuals.  Typically, many such examinees experience this assessment in the form 

of a large-scale, standardized tests such as the Scholastic Aptitude Test, or SAT
®
.  Large- 

scale standardized assessments are utilized for many purposes, from college entrance to 

skills assessment to licensure examinations.  With the proliferation of many professions 

requiring specialized skills, the popularity of standardized examinations has been 

increasing and shows few signs of slowing.  As demand for educational measurement 

products grows, the need for sophisticated, targeted assessments, such as computer-

adaptive testing (CAT) methods grows.  Moreover, data simulations are often used as 

tools to meet the need for timely, ethical research on measurement models and testing 

methods.  What is unclear, however, is how representative these simulation studies are of 

real examinee responses, particularly as research programs transition from traditional 

paper-and-pencil (P&P) tests to advanced CAT designs.   

1.1 Computer-Adaptive Testing 

Many recent educational measurement studies focus on adaptive testing issues 

and numerous books deal with the adaptive testing concerns (e.g., Parshall, Spray, 

Kalohn, & Davey, 2002; Wainer, 2000). A recent search of the ERIC database for 

“adaptive testing” found 900 references spanning 40 years (retrieved September 12, 2009 

from Rutgers University Libraries ERIC database).  Clearly, adaptive testing has been 

heavily researched and is an important and timely topic for measurement professionals. 

 Reflecting the compelling impact of these numerous research studies, a number of 

prominent testing programs have converted to, or are in the process of converting to, 
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computer based tests with adaptive features of some kind (e.g., the Uniform CPA 

Examination, The General Management Admission Test, Test of English as a Foreign 

Language).  Item response theory (IRT) is designed to relate an examinee’s proficiency to 

a given item by way of a probabilistic function.  As Hambleton, Swaminathan, and 

Rogers (1991) explained, item response models function using both examinee proficiency 

(theta, symbolically ) and the item parameters.  Item response theory provides a 

psychometric framework for CAT.  The link between IRT and adaptive testing is quite 

strong.  The relationship is so strong that Wainer (2000) stated that “many believe that 

adaptive testing is the raison d’ etre of IRT” (p. 9).  There are numerous ways to achieve 

the adaptive function, from item-level adaptation to multi-stage adaptive testing (Thissen 

& Mislevy, 2000).  Computer-adaptive testing (CAT) utilizes item response theory (IRT) 

to determine many aspects of the examinee assessment process from item selection to 

proficiency estimation.  Typically, items with known parameters are administered in an 

adaptive fashion; items are selected based on an examinee’s demonstrated proficiency 

estimate derived from previously administered items.   

1.2 Data Simulations 

 In quantitative research studies, data simulations are an invaluable tool with 

origins in the natural sciences (Metropolis & Ulam, 1949).  Simulations can serve to 

inform theory, research, practice, and other areas.  In educational measurement research, 

simulation studies are ubiquitous and influential (Harwell, Stone, Hsu, & Kirisci, 1996).  

There is little published research, however, demonstrating the validity of using these 

simulations to represent real examinee item response behavior, as collected in real-world 

testing situations. 
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In educational measurement research, data simulations have become 

commonplace.  A recent search for the term “simulations” on the ERIC database yielded 

over 3,700 hits (Rutgers University ERIC database, September 12, 2009).  In addition, 

during the period of 1994-1995, Harwell, Stone, Hsu, and Kirisci (1996) found that in a 

content analysis of three prominent measurement journals (Applied Psychological 

Measurement, Psychometrika, and Journal of Educational Measurement), nearly one-

third of all articles utilized simulation methods in their research.  As noted previously, the 

prevalence of simulation studies has increased.  Recent examples include differential item 

functioning (DIF) studies (Schnipke, Roussos, & Pashley, 2000; Zwick & Thayer, 2003), 

test security (McLeod, Lewis, & Thissen, 1999; Wen, Chang, & Hau, 2000), parameter 

recovery (Evans & Weissman, 2005), scaling and calibration (Ban, Hanson, Yi, & Harris, 

2002), item answer alteration policies (Bowles & Pommerich, 2001), item exposure 

control methods (Chang & Twu, 2001), cognitive diagnosis (de la Torre, 2009; de la 

Torre & Douglas, 2008) and many more. 

Stated briefly, a data simulation study is a statistical sampling procedure in which 

the researcher generates output stochastically.  Typically, these studies are used to 

address a research question; therefore, a model exists for generating the numbers and 

subsequently using the results to test hypotheses.  One type of popular simulation 

technique is the Monte Carlo (MC) method.  This paper will not address MC methods 

specifically, as they will be considered as a special subset of the more generalized 

simulation methods.   

Several authors have posited that simulation studies should be held to the same 

standard as real-world empirical studies, deserving the same attention to detail and 
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experimental design (Harwell, Stone, Hsu, and Kirisci, 1996; Spence, 1983).  Harwell, 

Stone, Hsu, and Kirisci discussed published Monte Carlo simulation IRT studies and the 

potentially significant problems that can arise from imprecise simulation design.  They 

noted that “[o]ne limitation of these [Monte Carlo simulation] studies is that the 

usefulness of the results is highly dependent on how realistic the conditions modeled 

are.” (p. 104). Studies with unrealistically modeled conditions are unlikely to fully 

represent real-world responses of examinees.   

1.3 Simulated Data Using CAT Designs 

 

Simulation methods are commonplace and their results are typically taken as valid 

evidence for making decisions about testing programs, with real consequences for 

examinees and other stakeholders.  Few published research articles to date have utilized 

real examinee data in creating simulations for adaptive test comparisons.  Therefore, this 

study seeks to utilize real test data in a CAT design, which will reflect the complexity of 

real-world CAT estimation.  A main focus of many test designs is to obtain accurate 

proficiency estimates.  Studying this comparison between simulated and real data in 

adaptive test designs will allow the researcher to understand the level of generalizability 

of their simulation studies to real-world testing conditions.  Without this knowledge, 

testing programs will continue to draw potentially erroneous conclusions about the results 

of simulation studies designed to study computer-adaptive examination outcomes. 
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Purpose 

This study proposes to examine the comparability of simulation data as compared 

to real examinee responses from a large-scale, paper-and-pencil (P&P) examination used 

in a computer-adaptive testing format.  The purpose of this study is not to evaluate 

potential improvements to IRT model fit; rather, the purpose is to describe the extent to 

which CAT simulation results capture real-world item responses. 

The Law School Admission Test (LSAT) Logical Reasoning section data were 

used to create a large dataset of real synthesized examinee responses with 534 items and 

5,000 examinees.  These data were exclusively multiple-choice, dichotomously scored 

items.  Using the proficiency and item parameters obtained from the real data, simulated 

datasets were created.  Both real and simulated data were utilized in creating linear, 

paper-and-pencil (P&P) type tests as well as item-level CATs.  The primary outcome 

variable for this study was  
ˆ  (estimated proficiency).  In addition, for P&P tests, 

classical test theory indices of item difficulty, and item discrimination were obtained.  

For CATs, item exposure rates were summarized.  Examinee characteristics, specifically 

the proficiency estimates, were compared across conditions using Pearson correlation, 

bias, root mean squared error, standard error, and relative efficiency.  Results from this 

study will provide a realistic analysis of the effects of using simulations to mimic real 

examinee item response behaviors. 
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CHAPTER II.   RELEVANT LITERATURE 

 

  First, it will be instructive to review the basics of IRT and simulation techniques, 

and how they work together to simulate examinee item responses.  Some published IRT 

simulation studies have been poorly designed and therefore may not validly support the 

authors’ conclusions (Davey, Nering, & Thompson,1997).  Thus, some research studies 

have found that simulated IRT data may fail to properly replicate the complexity of real 

examinee data.  This section explores both the inadequacy of many simulation designs, as 

well as the inadequate modeling inherent in simulation research.  Specifically, this 

chapter will discuss the basic theory behind IRT-based simulations, the limitations of 

published studies, and the limitations of the models for accurately recovering all response 

characteristics within real test data.   

2.1 Item Response Theory 

Before discussing the issues leading to the reasoning behind this study, it may be 

useful to review the basic concepts of the traditional IRT three-parameter logistic model 

(3PL).  Below is the typical 3PL model, as described in Hambleton, Swaminathan, and 

Rogers (1991).  It includes discrimination (a), difficulty (b), and pseudo-guessing (c) 

parameters as well as proficiency ( ) and is represented mathematically as  

  Pi
( ) = c

i
+ (1 c

i
) [e

Da
i
( b

i
)

/ 1+ e
Da

i
( b

i
)
] (i=1, 2, … n). 

where   Pi
( )  is the probability that a randomly chosen examinee with proficiency  will 

answer item i correctly; e is Euler’s number (2.718); D is 1.7.  Detailed information can 

be found in Hambleton et al. (1991), Lord (1980), and others. 

2.1.1 IRT Simulations 
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Simulation studies are ubiquitous in many research fields due to the utility and 

simplicity of these designs.  In IRT-based educational measurement research, many 

studies rely on simulation methods for varied purposes, such as demonstrating a 

particular statistical model’s robustness to violations of assumptions, modeling examinee 

behavior on a given test, studying effects of applied psychometric methods and others.  

If, however, these simulations are unable to create data that accurately represent real-

world examinee response patterns, the outcomes of these simulation studies are 

questionable. 

Given the proliferation of simulation designs, it is reasonable to give only a brief 

overview of the generalized method.  Data simulation methods permit researchers to 

empirically examine a given characteristic using random samples drawn from known 

populations (e.g., Mooney, 1997).  In educational measurement theory, these simulation 

studies are commonplace and are typically assumed to be valid representations of the 

phenomenon of interest (Davey, Nering, & Thompson, 1997).  As noted previously, a 

large number of studies utilizing IRT-based data simulation methods have been published 

or presented in recent decades, covering many topics from item parameter estimation and 

recovery (e.g., Harwell & Janosky, 1991; Hulin, Lissak, & Drasgow, 1982; McCauley & 

Mendoza, 1985), to dimensionality (e.g., Ansley & Forsyth, 1985; De Ayala, 1994), test 

equating (e.g., Prowker, 2005; Fairbank, 1985), and proficiency estimation (e.g., Kim & 

Plake, 1993; Yen, 1987), as well as many others.  

 IRT-based simulation designs typically include a basic set of stochastic methods 

facilitating researcher’s goals, as summarized in Davey, Nering, and Thompson (1997): 
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1. Specify the form of the IRT model.  Typically, these include such components as 

dimensionality, independence, cumulative distribution functions, and others.   

2. Specify parameters of IRT model, either by simulating or selecting operational 

items from a real examination. 

3. Specify the form of the examinee proficiency (i.e., ) distribution  

The actual item responses are simulated by randomly drawing a  value from the 

designated distribution which is used in the computation of a probability value using the 

IRT model (such as 3PLM) and the item parameters at the selected .  This computed 

value is compared to a random value from (0, 1); if the random uniform value is less than 

the computed probability value, it is scored as correct; if the random uniform value is 

greater than the computed probability, it is scored as incorrect.  The above method is the 

basic form to which this paper refers. 

2.1.2 Limitations of IRT Simulations 

 Using established techniques, simulations are often presumed to be valid 

representations of real-world test data (Davey, Nering, & Thompson, 1997).  Employing 

traditional data distributions such as the uniform and normal distributions, as well as 

elements of other theoretically accepted measurement models, such as IRT, many 

researchers and practitioners assume that simulation studies create data which lead to 

valid conclusions.  Little empirical evidence exists, however, to suggest that such 

simulation results accurately represent real-world examinee testing behavior. 

An analysis by Harwell et al. (1996) summarized many IRT simulation studies 

and analyzed the research methods and conclusions.  Harwell et al. state that there are 

few resources that focus on the rigor of these simulation studies or how to properly 
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conduct these studies.  In fact, by the 1970s, some amount of incredulity had arisen from 

publications presenting simulation studies with less than ideal designs.  To reduce the 

number of poorly constructed studies, Harwell et al. state that there were two major 

publications created to curtail the number of inadequate simulation studies:  An article by 

Hoaglin and Andrews (1975), and an article by the Psychometric Society in 

Psychometrika (1979) provided clear explanation of acceptable criteria for MC 

simulation designs.  Both articles gave similar standards for appropriate utilization and 

design of these studies.  As noted by Harwell et al. in 1996, the trend of publishing 

simulation studies using inadequate designs continued many years after the publication of 

these articles.  They state that many IRT simulation studies are conducted improperly or 

are of insufficient quality to warrant valid conclusions.  For example, in 26 parameter 

estimation studies they evaluated, they found that most studies failed two or more of the 

standards set forth by the Psychometric Society or by Hoaglin and Andrews.  They 

concluded that, while parameter estimation studies performed poorly, dimensionality 

studies performed even more poorly. 

 As noted previously, simulations are based on accepted psychometric models 

using standard techniques which give the appearance of validity.  The ideal-world model 

of these simulation designs, however, does not necessarily accurately capture true real-

world examinee behaviors.  Examinee response behavior is a complex process, yet 

educational measurement models typically fail to incorporate this complexity, as noted in 

Davey, Nering, and Thompson (1997). They have shown that less than 50% of the score 

variance is accounted for by 
ˆ .  Snow and Lohman (1989) have noted that the 

psychological processes underlying item responding are varied and complex and, 
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therefore, are far from simplistic processes; unfortunately, theoretical models may imply 

such simplicity inappropriately.  Snow and Lohman observe that measurement models do 

not adequately capture this complexity.  As such, the researcher can infer that inadequate 

measurement models create inadequate simulations as a result of using these models.   

 Given that only a small proportion of the variance in test scores is accounted for 

by 
ˆ , it is reasonable to assume that there may be additional factors influencing examinee 

test response behaviors.  In turn, these additional factors influence item response 

modeling, a key component used in simulations.  Nevertheless, many simulation studies 

in psychometrics have relied simply on the IRT model, and on potentially unrealistic data 

distributions.  Therefore, some simulation studies produce valid results and others do not.  

While this ambiguity could prove confusing to the reader, some resolution may be 

obtained by the level-of-analysis concept:  In some studies, the measures used and 

statistics employed may reveal differences between models, while other methods and 

analyses fail to reveal important differences, despite using the same models. 

2.1.3 Addressing IRT Simulation Limitations 

One method of examining simulation models is to create augmented models to 

improve the fit of simulated data to real data.  Augmenting measurement models with 

additional information may yield improved recovery of real examinee item responses.  

Davey, Nering, and Thompson (1997) found that by using multidimensional IRT 

(MIRT), they were able to more accurately replicate real examinee response outcomes 

than they could by using simple unidimensional IRT.  Davey et al. objected to violations 

of assumptions used in many published MC studies, citing three major, but often 

unsupported, assumptions.  First, item score regressions on proficiency are assumed to be 
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logistic, with monotonically increasing functions.  Unfortunately, this assumption may be 

incorrect, as nonmonotonically increasing functions have been found in research on this 

topic (Levine, 1984).  Davey et al. observed that a second problem with simulations is 

that item responses are assumed to be determined only by latent proficiency ( ), but this 

assumption has been determined to be inaccurate.  As noted earlier, even on well- 

constructed tests, proficiency typically accounts for less than half of score variance.  The 

third issue the authors address is that simulated item parameters used in response 

generation are unlikely to resemble real item parameters taken from actual examinations, 

and the misspecification can be substantial. 

 Despite these issues, Davey, Nering, and Thompson conclude that unidimensional 

data simulation is sufficiently similar to real data in several crucial ways: item passing 

rates, item test score correlations, number right score distributions, and test reliabilities. 

They state that typical unidimensional simulations may correspond to real data on the 

aforementioned traits, but they also say that more specialized analyses of interactions and 

other features may reveal nontrivial differences between the two data sources.  

Unfortunately, it seems the authors neither indicated any literature references nor clearly 

indicated specific empirical analyses used to support these claims.  Thus, the veracity of 

these claims is uncertain.  Nonetheless, Davey et al. found some potential support for 

simulation’s comparability to real data for select features.  Their complex 

multidimensional modeling, however, was able to capture the full battery of real 

examinee item response characteristics, leading the reader to conclude that simple 

unidimensional models have mixed capacity to mimic real-world item response 

behaviors. 
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Using a related idea to that of Davey et al., Stocking, Steffen, and Eignor (2001) 

found that augmented simulation models when compared to real data revealed differences 

at the detailed analysis level, but failed to reveal differences at the aggregate level.  

Similar to Davey et al.’s approach, Stocking et al. also used a modeling augmentation 

technique to improve simulations to more accurately reflect real examinee behavior.  

Unlike Davey et al., however, Stocking et al. attempted to model real data based on an a 

priori construct of modeling missing responses.  Stocking et al. proposed that these 

missing responses were the result of two situations:  items not being reached and 

examinees guessing at random.  They call their model the Test Taker Model (TTM), and 

it includes modeling of guessing at random responses and nonresponses of items not 

reached by the examinee.   

The authors discovered that discrete items yielded less guessing at random than 

did the set-based items.  They also found that those with the lowest proficiency estimates 

were more likely to finish the test versus those with high proficiency estimates.  

Unfortunately, they also found that their TTM based analyses had lower reliability than 

the more parsimonious 3PL modeling.  The authors propose that the lower reliability may 

have been the result of within-examinee behavior patterns such as dependencies between 

items on guessing at random behavior.  These dependencies were not modeled, and the 

authors suggested that perhaps guessing behaviors may be an intra-examinee effect, 

similar to a personality trait.  The authors found that their TTM worked well at modeling 

items not reached, with more accurate modeling than is accomplished using traditional 

multidimensional IRT (MIRT) methods.  Finally, the authors noted that the similarity 

between simulations modeled with traditional 3PL and their more complex TTM model 
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was high.  They stated that the 3PL is sufficient for modeling simulation data and that 

more complicated methods may not yield more accurately simulated data in every case.   

Proposing a theoretical basis for augmented modeling, Stocking, Steffen, and 

Eignor’s TTM model improved upon real data model fitting similarly to the less 

theoretical modeling shown in Davey et al. (1997).  While Davey et al. chose to use high 

dimensionality modeling with no a priori conceptualization, Stocking et al. chose to 

explicitly model two additional constructs which they assert influenced test taker 

response patterns.  While they had some success particularly with not-reached item 

responses, they did not find substantial improvements using a more complex simulation 

model over the more traditional 3PL model.  Thus, the IRT modeled simulations may 

accurately reproduce statistics for some basic analyses, but differences may be obtained 

when analyses are targeted at a finer level of detail. 

2.2 Modeling Cognitive Complexity 

 How these augmented IRT models were able to capture the additional information 

contained in real data is unclear.  The Davey et al. paper did not attempt to delineate what 

their enhanced model captured. They only sought to demonstrate that a MIRT type model 

could better replicate real data.  Stocking et al. did seek to specify two critical respondent 

behaviors which they believed impacted the real data simulation. While they were 

successful at the finer level of analysis, they failed to note any differences at the grosser 

level, such as overall scaled scores.  Therefore, the researcher is left to wonder what 

unmodeled constructs are hidden in real data that are not being captured by simulated 

data.  Snow and Lohman (1993) state that educational psychometric measurement (EPM) 

fails to incorporate modeling features of the cognitive complexity of examinee 
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responding behavior.  They note three important points about EPM models: (1) it is 

unknown if there is any substantive psychological justification for these models at the 

level of item performance; (2) the models often make simplistic assumptions about the 

psychology of items; and (3) the “psychology of the test as a whole is left implicit” (p. 

267) or is omitted entirely.  Indeed, the a priori justification of the IRT model does not 

exist, and validation is carried out ex-post facto based on outcomes obtained by the 

model.    

While IRT models suggest that knowing a given item’s parameters and an 

examinee’s  are sufficient to predict a response, cognitive and learning theories may not 

support that assumption.  In fact, Snow and Lohman note a number of studies refuting the 

IRT premise that simple proficiency is sufficient to predict all real examinees’ item 

responses.  Differing strategies on tests (French, 1965) and on items within tests (e.g., 

Sternberg & Weil, 1980) impact item response behavior.  Snow and Lohman assert that 

 
ˆ  is not indicative of a single latent proficiency; rather, it is a complex interaction of 

different types of knowledge, information processing, and strategies, some of which may 

vary across tests or persons.  The authors further assert that components of EPM models 

such as item difficulty are not likely to be unidimensional. They state that cognitive 

science predicts many sources of item difficulty which are rarely if ever modeled.  MIRT 

and other augmented or highly dimensional designs are attempts to reflect these 

complexities.  Snow and Lohman elaborated further on the many cognitive correlates that 

are often ignored in educational measurement.  Despite their warnings about the 

inaccuracy of overly simplistic EPM models, few published simulation studies utilize 

designs capturing this cognitive complexity.  Consequently, measurement models such as 
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IRT may be unable to fully capture real-world testing behaviors.  As such, simulations 

based on those models may fail to replicate real examinee responses.  There are, 

however, some extant models in the literature that attempt to capture the complexity of 

test responses, such as the Linear Logistic Test Model (LLTM).  The LLTM is based on a 

Rasch model linear combination of item properties, and allows for multiple item 

properties (e.g., de Boeck & Wilson, 2004).   Within LLTM, some authors have extended 

the model to encompass many non-cognitive components, which may improve modeling 

of some real-world data (e.g., Kubinger, 2009).  

2.3 Computer-Adaptive Testing Methods 

While numerous formats for CAT exist, the purpose of this study is a basic 

analysis of score comparability for simulated and real linear P&P test data as utilized in a 

post-hoc CAT format.  Post-hoc CAT formats use real examinee responses from real-

world data in a CAT format as if those responses were the CAT-examination derived 

responses.  This paper will examine the relatively simple item-level adaptive testing 

format, though many different formats exist (for an overview, see Wainer, 2000).  To 

clarify the process of item selection and scoring, it may be instructive to review the basic 

functioning of an adaptive test.  Simply stated, a traditional item-level adaptive test 

estimates  after each item is answered by the examinee.  The updated  
ˆ  determines 

which item is presented next by way of the information function.  That is, the item with 

the highest information value at that particular proficiency estimate, is the next item 

chosen. This iterative process continues on until some predetermined stopping point is 

reached, such as test precision (i.e., standard error of 
ˆ ) or number of items reached.  A 

generalized list of steps is presented below to clarify the process when assembling an 
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item level adaptive test with known item parameters (adapted from Wainer, 2000 and 

Mills & Stocking, 1996). 

1. Starting Rule: Some reasonable rule should be in place for how to begin the 

adaptive test, since items cannot be chosen by proficiency estimate, because 

there is no  
ˆ  at the beginning of the test.  Typically, items of moderate 

difficulty are chosen in a specified manner, such as random selection. 

2. Item Selection:  After the first few items are chosen, the examinee’s responses 

to items of known parameters permits calculation of estimated, provisional 
ˆ .  

Based on the provisional 
ˆ , the next item is selected using some kind of 

criterion, such as maximum information for that 
ˆ .  Given that maximum 

information is the target, an examinee’s response will determine the next 

appropriate item, with different selections resulting for correct versus 

incorrect responses. 

3. Test Completion:  After selecting the next item, and the obtaining a response 

from the examinee, the next item is selected and the process continues until 

the test precision threshold is met, or some other stopping rule is applied.  At 

the termination of the test, the final proficiency estimate is obtained using the 

complete set of item responses.  A numerical score is typically assigned to 

reflect the proficiency estimate. 

In IRT, item information functions provide a measure of a given item’s contribution 

to proficiency estimation at a given point in the  range.  Some additional information 

about the relationships between item parameters and information may be instructive (as 

outlined in Wainer, 2000).  Items with high pseudo-guessing (c) parameters contribute 
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less item information and what they do contribute is maximized on the proficiency 

continuum just above the difficulty (b) parameter.  Items with low discrimination (a) 

values are low on item information and do not contribute much to 
ˆ .  While high 

discrimination items (a) are desirable, they contribute the most information only in a 

narrow range of 
ˆ .  Information is the reciprocal of the squared standard error of 

estimation, SE( 
ˆ ).  Information is a function of relating item parameters to proficiency 

estimates. 
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'( ˆ) is the first derivative of 
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( ˆ)  with 

respect to  evaluated at  
ˆ  (both the formula and description are from Wainer, 2000).   

2.3.1 Simulations with Post-Hoc CAT Designs 

 Attempts to improve modeling precision have been met with mixed success.  In 

transitioning from traditional linear P&P testing to CAT designs, it is not uncommon to 

have a flurry of research activity designed to determine the comparability of a new CAT 

design to the P&P design.  Often, researchers employ simulated data in their CAT 

systems analyses (Mills & Stocking, 1996); some researchers may be able to utilize their 

existing P&P test data in a post-hoc CAT simulation (e.g., Weiss, 2005a; Wang, Pan, & 

Harris, 1999).  This method allows the researcher to determine the comparability of P&P 

outcomes to those of the new CAT design.   
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Wang, Pan, and Harris (1999) analyzed a post-hoc CAT design for Law School 

Admission Test data, comparing original  
ˆ  and CAT  

ˆ  as well as determining if a single 

administration was sufficient to obtain convergence at various precision levels.  Using 

969 actual examinees and 127 items (four sections with three major content domains) 

from the full test administration of the LSAT, they examined  
ˆ  recovery, and number of 

items necessary to complete a CAT at three levels of test precision, defined as standard 

error of measurement (SEM).  Using the 3PL maximum likelihood proficiency estimation 

and maximum information method, they used 127 items actually administered to the 

examinees as the total item pool for their CAT.  For the highest precision level, the 

authors found that 127 items were sufficient for estimating proficiencies for most, but not 

all, examinees.  Moreover, using the real test data through a CAT simulation did not 

result in adequate  recovery, except in the highest precision method.  The authors 

conclude that the small item pool negatively impacted their results.  Unfortunately, 

comprehensive cumulative data were missing, such as additional in-depth analyses and 

item information summaries.  The inclusion of all four LSAT operational sections on one 

test may also have made some results unclear given unmodeled multidimensionality 

effects.  Without CAT replications and no indication of programming specifics used to 

create the CAT, the reader is left without sufficient information for a critical review.   

One approach to improve simulation modeling is to add dimensions to the 3PLM 

without regard to any a priori categories.  This multidimensional approach can recover 

the complexity of real data more accurately than the simpler 3PLM. A similar approach is 

to add a priori categories to augment the 3PL model.  This approach has the benefit of 

conceptual categories for added parameters.  Utilizing real examinee responses in a CAT 
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simulation design addresses the limitations of more basic simulations and facilitates 

understanding of the comparability of outcomes when using real data in a CAT. 

Highly multidimensional modeling of real data may improve recovery of 

examinee responses, but it is an atheoretical position which may prove problematic when 

used on different types of data.  The problem of overfitting remains, and it may be a 

sufficiently significant limitation to diminish generalizability of this approach.  Adding 

only two new components, the a priori augmented modeling approach provides somewhat 

improved recovery of the original data structures; in most cases the improvements from 

the simpler 3PL model were relatively trivial.  These attempts to use real data to improve 

modeling for simulations did not address the use of real data directly within a CAT 

design.  Unfortunately, the post-hoc approach failed to utilize a rigorous methodology 

and failed to analyze the finer level differences between real and simulated data. 

Harwell et al. (1996) note the ubiquity and influence of measurement based 

simulations, yet they also note the failure of researchers to use rigorous scientific 

methods.   These limitations can lead the reader to doubt that simulations accurately 

represent real-world test taker behavior.  What is missing from the literature is a rigorous 

post-hoc CAT study comparing real examinee responses to simulated responses using 

sensitive statistical analyses such as RMSE to determine the extent to which simulation 

designs can recover important aspects of real examinee response behaviors. 
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Chapter III.  RESEARCH METHODS 

The research design seeks to evaluate the equivalency of proficiency estimates 

derived from simulated data to those derived from real data.  The basic design of the 

study includes two data types for comparison, real and simulated.  These datasets were 

utilized in post-hoc item-level CAT design as well as in creating artificial linear (P&P) 

tests, with three variable test lengths.  The results were analyzed using both broad and 

fine comparisons of  
ˆ  including bias, RMSE, and Pearson correlation.  In addition, 

summaries of classical test theory statistics for linear tests and item exposure rates for 

CAT designs were obtained. 

3.1 Data Considerations 

3.1.1 Real P&P LSAT Data 

Real examinee data were obtained from 20 administrations of the LSAT, a large-

scale standardized, linear, paper-and-pencil professional school admission examination.  

Data from the LSAT administrations were extracted only for the three Logical Reasoning 

(LR) item sets composed of approximately 50 scored and 25 unscored multiple choice 

items per administration.  The LR administrations were chosen because they are highly 

unidimensional, and a fundamental assumption of IRT is trait unidimensionality 

(Hambleton, Swaminathan, & Rogers, 1991).   

3.1.2 Creating the Synthetic Examinee 

 

To obtain a true estimate of proficiency as well as a CAT item pool requires a 

large number of items with real responses.  In this study, a large vector of item responses 

was required, but unavailable.  Therefore, it had to be created.  Searches of the literature 

did not locate any information on methods for creating a large item response dataset with 
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synthesized response vectors across test administrations.  Therefore, a method was 

developed for this study.  The goal was to maximize logical, reasonable choices while 

minimizing potential limitations.  To accomplish this task, the following key points were 

addressed:  the structure of the examination, the matching of response vectors, the 

completion of the full matrix, and the matching of the synthetic examinee across 

administrations.  

3.1.2.1  Structure of the Examination Data 

The first consideration in creating the synthetic examinee is to clarify the data 

structure of the examination administrations.  All scored data were obtained in two sets of 

approximately 25 scored items.  This combined 50 item set was administered to all 

examinees numbering from approximately 20,000 to more than 40,000 per 

administration.  During each test administration, one additional set of approximately 25 

non-scored items is administered to a subgroup of around 2,000 examinees.  Therefore, 

all examinees respond to about 50 items, and a small percentage respond to an additional 

25 items which are not scored.  These non-scored items are re-administered as a scored 

section in a subsequent test administration.  Thus, for a subset of examinees on a given 

test administration, approximately one-third of all items will be shared in common with a 

different administration. To illustrate the structure graphically, it may be helpful to 

review Figure 1.1.  The column size (i.e., length) represents the number of examinees and 

the colors represent items sets.  Blocks of the same color use the same items. 
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Figure 3.1  Example of the Structure of the LSAT Logical Reasoning Sections  

Set A Set B Set C

Set C Set D Set E

Set E Set F Set G

Administration 1

Administration 2

Administration 3
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3.1.2.2  Matching Item Response Vectors 

To match item responses vectors, it is necessary to obtain identical or nearly 

identical response strings.  While computer science and information theory provide some 

compelling methods called distance measures, a pilot study for this dissertation 

demonstrated inaccurate matching when analyzing simple binary vectors which have 

important position dependencies.  Instead of using these complicated methods, a simple 

overlap measure proved to be more effective at matching response strings.  Binary 

response vectors were compared by creating an overlap variable defined as the number of 

identical item responses located in the same item positions.  A simple example will 

illustrate the concept for response vectors of equal length.  

Let A = 1110111 and B = 1010101. The overlap measure between the strings is 5 

because 5 is the number of items matching in the same positions.  SAS software was used 

to calculate this variable for every response vector comparison. 

3.1.2.3  Creating the Complete Response Matrix 

If an examinee’s response pattern is nearly identical on a given set of items within 

an administration, then those examinees can be considered very similar in terms of 

proficiency as well.  The 3PL model requires moderately large numbers of examinees to 

facilitate stability of item parameter estimates.  Using these datasets in their original 

formats, it is impossible to utilize more examinees than are available in the non-scored 

linking section.  It is possible, however, to replicate the examinees available so as to 

complete the matrix as shown in Figure 2.  A and B are 25-item scored response vectors 

and C is the 25-item non-scored response vector administered only to the smaller subset 
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of examinees. The dotted line represents the replicated examinees from the non-scored 

items section. 

Figure 3.2.  Graphical Illustration of a Single Administration Dataset 

 

Replicated response vectors were added to the administration datasets by obtaining 

matches on item sets A and B for examinees with C responses.  For examinees with item 

set C responses, their A and B vectors will be matched with examinees with no C 

responses using the maximum response vector overlap approach.  If several examinees 

had patterns with the same overlap score, the following additional matching criteria were 

used in the designated order: gender, ethnicity, and age.  If more than one examinee 

matched on response patterns as well as on the additional demographic criteria, the final 
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matching vector was selected at random from among the extant perfect matches.  After 

obtaining the final matching vector, the section C item responses were copied to the 

matching A+B-only examinees, creating the full 75-item response set.  Therefore, 

response strings from the smaller set of items were used more than once to create the full 

matrices for each administration.  The best matching vectors were retained and added to 

the original full set of response vectors.  The resulting final matrix was set to be 

approximately 75 items by exactly 12,000 examinees, obtained by retaining the best 

12,000 matches.  Because the first dataset was the baseline dataset, it was reduced to its 

final number of 5,000 examinees immediately using random selection from among the 

best 12,000 examinees. 

3.1.2.4  Matching Between Administrations 

 Given the structure of the data, an ideal method of linking administrations 

(created as described in section 3.1.2.3) is by using the common items overlapping 

between them.  Matching using IRT-based methods would confound the analysis of IRT 

outcomes later.  Therefore, the goal was to create a method of matching response vectors 

between administrations without using IRT-based approaches.  Unfortunately, no such 

matching procedure was found in the literature or in practice.  Any researcher attempting 

to link datasets in this manner will have any number of options, but the researcher will 

likely need to keep computing time to a reasonable level; response vector matching 

across large datasets can use considerable computing resources.  Given that limitation, 

the goal was to create the best possible matches so that the resulting synthetic examinee 

will be as realistic as possible. 
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After the full data matrices were created, synthetic examinees were matched 

between administrations using the common-item response vectors.  The between- 

administration matching was accomplished by using the maximum overlap approach as 

described previously (section 3.1.2.2).  A number correct score for overlapping items was 

calculated for every examinee.  Examinee vectors were compared to vectors with the 

same number correct values, if possible.  This step was added to reduce the 

computational burden of comparing strings which are unlikely pattern matches because 

they have differing number correct scores.  Synthetic examinees’ non-scored vectors 

were randomly selected from the current administration dataset and matched with the 

scored response vector of the same items on the linking administration.  Failing to select 

the order of comparison randomly could result in unacceptably poor matches for the 

vectors at the end of the data file for which there would be far fewer match options.   

If the number of examinees available for comparison was greater than or equal to 

500, then matching was made directly from within that group.  If there were fewer than 

500 examinees available for comparison, then the pool of available comparison vectors 

was expanded to include vectors with number correct scores plus or minus one (±1) from 

the reference examinee.  If the newly expanded pool again failed to have 500 or more 

vectors available for comparison, then the pool was expanded again to include number 

correct scores of ±1 and ±2 the reference number correct.  Only vectors with the best 

overlap scores were retained for comparison.  If there was more than one matching vector 

with the same overlap value, demographic factors were used to refine the match.  The 

demographic factors used to augment the matching were the following: gender, ethnicity, 

and age.  If more than one match existed after these three additional data points were 
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added, a random selection procedure was used to choose the final match from among the 

perfect matches.  So that each examinee may be chosen only once, previously matched 

vectors were unavailable for subsequent matching.  This process continued until all 

examinees were matched.   

After completing the matching, the replicated item set was dropped from the 

dataset, retaining the best 5,000 cases.  These 5,000 examinees were chosen using the 

best matches from the within-administration matching procedure.  The final product of 

the first matching process, therefore, had 100 items and 5,000 examinees.  These 5,000 

examinees were subsequently matched to the next matching synthesized 12,000-

examinee dataset.  Matching the 5,000 to 12,000 avoids the problem of having to match 

to more poorly matching vectors which would be the result if each vector had only a one-

to-one match option.  After all matching between datasets was completed, 550 items were 

obtained with 5,000 synthetic examinees.  This dataset was retained as the real, 

synthesized dataset.  

3.1.3 Data Calibration and Proficiency Estimation 

 

 BILOG-MG 3.0 for Windows
®
 (Zimowski, Muraki, Mislevy, & Bock, 2003) was 

used to obtain proficiency estimates and item parameters from the synthesized dataset.  

The program option for the 3PL model was used, because it is a commonly used model in 

educational measurement.  Fixing the item parameters, the examinees’ proficiencies were 

estimated using Bayesian expected a posteriori (EAP) methods. Because of the large 

number of items utilized, the proficiency estimates are considered to be reliable 

indicators of the examinees’ true proficiencies.  Sixteen items failed to converge and 

were dropped from the analysis to facilitate convergence and adequate fit. 
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3.1.4 The Simulated Data 

As stated previously, simulation designs utilize data created by using randomly 

drawn variables from specified distributions.  A set of typical steps were taken to 

simulate item response data.  The sample size of 5,000 was set to mimic our real data set.  

The simulee values for  were used from the proficiency distribution obtained from 

scoring the real data.  Using the real  ensures that simulated data most closely conform 

to the real data specifications. 

Harwell et al. (1996) state that randomly generated item parameters are 

particularly unrealistic, often resulting in combined a, b, and c item parameters which are 

unlikely in real item calibrations.  Therefore, item parameters from the calibration output 

of the real data were utilized.  Substituting the true proficiency values and item 

parameters into the 3PL equation creates a matrix containing the probabilities for simulee 

i on item j (represented as pij).  Therefore, the generated matrix was of dimensions 5000 x 

534.  From this matrix of probabilities based on  
ˆ  and item parameters, the matrix of 

binary scored response values was created using a random univariate distribution for 

comparison.  Using the SAS random univariate (RANUNI) option, a univariate data 

distribution was created with values in the range (0,1).  As described by Fan, Felsovalyi, 

Sivo, and Keenan (2001), the SAS RANUNI option utilizes a congruential generator 

which Harwell et al. (1996) describe as desirable for simulations due to their facility at 

producing sufficiently random data for simulation accuracy.  To complete the data 

simulation matrix, a value from the univariate distribution (uij) was randomly selected 

and compared to the model-derived pij matrix value.  If the selected value was less than or 

equal to the value of pij then the item was scored as correct (indicated by a “1”).  Random 



29 

 

values greater than pij were scored as incorrect (indicated by a “0”).  Once the data matrix 

was created in this manner, it was used as one simulated dataset. 

To reduce potential sample bias in simulations, it is common to create many 

replication datasets.  Harwell et al. (1996) recommend that replications reflect the design 

used for the study, increasing or decreasing based on the demands of the study variables.  

For most IRT studies, Harwell et al. recommend a minimum of 25 replications, though 

they admit that the number could be much higher for some studies.  Statistical power is 

also affected by the number of replications, with too few providing insufficient power.  

To ensure the smallest amount of sampling bias, to obtain adequate power, and to satisfy 

the requirements of inferential analyses, the total number of replicated datasets created 

was 100.   

3.2 Number of Items 

 The number of items used in any examination is often a compromise between 

examinee burden and proficiency estimation efficiency and precision.  Computer-

adaptive tests can target items for maximal information at a given examinee’s proficiency 

level, but linear P&P tests are unable to utilize such efficiencies.  For both CAT and P&P 

tests, the optimal number of items is typically the minimum number necessary to obtain 

stable proficiency estimates for all examinees while keeping within time and other 

constraints. The current LSAT P&P examination uses 50 scored LR items.  To determine 

the optimal number of items for CAT and linear tests using both real and simulated data, 

item numbers were manipulated based on the P&P test length such that 50%, 70%, and 

100% length tests were examined.  As such, the number of items examined was as 

follows: 25, 35, and 50. 
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3.3 Artificial Computer-Adaptive Test 

 Neither the simulated nor real data were obtained from computer-adaptive test 

administrations. The real data were taken from the LSAT, a paper-and-pencil linear test; 

the simulated data are generated data, never administered to any examinees in reality.  To 

determine the comparability of  
ˆ  from the original datasets in a CAT requires that both 

types of datasets be used to simulate an examinee’s (or simulee’s) progress through the 

CAT.  Given that the simulated datasets were replicated 100 times, both the simulated 

and real data were used in a CAT exam format 100 times.  To facilitate this step, an 

existing software application, POSTSIM 2.0, from Assessment Systems Corporation 

(Weiss, 2005b) was utilized.  The program output includes detailed CAT simulation 

information including  
ˆ  for each examinee/simulee.  Both real and simulated data were 

utilized in the post-hoc CAT format examinations. 

To start the CAT, examinees were assumed to have no proficiency estimates, so 

the CAT software was set to use some simple method to select initial items.  For this 

CAT, five items were randomly selected from among the 200 items with the highest 

information values.  Responses to these items allowed the program to calculate a 

provisional  
ˆ  so that traditional maximum information item selection procedures could 

be used to choose subsequent items to administer.  Proficiency estimates were obtained 

using the Bayesian EAP method.  The CAT stopping rule was defined by the three test 

lengths noted previously.  Records of items used were retained to provide item exposure 

summaries. 

3.4 Artificial P&P Linear Test for Simulated Data 
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 Unlike  
ˆ -targeted CAT item selection, a linear test must use items with a broad 

spectrum of item parameters in the hope that they will provide sufficient information for 

the full distribution of examinee proficiency.  Therefore, the simulated linear tests used 

items selected from a stratified sample of items which were ordered by traditional 

proportion correct (p-plus) difficulty values.  Depending on the test length manipulation, 

a suitable number of equally-spaced strata were created and used to randomly select 

items from within each stratum.  One item from each stratum was randomly chosen and 

that item was included on the linear test until the test length specification was reached.  

Once artificial linear tests were created, the items used in real datasets were used to create 

linear tests for the 100 simulated datasets.  Using the same linear items will facilitate 

direct comparison of results between real and simulated data.  Since there are 100 

simulated datasets and three test lengths, 300 simulation data linear tests were created.   

3.5 Manipulations and Outcomes 

 CAT and linear testing formats, real and simulated data types, and three test 

lengths were manipulated to illustrate differences to the main outcome measure, 

estimated proficiency.  Additional outcome variables such as proportion correct, biserial 

correlations, and relative test efficiency were included to augment the proficiency 

summaries.  Specific manipulations are described in the following section. 

3.6 Data Types and Scoring Method 

A comparison between CAT and linear forms of both types of data were 

completed to show summaries of proficiency estimates and item exposure rates.  

Proficiency estimates were obtained using EAP methods.  Item exposures will be 

summarized to show how often items are administered to examinees.   
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3.7 Analyses and Comparisons 

 Analyses were of two types, broad and fine.  Broader analysis included 

proficiency means as well as correlations.  For linear tests, classical item difficulty (p-

plus), discrimination (biserial correlations), and  
ˆ  will be summarized with means and 

standard deviations as well as Pearson correlations for all conditions.   

 Finer level analyses examined  estimation recovery for simulated data as 

compared to the real data.  Both bias and root mean squared error (RMSE) measure 

differences between estimated and true parameter values.  Bias is represented by the 

following formula: 

  
Bias=

( ˆ
i i

)
i=1

N

N
 

where 
  
ˆ

i
is the estimated proficiency for simulee i; is the true proficiency parameter 

derived from the full data matrix; i is the simulee index; and N is the total number of 

simulees. 

The following equation represents the RMSE formula for comparing the real  to 

 
ˆ  from replicated sampling: 

  

RMSE =
j

K
ˆ

i( )
2

i=1

N

N
K  

where j=replication index and K=total number of replications. 

 The standard error, SE( 
ˆ ), statistic was calculated as listed below.   
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Standard Error ( ˆ) =
1

I( ˆ)
 

Detailed information will be helpful in illustrating any potential differences:  Analyses 

included calculations for standard error, bias, RMSE, and Pearson correlations.  

Examinee-level factors were analyzed for each simulee by calculating the empirical 

standard deviation of the  
ˆ  across replications and comparing this value to the calculated 

mean standard error statistic.  This analysis illustrates the accuracy of the mean standard 

error statistic versus an empirical standard deviation of  
ˆ  across replications.   

 Finally, relative efficiency is a measure of the efficiency with which a given test 

measures proficiency.  It is calculated using the following formula which utilizes the 

  I( ) function noted previously. 

  

RE( ) =
IA( )

IB( )
, 

where   RE( ) denotes relative efficiency   IA( ) and   IB( )  are the information functions for 

tests A and B defined over the common proficiency scale,  (Hambleton, 1993).  The 

interpretation of the relative efficiency value would be such that a value of 2.0 would 

denote that test A has twice the cumulative information as test B; a value of 1.0 would 

denote that test A and test B have the same cumulative information; and a value of less 

than 1.0 would denote that test B has more cumulative information than does test A.   
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CHAPTER IV. RESULTS 

 In this study, 904 different datasets were created and analyzed for both real and 

simulated data, within linear and computer-adaptive administration formats, and with 

three test lengths (see Table 4.1 for summary).  Each of these three test lengths comprised 

the following datasets: a linear test using the real data, a linear test using the simulated 

data, a CAT test using the real data, and a CAT test using the simulated data. For this 

paper, the term “real data” refers to the data from the artificially synthesized dataset 

which was created from the true LSAT data as described in the previous methodology 

section.  The real data were used as they are, from the one synthesized real LSAT dataset.  

For simulated data, all datasets were simulated using the parameters taken from the 

synthesized dataset.  Linear tests used the items selected in advance, whereas CAT tests 

were assembled real-time from the pool of 534 items.  Each of the 100 CAT tests used 

one of the 100 simulated datasets, resulting in 100 total simulated data computer-adaptive 

tests. The one real dataset was used 100 times by CAT, with each iteration choosing 

items as dictated by the maximum information algorithm.  Additionally, the real dataset 

of 534 items was analyzed.  

Table 4.1  

Summary of Datasets Used in Analyses 

Dataset Number of 

Test Items 

Iterations of 

Each Test 

Total Datasets 

Full Synthetic Dataset 534 1 1 

Linear Format-Real Data 25, 35, 50 1 3 

Linear Format-Simulated Data 25, 35, 50 100 300 

CAT Format-Real Data 25, 35, 50 100 300 

CAT Format-Simulated Data 25, 35, 50 100 300 

TOTAL   904 
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4.1  Complete Synthetic Examinee Data 

 As described in the methodology section, the complete matrix of synthetic 

examinees was created from the original examination data.  The final number of items 

was 534 and the final number of examinees was 5,000. The resulting unique number 

correct raw scores and proficiency estimates are summarized in Table 4.2.  The data were 

analyzed by sorting the data from lowest proficiency estimate to highest and assigning 

each group of 500 ordered cases a group value for a total of 10 groups.  Additional 

summaries throughout this study also utilized this grouping method.  With 87 unique 

proficiency estimates, Group 1 had the largest number of unique values.  Group 10 had 

the second largest number of unique proficiency values at 41.  Groups 1, 2, 3, 5, 9, and 10 

were found to have 15 or more unique proficiency estimates, whereas Groups 4, 6, 7, and 

8 had fewer than 10 unique values.  Group 4 had only 4 unique values, and Group 8 had 

only 5, giving these two groups the smallest number of unique proficiency estimates.  

These unique proficiency values may impact the analyses of results in this study, as 

within-group analyses with fewer values will result in less variation. Smaller proficiency 

variance values result in smaller summary statistics such as standard deviation.  For the 

additional summary of the complete matrix data, the following statistics for the full 

synthetic matrix are reported: Classical proportion correct (i.e., p-plus) and biserial 

correlation for linear test data, and IRT descriptive statistics for proficiency estimates, 

item parameters, and item information. 

4.1.1 Complete Synthetic Matrix Classical Test Indices 
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 Table 4.3 presents a summary of the mean, standard deviations, and median of 

examinee-level p-plus for the complete synthetic matrix. In addition, the overall biserial 

correlation was computed but will be reported only in the text.  As expected, the 

Table 4.2 

 

Complete Matrix Summary of Unique Proficiency Estimates and Number Correct 

 

Group Unique Raw Score 

Values 
Unique  

ˆ  Values 

1 65 87 

2 29 20 

3 23 17 

4 18 4 

5 14 16 

6 9 8 

7 16 7 

8 8 5 

9 13 17 

10 29 41 

ALL 224 222 

 

examinee p-plus values increased as examinee proficiency increased.  In Group 1, the 

lowest proficiency group, the mean p-plus value was 0.286.  In Group 10, the highest 

proficiency group, the mean p-plus was 0.944, an increase of 0.658.  This outcome is 

expected for all test groups in this study because it is reasonable that more able 

examinees would mark a larger proportion of items correctly. Within the proficiency 

groups, the standard deviations were found as expected, (i.e., with greater score 

variability in the tails of the score distribution and less variability in the center).  The 

overall p-plus mean of 0.681 indicates moderate item difficulty (Crocker & Algina, 

1986).  The item-level biserial correlation, which is a classical measure of item 

discrimination, was calculated to have a mean value of 0.562 with a standard deviation of 

0.190 and a median biserial value of 0.566. These values indicate an appropriately 
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moderate discrimination levels for this set of items (Crocker & Algina).  Group-level 

calculations were not completed for any correlation indices because of the problem of 

range restriction which creates inaccurate correlation results (e.g., Bobko, 1983; Lord & 

Novick, 1968).  Groups 1, 2, and 10 showed the largest standard deviation (SD) values 

for proportion correct, indicating greater variation in scores for these groups. 

Table 4.3   

Full Synthetic Dataset Proportion Correct Statistics by Group 

Group Mean SD Minimum Median Maximum 

1 0.286 0.076 0.078 0.288 0.420 

2 0.470 0.034 0.404 0.480 0.512 

3 0.570 0.022 0.512 0.570 0.616 

4 0.636 0.021 0.606 0.636 0.676 

5 0.692 0.017 0.664 0.698 0.716 

6 0.728 0.015 0.712 0.728 0.750 

7 0.777 0.015 0.750 0.778 0.818 

8 0.833 0.014 0.818 0.826 0.866 

9 0.874 0.018 0.832 0.876 0.896 

10 0.944 0.025 0.896 0.940 1.000 

ALL 0.681 0.191 0.078 0.712 1.000 

 

4.1.2 Linear Test Classical Indices 

 As with the full synthetic dataset, classical item level p-plus and biserial 

correlation indices were calculated for the three linear format tests.  The item level p-plus 

summaries are presented in Table 4.4, Table 4.5, and Table 4.6.  As expected, mean p-

plus values increased as proficiency increased and the standard deviation is larger 

towards the middle groups and smallest at the extremes.  The overall mean p-plus 

increased slightly as test length increased from 25 items (0.631) to 35 items (0.637) to 50 

items (0.638).  The overall p-plus SD was 0.185 for the 25-item test, and a similar but 
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smaller 0.178 for the 50-item test. The 35-item test p-plus SD, however, was 0.192 which 

was the largest overall SD of the three test lengths.  Similarly, the biserial correlations for 

the 25- and 50-item tests were quite similar at 0.615 and 0.616 respectively, while the 35-

item biserial dropped to 0.592.  In this case, the 35-item test demonstrated reduced 

discrimination ability which can negatively impact the stability of proficiency estimation 

procedures. These results indicate that the linear tests performed basically as expected 

with some deviation from expected patterns shown for the 35-item test. 

Table 4.4  

 

Linear Test Real Data Classical Indices – 25 Items  

 

Group P-plus Mean SD of P-plus 

1 0.237 0.164 

2 0.397 0.227 

3 0.489 0.237 

4 0.566 0.237 

5 0.629 0.235 

6 0.693 0.224 

7 0.744 0.211 

8 0.800 0.186 

9 0.858 0.156 

10 0.931 0.103 

ALL 0.631 0.185 
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Table 4.5  

Linear Test Real Data Classical Indices – 35 Items 

Group P-plus Mean SD of P-plus 

1 0.252 0.167 

2 0.420 0.219 

3 0.509 0.229 

4 0.576 0.230 

5 0.635 0.229 

6 0.685 0.228 

7 0.730 0.222 

8 0.779 0.206 

9 0.827 0.190 

10 0.893 0.158 

ALL 0.637 0.192 

 

Table 4.6  

Linear Test Real Data Classical Indices – 50 Items 

Group P-plus Mean SD of P-plus 

1 0.233 0.140 

2 0.406 0.196 

3 0.494 0.211 

4 0.566 0.217 

5 0.625 0.219 

6 0.678 0.217 

7 0.724 0.211 

8 0.771 0.196 

9 0.820 0.175 

10 0.888 0.129 

ALL 0.638 0.178 

 

4.1.3  Full Matrix IRT Results 

 IRT results include calculations of proficiencies, standard errors, item parameters, 

bias, and RMSD.  Table 4.7 summarizes the results of the IRT proficiency values by 

group.  The expected mean for a proficiency distribution is 0.0 and the expected standard 

deviation is 1.0.  The table shows that, for the full synthetic examinee dataset, the overall 
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mean is -0.003, and the standard deviation is 1.014.  These values are similar but not 

identical to the expected values of 0 and 1.  At 0.695, the group with the highest score 

standard deviation is Group 1, the lowest proficiency group.  The SD for Group 1 is 

several times the size of the next largest SD and indicates a large variation in scores 

within that group.  The smallest SD was found within Group 4 and Group 8, both found 

to have a very low SD value of less than 0.001.  Both of these groups are the moderately 

low and moderately high ability groups and the proficiency score homogeneity within 

these groups is very high (as noted previously in Table 4.2).  Similarly, Group 4 had the 

smallest standard error value at 0.002, and Group 8 had the second smallest SE value of 

0.006.  Both groups had notably smaller values than all other groups.  

Table 4.7      

Full Synthetic Matrix Proficiency Estimate Statistics (n=5,000)               

 

Group 
 
ˆ    

SD ˆ( )  
  
SE ˆ( )  

1 -1.940 0.695 0.113 

2 -0.884 0.214 0.034 

3 -0.707 0.088 0.046 

4 -0.247 0.000 0.002 

5 -0.167 0.122 0.092 

6 0.233 0.032 0.048 

7 0.283 0.124 0.014 

8 0.741 0.000 0.006 

9 0.981 0.224 0.078 

10 1.680 0.228 0.187 

ALL -0.003 1.014 0.062 

 

The largest SE value of 0.187 was found in Group 10, and Group 1 had the second largest 

SE value of 0.113.  In the remaining groups, the values ranged from 0.034 to 0.092.  The 

overall mean SE was calculated to be 0.062.  For Groups 2 and 8, the small mean 
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standard error results indicate that proficiency estimates in these groups have less error 

associated with the values than would higher SE values, such as those found in Group 1 

and Group 10.  The latter two groups have proficiency estimates that have been 

calculated with a higher level of error. 

 Item parameter mean and standard deviation values for a test are an indication of 

item difficulty (a), discrimination (b), and pseudo-guessing (c).  In Table 4.8, the overall 

full synthetic matrix item parameter values are summarized, along with the values for the 

three linear subtest forms.  For the full synthetic matrix, the mean a-parameter value of 

0.840 indicates a moderately high degree of item discrimination; the b-parameter mean is 

-0.506 and are, therefore, of moderate difficulty overall; the mean c-parameter value of 

0.056 indicates that pseudo-guessing is fairly low (see Crocker & Algina, 1986).  The 

pseudo-guessing parameter outcome can be interpreted as follows: On average, 

approximately 5.6% of low-ability examinees will answer an item correctly by guessing.   

The 25-item test had a mean a-parameter value of 0.940 which indicates a fairly 

high degree of discrimination. On the same test, the mean b-parameter was -0.582, 

indicating that items were moderately easy.  The mean c-parameter was 0.061 indicating 

that approximately 6.1% of low-ability examinees will answer correctly by guessing.  

The 35-item test had a mean a-parameter of 0.815, indicating a fairly high level of 

discrimination. The mean b-parameter for the 35-item test was -0.394 which can be 

interpreted as moderately easy.  Among the three shorter test lengths, this b-parameter 

value is the closest to zero and is the value most different from the other means.  The c-

parameter mean for this test was 0.049, a slightly smaller value than was found for the 

25-item test. The 50-item test had a mean a-parameter of 0.816 indicating a fairly high 
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level of discrimination. The mean b-parameter for the 50-item test was -0.532 which 

indicates that items were moderately easy.  The 50-item mean c-parameter was found to 

be 0.036.  

Table 4.8      

Linear Test Item Parameter Descriptive Statistics by Test Length 

Test  a   
SD a( )  

 b   
SD b( )  

 c   
SD c( )  

25 0.940 0.651 -0.582 1.078 0.061 0.097 

35 0.815 0.611 -0.394 1.973 0.049 0.084 

50 0.816 0.570 -0.532 1.265 0.036 0.061 

534 0.840 0.542 -0.506 1.797 0.056 0.088 

 

Comparing the three tests, the a-parameter standard deviation was highest for the 

25-item test at 0.651, and lowest for the full 534-item test, at 0.542.  The longer the test 

length, the more the a-parameter standard deviation decreased.  Unlike the a-parameter 

patterns, the b-parameter standard deviation was largest for the 35-item test at 1.973. The 

second largest b-parameter standard deviation of 1.797 was found for the 534-item full 

test.  The smallest b-parameter standard deviations resulted from the 50-item (1.265) and 

25-item (1.078) tests.  These results indicate that, after taking test length into account, the 

three test lengths have different characteristics.  A potentially important reason for the 

somewhat erratic item parameter patterns is the imperfect item selection procedure. The 

three linear test length item sets were created using a random within-bin selection 

procedure which resulted in tests which were dissimilar in terms of item performance.  

The three real data linear tests were dissimilar to each other and dissimilar to the full 

matrix dataset in terms of item parameter means and standard deviations.  As such, any 

analyses of differences between these short tests should be made with that understanding 
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in mind.  In particular, the 35-item dataset demonstrated a b-parameter mean and 

standard deviation that is notably different from the other two short tests as well as the 

full matrix dataset.  Thus, comparisons between the three short tests should be made with 

caution. 

 Test Information.  The adjusted test information presented in Figure 4.1 for the 

25-item test length and Figure 4.2 for the 35-item test length, and Figure 4.3 for the 50-

item test length, is the test information divided by the number of items. This adjustment 

puts the test information on the same scale and, therefore, provides a more direct 

information comparison across test lengths.  Figure 4.1 illustrates the generally stable 

information function, though with some variability particularly in the lower proficiency 

range. As expected, information is higher towards the middle proficiency range and lower 

towards the tails or extreme proficiency values.  Generally, most of the values seem to 

fall between 0.3 and 0.5 with some outliers, and the aforementioned decline in the tails.  

More information variability is apparent in the lower proficiency tail of the distribution.  

In addition, the adjusted means were calculated with the result that the 25-item linear test 

adjusted mean was 0.330 with a standard deviation of 0.111. 

 For the 35-item test, Figure 4.2 illustrates the results which indicate that most of 

the adjusted information values range between 0.2 and 0.4 with the predictable decline in 

the tails. The rightmost higher proficiency tail lost information more gradually compared 

to the lower proficiency tail which lost a large amount of information over a small area.  

Near the middle of the distribution there was a spike of information for a narrow band of 

proficiency, and high variability can be seen in the low proficiency tail.  Within the lower 

proficiency tail, there are some higher spikes in information, which would not generally 
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be an expected outcome.  The 35-item adjusted mean information was 0.270 with a 

standard deviation of 0.104, a mean which is smaller than was found for the shorter 25-

item test.  

Figure 4.1  Information for 25-Item Linear Test Adjusted for Test Length 
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Figure 4.2  Information for 35-Item Linear Test Adjusted for Test Length 

 

 The 50-item linear test is summarized in Figure 4.3.  Most of the values appear to 

fall between 0.3 and 0.5, with a few narrow peaks reaching 0.7 or above. The distribution 

does not appear to be a normal distribution. As with the other test lengths, the higher 

proficiency information gradually declines, compared to the sharp decline in the lower 

proficiency tail.  The overall adjusted mean information was calculated to be 0.292 and 

the standard deviation was 0.154.  The adjusted overall mean value is the middle value of 

the three test lengths, with the 25-item test having a larger mean and the 35-item test 

having a smaller mean. 
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Figure 4.3  Information for 50-Item Linear Test Adjusted for Test Length 

 

4.2  Comparisons Across Administration Format and Data Types 

 Comparing real and simulated data conditions are an important focus of this 

study.  Specifically, it is important to compare linear and CAT formats using real data 

and simulated data in each, and by using each test length to obtain and compare 

proficiency estimates, bias, RMSD, item information, and relative efficiency. Traditional 

linear tests are targeted broadly so as to have a suitable number of items with target 

information at every proficiency level.  Item-level CATs of the type used in this study 

select highly informative items based on the examinees’ constantly updated proficiency 

estimates. Differences found between linear and CAT formats demonstrate the impact of 

each assessment modality on examinee outcomes.  To minimize confusion given the 

multiple levels and conditions in this study, the following shorthand notation will be used 
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to indicate various conditions in this paper: Linear-Real denotes the linear test format 

using real data; Linear-Sim denotes the linear test format using simulated data; CAT-Real 

denotes the computer-adaptive testing format using real data; CAT-Sim denotes the 

computer-adaptive testing format using simulated data. 

4.2.1 Proficiencies: Real Data Compared to Simulated Data 

 As one would expect, within both CAT and linear formats, real and simulated 

datasets differed in their proficiency estimation results.  Tables 4.9 – 4.12 summarize 

proficiency values for the full matrix simulated data as well as complete comparison 

tables for the three test length conditions.  Figures 4.4 – 4.6 demonstrate these results 

visually.  Table 4.9 refers to the full, simulated matrix proficiency overall summaries, 

which demonstrate that the mean of 0.000 and SD of 1.001 are similar to the real full 

dataset values of -0.003 and 1.014, respectively (see Table 4.7).  Overall standard error 

(SE) values are smaller for the simulated data, with a mean of 0.034 versus the full 

synthetic matrix SE mean of 0.062.  The largest group SE differences between the 

original synthetic matrix and the simulated data were found in the lowest and highest 

groups, Group 1 and Group 10.  Differences in standard deviation values were also 

largest in Group 1 and Group 10. 

 25-Item Condition.  Table 4.10 contains a summary of the 25-item proficiency 

estimates. Figure 4.4 graphically illustrates the results of the 25-item test length. In the 

graph, proficiency means across groups can be seen to follow each other closely across 

groups within each test condition. Some between-condition deviation can be noted in the 

higher ability groups, such as Groups 9 and 10 where real and simulated data showed 

increasingly divergent values.  Differences between real and simulated data for the linear 
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Table 4.9      

Full Simulated Matrix Proficiency Estimate 
 

ˆ( )  Statistics (n=500,000)       

Group 
 
ˆ    

SD ˆ( )  
  
SE ˆ( )  

1 -1.913 0.663 0.066 

2 -0.887 0.226 0.004 

3 -0.720 0.093 0.006 

4 -0.246 0.000 0.001 

5 -0.163 0.175 0.022 

6 0.246 0.000 0.001 

7 0.283 0.121 0.017 

8 0.740 0.000 0.006 

9 0.985 0.230 0.066 

10 1.679 0.259 0.153 

ALL 0.000 1.001 0.034 

 

Figure 4.4.  Proficiency by Group for 25-Item Test 
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Table 4.10  

Examinee Proficiency Estimates ( 
ˆ ) for 25-Item Tests 

 Linear CAT 

 Real Simulated Real Simulated 

Group 
 
ˆ    

SE ˆ( )  
 
ˆ    

SE ˆ( )  
 
ˆ    

SE ˆ( )  
 
ˆ    

SE ˆ( )  

1 -1.673 0.461 -1.668 0.445 -2.118 0.410 -2.208 0.350 

2 -0.948 0.339 -0.976 0.342 -0.915 0.167 -0.939 0.164 

3 -0.563 0.310 -0.627 0.315 -0.554 0.149 -0.622 0.151 

4 -0.294 0.294 -0.319 0.292 -0.313 0.144 -0.319 0.145 

5 -0.010 0.307 -0.068 0.301 -0.037 0.151 -0.095 0.148 

6 0.152 0.318 0.172 0.321 0.111 0.160 0.156 0.166 

7 0.247 0.327 0.410 0.345 0.331 0.181 0.383 0.186 

8 0.590 0.369 0.674 0.380 0.662 0.220 0.694 0.225 

9 1.000 0.426 1.010 0.429 1.207 0.317 1.086 0.295 

10 1.605 0.533 1.531 0.519 1.997 0.471 1.860 0.441 

ALL 0.011 0.368 0.014 0.369 0.037 0.237 0.017 0.227 

 

test condition are trivial, demonstrating notably close fitting lines.  Referring to Table 

4.10, within the 25-item test format the overall linear real and simulated proficiency 

estimates were quite similar at 0.011 and 0.014, respectively. Standard error (SE) values 

for both types of linear data were nearly identical overall at 0.368 for real data and 0.369 

for simulated data.  The CAT values for real and simulated data, however, differed by 

0.020, with the simulated data having the smaller mean of 0.017 compared to 0.037 for 

the real data mean. Within the groups, for linear data, Group 7 demonstrated the largest 

mean proficiency difference between real (0.247) and simulated (0.410) conditions at 

0.163. The smallest linear condition real-to-simulated mean proficiency difference was 

found for Group 1 at 0.005, with -1.673 for real data and -1.668 for simulated data.  For 

the CAT format condition, the largest mean proficiency difference on the 25-item test 

was found for Group 10 at 0.137, with real data at 1.997 and simulated data at 1.860.  
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The smallest CAT condition mean difference was found for Group 4 at 0.006.  Overall 

mean SE values within the CAT condition were comparable except for Groups 1, 9, and 

10, which differed by 0.060, 0.022, and 0.030, respectively.  The real data had a slightly 

higher overall mean SE of 0.237 versus the simulated data mean SE of 0.227.  

35-Item Condition.  For the 35-item test, Figure 4.5 shows that the real and 

simulated data are not identical in that the linear condition lines are not completely 

overlapping.  In particular, linear Groups 2, 8, and 9 show the largest distances between 

lines. Line distances between real and simulated data for CAT tests are smaller than for 

linear, but do not overlap completely, with Group 8 showing a clear gap between lines.   

Linear-Real to Linear-Sim results are somewhat erratic with very large and very small 

differences found (see Table 4.11).  The overall proficiency mean for the real data linear 

test was -0.034, whereas the simulated data mean was 0.012, resulting in an absolute 

difference of 0.046.  This linear test difference is much higher than the CAT real to 

simulated difference of 0.005 (0.016 – 0.011).  As expected, the calculated SE of 

proficiencies across datasets decreased for the middle groups and increased at the 

extremes. The calculated SE for that group differed by 0.010. 

 For the linear format, the simulated data produced lower standard errors across 

the groups than did the real data.  For the CAT format condition, the real data SEs were 

very slightly smaller than the simulated data SEs, except in the higher and lower groups 

where the real data produced larger SE results than did the simulated data.  Group mean 

proficiency differences for the 35-item test were rather large, with Group 9 in the linear 

format condition showing the largest difference between real and simulated data at 0.123.  

Within the linear format, Group 2 also showed a large 0.109 mean proficiency difference, 
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while Group 7 showed a notably small difference of 0.001.  The real versus simulated 

CAT condition showed no real pattern agreement with the linear condition on the mean 

differences within groups with the exception of Group 9 which had the second largest 

difference at 0.083, similar to the linear condition.  The largest CAT condition group 

difference was found for Group 1 at 0.101, with a CAT-Real condition value of -2.113 

and a CAT-Sim condition value of -2.012. The smallest group difference of 0.005 for the 

35-item CAT condition was found for Group 8, with 0.685 for CAT-Real and 0.690 for 

CAT-Sim.   

Table 4.11  

Examinee Proficiency Estimates ( 
ˆ ) for 35-Item Tests 

 Linear CAT 

 Real Simulated Real Simulated 

Group  
ˆ  

  
SE ˆ( )   

ˆ  
  
SE ˆ( )   

ˆ  
  
SE ˆ( )   

ˆ  
  
SE ˆ( )  

1 -1.780 0.391 -1.741 0.380 -2.113 0.379 -2.012 0.284 

2 -1.054 0.302 -0.945 0.291 -0.904 0.143 -0.934 0.143 

3 -0.659 0.281 -0.608 0.276 -0.569 0.130 -0.632 0.133 

4 -0.390 0.273 -0.328 0.259 -0.256 0.127 -0.315 0.129 

5 -0.100 0.279 -0.071 0.285 -0.063 0.133 -0.100 0.132 

6 0.190 0.309 0.193 0.311 0.084 0.143 0.158 0.149 

7 0.426 0.340 0.427 0.340 0.313 0.161 0.376 0.165 

8 0.605 0.370 0.680 0.382 0.685 0.198 0.690 0.199 

9 0.875 0.411 0.998 0.430 1.155 0.268 1.072 0.255 

10 1.543 0.510 1.519 0.506 1.822 0.374 1.809 0.369 

ALL -0.034 0.347 0.012 0.346 0.016 0.206 0.011 0.196 
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Figure 4.5.  Proficiency by Group for 35-Item Test 

 

50-Item Condition.  Table 4.12 shows that for the 50-item linear condition, the 

overall mean proficiency differed by 0.005 between real and simulated data types.  

Within the CAT condition, the absolute difference between real and simulated data was 

0.008.  The Figure 4.6 graphically illustrates the differences between data types for each 

testing condition. While the linear test condition performed similarly for real and 

simulated data in the lower proficiency groups, the means diverged at Groups 3 and 10.  

Within the CAT condition, the line distance is small in the lower proficiency groups, but 

the distance increases from Groups 6 to 8, but converges again in the higher proficiency 

groups.  For groups within the linear format, Group 3 demonstrated the largest difference 

between real and simulated data at 0.135, with Linear-Real being 0.486 and Linear-Sim 

being 0.621.  In the linear format condition, the smallest group difference was found for 

Group 5 at 0.020.  Within the CAT format condition, the group with the largest mean 
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difference was Group 6 at 0.094, and the smallest difference was found for Group 10 at 

0.002.  The overall mean SE values for the real and simulated data within the linear 

format condition were equal at 0.289, while the CAT condition SE values were also very 

similar at 0.172 for the real data and 0.170 for the simulated data.  The largest SE values 

across the proficiency groups were found for the more extreme proficiency groups, (i.e., 

Groups 1 and 10). 

Table 4.12  

Examinee Proficiency Estimates ( 
ˆ ) for 50-Item Tests 

 Linear CAT 

 Real Simulated Real Simulated 

Group 
 
ˆ    

SE ˆ( )  
 
ˆ    

SE ˆ( )  
 
ˆ    

SE ˆ( )  
 
ˆ    

SE ˆ( )  

1 -1.883 0.348 -1.797 0.323 -2.075 0.265 -1.997 0.237 

2 -0.979 0.239 -0.938 0.235 -0.901 0.125 -0.929 0.125 

3 -0.486 0.226 -0.621 0.224 -0.590 0.115 -0.641 0.117 

4 -0.244 0.190 -0.313 0.203 -0.260 0.114 -0.311 0.115 

5 -0.108 0.235 -0.088 0.238 -0.065 0.120 -0.105 0.119 

6 0.257 0.256 0.185 0.255 0.068 0.127 0.162 0.133 

7 0.444 0.287 0.411 0.281 0.296 0.142 0.368 0.147 

8 0.740 0.330 0.679 0.324 0.653 0.173 0.689 0.177 

9 0.953 0.357 1.014 0.366 1.091 0.225 1.059 0.220 

10 1.454 0.424 1.569 0.439 1.770 0.314 1.772 0.312 

ALL 0.015 0.289 0.010 0.289 -0.001 0.172 0.007 0.170 

 

Real-Simulated Data Proficiency Comparison Summary.   Comparing real and 

simulated data across the three test lengths, proficiency values were found to have 

slightly smaller values for CAT-Sim data versus its CAT-Real counterpart.  The linear 

data, whether real or simulated, was generally quite comparable across all conditions, 

with the exception of the Linear-Real 35-item test which was the only negative 

underestimated overall mean in the study. Overall mean proficiency differences between 
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real and simulated data were the greatest for the 35-item linear test condition at 0.046, by 

far the largest such difference across conditions. Among the remaining five such linear-

real mean proficiency comparisons, the other differences were all 0.020 or smaller, 

substantially lower values than for the 35-item linear condition.  For the standard error 

values, the more extreme proficiency groups (i.e., 1, 2, 9, and 10), tended to have smaller 

SE values for simulated data than for real data on the 25-item and 35-item tests. Those 

differences were reduced on the 50-item test.  Comparing real to simulated data standard 

error values, there is more similarity in values for the middle proficiency groups, 

particularly for the longer test lengths.   

Figure 4.6.  Proficiency by Group for 50-Item Test 
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4.2.2 Proficiencies: Linear and CAT Format Comparisons 

 As in the previous section, a full comparison of the linear and CAT modalities on 

real and simulated data for proficiency estimation is summarized in Table 4.10 for the 25-

item tests, Table 4.11 for the 35-item tests, and Table 4.12 for the 50-item tests. 

Likewise, Figures 4.4, 4.5, and 4.6 graphically illustrate the proficiency mean values by 

group.  

25-Item Condition. Referring to Figure 4.4, visually comparing values for real 

data within linear and CAT formats showed that the results were not equal.  Real data in 

Groups 2 through 7 are similar on both linear and CAT tests, but the differences between 

the two testing formats increase for Groups 8 through 10. Group 1 also shows a large 

distance between the real data plots.  For simulated data, the distance between lines 

increases notably for both Group 1 and Group 10, the extreme proficiency values. The 

simulated data lines are otherwise fairly close together across the remaining groups.  As 

can be observed in Table 4.10, for the 25-item test the largest group difference between 

linear and CAT proficiencies was found in Group 1, for both real (0.445) and simulated 

(0.540) data.  The second largest linear-to-CAT condition difference was found for Group 

10 with 0.392 for real data and 0.329 for simulated data, much larger differences than 

were found for the real-to-simulated data comparisons noted previously.  The smallest 

linear-CAT group difference of 0.009 in mean proficiency estimates for the 25-item 

linear test condition was found for Group 3.   

For the simulated data, the proficiency estimates were found to have a linear 

versus CAT difference of 0.000 for Group 4.  The overall mean proficiency difference 

between Linear-Real and CAT-Real conditions is 0.026, and the Linear-Sim to CAT-Sim 
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difference is 0.003.  Groups with the largest linear-to-CAT proficiency estimate 

differences were found to have larger SE differences as well.  Comparing overall means 

between linear and CAT formats finds rather large SE differences: For Linear-Real 

compared to CAT-Real the overall mean difference was 0.131; and for Linear-Sim 

compared to CAT-Sim, the overall difference was 0.142.  For the Linear-Real condition, 

the smallest SE difference was found in Group 1 at 0.051; for the Linear-Sim condition, 

the smallest difference was found in Group 10 at 0.078.  The group with the largest 

linear-to-CAT difference was Group 2, for both real (0.172) and simulated (0.178) data.  

In summary, for both real and simulated data, the group with the largest linear-to-CAT 

proficiency difference was Group 1, with Group 10 having the second-largest difference.  

For both real and simulated data, the group with the largest SE difference was Group 2.  

For real data, Group 1 had the smallest SE difference, and for simulated data, Group 10 

had the smallest SE difference.  

35-Item Condition. In the 35-item test length condition, Figure 4.5 shows that 

the linear and CAT formats are similar in the middle groups but distances between the 

lines are greatest in Groups 1 and 10, the lowest and highest proficiency groups.  On the 

35-item tests, the linear-CAT difference was largest for Group 1 in the real data 

condition, and largest for Group 10 in the simulated data condition.  Again, this outcome 

is in keeping with expectations because of the more extreme proficiency values in the 

distribution tails.  Similarly, reviewing Table 4.11, linear versus CAT proficiency 

differences for real data were highest for Group 1 (0.333) with large differences also 

found for Group 9 (0.280) and Group 10 (0.279).  The smallest linear-to-CAT difference 

found for real data was for Group 5 at 0.037.  Similar to its real data counterpart, 
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simulated data linear-to-CAT differences were highest for Group 10 (0.290) with the next 

highest value in Group 1 (0.271). The smallest difference between simulated data 

proficiency values was found for Group 8 at 0.010.  Overall mean linear-CAT 

proficiency differences were 0.050 for real data and 0.001 for simulated data. The 

smallest linear-to-CAT real data SE difference was found for Group 1 at 0.012, and the 

largest difference was found in Group 7 at 0.179.  The smallest difference between 

simulated data SE values was found for Group 1 at 0.096, whereas the largest simulated 

data SE difference was found for Group 8 at 0.183.  The overall linear-to-CAT 

proficiency difference for real data was 0.050, and for simulated data, the difference was 

0.001.  The overall linear-to-CAT SE difference was 0.141 for real data and 0.150 for 

simulated data.  In summary, the largest mean differences for linear versus CAT format 

tests were found for the extreme proficiency Groups 1 and 10.  Comparing within 

condition, the standard error associated with these more extreme proficiency values was 

also highest for these groups. Overall mean linear-CAT difference calculations show that 

real data had larger SE values than did simulated data.  

50-Item Condition. Referring again to Figure 4.6 for the 50-item condition 

graph, the real data condition showed the largest distances between linear and CAT lines.  

In Group 1, the distances between CAT and linear conditions are minimal, but increase to 

a larger degree in Group 10 for both real and simulated datasets. For the simulated data, 

linear and CAT lines overlap well for all Groups except 10 and, to a lesser degree, Group 

1.  In Table 4.12, the largest difference between Linear-Real and CAT-Real values was 

found for Group 10 at 0.316. Likewise, for Linear-Sim to CAT-Sim differences, Group 

10 again was found to have the highest value at 0.203.  Overall, however, differences 
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between the two test format conditions, linear and CAT, were relatively small in 

comparison to the two shorter test length conditions (i.e., 25-item and 35-item tests). The 

smallest linear-CAT group difference was found for Group 4, at 0.016 for real data and 

0.002 for simulated data. The overall mean proficiency difference between the two test 

conditions was 0.016 for real data and 0.003 for simulated data.  Group 8 was found to 

have the largest SE difference between linear and CAT test formats, at 0.157 for real data 

and 0.147 for simulated data.  For real data, the smallest SE difference was found in 

Group 4 at 0.076.  For simulated data, the smallest SE difference was found for Group 1 

at 0.086, although Group 4 was quite similar at 0.088.  Overall, the mean SE differences 

between the linear and CAT formats was 0.117 for real data and 0.119 for simulated data. 

In summary, for the 50-item test condition, the proficiency extreme Group 10 provided 

the largest linear-to-CAT difference between means, and Group 4 provided the smallest 

linear-CAT differences for both data types.  Group 8 was found to have the largest SE 

difference for both data conditions, and Group 4 had the smallest SE difference for real 

data and the second smallest SE difference for simulated data. Group 1 had the smallest 

SE difference for simulated data. Overall, the CAT format provided much smaller SE 

values than did the linear format.  

 Linear-CAT Proficiency Comparison Summary.  Across all test length 

conditions, the linear-to-CAT comparisons of proficiency values found that Groups 1 and 

10 had the largest differences. Within test-length condition, the smallest proficiency 

differences varied by group, with no clear pattern emerging. Overall mean standard error 

values were higher for linear condition than for CAT condition.  The smaller SE values 

for CAT were results one would expect, given that CATs are able to select maximally 
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informative items based on constantly updated proficiency estimates. The selection of a 

maximally informative item is unlike a linear test which administers the same items to 

every examinee regardless of proficiency.  Given that item information is related to the 

standard error, one particular strong point of the CAT format is that it minimizes standard 

error by maximizing information for each examinee based on the examinee’s proficiency.  

Linear tests are unable to utilize this valuable technique.  In this study, linear format test 

items were chosen randomly from stratified bins. Consequently, the 35-item tests 

behaved in unpredictable ways, perhaps because the items chosen were not sufficiently 

informative for all examinees as discussed in section 4.1.   

4.2.3 Bias and RMSE: Real Data Compared to Simulated Data 

 Bias and RMSE statistics were used to illustrate differences in proficiency 

estimation from the true estimates.  Bias is a directional measure, while RMSE is non-

directional.  For example, a positive bias is indicative of estimated proficiencies that are 

larger than the true proficiencies, an outcome that is often termed overestimation.  RMSE 

accounts for both bias and the associated variance (or precision) and, therefore, a given 

RMSE value will not necessarily mirror its bias value.  Bias and RMSE values for each 

condition by proficiency group are included in Table 4.13 (25 items), Table 4.14 (35 

items), and Table 4.15 (50 items). 

 25-Item Condition. Table 4.13 summarizes the 25-item condition bias and 

RMSE values. For both real and simulated data conditions of the 25-item tests, Groups 2 

and 4 consistently underestimated proficiency, as noted by the negative bias values.  For 

the Linear-Real condition, the smallest absolute bias value of 0.004 was found for Group 

9, and the largest absolute bias of 0.226 was found for Group 6.  Within the 25-Item 
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Linear-Sim condition, the smallest bias absolute value was tied for Group 4 (-0.007) and 

Table 4.13  

Bias and RMSE for 25-Item Test 

 LINEAR  CAT 

          Real             Simulated   Real      Simulated  

Group Bias RMSE Bias RMSE    Bias RMSE Bias RMSE   

1 0.206 0.599 0.157 0.612    -0.205 0.559 -0.099 0.423   

2 -0.166 0.266 -0.054 0.351    -0.047 0.235 -0.051 0.178   

3 0.158 0.378 -0.017 0.295    0.151 0.231 0.045 0.159   

4 -0.036 0.354 -0.007 0.296    -0.102 0.266 -0.035 0.143   

5 -0.130 0.253 -0.009 0.295    -0.026 0.239 0.025 0.174   

6 0.226 0.397 0.007 0.310    0.067 0.246 -0.036 0.142   

7 -0.126 0.343 0.016 0.341    0.039 0.215 0.042 0.203   

8 0.029 0.279 0.011 0.389    -0.028 0.170 -0.013 0.206   

9 0.004 0.314 -0.009 0.446    0.208 0.302 0.050 0.312   

10 -0.031 0.243 0.072 0.433    0.341 0.463 0.275 0.493   

ALL 0.013 0.357 0.017 0.389    0.040 0.315 0.020 0.270   

 

Group 6 (0.007).  The largest bias value within the Linear-Sim condition was found for 

Group 1 at 0.157. Within the Linear-Real condition, the largest RMSE value was for 

Group 1 at 0.599, and Group 1 also had the second-largest bias value.  This result 

signifies that Group 1 estimates were consistently too large but they also varied notably 

within that overestimation.  For the Linear-Sim data, the largest RMSE was 0.612, also 

for Group 1.  The smallest RMSE values were found for Groups 3 and 5, both 0.295, and 

Group 4 was nearly identical at 0.296.  Because Group 4 had the smallest absolute bias 

value (along with Group 6) and also had a low RMSE, one can conclude that both the 

proficiency variance and estimation bias were small values. The largest negative bias 

values were found for Group 2, for both Linear-Real (-0.166) and Linear-Sim (-0.054) 

conditions.  Therefore, for Group 2, in both linear conditions, the proficiency estimates 

were lower than the true proficiency.  For the linear condition, however, Group 2 
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estimates varied less in the real data condition than in the simulated data condition as 

noted by the smaller real data RMSE (0.266 versus 0.351).  The largest linear format 

RMSE was found in the simulated data condition in Group 1. Though the Group 1 

Linear-Sim bias was smaller than in the real data condition, the RMSE was larger, 

indicating greater variance within Group 1. For the linear test format, the overall mean 

bias was larger for the simulated data (0.017) than for the real data (0.013), and the 

overall RMSE was also larger for the simulated data (0.389) than for the real data 

(0.357). 

The 25-Item CAT format showed greater bias differences between real and 

simulated data, compared the linear format, with overall mean bias differing by 0.020 

(0.040 and 0.020, respectively).  The largest CAT-Real condition absolute bias was found 

for Group 10 (0.341).  Likewise, the CAT-Sim condition was also found to have its 

highest absolute value for bias in Group 10 (0.275). The CAT-Real condition had as its 

smallest bias absolute value -0.026 for Group 5, whereas the smallest value for the CAT-

Sim condition was found in Group 8 at -0.013.  Mean CAT RMSE values were 0.315 for 

real data and 0.270 for simulated data, resulting in a mean difference of 0.045, combined 

with the smaller overall bias, this result indicates that the simulated data better represent 

the true proficiency values.  The largest RMSE value for the CAT-Real condition was 

0.559, which was found in Group 1.  The smallest CAT-Real RMSE was found for Group 

8 (0.170), which also had the smallest absolute bias value of -0.028.  In the CAT-Sim 

condition, the largest RMSE value was found for Group 10 (0.493), while the smallest 

RMSE value was found for Group 6 (0.142) with Group 4 at nearly the same value 

(0.143).  Given that Group 10 had the largest bias value, and Groups 4 and 6 had the two 
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smallest values, this result implies that the variation across CAT-Sim values was 

consistent from group to group.  By comparison, Groups 2 and 9 had nearly identical bias 

values (-0.051 and 0.050, respectively) but vastly different RMSE values (0.178 and 

0.312, respectively). This result indicates that Group 9 had much more score variation 

than did Group 2.  

Table 4.14  

Bias and RMSE for 35-Item Test 

 LINEAR  CAT 

           Real      Simulated           Real      Simulated  

Group Bias RMSE Bias RMSE    Bias RMSE Bias RMSE   

1 0.032 0.558 0.141 0.522    -0.182 0.493 -0.078 0.338   

2 -0.074 0.314 -0.054 0.292    -0.047 0.203 -0.048 0.152   

3 -0.108 0.314 -0.007 0.259    0.153 0.216 0.054 0.137   

4 -0.178 0.357 -0.004 0.268    -0.061 0.211 -0.048 0.119   

5 -0.072 0.324 -0.011 0.279    -0.002 0.248 0.032 0.157   

6 0.191 0.386 0.009 0.298    -0.008 0.203 -0.044 0.122   

7 -0.117 0.440 0.017 0.339    0.009 0.181 0.049 0.183   

8 0.004 0.276 0.015 0.391    0.004 0.160 -0.022 0.175   

9 0.097 0.486 -0.014 0.445    0.111 0.224 0.048 0.278   

10 -0.090 0.369 0.061 0.430    0.206 0.374 0.198 0.398   

ALL -0.032 0.391 0.015 0.363    0.018 0.269 0.014 0.226   

 

 35-Item Condition.  For the 35-item tests (see Table 4.14) the overall mean bias 

for the Linear-Sim condition was 0.015, whereas the overall mean bias for the Linear-

Real condition was -0.032, reversed in sign and notably larger than the Linear-Sim 

condition.  The largest group absolute bias was found for Group 6 at 0.191.  Within the 

same condition, the smallest absolute bias was found for Group 8 at 0.004.  For the 

Linear-Sim condition, the largest absolute bias was found for Group 1 at 0.141, while the 

smallest absolute bias value was found for Group 4 at -0.004, which is a notably smaller 

value than was found for the other Linear-Sim groups in this condition.  Within the 35-
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item Linear format condition, Group 1 was found to have the largest RMSE value for 

both the real and simulated data conditions.  The smallest Linear-Real RMSE value of 

0.276 was found for Group 8, which also had the smallest bias value (0.004).  For the 

Linear-Sim condition, the smallest RMSE of 0.259 was found in Group 3, which also had 

the second-smallest bias value in that condition. The Linear-Real condition had larger 

overall bias and RMSE values (-0.032 and 0.391, respectively) than did the Linear-Sim 

condition (0.015 and 0.363, respectively). 

For the 35-item CAT testing format, the real data condition had the largest 

absolute bias in Group 10 at 0.206.  In the same CAT-Real condition, Group 5 showed 

the lowest absolute bias at -0.002.  The smallest positive bias value was found in Group 8 

at 0.004; correspondingly, the smallest RMSE value for this condition was found in 

Group 8 at 0.160.  The largest CAT-Real negative bias was found for Group 1, and the 

largest positive bias was found for Group 10.  The largest CAT-Real RMSE value was 

found for Group 1 at 0.493. The 35-item CAT- Sim format, like the Real data format, was 

found to have the largest absolute bias value of 0.198 for Group 10.  Group 8 showed the 

smallest absolute bias at -0.022.  The largest CAT-Sim RMSE value was found for Group 

10 (0.398) and the smallest RMSE was found for Group 4 (0.119). Overall, for the 35-

item test, the observed RMSE general pattern is similar to the pattern found on the 25-

item test.  RMSE values were highest at the group extremes and lowest in the middle of 

the proficiency groups.  In addition, RMSE values were smaller for simulated data than 

they were for real data.  The overall mean Linear-Real RMSE of 0.391 is notably higher 

than the overall Linear-Sim RMSE of 0.363.   Similarly, the overall CAT-Real RMSE of 

0.269 is larger than its CAT-Sim counterpart, with an overall mean of 0.226.  The RMSE 
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statistic for the CAT-Real groups reached a maximum value of 0.493 for Group 1, 

whereas the highest RMSE group value for the CAT-Sim condition occurred in Group 

10.  Among the bias and RMSE statistics by group for the 35-item test, 7 out of 8 

conditions attained their maximum RMSE or bias values in group 1 or group 10. Only the 

Linear-Real data condition did not have its maximum bias in either Group 1 or Group 10.  

Table 4.15  

Bias and RMSE for 50-Item Test 

 LINEAR  CAT 

           Real      Simulated           Real      Simulated  

Group Bias RMSE Bias RMSE    Bias RMSE Bias RMSE   

1 -0.011 0.448 0.115 0.426    -0.138 0.386 -0.061 0.281   

2 -0.057 0.286 -0.047 0.235    -0.041 0.187 -0.044 0.131   

3 0.133 0.304 -0.001 0.213    0.133 0.199 0.055 0.121   

4 0.059 0.248 0.002 0.219    -0.048 0.165 -0.054 0.102   

5 -0.016 0.230 -0.015 0.233    -0.049 0.210 0.036 0.143   

6 0.123 0.308 0.011 0.244    0.033 0.202 -0.049 0.106   

7 0.062 0.295 0.014 0.285    -0.019 0.143 0.058 0.165   

8 -0.194 0.422 0.013 0.326    -0.056 0.145 -0.033 0.147   

9 0.087 0.362 -0.010 0.390    0.006 0.259 0.045 0.246   

10 -0.011 0.317 0.050 0.382    0.195 0.360 0.143 0.325   

ALL 0.018 0.329 0.013 0.305    0.002 0.239 0.010 0.192   

 

 50-Item Condition.  For the 50-item Linear-Real condition, the largest bias 

absolute value was found for Group 8 at -0.194, and the smallest bias absolute value was 

found for Group 1 and Group 10, both -0.011 (see Table 4.15).  Group 5 was found to 

have the second smallest absolute bias of -0.016. The largest Linear-Real RMSE value 

was found for Group 1 at 0.448, and the smallest RMSE was found for Group 5 at 0.230.  

The large RMSE value for Group 1 along with the smallest bias values indicates that 

there was a large amount of variation in proficiencies.  In contrast, within the Linear-Sim 

condition, the group with the largest absolute bias was Group 1 at 0.115.  Linear-Sim 

format Group 3 had the smallest absolute bias at -0.001, which is the smallest group bias 
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value across all conditions and test lengths.  In the Linear-Sim condition, the largest 

RMSE value was found for Group 1 at 0.426 and the smallest RMSE was found for 

Group 3 at 0.213.  For the Linear-Sim condition, the bias and RMSE values were 

matched to each other for highest and lowest values in their condition, indicating 

relatively consistent variation across Linear-Sim groups.  For the 50-item linear test 

format, the Linear-Real overall mean bias was 0.018; the Linear-Sim condition overall 

mean bias was somewhat smaller at 0.013.  In the linear format, the overall mean RMSE 

for the Real data condition was 0.329, and the overall mean RMSE for the Sim data 

condition was a smaller 0.305, resulting in a difference of 0.024. Therefore, in the linear 

format the real data had greater overall bias and RMSE values than its simulated data 

counterparts. 

For the CAT-Real groups, the largest bias absolute value was found for Group 10 

at 0.195, whereas the smallest absolute bias was found for Group 9 at 0.006. The largest 

CAT-Real RMSE was found for Group 1 at 0.386; the smallest RMSE value was found 

for Group 7 at 0.143.   The CAT-Sim condition showed the largest absolute bias in Group 

10 (0.143), the same group as in the CAT-Real condition. The smallest CAT-Sim 

absolute bias value was found in Group 8 at -0.033.  The overall mean Linear-Sim bias 

value was 0.013, a smaller value than the Linear-Real mean bias of 0.018.  The difference 

between the overall Linear-Real bias mean and Linear-Sim bias mean was 0.005, which 

is similar to the 0.004 difference found for the same 25-item test comparison.  Unlike the 

three other conditions of the 50-item test length which had the largest RMSEs for Group 

1, the largest CAT-Sim RMSE was found for Group 10 at 0.325.  The smallest CAT-Sim 

RMSE of 0.102 was found for Group 4.  In the CAT-Real condition, the overall mean 
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bias was 0.002, whereas the CAT-Sim condition had a slightly higher overall mean bias 

value of 0.010. The CAT-Real overall mean bias of 0.002 was the lowest overall mean 

bias of all conditions for all test lengths in this study.  As with the other test length 

conditions, the 50-item test was found to have 7 out of 8 of the maximum RMSE and bias 

values located in either Group 1 or Group 10.  Again, only the Linear-Real bias condition 

did not follow this pattern, having its maximum bias within Group 8.  In addition, for the 

Linear-Real bias statistic, the minimum values were tied at -0.011 for Groups 1 and 10. 

Other bias and RMSE minimum values in the 50-item condition occurred primarily in 

Groups 3 through 7, with a notable exception for the CAT-Real condition where the 

minimum bias of 0.006 occurred in Group 9. 

Summary of Real-Simulated Data Bias and RMSE Comparison.   Across 

conditions, the overall mean bias and RMSE values were generally larger for real data 

than for simulated data, with the exception of the 25-item linear format, and the 50-item 

CAT-Real bias which was smaller than its CAT-Sim counterpart.  Only the 35-item 

Linear-Real overall bias had a negative value which was also the second largest overall 

bias in the study.  This result indicates that the 35-item Linear-Real condition consistently 

underestimated proficiencies.  In the groups analysis, Groups 1 and 10 often had the 

largest bias and RMSE values. The smallest bias and RMSE values typically occurred in 

Group 3 through Group 8.  Simulated data tended to have extreme bias and RMSE values 

occur together more often than real data.  These results indicate less variation in extreme 

proficiency estimates for simulated data than for real data.  

4.2.4 Bias and RMSE: Linear Compared to CAT Formats 
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25 Item Condition.  The overall mean bias value for the 25-item Linear-Real data 

was 0.013 (Table 4.13).  The overall mean bias result for 25-item CAT-Real condition 

was found to be 0.040, a somewhat larger value than was found for the Linear-Real 

condition. Similarly, the 25-item Linear-Sim condition overall mean bias was found to be 

0.017, while the CAT-Sim data yielded an overall bias of 0.020.  Thus, the 25-item CAT 

condition, regardless of real versus simulated data condition, showed higher mean bias 

values than did the linear format condition.  Generally, this outcome would not be 

expected due to the strengths of the CAT format. In this case, however, the CAT did a 

rather poor job of reducing bias in the CAT-Sim high proficiency group, Group 10, which 

had an absolute bias value of 0.275.  For Linear-Real and CAT-Real, there was some bias 

pattern overlap, with Linear-Real having its smallest absolute bias in Group 8 (0.029), 

and CAT-Real having its second-smallest absolute bias in the same group (-0.028).  The 

overall mean Linear-Real RMSE was 0.357, whereas the CAT-Real RMSE was 

somewhat lower at 0.315.  Similarly, the Linear-Sim mean RMSE was 0.389 in 

comparison to the much smaller CAT-Sim mean RMSE of 0.270.  Thus, despite the 

slightly higher bias in the CAT-Sim condition versus the Linear-Sim condition, the score 

variation within the CAT format was much lower than in the linear format. The largest 

RMSE value was found in Group 1 for both Linear-Real (0.599) and CAT-Real (0.559) 

conditions.  For the Linear-Sim condition, the largest RMSE was also found in Group 1 

(0.612), but for the CAT-Sim condition, the largest RMSE was found in Group 10 

(0.493).  The second-largest RMSE, however, was found for Group 1 in the CAT-Sim 

condition.  The 25-item CAT format condition demonstrated notably smaller overall 
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RMSE values than did its linear test counterparts, indicating improved recovery of the 

original proficiency estimates for the CAT format.   

 35 Item. For the 35-item condition, the CAT-Real condition resulted in an overall 

mean bias of 0.018 (see Table 4.14). In contrast, the Linear-Real condition resulted in a 

negative overall bias value of -0.032.  Comparing bias values between linear-to-CAT 

groups, no correspondences were found among groups for largest or smallest bias values. 

For the CAT format, the RMSE values were much lower than for their linear test 

counterparts.  For the CAT-Real condition, the overall RMSE mean was 0.269 compared 

to 0.391 for the Linear-Real condition; for CAT-Sim, the RMSE overall mean was 0.226 

compared to 0.363 for Linear-Sim.  At 0.391, the overall mean RMSE for the Linear-Real 

35-item condition was the largest RMSE value for any data type, format, or test length in 

this study.  This outcome indicates that both bias and variation were large values.  The 

overall Linear-Real mean bias of -0.032 was the second-largest overall bias value in the 

study.  While a smaller value than was found in the Linear-Real condition, the Linear-

Sim condition had an overall mean RMSE of 0.363, also a large value.  Both Linear-Real 

and CAT-Real conditions were found to have their smallest RMSE values in Group 8 

(0.276 and 0.160, respectively), and their largest RMSE values (0.558 and 0.493, 

respectively) also occurred in Group 1.  This outcome indicates that RMSE results in this 

condition were based more on data type than test administration format. Because bias and 

RMSE are related to proficiency estimation, the unusual results from the 35-item tests 

noted previously continued to be a factor in these results particularly for Linear-Real 

data.  Overall, both bias and RMSE values were larger for the linear tests than those of 

their CAT counterparts. 
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 50-Item Condition.  The 50-item tests resulted in overall bias and RMSE 

statistics that were the lowest among the three test lengths (Table 4.15). The CAT results 

in particular resulted in the smallest RMSE values.  The Linear-Real overall mean bias 

was 0.018, while the CAT-Real overall mean bias was the lowest of any in this study at 

0.002.  The Linear-Sim overall bias mean of 0.013 was similar to the CAT-Sim overall 

bias mean of 0.010.  The largest Linear-Real absolute bias value was for Group 8 at -

0.194, whereas the largest CAT-Real absolute bias was found for Group 10 at 0.195.  The 

smallest bias for the Linear-Real data was found for Groups 1 and 10, tied at -0.011, but 

the smallest absolute bias value of 0.006 for the CAT-Real dataset was found for Group 

9. The largest Linear-Sim absolute bias was found in Group 1 at 0.115, and the largest 

absolute bias found for the CAT-Sim data was found in Group 10 at 0.143.  As described 

previously, the smallest absolute bias for the Linear-Sim groups occurred in Group 3 (-

0.001), and the same measure for the CAT-Sim group occurred in Group 8 (-0.033). As 

has been found in the other two test length conditions, RMSE values within groups are 

lowest in the middle range of proficiency and highest at more extreme proficiency value 

groups.  The largest overall mean RMSE in the 50-item test format was found for the 

Linear-Real condition at 0.329, whereas the CAT-Real overall RMSE was a much 

smaller 0.239, a notable difference of 0.090.  The largest RMSE in the Linear-Real 

condition was found in Group 1 at 0.448, while the largest RMSE found for the CAT-

Real data was 0.386, also for Group 1.  For the Linear-Real condition, the smallest 

RMSE of 0.230 was found for Group 5, whereas the smallest CAT-Real RMSE of 0.143 

was found in Group 7.  Both of these smallest RMSE values were located near the center 

of the proficiency distribution, but the CAT value was much smaller than the linear value. 
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For the simulated data, the Linear-Sim condition overall mean RMSE was 0.305 and the 

overall mean RMSE for the CAT-Sim condition was 0.192, a large difference of 0.113.  

The overall CAT-Sim RMSE of 0.192 is the lowest overall RMSE value in the study. The 

largest Linear-Sim RMSE was found for Group 1 at 0.426, whereas for the CAT-Sim 

condition the largest RMSE of 0.325 was found for Group 10. This between-method 

difference of 0.101 was one of the largest in the study.   

 Summary of Linear-CAT Bias and RMSE Comparison.  Generally, the CAT 

condition overall bias and RMSE values were smaller than their linear counterparts in 

every test length, except for the 25-item test where the CAT condition bias values were 

larger than the linear bias values.  Across all test lengths, the largest RMSE values for 

real data were found in Group 1.  Similarly, Linear-Sim conditions always had their 

largest bias and RMSE values in Group 1, whereas CAT-Sim conditions always had their 

largest bias values in Group 10.  This outcome implies that simulated data linear and 

CAT formats were least effective at targeting proficiencies accurately at different parts of 

the data distribution, the lowest proficiencies for linear and the highest proficiencies for 

CAT.  For real data, the largest RMSE values were found consistently in Group 1 in both 

linear and CAT test formats, indicating that test format made little difference for real data 

RMSE, possibly because the proficiency variation was always large at the lowest end of 

the data distribution. 

4.2.5 Item Information: Linear Compared to CAT Formats 

 As would be predicted from the theory, item information across the study 

conditions was highest within the CAT format.  Typically, an important reason for using 

a CAT format examination is the ability of adaptive tests to select items with the highest 
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information for any estimated proficiency value. Table 4.16 and Figure 4.7 (25 items), 

Table 4.17 and Figure 4.9 (35 items), and Table 4.18 and Figure 4.11 (50 items) 

summarize the results of the mean item information values in both tabular and graphic 

formats.  Figures 4.8, 4.10, and 4.12 show the CAT-linear information differences for the 

25, 35, and 50-item tests, respectively. 

 25-Item Condition. For the 25-item condition, overall mean item information for 

the Linear-Real condition was found to be 0.295 (Table 4.16).  In contrast, the 25-item 

CAT-Real data yielded much higher mean item information of 0.713.  Based on group 

mean data, the most informative items were found in the middle proficiency distribution, 

while the most extreme proficiency groups resulted in lower item information.  For all 

four 25-item conditions, the largest information mean was found for Group 4: 0.464 for 

Linear-Real data and 1.920 for CAT-Real data.  Likewise, for this test length, the  

Table 4.16  

Item Information for 25-Item Test 

 Linear CAT 

Group Real Sim Real Sim 

1 0.188 0.202 0.240 0.328 

2 0.347 0.341 1.442 1.496 

3 0.417 0.404 1.806 1.743 

4 0.464 0.469 1.920 1.898 

5 0.426 0.441 1.764 1.824 

6 0.395 0.388 1.561 1.453 

7 0.373 0.337 1.219 1.162 

8 0.293 0.277 0.826 0.793 

9 0.220 0.217 0.398 0.460 

10 0.141 0.148 0.181 0.205 

ALL 0.295 0.294 0.713 0.776 
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Figure 4.7  

Mean Item Information for 25-Item Test 
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Figure 4.8  

CAT-Linear Differences in Item Information – 25 Items 

 

smallest mean information values for all four conditions were found for Group 10:  0.141 

for Linear-Real data and 0.181 for CAT-Real data.  The CAT values are much higher 

than linear values for the highest proficiency groups, but this effect is greatly diminished 

for the lowest proficiency groups where the information means have more similar values 

regardless of data or administration type.  Figure 4.8 graphically illustrates the 

differences between CAT and linear formats.  The real data CAT-to-Linear overall mean 

difference was 0.418, a smaller overall difference than was found for the simulated data 

which was 0.482.  The larger simulated data difference was due to the CAT-Sim data 

having the large overall mean information for this test length at 0.776.  The largest group 

Linear-Real condition difference of 1.456 was found for Group 4.  Likewise, for 

simulated data, the largest CAT-to-Linear information difference of 1.429 was also found 
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in Group 4.  In contrast, the smallest real data CAT-to-linear difference of 0.040 was 

found in Group 10, with Linear-Real (0.141) being only somewhat smaller than CAT-

Real (0.181).  Likewise, for simulated data, the smallest difference of 0.057 was also 

found in Group 10, again with CAT-Sim (0.205) being larger than Linear-Sim (0.148).  

For simulated data, the largest CAT-to-linear difference was found for Group 4 at 1.429. 

Figure 4.8 shows the large differences in item information between linear and CAT 

format conditions.  Both Figure 4.7 and Figure 4.8 illustrate the decline in information at 

the extreme proficiency group values.   

Table 4.17  

Item Information for 35-Item Test 

 Linear CAT 

Group Real Sim Real Sim 

1 0.187 0.198 0.201 0.355 

2 0.314 0.336 1.388 1.402 

3 0.362 0.374 1.696 1.623 

4 0.383 0.426 1.782 1.730 

5 0.367 0.352 1.613 1.628 

6 0.300 0.295 1.389 1.293 

7 0.247 0.247 1.098 1.045 

8 0.209 0.196 0.726 0.723 

9 0.169 0.155 0.397 0.441 

10 0.110 0.112 0.204 0.210 

ALL 0.238 0.239 0.675 0.746 
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Figure 4.9  

Mean Item Information for 35-Item Test  
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Figure 4.10  

CAT-Linear Differences in Item Information – 35 Items 

  

35-Item Condition.  For the 35-item tests, the item information results are shown 

in Table 4.17 and displayed graphically in Figure 4.9.  The data indicate that more 

extreme proficiency groups have lower information, regardless of test format.  For the 

CAT administration format, mean information was greater for all groups, but particularly 

for Groups 2 through 9  as compared to the minimal differences for the extreme Groups 1 

and 2.  This outcome is expected because computer-adaptive tests select items based on 

maximizing information.  The Linear-Real overall mean was 0.238, and the CAT-Real 

overall mean was 0.675.  The highest information value for both Linear-Real and CAT-

Real conditions was found for Group 4 at 0.383 and 1.782, respectively.  Likewise, for 

the Linear-Sim and CAT-Sim condition, the highest information was found for Group 4, 

0.426 and 1.730, respectively.  Figure 4.10 illustrates the mean differences between CAT 
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and linear test formats. The largest overall information value for this test length was 

found for the CAT-Sim condition at 0.746. Therefore, the largest overall mean CAT-

Linear difference of 0.507 was found within the simulated data condition. The real data 

condition overall mean CAT-to-Linear difference was 0.437.  The largest CAT-to-Linear 

group differences were found in Group 4 at 1.399 for real data and 1.304 for simulated 

data.  The smallest CAT-Linear differences for real data were found in Group 1 at 0.014.  

For the simulated data, the smallest CAT-Linear difference was found in Group 10 at 

0.098.  

Table 4.18  

Item Information for 50-Item Test  

 Linear CAT 

Group Real Sim Real Sim 

1 0.165 0.191 0.284 0.355 

2 0.351 0.363 1.288 1.274 

3 0.392 0.398 1.521 1.460 

4 0.554 0.483 1.533 1.518 

5 0.361 0.353 1.392 1.421 

6 0.305 0.309 1.233 1.129 

7 0.242 0.253 0.989 0.925 

8 0.183 0.191 0.668 0.642 

9 0.157 0.150 0.396 0.415 

10 0.111 0.104 0.203 0.205 

ALL 0.239 0.240 0.676 0.691 
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Figure 4.11  

Mean Item Information for 50-Item Test  
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Figure 4.12  

CAT-Linear Differences in Item Information – 50 Items  

  

 50-Item Condition.  The longest test condition of 50 items showed similar 

patterns to the two shorter tests as shown in Table 4.18 and illustrated in Figure 4.11 and 

Figure 4.12.  Overall, CAT information means were much higher than their linear test 

counterparts.  The Linear-Real overall mean was 0.239, whereas the CAT-Real mean was 

0.676.  For simulated data, the Linear-Sim overall mean was 0.240, and the CAT-Sim 

overall mean was 0.691.  Once again, within every condition, Group 4 was found to have 

the highest mean item information.  The Group 4 Linear-Real condition information 

value was 0.554 whereas the CAT-Real condition information was nearly 3 times greater 

at 1.533.  The lowest mean information for the 50-item test was found for Group 10 

across all conditions.  Following similar patterns to the shorter test lengths, the 50-item 
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test showed the highest mean information for the middle to lower proficiency groups, 

with the lowest information values being found at the proficiency group extremes.  

 Linear-CAT Information Summary.  Comparing linear and CAT formats on 

item information, CAT tests showed much larger information values than their linear test 

counterparts across all study conditions, including data types. Across test lengths, the 

highest information was found in Group 4 and the lowest information was found in 

Group 10, with the exception of the 35-item test which had its lowest information in 

Group 1 for the CAT-Real condition.   

4.2.6  Item Information: Real Compared to Simulated Data 

 Comparing the real to simulated information data, across all conditions, the real 

and simulated data were found to have similar values, unlike the Linear-to-CAT format 

comparisons which were highly divergent. 

 25-Item Condition.  For the 25-item condition, the overall mean for the Linear-

Real condition was 0.295, and the Linear-Sim condition mean was a nearly identical 

0.294 (Table 4.16).  The largest information value within the linear groups was found for 

Group 4 for both real and simulated data. The Group 4 Linear-Real value was 0.464 and 

the Linear-Sim value was 0.469. Group 4 also constituted the smallest real-to-simulated 

information difference at 0.005.  The largest real-to-simulated data difference was found 

for Group 7 at 0.036, with the Linear-Real data showing the greater value at 0.373 versus 

the Linear-Sim value of 0.337.  The smallest information values within the linear 

condition were found for Group 10, for both real (0.141) and simulated (0.148) data.  The 

overall mean absolute difference between Linear-Real and Linear-Sim was calculated to 

be 0.001.  As noted previously, the CAT information values were much larger than their 
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linear test counterparts.  The overall CAT-Real mean was 0.713, and the CAT-Sim mean 

was 0.776. The CAT group with the largest information value was Group 4, for both real 

(1.920) and simulated (1.898) data.  As with the linear format data, Group 4 also showed 

the smallest difference between CAT-Real and CAT-Sim conditions at 0.022. The group 

with the largest difference was Group 6 at 0.108 between CAT-Real (1.561) and CAT-

Sim conditions (1.453).  The overall mean absolute difference between CAT-Real and 

CAT-Sim was calculated to be 0.063, a much larger difference than the 0.001 difference 

found for the linear test condition. 

 35-Item Condition.  For the 35-item condition (Table 4.17), the overall 

information mean for the Linear-Real condition was 0.238, and the overall mean for the 

Linear-Sim condition was 0.239, which are nearly identical values.  Across all conditions 

within the 35-item tests, Group 4 was found to have the largest information values.  The 

value found for Group 4 in the Linear-Real condition was 0.383, comparable but quite a 

bit lower than the Linear-Sim value of 0.426.  In fact, Group 4 was found to have the 

largest Linear-Real to Linear-Sim difference at 0.043. The smallest overall information 

values were found for Group 10 in both real (0.110) and simulated (0.012) data in the 

linear format condition.  The smallest linear format difference between data types was 

found for Group 7 where there was a 0.000 difference, as both Linear-Real and Linear-

Sim had the same value of 0.247.  Within the CAT format conditions, the overall CAT-

Real mean was 0.675 and the CAT-Sim overall mean was somewhat higher at 0.746. 

Therefore, the overall difference between CAT-Real and CAT-Sim means was 0.071. For 

both CAT-Real and CAT-Sim conditions, Group 4 was found to have the largest 

information values at 1.782 and 1.730, respectively.  For the CAT-Real condition, Group 
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1 had the smallest information value at 0.201, although Group 10 was a similar 0.204. 

Because of this small Group 1 value, it also had the largest real-to-simulated data 

difference at 0.154 due to the much larger CAT-Sim value of 0.355.  The smallest 

between-condition difference of 0.003 was found for Group 8, a result of the similar 

CAT-Real (0.726) and CAT-Sim values (0.723).   

 50-Item Condition.  For the 50-item real-to-simulated data comparison, a 

comparable pattern was found to the pattern in the 25-item condition (Table 4.18).  The 

overall Linear-Real mean was found to be 0.239 and the Linear-Sim overall mean was a 

nearly identical 0.240, a difference of only 0.001.  The largest group mean was found for 

Group 4, across every condition: 0.554 for Linear-Real, 0.483 for Linear-Sim, 1.533 for 

CAT-Real, and 1.518 for CAT-Sim. The largest real-to-simulated data difference in the 

linear condition was found for Group 4 at 0.071. In the same condition, the smallest 

group difference was found for Group 6 at 0.004 (0.309-0.305).  The smallest linear 

condition difference was found in Group 10 at 0.111 for Linear-Real and 0.104 for 

Linear-Sim.  Likewise, within the CAT conditions, the smallest information means were 

found for Group 10 at 0.203 for CAT-Real and 0.205 for CAT-Sim. These small, similar 

values indicate that Group 10 had the smallest difference between real and simulated data 

at 0.002.  The largest difference between data types was found for Group 1, with a CAT-

Real value of 0.284 and a CAT-Sim value of 0.355 resulting in a difference of 0.071. The 

CAT-Real condition had an overall mean of 0.676 with a CAT-Sim value a bit larger at 

0.691, for a total overall difference of 0.015.  

 Real-Simulated Information Summary. Comparing real and simulated data 

conditions, the CAT-Sim data resulted in the largest overall mean item information, with 
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the 25-item CAT-Sim condition attaining the highest overall mean across all conditions at 

0.776.  The lowest mean item information was found for 25-item Linear-Real condition 

at 0.238.  The highest group mean information was found for Group 4 across all test 

lengths and conditions.  Across data conditions the highest information was found in the 

middle to lower proficiency groups, with neither simulated nor real data providing 

notably more mean information than the other.  Test delivery format has a much larger 

impact on information values than does the use of real or simulated data, which were 

largely quite similar to each other for these information results. 

4.2.7 Relative Efficiency 

 In comparing real to simulated data, it is often instructive to ascertain the level of 

relative efficiency, a statistic derived from item information as described in the previous 

chapter.  By design, computer-adaptive tests are expected to be more efficient at 

measuring proficiency using fewer items than a linear test, while concurrently 

maintaining the same or lower standard error.  Thus, comparisons between linear and 

CAT formats will not be presented in tabular format here. Summarizing the linear to 

CAT efficiency values, the smallest CAT value of 2.42 was found for the 25-item real 

data condition. The largest CAT-linear efficiency value of 3.13 was found for the 35-item 

test using simulated data. Table 4.19 summarizes the relative efficiency of real over 

simulated data (as per the formula from Chapter 3) within each test format and each test 

length condition within the two formats.  Values greater than 1.0 in the matrix indicate 

that the real data is more efficient than the simulated data.  Values less than 1.0 indicate 

that the real data created less efficient tests than did its simulated data counterpart.  

Generally, the overall efficiency measures are quite similar with values near 1.000 for 
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most test lengths in both linear and CAT formats. The 35-item linear test overall 

efficiency is the smallest value and the only one notably below 1.000 at 0.985.  The 50-

item CAT format overall efficiency was the largest across all conditions at 1.018, 

indicating improved efficiency for real data over simulated data.  For the linear test 

format, the group with the smallest efficiency is Group 1 in the 50-item test length at 

1.114.  The smallest linear format efficiency value was also found for Group 1 in the 50-

item test length at 0.862.  Within the CAT format, the largest efficiency group value was 

found for Group 6 within the 50-item test length at 1.092.  The smallest CAT group value 

was found for Group 1 in the 35-item condition at 0.566, by far the lowest value in the 

table.  The smallest overall efficiency difference between linear and CAT formats was 

found for the 25-item test length at 0.006. Similarly, Group 5 within the 25-item 

condition had the smallest linear-to-CAT group difference of -0.004.  The largest overall 

efficiency difference was found for the 35-item test at -0.019.  The largest group linear-

to-CAT difference was found for Group 1 in the 35-item condition at 0.388, a notably 

large group difference that far exceeded the next largest group difference of 0.211 for 

Group 1 in the 25-item condition.  In summary, the overall efficiency values indicate that 

the real data were slightly more efficient or as efficient as the simulated data except for 

the 35-item linear test condition where the simulated data were more efficient. The 

largest group efficiency values were found for the 50-item condition in both linear 

(Group 4) and CAT (Group 6) formats. The smallest within-format values were found in 

Group 1 in both test formats. The 35-item Group 1 showed the largest efficiency 

difference between linear and CAT formats. Overall, however, only the 50-item CAT 

showed a small notable efficiency improvement for real data.  Generally, the real to 
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simulated data efficiency values were small with only notably small values for CAT 

format in Group 1.  The conclusion here is that, while CAT offers major efficiency 

increases over linear data, when real and simulated data were compared for efficiency, 

the differences were small but most noteworthy in the extreme proficiency groups. 

Table 4.19  

Relative Efficiency for Real by Simulated Data 

 Linear CAT 

Group 25-Item 35-Item 50-Item 25-Item 35-Item 50-Item 

1 0.941 0.953 0.862 0.730 0.566 0.800 

2 0.981 0.929 0.998 0.964 0.991 1.011 

3 1.016 0.979 0.960 1.036 1.045 1.042 

4 0.983 0.877 1.114 1.011 1.030 1.010 

5 0.963 1.067 1.007 0.967 0.991 0.980 

6 1.018 1.016 0.987 1.075 1.074 1.092 

7 1.106 1.000 0.953 1.049 1.050 1.069 

8 1.067 1.061 0.960 1.041 1.003 1.040 

9 1.012 1.096 1.048 0.866 0.899 0.955 

10 0.947 0.991 1.076 0.879 0.972 0.988 

ALL 1.006 0.985 1.002 0.999 1.004 1.018 

 

4.2.8 Correlation between True Proficiency and Estimated Proficiency  

 One effective method of summarizing the impact of research manipulations on 

recovery of true proficiency is the Pearson correlation.  For this study, correlations for all 

conditions are summarized in Table 4.20.  While prior tables have utilized stratified 

proficiency to summarize information, correlations are not necessarily amenable to this 

kind of analyses as a result of range restriction problems (as noted in the biserial 

correlation section). Therefore, only the overall summary correlations are reported in 

Table 4.20.  The strongest correlation was exhibited by the CAT formats, with the highest 

correlations for simulated data, and lower correlations for the real data.  Not surprisingly, 

the longest tests revealed the highest correlations, with the CAT-Sim data correlation 
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value the highest at 0.983.  The lowest true-to-estimated proficiency correlation of 0.923 

was found for the 35-item Linear-Real condition. 

Table 4.20  

True Proficiency by Estimated Proficiency Correlations 

 Linear Format CAT Format 

Test Length Real Data Simulated Data Real Data Simulated Data 

25 0.937 0.924 0.963 0.969 

35 0.923 0.934 0.970 0.978 

50 0.946 0.954 0.975 0.983 

 

 In comparing proficiency correlations across data types, simulation data were 

found to correlate more highly with true proficiency than real data.  Within the linear test 

format, the difference between the real and simulated data was greater than within the 

CAT format conditions.  The largest absolute difference of 0.013 was found for the 25-

item linear test form. As linear test length increased, the differences between real and 

simulated data decreased.  The differences within CAT forms were smaller than within 

linear forms, but the CAT differences increased slightly as test length increased.  This 

outcome can be explained by noting that the correlations increased as test length 

increased, and the CAT format conditions showed larger correlation increases than the 

linear forms.  As a result, the difference values increased because of the extra correlation 

gains made by the CAT format exams.  Notably, the 25-item test linear format data 

indicated that the real data showed a higher correlation than the simulated data.  Overall, 

the simulated data were found to have higher correlations with the true proficiency values 

regardless of test format, with the single exception of the 25-item linear test condition. 

4.2.9 CAT Item Exposure 
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 In summarizing any CAT procedure, it is often instructive to state the frequency 

with which items were selected by the CAT maximum information algorithm.  Given the 

large number of item administrations from the item pool, a graphical illustration is the 

most parsimonious method for presenting these data.  Figures 4.13, 4.14, and 4.15 show 

the ordered item exposures frequencies for the CAT tests.  As illustrated by the steeply 

spiked graph, some items were chosen rarely while others were chosen quite frequently.  

Given that an unconstrained maximum information CAT typically uses its most 

informative items first, it is reasonable that some items would be selected frequently 

compared to less informative items which would be selected infrequently or never.  

Figure 4.13  

CAT Item Exposure for 25-Item Test 
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Figure 4.14  

CAT Item Exposure for 35-Item Test 
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Figure 4.15  

CAT Item Exposure for 50-Item Test 

 

 For all test lengths, the Figures show that generally the same items were chosen, 

regardless of whether or not the data were real or simulated. In some cases, certain items 

were chosen slightly more or less often depending on data type.   For the 25-item test 

(Figure 4.13) and the 50-item test (Figure 4.15), the real data items were selected slightly 

more frequently except for a few points where they were chosen much more frequently.  

For the 35-item test, however, there were a larger number of items which were chosen 

much more frequently for the real data condition than for the simulated data condition.  

Again, this result is likely due to the reduced information in the 35-item condition, and 

the increased use of popular items by the CAT algorithm was an attempt to maximize 

information by using the most informative items.  This tactic may have been less 
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important for the simulated data which tended to have less variation than its real data 

counterpart. 

Table 4.21     

Item Exposure Summary for Real Data CAT 

 

Test Length 

Number of 

Items Used of 

534 

Number of 

Items Used  

0.25% 

Proportion of 

Linear Test Items 

Not Used by CAT 

25 482 86 0.04 

35 482 100 11.43 

50 486 114 0.10 

 

Table 4.22     

Item Exposure Summary for Simulated Data CAT 

Test Length 

Number of 

Items Used of 

534 

Number of 

Items Used 

 0.25% 

Proportion of 

Linear Test Items 

Not Used by CAT 

25 484 85 0.04 

35 483 102 11.43 

50 484 114 0.10 

 

 Another point of interest is the number of items used from the total pool of 534 

and a comparison of items selected.  Tables 4.21 and 4.22 summarize the CAT item 

exposure.  Items used for more than 0.25 percent of the available selections indicated that 

the items were used quite frequently.  Of particular interest is the rightmost column 

which summarizes the number of items on the linear forms not chosen for any CAT 

administrations.  For the 35-item test, four of the items used on the less stable linear test 

forms were never administered using the CAT algorithm.  Therefore, more than 11% of 

the 35 linear test items were deemed unsuitable for administration by the CAT maximum 
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information algorithm.  This result confirms that the 35-item linear test was constructed 

with items that would not likely be included on a real-world test due to their poor 

performance, which is a drawback of the random selection procedure employed for the 

linear test assembly.  

4.3 Calculated MSE Compared to Empirical SD for Simulated Data 

 As noted in the methodology chapter, the standard error of the proficiency 

estimate, SE( 
ˆ ), is a function of the amount of information provided by a given test at 

ˆ .  

The SE( 
ˆ ) statistic represents the amount of error in the proficiency estimate. Unlike the 

classical test theory standard error of measurement, which is the same value for all 

examinees on a given test, the SE( 
ˆ ) is specific to the examinee’s proficiency estimate.  

The SE is intended to represent the amount of potential within-examinee variation in the 

proficiency estimate that would occur over multiple administrations of the test, 

represented here as the “Mean SE( 
ˆ )” or SE .  Given the 100 simulated replications for 

each test length condition in this study, it is possible to obtain the empirical standard 

deviation of the proficiency estimate, SD
 

ˆ( ) , at the examinee level.  This SD
 

ˆ( )value, or 

SD, can be compared to the  SE to show differences in proficiency estimation by method 

of test administration (i.e., CAT versus linear conditions).  Comparisons of  SE  and 

SD
 

ˆ( )  values for simulated data on the linear test are summarized in Table 4.23. Table 

4.24 summarizes the same comparisons for the simulated data CAT tests. On the linear 

tests (Table 4.23), the overall  SE  values were larger than the overall SD values with the 

25-item test having the largest overall  SE -SD difference of 0.039.  The smallest overall 
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difference was 0.019 for the 50-item test. Among the groups, the same pattern holds true, 

except for the middle of the proficiency distribution, Group 4 and Group 5.  

Table 4.23      

Linear Test Simulated Data  SE Compared to 
  
SD ˆ( )  

  SE    
SD ˆ( )  

Group 25 Item 35 Item 50 Item 25 Item 35 Item 50 Item 

1 0.430 0.373 0.321 0.335 0.309 0.274 

2 0.338 0.290 0.233 0.320 0.281 0.231 

3 0.323 0.280 0.223 0.316 0.274 0.223 

4 0.307 0.279 0.223 0.312 0.293 0.232 

5 0.310 0.286 0.231 0.311 0.297 0.238 

6 0.336 0.329 0.271 0.325 0.315 0.266 

7 0.341 0.335 0.277 0.328 0.316 0.270 

8 0.391 0.389 0.329 0.356 0.340 0.303 

9 0.419 0.415 0.355 0.362 0.349 0.318 

10 0.492 0.482 0.423 0.340 0.356 0.341 

ALL 0.369 0.346 0.289 0.330 0.313 0.270 

 

Across all test lengths, these two groups only had larger  SE  values than SD values.  The 

group with the largest  SE -SD difference was Group 10, across all three test lengths.  

Among the three test lengths, the largest Group 10 difference was found for the 25-item 

test at 0.152 and the smallest Group 10 difference was found for the 50-item test at 0.082.  

Within the groups, the smallest  SE -SD difference was found for Group 3 in both the 35-

item test (0.006) and 50-item test (0.000). The second largest difference for the 25- and 

50-item tests were in Group 1 for both, but the 35-item test had its second largest 

difference in Group 9.  For the 25-item test, the smallest difference was found for Group 



93 

 

5 at -0.001.  Overall, the linear simulated data showed that  SE values were larger than SD 

values overall and for all groups except Groups 4 and 5.  Linear-Sim  SE -SD group 

differences were largest for Group 10 and smallest for Group 3 (35- and 50-item tests) 

and Group 5 (25-item tests). The largest overall differences were found for the 25-item 

test and the smallest were found for the 50-item test.  

Table 4.24    

 CAT Test Simulated Data  SE Compared to 
  
SD ˆ( )  

  SE    
SD ˆ( )  

Group 25 Item 35 Item 50 Item 25 Item 35 Item 50 Item 

1 0.345 0.281 0.235 0.371 0.295 0.245 

2 0.165 0.144 0.126 0.177 0.149 0.128 

3 0.154 0.135 0.119 0.164 0.140 0.121 

4 0.147 0.130 0.116 0.153 0.133 0.118 

5 0.150 0.133 0.119 0.156 0.136 0.120 

6 0.175 0.156 0.139 0.180 0.158 0.140 

7 0.181 0.161 0.143 0.187 0.164 0.146 

8 0.243 0.212 0.185 0.259 0.221 0.190 

9 0.287 0.248 0.214 0.303 0.258 0.219 

10 0.423 0.358 0.306 0.444 0.372 0.314 

ALL 0.227 0.196 0.170 0.239 0.203 0.174 

 

 For the CAT format simulated data (Table 4.24), the SD values were larger than 

the  SE values, in contrast to the results from the linear format data.  However, the 

differences between the two statistics in the CAT data were smaller than they were for 

the linear data.  Among the three test lengths, the largest difference value was found for 

the 25-item test at -0.012, and the smallest difference value was found for the 50-item test 
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at -0.004.  The largest group differences were found in Group 1 for two of the test 

lengths, the 25-item (-0.026) and the 50-item (-0.010) tests. The largest 35-item test 

group difference was tied for both Group 1 and Group 10 (-0.014).  The group with the 

smallest difference was Group 6 for two test lengths, the 25-item (-0.005) and the 35-item 

(-0.002) tests.  The 50-item (-0.001) test had its smallest group difference values for 

Group 5 and Group 6, tied at -0.001.   

 The larger  SE values for the linear format tests indicate that the calculated errors 

are larger than they would be, given the smaller empirical SD.  Thus, for most of the 

groups and for the overall linear test means, the  SE  overestimated the error compared to 

results found empirically. For the two middle linear groups that had negative difference 

scores, the SD was larger than the  SE  which signifies that the actual empirical errors 

were larger than their calculated errors.  For these two groups and for all of the CAT 

format results, which also had larger SD than  SE  values, the  SE  underestimated the 

error as compared to the empirically derived SD.  For both linear and CAT format tests, 

either the overestimation or underestimation results were greater for the shorter length 

tests and less for the longer tests.  Linear tests also had notably larger  SE -SD differences 

than did CAT tests. The largest group differences across all formats and test lengths were 

found in the extreme high and low proficiency groups, Group 1 and Group 10.  The 

smallest difference values occurred in the middle proficiency groups, but no one group 

across all conditions.  

4.4 Summary Across Analyses 

 Generally, what was found in this study varied across analytical methods and by 

condition, as would be expected in any study.  There are some common findings, 
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however, that may prove useful to reiterate.  The goal of this study was to determine if 

real and simulated data were functionally equivalent, using a new method of joining real 

test data from one section of the LSAT.  An additional focus was to determine if 

differences could be introduced by varying linear versus CAT examination methods as 

well as by varying three test lengths.  Overall, this study found that real and simulated 

data were largely the same in outcomes from the various conditions, when compared 

within condition.  Simulated data generally displayed less variation than real data, 

particularly for the middle proficiency examinees and longer test lengths.  Broadly 

speaking, the 50-item test length minimized any small differences between real and 

simulated data.  The poorly constructed 35-item Linear-Real test, however, showed the 

greatest amount of unpredictability, which serves as a reminder of the importance of 

careful test assembly. 

 As would be expected, the greatest impact on bias, RMSE, information, and MSE 

was found for the CAT testing format.  All of the positive reasons for using a CAT were 

reinforced by the results from this study. Compared to its linear counterparts, the 

computer-adaptive testing method used here created small values for bias, RMSE, MSE, 

and empirical standard deviation as well as more information.  These results would be 

expected given the information maximization algorithm of the CAT and information’s 

direct relationship to estimation accuracy, error and proficiency estimation variation.  The 

CAT format examinations in this study, however, heavily utilized some of the most 

informative items from the item pool, a potential liability in real-world testing 

environments where quality item writing can be an expensive endeavor. Heavily exposed 
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items may not be usable over time, as they will become too memorable, possibly 

introducing construct irrelevant changes in item performance. 

 Overall, however, this study failed to find notable differences between real and 

simulated data when compared within matched conditions (e.g., within CAT or within the 

same test length only).  A few results do suggest caution when creating quality linear 

tests and shorter-length tests which may impact simulated data results.  Finally, these 

findings suggest that simulated data may be somewhat less accurate at reproducing real 

data characteristics for extremely low or extremely high proficiency examinees. 
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CHAPTER V.  DISCUSSION 

 In measurement research, the ubiquity of data simulation studies could cause 

some discomfort from research consumers who may be making high stakes testing 

decisions based on the results of these artificially generated data.  Empirically 

demonstrating the validity of using simulated data to inform measurement research 

choices is an important undertaking to ensure continued usefulness and acceptance of 

these methods. Few studies have examined the empirical basis of the validity of 

simulated data within the modern CAT format. Even fewer studies have compared these 

simulated data CAT results to more traditional linear test results using both real and 

simulated data.  The purpose of this dissertation was to fill this void by examining one 

specific section of LSAT data to determine the comparability of simulated data to real-

world examinee data. 

 Simulating data serves a valuable function by enabling educational measurement 

researchers to obtain timely answers to difficult research questions.  In this dissertation, 

the design focused on methods establishing if simulations are sufficiently representative 

of real test data.  Harwell et al. (1996) noted that well-designed simulation studies can be 

very effective and accurate in creating realistic data.  Using Harwell et al.’s 

recommendations regarding careful construction of the simulated data, support for the 

accuracy of simulated data in this study was high.  Unfortunately, this study’s results did 

not indicate a perfect relationship between simulated and real examination data.  Reduced 

simulation accuracy was found on the linear test formats by way of increased real-to-

simulated data differences in proficiency estimates, true-by-estimated correlations, bias, 

and RMSE.  In particular, the problematic real data linear test with 35 items was shown 
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to have nontrivial differences as compared to the simulated data.  The item selection 

method for the linear tests was simple stratified random sampling, which had no 

constraints or item rejection criteria of any kind.  Unfortunately, this random selection 

process resulted in the inclusion of poorly performing items which may have exacerbated 

differences between the real and simulated data.  Since the CAT method selects items 

that are appropriate for the proficiency-derived response pattern, items chosen were 

properly targeted to each examinee.  Therefore, CAT format data showed increased 

accuracy between real and simulated data.  

 On the linear tests, carefully selected item sets may show better recovery of 

proficiency estimates, as shown with the 25-item real data condition.  Within that 

condition, bias, RMSE, and correlations with true proficiency indicate that the real data 

captured proficiency more effectively than the simulated data.  On the 35-item linear test 

which was composed of items having less ideal item parameters, the simulated data were 

somewhat less extreme than the more atypical results found in the real data.  The 

simulated data behaved more as it would be expected to behave as dictated by theory, 

with smaller values for bias and RMSE, and an increased true proficiency correlation 

over the shorter 25-item simulated data test.  Since CATs select targeted, highly 

informative items, inefficient item selection did not negatively impact results.  Thus, 

simulated data may recover proficiency estimates more accurately in a CAT format 

because all data types recover proficiency estimates more accurately when optimally 

informative items are selected.  Moreover, the alignment between CAT and simulated 

data is high, as both were expressly created to capitalize on features of the IRT theoretical 

model. 
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Limitations and Future Research 

Every study has its limitations and this dissertation is no exception.  The creation 

of the synthetic examinee, post-calibration item fit assessment, and linear item selection 

constraints are some of the limitations to this research project.   

Combining and matching real item response vectors using the complex method 

presented in this paper is untested within the measurement research field.  The potential 

benefits of having a large item pool of real examinee responses, however, are of 

sufficient value to outweigh potential unease with using this new method.  Many 

advances have been made in the area of string comparisons of many types and some 

advanced applications in other fields may be of use in refining this process (e.g., Sankoff 

and Kruskall, 1999).  The notable depression in the c-parameter estimates indicates that 

the synthesizing process might have actually altered the original data, perhaps by 

replicating and thereby exacerbating the existing error variance from the original data. 

Thus, the synthesized data would have benefited from some method to reduce the 

compounded error.  Regardless of the method used to reduce error, documenting any 

differences between the original data and the synthesized data would be instructive.  

Additional validation research on this particular aspect would enable future researchers to 

refine the practice so that a reliable standard can be achieved. 

Items chosen for use in the study were also a limiting factor, likely compounded 

by the aforementioned non-normal distribution of the final matrix. In this study, the 

measure of an item’s suitability for inclusion on a linear test was simple: If it converged 

in the calibration and did not display any extremely unusual characteristics, it was 

deemed a suitable item. Unfortunately, this measure of an item’s fitness is insufficient for 
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the purpose of including it on a real test. Items with extreme item parameters are typically 

evaluated in multiple ways (e.g., stats, content, administration errors) before inclusion in 

a real-world item pool.  Most such items are pre-tested as unscored items and then 

retested if there is a question as to the item’s suitability.  In this project, the focus was on 

creating randomly selected item groups to avoid any assembly biases and to maintain 

reasonable parsimony.  Unfortunately, the random item selection process chose several 

items with more extreme values for the linear 35-item test.  A more tightly controlled 

item selection process may be more effective for evaluating future simulation data 

research questions.  Moreover, the lack of comparability between the linear tests in this 

study would preclude direct comparison, a limitation that could have been avoided by 

constructing appropriately parallel tests (as in Sanders & Verschoor, 1998).  In this study, 

a potentially improved method of constructing tests would be to restrict the item pool to 

only items which have parameters within a particular ideal range.  Stratifying and 

selecting items only after such item filtering would reduce the possibility of creating a 

test with outlying item parameters.  

 In addition to the issue of item selection based on statistical properties, the lack of 

real-world item selection constraints is a potential limitation in this study.  Without 

selection constraints, such as content constraints, one could argue that the study fails to 

capture truly realistic testing conditions.  While this point is a valid criticism, the main 

point of this research study was not to perfectly mimic a realistic testing scenario with the 

full complement of testing conditions.  In fact, some real-world item constraints can be 

exceedingly complex, requiring professional optimization software to resolve all the 

selection restrictions (van der Linden, 1998).  The focus of this research paper was to 
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compare results of using real-world responses to those of simulated responses from a 

measurement perspective.  Additional foci were test format and number of items 

administered.  A key point is that this is a baseline study and the intent was to limit the 

scope to a reasonable level.  To address more complex questions, future research can 

incorporate some of the complex optimization issues arising from multiple constraints. 

 For the current study, some specific improvements could help to refine the results. 

One improvement would be to set simple conditions for the linear test item selection 

process.  The current methodology allowed items to be chosen at random from within 

strata, which is a method that, while parsimonious, is not particularly realistic.  It is 

highly unlikely that any modern test developer would allow a computer to randomly 

select items from an unfiltered item pool, even if the items are stratified to sample the 

most informative items for all parts of the ability continuum.  Items with more extreme 

parameter estimates would not likely be chosen in a real-world situation.  By removing 

items with more extreme parameters, a selection algorithm could choose from among a 

more informative item set.  In turn, the real and simulated data should be more closely 

aligned.  Alternatively, setting up various linear test item combinations may prove 

informative, such that the more poorly assembled tests could be treated as an independent 

variable to be manipulated.  That sort of study would elucidate at what point simulated 

and real data diverge and to what extent that divergence impacts important dependent 

variables such as proficiency estimates.  

 Besides item selection changes, this study could have benefited from additional 

improvements in response modeling manipulations. The 3PL IRT model was the only 

model tested in this study.  It may have been informative to examine additional models 
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which may be more capable of illustrating differences between real and simulated data.  

For example, perhaps the use of a more multivariate-type model, or one including other 

cognitive factors would have been beneficial.  Another improvement would have been to 

develop a better way to create the synthetic examinee. As noted previously, the method 

used here is untested and therefore may not be the ideal method to use to create a 

synthetic examinee.  Some highly advanced methods of matching data strings exist in the 

realm of physics and biology, from bird songs to DNA matching. These methods, while 

complex, are sophisticated and may provide a better match to create the synthetic 

examinee.   

 Some methods that can be used to compare simulated data to the real counterpart 

were explored here, and may be useful to researchers attempting to ascertain the 

comparability of their simulated data to a real data counterpart. One example is the 

comparison of proficiency estimates and standard errors within stratified groups between 

the two data types. Another method that may prove useful is comparing bias and RMSE 

statistics as well as the item information differences between the two data types.  

Correlations between the real data proficiency estimates and simulated data proficiency 

estimates may also be a useful method of demonstrating comparability.  Of particular 

interest, researchers may want to focus particularly on the lowest and highest proficiency 

values of their simulated data, as the largest real-to-simulated data differences in this 

study were found for those parts of the distributions. 

 The implications of this study on in the field of educational measurement are 

preliminary, but promising.  As noted in the literature review, some published research 

has sounded the alarm regarding the use of poorly constructed simulated data.  Many of 
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these publications note of the options for improving simulated data so that they better 

reflect real world data. These publications, however, have been unsatisfactory for the 

various reasons outlined previously. The implications for this study are the plausibility of 

using simulated data, with caveats, and the usefulness of creating the synthetic examinee.  

Simulated data in this study were generally quite similar to their real data counterparts, at 

least when the tests constructed were parallel and of sufficient length. As noted, the 

simulation of highest and lowest proficiency groups was the most problematic. The 

implication of these findings is that well constructed simulations are a viable method of 

creating data for use in psychometric analyses.  The inherent difficulty in constructing a 

valid synthetic examinee may be one hindrance to a viable solution to this issue.  This 

study outlines a preliminary method that may prove useful as a new method of comparing 

simulated data to real data by way of creating the synthetic examinee dataset.  By refining 

this synthetic examinee process, it is hoped that this method will prove useful to 

researchers seeking to compare their simulated datasets to real test data.  With additional 

research on the validity of the synthetic examinee output, it may prove to be a very useful 

method indeed. 

  

 

  

  



104 

 

References 

Ansley, T. N. & Forsyth, R. A.  (1985).  An examination of the characteristics of the 

 unidimensional IRT parameter estimates derived from two-dimensional data.  

 Applied Psychological Measurement, 9 (1), 37-48. 

 

Ban, J.-C., Hanson, B. A., Yi, Q., Harris, D. J.  (2002).  Data sparseness and online 

 pretest item calibration/scaling methods in CAT.  ACT Research Report Series.  

 Iowa City, IA: American College Testing Program. 

 

Bobko, P.  (1983).  An analysis of correlations corrected for attenuation and range 

 restriction.  Journal of Applied Psychology, 68 (4), 584-589.   

 

Bowles, R. & Pommerich, M.  (2001, April).  An examination of item review on a CAT 

 using the Specific Information Item Selection algorithm.  Paper presented at the 

 annual meeting of the National Council on Measurement in Education, Seattle, 

 WA. 

 

Chang, S.-W. & Twu, B.-Y.  (2001, April).  Effects of changes in the examinees’ ability 

 distribution on the exposure control methods in CAT.  Paper presented at the 

 annual meeting of the American Educational Research Association, Seattle, 

 WA. 

 

Crocker, L. & Algina, J.  (1986).  Introduction to classical and modern test theory. 

 New York: Harcourt, Brace, & Jovanovich.  

 

Davey, T., Nering, M. L. & Thompson, T. (1997). Realistic simulation of item response 

 data. ACT Research Report Series, 97-4, American College Testing, Iowa City, 

 IA. 

 

De Ayala, R. J.  (1994). The influence of multidimensionality on the graded response 

 model.  Applied Psychological Measurement, 18 (2), 155-170.   

 

De Boeck, P. & Wilson, W. (Eds.).  (2004).  Explanatory item response models: A 

 generalized linear and nonlinear approach.  New York: Springer-Verlag. 

 

de la Torre, J.  (2009).  A Cognitive Diagnosis Model for Cognitively Based Multiple-

 Choice Options.  Applied Psychological Measurement, 33 (3), 163-189. 

 

de la Torre, J. & Douglas, J. A.  (2008) Model Evaluation and Multiple Strategies in 

 Cognitive Diagnosis: An Analysis of Fraction Subtraction Data.  Psychometrika, 

 73 (4), 595-624. 

 

Evans, J. and Weissman, A. (2005, October).  IRT 3PL Parameter Recovery under 

 Sparse Data Conditions.  Paper presented at the annual meeting of  the Northeast 

 Educational Research Association, Kerhonkson, NY. 



105 

 

 

Fairbank, B. A., Jr. (1985, April). Equipercentile test equating: The effects of 

 presmoothing and postsmoothing on the magnitude of sample dependent-errors. 

 (Research report AFHRL-TR-84-64). San Antonio, TX: Performance Metrics, 

 Inc. 

 

Fan, X., Felsovalyi, A., Sivo, S.A., and Keenan, S.C.  (2001).  SAS
®
 for Monte Carlo 

 studies. Cary, NC: SAS Institute. 

 

French, J. W.  (1965).  The relationship of problem-solving styles to the factor 

 composition of tests.  Educational and Psychological Measurement, 25, 9-28. 

 

Hambleton, R. K.  (1993).  Principles and selected applications of item response theory.  

 In R. L. Linn (Ed.) Educational measurement (3
rd

 ed.).  Phoenix, AZ: American 

 Council on Education / Oryx Press. 

 

Hambleton, R. K., Swaminathan, H., & Rogers, H. J.  (1991).  Fundamentals of item 

 response theory. Newbury Park, CA: Sage. 

 

Harwell, M. R., & Janosky, J. E. (1991).  An empirical study of the effects of small 

 datasets and varying prior variances on item parameter estimation in BILOG.  

 Applied Psychological Measurement, 15, 279-291. 

 

Harwell, M., Stone, C. A., Hsu, T. C., & Kirisci, L.  (1996). Monte Carlo studies in item 

 response theory. Applied Psychological Measurement, 20, 101-125. 

 

Hoaglin, D. C., & Andrews, D. F.  (1975).  The reporting of computation-based results in 

 statistics.  American Statistician, 29, 122-126. 

 

Hulin, C. L., Lissak, R. I., & Drasgow, F.  (1982).  Recovery of two- and three-

 parameter logistic item characteristic curves: A Monte Carlo study.  Applied 

 Psychological  Measurement, 6, 249-260. 

 

Kim, H., & Plake, B. S.  (1993, April).  Monte Carlo simulation comparison of two-stage 

 testing and computerized adaptive testing.  Paper presented at the Annual Meeting 

 of the National Council on Measurement in Education, Atlanta, GA. 

 

Kubinger, K. D.  (2009).  Applications of the linear logistic test model in psychometric 

 research.  Educational and Psychological Measurement, 69 (2), 232-234. 

 

Levine, M. V.  (1984).  An introduction to multilinear formula score theory. Model-

 Based Measurement Laboratory Report 84-4. Urbana: University of Illinois. 

 

Lord, F. M.  (1980).  Applications of item response theory to practical testing problems.  

 Hillsdale, NJ: Lawrence Erlbaum. 

 



106 

 

Lord, F. M. & Novick, M.  (1968).  Statistical theories of mental test scores.  Reading, 

 MA:  Addison-Wesley. 

 

McCauley, C. D., & Mendoza, J.  (1985).  A simulation study of item bias using a two-

 parameter item response model.  Applied Psychological Measurement, 9, 389-

 400. 

 

McLeod, L. D., Lewis, C., & Thissen, D.  (1999).  A Bayesian method for the detection 

 of item preknowledge in CAT.  LSAC Computerized Testing Report. Newtown, 

 PA: Law School Admission Council. 

 

Metropolis, N. & Ulam, S. (1949). The Monte Carlo method. Journal of the American 

 Statistical Association, 44, 335-341. 

 

Mills, C. N. & Stocking, M. L.  (1996).  Practical issues in large-scale computer-adaptive 

 testing.  Applied Measurement in Education, 9 (4), 287-304. 

 

Mooney, C. Z.  (1997).  Monte Carlo simulation.  Thousand Oaks, CA: Sage. 

 

Parshall, C.G., Spray, J.A., Kalohn, J., Davey, T.  (2002).  Practical considerations in 

 computer-based testing.  New York: Springer. 

 

Prowker, A. N.  (2005).  Long-term stability of fixed common item parameter 

 equating: What No Child Left Behind could mean for equating practices.  

 (Doctoral dissertation, Rutgers, The State University of New Jersey - New 

 Brunswick, 2005). Dissertation Abstracts International, 66 (11). (Proquest 

 Publication No. AAT 3195741) 

 

Psychometric Society (1979).  Publication policy regarding Monte Carlo studies. 

 Psychometrika, 44, 133-134.   

 

Sanders, P. F. & Verschoor, A. J.  (1998).  Parallel test construction using classical item 

 parameters. Applied Psychological Measurement, 22, 212-223. 

 

Sankoff, D. & Kruskall, J.  (1999).  Time warps, string edits, and macromolecules: The 

 theory and practice of sequence comparison.  Stanford, CA: Center for the Study 

 of Language and Information (CLSI) Publications. 

 

Schnipke, D., Roussos, L., & Pashley, P.  (2000).  A comparison of Mantel-Haenzel 

 differential item functioning parameters (Law School Admission Council 

 Research Report No. RR-98-03).  Newtown, PA: Law School Admission Council. 

 

Snow, R. E. & Lohman, D. F. (1989). Implications of cognitive psychology for 

 educational measurement.  In Linn, Robert L. (Ed).  Educational measurement 

 (3rd ed.).  New York: The American Council on Education and Macmillan 

 Publishing.  



107 

 

 

Sternberg, R. J. & Weil, E. M.  (1980).  An aptitude-strategy interaction in linear 

 syllogistic reasoning.  Journal of Educational Psychology, 72 (2), 226-234. 

 

Stocking, M. L., Steffen, M., & Eignor, D. R.  (2001).  A method for building a realistic 

 model of test taker behavior for computerized adaptive testing (Educational 

 Testing Service Research Report, RR-01-22).  Princeton, NJ: Educational Testing 

 Service. 

 

Thissen, D. & Mislevy, R. J.  (2000). Testing algorithms. In H. Wainer (Ed.), 

 Computerized adaptive testing: A primer (2
nd

 ed., pp. 101-134).  Mahwah, NJ: 

 Lawrence Erlbaum Associates. 

 

van der Linden, W. (1998).  Optimal assembly of psychological and educational tests.  

 Applied Psychological Measurement, 22, 195-211. 

 

Wainer, H. (2000).  Computer adaptive testing: A primer (2
nd

 ed.).  Mahwah, NJ: 

 Lawrence Erlbaum Associates. 

 

Wainer, H. & Mislevy, R. J.  (2000).  Item response theory, calibration, and estimation. . 

 In H. Wainer (Ed.), Computerized adaptive testing: A primer (2
nd

 ed., pp. 61-

 100).  Mahwah, NJ: Lawrence Erlbaum Associates. 

 

Wang, X. B., Pan, W., & Harris, V. (1999). Computerized adaptive testing simulations 

 using real test taker responses (Law School Admission Council Computerized 

 Testing Report, 96-06).  Newtown, PA: Law School Admission Council. 

 

Weiss, D. J. (2005a).  Manual for POSTSIM: Post-hoc simulation of computerized  

 adaptive testing.  Version 2.0.  St. Paul, MN: Assessment Systems Corporation. 

 

Weiss, D. J. (2005b).  POSTSIM 2.0 [computer software].  St. Paul, MN: Assessment 

 Systems Corporation. 

 

Wen, J.-B., Chang, H.-H., & Hau, K.-T.  (2000, April).  Adaptation of a stratified method 

 in variable length computerized adaptive testing.  Paper presented at the annual 

 meeting of the American Educational Research Association, New Orleans, LA, 

 2002. 

 

Yen, W. M.  (1987).  A comparison of the efficacy and precision of BILOG and 

 LOGIST.  Psychometrika, 52, 275-291. 

 

Zimowski, M. F., Muraki, E., Mislevy, R. J., & Bock, R.D. (2003). BILOG-MG 3 for 

 Windows: Multiple-group IRT analysis and test maintenance for binary items 

 [Computer software]. Lincolnwood, IL: Scientific Software International, Inc 

 



108 

 

Zwick, R. & Thayer, D. T.  (2003).  An empirical Bayes enhancement of Mantel-Haenzel 

 DIF analysis for computer adaptive tests (LSAC Research Report). Newtown, 

 PA: Law School Admission Council. 

 



109 

 

Curriculum Vitae 

 

Josiah Evans 

 

 

Formal Education 

 

Master of Arts, Psychology, May 2000 

Hunter College/The Graduate Center – City University of New York, New York, NY  

 

Bachelor of Science, Psychology, May 1994 

Presbyterian College, Clinton, SC 

 

Relevant Employment Experience 

 

Research Associate       2003 – present  

Law School Admission Council, Newtown, PA 

 

Assistant Psychometrician       2000 – 2003 

Research Assistant       1999 – 2000 

The American Institute of Certified Public Accountants, Jersey City, NJ 

 

Research Assistant       1997-1999 

Mount Sinai School of Medicine, New York, NY 

 

Research Assistant       1996-1997 

GMHC, New York, NY 

 

Publications 

 

Evans, J., Thornton, A. E., & Reese, L. M. (2008)  Summary of self-reported methods of 

 test preparation by LSAT takers for testing years 2005–2006 through 2007–

 2008 (Law School Admission Council Technical Report 08-04).  Newtown, PA: 

 Law School Admission Council. 

  

Mills, C., Hambleton, R., Biskin, B., Kobrin, J., Evans, J., and Pfeffer, M.  (2000).  

 Setting passing standards using two methods: Cluster and Angoff.  Technical 

 report prepared for the National Association of the State Boards of Accountancy, 

 Board of Examiners, Nashville, TN. 

 


