
OPTIMIZATION FOR SPARSE AND ACCURATE
CLASSIFIERS

BY NOAM GOLDBERG

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Operations Research

Written under the direction of

Professor Jonathan Eckstein

and approved by

New Brunswick, New Jersey

January, 2010

ABSTRACT OF THE DISSERTATION

Optimization for sparse and accurate classifiers

by Noam Goldberg

Dissertation Director: Professor Jonathan Eckstein

Classification and supervised learning problems in general aim to choose a function that

best describes a relation between a set of observed attributes and their corresponding out-

puts. We focus on binary classification, where the output is a binary response variable.

In this dissertation, we seek motivation within statistical learning theory, which attempts

to estimate how well a classification function generalizes with respect to unseen data in a

probabilistic setting.

We study linear programming formulations for finding a hyperplane that separates two

sets of points. Such formulations were initially given by Mangasarian [52] for the separable

case, and more recently extended by “soft margin” formulations that maximize the margin

of separation subject to a penalty proportional to the sum of margin violations. LP-Boost

is a boosting algorithm which solves the large scale linear program in a high dimensional

space of features using a column generation solution technique.

While many authors have developed different boosting algorithms that assume the ex-

istence of effective base learning algorithms for generating a feature or base classifier (e.g.,

solving the pricing problem with a column generation approach), there has not been much

work done to propose such algorithms. In this dissertation, we propose a branch-and-bound

algorithm for finding a Boolean monomial that best agrees with the given set of data. This

problem has been known as maximum monomial agreement and has been mostly studied

ii

in the computational complexity and learning communities in the context of negative com-

putational complexity results. Here we propose an algorithm that finds the monomial that

best agrees with the given data and show that it is computationally efficient in practice for

UCI datasets.

Revisiting the problem of finding weighted voting classifiers, we consider the problem

of balancing the sparsity of the vector of weights and accuracy with respect to the given

the training data. It has been suggested by several authors to minimize the L1-norm of the

normal vector of the separating hyperplane in order to find sparse solutions. In contrast, we

formulate the discrete optimization problem of minimizing the sum of disagreements of a

weighted voting classifier and a penalty proportional to the number of nonzero components

of the hyperplane’s normal vector. The problem that we propose extends the NP-hard

Minimum Disagreement Halfspace problem studied in computational learning theory. We

are able to formulate this problem as a Mixed Integer Linear Program (MILP), and show

that the continuous relaxation of the MILP is equivalent to the well-known L1-norm min-

imizing LP for finding weighted voting classifiers. We proceed by suggesting novel cutting

planes to tighten the continuous relaxation. Finally, we propose and test a novel boost-

ing algorithm that solves the relaxation by dynamic generation of columns and cuts. The

algorithm used for generating the columns in this procedure generalizes our algorithm for

maximum monomial agreement. In our experiments with the novel MILP relaxation, we

demonstrate that our formulation, as well as solution technique, provide an effective ap-

proach for constructing sparse and accurate classifiers, and balancing the tradeoff between

the two.

iii

Acknowledgements

I would like to thank my advisor, Professor Jonathan Eckstein; without his guidance, this

work would not have been possible. I enjoyed our conversation and the ideas that came

up during and following these conversations. I would also like thank the members of the

committee who I had the opportunity to consult with about problems discussed within this

dissertation as well as other research problems.

During the course of my PhD studies I have spoken to several Professors, who I also

looked up to as mentors. I have not always persisted and followed through with results,

nevertheless, I believe that these interactions helped me to develop my “identity” as a

researcher. I need to thank Professor Peter Hammer with whom I had the honor to discuss

research possibilities before he passed away suddenly. I would like to thank Professor Chung-

chieh (Ken) Shan for helping me to get started on a path to doing good research, including

work that led to this dissertation. I would like to thank Professor Robert Schapire for an

inspiring talk at a DIMACS conference that motivated me to try to address the machine

learning and statistical learning communities at large, at an early stage of this work, and for

discussing the machine learning aspects of this dissertation. I also thank Professors Endre

Boros and Paul Kantor who funded and guided me in their Homeland Security funded

research, which I believe helped me to further evolve and improve my skills as a researcher.

I would like to thank Professor Fred Roberts for finding time to discuss an interesting

research problem in voting theory, and also to invite me to get involved in the DyDAn

center. I have also enjoyed speaking on occasion to Professors Michael Grigoriadis, András

Prékopa, and Dan Stratila about different research projects or ideas.

I would like to thank Professor Kristin Bennett for general comments, and Martin Mi-

lanič for comments about a feature selection problem, both related to work done in Chap-

ter 3 of this dissertation. I am also grateful for being able to use the computing resources

iv

of the computer science department, which was instrumental in the computational work

of Chapter 3. Finally, the dissertation is based upon work partially supported by DyDAn

and the U.S. Department of Homeland Security under Grant Award Number 2008-DN-077-

ARI001-02.

I would also like to thank Tami Carpenter, Paul Kantor, Tamara G. Kolda, Hanan Luss

and Fred Roberts for career planning and job search advice.

At a personal level first and foremost I need to thank my wife and best friend Michal, for

her love and support during the ups and downs of the past five years. I also need to thank

friends at RUTCOR that helped with some good laughs and interesting conversation, to

name a few: Ricardo Collado, Aritanan Gruber, Martin Milanič, Olga Myndyuk, Mathew

Oster, David Papp, and Anupama Reddy.

v

Dedication

To my grandparents.

vi

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

1. Introduction . 1

1.1. Weighted voting classification . 2

1.2. Sparse models . 5

1.3. Risk minimization and risk bounds . 7

1.4. Robust linear programming formulations for classification and LP-Boost . . 11

1.5. The base learning and maximum agreement problems - the basic formulation

and brief survey of literature . 15

2. Maximum Monomial Agreement . 19

2.1. Problem Statement and Introduction . 19

2.2. Branch and bound . 21

2.2.1. The upper bound function . 22

2.2.2. The branching procedure . 25

2.3. Experimental study . 31

3. Tightened L0 relaxation for classification 40

3.1. Statistical learning theory justifications for sparsity and minimizing code length 41

3.2. The sparse minimum disagreement hyperplane problem - a hard problem . 43

3.2.1. Problem formulation . 43

3.2.2. Computational complexity . 49

3.3. Relaxing the hard problem and strengthening the relaxation 53

vii

3.4. L0-Relaxed Boosting: a boosting formulation with relaxed L0 complexity

penalties . 55

3.4.1. Dual formulation, the base learning problem and termination 56

3.4.2. The boosting algorithm . 59

3.4.3. Analysis and margin maximization with L0 relaxation penalties . . . 60

3.5. Application using Boolean monomial base classifiers 63

3.6. Experimental work and discussion . 64

4. Generalized agreement problems . 76

4.1. Formulation of the problem with abstaining base classifiers 76

4.2. Extending the Maximum Monomial Agreement algorithm 78

5. Conclusions and possible future work . 81

References . 83

Vita . 88

viii

1

Chapter 1

Introduction

This dissertation explores new formulations and algorithms for selecting data classification

models. A classification model is a function that maps from some given domain of observed

attributes to a predicted class of interest. We will assume here that there are only two classes

in our data: a “positive” class and a “negative” one. In a medical diagnosis application the

class may be either “ill” or “healthy”. The data may include attributes of patients such as

weight and blood pressure. Based on a set of observed attribute values of a newly examined

patient, we may wish to predict whether the patient has heart disease or is healthy. We

note, however, that the case of more than two classes has been reduced to one or more

problems of binary classification, with the error rate of the multi-class problem bounded in

terms of the error of the binary problem [1, 31].

By optimally sparse and accurate classifiers we mean to consider the problem of how

to strike an ideal balance between sparsity and accuracy of a classifier on the given set of

data. In this dissertation, we consider weighted voting classifiers that are linear combina-

tions of the outputs of simple classifiers. The classification is made based on comparing the

linear combination to a threshold which we may assume to be zero by including a constant

base classifier, without loss of generality. The sparsity of a weighted voting classifier can

be defined as its proportion of zero weighted base classifiers. The motivation for sparsity,

which will be elaborated on below, is to avoid overfitting ; selecting classifiers which perform

poorly on new data but are highly accurate with respect to the given training data. This

phenomenon is even more likely to occur when the samples contain noise or outliers that

may cause us to select highly complex models that fail to apply to the “true” data. Gen-

erally speaking, sparse classification models tend to correspond to hyperplanes that do not

necessarily separate all of the positive points from the negative ones, but are less likely to

2

overfit than complex models. Finally, a relatively sparse model’s compact set of rules may

be easier to interpret and comprehend.

Classification problems and weighted voting classifiers have been investigated in several

fields and communities. In statistics, classification problems and specifically the problem

of selecting weighted voting classifiers, traditionally have been solved by logistic regression.

Logistic regression involves applying a transformation to the binary response variable in

order to apply general linear model techniques. These techniques are not explored further

in this dissertation, but the reader may refer to Cox and Snell [24] for more detail. In

the field of operations research, linear and nonlinear programs have been suggested for

finding separating hyperplanes for data classification applications by Mangasarian [52, 53].

Bennett and Mangasarian have also suggested robust linear programming formulations for

data that may be non-separable [12]. Hammer’s logical Analysis of data (LAD) [25, 15, 16]

applies the theory of Boolean functions to data analysis. LAD consists of a systematic

approach to enumerating monomials (or interactions of variables) and using them to model

cause-and-effect relationships [25].

In machine learning, and now statistical learning, which lies in the intersection of ma-

chine learning, statistics and optimization, weighted voting classifiers have been an es-

pecially active area of research. Boosting was first considered in the theoretic provably

approximately correct (PAC) learning framework by Kearns and Valiant [46, 47], and the

first algorithms were suggested by Schapire [61], and later Freund [34] and Freund and

Schapire [36]. Support Vector Machines (SVMs) were first suggested by Vapnik and his

colleagues [69], and together with boosting they have been the most widely used algorithms

for selecting weighted voting classifiers.

1.1 Weighted voting classification

In binary classification problems we are given a set of training data A ∈ RM×N , whose rows

correspond to observations and whose columns correspond to attributes. We are also given

a vector of labels y ∈ {−1, 1}M , defining a partition of the observations into a “positive”

class Ω+ = {i ∈ {1, . . . ,M} | yi = 1}, and a “negative” class Ω− = {i ∈ {1, . . . ,M} |

3

yi = −1} = {1, . . . ,M} \ Ω+. Using these input data, we would like to train a classifier,

g : RN → [−1, 1], in order to classify any x ∈ RN as either positive or negative based on

sgn(g(x)).

Suppose we have a potentially large set of base classifiers hu : RN → {−1, 0, 1}, indexed

by the set U = {1, . . . , U}. A weighted voting classifier (with 0 threshold) is a function of

the form:

g(x) =
∑
u∈U

λuhu(x). (1.1)

Each hu is a simple base classifier, a map from observations in the original space of attributes

to labels assigned in the space of features given by the index set U = {1, . . . , U}.

The margin of a set of observations {1, . . . ,M} is defined as the quantity

min
i∈{1,...,M}

yig(Ai).

Accordingly, the margin of observation i is just yig(Ai).

We refer to a boosting algorithm as one that iteratively selects some u ∈ U in order

to assign a nonzero weight to λu, and finally outputs the weighted voting (also known as

the strong) classifier g(·) that either exactly or approximately maximizes the L1 margin

(equivalently the L∞ distance to the closest point) [63, 60, 73]. The base classifier hu,

for u ∈ U , is selected by a “black box” base (also known as weak) learning algorithm. A

potential difficulty with this approach is that U can be very large and often exponential in

N . In fact, as we will see in the following, the base learning problem can be NP-hard for

many interesting classes of base classifiers, such as monomials of arbitrary order.

Learning algorithms for classification, in general, have considered a variety of different

loss functions as performance measures. Common loss functions, with respect to a single

observation, defined in the following as ` : RN×{−1, 1}×[−1, 1]→ R, include the predictive

zero-one loss:

`(Ai, yi, g(Ai)) = I(yig(Ai) ≤ 0), (1.2)

4

where I(·) is the 0/1 indicator function, the accuracy loss,

`(Ai, yi, g(Ai)) = |yi − g(Ai)| /2, (1.3)

the exponential loss,

`(Ai, yi, g(Ai)) = e−yig(Ai), (1.4)

the logistic loss,

`(Ai, yi, g(Ai)) = log(1 + e−yig(Ai)), (1.5)

or the soft margin loss (with margin fixed to 1):

`(Ai, yi, g(Ai)) = (1− yg(Ai))+, where (·)+ = max{·, 0}. (1.6)

The objective for minimization, in order to determine λ, is usually the sum, or equiv-

alently the average, of losses over all observations. The original AdaBoost algorithm by

Fruend and Schapire [36] has been shown to minimize the sum of (1.4) over the training

observations [21], for certain optimal base learners. Logistic regression, which is a common

classification model selection procedure in statistics, minimizes the sum of (1.5).

The problem of minimizing (1.2) has been studied in the computational learning theory

community and theoretical computer science. Computational learning theory involves the

complexity-theoretic study of key problems in machine and statistical learning, as well as

theoretic estimates of the quality of the resulting models. In the following, we are mostly

concerned with classification model selection schemes that attempt to minimize the sum of

the “hard” zero-one loss (1.2) and its “relaxation”, the “soft margin” loss (1.6).

Finally, we are interested in classification models that are robust; although the input data

may be noisy, we would like to perform well with respect to the unseen test datasets. The

definition of the objective function for finding an optimal classifier g can be addressed within

the framework of regularization theory or statistical learning theory (for an introduction

and comparison of both approaches in the context of supervised learning, see Evgeniou

et al. [32]). Using either theory as motivation, robust optimization-based model selection

procedures for classification would minimize an objective function consisting of the sum

5

of losses plus a regularization term or complexity penalty. In this dissertation, we seek

motivation in statistical learning theory, which defines the optimality of a classifier with

respect to its ability to “generalize” to unseen data in a probabilistic setting. Statistical

learning theory may provide insight into the choice of penalty parameters that otherwise

become a matter of trial and error. First, we appeal to an intuitive concept of our preference

for simple models, which we will later relate to statistical learning theory and code lengths.

Other things being equal, classification models are generally preferred to be sparse and less

“complex”.

1.2 Sparse models

Sparse linear models are loosely defined as linear functionals such as (1.1), for which the

support of λ is small. The zero norm of a vector, which we denote by ||·||0, is defined as the

size of its support (and is not a proper Lp norm). Meir and Rätsch [54] more specifically

define λ to be sparse if ||λ||0 ∈ O(M) (rather than ||λ||0 ∈ O(U)). Nevertheless, if our

model is to generalize well for unseen data, we expect ||λ||0 to be sublinear in M.

Sparse classification models are desirable for two main reasons: for computational pur-

poses when U is large, and to prevent overfitting. Overfitting occurs when the classifier

is accurate with respect to the input data A but is significantly less accurate with respect

to new data to be classified. Occam’s Razor principle also suggests choosing the simplest

possible model that explains the data. Thus, everything else being the same, according to

Occam’s principle, we would select models for which λu > 0 for the smallest subset of U .

Occam’s principle, however, is quite subjective as a model selection criterion. Minimum

description length (MDL) is a notion that attempts to quantify the tradeoff between model

complexity and accuracy with respect to the input data. MDL treats the problem of model

selection as a data compression optimization problem: the model is used to compress the

data. The optimal model minimizes the sum of the size of an efficient encoding of the

model and the size of encoding the observations which the model misclassifies. Exact MDL

is difficult to apply in practice, due to the difficulty of finding and proving the efficiency of

encoding schemes for a model. A comprehensive account of MDH, its information theoretic

6

foundations, and the equivalence of different variants of MDL to well known principles and

methods of statistical inference is given by Grünwald [42]. Here we focus on the more

intuitive aspects of MDL, and the related compression interpretation of learning within

statistical learning theory.

In signal detection and compressed sensing, one faces a related problem of solving an

under-determined linear system (see [72, 18]). Optimally sparse solutions correspond to

solutions with minimum L0 norm, defined as the number of nonzero components of the

solution vector. Finding a solution with minimum L0 norm is known to be NP-hard [55].

In practice, the common approach is to minimize the L1 or L2 norms. Greedy heuristics

for minimizing L0 have also been suggested by several authors [66]. Natarajan proposes

a greedy algorithm with an approximation guarantee in terms of an Lp-norm of the input

matrix and right-hand side [55].

Similarly, in classification model selection, overfitting is typically mitigated by assigning

a complexity (or density) penalty proportional to various norms of λ. Optimally sparse

models would be obtained by directly minimizing or penalizing the L0 norm of λ. In order

to avoid a hard combinatorial optimization problem, the authors of various methods such

as LP-Boost, Lasso and Support Vector Machines (SVMs) [26, 37, 23, 11] instead suggest

using the L1 or L2 norms of λ. Minimizing any one of the common loss functions plus a

complexity penalty proportional to an L1 or L2 norms of λ has the computational advantage

of being a convex optimization problem.

In our approach to model selection, we would like to more directly attack the combi-

natorial optimization problem of minimizing the predictive loss subject to a weighted L0

complexity penalty. Penalizing the L0 norm of λ would help to construct classifiers that

are “optimally sparse”. We also believe that L0 penalty parameters are easier to interpret

than the penalty parameters applied to other p-norms, in the context of the MDL principle.

When our model makes an error, we “transmit” and “pay for” identifying the observation

which should be relabeled among the given M samples. Otherwise, in the following, we

initially assume that all base classifiers are equally complex, so that the complexity of our

model is linear in the number of nonzero coefficients in λ. We then generalize our model by

taking into account that some features are more complex than others, and therefore need

7

to be assigned a greater complexity penalty. We expect the MDL principle to be helpful in

choosing penalty parameters that otherwise could only be determined by experiment and

cross-validation.

1.3 Risk minimization and risk bounds

Assuming that the data are sampled from an unknown underlying distribution P (x, y), the

learning problem is to minimize the risk :

R[g] =
∫

RN×{−1,1}
`(x, y, g(x))dP (x, y).

The empirical risk is:

Remp[g] =
1
M

M∑
i=1

`(Ai, yi, g(Ai)). (1.7)

Empirical risk minimization calls for minimizing (1.7), for some loss function ` such

as (1.2), which is essentially averaged over all input observations. Empirical risk minimiza-

tion may result in overfitting: significantly larger losses on the test (unseen) data than

occurred on the training data.

Risk bounds are probabilistic statements that bound the risk of a model without making

any assumption about the distribution, i.e., without knowledge of P . In order to bound the

expected risk of a model that is selected from a set of functions F ⊂
(
RN
){−1,1}, statistical

learning theory attempts to measure the capacity of a set of functions. We describe a number

of different measures of the capacity of a set of classification functions. Let N (F , A) denote

the cardinality of F when restricted to {A1, . . . , AM}, that is, the number of functions of

F that can be distinguished by their values on {A1, . . . , AM} ⊂ RN . Finally, let

N (F ,M) = max
A∈RM×N

∣∣∣ {{i ∈ {1, . . . ,M} | f(Ai) = 1} | f ∈ F }
∣∣∣

denote the maximum number of ways functions in F can partition a set of M observations

into two classes. The function N (F ,M) is known as the shattering coefficient of the class of

functions F . The logarithm of the expectation of the shattering coefficient over all samples

of size M , that is lnE[N (F , ZM)], is also known as the annealed entropy. A risk bound can

8

be stated with respect to the annealed entropy, specifically that with probability at least

1− δ (see [66]):

R[g] ≤ Remp[g] +

√
16
M

(
lnE[N (F , A)] + ln

4
δ

)
. (1.8)

The difficulty with this bound is that it may require knowledge of P in order to estimate

the quantity E[N (F , A)]. In order to upper bound this expectation, we need to describe

another useful combinatorial construct due to Vapnik and Chervonenkis. A set of M points

is shattered by F if it can be labelled in all of the 2M possible ways, i.e., N (F ,M) = 2M .

The Vapnik-Chervonenkis (VC) dimension of F is the maximum number of points that can

be shattered by F (and is ∞ if no such set exists). Let d denote the VC dimension of F .

For M > d, the annealed entropy can be bounded in terms of the VC dimension [69, 66]:

lnE[N (F , Z2M)] ≤ d
(

ln
M

d
+ 1
)

(1.9)

Freund and Schapire motivate the original AdaBoost with a risk (also known as gener-

alization) bound in terms of the number of rounds, T , that the AdaBoost algorithm is run.

In particular, they extend a previous result of Baum and Haussler for Neural Networks [8]

to show that the VC-dimension of the classifier can be bounded in terms of the sum of

VC-dimension of the base classifiers and T .

Theorem 1.3.1 (Freund and Schapire). The VC-dimension of a set of functions of the

form sgn(g(x)) = sgn
(∑

u∈U λuhu(x)
)
, with ||λ||0 ≤ T is at most

2(d̂+ 1)(T + 1) log2(e(T + 1)),

where d̂ ≥ 2 is the VC-dimension of the set of base classifiers {hu | u ∈ U }.

Theorem 1.3.1 implies that the VC dimension of a weighted voting classifier can be

bounded in terms of a product of the VC dimension of its base classifiers, and ||λ||0. As

a consequence of this result, along with the bounds (1.8) and (1.9), the risk of a weighted

voting classifier can also be bounded in terms of this product. Thus, Theorem 1.3.1 also

provides motivation for finding sparse weighted voting classifiers.

The VC dimension of a set of functions may seem dependent on the dimension of the

9

space. For example, the VC dimension of halfspaces in dimension N is known to be N + 1;

in two dimensions, for example, it is easy to see that any three points can be separated in all

23 possible ways using separating hyperplanes, while four points cannot be separated in all

24 possible ways. The following theorem, by Vapnik, shows that, in fact, the VC dimension

of a possibly infinite set of functions can be bounded independently of the dimension of the

space of a given set of points.

Theorem 1.3.2 (Vapnik [66], section 5.5.6). Let F denote the set of functions fλ(x) =

sgn
(∑U

u=1 λuhu(x)
)

, for which mini=1,...,M

{∣∣∣∑U
u=1 λuh(Aiu)

∣∣∣} = 1, and ||λ||2 ≤ b for

some b > 0. Then the VC dimension of F is at most r2b2, where

r = maxi=1,...,M

{∣∣∣∣∣∣(h1(Ai) . . . hU (Ai))
∣∣∣∣∣∣} .

The theorem implies that the VC dimension can be controlled irrespective of the dimen-

sion U . Thus, a risk bound that does not depend on the dimension can be stated [66]:

Theorem 1.3.3 (Bartlett and Shawe-Taylor). Assume ||λ||2 ≤ b and ||x||2 ≤ r, for some

r, b > 0. Let ρ > 0 and ν denote the fraction of training observations with margin less than

ρ/ ||λ||2. For all distributions P generating the data, with probability at least 1− δ:

R[g] ≤ ν +

√
κ

M

(
r2b2 ln2(M)

ρ2
+ ln

(
1
δ

))
,

where κ is a universal constant.

Similar bounds in terms of the L1-norm have been developed for boosting algorithms

by Schapire, Freund, Bartlett and Lee [63] and Demiriz, Bennett and Shawe-Taylor [26].

A risk bound may also justify a model selection procedure that minimizes the same

bound. Minimizing the entire right hand side of the bound instead of just the empirical

risk, Remp[g], for a given structure of F , is suggested by Vapnik [69] as a part of structural

risk minimization (SRM). In SRM, the function class F is decomposed into a sequence of

subsets of increasing size and “capacity”: S1 ⊂ S2 ⊂ . . . ⊂ F . We pick g from the subset

Sj for some j ≥ 1 that minimizes the risk bound. Vapnik’s version of SRM assumes some

predefined (i.e., defined prior to the appearance of the data) hierarchy of complexity classes

10

S1, S2, . . . A choice of penalties based on a decomposition into classes of risk based on the

actual data is known as a (un)luckiness function [68], which is used in general to encode

bias in favor of certain classifiers, for example those corresponding to hyperplanes with a

larger margin over others.

A different kind of risk bound that we will use to motivate the optimization formulations

in this dissertation is in terms of two-part code length. The code is used by an imaginary

sender and receiver that share the training observations, but only the sender has the actual

labels y of the observations. The code is used to efficiently transmit the labels of the training

data to the receiver. Vapnik [69] derives the following upper bound on the risk of a classifier

g ∈ F , with |F| <∞: with probability 1− δ,

R[g] ≤ 2
(

ln 2L̄[y, g]/M − ln δ
M

)
,

where L̄[y, g] is an upper bound on the length of the code that encodes y using g, for a

fixed A. Blum and Langford [13] suggest a different risk bound in terms of code length

that applies also for infinite sets of functions F , as long as the code of length L̄[y, g] can be

used to encode both the training labels y and test labels y′ ∈ {−1, 1}M ′ , and transmits the

training labels without error. Let us denote the corresponding observable attributes of the

test data by A′ ∈ RM ′×N . The resulting bound on the risk of g ∈ F holds with probability

1− δ:

R̃[g] =
M ′∑
i=1

I(y′ig(A′i) ≤ 0)/M ′ ≤
L̄[y, g] ln 2 + ln 1

δ

M ′ ln(1 +M/M ′)
, (1.10)

where M ′ is the number of test observations.

By setting the number of test observations M ′ to equal M in (1.10) they also obtain the

following simple risk bound in terms of the code length L̄[y, g] [13], with probability 1− δ,

R̃[g] ≤ L̄[y, g]
M

+
ln δ
M

. (1.11)

11

1.4 Robust linear programming formulations for classification and LP-

Boost

The current methodology of robust voting classification methods is to allow for some outliers,

observations which do not necessarily lie on the correct side of the hyperplane (or the

decision boundary), and to use regularization; penalizing either the L1 or L2 norms of

λ. Robust linear separation formulations have been suggested by several authors such as

Bennett and Mangasarian [12] and Cortes and Vapnik [23]. Cortes and Vapnik suggest

maximizing a “soft margin” (1.13) in one of their papers first introducing Support Vector

Machines (SVMs). SVM models find g(·) by maximizing the L2 margin of separation on the

space of features corresponding to U . By “soft margin” it is meant that not all observations

need to be separated and satisfy the same requirement of distance from the hyperplane.

Graepel et al. [41] and Ratsch et al. [58] adapted the quadratic optimization formulation of

SVMs using “soft margins” to a linear programming formulation.

Demiriz, Bennett and Shawe-Taylor [26] use a linear programming formulation based on

the formulation of Graepel et al. [41] and Ratsch et al. [58], shown below as (1.12), in their

LP-Boost algorithm:

max ρ−D
M∑
i=1

ξi (1.12a)

s.t. yiHiλ+ ξi ≥ ρ i = 1, ...,M (1.12b)

U∑
u=1

λu = 1 (1.12c)

ξi, λu ≥ 0 i = 1, ...,M , u = 1, ..., U (1.12d)

In this formulation, each observation i ∈ {1, ...,M} has a variable ξi which allows it to

have a margin smaller than ρ. The margin of an observation i is equal to yiHiλ, where

Hi is the ith row of H, an M × U matrix, whose elements are hiu = hu(Ai). The penalty

parameter D penalizes the size of each deviation from the margin, ξi = ρ − yiHiλ. These

margin deviations are illustrated in Figure 1.1. The matrix H, in which each column

corresponds to a column of labels (−1, 0, 1 in our case) assigned by a base classifier u ∈ U ,

12

ρ

ξi

ξi

Figure 1.1: The margin ρ and margin deviations ξi illustrated in the “soft margin” LP
formulation. The separating hyperplane is shown as a solid line, and the maximum margin
planes as the parallel dotted lines. The points that lie in between the maximum margin
lines are margin errors.

usually has too many columns to be written in full as a part of the LP . Instead Demiriz

et al. [26] propose a column generation procedure as a solution technique of the LP-Boost

algorithm (to be exact, they in fact propose to generate cuts for the dual formulation).

Column generation is an approach for solving a large linear programming formulation

without having to explicitly include all of its variables. The method starts by solving a

restricted master problem (RMP) that includes only a subset of the variables, and uses dual

variable information to iteratively generate additional (primal) variables by solving the

pricing subproblem. The algorithm appends the newly generated variable(s) to the RMP

and re-solves until no additional variables can be generated. Column generation has been

used to solve large LPs since the early 1960s, with a wide variety of applications starting

with the seminal application of Gilmore and Gomory to the cutting stock problem [39, 51].

The method is successful in practice when there are many more columns than rows and the

number of variables that need to be generated tends to be small.

13

In the formulation (1.12), the objective function is to maximize the L1 margin of sepa-

ration less a misclassification penalty. It has been shown by Bennett and Bredensteiner [11]

that formulation (1.12) is equivalent to:

min

{
U∑
u=1

λu +D′
M∑
i=1

ξi | diag(y)Hλ+ ξ ≥ 1, and λ, ξ ≥ 0

}
, (1.13)

for appropriately chosen constants D and D′:

Theorem 1.4.1 (Bennett and Bredensteiner [11] and Demiriz, Bennett and Shawe-Tay-

lor [26]). If LP (1.12) has an optimal solution (λ, ρ, ξ) with parameter D and ρ 6= 0, then

(λ/ρ, ξ/ρ) is an optimal solution of (1.13) with parameter D′ = D/ρ. Similarly, if LP (1.13)

has an optimal solution (λ̂, ξ̂) with parameter D′ and λ̂ 6= 0, then (λ̂/||λ̂||1, 1/||λ̂||1, ξ̂/||λ̂||1)

is an optimal solution of LP (1.12) with D = D′/||λ̂||1.

Thus, the formulation (1.12) can be considered to find sparse solutions by minimizing

the L1 norm of λ. The dual formulation of (1.12) is the following:

min α (1.14a)

s.t.
M∑
i=1

wi = 1 (1.14b)

M∑
i=1

yiHijwi ≤ α for j = 1, . . . , U (1.14c)

0 ≤ wi ≤ D (1.14d)

In the dual formulation, the parameterD corresponds to an upper bound on the “weight”

of an observation. Another way to view the parameter D is by substituting D = 1
νM , in

which case the parameter ν can be interpreted as the maximum fraction of margin errors.

A margin error is an observation i ∈ {1, . . . ,M}, for which ξi = (ρ− yiHiλ)+ > 0.

Graepel et al. [41] and Rätsch et al. [59] state a theorem that provides an interpretation

for the parameter ν: for any optimal solution (λ, ρ), ν is an upper bound on the fraction

of margin errors, and 1− ν as an upper bound on the fraction of points with margin larger

than ρ; they provide a variational and graphical sketch of a proof, respectively. Schölkopf et

14

al. [65] prove a similar theorem for an SVM quadratic programming formulation where the

L2-norm of λ is being minimized; in particular they show that ν is an upper bound on the

fraction of errors and a lower bound on the fraction of support vectors. In the following,

we show a simple algebraic proof, based on complementary slackness conditions for the

LP (1.12), of the theorem by Graepel et al. [41] and Rätsch et al. [59].

Theorem 1.4.2 (Graepel et al. [41] and Rätsch et al. [59]). In any optimal solution of (1.13)

(ξ, λ, ρ):

1. ν upper-bounds the fraction of margin errors.

2. 1− ν upper-bounds the fraction of points with margin larger than ρ.

Proof. To prove the first claim, note that, by dual complementary slackness,

ξi > 0⇒ wi = D =
1
νM

.

Thus, ∑
i:ξi>0

wi =
|{i : ξi > 0}|

νM
≤

M∑
i=1

wi = 1,

where the last inequality follows from dual feasibility, and constraint (1.14b) being satisfied.

It follows that |{i:ξi>0}|
M ≤ ν.

To establish the second claim, we make use of the primal complementary slackness

conditions:

yiHiλ > ρ⇒ wi = 0.

With dual feasibility and constraint (1.14b), these imply

M∑
i=1

wi =
∑

i:yiHiλ>ρ

wi +
∑

i:yiHiλ≤ρ
wi =

∑
i:yiHiλ≤ρ

wi = 1.

Thus, summing the upper bounds (1.14d) and multiplying by ν,

|{i | yiHiλ ≤ ρ}|
M

≥ ν.

15

So that

1− |{i | yiHiλ ≤ ρ}|
M

=
|{i | yiHiλ > ρ}|

M
≤ 1− ν.

Additional observations can be made about the parameter D in formulation (1.12) and

its dual LP (1.14). First we note that D ≥ 1/M , otherwise (1.12) becomes unbounded (and

its dual (1.14) becomes infeasible). If D is small, then λ tends to be sparse, but if it is too

small then we get degenerate solutions with ρ = 1 in which all observations are assigned

to be in the same class, i.e., λ corresponds to a non-separating hyperplane. If D is made

large enough, the optimal solution misclassifies very few observations, or none, if the data

are linearly separable. But such a solution may correspond to a dense λ. If the data are

not linearly separable, with a large enough D, the formulation will effectively minimize the

margin deviations rather than maximize the margin. The straightforward margin deviation

minimization formulation where all ξi have equal coefficients in the objective function,

often fails to find meaningful hyperplane solutions in practice. In our case if h1(Ai) = 1 for

i = 1, . . . ,M in order to assume the role of a constant in
∑U

u=1 λuhu(x) = 0, then λ1 > 0

and λu = 0 for u = 2, . . . ,U , corresponds to such a “null” hyperplane solution. Bennett and

Mangasarian [12] prove conditions under which the simple margin deviation minimization

results in an optimal “null” hyperplane solution.

1.5 The base learning and maximum agreement problems - the basic

formulation and brief survey of literature

First, we consider the problem of the base learning algorithm pricing the best column within

the column generation framework: that is, how to find the best feature in each iteration of

a boosting algorithm. While much of the boosting literature (see [36, 64, 59, 58, 26, 54, 62])

has focused on run-time analysis as well as learning generalization bounds with respect to

the boosting algorithm, not much work has been done in the area of developing new base

learning algorithms for boosting.

The original AdaBoost algorithm [36] requires that the base learning algorithm be

able to find a base classifier u, given a weight vector w ∈ RM
+ and some ε > 0, so that

16

∑M
i=1 yiHiuwi/

∑M
i=1wi ≥ 1/2 + ε. Once this condition is satisfied, it guarantees exponen-

tial convergence of AdaBoost to zero training loss, i.e., when the data is linearly separable

and the sum of (1.2) over all observations can be zero (see Freund and Schapire [36] and

the survey by Meir and Rätsch [54]). The pricing problem in LP-Boost [26], on the other

hand, is to find the column with minimum reduced cost, that is:

min
u∈U

{
−

M∑
i=1

yiHiuwi − α

}
⇔ max

u∈U

{
M∑
i=1

wiyiHiu

}
= max

u∈U


∑

i∈{1,...,M}:
yiHiu=1

wi −
∑

i∈{1,...,M}:
yiHiu=−1

wi

 ,

(1.15)

where wi and α are the dual variables corresponding to constraints (1.12b) and (1.12c),

respectively.

The same objective, in fact, has been long known in machine learning and computational

geometry communities as maximum agreement [48, 9, 40] or maximum bi-chromatic discrep-

ancy [27]. A probabilistic argument for arriving at the same objective can be made for ab-

staining base classifiers. A base classifier (or hypothesis) is said to abstain on i ∈ {1, . . . ,M}

if hu(Ai) = 0 (see also [63]). When hu(x) = 0, i.e. it abstains, we may consider it as hav-

ing an error rate of 1
2 , the same as a coin toss. We can then write the empirical error

or weighted sum of the accuracy loss (1.3) for a set of i.i.d. observations, with a prior

probability distribution w, as:

M∑
i=1

`(Ai, yi, hu(Ai))wi =
∑

i:yiHiu=−1

wi +
1
2

∑
i:yiHiu=0

wi

=
∑

i:yiHiu=−1

wi +
1
2

∑
i∈Ω+

wi −
∑

i:yiHiu=1

wi +
∑
i∈Ω−

wi −
∑

i:yiHiu=−1

wi


=

1
2

 ∑
i:yiHiu=−1

wi −
∑

i:yiHiu=1

wi

+
1
2

(1.16)

We note that the maximum agreement problem (1.15) is equivalent, from an exact

17

optimization point of view, to a minimum disagreement problem:

min
u∈{1,...,U}

 ∑
i:yiHiu=−1

wi −
∑

i:yiHiu=1

wi

 .

The computational complexity of maximum agreement problems depends on the properties

of the space corresponding to the columns of the matrix H. Trivially, if U is polynomial in

the size ofM , then the problem is polynomially solvable by simple enumeration. The compu-

tational complexity of more interesting maximum agreement problems was first investigated

by Pitt and Valiant, who proved that it is NP-hard to decide if there is a 2-term Disjunc-

tive Normal Form that agrees with all observations of a dataset [57]. Kearns, Schapire and

Sellie [48], following work by Kearns and Li [45], investigated minimum disagreement with

Boolean monomials and showed that the problem is NP-hard.

The inapproximability of maximum agreement problems has been investigated by Ben

David, Eiron and Long [9], Bshouty and Burroughs [19], and Feldman [33]. Ben-David et al.

show that it is NP-hard to approximate the maximum agreement problem to within various

fixed constants for the class of monomials, axis-aligned hyper-rectangles, closed balls and

monotone monomials. Bshouty and Burroughs [19] improve on some of these inapproxima-

bility factors and derive new ones for decision lists, exclusive-or, Boolean halfspaces, 2-term

DNFs and 2-term multivariate polynomials. Feldman [33] shows optimal inapproximability

results for maximum monomial agreement1.

In Chapter 2 we proceed to formally introduce the maximum monomial agreement prob-

lem and suggest an algorithm for efficiently solving the problem in practice. In Chapter 3

we revisit the problem of weighted voting classifier model selection: we formulate a discrete

optimization problem for choosing λ, sparse minimum disagreement hyperplane (SMDH),

which achieves an optimal balance between empirical (i.e., 0/1) loss minimization and the

density (i.e., lack of sparsity) of λ. We show that the resulting discrete optimization prob-

lem is hard. We then consider the continuous relaxation of a mixed integer program for

1However, this result applies to an objective function that differs by a constant and excludes the absolute
value of the objective function (1.15), which we consider.

18

solving the SMDH problem. We are able to show that the continuous relaxation is equiva-

lent to the existing, and well known, robust LP formulation for choosing λ (1.12). We then

propose novel cutting planes for tightening the relaxation and suggest solution techniques

for dynamically generating columns and cuts in order to solve the tightened LP relxation.

In Chapter 4, we investigate the new base learning (or pricing) problem which arises with

the novel LP relaxation. In particular, we suggest an abstract formulation and then focus

on the problem with Boolean monomial base classifiers by extending the solution techniques

of maximum monomial agreement considered in Chapter 2.

19

Chapter 2

Maximum Monomial Agreement

2.1 Problem Statement and Introduction

The maximum monomial agreement (MMA) problem has applications to machine learning,

data mining [48, 40], as well as computational geometry and computer graphics [27], where it

is known as the maximum bi-chromatic discrepancy problem. The problem can be motivated

by applications to classification independently of weighted voting classifiers and boosting.

For example, we may have M patients, with Ω+ corresponding to those having a particular

disease, and Ω− to those who do not. Each patient has N binary attributes corresponding

to personal traits or results of medical tests, and we would like to find the interaction of

attributes which best predicts presence or absence of the disease. For example, a monomial

might represent a rule or hypothesis such as (‘age’ ≥ 50) ∧ (‘blood pressure’ = ‘high’) →

‘heart disease’.

However, monomial hypotheses have been found especially useful for constructing weighted

voting classifiers. In particular, boosting of monomial hypotheses has been suggested by

several authors [20, 38, 40]. The experimental results in [40] show that boosting opti-

mal monomial hypotheses, as opposed to heuristically generated monomials (e.g. as in

SLIPPER [20]), can improve the classification performance when using a sufficiently ro-

bust boosting algorithm, such as Servedio’s SmoothBoost [67]. Monomial hypotheses (also

called logical patterns) are also a basic building block in the logical analysis of data (LAD)

methodology [16], where linear programming as well as other techniques are suggested for

computing the discriminant function as a linear combination of monomials.

As input, we now assume that the given input data A ∈ RM×N is a 0/1 matrix. In this

chapter, we consider only binary datasets; however, for general datasets in RN , we note that

there is a corresponding “binarization” with dimension that is at most polynomially larger

20

than M , and in practice does not tend to be much larger than N [15, 40]. As before we are

also given a partition of its rows into positive observations Ω+ ⊂ {1, ...,M} and negative

observations Ω− = {1, ...,M}\Ω+. Finally, we are given a function w : {1, . . . ,M} → [0,∞);

w(i) specifies the weight of observation i. In the context of algorithms such as LP-Boost

w(i) corresponds to the dual variable associated with observation i.

A monomial on {0, 1}N is simply a function p : {0, 1}N → {0, 1} of the form

mJ,C(x) =
∏
j∈J

xj
∏
c∈C

(1− xc), (2.1)

where J and C are (usually disjoint) subsets of {1, . . . , N}. The monomial mJ,C is said to

cover a vector x ∈ {0, 1}N if mJ,C(x) = 1. We define the coverage of a monomial mJ,C to

be

Cover(J,C) = {i ∈ {1, ...,M} | mJ,C(Ai) = 1} ,

where Ai denotes the ith row of A. Defining the weight of a set S ⊆ {1, . . . ,M} to be

w(S) =
∑

i∈S w(i), the MMA problem is to find disjoint sets J,C ⊆ {1, . . . , N} maximizing

f(J,C) =
∣∣w(Cover(J,C) ∩ Ω+)− w(Cover(J,C) ∩ Ω−)

∣∣ . (2.2)

As mentioned in Chapter 1, and as is the case for other interesting cases of maximum

agreement problems, this problem is known to be NP-hard [48]. Furthermore, it has been

shown [33] that even if the weights w(i) are all equal, a related problem with the slightly

different maximization objective

f̃(J,C) =
(
w(Cover(J,C) ∩ Ω+) + w(Ω− \ Cover(J,C))

)
/M

=
(
w(Cover(J,C) ∩ Ω+)− w(Cover(J,C) ∩ Ω−) + w(Ω−)

)
/M,

is NP-hard to approximate to any factor less than 2. Approximation of the latter objective

to a factor of 2 is trivial, however, by simply considering only the constant monomials such

that either mJ,C(Ai) = 0 for all i ∈ {1, . . . ,M}, or mJ,C(Ai) = 1 for all i ∈ {1, . . . ,M}.

Dobkin et al. consider the maximum bi-chromatic discrepancy problem for axis-aligned

21

rectangles in R2 and propose an O(M2 logM) algorithm. They also suggest a generalization

of the algorithm for Rn, which results in O(M2n−2 logM) running time. When the input

data of the problem consists of points in {0, 1}N , then any axis-aligned rectangle corresponds

to a monomial mJ,C . Another related (but not equivalent) problem for real-valued data is

the maximum box problem [29]. For the special case of input data in {0, 1}N , the (weighted)

maximum box problem can be stated as the problem of finding a box or subcube (J,C)

that maximizes w(Ω+ ∩ Cover(J,C)), and such that Ω− ∩ Cover(J,C) = ∅.

If the space of possible weak learners consists of all monomial base classifiers, the column

pricing problem (1.15) of a linear program such as (1.12) corresponds to finding a monomial

(J,C) that maximizes (2.2).

2.2 Branch and bound

One possible approach to exactly solving the MMA is to formulate it as an equivalent in-

teger linear program, and solve it with a standard integer programming solver. However,

it is more efficient to solve the problem by a specialized branch-and-bound algorithm. The

key elements of a branch-and-bound algorithm are the definition of subproblems that rep-

resent sets of possible solutions, a method for computing a bound on the objective value

of all solutions represented by a subproblem, and a branching procedure for subdividing

subproblems into smaller ones.

We characterize each subproblem as a partition (J,C,E, F) of {1, . . . , N}. As in (2.1),

J and C respectively represent the literals which must be in the monomial, and whose

complements must be in the monomial. E indicates a set of “excluded” literals: neither they

nor their complements may appear in the monomial. Finally, F = {1, . . . , N}\(J ∪C∪E) is

the set of “free”, undetermined literals. The set of monomials corresponding to subproblem

(J,C,E, F) is given by

P (J,C,E) =
{

(J ′, C ′)
∣∣ J ′ ⊇ J, C ′ ⊇ C, and J ′, C ′, E are disjoint

}
. (2.3)

The search begins with a priority queue Q containing the single root subproblem

22

(∅, ∅, ∅, {1 . . . , N}), which corresponds to the set of all possible monomials. At each it-

eration, we remove a subproblem (J,C,E, F) from Q and, unless it is fathomed, that is, its

upper bound b(J,C,E) ≤ f(J∗, C∗) for some known J∗, C∗, we further subdivide (branch)

it into smaller subproblems. For the fathoming test to be valid, the upper bound function

u should have the property

b(J,C,E) ≥ f(J ′, C ′) ∀ (J ′, C ′) ∈ P (J,C,E). (2.4)

2.2.1 The upper bound function

In the special case that F = ∅, the set P (J,C,E) is a singleton consisting only of (J,C), and

we can take b(J,C,E) = f(J,C). If F 6= ∅, we must use some other function satisfying (2.4).

In previous work with Shan [40], we suggested the simple bound b(J,C,E) = bgs(J,C),

where

bgs(J,C) = max{w(Cover(J,C) ∩ Ω+), w(Cover(J,C) ∩ Ω−)} (2.5)

Theorem 2.2.1. The bound (2.5) satisfies property (2.4).

Proof. Let (J ′, C ′) ∈ P (J,C,E). Then by definition J ′ ⊇ J and C ′ ⊇ C ′, and clearly

Cover(J ′, C ′) ⊆ Cover(J,C). Now,

bgs(J,C) = max{w(Cover(J,C) ∩ Ω+), w(Cover(J,C) ∩ Ω−)}

≥ max{w(Cover(J ′, C ′) ∩ Ω+), w(Cover(J ′, C ′) ∩ Ω−)}

≥ max

 w(Cover(J ′, C ′) ∩ Ω+)− w(Cover(J ′, C ′) ∩ Ω−),

w(Cover(J ′, C ′) ∩ Ω−)− w(Cover(J ′, C ′) ∩ Ω+)


= f(J ′, C ′).

However, this bound essentially ignores the information in the set E. To obtain a

stronger bound, we now exploit the information in E:

Definition 2.2.1. Two binary vectors x, y ∈ {0, 1}N are inseparable with respect to a set

E ⊆ {1, ..., N}, if, for all j ∈ {1, ..., N} \ E, one has xj = yj.

23

Inseparability is an equivalence relation: any set E ⊆ {1, . . . , N} thus partitions {1, ...,M}

into equivalence classes, i and i′ being in the same class when the observation Ai is insep-

arable from the observation Ai′ . Let us denote these classes by V E
1 , V E

2 , ..., V E
q(E), where

1 ≤ q(E) ≤ m. Let

w+
η (J,C,E) = w(V E

η ∩ Cover(J,C) ∩ Ω+) w+(J,C) = w(Cover(J,C) ∩ Ω+)

w−η (J,C,E) = w(V E
η ∩ Cover(J,C) ∩ Ω−) w−(J,C) = w(Cover(J,C) ∩ Ω−)

for η = 1, . . . , q(E), and note that

f(J,C) =
∣∣w+(J,C)− w−(J,C)

∣∣ =

∣∣∣∣∣∣
q(E)∑
η=1

(w+
η (J,C,E)− w−η (J,C,E))

∣∣∣∣∣∣ . (2.6)

We will call a monomial positive if w+(J,C) ≥ w−(J,C), and negative if w+(J,C) <

w−(J,C). Positive monomials cover more weight of positive than negative observations,

and negative monomials the reverse; we include ties in the positive class.

Now consider some (J ′, C ′) ∈ P (J,C,E), assume it is positive, and take η ∈ {1, . . . , q(E)}.

Because the observations in the equivalence class V E
η are inseparable with respect to E, the

monomial mJ ′,C′(x) must either cover all of V E
η , or cover none of it. Considering the ηth

term in the second expression in (2.6), we see that the largest value of f(J ′, C ′) would re-

sult if mJ ′,C′(x) covers the entire class V E
η whenever w+

η (J,C,E) ≥ w−η (J,C,E), obtaining

a value of w+
η (J,C,E) − w−η (J,C,E), and otherwise does not cover the entire class V E

η ,

obtaining the value 0. Thus, if (J ′, C ′) is positive, we have

f(J ′, C ′) ≤
q(E)∑
η=1

(
w+
η (J,C,E)− w−η (J,C,E)

)
+
.

By nearly identical reasoning, we can obtain a similar relation for the case that (J ′, C ′)

is negative, and combining the two cases, we derive the following upper bound function

24

satisfying (2.4):

b(J,C,E) = max


∑q(E)

η=1

(
w+
η (J,C,E)− w−η (J,C,E)

)
+
,∑q(E)

η=1

(
w−η (J,C,E)− w+

η (J,C,E)
)

+

 . (2.7)

A similar use of equivalence classes to obtain tightened subproblem bounds has been

used by De Bontridder et al. [14], in the context of the minimum test cover problem.

Furthermore, we can also rewrite the upper bound b(J,C,E) in terms of the simple upper

bound (2.5).

Theorem 2.2.2. The upper bound (2.7) can be equivalently written as,

b(J,C,E) = bgs(J,C)−
q(E)∑
η=1

min{w+
η (J,C,E), w−η (J,C,E)}. (2.8)

Proof. Setting w+
η = w+

η (J,C,E), w−η = w−η (J,C,E), and q = q(E) for brevity,

max


q∑

η=1

(w+
η − w−η)+,

q∑
η=1

(w−η − w+
η)+

 +
q∑

η=1

min{w+
η , w

−
η }

= max


q∑

η=1

(w+
η − w−η)+ +

q∑
η=1

min{w+
η , w

−
η },

q∑
η=1

(w−η − w+
η)+ +

q∑
η=1

min{w+
η , w

−
η }


= max


∑

η:w+
η ≥w−η (w+

η − w−η + w−η) +
∑

η:w+
η <w

−
η
w+
η ,∑

η:w−η ≥w+
η

(w−η − w+
η + w+

η) +
∑

η:w−η <w
+
η
w−η


= max{w+(J,C), w−(J,C)} = bgs(J,C).

We define φ(J,C,E) =
∑q(E)

η=1 min{w+
η (J,C,E), w−η (J,C,E)}, the second term in (2.8),

to be the inseparability of E with respect to J and C. Unless φ(J,C,E) = 0, the bound

b(J,C,E) is strictly tighter than bgs(J,C). If φ(J,C,E) = 0, then all the sets Cover(J,C)∩

V E
η , for η = 1, . . . , q(E), are homogeneous with respect to observations with nonzero weight,

meaning that among the observations i ∈ V E
η with w(i) > 0, all are either in Ω+, or all are

in Ω−.

Both of the bounds (2.5) and (2.7) may be computed in O(MN) time in the worst case.

25

j 1 2 3 4
i

1 0 0 1 1
2 1 0 0 1
3 1 0 1 1
4 0 1 1 0
5 1 0 0 0

E
j 1 3 2 4

η i

1
1 0 1 0 1
4 0 1 1 0

2
2 1 0 0 1
5 1 0 0 0

3 3 1 1 0 1

Figure 2.1: The given matrix A is shown on the left and its corresponding matrix with rows
sorted lexicographically by the entries in the columns {1, . . . , N} \ E is given on the right.
Each equivalence class η can be identified as a set of rows with identical values in these
columns. In the example {1, . . . , N} \ E = {1, 3}.

For (2.7), the equivalence classes {V E
η } need to be computed, which can be done in O(MN)

time, by applying a radix sort to the rows of a submatrix of A with columns {1, . . . , N}\E.

A numerical example of the procedure for identifying the equivalence classes is shown in

Figure 2.1. The radix sort algorithm, in fact, has Θ(MN) running time. Computing

bgs(J,C), on the other hand, requires only the computation of the set Cover(J,C), which

involves |J ∪ C| ≤ N set intersection operations, each of which tends to be much faster than

O(M) in practice. Thus, it may be more practically efficient to first compute bgs(J,C), and if

that does not fathom the subproblem (J,C,E, F), then compute φ(J,C,E) and thus (2.7).

Further, it is also possible to use any lower bound for φ(J,C,E) in order to obtain a

tightening of the upper bound bgs. Lower bounds of φ(J,C,E) can be iteratively computed

as
∑η̄

η=1 min{w+
η (J,C,E), w−η (J,C,E)}, for η̄ = 1, . . . , q(E), until either the subproblem

(J,C,E, F) is fathomed, or η̄ = q(E).

2.2.2 The branching procedure

Our branching procedure works as follows: given a subproblem (J,C,E, F), we select k

distinct elements j1, . . . , jk of F , where 1 ≤ k ≤ |F |. In our branching step, we create 2k+1

smaller subproblems respectively representing the following subsets of P (J,C,E):

• The subset of monomials in which none of xj1 , . . . , xjk appear.

• For t = 1, . . . , k, the subset of monomials in which xjt is the first in the sequence

26

xj1 , . . . , xjk to appear, in the uncomplemented form; xj1 , . . . , xjt−1 are excluded from

further consideration.

• For t = 1, . . . , k, the subset of monomials in which xjt is the first in the sequence

xj1 , . . . , xjk to be used, and appears in the complemented form (1−xjt); xj1 , . . . , xjt−1

are excluded from further consideration.

These subsets clearly form a partition of P (J,C,E). In our notation, the corresponding

subproblems are represented by the respective 4-tuples in lines 13, 15, and 16 of Algorithm 1

on page 29. We have significant latitude in choosing k for each subproblem. We have exper-

imented with choosing α ∈ {1/4, 1/2, 3/4, 1}, and setting k = dα |F |e for each subproblem;

we have also experimented with fixing k = 1.

Motivated by (2.8), we attempt for a given k to choose j1, . . . , jk to maximize the

inseparability φ(J,C,E ∪ {j1, . . . , jk}). We now show that exactly maximizing φ(J,C,E ∪

{j1, . . . , jk}) is itself NP-hard. We will show that even the case J = C = ∅ and w(i) = 1

for all i ∈ {1, . . . ,M} is NP-hard.

Theorem 2.2.3. The problem of finding a set S ⊆ {1, . . . , N}, of size k, that maximizes

φ̂(S) = φ(∅, ∅, S) is NP-hard.

Proof. The proof follows by reduction of the clique problem in a graph. Given a graph

G = (V,E) and an integer parameter k ≤ |V |, the clique problem is to find whether there

exists a subset S ⊆ V , such that |S| ≥ k and every two vertices in S are joined by an edge

in E. The dense k-subgraph problem is the problem of finding S ⊆ V , such that |S| = k

and that the maximum number of edges join vertices in S. The clique decision problem can

be solved by the dense k-subgraph optimization problem by simply checking whether the

optimal objective value equals
(
k
2

)
.

Let N = |V |. For each edge (u, v) ∈ E, we create one element i ∈ Ω+ and a vector Ai

such that

Aij =


1, j = u or j = v

0, otherwise
,

and another element i′ ∈ Ω− such that Ai′ = 0, letting w(i) = w(i′) = 1.

27

Let q(S) denote the number of equivalence classes induced by the set S ⊆ {1, . . . , N}.

Note that since Ai = 0 for all i ∈ Ω−, then either w−η (∅, ∅, S) = 0 or w−η (∅, ∅, S) = |E|.

Without loss of generality, we assume that η = 1 denotes the class index corresponding to

the zero vector, and hence w−1 = |E|.

max
S⊆{1,...,N}:|S|=k

{φ̂(S)} = max
S⊆{1,...,N}:|S|=k


q(S)∑
η=1

min{w+
η (∅, ∅, S), w−η (∅, ∅, S)}


= max

S⊆{1,...,N}:|S|=k
{w+

1 (∅, ∅, S)}

The last equality follows because w−η (∅, ∅, S) = 0 for 2 ≤ η ≤ q(S), and w+
1 (J,C, S) ≤

w−1 (J,C, S) = |E|. Now,

w+
1 (∅, ∅, S) =

∣∣{i ∈ Ω+ | ∀j ∈ {1, . . . , N} \ S : Aij = 0
}∣∣ = |{(u, v) ∈ E | u ∈ S ∧ v ∈ S }| .

The equivalence class 1 consists of vectors indistinguishable from 0 when excluding S. For

the observations in Ω+, these are precisely the vectors with both their 1’s in the vector

position indices in S, that is, those corresponding to edges (u, v) with u, v ∈ S. Thus,

maximizing φ̂(S) subject to |S| = k solves the dense k-subgraph problem, and

max
S⊆{1,...,N}:|S|=k

{w+
1 (∅, ∅, S)} =

(
k

2

)

if and only if there exists a clique of size k in G.

In the reduction of our proof, φ̂(S) equals the number of edges joining the set of vertices

S, implying that the reduction of the dense k-subgraph is approximation-preserving. Thus,

based on an inapproximability result of Khot for the dense k-subgraph problem [49], we can

also make the following claim:

Theorem 2.2.4. There is no polynomial time approximation scheme (PTAS) for the prob-

lem maxS⊆{1,...,N}:|S|=k φ̂(S), unless NP ⊆
⋂
ε>0 BPTIME(2N

ε
).1

1BPTIME(t) is the class of decision problems solvable by an t-time probabilistic Turing machine such
that:

1. If the answer is “yes” then at least 2/3 of the computation paths accept.

28

Given that the problem of maximizing φ(J,C,E) subject to a cardinality constraint

on E is NP-hard, we consider fast greedy heuristics to use within the branch-and-bound

procedure for selecting the set E ⊂ {1, . . . , N} of size k. For any sets S ⊂ E ⊂ {1, . . . , N},

∣∣{(i, i′) ∈ Ω+ × Ω−
∣∣ Aij = Ai′j ,∀j ∈ {1, . . . , N} \ (S ∪ {j′})

}∣∣
≤

∣∣{(i, i′) ∈ Ω+ × Ω−
∣∣ Aij = Ai′j ,∀j ∈ {1, . . . , N} \ (E ∪ {j′})

}∣∣ .
That is, excluding an additional variable j′ may induce fewer inseparable observation pairs

when only a subset of the variables E are excluded to begin with. In fact, when E = ∅,

selecting any single variable to add to E is unlikely to make many pairs inseparable or

to give any indication about the number of pairs that can be made inseparable with the

“proper” combination with additional variables to include in E. Intuitively, this observation

motivates our use of a reverse (also known as worst-out) greedy heuristic, instead of the

forward greedy algorithm. Conceptually, we set E′ ← F , and then remove elements one-by-

one from E′, greedily with respect to maximizing φ(J,C,E ∪ E′), until |E′| = k. We then

take {j1, . . . , jk} = E′, and determine the ordering j1, . . . , jk by a similar reverse greedy

procedure. We found this algorithm much more effective in practice than the forward greedy

algorithm.

We now consider the case k = 1, in which case our branching scheme generates three

children. In this case, we implement an alternative, “strong” branching method: for each

possible branching feature j ∈ F , we calculate the bounds b(J ∪{j}, C,E), b(J,C ∪{j}, E),

and b(J,C,E ∪ {j}) of the three resulting subproblems. For each j, we place these bounds

in a triple bj with elements sorted in descending order, and branch on some feature j that

lexically minimizes bj . This approach is not only faster than the reverse greedy method,

but also more practically effective at pruning search nodes. One reason for the efficiency of

this alternative branching strategy is that it considers the bounds of all three prospective

children, and not just the bound of the child (J,C,E ∪ {j}, F \ {j}). Algorithm 1 outlines

our entire branch-and-bound algorithm; there, our procedure for choosing j1, . . . , jk is called

2. If the answer is “no” then at most 1/3 of the computation paths accept.

29

exclude.

Algorithm 1

1: Input: Sets Ω+,Ω−, and M ×N matrix A.
2: Output: Best solution value l and corresponding monomial given by (J∗, C∗).
3: Q← {(∅, ∅, ∅, {1 . . . , N})}
4: l← −∞
5: while Q 6= ∅ do
6: Remove subproblem S = (J,C,E, F) from Q
7: if b(J,C,E) > l then
8: if f(J,C) > l then
9: (J∗, C∗)← (J,C)

10: l← f(J∗, C∗)
11: end if
12: (j1, ..., jk)← exclude(J,C, F)
13: Insert (J,C,E ∪ {j1, ..., jk}, F \ {j1, ..., jk}) into Q
14: for t ∈ {1, . . . , k} do
15: Insert (J ∪ {jt}, C,E ∪ {j1, . . . , jt−1}, F \ {j1, . . . , jt}) into Q
16: Insert (J,C ∪ {jt}, E ∪ {j1, . . . , jt−1}, F \ {j1, . . . , jt}) into Q
17: end for
18: end if
19: end while

The two most extreme branching strategies, with k = 1 and with k = |F |, are illustrated

in Figure 2.2. We note that in the earlier branch-and-bound method of [40], the branching

procedure is essentially the special case that k is always chosen as large as possible, that is,

k = |F |, as illustrated in Figure 2.2(b), and j1, . . . , jk are ordered so that j1 < j2 < · · · < jk.

When k = |F |, the (J,C,E ∪ {j1, . . . , jk}, F\{j1, . . . , jk}) child always represents exactly

one monomial, allowing it to be immediately evaluated and implicitly dropped from the

search tree. With this branching strategy, it can be shown that the maximum size of the

search tree that can evolve, assuming no fathoming, is 3N , which is exactly the number of

possible monomials. Conceptually, this feature is a possible advantage of the method; on

the other hand, this approach results in a very high branching factor, especially near the

root, and the scheme is essentially static: in the previous branch-and-bound algorithm [40],

the set of children developed from a given subproblem depends only on the parameter N .

Here, we make branching decisions that use the input data and are designed to tighten

the bounds computed for the resulting child subproblems. Particularly, for k = 1, illustrated

in Figure 2.2(a), the maximum tree size is (3N+1 − 1)/2 > 3N , but the benefits from

30

(J, C, E, {j1, j2, j3})

(J ∪ {j1}, C, E, {j2, j3})

(J, C ∪ {j1}, E, {j2, j3})

(J, C, E ∪ {j1}, {j2, j3})

(a) Ternary branching with k = 1.

(J, C, E, {j1, j2, j3})

(J ∪ {j1}, C, E, {j2, j3})

(J, C ∪ {j1}, E, {j2, j3})

(J ∪ {j2}, C, E ∪ {j1}, {j3})

(J, C ∪ {j2}, E ∪ {j1}, {j3})

(J ∪ {j3}, C, E ∪ {j1, j2}, ∅)

(J, C ∪ {j3}, E ∪ {j1, j2}, ∅)

(J, C, E ∪ {j1, j2, j3}, ∅)

(b) Branching with k = |F | implies a 2K + 1 branching
factor. In the previous algorithm [40] the ordering j1, j2, j3
is statically fixed to satisfy j1 < j2 < j3.

Figure 2.2: A branching example for a subproblem (J,C,E, F) with |F | = 3, that is, three
variables that are “free” and the two different extreme branching strategies: k = 1 and
k = |F |.

the smaller branching factor and flexibility of variable selection will become clear in the

experiments below.

In lines 15 and 16 of Algorithm 1, we apply a few simple pruning rules that provide

further improvement in practical performance: first, we need not insert a subproblem into

Q if it is already fathomed. Second, if Cover(J ∪ {jt}, C) = Cover(J,C), this implies that

mJ∪{jt},C(Ai) = AijtmJ,C(Ai) = mJ,C(Ai) for all i ∈ Cover(J,C). Thus, Aijt = 1 for all i ∈

Cover(J,C). Consider any (J ′, C ′) ∈ P (J,C,E). Now, since Cover(J ′, C ′) ⊆ Cover(J,C),

we have f(J ′, C ′) = f(J ′ ∪ {jt}, C ′). Thus, such a subproblem may be dropped from

31

consideration without insertion into Q. Finally, a similar result holds for the subproblem

(J,C ∪ {jt}, E ∪ {j1, . . . , jt−1}, F \ {j1, . . . , jt}) when Cover(J,C ∪ {jt}) = Cover(J,C).

2.3 Experimental study

We implemented the procedure of Algorithm 1 in C++ using the open-source PEBBL

branch-and-bound library [30]. We ran our experiments on a workstation with 3.00 GHz

Intel x5400 Xeon processors and 800MHz memory (running only in serial, although PEBBL

is capable of parallelism).

Table 2.1 and Figures 2.4-2.8 show our experimental results using Algorithm 1 as a weak

learning algorithm inside the LP-Boost boosting procedure [26], applied to the UCI [3] bi-

nary dataset SPECTHRT and binarized versions of additional UCI datasets. We configured

our binarization procedure to obtain a larger number of variables (as indicated by N in the

table) than is customary for most binary feature selection methods (e.g. [15]).

The LP-Boost algorithm requires the specification of the “soft margin” penalty param-

eter D in (1.12). We selected D = 3/M , which in our computational experience provides

good classification performance. We compare four different algorithm configurations:

• An algorithm equivalent to [40], in which k = |F |, using only the bgs upper bound

function

• Algorithm 1, with k = |F | and the bound (2.7)

• Algorithm 1, with k = d|F | /2e and the bound (2.7).

• Algorithm 1, with k = 1, the bound (2.7), and the “strong” lexical k = 1 branching

rule described above. Note that k = 1 corresponds to a ternary search tree.

We used a best-first queueing discipline with the queue size limited to at most 500,000

subproblems. We also limited the CPU time of each branch-and-bound search to 60 min-

utes. LP-Boost starts with the weights w(i) equal for all i, but subsequently adjusts the

observation weights based on the dual variables of its LP formulation’s separation con-

straints. We ran each case for 30 iterations, or until a subproblem encountered the queue

32

size or branch-and-bound time limit. As is well-known in practice, boosting algorithms

tend to focus their later iterations on observations that are more difficult to classify. In

our case, the later iterations produce longer monomials whose |Cover(J,C)| is smaller. The

later iterations also tend to have larger search trees and longer running times.

Table 2.1 shows the average CPU time and number of search nodes over iterations 1–15

and 16–30, for k = 1, d|F | /2e and k = |F | with the simple bound (2.5) and the bound (2.7).

The Figures 2.4–2.8 show a plot of the actual CPU time and number of search nodes

over all iterations, and also display the performance for k = d|F | /4e and k = d3 |F | /4e.

Two conclusions appear to follow from the results in Table 2.1 and Figures 2.4–2.8. First,

compared with [40], both our tighter bound and our new reverse greedy branching scheme

significantly decrease the number of search nodes required; they allow larger problems to

be solved, and improve running time in all but the easiest cases involving SPECTHRT.

Second, choosing an intermediate number of branching features k = d|F | /2e performs

better in terms of search nodes than k = 1. In Figures 2.4–2.8, it is also evident that

k ≥ d|F | /2e yields smaller search trees and faster running times than k = d|F | /4e. There

does not seem to be any material difference in the performance of algorithm variants with

k = |F |, k = 3 d|F | /4e and k = d|F | /2e, when ordering the subproblems using the reverse

greedy procedure. Finally, although taking k = 1 is not the best strategy in terms of search

tree size, its specialized, faster branching procedure performs well enough that k = 1 is

clearly best in terms of runtime. Thus, our new bound coupled with the k = 1 ternary

branching scheme significantly outperform the method of [40] for larger datasets, and in

later boosting iterations, when the weights become more “difficult”.

33

bgs bound lexical strong
k = |F | k = |F | k = d|F | /2e branch k = 1

LP-
Dataset Boost CPU BB CPU BB CPU BB CPU BB

Iters Sec Nodes Sec Nodes Sec Nodes Sec Nodes

SPECTHRT 1-15 0.6 7791.5 0.2 21.5 0.2 22.4 0.1 50.5
N = 22 16-30 1.8 22751.1 0.4 74.6 0.4 78.5 0.3 162.9

CLVHEART 1-15 29.7 89551.2 16.9 626.2 17.3 654.7 9.5 1638.3
N = 35 16-30 99.8 317537.9 40.7 1872.3 41.2 1941.6 23.6 4831.6

HEPATITIS 1-15 17.3 83365.6 7.2 442.5 7.3 464.7 3.2 917.1
N = 37 16-30 Q LIMIT 13.5 970.9 13.8 1021.5 7.3 2650.3

PIMA 1-15 Q LIMIT 89.2 1290.5 90.0 1323.2 66.0 4606.3
N = 33 16-30 Q LIMIT 269.9 5499.3 269.6 5582.7 224.7 20907.1

CMC 1-15 Q LIMIT 1161.0 969.3 1158.6 972.7 496.9 3647.3
N = 58 16-30 Q LIMIT LIMIT LIMIT 1738.6 19437.3

HUHEART 1-15 Q LIMIT LIMIT LIMIT 264.0 14169.3
N = 72 16-30 Q LIMIT LIMIT LIMIT 763.6 47657.2

Table 2.1: Runtime and node averages over the specified LP-Boost [26] iterations, applying
our algorithm to binarized UCI datasets [3]. “Q LIMIT” indicates an iteration encountered
the 500,000-node queue limit, and “LIMIT” indicates an iteration encountered the one-hour
time limit.

34

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

10
5

SPECTHEART Search Nodes

LP−Boost iteration

B
ra

nc
h−

an
d−

bo
un

d
no

de
s

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
SPECTHEART CPU Time

LP−Boost iteration

C
P

U
 s

ec
on

ds

k=|F|,GS bnd, fixed order

k=|F|, fixed order

k=|F|

k= 3|F|/4

k= |F|/2 

k= |F|/4

k=1 lexical strong branch

Figure 2.3: MMA computational performance on the UCI SPECTHEART dataset.

35

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

10
5

10
6

CLVHEART Search Nodes

LP−Boost iteration

B
ra

nc
h−

an
d−

bo
un

d
no

de
s

k=|F|,GS bnd, fixed order

k=|F|, fixed order

k=|F|

k= 3|F|/4

k= |F|/2 

k= |F|/4

k=1 lexical strong branch

k=1

0 5 10 15 20 25 30
0

50

100

150

200

250

300
CLVHEART CPU Time

LP−Boost iteration

C
P

U
 s

ec
on

ds

Figure 2.4: MMA computational performance on the UCI CLVHEART dataset.

36

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

PIMA Search Nodes

LP−Boost iteration

B
ra

nc
h−

an
d−

bo
un

d
no

de
s

k=|F|,GS bnd, fixed order

k=|F|, fixed order

k=|F|

k= 3|F|/4

k= |F|/2 

k= |F|/4

k=1 lexical strong branch

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200
PIMA CPU Time

LP−Boost iteration

C
P

U
 s

ec
on

ds

Figure 2.5: MMA computational performance on the UCI PIMA dataset.

37

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

10
5

10
6

HEPATITIS Search Nodes

LP−Boost iteration

B
ra

nc
h−

an
d−

bo
un

d
no

de
s

k=|F|,GS bnd, fixed order

k=|F|, fixed order

k=|F|

k= 3|F|/4

k= |F|/2 

k= |F|/4

k=1 lexical strong branch

0 5 10 15 20 25 30
0

50

100

150
HEPATITIS CPU Time

LP−Boost iteration

C
P

U
 s

ec
on

ds

Figure 2.6: MMA computational performance on the UCI HEPATITIS dataset.

38

0 5 10 15 20 25 30
10

1

10
2

10
3

10
4

10
5

10
6

CMC Search Nodes

LP−Boost iteration

B
ra

nc
h−

an
d−

bo
un

d
no

de
s

k=|F|, fixed order

k=|F|

k= 3|F|/4

k= |F|/2 

k= |F|/4

k=1 lexical strong branch

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000
CMC CPU Time

LP−Boost iteration

C
P

U
 s

ec
on

ds

Figure 2.7: MMA computational performance on the UCI CMC dataset.

39

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

10
5

10
6

HUHEART Search Nodes

LP−Boost iteration

B
ra

nc
h−

an
d−

bo
un

d
no

de
s

k=|F|,GS bnd, fixed order

k=|F|, fixed order

k=|F|

k= 3|F|/4

k= |F|/2 

k= |F|/4

k=1 lexical strong branch

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500
HUHEART CPU Time

LP−Boost iteration

C
P

U
 s

ec
on

ds

Figure 2.8: MMA computational performance on the UCI HUHEART dataset.

40

Chapter 3

Tightened L0 relaxation for classification

In optimization-based classification model selection, for example when using linear pro-

gramming formulations such as (1.13), the standard approach is to penalize the L1 norm

of a linear functional in order to select sparse models. Instead, we now propose a novel in-

teger linear program for sparse classifier selection, generalizing the minimum disagreement

hyperplane problem whose complexity has been investigated in computational learning the-

ory. Specifically, our mixed integer problem is that of finding a separating hyperplane

with minimum empirical error subject to an L0-norm penalty. We show that the common

“soft margin” linear programming formulations (1.13) and (1.12) for robust classification are

equivalent to the continuous relaxation of our model. Since the initial continuous relaxation

is weak, we suggest a tighter relaxation, using novel cutting planes, to better approximate

the integer solution. We describe a boosting algorithm, based on linear programming with

dynamic generation of cuts and columns, that solves our relaxation. We demonstrate the

classification performance of our proposed algorithm with experimental results, and justify

our selection of parameters using a minimum description length, compression interpretation

of learning.

We will introduce a new combinatorial optimization problem which we call sparse min-

imum disagreement hyperplane (SMDH), and discuss its relation to soft margin maximiza-

tion (1.13). Before we proceed to do so, we motivate our new problem by relating it to

current statistical learning theory summarized in Section 1.3.

41

3.1 Statistical learning theory justifications for sparsity and minimizing

code length

The main objective of statistical learning theory attempts to quantify prediction risk —

the probability of error on the test (unseen) data for a given model. Initially Freund and

Schapire [36] bounded the prediction risk of weighted voting classifiers in terms of the L0-

norm of λ by bounding the VC dimension of linear combinations of base classifiers in terms

of the VC dimension of the base classifiers used, and ||λ||0, as shown by Theorem 1.3.1.

Following later results by Bartlett [6], Schapire et al. [63] and Vapnik (see [66] section 5.5.6)

providing risk bounds in terms of the margin of separation, algorithms for finding weighted

voting classifiers have been mostly motivated by such bounds expressed in terms of the

margin or equivalently the L1 or L2 norm of λ.

Luxburg, Bousquet and Schölkopf have investigated the connection between statistical

learning theory and compression for SVMs [71]. Although SVMs are designed to maximize

the margin of separation in the space of features subject to a soft margin penalty, Luxburg

et al. find that their compression-based bounds often perform better that margin-based

bounds. Their analysis relates the idea of compression to the notion of separation margin

by showing that the larger the L2 margin of separation, the lower the precision needed to

encode the voting weights λ, and the more the classifier description may be compressed.

While Luxburg et al. help to illuminate the relation between L2 margin of separation and

compression, their work raises the question whether there can be more direct approaches

to “compressing” weighted voting classifiers. For example, are there efficient methods that

more directly optimize sparsity and attempt to minimize the length of the classifier descrip-

tion?

Here, we adopt a strategy inspired by the MDL conception of learning and specifically

two-part code length minimization. We would like to minimize the total length of both

the code describing the classifier g, and the second part encoding which observations are

misclassified by g. In the following we formulate such a code, whose length we seek to

minimize, thereby we also minimize a risk bound such as (1.11), and thus we expect our

selection of a classifier g to “generalize” well, i.e., perform well with respect to unseen data.

42

Let L̇[g] denote the model code length of weighted voting classifier g. We consider an

upper bound on the code length that is a function of subsets of U . Let G be the set of all

weighted voting classifier models. Our objective then is to select a g that minimizes the

sum of the model code length function (or an upper bound) L̇ of g, and the length of the

misclassified data labels given g, that is,

min
g∈G

L̄[y, g] = min
g∈G
{L̇[g] + L[y|g]},

where L[y|g] is the length of a code that encodes the the labels of observations that are

misclassified by g, requiring at most
∑M

i=1 I(yig(Ai))dlogMe bits.

In our approach of implementing structural risk minimization, we suppose that the base

classifiers are partitioned into a (finite) K subsets Uk, k = 1, . . . ,UK , with each Uk repre-

senting the indices of classifiers that have equal complexity or “risk”. The corresponding

weighted voting classifiers can then be decomposed into subsets Sj = conv({hu | u ∈⋃j
k=0 Uj}), for j = 1, . . . ,K, where conv(U) denotes the convex hull of set U . Each of the

sets Uk corresponds to one of K tables in a code book [69], present at both the sender and

receiver, and an element of the kth table can be identified using dlog |Uk|e bits.

To describe the classifier g, we must specify ||λ||0 such table indices, and also specify

which table each element of {u | λu > 0} corresponds to, the latter requiring at most

||λ||0 dlogKe bits. Having thus identified the features, one must finally encode the weights of

the separating hyperplane weights λ ∈ [0, 1]M , which we can show requires at most (||λ||0 +

1)dlogMe bits to encode a set of affinely independent support vectors. The support vectors

(as in SVM) are data points that lie on one of the hyperplanes given by
∑U

u=1 λuhu(x) = ±1.

Theorem 3.1.1. For a given set of points represented by the rows of A ∈ RM×N , there is a

two-part encoding of the hyperplane g(x) = λuhu(x) = 0 that adds at most (||λ||0+1)dlogMe

bits to the code length of {u ∈ U | λu > 0}.

Proof. Consider the ||λ||0-dimensional space defined by the features in {u ∈ U | λu > 0}.

The number of affinely independent vectors in this space can be at most ||λ||0 + 1. Thus

at most ||λ||0 + 1 support vectors are needed to define one of the supporting hyperplanes∑U
u=1 λuhu(x) = ±1 as their affine combination. The parallel plane going through the

43

origin is
∑U

u=1 λuhu(x) = 0. For any two-part code where the sender and receiver share Ai

for i = 1, . . . ,M , a data point vector can be identified using dlogMe bits.

Using this information, a receiver can decode λ. The total length of a code that encodes

g is:

L̇[g] = ||λ||0 dlogKe+
∑

u∈U :λu>0

dlog
∣∣Uk(u)

∣∣e+ (||λ||0 + 1)dlogMe

= ||λ||0 (dlogKe+ (1 + 1/ ||λ||0)dlogMe) +
∑

u∈U :λu>0

dlog
∣∣Uk(u)

∣∣e (3.1)

≤ ||λ||0 (dlogKe+ 2dlogMe) +
∑

u∈U :λu>0

dlog
∣∣Uk(u)

∣∣e (3.2)

≤ ||λ||0
(
dlogKe+ 2dlogMe+ max

u∈U :λu>0
dlog

∣∣Uk(u)

∣∣e) (3.3)

where k : U → {1, . . . ,K} and ||λ||0 ≥ 1. Thus, by (3.3), minimizing ||λ||0 is equivalent to

minimizing an upper bound on the code length L̇[g]. Also, it follows from (3.2) that there

is a tighter bound on the code length which can be written as a function that is linear in

the support of λ.

3.2 The sparse minimum disagreement hyperplane problem - a hard

problem

3.2.1 Problem formulation

In classification problems, the computational challenge is often associated with the size of

U (also known as the dimension of the feature space), as well of the size of the data M .

The problem of finding a hyperplane g that minimizes the sum of (1.2) over i = 1, . . . ,M

is known as the minimum disagreement halfspace problem (MDH) [44, 2]. When considering

the 0/1 loss (1.2), it turns out that even when U is given in the input, the problem of

finding a loss minimizing hyperplane is NP-hard [44, 9]. This problem has been solved

using heuristics based on nonlinear programming by Mangasarian [53] and Bennett and

Bredensteiner [10]. In their work, both Mangasarian and Bennett and Bredensteiner refer

to a hardness result for the same problem that appeared in the PhD thesis of Heath [43]. The

44

problem of minimizing the classification error is also known to be a case of maximum feasible

subsystem: the problem of finding a feasible subsystem containing as many inequalities as

possible from a given infeasible system Ax ≤ b [56].

We would like to extend the minimum disagreement hyperplane problem to penalize

the L0 norm of λ. We call the more general problem including an L0 penalty the sparse

minimum disagreement hyperplane problem (SMDH). In the basic version of the problem,

we penalize all non-zero components of λ uniformly through the same penalty parameter

C. The problem can be stated as:

Sparse Minimum Disagreement Hyperplane (SMDH)

Input: A matrix H ∈ {−1, 0, 1}M×U of base classifier labels, a vector y ∈
{−1, 1}M of sample labels, and a penalty 0 ≤ C < M

Problem: To find a separating hyperplane, given by λ ∈ RU
+, such that∑M

i=1 I(yiHiλ < 1) + C ||λ||0 is minimized.

Note that we exclude the case that C ≥M because it leads to the trivial solution λ = 0.

We now formulate SMDH as a Mixed Integer Program (MIP), using binary variables µu to

indicate whether feature u is used, and binary variables ξi to indicate whether observation

i is misclassified:

min
ξ,µ,λ

{
M∑
i=1

ξi + C

U∑
u=1

µu
∣∣ (ξ, µ, λ) ∈ QH,y ∩

(
{0, 1}M × {0, 1}U × RU

+

)}
, (3.4)

where QH,y is a “soft margin” classification polytope defined as:

QH,y =

(ξ, µ, λ) ∈ [0, 1]M × [0, 1]U × RU
+

∣∣∣∣∣∣ diag(y)Hλ+ (MK + 1)ξ ≥ 1

λ ≤ Kµ

 ,

where K is a suitably large constant and diag(y) is the diagonal matrix with entries

y1, . . . , yM . We show that (3.4) is correct for all large enough K. Note that SMDH and

formulation (3.4) always have a feasible solution. Therefore, since the objective value of any

feasible solution to either SMDH or formulation (3.4) must be a nonnegative integer, each

must always have an optimal solution. Thus, to prove the equivalence of (3.4) and SMDH,

it is sufficient to show in the following theorem that the optimal solution values of SMDH

45

and (3.4) are equal.

Theorem 3.2.1. If K ≥MM/2, then for any optimal solution (ξ∗, µ∗, λ∗) of (3.4), it must

be that
∑M

i=1 ξ
∗
i + C

∑
u∈U µ

∗
u = minλ∈RN+

∑M
i=1 I(yiHiλ ≤ 0) + C ||λ||0 =

∑M
i=1 I(yiHiλ

∗ ≤

0) + C ||λ∗||0.

To prove this result, we will require the following two Lemmas.

Lemma 3.2.2. If there exists a hyperplane g(x) =
∑

u∈Γ λuxu = 0 that separates S+ ⊆ Ω+

and S− ⊆ Ω−, for some Γ ⊆ U , then there exists λ∗ such that λ∗u ≤ MM/2 for all u ∈ Γ,

and g(x) =
∑

u∈Γ λ
∗
uxu = 0 also separates S+ and S−.

Proof. Let ŷ denote the subvector of y with elements S+ ∪ S− and Ĥ the submatrix of H

with rows S+∪S− and columns Γ. The points S+ and S− are linearly separable if the linear

system diag(ŷ)Ĥλ ≥ 1 has a feasible solution. The system of inequalities diag(ŷ)Ĥλ ≥ 1

has a solution if it has a basic feasible solution λ∗. Let B denote a basis corresponding to

a submatrix of diag(ŷ)Ĥ. The basic feasible solution λ∗ must satisfy the linear system

Bλ∗ = 1.

Now, by Cramer’s rule and the non-negativity constraints, we have

λ∗u =
det
(
B(u)

)
det(B)

≥ 0

where B(u) is the matrix B with column u replaced by 1. Since the rank of B is bounded by

|S+∪S−| ≤M , we have using Hadamard’s bound [17] that
∣∣det

(
B(u))

)∣∣ ≤MM/2. Since B

is a basis, det(B) 6= 0. Thus, by the definition of a determinant and since Bij ∈ {−1, 0, 1},

|det(B)| =

∣∣∣∣∣∑
σ∈Sn

sgn(σ)
n∏
i=1

Biσ(i)

∣∣∣∣∣ ≥ 1,

and the claim follows.

Lemma 3.2.3. If there exists a hyperplane
∑

t∈Γ λtht(x) = 0 that separates S+ ⊆ Ω+

and S− ⊆ Ω−, then there exists λ∗ such that
∑

t∈Γ λ
∗
tht(x) = 0 separates S+ and S− and

46

||λ∗||0 ≤ rank(H̃) ≤ |S+|+ |S−|, where H̃ is the submatrix of H with columns Γ and rows

S+ ∪ S−.

Proof. Let

Y =


yi1H̃i1

...

yikH̃ik

 ,
where {i1, . . . , ik} = S+ ∪ S−. By feasibility of λ, the polyhedron

{
λ ∈ RT

+

∣∣∣∣∣ ∑
t∈Γ

yiHitλt ≥ 1 for i ∈ S+ ∪ S−
}

(3.5)

has a vertex corresponding to a basic feasible solution λ∗.

The number of nonzero components of each basic feasible solution is at most the rank

of the constraint matrix, rank(Y), and rank(Y) = rank(H̃) since the rank of H̃ will not

change if one simply negates some rows. Thus,

||λ∗||0 = |{t ∈ Γ | λ∗t > 0}| ≤ rank(Y) = rank(H̃) ≤ |S+|+ |S−|.

Proof of Theorem 3.2.1. By the constraints λ∗u ≤ Kµ∗u of formulation (3.4),

||λ∗||0 ≤
∑
u∈U

µ∗u.

By the constraint diag(y)Hλ∗ + (MK + 1)ξ ≥ 1, it follows that
∑M

i=1 I(yiHiλ
∗ ≤ 0) ≤∑M

i=1 ξ
∗
i . Thus, by optimality of λ for SMDH, it follows that

M∑
i=1

I(yiHiλ ≤ 0) + C ||λ||0 ≤
M∑
i=1

I(yiHiλ
∗ ≤ 0) + C ||λ∗||0 ≤

M∑
i=1

ξ∗i + C
∑
u∈U

µ∗u. (3.6)

We now prove the reverse inequality between the first and last quantities. The feasibility

of λ for SMDH implies the linear separability of the subsets S+ = {i ∈ Ω+ | I(yiHiλ > 0)}

and S− = {i ∈ Ω− | I(yiHiλ > 0)}.

Now by Lemma 3.2.3, there exists λ′ such that ||λ′||0 ≤ |S+|+|S−| ≤M and λ′ separates

47

S+ and S−. By the optimality of λ for SMDH, we also have ||λ||0 ≤M .

By Lemma 3.2.2 with Γ = {u ∈ U | λ′u > 0}, there exists λ′′, with λ′′u ≤MM/2 ≤ K for

all u ∈ U , with the same support as λ′, separating S+ and S−. Thus, |yiHiλ
′′| ≤ MM/2+1

for all i = 1, . . . ,M . Now let

ξ′′i =


1 if yiHiλ

′′ < 1

0 otherwise
,

and

µ′′u =


1 if λ′′u > 0

0 otherwise
.

Then, for all i ∈ {1, . . . ,M},

yiHiλ
′′ +

(
MM/2+1 + 1

)
ξ′′i ≥ 1.

Thus, (ξ′′, µ′′, λ′′) is feasible for (3.4), and
∑M

i=1 ξ
′′
i =

∑M
i=1 I(yiHiλ < 1), so, by the opti-

mality of (ξ∗, µ∗, λ∗),

M∑
i=1

ξ∗i + C
∑
u∈U

µ∗u ≤
M∑
i=1

ξ′′i + C
∑
u∈U

µ′′u ≤
M∑
i=1

I(yiHiλ < 1) + C ||λ||0 .

Thus, all the relations in (3.6) hold with equality, and thus λ∗ is also an optimal solution

to SMDH.

We next show that the continuous relaxation of (3.4), which can be stated as

min
{∑M

i=1 ξi + C
∑U

u=1 µu | (ξ, µ, λ) ∈ QH,y
}
, (3.7)

is equivalent to the soft margin formulation (1.13) with appropriate choices of the penalties

C and D. Formulation (1.13) is known to be equivalent to the soft margin maximization

formulation (1.12) by Ratsch et al. [59] and Bennett et al. [11], so that it follows that (1.12)

is also equivalent to the relaxation of the SMDH problem relaxation (3.7). The theorem will

48

also enable us to claim in Section 3.4 that our continuous relaxation formulation provides a

tightened relaxation of the discrete SMDH formulation (3.4), by introducing novel cutting

planes for the “soft margin” formulation.

Theorem 3.2.4. (ξ, λ) is an optimal solution of (1.13) if and only if (ξ/(MK + 1), λ/K, λ)

is an optimal solution of (3.7) with penalty C = 1/(D(M + 1/K)).

Proof. First we show that every feasible solution (ξ, λ) of (1.13) corresponds to a feasible so-

lution (ξ/(MK+1), λ/K, λ) of (3.7) with objective value 1
D(MK+1)

(∑
i=1Dξi +

∑U
u=1 λu

)
.

Assume (ξ, λ) is a feasible solution of (1.13). Now,

diag(y)Hλ+ ξ = diag(y)Hλ+ (MK + 1)Iξ/(MK + 1) ≥ 1, (3.8)

and µ = λ/K imply that (ξ/(MK + 1), λ/K, λ) is feasible for (3.7).

Letting C = 1/(D(M +1/K)), the objective value of the solution (ξ/(MK+1), λ/K, λ)

of (3.7) is

M∑
i=1

ξi/(MK + 1) +
1

D(M + 1/K)

U∑
u=1

λu/K =
1

D(MK + 1)

(
D

M∑
i=1

ξi +
U∑
u=1

λu

)
. (3.9)

Since the map (ξ, λ,D) 7→ (ξ/(MK + 1), λ, 1/(D(M + 1/K))) is a bijection (where

µ = λ/K is fixed), and following the equality in (3.8) and (3.9), the converse also follows.

In (3.7), since the nonnegative variables µu have positive objective coefficients, each

appears only in the constraint µu ≥ λu/K, and the objective is being minimized, all optimal

solutions of (3.7) must satisfy µ = λ/K. The claim then follows since the objective value

of all feasible solutions under the bijective correspondence given by (ξ, λ,D) 7→ (ξ/(MK +

1), λ, 1/(D(M + 1/K))), where µ = λ/K, is scaled by the constant 1/(D(MK + 1)).

The objective function of (3.4) minimizes misclassification plus a complexity penalty

proportional to the number of features used. Thus, the SMDH formulation (3.4) corresponds

to minimizing an upper bound on the total code length when the features being combined

have equal complexity penalties. However, we may wish to assign different penalties cu to

different features u ∈ U (but most likely use the same cu for all u in the same Uk). Moreover,

49

the SMDH formulation (3.4) may have many alternate solutions: even with respect to a fixed

ξ and µ, there may be multiple feasible hyperplanes
∑

u∈U :µu=1 λuhu(x) = 0; we may wish

to discern between these hyperplanes on the basis of the margin of separation 0 < ρ ≤ 1. We

generalize our formulation to include penalties that vary with u and to accept the margin

ρ as a parameter; to make this parameterization sensible, we must normalize the weights

λ, which requires an additional constraint. Finally, for reasons that should become clear in

course, we give the formulation with respect to some subset of features Γ ⊆ U :

min

{
M∑
i=1

ξi +
∑
u∈Γ

cuµu

∣∣∣ (ξ, µ, λ) ∈ QH,y,ρ(Γ) ∩
(
{0, 1}M × {0, 1}|Γ| × R|Γ|+

)}
, (3.10)

where QH,y,ρ(·) is a soft margin classification polytope with a required margin ρ:

QH,y,ρ(Γ) =(ξ, µ, λ) ∈ [0, 1]M × [0, 1]|Γ| × R|Γ|+

∣∣∣∣∣∣
∑

u∈Γ yiHiuλu + (1 + ρ)ξi ≥ ρ , i = 1, . . . ,M∑
u∈Γ λu = 1 λ ≤ µ

 .

3.2.2 Computational complexity

The SMDH problem generalizes the MDH problem, so that it is at least as hard to solve

computationally. Specifically, the MDH problem is solved by (3.4) with C = 0. In the fol-

lowing we will refer to a solution (ξ, µ, λ) of (3.4), with C = 0, as an MDH solution. Höffgen,

Simon and Van Horn [44] show that the MDH problem is not possible to approximate within

a factor better than (1 − ε) logM for any ε > 0 unless NP ⊆ DT IME(M log logM), where

DT IME(n) is the class of problems that can be solved in deterministic time n. Arora,

Babai, Stern and Sweedyk [2] improved the inapproximability factor to 2log0.5−εM , making

the weaker assumption that NP * DT IME(Mpoly(logM)). By the restriction of SMDH

with C = 0, the inapproximability result of Arora et al. directly applies. We state in the

following theorem a more general result for SMDH with constant penalties, based on the

inapproximability of MDH [2]. Note that if C ≥ M , then SMDH has the trivial solution

λ = 0 and ξi = 1 for all i ∈ {1, . . . ,M}. We will require the following Lemmas to derive

our inapproximability result:

50

Lemma 3.2.5. Given an MDH instance with input H ∈ {−1, 0, 1}M×U , y ∈ {−1, 1}M , and

some constant C, then for all k ≥ dCeM + 1, there exists an O(k poly(M,U)) reduction

to an SMDH instance H ′ ∈ {−1, 0, 1}Mk×U and y′ ∈ {−1, 1}Mk, such that MDH has an

optimal solution (ξ̂, µ̂, λ̂) if and only if SMDH has an optimal solution (ξ∗, µ∗, λ∗), where∑Mk
i=1 ξ

∗
i = k

∑M
i=1 ξ̂i and

∑U
u=1 µ

∗
u ≤M .

Proof. Given the input (H, y) of MDH, and a constant C, construct an instance of SMDH

(H ′, y′), by creating k duplicates of Hi in the matrix H ′, and k duplicates of yi in the vector

y′, for each row Hi of H. Without loss of generality, assume that the rows of H ′ and y′

are indexed such that Hi = H ′i and yi = y′i for i = 1, . . . ,M . Let (ξ∗, µ∗, λ∗) be an optimal

SMDH solution for the input (H ′, y′) with penalty C. Let (ξ̂, µ̂, λ̂) be an optimal solution

of MDH, corresponding to formulation (3.4) for the input (H, y) with penalty C = 0, and

value zMDH =
∑M

i=1 ξ̂i + 0
∑U

u=1 µ̂u =
∑M

i=1 ξ̂i.

Now, since feasible solutions of MDH and SMDH must always exist, we only need to prove

zMDH =
∑M

i=1 ξ̂i =
∑Mk

i=1 ξ
∗
i /k. Assume to the contrary

zMDH 6=
Mk∑
i=1

ξ∗i /k.

First, we note that we must have zMDH ≤
∑Mk

i=1 ξ
∗
i /k, for otherwise

∑M
i=1 ξ

∗
i < zMDH, which

contradicts the optimality of zMDH. On the other hand, if zMDH <
∑Mk

i=1 ξ
∗
i /k, then

zMDH ≤
Mk∑
i=1

ξ∗i /k − 1 (3.11)

By Lemma 3.2.3, since the sets {i ∈ Ω+ | ξ̂i = 0} and {i ∈ Ω− | ξ̂i = 0} are linearly

separable, there exists λ corresponding to a hyperplane that separates {i ∈ Ω+ | ξ̂i = 0}

and {i ∈ Ω− | ξ̂i = 0}, with ||λ||0 ≤M . Let

µu =


1 if λu 6= 0

0 otherwise
.

51

Then the optimal SMDH solution value zSMDH must satisfy

zSMDH =
Mk∑
i=1

ξ∗i + C

U∑
u=1

µ∗u

≤ k
M∑
i=1

ξ̂i + C

U∑
u=1

µu [by optimality of SMDH]

≤ kzMDH + CM

< k (zMDH + 1) [by k ≥ dCeM + 1]

≤
Mk∑
i=1

ξ∗i [by (3.11)]

≤ zSMDH

From this contradiction, we conclude that zMDH =
∑Mk

i=1 ξ
∗
i /k =

∑M
i=1 ξ

∗
i .

Lemma 3.2.6. An α(M) approximation factor for SMDH with constant penalty parameter

C, for some α : N+ → R+ implies an α(M(dCeM + 1))β approximation of MDH for some

β ∈ O(1).

Proof. We will reduce and MDH instance (H, y) to SMDH with a constant C using the

reduction of Lemma 3.2.5, making k = dCeM + 1 duplicates of each row of H and y, in H ′

and y′ respectively.

Suppose there is an α(kM) = α(M(dCeM + 1))-factor approximation algorithm for

SMDH. Let (ξ, µ, λ) and (ξ∗, µ∗, λ∗) denote an SMDH solution of the approximation algo-

rithm and optimal solution, respectively. Let (ξ̂, µ̂, λ̂) denote an optimal MDH solution,

and zMDH denote its value. Without loss of generality we may assume
∑M

i=1 ξ̂i ≥ κ, for

a constant κ ∈ N+. Otherwise, we can solve MDH exactly by excluding each subset up

to size κ and finding the corresponding separating hyperplanes by linear programming in

polynomial time. Now,

zMDH =
M∑
i=1

ξ̂i =
M(dCeM+1)∑

i=1

ξ∗i /(dCeM + 1) [by Lemma 3.2.5]

≤

M(dCeM+1)∑
i=1

ξ∗i + C
U∑
u=1

µ∗u

 /(dCeM + 1)

52

≤

M(dCeM+1)∑
i=1

ξi + C

U∑
u=1

µu

 /(dCeM + 1)

≤ α(M(dCeM + 1))

M(dCeM+1)∑
i=1

ξ∗i + C
U∑
u=1

µ∗u

 /(dCeM + 1) [by assumption]

≤ α(M(dCeM + 1))

(
(dCeM + 1)

M∑
i=1

ξ̂i + CM

)
/(dCeM + 1) [by Lemma 3.2.5]

≤ α(M(dCeM + 1))(
M∑
i=1

ξ̂i + 1)

≤ α(M(dCeM + 1))(1 + 1/κ)
M∑
i=1

ξ̂i,

which yields an α(M(dCeM + 1))(1 + 1/κ) = α(M(dCeM + 1))β-factor approximation for

MDH, with β ∈ O(1).

Theorem 3.2.7. The SMDH problem, with a constant C, cannot be approximated to within

any constant factor, assuming P 6= NP.

Proof. By Lemma 3.2.6 a constant factor approximation for SMDH yields a constant factor

approximation for MDH and a contradiction [44, 2]

Theorem 3.2.8. For any constant penalty C and ε > 0, the SMDH problem cannot be

approximated within a factor of 2log0.5−εM unless NP ⊆ DT IME(Mpoly(logM)).

Proof. By Lemma 3.2.6, a 2log0.5−εM -factor approximation for SMDH, for some ε > 0, yields

a β2log0.5−ε(M(dCeM+1))-factor approximation for MDH, for some β ∈ O(1). Now, because

C ≤M ,

β2log0.5−ε(M(dCeM+1)) ≤ β2log0.5−εM4
β240.5−ε log0.5−εM ≤ 2log0.5−ε′M

for some 0 < ε′ ≤ ε, M0 ∈ N+ and all M ≥M0. This is a contradiction with the inapprox-

imability of MDH [2].

The continuous relaxations of models (3.4) and (3.10) can be quite weak. First we

elaborate the on the weakness of the relaxation, and then we suggest novel cutting planes

for the purpose of strengthening the relaxation.

53

3.3 Relaxing the hard problem and strengthening the relaxation

The weakness of the continuous relaxations of models (3.4) and (3.10) is due to a large in-

tegrality gap. The integrality gap of a MIP relaxation is defined as supH,y z(H, y)/zR(H, y),

where z(H, y) and zR(H, y) are the optimal solution values of the SMDH MIP and its

continuous relaxation, respectively (see Vazirani [70]).

In order to show a lower bound for the integrality gap we will consider a particular con-

struction of a simple SMDH instance with C = 1 and diag(y)H = I, where I is the identity

matrix, meaning each classifier covers only a single observation. Since each observation

i ∈ {1, . . . ,M} must be either classified correctly by the single classifier u with yiHiu = 1

and µu = 1, or otherwise ξi = 1, this instance has an optimal integer solution of value M ,

where M of the µu and ξi variables assume a value of one and all of the remaining variables

are zero. The relaxation of MDH, however, has the feasible solution ξi = 1/(MK + 1) for

i = 1, . . . ,M , and µ = 0, with value M/(MK + 1). In Lemma 3.2.2, we proved a large up-

per bound for the required constant K, i.e., formulation (3.4) is correct for all K ≥MM/2.

Smaller values of K that maintain the correctness of (3.4) may be possible. However, we

can show a lower bound for any constant K that maintains the correctness of the formula-

tion by constructing the following SMDH instance (different than the simple instance above

used to demonstrate the gap): let

diag(y)H =



1 0 . . . 0

−1 1 0 . . . 0

0 −1
. . . 0

−1 1 0

−1 . . . −1 1


.

Now, in order to admit the feasible SMDH solution λ1 = 1, λ2 = 3, . . . ,λM−1 = M − 1,

λM = 0, ξ1 = . . . = ξM−1 = 0, ξM = 1 formulation (3.4) must have K ≥ M(M − 1)/2.

Thus, the integrality gap of SMDH satisfies

sup
H,y

z(H, y)
zR(H, y)

≥ M

M/(M(M(M − 1)/2) + 1)
≥M2(M − 1)/2.

54

Using the same simple SMDH instance, with C = 1 and diag(y)H = I, we can also show

a large lower bound factor of M for the MIP formulation (3.10). In the case of (3.10), due

to the normalization constraint, the relaxation solution may have µu = 1
M for all u ∈ U ,

compared with the integer solution having µu = 1 for all u ∈ U . This instance, therefore,

proves the integrality gap lower bound for (3.10), with

supH,y z(H, y)
zR(H, y)

≥
∑M

i=1 1∑M
i=1 1/M

= M.

We now consider adding valid inequalities to (3.10) in order to strengthen its relaxation. We

say that a base classifier h distinguishes between a pair (i, i′) if it classifies them differently

but classifies at least one of them correctly, e.g., hu(Ai) = yi 6= hu(Ai′). Let Si,i′ =

{u ∈ U | hu(Ai) = yi 6= hu(Ai′)} denote the set of base classifiers that correctly classify

observation i and distinguish it from i′. We consider the following inequality for each pair

of observations (i, i′) ∈ (Ω+ × Ω−) ∪ (Ω− × Ω+):

ξi + ξi′ +
∑

u∈Si,i′∩Γ

µu ≥ 1. (3.12)

Intuitively, such a cutting plane implies that either we misclassify at least one of the of the

observations i or i′, or we need to distinguish between the two using at least one of the

distinguishing features in Si,i′ .

Theorem 3.3.1. The inequalities (3.12) are valid, that is, they hold for all integer-feasible

solutions of (3.10).

Proof. Take any (i, i′) ∈ Ω+ × Ω−. If ξi + ξi′ ≥ 1 then (3.12) clearly holds. Otherwise,

i ∈ Ω+ and ξi = 0 imply that
∑

t∈ΓHitλu ≥ ρ. Now, ρ > 0 implies that hu(Ai)λu > 0

for some t ∈ Γ; λu ≥ 0 and hu(Ai) = 1 imply µu > 0. The proof for (i, i′) ∈ Ω− × Ω+ is

similar.

In the following, we will denote by A some subset of pairs in (Ω+ × Ω−) ∪ (Ω− × Ω+).

Now, we let

R(A,Γ) =
{

(ξ, µ, λ) ∈ [0, 1]M × [0, 1]|Γ| × R|Γ|+

∣∣∣ ξi + ξi′ +
∑

u∈Si,i′∩Γ µu ≥ 1, ∀(i, i′) ∈ A
}

55

denote the polyhedron implied by the cutting planes (3.12) corresponding to the pairs of

observations in A.

As a direct consequence of Theorem 3.3.1,

QH,y,ρ(Γ) ∩ {0, 1}M × {0, 1}|Γ| ⊆ QH,y,ρ(Γ) ∩R(A,Γ) ⊆ QH,y,ρ(Γ)

Similarly, it can be shown by letting ρ = 1 that the inequalities (3.12) are valid for (3.4),

so that

QH,y ∩ {0, 1}M × {0, 1}U ⊆ QH,y ∩R(A,U) ⊆ QH,y.

Finally, we note that following work done on characterization of the set cover polytope [4,

22], or equivalently by applying a special case of Chvatal-Gomory cuts, the inequalities (3.12)

can be further strengthened by introducing certain inequalities derived from triples of ob-

servation pairs. However, we have not pursued this line of research further.

3.4 L0-Relaxed Boosting: a boosting formulation with relaxed L0 com-

plexity penalties

We now describe a boosting algorithm for the continuous relaxation of SMDH, strengthened

by inequalities of the form (3.12). Our algorithmic approach is similar to Demiriz et al. [26]:

We use column generation to iteratively generate the columns of U as needed. At each

iteration, the set of features is restricted to the subset Γ ⊆ U of the columns that have been

generated so far. At each iteration, the base learner algorithm generates a new feature from

56

U \ Γ. Given a current set of features Γ and set of pairs A, we arrive at the relaxation

min
λ,µ,ξ

M∑
i=1

ξi +
U∑
u=1

cuµu (3.13a)

s.t.:
∑
u∈Γ

yiHiuλu + (1 + ρ)ξi ≥ ρ i = 1, ...,M (3.13b)

∑
u∈Γ

λu = 1 (3.13c)

ξi + ξi′ +
∑

u∈Sii′∩Γ

µu ≥ 1 (i, i′) ∈ A (3.13d)

µu − λu ≥ 0 u ∈ Γ (3.13e)

λu, µu, ξi ≥ 0 u ∈ Γ, i = 1, ...,M (3.13f)

3.4.1 Dual formulation, the base learning problem and termination

We next derive the dual formulation of (3.13) in order to formulate the pricing/base learning

problem. The dual formulation is also useful in proving the algorithm’s termination condi-

tion, which guarantees an optimal solution (or an approximately optimal solution). Let wi,

α, vii′ , and qu correspond respectively to the dual variables (or Lagrange multipliers) of ith

constraint (3.13b), (3.13c), constraint (3.13d) of pair (i, i′), and the uth constraint (3.13e).

max
w,v,α,q

M∑
i=1

ρwi +
∑

(i,i′)∈A

vii′ + α (3.14a)

s.t.: ∑
(k,l):i∈{k,l}

vkl + (1 + ρ)wi ≤ 1 i ∈ {1, . . . ,M} (3.14b)

∑
(k,l)∈A:
k=i∨l=i

vii′ + qu ≤ cu u ∈ Γ (3.14c)

α+
M∑
i=1

yiĤitwi − qu ≤ 0 u ∈ Γ (3.14d)

w ≥ 0, qu, vii′ ≥ 0 (i, i′) ∈ A, u ∈ Γ (3.14e)

57

Substituting qu = cu −
∑

(i,i′)∈A:Sii′3t
vii′ , which is the largest value of qu that satis-

fies (3.14c), will preserve all feasible solutions, since choosing qu as large as possible must

satisfy the corresponding inequality (3.14d), for any given feasible (α,w), and qu does not

appear in the objective or any constraint other than (3.14c) or (3.14d). Thus, we can state

the dual LP of (3.13) as

max
u,v,α

M∑
i=1

ρwi +
∑

(i,i′)∈A

vii′ + α (3.15a)

s.t.:
∑

(k,l)∈A:
k=i∨l=i

vkl + (1 + ρ)wi ≤ 1 i ∈ {1, . . . ,M} (3.15b)

α+
∑

(i,i′)∈A:Si,i′3u

vii′ +
M∑
i=1

yiHiuwi ≤ cu u ∈ Γ (3.15c)

w ≥ 0, vii′ ≥ 0 (i, i′) ∈ A. (3.15d)

At each iteration, boosting algorithms invoke a base learning algorithm to find the best

hypothesis to add to the classifier. In Section 1.5 we described the base learning problem

which arises as the pricing problem of LP-Boost and its relation to maximum agreement

problems in the computational learning literature. The base learning problem that arises

with our new formulation (3.13) involves finding u ∈ U that produces the most violated

constraint of the form (3.15c), and is similar to (1.15), but involves an additional weight

measure v : (Ω+×Ω−)∪ (Ω−×Ω+)→ R+ corresponding to the Lagrange multipliers of the

constraints (3.13d); it takes the form

c̄ = min
u∈U

cu −
M∑
i=1

yiHiuwi −
∑

(i,i′)∈A:u∈Sii′

vii′ − α

 , (3.16)

The minimizer of c̄ can be determined irrespective of the constant α, which may be moved

outside the min operation. In the general case, it is unsurprising that the problem (3.16)

is NP-hard. This fact is confirmed in Section 3.5 in the special case where the columns of

H correspond to vertices of subcubes of the binary hypercube. Whenever c̄ ≥ 0, the dual

constraints (3.15c) must be satisfied for all u ∈ U , and the dual LP (3.15) becomes feasible.

58

Thus, c̄ ≥ 0 proves optimality of a selection of base classifiers (and columns) Γ ⊆ U , and

defines our termination condition. It is also possible to terminate early while guaranteeing

an approximate solution of the relaxation [51], although in the experiments of Section 3.6

we did not find this necessary.

Let us denote the optimal solution value of the SMDH problem (3.10) by z(Γ), and its

relaxation (3.13) optimal value by zR(Γ) (for a particular fixed instance (H, y, ρ)). Having

solved the relaxation (3.13) for a set of columns Γ ⊆ U , it may be possible terminate the

column generation procedure early while guaranteeing a lower bound on the solution value.

The following lower bound is based on a general lower bound commonly used for early

termination of column generation [51].

Suppose b is an upper bound on the number of features in the optimal solution, i.e.,∑U
u=1 µ

∗
u ≤ b for the optimal solution (ξ∗, µ∗, λ∗) of (3.13), with value zR(Γ). By

Lemma 3.2.3, a trivial choice is b = M , but it may be possible to find smaller values

in terms of M and c, for example if cu = C ≥ 1 for all u ∈ U , then b = dM/Ce. If c̄ is the

optimal reduced cost computed by (3.16), then the optimal solution value can improve by

at most |c̄b|, so that the following bounds are guaranteed for the solution of zR(U):

zR(Γ) + c̄b ≤ zR(U) ≤ zR(Γ). (3.17)

Further, for the integer optimal solution of the master problem z(U), we can derive a

tighter lower bound when cu are integer for all u ∈ U , namely

dzR(Γ) + c̄be ≤ dzR(U)e ≤ z(U) ≤ ẑ, (3.18)

where ẑ is any upper bound on z(U). The upper bound ẑ can be computed by simply

rounding up any non-integer variables in the solution (ξ, µ, λ) of (3.13), or by any other

rounding that maintains feasibility for (3.13). Note that we can rewrite (3.10), whenever the

coefficients cu are rational, as an equivalent optimization problem with integer coefficients

cu.

Finally, we note that in order to compute a risk upper bound such as (1.11), we can use

59

any feasible rounding of an intermediate solution (ξ, µ, λ), with value û, as an upper bound

for z(U) and thus for the code length ming∈G L̄[y, g].

Algorithm 2 L0-RBoost

1: Input: M ×N matrix A and labels y ∈ {−1, 1}M
2: Output: (ξ, µ, λ)
3: Let Γ← {1, 2}, where h1(Ai) = 1 and h2(Ai) = −1 for all i ∈ {1, . . . ,M}, A ← ∅
4: repeat
5: Solve (3.13) and obtain the solution (ξ, µ, λ) and Lagrange multipliers (w, v, α)
6: Solve the base learning problem:

u∗ = argminu∈U cu −
∑

(i,i′)∈A:Sii′3u

vii′ −
M∑
i=1

yiHiuwi − α

c̄ = cu∗ −
∑

(i,i′)∈A:Sii′3u∗
vii′ −

M∑
i=1

yiHiu∗wi − α

7: Γ← Γ ∪ {u∗}
8: A ← A∪ {(i, i′) ∈ (Ω +×Ω−) ∪ (Ω− × Ω+) | hu∗(Ai) 6= hu∗(Ai′)}
9: Let V =

{
(i, i′)

∣∣∣ ξi + ξi′ +
∑

u∈Si,i′∩Γ µu < 1
}

10: if c̄ ≥ 0 and V 6= ∅ then
11: A ← A∪ V
12: end if
13: until c̄ ≥ 0 and V = ∅

3.4.2 The boosting algorithm

The L0-RBoost algorithm is shown as Algorithm 2. We generate columns for the primal

formulation (3.13), rather than (equivalently) generating cuts for a dual formulation as

suggested by Demiriz et al. for LP-Boost. An attractive property of the dual formulation

is the ease of finding an initial feasible solution by assigning the observations equal weights

wi = 1/M . In our case, we are interested in the integrality of the solution vectors ξ and µ,

so we prefer to work in the primal space. We initialize Γ to contain two columns that are

both “simple” and easy to compute, corresponding to the constant base classifiers: we take

Γ = {1, 2}, where h1(Ai) = 1 and h2(Ai) = −1 for all i ∈ {1, ...,M}. Next, we iterate by

solving the relaxation (3.13), and then solving a base learning problem (3.16) to find the

best pair of variables λu and µu to be added. Note that it may be beneficial in practice to

add more than a single column u in each iteration, though we did not experiment with such

60

strategies. We terminate when the dual becomes feasible, i.e., when (3.15c) is satisfied for

all u ∈ U , implying an optimal solution.

If the number of observations is not too large, we may simply solve (3.13) using all

possible cuts, that is, start with A = (Ω+ × Ω−) ∪ (Ω− × Ω+). The number of possible

cutting planes (3.12) is 2|Ω+||Ω−|, which is polynomial in M , but may be prohibitively

large for some datasets. In order to handle large input datasets, we dynamically generate

the cutting planes; for each newly added column u, we add the cutting planes (3.12) that

correspond to pairs of positive and negative observations that are distinguished by u, i.e.,

pairs in:

{
(i, i′) ∈ (Ω +×Ω−) ∪ (Ω− × Ω+) | hu(Ai) 6= hu(Ai′)

}
\ A (3.19)

These cutting planes are designed to push up the value of the newly generated variable µu

as close as possible to 1; they may otherwise be as small as λu. We also note that in order

to speed up the cut-adding step 8, we may add some subset of (3.19) instead of the entire

set. In particular, we find it useful as a heuristic, to choose the subset of cuts based on a

similarity measure of the pair of observations Ai and Ai′ associated with each cut. We will

further elaborate on this idea in Section 3.6. Finally, before terminating, we make sure to

add all remaining violated cuts in step 11 of Algorithm 2. This step prevents premature

termination, and is especially effective in increasing the value of the variables ξi for any

remaining misclassified observations. Initially, the number of misclassified observations is

large, but it drops as the algorithm progresses; delaying step 11 thus allows fewer cuts to

be generated.

3.4.3 Analysis and margin maximization with L0 relaxation penalties

Algorithm 2 solves a tighter relaxation of the (generalized) SMDH problem than the straight-

forward relaxation that minimizes the L1-norm of λ (i.e., as used by LP-Boost). Alterna-

tively, using any polynomial time algorithm to solve the LP in step 5, since the number

of cuts (3.13d) is at most |Ω+||Ω−|, the running time of Algorithm 2 can be shown to be

polynomial in the dimensions M and U , and the size of the encoding of the coefficients ρ

61

and c [50].

A disadvantage of our formulation may be that we may not know how to set the required

margin ρ. An alternative may be to try to maximize the margin within the optimization

problem. Let z(ρ) denote the optimal solution value of (3.13) with parameter ρ. The

following formulation maximizes ρ subject to a (relaxed) code length penalty proportional

to z(ρ):

max
ξ,µ,λ,ρ

{
ρ− β

(
M∑
i=1

ξi +D
U∑
u=1

µu

)
| (ξ, µ, λ) ∈ QH,y,ρ(Γ) ∩R(A,Γ)

}
(3.20)

Making ρ a variable on both the left and right-hand side of the constraint yiHiλ +

(1 + ρ)ξi ≥ ρ results in a quadratic optimization problem. Alternatively, one may fix the

coefficient 1+ρ on the left-hand side to be a large upper bounding constant such as 2 ≥ 1+ρ.

However, this results in a poorer relaxation of the integer solution. We proceed to show

that (3.20) can be solved in polynomial time in the input (when the input includes U).

Lemma 3.4.1. Suppose (ξ, µ, λ) is a feasible solution of (3.13) with ρ = ρ′ > 0. Then

there exists λ∗ ≥ 0 such that (ξ, µ, λ∗) is feasible for (3.13), with ρ = ρ′′ ≥M−(M/2+1).

Proof. Let Γ = {u ∈ U | λu > 0}. The feasibility of (ξ, µ, λ) for (3.10) implies the linear

separability of S+ = {i ∈ Ω+ | ξi = 0} and S− = {i ∈ Ω− | ξi = 0}. By Lemmas 3.2.2

and 3.2.3, there exists a λ′ ≥ 0 that separates S+ and S−, satisfies λ′u ≤ MM/2 for all

u ∈ U , and has ||λ′||0 ≤M . We then have

∑
u∈Γ

yiHiuλ
′
u +

(
U∑
u=1

λ′u + 1

)
ξi ≥ 1,

for all i ∈ {1, . . . ,M}.

Dividing by
∑

u∈U λ
′
u and substituting the variable λ∗u = λ′uP

u∈U λ
′
u

, we have
∑

u∈U λ
∗
u = 1

and ∑
u∈Γ

yiHiuλ
∗
u +

∑
u∈U λ

′
u + 1∑

u∈U λ
′
u

ξi ≥ 1/
∑
u∈U

λ′u.

62

Now, letting ρ′′ = 1/
∑

u∈U λ
′
u,

∑
u∈Γ

yiHiuλ
∗
u + (1 + ρ′′)ξi ≥ ρ′′.

where ρ′′ = 1/
∑U

u=1 λ
′
u ≥ M−(M/2+1), for all i ∈ {1, . . . ,M}. Thus, (ξ, µ, λ∗) is feasible

for (3.13), with ρ = ρ′′.

Lemma 3.4.2. The optimal solution value of (3.13), z(ρ), is a convex function of ρ.

Proof. Consider the solutions (ξ′, µ′, λ′) with ρ = ρ1 and (ξ′′, µ′′, λ′′) with ρ = ρ2 to (3.13).

Then, by adding α times the ith constraint (3.13b) of QH,y,ρ1 and (1 − α) times con-

straint (3.13b) of QH,y,ρ1 for α ∈ [0, 1],

αyiĤiλ
′ + α(1 + ρ1)ξ′i + (1− α)yiĤiλ

′′ + (1− α)(1 + ρ2)ξ′′i

= yiĤi(αλ′ + (1− α)λ′′) + (1 + αρ1 + (1− α)ρ2) ξi ≥ αρ1 + (1− α)ρ2,

and thus constraint (3.13b) is feasible for

(ξ̄, µ̄, λ̄) = (αξ′ + (1− α)ξ′′, αµ′ + (1− α)µ′′, αλ′ + (1− α)λ′′)

in (3.13) with ρ = αρ1 + (1−α)ρ2. Clearly, the constraints (3.13c), (3.13d) and (3.13e) are

also feasible for (ξ̄, µ̄, λ̄). We then have:

z (αρ1 + (1− α)ρ2) ≤
M∑
i=1

ξ̄i +
U∑
u=1

cuµ̄u

=
M∑
i=1

(
αξ′i + (1− α)ξ′′i

)
+

U∑
u=1

cu
(
αµ′u + (1− α)µ′′u

)
= αz(ρ1) + (1− α)z(ρ2)

Theorem 3.4.3. Maximizing the L1 margin subject to a relaxed L0 penalty, as specified

by (3.20), can be approximated to within a factor of 1− ε, for any ε > 0, in time polynomial

in the input size M , U , the encoding size of the coefficients c and ρ, and 1/ε.

63

Proof. By Lemma 3.4.2 the optimal solution of (3.13), z(ρ), is a convex function of ρ. Thus,

ρ− βz(ρ) is a concave function of ρ, for any β ≥ 0. By Lemma 3.4.1, it suffices to consider

ρ within the interval [1/MM/2+1, 1]. We consider approximately maximizing ρ − βz(ρ) by

binary search.

The number of evaluations needed in order to approximate the optimal margin ρ∗ within

1− ε, for any given ε > 0, is log
(

1−M−M/2−1

ε

)
. Each such evaluation can be done by solving

a linear program, which is solvable in time polynomial in M , T , and the encoding size of c

and ρ.

3.5 Application using Boolean monomial base classifiers

Now, assuming that our data A is binary, we consider a specific class of base classifiers

corresponding to Boolean monomials. Note that any given data A ∈ RM×N ′ can be bina-

rized using a number of binary attributes that is at most polynomially larger in M and N ′

than N ′ [15, 40]. To each monomial (J,C), we associate two features: a positive feature u+

and a negative feature u−; the corresponding base classifiers are hu+(J,C)(x) = mJ,C(x) and

hu−(J,C) = −mJ,C(x). Let the positive reward associated with a monomial (J,C):

f+(J,C) = w(Ω+ ∩ Cover(J,C))− w(Ω− ∩ Cover(J,C))

+
∑

(i,i′)∈((Ω+∩Cover(J,C))×(Ω−\Cover(J,C)))

vii′ ,

and the negative reward associated with (J,C):

f−(J,C) = w(Ω− ∩ Cover(J,C))− w(Ω+ ∩ Cover(J,C))

+
∑

(i,i′)∈((Ω−∩Cover(J,C))×(Ω+\Cover(J,C)))

vii′ ,

where w(S) =
∑

i∈S wi.The base learning problem is then to find (J,C) so that

f(J,C) = max
{
f+(J,C), f−(J,C)

}
− c(|J |+ |C|) (3.21)

64

is maximized, where c(k) denotes the complexity penalty of a monomial of order k. Here,

we focus on base classifiers that correspond to Boolean monomials. In Chapter 4 we elab-

orate on the formulation of agreement problems with abstaining classifiers, and extend the

algorithms for solving the new base learning (pricing) problem (3.16) in the case of Boolean

monomials. The problem of finding a monomial of arbitrary order that maximizes f(J,C)

is a generalization of the maximum monomial agreement problem [48, 27], and thus it triv-

ially follows by the restriction vii′ = 0 for all (i, i′) that the problem is NP-hard. However,

in many learning applications, it is reasonable to bound the order of the monomials by a

small constant. Clearly, if the order of monomials is bounded by a constant K, then the

monomial that maximally agrees with the data can be found in polynomial time by simple

enumeration.

The MDL/compression approach discussed in Section 3.1 suggests one way of determin-

ing c(k): the code book contains K tables, and the table for monomials of order k contains

|Uk| = 2k
(
N
k

)
entries. Based on the code length upper bound (3.2), normalizing by the

approximate logM cost of a misclassified observation, we may define the cost of a Boolean

monomial of order k = |J |+ |C| as:

c(k) =
log
(

2k
(
N
k

))
+ logK

logM
+ κ =

k + log
(
N
k

)
+ logK

logM
+ κ, (3.22)

where κ is a constant that accounts for the bits that encode the weights λ. We can ap-

proximate the additional cost associated with the term (||λ||0 + 1)/ ||λ||0 in (3.2), which is

associated with the cost of encoding λ, by choosing κ ∈ [1 + 1/M, 2].

3.6 Experimental work and discussion

We compare the classification performance of L0-RBoost (Algorithm 2) with LP-Boost with

a Boolean monomial base classifier. The formulation used in LP-Boost is the ν-LP formu-

lation (1.12), where D = 1
νM [26, 59]. The parameter ν also corresponds to an upper bound

on the fraction of margin errors, i.e., |{i | ξi > 0}| /M , as shown in Theorem 1.4.2. In our

experiments, we consider base learning problems comprising either of all Boolean monomi-

als of order k = 1, or all monomials up to order k = 5. Although the order of monomials

65

that we consider is bounded by constant, so that the maximum monomial agreement can be

solved in polynomial time, it may be too computationally intensive to enumerate all mono-

mials up to k = 5. Therefore, in order to find the monomial that best agrees with the data,

we adapted a branch-and-bound algorithm for maximum monomial agreement [28, 40]. We

further elaborate on the extension of the branch-and-bound algorithm for the new base

learning (or pricing) problem in Section 4.2.

In our implementation of Algorithm 2, we have found it more effective to add only a

subset of the cuts in step 8 of the algorithm. Experimenting with a binary matrix A we

have found that a small Hamming distance between the vectors Ai and Ai′ to be a good

indication of the potential of the corresponding cut to tighten the relaxation. Specifically,

for fast processing of the cuts, after adding a base classifier u∗, we scan in quadratic time the

pairs (i, i′) ∈ Ω+×Ω− for which hu∗(Ai) 6= hu∗(Ai′) and add only those cuts corresponding

to pairs whose Hamming distance is less than a fixed factor of the minimum Hamming

distance found so far.

That we are better able to minimize ||λ||0 than the solution of (1.12), for a given

margin of separation, is suggested by Theorem 3.3.1. The theorem implies that adding the

valid inequalities (3.12) may strengthen the “soft margin” formulations (1.13) and (1.12) as

continuous relaxations of (3.4). The LP formulation (1.12) is known to find sparse classifiers,

but is also sensitive to the choice of the tunable penalty parameter D. By assigning a small

enough penalty D (large ν) in (1.12), it is possible to find a “degenerate” classifier with

large ρ by assigning many observations to be outliers.

In our experiments with L0-RBoost, we fixed the parameters cu of formulation (3.13) to

equal the code length penalty of Boolean monomial base classifiers (3.22). The approximat-

ing constant κ in (3.22) was set to 1.5. We then investigated the dependence of L0-RBoost

and LP-Boost on the tunable parameters ρ and ν, with respect to classification performance

and sparsity.

Figures 3.1–3.5 show the algorithm’s performance on the test and training data, and

the dependence of ||λ||0 on the tunable parameters of the two algorithms. Each point of

the plots corresponds to 10 replications of 10-fold experiment. k-fold experiments involve

66

a partitioning of the dataset into 10 parts, each of which is used as a test set in an exper-

iment, while the remaining 9/10 of the data is used to train a classifier. The classification

performance results are then averaged over the total 100 experiments. We can see that for

both algorithms, the models selected tend to overfit the training data for small value of the

parameters. The overfitting is most apparent with LP-Boost and K = 5. The experiments

show that, over the entire range of parameter values, L0-RBoost generalizes well compared

with LP-Boost. We also find that L0-RBoost is robust with respect to a wide range of

choices of the parameter ρ. Specifically, even with very small values of ρ, we obtain classifi-

cation models that generalize well. In LP-Boost, the performance of the algorithm is highly

sensitive to the choice of the parameter ν. When the input data is not linearly separable by

the set of base classifiers U , for example in the case when U is the set of monomial classifiers

with K = 1, a constant base classifier with zero margin (classifying all to be in a single

class) becomes optimal. Further, the value of ν that may be considered too small varies for

the different datasets; in Figure 3.5, the performance of LP-Boost with K = 1 is poor or

mediocre for ν ≤ 0.5, while in Figure 3.3 we can see that the classification performance of

LP-Boost on the CLHEART dataset, for K = 1, peaks at ν ≈ 0.4.

Although we expect classification performance to improve with either cross-validation

or optimization of the margin subject to a code-length penalty (which could be done by

solving formulation (3.20)), we will limit our experiments to using a fixed value ρ. In

Table 3.1, we show the results of our experiment with a fixed value of ρ = 20/M for five

binarized UCI datasets [3]. We compare the performance of L0-RBoost with monomial base

classifiers, up to order K = 1 and K = 5 to LP-Boost using the same base classifiers and to

SLIPPER. We first ran these algorithms within the same 10-fold experiments of L0-RBoost

(i.e., using the same training and test sets). The table also shows a practical comparison of

our results with the previously published results of LP-Boost with C4.5 and stump decision

trees [26], and the previously published performance of the SLIPPER algorithm [20]. For

LP-Boost, Demiriz et al. fine-tuned the parameter ν for the different datasets, so that we

did not expect to match all of their classification results here. The SLIPPER algorithm uses

AdABoost with a heuristic (greedy) monomial base learner. In order to prevent overfitting,

the SLIPPER algorithm uses cross-validation to simplify, or prune some of the monomials

67

that are initially generated by the greedy algorithm. We ran the SLIPPER algorithm using

the publicly available version with all parameters set to their default values. The apparent

discrepancy in the results of the SLIPPER algorithm may be due to the binarization of the

datasets in our experiments.

In Figures 3.6–3.10 the accuracy performance on the test set is plotted versus ||λ||0.

The plots summarize the classification performance of the experiments depicted in Fig-

ures 3.1–3.5. As before, each point corresponds to an average of ten replications of a 10-fold

experiment. L0-RBoost seems to keep ||λ||0 within a smaller interval, which should be ex-

pected given that the cost coefficients cu are fixed in all of the experiments. However, it also

becomes apparent that the classifiers computed by L0-RBoost, with only a few exceptions,

are more accurate than those of LP-Boost for every value of ||λ||0.

In the runs of L0-RBoost, for which the results are shown in Table 3.1, we set the penalty

constant κ = 1.5 in (3.22). The LP-Boost results are computed with a parameter ν = 0.50

for K = 5, and ν = 0.56 for K = 1. The parameters for LP-Boost were chosen so that

the resulting classifiers were quite sparse, while achieving good classification performance

on the Sonar and CLHEART datasets. The computational runs of Table 3.1 consist of 20

replications of a 10-fold experiment. We can see from the results of Table 3.1 that L0-RBoost

finds classifiers that are approximately as sparse as the classifiers found by LP-Boost, but

usually achieve superior classification performance. Both algorithms seem to outperform

SLIPPER. Some of the shortfalls of L0-RBoost in fact occur with the less restricted class

of monomials when K = 5, suggesting that overfitting may be occurring in some cases.

The concern of overfitting may motivate us to evaluate other types of penalty functions in

place of (3.22) and different values of the penalty constant in future work. Particularly,

complexity measures that can be computed based on the input data, such as Rademacher

complexity [7] could be the subject of further investigation.

68

Method Datasets

BCW VOTE CLVHEART HUHEART SONAR
Acc ||λ||0 Acc ||λ||0 Acc ||λ||0 Acc ||λ||0 Acc ||λ||0

L0RBoost K = 1 0.963 9.1 0.950 6.0 0.846 10.3 0.812 10.4 0.712 7.2
L0RBoost K = 5 0.950 9.4 0.960 3.0 0.833 38.9 0.807 27.4 0.725 21.3
LPBoost K = 1 0.925 3.8 0.957 2 0.774 7.6 0.803 3.8 0.735 8.6
LPBoost K = 5 0.937 5.5 0.957 2.1 0.810 25.3 0.797 11.2 0.734 30.8
SLIPPER 0.959 19.5 0.952 3.9 0.802 14 0.802 14.7 0.674 18.8
SLIPPER [20] 0.958 NA NA NA 0.752 NA 0.806 NA 0.745 NA
LPBoost stumps [26] 0.966 NA NA NA 0.795 70.8 NA NA 0.870 85.7
LPBoost C4.5 [26] 0.959 NA 0.959 NA 0.791 NA NA NA 0.817 NA

Table 3.1: Average accuracy and ||λ||0 for 20 replications of 10 folds each. The bottom
three rows are as reported for SLIPPER [20] and LP-Boost [26]. A value of NA indicates
that the data is unavailable from the corresponding publications.

69

0 0.1 0.2 0.3 0.4 0.5
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ρ

A
cc

ur
ac

y

K=1, test
K=1, train
K=5, test
K=5, train

(a) L0-RBoost accuracy vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

ρ

||λ
|| 0

K=1
K=5

(b) L0-RBoost sparsity vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ρ

A
cc

ur
ac

y

K=1, test
K=1, train
K=5, test
K=5, train

(c) LP-Boost accuracy vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

ρ

||λ
|| 0

K=1
K=5

(d) LP-Boost sparsity vs. margin

0 0.2 0.4 0.6 0.8 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ν

A
cc

ur
ac

y

(e) LP-Boost accuracy vs. ν

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ν

||λ
|| 0

(f) LP-Boost sparsity vs. ν

Figure 3.1: The classification performance and sparsity of LP-Boost versus L0-RBoost with
monomial base classifiers for the BCW dataset. Each point of the plot is computed by a
averaging the accuracies of a 10-replication, 10-fold experiment.

70

0 0.1 0.2 0.3 0.4 0.5 0.6
0.75

0.8

0.85

0.9

0.95

1

ρ

A
cc

ur
ac

y

K=1, test
K=1, train
K=5, test
K=5, train

(a) L0-RBoost accuracy vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

ρ

||λ
|| 0

K=1
K=5

(b) L0-RBoost sparsity vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.75

0.8

0.85

0.9

0.95

1

ρ

A
cc

ur
ac

y

K=1, test
K=1, train
K=5, test
K=5, train

(c) LP-Boost accuracy vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

ρ

||λ
|| 0

K=1
K=5

(d) LP-Boost sparsity vs. margin

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

ν

A
cc

ur
ac

y

(e) LP-Boost accuracy vs. ν

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ν

||λ
|| 0

(f) LP-Boost sparsity vs. ν

Figure 3.2: The classification performance and sparsity of LP-Boost versus L0-RBoost with
monomial base classifiers for the VOTE dataset. Each point of the plot is computed by a
averaging the accuracies of a 10-replication, 10-fold experiment.

71

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ρ

A
cc

ur
ac

y

K=1, test
K=1, train
K=5, test
K=5, train

(a) L0-RBoost accuracy vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

80

100

120

ρ

||λ
|| 0

K=1
K=5

(b) L0-RBoost sparsity vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ρ

A
cc

ur
ac

y

K=1, test
K=1, train
K=5, test
K=5, train

(c) LP-Boost accuracy vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

80

100

120

ρ

||λ
|| 0

K=1
K=5

(d) LP-Boost sparsity vs. margin

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ν

A
cc

ur
ac

y

(e) LP-Boost accuracy vs. ν

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

ν

||λ
|| 0

(f) LP-Boost sparsity vs. ν

Figure 3.3: The classification performance and sparsity of LP-Boost versus L0-RBoost with
monomial base classifiers for the CLVHEART dataset. Each point of the plot is computed
by a averaging the accuracies of a 10-replication, 10-fold experiment.

72

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ρ

A
cc

ur
ac

y

K=1, test
K=1, train
K=5, test
K=5, train

(a) L0-RBoost accuracy vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

120

ρ

||λ
|| 0

K=1
K=5

(b) L0-RBoost sparsity vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ρ

A
cc

ur
ac

y

K=1, test
K=1, train
K=5, test
K=5, train

(c) LP-Boost accuracy vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

120

ρ

||λ
|| 0

K=1
K=5

(d) LP-Boost sparsity vs. margin

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ν

A
cc

ur
ac

y

(e) LP-Boost accuracy vs. ν

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

ν

||λ
|| 0

(f) LP-Boost sparsity vs. ν

Figure 3.4: The classification performance and sparsity of LP-Boost versus L0-RBoost with
monomial base classifiers for the HUHEART dataset. Each point of the plot is computed
by a averaging the accuracies of a 10-replication, 10-fold experiment.

73

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ρ

A
cc

ur
ac

y

K=1, test
K=1, train
K=5, test
K=5, train

(a) L0-RBoost accuracy vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

ρ

||λ
|| 0

K=1
K=5

(b) L0-RBoost sparsity vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ρ

A
cc

ur
ac

y

K=1, test
K=1, train
K=5, test
K=5, train

(c) LP-Boost accuracy vs. margin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

ρ

||λ
|| 0

K=1
K=5

(d) LP-Boost sparsity vs. margin

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ν

A
cc

ur
ac

y

(e) LP-Boost accuracy vs. ν

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

ν

||λ
|| 0

(f) LP-Boost sparsity vs ν

Figure 3.5: The classification performance and sparsity of LP-Boost versus L0-RBoost with
monomial base classifiers up to order K = 1 and K = 5 for the SONAR dataset. Each point
of the plot is computed by averaging the accuracies of a 10-replication, 10-fold experiment.

74

0 5 10 15 20 25 30

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

||λ||
0

A
cc

ur
ac

y

L
0
−RBoost

LP−Boost

(a) K = 1

0 5 10 15 20 25 30 35
0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

||λ||
0

A
cc

ur
ac

y

L
0
−RBoost

LP−Boost

(b) K = 5

Figure 3.6: Test accuracy vs. ||λ||0 on the BCW dataset

0 5 10 15 20 25

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

||λ||
0

A
cc

ur
ac

y

(a) K = 1

0 5 10 15 20

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

||λ||
0

A
cc

ur
ac

y

L
0
−RBoost

LP−Boost

(b) K = 5

Figure 3.7: Test accuracy vs. ||λ||0 on the VOTE dataset

0 5 10 15 20 25 30

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

||λ||
0

A
cc

ur
ac

y

L
0
−RBoost

LP−Boost

(a) K = 1

0 10 20 30 40 50 60

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

||λ||
0

A
cc

ur
ac

y

L
0
−RBoost

LP−Boost

(b) K = 5

Figure 3.8: Test accuracy vs. ||λ||0 on the CLVHEART dataset

75

0 5 10 15 20 25 30

0.5

0.55

0.6

0.65

0.7

0.75

0.8

||λ||
0

A
cc

ur
ac

y

L
0
−RBoost

LP−Boost

(a) K = 1

0 5 10 15 20 25 30 35 40 45
0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

||λ||
0

A
cc

ur
ac

y

L
0
−RBoost

LP−Boost

(b) K = 5

Figure 3.9: Test accuracy vs. ||λ||0 on the HUHEART dataset

0 5 10 15 20 25

0.5

0.55

0.6

0.65

0.7

0.75

||λ||
0

A
cc

ur
ac

y

L
0
−RBoost

LP−Boost

(a) K = 1

0 5 10 15 20 25 30 35 40

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

||λ||
0

A
cc

ur
ac

y

L
0
−RBoost

LP−Boost

(b) K = 5

Figure 3.10: Test accuracy vs. ||λ||0 on the SONAR dataset

76

Chapter 4

Generalized agreement problems

Agreement problems involve finding the hypothesis, or base classifier, that best agrees with

the data, in a set of available base classifiers. The base learning, or pricing, problem

of the linear programming formulation (1.13) motivates the well known maximum agree-

ment problem. The tightening of the linear programming formulation (1.13), using cutting

planes (3.12), results in the new base learning problem (3.16). This chapter briefly explores

this new base learning problem.

4.1 Formulation of the problem with abstaining base classifiers

To further illustrate the new base learning problem (3.16) with abstaining base classifiers,

we can define it as a graph theoretic problem in a directed bipartite graph. We maintain

the assumption that our base classifiers abstain; for all u ∈ U that either hu(x) ∈ {0, 1} or

hu(x) ∈ {−1, 0}. Such abstaining classifiers are used to identically classify a (perhaps small)

subset I ⊆ {1, . . . ,M} as either positive with hu(Ai) = 1 for all i ∈ I, or negative with

hu(Ai) = −1 for all i ∈ I, and abstain otherwise with hu(Ai) = 0 for all i ∈ {1, . . . ,M} \ I.

Our use of abstaining base classifiers is without loss of generality because (U being at most

twice as large) for any non-abstaining hu : RN → {−1, 0, 1} there exist hu+ : RN → {0, 1}

and hu− : RN → {0,−1} such that hu = hu+ + hu− . We further assume that for each

u+ ∈ U there is a corresponding negative base classifier u− ∈ U such that hu− = −hu+ .

We can now formulate the problem using some predefined set system E ⊆ 2{1,...,M},

where each set S ∈ E corresponds to the support of hu for some u ∈ U , i.e.,

E = {I ⊆ {1, . . . ,M} | ∃u ∈ U such that i ∈ I ⇔ hu(Ai) 6= 0} .

77

We also define a directed bipartite graph G = (Ω+,Ω−,A) with “positive” vertices Ω+ and

“negative” vertices Ω−. Each arc (i, i′) has a nonnegative weight v(i, i′) ≥ 0 corresponding

to some reward for correctly classifying i, and distinguishing it from i′. In our application,

the directed arcs (i, i′) ∈ A correspond to constraints of the form (3.13d) of the LP (3.13),

and typically the weights v(i, i′) will be determined by the dual variables corresponding to

these constraints. Distinguishing between a pair (i, i′) implies selecting a set S ∈ E such

that S is an (i, i′)-cut in G, i.e., i ∈ S but i′ /∈ S. The nonnegative weight w̄(i) ≥ 0, which

is assigned to a vertex i, implies a reward yihu(S)(Ai)w̄(i) (or penalty depending on the sign

of yihu(S)(Ai)) for each S such that S 3 i.

The net gain for assigning S to be positive is

f+(S)w̄,v = w̄(Ω+ ∩ S)− w̄(Ω− ∩ S) + v
((

Ω+ ∩ S
)
×
(
Ω− \ S

))
,

and the net gain for assigning S to be negative:

f−w̄,v(S) = w̄(Ω− ∩ S)− w̄(Ω+ ∩ S) + v
((

Ω− ∩ S
)
×
(
Ω+ \ S

))
.

We are free to assign S to be either a positive base classifier or a negative one; specifically,

if

f+
w,v(S) ≥ f−w,v(S),

we assign S to be positive (by associating it with u+), and otherwise we assign S to be

negative (by associating it with u−. Thus, the base learning problem is to find a set S ∈ E

such that

fw,v(S) = max
{
f+
w,v(S), f−w,v(S)

}
− c(S) (4.1)

is maximized, where c(S) is the cost of set S ∈ E .

When |E| is polynomial in M , then it trivially follows that maxS∈E fG,w,v(S) can be

solved in polynomial time in M . In the general case, however, it is unsurprising that the

problem is NP-hard. This is confirmed in Section 3.5 in the special case where the sets

in E correspond to monomials, and finding S that maximizes (4.1) solves the maximum

monomial agreement problem.

78

On the other hand, for some of the simple base classifiers considered in the literature,

such as monomials of fixed degree, or decision trees of a single test (also known as “deci-

sion stumps”) [35], maximization of (4.1) can be performed in polynomial time by simple

enumeration. We now consider the case where U corresponds to abstaining monomials, and

extend the branch-and-bound algorithm of Chapter 2 to solve this pricing problem. We

used this algorithm in the experiments of Section 3.6.

4.2 Extending the Maximum Monomial Agreement algorithm

We extend Algorithm 1 to solve the pricing problem (3.16) on the space of Boolean mono-

mials, which corresponds to finding a monomial (J,C) that maximizes the objective (3.21).

We will use the same subproblem definition as Algorithm 1, of a partition of the variable

indices into the 4-tuple (J,C,E, F).

First, we note that a simple solution to extending Algorithm 1 in order to apply it to

the new pricing problem can be obtained by fixing the class of the monomial and defining

the weight w(·) such that

w(i) =


w̄(i) +

∑
i′∈Ω− v(i, i′) i ∈ Ω+

w̄(i) i ∈ Ω−.
,

If restricting the class of S to be positive, the upper bound (2.7) can now be written as

b+(J,C,E) =
q(E)∑
η=1

(
w+
η (J,C,E)− w−η (J,C,E)

)
+
. (4.2)

When S is negative, we similarly define

b−(J,C,E) =
q(E)∑
η=1

(
w+
η (J,C,E)− w−η (J,C,E)

)
+
. (4.3)

If we consider only the case of positive S, we can now solve (3.21), using the upper bound

b+(J,C,E)− c(|J |+ |C|)

79

for subproblem (J,C,E, F), given that c(k) is monotonically increasing in k; for any

(J ′, C ′) ∈ P (J,C,E) : |J ′| + |C ′| ≥ |J | + |C| and therefore c(|J ′| + |C ′|) ≥ c(|J | + |C|).

Thus, by simply adding the inequality b+(J,C,E) ≥ w+(J ′, C ′)− w−(J ′, C ′), we obtain

b+(J,C,E)− c(|J |+ |C|) ≥ w+(J ′, C ′)− w−(J ′, C ′) + c(
∣∣J ′∣∣+

∣∣C ′∣∣),
which proves property 2.4 and the validity of this bound. We solve a separate, similar

problem for negative S, and choose the solution which obtains the maximum value.

However, in order to avoid having to solve the problem twice it is possible to explicitly

extend the upper bound (2.7) for the new pricing problem. The resulting upper bound on

the objective value of any subproblem (J ′, C ′) ∈ P (J,C,E) is

b̄(J,C,E) = max
{
b+(J,C,E), b−(J,C,E)

}
− c(|J |+ |C|)

= max


∑q(E)

η=1

(∑
i∈V +

η
wi −

∑
i∈V −η wi +

∑
i∈V +

η ,

i′∈Ω−

vii′

)
+

,

∑q(E)
η=1

(∑
i∈V −η wi −

∑
i∈V +

η
wi +

∑
i∈V −η ,
i′∈Ω+

vii′

)
+

− c(|J |+ |C|).
(4.4)

We now consider tightening of this upper bound. As before, a choice of variables E

to exclude from a monomial defines a partition of the set of observations into subsets of

inseparable observations: V E
1 , V E

2 , ..., V E
q ⊆ Ω+ ∪ Ω−. For simplicity of notation, we omit

the set E when it is clear in the context, so that Vη = V E
η . For brevity, we also let

CJ,C = Cover(J,C) and C+
J,C = Cover(J,C)∩Ω+. We also let V +

η = Ω+∩Vη. Furthermore,

the sets C−J,C and V −η are similarly defined. We can tighten the bound (4.4) by observing that

for any (J ′, C ′) ∈ P (J,C,E), and any η ∈ {1, . . . , q(E)}, if Vη∩CJ ′,C′ 6= ∅ then Vη ⊆ CJ ′,C′ .

Thus, for (i, i′) ∈ V +
η × V −η , we may subtract v(i, i′) from each term corresponding to the

positive case of (4.4), and similarly for each (i, i′) ∈ V −η ×V +
η and each term corresponding

to the negative case.

80

The tightened upper bound can then be stated as

b(J,C,E) =


∑q(E)

η=1

(
w̄(V +

η)− w̄(V −η) + v(V +
η × Ω−)− v(V +

η × V −η)
)

+∑q(E)
η=1

(
w̄(V −η)− w̄(V +

η) + v(V −η × Ω+)− v(V −η × \V +
η)
)

+

− c(|J |+ |C|)
= max


q(E)∑
η=1

(
f+
w̄,v(Vη)

)
+
,

q(E)∑
η=1

(
f−w̄,v(Vη)

)
+

− c(|J |+ |C|). (4.5)

In our computational experiments, we have used the branching scheme described in

Chapter 2 branching on k = |F | variables, with the new upper bound (4.5). The branching

scheme with k = |F | is both easy to implement and effective when applying a bound on the

degree of a monomial, that is, |J | + |C| ≤ K for some K ∈ {1, . . . , N}. In particular we

found the algorithm very fast in the experiments of Section (3.6) when K = 5. In this case,

with K = 5, although the problem can be solved in O(N5), and thus, polynomial time, the

problem can be computationally intensive with simple enumeration. Moreover, in limited

computational experiment without degree constraints, we have not observed any significant

increase in the CPU time or branch-and-bound search nodes for the subproblem, compared

with the basic subproblem solved by Algorithm 1. In fact, we often find that the increase in

CPU time is insignificant compared with the increase in CPU time for the procedure which

adds a set of cuts to the master problem.

81

Chapter 5

Conclusions and possible future work

In this dissertation, we first addressed the base learning problem for an important class

of base classifiers, of Boolean monomials. We improved on a previous branch-and-bound

algorithm [40] for finding a monomial that best agrees with a given set of binary data

by making use of a tighter combinatorial upper bound for a subproblem’s objective value.

We also devised a dynamic branching scheme which makes use of information in the input

dataset in order to choose variables to branch on. Although solving a hard combinatorial

optimization problem, we showed that our branch-and-bound algorithms were able to solve

small as well as medium size instances of the UCI repository [3].

We then proposed a straightforward extension of the well known discrete MDH problem.

The discrete SMDH problem explicitly minimizes the sum of classification error and a

penalty that is a linear function of the features selected to be used (or more precisely, linear

in the indicator variables µu, which each indicate whether a feature u is used). We then

offered a new interpretation of common “soft margin” LP formulations for finding weighted

voting classifiers, as the continuous relaxations of the SMDH problem.

We introduced sparsity cutting planes for tightening the well known “soft margin” LP

relaxation of SMDH. The number of all possible cutting planes of this type is |Ω+| |Ω−|.

We demonstrated the effectiveness of our cutting planes for finding sparse separating hy-

perplanes in practice.

However, the sparsity cutting planes which we propose may not be sufficient to obtain an

integer solution. Further strengthening of the cuts may be possible by using and extending

techniques suggested for the set cover problem [4, 22] and recently for the related maximum

feasible subset problem [56]. In current practical solution techniques, cutting planes alone

are not sufficiently effective in finding integer solutions. Therefore, cutting methods are

82

usually combined with a branching scheme to obtain an integer solution. In our application

with small instances it may be straightforward to directly branch on the variables ξ and µ.

However, we are also interested in instances where dimension of µ can be very large. In this

case, we may be interested in implementing a branch-and-price approach [5] for generating

the base classifiers and the corresponding nonzero variables λ and µ. Branch-and-price

involves sophisticated branching schemes for preventing the regeneration of a column by

column generation after branching sets a variable to zero; in our case, such a branching

scheme would have to be devised in order to indirectly branch on the µ variables.

We proved the correctness of the MIP formulation that we suggested for SMDH with H ∈

{−1, 0, 1}M×U . The correctness proof depends on an upper bound which we have derived

for a component of the optimal solution hyperplane normal vector λ, and the assumption of

H ∈ {−1, 0, 1}M×U . It is interesting to try to derive such an upper bound with real valued

entries, or H ∈ [−1, 1]M×U .

We have derived inapproximability results for SMDH by reduction of the MDH problem

while making use of an upper bound on the penalty term. While computational complexity

has not been the focus of this dissertation, it was instrumental in motivating the solution of

the SMDH relaxation. It is interesting to investigate whether our inapproximability results

can be improved. Also, it would be interesting to investigate the computational complexity

of SMDH with other values of the penalty parameter, such as C ∈ O(logM). It might also

be interesting to research approximation algorithms for SMDH.

Finally, we considered predetermined complexity penalties for the case of Boolean mono-

mials, which we derived from the length of a code that we proposed for encoding the

base classifiers in this case. We could look into different type of codes for deriving the

penalty parameters c, or just experiment and select the penalties from some interval via

cross-validation. It would be interesting to experiment with other measures of information

complexity that make use of the given data to compute the penalties such as Rademacher

complexity [7]. The latter, when computed empirically, may apply more generally to differ-

ent classes of base classifiers.

83

References

[1] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to binary:
a unifying approach for margin classifiers. Journal of Machine Learning Research,
1:113–141, 2001.

[2] Sanjeev Arora, László Babai, Jaques Stern, and Z. Sweedyk. The hardness of approx-
imate optima in lattices, codes, and systems of linear equations. Journal of Computer
and Systems Sciences, 54:317–331, 1997.

[3] Arthur Asuncion and David J. Newman. UCI machine learning repository, 2007.

[4] Egon Balas and Shu Ming NG. On the set covering polytope: I. all the facets with
coefficients in {0, 1, 2}. Mathematical Programming, 43(1-3):57–69, 1989.

[5] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savelsbergh,
and Pamela H. Vance. Branch-and-price: Column generation for solving huge integer
programs. Operations Research, 46:316–329, 1998.

[6] Peter L. Bartlett. The sample complexity of pattern classification with neural net-
works: the size of the weights is more important than the size of the network. IEEE
Transactions on Information Theory, 44(2):526–536, 1998.

[7] Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: risk
bounds and structural results. Journal of Machine Learning Research, 3:463–482, 2002.

[8] Eric B. Baum and David Haussler. What size net gives valid generalization? Neural
Computation, 1(1):151–160, 1989.

[9] Shai Ben-David, Nadav Eiron, and Philip M. Long. On the difficulty of maximizing
agreements. Journal of Computer and Systems Sciences, 66(3):496–514, 2003.

[10] Kristin P. Bennett and Erin J. Bredensteiner. A parametric optimization method for
machine learning. INFORMS Journal of Computing, 9(3):311–318, 1997.

[11] Kristin P. Bennett and Erin J. Bredensteiner. Duality and geometry in SVM classifers.
Proceedings of the 17th International Conference on Machine Learning, pages 57–64,
2000.

[12] Kristin P. Bennett and Olvi L. Mangasarian. Robust linear programming discrimi-
nation of two linearly inseparable sets. Optimization Methods and Software, 1:23–34,
1992.

[13] Avrim Blum and John Langford. PAC-MDL bounds. In COLT, pages 344–357, 2003.

84

[14] Koen M. J. De Bontridder, B. J. Lageweg, Jan K. Lenstra, James B. Orlin, and Leen
Stougie. Branch-and-bound algorithms for the test cover problem. In ESA ’02: Pro-
ceedings of the 10th Annual European Symposium on Algorithms, pages 223–233, Lon-
don, UK, 2002. Springer-Verlag.

[15] Endre Boros, Peter L. Hammer, Toshihide Ibaraki, and Alexander Kogan. Logical
analysis of numerical data. Mathematical Programming, 79:163–190, 1997.

[16] Endre Boros, Peter L. Hammer, Toshihide Ibaraki, Alexander Kogan, Eddy Mayoraz,
and Ilya Muchnik. An implementation of logical analysis of data. IEEE Transactions
on Knowledge and Data Engineering, 12(2):292–306, 2000.

[17] Joel Brenner. The Hadamard maximum determinant problem. The American Mathe-
matical Monthly, 79(6):626–630, 1972.

[18] Alfred M. Bruckstein, David L. Donoho, and Michael Elad. From sparse solutions of
systems of equations to sparse modeling of signals and images. SIAM Review, 51(1):34–
81, 2009.

[19] N.H. Bshouty and L. Burroughs. Maximizing agreements and coagnostic learning.
Theoretical Computer Science, 350(1):24–39, 2006.

[20] William W. Cohen and Yoram Singer. A simple, fast, and effective rule learner. In
In Proceedings of the Sixteenth National Conference on Artificial Intelligence, pages
335–342, 1999.

[21] Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression and Ad-
aBoost and Bregman distances. Machine Learning, 48:253–285, 2002.

[22] Gérard Cornuéjols and Antonio Sassano. On the 0, 1 facets of the set covering polytope.
Mathematical Programming: Series A and B, 43(1):44–55, 1989.

[23] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20:273–297, 1995.

[24] David R. Cox and E.J. Snell. Analysis of binary data. CRC Press, 1989.

[25] Yves Crama, Peter L. Hammer, and Toshihide Ibaraki. Cause-effect relationships and
paritally defined Boolean functions;. Annals of Operations Research, 16:299–326, 1988.

[26] Ayhan Demiriz, Kristin P. Bennett, and John Shawe-Taylor. Linear programming
boosting via column generation. Machine Learning, 46:225–254, 2002.

[27] David P. Dobkin, Dimitrios Gunopulos, and Wolfgang Maass. Computing the max-
imum bichromatic discrepancy, with applications to computer graphics and machine
learning. Journal of Computer and Systems Sciences, 52(3):453–470, 1996.

[28] Jonathan Eckstein and Noam Goldberg. An improved branch-and-bound method for
maximum monomial agreement. In OPT 2008 Optimization for Machine Learning,
NIPS 2008 Workshop, 2008.

[29] Jonathan Eckstein, Peter L. Hammer, Ying Liu, Mikhail Nediak, and Bruno Sime-
one. The maximum box problem and its application to data analysis. Computational
Optimization and Applications, 23(3):285–298, 2002.

85

[30] Jonathan Eckstein, Cynthia A. Phillips, and William E. Hart. PEBBL 1.0 user guide.
RUTCOR Research Report RRR 19-2006, RUTCOR, Rutgers University, 2006.

[31] Ran El-Yaniv, Dmitry Pechyony, and Elad Yom-Tov. Better multiclass classification
via a margin-optimized single binary problem. Pattern Recognition Letters, 29:1954–
1959, 2008.

[32] Theodoros Evgeniou, Tomas Poggio, Massimiliano Pontil, and Alessandro Verri. Reg-
ularization and statistical learning theory for data analysis. Computantional Statistics
and Data Analysis, 38:421–432, 2002.

[33] Vitaly Feldman. Optimal hardness results for maximizing agreements with monomials.
In Proceedings of the Annual IEEE Conference on Computational Complexity, pages
226–236, 2006.

[34] Yoav Freund. Boosting a weak learning algorithm by majority. Information and Com-
putation, 121(2):256–285, 1995.

[35] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In
In Machine Learning: Proceedings of the Thirteenth International Conference, pages
148–156, 1996.

[36] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and Systems Sciences,
55(1):119–139, 1997.

[37] Jerome H. Friedman. Fast sparse regression and classification. Technical report, Stan-
ford University, 2008.

[38] Jerome H. Friedman and Bogdan E. Popescu. Predictive learning via rule ensembles.
Annals of Applied Statistics, 2(3):916–954, 2008.

[39] Paul C. Gilmore and Ralph E. Gomory. A linear programming approach to the cutting-
stock problem. Operations Research, 9(6):849–859, 1961.

[40] Noam Goldberg and Chung-chieh Shan. Boosting optimal logical patterns. In Pro-
ceedings of the Seventh SIAM International Conference on Data Mining, 2007.

[41] Thore Graepel, Ralf Herbrich, Bernhard Schölkopf, Alex Smola, Peter Bartlett, Klaus-
Robert Müller, Klaus Obermayer, and Robert Williamson. Classification on proximity
data with lp-machines. International Conference of Artificial Neural Networks, pages
304–309, 1999.

[42] Peter D. Grünwald. The minimum description length principle. MIT Press, 2007.

[43] David Heath. A geometric framework for machine learning. PhD thesis, Johns Hopkins
University, 1992.

[44] Klaus-Uwe Höffgen, Hans U. Simon, and Kevin S. Van Horn. Robust trainability of
single neurons. Journal of Computer and Systems Sciences, 50:114–125, 1995.

[45] Michael Kearns and Ming Li. Learning in the presence of malicious errors. SIAM
Journal on Computing, 22(4):807–837, 1993.

86

[46] Michael Kearns and Leslie G. Valiant. Learning Boolean formulae or finite automata
is as hard as factoring. Technical Report TR-14-88, Harvard University Aiken Com-
putation Laboratory, August 1988.

[47] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning boolean
formulae and finite automata. Journal of the ACM, 41(1):67–95, January 1994.

[48] Michael J. Kearns, Robert E. Schapire, and Linda M. Sellie. Toward efficient agnostic
learning. Machine Learning, 17(2-3):115–141, 1994.

[49] Subhash Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph and bi-
partite clique. SIAM Journal on Computing, 36(4):1025–1071, 2006.

[50] Bernhard Korte and Jens Vygen. Combinatorial Optimization. Springer-Verlag, 2002.

[51] Marco E. Lübbecke and Jacques Desrosiers. Selected topics in column generation.
Operations Research, 53(6):1007–1023, 2005.

[52] Olvi L. Mangasarian. Linear and nonlinear separation of patterns by linear program-
ming. Operations Research, 13(3):444–452, 1965.

[53] Olvi L. Mangasarian. Misclassification minimization. Journal of Global Optimization,
5:309–323, 1994.

[54] Ron Meir and Gunnar Rätsch. An introduction to boosting and leveraging. Advanced
Lectures on Machine Learning, pages 118–183, 2003.

[55] Balas K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal
on Computing, 24:227–234, 1995.

[56] Marc E. Pfetch. Branch-and-cut for the maximum feasible subsystem problem. SIAM
Journal on Optimization, 19:21–38, 2008.

[57] Leonard Pitt and Leslie Valiant. Computational limitations on learning from examples.
Journal of the ACM, 35(4):965–984, 1988.

[58] Gunnar Rätsch, T. Onoda, and K . R. Müller. Soft margins for adaboost. Machine
Learning, 42:287–320, 2001.

[59] Gunnar Rätsch, Bernhard Schölkopf, Alex J. Smola, Sebastian Mika, Takashi Onoda,
and Klaus-Robert Müller. Robust ensemble learning. In Alex J. Smola, Peter J.
Bartlett, Bernhard Schölkopf, and Dale Schuurmans, editors, Advances in Large Margin
Classifiers, pages 207–219. MIT Press, Cambridge, MA, 2000.

[60] Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a maxi-
mum margin classifier. Journal of Machine Learning Research, 5:941–973, 2004.

[61] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(5):197–
227, 1990.

[62] Robert E. Schapire. The boosting approach to machine learning: an overview. Springer
Verlag, 2003.

87

[63] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the
margin: a new explanation for the effectiveness of voting methods. The Annals of
Statistics, 26:1651–1686, 1998.

[64] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-
rate predictions. Machine Learning, 37:297–336, 1999.

[65] Bernhard Schölkopf, Alex J. Smola, Robert C. Williamson, and Peter L. Bartlett. New
support vector algorithms. Neural Computation, 12:1207–1245, 2000.

[66] Bernhard Schölkopf and Alexander J. Smola. Learning with kernels: support vector
machines, regularization, optimization, and beyond. The MIT Press, 2002.

[67] Rocco A. Servedio. Smooth boosting and learning with malicious noise. Journal of
Machine Learning Research, 4:633–648, 2003.

[68] John Shawe-taylor, Peter L. Bartlett, Robert C. Williamson, and Martin Anthony.
Structural risk minimization over data-dependent hierarchies. IEEE transactions on
Information Theory, 44:1926–1940, 1998.

[69] Vladimir N. Vapnik. Statistical learning theory. John Wiley and Sons, 1998.

[70] Vijay V. Vazirani. Approximation algorithms. Springer Verlag, 2003.

[71] Ulrike von Luxburg, Olivier Bousquet, and Bernhard Schölkopf. A compression ap-
proach to support vector model selection. Journal of Machine Learning Research,
5:293–323, 2004.

[72] Wotao Yin and Yin Zhang. Extracting salient features from less data via `1-
minimization. SIAG/OPT Views-and-News, 19:11–19, 2008.

[73] Tong Zhang and Bin Yu. Boosting with early stopping: convergence and consistency.
Annals of Statistics, 33(4):1538–1579, 2005.

88

Vita

Education

• PhD, Rutgers Center for Operations Research (RUTCOR), Rutgers University, New
Brunswick, NJ, 2010

• Master of Science, Leon Recanati School of Business, Tel Aviv University, Tel Aviv,
Israel, 2004

– Decisions and Operations Research

• Bachelor of Science, University of Toronto, Toronto, Ontario, Canada, 1998

– Computer Science major

– Graduated with High Distinction

• Bachelor of Business Administration, Schulich School of Business, York University,
Toronto, Ontario, Canada, 1996

Work experience

• Co-op/ part-time position, Telcordia Applied Research, Piscataway, NJ, December
2008 - August 2009

– Researched algorithms for assignment of link weights for congestion avoidance in
shortest path routing.

– Researched optimization formulations for the joint routing and channel assign-
ment problem in wireless networks.

• Intern, Sandia National Lab, Livermore, CA, Summer 2008

– Mentors: Dr. Tamara G. Kolda and Dr. Ann Yoshimura

– Researched global derivative free optimization methods and specifically extend-
ing the DIRECT algorithm for using external trial points.

• Graduate Research Assistant, Rutgers University, New Brunswick, NJ, 2007-2008

– Mentors: Prof. Paul Kantor and Prof. Endre Boros

– NSF funded project, “Deceptive Detection Strategies for Container Inspection”.

– Duties included basic research and implementation of optimization algorithms.

• Teaching Assistant, Rutgers University, New Brunswick, NJ, 2004-2007

– Taught recitations and graded courses in Precalculus, Calculus II and Theory of
Linear Optimization.

89

• Summer Research Project, Prof. Peter Hammer, RUTCOR (NSF and NIH funded
project). August 2005.

– Implemented a local search and simulated annealing algorithm for fine tuning
Logical Analysis of Data (LAD) parameters through cross-validation.

Publications

• Noam Goldberg and Chung-chieh Shan, Boosting Optimal Logical Patterns Using
Noisy Data, Proceedings of the SIAM International Conference on Data Mining, 2007.

• Noam Goldberg, Tamara G. Kolda and Ann Yoshimura, Concurrent Optimization
with DUET: DIRECT Using External Trial Points, Sandia National Labs, Technical
Report #SAND2008-5844.

• Noam Goldberg, Jonathan Word, Endre Boros and Paul Kantor, Optimal Sequential
Inspection Policies, RUTCOR Research Report (RRR) #14-2008, also to appear in
Annals of Operations Research.

• Jonathan Eckstein and Noam Goldberg, An Improved Branch-and-Bound Method for
Maximum Monomial Agreement, RUTCOR Research Report (RRR) #14-2009, also
presented at NIPS Workshop in Optimization for Machine Learning, Whistler BC,
Canada, 2008.

Non academic work experience

• Operations Research Intern, Health Products Research, Strategic Planning Depart-
ment, Whitehouse, NJ, Summer 2005.

• System Engineer, ECI Telecom, Petach Tikva, Israel, 2000-2004

• Software Engineer, ECI Telecom, Petach Tikva, Israel, 1998-2000

	Abstract
	Acknowledgements
	Dedication
	Introduction
	Weighted voting classification
	Sparse models
	Risk minimization and risk bounds
	Robust linear programming formulations for classification and LP-Boost
	The base learning and maximum agreement problems - the basic formulation and brief survey of literature

	Maximum Monomial Agreement
	Problem Statement and Introduction
	Branch and bound
	The upper bound function
	The branching procedure

	Experimental study

	Tightened L0 relaxation for classification
	Statistical learning theory justifications for sparsity and minimizing code length
	The sparse minimum disagreement hyperplane problem - a hard problem
	Problem formulation
	Computational complexity

	Relaxing the hard problem and strengthening the relaxation
	L0-Relaxed Boosting: a boosting formulation with relaxed L0 complexity penalties
	Dual formulation, the base learning problem and termination
	The boosting algorithm
	Analysis and margin maximization with L0 relaxation penalties

	Application using Boolean monomial base classifiers
	Experimental work and discussion

	Generalized agreement problems
	Formulation of the problem with abstaining base classifiers
	Extending the Maximum Monomial Agreement algorithm

	Conclusions and possible future work
	References
	Vita

