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ABSTRACT OF THE DISSERTATION

Conditional Models for 3D Human Pose Estimation

by ATUL KANAUJIA

Dissertation Director: Dimitris Metaxas

Human 3d pose estimation from monocular sequence is a challenging problem, owing to highly

articulated structure of human body, varied anthropometry, self occlusion, depth ambiguities

and large variability in the appearance and background in which humans may appear. Con-

ventional vision based approaches to human 3d pose estimation mostly employed ”top-down

methods”, which used a complete 3d human model, in a hypothesized pose, to explain the

configuration of the humans in the observed 2d image. In this thesis, we work with ”bottom-

up methods” for human pose estimation, that use low level image features to directly predict

3d pose. The research draws on recent innovations in statistical learning, observation-driven

modeling, stable image encodings, semi-supervised learning and learning perceptual represen-

tations. We address the problems of(a) modeling pose ambiguities due to 3d-to-2d projection

and self occlusion,(b) lack of sufficient labeled data for training discriminativemodels and(c)

high dimensionality of human 3d pose state space. In order toresolve 3d pose ambiguities, we

use multi-valued functions to predict multiple plausible 3d poses for an image observation. We

incorporate unlabeled data in a semi-supervised learning framework to constrain and improve

the training of discriminative models. We also propose generic probabilistic Spectral Latent

Variable Models to efficiently learn low dimensional representations of high dimensional ob-

servation data and apply it to the problem of human 3d pose inference.
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Chapter 1

Introduction

Widespread installation of surveillance cameras has reinvigorated research in vision problems

of object detection, tracking, classification and recognition. One of the core capabilities of

intelligent video analytics is detection and tracking of humans in 3D space, recognition of

their activities, detection of anomalous behavior and assessment of potential threats they can

pose. In order to apply optical technologies to detailed analysis of human behavior, it is not

sufficient to coarsely localize the targets in the scene. Rather, to do so, we need to estimate

their 3D articulated posture, shape and motion in the scene.Traditionally, the task of 3D pose

estimation had been addressed using a multi-camera based 3Dmotion capture system, that

required the subjects to wear specialized suits with precisely placed and calibrated markers,

in a carefully controlled laboratory environment. The setup process is time-consuming and

costly, and impractical for non-invasive surveillance based applications. Moreover, most of

these systems required manual initialization and are not automatic.

Recent research has lead to development of less invasive marker-less 3D human motion

capture systems, using multiple, strategically placed, calibrated cameras. However, this ap-

proach still requires a well instrumented operating environment, which is difficult to achieve in

surveillance systems where the cameras are generally sparse and usually have non-overlapping

field of views. The problem is significant both in terms of enhancing applicability and reduc-

ing the installation costs of the motion capture technologyto gaming and animation industry,

intelligent video analytics and surveillance.

In most cases, the only video footages that are available forreconstruction are in monoc-

ular image format. Millions of security cameras have already been installed globally for asset

protection, airport and port security, border monitoring and law enforcement purposes. For

example, the London subway has over 10,000 cameras installed. However, monitoring these
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video feeds by human operators is extremely labor intensiveand unreliable. Hence it is de-

sirable to develop advanced motion capture techniques to automatically generate 3D motion

estimates of the human targets by tracking their movements in these video footages and enable

more detailed behavioral analysis.

Monocular motion capture technology is critical for automatic video analysis and has a

wide ranging commercial applications including computer animation, realistic gaming, human-

computer interface, ergonomics, biomechanical and clinical studies. We identify the following

areas where the technology can be applied:

• Effective automatic video analytics tools- can help monitor large number of video feeds

to detect unusual activities and identify potential threats. Suspicious or hostile human

activities may include security boundary intrusion, loitering, climbing of fences, carrying

of heavy or large objects and left-bag events. Automating human behavior and shape

analysis are key steps towards achieving this goal.

• Improved human computer interaction- Automated 3D motion capture will assist in

developments of techniques for improved human computer interaction by using more

accurate vision based components to recognize different gesture and motion in 3D. This

has vast potential use in role-playing games where the movements of the user in the

physical domain are appropriately reflected as an action in the virtual environment.

• Cost effective solution for movement analysis- Improved 3D motion capture will allow

non-invasive techniques for identifying the underlying causes for walking abnormalities

in clinical patients. The results of gait analysis have beenshown to be useful in deter-

mining the best course of treatment in these patients.

• Intelligent training systems for sporting activities- The analysis of sports related move-

ments often entails analyzing a variety of highly dynamic movements. Motion analysis

provides the tools for the sports medicine and performance professionals to perform ac-

curate functional evaluations/analyses for clinical and research oriented purposes.

• Realistic animation- Cost effective solution to importing realistic body movements in

animated characters in videos. Human gait modeling can be used to simulate realistic
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(a) (b) (c)

Figure 1.1: Current motion capture systems are marker-based and require expensive multi-
camera setup, in a well instrumented environment. Applications of 3D motion capture technol-
ogy include:(a) Real-time computerized motion analysis for sports training and performance
evaluation. Figure shows a practical application (courtesy Competitive Edge, Inc.) that pro-
vides 3D swing motion analysis for improving biomechanicalefficiency of the human body.
(b) and (c)Motion capture systems are increasingly used for realisticanimations and special
effects in the entertainment industry and gaming.

walking styles. Animating a digital character by imitatingthe actions of a real actor in

a movie sequence can be easily achieved if accurate 3D reconstruction from monocular

image sequence is feasible.

• Robotic locomotion- Design of robot appendages and control mechanisms to allow

robots to move fluidly and efficiently

This chapter introduces the thesis, giving overview of the human 3d pose estimation prob-

lem, provides a brief background on the problem and the potential applications of this area. We

list out the main challenges and open problems that are encountered in this field. We present

possible ways of solving these problem and how we address them in this thesis. Finally, we

discuss the key contributions of the thesis and the chaptersin which each of the topics have

been discussed in detail.

1.1 Human Pose Reconstruction using Monocular Image Sequence

In this thesis we take a step towards developing a fully automated solution for marker-less mo-

tion capture system from monocular image sequences. We focus on the problem of estimating
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3D human pose from monocular image sequence captured from either a stationary or a mov-

ing camera. We do not assume cameras to be calibrated in our framework. The algorithms

developed in the thesis draws on recent innovations in statistical learning, observation driven

modeling, robust image encoding and manifold learning.

1.1.1 Issues and Challenges

Our goal in this thesis, is to develop robust solutions for automatic 3D human pose inference

from monocular image sequences, in an uncontrolled environment. While humans are adept

in inferring 3D pose of the objects using only relatively low-resolution visual observations

and temporal cues, for the vision based systems it is still a challenging task. We identify the

following key challenges:

• Ambiguity due to projection of objects from 3D space to 2D image plane:Generation

of a 2D planar image from 3D scene is modeled as a perspective projection from 3D space

to 2D plane. Perspective projection is a non-linear transformation and can be modeled

using a pinhole camera model, intrinsic distortion parameters of the camera and rigid

transformation between the world and camera. Inverse perspective projection on the

other hand, transforms a point on the 2D image to a line vectorin 3D and is a one-to-

many relation as any point along this 3D line vector would project to the same 2D point

on the image. Finding an inverse of a perspective projectiontransformation is therefore

an ill-conditioned problem as it involves learning a one-to-many mapping from 2D image

points to multiple plausible configurations in 3D space. Thelack of depth information

make the human 3D pose estimation problem inherently difficult and obscure.

Pose ambiguities thus necessitates the use of additional cues from either the learned pri-

ors on 3D poses or the temporal dynamics, learned from various typical human activities.

Hence, for a 3D pose inference problem, that typically involves optimization of a image

matching cost distribution (usually a posterior of pose space), the one-to-many mapping

from 2D image to 3D space manifests as multiple modes on this cost surface (the poste-

rior map over the 3D pose state space).

A variety of techniques have been proposed to adequately handle these multimodalities
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in the dataset. The posterior distribution is usually modeled as a multi-modal mixture of

Gaussian distribution or as piecewise Gaussian distributions. A number of works have

also adopted sequential Monte Carlo based approaches to model multiple modes of the

posterior as a set of the samples from the posterior distribution.In order to propagate the

multimodal posterior over time, a multi-hypothesis tracking framework is employed. In

top-down models, efficient observation likelihood function based on robust image match-

ing techniques can disambiguate many poses. In bottom-up modeling, multi-valued re-

lation from the images descriptor space to 3D human pose space can be learned using

multiple regression functions. Improving the image descriptors may further assist in

resolving many pose ambiguities. For example, silhouette based descriptors are more

ambiguous compared to feature encodings based on the texture in the interior regions of

the target.

• Large variability in shape, appearance and anthropometry of humans: Humans

occur in a variety of complex poses, shapes, anthropometry and clothing appearances.

Loose fitting clothes can cause occlusion of body parts and interfere in detection of co-

herent structures in the image that enable accurate estimation of 3d pose. In real imag-

ing scenarios there may be additional noise, due to specularities, lighting and viewpoint

changes. In bottom-up models, large variability in the observations is handled by im-

proving feature extraction techniques and developing robust image descriptors that can

discriminate between different poses yet remain invariantto geometric and photometric

variations in the image. Finding appropriate descriptors for a given problem is a difficult

task and usually involves comparing multiple descriptors and choosing the descriptor that

gives best prediction accuracy.

• Image clutter: Accurate localization of human targets in a 2D image is a pre-requirement

step for 3D pose estimation. Although background subtraction can be used to accurately

delineate human targets, it requires modeling of static pixels in the scene and severely

restricts the range of applications to scenarios with static background only. In realistic

settings, with moving camera and changing background, detection and localization of
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humans is even more challenging, and techniques based on human detection by classi-

fication are strongly affected by the presence of clutter, transient backgrounds and large

intra-class variability of humans. In most cases the targets are coarsely localized as

bounding boxes in the image. The extraneous regions around the target in the bounding

box tend to influence the descriptors computed over these bounding boxes and signif-

icantly increase their variability. Training accurate predictors that are robust to these

background noises is a challenging task and requires special mechanism to reduce these

perturbations to the image descriptors.

• Self occlusion and kinematic ambiguities: Human body has a highly articulated struc-

ture and may assume complex poses, occasionally causing a body part to occlude the

other, when observed from a single viewpoint. For example common activities like run-

ning or walking, when viewed from side, frequently cause self occlusion of the arm and

leg joints that are not facing the camera. In addition, rotation symmetries of different

body parts make it difficult to estimate all the kinematic parameters of the human pose.

For example, rotation of arm segments around its axis (twist), is difficult to estimate from

visual cues alone, as the change in the appearance due to twists in the arm may be im-

perceptible under a standard image resolution. The non-observability of body parts and

kinematic ambiguities, make the problem of 3D pose recoveryinherently difficult.

Ambiguities due to self occlusion can be resolved by incorporating motion priors in the

pose estimation framework. Most of the joint angles are strongly correlated in various

human activities, and configurations of the joints that are not directly observable in the

image, can be inferred from the observable joints, by learning correlations between them.

• High dimensionality: Human body has highly articulated structure, requiring a number

of joints to accurately model the pose in 3D space. A skeletalhuman body model typi-

cally contains≈ 30 joint parameters to characterize pose in terms of positionsand ori-

entations of the skeletal links. Many animation applications may require more detailed

articulations (e.g. fingers and feet) that have skeletons with≈ 60 degrees of freedom.

Estimation and tracking of the articulated 3d human pose thus requires search in high
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Figure 1.2: Current state of the art motion capture systems(left) The subjects need to wear
markers (active or passive) that can be readily detected from multiple sensors. The 3D positions
of the markers are computed using triangulation and a kinematic skeleton is optimally fitted to
the point clouds. Figure here shows a subject with active markers (illuminated LEDs) that are
easily identified by the optical system.(right) Recent research (courtesyOrganic Motions,
Inc.) have developed marker-less techniques for motion capturethat are able to track precise
movements of the subjects in their everyday clothing.

dimensional state space for the optimal pose that best explains the observed configura-

tion in the 2D image. Inference must therefore take place over a large space of possible

3D configurations and thus entails use of appropriate optimization techniques that avoid

local minima and attain globally optimal 3D pose .

• Kinematic singularity : A singular point of an algebraic curve is a point where the curve

becomes degenerate (has unpredictable behavior). Ambiguities may as well be intro-

duced due to inability of the framework to uniquely represent a functional mapping (or

transformation). At the singular point of a functiony = f(x), the Jacobian matrix

J(x) = [ ∂y
∂x1

, ∂y
∂x2

, · · · , ∂y
∂xn

]T is not of full rank and its pseudo-inverse is not defined. In

the neighborhood of singular points, even a small change inf(x), δy = δf(x) requires

an enormous change inδx. A typical example of such a shortcoming is kinematic sin-

gularity arising due to non-unique decomposition of the 3D rotation angles. A 3D joint

angle can be described by multiple compositions of rotations along the 3 orthogonal axes,

thus resulting in degenerate solutions.
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1.2 Background on Human Pose Reconstruction

Articulated skeleton of human body is represented using a hierarchical chain of 1D rigid bodies,

called links, that are interconnected to one another via joints. The links are free to rotate around

the joints about the axes. The Degree of Freedom (DOF) associated with the joint depends on its

type (whether pivot, saddle, hinge or ball and socket joint). The dimensionality of the 3d pose

state space is thus determined by DOF of each of the joints in the kinematic model. Depending

upon the desired application, the skeletal articulation may be either detailed - that can capture

subtle movements(e.g. 3D character animations) or low-detailed - that are required to model

only representative poses of the application domain (e.g. people in walking or standing pose).

The skeleton structure is organized as a hierarchy, with theroot joint having global trans-

lation and rotation parameters. The rest of the skeletal segments are obtained by constructing

global transformation using all the segments in the hierarchical path that connect this segment

to the root. The joint angles are represented in a local coordinate frame relative to the parent

joint. This is to avoid the error in a single joint to distort the entire 3D pose. The global trans-

formation is obtained by a series of translation offsets andlocal rotational transformations of

the segments in the hierarchical path connecting the segment to the root.

An additional advantage of representing 3D pose as joint angles (instead of joint locations)

is that the motion capture data from one skeleton can be easily imported to another skeleton.

This can be directly used for deforming a computer graphic character with animation packages

like Maya andPoser. A potential setback of using joint angles to encode 3D pose is that an-

gular measurements are cyclical and angles separated by360o are the same. We overcome this

problem by transforming the discontinuous joint angle space to continuous sinusoidal space and

representing each joint angle with a pair of sine and cosine values. There exist two paradigms of

designing a human 3D pose estimation framework - top-down (generative models) and bottom-

up (discriminative) modeling.

1.2.1 Top-down Modeling

A top-down methodology refers to using a semantically, high-level description of the complete

human pose to explain lower level image signals. Generativemodels have been around in
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Top-down modeling Bottom-up modeling

Figure 1.3: Comparison of the two paradigms of human 3D pose estimation frameworks,(Left)
Top-down or generative modeling attempts to model the 2d image generation process from
the objects in 3d space. They assume a prior human model for generating hypotheses of 3d
poses. These poses are evaluated using a projective camera model and an observation likelihood
model. The pose is estimated as the modes of the likelihood cost surface.(Right)Bottom-up or
discriminative modeling extract features from the images and directly predict 3D poses using a
learned predictor model

vision for a long time and a number of approaches exist that estimate the 3D pose by explicitly

modeling the 2D image generation process by rendering a synthetic 3D human model. Top-

down methods rely on accurate representation of the human body using a kinematic chain based

articulated structure and use it to evaluate various 3D posehypotheses by rendering it to 2D

image plane and matching it to the observed images.

Generative methods requires modeling of both 3d pose and 3d shapes of the human body.

The 3D human pose is encoded as a vector containing the globalrotation of the root joint and

a set of relative joint angles for each of the limbs of the articulated kinematic chain model.

In the past, most of the generative frameworks have employedsimplistic, low-detailed human

body shape models. These synthetic models were based on simple geometric shapes such as

truncated cones or tapered cylinders with elliptical cross-sections. Although simplistic and

computationally efficient for rendering, these models are often poor representation of human

3d shape.

The 3D pose and shape of the human body model are controlled bythe parameters for the

3D joint angles and latent parameters of the 3D shapes. The generative tracking frameworks

estimate these parameters by searching in the parameter space using stochastic methods and

generating several hypotheses for the 3D poses and shapes. These hypotheses are evaluated by
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directly rendering the 2D image from the 3D human models synthesized with these parameters

and outputting the most probable 3D pose and shape configuration.

High dimensionality of the pose and shape space has motivated the development of more

sophisticated algorithms for stochastic search in the parameter space. Unconstrained search

algorithms may be sub-optimal as the parameter space is usually high dimensional. Most of

these search algorithms therefore exploit kinematic priors, learned over the parameter spaces of

typical human poses and shapes to constrain the search to a range of values. These priors may

be in the form of either physical joint limits or means and variances of typical human pose joint

angles for various activities. Recently a variety of works have also attempted to learn efficient

biomechanical priors on human motion, based on joint torques and mechanics.

Efficient techniques such as partitioned sampling has been used in the past to reduce the

search space for an articulated kinematic models. These algorithms perform hierarchical search

and independently localize the parts of the articulated structure. A variety of MCMC based

sampling (importance sampling, layered sampling and Gibbssampler) methods have been em-

ployed to reduce the number of particles required for efficient representation and tracking of

the posterior density over the 3d state parameters.

The hypotheses generated in the prediction step are evaluated using the observation likeli-

hood function. Evaluating a hypothesis amounts to calculating image evidence of the synthetic

3D model and entails modeling of the 2D image generation process. Construction of an effec-

tive likelihood function involves realistic human body modeling - both 3D shape and kinematic

chain models, the camera projection model for rendering the3D human model to 2D image

plane and an efficient image matching function to compute thelikelihood cost. Image de-

scriptors such as edges, intensities or silhouette shape may be used to match the rendered 2D

configurations to the observed 2D image.

Observation likelihood function therefore forms a key component of the generative model-

ing and determines the probability of the pose parameters bymodeling the image generation

process. The accuracy of pose estimation therefore critically depends on how accurately the

perspective projection is modeled and whether the image features extracted from the syntheti-

cally rendered 2D images generalize to the observed images.

Estimating pose parameters using generative model therefore involves inferencing posterior
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distribution over model parameters using the realistic 3D human body model to measure the

likelihood of an image and the prior distribution over the body pose parameters. The prior

distribution may be obtained as temporal prior (based on learned dynamics of the motion) or as

typical shape and appearance parameters (learned from labeled images).

Despite efficient inference algorithms and better extrapolation ability to unseen data, gener-

ative algorithms occasionally fail due to specific observation likelihood, bad initialization and

inaccurate human 3d shape modeling. Most of the generative frameworks require to be ini-

tialized manually. High dimensionality of the parameter search space makes estimation of the

optimal pose computationally expensive if the search is initialized from a completely different

pose. Generative tracking methods (like Condensation, Kalman Filtering) are usually difficult

to recover from error.

1.2.2 Bottom-up Modeling

Bottom-up (discriminative) methods, on the other hand provide a complementary approach for

human pose estimation problem and attempt to learn the inverse of the perspective projection.

Bottom-up methods learn statistical models to directly predict 3D poses from the descriptor

vectors extracted from the observed 2d images. The discriminative models may have an addi-

tional intermediate step of first inferring mid level features , such as coherent body part struc-

tures, from the low level image signals and using these to infer the 3D poses. These coherent

structures may either correspond to different parts of the human in which case, a weak human

body model may be used to constrain these parts to form a validpose configurations. The hu-

man body model may be specified as a set of spatial constraintsbetween different body parts

and unlike generative models, may not have precise shapes ofactual human body parts. Most

of these models are based on pictorial structures [70] and trains separate classifiers to detect

various human body parts in the image. On the other hand, the low level image descriptors can

be used to directly predict the 3D pose states. This is achieved by learning function approx-

imators(regression) that maps points in the 2D image descriptor space to the 3D pose space.

Discriminative methods (also referred to as predictive models) treat 3D human pose as a point

in high dimensional joint angle space. For a novel input 2D image, it estimates the 3D pose by

interpolating between 3D poses corresponding to the similar 2D exemplars already seen during
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the training phase. The interpolant may be based on Nearest Neighbor regression or more com-

pact, non-linear parametric regression. The ability of discriminative models to estimate pose

for any observed image therefore depends on the amount of training data used. As long as the

training exemplars are sufficiently representative of the test dataset, predictive models almost

always outperforms the generative models.

The problem of learning mappings from 2D image features to 3Dposes is ill-defined and

ambiguous. The mapping is one-to-many as several distant 3Dposes may render similar 2D

images. For instance, 2D projections of a person walking towards the camera and walking away

from the camera appear similar to each other. The predictivemodels therefore uses multiple

mapping functions to predict plausible 3D poses for a given 2D visual input.

Furthermore, to reduce the amount of data required for training the discriminative mod-

els and take into account the strong correlations between joints, these mappings are typically

learned between the input features and low dimensional, compact representations of the 3D

human pose. The low dimensional representations are learned by taking into account the cor-

relations between various joints and identifying perceptually meaningful structure in them.

Discriminative modeling may outwardly seem as an over simplistic approach, requiring

a labeled training set containing pairs of 2D images and the corresponding 3D pose, and a

statistical learning model to learn multi-valued mapping from image descriptor space to 3D

pose space. However, it faces a number of challenges primarily due to scarcity of labeled

training data for learning a model that can be generalized tovaried environment and lack of

robust image descriptors that are less affected by perturbations caused by background clutter,

viewpoint and lighting changes in the scene. Furthermore, unlike generative methods that are

intrinsically regularized, these methods depend on the choice of learning model and the learning

algorithm to avoid overfitting and learn models than can be generalized to unseen test dataset.

1.2.3 Combined Approaches

Addressing the deficiencies in the two categories of human 3Dpose modeling techniques, many

works in the past have also attempted to overcome their drawbacks by integrating these ap-

proaches in a common framework that combines their strengths. The two realms of frame-

works can be loosely combined where the discriminative framework is used to bootstrap the
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generative model. The discriminative models can be used to initialize the search in generative

models by providing accurate approximations for the posterior distribution over 3D pose states.

The conditional distribution learned in discriminative frameworks provide a useful proposal

distribution for sampling plausible poses, whereas generative framework provides a feedback

mechanism of re-projecting the reconstructed 3D pose to the2D image plane and evaluating

it according to the specific criteria (matching features based on edges, silhouette shapes etc.).

Both discriminative and generative models may be trained independently.

Another way of combining cues from discriminative and generative approaches is by incor-

porating additional semantic information from the parts detectors of human body. For example,

in the framework proposed by Sigalet. al[154], the parts detectors provide bottom-up infor-

mation to assist particle filter based tracking of human 3D pose. The parts detectors enable

automatic initialization of the generative model and also assist recovery from occasional track-

ing failure. The 3D human model is organized as a graphical model where each node represents

the limbs and the connection between the nodes encodes the spatial compatibility between pairs

of part configurations. The bottom-up cues are incorporatedin a similar fashion, by importance

sampling from the conditionals of the part detectors, and using it in the non-parametric belief

propagation framework to infer the 3D body pose. Although similar to above approach, this

uses low level image features to first estimate part components of the human body and then us-

ing these intermediate level detections in the graphical model framework for estimating the 3D

pose. This approach is more robust to occlusion and local deformations although part detectors

are often too noisy and occasionally have spurious detections in the image.

More strongly coupled approaches may learn a joint model that has both discriminative and

generative sub-components[165]. Learning the model parameters alternates self-training stages

in order to maximize the probability of the observed evidence (images of humans). During one

step, the predictive model is trained to invert the generative model using samples drawn from

it. In the next step, the generative model is trained to have astate distribution close to the one

predicted by the discriminative model. At local equilibrium the two models have consistent,

registered parameterizations. During the inference, the pose predictions are driven mostly by

the fast discriminative model, but implicitly include generative feedback to ensure consistency.
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1.3 Tracking in Low Dimensional Space

Inferring human pose from a single image is difficult due to inherent depth ambiguities and

limb foreshortening effects. One way to counter these challenges is by enforcing temporal

continuity(tracking) constraint on the 3D pose estimation. Based on the pose estimation results

in the past frames, we may give higher probability to a pose that is similar to the pose estimated

in the previous frames compared to other distant 3D poses. Due to this additional weight

assigned to a set of poses, tracking can disambiguate between several plausible poses from a

sequence of observations.

Typically, tracking is done by modeling dynamics of human motions. Humans exhibit

complex dynamic behavior that is highly non-linear and non-uniform. A good dynamic model

is sufficiently representative of all the possible pose state trajectories and how they evolve over

time. Human motion lacks a clear structure and may be composed of multiple basic action units.

Transition between these action segments is undefined in most of the cases. Within a category

of motion, different subjects have widely varying diversity in styles. Recent research have

developed improved dynamical models that have greater descriptive power whilst requiring

only limited training exemplars.

Human skeleton has a highly articulated structure with the number of degrees of freedom

ranging from 30 to 60, depending on the level of articulationdetails desired for a given ap-

plication. More dimensions entail more training samples needed to accurately model the data

distribution in the pose state space. In order to alleviate the curse of dimensionality, most of the

3D pose tracking frameworks restrict the pose inference to low dimensional subspace. These

techniques learn a low-dimensional representation of 3D human pose by discovering intrin-

sic dimensionality of the joint angles space. For instance,joint angles of a human running

or walking has the intrinsic dimensionality of 1, the phase of the running and walking cycle.

This is due to the fact that in typical human activities, the joint angles are strongly correlated,

and values of most of the joint angles can be directly inferred from values of only a few key

joints of the skeleton, which in most cases, are much lower than the total number of degrees

of freedom. However, developing effective techniques for modeling complex nonlinearities of

the human pose state space, using only a minimal set of low dimensional, latent parameters
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is a challenging task. A variety of methods that attempt to learn these low dimensional, per-

ceptual representations exist in literature and have been used for improving the computational

complexity of tracking.

1.4 Overview of Our Approach

Past research on human motion analysis have mainly focused on top-down techniques for 3D

human pose estimation and tracking. Most of these techniques often lack generalization over

a wide range of human poses, appearances, shapes and backgrounds. A key component of

generative framework is the likelihood function which is complex and difficult to model as it

requires modeling large variability in pose, shape and appearance of the humans in real scenes.

Furthermore, non-linear dynamics, 2D-3D ambiguities, self-occlusion and kinematic singular-

ities may cause the posterior to be multi-modal over the posestate parameters. The multimodal

posterior distribution is non-parametrically represented using a discrete set of samples (particle

filters) where each sample corresponds to a hypothesized 3D pose. For articulated human body,

with high degrees of freedom, the number of samples requiredto accurately explore the high

dimensional state space increases dramatically thereby leading to high inference cost for 3D

pose.

Averting these limitations, we adopt discriminative pose estimation framework that pro-

vides a direct learning of the mapping from the 2D images to the corresponding 3D pose using

a set of labeled exemplars. The widely held belief is that discriminative modeling always out-

performs the generative modeling[125]. However, in the absence of sufficient labeled training

data, generative models tend to perform better, although itapproaches its higher asymptotic

error fast, as more labeled data is added to the training set.Further, in the absence of suffi-

ciently large training set, the accuracy of generative model depends on how closely the learned

generative model approximates the actual data generation model. If the two models mismatch,

the discriminative and generative frameworks tend to have similar accuracy.

In this thesis, we attempt to directly estimate the 3D human pose from the 2D image de-

scriptors in real scenes. We make contributions to discriminative pose estimation framework in

the following key research areas:
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• Statistical learning algorithms for probabilistic modeling of multi-valued relations

• Probabilistic discriminative framework for conditional density propagation

• Image descriptors for balancing the invariance-selectivity tradeoff

• Semi-supervised learning framework for multi-valued functions

• Probabilistic framework for mapping high dimensional 3D pose state to low dimensional

latent space

In the bottom-up approach, the 3D pose of human body is predicted directly from the image

descriptors extracted from the visual observations. The image descriptors encode the shape and

texture information of the human in the image. The discriminative model use these descriptors

as the input to predict a vector of 3D joint angles that encodes 3D human pose configurations

in the scene. The imaging sensors are not required to calibrated as the image descriptors are

translation invariant. The statistical models used for prediction, are typically trained using a

supervised learning framework, on a set of labeled exemplars (pairs of 2D image inputs and

3D joint angle output). Acquiring labeled exemplars is a costly procedure and requires 3D

motion capture setup, in a well controlled laboratory settings, so that both the 2D image and

the 3D pose can be captured synchronously and accurately. This is not only time consuming but

also impractical to many application requiring 3d pose reconstruction as the real scenes rarely

contain humans in clothing similar to special marker based costumes required for the 3D motion

capture. In the proposed research, we therefore attempt to generate realistic training data by

importing real motion capture sequences to a virtual computer graphic(CG) human model and

use the rendered images with real backgrounds to train the statistical predictor model. We refer

to this data as “quasi-Real” data (see fig. 1.4). Furthermore, we also develop techniques to

efficiently restrict the 3D pose inference to a latent, low dimensional, perceptual representation

of the original 3D joint angle space.

Our human representation is based on an articulated skeleton with spherical joints that has

56 degrees of freedom, including the global rotation. To gather data, we use Autodesk Maya

[2], with realistically rendered computer graphics human 3D surface models. Choice of image

descriptors depend on whether the background model in the scene can be learned or not. For
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Figure 1.4: Various pre-processing stages of generating training and testing data in our frame-
work. The 3D motion capture sequence from [1] is available in3D joint angles format (62
degrees of freedom). The motion capture data is imported to acomputer graphic(CG) model of
standard anthropometry using Maya software package. Realistic training/testing (quasi-Real)
data is obtained by rendering the 3D model on a real background image

images captured from a static camera, humans can be easily localized and delineated using

background subtraction. The silhouettes obtained from background subtraction are used for

extracting the shape descriptors, which is then used as inputs for human 3d pose estimation.

For a moving camera, humans are localized as bounding boxes using a classification based

human detector[53]. Since the humans are not clearly delineated in the bounding box, shape

cues cannot be used in pose estimation(see fig. 1.5). We therefore use texture/appearance based

image representations as the input in our discriminative framework. The labeled exemplars are

used for training a regression framework, that maps 2D imagedescriptor vector to a 3D pose

vector. In order to resolve pose ambiguities due to perspective projection of 3D humans to 2D

images and self-occlusion, we train multiple regression functions to predict multiple plausible

3D poses for a given image observation. We use Mixture of Experts (ME) framework to train a

set of experts (regressor). One of the issue in training a discriminative is to avoid overfitting and

learn models that can generalize well to an unseen test data.Generative models are implictly

regularized as inference assumes a prior human body model, that is used to generate various

pose hypotheses to explain the observations. The optimization is therefore constrained over a

given model space. For predictive models however, we need anexplicit mechanism to avoid

overfitting in order to generalize them over a larger test dataset. Therefore, we train Mixture of

Expert(ME) model using Bayesian learning paradigm that intrinsically embodies regularization

and model selection using Occam’s razor. However exact Bayesian inference is intractable and

certain approximations are needed to make the computation feasible. The key advantage of
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Figure 1.5: Two standard ways of localizing humans in the image: (Top row)For a static cam-
era, background subtraction can be used to extract approximate silhouettes of the humans in the
image. We use non-parametric background subtraction[64] for obtaining foreground regions.
A key challenge to this approach is to identify and eliminateregions due to shadows, that tend
to distort the shape of the silhouette and may distort the image descriptor used for 3d pose esti-
mation. (Bottom row)Background subtraction cannot be used when the camera is undergoing
motion. In such a setting, a classification based human detector can be used to search for hu-
mans in the image. Typically, this is done over multiple scales of rectangular bounding box, in
order to detect humans at different distance from the camera. In such settings, the extraneous
regions in the detected bounding box due to the background, may cause perturbations in the
descriptor and lead to inaccurate 3D pose estimation results

Bayesian learning is that it learns models that are much sparser compared to other predictive

learning techniques, by selecting only relevant basis functions in the learned mapping.

At each time step of 3D pose estimation from a monocular sequence, we also enforce

temporal continuity constraint to assign higher probabilistic weights to pose that are similar

to the pose estimated in the previous time step. This not onlysmoothes the predicted state

trajectory but also disambiguates poses where several possible reconstructions are possible.

Tracking entails learning a human motion model that predicts the pose in the next frame using

the pose estimated in the current frame. Dynamic motion models can be learned from the

labeled exemplars from various activity sequences.

One of the shortcoming of discriminative learning methodology is that it should be trained



19

Figure 1.6: Raw sensory signals such as image pixels or jointangle vectors are high dimen-
sional manifestation of lower dimensional and perceptually meaningful variables in the latent
space. (Left) shows the walking cycle as 2D embedded points in a high dimensional (≈ 60
DOF) joint angles space.(Right) 2D embedded space of shapes of the facial features as the
head undergoes large rotations. Shape is represented as 150dimensional vector of co-ordinates
of landmark points and lie on a highly non-linear Riemannianmanifold. However space of
shapes due to the movement of the head is a 2 dimensional embedded space where each vari-
able denote the yaw and pitch of the head.

on sufficiently rich set of labeled examples, in order for it to generalize well on realistic sce-

narios. One way of attacking this problem is to use unlabeleddata to improve the learning of

the models. The unlabeled data refers to input images for which 3D ground truth pose is not

available. One of the way of incorporating information embedded in the input data is by enforc-

ing the functions to vary smoothly along the instrinsic structure of the inputs. This effectively

means that for the input data points that are close to each other on the manifold, their outputs

should also be close to each other. This additional constraint can be used to further restrict the

parameter space of the optimal pose, thus enabling learningof more accurate discriminative

models. Given the high degree of freedoms of the articulatedhuman body, the pose estima-

tion algorithms should be able to effectively search in highdimensional state space and output

most optimal 3d pose. Repetitive activities like walking, running and jogging have much lower

perceived dimensionality than what is observed from the image pixels or the joint angles. In

order to make the pose prediction scalable and support multiple activities, it is natural to reduce

the dimensionality by learning representations that reflect perceptual structure of various activ-

ities. Recent work on visual tracking has identified the importance of low-dimensional models

with intuitive geometric properties and mappings between the latent (low dimensional) and the
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ambient (original observed) space. These models use the fact that in various human activities,

there exist high degree of correlation between different joints. The low-dimensional represen-

tations are obtained by projecting the data to the decorrelated axes obtained using these models.

We use Sparse Spectral Latent Variable Models (SLVM) that combine the advantages of spec-

tral embeddings with the parametric latent variable models. SLVM learn stable latent spaces

and preserve global or local geometric properties of the modeled data (see fig. 1.6). This offers

low-dimensional generative models with probabilistic, bi-directional mappings between latent

and original spaces. The learned bi-directional mappings between the latent and the ambient

spaces are probabilistically consistent and can be used forefficient visual tracking of human

pose in low dimensional space.

1.5 Thesis Contribution

Learning mappings from 2D images to 3D human pose is an ill-conditioned problem and sub-

ject to a number of open challenges namely 2D-3D ambiguities, large within the same pose

class variance due to shape and appearance, high degree of articulation of the human body and

lack of labeled data for training. In the thesis we have targeted these problems and aimed at

developing novel techniques for enhancing human 3d pose estimation in real scenes. Following

are the main contributions of the thesis:

Bayesian models for learning multi-valued functions: We develop sparse Bayesian learning

framework for training mixture of experts model. Sparse Bayesian learning generates com-

pact and well-regularized predictive models. Mixture of experts framework essentially learns

multiple regression functions to map an input to multiple plausible outputs. In addition, there

is a ranking function, that estimates the competency of the regressors to predict for the in-

put. The ranking weights(referred to as gates) are themselves observation dependent functions.

Bayesian formulation provides a principled way of quantifying the complexity of the models

and promote simpler models by penalizing over-parameterized models.

Discriminative 3D human pose tracking: We propose a discriminative framework for the

propagation of multi-modal (Mixture of Gaussian) distributions using probabilistic, continu-

ous, temporal chained models. Tracking of 3D pose is useful for an image sequence where
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prior estimates of the pose may be used to resolve pose ambiguities in the current frame. The

discriminative tracking algorithm, unlike generative methods, does not require modeling of

complex likelihood function, that is both computationallyexpensive and indirect. Rather, the

distribution of 3D pose dynamics is directly learned from the sequence of labeled exemplars.

Image descriptors with improved stability to geometric transformations and background

clutter : We use multi-level(hierarchical) encodings in our regression framework and com-

pare several of these descriptors for the problem of human 3dpose estimation from monocu-

lar sequence. Hierarchical descriptors are coarse-to-finerepresentations that encode image at

multiple levels of semantic information content and invariance to perturbations due to geomet-

ric transformation, viewpoint and illumination changes. Further, we preprocess the extracted

descriptors using metric learning and canonical correlation analysis to make them robust to

changes in the background.

Semi-supervised learning based on Manifold Regularization: In order to make training with

diverse, real-world datasets possible, we learn models using both labeled and unlabeled data.

We incorporate the unlabeled data using a semi-supervised learning framework based on man-

ifold regularization. In order to use it to learn multi-valued mappings, we generalize semi-

supervised learning to mixture of experts model.

Sparse spectral latent variable models: We propose non-linear generative models, referred

to as Sparse Spectral Latent Variable Models (SLVM), that combine the advantages of spectral

embeddings and parametric latent variable models for learning stable, latent representation

of high dimensional data. The latent spaces learned using SLVM, preserve global or local

geometric properties of the modeled data. Our model is efficient to learn and probabilistically

consistent. Furthermore, the learned bi-directional mapping allow us to map any out-of-sample

points in the observation space to the latent space and back.

1.6 Thesis Outline

Introduction This chapter introduces the thesis, giving overview of the human pose estimation

problem and the motivation behind it. We provide a brief background on the problem and the

potential applications of this area. Further we list out themain challenges and open problems
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that are encountered in this research area. We also present possible ways of solving these

problem and how we address them in this thesis.

State of the Art In the next chapter we describe recent research work in the field of human

3D pose estimation. A number of works adopt different approaches for solving the same prob-

lem(e.g. generative framework) that may perform better in certain scenarios and worse in other.

It is useful to understand pros and cons of these techniques and how the proposed framework

overcomes the deficiencies existing in them. In addition, webriefly discuss works in the re-

search areas that are not directly related to human pose estimation problem but form an integral

component in any 3D human pose reconstruction framework e.g. human detectors and image

descriptors.

Bayesian Mixture of ExpertsChapter 3 introduces the machine learning models that form the

core component of our discriminative learning framework. Mixture of experts is a non-linear,

supervised learning framework that learns one-to-many mapping by dividing the input space

into multiple sub-domains and fitting regression surfaces in them. These data sub-domains

have soft boundaries that is learned as a probabilistic multi-category classifier. Key motiva-

tion behind training the Mixture of Experts model using Bayesian framework is that the mod-

els trained using maximum-likelihood(ML) learning has tendency to overfit the training data.

Sparse Bayesian learning automatically regularize the models and learn simpler models that can

generalize well to unseen test data. The content of this chapter is based on the work published

in Discriminative Density Propagation for 3D Human Motion Estimation, CVPR 2005

Discriminative 3D Human Pose EstimationIn chapter 4, we apply the Bayesian mixture of

experts model to learn one-to-many mappings between the 2D observation and the 3D human

pose. We assume a static camera so that background pixel modeling can be used for extracting

silhouettes of the moving human targets. We develop a discriminative tracking technique for

propagating multi-modal state condtional distribution across time using continuous temporal

chain model. We represent the multi-modal distributions asGaussian mixture model that is

pruned at each time step to avoid exponential increase in thenumber of components. In addi-

tion, we also investigate the techniques for improving the computational efficiency by reducing

the dimensions of the input feature space and output joint angle space using Kernel PCA. The

content of this chapter is based on the research work published inBM3E : Discriminative
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Density Propagation for Visual Tracking, Transactions on PAMI 2007

Hierarchical Models for 3D Human Pose InferenceChapter 5 extends the human pose esti-

mation framework to realistic scenarios where the camera isundergoing motion. The motion of

background pixels induced by the camera motion, make the background subtraction inapplica-

ble to such scenarios. We therefore use classification basedhuman detectors to localize humans

in the scene and use region based image descriptors to learn efficient models for 3D pose esti-

mation. However, bounding box introduces additional challenges to the pose estimation prob-

lem due to background clutter and misalignment. We use hierarchical image descriptors that

are more robust to these perturbations and have some degree of invariance to the local deforma-

tions and misalignment of the bounding box. These descriptors are complemented with noise

suppression mechanism using metric learning techniques based on Canonical Correlation Anal-

ysis and Relevant Component Analysis. These refine and further align the image descriptors

to minimize within pose class invariance in order to better tolerate deformation, misalignment

and clutter in the image. The content of this chapter is basedon the work published inSemi-

supervised Hierarchical Models for 3D Human Pose Reconstruction, CVPR 2007

Sparse Spectral Latent Variable ModelIn chapter 6, we introduce probabilistic latent vari-

able models that combine the advantages of spectral embeddings and parametric latent variable

models. These non-linear generative models, referred to asSparse Spectral Latent Variable

Models (Sparse SLVM), provide stable latent spaces that preserve global and local geometric

properties of the observed data. The proposed framework is generic and can be used with any

spectral embedding method. We demonstrate the Sparse SLVM model on human pose estima-

tion problem where we restrict the pose estimation to the low-dimensional state space. In this

chapter, we also look into the problem of fitting and trackingdeformable 2D shapes. In contrast

to rest of the thesis, this part of the chapter studies the effectiveness of the SLVM algorithm

in modeling nonlinearities of the 2D shape space and learn low-dimensional latent spaces that

preserve the geometric structure of the ambient space. We demonstrate the applicability of

the framework to various vision problems. The contents of this chapter is based on the work

published inSpectral Latent Variable Models for Perceptual Inference,ICCV 2007

Conclusions and PerspectivesChapter 7 concludes the thesis with the summary of the work
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and a discussion on the results, giving suggestions on improving the results. Usually, any re-

search work solves certain problems and creates many more interesting avenues for conducting

further research. We provide the practical implications ofthe proposed framework and high-

light some of the open problems in the field of human 3D motion modeling. We also provide

some perspectives on the significance of the problem to the task of improving surveillance and

graphics based applications.

1.7 Relevant Publications

The thesis is based on the work published in following conference publications:

• Spectral Latent Variable Models for Perceptual Inference, Atul Kanaujia, Cristian

Sminchisescu, Dimitris N. Metaxas,International Conference on Computer Vision 2007

• Semi-supervised Hierarchical Models for 3D Human Pose Reconstruction, Atul Kanau-

jia, Cristian Sminchisescu, Dimitris N. Metaxas,Conference on Computer Vision and

Pattern Recognition 2007

• Learning Ambiguities Using Bayesian Mixture of Experts, Atul Kanaujia, Dimitris

Metaxas,International Conference on Tools with Artificial Intelligence 2006

• BM3E : Discriminative Density Propagation for Visual Tracking , Cristian Smin-

chisescu, Atul Kanaujia, Dimitris Metaxas,IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2007

• Discriminative Density Propagation for 3D Human Motion Estimation, Cristian Smin-

chisescu, Atul Kanaujia, Zhiguo Li, Dimitris N. Metaxas,Conference on Computer Vision

and Pattern Recognition 2005

• Conditional Visual Tracking in Kernel Space, Cristian Sminchisescu, Atul Kanaujia,

Zhiguo Li, Dimitris N. Metaxas,Neural Information Processing Systems 2005
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Chapter 2

State of the Art

In this chapter we review some of the recently proposed, state of the art techniques for un-

derstanding and estimation of human 3D motion from monocular image sequences. Human

pose estimation encompass several constituent sub-tasks that include human detection, graph-

ics based human body modeling, robust image encoding, dimensionality reduction and statisti-

cal modeling of human motion dynamics. As discussed in the previous chapter, each of these

problems is a research field in itself and a vast literature exist on several aspects of these areas.

In the following sections we will review relevant works in each of these areas.

2.1 Human Detection

The foremost step in 3D human pose estimation is the detection and localization of humans in a

scene. For a static camera with known background model, we can use background subtraction

to identify moving regions in the scene. Background subtraction can cause many issues, due

to shadows and multiple occluding objects, that are difficult to resolve. Recent techniques pro-

posed for background subtraction include non-parametric kernel density estimation[64], tem-

poral variation of intensity distributions[97], online auto-regressive modeling[119], modeling

complex dependencies between the location and color of the image pixels[150] and intensity

and texture modeling using GMM[178]. In the presence of camera motion conventional method

for statistical background modeling cannot be used. Movingcamera induces 2D motion to the

pixels in the scene, making it impossible to learn intensitydistributions of the background

pixels and identify targets by background subtraction. Thesolution to this problem is to use

discriminative patterns in the visual observations to distinguish targets from other static and dy-

namic objects in the environment. The problem of vision based target detection is considerably
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more difficult for human targets due to variability in poses,clothing appearance, anthropom-

etry and range of scales in which they may appear in the image.Detection by classification

is perhaps the most popular approach that has been extensively investigated in the literature.

This approach detects the targets by evaluating the likelihood of finding an object over a grid of

bounding box, regularly placed on the image. Some of the recently proposed human detection

techniques include [183, 54, 202, 189, 109, 11, 42].

Discriminative classification methods[11, 116, 189, 73, 144, 118, 129, 130, 54, 146, 183,

202] for classifiers are preferred over generative, parts based detectors [68, 108] as they are

more accurate, assuming they are trained on sufficiently representative examples. Compared

to generative models that attempt to model the distributions of the individual classes (humans

and non-humans) and the underlying complex observational dependencies, discriminative clas-

sifiers aim to learn the optimal classification boundary separating the two classes. Among

discriminative classifiers[54, 202], Support Vector Machine and Boosting[183, 116, 129, 189]

have been extensively exploited for learning person detectors in the past, as they have the abil-

ity to select relevant descriptors in the high dimensional input feature space. Support Vector

machines[41, 90] have been extensively applied for training binary classifiers as they gener-

alize well to varied data set. Papageorgiou and Poggio [130]used Haar wavelets to extract

the patterns of the targets and the non-targets, and trainedsupport vector machines to classify

them into two categories. This work was extended by [54] thatused Histogram of Oriented

Gradient features to learn the classifier. Mohanet al.[118] used an adaptive combination of

classifiers (ACC) that are composed of distinct example-based component classifiers. Each of

the component classifiers is a Support Vector Machine that are trained to detect object parts.

Neural Networks have also been employed in learning the discriminative boundary between two

classes[144]. Less conventional techniques include Sparse Network of Winnows (SNoW)[11]

that uses a neural network based linear functions over the feature space. The Winnow learning

algorithm is used to select only the relevant set of featuresfor learning the classifier.
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2.2 Human 3D Pose Modeling

As discussed in the previous chapter, there exist two main approaches for human pose estima-

tion from video imagery - top-down, generative model and bottom-up, predictive models. A

top-down methodology refers to using a high-level description of the complete human pose to

explain lower-level image signals. This normally involveshypothesizing the 3D human pose

and using a synthetic human body model to measure the likelihood of 2D human configuration

in an image. Bottom-up methods, on the other hand, start withlower-level image features and

use these to predict higher-level 3D pose information in theform of a pre-specified set of 3D

human body parameters(either joint angles or joint centers). Both the methodologies require

two critical components - accurate synthetic models for shape and pose of the articulated human

body structure and robust algorithms for computing encodings that compactly represent the se-

mantic contents of the image. In the following subsections we list state of the art techniques in

these two areas.

2.2.1 Modeling Articulated Human Structure

Accurate representation of human body involves realistic modeling of its articulated skeletal

structure and the 3D shape of the body parts. The shape, size and relative proportions of various

body components should be in accordance with the standard anthropometric norms, in order to

accurately model the variability in human shapes encountered in realistic scenarios. In addition,

appearance of the body parts may be useful to get an accurate estimate of the matching cost

when used in a top-down pose estimation framework. The accuracy of top-down models for 3D

pose estimation critically depends on how accurate is the image generation process using the

synthetic human model. Depending on the targeted application(animation or human detection)

human models with different levels of details may be used.

For human detector applications, that identify humans in the image by detecting differ-

ent body parts and recognizing coherent structure between them, a detailed 3D human pose

reconstruction may not be required and a coarse 2D parts based human models may usually

suffice.3D human modeling is more suitable for applicationsthat are processing image stream

with human targets of sufficient resolution (> 120 pixels height) and that require more detailed
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behavioral analysis such as detecting abnormal walking style or suspicious activity and detect-

ing concealed objects or anomalous shapes. In such scenarios, detailed visual changes such as

the effect of limb foreshortening due to changes in the depth, should be adequately modeled in

order accurately infer 3D poses.

3D human model representation of the humans has a number advantages over 2D human

pose estimation such as modeling self occlusion, body partsforeshortening and 3D shape defor-

mation in a principled fashion. However it is in general a more difficult and an ill-conditioned

problem. Especially in a single camera scenario where lack of observability may cause ambi-

guities and multiple 3D configuration may generate similar appearing 2D observations.

A variety of 3D and 2D human models have been used in the literature: Kinematic 3D

Human model [4, 40, 46, 74, 96, 185, 164], Scaled Prismatic 2DModel[4, 59, 132] and part-

based 3D human model [57, 93, 106, 110]. Models based on kinematic tree are by far the

most widely used 3D model. Typical 3D human model are composed of a kinematic tree based

skeletal structure, with bones represented as rigid links.The links are connected to each other

via joints of varying degrees of freedom(1-3) in a hierarchical tree structure. The root joint

of the skeleton defines the global reference of the skeleton with rotation and translation values

in the world co-ordinate frame. The orientation and locations of rest of the joints and link

segments are defined in the reference frame of the parent nodeof the skeletal hierarchy. The

3D motion data is imported to the skeleton as angles for each of the degree of freedom of

the skeletal segments. The joint angles may be parameterized as Euler angles, Quaternions or

Exponential maps. Each segment is transformed using a global transformation in the world

coordinate frame and local transformation in the referenceframe relative to the parent node

joint.

One of the requirement of generative modeling is to accurately parametrize the human

body 3D shape and to simulate the image generation process (under the assumption of known

camera parameters and projection model) that resulted in the observed image. It is therefore

critical to estimate the shape of human body parts in order toaccurately model this process.

Conventional shape models were based on relatively simple 3D geometric structures such as

ellipsoids[47, 115, 40], cylinders[51, 58, 137, 152, 154, 141], tapered cones[191, 106, 157, 3],

super-quadrics[170, 75, 163] and other geometric primitives[63, 55, 75]. Most of these models
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are crude representations of human shape and do not accurately represent the variability of

shapes in different poses. Instead of coarsely representing the 3D shape of the human body

parts using simple 3D shapes (cylinders, cuboid or sphere),a more detailed 3D mesh surface,

composed of interconnected polygons can be used.

Recently, more accurate shape models based on 3D laser scanshave been employed to

learn 3D shape model of humans[19, 159, 17]. Sigal et al.[159] used SCAPE (Shape Comple-

tion and Animation of PEople) [14] model to represent articulated and non-rigid deformation

of the human body under pose and anthropometric variations.The rich and natural range of

body shape variations are captured as low dimensional linear subspace learned using Principal

Component Analysis(PCA). The 3D mesh based shape model consisted of 25,000 polygons

and provide a detailed representation of human shapes for improved likelihood modeling. Gall

et. al[86, 85, 80] recently proposed a model-based approachfor 3D human shape estimation,

that used a multi-layer framework of global and local optimization, to fit a detailed 3D human

shape model to the image and marker positions obtained from motion capture system. How-

ever it did not use any prior knowledge of the dynamics to estimate the pose and shape of the

target. The framework used a 3D human shape model of 5000 triangles. In order to estimate

the 3D shape of a human in a generic pose configuration, the 3D shape surface needs to deform

under the influence of the rotation and translation of the joints. This is achieved by associat-

ing different regions of 3D mesh to different skeletal joints (a method known as skin binding)

and estimating transformations using the transformation of the joints. Other works that have

employed detailed 3D mesh based shape models include [43, 37, 94].

2.2.2 Image Descriptors

Image descriptors are compact encodings of the shape and appearance of the objects in the

image and forms an intermediate step towards inferring highlevel semantic details from low

level image pixels. Generative framework for human 3D pose estimation requires modeling

of the complex likelihood function to probabilistically rank various hypothesized poses by

matching them against the observed image. This involves realistic rendering of 3D human

model to 2D image plane and using an appropriateimage featuresand distance function to es-

timate similarity (or dissimilarity) to the observed image. Typical image features are based on
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shape and appearance that can be efficiently extracted and has a smooth matching cost function.

Common features include silhouettes[121, 19, 4, 111, 65, 76, 138, 58], contours[72, 140] and

edges[157, 168, 121, 154, 106]. Appearance features based on skin color pixels have been em-

ployed as well in human pose estimation[106, 107]. For shapebased features, chamfer distance

transform has been widely used for matching silhouettes[159]

Bottom up approaches, on the other hand, directly predict 3Dhuman poses using image

descriptors which are compact summarizations of the low level pixels in the image. These

descriptors should be able to implicitly encode semantic information of various human body

parts and their relative location with respect one another in a vector form so that they can be

used to train exemplar based discriminative framework for estimating 3D human pose. Success

of discriminative framework critically depends on these features and how invariant they are

to geometric distortions, illumination and viewpoint changes. Image descriptors should be

distinctive enough to differentiate between different poses, yet invariant to within the same

pose class variance - people in similar stances, but differently proportioned, or photographed

on different backgrounds.

The image descriptors can be categorized into two groups, based on the representation.

The first group is the sparse representations that include the constellation model [42] and

Implicit Shape models (ISM) [109]. Sparse feature representations are computed using a bag

of features model [11, 116, 136, 109] over a set of interest points detected in the image. The

interest points are detected using standard algorithms (e.g. Harris Corners, Maximally Stable

Extremal Regions, Scale Invariant Feature Transform (SIFT), etc.) that encapsulate local image

information and are assumed to be stable across viewpoint changes, illumination and scale

variations.

Sparse image descriptors typically encode the semantic information of pose configuration of

the humans in an observed image using various co-occurrencestatistics of local patches. These

local patches are either sampled randomly or are cluster centers of the codebook obtained by

agglomerative clustering of patches obtained from the training exemplars. A codebook based

on clustering local patches allows the descriptors to be robust to variations in shape and appear-

ances of the image features around these interest points. These sparse feature representation
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are therefore more robust to partial occlusion as loose spatial relation between the parts gen-

erally enforces weaker constraints on detection of all the parts in the image. More complex

algorithms have also utilized the spatial relation betweencodebook parts, in addition to their

shape and appearance.

In order to improve detection of targets that have discriminative parts, always occurring

in fixed spatial locations relative to each other, many works[42, 11, 69, 73, 116] try to detect

these coherent structures in the image. The encodings for the parts may be either local appear-

ance (e.g. intensity histogram) or shape information (SIFTdescriptors [112] or shape context

[122]). A number of works [42, 68, 69] have also employed descriptors based on constellations

of parts, that learn probabilistic representations of the various parts of the human targets. These

representations aim to model the variations in shape, appearance and relative scaling of differ-

ent parts of the human target. Different parts are automatically detected as local patch around

the interest points or as a regions using entropy based methods like MSER (Maximal Stable

Entropy Region). The spatial configuration is learned as a distribution on relative angles with

respect to a particular landmark point(or region). More recently Leibeet al. [109] proposed

Implicit Shape Models (ISM) for detecting pedestrians. ISMconsists of a vocabulary of pro-

totypical object parts’ local appearances and a non-parametric spatial probability distribution

that specifies where each entry of the codebook is likely to occur on the object.

The other category of descriptors is based on the dense representation. Unlike histogram

based sparse descriptors, these descriptors are computed as a large vector, obtained by concate-

nating local patch features over a dense grid of points, typically on a bounding box enclosing

the target[54, 183, 202, 189, 130, 145]. Similar to sparse representations, the local patch fea-

tures encode shape and appearance information. However, strict spatial ordering of the dense

feature representation makes them more discriminative albeit less invariant to the background

clutter and partial occlusion. Examples of dense feature representations include Haar wavelets,

covariance descriptors and Histogram of Oriented Gradients [54]. Violaet al. [189] used Haar

features that encode intensity difference between two regions. Dalalet al. [54] used histogram

of gradient orientations over a dense grid of fixed sized, overlapping blocks to encode the tar-

gets in the image. Zhuet al. [202] extended this approach by allowing variable sized blocks
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in the descriptors. They also enhanced the computation speed of Histogram of Oriented Gra-

dients (HOG) features such that they could be computed usingintegral images. More recently,

[145] used mid-level edge information (called shapelet features) for densely encoding low-level

gradient information to discriminate humans from non-humans. The mid-level information is

obtained by automatically selecting a subset of salient gradient features that are relevant for

detecting the target.

It is apparent that these two categories of image descriptors lie at the extremes of the range

of descriptors that vary in discriminative power(selectivity) and their invariance to background

clutter, geometric deformations and viewpoint changes. Clearly, there exist a tradeoff between

the selectivity and invariance of the image descriptors, and it is not sufficient to encode an image

at any single level of this tradeoff. More recently, hierarchical image descriptors [12, 95, 147]

were proposed to efficiently represent image at multiple levels of abstraction and better tolerate

the intra-pose class variability. Multilevel encodings are in general more stable and invariant

to geometric transformations, local deformations, clutter and misalignments in the training and

test set, as the image is encoded at several levels of abstraction, with the higher levels being

semantically more informative and lower levels being more discriminative. Studies in object

recognition [147, 103, 127, 9] have also demonstrated the effectiveness of multilevel image

encodings by achieving substantial performance gains for the tasks of image classification and

retrieval.

2.3 Human Pose and Shape Estimation

In the literature, there exist two main approaches for humanpose estimation from video im-

agery - top-down, generative models and bottom-up, predictive models. A top-down method-

ology refers to using a synthetic human body model (with hypothesized poses and shape based

on standard anthropometry) to explain the pose configurations of humans in the image. This in-

volves rendering the model to 2D image plane using appropriate camera modeling(orthographic

or fully perspective) and measuring the likelihood of the observation. Bottom-up methods, on

the other hand, use less abstract, lower-level image signals to directly generate 3D pose hy-

potheses. They learn regression functions to predict 3D pose of the human targets using the
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image descriptors as inputs.

Past research on human motion analysis has mainly focused ontop-down modeling tech-

niques which search in high dimensional space for the optimal articulated poses that best ex-

plains the observed human configuration in the image. Only recently, predictive models have

been used[138, 5, 164] to directly estimate human pose from low-level image descriptors.

Research areas in top-down (generative modeling) human pose reconstruction involve tech-

niques like modeling 3D human body pose and shape, accurate modeling of observational cost

using robust visual cues and modeling temporal dynamics of human motion. Whereas research

in discriminative human pose reconstruction relates to areas like statistical models for learning

multi-valued mappings, design of robust image descriptors, correlation analysis for dimension-

ality reduction and semi-supervised learning.

2.3.1 Generative Algorithms

Generative algorithms attempt to model the joint distribution over the input and the output

points, and estimates the state conditional using Bayes’ rule. Generative modeling requires

construction of an accurate observation likelihood or the cost function which essentially mod-

els the probability of the observation conditioned on the hypothesized state of the output. Under

a uniform state prior distribution, pose estimation involves complex sampling or non-linear op-

timization methods for inferring the peaks of the likelihood function. If a prior model on the

states is available, the optimization is done on the posterior distribution to predict the output

states as the MAP (maximum aposterior) estimates. The priormodel essentially constrains

the search in the parameter space of the output state and yields more plausible estimates of

the output. A variety of research works in the past have proposed algorithms for accurate

modeling of the state prior [39, 82, 57, 154, 161, 185, 88] or improved features (based on sil-

houette, edge distance transform, texture or natural imagestatistics) for accurate modeling of

the observation likelihood[151, 141, 172]. Most of the generative probabilistic tracking frame-

works are based on propagating a single Gaussian distribution (Kalman filtering) or mixture of

Gaussians propagation using particle filters [83, 57, 48, 169, 170, 173, 154]. Although gener-

ative models can flexibly reconstruct complex human motionsand implicitly handle problem

constraints, the inferencing may be expensive due to computationally expensive observation
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likelihood step that involves rendering a 2d image from a hypothesized 3d pose and matching

it to the observed image. Inaccurate observation likelihood may occasionally lead to uncertain

inferences[57, 151, 170, 163].

2.3.2 Discriminative Algorithms

The drawbacks in generative framework motivates the complementary approach of discrimina-

tive modeling [138, 121, 148, 182, 10, 65], that attempts to directly predict state distributions

from the observed image features. Several methods exist fordiscriminative pose prediction

[138, 9, 164, 165, 166, 156] and are primarily targeted towards accurately modeling of 3d

pose ambiguity in the data and developing robust image encodings to resolve these ambigui-

ties while preserving their discriminative power. Discriminative approaches is not without its

own difficulties: background clutter, occlusion and depth ambiguities make the observations-

to-state mapping multi-valued and not amenable to simple functional prediction. Although the

mapping from 2d images to 3d pose is multi-valued, several authors demonstrated good prac-

tical performance using single hypothesis methods[148, 121, 182, 10, 65]. The discriminative

methods differ in their organization of the training set andin the prediction on the unseen test

dataset: some construct data structures for fast nearest-neighbor retrieval [148, 182, 121], oth-

ers learn robust regression models [10, 65]. Inference involves fast computation of the index to

the best matching 3D pose[148], affine matching of projection of the 3d joint centers[121].

A number of authors have also pursued the problem of learningthe mapping from 2d image

space to 3d pose space using multiple functions. Amongst these, Rosales & Sclaroff [138] take

a notably different approach, by accurately modeling the joint distribution using a mixture of

perceptrons. A related method proposed by Graumanet al [76], who model the joint distribu-

tion of a 3d pose and multiple silhouettes obtained from multiple viewpoints, using a mixture

of probabilistic PCA[180]. More recent work by Agarwal & Triggs [7] use multiple functions,

learned in a clusterwise regression framework, to map 2d observations to 3d poses. Clusterwise

regression[56, 138] attempts to model joint distribution over the inputs and the outputs and as-

signs fixed prior weights to each of the mapping function. In contrast, the recent proposed

implementation of multi-valued mappings[167, 165] uses direct modeling of the conditional

state distribution using multiple functions, the weights of which input dependent(Mixture of
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Experts model).

2.3.3 Combined Approach

A variety of approaches have also tried to combine the generative and discriminative learning

methods[138, 159, 165, 19, 154]. The two realms of frameworks can be loosely combined by

allowing the discriminative framework to bootstrap the generative model[138, 159]. The dis-

criminative models can be used to initialize the parameter search in generative models. Pose

prediction in generative framework is typically done usingMAP (Maximum A Posterior) es-

timate of the posterior distribution over pose states. The multimodal posterior distribution is

represented as particles (or samples) from a proposal distribution that approximates the pos-

terior. The probabilistic mapping functions learned usingdiscriminative learning provides an

accurate proposal map for sampling plausible poses.

However, instead of sampling entire articulated structureat the same time, it is also pos-

sible to learn individual part detectors and using them to infer semantically higher level pose

information from the image. More recent works based on partsbased human models[99, 154,

157, 3, 19, 106, 190] employ importance samples, as bottom-up cues, from the conditionals of

the part detectors, to initialize and generate pose hypotheses for the top-down framework. Parts

based models have been widely used for 2D detection of articulated human body parts and are

generally based on pictorial structures[70, 67].

2.4 Statistical Learning in Discriminative Framework

Learning in discriminative framework is mostly supervisedand exemplar based, where a set of

labeled 2D images and corresponding 3D human pose are used tolearn interpolants (linear or

kernel) from the image descriptors space to joint angle space. Discriminative (feed-forward)

predictors offer the promise of speed, full automation and complete flexibility in selecting the

image descriptor but have to model multi-valued image-to-3D relations. This is a core issue in

any predictive framework as the mapping from image to 3D poseis one to many and several

3D poses may get projected to similar appearing 2D images.

A second difficulty for reliable pose prediction is the design of image descriptors that are
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distinctive enough to differentiate between various poses, yet invariant to within the same pose

class variance - people in similar stances, but differentlyproportioned, or photographed on

different backgrounds.

Finally due to reliance of discriminative modeling on the training set, generalization to very

different poses, body proportions, or scenes where people are filmed against background clut-

ter, may be problematic. The construction of realistic poselabeled human databases (images

of humans and their 3D poses) is inherently difficult becauseno existing system can provide

accurate 3D ground truth for humans in real-world, non-instrumented scenes. Current solutions

rely either on motion acquisition systems like Vicon, but these operate in engineered environ-

ments, where subjects wear special costumes and markers andthe background is simplified, or

on quasi-synthetic databases, generated by CG characters,animated using motion capture, and

placed on real image backgrounds.

In the following, we discuss some of the state-of-the-art techniques addressing these chal-

lenges.

2.4.1 Learning Multi-Valued Relation

Multi-valued mapping is typically handled using multiple regression functions that map 2D

observations to multiple distant 3D poses. The final prediction is obtained using some form

of ranking mechanism for these function, based on the likelihood of the observation. Ros-

ales & Sclaroff [138] made an initial effort to learn this multi-valued relation using a set of

multi-layer perceptrons(MLP). Mixture of experts provides a useful framework to learn multi-

valued relation [87, 92, 194, 30] and is composed of a set of experts that are local, contextual

function approximators. This model extends clusterwise regression [56, 138] which is maxi-

mum likelihood methodology for simultaneously clusteringa dataset into multiple clusters and

fitting multiple regression functions to each of the clusters. As discussed earlier, clusterwise

regressions lacks an accurate mechanism to assign weights to the functions for an unseen test

data.
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2.4.2 Stable Image Descriptors

Image descriptors are compact representations of semanticcontents of an image and are used

as inputs to the discriminative models. Descriptors can be made more robust to background

clutter using distance metric learning and correlation analysis. Learning metric for clustering

and image classification has been studied by [20, 198, 149] and essentially aim to learn a sub-

space in which the Euclidean distance between the projections of the descriptors corresponding

to the same (equivalence) class is minimized. Most of these methods differ in their treatment

of equivalence constraints and the optimization performedfor maximizing the intra-class sim-

ilarity. Some methods constrain the problem using only similar (image) instances, referred to

asChunklets, others build contrastive cost functions based on both similar and dissimilar class

constraints, or learn projections that maximize mutual within-class correlation. Metric learning

and correlation analysis can be useful for suppressing noise and discovering intrinsic, latent

shared structure in the data. They are appropriate for our problem where image descriptors are

affected by differences in the background andwithin the same pose classvariations.

2.4.3 Semi-supervised Learning

In order to address the challenge of scarcity of datasets containing humans in varied envi-

ronment and diverse poses, we may utilize both the labeled and unlabeled exemplars to train

models using semi-supervised learning methods. There is substantial work in semi-supervised

learning [44]. Literature on semi-supervised learning methods include Transductive learning

([188],[91]), Semi-supervised SVMs[27], Manifold Regularization[23], Co-training[35] and

gradient based regularization [38]. Transductive SVM usesa joint optimization of the SVM

objective function over the binary valued labels of the unlabeled exemplars. This is achieved

by using inductive SVM to label the unlabeled dataset and iteratively switching the labels at

each step of solving the SVM quadratic program. Semi-Supervised SVMs (S3VM) [27, 71]

incorporate information from unlabeled data by including the minimum hinge-loss for the two

choices of labels for each unlabeled example. This is solvedas a mixed-integer program for

linear SVMs.

A number ofGraph Based Approacheshave been proposed in the literature. In Zhu et al.
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[203], unlabeled examples are labeled using transductive learning and are used to label the test

examples using nearest neighbor method. In Chapelle et al. [45], test points are approximately

represented as a linear combination of training and unlabeled points in the feature space induced

by the kernel. In Co-training[35] algorithm, multiple weaklearners are trained on labeled

examples and used to label the unlabeled examples. These exemplars are used to train other

weak learners. Recent work in human tracking [123] showed promising results when learning

mixtures of joint human poses and silhouettes, based on Expectation Maximization applied to

partially labeled data.

2.4.4 Large Scale Learning of Conditional Models

Potential success of discriminative models critically depends on the dataset used for training the

models. It is therefore necessary to train the framework in all possible human poses in order

to sufficiently generalize it to novel test cases. Due to highdimensionality of the pose state

space, the amount of data needed to accurately learn the models also scales exponentially. A

significant downside of existing conditional algorithms istheir scalability. A number of works

[148, 36, 186] aim at reducing the computational time and memory required to train large scale

discriminative models. Shakhnarovich et. al.[148] used 1,775,000 2D image-3D pose pairs

to train a nearest neighbor based framework for efficient hashing based lookup. Boet. al[36]

used fast conditional models, learned using forward feature selection and bound optimization

to train multi-valued predictors with data set of the order of 100, 000. Urtasunet. al[186] an

online sparse probabilistic regression scheme based on Gaussian processes is used for efficient

inference of complex, high-dimensional, and multimodal mappings between the 2D image and

the 3D pose space. They used training set of size105 that contained both synthetic and real

data exemplars.

2.5 Dimensionality Reduction

Human skeleton has highly articulated structure with typical number of joints in any skeletal

representation ranging from 20 to 30, depending on the degree of accuracy desired. Different

joints may have 1-3 Degrees of freedom thus generating40 − 60 dimensional vector as an
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adequate representation for most of the human poses. Despite of high dimensionality of human

pose, in most of the human motions (like walking, running, jumpingetc.), various joint angles

are strongly correlated. These correlations are also evident in their 2D observations obtained

by perspective projection of these poses on the image plane.In order to exploit correlations

among observations and among 3D pose state variables, we canlearn perceptual embeddings

in the low dimensional space that preserve the geometric properties and restrict visual inference

to it.

Recent work on visual tracking has identified the importanceof latent variable models for

learning low-dimensional representation that preserve intuitive geometric properties in the ob-

servation space. More recent work in dimensionality reduction has focused on algorithms based

on spectral manifold learning. Spectral methods can model intuitive local or global geometric

constraints [142, 175, 21, 60, 195]. Learning of spectral embedding typically involves con-

struction of a data affinity matrix based on the locally linear manifold assumption. The task of

finding the embeddings reduces to an eigen-decomposition problem that can be solved in poly-

nomial time and is local-optima free. Spectral methods however lack a probabilistic framework

and cannot be used to map out-of-sample points to the learnedspace. Furthermore, there is also

no clear way to map points from the latent space to the ambientspace. More complex models

have emerged that complement these spectral methods with mappings for out-of-sample points

from observed space to the latent space[25].A variety of non-linear latent variable models exist

e.g. mixtures of factor analyzers or PPCA [179]. Most of the methods can model complicated

non-linear structure but, do not provide global latent coordinate systems or latent spaces which

preserve local or global geometric properties of the data. Regular grid-based methods like

the Generative Topographic Mapping(GTM) [31] are not appropriate for structured problems,

where the latent space distribution is unlikely to be uniform and when the latent spaces are

higher than 2-3d. Although GTM[31] is a powerful non-linearmethod, it cannot unfold many

convoluted manifolds (e.g. spirals, rolls) due to its fixed, data independent embedding grid in

latent space, and its tendency to getting stuck at local optima in training. Kernel Dependency

Estimation(Kernel PCA + Pre Image learning)[18, 196] is another non-linear dimensionality

reduction framework that is able to learn mapping between the ambient space and the latent

space given a definition of kernel function that serve as a similarity measure on the input or
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output space. It suffers the same drawback and fails to preserve geometric structure across the

ambient space and latent space. The Gaussian Process LatentVariable Model(GPLVM) [100]

is a non-linear PCA technique based on a zero mean unit Gaussian prior in latent space and a

Gaussian Process mapping to ambient(data) space. It is a competitive model primarily target-

ing data reconstruction error, but not designed to enforce the constraints to preserve geometric

structure in the latent space. The latent prior is data independent and geometric properties

of ambient data are not explicitly preserved. Memisevic [114] models the joint density using

a separable product of non-parametric kernel density estimates and computes an embedding

by optimizing a mutual information criterion over latent space coordinates, similar in spirit to

GPLVM. There exist a number of works that have employed thesemodels for human 3d pose

inference. Elgammal & Lee [65] proposed a framework to directly infer 3D body pose from

the human silhouettes by first projecting the visual inputs to low dimensional activity manifold

and use a Radial Basis Function(RBF) network to predict the 3D pose from it. However their

framework is not probabilistic and also there are no mappings from the observed space to the la-

tent space. Sminchisescu & Jepson [161] use spectral embeddings (e.g. Laplacian Eigenmaps)

to learn low-dimensional generative models that are consistent during inference. They build a

continuous generative model for 3d human pose inference in the reduced space and learn RBF

mappings from the latent space to the ambient space. Urtasunet al [185] use Scaled GPLVM

to track people in golfing and walking sequences. They learn low-dimensional representation

of 3d human pose state space and use a generative model with non-linear continuous mapping

between the latent space and the full pose space, to track the3D human pose in the latent space.

They use WSL tracker [89] to track the joint centers in the 2D image sequence.

One of the key motivation behind dimensionality reduction is to improve computational

cost of training regression models, where both inputs and outputs may have high dimension-

ality. While in practice learning mappings between low dimensional embeddings of inputs

and outputs improves the computational cost, the low dimensional subspace for both input

and output points are not guaranteed to preserve the correlations between them. Recent works

[117, 158, 78] have proposed algorithms that learn low dimensional representations of data

while preserving the statistical correlation between the input and the output points. Minyoung
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et. al[117] proposed a non-linear extension of their DRR (dimensionality reduction for re-

gression) that exploits the covariance operators(kernel gram matrix) in RKHS to estimate the

variance of the inverse regression for estimating the central subspace. The central subspace is

the low dimensional minimal subspace that preserves the correlation between the input and out-

put points. Sigalet. al[158] proposed latent variable model based on shared kernel information

that defines a multimodal density over the input feature space, the shared latent space and the

output space. The advantages of this model is that it has lower complexity for learning and the

conditional distribution can be easily used to condition onany combination of the input, output

and the shared latent space.

2.6 Tracking and Dynamics

In most cases, the human pose needs to be estimated for a sequence of images rather than a

single image and therefore needs to be tracked. Tracking serves multiple purpose of smoothing

the estimated pose for a sequence of time steps and also facilitates resolving pose ambiguities

by assigning larger weights to poses closer to pose predicted in the previous time step. Tracking

plays a critical role in 3D pose estimation from monocular image sequence primarily due to lack

of observability and ambiguity which is significantly more severe compared to multi-sensor

scenarios.

Tracking human motion requires modeling dynamics of human activities and a variety of

tracking frameworks exist in literature. Most tracking models are based on first and second-

order Markov models[49, 89] or auto-regressive(AR) processes[128]. Agarwal and Triggs[6]

use a second order AR dynamical model for tracking 3D human pose. Repetitive and cyclic

motions like running and walking may be modeled using Switching Linear Dynamic System

(SLDS) [128, 131, 132, 84] which is a second order stochasticprocess and allows more com-

plex activities to be modeled, although they are computationally expensive to learn for high

dimensional output states. A variety of non-parametric models based on particle filtering also

exist for tracking[141, 154, 153, 105]. These however require a large training dataset and also

does not infer the probabilistic density function.
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Most of the recent approaches track high dimensional human state space by learning low di-

mensional subspace using methods such as PCA[34, 62], LLE, Isomap or Laplacian Eigenmaps[65,

162, 193, 134, 120, 187], and tracking the low-dimensional representation of 3D pose in the

learned latent space. To reconstruct the 3D pose in originalambient space, we require an addi-

tional step to map the points from the latent space to ambientspace. Sminchisescu and Jepson

[162] use spectral methods(Laplacian Eigenmaps) to learn low dimensional subspace and an

RBF mapping to reconstruct poses from latent positions.

Several methods have also been proposed to learn low dimensional subspaces of dynamic

models. The motivation behind these methods is to exploit the dynamic nature of the data in

addition to only correlations. As a result, the learned subspaces exhibit both temporal smooth-

ness and the periodic characteristics of the motion they model. Urtasun et. al [187] proposed a

latent variable dynamical model(Gaussian Process DynamicModel) that explicitly models the

dynamics in the latent space. Moon and Pavlovic[120] used a hybrid framework of Gaussian

Process Latent Variable Model(GPLVM) and Marginal Auto-Regressive(MAR) model to learn

the non-linearly embedded subspace of stable auto-regressive sequences. The learned subspace

is used as a prior distribution to estimate the generative Nonlinear Dynamic System models

used for tracking 3D human poses.
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Chapter 3

Bayesian Mixture of Experts

3.1 Introduction

One-to-many mappings, commonly refered to as multi-valuedfunctions, are a common occur-

rence in computer vision. In this chapter we describe Bayesian Mixture of Expert model for

learning compact models for multi-valued functions. The contents of this chapter are based on

the work,BM3E : Discriminative Density Propagation for Visual Tracking, Cristian Smin-

chisescu, Atul Kanaujia, Dimitris Metaxas,IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 2007and the technical reportLearning to Reconstruct 3D Human Motion

from Bayesian Mixture of Experts, A Probabilistic Discriminative Approach, C. Sminchisescu,

Atul Kanaujia, Zhiguo Li, Dimitris Metaxas,Technical Report, University of Toronto, Oct.

2004.

The name “multi-valued functions” is a misnomer as functions are one-to-one or many-to-

one relations. Multi-valued functions refer to one-to-many relations that usually arise from the

inverse of non-injective functions like trigonometric, hyperbolic, exponential and even powered

functions. In computer vision, perspective projection is one such example function which does

not have an inverse function since an object when observed from different viewpoints may

render 2D images that are similar in appearance. The mappingfrom observed 2D images to

3D shapes is therefore a one-to-many relation and cannot be functionally approximated. In

probabilistic settings, this is equivalent to saying that for an object conditional probability of

3D pose for a given observed 2D image is multimodal and several probable solutions exist for

it. In context of human 3D pose estimation problem from monocular image sequences, this

essentially means that several 3D human pose states may havesimilar 2D image observations

both in terms of shape and appearance. Modeling relation between the observed 2D images and

the corresponding 3D poses therefore produces highly multimodal distributions [153, 163, 161].
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Deterministic human pose estimation algorithms [39, 124, 160, 148, 5, 4, 65] attempt to

directly estimate the conditional distributionp(x|r) of 3D pose state from the set of training

exemplarsD = {(r(i),x(i)) | i = 1 . . . N}, wherer(i) are the observations andx(i) are the 3D

pose states. The labeled exemplars are assumed to be noisy samples from thejoint distribution

of predictor and response variablesp(x, r) .

Note that it is difficult to avoid ambiguity in 3d pose estimation as it is intrinsic to the struc-

ture of the problem. More sensitive descriptors may be able to discriminate between some of the

ambiguous poses but may not generalize well across perturbations caused due to illumination

changes, disproportionate body parts or viewpoint changes. In order to resolve ambiguities, the

multi-valued mappings should be accurately modeled in any pose estimation framework.

A number of methods have been proposed in the literature thattarget the problem of 3D

human pose estimation by learning these mappings [148, 15, 121, 182, 5, 4]. Mappings may

be learned either as non-parametric nearest neighbor regression model[148, 15, 182, 121] by

constructing efficient data structures for faster retrieval or as a parametric regression model

[5, 4, 65] of linearly weighted sum of, generally non-linearand fixed, basis vectors. Training

nearest neighbor regression thus involves learning locality sensitive indexing of the nearest-

neighbors of the observed input and predicting the output asweighted combination of the out-

puts corresponding to them. Learning parametric regression models typically involves opti-

mization of regularized cost function to estimate model parameters (weights associated to the

basis vectors). For an observed input covariate, the outputis obtained as weighted combination

of the basis vectors[5, 4, 65], or affine reconstruction fromjoint centers [104, 174, 121]. Among

discriminative methods, a notable exception is [138], who clustered their dataset into soft parti-

tions and learned functional approximations (e.g. perceptrons or regressors) within each of the

clusters. However, clusterwise functional approximation[133, 56, 138] is only going halfway

towards a multi-valued inversion, because inference is notstraightforward. The problem is

that the framework essentially models the 2D-3D relation using a joint distribution and not a

conditional distribution. Therefore, for new inputs, cluster / perceptron membership probabili-

ties cannot be computed as during (supervised) learning, because the outputs are missing. The

learned mixture coefficients are not useful because they arefixed and obtained as averages over

the training set. Therefore it is not clear what approximator or set of approximators to use for
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any new observation. Various post-hoc strategies based on finding input cluster neighbors may

be used, but these fall out of the estimated model that is not optimized to consistently compute

such queries. On the other hand averaging across different cluster predictors can give poor re-

sults (see 3.2 for a discussion). Nevertheless, clusterwise regression [133, 56, 138] is useful as

a proposal mechanism,e.g. during generative inference based on quadrature-style Monte-Carlo

approximations and indeed this is how it has been primarily used [138]. A related method has

been proposed by [76], where a mixture of probabilistic PCA is fitted to the joint distribution

represented as silhouette features in multiple views paired with their 3D poses. Reconstruction

is based on the MAP estimates. In this imaging setting the state conditional could be uni-

modal, but missing data makes inference (i.e. conditional computation) non-trivial, demanding

in principle, an application of Bayes’ rule and marginalization (see our§3.5).

In this chapter, we describe formulation and evaluation of Bayesian conditional mixture of

experts that allows flexible discriminative modeling. The proposed framework is motivated by

the fact that many vision problems like 3D pose estimation and tracking involve the recovery

of inverse, intrinsically multi-valued mappings. Conditional distributions of ambiguous static

or dynamic covariates are therefore multimodal and requiremultiple function approximators

to map similar input observations to multiple plausible butperceptually different outputs. Our

algorithms are based on hierarchical mixture of experts [87, 92, 194, 30] and joint mixture

of experts [199, 184]. Mixture of Experts models are elaborated versions of clusterwise or

switching regression [133, 56, 138], where the expert mixture proportions (called gates) are

themselves observation-dependent predictors. These gates distributions represent the compe-

tence of the experts to predict for an input observation and are modeled as normalized softmax

activation functions. Inference is simple and produces multimodal state conditionals. Learning

is different from [194] in that we use sparse greedy approximations, and differs from [30, 184]

in that we usetype-II maximum likelihoodBayesian approximations [113, 180] and not struc-

tured variational ones.
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3.2 Overview of Bayesian Learning Framework

Bayesian learning intrinsically embodies regularizationand model selection using Occam’s

razor[113] [180].’Occam’s razor’ is the principle that states that simpler models should be pre-

ferred over unnecessary complex models. Selecting a model that fits best to the training data

does not guarantee best performance on the test data. Best fitlearning leads to implausibly de-

tailed and over-parameterized models that interpolate andgeneralize poorly. Bayesian learning

theory provides us with the framework to quantify the complexity of the models and systemat-

ically promote simpler models by penalizing the over-parameterization. Bayesian learning is a

three level process.

In thefirst levelthe model is fit to the observed data by maximizing posterior distribution

over the model parametersΘ.

p(Θ|D, α, β,M) =
p(D|Θ, β,M)p(Θ|α)

p(D|M)
(3.1)

The normalizing constant is called the evidence of the modelM and is not required for fitting

a given modelM to the data setD. The first term on right hand side(likelihood) is the loss

function and second term(prior distribution) is the smoothing factor. α andβ are the scale

parameters of these distributions. Assuming the distributions to be gaussians with appropriate

normalization factors, in the current settings:

p(D|Θ, β,M) =
e−βLΘ(D)

(2π/β)N/2
(3.2)

p(Θ|α,M) =
e−αP (Θ)

∫

e−αp(Θ)dΘ
(3.3)

whereLΘ is the loss function to be minimized andP (Θ) is the penalty term for penalizing

complex models with larger|Θ| (smoothing). The posterior obtained is a joint function of

scale parametersα, β for the loss function and smoothing prior respectively. Givenα andβ,

most probableΘMP can be obtained by maximizing the posterior distribution (3.1).

The Second levelof bayesian learning involves model selection by estimating the most

probable scale parametersαMP andβMP by maximizing the posterior distribution:

p(α, β|D,M) ∝ p(D|α, β,M)p(α|M)p(β|M) (3.4)
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For uniform prior distributions ofα andβ, maximizing (3.4) is equivalent to maximizing the

evidenceP (D|α, β,M). This evidence maximization procedure is calledType II Maximum

Likelihood maximization and can be used to compute most probableαMP andβMP as the

modes of the likelihood distribution obtained by marginializing out the parametersΘ:

p(D|α, β,M) =

∫

p(D|Θ, β,M)p(Θ|α,M)dΘ (3.5)

The posterior distributions for model parametersΘ is approximated asP (Θ|D, α, β,M) ≈

P (Θ|D, αMP , βMP ,M) which can be used with (3.1), to estimate most probable parameters

Θ = ΘMP (mode of the posterior distribution(3.1)),αMP andβMP using iterative evidence

maximization[113].

Thethird stageof Bayesian Framework allows us to quantitatively rank different models by

comparing different basis functions, the regularization prior distributions (with the scale param-

eterα) and the noise models(with the scale parameterβ). Different priors and basis functions

corresponds to different hypothesis about the unknown datageneration process and can be

compared by evaluating evidence. In the past, [113][124] have proposed Gamma distribution

for the prior for scale parametersα andβ. Using gamma priors causes posterior distribution

of scale parameters to concentrate at large values for inputs which contribute little towards the

data interpolant to be predicted. TheΘ parameters corresponding to these low relevance in-

puts can be pruned. The parameter setΘ so obtained is sparser compared to those obtained by

Maximum Marginapproaches like SVM. This formulation is a form ofAutomatic Relevance

Determinationand has been applied in a variety of optimization methods in Gaussian process

like settings.

3.3 Mixture of Experts Framework

The mixture of experts(ME) model [87, 92, 194, 30] consists of a gate distribution that groups

data points into multiple clusters and a set of experts that are local, contextual function approx-

imators fitted to each of the clusters. ME model extends clusterwise regression [56, 138] which

is a maximum likelihood methodology for simultaneously fitting multiple regression functions

and clustering a dataset into M clusters. For the observation-state(predictor-response) pairs



48

D = {(r(1),x(1)), (r(2),x(2)), · · · , (r(N),x(N))} and a desired value of M, clusterwise regres-

sion assumes that the output statex(i) is distributed as mixture of Gaussian distributions :

x(i) ∼
K

∑

m=1

gmpm(x(i)|r(i),Wm, σM ) (3.6)

wheregm are fixed cluster proportions that are estimated using maximum likelihood learning

in , Expectation Maximizationframework.

Adaptive mixture of experts[87] is a competitive learning model, consisting of multiple

regression functions and an associated weight that is inputdependent. These probabilistic

weights, henceforth referred to as ‘gates’, model the mixing proportions of different clusters.

The idea behind the gates is to make a stochastic decision about which single expert to use for

each new input rather than linearly combining the expert outputs with fixed weights. The ex-

perts transform their inputs into output predictions that are combined in a probabilistic mixture

model.

For modeling a conditional distribution, the ‘inputs’ can be observationsr(n) when model-

ingp(x(n)|r(n)), statesx(n) when modelingp(x(n)|x(n−1)) or observation-state pairs(x(n−1), r(n))

for p(x(n)|x(n−1), r(n)). The ‘output’ is the state,x(n) throughout. The model is consistently

parameterized and has both gate and expert parameters that are jointly estimated during learn-

ing. Whereas some of the inputs multiple plausible outputs may be possible and will have

different predictions from the experts, less ambiguous inputs will have all the experts predict-

ing similar outputs. All the gates outputs for the ambiguousinputs will typically have large

values, while for unambiguous inputs, most of these gate values will be 0 in order to assign

higher probability to a particular expert. Formally this isdescribed by:

p(x|r,W,Ω,λi,βi) =
M
∑

i=1

g(r|λi,βi)p(x|r,Wi,Ω
−1
i ) (3.7)

where the gates and the expert distributions are:

g(r|λi,βi) =
f(r|λi,βi)

∑M
k=1 f(r|λk,βk)

(3.8)

p(x|r,Wi,Ωi) = N (x|Wiφ(r),Ω−1
i ) (3.9)

Herer are input or predictor variables,x are outputs or responses,g areinput dependentpos-

itive gates, computed as functionsf(r|λi,βi), parameterized by the weightsλi (f should
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produce probabilities as gatesg within [0, 1]). By constructiong are normalized to sum to 1 for

any given inputr. Also p are Gaussian distributions (3.9) with covariancesΩ−1
i , centered at

‘expert’ predictions, here kernel (φ) regressors with weightsWi. The parameters of the model

including experts and gates, are collectively stored inΘ = {(αi,Wi,Ωi,λi,βi)|i = 1 . . .M}.

Learning the mixture of experts essentially involves optimization of the parametersΘ by

maximization of the log-likelihood of a data set,D = {(r(i),x(i)) | i = 1 . . . N} i.e. the

accuracy of predictingx givenr, averaged over the data distribution.

Learning in mixture of experts, as originally proposed by Jordanet. al[92], is also based on

Expectation-Maximization framework coupled withIteratively Re-weighted Least Square(IRLS)

algorithm for gates estimations. Our algorithm is based on the original ME learning algorithm

and proceeds as follows. In the E-step we estimate the posterior:

h(x, r|Wi,Ωi,λi,βi) =
g(r|λi,βi)p(x|r,Wi,Ω

−1
i )

∑M
j=1 g(r|λj,βj)p(x|r,Wj ,Ω

−1
j )

(3.10)

h gives the probability that the data is mapped using theith expert, and can be obtained only

for labeled exemplars as it requires knowledge of both inputs and outputs. The M-step involves

solving the optimization problems for experts and gates. The gate parameters(λi,βi) are

estimated by essentially training a multi-category classifier with inputs asr and output ash.

The expert parameters(Wi,Ωi) are estimated by fitting regression functions in the inputs,re-

weighted by the expert membership probabilitiesh. The reweighing essentially enables fitting

the regression to the input domain only.

3.3.1 Learning Mixture of Experts Model

Mixture of experts (ME) models may differ in the way the conditional distributionp(x|r,Θ)

for the output is computed. The probability model for ME is given in eqn. 3.7 and involves two

conditional distributions, the gatesgi = p(i|r,λi,βi) and the expertsp(x|r,Wi,Ω
−1
i ).

The gates distribution plays a key role in the learning of mixture of experts model and is

essentially a multi-category classifier. The gates may be discriminatively modeled as a softmax

function [87, 92, 194, 30] or generatively modeled as a naiveBayes classifier [199, 184]. Dis-

criminative modeling leads to nested EM algorithm as the cost function has intractable form

and is typically optimized using numerical optimization methods(like Iterative Re-weighted
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Least Square). Generative modeling uses Bayes’ rule to express the gate distribution as :

gi = p(i|r,λi,βi) =
p(i)p(r|i,λi,βi)

∑M
j=1 p(j)p(r|j,λj,βj)

(3.11)

This models the inverse distributionp(r|i,λi,βi) and does not require costly nested loop EM

algorithm, as discussed in detail in the§3.5.

Next section introduces the Bayesian Mixture of Experts model. In the thesis we have used

conditional mixture of experts models, discriminative gate distribution, and propose a learning

framework based on Bayesian model selection and regularization. We have also implemented

the Mixture of Experts model with generative gates and discuss it in more detail in the§3.5.

3.4 Bayesian Conditional Mixture of Experts

A full Bayesian treatment requires computing posterior distributions over a set of parameters

(weights of regressor or classifier) and associating a set ofhyperparameters to control the prior

distributions. As in most cases the exact computations are intractable, we rely on approxima-

tions and design iterative Bayesian EM algorithms, based ontype-II maximum likelihood(ML-

II) [113, 180]. ML-II optimization is a Bayesian model selection technique with greedy (expert

and gate weights) subset selection. This strategy aggressively sparsifies the experts and the

gates by eliminating inputs with small weights after each iteration [180, 102]. As in many

Bayesian settings [113, 180, 30], the weights for the experts Wi and the gatesλi(3.7), are

controlled by hierarchical priors, typically Gaussians with 0 mean, and having inverse variance

hyperparametersαi (βi for the gates) controlled by a second level of Gamma distributions.

This gives an automatic relevance determination mechanism[113, 180] that avoids overfitting

and encourages compact models with fewer non-zero weights for efficient prediction.Inference

in these model is straightforward using (3.7). The result isa conditional mixture distribution

with components and mixing probabilities that are input-dependent. We now provide the details

of the sparse Bayesian learning applied to mixture of experts and the associated inference.

3.4.1 BME Formulation

In the conditional mixture of experts model, the data generation process assumesN data points

are produced by one ofM experts, selected in a stochastic manner. This is modeled byindicator
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(hidden) variablesZ = {z
(n)
i |i = 1 . . .M, n = 1 . . . N} wherez(n)

i is 1 if the output data point

x(n) has been produced by experti and zero otherwise. The parameters and hyperparameters

of the model are denoted byΘ, whereΘ = {(Wi,Ωi,αi,λi,βi) | i = 1 . . .M}, andλi, Wi

are the individual gate and expert predictor parameters respectively. We omit the bias terms for

clarity. The conditional probability of the outputx(n) (of dimensionD) for an observed input

r(n) (of dimensiond) is a mixture model withM components:

p(x(n)|r(n),Θ) =

M
∑

i=1

p(z
(n)
i |r(n),λi)p(x

(n)|r(n),Wi,Ω
−1
i ) (3.12)

Figure 3.1: Graphical model of mixture of experts model[30]. We show here a detailed de-
pendency graph of the parameters and the hidden variables inthe BME model. Shaded nodes
indicate instantiated variables that are observed and usedas inputs in the conditionals Bayesian
Mixture of Experts model.

The probability of each expert is a Gaussian centered at its predictionWiφ(r(n)), whereφ

is a vector of kernel functions:

χ
(n)
i = p(x(n)|r(n),Wi,Ω

−1
i ) = N (x(n)|Wiφ(r(n)),Ω−1

i ) (3.13)

The conditional (prior) probability of selecting experti, given the inputonly, is implemented

using softmax function. This ensures that the expert outputs are probabilistically consistent

(positive and sum to 1), for any given input:

g
(n)
i = p(z

(n)
i = 1|r(n),λi) =

eλ
⊤
i φ(r(n))

∑M
k=1 e

λ⊤

k φ(r(n))
(3.14)

The conditional (posterior) probabilityh(n)
i of selecting experti, givenboth the inputr(n)

and the outputx(n), is:

h
(n)
i = p(z

(n)
i = 1|x(n), r(n),Wi,λi,Ωi) =

g
(n)
i χ

(n)
i

∑M
k=1 g

(n)
k χ

(n)
k

(3.15)
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The posterior is only available during learning. For inference (prediction) based on (3.12),

the learned prior (3.14)i.e. the gate distribution, is used. The gate and expert weightshave zero

centered Gaussian priors, with variance controlled by a second level of Gamma hyper-priors.

This avoids overfitting and provides an automatic relevancedetermination mechanism, encour-

aging compact models with fewer non-zero expert and gate weights, for efficient prediction

[113, 124, 180, 30]:

p(λi|βi) =
d

∏

k=1

N (λk
i |0,

1

βk
i

) (3.16)

p(Wi|αi) =

D
∏

j=1

d
∏

k=1

N (wjk
i |0,

1

αk
i

) (3.17)

p(αi) =
d

∏

k=1

Gamma(αk
i |a, b) (3.18)

p(Ω−1
i ) = Gamma(Ω−1

i |c, d) (3.19)

p(βi) =

d
∏

k=1

Gamma(βk
i |a, b) (3.20)

Gamma(v|a, b) =
bav(a−1)e−bv

Γ(a)
(3.21)

The parameters(a, b) are set toa = 10−2 andb = 10−4 to give broad hyper-priors [30,

113, 124, 180].The likelihood of the incomplete datasetD can be written as:

ℓ(D|Θ) =
N
∏

n=1

M
∑

k=1

p(z
(n)
k = 1|r(n),λk)p(x

(n)|r(n),Wi,Ω
−1) (3.22)

This has an inconvenient form and is difficult to maximize dueto the summation. Instead, a

more convenient distribution to optimize is the likelihoodof the complete dataset that can be
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written as:

ℓc(D,Z|Θ) =
N
∏

n=1

p(z
(n)
k = 1|r(n),λk)p(x

(n)|r(n),Wi,Ω
−1) (3.23)

=

N
∏

n=1

M
∏

k=1

{p(z(n)|r(n),λk)p(x
(n)|r(n),Wi,Ω

−1)}z
(n)
k (3.24)

(3.25)

Jordanet. alused maximum likelihood learning based on complete likelihood optimization to

train ME model[92]. However as discussed above, models obtained using ML learning often

fail to generalize well. In the next section, we propose a learning framework based on opti-

mization of the posterior distribution over the unknown parametersΘ. Within the optimization

framework we also use Bayesian Model selection to avoid overfitting.

3.4.2 Posterior Formulation and Bayesian Inference

Having formulated the prior distribution and the likelihood, Bayesian inference proceeds by

computing the posterior over the unknown parameters of the model. The complete posterior

can be factorized as:

p(W,λ,Ω,α,β|Z,D) =
p(Z,D|W,λ,Ω,α,β)p(W,λ,Ω,α,β)

p(Z,D)
(3.26)

HereZ = {
(

r(n),
[

z
(n)
1 , · · · , z

(n)
M

])

|n = 1 · · ·N} denotes the set of the data pair of the input

variable and the corresponding indicator variable (denoting the expert used for mapping the

data point). The posterior distribution in this form is analytically intractable as it is difficult to

compute the normalizing integral:

p(Z,D) =

∫

{p(Z,D|W,λ,Ω,α,β)p(W,λ,Ω,α,β)}dWdαdΩdβ (3.27)

We therefore factorize the posterior distribution using the chain rule and the fact that the pos-

terior ofW andλ are conditionally independent given respective hyperparameters(as depicted

in the graphical model fig.3.1) as:

p(W,λ,α,Ω,β|Z,D) = p(W|α,Ω,Z,D)p(α,Ω|Z,D)p(λ|β,Z)p(β|Z) (3.28)
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For Mixture of Experts learning, we compute theM posterior distributions for the weights of

each of the experts and the gate function. The expert parameters are the weights and the vari-

ance of the Gaussian centered at the prediction of the kernelregressor{W,Ω}(3.13). Gate

parameters are the weightsλ (3.14) of the kernelized inputs to the softmax activation gate

functions. The posterior distribution is still intractable due to non-Gaussian posterior distri-

butions for the hyperparameters{α,Ω,β}. We are therefore forced to make following key

assumptions to facilitate the analytical computation of posterior:

1. For the joint posterior distribution over weights for theexperts, we assume the following

conditional independence given the indicator variablesZ:

p(W,α,Ω|D,Z) =
M
∏

i=1

p(Wi,αi,Ωi|D,Z) (3.29)

This is a reasonable assumption as the experts are learned locally within each of the

clusters andZ effectively encodes the soft clustering of the dataset in M clusters. Under

this assumption we can estimate the hyperparameters for each expert independently of

the others given the values of indicator variablesZ.

2. We approximate the hyperparameter posteriorsp(α,Ω|D,Z) andp(β|Z) by delta func-

tion at their modesδ(αMP ,ΩMP ) andδ(βMP ). This assumption is based on the fact

that for predictive modeling, the point estimate of these hyperparameters are representa-

tive of their posterior distribution. For the mixture of expert prediction:

p(x∗|D,Z) =

∫

p(x∗|W,λ,α,Ω,β)p(W|α,Ω,D,Z)p(α,Ω|D,Z)

p(λ|β,Z)p(β|Z)dWdλdαdΩdβ (3.30)

≈

∫

p(x∗|W,λ,α,Ω,β)p(W|αMP ,ΩMP ,D,Z)δ(αMP ,ΩMP |D,Z)

p(λ|βMP ,Z)δ(βMP |Z)dWdλ (3.31)

In the above equations the predictions obtained by marginalizing over the hyperparam-

eters are near-identical to those obtained by setting the hyperparameters to their most

probable values. The most probable values may be obtained asMAP estimate of the

hyperparameters. For theith expert, Maximum APosteriori(MAP) estimate of the hy-

perparameters is obtained by maximizing the likelihood(for the non-informative priors
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p(αi), p(Ωi)) :

p(αi,Ωi|D,Z) ∝ p(D|αi,Ωi,Z)p(αi)p(Ωi) (3.32)

In the Bayesian learning framework,p(D|αi,Ωi,Z) is known as the marginal likelihood

and its maximization is calledType II maximum likelihood[113, 28]. Notice that the

indicator variablesZ are required in marginal likelihood distribution and assigns higher

weights to the samplesD belonging to the associated clusteri and lower weights to rest

of the samples.

We can now readily formulate the sparse Bayesian learning for Mixture of Experts by inferenc-

ing the posterior distribution of the experts and gates parameters separately.

Inference of Expert Conditionals

The conditional likelihood for the expert distribution hasthe form:

p(D|Wi,Ωi,Z) =

N
∏

n=1

p(x(n)|r(n),Wi,Ω
−1, z

(n)
i ) (3.33)

=

N
∏

n=1

p(x(n)|r(n),Wi,Ω
−1)z

(n)
i (3.34)

=
N
∏

n=1

(2π)−
(N+1)

2

|Ωi|
− 1

2

exp{−
z
(n)
i

2
(x(n) − WT

i φ(r(n)))T Ω−1
i (x(n) − WT

i φ(r(n)))}

(3.35)

Notice that the effect of soft clustering using the indicator variablesz(n)
i is to simply reweigh

the input-output vectors(x(n), r(n)) by the coefficient
√

z
(n)
i . This enforces locality of the

experts by not allowing the training to be affected by data points belonging to other clusters.

The weight posterior for theith expert can be obtained as:

p(Wi|αi,Ωi,D,Z) =
p(D|Wi,Ωi,Z)p(Wi|αi)

p(D|αi,Ωi,Z)
(3.36)

The normalizing distribution is referred to as marginal likelihood in relation to Bayesian models

and its maximization is a model selection technique known asType II Maximum Likelihood. For

the expert weight parameters, this can be exactly computed in a closed form by marginalizing

out the weight parameters in the likelihood, as both the likelihood and the prior are normal
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distributions:

p(D|αi,Ωi,Z) =

∫

p(D|Ωi,Wi,Z)p(Wi|αi)dW (3.37)

The weights posterior can be analytically computed as normal distribution:

p(Wi|αi,Ωi,D,Z) = (2π)−(N+1)/2|ΣZ |
−1/2 exp{−

1

2
(Wi − µi)

T Σ−1
Z (Wi − µi)} (3.38)

The covariance and mean of the Gaussian distribution:

ΣZ = (Ω−1
i RZ

{

φ(r(n))
}T

RZ

{

φ(r(n))
}

+ Ai) (3.39)

µi = Ω−1
i ΣZRZ

{

φ(r(n))
}T

RZ

{

φ(r(n))
}

(3.40)

whereAi = diag{αi,1, αi,2, · · · , αi,K} andRZ{y
(n)} are the reweighted inputs according to

the clustering as denoted by the indicator variablesZ. The weights of the inputs are automati-

cally learned during the optimization and are discussed in more detail in the§3.4.5.

Inference of Gates Distributions

The role of the gate distribution is to do soft clustering of the dataset and allow points to lie

in multiple regions. The key advantage of using soft partitioning is to ameliorate the severe

variance error that is particularly prevalent in divide andconquer techniques used for training

decision trees like CART, MARS and ID3. The gate is a multi-category classifier with the

likelihood as a multinomial distribution:

P (Z|λ) =
N
∏

n=1

M
∏

i=1

ρi

{

φ(r(n))
}z

(n)
i

(3.41)

with canonical link functions as

ρj{f} =
e−fj(y)

∑M
i e−fi(y)

(3.42)

where the mappingsfj(y) =
∑N

n λj,nΦ(y,y(n)) = λT
j φ(y), are the kernel basis interpolant

at N training points. We assume independent weight priors for the M gates:

p(λ|β) =
M
∏

i=1

p(λi|βi) (3.43)

Computing the exact weights posterior for the gate functionis analytically intractable as the

likelihood is non-Gaussian and the normalization factor cannot be obtained by marginalizing

out nuisance parameters (as in the case of expert distribution in the equation 3.36).
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Hence we use Laplace approximation to estimate the marginalization integral in the equa-

tion 3.47. Laplace method approximates
∫

f(y)dy by a Gaussian distribution centered at the

modesŷ of f(y) and with the covariance computed as the hessian of ln{f(y)} at ŷ. If we

define:

H(λ,Z,β) = −ln{p(Z|λ,β)p(λ|β)} (3.44)

then we can re-write the posterior in the form:

p(λ|Z,β) ∝ exp{−H(λ,Z,β)}

≃ exp{−H(λMP ,Z,β)}exp{−
1

2
(λ − λMP )T A(λ − λMP )} (3.45)

whereA is the curvature of the posterior and is computed as the hessian:

A = ∇λ∇λ(ln{p(λ|Z,β)})|λMP
(3.46)

Note that the approximation is nothing but expanding the logarithm of the integrand using

Taylor series and retaining terms to second order. Also notethat the first order term vanishes

at the modesλMP = {λ(1,MP ), · · · ,λ(M,MP )}. For computing the marginal likelihood of the

hyperparametersβ we again make Laplace approximation:

p(Z|β) =

∫

p(Z|λ)p(λ|β)dλ

=

∫

exp{−H(λ,Z,β)}dλ

≃ exp{−H(λMP ,Z,β)}

∫

exp{−
1

2
(λ − λMP )TA(λ − λMP )}dλ

= exp{−H(λMP ,Z,β)}(2π)N/2|A|−1/2 (3.47)

The modeλMP is obtained by optimization of the weights posterior usingIterative Re-weighted

Least Square, the details of which are provided in the Appendix A. The sizeof error bars matrix

A scales with the number of experts M and may cause the optimization to become computa-

tionally expensive. We therefore assume block diagonal form for the covariance matrixA and

independently optimize the posterior for multiple gate parameters:

λMP = argmax[λ1,λ2,··· ,λM ]

{

M
∑

i=1

N
∑

n=1

z
(n)
i log ρi

{

φ(r(n))
}

−
M
∑

i=1

1

2
λT

i Biλi

}

(3.48)
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whereBi = diag {β1, · · · ,βK} are the hyperparameters corresponding to weight parameters

of the gate functionλi corresponding toith expert. The above approximation allows us to sim-

plify the complex weight posterior as a multivariate Gaussian. The approximation is accurate

as we expect the log-posterior to be unimodal due to negativedefinite Hessian (see appendix

A).

3.4.3 Optimizing the Hyperparameters

Proceeding further with the sparse Bayesian learning, we follow common optimization frame-

work for the expert and gate distribution under the assumption of independent hierarchical

priors(both for the gates and the experts). The weights corresponding to large hyperparameters

are removed from the set of basis vector as they have their posterior concentrated at zero and

therefore deemed irrelevant to the learned mapping function. The MAP estimates of the hyper-

parameters corresponding toith expertαi,MAP ,Ωi,MAP and the corresponding gate function

βi,MAP , that maximize the marginal likelihoodp(D|αi,Ωi) andp(Z|βi) respectively (eqn.

3.37) cannot be obtained in a closed form, and is estimated iteratively (by differentiating the

marginal likelihoods and equating them to zero).

α
(k+1)
i,j =

[

1 − α
(k)
i,j Λ(j,j)

]

+ 2a

µ2
i + 2b

(3.49)

(Ω−1
i )new =

‖x − WT
i Φ(r)‖2 + 2d

[

N −
∑

j(1 − Λ(i,i)αi,j)
]

+ 2c
(3.50)

where(a, b) and(c, d) are the parameters of the gamma priors overαi andΩi respectively. The

learning algorithm repeatedly applies the hyperparameterestimates to prune off the weights

W(i,j) that have largeα(i,j).

The learning of Bayesian mixture of experts model proceeds by iteratively clustering the

dataset and estimating the parameters for the experts and gate distribution. We use regular-

ized Expectation-Maximization framework to estimate the model parameters. In the next sub-

section we give a brief overview of proximal point algorithms on which the regularized EM

framework is based.
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3.4.4 Regularized Expectation Maximization

Mixture of Experts model is trained using maximum likelihood framework based on Expecta-

tion Maximization(EM). Given a set of labeled exemplarsD = {(r(n),x(n)) | i = n . . . N},

EM algorithm tries to estimate the unknown(missing) indicator variables

Z = {(r(n), z
(n)
i ) | i = 1 . . .M, n = 1 . . . N} by maximizing the expected value of the aug-

mented log likelihood over both observed and the missing variablesℓc(D,Z) = log(p(D,Z|Θ)).

Expectation step consists of estimation of the expected value of the hidden variablesZ and the

complete log likelihoodQ(Θ,Θk) = E
[

ℓc(D,Z|Θ) | D,Θk
]

using the value of the parame-

tersΘ at thekth iteration. In the M-step, we compute the new parameter estimates,Θk+1 by

maximizing the expected value of the complete log likelihoodQ(Θ,Θk) with respect toΘ. The

incomplete log likelihood is expressed as:

log(p(D|Θ)) = E
[

log(p(D,Z | Θ))|D,Θk
]

− E

[

log(
p(D,Z|Θ)

p(D|Θ)
)|D,Θk

]

(3.51)

ℓ(D) = Q(Θ,Θk) +H(Θ,Θk) (3.52)

whereH(Θ,Θk) = −E
[

log(p(Z|D,Θ))|D,Θk
]

. It follows from the Jensen’s inequality and

the factH(Θ,Θk) ≥ 0 that increase in the expected value of the complete log likelihood

ℓc(D,Z) also increases the incomplete likelihoodℓ(D). The standard EM algorithm has many

drawbacks, prominent being its slow rate of convergence towards the end and tendency to

overfit the data. We introduce a regularized EM (REM) algorithm to avoid overfitting and learn

sparser mixture of experts models. The key motivation behind the regularized EM is to penalize

complex models and promote compact models that have lesser tendency to overfit the data.

We reformulated the learning of Mixture of Experts usingproximal point algorithm[29].

For a concave objective functionF(Θ) a generalized proximal point algorithm is defined by

the iteration:

Θ(k+1) = argmaxΘ

[

F(Θ) − ψ(k)d(Θ,Θ(k))
]

(3.53)

whered(Θ,Θ(k)) ≥ 0 is a non-negative distance-like penalty function andψ(k) is a sequence

of positive numbers. Expectation-Maximization is a special case of proximal point algorithm
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[50] with ψ(k) = 1 and a Kullback-type proximal penalty:

Θ(k+1) = argmaxΘQ(Θ,Θk)

= argmaxΘ

{

log(p(D,Z|Θ)) + E

[

log(
p(D,Z|Θ)

p(D|Θ)
)|D,Θ(k)

]}

(3.54)

This is equivalent to maximizing the following equation:

Θ(k+1) = argmaxΘ

{

log(p(D,Z|Θ)) + E

[

log
p(Z|D,Θ)

p(Z|D,Θ(k))
|D,Θ(k)

]}

(3.55)

Each iteration of EM is guaranteed to increase the complete log likelihoodℓc(D,Z) (and the

incomplete log likelihoodℓ(D)). Regularized EM algorithm is defined by the iteration in the

M step as:

Θ(k+1) = argmaxΘ

[

ℓc(D,Z) − Φ
(

Θ,Θ(k)
)]

= argmaxΘ

[

ℓ(D) − Φ
(

Θ,Θ(k)
)

− E

[

log
p(Z|D,Θ(k))

p(Z|D,Θ)
|D,Θ(k)

]]

(3.56)

The penalty term satisfies the conditionΦ(Θ,Θ(k)) ≥ 0 and is iteration dependent, non-

negative value. We can immediately prove the convergence ofthe Regularized EM by adding

another penalty termΦ(Θ,Θ(k)) to the termψ(k)d(Θ,Θ(k)) in the (3.53). In [135] Rockafeller

showed that superlinear convergence is achieved when the sequenceψ(k) converges to 0. Note

that for thekth iteration:

ℓ(k+1)(D) − ℓ(k)(D) ≥ Φ
(

Θ(k+1),Θ(k)
)

− Φ
(

Θ(k),Θ(k)
)

+ E

[

log
p(Z|D,Θ(k))

p(Z|D,Θ(k+1))
|D,Θ(k)

]

− E

[

log
p(Z|D,Θ(k))

p(Z|D,Θ(k))
|D,Θ(k)

]

(3.57)

WhereE
[

logp(Z|D,Θ(k))

p(Z|D,Θ(k))
|D,Θ(k)

]

= 0 andE
[

log p(Z|D,Θ(k))

p(Z|D,Θ(k+1))
|D,Θ(k)

]

≥ 0. The addi-

tional penalty termΦ
(

Θ(k),Θ(k)
)

= 0. In order to have monotonic convergence of the log

likelihood using the optimization equation (3.56), the choice of the penalty term should be such

that Φ
(

Θ(k+1),Θ(k)
)

≥ 0. For the penalty function, we may use a weight decay prior (cor-

responding to ridge regression)[194], to regularize the estimated function. Instead we employ

hierarchical priors with automatic relevance determination (ARD) mechanism in our frame-

work that promotes compact models, by selecting only relevant basis vectors from the training
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set. As we show in the next section, the choice of the penalty function, satisfies the requirement

for monotonic increase of the likelihood function and thus leads to faster convergence of the

expectation maximization iterations.

3.4.5 Regularized Expectation Maximization for Bayesian Mixture of Experts

We use zero-mean Gaussian distribution over the parametersas the prior that constitute a

quadratic penalty term in the cost function being optimizedin the M-step. The prior distri-

butions on the smoothing penalty parameters of theith expert and the corresponding gate func-

tion are conditioned on the hyperparametersΘ = {(Wi,λi|Ωi,αi,βi)}, and are estimated

using the most probable values of the hyperparameters. The most probable values of the hy-

perparametersΩMP
i ,αMP

i ,βMP
i are obtained by maximizing their marginal likelihood(type-II

maximum likelihood). The regularization penalty for the M-step is a quadratic term that is inde-

pendent of the previous iteration and has the form(W(k))T A(k)W(k) where the most probable

hyperparametersA(k) = diag{α1, α2, · · · , αN} in thekth iteration is obtained by optimizing

the marginal likelihood at every M-step. It is straight forward to prove the monotonic increase

in the likelihood as the(W(k+1))TA(k+1)W(k+1) − (W(k))TA(k)W(k) ≥ 0.

Because the regularization term biases the searching spaceto some extent, we expect the

REM algorithm to also converge faster than the standard EM algorithm. We confirm this in the

experiments on the toy dataset discussed in the§3.4.6. In addition to faster convergence rate,

the hierarchical priors lead to a special case of EM algorithm that promotessparsityof weights

at every EM iteration of the learning algorithm.

The Bayesian mixture of experts is trained by iteratively estimating the expected values

of the missing data (the indicator variablesZ) in the E Step followed by the maximization

of the penalized likelihood, which in our formulation is theposterior over the weights param-

eters of the BME. The complete posterior over all the parameters Θ = {W,λ,Ω,α,β} is

intractable and does not have a convenient form that can be analytically optimized. Instead, we

optimize the posterior over the weight parameters with MAP estimates of the hyperparameters

{ΩMP ,αMP ,βMP } obtained at each M-step. The posterior over the expert and gate weight
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parameters can be rewritten as:

p(W,λ|ΩMP ,αMP ,βMP ,Z,D)

∝

{

M
∏

i=1

p(Wi|α
MP
i ,ΩMP

i ,D,Z)

}

p(λ|βMP ,Z)

=

M
∏

i=1

{

p(D|Wi,Ω
MP
i ,Z)p(Wi|α

MP
i ,Ωi,Z)

}

p(Z|λ)p(λ|βMP )

=
N
∏

n=1

{

M
∏

i=1

{

p(x(n)|r(n),Wi,Ω
MP
i )z

(n)
i p(Wi|α

MP
i ,Ωi,Z)

}

M
∏

i=1

p(z
(n)
i |r(n),λi)p(λi|β

MP
i )

}

(3.58)

In the above equations we have factorized the posterior overthe expert weightsWi and the

gate parametersλ = {λi | i = 1 . . .M} into product of likelihoods and priors. The likelihood

function for the gates is expressed asp(z
(n)
i |r(n),λi) = ρi

{

φ(r(n))
}z

(n)
i . Having defined the

posterior distribution, we can now formulate the expectation maximization algorithm.

Expectation Step: The expectation step involves computing the expected values of the

missing variablesE[z
(n)
i ] = p(z

(n)
i = 1|x(n), r(n)). We can estimate this conditional distribu-

tion using Bayes’ rule

p(z
(n)
i = 1|r(n),x(n),Wi,λi,Ωi) =

p(x(n)|Wi, r
(n), z

(n)
i = 1,Ω−1

i )p(z
(n)
i = 1|r(n),λi)

∑M
m=1 p(x

(n)|Wm, r(n), z
(n)
m = 1,Ωm)p(z

(n)
m = 1|r(n),λm)

(3.59)

Note here that the expected values ofz
(n)
i may be non-integral as they represent the soft proba-

bility weight that the point(x(n), r(n)) is mapped using theith expert and follows the constraint
∑M

i=1E[z
(n)
i ] = 1.

Maximization Step: The maximization step estimates the parametersWi andλi for each

experti and the gate function respectively. It uses the soft clustering weights (expected values

of the hidden variablesE[z
(n)
i ]) obtained in the E-step to compute the expected value of the
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posterior. We maximize the log of the posterior as it is more analytically tractable:

log{p(W,λ,Ω,α,β|Z,D)} ∝
M
∑

i=1

N
∑

n=1

E[z
(n)
i ]log{p(x(n)|Wir

(n),Ω−1
i )}+

M
∑

i=1

log{p(Wi|αi,MP ,Ωi,MP )}+

M
∑

i=1

N
∑

n=1

z
(n)
i {log{p(z(n)

i |r(n),λi)} +

M
∑

i=1

log{p(λi|βi,MP )}

(3.60)

The update equations forWi andλi can be obtained by differentiating the log posterior with

respect to these parameters and equating them to 0. Note, that terms for the experts and the

gate distributions can be optimized separately to obtain the iterative updates for their respective

parameters:

W
(k+1)
i = argmaxWi

{
N

∑

n=1

E(z
(n)
i )log {p(x(n)|r(n),W

(k)
i , z

(n)
i ,Ωi)} − (W

(k)
i )T αiW

(k)
i }

(3.61)

λ
(k+1)
i = argmaxλi

{
N

∑

n=1

E(z
(n)
i )log {p(z

(n)
i |r(n),λ

(k)
i )} − (λ

(k)
i )T βiλ

(k)
i } (3.62)

For estimating the expert weightsWi we optimize the equation (3.61). This is weighted gen-

eralized least square problem and can be solved by reweighting the data terms{x(n),φ(r(n))}

as

{
√

E(z
(n)
i )x(n),

√

E(z
(n)
i )φ(r(n))

}

and fitting the regressor to the data terms. This effec-

tively reduces the influence of the data points that are mapped by different experts such that

the regression function fits locally in the associated cluster. The posterior distribution for the

expert weights can be exactly obtained(analytically) as Gaussian distribution. The Bayesian

model selection step for selecting a subset of relevant weights for the experts is carried out by

maximizing the marginal likelihood of the hyperparametersobtained by analytically integrating

out the weight parameters. The weights corresponding to thehyperparameters{αMP ,ΩMP }

having high value are deemed irrelevant, and are not used forlearning the expert mapping. This

implicitly penalizes more parametrized models by reducingthe number of weight parameters in

the expert kernel mapping. The maximization of the marginallikelihood is an iterative process

and involves selection of relevant weights using the MAP estimates of the hyperparameters,

followed by kernel ridge regression to estimate the weight parameters of the experts.
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The gate weights are estimated using a doubly looped iterative process by maximizing the

(3.62) which is equivalent to multi-category classification problem with inputs as the observa-

tion variablesr(n) and targets as the soft clustering weightsE(z
(n)
i ) that are computed during

the E-step. The posterior optimization is intractable analytically and requires Laplace approx-

imation to express the distribution as Gaussian. The mode ofthe posterior is obtained using

Iterative Re-weighted Least Square(IRLS), as discussed in detail in§3.4.2 and appendix A.

The computational cost for the exact updates for the gates parameters increases exponentially

with the number of experts. In principle, we may employ faster methods based on forward

selection for learning experts and gate distributions. Forward basis selection [66, 181] algo-

rithms commence with an empty basis set and iteratively optimize the cost function (Type II

Maximum likelihood) by sequentially selecting basis functions. This is in contrast to backward

elimination methods that start with the large basis set containing all the exemplars and itera-

tively eliminate non-relevant basis functions using automatic relevance determination (ARD)

mechanism. The decision to add a basis function to the basis set is based on the contribution

of the basis function towards minimizing the cost. If addinga basis function improves the

overall likelihood, it is included in the basis set. Similarly, for every addition to the basis set,

the contributions of the rest of the bases functions are evaluated. The bases functions rendered

irrelevant due to addition are deleted from the basis set. Both addition and deletion of a basis

function may increase the likelihood objective function. The candidate basis functions may be

chosen randomly or sequentially and are added to the basis set using an automatic relevance

determination mechanism. The iterations are repeated until the change in the objective function

(marginal likelihood) is less than a fixed threshold.

3.4.6 Evaluation of BME on Toy Dataset

We explain the Bayesian mixture of experts modeling throughan illustrative toy example. Our

dataset consists of about 250 values ofx generated uniformly in(0, 1) and then evaluated as

r = x+0.3 sin(2πx)+ǫ, with ǫ drawn from a zero mean Gaussian with standard deviation 0.05

(also shown in [30]). Notice thatp(x|r) is multimodal and for the input r around 0.5, there are

3 modes of the conditional distribution. In fig. 3.2 we show different models that use linear and

Gaussian kernel experts, as well as different gating functions, as presented in§3.4.1. First row
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Figure 3.2: Experts and gates fitted to a synthetic toy dataset using different Bayesian Mixture
of Experts models. (top row) Linear experts fitted using conditional BME and the correspond-
ing gate distributions. The gate function is a softmax function with log linear inputs. On the
right we show final prediction as weighted linear combination of expert predictions and most
probable experts. (middle row) Kernel experts fitted to the multimodal toy dataset. The gate
function is the softmax function. The output on the right areobtained by sampling the gate
distribution followed by the sampling from the chosen expert distribution. (bottom row) Kernel
experts and gate functions with kernelized inputs that generate more accurate gate distributions
at the tails. The output sampled from these gates exhibit lower variance

shows the Bayesian Mixture of Experts with three linear experts and log-linear gate distribution

fitted to the multimodal dataset. The plot on the right shows the predictions, both as the most

probable expert outputs and as the gate-weighted linear combination of expert outputs. Last

two rows show the results of BME using kernel experts and softmax gate functions. Last row

has the softmax gate activation function with kernel inputs. Notice the improved gate variance

at the tails due to kernel inputs (as opposed to linear inputsin the softmax gate function). Right

column compares the data generated by sampling gate distributions.

Fig. 3.3 shows the plot for conditional likelihoods with theEM iterations for the five differ-

ent mixture of experts implementations. For the experts we used linear regression learned
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Figure 3.3: Change in likelihoods with the EM iterations forvarious implementations of mix-
ture of experts models. In the figure we compare the learning rate of mixture of experts model
where the kernelized experts are learned either using ridgeregression(Ridge Exp.) or sparse
Bayesian learning(SBL). The gates are learned using IRLS algorithm or sparse Bayesian learn-
ing(SBL) and may have log linear or log nonlinear model. The convergence rate is maximum
for the ME with kernel experts and log nonlinear gates.

using least square estimate (standard EM) and the kernel basis implementation learned in

Bayesian framework (regularized EM). For the Gates distribution we used the softmax func-

tion learnt using Iterative Re-weigted Least Square(IRLS)method, Bayesian softmax function

and Bayesian multinomial log-nonlinear function(3.42), learnt using penalized likelihood max-

imization (MAP estimate). The plots clearly shows the improvement in the rate of increase of

likelihood with iterations due to regularized EM algorithmand non-linear parameter search in

Bayesian framework.

3.5 Mixture of Experts Based on Joint Density

Learning gate parameters of mixture of experts(ME) model iscomputationally expensive and

a variety of extensions to ME model have been proposed in the past. Amongst most notable

and relevant alternative to the ME implementation used in this thesis, was proposed by Xuet.

al[199]. Their formulation estimate the conditional density p(x|r,Θ) by modeling the joint

distribution over inputs and outputsp(x, r|Θ) and then obtain the conditional using Bayes’
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rule.

p(x|r,Θ) =
p(r,x|Θ)

∫

p(r,x|Θ)dx
(3.63)

This implementation leads to a different parametric form for the gates and essentially elimi-

nates the double loop optimization used for learning gates parameters in the Bayesian Mixture

of Experts. In the new architecture, optimization of gate parameters can be done in closed

form, leading to significantly faster convergence of the Expectation Maximization. Rosales

et. al[139] have also employed this architecture of ME in their implementation of Specialized

Mapping Architecture. Assume for generality, a full covariance mixture model of the joint

distribution over input-output pairs(x, r), given by:
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Note here that the joint Gaussian distribution3.64 can be decomposed as[139]:
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= N (r|µr
i ,Σ

rr
i )N (x|µx

i + Σxr
i (Σrr

i )−1(r− µr
i ),Σ

xx
i − Σxr

i (Σrr
i )−1Σrx

i ) (3.66)

Using the decomposition(3.65) and the Bayes’ rule(3.63), we can express the conditional

distributionp(x|r,Θ):

=

∑M
i=1 ρiN (r|µr

i ,Σ
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(3.67)

For the mixture of experts model based on the above formulation, we need to enforce ad-

ditional constraints thatx = WT r. We can now associate the conditionals in the (3.5) to the

components of the mixture of experts model - gates and the expert conditionals. Specifically

the mixture of experts model is learned as:

p(x|r,Θ) =

M
∑

i=1

g(r|δi)N (x|Wir,Ω
−1
i ) (3.68)
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where the parameter for the gate distributions include the component mixing proportionsρi and

the mean and variances of the Gaussians(µi,Σi). For the expert conditionalsN (x|Wir,Ω
−1
i )

learned in sparse Bayesian settings, the parameters include (Wi,αi,Ωi), whereαi are the

covariance parameters of the hierarchical priors. The gatedistribution is modeled as:

g
(n)
i =

ρiN (r|µi,Σ
−1
i )

∑M
k=1 ρkN (r|µk,Σ

−1
k )

(3.69)

The learning proceeds in a similar way as the Bayesian Mixture of Experts except the inference

of gate distributions, which can be obtained in a closed form. To estimate the joint model,

we introduce hidden variablesz(n)
i with similar interpretation as for the conditional in§3.4.1.

During the M-Step the posterior distribution over the hidden variables is computed based on

(3.10) and (3.69):

h
(n)
i = p(z

(n)
i = 1|x(n), r(n),Wi,λi,Ωi, ρi,µi,Σi)

=
ρiN (r|µi,Σ

−1
i )N (x|Wir,Ω

−1
i )

∑M
k=1 ρkN (r|µk,Σ

−1
k )N (x|Wkr,Ω

−1
k )

(3.70)

Note here that the gate distributions essentially denote the prior distributions in the above for-

mulation:

g
(n)
i = p(z

(n)
i = 1|r(n),λi = (ρi,µi,Σi)) (3.71)

In the E-Step, the mixing proportions, means and covarianceof the expert conditionals are

obtained [92, 199]:

ρi =

∑N
n=1 h

(n)
i

N
(3.72)

µi =

∑N
n=1 h

(n)
i r(n)

∑N
n=1 h

(n)
i

(3.73)

Σi =

∑N
n=1 h

(n)
i (r(n) − µi)(r

(n) − µi)
⊤

∑N
n=1 h

(n)
i

(3.74)

Fig. 3.4 shows the experts and gate distributions based on the conditional models estimated

from the joint distribution (as described in§3.5). The right column shows the data generated

from the model by sampling the gate distributions. Notice that the estimates for the experts

are similar, but the gates are somewhat different from the conditional models estimated directly

(fig. 3.2). Although the mixture of experts model based on thejoint distributions produce well-

fitted models for the toy dataset, we observed that these models are unstable when trained on
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Figure 3.4:(left) The experts and(middle) the gate distributions of mixture of experts model
learned by modeling the joint distribution over the input and output points.(right) shows the
plot of data points obtained by sampling the gates and the expert distributions

high dimensional input-output pairs. We therefore do not pursue these models in training our

discriminative framework.

3.6 Discussion

We have introduced a probabilistic framework for learning mixture of experts model in Bayesian

framework. Further, we use Bayesian mixture of experts(BME) to model multimodal distribu-

tions obtained from inverse of many-to-one mappings. Modeling perceptual data such as infer-

encing 3D human pose from 2D images is one such example where multiple human pose states

may generate similar 2D image observations under perspective projection. Strictly speaking,

the inverse mapping from the observations to states is multi-valued and cannot be functionally

approximated. BME allows us to learn these multi-modal distributions using multiple func-

tions and probabilistically selecting the experts based onthe observation. In addition to class

of algorithms that directly model the conditional distribution of output given the input, we also

develop Mixture of Experts models that model the joint distribution. Both the algorithms, as

discussed in§3.4.1 and§3.5, can be formulated to train using sparse Bayesian learning and are

useful for estimating compact conditional mixture of experts models.
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Chapter 4

Discriminative 3D Human Pose Reconstruction

4.1 Introduction

While humans are adept in inferring 3D states of the objects using only relatively low-resolution

visual observations, for the vision based systems, it is still a challenging task. From compu-

tational point of view, it is an ill-posed problem. There is loss of depth information due to

perspective projection of 3D objects to 2D image. Inferring3D states from 2D images is there-

fore a challenging problem and involves learning an inversemapping that is one-to-many, as

several distant 3D poses may generate similar 2D visual observations. Furthermore, for larger

degree of articulation of the objects, the computational cost increases exponentially with the

number of connected parts.

In this chapter we apply Bayesian mixture of experts learning to estimate and track articu-

lated 3D human pose from monocular image sequences. The contents of this chapter are based

on the publication,BM3E : Discriminative Density Propagation for Visual Tracking, Cristian

Sminchisescu, Atul Kanaujia, Dimitris Metaxas,IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2007.

Human body has highly articulated structure with high degrees of freedom. The skeleton

structure is organized as a hierarchy, with the root joint having global translation and rotation

parameters. The rest of the skeletal segments are obtained by constructing global transforma-

tion using all the segments in the hierarchy that connect this segment to the root. The joint

angles are represented in a local coordinate frame relativeto the parent joint. This is to avoid

the error in a single joint to distort the rest of the human pose. The global transformation is

obtained by a series of translation offsets and local rotational transformations of the segments

in the hierarchical path connecting the segment to the root.
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Typically, human 3D pose is represented as relative joint angles of the links with respect

to parent link and global 3D location of the root joint, codedas K-dimensional vectorxǫRK .

Representing 3D pose as joint angles (instead of joint locations) has an additional advantage

that the motion capture data from one skeleton can be easily imported to another skeleton

and used to deform a computer graphic character in animationsoftware like Maya and Poser.

A potential setback of using joint angles to encode 3D pose isthat angular measurement is

cyclical and angles separated by360o are the same. We overcome this problem by transforming

the discontinuous joint angle space to continuous sinusoidal space and representing key joint

angles with a pair of sine and cosine values.

The task of 3D human pose estimation is formulated as: given an observation (image de-

scriptor) vectorrǫRL, we want to infer the vector of joint anglesx using statistical learn-

ing models. Assuming the vector spaces for posesRK and observationRL to be continu-

ous, we aim to learn probabilistic conditionalp(x|r) and use it for inferring 3D poses from

the 2D observations. For a sequence of observations we propagate the filtered conditional

p(xi|R = {r1, · · · , ri}) over time and use it to estimate the 3D pose using all the past obser-

vations.

As discussed in chapter 1, there exist two broad paradigms of3D pose estimation techniques

- Top-down models (Generative models) and bottom-up models(Discriminative or Predictive

models). Both the techniques have their strengths and weaknesses.

Generative modelsdirectly learn the joint distributionp(x, r) = p(r|x)p(x) from the prior

distribution over 3D joint angles spacep(x) and likelihood functionp(r|x). The prior dis-

tribution explicitly models the poses and joint angles thathumans can assume during various

activities. The likelihood function is the probability of observing the image given the pro-

jection of 3D human model with the estimated pose state(joint angles) to 2D image plane.

The likelihood function typically uses low-level, shapes (or appearance) based image fea-

tures to determine similarity between the rendered 2D imageand the observation. One of key

challenges to generative approaches is modeling the complex likelihood function. A variety

of low level features such as chamfer distance transform, edges and contours can be used to

estimate the similarity. The posterior distribution over the 3D joint angle space is a highly

multimodal distribution due to similarity of limbs to the background and to each other, self
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occlusion, kinematic singularities and depth ambiguities. Hence there is a strong need to de-

velop robust observation likelihood functions that are able to differentiate between various 3D

poses that may generate similar 2D projections. A number of generative approaches have been

proposed[39, 82, 57, 154, 161, 185, 88, 83, 48, 170, 173] in the past. Due to inherent ambiguity

in the pose prediction, a few of these approaches[152, 154, 173, 57] represent the posterior as

a set of samples that are temporally propagated using particle filters and resolved over multiple

time steps by estimating optimal path trajectory.

Discriminative modelsprovides a complementary approach that directly learn the conditional

distributionp(x|r) directly from a set of labeled exemplars. Specifically, thisinvolves refor-

mulating the task of 3D human pose prediction as a regressionproblem whereby the mapping

from 2D images to 3D human is learned as a mapping function,F(r) : RL → RK fitting a set

of labeled exemplars. Despite of its apparent simplicity, it is not devoid of challenges, promi-

nent being the inherent multi-valuedness of the mapping function. Furthermore, there is also

a need for sufficiently representative, labeled training dataset to accurately learn the 2D-to-3D

mapping. Fig 4.1 illustrates various frequently encountered ambiguities Learning a regression

(a) (b) (c)

Figure 4.1:(a)180o Flipping ambiguity(b) Leg assignment ambiguity(c) Arm flipping ambi-
guity

function from 2D images to human poses in 3D is a non-trivial task and involves appropriate

choice of image descriptors that can compactly summarize the semantic content of observed

image. In addition, unlike generative models that are implicitly regularized, discriminative

models need to be explicitly penalized for over-parameterization, in order to avoid overfitting

in the absence of sufficient training data.

Nevertheless, discriminative modeling have been increasingly gaining popularity due to

their simplicity and improved performance in scenarios where ample labeled training data is

available. Discriminative models have been used in the past[138, 121, 148, 182, 10, 65] for
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directly predicting human pose states from the visual observations. Some of these methods

[10, 65] use single regressors to learn the mappings whereas[148, 182, 121] used a large

database of exemplar poses to predict states using fast nearest neighbor search. Rosales and

Sclaroff[138] used several forward mappings to learn the one-to-many function. They modeled

the relationship between observations and states using either a joint distribution over states and

observations, or as a conditional distribution. They fit a mixture of Gaussian model where each

Gaussian is a distribution around the mapping functions. The priors for each of the mapping

function is assumed to be constant. Similar approaches wereadopted by [7] and also by [76]

that modeled the joint distribution of silhouettes and poses using mixture of probabilistic PCA.

In this chapter, we propose a 3D pose estimation framework using bottom-up (discriminative)

Figure 4.2: Bayesian network depicting density propagation in a (left) discriminative chain
model and(right) generative chain model. Notice the reverse arrows in the discriminative
model, that represent marginal independence of the 2 parentnodes with a common child node.

modeling. The mapping from 2D images to 3D pose is multi-valued and therefore we fit mul-

tiple regressors using the framework ofBayesian Mixture of Experts(BME). BME provides an

efficient model to learn these mappings in a probabilistic consistent framework based on auto-

matic relevance determination(ARD) and expectation maximization (EM). Specifically, we use

sparse Bayesian learning (SBL) for training the experts andthe gate functions. As discussed in

the previous chapter, SBL uses automatic relevance determination mechanism to select sparse

basis set by optimizing the marginal likelihood over hyperparameters (type-II Maximum Likeli-

hood). The learned models are compact and regularized. BME clusters the joint space of input

features and the 3D poses into sub-domains and fits a mapping functionF(r) : RL → RK

within each of these domains. These domains are automatically learned based on the posterior

distribution that represents the “goodness of fit” of an expert to the data points in the domain.

In a typical 3D pose tracking framework, the pose variablext at each time stept is predicted
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using the filtered distributionp(xt|Rt = {r1, r2, · · · , rt}). In the proposed discriminative

tracking framework, we model this conditional as a mixture of Gaussian. At every time step we

obtain this conditional by marginalization of the learned distribution p(xt|rt,xt−1). In order

to avoid exponential increase in the number of hypotheses due to filtering, the low probability

components are pruned off at each time step. Human body has highly articulated structure,

with various connected components having high degrees of freedom (typically≈ 60 DOF).

The 3D pose state, which is typically represented using 3D joint angles, therefore has high

dimensionality.

Learning a multi-valued mapping from the input image feature space to joint angle space

involves learning multiple mappings for each of the joint angles either assuming conditional

independence of output variates given the input features ormodeling a broad conditional dis-

tribution to directly predict the entire joint state vectorusing the input feature. The former

approach is computationally expensive and completely ignores the correlations between joints,

whereas the latter approach require a large set of training exemplars to accurately learn a map-

ping function for directly predicting the entire human 3D pose state vector.

A number of human activities has much lower intrinsic dimensionality compared to the

DOF of the joint angle state. This is due to strong correlation between the joint angles. For in-

stance activities like running and walking will always havethe two leg/arm joint angles moving

coherently with respect to each other. For computational efficiency, we propose a framework to

train discriminative models for estimating low-dimensional representations of human 3D pose

states and 2D image features. The low-dimensional state space is induced by kernel transfor-

mation followed by de-correlation using PCA[196, 18]. Boththe input features and the output

states are projected to high dimensional feature space using kernel mapping. The low dimen-

sional input and output features are obtained by applying linear principal component analy-

sis(PCA) to the kernelized data points. For error analysis and reconstruction, the prediction in

the feature space are projected back to original space usingthe learned pre-image.

We demonstrate our methods on real and motion capture-basedtest sequences, and give

comparisons with the nearest neighbor and single-regressor based methods. In the next section

we describe the details of discriminative propagation of the filtered conditional distribution over

multiple time steps. In§4.3 we discuss the visual inferencing framework in kernel induced
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space.§4.4 discusses the image descriptors used to encode the 2D image observations. We

apply the discriminative pose estimation methodology on some real and synthetic sequences,

and discuss the results in the§4.6. Finally we conclude the chapter with some discussion on

the strengths and weaknesses of the framework in§4.7.

4.2 Discriminative Density Propagation

As discussed in the previous chapter, the conditional distribution p(xt|rt) is learned as a mix-

ture of Gaussians in an expectation maximization algorithm. The mixture of experts model

is an effective framework for modeling one-to-many mappings and allows us to probabilistic

weight multiple plausible outputs for a given input. However it is not sufficient to resolve am-

biguities using observation alone, as similar image projections may be generated by different

3D poses(reffig. 4.1). Most of these 3D poses produce subtle differences in the 2D images that

are often overlooked by the learned predictors and hence aredifficult to disambiguate.

In practice, the 3D states are predicted using all the observation seen till current time stept,

using the filtered conditionalp(xt|Rt). This conditional distribution is obtained by marginal-

izing over statesxt−1 in the previous time step:

p(xt|Rt) =

∫

xt−1

p(xt,xt−1|Rt−1, rt)dx

=

∫

xt−1

p(xt|xt−1,Rt−1, rt)p(xt−1|Rt−1, rt)dx

=

∫

xt−1

p(xt|xt−1, rt)p(xt−1|Rt−1)dx (4.1)

As opposed to generative chain model fig. 4.2(a) where we model the observational likelihood

p(r|x) under the assumption that observation are conditionally independent given the current

state, in discriminative density propagation framework weexploit the learned the distributions,

p(xt|rt) andp(xt|rt,xt−1) to analytically compute the filtered conditional. The discrimina-

tive density propagation assume dependencies between the state and observation variables as

depicted by the graphical model shown in fig. 4.2(b). In this Bayesian network, the nodes are

conditionally independent of the ancestral nodes given theparents i.e.

⇒ p(xt|xt−1,Rt−1, rt) = p(xt|xt−1, rt) (4.2)
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For nodes with 2 parentsxt, the node variablesxt−1 andrt are marginally independent.

⇒ p(xt−1|Rt−1, rt) = p(xt−1|Rt−1) (4.3)

Notice the difference in the direction of arrows of the generative and discriminative chain mod-

els in the fig. 4.2. For initializing the discriminative tracker, we assume that in the first frame the

visual inputs are unambiguous so thatp(x1|R1) = p(x1|r1) is an accurate predictor of 3D pose.

The filtered density is propagated for the subsequent time steps(4.1) using the learned distribu-

tion p(xt|rt,xt−1). In practice, the distributionp(xt|rt) , p(xt|rt,xt−1) andp(xt−1|Rt−1) are

mixture of Gaussians. The distributionp(xt|rt,xt−1) is learned with inputsyt = [rt xt−1] as

G(xt,Ω) = p(xt|yt = [rt xt−1]) =

M
∑

i=1

p(zi|yt)Ni(xt|WiΦ(yt),Ω
−1
i ) (4.4)

The marginalization in the eqn. 4.1 is carried out analytically:

p(xt−1|Rt−1) = G(xt−1,P)

p(xt|yt) = G(Ayt,Q) whereA =
dF

dy
|xt−1

∫

xt−1

p(xt|xt−1, rt)p(xt−1|Rt−1)dx = G(Ayt,APAT + Q)

whereF is the continuously differentiable, non-linear expert mapping function. The analytical

integration approximates the non-linear mapping by linearization using the Jacobian matrix

evaluated at the inputs. Here the temporal prior distribution p(xt−1|Rt−1) is available from the

previous time step. The resulting mixture of Gaussian hasM2 components and are reduced to

M-component approximation by pruning off low weights Gaussian components. The weights

of the Gaussian components are obtained from the gate distributions and may not cover all

the modes of the posterior. In the proposed framework, we mayalso opt for cluster based

approaches to prune off Gaussian components.

4.3 Bayesian Mixtures of Experts over Kernel Induced State Spaces (kBME)

For computational efficiency we reduce the dimensions of theinput feature space and the output

3D joint angle space using kernel PCA. The proposed formulation is based on kernel depen-

dency estimation(KDE) [196, 18] which uses kernelPCA to de-correlate the inputsr and the
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Figure 4.3: The kernel dependency estimation framework forvisual inferencing of 3D poses
in low dimensional space. Both the inputsr and the outputsx are first projected to the feature
space, denoted asFr andFz, using the rbf kernelsφr and φx respectively. In the feature
space, these points are de-correlated using PCA and projected along the learned orthogonal
dimensions. This yields the low-dimensional representations of input and output in the learned
subspaceP(Fr) andP(Fx) asz andy respectively. A conditional Bayesian mixture of experts
is learned to map the points in thez ∈ P(Fr) toy ∈ P(Fx) asp(y|z). For visual inference, we
can directly track the points in the low-dimensional subspace by discriminatively propagating
the filtered conditionalp(y|Z) in the kernel PCA subspace of 3D human poses. The above
figure depicts modeling of the conditionalp(yt|zt) for the time-stept. We can similarly learn
the conditionalp(yt|zt,yt−1) to predictyt at each time-step using the filtered conditional. In
order to estimate the error in joint angles and visualize a predicted pose, we project the points
in the low-dimensional space to original joints state spaceusing a learnedPreImagefunction.

outputsx in some Hilbert spaceFr andFx respectively, and use the low-dimensional repre-

sentations to learn the mappings.

The key motivation behind the KDE framework is that learninga mapping to a high di-

mensional output space is not only computationally expensive but also sub-optimal.A simple

thought experiment will illustrate the sub-optimality of original framework. Learning a map-

pingf(r, α) : RL → RK essentially involves estimating mapping parameters by minimization

of loss function

α̂ = argminα

∑

(ri,xi)

L(xi, f(ri, α)) (4.5)

Assume, that the joint anglesi and j are strongly correlated while the joint anglesk is

uncorrelated to either of the jointsi or j. The loss functionL effectively gives equal weights to

the 3D poses differing in the any of the three joints. For two posesx1 andx2 that differ from the

groundtruth pose at uncorrelated jointk and at the two correlated jointsi andj respectively, the

loss function gives undue advantage to the posex1, which under ideal circumstances, should be

treated equally to the posex2. This is sub-optimal and may not train accurate predictive models.

The loss functionLmay be thought of as a kernel function defined in output space that measures
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similarity between two 3D pose states and effectively maps the outputs to a high dimensional

Hilbert space. The principal components that are extractedin this feature space are essentially

de-correlated axes of variations. The points in the featurespace are projected onto the low

dimensional subspace formed by these principal components. The mapping can then be learned

for each of the orthogonal dimensions of transformed outputspace. This effectively allows us

to minimize the loss function along the de-correlated modesof variations and facilitate learning

of more accurate models. Fig. 4.3 shows the framework for visual inferencing in kernel induced

low dimensional space. The input featuresr(2D image observations) are projected to Hilbert

spaceFr using the kernel mappingΦr and used to learn the principal subspaceP(Fr) using

PCA. The inputs in the transformed spacez are obtained by projecting pointsΦr(r) on the

principal components. Similarly, the output pointsx are de-correlated toy by first projecting

them to Hilbert spaceFx and learning principal subspaceP(Fx). Even though the inputz and

the outputy points are de-correlated, the mapping between them is stillmulti-valued. We use

conditional Bayesian Mixture of Experts (BME)(chapter 3) to learn the mapping between the

low-dimensional pointsz andy in the reduced featuresP(Fr) andP(Fx) respectively.

p(y|z) =

M
∑

i=1

g(z|λi)N (y|WiΦ(z),Ω−1
i ) (4.6)

whereg(z|λi) is the gate distribution to select appropriate expert and(Wi,Ωi) are the param-

eters of theith expert. The weights of the experts and of the gates,Wi andλi , are controlled

by hierarchical priors, typically Gaussians with 0 mean, and having inverse variance hyperpa-

rameters controlled by a second level of Gamma distributions. We learn this model using a

double-loop EM and employtype II Maximum Likelihoodoptimization [113, 180] with greedy

weight subset selection.

Visual inference in the low dimensional kernel space is donein the same fashion as in the

original state space. Specifically, we learn the conditional distributionsp(yt|zt) andp(yt|zt,yt−1)

using the low-dimensional inputszt and outputsyt over multiple time stepst. The 3D pose

inference at each time step is done using the filtered densityp(yt|Zt = {z1, z2, · · · , zt}) which

is propagated in the same fashion as (4.1)

p(yt|Zt) =

∫

yt−1

p(yt|yt−1, zt)p(yt−1|Zt−1)dy (4.7)
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Both the conditionalsp(yt|zt) andp(yt|zt,yt−1) are learned usingM Gaussian components

using Bayesian Mixture of Experts. We integrateM2 pairwise products of Gaussians analyt-

ically. The means of the expanded posterior are clustered and the low probability Gaussian

components are pruned off.

For error reporting and reconstruction, we need to obtain the 3D pose in the original joint

space for the pointy in the low-dimensional, kernel induced space. This is done by back-

projectingy to a pointx in original space and is referred to as the pre-image ofy. Typically,

the pre-imageP(Φx(x)) is obtained by minimizing the cost function using various non-linear

optimization methods:

x = argminx‖y − Φx(x)‖ (4.8)

The optimization techniques in general have tendency to getting stuck at local optimum. We

use the algorithm proposed by Bakir et. al [18] which approximates the pre-image mapping

by fitting a regression functionP : Fx → RL to directly predict the pre-image using the low-

dimensional representations as input. However, the Reproducing Kernel Hilbert Space(RKHS)

Fx is an infinite dimensional space as infinite number of samplesx can be used to generate

the set of exemplars for training the regression mapping(x,Φx(x)). A way to get around this

problem is to assume that a finite set of training samplesri,xi form a low dimensional subspace

in their RKHSFr andFx respectively. This subspace can be obtained using PCA and selecting

finite number of principal components that define the subspace. Thus, the mapping is learned

from the low-dimensional, kernel induced spacey = P(Fx(x)) to the original output space

x, as shown in the fig. 4.3. Following [196, 197], we use a sparseBayesian kernel regressor to

learn the pre-image, with the training data as (xt,yt)

p(x|y) = N (x|Aφy(y),Σ−1) (4.9)

with parameters and covariances(A,Σ−1). Since temporal inference is performed in the low

dimensional kernel induced state space, the pre-image function needs to be calculated only

for visualization or error reporting. Transforming the solution from the reduced feature space

P(Fx) to the output spaceX gives (by covariance propagation) a Gaussian mixture with ele-

ments, coefficientsg(z|λi) and componentsN (x|Aφy(Wiφ(z)),AJφy
Ω−1

i JT
φy

AT + Σ−1)

whereJφy
is the Jacobian of the mappingφy.
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Figure 4.4:(Left) shows the computation of the shape context histogram. For aninput image,
we extract the outer contour of the silhouette. The contour is sub-sampled into fixed number of
points that are used to vote into angular and radial bins.(Right)shows the process of dimension
reduction using vector quantization. A set of representative shapes are used to construct a
codebook of the shape context histograms of the points from the outer contour of the silhouettes.
An image is encoded by soft voting to the histogram bins obtained from the cluster centers of
codebook.

4.4 Image Descriptors

The image descriptors are compact representations of semantic contents of an image and de-

scribe low-level features such as shape, color or texture ofthe objects in the image. Image

descriptors lie in a smooth continuous space such that humans appearing in similar configu-

rations should have the descriptors that are close to each other. This will enable learning of

smooth regressor functions that can efficiently map these representations to corresponding 3D

pose configurations. However finding an appropriate image descriptors specific to a given do-

main is a challenging task and usually require trial and evaluation procedure to determine most

competitive representations.

One of the key challenges to discriminative learning is the need for large labeled dataset

for supervised learning of the 2D-to-3D mappings. Labeled data consists of 2D images and

the corresponding 3D poses and is typically acquired using an expensive motion capture sys-

tem. Therefore, we generate labeled exemplars using synthetic Computer Graphic(CG) human

3D model of standard anthropometry and regular clothing to render realistic 2D observations.

We import motion capture data to the rigged human character to generate representative 3D

pose and the corresponding 2D observations. We use Maya software to do the rendering. In

order for such an approach to be practical, the synthetic human model should be of standard

anthropometry and representative of the class of typical humans shapes. This will ensure that
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Figure 4.5: Affinity matrices computed using Euclidean distances between temporally ordered
3D pose sequence and the corresponding image descriptors. Left columns show the Joint An-
gles affinity matrix, middle column is due to Shape Context(SC) of the silhouette contour and
right column is obtained from the Pairwise Geometric Histogram(PGH) of the internal edges
of the image silhouettes.(Top row)walking sequence observed from lateral view. Note here
that for the image descriptors based on shape context of silhouettes, the walking cycle appears
to have twice frequency due to left-right leg ambiguity.(Middle row) Complex walking se-
quence in which the subject walks towards the camera and turns back. The root joint angles
undergo180o change causing large difference in the Euclidean distancesof the 3D joint vector.
However due to forward/backward ambiguity the image descriptor do not behave in a similar
way; (Bottom row)Conversation sequence of human moving hands and limbs irregularly. The
affinity matrices of the image descriptors are less intuitively related to that of 3D poses.

the descriptors generated from synthetic model are similarto real image sequences. Hence it

is critical to have visual descriptors that can be used to train robust mappings applicable to real

scenarios.

In addition, the image descriptors should be sufficiently discriminative to resolve the pose

ambiguities yet invariant to apparent variations due to synthetic pose rendering and dispropor-

tionate body parts. Our visual descriptors are based on the silhouettes obtained from statistical

background subtraction that uses non-parametric density modeling of the foreground and back-

ground pixels[64]. We extract the outer contour of the silhouette and encode the shape using
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shape context descriptor, as proposed by Belongie and Malik[24, 121, 10].

Shape context is a robust way to encode the shape as local histogram of edge information.

These are less affected by the local artifacts dues to shadows, similarity to background and

occlusion, compared to global shape representations usingshape moments [39, 15]. Shape

context essentially encodes distributions of relative locations of the sampled points and is a

highly discriminative descriptor. For the contours, the local histograms are computed for each

of the point sampled at a regular distance on the contour. Foran edge based shape context, we

can randomly sample points from the edges and use them for generating the histogram.

However shape context for two different images cannot be directly compared using Eu-

clidean metric and instead usesχ2 test statistics to match two points. A known framework to

bring the descriptors to a common basis set for comparison isusing vector quantization(VQ).

VQ essentially learns a codebook from the representative points in the training dataset and

encodes the shape as histogram of co-occurrence statisticsof the codebook points. The co-

occurrence statistics of a contour is obtained as the soft votes by the points sampled from the

contour, for each of the entry in the codebook. The entries inthe codebook are obtained by k-

means clusterings of the shape context histograms of the training examples. In addition, Vector

Quantization allows us to get rid of the noise in the observations due to local artifacts in the

silhouettes and also reduce dimensionality of the input features.

Fig. 4.4 depicts the steps involved in the vector quantization of the shape context descrip-

tors. We used shape context histogram [24, 121, 10] with 5 radial bins, 12 angular bins, with bin

size automatically adapting to accommodate scale change inthe silhouette size. We useK = 60

clusters for generating the codebook from the sampled points of the training images. We also

investigated the encodings for internal edges using pairwise geometric histograms(PGH). PGH

uses angle and distance between edges to generate histogrambased descriptor[13]. In order to

do so, it approximates the internal edges as piecewise linear curves. The histogram is generated

by accumulating the votes for the relative angle and distances between every pair of lines into

angular and distance bins. However, we observed that the using internal edge information as

visual cues gave much worse results compared the shape context histogram. This may be due

to less generalized patterns observed due to the internal edges in the synthetic image sequences

that fail to apply well to the real sequences, thus causing inconsistencies in 3D pose predictions.
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Figure 4.6: Multimodality analysis for a large database of 8262 samples of 2D images and the
corresponding 3D human poses. In the plots we show the frequency histogram of associations
between the clusters of the 3D poses and the 2D image descriptors. The histogram value of the
Kth bin denotes the number of associations in whichK clusters of 3D poses correspond to the
2D image descriptors belonging to a single cluster. The y-axis shows the ńumber of clusteránd
is plotted on log-scale. For generating the plots, we normalized the input and output vectors
to have 0 mean and standard deviation as 1 for each dimension.(Left) Multimodality analysis
of data points(x, r) (1209 clusters).(Middle) Analysis of(xt, [xt−1 rt]) (1203 clusters). We
cluster the input features as the concatenated vector[xt−1 rt], and the outputs as the joint angle
vectorsxt. (Right)Multimodality analysis of the points(yt, [zt yt−1]) in the kernel induced
feature space for the training set. The inputzt dimension is 25, the outputyt dimension is 6,
both reduced using kernel PCA. We cluster independently in(zt,yt−1) space andyt space,
using many clusters(2100).

4.5 Human Body Pose Dataset

Acquiring a rich dataset containing all the variabilities that are typically encountered in real

scenario, is difficult. Therefore we generate training datausing packages like Maya (Alias

Wavefront) with realistically rendered computer graphicshuman surface models and animated

using real human motion capture data[1]. A number of authors[138, 148, 65, 10, 182] in the

past have also adopted this approach. Our human pose state (x) is based on an articulated

skeleton with spherical joints that has 56 d.o.f. includingglobal translation (the same model

is shown in fig. 4.10 and used for all reconstructions). The database consists of 8262 individ-

ual pose samples, obtained from motion sequence clips of different human activities including

walking, running, turns, jumps, gestures in conversations, quarreling and pantomime. For ob-

taining the 2D observations we computed the visual descriptors on the rendered image sequence

for each of these activities. We conducted an exploratory data analysis on the degree of multi-

valuedness existing in the dataset of 8262 pairs of pose states and image observations. For each
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p(xt|rt) p(xt|xt−1, rt)
Sequence

NN RVM BME NN RVM BME
NORMAL WALK 4 / 20 2.7 / 12 2 / 10 7 / 25 3.7 / 11.2 2.8 / 8.1
COMPLEX WALK 11.3 / 88 9.5 / 60 4.5 / 20 7.5 / 78 5.67 / 20 2.77 / 9

RUNNING 7 / 91 6.5 / 86 5 / 94 5.5 / 91 5.1 / 108 4.5 / 76
CONVERSATION 7.3 / 26 5.5 / 21 4.15 / 9.5 8.14 / 29 4.07 / 16 3 / 9

PANTOMIME 7 / 36 7.5 / 53 6.5 / 25 7.5 / 49 7.5 / 43 7 / 41

Normal walk 15.8 / 179.5 9.54 / 72.9 7.41 / 128.5 5.79 / 164.8 8.12 / 179.4 3.1 / 94.5
Complex walk 17.7 / 178.6 15 / 179.8 8.6 / 178.8 17.8 / 178.6 9.5 / 179.9 7.7 / 134.9

Running 20.1 / 178.2 10.6 / 76.8 5.9 / 177.4 9.3 / 64.9 8.64 / 76.8 3.3 / 59.5
Conversation 12.9 / 177.4 12.4 / 179.9 9.9 / 179.7 12.8 / 88.8 10.6 / 179.9 6.13 / 94.3
Pantomime 20.6 / 177.4 17.5 / 176.4 13.5 / 178.5 21.1 / 177.4 11.1 / 119.9 7.4 / 119.2

Dancing 18.4 / 179.9 20.3 / 179.9 14.3 / 179.9 25.6 / 179.9 14.9 / 149.8 6.26 / 124.6

Table 4.1: Root Mean Square(RMS) errors per joint angle (average error / maximum joint
average error) in degrees for various sequence of motions using the two conditional models,
p(xt|rt) andp(xt|xt−1, rt). We compare the prediction errors for three different algorithms -
Nearest Neighbor(NN) regression, Relevance Vector Machine(RVM)[180] and Bayesian Mix-
ture of Experts(BME). For the BME, we use prediction from themost probable experts for
the test input. Note here that no probabilistic tracking is performed in these experiments.(top
table)shows result obtained by training separate activity modelsfor each sequence and testing
on motions in their class (BME uses 5 Gaussian kernel experts). (bottom table)shows results
obtained by training one single BME model on the entire database of 8262 exemplars. BME
model in these experiments is used 10 sparse linear experts while RVM used one sparse linear
expert. In all tests, accuracy is reported w.r.t. the most probable expert for BME.

2D image observation we estimated the number of different 3Dpose configurations that might

have generated it. In order to get a realistic estimate of themultimodality in the data we want

to estimate only distant poses that correspond to a given 2D observation. We do this by finding

correspondences between the clusters as against the individual data points. Each 2D input clus-

ter represents a perturbed observation datari and take into account the variations due to local

shape distortions and shadow artifacts. Similarly, a 3D pose cluster represents a set of nearby

pose configurationsxi and account for slight changes in viewing direction, anthropometry and

joint angles. For each of the observation cluster, we define the degree of multimodality as the

number of different pose clusters corresponding to each of the constituent observations. The

plots of the histogram are shown in the fig. 4.6. The clustering also ensures that 3D poses lying

in different clusters differ from each other substantially. We also do the similar analysis with
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Figure 4.7: Pose reconstruction error in the ‘bestk’ experts (k = 1 . . . 10) for single BME
model, trained on a synthetic database of 8262 exemplars. Inthe plots we show the prediction
accuracy w.r.t. thek most probable experts. The prediction accuracy is measuredby choosing
thek most probable experts and computing the error using the expert prediction that is closest
to the ground truth.(Left) and (Middle) train and test errors for dancing.(Right) test errors
for a person walking towards the camera, turning180o and going back. As illustrated in these
plots, the most probable experts may not always be reliable,but prediction from the top most
probable experts are indeed more accurate.

the inputs as(rt,xt−1) and the outputs asxt. Working with the previous state and the current

observation (fig. 4.6b) does not eliminate ambiguity but somewhat reduces it due to additional

temporal information in the inputs. For an unbiased similarity measure between the inputs

(rt,xt−1), we center and whiten (zero mean and unit variance) the vectors.

We also conducted multi-modal data analysis in the kernelized inputzt and the outputyt

space (fig. 4.6c). We used 6 dimensional kernel PCA output space and 25 dimensional kernel

PCA input space. The ambiguity is severe enough to cause significant errors and therefore

needs to be adequately handled using multi-valued functions.

4.6 Results

We show results on real and artificially rendered motion capture-based test sequences. We

compare the pose estimation accuracy with the existing methods: nearest neighbor regression

and single regression based on Relevance Vector Machine[180]. For Kernel Dependency Esti-

mation we compare the results with PCA with varying number ofdimensions.

The prediction error is reported in degrees (for mixture of experts, this is w.r.t. the most

probable one and normalized per joint angle, per frame. We also report maximum joint angle

prediction error averaged over all the joints and frames of the sequence.
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Figure 4.8: Pose reconstruction results for a test synthetic conversation sequence. 3D joint an-
gle estimates were obtained usingp(xt|rt).(First row) Original input image sequences.(Second
row) Pose reconstruction obtained using the most probable expert of BME model and rendered
from the same viewpoint as the input.(Third row) Pose reconstruction of the same shown
from a different viewpoint. Notice that some of the estimated 3d poses are substantially differ-
ent from the test data(last column). Perturbations in the image descriptors can at times cause
unrealistic poses to be predicted in discriminative models. To a large extent such gross predic-
tion errors can be eliminated in generative based 3d pose estimation frameworks provided the
observation likelihood is robustly modeled.

We test several human activities obtained by animating a 3D human model using motion-

capture data from [1]. The sequences are artificially rendered using Maya software[2] with an

ambient light source to create ideal lighting conditions.These conditions allow us to compare

different algorithms based on how accurately they model the2D-3D relation, by factoring out

noise in the observed image sequences due to changes in shape, appearance, body proportions

of the subjects and illumination. We show the results of experiments in the table 4.1.

We run two comparisons, one by training separate models for each activity class and testing

on it (top half of table 4.1), the other by training one globalmodel on the entire database and

using it to track all motion types (the bottom half of 4.1). Training and testing is performed on

motions on the different trials of the same motion, performed by different actors.

Training on separate activities: (top half of table 4.1) We use several training sets: walking

oblique w.r.t. to the image plane (train 300, test 56), complex walk towards the camera and
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Figure 4.9: 3D pose estimation results for the conversationsequence using the conditional
distributionp(xt|xt−1, rt) learned using BME.(First row) Test image sequence(Second row)
Reconstruction result using the most probable experts seenfrom the same viewpoint as the
test image data.(Third row) Most probable reconstruction as seen from a different viewpoint.
(Fourth Row)2nd most probable reconstruction seen from the same viewpoint as shown also
on first and second rows. Note that the pose prediction from the 2nd most probable experts is
not too far from the most probable predictions. Prediction in the last column shows the forward
backward ambiguity.

turning back (train 900, test 90), running parallel to the image plane (train 150, test 150),

conversation involving some hand movement and turning (train 800, test 160), pantomime

(1000 train, 100 test).

In the table 4.1(top half), we compare the prediction errorsfor Nearest Neighbor (NN),

Relevance Vector Machine(RVM) and Bayesian Mixture of Experts(BME) using the learned

conditional distributionsp(xt|rt) andp(xt|rt,xt−1) . We show the average joint angle error per

frame and the maximum joint angle error for the entire sequence. For computing the prediction

error using the conditionalp(xt|rt,xt−1), the models were initialized from the ground truth

pose. Notice that Bayesian Mixture of Experts model consistently outperforms NN and RVM

in terms of the average joint angle error. The BME was trainedwith 5 kernel experts. We used
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Figure 4.10:(Left) Reconstruction of a walking sequence usingp(xt|xt−1, rt). Top row shows
original sequence images; Bottom row shows the reconstructed poses seen from the same view-
point. (Right) 3d pose estimations for a ‘running’ sequence usingp(xt|xt−1, rt). First row
shows the original image sequence. Second row shows the reconstruction seen from a different
synthetic viewpoint. In the 3D model animation module basedon Maya software package, we
did not enforce no self-intersection constraint on the surface mesh deformation due to which
we observe penetration of the limbs into body for some of the results (running sequence,2nd

image in the bottom row

Radial Basis Function(RBF) as the kernel. Bayesian Mixtureof Experts involves learning of

both the expert regressors (used for pose prediction) and the gate distribution function (used to

select the most appropriate expert). Due to inaccuracies ofthe gate function, the most probable

experts may not be always the best expert. Fig. 4.7 shows the prediction accuracies using best

experts in the most probable k-experts, where we vary k from 1to 10. It should be noted that in

most cases there is always some expert which predicts the 3D pose accurately. However, due to

wrong choice of the expert, we may end up with wrong prediction with higher pose estimation

error.

Training on multiple activities: : We have also evaluated the framework by training different

models on multiple activities. Our dataset was composed of 8262 labeled exemplars (2D images

with corresponding 3D pose) from a variety of activities. Weused 7238 examples to learn the

conditional distributionp(xt|rt) and 7202 samples to train the conditionalp(xt|xt−1, rt). We

tested on six motion types - normal walk - 55 Frames, complex walk - 100 frames, running

- 150 frames, conversation – 100 frames, pantomime – 200 frames, dancing 270 frames. For
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Figure 4.11: Tracking a ’complex walk’ sequence in which a person walks towards the camera
and turns back. We predict the 3D poses usingp(xt|xt−1, rt). (First row) Test image sequence.
(Second row)3d pose reconstruction using the most probable experts as seen from the same
viewpoint. (Third row) reconstruction using the second most probable expert prediction (no-
tice 180o turn ambiguities) as well as forward-backward flipping ambiguities of the arms and
legs[170, 171].

these experimentsonlywe used conditional models based on 10 linear (as opposed to Gaussian

kernel) experts and a 200d shape context feature vector madeof two 100d histograms computed

separately for the points sampled at regular distance from the contour, and the points sampled

randomly from the internal edge features. Results are shownin the bottom-half of table 4.1.

Notice that both average and maximum joint angle errors haveincreased for all the models.

This is due to increased variability in the dataset, that would in general lead to less accurate

trained models. Also notice that NN and RVM regressors perform more worse when trained

larger dataset as they cannot explicitly learn the multi-valued mappings. For all the learned

models, dancing and pantomime had highest prediction errordue to more varied poses and

complex dynamics that is more difficult model compared to repetitive activities like walking

and running.

In Fig. 4.7 we show the average joint angle errors from the best of most probable k-experts.

The best of the k-experts are chosen based on how close the prediction of the expert is to the
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Figure 4.12: Joint angle predictions for a complex walking sequence(left) as shown in the
fig. 4.11 and conversation sequence(middle) and (right), shown in the fig. 4.8 and fig. 4.9 re-
spectively. It is difficult to resolve the multimodality in(left) using a single regressor based
on RVM or Nearest Neighbor regression. Note that the multimodality in left plot is due to
forward-backward ambiguity. In many such cases the correctpose will be either the first or
the second most probable mode. Also notice the90o ambiguities in the conversation sequence
(middle)are apparent in the second most probable mode.

ground truth prediction. We used the same dataset to plot thefig. 4.7. For comparison, we

show the errors both on the training and testing dataset in fig. 4.7(left) and(middle)respectively.

Reconstruction error using best 3-experts gives substantially more accurate results compared

to using the most probable experts. This also reflect the interdependency of the experts and

the gate distribution models, where errors may be introduced not only due to the inaccurate

mapping functions but also due to inaccurate choice of experts.

Fig. 4.8 shows the pose estimation for a conversation sequence using the conditionalp(xt|rt).

We predict using the most probable expert and show the reconstruction from a different view-

point on a synthetic 3D human model using Maya software. Fig.4.9 shows the same using the

conditionalp(xt|rt,xt−1). The second and third rows shows the prediction using most prob-

able experts while the last row shows the prediction using less probable experts. Notice, that

different experts predict distant 3D poses for the same input.

Fig. 4.10 shows the reconstruction results on the syntheticsequences for walking and run-

ning. Top row shows the original sequence, while the bottom row shows the predicted poses

from a different viewpoint. For generating the reconstruction results, no self intersection con-

straints were applied during the deformation of the 3D surface mesh model under the influence

of skeleton joints. Therefore in some of the results, body parts were shown to penetrate each

other.

Joint angle predictions: Fig. 4.12(left) shows plots for the root joint angles for the complex
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Figure 4.13:(First row) Real test image sequence of a subject mimicking a bending pickup
sequence used for learning the BME model.(Second row)Image silhouettes of the real se-
quence,(Third row) 3D pose reconstruction as seen from the same viewpoint used for training
BME,(Fourth row)3d pose reconstruction from a novel viewpoint. Notice that despite noisy sil-
houettes, our probabilistic tracker based on Bayesian mixture of expert (BME) can reconstruct
the 3D pose with a reasonable perceptual accuracy(Fifth row) A unimodal reression model
based on (4.1) fails to accurately reconstruct the sequencefor the bending pickup sequence and
gets stuck at the mean pose.
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Figure 4.14: Tracking and 3d pose reconstruction of a dancing sequence using the filtered
conditionals. (Top row)shows original images and silhouettes (the algorithms use both the
silhouette contour and the internal image edges);(Bottom row)shows reconstructions from
training (left) and a novel, synthetic viewpoint (right).

walk sequence in which the subject walks towards the camera and turns back. The root joint

angle undergoes a180o rotation. Here we show the prediction fromP1 = p(xt|rt). Single

hypothesis predictor, outputs angles that are either average between the two widely different

poses or that are far from the ground-truth. The Mixture model is able to learn the multi-valued

mapping more accurately. Fig. 4.12(middle)and(right) shows the plots for the root joint angle

and the left hand joint angle usingP1 = p(xt|rt) andP2 = p(xt|rt,xt−1) respectively. Here

we show that the most probable expert is more accurate than the second most probable expert

prediction, although at times, second most probable solution is nearer to the groundtruth.

Real Image Sequences - Bending and Picking up, Dancing and Walking: We test the frame-

work on real sequences captured in laboratory settings. Thesubjects mimicked the activities

for which the 3D motion capture data was available [1].

For the reconstruction using the filtered density, we track using discriminative density

propagation(4.1) with 5 mode posteriorsp(xt|Rt). The BME conditionalsp(xt|rt,xt−1) was

also based on 5 experts, with RBF kernels and the degree of sparsity varying between 5%-25%.

Fig. 4.13 shows the reconstruction results of the bending and pickup sequence, from a 2s video

filmed at 60 fps, where a subject mimics the act of picking an object from the floor. For this

sequence, we trained the model on synthetically rendered bending and pickup sequence. The

subject performed the sequence in a similar fashion as the training sequence.

We also experimented with the single hypothesis tracker, based on RVM and propagated
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Figure 4.15: Reconstruction of a walking sequence observedfrom lateral view(First row)
observed test images of a walking subject ;(Second row)extracted silhouettes from the real
sequence;(Third row) 3D pose reconstruction as seen from the same viewpoint that is used in
the training;(Fourth row)Image rendering of 3D pose from a novel viewpoint.

using (4.1). However due to complexity of the motion, the single hypothesis tracker fails to

track the complete sequence and gets stuck at the mean pose after some initial accurate predic-

tions(last row of the fig. 4.13).

For the multi-hypotheses tracker, we predict using the mostprobable expert of the filtered

conditional at each time step. Fig. 4.16(left) plots number of modes of the multiple hypothesis

tracker for the right should joint and the right upper limb joint at each time step. Although

we propagate the posterior usingM = 5 components, at each time step, the filtering step

generatesM2 components. Typically, the number of modes are lesser as some of the component

Gaussians are close to each other. Fig. 4.16(middle)plots the minimum and maximum angle
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difference between the modes of the filtered density for the root joint. Fig. 4.16(right) plots the

mixing coefficients of the multiple components of the filtered conditional. Fig. 4.14 shows the
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Figure 4.16: Quantitative 3d joint prediction results for the bending-pickup sequence shown
in the fig. 4.13.(Left) shows the number of modes for the right femur joint and right shoulder
joint angles.(Middle) shows the maximum and minimum distance between the modes of the
root joint angles.(Right)shows the mixing proportions of the right shoulder during tracking.

reconstruction of the dancing sequence, where the subject undergoes a complete360o turn. The

model was trained on a similar sequence, synthetically rendered using Maya software. Notice,

the complexity of the poses made imitation of the sequence substantially difficult, and hence

different from the training sequence. We show the reconstruction from 2 different viewpoints.

For this sequence, we used shape context from both the outer contour and the internal edges to

predict the pose. The silhouettes, obtained from background subtraction was used to mask out

the background edges. Although overall predicted 3D poses appear to be similar to the pose in

the observed images, the clear bias of the discriminative modeling towards the training set is

quite apparent in the results. To illustrate the multimodalities in the dataset, we plot the filtered

conditional of joint angles of the dancing sequence in fig. 4.17. We show the filtered density

for the right shoulder, right thigh and right foot joint. Notice, the clear multimodalities of the

filtered density, with modes differing in angles> 40o. Fig. 4.15 shows the results of the 3D

pose reconstruction for the walking sequence, observed from side.

4.6.1 Reconstruction Results in Low Dimensional Kernel Induced Space

For evaluating 3D pose estimation in low dimensional KernelInduces Space, we project the

points to high dimensional feature space using radial basisfunctions as kernels. The input space

is reduced to 50d space while the output space is reduced to 6dusing the PCA in the kernel

feature space. Number of dimensions were selected by choosing the minimum dimensions that
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Figure 4.17: Illustration of the discriminative tracking of the dancing sequence, shown in the
fig. 4.14, with the filtered conditional(4.1) composed of 5 Gaussian components. Time is along
the horizontal axis, filtered density at time-step on the vertical (showing one selected variable),
probability is color coded. Notice different types of multimodality of the filtered conditionals,
including well separated paths(left), bundles(middle)and merge/splits(right).

gave sufficiently low reconstruction error for the test data. The kBME conditionals are trained

as discussed in§4.3.

In order to demonstrate the improvements in computational time, we evalute kerel PCA

framework trained on a walking sequence of2000 frames and tested on the similar sequence

of 750 frames. We reduce the dimensionality of the output state space using KPCA and learn

the conditional distributionp(yt|rt) using kBME with 3 experts. We used the shape context

descriptor as the input image encodings. For learning the pre-Image we used single regression

function based in RVM[180]. Fig. 4.18 compares the prediction time with different kernel PCA

dimensions. Notice that the prediction time with 6d kernel PCA is reduced by50% of the

same in original joint space, without significantly affecting the joint angle prediction accuracy.

Fig. 4.18(middle)shows the average reconstruction error by projecting the joint angle vectors

to low dimensional kernel space and then backprojecting to original space using the learned

pre-Image mapping. In fig. 4.19(left), we compare the accuracy of kernel BME(kBME) trained

on different number of output state dimensions in reduced kernelized space, on the dancing

sequence with 50d observation descriptor.

Kernel based BME outperforms other low dimensional models on the dancing sequence

with highly non-linear movement of various body parts. It substantially improves over PCA

based models as linear methods cannot accurately learn nonlinearities in the human motions.

Fig. 4.20 shows the human pose reconstruction for a jumping sequence using 4 and 6 output

dimensions in the kernelPCA state space. While 4 dimensionsare too low, 6 dimensions are
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Figure 4.18: Evaluation of kernelPCA on a walking sequence using the conditionalp(yt|rt),
(left) prediction times using BME with output dimensions reduced using kernelPCA with vary-
ing dimensions,(middle)average reconstruction error per joint of the original joint space using
kernelPCA with varying dimensions of the kernel induced output space,(right) average 3d
pose prediction error (in original joint space) using the most probable expert and weighted
mean of all the experts of kBME. Note that there is no significant degradation in pose estima-
tion accuracy due to dimensionality reduction using kernelPCA. As we increase the number of
dimensions of the kernelPCA, the accuracy improves.

sufficient to summarize the highly correlated 56 dimensional joints state space using the ker-

nelPCA state space. Table 4.6.1 compares the average prediction errors in joint angles on a syn-

thetic test data using low-dimensional kBME with KDE-RR(Kernel Dependency Estimation -

Ridge Regression), KDE-RVM, RVM and BME. Notice that prediction accuracy of Kernel

BME closely matches the BME. We do additional analysis on theaccuracy of kBME model in

predicting pose using the most probable expert. The gate distribution effectively decides what

experts should be used for a given input data. In most cases the most probable expert is indeed

the best predictor of pose (as depicted in the fig. 4.19(middle)) usingp(yt|zt). Fig. 4.19(right)

shows the number of times the most probable experts forp(yt|zt,yt−1) are best predictors

given the most probable predictions from the previous time step. The probability that the most

probable expert is indeed the best predictor is high and effectively corroborate the consistency

of Bayesian mixture of experts model. Fig. 4.21 shows the 3D pose prediction for two people in

the sequence. For each subject we used 6 dimensional kernelPCA to represent the 56d 3D pose.

We used BME with 5 experts to learn the conditional distribution p(yt|zt) andp(yt|zt,yt−1).

The 3D pose is estimated using the filtered conditionals in the low dimensional kPCA space

and mapped to original 3D pose state space using the pre-image learned using a BME with 3

experts.



97

0 20 40 60

1

10

100

Number of Dimensions

P
re

d
ic

ti
o

n
 E

rr
o

r

kBME
KDE_RVM
PCA_BME
PCA_RVM

1 2 3 4 5
0

5

10

15

20

25

30
Expert Prediction

Expert Number

F
re

q
u

e
n

c
y
 −

 C
lo

s
e

 t
o

 g
ro

u
n

d
 t
ru

th

1 2 3 4 5
0

2

4

6

8

10

12

14

Current Expert

F
re

q
u

e
n

c
y
 −

  
C

lo
s
e

s
t 
to

 G
ro

u
n

d
 t
ru

th

1st Probable Prev Output
2nd Probable Prev Output
3rd Probable Prev Output
4th Probable Prev Output
5th Probable Prev Output

Figure 4.19: Evaluation of dimensionality reduction methods using kernel BME(Left) Com-
parison of 3D joint angles prediction accuracy for a synthetic dancing sequence. We com-
pare prediction accuracy for the Bayesian Mixture of Experts(BME) with the single regression
model based on RVM[180]. For learning low dimensional space, we compare kernel PCA with
linear PCA algorithm. kBME is KDE with BME as discussed in§4.3 and KDE-RVM is a
Kernel Dependency Estimator (KDE) with a Relevance Vector Machine (RVM). PCA-BME
and PCA-RVM are the models in which low-dimensional subspace is learned using PCA while
prediction is done using BME and RVM respectively. For all the learning models were trained
on 300 labeled exemplars from a synthetic dancing sequence.(Middle) Histogram showing the
prediction accuracy of various experts of a kBME predictor.Here we show the number times
the kth most probable expert (as encoded by the gate distribution ofBME) is closest to the
ground truth, for the same dancing sequence. Notice in the plot that the prediction from the
most probable expert is indeed most frequently the most accurate prediction. However, inac-
curacies in the gate distributions may occasionally cause the less probable experts to be better.
(Right) Histograms showing the similar distribution of probability mass for the pose predic-
tion using the conditionalp(yt|yt−1, zt) across 2 consecutive time steps, for the conversation
sequence. As evident from the plots, the prediction fromp(yt|yt−1, zt) when conditioned on
the most probable prediction from the previous time step, isindeed the prediction that is most
frequently closest to the ground truth. This illustrates the consistency of the pose estimation
framework.

KDE-RR RVM KDE-RVM BME kBME
Walk and turn 10.46 4.95 7.57 4.27 4.69
Conversation 7.95 4.96 6.31 4.15 4.79

Run and turn left 5.22 5.02 6.25 5.01 4.92
Walk and turn back 7.59 6.9 7.15 3.6 3.72

Run and turn 17.7 16.8 16.08 8.2 8.01

Table 4.2: Comparison of average joint angle prediction error for different models - KDE-RR is
a KDE model with a ridge regression (RR) as the predictor, KDE-RVM uses a single regression
based on Relevance Vector Machine(RVM), BME model predictsthe 3d joints in the original
space of 3D joint angles(56d) and kBME refers to the BME model, predicting low dimensional
representations of 3d joint angles using KDE, as discussed in §4.3. In these experiments we
used single kernel regressor to learn pre-images of the kernel PCA subspace. All the low-
dimensional models had 6 output dimensions. Testing was done on 100 video frames for each
sequence, on artificially generated image sequences, not inthe training set.
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Figure 4.20: Reconstruction of a jumping sequence.(First row) Observed image sequence
of a subject imitating a jumping sequence used for training.(Second row)The silhouettes
of the image sequence used for feature extraction.(Third row) The 3d pose reconstruction
using 4 dimensions in the kernel induced latent space.(Fourth row)The reconstruction using
6 dimensions. Notice, that 4d are insufficient to accuratelymodel the nonlinearities of the
56d poses in the jumping sequence, often leading to high prediction errors and unrealistic
reconstructions.
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Figure 4.21: 3D human pose reconstruction for two clearly separated human targets perform-
ing sequences - washing window and bending. For each of the 2 people, we used 6d low-
dimensional, kernel induced state space.(Top row)Observed image sequence.(Bottom row)
3d pose reconstruction as seen from the same viewpoint as of the observed images.

4.7 Discussion

In this chapter, we have proposed a framework for discriminative propagation of multiple pre-

diction hypotheses, as obtained from multi-valued mappings learned using Bayesian Mixture

of Experts. We apply the framework to a challenging problem of 3D human pose estimation by

learning mappings from 2D shape based features to human bodyjoint angles. We use coarse

features based on shape context histogram so that the modelstrained on synthetic sequences can

be easily generalized to real sequences, and at the same time, able to discriminate a pose from

another. The filtered density, obtained by analytical marginalization over all possible poses in

the previous time-step, is used to predict human pose in the current frame. Furthermore, we

applied kernel dependency estimation framework to reduce the dimensionality of the 3D pose

and improve the computational efficiency of the framework. We experiment with a number of

synthetic and real sequences and demonstrated the feasibility and applicability of the proposed

framework to the problem of human pose estimation from monocular image sequences.
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Chapter 5

Hierachical Models for 3D Human Pose Inference

5.1 Introduction

In this chapter we propose hierarchical image descriptors that are more tolerant to perturba-

tions due to background clutter, geometric transformations, lighting changes and misalign-

ment. The contents of this chapter are based on the workSemi-supervised Hierarchical Mod-

els for 3D Human Pose Reconstruction, Atul Kanaujia, Cristian Sminchisescu, Dimitris N.

Metaxas,Conference on Computer Vision and Pattern Recognition 2007.

In the previous chapter, we demonstrated that discriminative modeling can be efficiently

used to reconstruct 3D human pose from 2D images for generic human activities, and provide a

useful alternative to generative framework. The learning involves optimization of an objective

function to infer the conditional distributionp(x|r), that is used to directly predict posex using

the image descriptorsr as the inputs. Despite its apparent simplicity, the framework faces

a number of challenges due to inherent ambiguity in 2D-to-3Dmapping, background clutter,

large variability in shape and appearance of the targets andillumination changes. Learning

inverse of perspective projection is inherently ambiguous, and therefore necessitates use of

multiple mapping functions from the input image space to output pose space.

In typical laboratory settings, background clutter can be removed by modeling pixel distri-

butions of static regions of the scene. Under controlled lighting conditions, these are used to

extract silhouettes that delineates the human from the background. This enables robust analysis

of the observed foreground region as it discards the undue noise due to the background clutter.

However in realistic scenarios obtaining exact human silhouette using background modeling

may not be feasible due to the camera motion, rapid illumination variations or fast changing

backgrounds. In such scenarios, humans are localized in a scene using a human detector. A

human detector is a binary classifier that detects humans by classifying bounding boxes as
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humans and non-humans. These bounding boxes are extracted on a regular grid and across

multiple scales to detect objects of different sizes and at varying distance from the camera[53].

In chapter 3 and chapter 4, we used shape descriptors computed for the silhouettes as the in-

puts for 3D pose estimation. This framework can be easily extended to handle any inputs and

predict pose from the descriptors computed over a bounding box that are obtained from the hu-

man detector. However since the bounding box typically enclose extraneous regions around the

target, the image descriptors exhibit undue noisy variations due to changes in the background.

A key challenge here is therefore in designing robust image descriptors that are sufficiently

discriminative to differentiate between various body poses yet are invariant to within pose class

variations due to background clutter, misalignment of bounding box and different human body

proportions. The image descriptors should vary smoothly with the pose configurations of the

human in the image and should remain invariant to changes in the background due to motion

or clutter. In order to make such a framework scalable and generalizable to any human activity,

we need to overcome the following key hurdles:

• Invariance of the image descriptors to intra-pose class variability - Humans appear in a

variety of shapes and appearances owing to their highly articulated body structure and

variations in the clothing styles. Different subjects havebody parts of varying anthro-

pometry. In addition, there may be perturbations in the visual descriptors due to illu-

mination and viewpoint changes. In order to apply discriminative framework for pose

prediction in realistic scenarios, we should be able to train a predictive model that can

discriminate between different poses of the same subject yet remain invariant across dif-

ferent subjects in same pose.

• Noisy data and extraneous information in visual inputs- Humans may appear in varying

environment. In a typical discriminative framework, humans are localized in the image

sequence as coarse bounding boxes, obtained from a human detector. The visual inputs

are in the form of an image descriptor vector computed over this bounding box that

encloses the human. This introduces extraneous information in the inputs in the margins

and may influence the pose prediction from the trained model.Ideally, we would want

the discriminative learning framework to automatically identify the relevant features in
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the inputs and ignore the noise introduced in it by the background clutter. However there

is no guarantee that the learning method is actually doing that.

• Large labeled dataset for training- In order to learn accurate predictive models, it is crit-

ical that the training dataset is sufficiently representative of the image sequences captured

under realistic scenarios. Discriminative models have been shown [126] to outperform

generative models in the presence of sufficiently large set of exemplars. Typically, these

models are trained in a supervised fashion on a labeled dataset consisting of pairs of 2D

images and the corresponding 3D joint angle measurements ofhumans in a sufficiently

representative set of poses. Obtaining these joint angle measurements is however a cum-

bersome process and requires expensive motion capture equipments (like VICON). In

order to operate accurately, these motion capture systems require controlled laboratory

settings with ideal illumination conditions, that is difficult to simulate in a real outdoor

environment.

In this chapter we propose techniques targeted towards solving these challenges. The pro-

posed framework brings together several innovations from the past research in object recogni-

tion, distance metric learning, correlation analysis and semi-supervised learning.

5.1.1 Overview of the Approach

The predictive models are trained by importing the motion capture data into a computer graphic(CG)

model and rendering the sequence with the CG model placed in the realistic outdoor images[9,

165], as shown in fig. 5.1. We refer these sequences asQuasi-Realdata. In order to design

image descriptors that can balance theirinvarianceto intra-class variability (different humans

in similar stance) with the highselectivity(to discriminate between different poses), we develop

hierarchical image descriptors that encode image at multiple levels of this tradeoff. We use

hierarchical image descriptors[147, 9, 103, 127] for training of conditional models for human

pose inference. These descriptors allow us to encode an image at multiple degrees of invari-

ance( or selectivity), thus making them robust to perturbations due to geometric deformations,

viewpoint changes and illumination variations. The seconddifficulty due to background clut-

ter can be alleviated to a large extent by using statistical methods ofdistance metric learning



103

andcorrelation analysis, to selectively assign large weights to the relevant dimensions of the

image descriptor. The image descriptor is made invariant tobackground clutter by projecting

them into a subspace such that the distance between descriptors of humans in similar poses but

with different backgrounds, is minimized. The lack of sufficient training data can be resolved

by incorporating additional information from the unlabeled data in the learning framework.

This is known assemi-supervised learningand has been applied in the past [91], to improve

the learning of conditional distributions. It should be noted that learning in generative frame-

work implicitly uses the marginal distribution over inputsp(r) to estimate the joint distribution

p(x, r). The marginal distributionp(r) can be estimated from the unlabeled data and is disre-

garded in the discriminative learning framework, where only the conditional distributionp(x|r)

is optimized.

Semi-supervised learning methods use both the labeled and unlabeled data to improve the

inference of the conditional distribution. We follow the framework of manifold regulariza-

tion to impose smoothness constraint on the conditional distribution p(x|r) such that it varies

smoothly along the geodesics in the intrinsic geometry ofp(r). In effect, it ensures that the pre-

dictions from the inputsr close in the input space should be close to each other. We extend this

framework for learning multi-valued predictors that uses multiple regression mappings from

2D image descriptorsr to 3D human posex. Notice, that the semi-supervised learning criti-

cally depends on the perceptually similar inputs to be closeto each other in the input space. A

pre-processing step that brings the inputs closer using distance metric learning and correlation

analysis, is therefore appropriate in such a learning framework. In the following sections, we

discuss each of these methodologies in detail.

Figure 5.1: Images from our training and testing database, where a virtual, Computer
Graphic(CG) human model, is placed in real-world images. The CG model has an anthro-
pometry of an average sized human body. The clothing is also typical to most humans, in order
to improve the generalization of the model.
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5.2 Hierarchical Image Encodings

Image descriptors are a collection of pixelwise summarizations to characterize the objects de-

picted in the image. Typically, the summarization is a histogram characterizing specific statis-

tics (such as gradient orientations, color and edges) over alocal neighborhood of an interest

point detected in the image. Most descriptors are used to uniquely describe an interest point

characterizing an object by encoding the texture of the local patch surrounding it. These de-

scriptors should therefore be distinctive and at the same time robust to changes in viewing angle

and misalignment, in order to consistently recognize the class of an object in the image.

Most of the earlier approaches to texture based object recognition may be grouped into

two broad categories -Dense Gridbased andSparse Keypointsbased approaches. The former

approach computes local descriptors for all the patches on aregular dense grid of pixels and

encodes the image as a concatenation of these descriptors. The strict ordering of the grid make

these features highly selective in uniquely characterizing the object class in an image. How-

ever object recognition also require these descriptors to be invariant to viewpoint changes and

geometric deformations. Although these features are robust to global 2D transformations such

as scaling, rotation and translations, their performance degrades substantially in the presence

of in-plane rotation and viewpoint changes.

The class of sparse keypoints based descriptors are obtained as an aggregate of co-occurrence

statistics of codebook patches (obtained either as randomly sampled patches or cluster centers

of patches randomly extracted from the training images) at sparsely detected interest points

in the image. Recent works by [103, 200]demonstrated thebag-of-featureapproach wherein

descriptors are computed at affine-invariant interest points of the image. Many works have

achieved promising results for object recognition using these sparse representations. These

global histogram based features however uses both background and foreground interest points

for learning the codebook. Even though the background is notentirely uncorrelated with the

foreground for the task of object recognition, it introduces additional noise in the descriptors if

the goal is to predict poses using the computed descriptor. These descriptors tend to be more

influenced by the background clutter compared to dense grid based descriptors. However they

are more robust to viewpoint changes and in-plane rotation.
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Evidently, there exist inherent tradeoff between the discriminative power and degree of

invariance of the descriptors. It is more appropriate to view these categories of descriptors as

two extremes of a continuum of invariance(or selectivity).Various descriptors that demonstrate

different degree of invariance (or selectivity) lie on thiscontinuum and it is desirable to combine

the strengths of both the categories of descriptors for moreeffective human pose inference.

In order to select the most competitive representation of the image, we therefore encode

the image at multiple degrees of invariance(or selectivity) using hierarchical image descrip-

tors. These descriptors progressively relaxes(or constrains) spatial and geometric constraints

to achieve varying degree of discriminative power of descriptors at each level. Multi-level de-

scriptors may be categorized into 2 broad classes based on how multiple levels of encoding are

constructed from the image:

• Hierarchically Structured – Each level is generated from the preceding level by accumu-

lating semantic information over the local neighborhood. The semantic information is

encoded as histogram of certain statistics that are progressively made coarser(or finer)

using larger(smaller) bins, at each level of the multi-level encoding. From implementa-

tion point of view, the image is encoded only once at the lowermost level. Higher levels

are constructed from the levels below that are semanticallymore informative but more

coarser.

• Independently Structured – Each level is independently encoded from the image by com-

puting local statistics over progressively larger spatialdomains. Specifically, the image

is processed independently for constructing each level of the descriptor. The semantic

information is accumulated in a local region that is progressively enlarged to make higher

levels more invariant to geometric distortion but less discriminative.

The final descriptor is a vector obtained by concatenating the descriptors at each level. Hier-

archical descriptors have been extensively applied for object recognition [127, 103, 147] due

to their ability to discriminate between different classes(selectivity) yet remaining invariant to

geometric deformation and photometric variations(invariance).

We employ hierarchical descriptors for estimating 3D pose of humans in the image using the

predictive framework discussed in chapter 3 and chapter 4. We compare several hierarchical
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descriptors, each exhibiting outstanding performance andtolerance to geometric distortions

and misalignment. These descriptors also differ in the manner in which semantic information is

encoded at different levels. In the rest of this section we describe the algorithms for constructing

various hierarchical descriptors we used in our framework.

Figure 5.2: HMAX features are constructed as alternating layers of simple and complex units.
Simple units computes the response of image from the oriented filters or co-occurrence statistics
of prototype patches. Complex units pool the response over alocal neighborhood in order to
improve invariance of the descriptors to local misalignment

HMAX Visual processing in primates for recognizing an object in ascene is far superior to

the state-of-the-art machine vision systems. Recently Serre et. al.[147] proposed hierarchical

descriptors that tries to emulate the stages of object recognition in humans and primate visual

cortex. HMAX uses max pooling to modulate the invariance of the encodings. The extraction

steps for HMAX features is illustrated in the fig. 5.2. It consists of alternate layer of simple

and complex units, where simple units are obtained either byconvoluting with a bank of ori-

ented filters or by template matching with the learned prototypes. In our framework, we cluster

the randomly sampled patches from the training data and use cluster centers as the codebook

prototypes. However the prototypes could as well be obtained by random sampling or from

interest point detector of the training images. The complexunits are obtained by max pool-

ing the responses over a local neighborhood. Whereas the simple units encodes the semantic

information as the response of image pixels to oriented filters(or matching to prototypes) that

determines the selectivity of the descriptor, the MAX operation improves invariance for the

descriptor to local deformation and viewpoint changes by pooling the maximum response in

a local neighborhood. This construction mechanism thus exhibit balanced tradeoff between

selectivity and invariance. The hierarchy may consist of any number of these alternating layers
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with each higher level constructed from the preceding levelin a bottom up fashion. The outputs

from the complex units of the final layer are used as encodings.

Hyperfeatures are hierarchically structured features, as proposed by Agarwal et. al.[8],

that formalizes the idea of encoding image at multiple levels of abstraction, where each level is

constructed from the preceding level in the bottom up fashion, similar to HMAX. The lower-

most level is computed as SIFT descriptors on a dense grid of multi-scale image pyramid. The

higher levels are constructed by accumulating and averaging the co-occurrence statistics of

prototypes (obtained as k-means cluster centers) over a local neighborhood. This vector quan-

tization followed by local aggregation(local histogramming) effectively integrates higher order

texton style representation in a local neighborhood, making the descriptor robust to misalign-

ment and geometric deformation. Thus the higher levels, although coarser, are semantically

more informative. The codebook for each level of the hierarchy is used to encode image by

accumulating the prototype votes over the entire multi-scale image pyramid. The descriptors

obtained using this global histogramming from each level are concatenated and used as the

hierarchical encodings. Although similar to HMAX in organization, Hyperfeatures encodes

the image at different degrees of invariance(or selectivity) as opposed to the former which em-

ploys the multi-level structure of convolution and max pooling to achieve a balance between

the same.

Figure 5.3: Spatial pyramid features are obtained as concatenation of co-occurrence statis-
tics of prototype patches computed over progressively larger partitions of the image. The co-
occurrence statistics is computed over a regular grid and accumulated over the partition

Spatial Pyramid is a multi-Level encoding as proposed by Lazebniket. al.[103] that is
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computed as bag-of-features histogramming over progressively less localized but spatially or-

dered image partitions. These descriptors are computed over multiple levels of spatial parti-

tioning of the 2D image. Lower levels are more locally partitioned and hence less invariant to

geometric deformation. Within each of the partitions, vector quantization is performed over

either sparsely detected interest points or densely sampled regular grid locations(fig. 5.3). In

contrast to the pyramid match kernels (Graumanet. al.[77]), where the descriptor is computed

by histogramming co-occurrence statistics at progressively finer bins, this approach aggregates

the features at multiple levels of spatial resolutions. Spatial pyramid improves the selectivity

of the descriptor by enforcing spatial ordering between partitions. While within each partition,

the co-occurrence statistics of prototypes are aggregatedto maintain some level of invariance

to local misalignment. Each of the levels are independentlyencoded directly from the image.

The image descriptor is obtained as a concatenation of descriptors computed at each level of

the hierarchical encoding, where each level may have different weights assigned to it.

Figure 5.4: Vocabulary tree encodes the image at multiple levels of resolution in the fea-
ture space by repetitively clustering the SIFT descriptorsof patches into K clusters and sub-
clustering each cluster further into K clusters. The cluster centers of the tree formed are used
to compute co-occurrence statistics of the patches computed on a regular grid locations of the
image.

Vocabulary tree is derived from the multi-level coarse-to-fine descriptorsintroduced by

Nister et. al.[127] for object recognition. Vocabulary tree encodes the image using multi-

resolution histograms where each histogram bin is recursively partitioned into multiple bins.

The recursion generates a tree structure (fig. 5.4 with each non-root node representing a bin
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from the histogram computed at the parent level. Features falling in the bins corresponding to

each internal node are further vector quantized to encode them using more discriminative visual

vocabulary. In the vocabulary tree proposed in [127], the encoding of a patch was obtained as a

path from the root node to leaf of the local patch SIFT descriptors at sparsely detected MSER

interest points. Although effective for object recognition, it cannot be used to compare two en-

codings using Euclidean distance metric, as the paths from the root node to the leaf node may

vary. This may cause similar images (with similar human poses) to have very different encod-

ings. Therefore, in our framework, the image is encoded as a vector obtained by concatenating

histograms for all the nodes present in the tree, with entries corresponding to the nodes not

in the path set to zero. Instead of computing SIFT descriptors for the detected interest points,

we compute it for local patches at regular dense grid locations for all the levels of multi-scale

image pyramid. Each of the local patch is encoded using vector quantization at every node of

the tree. For the multi-scale image pyramid, the hierarchical encoding is obtained as aggregate

of all the encodings of the local patches. Vocabulary tree isconstructed hierarchically in a

top-down fashion with lower tree levels more discriminative but less invariant to due to finer

resolution histogram bins.

Figure 5.5: Multi-Level Spatial Block(MSB) computes encodings at each level by computing
local SIFT descriptors with increasing block size, on patches centered at regular grid locations.

Multi-Level Spatial Blocks(MSB) These multi-level encodings are obtained by comput-

ing the dense grid based local SIFT descriptors over progressively larger neighborhood. SIFT

descriptors, as proposed by Loweet. al.[112], has been widely applied for the task of fea-

ture matching and object recognition. The SIFT descriptor is constructed as a concatenation

of gradient orientation histograms computed over the blockof regularly placed cells. The
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cells accumulate the gradient orientation information over a small region of pixels and uses

bilinear interpolation to soft vote the to quantized orientation bins of the histogram, thus en-

hancing the invariance to affine transformation and misalignment. The Gaussian smoothing

of the entire block assigns higher weights to gradients nearthe block center. For the Multi-

level Spatial Blocks(MSB), higher levels are encoded usingSIFT blocks with larger cell size.

Larger block size causes more smoothing(due to larger Gaussian scale) thereby avoiding noisy

details from being encoded. Whereas Larger cell size aggregates the gradient orientations over

larger pixels thus making it more invariant to the local geometric deformations. The blocks

are locally normalized in order to make the descriptor invariant to illumination changes. Each

level of the MSB can be computed independently, with varyingdegree of selectivity and invari-

ance(fig. 5.5).

Spectral clustering methods are useful techniques for visualization of high dimensional

data by extracting low dimensional, perceptual representations that preserve the topology of

the points in the original ambient space. Fig. 5.8 shows the 3D spectral embeddings(Isomap) of

hierarchical encodings for the walking sequence of a synthetic computer graphics(CG) model.

The sequence involved 2 full walking cycles viewed from the side. It is evident that left-right

leg assignment ambiguities exist for the Hyperfeatures, Vocabulary tree and Spatial pyramid

features. While HMAX and MSB representations are able to efficiently distinguish between

them by mapping the observations to different points in the latent space.

5.3 Metric Learning and Correlation Analysis

Two similar human poses in the scene may have different imagedescriptors due to misalign-

ment of the bounding box and different backgrounds Moreover, different anthropometry of the

human targets may cause body parts to appear at different locations with respect to the bounding

box. Although multi-level/hierarchical encodings improve the tolerance of the image descrip-

tors to local misalignment of bounding box and geometric deformations, they are still affected

by the background clutter and variations in body proportions of the human target. It is difficult

to explicitly model these variations in the training of the discriminative framework, primarily

due to lack of representative dataset containing sufficientvariability in body proportions. In
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addition, the background clutter is difficult to remove fromthe bounding box due to the large

variability in the aspect ratios of different human body poses (e.g. compare a human standing

straight with the human standing with arms wide open). Thesemake the trained models difficult

to generalize on the data set with unseen subjects or backgrounds. Fig. 5.9 illustrates this on an

image sequence of synthetic and real human model walking parallel to the image plane. The

figure on the right shows the Isomap embeddings of the MSB image descriptors computed for

image sequence with clean background, cluttered background and real human sequence. For

comparison, we have temporally aligned the walking cycles of the real image sequence with

the synthetic human sequence. Notice that although the embeddings obtained using Isomap

preserve the topology of the points in the learned latent space, two perceptually similar poses

are mapped to latent points that are very far from each other.This indicates that simply chang-

ing the background of the human target, may cause the image descriptors to appear different.

Predictors, that use these descriptors for estimating poses may easily get confused due to this

and output a completely different pose.

A careful analysis of computation of these descriptors indicate that specific regions of the

bounding box contribute (votes for) to fixed set of spatial bins of the image descriptor his-

tograms. It therefore appears reasonable to assume that thenoise introduced due to background

clutter can be mitigated by downweighting those histogram bins where the background im-

age regions has voted. Linear predictors implicitly assumeEuclidean metric in input space,

whereas kernel methods use an explicit metric induced by theselected kernel, both of which

assign equal weights to all the histogram bins of the descriptor. In either case, there is no guar-

antee that an Euclidean metric with covariance estimated from the learning algorithm, would

provide the best invariance with respect to the task e.g. classification, the invariance to within

the same pose class. Hence there is a need for problem dependent metric that can be used to

compare the image descriptors using predefined notion of similarity/dissimilarity.

In this section we discuss learning techniques to build a metric - or alternatively, to compute

representations with implicit Euclidean metric, for a desired level of invariance to changes in

characteristics of the scene. For the task of 3D human pose reconstruction, we would like

the models trained on synthetic datasets to generalize wellon the real image sequences. In

order to make the descriptors invariant to human targets or background clutter, we define a
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invarianceclass which is composed of images of real and synthetic humans having different

body proportions in the same pose but with a different backgrounds. We learn metric that

maximizes similarity between the descriptors computed foreach of images in these invariance

class. It should be noted that learning a metric amounts to learning a full covariance matrix that

downweights the unwanted variance in the data using a lineartransformation. This is equivalent

to learning a linear subspace in which within class varianceis minimized. In practice we need

to train with only a few qualitatively different poses in order to learn a useful metric that can

be used with any pose.

There exist extensive literature on distance metric learning with more recent works include

Wagstaffet. al.[192], Xing et. al.[198] and Hillelet. al.[20]. In this section we present 2

techniques, intended towards learning a task dependent metric for improving invariance of the

image descriptors - Relevant Component Analysis and Canonical Correlation fig. 5.6. The first

approach learns a linear subspace from a set of pre-specifiedequivalence classes, such that the

distance between the projected points belonging to the sameequivalence class is minimized.

The second approach computes a pair of independent subspaces such that the correlation be-

tween a set of paired images that are known to be strongly correlated is maximized when they

are projected in it.

(a) (b)

Figure 5.6: This figure illustrates the training of distancemetric learning framework for(a)
Relevant Component Analysis(RCA) and(b) Canonical Correlation Analysis(CCA). RCA is
trained using a number of equivalence sets each composed of people in similar poses but dif-
ferent backgrounds and body proportions. CCA requires a number of pair of images that are
known to be strongly correlated.



113

5.4 Relevant Component Analysis (RCA)

Relevant Component Analysis learns a full covariance matrix by minimizing the spread within

each invariance class of images containing humans in similar pose but different background.

The images in these classes are related to each other using equivalence relation and hence these

chunks of data points are refered to as equivalence class. RCA uses pairwise similarity between

the data points as the side information and learns a linear transformation to assign lower weights

to the dimensions having high in-class variability and viceversa. This effectively down-scales

the global unwanted variability within the data by assigning higher weights to relevant dimen-

sions of image descriptor and lower weights to dimensions that are due to background noise.

The new feature space obtained from RCA reveals the intrinsic structure of the data points such

that more robust models can be trained using them. Learning in RCA is done by minimizing the

within-class covariance with an additional constraint to prevent the trivial solution of shrinking

of the entire subspace. The cost function is written as:

min
D

1

U

k
∑

j=1

Uj
∑

i=1

||r̂ji − mj ||D, s.t. |D| ≥ 1 (5.1)

whereU is the total number of examples andUj is the number of examples in thejth equiv-

alence class. Alsomj is the mean of thejth equivalence class with centered data points as

r̂ji = rji −m. The minimization of the (5.1) can be effectively achieved using a single matrix

computation of the in-class covariance matrixC[20]. This is computed in a closed form as:

C =
1

U

k
∑

j=1

Uj
∑

i=1

(r̂ji −mj)(r̂ji −mj)
T (5.2)

The estimated covariance matrix can be used to compute the Mahalanobis distanceD. Alter-

natively, the covariance matrix can be diagonalized using whitening transformation to obtain a

linear subspace in which the similarity between the data points belonging to the same class is

maximized. This also provides a technique for dimensionality reduction by using eigenvectors

corresponding to the largest eigenvalues of the whitening transformation matrix.
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5.5 Canonical Correlation Analysis(CCA)

Correlation analysis adopts a different approach to enhance similarity between the image de-

scriptors of the humans in similar poses but taken under different backgrounds and having

different body proportions. As opposed to reducing distance between these image descriptors,

it aims to learn a pair of linear subspace such that their projections are maximally correlated.

Correlation analysis is not a novel concept and had been widely used in past, in a vari-

ety of forms for detecting semantically similar regions. Normalized cross correlation analysis

formalizes the notion of detecting regions that correlatesmaximally with the mask and can

been used for template matching and object detection. Ordinary correlation analysis however,

largely depends on the basis system in which the variates aredefined. The 2 variables may

be highly correlated but their relationship may not be visible in the current subspace. Canon-

ical Correlation Analysis, as introduced by [81] aims to findprinciple subspace in which the

shared structure between the 2 classes is evident. Given twosets of vectorsr andu, as sam-

ples: S = ((r1,u1), (r2,u2), . . . , (rn,un)), and their projection on two arbitrary directions,

wr andwu, with Sr = (〈wr, r1〉, . . . , 〈wr, rn〉), andSu = (〈wu,u1〉, . . . , 〈wu,un〉), CCA

maximizes the cost:

f = max
wr,wu

〈Srwr,Suwu〉

||Srwr||||Suwu||
= (5.3)

max
wr,wu

wr⊤Cruwu
√

w⊤
r Crrwrw

⊤
u Cuuwu

(5.4)

with Crr andCuu within-setscovariance matrices andCru = C⊤
ur between-setscovari-

ances. As clear from the eqn. (5.3), CCA is invariant to the affine transformation of the vari-

ables. The optimization can be computed in the closed form using the eigenvalue decomposi-

tion problem as following:

C−1
rr CruC

−1
uuCurwr = λ2wr (5.5)

C−1
uuCurC

−1
rr Cruwu = λ2wu (5.6)

It should be noted that only one of the eigenvalue problem needs to be solved. As the covari-

ance matrix may be singular,C−1 may not be always possible for the eqn. (5.5). This near

collinearity phenomenon tends to make the solution highly sensitive to the random variations
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of the 2 set of variates. In order to avoid the overfitted solution we penalize the norms of the

learned basis vectors. The optimization eqn.(5.3) can be reformulated as:

max
wr,wu

〈Srwr,Suwu〉 s.t.wT
r Crrwr + γ||wr||

2 = 1 andwT
u Cuuwu + γ||wu||

2 = 1 (5.7)

The regularization coefficientγ can be set using cross-validation. Above optimization

yields the following closed form eigen-decomposition problem:

(Crr + γI)−1Cru(Cuu + γI)−1Curwr = λ2wr (5.8)

(Cuu + γI)−1Cur(Crr + γI)−1Cruwu = λ2wu (5.9)

λ2 is the squared canonical correlation and the eigenvectorswr andwu are the canonical

correlation basis vectors. The larger the eigenvaluesλ, the greater the correlation between

the 2 projected set of variables. The minimum of the dimensions ofr andu is the maximum

correlation basis vectors that can be used for CCA. Large problems can be solved efficiently

using predictive low-rank decomposition with partial Gram-Schmidth orthogonalization. Non-

linear extensions to CCA can be obtained using the standard kernel trick of projecting the data

points to high dimensional feature space [79] and performing CCA in it.

5.6 Semi-supervised Learning using Manifold Regularization

Semi-supervised learning employs both the labeled and the unlabeled data points in the training

of models. Labeled examples are pair of data(x, r) sampled from the joint distributionp(x, r)

whereas unlabeled data arer drawn from the marginal distributionp(r). Marginal distribution

p(r) can be used as a prior, to additionally constrain the parameter search in a discriminative

learning framework. It should be noted that the need for semi-supervised learning is more pro-

found for a discriminative framework that directly learns the conditional distributionp(x|r) and

completely ignores the marginal distributionp(r) which is available in the form of unlabeled

data. This is in contrast to generative framework which learns the joint distributionp(x, r) and

implicitly models the marginal distributionp(r).

A number of works exist in literature that incorporate the unlabeled data to improve the

learning of statistical models. Recent works on semi-supervised learning include Transductive
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learning ([188],[91]), Semi-supervised SVMs[27], Manifold Regularization[23], Co-training[35]

and gradient based regularization [38]. More notable amongthese is the semi-supervised learn-

ing framework proposed by Belkinet. al.[23] which incorporates additional information about

the geometric structure of the marginal distributionp(r) to regularize the function to be learned.

In the following sections, we extend the manifold regularization framework to mixture of ex-

perts training.

5.6.1 Manifold Regularization

Manifold regularization(MR) was introduced to incorporate the geometric information of the

unlabeled data for improving the function learning. Statistical learning involves modeling func-

tional relationship between predictor variablesr and response variablesx. Functionsf can

either be data interpolant(regression) or a boundary between two classes(classification). Typi-

cally, statistical learning involves supervised trainingusing a set labeled exemplars(xi, ri) that

are noisy samples from the joint distributionp(x, r) Manifold Regularization applies additional

constraints to the learning in order to control the complexity of function with respect to the ge-

ometry of the input points. MR is based on the assumption thatthe conditional distribution of

the datasetp(x|r) varies smoothly along the geodesics in the intrinsic geometry of the marginal

distributionPr. This constraint is different from the smoothness constraint to control the com-

plexity of the model in the ambient space which does not take into account the topology of the

input datar. This smoothness constraint can be enforced by optimizing the objective function

with an additional regularization term that penalizes the gradient of the mapping functionf

along the geometry of the marginal distribution. Effectively, it penalizes large changes of the

functionf in the region near the manifoldM of the input pointsr.

In most cases where the analytical form of the marginal density Pr is not known, support of

the marginal distribution can be approximated using graph LaplacianL. Graph Laplacian is a

discrete approximation of a continuous manifold and is constructed by approximating geodesics

in the intrinsic geometry using Euclidean distance in a local neighborhood.

The manifold regularization term can be constructed from the both labeled and unlabeled
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exemplars, for the linear mapping functionf(r : W) = WT r using the graph Laplacian as:

Ri =

∫

M
||∇f ||2dPr ≈

U
∑

u,j

(f(ru) − f(rj))
2Nuj (5.10)

The regularization term can be re-written as:

Ri =

U
∑

u,j=1

(Wiru − Wirj)Nuj(Wiru −Wirj)
⊤ = WiR

⊤LRW⊤
i (5.11)

For the non-linear mapping function, the data pointsru are projected to high dimensional fea-

ture space using the kernel map asK(rj) = [K(rj, r1), . . . ,K(rj , rl), . . . ,K(rj , rl+u)]T and

the function is estimated asf(r : W) = WT K(r). Notice here, that both labeled and un-

labeled points can be used as initial set of basis vectors. The regularization term can then be

obtained as:

Ri =
U

∑

u,j=1

(WiK(ru)−WiK(rj))Nuj(WiK(ru)−WiK(rj))
⊤ = WiK

⊤LKW⊤
i (5.12)

whereU is the size of the entire training set, that includes both labeled and unlabeled points.

N is a matrix of graph weightsNij that depends on the geodesic distance of the neighborj to

the data pointi along the manifold of input points.R is adim(r) × U matrix that stores all

the input vectorsr in the training set andK is aU × U is the kernel matrix. Graph Laplacian

L1= D−N with D as a diagonal matrix containing elementsDii =
∑U

j=1Nij can be directly

constructed from the training vectors. The additional penalty term controls the complexity of

the function in the intrinsic geometry in the same way as weights prior control the complexity

in the ambient space. The function learning (regression or classification) can be formulated as

the following optimization problem:

f∗ = argminf
[

L(x, r|W) + γA‖W‖2 + γIWiK
⊤LKW⊤

i

]

(5.13)

The regularization coefficientsγA andγI can be estimated using cross-validation.

1This is (typically) a sparse graph construction, obtained by connecting each training point to its k-nearest
neighbors and computing local Gaussian distances to them. Aglobal regularizer based on geodesic distances can
also be used.
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5.6.2 Semi-supervised Sparse Bayesian Classification

Bayesian learning has been widely applied to training of regressors and classifiers that are

sparse and have lower tendency to overfit the data. This is primarily due to the property of au-

tomatic relevance determination(ARD) mechanism that allows us to prune off irrelevant weight

parameters of the mapping function during learning

In this section we extend manifold regularization framework to sparse Bayesian learning[180]

Using the proposed framework we can iteratively estimate both the intrinsic geometry regular-

ization coefficientsγI and the ambient space regularization coefficientsγA. Here we only

present the formulation for the binary classifier and can easily extend the framework to regres-

sion as well. For a two-class classifier with the inputsri and the class labelsxi, the non-linear

classification boundary is represented asf(r : W) = WT K(r). For linear boundaries the

function takes the following formf(r : W) = WT r with the kernel mappingK replaced by

the original input vectorsr. The binary classification function is learned as the logistic sigmoid

functionσ(f) = 1/(1 + e−f ), with the likelihood as a binomial distribution:

p(x|r,W) =

N
∏

n=1

σ{K(rn),W}xn [1 − σ{K(rn),W}]1−xn (5.14)

Here the target labelsx lie in the set{0, 1}.

In the sparse Bayesian learning framework we explicitly define a prior distribution on the

weights parametersW, that is controlled by the hyperparametersαi corresponding to each

weight parameterWi. This prior is referred to as theambientprior as it controls the complexity

of the classifier in the ambient space.

pa(W) =
N
∏

i=0

N (Wi|0,
1

αi
) (5.15)

However in order to ensure that classification function is smooth along the supportM =

supp{P (r)} of the marginal distribution (manifold of the input points)we introduce addi-

tional Gaussian prior to penalize large change in the function f along the intrinsic geometry of

the manifoldM(approximated as graph laplacianL). We refer to this prior asintrinsic prior

and is defined as:

pi(W) ∝ exp{−γI

U
∑

u,j

(f(ru) − f(rj))
2Nuj} = exp{−γIW

T KLKTW} (5.16)
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Here, the similarity valuesNuj and the regularization coefficientsγI are same as discussed in

the previous section. AsL may be singular, the precision matrixKTLK can be singular. This

may cause the corresponding prior to be improper thus playing no role in the estimation of the

W by maximizing the weights posterior. In order to avoid this,we define a joint prior on the

weights parameters using both the ambient prior and the intrinsic geometry prior:

p(W|γI ,α) ∝ exp{−{γIf
TLf + WTAW}} = exp{−WT Ψ(γI ,α)W} (5.17)

whereA = diag{α1, α2, . . . , αN} andΨ(γI ,α) = KTLK + A. K is the kernel matrix

obtained from both labeled and unlabeled data points. The term A with non-negative diagonal

terms acts as an additional regularization term in the precision matrix. The set of hyperparam-

eters include the parameters{α, γI}. We define hierarchical priors on these hyper-parameters

(referred to as hyper-priors) as Gamma distribution:

p(α) =

N
∏

i=0

Gamma(αi|a, b) (5.18)

where

Gamma(t|a, b) = Γ(a)−1baαa−1e−bα (5.19)

In our formulation, we set the parameters of the gamma distribtution to zero i.e.a = b = 0 to

yield non-informative gamma hyper-priors. Use of individual hyper-parametersαi with ARD

typically controls the posterior probability for each of the weightsWi and enables weights

pruning.

The weights posteriorp(W|x,α, γI) ∝ p(x|W,α, γI)p(W|α, γI) is iteratively maxi-

mized by first estimating the most probable values of the hyper-parameters and using them to

estimate the posterior distribution of the weight parameters. Most probable values of the hyper-

parameters are obtained by maximizing the marginal evidence of the hyper-parameters (Type-II

Likelihood) and pruning off irrelevant weights whose posterior is mostly concentrated at zero

i.e. the most probable value of the variance hyperparameteris very small. Marginal evidence

for the hyper-parametersα andγI is computed as:

p(x|α, γI) =

∫

p(x|W,α, γI)p(W|α, γI)dW (5.20)

The marginal evidence eqn. (5.20) can be exactly computed for bayesian regression as both

the distribution terms in the integrand are Gaussian. For binary classification, the likelihood
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is a binomial distribution and the marginalization is analytically intractable. We therefore use

Laplace approximation that estimates the integral as a local Gaussian approximation of the

integrand over the neighborhood of the mode. The integrand in this case is the weightsW pos-

terior. The modes of the non-Gaussian posterior distribution can be obtained by conveniently

optimizing its logarithm usingIterative Reweighted Least Square(IRLS):

log [p(x|W,α, γI)p(W|α, γI)] =
N

∑

n=1

[xn log(σ{KL,W}) + (1 − xn) log(1 − σ{KL,W})]

(5.21)

−
1

2
WT AW − γIW

TKTLKW (5.22)

HereKL is the kernel matrix for only labeled examples whereasK is the kernel matrix using

both labeled and unlabeled examples. It should be noted thatbothK andKL use same set of

basis functions which include both labeled and unlabeled data points. The optimization of the

marginal evidence eqn.(5.20) w.r.t hyperparametersα andγI yields closed form updates for

the hyperparameters that are used to iteratively prune off the weights. The details of derivation

of the results are provided in Appendix B. The covariance of the fitted Gaussian is estimated as

hessian of the weights posterior:

Σ = (KT
LBKL + A + γIK

TLK)−1 (5.23)

whereB = diag{b1, b2, . . . , bN} andbi = σ{WT KL(ri)}(1 − σ{WT KL(ri)}). The

weights are estimated as

W = ΣKT
LBx (5.24)

The hyper-parametersαi andγI are estimated as:

α
(k+1)
i =

α
(k)
i Tii

Σii +W 2
i

whereT = (A + γIK
TLK)−1 (5.25)

γ
(k+1)
I =

γ
(k)
I Tr

[

T(KTLK)
]

Tr [Σ(KTLK)] + WT (KT LK)W
(5.26)

The weights that have their posterior probability concentrated at zero are subsequently pruned

off at every iteration. At each iteration, both the ambient regularization coefficientsαi and the

manifold regularization coefficientγI are re-estimated.
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5.6.3 Semi-supervised Learning for Bayesian Mixture of Experts

We apply the semi-supervised learning framework to the training of mixture of experts(ME)

model, by incorporating additional information of the geometry of the input data. The geometry

of the marginal distribution of the input data can be used to improve the learning of the experts

and the gate parameters of the ME model. In our framework, we learn Mixture of Experts(ME)

model using sparse bayesian learning and refer to this modelas Bayesian Mixture of Experts

(BME). Manifold Regularization can be applied to efficiently estimate parameters of the BME

model2. The Bayesian mixture of experts(BME) model is composed of agate distribution

g(essentially a multi-category classifier) that clusters the dataset intoM classes, and a number

of expert regressorsf that are locally fitted within each of the clusters. The gate distribution

is learned as multiple one-against-rest binary classifiers. The expert conditional distribution is

a Gaussian with mean as the kernel regressors outputs and scale parameter inferred from data

itself.

p(x|r) =

M
∏

i=1

[gi(r)fi(x|r)]
zi (5.27)

gi(r) =
exp(λ⊤

i r)
∑

k exp(λ⊤
k r)

(5.28)

fi(x|r) = G(x|Wir,Ω
−1
i ) (5.29)

wherezi is the indicator variable that assumes value 1 ifith expert is used for mapping the data

r to x. The learning of the parametersΘi = {Λi,Wi} is accomplished using Expectation-

Maximization algorithm. In the E-step the data set is grouped into different clusters using the

expected value of the likelihood function. In the M-step theparameters for the gate distribution

and the expert regressors are estimated by maximizing the expectation of the likelihood func-

tion. For the test inputs, the estimated gate distribution is used to decide, which expert is best

suited for the prediction. The output is either a weighted linear combination of outputs from all

the experts or the most probable expert output.

Manifold regularization can be naturally extended to improve the learning of BME model

by putting additional constraints on the function parameters, in order to ensure smoothness

along the manifold of the input data. For BME, we simultaneously train 2 functions - the

2Refer to chapter 3 for the detailed formulation of the BME model
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expert function and the gate function. In BME the gate function is a multi-category classifier

that clusters the entire dataset into multiple categories and the expert function is locally fitted

within each of these categories. Therefore the expert mappings should be constrained to respect

the domain boundaries as represented by the gate distribution and should vary smoothly along

the geodesics of input geometry belonging to the same category only. For training the experts

and the gates, it is equivalent to enforcing the following two constraints:

• Local Expert assumption: The experts conditional distribution p(x|r) should be smooth

for the input pointsr that are close in the intrinsic geometry of the expert inputsp(r). In

effect this means that the expert prediction for similar inputs should be similar.

• Expert Ranking assumption: Inputsr that are close in the intrinsic geometryp(r), should

have similar expert ranking, as predicted by the gate distributiongi(r).

The need for an additional expert ranking assumption arise due to the locality constraint of the

expert regressors. The expert regressors are learned usingonly those inputsri for which the

gate distributiongi assigns higher weights. The inputs that have low confidence of belonging

to the same cluster are ignored when fitting the expert. In most cases, the marginal distribution

over inputs are not available and it is approximated by graphLaplacianp(r) ≈ Pr constructed

from the discrete samples of the training data that include both labeled and unlabeled input

data. Using the graph Laplacian, we can estimate a similarity measure between any two pair

of points i andj asNij if they lie within theǫ-ball neighborhood. These constraints mani-

fests as an additional regularization term in the objectivefunction that is optimized to learn

the regression function(or classification boundary). The additional regularization term ensures

smoothness along the intrinsic geometry of the inputs and has the same form as in (5.11) and

(5.12). However, for learning expert functions, we need to enforce expert ranking constraint to

ensure that only inputs belonging to the same cluster are used for learning the expert. This is ac-

complished by re-weighting the inputs (and the outputs) by the confidence value as represented

by the posterior distributionh, estimated in the Expectation step as:

E[zi] = hi(x, r|W,Ω,λ,β) =
g(r|λi,βi)pi(x|r,Wi,Ω

−1
i )

∑M
m=1 g(r|λm,βm)p(x|r,Wm,Ω

−1
m )

(5.30)

The posteriorhi is the responsibility thatr is mapped tox using theith expert mapping. It

can be shown by maximizing the regularized likelihood, thatthe expectation of the indicator
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variablezi is equal to the responsibilitieshi. The similarity measure between any two inputs

i andj, Nij should be low not only when they are far away on the intrinsic geometry but also

when the expert ranking(or the expert responsibilities) asrepresented by the posteriorh are

different. We estimate the similarity measure asNij = Nij min(h(xi, ri), h(xj , rj)). The

manifold regularization term for the expert learning can therefore be reformulated as:

Ri = Wi

[

E[Z
(L)
i ]R(L) E[Z

(U)
i ]R(U)

]T
L

[

E[Z
(L)
i ]R(L) E[Z

(U)
i ]R(U)

]

WT
i (5.31)

whereE[Z
(L)
i ] is the matrix of expected value of the indicator variables corresponding to

the labeled inputsR(L) that is computed in the expectation step eqn. (5.30). For theunla-

beled inputsR(U) the expectation value cannot be computed using the equation(5.30) as the

ground truth labels are not available for them. Therefore for the unlabeled data, we use the

expected value of the labels as represented by the gate distributionE[Z
(U)
i ] ≈ gi(R

(U)), which

is learned at every M-Step of the Expectation-Maximizationalgorithm. This is a reasonable

approximation, as the gate distribution models the expectation valueE[Z(L)] as a function of

input variablesr3. The graph LaplacianL = D − N is also re-estimated at every iteration of

the Expectation-Maximization(EM) using the re-weighted inputs whereDii =
∑U

j=1 Nij.

(a) (b) (c) (d)

Figure 5.7: Effect of background clutter and misalignment on sparse and dense image encod-
ings. The figure shows a sample image from three sets of test images, (a) shows a well-aligned
bounding box with a synthetic CG avatar in a clean background, (b) shows the same CG model
in the same pose with a real background, (c) shows the same butwith the misaligned bounding
box. The plot in (d) compares the prediction error of BME model when it is trained on sparse
histogram based descriptors with the model trained on dense, grid based descriptors. Notice
that whereas grid based descriptors are more robust to background clutter, less spatially con-
strained histogram based descriptors have better performance when the bounding box is not
well aligned.

3Described in more detail in chapter 3
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5.7 Experiments

We evaluate our discriminative framework for human pose inference on both synthetic and

real data. In this section we report results from quantitative comparison between the proposed

hierarchical descriptors based on 3D pose prediction accuracy. Fig. 5.7 illustrates the effect

of background clutter and misalignment of the bounding box on the 3D pose inference using

bayesian mixture of experts (BME) model. Here we compare theprediction accuracy of the

BME models trained on sparse histogram based SIFT descriptors and grid based block SIFT

descriptors, computed densely on a bounding box. HistogramSIFT features are obtained as

sparse co-occurrence statistics of codebook patches on a regularly spaced grid over a bound-

ing box. Dense features are obtained by concatenating the SIFT descriptors computed over

a local patch at regularly spaced grid centers. We train a BMEmodel on a training image

sequence of bending and pick up containing both clean and clutter background, but with well

aligned bounding boxes. The plots show the average prediction error per joint angle and clearly

demonstrate that under similar training conditions prediction accuracy using sparse global his-

togram based descriptors is worse compared to dense local grid based descriptors. However

global histograms are more robust to misalignment of the bounding box.

Multilevel encodings intend to overcome these deficienciesby representing the image at

multiple levels of abstraction, with lower levels being more selective but spatially restrictive

and less invariant. The higher levels obtained from the lower levels are coarser but semantically

more informative.

5.7.1 Hierarchical Encodings

We use 5 different hierarchical encodings, of roughly the same dimensionality in our experi-

ments. Some of the descriptors required a pre-processing step of codebook generation using

representative images from the training set. The representative images are obtained by subsam-

pling the image sequences at regular intervals such that theposes in the consecutive images

are substantially different. HMAX(C2 features) used 4 levels with codebooks computed using

patch sizes[4, 8, 12, 16]. We randomly sampled patches from codebook images and used the

400 cluster centers for each patch size to compute1600 = 4 image descriptor.
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HMAX Features HyperFeatures Spatial Pyramid

(a) (b) (c)
Vocabulary Tree Multi−Level Spatial Blocks

(d) (e)

Figure 5.8: Isomap embeddings of the multi-level features for a walking sequence of a synthetic
CG model with clean background and viewed from the side. Computation of shortest path
neighborhood graph used 5 nearest neighbors, (a) C2 Features (HMAX) (b) HyperFeatures (c)
Spatial Pyramid (d) Vocabulary Tree (e) Multi-Level Spatial Block. Clearly, whereas some of
the of the descriptors (like HMAX and MSB) are able to disambiguate left leg front pose from
the right leg front pose, the other descriptors show 2 full walking cycles as 4 half cycles.

Spatial Pyramid use 3 levels of spatial partitioning of the image window. Within each

partition, the SIFT descriptors were computed over local patches computed at regularly spaced

grid, with 6 × 6 pixel cells,4 × 4 cells per block, 10 pixel patch overlap. We used 4 angular

bins of unsigned gradient orientations from0−180o with bilinear interpolation. The descriptor

is obtained as concatenation of the histograms computed foreach patch and is a vector of size

1400.

Hyperfeatures also used 3 levels of abstraction where each level consisted of scale-space

pyramid of 2, 4 and 6 ([15/64/63/65/121/4]) levels. Higher level of abstraction are con-

structed by accumulating and averaging histogram bins in a local neighborhood (9 neighboring

patches) of the adjacent scale-space levels. Each pyramidal level is vector quantized using

800, 400 and 200 cluster centers obtained by clustering local patches at each levels of the

scale-space. The descriptor is obtained as a feature vectorof size 1400, by concatenating the

histograms computed at each level.

Vocabulary tree uses 5 levels of histogram quantization with a branching factor of 4. The
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local patch descriptors are obtained as SIFT descriptors, computed over a regularly spaced grid,

with 4 × 4 blocks and4 × 4 pixels per cell. The descriptor is obtained as a feature vector of

size 1365 by concatenating histograms computed at the nodesof the tree.

Multilevel Spatial Blocks(MSB) is computed as a concatenation of SIFT descriptors com-

puted over multiple levels of grid with varying number of blocks, where each block is composed

of 4 × 4 cells of varying size. We use 3 levels with cell size as12 × 12, 24 × 24 and48 × 48

pixels.

Fig. 5.8 shows the Isomap embeddings of the 5 image hierarchical descriptors, for a walking

sequence of a synthetic CG model with clean background when viewed from the side. Low

dimensional embeddings provide a convenient way to visualize high dimensional features. The

sequence consist of 2 full walking cycles. We used 5 Nearest Neighbors for computing the

neighborhood graph. From the embeddings, it is clear HMAX features can easily discriminate

the left/right leg front ambiguity whereas for Hyperfeatures and Vocabulary tree, it is difficult

to differentiate one half walking cycle from the other. For multi-level spatial block and spatial

pyramid, the difference is evident but not substantial.

We use hierarchical descriptors as inputs to our discriminative learning framework that uses

metric learning for noise suppression and semi-supervisedlearning to train efficient models for

3D human pose inference. The 3D human pose is encoded as high dimensional, 3D local joint

angles of the articulated skeleton. We use Bayesian Mixtureof Experts (BME) in our frame-

work to learn the multi-valued mappings from the descriptors encoding 2D image observations

to the 3D joints space.

5.7.2 Metric Learning and Correlation Analysis

Before the image features are used to train mixture model, weensure that they are not unnec-

essarily influenced by the noise due to background clutter. We use RCA and CCA to learn a

subspace in which different poses with different background are close to each other. For RCA,

we estimate the Mahalanobis distance on a number of equivalence sets of image descriptors

extracted from the group images with same pose but differentbackground. For this we take

750 different poses and render them on various realistic backgrounds (henceforth referred to as

quasi-real). This step does not require 3D ground truth poseand estimates a common subspace
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in which points belonging to same set(calledChunklet) are close to each to other. The subspace

is obtained as most relevant orthogonal basis vectors. We use only first most relevant vectors

in order to suppress the noise. Hence this technique also reduces the dimensions of the input

feature. Fig. 5.9 shows the Isomap embeddings of the Multi-Level Spatial Block descriptors

before and after applying RCA.

 

Before RCA

 

After RCA

 

 

Clean
QReal
Real

Figure 5.9: In this figure we compare the effect of RCA on the ISOMAP embeddings of
hiearchical feature (Multilevel Spatial Blocks) of a walking sequence viewed from the side.
We use 3 different image sequences viewed from the same viewpoint, with different degrees of
realism - synthetic model with clean background(Clean), synthetic model with realistic back-
ground(QReal) and real sequence(Real) of a human subject. We manually aligned the 3D poses
by dropping intermediate frames in order to compensate for different walking speeds. On the
right we show the embeddings of the sequences before and after metric learning with RCA.
The inclusion of pairwise clean and real images of similar poses as chunklets in RCA signif-
icantly improves the descriptor invariance to clutter. This does notintroduces walking half
cycle ambiguities, the bottom-rights shows the 2d projection of a somewhat twisted (but not
self-intersecting) 3d loop.

For CCA we estimate two different subspaces for a pair of inputs in which the correlation

between the two inputs is maximized. We obtain the pair of images in the same fashion as for

RCA. Both RCA and CCA require some form of regularization to improve the generalization

of the estimated subspace. In each case, regularization with a scale identity matrix usually

helps performance. The behavior of CCA is illustrated in fig.5.10. The figure compares how

the canonical correlation varies with the regularization coefficientγ in the equation (5.8) and

(5.9), for the training data set. The45o orientation denotes higher correlation. The eigenvectors

with small eigenvaluesλ2 are least correlated (shown as the projections on last few canonical

correlation basis vectors in fig. 5.10(c)). Also notice the effect of regularization on the spread

of the projections of the training data on the learned subspace. The subspace obtained from

regularized CCA are able to generalize more to the test data.Fig. 5.10(d) and(e) compares the
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projection of the test data on the subspaces obtained from CCA using different regularization

coefficient. Notice how the similarity in the correlation ofthe training and testing data due to

larger regularization coefficient enables learning of morerobust models. After metric learning,
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Figure 5.10: Projection of the training and test set on different canonical correlations.(a)
and(b) show the top most correlated components, differently colored (these correspond to the
largest eigenvalues), for two levels of regularization - weplot pairs of vector components, hence
good correlations (i.e. similar values) are achieved when their slope is close to45o. (c) shows
un-correlated directions corresponding to the low eigenvalues – notice the deviation from45o.
(d) and(e) compares the coefficients of the test data corresponding to the largest eigenvalues
for the two levels of regularization. Notice the similaritybetween the test and training data of
the correlated components for subspace obtained with higher correlation coefficient.

the dimensionality of the image encoding is changed to (thiswas used for training multi-valued

predictors for the experiments with each of the corresponding features): HMAX – 1174, Hy-

perfeatures – 1073, Spatial Pyramid – 1076, Vocabulary Tree– 1059, Multilevel Spatial Blocks

– 1048.

Evaluation on the Dataset: For quantitative experiments we use our own database consist-

ing of 3 × 3247 = 9741 quasi-real images, generated from a computer graphics(CG)human

model of standard anthropometry and realistically rendered on different image backgrounds.

We obtained 3247 different 3d poses from the CMU motion capture database [1] and these
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were rendered from different viewpoints to create 3 sets of datasets -Clean, Clutter1andClut-

ter2. Cleandataset is obtained by rendering the synthetic CG model withclean background.

Clutter1 is obtained by rendering the synthetic model with background images that are used for

training the model whereasClutter2refers to images with unseen background, although in both

the training and testing images, the rendered CG model is randomly placed on the image so that

there is very little chance of generating a test data exactlyresembling the training data. The

dataset is composed of a variety of motion sequences including walking - viewed frontally and

laterally, bending-pickup, running, dancing, conversation and a pantomime. We collect three

test sets of 150 poses for each of the five motion classes. The motions executed by different

subject are not in the training set. In all cases, a 320x240 bounding box of the model and the

background is obtained, possibly using rescaling. There issignificant variability and lack of

centering in this dataset because certain poses are vertically (and horizontally) more symmetric

than others (e.g. compare a person who picks an object with one who is standing, or pointing

an arm in one direction).

We train BME model (a conditional Bayesian mixture of experts) with 5 experts on the en-

tire dataset. Our settings is arguably more complex and varied compared to experiments demon-

strated by activity-oriented models [9, 164]. The BME modeluses linear experts with sparsity

priors in order to generalize better. The sparsity of the experts lied in the range15%−45%. The

greedy feature selection method based onAutomatic Relevance Determination(ARD) comple-

ment the relevant feature selection done by RCA / CCA. For thequantitative experiments, the

56d human joint angles were reduced to 8d using PCA. Althoughthis introduces some error

but it’s fast and mapping to the joint angle ambient space is exact. Typically, with 8d PCA

subspace, the reconstruction error by back-projecting thepoints from the subspace to original

space is low (≈ 2o). Cumulative results from our tests on the quasi-real databases, on clean

background andClutter2are shown in fig. 5.11. In the plots we provide the average joint angle

error rates for the 5 experts used in BME, in order to factor out the errors due to inaccurate

gate function. In general, performance onClutter1 is worse than clean dataset and better than

onClutter2, but the problem is arguably simpler. The first two rows give cumulative prediction

error per joint angle over all the motion sequences, for different multilevel encodings and the

two metric learning methods. In our experiments HMAX works best, followed closely by the
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Figure 5.11:(Top row)and(Middle row)Cumulative 3D pose estimation accuracy for 5 differ-
ent hierarchical descriptors: HMAX, Hyperfeatures, Spatial Pyramid, Vocabulary Tree, Mul-
tilevel Spatial Blocks (MSB). We evaluated 5 different motion sequences : Bending pickup,
walking, running, dancing and pantomime. Here we plot the root mean square error of the
predicted joint angles usingK most probable experts. TheKth bar was obtained by selecting
the expert prediction closest to the ground truth among the ones predicted by the most probable
K experts. We also show the effect of the 2 metric learning techniques (RCA and CCA) on the
prediction accuracy. We show the plots ofcleanandclutter2datasets.(Bottom row)Joint an-
gle prediction errors for the bending and picking motion sequence. A single conditional BME
model was trained on the entire dataset.
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Multi-level Spatial Block and Hyperfeatures. The effect ofmetric learning on these features

was marginal. One reason to explain this could be that these descriptors are robustly encoded to

be invariant to noise and perturbations in the image. Also, some degree of noise is removed by

feature selection mechanism in learning the expert regressions usingAutomatic Relevance De-

terminationmechanism. Rather, we observed slight drop in performance due to metric learning

for these features. For the features based on spatially localized histograms (Spatial Pyramid)

and globally computed histograms, the change in the background tends to influence the descrip-

tors more. In spatial pyramid, background regions in the image bounding box get encoded as

an image partition whereas in Vocabulary trees, the bottom-most nodes of the tree may be con-

tain smaller clusters due to the noise in the background. Relevant Component Analysis(RCA)

improves these descriptors substantially, as shown in the fig. 5.11. The last column in first two

rows shows the results using Canonical Correlation Analysis(CCA). The bottom row in fig. 5.11

shows error rates for the bending and picking up test sequence. Note, in our experiments single

global model was trained on the entire dataset (and not on separate activities). In general the

error rates are higher forClutter1andClutter2sequences. The use of RCA improves the pre-

diction accuracy for the bending pickup sequence substantially. An alternative to RCA/CCA

is to use problem dependent kernels,e.g. histogram intersections [103], with good resistance

to noise and image mismatches. In principle, our kernel-based multi-valued predictors can use

histogram kernels to further improve the stability of the descriptors.

5.7.3 Manifold Regularization

We evaluate semi-supervised learning based on manifold regularization on both synthetic and

real dataset. Fig. 5.12 shows the improved binary classification decision boundary obtained

using manifold regularization, for a 2 circle toy example. The dataset has only 8 labeled points,

shown as black circles. Notice how the decision boundary of the classifier automatically adjusts

along the geometry of the input distribution, as the intrinsic geometry regularization coefficient

γI is increased.

Fig. 5.13 shows the two moons dataset with 200 examples and only 2 labeled points each

belonging to different class. Also shown is the decision surface obtained by simultaneously

estimating the intrinsic geometry regularization coefficientγI and the sparsity of the Bayesian
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classifier. The degree of sparsity achieved depends on the initial value of the manifold regular-

ization coefficientγI . The sparsity denote the percentage number of basis vectorsused in the

learned interpolant.

γI = 0.00001, γI = 0.001 γI = 0.01 γI = 0.1

Figure 5.12: Manifold regularization on the dataset containing 200 points sampled from 2
concentric circles. Dataset contained only 8 labeled points - shown as circled data points. In
the figure we demonstrate the automatic adjustment of the decision boundary as the intrinsic
geometry regularization coefficient is increased from 0.00001 to 0.1

γI = 0.0001, γI = 0.001, γI = 0.01,
Sparsity = 18.91% Sparsity = 23.38% Sparsity = 26.37%

Figure 5.13: Effect of manifold regularization on the classification boundary for 2-moons
dataset. We use sparse bayesian learning with manifold regularization to train the classifier.
The dataset contained 4 labeled examples, shown as circles in the figure. The level of sparsity
achieved depends on the initial value of the manifold regularization coefficient.

We evaluate the effect of manifold regularization on mixture of experts learning model for a

synthetic datasets with one-to-many mapping. The dataset is obtained by sampling points from

the inverse of the functionr = x + 0.3sin(2πx) + ǫ, whereǫ is a zero mean Gaussian with

standard deviation0.05. In effect, manifold regularization for the BME model improves the

estimation of the expert regressors and the classification decision boundary of the gating func-

tion using the intrinsic geometry of the input data. In the plots shown in fig. 5.14 and fig. 5.15,

we illustrate 2 scenarios - adding labeled data points to thetraining set and adding unlabeled

data points to the training set. Fig. 5.14(top row)shows the effect of adding labeled data points

on the 3 kernel expert regressors. Circled points denote thelabeled data points. Notice how
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the regressors fit to the dataset as the number of labeled points are increased. Fig. 5.14(bottom

row) shows the effect of manifold regularization on the gating distribution, where the absci-

cca denotes the probability weights. Fig. 5.15 shows the effect of unlabeled exemplars for the

training the mixture of experts model using manifold regularization. Fig. 5.15(top row)shows

the improved kernel experts as the number of unlabeled data points increased from 0 to 196.

Fig. 5.15(bottom row)shows the same for the gating distribution. In the plots we keep ambi-

ent regularization and intrinsic geometry regularizationcoefficient fixed while varying only the

number of labeled/unlabeled exemplars for learning the experts and the gating distributions.
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Figure 5.14: Training Bayesian mixture of experts using manifold regularization, with varying
number of labeled points (shown as circles) and fixed number of unlabeled points(shown as col-
ored points),(Top row)The expert regression functions,(Bottom row)the gating distributions
of the mixture of experts model.

We also ran experiments using the manifold regularization framework fig. 5.16, where we

trained several BME models(with 5 linear regression experts) on a small dataset of a synthetic

CG model in cluttered background. We used 30 observations and progressively added0 − 270

unlabeled data points to improve the learning. In the figure we show average joint angle pre-

diction error. The BME model was trained on the two sequencesof running and bending,

with observed images encoded using Multilevel Spatial Block(MSB) descriptors. Clearly, the

addition of unlabeled data improves performance. Fig. 5.16(a) shows the improvement in pre-

diction due to manifold regularization as the number of unlabeled data points are increased.
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Figure 5.15: Training Bayesian mixture of experts using manifold regularization, with varying
number of unlabeled points and fixed number of labeled points(shown as 4 circled points).
(Top row)the expert regression functions,(Bottom row)the gating distributions of the mixture
of experts model. Notice in (c) that only a few unlabeled datapoints are enough to train correct
regression and gating functions. Adding more unlabeled points improves the accuracy (d) of
the BME model.

Fig. 5.16(b) shows the effect of varying the gate and expert regularization coefficient keeping

the other coefficient constant. We use 270 unlabeled samplesand 30 labeled samples from the

running sequence. Note that large coefficients train oversmooth expert and gating functions

and degrades the performance. Fig. 5.16(c) shows the effect of varying gate regularization co-

efficient on the prediction accuracy of models with and without distance metric learning(RCA).

HumanEva Dataset: We have also run experiments using the manifold regularization frame-

work fig. 5.17, where we trained several Mixture of Experts models on HumanEva dataset for a

subject performing 3 activities - Boxing, Walking and Gestures. The Mixture of Experts model

consisted of 4 experts with kernel functions. The training dataset consisted of 71 labeled ex-

emplars and 1349 unlabeled image observations. The test setcontained 1351 data points. In all

the experiments we fixed the ambient regularization coefficient to 0.0001. The observed images

were encoded using Multilevel Spatial Block(MSB) with 3 levels of hierarchy. Fig. 5.16 shows

the average joint location error plots for various models trained using semi-supervised learning.

In the figure we show the error plots on the labeled training exemplars, unlabeled training data

points and test data points. Fig. 5.17(a) shows the improvement in prediction accuracy as the

unlabeled data points are progressively added to the training set. As we increase the number
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Figure 5.16: Improved prediction accuracy using semi-supervised learning of the BME
model(with 5 linear regression experts),(a) shows the effect of adding unlabeled points for
learning the BME model on a running sequence. The models are trained on 30 labeled (2D de-
scriptors, 3D pose) pairs, with number of unlabeled exemplars progressively increased from 0
to 270,(b) shows the improvement as the intrinsic geometry regularization coefficient is varied
for the expert and the gating function. The model was trainedon 30 labeled and 270 unlabeled
exemplars of the running sequence. The accuracy improves asthe coefficient is increased till
the plot levels off, following which the performance startsdegrading due to over smooth func-
tions. In the fig. (c) we compare the improvements achieved due to manifold regularization,
when the BME model is trained on the descriptors with and without relevance component anal-
ysis(RCA). Here we train on bending and pickup sequence, andvary the intrinsic geometry
regularization coefficient of the gating function. Notice that larger improvements is achieved
with the descriptors with distance metric learning(RCA).
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Figure 5.17: Improved prediction accuracy using semi-supervised learning of the BME
model(with 4 kernel regression experts and non-linear gating distribution),(a) shows the ef-
fect of adding unlabeled points for learning the BME model on3 HumanEva[155] sequences
- Boxing, Walking and Gestures, performed by the same subject. The models are trained on
138 labeled (2D descriptors, 3D pose) pairs, with number of unlabeled exemplars progressively
increasing from 23 to 1349,(b) shows the improvement as the intrinsic geometry regulariza-
tion coefficient is varied for the expert regression models.The gate manifold regularization
coefficient was fixed to 0.001(c) shows the same as the regularization coefficient is varied for
the gating functions with expert regularization coefficient set to 0.001. The model was trained
on 71 labeled and 1349 unlabeled exemplars of the Gesture sequence. The accuracy improves
as the coefficient is increased till the plot levels off, following which the performance starts
degrading due to underfitting (oversmooth models). We show the joint location prediction ac-
curacy on the training examples (both labeled and unlabeled) and the test examples.
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of unlabeled data from 23 to 1349, the average joint locationerror for all the three evalua-

tion datasets decreases. Fig. 5.17(b) and (c) shows the effect of varying the gate and expert

manifold regularization coefficients while keeping the other ambient regularization coefficients

constant to 0.0001. We use 71 labeled exemplars and 1349 unlabeled examples both sampled

from the 3 activity sequences of boxing, walking and gestures. Notice that in both the set of

learned models, the prediction accuracy on the test and unlabeled data initially decreases and

then starts increasing. Large coefficients cause the modelsto underfit the data and degrades

its performance. An interesting observation is that prediction accuracy on the labeled training

set remains unchanged initially as we increase the influenceof manifold regularization term.

This indicates that even though the model was trained on extremely sparse training set of ex-

emplars, there is no significant overfitting in the model due to the ambient regularization term

in the object cost function. Manifold regularization thus affects only the ability of the model to

generalize.

For qualitative experiments we use images from a movie (Run Lola Run) and the INRIA

pedestrian database [53] to evaluate the discriminative pose inference framework. In fig. 5.18

we show the human pose prediction based on real images. Theseare all automatic 3d recon-

structions of fast moving humans in non-instrumented, complex environments. We detect hu-

mans in the image sequence using a person detector based on SVM classifier[53]. The detector

generates the bounding boxes around the human targets. For training, we use 2000 walking and

running labeled poses (quasi-real data of our model placed on real backgrounds, rendered from

8 different viewpoints) with an additional 1000 unlabeled (real) images of humans running and

walking in cluttered scenes. The solutions are not entirelyaccurate in a classical alignment

sense but the 3d reconstruction have reasonable perceptualaccuracy.

5.8 Discussion

In this chapter we have proposed a discriminative frameworkfor human pose inference that

integrates various techniques of robust image encoding, distance metric learning and semi-

supervised learning. We propose solution for three key challenges faced by the current dis-

criminative frameworks,(a) balancing same pose variations with discriminative power using
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Figure 5.18: 3d Pose reconstruction results obtained on images from the movie ‘Run Lola Run’
(leftmost 5 images) and the INRIA pedestrian dataset (rightmost 3 images) [53].(Top row)
shows the observed test images,(Bottom row)shows 3d reconstructions using our framework

robust hierarchical encodings,(b) reducing noise due to background clutter in the region of

interest using distance metric learning and canonical correlation analysis(c) improve training

of the framework by semi-supervised learning on the datasetaugmented with unlabeled exem-

plars. Hierarchical encodings represent the image observation at multiple levels of the trade-

off between discriminative power and invariance to aberrations in the image. Distance metric

learning and correlation analysis enable computation of visual descriptors that are invariant to

changes in the background. Finally, we use semi-supervisedlearning based on manifold reg-

ularization to train models that are smooth not only in the ambient space but also along the

intrinsic geometry of the image descriptor space. This allows us to learn improved discrimi-

native models by incorporating additional information from unlabeled exemplars. We provide

quantitative results on both low dimensional synthetic dataset and high dimensional human

pose inference to support the proposed framework. Empirically, we also observe that a com-

bined system improves the quality of 3d human pose prediction in images and video.
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Chapter 6

Sparse Spectral Latent Variable Models

6.1 Introduction

In this chapter, we introduce a generic algorithm to combineparametric latent variable mod-

els and spectral embedding methods in a probabilistically consistent framework referred to as

Sparse Spectral Latent Variable Models. The contents of this chapter are based on the work

Spectral Latent Variable Models for Perceptual Inference, Atul Kanaujia, Cristian Sminchis-

escu, Dimitris N. Metaxas,International Conference on Computer Vision 2007

In any machine learning task, it is assumed apriori that the features, encoding the visual

stimuli, are perceptually meaningful so that they can be used to train a classifier or a regression

model. Extracting these meaningful features from raw sensory inputs such as image pixels is a

difficult task and involves a combination of evolution, development and learning process. For

example, a128× 64 pixel image of a person walking (or running) can be thought ofas point in

a 8192 dimensional observation space, however the perceptually meaningful structure of these

visual stimuli is of much lower dimensionality, only 1 - encoding the phase of the walking(or

running) cycle. Another example is the shape contours of thefacial features when observed

from different viewpoints. In this case, these points, thatcorrespond to the shape contours, lie

on a two-dimensional manifold and is parameterized by viewing angle.

The goal in these problems is therefore, to discover the low dimensional yet perceptually

meaningful structure in these observations, and use them tolearn efficient models for recog-

nition, classification and a variety of other imagery task. The manifold structure is typically

much low dimensional compared to high dimensional observations, and is useful for analysis

and visualization of large volumes of data.
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A key difficulty of dimensionality reduction techniques is that the geometry of these ob-

servations usually exhibit non-linear structure. Fig. 6.1illustrates this using a toy dataset of

Swiss roll. The color coded data points are embedded on a non-linear 2D planar structure sur-

rounded by a 3D ambient space. Linear techniques like Principal Component Analysis(PCA)

and Factor Analysis(FA) are unable to unfold such a highly non-linear structure fig. 6.1(b). A

variety of non-linear dimensionality reduction techniques have been proposed in the literature.

More prominent methods include Self Organizing Map(SOM)[98], the Generative Topographic

Mapping(GTM)[32] and Gaussian Process Latent Variable Model[100]. GTM tries to fit a pre-

defined grid based topology in the latent space to the observed data points using greedy op-

timization techniques. The top down structure of the learning algorithm makes it difficult to

unfold the coarse, non-linear structure of the observed dataset, as the optimizers may get stuck

in severe local minima. Fig. 6.1(d) shows the fitting obtained from the GTM. Notice that the

associations between the observed points and the learned latent co-ordinates are entangled.

GPLVM is also based on learning non-linear structures of themanifolds by fitting a non-

linear map from the low-dimensional, latent space points tothe points in the ambient space.

This is achieved by using different covariance functions, in the form of Gaussian processes,

that enables modeling of non-linear structure of the manifold. This cannot be optimized is a

closed form and therefore requires a gradient based optimization of the objective function that

effectively minimizes the reconstruction error of the points in the observed space obtained by

mapping the points in the latent space. In order to unfold thenon-linear embedded structures

in the high dimensional observed space, we need learning algorithms that can preserve the

topology of the observed data points. The GPLVM technique does not enforce this criteria of

preserving the local and global geometric structure and faces setback due to the tendency of

the optimizer to get stuck at the local minima. Fig. 6.1(c) shows the inaccurate embeddings

obtained from GPLVM with back constraints[100, 101]. One promising class of methods for

learning perceptual representation is using spectral methods[143, 176] that learns the glob-

ally optimal solution in a bottom-up fashion. These class ofmethods - referred to as spectral

methods - first learn the topological structure of the manifold in the observed space and then

learns the metric map that respects this topology. Examplesof spectral methods are Isometric

feature mapping(Isomap)[176], Locally linear embeddings(LLE)[143], Local Tangent Space
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Alignment(LTSA)[201], Laplacian Eigenmaps[22] and Hessian Eigenmaps[61]. The topology

is approximated as a connected graph between pair of sampledpoints in the observed space

under the key assumption that the distance between the points in the observation space is an ac-

curate measure of the distance in the embedded manifoldonly locally. Whereasglobal spectral

methodslike Isomap represents the manifold metric between every pair of points (both local

or global) as shortest paths in the connected graph, neighborhood preserving,local spectral

methodslike LLE and LTSA ignore the widely separated points and use only locally linear fit-

ting to learn the global manifold structure. The connected graph clearly respects the topology

far better than the regular grid based graph used with SOM andGTM. The low dimensional

embeddings are then obtained by orthogonalizing the manifold metric space by solving an

eigen-decomposition problem.

Although effective in learning the low-dimensional representations of a complex mani-

fold fig. 6.1(e), spectral methods lack a clear probabilistic framework, with no straightforward

method to project out-of-sample data points onto the embedded space. In order to do so, it

requires re-estimation of the connected graph and therefore re-computation of the embedded

space. Approximate methods for extending spectral methodsto handle unseen data points

do exist in literature [26]. These methods estimate kernel functions that approximates the con-

nected graph matrix and effectively solve an eigen-decomposition on it to learn the embeddings

as eigenfunction (as opposed to eigenvectors). On the otherhand there exist a variety of meth-

ods for non-linear latent variable models, including mixture of PCA[179], mixture of Factor

Analyzers and GTM that are probabilistic but are unable to preserve the geometric properties

of the data in the learned latent space.

In this chapter, we introduce a rather general framework to combine parametric latent vari-

able models and spectral embedding methods in a probabilistically consistent fashion. The

method preserves the geometric characteristics of the datain the ambient space and can be

efficiently used not only to map unseen inputs to the latent space but also to reconstruct data

points in the original space for an unseen point in the latentspace. The method is trained on

top of embeddings obtained from the spectral embedding methods and is able to support com-

plex visual inferencing tasks such as human 3D pose reconstruction and non-linear active shape

models. We refer the proposed framework as Sparse Spectral Latent Variable Model (SLVM).
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Original Dataset PCA GPLVM GTM ISOMAP

(a) (b) (c) (d) (e)

Figure 6.1: (a) The original dataset in 3D consisting of 1000points sampled from a non-linear
manifold - Swiss Roll (b) Learned embedding in 2D using PCA, (c) Gaussian Process Latent
Variable Model with Back Constraints, (d) Generative Topographic Map (e) Isometric Feature
Mapping(ISOMAP)

In principle, any of the embedding methods can be used to initialize the learning. We chose

spectral embedding methods for obtaining the prior distribution as these provide a globally

optimal solution to the problem of discovering non-linear degrees of freedom underlying the

complex natural observations.

6.2 Latent Variable Models

In this section we provide the details of the proposed framework for learning low-dimensional

representations using Spectral Latent Variable Models. For a given set of vectors in the obser-

vation spaceY = {yi|i = 1 · · ·N}, we want to obtain a low dimensional representation in the

latent spaceX = {xi|i = 1 · · ·N}. We refer the observation space as the ambient space that

surrounds the low-dimensional latent space.

In the following formulation, we denote the latent space points as a d-dimensional vector

x and the ambient data points as vectorsy with dimensionality D. Typically D is much greater

than the latent space dimension d.

The goal of latent variable model is to estimate the marginaldistributionp(y) in the ambient

space, in terms of latent variablesx. This is accomplished using a generative form by modeling

the joint distribution over ambient and latent variables asp(y,x) = p(y|x)p(x). We define

a mapping function from the latent space to the ambient spacef(x; W). Assuming that the

observed data pointsy are obtained from this mapping with Gaussian noise (zero mean), we

model this relationship as a conditional distributionp(y|x,W). The ambient marginal can then
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be obtained by marginalizing out the latent variables usingthe integral:

p(y|W) =

∫

p(y|x,W)p(x)dx (6.1)

Here, theW define the parametric mapping function f(x; W). In principal, the mapping

function can be non-parametric(e.g. Gaussian process as inGP-LVM[100].

In practice, it is convenient to define a likelihood functionover the ambient data points and

estimate the latent points by maximizing it [32, 179]:

L(W) = log

N
∏

i=1

p(yi|W) = log

N
∏

i=1

∫

p(yi|x,W)p(x)dx (6.2)

The mapping function can be linear with a Gaussian noise model:

y = Wx + N (0, σ) (6.3)

For a prior distribution as zero mean Gaussian distributionwith a unit covariance, maximiz-

ing the log likelihood eqn.6.2, leads to models like probabilistic PCA[179](or Factor Analysis

depending upon the Gaussian noise model for p(y|x,W)) where the matrixW spans the prin-

cipal sub-space of the data. However as mentioned earlier, linear models like PCA are unable

to unfold complex non-linear geometries in the ambient space. Hence it is more appropriate to

learn the mapping (6.3) using a non-linear regression.

One of the desirable features of the low-dimensional embeddings is that it they should

respect the topology of the points in the original space. As likelihood function has no specific

provision to enforce this, it is not sufficient to optimize the likelihood function 6.2 in order

to estimate embeddings that preserve the geometric structure in the ambient space. This is

primarily due to the following:

• The objective function in its current form has no provision to constrain the optimization

search in order to preserve the topological structure of theambient data points in the

latent space.

• The objective function may have complex response surface and optimizing it may cause

the framework to get stuck in local optima, yielding sub-optimal results.

Non-linear latent variable models like mixture of factor analyzers or PPCA[179] can although

model complicated non-linear structures, but do not provide global latent co-ordinate systems
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or latent spaces that preserve local or global geometric properties of the observed data. Whereas

regular grid based frameworks, like Generative Topographic Map(GTM) fail to unfold many

convoluted manifolds as the embedding grid is oblivious of the topological structure of the

ambient data. The optimization algorithm has strong tendency for getting stuck at the local

optima during the training. More recent methods like Gaussian Process Latent Variable Model

(GPLVM)[100] also face similar challenges. GPLVM is a probabilistic non-linear latent vari-

able model that uses non-parametric regression (Gaussian process) to map latent points to am-

bient space. The objective function with zero mean unit Gaussian regularizer in latent space

is data independent and does not put constraint to explicitly preserve the geometric properties

of ambient data. The lack of appropriate latent space prior in GPLVM makes it somewhat

more prone to local minima and therefore yields sub-optimalembeddings (ref. fig. 6.1(d)). In

the SLVM framework, we overcome the above limitations by using strong latent space prior

obtained from non-linear, spectral embedding methods likeIsomap, LLE, Hessian Eigenmaps

or Laplacian Eigenmaps. We use the latent prior to learn a probabilistic generative model for

estimating the conditional map from the latent space to observed space. The backward map

from the ambient space to the latent space is obtained by probabilistic inversion using Bayes’

rule. In the next section, we provide the details of Sparse SLVM formulation.

Figure 6.2: Overview of the sparse Spectral Latent VariableModel illustrated on an original
dataset consisting of 1000 points sampled from a planar S-shaped 3D manifold (referred to as S-
curve). The forward mapping from the latent space to ambientspace is a non-linear regression
mapping while the backward mapping is obtained by inversionof the forward conditional map
using Bayes’ rule. Details are discussed in the section§6.2.1
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6.2.1 Sparse Spectral Latent Variable Model

Fig. 6.2 illustrates the Sparse Spectral Latent Variable Model(SLVM). We work with two sets

of vectors,X andY, of equal sizeN , in the two spaces referred to as latent(or perceptual)

and ambient(observation space surrounding the latent space) respectively. The sets of vector

are unordered but in correspondence. We model the joint distribution over latent and ambient

variables using a constructive form:p(x,y) = p(x)p(y|x). We select the latent space prior

p(x) to be a non-parametric kernel density estimate, with kernelK and covarianceθ, centered

at the embedded pointsxi, obtained from the spectral methods like Isomap, LLE and Laplacian

Eigenmaps.

p(x) =
1

N

N
∑

i=1

Kθ(x,xi) (6.4)

In order to avoid complex integral for estimating the marginal((6.1)), the prior may as well be

formulated as sum of delta functions centered at the embedded pointsxi.

p(x) =
1

N

N
∑

i=1

δ(x − xi) (6.5)

Spectral methods use graph-based representations of the observed data, with nodes that rep-

resent observations and links that stand for neighborhood relations. The connected graph can

be viewed as a discrete approximation of the sub-manifold directly sampled from the observed

data. Different methods derive different matrices from thegraph. Their spectral decomposi-

tions (the top or bottom eigenvectors) reveal the low-dimensional, latent structure of the data.

We use the marginal distribution in the latent space and a mapping function from latent

space to the ambient space to construct joint probability distribution over the latent and ambient

variablesp(x,y). The vectors in the ambient space are related to the latent space via a non-

linear map:

F(y,W, α) =

M
∑

i=1

wT
i Kγ(y,yi) = WTKγ(y) (6.6)

In general, the kernels for the latent prior and the mapping function may be different. The

weight matrixW has sizeM ×D, with the column vectorsW = {w1,w2, · · · ,wN} for each

of the independent variate of the D-dimensional output vector.

p(y|x,W,α, σ) ∼ N (y|F(x,W,α), σ) (6.7)
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We assume a radially symmetric Gaussian noise model for the multi-variate response variables

y. Notice, that nonlinear mapping usesM basis vectors and can be sampled directly from the

training data points.

We train the mapping function in sparse bayesian learning (SBL) framework. SBL uses

hierarchical priors on the parametersW of the mappingF, that are governed by a set of hyper-

parameters. A hyperparameter is associated to each weightwi column vector and is iteratively

estimated using an optimization framework calledautomatic relevance determination[113,

124]. The learning essentially computes the MAP (maximum a posterior) estimates of the pa-

rameters that govern the distribution of weight priors usedfor regularization of the regression

function (6.6).

p(W|α) ∼
D
∏

j=1

N
∏

k=1

N (wjk|0,
1

αk
) (6.8)

p(α) =

N
∏

i=1

Gamma(αi|a, b) (6.9)

Gamma(α|a, b) = Γ(a)−1baαa−1e−bα (6.10)

anda = 10−2, b = 10−4 chosen to give broad hyperpriors. Using broad hierarchicalpriors

cause the posterior probability of the hyperparametersα to concentrate at very large values.

The consequence is that the posterior probability of the associated weights are concentrated at

zero. These weights are iteratively pruned and yields a sparse subset for relevant weights[180]

that correspond to the basis vectors of the mapping. As discussed in earlier chapters, Sparse

Bayesian learning generates compact regression models that have better generalization ability

and are robust to overfitting even in the absence of sufficienttraining data.

The marginal distribution of the ambient data is obtained byintegrating out the latent vari-

ables:

p(y|W,α, σ) =

∫

p(y|x,W,α, σ)p(x)dx (6.11)

For the prior based on kernel density, this integral is analytically intractable and can be approxi-

mately computed using Monte Carlo(MC) estimates of the prior distributionp(y). The integral

is straightforward for the prior based on delta functions 6.5 and is computed at the latent points

yi as:

p(y|W,α, σ) ∼
1

K

K
∑

i=1

p(y|xi,W,α, σ) (6.12)



146

The conditional distribution representing the backward mapping of the observed data points to

the latent space are obtained using the inverse Bayes’ rule:

p(x|y) =
p(y|x)p(x)

∫

p(y|x)p(x)
=
p(y|x,W,α, σ)

∑K
i=1 Kθ(x,xi)

∑K
i=1 p(y|xi,W,α, σ)

(6.13)

The conditional map can be used to project any out-of-sampleambient data point to the latent

space. Using the learned conditional from the latent space to the ambient space, we can estimate

the responsibilty of the latent data pointi for the ambient data pointj asp(xi|yj ,W,α, σ).

The latent point corresponding to any new ambient variabley can then be obtained either as

the weighted mean over the responsibilities of all the MonteCarlo samples or the mode (better

for multimodal distributions) in the latent space:

E{x|yn,W,α, σ} =

∫

p(x|yn,W,α, σ)xdx (6.14)

=

K
∑

i=1

p(i,n)xi (6.15)

imax = arg max
i

p(i,n) (6.16)

The model contains all the ingredients for efficient computation in both latent and ambient

space: (6.4) gives the prior in the latent space, (6.12) the ambient marginal, (6.7) provides the

conditional distribution (or mapping) from latent to ambient space, and (6.14) and (6.16) give

the mean or mode of the mapping from the ambient to latent space (a more accurate but also

more expensive mode-finding approximation than (6.16) can be obtained by direct gradient

ascent on (6.13)).

Note that even when the vectory is partially observed, the conditional distributions in

the latent space can still be computed using (6.13). This canbe done by marginalizing out

the unobserved part of the vectory. This has important applications in estimating missing

values (or data cleaning) by estimating the latent data point using the incomplete vector and

re-projecting the latent point back to the ambient space.

Learning: The learning is done using expectation maximization algorithm, by maximizing

the penalized log likelihood of the model at each EM iteration. The log likelihood has the form:

L = log
N
∏

n=1

p(yn|W,α, σ) =
N

∑

n=1

log{
1

K

K
∑

i=1

p(yn|xi,W,α, σ)} (6.17)
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The log likelihood in its current form is difficult to optimize. An application of EM generally

begins with the observation that the optimization of the likelihood functionL can be simpli-

fied if only a set of additional variables, called missing variables, are known. We define the

missing variables as the indicator functionsz that denote the associations between the observed

space points and the latent space points. The indicator functions zij is one if the latent data

xi is mapped to the ambient datayi. In the EM-framework, we maximize the complete data

likelihood p(y, z|W, σ) , the optimization of which gaurantees the optimization of incomplete

likelihood. Denotingzn = {zn1, zn2, · · · , znK} as a vector that encodes the association be-

tween the latent points and ambient points, the complete likelihood is defined as :

Lc(W,α, σ) = log
N
∏

n=1

p(yn, zn|W,α, σ) = log
N
∏

n=1

K
∏

i=1

p(yn|xi,W,α, σ)zni (6.18)

The use of indicator variables simplifies the complete likelihood function as:

Lc(W,α, σ) =

N
∑

n=1

{
K

∑

i=1

zni log p(yn|xi,W,α, σ)} (6.19)

During the E-Step, we estimate the expected value of the complete likelihood, where the ex-

pected value of the indicator variables are computed as:

E[zni|X ,Y] = p(xi|yn,W,α, σ) (6.20)

=
p(yn|xi,W,α, σ)

∑K
k=1 Kθ(x,xk)

∑K
k=1 p(yn|xk,W,α, σ)

(6.21)

The M-step involves estimation of the weight parametersW of the conditional map (6.6).

However, instead of maximizing the likelihood, we optimizethe penalized likelihood under the

bayesian learning framework. This involves use of hierarchical priors on the parametersW of

the mapping functionF. The hyper-parametersα, σ are estimated by maximizing the marginal

likelihood and used to prune off weights at each EM iterationin the (6.18):

p(yn|xi,α, σ) =

∫

p(yn|xi,W,α, σ)p(W|α)dW (6.22)

Maximization of the marginal likelihood with respect to hyper-parameters (α, σ) yields the

estimates for the variance from the prediction error as:

σ =
1

ND −
∑W

i=1 γi

N
∑

n=1

K
∑

k=1

p(kn)||W
∗φ(x) − yn||

2 (6.23)



148

where a “*” superscript identifies an updated variable estimate of the weight parameters for

the current EM-iteration. Here,N denotes the number of training points,D denotes the di-

mensionality of the ambient space vectors andK denotes the number of basis vectors.γ is a

variable denoting effective number ofW parameters in the model and is estimated as

γi = 1 − αiΣ
∗
ii (6.24)

The hyperparametersα are estimated using the automatic relevance determinationequations

[113]:

α∗
i =

γi

||µi||2
, (6.25)

whereµi is theith column ofW. Σii denotes the diagonal values of the covariance matrix for

the mapping distribution from the latent space to the ambient space(6.6).

The estimated hyperparameters are used to select a sparse set of weights for which the

αi variables does not exceed a threshold. The weightsW are estimated by maximizing the

penalized log-likelihood:

Lcp(α, σ) = log

[

N
∏

n=1

K
∏

i=1

p(yn|xi,W,α, σ)zni

]

p(W|α) (6.26)

In maximization step we make an approximation of ignoring the terms involving derivatives

of the responsibilitiesp(n,i) = E[zni] with respect toW. This yields a simplified form of the

updates as denoted in the (6.27):

Σ = (σφ⊤Gφ + S)−1 (6.27)

W⊤ = σΣφ⊤RY (6.28)

whereS = diag(α1, . . . , αM ) with α corresponding only to the active set,G = diag(G1, . . . , GK)

with Gi =
∑N

j=1 p(i,j), R is aKxN matrix with elementsp(i,j), andY is anNxD matrix that

stores the output vectorsyi, i = 1 . . . N row-wise, andφ is aKxM matrix with elements

G(xi|xj ,θ). The Expectation Maximization algorithm effectively searches in the parameter

space of{W} by reweighing the associations between the latent data points and the ambient

data pointsz. At each M-step it updates the weights parameters of the mapping function us-

ing the expected value of the associations (indicator variables). The sparse SLVM algorithm

is summarized in fig. 6.5. In the next two sections, we discusssome of the applications of the

spectral latent variable model to real world vision problems.
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6.2.2 Feed-forward 3D Human Pose Prediction from MonocularImage Sequence

Due to highly articulated structure of the human body, the human pose (represented as 3D joint

angles) has high degree of freedom (≈ 60 DOF). In order to predict 3D human pose directly

from the 2D images, we learn multi-valued mappings that can predict multiple plausible poses

for an observation(typically an image descriptor computedover a bounding box obtained from

a human detector). Multi-valued mappings from the input feature space to high dimensional

joint angles space can be learned by separate regression on independent joint angles. This

approach is computationally expensive and sub-optimal as it involves learning large number of

regressors and does not take into account the dependencies between the joint angles. Learning

a joint distribution in the human pose angle space requires alarge set of training exemplars

that are difficult to acquire. A large number of human activities have much lower intrinsic

dimensionality compared to the joint angle state space due to strong correlation across various

joints. For example, activities like running and walking will always have the two leg/arm joint

angles moving coherently with respect to each other.

We, therefore use low-dimensional representations of 3D human pose to efficiently learn

these mappings to predict latent space points directly fromthe 2D image descriptors. Prior

models on the human 3D pose have played central role in 3D monocular people tracking by

alleviating problems due to 2D-3D ambiguities and noisy or partially observed poses. A key

advantage of these models is their ability to effectively learn high dimensional variability of the

poses and non-linearity of the human dynamics using only a few latent parameters. However,

the learned representations should be able to preserve the topology of the human pose states

during the motion and generalize well to motions outside thetraining set.

We employ sparse Spectral Latent Variable Model(SLVM) to learn low dimensional rep-

resentations of human 3D pose. We train discriminative models to predict latent points using

the image descriptors as inputs. In a discriminative framework, these image descriptors are

extracted from the image bounding box obtained by running a person detector on the image.

To predict these latent points from image features, we use a conditional Bayesian Mixture of

Expert predictors, where each expert is a sparse Bayesian linear regressors. Each one is paired

with an observation dependent gate (a softmax function withsparse linear regressor exponent)
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that scores its competence when presented with different images. For different inputs, different

experts may be active and their rankings (relative probabilities) may change. The model is:

p(x|r) =
M
∑

i=1

gi(r)pi(x|r) (6.29)

gi(r) =
exp(λ⊤

i r)
∑

k exp(λ⊤
k r)

(6.30)

pi(x|r) = G(x|Eir,Ωi) (6.31)

with r image descriptors,x state outputs,gi input dependent gates, computed using linear

regressorsc.f. (6.30), with weightsλi. g are normalized to sum to 1 for any given inputr and

pi are Gaussian functions (6.31) with covarianceΩi, centered at the expert predictions, sparse

linear regressors with weightsEi. The model is trained using a double-loop EM algorithms

[92, 164].

The SLVM framework allows us to map the latent points to original 3D joint angle space

using the bidirectional mapping. We map latent states (estimated using BME) to 3d human

joint angles (using (6.6)) in order to recover body configurations for visualization and error

reporting.

6.2.3 Discriminative Density Propagation in Low-dimensional Embedded Space

Tracking a human pose is performed to enforce a temporal smoothness constraint and allows

principled resolution of ambiguities by assigning higher prior probabilities to poses similar to

those hypothesized by the learned dynamical model. However, tracking in original state space is

not only computationally wasteful in terms of resources, but also sub-optimal. For many visual

tracking tasks in high dimension state space, it is more appropriate to de-correlate the state and

project them into lower dimensional subspace that preservethe intuitive geometric properties

of the original space. For example, in many human activitieswith repetitive structure such as

walking or running, the components of the joint angle state and the image observation vector

are strongly correlated.

We applied the Sparse SLVM framework to track the 3D human pose in the low-dimensional

latent space. Visual inference in the low dimensional latent space is done in the same fashion
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as in the original state space, as described in more detail inchapter 4. We learn the low di-

mensional representations of the pose vectorxt using Sparse SLVM asyt and learn the con-

ditional distributionsp(yt|rt) andp(yt|yt−1, rt) using the labeled observation vectorrt over a

sequence of time framest. The 3D pose inference at each time step is done using the filtered

densityp(yt|Rt = {r1, r2, · · · , rt}) which is propagated by marginalizing out the state in the

dynamical conditionalp(yt|yt−1, rt) :

p(yt|Rt) =

∫

yt−1

p(yt|yt−1, rt)p(yt−1|Rt−1)dy (6.32)

Both the conditionalsp(yt|rt) andp(yt|rt,yt−1) are learned usingM Gaussian components

using Bayesian Mixture of Experts. We integrateM2 pairwise products of Gaussians ana-

lytically. The means of the expanded posterior are clustered and the low weighted Gaussian

components in the mixture are pruned off.

6.2.4 Fitting Non-Linear Shape Models to Human Face

In this section, we illustrate Sparse Spectral Latent Variable Models on an application to lo-

calize facial features in the images. Our methodology builds upon conventional active shape

models(ASM)[177, 52] and extends the framework to handle large scale variations in shapes of

face contours, across large and uneven head movement.

Landmark based deformable models like Active Shape Models(ASM) have proved effective

for identification and localization of object shapes in the 2D images, and have lead to advanced

tools for statistical shape analysis. ASM detects featuresin the image by using a combined prior

shape information with the observed image likelihood. A shapeS is typically represented as a

N × 2 dimensional vector, consisting of 2D location co-ordinates of N landmark pointsS =

[x1, y1, · · · , xN , yN ]. The shape of an object is a geometrical characteristic thatis invariant to

location, scale and rotation of the object. In order to definea shape, we first define the similarity

measure between the shapes using the Procrustes distance. The distance metric between two

shapesY1 andY2(with one-to-one correspondence) is defined as:

Dp(Y1,Y2) = ‖Y1 − Tx0,y0,s,θ{Y2}‖
2 (6.33)
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where the transformationTx0,y0,s,θ aligns the two shapes using translation, rotation and scaling:

Tx0,y0,s,θ





x1

y1



 =





x0

y0



 + s





cos(θ) −sin(θ)

sin(θ) cos(θ)









x1

y1



 (6.34)

In order to estimate the intrinsic geometrical shape, all the normalized shape vectors are pro-

jected into a common reference frame using (generalized) procrustes analysis. This procedure

iteratively estimates the mean shape and aligns all the shapes to it by rotation, scaling and

translation. The aligned set of shapes form a Kendall shape space that is a highly non-linear

manifold. The similarity between any two shapes lying on this manifold can be computed using

the geodesic distance between them. For two nearby shapes, the Euclidean distance between the

shape vectors are an accurate similarity measure. However,regular statistical learning methods

cannot still be applied. A well known solution to this problem is to project the shapes to the

tangent plane of the manifold at the mean shape. In the tangent space, Euclidean distance is a

valid similarity metric. The projections on the tangent space lie on a hyperplane as opposed to

the curved manifold surface and therefore various statistical methods can be used to perform

shape analysis. Standard Active Shape Model(ASM) uses linear PCA to learn principal modes

of variations of the shapes. This is based on the assumption that any aligned shapeX can be

expressed as different coefficients on these principal modes of variations:

X = X + Pb (6.35)

where theP = [p1, · · · ,pK ] are the principal components(modes of variations) andb are the

coefficients. Constraints can be applied to coefficients foreach mode of variation to ensure that

shape lies in a plausible shape subspace. The technique is efficiently used to iteratively search

the shape in the learned subspace, by deforming the shape by matching the image likelihood

of landmark points in a local image neighborhood, followed by applying global constraints to

confine the deformed shape to the learned shape space.

A major limitation of the conventional ASM is that it ignoresthe non-linear geometry of the

shape manifold. Aspect changes of 3D objects(e.g. human head) causes the shapes to vary non-

linearly on a hyper-spherical manifold. The tangent space is an accurate approximation for only

shapes lying in the vicinity of the reference shape (usuallythe mean shape). ASM, in its current

form therefore cannot handle large variability in the shape. Recent research in shape analysis
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and registration have proposed improved methodologies forsearching for the globally optimal

shape in a highly nonlinear Riemannian manifold. We proposeto use low-dimensional, percep-

tual representations learned from non-linear Sparse Spectral Latent Variable Model(SLVM) to

model the large variability in the shapes. Such variations in the shapes are typically observed

for the facial features undergoing significant aspect changes due to head movement.

Fig. 6.3 illustrates the learned 2D representations obtained using different shape analysis

methods. Fig. 6.3(a) shows the 2D representations learned using PCA on the shapes projected

on the tangent space. Representations in the fig. 6.3(b) wereobtained using Isomap on the

tangent space projection of the shapes. This used Euclideandistance to construct the connec-

tivity graph. Fig. 6.3(c) shows the embeddings obtained using isomap with connectivity graph

constructed using Procrustes distances between each pair of shapes.

(a) (b) (c)

Figure 6.3: 2 dimensional representations learned using different methods: (a) Principal Com-
ponent Analysis on the shapes aligned using generalized procrustes analysis and projected to
tangent space at the mean shape(frontal face). (b) Isomap embeddings on the shapes aligned us-
ing generalized Procrustes analysis and projected to the tangent space at the mean shape(frontal
face). Here, we use Euclidean distance in the tangent space to construct the pairwise connectiv-
ity graph. (c) Low dimensional embeddings obtained using Isomap with pairwise connectivity
graph constructed using Procrustes distance between each pair of shapes. Notice that tangent
space approximation distorts the similarity metric for shapes far from mean shape. The shapes
due to face looking down and up are thus mapped to nearby regions in the latent space computed
using tangent space approximation, as shown in (b).

Notice, that the 2D representations learned from the Isomapbased on Procrustes distances

are more accurate in preserving the geometric relationshipof the manifold. The facial feature

shapes due to head facing down and up are mapped close to each other in the embeddings

learned in the tangent space, whereas in the observed space they are perceptually very different
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shapes. The connected graph formed using Procrustes distance between every pair of shapes,

provides a more accurate, discrete approximation of the non-linear shape manifold and pre-

serves the topology in the latent space. The distribution ofthe latent points learned from the

Figure 6.4: Iterative shape search using shape prior learned using non-linear Sparse SLVM.
Each landmark point is matched using the learned appearancemodel in a local image neigh-
borhood. This deforms the shape and may generate a shape awayfrom the shape manifold
(bottom, left image). The shape is constrained using a gradient descent optimization on the
latent variables to generate a nearest shape lying on the learned manifold.

Isomap on the connected graph, are used as a prior for our SLVMmodel. The aligned shape

in the ambient space is related to the latent space using a non-linear vector valued function

(6.6). The search for the most optimal shape that fits the observed face in the image is done by

alternating optimization of the shape in the ambient space by first deforming the average shape

by matching appearance of the landmark points, followed by constraining its corresponding

latent point to lie in the learned embedded space. This is illustrated in the fig. 6.4. The shape

obtained by matching the local appearance models of the landmark pointsY′ may not lie on the

plausible shape space. This shape is first aligned to the common reference frame using inverse

transformationT −1
x0,y0,s,θ. The optimal latent space pointx corresponding to the aligned shape

is obtained by first finding the modex′ of the conditional distribution in the latent space and

optimizing it using direct gradient descent with the cost function as:

x = argminx′‖T −1
x0,y0,s,θ(Y

′) − F(x′,W,α)‖ (6.36)

where theF is the non-linear mapping learned using sparse Bayesian regression(6.6). As the

optimization in the (6.36) is analytically intractable, weuse numerical methods based on BFGS

to minimize the cost. This iterative procedure is repeated to obtain a shape that globally fits the
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Inputs: Points in high-dimensional, observed(ambient) space:Y = {yi}i=1...N .

Latent Variable Model: Parameters(W,α, σ) of Sparse Spectral Latent Variable
Model(SLVM), marginal distribution in latent spaceX and ambient spaceY, conditional dis-
tribution from the ambient space to the latent space and back.

Step 1.Obtain initial, non-linear embeddings in the latent space asX = {xi}i=1...N from the
points in the ambient spaceY. Use standard spectral methods like ISOMAP, LLE, HE, LE

Step 2. Construct latent space prior distribution either as non-parametric kernel density
estimate or summation of delta functions at the latent points c.f. (6.4) obtained instep 1

Step 3.Learn Spectral Latent Variable Model using Expectation Maximization(EM) Algorithm

• Initialize the parameters(W0,α0, σ0) of the conditional distributionp(yn|xi,W,α, σ)
using the correspondences(xi,yi)i=1···N obtained instep 1

• E-step: Apply Bayes rule(6.13) to compute the posterior probabilities
p(xi|yn,W,α, σ) for re-estimating the soft assignment of the points in latent
spacexi to the pointsyn in ambient space. The latent pointsxi can be obtained either
as Monte-Carlo samples from the latent priorp(x) or the original embeddings obtained
from the Spectral methods (under the assumption that the latent prior is represented as
summation of delta functions).

• M-step: Re-estimate the parameters,(W,α, σ) of the conditional map
p(yn|xi,W,α, σ) according to (6.27). This is done by solving a weighted
non-linear Bayesian regression problem. We employ Relevance Vector Machine
[124, 113, 180, 102], that usesAutomatic Relevance Determination(ARD)mechanism to
select a sparse set of weight parameters of the regression function.

Figure 6.5:The SLVM Learning Algorithm

observed face in the image.

6.3 Experiments

We illustrate the SLVM algorithm both on synthetic datasets, and on real computer vision

problems of estimating 3D human pose from monocular images and 3D head pose estimation

by tracking facial features. Both the real world problems require search in high dimensional

state space and therefore necessitates the use of low-dimensional models for learning perceptual

representations that can concisely capture non-linear variations of the data.
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Figure 6.6: Results of Sparse SLVM on the toy dataset sampledfrom 3D manifolds S-Sheet,
Swiss roll and Punctured sphere(First Row)Original dataset of 1000 points from the 3 different
datasets. Color code depict the geometric ordering.(Second Row)2D embeddings obtained us-
ing Sparse SLVM where the latent prior in (a-c) are obtained using ISOMAP and (d) is obtained
using LLE. The circled points are active basis set used in themapping and are automatically se-
lected using sparse Bayesian learning.(Third Row)Reconstruction using Sparse SLVM. Notice
that the geometric ordering is preserved as depicted by the color coding of the reconstruction.
(Fourth Row)Latent space prior shown as contour plots for the 3 differentdatasets.(Fifth Row)
Ambient marginal of SLVM computed using (6.12) on the samples obtained from the prior us-
ing Monte Carlo estimate. Unlike all the other plots shown inthe figure, the color of the points
represents probability, and not geometric ordering.
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Figure 6.7: Conditional distribution (6.13) in the latent space for an out-of-sample point in am-
bient space. We illustrate this on the toy datasets of S-curve, Swiss roll and Punctured sphere.
(a) conditional distribution for an SLVM model with latent prior as sum of delta functions
centered at latent points obtained from Isomap.(b-d) showsthe multimodal conditional distri-
bution for Sparse SLVM with latent prior as kernel density centered at latent points obtained
from ISOMAP. (e) shows the conditional distribution for Sparse SLVM with prior latent points
obtained from LLE (fig. 6.6(d))

6.3.1 Synthetic Datasets

This set of experiments are illustrated in fig. 6.6 where we apply Sparse SLVM algorithm on

3 different toy datasets. The original data set fig. 6.6(top row)consists of 1000 points sampled

regularly from the highly non-linear surfaces(S-curve, swissroll and punctured sphere) in 3D

and color coded along one of the dimensions to highlight their relative spatial ordering. Re-

sults in the first 3 columns use Isomap and the last column usedLocally linear embedding to

obtain the latent prior distribution as kernel density. Fig. 6.6(second row)shows the learned

embedding in 2D latent space and the selected relevant basisvectors (obtained usingAutomatic

Relevance Determinationmechanism) used in the mapping from the latent space to ambient

space. Typically, the sparsity level (i.e. the number of relevant vectors) achieved using ARD

for these datasets is≈ 8%. Plots in the fig. 6.6(third row) show the reconstruction of the 3D

manifold in the ambient space using the Sparse spectral latent variable model. Fig. 6.6(fourth

row) shows the contour map for the latent prior (learned as kerneldensity estimation) in the
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latent space. Fig. 6.6(last row)shows the marginal distribution in the ambient space learned us-

ing Sparse SLVM. The color of the points shows the probability and not the geometric ordering

as depicted in the other plots. Notice, that the marginal probability peaks at the regions where

density of data is high.

One of the key strengths of SLVM is that it enables computation of multimodal conditional

distribution in the latent space unlike GPLVM that allows unimodal approximation of one of the

modes. For any data point, the latent point can be chosen as weighted combination of the latent

points or as latent space sample having highest responsibility (if the conditional distribution

is multimodal). Fig. 6.7 plots the conditional latent spacedistribution (6.13) for an out-of-

sample data point, computed using the Sparse SLVM. We show on3 different datasets of S

shaped curve, Swiss roll and Punctured sphere. The first column shows the results using SLVM

with priors as sum of delta functions. Rest of the columns used latent prior based on Kernel

density estimation. Last column shows the results for SLVM initialized using Locally Linear

Embedding(LLE) whereas the rest of the results were obtained using SLVM based on Isomap.

The test point in the experiments was carefully chosen to be in proximity to multiple distant

points in the ambient space.

The bi-directional mapping can be effectively integrated in any probabilistic framework

to learn low-dimensional, perceptual representations that are less noisy and more suitable for

machine learning applications. Moreover the data projected to the latent space can be recovered

using the backward mapping. In the following, we illustratethis in the 2 real world applications

involving optimization and learning in high dimensional ambient space.

6.3.2 3D Human Pose Reconstruction

In this section, we report results on one of the key application of low-dimensional models.

We use Sparse SLVM to learn latent perceptual representations of high-dimensional 3D hu-

man pose state space. We use motion capture data from CMU MoCap repository[1] in our

experiments and apply the learned models on both quasi-realsequences obtained by rendering

a synthetic human model on realistic backgrounds, and real sequences from the movie ’Run

Lola Run’ and static images from INRIA human detection dataset. We use 41d joint angle

representation for the 3D human pose configuration. As the angles lie in cyclic space, we map
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each joint angle to a pair(sin, cos) that varies continuously, thus totaling to an 82d vector in

the observed pose state space. We use this 82d vector as inputs to learn the Sparse SLVM.
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Figure 6.8: Joint angles prediction error in degrees for 5 different image sequences (Walking,
Running, Bending-Pickup, Pantomime and Dancing) and 3 different imaging conditions(Clean,
Clutter1andClutter2). The bottom right plot is the cumulative prediction error averaged over
all the 5 sequences. We compare several methods for learninglow-dimensional representations
- SLVM with different spectral embeddings (Isomap, LLE, HE,LE), GPLVM (with and with-
out back-constraints)[100], GTM [31] and PCA. In all the models we project the joint angles
to 2d latent space. We learn Bayesian Mixture of Experts(BME) model to predict the low-
dimensional embeddings using image descriptors based on Multilevel Spatial Block(MSB)[16]
as the inputs. In our experiments we trained both the Latent Variable Models and the corre-
sponding BME model separately for each motion type. The error plots shown here, is obtained
from the prediction of the most probable expert (as predicted by the gate distribution 6.2.2 for
test input).

Image Descriptor: Image descriptors form a key component in any discriminative frame-

work and their choice is task dependent. A desirable characteristic of the descriptors is to be

sufficiently discriminative in order to distinguish between different poses of the humans in the

image. However, image descriptor should be, at the same timeinvariant to perturbations and

variabilities in the observations due to changing illumination, anthropometry and the appear-

ance of the targets. We use Multilevel Spatial Blocks (MSB) encoding, as discussed in previous

chapter, to compute a description of the image at multiple levels of semantics. These multi-level

encodings are obtained by computing the dense grid based local SIFT descriptors over progres-

sively larger neighborhood[16]. SIFT descriptors, proposed by [112], has been widely applied

for the task of feature matching and object recognition. TheSIFT descriptor is constructed as a
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Figure 6.9: We plot the learned conditional distributionp(x|r) for a quasi-real walking se-
quence, in the latent space learned using GTM(a and b) and SLVM-Isomap(c and d), given an
observed image descriptorr. The plots show the probability map (color-coded contours)of the
predicted pose in the latent space.(a) and(b) show the training walking sequence in the 2d grid
based latent space learned using GTM, with consecutive latent points of the temporal sequence
linked to each other. The circle denote the ground truth poseof the test input in the latent space.
(c) and(d) show the same for the SLVM-Isomap for the same input test datar. Notice that the
geometric ordering of the latent points associated to the poses of a walking sequence is not
preserved by GTM, and multiple latent points get associatedto the points in the ambient, 3d
joint angles space.

concatenation of gradient orientation histograms computed over the block of regularly placed

cells. The cells accumulate the gradient orientation information over a small region of the im-

age pixels and uses bilinear interpolation to soft vote to the quantized orientation bins of the

histogram. This is the key step for enhancing the invarianceto affine transformation and mis-

alignment. The multilevel spatial block in our framework was of size 1344 and was obtained

by encoding the image at 3 levels of varying cell sizes. The levels had 16, 4 and 1 SIFT block,

with 4x4 cells per block. The cell size for the 3 levels were 12x12, 24x24 and 48x48.

Database:For quantitative experiments we use our own database consisting of 3×3247 =

9741 clean and quasi-real images, generated using a synthetic human model. The human model

was animated by importing motion capture data [1] to it usingthe Maya graphics package, and

randomly rendering on real image backgrounds. Our dataset consisted of 3247 different 3d

poses from common human motion sequences - different walking, either viewed frontally or

from one side, dancing, conversation, bending and picking,running and pantomime. As dis-

cussed in the previous chapter, the data consisted of 3 categories of data depending on whether

the computer graphics model is rendered on clean background(Clean), on real background im-

ages already seen in the training set(Clutter1) and on real background not seen in the training

set(Clutter2).

For testing, we collect three sets of data from five differentmotion sequences, with 150



161

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(a) (b) (c)

Figure 6.10: This figure plots the conditional distributionp(x|y) of a running sequence in the
latent space for the Sparse SLVM model, given partially observed joint anglesyo. The latent
point corresponding to the complete joint angle vectory is shown as a circle,(a) plots the
conditional distribution in the latent space using the entire joint angle vectorp(x|y), (b) shows
the plot of the conditionalp(x|yo1) obtained using only the joints corresponding to the left
arm (shoulder and elbow joints that constitute 5 dof out of a total of 41 dof in the articulated
human skeleton). Notice that the 3 modes in the conditional map in the latent space arise due
to the pose ambiguity caused by missing data.(c) plots the conditionalp(x|yo2) using only
the joints corresponding to the right leg (5 dof out of a totalof 41 dof in the articulated human
skeleton). The conditional is mostly unimodal, which suggests that the leg joint angles are
more informative than the arm joint angles in a typical humanwalking sequence.

poses for each of the sequence. The test motions are executedby different subjects, not in the

training set.

For computing the image descriptors, we obtained the bounding box around the centroid

of the rendered silhouette. The bounding boxes had fixed aspect ratio and were rescaled to

320 × 240. The background clutter exhibited significant variabilitydue to random background

and varying aspect ratios of the human 3D poses (e.g. a personstanding with arms closed

compared to person with arms wide open).

We train Bayesian Mixture of Experts model on each activity in the dataset and evaluate

various latent variable models in terms of 3D joint angle prediction accuracy. The latent vari-

able models were learned separately on each of the activities. We used 5 experts with radial

basis function(rbf) kernels and linear softmax gate distribution. We compare several latent

variable models - SLVM-Isomap, SLVM-HE(Hessian Eigenmaps), LE(Laplacian Eigenmap),

LLE(Locally Linear Embedding), GPLVM with and without back-constraints, GTM and PCA.

We project the 82d (41x2=82d where we map each angle to a pair(sin, cos)) human pose vector

to 2d latent space using various latent variable models. We then use Bayesian Mixture of Ex-

pert(BME) model with exactly same parameters to learn the mapping from the image descriptor
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space to 2d latent space. In fig. 6.8, we show quantitative comparisons (prediction error, per

joint angle, in degrees) for 5 different motions (+ a cumulative plot) and 3 sets of data:Clean

backgrounds,Clutter1backgrounds andClutter2backgrounds. The error was computed with

respect to the prediction from the most probable expert of the BME. For visualization and error

reporting we use the mapping from the 2d latent space to the joint ambient space to retrieve the

joint angles. In our experiments, SLVM based on Isomap was performed best with minimum

average joint angle prediction error. Performance of SLVM-HE and GPLVM(with and without

back-constraints) were next best, followed by rest of the Sparse SLVM implementation based

on LLE and LE. GTM on the other hand, gives significantly higher prediction error compared

to rest of the latent variable models and has difficulty unfolding the high-dimensional human

joint angle trajectories on its regular 2d grid. Among the 5 different sequences, the joint angle

prediction errors are highest for the dancing sequence. This is primarily due to significant se-

mantic variability between the training and testing sequences. Computationally, GPLVM is the

most expensive model and PCA the cheapest to train, whereas in testing all models are about

the same. In comparison, Sparse SLVMs have competitive training times.

Fig. 6.9 compares the posterior plots of predictions using GTM and SLVM-Isomap on a

quasi-real walking sequence with the clean background. Thecircle shows ground truth test

data point and the predicted posterior is shown as a color coded contour. The prediction from

the SLVM-Isomap is shown on the right, with relative spatialordering of different walking

poses accurately preserved in the latent space.

Fig. 6.10 shows the conditional distributionp(x|y) in the latent space for the running se-

quence of partially observed joints angles for the SLVM based on Laplacian Eigenmap. The

distribution is highly multi-modal when only left arm is observed. The right leg joints however

are more informative than the arm and has distribution that is effectively unimodal. The modes

of the distribution can be used to reconstruct the entire pose using incomplete data only.

In another set of experiments, we show in fig. 6.17 results based on real images from the

movie ’Run Lola Run’. These are automatic 3d reconstructions obtained with our SLVM-

Isomap. The human target in this sequence is fast moving and is filmed in non-instrumented

environments. We use a model trained with 2000 walking and running poses only (quasi-real

data of our model placed on real backgrounds). The walking training data used Computer
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Figure 6.11: Plot of the conditional map in the latent space for a test running sequence from
the movie ’Run Lola Run’. We used MSB to predict the 3D pose using Bayesian Mixture of
Experts (BME). The BME model was trained on quasi-real running sequences observed from
the side. Test data included frame of motion of the target parallel to the camera plane. The
target is localized in the image using the human detector[53] based on SVM classifier. The
bottom row shows the conditional distributionp(x|r) in the latent space wherer denotes the
image descriptor

Graphics(CG) model rendered from 8 different viewpoints. While the running sequence used

the model rendered from side, frontal and back views only. Fig. 6.12 and fig. 6.11 shows the

conditional distributionp(x|r) in the latent space for the 3D human pose reconstruction. The

multimodal distributionp(x|r) are obtained as mixture of Gaussians, as predicted by the multi-

valued mixture of experts model. In this figure, we show the distribution on the embeddings for

the running sequence used in the training data, obtained using Sparse SLVM based on Laplacian

Eigenmaps.

Fig. 6.13 shows the human pose reconstruction results from the real images taken from the

movie ’Run Lola Run’ and the INRIA pedestrian dataset. As typical with many discriminative

methods, the solutions are not always entirely accurate in aclassical alignment sense (this is

largely due to lack of typical training data) these are nevertheless fully automatic reconstruc-

tions of a fast moving person(Lola), filmed with significant viewpoint and scale variability.

Notice that the phase of the run and the synchronicity between arms and legs varies signifi-

cantly across frames.
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Figure 6.12: Plot of the conditional map in the latent space for a test running sequence from
the movie ’Run Lola Run’. We used MSB to predict the 3D pose using Bayesian Mixture of
Experts (BME). The BME model was trained on quasi-real running sequences observed from
the side. Test data included frame of motion of the target parallel to the camera plane. The
target is localized in the image using the human detector[53] based on SVM classifier. The
bottom row shows the conditional distributionp(x|r) in the latent space wherer denotes the
image descriptor

Figure 6.13: 3d Pose reconstruction results on images from the movie ‘Run Lola Run’ (leftmost
4 images) and the INRIA pedestrian dataset (rightmost 4 images) [53]. (Top row)shows the
observed 2d images,(Bottom row)shows 3d reconstructions from the same viewpoint as the
test images
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6.3.3 Visual tracking in Low dimensional Embedded Space

In another set of experiments, we used our discriminative framework based on Bayesian Mix-

ture of Experts model and Sparse SLVM to track low dimensional representations of 3D human

pose in the learned latent space. We track walking sequencesfrom the CMU motion capture

repository[1] to train the BME model, which is composed of 4 non-linear experts and a ker-

nelized gate distribution (softmax with kernel inputs). Wetrain the BME model on a data set

containing≈ 2000 labeled walking examples, performed in a similar setting asthe test dataset.

In these settings, the camera is static and background modelcan be learned, we used descrip-

tors based on Shape Context Histogram[121], computed for the randomly sampled edge pixels

of the foreground image. We used SLVM-Isomap to reduce the dimensionality of the 82d joint

angle ambient space to a mere 3d latent space. Fig. 6.14 showsthe 3d pose inference results of

the walking sequence.

6.3.4 Tracking Facial Features

The prior shape model is learned using 1029 labeled images (79 landmark points) in various

head poses. Each of the image is manually labeled by accurately placing the landmark points

on the face on an edge contour of the facial feature(eyes, nose, mouth, eye brows and face con-

tour). The location on the contour should be invariant across subjects and face deformation and

is visually estimated by taking into account the scale changes. The training of the non-linear

Active Shape Model involves learning of both the appearanceand the shape model. The local

appearance model for each of the landmarks is learned as image gradient profile, normal to the

edge boundary of the facial features. Since this does not exhibit much variability, we employ

linear PCA based model to learn local appearance models. Theglobal shape model is more

challenging to learn as it exhibits much larger variabilitythat cannot be captured using linear

models. We use Procrustes distance between every pair of images to construct a connectivity

graph and use Isomap to obtain the latent prior distributionof the shapes in the latent space.

Fig. 6.15 show some of the shapes used for training SLVM basedactive shape model. We ex-

tended active shape model to handle nonlinearities in shapes by learning perceptual representa-

tions using sparse SLVM. Sparse SLVM allows us to capture larger variability in shapes due to



166

Figure 6.14: 3d Pose reconstruction results on image sequence of a person walking with a suit-
case, from the CMU MoCap data repository[1](First row) shows observation image sequence,
(Second row)shows the silhouettes obtained using background subtraction[64],(Third row) 3d
reconstructions from the same viewpoint as the test images,(Fourth row) 3d reconstructions
from a novel viewpoint and(Last row)filtered conditionalp(yt|Rt) in the 3d latent space ob-
tained using SLVM-Isomap. Here the circled point denotes the latent point of the ground truth
pose

relative positioning of facial features (eyes, mouth and nose), and learn a plausible shape space

that can, in principle, be used to fit feature shapes to any novel face. We therefore used 6D em-

beddings to learn the non-linear SLVM based shape model. We fit the shape using alternating

optimization of likelihood by sampling along the normals atthe landmark points of the shape,

followed by shape regularization using the non-linear SLVMbased shape model. The shape

regularization is done by non-linear optimization of the cost function (6.36). As this cannot be

done analytically, we use numerical methods based on BFGS tooptimize the cost function and

estimate the nearest shape in the plausible shape space as fixed number of iterations of the gra-

dient based search. For efficient and accurate search over scales, rotations, translations and the
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Figure 6.15: Facial feature shapes of various human subjects from the training dataset. Here we
show only 4 (out of total 7) different class of poses used for learning the shape space. 7 different
class of poses include - frontal, left-frontal, right-frontal, right-profile, left-profile, upwards and
downwards. Each of the pose class had shapes with varying degrees of head rotation for 100
subjects. Shapes were manually labeled by precisely placing the landmark points on the 2D
image of the face along the contour edges of the face.

shape parameter space, we used coarse-to-fine search over 4 levels of Gaussian scale pyramid.

Fig. 6.16 shows the trajectory of the shape search on the low dimensional embedded space(here

we show only the first 2 dimensions of the 6D latent space). Thefacial features is tracked

across a sequence of images and is used to estimate the head pose of the subject. We track the

features using Kanade-Lucas-Tomasi (KLT) tracker which isan image registration method and

computes feature points correspondences on the two images by minimizing theSum of Squared

Intensity Differencecomputed over a fixed sized window and across consecutive frames. KLT

tracker assumes that for small displacements of intensity surface of the image window around

a feature point, the horizontal and vertical displacement of the feature point is a function of

gradient vector at that image pixel.

We track individual landmarks independently using the KLT tracker. At every frame we

ensure that the shape obtained from tracking individual landmark points is a plausible shape by

constraining the shape to lie on the shape manifold learned from sparse SLVM. This is again

done using LM-BFGS optimization of the reconstruction costfunction(6.36) at every tracking

step. We learn regression functions to predict pitch and yawof the head from the latent space

variables of the shape manifold, using the manually labeledhead poses for all the training

images. The tilt of the head on the image plane is estimated during the shape search. Fig. 6.17

shows the tracking results across large head movement. On the left we show the predicted head

pose angles in degrees and the simulated movement of a rigid computer graphic head model

using the estimated head pose.
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Figure 6.16: Searching for the optimal shape in the latent space obtained using Sparse SLVM.
Top row shows the deformation of the mean shape initialized at the center of the face bounding
box detected using Viola Jones face detector. Final fitted shape is shown in the image on the
right.

6.4 Conclusion

In this chapter, we have presented a framework for learning low-dimensional embeddings us-

ing Spectral Latent Variable Models (SLVM) and showed theirpotential for visual inference

in applications requiring search for optimal parameters inhigh dimensional space. We have

argued in support of low-dimensional models that: (1) preserve intuitive geometric proper-

ties of the ambient distribution, e.g. locality, as required for visual tracking applications; (2)

provide mappings, or more generally multimodal conditional distributions between latent and

ambient spaces, and (3) are probabilistically consistent,efficient to learn and estimate and ap-

plicable with any spectral non-linear embedding method like Isomap, LLE or LE. To make
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Figure 6.17: Tracking of face across large head rotations. We track the landmark points inde-
pendently using KLT tracker and constrain the global shape to lie in the shape space learned
using SLVM. The tracked shape is used to predict the pitch andyaw of the head. The tilt angle
is obtained by aligning the 2D shape to the mean shape of the frontal face.

(1)-(3) possible, we propose models that combine the geometric and computational properties

of spectral embeddings with the probabilistic formulationand the mappings offered by latent

variable models. We demonstrate quantitatively that SLVMscompare favorably with existing

linear and non-linear techniques, and show empirically that (in conjunction with discriminative

pose prediction methods and multilevel image encodings), SLVMs are effective for the auto-

matic 3d reconstruction of low-dimensional human poses from non-instrumented monocular

images. We also demonstrated the practical applicability of the Sparse SLVM framework in

learning the low-dimensional representations of highly non-linear shape manifold and using it

to localize facial features in an image. The proposed framework can be easily extended to track

the shapes of facial features across any head movement and predict head pose using the tracked

shapes.



170

Chapter 7

Conclusion and Future Work

In this thesis we have examined various aspects of the problem of human 3D pose estimation

from monocular image sequences. Specifically, we have examined the strengths and limita-

tions of discriminative methods, challenges faced in implementing core components of the

framework and approaches to resolve the key issues encountered. We have proposed a frame-

work that can be used as a stand alone system and has capability to automatically self-initialize

and recover from failures. By virtue of its generality, we hope that the proposed methodology

will be useful in other 3d visual inference and pose estimation problems. The proposed frame-

work can also be used to initialize generative models. We hope that our research will provide

a benchmark framework for comparing the performance of discriminative methods and gener-

ative methods in general, and for devising novel techniquesto combine the two approaches.

• Multi-valued prediction - We have developed algorithms for learning multi-valued map-

pings that are frequently confronted in 3D perceptions. Thelearning of multi-valued

mappings is based on mixture of experts model and used sparseBayesian learning to

avoid overfitting to the training dataset. We demonstrate substantial improvements in hu-

man 3d pose prediction accuracy of our multi-valued predictors over Nearest Neighbor

and single ridge regressions, on both synthetic and real datasets.

• Discriminative density propagation - We have introduced a framework for discrimi-

native density propagation using continuous temporal chain models. We showed that

modeling of multimodal conditionals and its propagation are both essential for success-

ful human pose reconstruction. We also demonstrate the flexibility of our framework by

tracking 3D pose in low dimensional kernel space and achievesizeable gains in compu-

tational cost without any marked degradation in the pose prediction accuracy.
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• Hierarchical image descriptors - We have argued the use of improved hierarchical im-

age descriptors, that encode the image at multiple degrees of selectivity and invariance to

perturbations due to geometric transformations, misalignment and illumination changes.

We showed that hierarchical image descriptors can lead to substantial performance gains.

These descriptors are further complemented with noise suppression and metric learning

algorithms based on Canonical Correlation Analysis and Relevant Component Analysis.

These algorithm further refine and align the image descriptors within individual pose in-

variance classes, in order to improve tolerance to noise in the visual observation. We also

observed that in our tests, use of both - hierarchical descriptors and metric learning lead

to improvement in performance.

• Semi-supervised multi-valued learning- We showed how unlabeled data can be in-

corporated into learning framework to train improved multi-valued predictive models.

We extend Semi-supervised learning based on Manifold regularization to multi-valued

functions. This involved adding constraints to the objective cost function to ensure that

the functions are smooth along the intrinsic geometry of theinputs. We back our ar-

guments by strong performance evaluation of the framework,learned using manifold

regularization on both synthetic,quasi real1 datasets and real HumanEva datasets. In

our experiments, we were able to achieve substantial performance gains by training the

mixture of experts model using both labeled and unlabeled examples.

• Learning low dimensional perceptual representations of correlated covariates - Fi-

nally we have proposed a generic framework of non-linear generative models that com-

bine the advantages of spectral embeddings and parametric latent variable models. These

models, referred to as Spectral Latent Variable Models, provide bidirectional mappings

between latent and ambient spaces and are probabilistically consistent. We have showed

that SLVMs compare favorably with the competing methods based on PCA, GPLVM

or GTM for the reconstruction of typical human motions on a benchmark dataset. We

empirically observe that SLVMs are effective for the automatic 3d reconstruction of low-

dimensional representations of human 3d motion in movies. We also demonstrate the

1Synthetic computer graphics model placed on realistic backgrounds
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applicability of these models to facial features detectionand tracking in 2D images, that

involved high dimensional shape search on a non-linear shape manifold.

7.1 Future work

The research work presented in this thesis attempted to develop improved techniques for dis-

criminative human 3D pose estimation from moncular sequences. However, the problem is a

challenging one and is far from being solved. While we have tried to address most of the is-

sues in our research work, a number of these could not be investigated in depth in this thesis.

The proposed framework can be easily extended to support these and we plan to study these

techniques in future:

• Combining with generative pose estimation framework- The goal of bottom-up ap-

proach is to estimate the global orientation and 3D pose of human targets directly from

the image cues. Bottom-up approaches provide fast and efficient methods for 3D pose

reconstruction. However their performance depends on how representative is the training

dataset. It is difficult to include all possible human poses in the training set. 3d poses

characteristic to a subject may not be represented in the training set and hence may not be

accurately predicted by discriminative models. For example it would be difficult to iden-

tify pose and shape abnormalities using a learning based approach, unless it has already

seen the abnormal pose in the training set. In such scenarios, a generative approach is

more suitable as they extrapolate better to unseen observation in the absence of sufficient

training exemplars. Hence, there is a need to integrate the bottom-up models with more

data driven approaches like top-down (generative) models,in order to flexibly fit the 3D

pose to any given observation.

• Partial occlusion - In the thesis work we have omitted detailed sensitivity analysis of

pose estimation in the presence of partial occlusions. To a large extent, this depends on

the robustness of the image descriptors and also on the labeled exemplars used for learn-

ing the models. The local occlusion should not drastically alter the image descriptor.

Rather the descriptors and the trained model should degradegracefully with occlusions.
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In order to train models that are robust to partial occlusion, we may as well use suffi-

ciently representative training set containing examples containing humans with different

occluded parts.

• Improving scalability - The potential success of discriminative learning approaches for

3D pose reconstruction critically depends on the ability totrain models on sufficiently

rich set of exemplars. We are looking into various learning techniques to make the exist-

ing framework scalable and support multiple activities. The extension entails developing

fast and memory efficient algorithms for learning Bayesian Mixture of Experts, which is

currently slow due to double loop optimization used for Sparse Bayesian Learning of the

gating function(expert ranking function). One possible technique is to use online learn-

ing algorithms based on forward basis selection (as opposedto backward elimination)

for Sparse Bayesian Learning.

• Improving motion dynamics - In the current discriminative tracking framework, dy-

namics is strongly biased by the training data set and the prior motion model. The track-

ing is prone to occasional failures as it is difficult to guarantee that the input vector

obtained by concatenating the current observation and previous pose estimate will be

close to typical input exemplars seen during the training stage. The tracking should be

adequately parametrized to balance the weights assigned tothe pose estimates from the

previous frame and the observation in the current frame, forthe 3d pose prediction.

• Adaptive models- Another possible extension to the current framework is to incorpo-

rate prediction results in the current time step to improve the learned models with time.

Discriminative models tend to be strongly biased by the exemplar set used for training.

Techniques to train the models online and adapt over time in an unsupervised fashion (or

with little supervision) will be a useful step towards developing more robust discrimina-

tive frameworks. A key issue in these algorithms is to appropriately adjust the learning

rate and avoid learning the model from the incorrectly predicted examples.
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Appendix A

Bayesian Multi-Category Classification

In this appendix we provide detailed formulation of the multi-category classification used for

training the gate distribution for Bayesian Mixture of Experts model. The framework is an

extension of binary classification to polychotomous classification where the likelihood distri-

bution has a multinomial form (generalization of binomial distribution to multiple category

classification).

ForM classes andN observed data pairsZ = (z(n), r(n)) we adopt standard classification

framework with the target variables obtained as outputs of asoftmax function:

σ{fj(r
(n))} = e−fj(r(n))/

M
∑

i

e−fi(r(n)) (A.1)

where the intermediate functionfi(x) is typically a linear function for Generalized Linear

Models. Advantage of using this form of the classification function is to implicitly normalize

the output values so that they lie in the range(0, 1). In most learning algorithms, a linear

function fi is preferred, in order to minimize the error due to variance,although it may also

have linearly weighted form with non-linear kernel basis functions:

fi(x) =

N
∑

n

λn,iΦ(x, xn) = λT
i Φ(x) (A.2)

The above form is highly parametrized and has tendency to overfit the training data. We there-

fore employ sparse Bayesian learning framework to train these models to accurately learn non-

linear boundaries and also avoid overfitting.

We represent the weight parameters for M-category classifier asΛ = {λ1, λ2, · · · , λM}

with hyperparameters for weight parameters of each class asA = {A1,A2, · · · ,AM} and

Ai = diag(β1, · · · ,βN ) for N basis functions(corresponding to each of the N training data
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pair). We formulate the likelihood for M-category classification as a multinomial distribution:

p(Z|Λ) =

M
∏

k=1

N
∏

n=1

σk

{

f(r(n))
}znk

(A.3)

The weight parameters have zero centered Gaussian priors, with variance controlled by a sec-

ond level of Gamma hyperpriors. This avoids overfitting and provides an automatic relevance

determination mechanism, encouraging compact models withfewer non-zero expert and gate

weights, for efficient prediction [113, 124, 180, 30]. We assume independent weight priors for

each of the M classes:

p(Λ|A) =

M
∏

k=1

p(λk|Ak) (A.4)

where the individual weight priors are Gaussian distributions.

p(λi|βi) =
N
∏

n=1

N (λk
i |0,

1

βk
i

) (A.5)

A.1 Posterior Distribution

Having defined the likelihood and the prior, we seek the posterior distribution over the weights

parametersp(Λ|Z,A). Note here that for prediction we do not need to estimate the full pos-

terior p(Λ,A|Z) and it is sufficient to compute the ML(Maximum Likelihood) estimate of the

hyper-parameters. This is typically done by optimizing themarginal evidence (type II maximum

likelihood) for the hyperparameters. The log posterior over the weights Λ can be conveniently

formulated as:

log {p(Λ|Z,A)} =
M
∑

k=1

N
∑

n=1

znk log{σk{f(r(n))}} − (
M
∑

k=1

λT
k Akλk) (A.6)

The posterior has a complex non-gaussian form and cannot be optimized in usual way. However

notice that the Hessian of the log posterior is negative definite everywhere:

∇λk
∇λk

(log{p(Λ|Z,A)}) = −((ΦT
k BkΦk) + Ak) (A.7)

whereBk = diag(b
(1)
k , b

(2)
k , · · · , b

(N)
k ) andb(n)

k = σk{f(r(n))}[1 − σk{f(r(n))}].

This indicates log-concavity of the posterior function that has single mode. Under such

circumstances we may conveniently make a local Gaussian approximation to the posterior in

the neighborhood of its mode(Laplace approximation). If wedefine:

H(Λ,Z,A) = −ln{p(Z|Λ,A)p(Λ|A)} (A.8)
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then we can re-write the posterior in the form:

p(Λ|Z,A) ∝ exp{−H(Λ,Z,A)} (A.9)

≃ exp{−H(ΛMP ,Z,A)}exp{−
1

2
(Λ − ΛMP )TC−1(Λ − ΛMP )} (A.10)

whereC is the curvature of the posterior and is computed as the Hessian in the (A.7). Note that

the approximation is nothing but expanding the logarithm ofthe integrand using taylor series

and retaining terms upto second order. Also note that the first order term vanishes at the modes

ΛMP = {ΛMP
1 , · · · ,ΛMP

M }.

The size of the covariance matrixC scales with the number of classes M and its inver-

sion may become computationally expensive. We therefore assume block diagonal form for

the covariance matrixC and independently optimize the posterior for the gate parameters for

multiple classes. This simplification enables the multivariate gaussian to be factorized into in-

dividual posteriors for each class so that the covariance matrices can be inverted independently.

Assuming block diagonal covariance matrixC = diag(C1,C2, · · · ,CM) for M classes, we

can factorize (A.9) as:

p(Λ|Z,A) ≃

{

M
∏

k=1

p(λMP
k |Z,Ak)

}

exp

{

M
∑

k=1

−
1

2
(λk − λMP

k )TC−1
k (λk − λMP

k )

}

(A.11)

where we have represented the joint weight parametersΛMP as a vector
[

λMP
1 λMP

2 · · ·λMP
M

]

.

The most probable parameters are obtained by optimizing thejoint posterior distribution using

numerical optimization methods. The above assumption allows us to simplify the Hessian ma-

trix and to a large extent improves the computational cost ofgradient based search (discussed

in next section).

A.2 Posterior Optimization

The joint log posterior is optimized usingIterative Reweighted Least Square(IRLS)by maxi-

mizing it with respect to the weight parametersλk, independently for each class k. IRLS is a

special form of iterative Newton-Raphson method applied togeneralized linear models. The

iterative steps for gradient based updates for the weight parameter ofkth class:

λ
(t+1)
k = λ

(t)
k −

∂ln{p(Λ|Z,A)}

∂λk

[

∂2log{p(Λ|Z,A)}

∂λ2
k

]−1

(A.12)
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Figure A.1: (Left plot) Classification boundaries (0.5 probability contours) of the Bayesian
multi-category classifier on a synthetic toy dataset(Middle plot)Marginal Evidence maximiza-
tion conditioned on the hyper-parameters for each of classαk on log-scale. Notice that the
marginal evidence increases with iterations for every class simultaneously.(Right plot, Left
scale)Corresponding change of Posterior and Likelihood values with iterations. (Right plot,
Right Scale)Corresponding non-zero weights(model complexity) with no. of iterations. Note
here that most of the change occurs in first few iterations.

The gradient is computed as:

∇λk
(log{p(Λ|Z,A)}) = −

N
∑

n=1

[Φk(r
(n))(z

(n)
k − z

(n)
k σk{f(r(n))})

−
M
∑

i6=k

Φi(r
(n))z

(n)
i σk{f(r(n))}] − λkAk (A.13)

= −
N

∑

n=1

Φk(r
(n))(z

(n)
k − σk{f(r(n))}) − λkAk (A.14)

Here we use the fact that
∑M

i=1 z
(n)
i = 1. The Hessian is approximated as a block diagonal

matrix with non-diagonal blocks∇λk1
∇λk2

set to0. The inverse of Hessian computed for

each class k in (A.7) is used for the block diagonal covariance matrixC = diag(C1, · · · ,CM )

of the multivariate Gaussian posterior (A.11).

A.3 Optimizing the Hyperparameters

Sparse Bayesian inference proceeds by estimating the most probable estimate of the hyper-

parametersAk for each class and using it to prune off the weightsλk. The most prob-

able parameters are obtained by maximizing the posterior ofhyperparametersp(Ak|Z) ∝
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p(Z|Ak)p(Ak). The termp(Z|Ak) is called marginal likelihood and its optimization is ref-

ered to asType II Maximum Likelihood.

p(Zk|Ak) =

∫

p(Zk|λk)p(λk|Ak)dλk (A.15)

≈ (2π)−N/2|Bk + ΦA−1
k ΦT |−1/2exp{−

1

2
ẑT

k (Bk + ΦA−1
k ΦT )−1ẑk} (A.16)

Where we locally linearize the non-linear likelihood function using the first order approxima-

tion around the modeΛMP :

ẑk = Φλk,MP + B−1
k (zk − σk{Φλk,MP )} (A.17)

The hyperparameter for each class k is obtained by maximizing the log of marginal evidence

with respect to log ofAk. Maximization is done in log space for analytical tractability. This

cannot be done in closed form and is iteratively estimated bydifferentiating the log of marginal

(A.15) with respect to log ofAk = diag(βk,1,βk,2, · · · ,βk,N). For initial value ofβk,i and

λk, the equations for the iterative updates for theith weight hyper-parameter:

βnew
k,i =

1 − βk,i{C
(i,i)
k

}

λ2
k

(A.18)

whereC
(i,i)
k

is theith diagonal element of the covariance matrix of the weights posterior, ex-

pressed as a multivariate gaussian using Laplace approximation. Theβk,i updated at each

iteration step is used to selectively remove irrelevant basis functions. The relevance of the

the weight parametersλk,i is determined using the ARD (automatic relevance determination)

mechanism. The weight parametersλk in the (A.18) are the most probable estimates obtained

using IRLS as discussed in the previous section. The iterative updates for the hyperparame-

ters and subsequent pruning off the weightsλk of each class ensures simultaneous increase of

marginal evidence at each iteration as shown in fig. A.1(middle plot). On the right we show the

change of overall posterior and likelihood with iteration (on left y-axis) and weights pruning

(on right y-axis). Fig. A.1(left plot) shows the classification results on a synthetic dataset with

5 classes. We used Radial Basis Function as the bases function in these experiments.
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Appendix B

Semi-Supervised Sparse Bayesian Classification

For a two-class classifier with the inputsri and the class labelsxi, the non-linear classification

boundary is represented asf(r : W) = WTK(r). For linear boundaries the function takes

the following formf(r : W) = WT r with the kernel mappingK replaced by the original

input vectorsr. The binary classification function is learned as the logistic sigmoid function

σ(f) = 1/(1 + e−f ), with the likelihood as a binomial distribution:

p(x|r,W) =
N
∏

n=1

σ{K(rn),W}xn [1 − σ{K(rn),W}]1−xn (B.1)

Here the target labelsx lie in the set0, 1.

In sparse Bayesian learning, we estimate the hyperparameters by maximizing the marginal

likelihood obtained by integrating out the weight parameters:

p(x|α, γI) =

∫

p(x|W,α, γI)p(W|α, γI)dW (B.2)

Hyperparameters in the (B.2) are the parametersα andγI that are the inverse variance of the

ambient prior and the intrinsic geometry regularization prior respectively. The integral is an-

alytically intractable for Bayesian classification as the likelihoodp(x|W,α, γI) is a binomial

distribution [180, 33]. We therefore use Laplace approximation that estimates the integral as

a local gaussian approximation of the integrand over the neighborhood of the mode. The inte-

grand in this case is the weightsW posterior:

p(W|x,α, γI) ∝ p(x|W,α, γI)p(W|α, γI) (B.3)

≈ p(WMP |x,α, γI)exp(−
1

2
(W − WMP )TΣ−1(W − WMP ) (B.4)

whereWMP is the mode of the non-gaussian posterior distribution. Theabove equation is a

second order Taylor series approximation of the posterior distribution. The covariance is ob-

tainted as the curvature of the posterior computed (Hessian), Σ−1 = − ▽2
W p(W|x,α, γI).
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The modes of the non-gaussian posterior distribution can beobtained by conveniently optimiz-

ing its logarithm using gradient based methods. We useIterative Reweighted Least Square(IRLS):

log [p(x|W,α, γI)p(W|α, γI)] =

N
∑

n=1

[xn log(σ{KL,W}) + (1 − xn) log(1 − σ{KL,W})]

(B.5)

−
1

2
WT AW − γIW

TKTLKW (B.6)

HereKL is the kernel matrix for only labeled examples whereasK is the kernel matrix for

both labeled and unlabeled examples.L is the graph laplacian matrix using the both labeled

and unlabeled exemplars. The covariance matrix of the posterior are obtained as:

Σ = (KT
LBKL + A + γIK

TLK)−1 (B.7)

whereB = diag{b1, b2, . . . , bN} and bi =
[

σ{W2KL(ri)}(1 − σ{WKL(ri)})
]

. The

logarithm of the marginal likelihood is obtained as:

ML = log(p(x|α, γI)) = −N
2 log(2π) − 1

2 log|B−1 + KT
L(A + γIK

TLK)−1KL|

−
1

2
xT (B−1 + KT

L(A + γIK
TLK)−1KL)−1x (B.8)

We use standard determinant identity

|A+γIK
TLK||B−1+KT

L(A+γIK
TLK)−1KL| = |B−1||(A+γIK

TLK)+KT
LBKL|.

Also notice that|Σ| = |A + γIK
TLK + KT

LBKL|. Therefore

log|B−1+KT
L(A+γIK

TLK)−1KL| = − log|Σ|− log(|B|)− log|(A+γIK
TLK)| (B.9)

Using Woodbury inversion identity andW = ΣKT
LBx to express the last term in the eqn.

(B.9):

xT (B−1 + KT
L(A + γIK

TLK)−1KL)−1x = xTBx − xT BKLΣKT
LBx (B.10)

= (x −KLW)B(x −KLW)T + WTAW + γIW
T KTLK (B.11)

We maximize the marginal likelihoodML (B.8) in the log space by taking its derivative

w.r.t. to logα and logγI :

∂ML

∂ logαi
= −Tr[(KT

LBKL + A + γIK
TLK)−1 ∂A

∂ logαi
]
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−Tr[(A + γIK
TLK)−1 ∂A

∂ logαi
] + WT ∂A

∂ logαi
W (B.12)

Equating eqn. (B.12) to zero gives the following equations for iterative updates:

α
(k+1)
i =

α
(k)
i Tii

Σii + W2
i

whereT = (A + γIK
TLK)−1 (B.13)

γI is estimated using the following update equations:

∂ML

∂ logγI

= −Tr[(KT
LBKL + A + γIK

TLK)−1γI(K
TLK)

−Tr[(A + γIK
TLK)−1γi(K

TLK)] + γiW
T (KTLK)W (B.14)

Setting this to zero and solving forγI :

γ
(k+1)
I =

γ
(k)
I Tr

[

T(KTLK)
]

Tr [Σ(KTLK)] + WT (KTLK)W
(B.15)
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