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ABSTRACT OF THE DISSERTATION

Singular Perturbation Methods in Credit Derivative

Modeling

by Jawon Koo

Dissertation Director: Paul Feehan

This thesis introduces the dynamical pricing model and approximation method in

pricing a “Collateralized Debt Obligation”(CDO). For this purpose we use a two-

dimensional, self-affecting Markov process of discrete-valued aggregate loss process and

stochastic factor process in its intensity. We review several models for pricing of multi-

name credit derivative products and explain in detail a two-dimensional Markov inten-

sity model proposed by Halperin and Arnsdorf.

Using the model by Halperin and Arnsdorf, we derive the Kolmogorov forward

partial differential equation for the transition density function of the underlying two-

dimensional Markov process. We use the singular perturbation method to obtain an

approximate solution to this partial differential equation in the case of a fast mean

reverting stochastic intensity model. We perform an error analysis to determine the

accuracy of our approximate solution.
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Chapter 1

Introduction

1.1 Overview

Recent financial crises due to defaults in subprime mortgages have called attention to

one of the most complex financial products involved in the crisis, namely the Collater-

alized Debt Obligation (CDO). A CDO works like an insurance product for a pool or

portfolio of various financial assets. One party provides protection against losses in the

pool while the other party pays a premium periodically for protection from losses in

the underlying assets. Initially, such portfolios (called cash CDOs) were comprised of

mortgages, auto and student loans, credit card debts, and so on. As the credit deriva-

tive market evolved, more asset securitization products were invented and the size of

the global credit derivative market grew from $180 billion in 1996 to $20 trillion in

2006. One of the most important multi-name products is the synthetic CDO, whose

constituents are traded credit default swaps, rather than the loans, etc., underlying a

cash CDO. To produce a synthetic CDO, one has to diversify the pool and divide it

into slices or tranches, with different levels of risk and return.

The central pricing problem for a synthetic CDO is to determine the correct “inter-

est rate”, or credit spread, at which each slice is offered to protection sellers in exchange

for compensation of losses in the slice during the holding period. Methods of stochastic

differential equations translate this practical question into one of the most challeng-

ing mathematical problems in financial engineering today. Through the credit spread

formula of a CDO in §2.1.2

c =
E
[∫ T

0 D(0, t)dLa,b
t

]
∑N

i=1

(
(ti − ti−1)E [D(0, ti)(1− Lti)] + (Ti − ti)E

[
D(0, Ti)∆L

a,b
Ti

]) ,
it can be recognized that credit spread can be deduced from the knowledge of the
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distribution of the default loss process.

The first approach to this problem was suggested by David Li [18], who proposed

the “structural factor copula” model. (A copula is a method of combining marginal

distribution functions to give a multivariate joint distribution function.) Li’s approach

gives joint default probabilities for the CDO portfolio provided that (a) the default

probability of each firm can be obtained from each firm’s value and (b) the correlation

among firms is given exogenously (external to the model). However, several problems

arise when implementing Li’s model. First, the structural copula model cannot explain

the short term credit spread observed in the market because the model assumes that

each firm’s value varies continuously. Second, this static model cannot be used to model

the evolution of joint probability densities. Third, Li’s model is not sophisticated or

flexible enough to simultaneously match observed market prices for all traded credit

derivative products.

The “intensity model” was proposed in order to explain the observed non-zero short

term credit spreads. However, modeling the stochastic intensity of each firm (which

captures when defaults occur) in the CDO is computationally too burdensome. It is

unrealistic to model each of the firms individually because a CDO references more than

a hundred firms.

The shortcomings of the two previous models led Giesecke and Goldberg to propose a

“top-down” approach to pricing multi-name derivatives. The key idea in their approach

is to model total portfolio loss with a single intensity process. This dramatic reduction

in dimension allows us to apply more tractable mathematical methods in order to solve

this problem. In addition, this transformation of the problem allows one to adapt the

well-established Heath-Jarrow-Morton (HJM) forward rate curve model paradigm of

interest rate theory. This HJM-style forward curve paradigm is incorporated in the

work of Schönbucher [25], Bennani [2], and Sidenius-Piterbarg-Andersen [27] in their

work on CDO modeling. The HJM style credit model is the most general form of credit

derivative model and is very flexible because CDS market prices can be used as model

input data, rather than an output the model must reproduce. Hence, the HJM-style

credit model has fewer parameter calibration issues than other credit derivative models.
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Unfortunately, the HJM-style curve credit model is still computationally too difficult

to implement. Instead a top-down loss, spot intensity model has been proposed as a

reasonable and tractable choice for credit derivative modeling. Giesecke and Goldberg

[6], Lopatin and Misirpashaev [19], and Arnsdorf and Halperin [12], among others, have

pursued this approach. In my dissertation, I rely on Halperin’s work for modeling the

loss process in multi-name credit products. Once the model for the loss process is

set up, we use the Kolmogorov forward equation (a partial differential equation (PDE)

for a transition probability density function) to compute the loss probability density

function. The Kolmogorov forward equation — derived from the correlated Markov

loss and intensity processes (defined by a two-dimensional system of stochastic ordinary

differential equations) — is a system of partial differential equations (PDEs). We get

a system of PDEs because our model has both a continuous random variable, namely

the intensity process, and discrete random variable, namely the loss process. I obtain

approximate solutions to the Kolmogorov forward equation for the loss and intensity

processes using the singular perturbation methods introduced by Khasminskii and Yin

in [15]. Recently the approximation method in pricing for financial products was used

by Hagan and his collaborators [11] and by Fouque and his collaborators [9] in their

work on the celebrated “SABR” and stochastic volatility models in interest rate and

equity option pricing problems. The intensity process in my work is assumed to be a

fast-varying diffusion process, so the corresponding Kolmogorov forward equation is a

singularly perturbed one, meaning that the coefficients of the equation depend on a

small parameter ε. Thus perturbation methods can be adapted to find approximate

solutions to the problem.

1.2 Main Results

We begin with the probability space (Ω,F ,Q) equipped with a filtration {F(t)}t≥0. Let

Lt be a continuous time Markov chain whose generating matrix A is upper bi-diagonal
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and contains a stochastic factor Yt.

A = a(Yt)



−F (t, 0) F (t, 0) 0 · · · 0

0 −F (t, 1) F (t, 1) · · · 0
...

...
. . . . . .

...

0 0 · · · −F (t,N − 1) F (t,N − 1)

0 0 · · · 0 0


(1.1)

In our pricing model for multi-name credit derivatives, we adapt the process Lt as a

loss process in the underlying portfolio. The random factor Yt in the generating matrix

A makes it possible to model the realistic evolution of the credit spread for dynamic

credit products such as options because the random factor allows credit spread to change

between credit events. Now the next-to-default intensity λ of Lt is stochastic and is

given by

λt(Nt = k, Yt, t) = a(Yt) · F (t, k).

In contrast with the usual Kolmogorov forward equation for one spatial variable, we

derive a generalized Kolmogorov forward equation for a continuous variable Yt and

discrete variable Lt for the joint density function Pjk(Y, T |y, t):

Pjk(Y, T |y, t) := Q(NT = k, YT = Y |Nt = j, Yt = y).

We recognize that Pjk(Y, T |y, t) can be approximated by a finite series of ε using the

matching method of singular perturbation theory when Yt follows

dYt =
1
ε
µ(t, Yt)dt+

1√
ε
σ(t, Yt)dWt ε� 1, (1.2)

where µ(t, y) and σ(t, y) are real-valued smooth functions. We use the singular pertur-

bation method to find an approximation of Pjk(Y, T |y, t) and carry out an error analysis

between our approximation and the exact solution.

Moreover assuming that Yt evolves according to the formula (1.2) and the filtration

F = {Ft}t≥0 is generated by the Brownian motion in (1.2), the pair (Lt, Yt) makes a

Markov process on the filtered probability space (Ω,F ,Q,F) meaning that

Q(LT , YT |Ft) = Q(LT , YT |Lt, Yt). (1.3)
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Theorem 1.2.1. Let Lt be a continuous-time Markov chain on (Ω,F ,Q) equipped with

a filtration {Ft}t≥0 with generating matrix (1.1). If Yt follows the stochastic differential

equation

dYt =
1
ε
µ(t, Yt)dt+

1√
ε
σ(t, Yt)dWt ε� 1, (1.4)

where µ(t, y) and σ(t, y) are real-valued smooth functions representing the drift and

diffusion respectively and W is a standard Brownian motion, then Pjk(Y, T |y, t) satisfies

the Kolmogorov forward equation

∂Pjk

∂T
= − ∂

∂Y

[
1
ε
µ(T, Y )Pjk

]
+

1
2!

∂2

∂Y 2

[
1
ε
σ2(T, Y )Pjk

]
+ λ(Y, k − 1, T )Pjk−1 − λ(Y, k, T )Pjk,

Pjk(Y, t|y, t) = g0 · 1{k=j},

(1.5)

where g0 is the initial probability density function of Yt and it satisfies
∫∞
−∞ g0dY = 1

and g0 ≥ 0.

With backward variables fixed at t = 0, we simply denote Pjk as Pk. We plan to

construct an asymptotic formula P̃ (n)
k (T, Y ) of the form

P̃
(n)
k (T, Y ) := P

(n)
k (T, Y ) +Q

(n)
k (T, Y ),

=
n∑

i=0

εia
(n)
k (T, Y ) +

n∑
i=0

εib
(n)
k (τ, Y ),

(1.6)

where τ = T
ε .

Definition 1.2.2. By substituting P̃
(n)
k (T, Y ) into (1.5), P (n)

k (T, Y ) and Q
(n)
k (T, Y )

separate due to linearity of the differential operator in (1.5). Then we can define a(i)
k
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in P (n)
k (T, Y ) and b(i)k in Q(n)

k (T, Y ) as solutions to the following differential equations:

L0a
(0)
k = 0, with

∫ ∞

−∞
a

(0)
k (Y, T )dY = 1{k=0},

∂a
(0)
k

∂T
= L0a

(1)
k + L1a

(0)
k + λ(Y, k − 1, T )Pk−11{k>0},

∂a
(1)
k

∂T
= L0a

(2)
k + L1a

(1)
k ,

∂a
(2)
k

∂T
= L0a

(3)
k + L1a

(2)
k ,

...

∂a
(n−1)
k

∂T
= L0a

(n)
k + L1a

(n−1)
k

(1.7)

and

∂b
(0)
k

∂τ
= L(0)

0 (Y, 0)b(0)
k ,

∂b
(1)
k

∂τ
= L(0)

0 (Y, 0)b(1)
k + τL(1)

0 (Y, 0)b(0)k + L(0)
1 (Y, 0)b(0)k ,

∂b
(2)
k

∂τ
= L(0)

0 (Y, 0)b(2)
k + τL(1)

0 (Y, 0)b(1)k +
τ2

2!
L(2)

0 (Y, 0)b(0)
k + L(0)

1 (Y, 0)b(1)k

+ τL(1)
1 (Y, 0)b(0)

k ,

...

∂bn
∂τ

=
n∑

i=0

τ i

i!
L(i)

0 b
(n−i)
k +

n−1∑
i=0

τ i

i!
L(i)

1 b
(n−1−i)
k ,

(1.8)

with initial conditions b
(n)
k (Y, 0) = −a(n)

k (Y, 0), n 6= 0,

b
(n)
k (Y, 0) = g0 · 1{k>0} − a

(n)
k (Y, 0), n = 0,

where the operators are given by

L0 = 1 + (−κ(T ) + Y )
∂

∂Y
+ v

∂2

∂Y 2
= − ∂

∂Y
((κ(T )− Y )·) + v

∂2

∂Y 2
,

L1 = −λ(Y, k, T ),
(1.9)

and L(i)
j is the i-th derivative with respect to the time variable for j = 0, 1

Thus finding the approximate formula P̃
(n)
k (T, Y ) depends on finding functions

a
(i)
k (T, Y ) and b(i)k (T, Y ) in Equation (1.6).
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Theorem 1.2.3. For the operators (1.9), we can solve the differential equation

L0a
(0)
k = 0

with auxiliary condition ∫
a

(1)
k (Y, T )dY = 1{k=0}

to find a continuous smooth function a
(0)
k .

Theorem 1.2.4. For the operators (1.9), we can solve the differential equation

∂a
(0)
k

∂T
= L0a

(1)
k + L1a

(0)
k + λ(Y, k − 1, T )Pk−11{k>0}

with auxiliary condition ∫
a

(1)
k (Y, T )dY = 0

to find a continuous smooth function a
(1)
k .

Theorem 1.2.5. The solution b
(n)
k of the partial differential equation

∂b
(n)
k

∂τ
=

n∑
i=0

τ i

i!
L(i)

0 b
(n−i)
k +

n−1∑
i=0

τ i

i!
L(i)

0 b
(n−1−i)
k ,

with initial condition b
(n)
k (Y, 0) = −a(n)

k (Y, 0), n 6= 0,

b
(n)
k (Y, 0) = g0 · 1{k>0} − a

(n)
k (Y, 0), n = 0,

has the Green’s function representation.

Since we only know the approximate value of Pk−1 when we approximate the solution

of next equation Pk, the assumption we made in Theorem 1.2.4 about knowing the exact

solution of Pk−1 can be removed by using vector-valued PDE instead of scalar-valued

PDE so that we automatically have the approximate value of Pk−1 when we calculate

the approximate value of Pk. We make the system of PDEs into vector-valued equation,

∂ ~P

∂T
=

1
ε
I · ~P − 1

ε
(κ(T )− Y )I · ∂

~P

∂Y
+
v

ε
I · ∂

2 ~P

∂Y 2
+ Λ · ~P , (1.10)

where

~P (T, Y ) =


P0(T, Y )

...

PN (T, Y )

 , (1.11)
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Λ(T, Y ) =



−λ(T, 0) 0 0 · · · 0

λ(T, 0) −λ(T, 1) 0 · · · 0
...

...
. . . . . .

...

0 · · · λ(T,N − 2) −λ(T,N − 1) 0

0 0 · · · λ(T,N − 1) −λ(T,N)


,

and I is the (N + 1)× (N + 1) identity matrix.

We have regular and singular approximation vectors respectively,

~P (T, Y ) ≈ ~P (n) + ~Q(n)

=


P

(n)
0 +Q

(n)
0

...

P
(n)
N +Q

(n)
N


=

n∑
i=0

εi ~A(i)(T, Y ) +
n∑

i=0

εi ~B(i)(τ, Y ),

(1.12)

where

~A(i)(T, Y ) =


a

(i)
0 (T, Y )

...

a
(i)
N (T, Y )

 , ~B(i)(τ, Y ) =


b
(i)
0 (τ, Y )

...

b
(i)
N (τ, Y )

 .

The regular part ~P (n) satisfies

∂ ~P (n)

∂T
=

1
ε
I · ~P (n) − 1

ε
(κ(T )− Y )I · ∂

~P (n)

∂Y
+
v

ε
I · ∂

2 ~P (n)

∂Y 2
+ Λ · ~P (n). (1.13)

Equating the coefficients of like powers ε, we obtain equations for the zeroth order term

a
(0)
i and the first order term a

(1)
i of approximation formula P (1)

i for Pi.

a
(0)
i − (κ(T )− Y )

∂a
(0)
i

∂Y
+ v

∂2a
(0)
i

∂Y 2
= 0, (1.14)

a
(1)
i − (κ(T )− Y )

∂a
(1)
i

∂Y
+ v

∂2a
(1)
i

∂Y 2
=
∂a

(0)
i

∂T
− λ(i− 1)a(0)

i−1 + λ(i)a(0)
i . (1.15)

Similarly, the singular part of the approximation can be found:

1
ε

∂ ~Q(n)

∂τ
=

1
ε
I · ~Q(n) − 1

ε
(κ(ετ)− Y )I · ∂

~Q(n)

∂Y
+
v

ε
I · ∂

2 ~Q(n)

∂Y 2
+ Λ · ~Q(n). (1.16)
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Substituting ~Q(n) with
∑n

i=0 ε
i ~B(i)(τ, Y ) and equating the coefficients of like powers of

ε, for the zeroth order term we obtain

∂b
(0)
i

∂τ
= b

(0)
i − g(0, Y )

∂b
(0)
i

∂Y
+ v

∂2b
(0)
i

∂Y 2
, (1.17)

while for first order term, we have

∂b
(1)
i

∂τ
= b

(1)
i − g(0, Y )

∂b
(1)
i

∂Y
+ v

∂2b
(1)
i

∂Y 2
− τ

∂g

∂T
(0, Y )

∂b
(0)
i

∂Y

+ λ(0, Y, i)b(0)i−1 − λ(0, Y, i)b(0)
i .

(1.18)

Theorem 1.2.5 is applied to equations (1.17) and (1.18).

Next we state the error analysis for the approximation formula P̃
(n)
k (T, Y ). The

remainder r(n)
k is defined by

| r(n)
k |:=| Pk − (Pn +Qn) |=| Pk −

n∑
i=0

εia
(i)
k (Y, T )−

n∑
i=0

εib
(i)
k (Y, τ) | .

We only prove the case for n = 1 and k = 0.

Theorem 1.2.6. With a(i)
k from Theorem 1.2.4 and b(i)k from Theorem 1.2.5,

sup
(T,Y )∈(0,TM )×(−∞,∞)

|r(1)0 | = O(ε1).

1.3 Outline of the Thesis

The thesis is organized in the following manner.

In Chapter 2 we provide the financial and mathematical background on which we

rely in later chapters. Definitions of various multi-name credit products such as the

credit default swap (CDS), collateralized debt obligation (CDO), forward starting CDO,

option on CDO and leveraged super-senior tranche are given in §2.1. In the second sec-

tion, we introduce the extension of the Kolmogorov forward equation and the matching

method of singular perturbation.

In Chapter 3, we review several different modeling approaches for pricing credit

derivatives. We start with the intuitive bottom-up model, of which the most celebrated

is the Gaussian copula model in §3.1. In §3.2, the top-down model approach is reviewed.

In particular we take a close look at the Markovian bivariate spread-loss model for

portfolio credit derivatives proposed for later use in §5.2.
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In Chapter 4, we review the work of Fouque, Papanicolaou, and Sirca [8] on use of

the singular perturbation method in equity option pricing.

In Chapter 5, the singular perturbation method for the Gaussian copula model stud-

ied by Fouque and Zhou [10] is reviewed in the first section. In §5.2, we first look at the

work of Yin and Khasminskii[15] and we present the Markov two-dimensional loss and

intensity model and the singular perturbation method to find an approximate solution

for the joint probability density function of loss and intensity. With the approximate

solution, we perform an error analysis to determine the accuracy.

In Chapter 6, we summarize our results and briefly mention future research topics.
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Chapter 2

Background

In this chapter we provide the financial and mathematical background on which we rely

on in later chapters.

The first section is devoted to the financial background and in the second section

we explain necessary mathematical tools which are used in chapter 5.

2.1 Financial Background

There are several important credit products in the current financial market. Here we

explain credit derivative products and address the pricing problems for them.

2.1.1 Credit Default Swap (CDS)

The credit default swap is one of the most liquid single-name credit derivatives in the

market and provides a good indication of the credit risk of the underlying entity. In a

single-name credit default swap, the protection buyer pays a coupon c to another party,

the protection seller, in return for protection against default on a firm. The coupon c

is also called a CDS spread. At the time of default, the coupon payments are stopped.

The problem of CDS pricing reduces to a determination of the coupon rate c which

makes the current price of the swap equal to zero.

We briefly illustrate the structure of a credit default swap to determine c. Let

t0 < t1 < · · · < tn be payment schedule dates. A random variable τ denotes the default

time of the reference entity. A credit default swap fixed leg has the contingent claim

paying αic at time ti for all i = 0, . . . , n, as long as default has not occurred by that

time, where c is a constant coupon rate and αi is the day-count fraction between ti−1



12

and ti. Thus a fixed leg is a portfolio of n ≥ 1 defaultable zero coupon bond with

maturity ti with amounts αik.

Then the value of fixed leg at t = 0 is given by

πfixed
0 =

n∑
i=1

αicP
i
0V

i
0 , (2.1)

where each P i
0 is the current survival probability with maturity ti, and V i

0 is the current

value of a default-free zero with maturity ti.

A credit default swap default leg consists of a single contingent claim Ci which has

a maturity ti and payoff (1−R)1ti−1<τ≤ti , where R is the constant recovery rate of the

default leg. It pays 1−R at time ti if defaults occur in the interval (ti−1, ti] under the

assumption that notional is normalized to 1. Thus the default leg has a value at t = 0

of

πdefault
0 = (1−R)

n∑
i=1

(P i−1
0 − P i

0)V
i
0 . (2.2)

Thus equating the value of fixed leg (2.1) and the value of default leg (2.2) gives the

value of the coupon c

c =
(1−R)

∑n
i=1(P

i−1
0 − P i

0)V
i
0∑n

i=1 αiP i
0V

i
0

. (2.3)

2.1.2 Synthetic Collateralized Debt Obligation (CDO)

The next most common portfolio credit derivative is the synthetic collateralized debt

obligation. Portfolio credit derivatives are derivatives whose payoff depends on the

losses due to defaults in the portfolio consisting of underlying reference such as bonds,

loans or credit default swaps.

A synthetic CDO tranche is based on a portfolio of n single-name CDSs on n different

reference entities. It is characterized by a maturity date T and a lower attachment point

and upper attachment point (percentage) 0 ≤ a ≤ b ≤ 1. A synthetic CDO is quite

similar to a CDS in terms of insuring underlying assets. But it can cover only a specified

part of the loss known as a “tranche” — not all of it. Thereafter the initial notional

amount which the first coupon is based on is (b− a)× (total notional). Gradually this
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initial notional is decreased according to losses starting from a× (total notional) until

maturity or b × (total notional), whatever comes first. If the cumulative losses reach

b× (total notional) before maturity, then all payments are stopped.

Let Lt be the cumulated loss at time t ∈ [0, T ], rescaled between [0, 1], and let Nt

be also the rescaled number between [0, 1] of defaults at time t. In order to find the

tranche coupon, which is also called the spread, we need to calculate a default payment

leg and a premium payment leg.

The cumulative loss of the tranche with upper and lower attachment points a < b is

La,b
t := (Lt − a)+ − (Lt − b)+.

The premium payment leg at time t = 0 consists of regular premium payments made

at fixed dates 0 = t0 < t1 < · · · < tN = T and accrued premium payments made at the

default times Ti ∈ (ti, ti+1] with Ti ≤ T . This leads to

V prem
[a,b] = c

N∑
i=1

(
(ti − ti−1)E

[
D(0, ti)(1× (b− 1)− La,b

ti
)
]

+ (Ti − ti)E
[
D(0, Ti)∆L

a,b
Ti

])
,

where D(0, t) is a discount factor and c is the tranche spread. The notation ∆La,b
Ti

is

the loss occurring at time Ti. Sometimes the accrued premium payments are omitted

when calculating c.

The default payment leg at time t = 0 is given by

V def
[a,b] = E

[∫ T

0
D(0, t)dLa,b

t

]
.

The integral with respect to Lt,

E
[∫ T

0
D(0, t)dLa,b

t

]
is approximated as a Riemann sum

E

[
b∑

i=1

D(0, Ti)(L(Ti)− L(Ti−1))

]
.

If there are no initial payments, the fair tranche spread can be computed by equating

the values of the premium and default payment legs of the CDO tranche:

c =
E
[∫ T

0 D(0, t)dLa,b
t

]
∑N

i=1

(
(ti − ti−1)E [D(0, ti)(1− Lti)] + (Ti − ti)E

[
D(0, Ti)∆L

a,b
Ti

]) . (2.4)
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2.1.3 Forward Starting CDO

A forward starting CDO is a forward contract which obligates the holder of contract to

buy or sell the protection on a pre-specified tranche [A,B] at a pre-specified rate over

the period of future time [T, Tb]. A forward starting CDO begins at T , and its maturity

is Tb. At time T , the contract becomes just a single tranche CDO with attachment

point A + LT and detachment point B + LT . The forward index spread ST is defined

so that the forward contract has a zero value at T . The formulas for the forward index

spread with and without the knock-out feature are

ST =
1

ΘT
ET

[∫ Tb

T
D(T, t)dLt

]
S̄T =

1
ΘT

ET

[∫ Tb

T
D(T, t)dLt + LT

]
,

where

ΘT := ET

[
b∑

i=1

δiD(T, Ti)(1−NTi)

]
and D(T, Ti) is a discount factor and δi is a day counting factor.

Similarly, the spread of the forward CDO tranche with attachment point A and

detachment point B can be defined as

SA,B
T :=

ET

[∫ Tb

T D(T, t)dLA,B
t − UA,B

T δT

]
ET

[∑b
i=1 δTiD(T, Ti)

(
(B −A)− LA,B

Ti

)] .
The quantity LA,B

t is the cumulative loss adjusted to tranche [L(T ) + A,L(T ) + B],

which is

LA,B
t = (L(t)− (L(T ) +A))+ − (L(t)− (L(T ) +B))+,

and UA,B
T is an up-front payment. If one wants to keep the tranche [A,B] not adjusting

to its loss level L(T ) at contract maturity time T , then the contract is considered to be

canceled once cumulative losses L(T ) on the portfolio exceed the detachment point B

before the forward contract starts. See [13] for more detail.

2.1.4 Option on Index CDO

An option on an index CDO is an option to enter a option contract at a given time

(maturity) with a specified rate (strike value). The option payoff of the protection seller
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at time T is

Vput(T,K) =
(
KΘT − ET

[∫ Tb

T
D(T, t)dLt

])+

= (KΘT − ST ΘT )+

= ΘT (K − ST )+,

where

ΘT := ET

[
b∑

i=1

δiD(T, Ti)(1−NTi)

]
and D(T, Ti) is a discounting factor.

The option payoff of the protection buyer at time T is

Vcall(T,K) =
(

ET

[∫ Tb

T
D(T, t)dLt

]
+ L̄T −KΘT

)+

.

Note that a put option depends only on the loss in [T, Tb], whereas a call option includes

the losses LT occurred before the maturity T . For more detail, refer to [3].

Then the option value at time t is represented by the formulas

Vput(t, T,K) = Et[D(t, T )Vput(T,K)] = Et[D(t, T )ΘT (K − ST )+]

Vcall(t, T,K) = Et[D(t, T )Vcall(T,K)] = Et[D(t, T )ΘT (S̄T −K)+].

2.1.5 Leveraged Super-Senior Tranche

In a leveraged super-senior tranche, the protection seller receives a spread for the entire

principal just like a normal senior tranche, while its exposure to losses is capped by some

portion (usually 10 or 20%) of its total notional. As a compensation for the limited

coverage of loss, payment from the protection seller to the protection buyer is triggered

by the underlying spread (spread trigger) or loss level (loss trigger) or a combination

of both.

Thus assessing the risk coming from the additional trigger is important in valuing

a leveraged super-senior tranche.
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2.2 Mathematical Background

In §2.2.1, the necessary mathematical concepts for modeling credit derivatives are given.

In §2.2.2, we derive the extension of a Kolmogorov forward equation for a discrete vari-

able and a continuous variable. We present a simple example of the singular perturba-

tion method used in approximating the solution of the ordinary differential equation in

the section 5.

2.2.1 Mathematical Setup for Credit Derivatives

All random variables we discuss below are defined on a filtered probability space

(Ω,F , {Ft}t≥0,Q) where Ω represents the set of possible events and the filtration

{Ft}t≥0 gives us the information available up to time t. Source of generating filtra-

tion {Ft}t≥0 may vary in each model.

Definition 2.2.1. A random variable τ : Ω → N ∪ {∞} is called a stopping time if

{ω ∈ Ω|τ(ω) ≤ t} ∈ Ft.

Sometimes it is required that τ is finite almost surely. In the intensity-based model

in the Chapter 3, the stopping time denotes the default time of an underlying name in

a portfolio.

Now we can define a counting process Nt by

Nt :=
∑

i

1{τi≤t}

where τi is a stopping time. The process Nt is an increasing process as a function of

t , thus a submartingale. By the Doob-Meyer decomposition theorem, there exists a

unique increasing process At such that A0 = 0 and Nt − At is a martingale. Since At

counteracts the upward trend in Nt, it is often called a compensator.

Using the martingale property of Nt −At, we have

E[Nt+∆t −Nt|Ft] = E[At+∆t −At|Ft].
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Assuming that for sufficiently small time t, the process Nt only has one jump, we have

E[At+∆t −At|Ft] = 1 ·Q(Nt+∆t −Nt = 1|Ft) + 0 ·Q(Nt+∆t −Nt = 0|Ft)

= Q(Nt+∆t −Nt = 1|Ft).

This shows that knowledge of At can give some information about the distribution of

counting process Nt.

Definition 2.2.2. A non-negative predictable process λt is called the intensity of the

counting process Nt if

At :=
∫ t

0
λ(s)ds

is a compensator for Nt.

From Aven’s theorem below, we are able to derive the intensity if we can compute

lim
n→∞

1
εn

E [Nt+εn −Nt|Ft] .

Theorem 2.2.3. (Aven, 1985) Let {εn}∞n=1 be a sequence which decreases to zero and

let Yn(t), t ∈ R+ be a measureable version of the process

Yn(t) :=
1
εn

E [Nt+εn −Nt|Ft] .

Assume there are non-negative and measurable processes g(t) and y(t), t ∈ R+ such

that

(i) for each t,

lim
n→∞

Yn(t) = g(t) a.s.

(ii) for each t there exists ,for almost all ω ∈ Ω, an integer n0 = n0(t, ω) such that

|Yn(s, ω)− g(s, ω)| ≤ y(s, ω) ∀s ≤ t, n ≥ n0

(iii) if ∫ t

0
y(s)ds <∞ a.s. t ∈ R+,

then Nt −
∫ t
0 g(s)ds is a local martingale, and

∫ t
0 g(s)ds is the compensator of Nt.
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In credit modeling, we define the loss process where loss at default time τi is ∆i.

Lt =
∑

i

∆i1{τi≤t}.

When the loss at default times is normalized to be 1, then Lt is simply a counting

process Nt.

2.2.2 Extensions of the Kolmogorov Forward Equations

Here the generalization of the Kolmogorov forward equation to the case of a conditional

joint probability density function of continuous and discontinuous random variables is

derived, following to [23]. We begin with the transition density function p(y, t|ỹ, t̃) of a

continuous random variable yt,

p(y, t+ ∆t|ỹ, t̃) =
∫ ∞

−∞
p(y, t+ ∆t|y′, t)p(y′, t|ỹ, t̃)dy′. (2.5)

We express the first term in the integrand as the Fourier transform of the conditional

characteristic function of y − y′, and expand this characteristic function in a Taylor

series:

ψ(v, t+ ∆t|y′, t) = E
[
eiv(y−y′)|y′, t

]
=
∫ ∞

−∞
eiv(y−y′)p(y, t+ ∆t|y′, t)dy.

(2.6)

Then by the inverse Fourier transform

p(y, t+ ∆t|y′, t) =
1
2π

∫ ∞

−∞
e−iv(y−y′)ψ(v, t+ ∆t|y′, t)dv

=
∞∑

n=0

an(y′, t; ỹ, t̃)
2πn!

∫ ∞

−∞
eiv(y−y′)(iv)ndv

=
∞∑

n=0

(−1)n

n!
an(y′, t; ỹ, t̃)

∂n

∂y
δ(y − y′),

where

an(y′, t; ỹ, t̃) = E[(y(t+ ∆t)− y(t))n|y′, t].

Substituting (2.6) into (2.5) and integrating gives

p(y, t+ ∆t|ỹ, t̃) =
∞∑

n=0

(−1)n

n!
∂n

∂yn
[an(y′, t; ỹ, t̃)p(y, t|ỹ, t̃)].
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From this, we can easily get the generalized infinite-order Kolmogorov forward equation,

∂p

∂t
=

∞∑
n=0

(−1)n

n!
∂n

∂yn
[Anp],

where

An(y, t|ỹ, t̃) = lim
∆t→0

E
[
(y(t+ ∆t)− y(t))n|y, t; ỹ, t̃

]
.

If An < ∞ for all n and if An = 0 for some even n, then we have the finite-order

Kolmogorov forward equation,

∂p

∂t
= − ∂

∂y
(A1p) +

∂2

∂y2
(A2p). (2.7)

For a discrete-valued random process yt, we can similarly derive the Kolmogorov forward

equation. Define

Pij(t|t̃) := Pr [y(t) = j|y(t̃) = i].

By the Chapman-Kolmogorov equation

Pij(t+ ∆t|t̃) =
∑
k≥0

Pr[y(t+ ∆t) = j|y(t) = k, y(t̃) = i]Pik(t|t̃).

We have

Pij(t+ ∆t|t̃)− Pij(t|t̃) =

[∑
k

Pr[y(t+ ∆t) = j|y(t) = k, y(t̃) = i]− δjk

]
Pik(t|t̃),

(2.8)

where

δjk =


1 if j = k

0 if j 6= k.

Dividing Equation by ∆t and taking the limit as ∆t→ 0 yields

∂

∂t
Pij(t|t̃) =

∑
k

ajki(t|t̃)Pik(t|t̃),

where

ajki(t|t̃) := lim
∆t→0

1
∆t
[
Pr[y(t+ ∆t) = j|y(t) = k, y(t̃) = i]− δjk

]
.

By combining the ideas behind the continuous-valued process and the discrete-valued

process, we can obtain the Kolmogorov forward equation of the joint density function

of a discrete random process xt and a continuous random process yt. Define

pkj(y, t|y0, t0) := p(y, t|x(t) = j; y(t0), x(t0) = k) · P (x(t) = j|y(t0), x(t0) = k) (2.9)
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Taking the derivative of (2.9) with respect to t,

∂

∂t
pkj(y, t|y0, t0) =

∞∑
n=1

(−1)n

n!
∂n

∂yn
[Ankjpkj(y, t|y0, t0)] +

∑
i

akijpki(y, t|y0, t0), (2.10)

where

Ankj := lim
∆t→0

E [(y(t+ ∆t)− y(t))n|x(t+ ∆t) = j; y(t), x(t) = j; y(t0), x(t0) = k] ,

akij := lim
∆t→0

[Pr[x(t+ ∆t) = j|y(t), x(t) = i; y(t0), x(t0) = k]− δij ] .

2.2.3 Singular Perturbation Method

Perturbation theory is a collection of iterative methods for obtaining approximate so-

lutions to problems with a small parameter ε. This involves decomposing a big and

complex problem into a number of relatively easy ones. Hence perturbation theory is

useful when the first few steps reveal the important features of the solution and the

remaining steps give small corrections.

In perturbation theory, approximation series occurs in two varieties. A regular

perturbation problem is defined as one whose ε power series has a non-vanishing radius

of convergence. A basic feature of all regular perturbation problems is that the exact

solution for small nonzero ε approaches the unperturbed or zeroth-order solution as

ε → 0. A singular perturbation problem is defined as one whose perturbation series

either does not take the form of a power series or, if it does, whose power series has a

vanishing radius of convergence.

In a singular perturbation problem, the unperturbed solution sometimes does not

exist, and when its solution exists, its qualitative features may be quite different from

that of an exact solution with nonzero but small ε. When an abrupt change in the

character of the solution occurs when ε becomes zero, we classify it as a singular per-

turbation problem.

Matching Method

Matching methods have been widely used in singular perturbation problems. Since we

use this technique later for our model, we shall describe how this method works through

a simple example.
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When one tries to find an approximate solution involving ε, it is natural to seek a

solution of the form
∞∑

j=0

aj(x)αj(ε).

Often αj(ε) is a power of εj and we expect the first few terms to capture important

features of the solution and give us a good approximation to the exact solution. But

such an expansion is not usually uniformly valid throughout the domain D. Instead

this expansion is satisfactory in a certain part of D called the outer region. In order to

investigate the nonuniform convergent region of D, a transformation from the variable

x to the “stretched variable” ξ = ψ(x, ε) is used. If we can transform the coordinate

so x = 0 is the boundary where the nonuniformity occurs, then ξ = x
ε might be used

for nonuniform convergence at x = 0 (for fixed x and ε → 0, ξ → ∞). Selection of

the “correct” stretching variable is an art and sometimes depends on consideration of

a physical phenomenon. In terms of the stretched variable ξ, one can seek a solution of

the form
∞∑

j=0

bj(ξ)βj(ε).

This is called an inner expansion and often accounts for boundary regions neglected by

the outer expansion.

Since these two expansions represent the solution asymptotically in different regions,

we want to match them in the overlapping domain of validity for two expansions through

use of the variable ξ. Formally accomplishing the rule for this matching method can be

very complicated and we shall not attempt this here. Instead we examine one simple

example from [22] showing how this method works:

εy′′ + y′ + y = 0, 0 ≤ x ≤ 1, (2.11)

y(0) = α, y(1) = β. (2.12)

This ordinary differential equation problem has the solution

yε(x) =
β − αeρ2

eρ1 − eρ2
eρ1x +

αeρ1 − β

eρ1 − eρ2
eρ2x,
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where

ρ1(ε) =
1
2ε

(−1 + (1− 4ε)
1
2 ) = −1 +O(ε),

ρ2(ε) =
1
2ε

(−1− (1− 4ε)
1
2 ) = −1

ε
+ 1 +O(ε).

Since ρ1 → −1 and ρ2 → −∞, we have

yε(x) = βe1−x + (α− βe)exe−
x
ε +O(ε)

throughout 0 ≤ x ≤ 1 as ε goes to zero. For x > 0,

e−x/ε = O(εN )

for every N as ε→ 0, while e0 = 1. Thus yε(x) converges nonuniformly on the interval

0 ≤ x ≤ 1 as ε→ 0. We have

yε(x) = βe1−x +O(ε) for x > 0.

Note that yε(x) converges to the solution of the problem

y′ + y = 0, y(1) = β(ε)

except at x = 0. This nonuniform convergence as ε → 0 (unless α = βe) implies that

we have a singular perturbation problem.

We try to obtain an asymptotic approximation to the solution by the matching

method. We shall seek an outer expansion as the asymptotic power series,

yo :=
∞∑
j

aj(x)εj (2.13)

valid for 0 < x ≤ 1, and an inner expansion

yi :=
∞∑
j

bj(ξ)εj (2.14)

valid near x = 0 as ε→ 0 where ξ = x/ε.

The outer expansion satisfies the differential equation (2.11) and the terminal con-

dition. We have

ε(a′′0 + εa′′1 + · · · ) + (a′0 + εa′1 + ε2a′2 + · · · )

+ (a0 + εa1 + ε2a2 + · · · ) = 0,
(2.15)
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and

a0(1) + εa1(1) + ε2a2(1) + · · · = β(ε).

Equating coefficients of ε in (2.15), we have

a′0 + a0 = 0, a0(1) = βε, (2.16)

a′1 + a1 + a′′0 = 0, a1(0) = 0. (2.17)

Solving Equation (2.16), we obtain

a0(x) = βe1−x,

a1(x) = (1− x)βe1−x.

(2.18)

The differential Equation (2.11) can be written in terms of variable ξ,

yξξ + yξ + εy = 0 (2.19)

Using the same reasoning as above, we obtain

b0ξξ + b0ξ = 0, b0(0) = α,

b1ξξ + b1ξ + b0 = 0, b1(0) = 0.
(2.20)

Equation (2.20) has the solutions,

b0(ξ) = γ0 + (α− γ0)e−ξ,

b1(ξ) = −(γ0ξ + γ1) + [(α− γ0)ξ + γ1] e−ξ,

(2.21)

where γ0 and γ1 are undetermined constants. We use matching of both the outer

expansion and the inner expansion to determine γ0 and γ1. Here,

yo(x) = βe1−x + (1− x)βe1−x +O(ε2), (2.22)

yi(ξ) = γ0 + (α− γ0)e−ξ +−(γ0ξ + γ1) + [(α− γ0)ξ + γ1] e−ξ +O(ε2). (2.23)

Writing the outer expansion in terms of the variable ξ, we have

yo = βee−εξ + ε(1− εξ)βee−εξ +O(ε2). (2.24)

This leads to the approximation up to O(ε2),

yoi = βe (1 + ε(−ξ + 1)) . (2.25)
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Analogously, writing the inner expansion in terms of the outer variable x and neglecting

eξ terms,

yio = γ0(1− x)− εγ1. (2.26)

Matching will be accomplished by choosing

γ0 = βe = −γ1
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Chapter 3

Multi-Name Credit Pricing Models

In this chapter various models for pricing portfolio credit derivatives are reviewed. We

begin with bottom-up approach in §3.1. Then top-down models are introduced in §3.2.

3.1 Bottom-up Model

In a bottom-up model, the problem of pricing multi-name derivatives begins with intro-

ducing either intensity or firm value of each name in the multi-name financial products.

Bottom-up modeling has been popular since the early days of credit derivatives because

of its instinctively clear structure and computational tractability.

3.1.1 Copula Model

A copula is a function that takes the marginal distributions of individual random vari-

ables and produces the dependence structure between them. For simplicity, we give a

definition of a 2-dimensional copula. This can be easily generalized to an n-dimensional

copula.

Definition 3.1.1. [21] A two-dimensional copula C is a function from I2 = [0, 1]×[0, 1]

to I = [0, 1] with the following properties:

1. For every u, v in I,

C(u, 0) = C(0, v) = 0,

and

C(u, 1) = u, C(1, v) = v.

2. For every u1, u2, v1, v2 in I such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v1) + C(u1, v1) ≥ 0.
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We can restate this technical definition of copula in a way that is more appropriate

for financial modeling. In essence, an n-dimensional copula is a distribution function on

[0, 1]n with uniform marginal distributions. A copula is a tool which can be used to ana-

lyze the dependency structure between random variables. Sklar’s theorem characterizes

this feature of a copula.

Theorem 3.1.2 (Sklar [24]). Let X1, . . . , Xn be random variables with marginal dis-

tributions F1, . . . , Fn and joint probability distribution F . Then there exists an n-

dimensional copula C such that

F (x1, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)),

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F−1

n (un)).

If F1, . . . , Fn are continuous, then C is unique.

This theorem says that for every multivariate distribution function, there is a copula

which contains all information on dependence.

The copula model is relatively simple and widely used in the industry. While com-

putationally convenient, a calibrated copula model does not generate a consistent set

of tranche spreads across different maturities and attachment/detachment points.

Gaussian Copula Model

The Gaussian copula model is by far the most popular copula model used in the financial

industry in default dependency modeling. This is because it is easy to simulate and

has the right number of parameters — equal to the number of correlation coefficients

in the underlying names. A single name deterministic correlation is fit to the single

name credit default swap market, and a fixed copula governs the dependence structure

among names.

In this model, the value of each firm in multi-name credit product is

Zi = ρY +
√

1− ρ2εi, i = 1, · · · , n

with common factor Y and idiosyncratic factor εi. We assume that each factor Y, εi

follows the standard normal distribution and that they are independent of each other.
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Consider for each obligor i = 1, · · · , n and its default stopping time τi and the

default probability pi(ti) which is derived from the credit market. We introduce the

trigger level zi(ti):

Q(τi < ti) = Q(Zi < zi(t)),

pi(ti) = Φ(zi(ti)),

zi(ti) = Φ−1(pi(ti)),

where Φ is the cumulative probability density function of the standard normal variable.

Conditioning on the common factor Y , we get

Q(τi < ti|Y ) = Φ

(
Φ−1(pi(ti))− ρY√

1− ρ2

)
.

Since Zi, · · · , Zn are independent of each other conditioned on the common factor Y ,

we have the joint marginal distribution function F of τ1, · · · , τn,

F (t1, . . . , tn) =
∫ ( n∏

i=1

Q(τi < ti|Y )

)
f(y)dy. (3.1)

Equation (3.1) is the one-factor Gaussian copula function, in contrast to the standard

Gaussian copula function,

C∑(−→u ) = Φ∑(Φ−1(u1), . . . ,Φ−1(un)),

where
∑

is the n× n correlation matrix
∑

.

Empirical evidence [24] shows that the Gaussian distribution used here underesti-

mates extreme events, so it cannot correctly price every tranche simultaneously. As

an alternative way to overcome the shortcomings of the model, we can use a new de-

pendency structure from different copulas. Here we only introduce the Archimedean

copula as one example.

Definition 3.1.3. An Archimedean copula function C : [0, 1]I −→ [0, 1] is a copula

function which can be represented in the form

C(X) = φ

(
I∑

i=1

φ−1(xi)

)
,

with a generator function φ : R+ −→ [0, 1].
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A generator function φ is the Laplace transform of a positive random variable Y :

φ(s) = E[esY ].

Y is often called the frailty variable or mixing variable. In particular, the Clayton

copula is an Archimedean copula function with φ−1(x) = x−θ−1, corresponding to the

mixing variable Y having a Gamma(1
θ ) distribution, which results in

CClayton
θ (X) =

(
1−N +

I∑
i=1

x−θ
i

)− 1
θ

.

Vasicek Homogeneous Large Portfolio Model

When the number of entities in portfolio is quite large, we can use the Law of Large

Numbers to calculate the distribution of normalized total loss Lt. In a homogeneous

pool, the firm’s value is Zi = ρY +
√

1− ρ2Xi, where Y,Xi are independent identically

distributed standard normal random variables. All participants in a homogeneous pool

have the same loss at default and the same notional amount and the same default

probability. Thus the number of defaults is sufficient to determine the loss of the

portfolio. Define

Lt(y) :=
1
N

N∑
i

1i(t|y),

where the function 1i(t|y) is the default indicator function of the firm i by the time t

conditioned on Y . For the expectation of the default indication function,

E[1i(t|y)] = 1 · βt(y)

= probability of firm’s value is less than default barrier d,

where βt(y) is the probability of the firm defaulting by time t conditioned on the factor

Y . The barrier is explicitly derived from the firm’s default probability:

Q[Lt(y) < x] = 1βt(y)<x.
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This is because of the law of large numbers, which says that Lt(y) converges to expec-

tation of 1i(t|y).

Q[Lt < x] =
∫

Q[Lt(y) < x]dy

=
∫

1βt(y)<xf(y)dy

= E[1βt(y)<x]

= Q[βt(y) < x].

For Q[βt(y) < x], we have

Q[βt(y) < x] = Q

Φ

Φ−1(ρi(t))− ρiy√
1− ρ2

i

 < x


= Q

Φ−1(ρi(t))− ρiy√
1− ρ2

i

< Φ−1(x)


= Q

[
Φ−1(ρi(t))− ρiy <

√
1− ρ2

i Φ
−1(x)

]

= Q

Φ−1(ρi(t))−
√

1− ρ2
i Φ

−1(x)

ρ
< y


= Q

−Φ−1(ρi(t)) +
√

1− ρ2
i Φ

−1(x)

ρ
> −y


= Φ

−Φ−1(ρi(t)) +
√

1− ρ2
i Φ

−1(x)

ρ

 .

Because Y, Xi are independent variables,

βt(y) = Q
[
ρY +

√
1− ρ2Xi < d|Y

]
= Φ

(
d− ρy√
1− ρ2

)
,

where

Φ(d) = ρi(t).

Here ρi(t) is the default probability of individual names in the portfolio. Note that this

is a homogeneous group, so every name has same default probability.
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3.1.2 Intensity-based Models

Due to its tractability and flexibility, factor copula modeling has become a standard tool

in the valuation of basket credit derivatives. This approach is, however, problematic

because the default time is predictable so credit spread in short maturity can not be

captured in the copula model.

Given this problem, a natural alternative to the copula model is a multivariate

version of the intensity-based model. In the intensity-based model the default time is

constructed as an inaccessible stopping time and the parameters in the intensity have

economic interpretations and can be estimated from available CDS market data.

Common Factor Model

Default time of single name in the portfolio is described by the first jump time of a

Cox process. The intensity of an individual firm is constructed using a firm-specific

idiosyncratic factor and the common market factor.

Given the common market factor, conditional default events of any two firms are

independent. This is an important assumption of the factor model in terms of compu-

tational simplicity.

The default intensity λ(i) of firm i is decomposed into an idiosyncratic factor X(i)

and a market factor Y :

λ
(i)
t = X

(i)
t + ciYt.

The process N i is called the default process, meaning that its first jump time represents

the default of the firm i. So the default time τi is defined as

τi := inf{t > 0 : N i
t > 0}.

We consider the loss process Lt in a pool of N names:

Lt =
N∑

i=1

1τi<t.

The conditional survival probability of underlying entity i is

Q(τi > t|Fs) = 1τi>sE
[
− exp

∫ t

s
λi

udu|Fs

]
.
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Let Zt be the integrated systematic process

Zt =
∫ t

0
Ysds.

Under the assumption that X1, . . . , Xn are independently identically distributed ran-

dom variables, the law of the loss process is computed using binomial distribution,

Q(Lt = m) = E

[(
n

m

)(
1− E[− exp

∫ t

0
λi

udu|Zt]
)m(

E[− exp
∫ t

0
λi

udu|Zt]
)n−m

]
.

In a homogeneous pool, the default probabilities are obtained by the following simple

recursive algorithm due to [1].

Let DK(t) denote the number of defaults at time t in the pool consisting of K refer-

ence entities. Since defaults are conditionally independent, the conditional probability

of observing j defaults in a pool is given by

Q(DK(t) = j|Zt = z) = Q(DK−1 = j|Zt = z)× (1− pK [t|z])

+ Q(DK−1 = j − 1|Zt = z)× pK [t|z],

where pi[t|z] is the default probability of entity i by time t given the common factor Z.

Thus unconditional probabilities can be written as

Q(Lt = m) =
∫ ∞

−∞
Q(D(t) = m|Zt = z)fZt(z)dz.

As a specific example of this approach, we look at the model proposed by Mortensen

[20], which is an extension of the model of Duffie and Garleanu [4].

Let us go back to the intensity of each entity i in the portfolio:

λ
(i)
t = X

(i)
t + ciYt.

For the common factor Yt, we assume that

dYt = κY (θY − Yt)dt+ σY

√
YtdW

Y
t + dJY

t .

For the idiosyncratic factor X(i)
t , we also assume that

dX
(i)
t = κi(θi −X

(i)
t )dt+ σi

√
X

(i)
t dW i

t + dJ i
t ,

where
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• WY ,W1, . . . ,WN are independent Brownian motions,

• JY , J1, . . . , JN are independent pure jump processes with jump arrival intensities

lY , li and exponentially distributed jump sizes with means µY , µi, and

• the jump processes and Wiener processes are independent of each other.

Under these assumptions, the default probabilities are known to be

Q(τi ≤ t) = 1− E[e−
∫ t
0 λ

(i)
s ds]

= 1− E[e−ci

∫ t
0 Ysds]× E[e

∫ t
0 X

(i)
s ds]

= 1− exp (A(t;κY , ciθY ,
√
ciσY , lY , ciµY ) +B(t;κY ,

√
ciσY )ciY (0))

× exp
(
A(t;κi, θi, σi, li, µi) +B(t;κi, σi)Xi(0)

)
.

(3.2)

To find the functions A, B above, we need to calculate the moment generating function

of a CIR process with jumps.

Let us consider Xt the general CIR process with jump. We have

dXt = κ(θ −Xt)dt+ σ
√
XtdWt + dJt.

The process Xt has the same condition as Xi
t and Yt in Mortensen’s model [20]. That

is, W is a Brownian motion and J is an independent pure jump process whose arrival

times follow a Poisson process with intensity l and whose jump size is exponentially

distributed with mean µ. We want to find

u(t, x) = E
[
e−

∫ t
0 Xsds | X0 = x

]
.

As shown in [8], there is a Feynman-Kac partial differential integral equation satisfied

by u, namely

ut +
1
2
σ2xuxx + κ(θ − x)ux + l

∫ ∞

0
(u(t, x+ z)− u(t, x))ve−vzdz − xu = 0, (3.3)

with u(T, x) = 1. We construct a solution of the form

u(t, x) = A(T − t)e−B(T−t)x. (3.4)
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After substitution of (3.4) into (3.3), we get the ordinary differential equations

−B′ +
1
2
σ2B2 + κB − 1 = 0,

A′

A
+ κθB − l

B

B + 1/µ
= 0,

with A(T ) = 1, B(T ) = 0 and

A(T ;κ, θ, σ, l, µ) =
κθγ

bc1d1
log
(
c1 + d1e

bT

−γ

)
+
κθ

c1
T

+
l( c2d1

c1
− d2)

bc2d2
log
(
c2 + d2e

bT

c2 + d2

)
+
l − c2l

c2
T,

B(T ;κ, σ) =
1− ebT

c1 + d1ebT
,

where

γ =
√
κ2 + 2σ2,

c1 =
−(γ + κ)

2
,

c2 = 1− µ

c1
,

d1 = c1 + κ,

d2 =
d1 + µ

c1
,

b = d1 +
κc1 − σ2

γ
.

Thus probability of stopping time (3.2) can be calculated using the solution of u(t, x).

3.2 Top-down Model

The bottom-up framework for multi-name credit modeling has very good features in

terms of consistency with single-name constituents. However, it is difficult to calibrate

the model with the available data of CDO indices and CDO tranches, because there

are too many parameters unknown in bottom-up models.

Considering that a portfolio credit derivative is a contingent claim on the aggregate

loss of a portfolio of credit sensitive securities, it is natural to model a loss process Lt

directly rather than obtaining it from a default processes of the single names. In this

approach, an important assumption is the homogeneous property of a pool of various

names so that the model depends only on the number of defaulted names.
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3.2.1 Intensity-Based Model

In intensity-based credit risk models, default is defined as the first jump of a counting

process, and the counting process is characterized by its intensity. Constant intensity

models were considered in [14], and stochastic intensities were introduced in [17].

Poisson Process

The loss process of a portfolio is constructed as a Poisson process with constant inten-

sity parameter λ. The intensity λ can be generalized to a non-negative deterministic

function of time λ(t).

A Poisson process Nt is an integer-valued jump process such that

1. Nt has independent increments and has a probability distribution

Q(Nt −Ns = k) = e−λ(t−s) (λ(t− s))k

k!
.

2. Nt starts at zero, N0 = 0

The distribution of the first jump time τ is given by

Q(τ > t) = Q(Nt = 0) = e−λt.

The probability of a single jump in a small time interval can be seen to be

Q(Nt+∆t −Nt = 1|Ft) = e−λ∆tλ∆t = λ∆t+O(∆t2).

This tells us that λ∆t is the local jump probability over a small time period.

Generalized-Poisson Loss Dynamic Model

In the generalized Poisson loss dynamic model [3] , the number of defaulted names in

a portfolio of names is modeled as a linear combination

Zt =
n∑

j=1

αjNj(t) (3.5)

of independent Poisson processes with different intensities. The Ni for i = 1, 2, . . . , n

are independent Poisson processes, and the αi’s are integers.
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This allows multiple defaults to happen in a small time period, so we need to restrict

the number of defaulted names to be bounded by the number of total names in the pool.

If the pool contains M names, then

Ct = min(Zt,M).

Given the distribution of Zt, the distribution of Ct is easily found by

Q(Ct ≤ x) = 1{x<M}Q(Zt < x) + 1{x≥M}.

The distribution of Zt can be obtained by:

ϕZt(u) = E[exp(−iuZt)]

=
∑

n

exp(−iun)Q(Zt = n)

=
n∏

j=1

E[exp(−iuαjNj(t))] =
n∏

j=1

ϕNj(t)(αju)

= exp
[ n∑

j=1

Λj(t)(eiαju − 1)
]
,

where Λj(t) =
∫ t
0 λj(s)ds.

Now we use the inverse Fourier transform to get the probability distribution of Zt:

Q(Zt = k) =
∑

m1+···+mn=k

Q(N1(t) = m1, . . . , N2(t) = mn)

=
∑

m1+···+mn=k

n∏
j=1

Q(Nj(t) = mj).

Each Q(Nj(t) = mj) is known already, and the independence of the Nj(t)’s is used

here.

3.2.2 Markovian Self-Affecting Process

The loss process in the multi-name derivatives is, by its nature, a non-decreasing pro-

cess. If the underlying portfolio has a discrete loss unit, a continuous time birth process

of a Markov chain can be a very feasible candidate for the loss process.

To produce a more realistic model of the loss process, the transition intensities of

the generating matrix of a Markov chain can be generalized from a simple linear birth
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process. When we assume that at most one default occurs in an infinitesimal time

interval, we get an upper bi-diagonal transition rate generating matrix. The simplest

Markov non-increasing process with this feature is the well-known linear death process,

and the transition rate generating matrix has the form

At = λ



−N N 0 · · · 0

0 −(N − 1) (N − 1) · · · 0
...

...
. . . . . .

...

0 0 · · · −1 1

0 0 · · · 0 0


.

Here, λ is the average intensity of individual names in the portfolio of N names.

This can be modified by adding time-inhomogeneity, a nontrivial function f(t, Lt)

of time, and the default to the matrix to obtain

At = λ



−f(t, 0) f(T, 0) 0 · · · 0

0 −f(t, 1) f(t, 1) · · · 0
...

...
. . . . . .

...

0 0 · · · −f(t,N − 1) f(t,N − 1)

0 0 · · · 0 0


.

We call the intensity of the generating matrix a local intensity since it depends only on

the time and current level of loss. Note that the local volatility is a function of time

and underlying equity value. The next step is to make the local intensity stochastic.

A completely general forward intensity modeling approach to this generating matrix

is given by Schönbucher [25]. He allows each next-to-default intensity in the generating

matrix for loss process to have its own stochastic dynamics. In contrast to this, the

BSLP model discussed next introduces only one stochastic factor Yt, applying to every

transition intensity rate simultaneously.

BSLP: Markovian Bivariate Spread-Loss Model for Portfolio Credit Deriva-

tives

A bivariate spread loss model [12] is a two-dimensional dynamic model with stochastic

cumulative portfolio loss and loss intensity. The loss is considered to be a pure increasing
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jump process with jump intensity λt determining how often it jumps. Here the loss unit

is assumed to be one, so the counting process Nt and the loss process Lt become the

same:

Nt = Lt.

As mentioned above, the generating matrix for BSLP has a stochastic factor Yt instead

of a deterministic value λ so the transition rate matrix is:

A = a(Yt)



−F (t, 0) F (t, 0) 0 · · · 0

0 −F (t, 1) F (t, 1) · · · 0
...

...
. . . . . .

...

0 0 · · · −F (t,N − 1) F (t,N − 1)

0 0 · · · 0 0


where the function a(·) is a deterministic function which ensures that the intensity is

positive. Thus, the next-to-default intensity is now stochastic and is given by

λt(Nt = k, Yt, t) = a(Yt) · F (t, k).

The stochastic factor Yt is assumed to satisfy the stochastic differential equation

dYt = µ(t, Yt)dt+ σ(t, Yt) · dWt + γ(t, Yt)dNt. (3.6)

Several specifications of Yt are possible. One example of a specification Yt is an Ornstein-

Ulenback process defined by setting

µ(t, Yt−) := a(θt − Yt−),

σ(t, Yt−) := σ,

γ(t, Yt−) := γ.

(3.7)

Having a default counting process term dNt in (3.6), The process Nt becomes a self-

affecting process. The process Nt itself is not a Markov process anymore, but (Nt, Yt) is

a two-dimensional Markov process, and knowledge of their joint conditional probability

distributions is important in pricing various credit derivative products.
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Affine Point Processes

The aggregate loss is modeled as a counting process which increases due to default.

The loss is determined by default times and default size. Default times are governed

by an intensity driven by market-wide risk factors which follow an affine jump diffusion

process. The size of each loss is described by another independent random variable.

The loss process can be included as a risk factor in this model, so the model has the

self-affecting property.

An affine point process provides a computationally tractable model for pricing credit

derivatives. From the results of [4], the conditional transform of an affine point process

is known to be an exponentially affine function of the risk factors with coefficients

that satisfy ordinary differential equations. This transform determines the conditional

distribution of future portfolio loss and the price of a contingent claim on the aggregate

loss of portfolio, which is specified by an intensity λ and a random loss at default.

One example of such process is a Hawkes process [6]. The Hawkes process is a self-

affecting affine point process whose intensity increases at an event as a function of the

realized loss and reverts to a time-varying level between events:

λt = c(t) +
∫ t

0
f(t− s)dLs. (3.8)

The first-to-default intensity c(t) is a nonnegative deterministic function of time. The

impact of a loss on the intensity is determined by the exponential function

f(s) = δeks, s ≥ 0,

with k ≥ 0 and δ ≥ 0. When c(t) has the form

c(t) = c(0)ekt + k

∫ t

0
ek(t−s)%(s)ds.

We may write (3.8) as

dλt = k(%(t)− λt) + δdLt.

The intensity in the Hawkes process can be generalized to include additional diffusion

and jump terms.
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An affine point process has an intensity that is driven by an affine jump diffusion

[6]. A Markov process Xt in a state space D ⊂ Rd × R+ is an affine jump diffusion in

the sense of [5] if X is a strong solution of the stochastic differential equation

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt +
m∑

i=1

ζidZi
t ,

where Wt is an Rd-valued standard Brownian motion, µ : D → Rd is the drift, σ :

D → Rd×d is the volatility, and each Zi is a temporally consistent R+-valued point

process. This means that the component processes of each vector Zi have the same

jump times and differ only in jump sizes. We denote the intensity of Zi by λi(Xt, t)

for some λi : D → R+. The jump sizes are drawn from a distribution νi on R+. Each

parameter ζi is a d-dimensional diagonal matrix. We further assume that

µ(x, t) = K0(t) +K1(t)x, K0(t) ∈ Rd, K1(t) ∈ Rd×d(
σ(x, t)σ(x, t)T

)
jk

= (H0)jk(t) + (H1)jk(t) · x, H0(t) ∈ Rd×d, H1(t) ∈ Rd×d×d

λi(x, t) = Λi
0(t) + Λi

1(t) · x, Λi
0(t) ∈ R, Λi

1(t) ∈ Rd, i = 1, 2, . . . ,m.

The affine point process J is said to have the self-affecting property if at least one

of the component processes of J = (L,N)T is temporally consistent with one of the

component processes of one of the jump terms Zi of X.

One such example of affine point process is the Hawkes process we mentioned above.

Suppose the coefficients of the affine diffusion jump process X are

K0(t) = kλ∞,

K1(t) = −k,

H0(t) = zero matrix,

H1(t) = a tensor of zeros,

X0 = λ∞, ζ = δ ≥ 0,

Λ0(t) = 0, Λ1(t) = 1.

Then the intensity of J is λ = X, and the dynamics it satisfies are defined by

dλt = k(λ∞ − λt)dt+ δdLt,

which is the exactly the intensity of the Hawkes process.
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Two-Dimensional Markovian Model for Dynamics of Aggregate Credit Loss

The model proposed by Lopatin and Misirpashaev in [19] is Markovian with the state

variables being the total accumulative loss Lt and the stochastic default intensity λt.

The dynamics of the default intensity are governed by the equation

dλt = κ(ρ(Lt, t)− λt)dt+ σ
√
λtdWt.

The calibration procedure for this model consists of two parts. In the first step, the

intensity of an auxiliary one-step Markov chain, which is consistent with the current

available CDO tranches, is found. The intensity of this Markov chain is a deterministic

function of accumulative loss and time, so we call it a local intensity to distinguish it

from the stochastic intensity of the original model. In the second calibration step, the

stochastic intensity of the two-dimensional model is calibrated to the local intensity.

The forward Kolmogorov equation for the joint density p(λ, L, t) for positive-valued

intensity λ and non-negative multiples of h-valued loss unit loss process L is

∂p(λ, L, t)
∂t

=
(
−κ ∂

∂λ
(ρ(L, t)− λ+

1
2
∂2

∂λ2
σ2λ

)
p(λ, L, t)

+ λ (1L≥hp(λ, L− h, t)− p(λ, L, t)) ,

(3.9)

with boundary conditions

p(λ, L, 0) = p0(λ) · 1{L=0},

p(0, L, t) = 0,

where p0 is the initial distribution of λt. Integrating Equation (3.9) with respect to

the intensity λ, we get the forward Kolmogorov equation for the probability density

function P (L, t) of the loss L:

P (L, t) =
∫ ∞

0
p(λ, L, t)dλ,

∂P (L, t)
∂t

= 1{L≥h}Λ(L− h, t)P (L− h, t)− Λ(L, t)P (L, t),
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where

Λ(L, t)P (L, t) :=
∫ ∞

0
λp(λ, L, t)dλ,

Λ(L, t) :=

∫∞
0 λp(λ, L, t)dλ∫∞
0 p(λ, L, t)dλ

,

Λ(L, t) := E[λt|Lt = L].

This can be seen to be a projection of the stochastic intensity-based model onto a

one-dimensional Markov chain with local intensity Λ(L, t).

Provided that the initial loss distribution surface is fully known for time t and the

loss level L is known from the available market data, the forward Kolmogorov equation

(3.9) leads to the calibration of the local intensity Λ(L, t):

Λ(L = K, t) = − 1
P (K, t)

∂

∂t

K∑
L=0

P (L, t). (3.10)

The next step in calibration is to find the function ρ(L, t) consistent with the local

intensity Λ(L, t):

ρ(L, t) = Λ(L, t) +
1
κ

∂Λ(L, t)
∂t

=
Λ(L, t)(1L≥hΛ(L− h, t)P (L− h, t)− Λ(L, t)P (L, t))

κP (L, t)

=
M(L, t)− 1L≥hM(L− h, t)

κP (L, t)
,

(3.11)

where

M(L, t) =
∫ ∞

0
λ2p(λ, L, t)dλ.

The calibration of the function ρ provides much more flexibility in terms of matching the

initial market data than is afforded by the parameter models in other two-dimensional

Markovian intensity-based top-down models. Substituting Equation (3.11) into Equa-

tion (3.9) yields the density function P (L, t).
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Chapter 4

Singular Perturbation Methods in Equity Option Pricing

In a stochastic volatility model for equity option pricing, Fouque and his collaborators

show that asymptotic methods such as singular perturbation are very efficient for cap-

turing the effects of stochastic volatility. Here we summarize their results in Chapter 4

in [8].

4.1 Fast Time Scale and Singular Perturbation

We begin with a filtered probability space (Ω,F , {F(t)}t≥0,Q). Filtration is generated

by Brownian motions Wt and W
(1)
t . We consider two correlated stochastic processes,

Xt and Yt. Here Xt denotes the log-price process of an underlying asset, and Yt is the

driving random factor for stochastic volatility:

dXt = σtdWt,

σt = f(Yt).
(4.1)

where we assume that f(z) : R → (0,∞) is a smooth function bounded above and

below by zero. We assume that Yt obeys the stochastic differential equation

dYt =
1
ε
α(Yt)dt+

1√
ε
β(Yt)dW

(1)
t . (4.2)

The Brownian motion processes W and W (1) are correlated in the sense that

Wt = ρ1W
(1)
t +

√
1− ρ1

2W
(2)
t ,

where W (1)
t and W (2)

t are independent Brownian motions.
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We consider a function u(t, x, y) on [0, T ]× R2 defined by

u(t, x, y) = E[h(XT )|Ft]

= E[h(XT )|Xt = x, Yt = y],

u(T, x, y) = h(x)

(4.3)

for some payoff function h. Using Equations (4.2), (4.1), the infinitesimal generator[8]

L(X,Y ) of the Markov process (Xt, Yt) is

L(X,Y ) =
1
2
f2(y)

∂2

∂x2
+

1√
ε
ρ1β(y)f(y)

∂2

∂x∂y
+

1
ε

(
1
2
β2(y)

∂2

∂y2
+ α(y)

∂

∂y

)
. (4.4)

Thus, the function u defined in (4.3) now satisfies Equation (4.5)

∂u

∂t
+

1
2
f2(y)

∂2u

∂x2
+

1√
ε
ρ1β(y)f(y)

∂2u

∂x∂y
+

1
ε

(
1
2
β2(y)

∂2u

∂y2
+ α(y)

∂u

∂y

)
= 0. (4.5)

In order to find the approximate solution of u in (4.3), we expand the solution u in

powers of
√
ε:

u = u0 +
√
εu1 + εu2 + ε

√
εu3 + · · · . (4.6)

Substituting (4.6) into (4.5) and collecting powers of ε gives

1
ε

(
1
2
β2(y)

∂2u0

∂y2
+ α(y)

∂u0

∂y

)
+

1√
ε

(
1
2
β2(y)

∂2u1

∂y2
+ α(y)

∂u1

∂y
+ ρ1β(y)f(y)

∂2u0

∂x∂y

)
+
(

1
2
β2(y)

∂2u2

∂y2
+ α(y)

∂u2

∂y
+ ρ1β(y)f(y)

∂2u1

∂x∂y
+
∂u0

∂t
+

1
2
f2(y)

∂2u0

∂x2

)
+
√
ε

(
1
2
β2(y)

∂2u3

∂y2
+ α(y)

∂u3

∂y
+ ρ1β(y)f(y)

∂2u2

∂x∂y
+
∂u1

∂t
+

1
2
f2(y)

∂2u1

∂x2

)
+ · · · = 0.

(4.7)

The coefficient of 1/ε in Equation (4.7) gives the partial differential equation

1
2
β2(y)

∂2u0

∂y2
+ α(y)

∂u0

∂y
= 0. (4.8)

Since the y-dependent solution of Equation (4.8) exhibits the unreasonable growth

exp (y2) at infinity, we look for a y-independent solution. Thus we assume that u0 =

u0(t, x) and subsequently we find u0 from the existence condition of another partial
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differential equation which we explain below. The coefficient of 1/
√
ε in Equation (4.7)

leads to

1
2
β2(y)

∂2u1

∂y2
+ α(y)

∂u1

∂y
+ ρ1β(y)f(y)

∂2u0

∂x∂y
= 0. (4.9)

Since the function u0 is independent of y, we see that (4.9) simplifies to

1
2
β2(y)

∂2u1

∂y2
+ α(y)

∂u1

∂y
= 0.

For the same reason that the function u0 is independent of y, we also know that u1 is a

function only of (t, x). The coefficient of the zeroth-order term of ε gives the equation

1
2
β2(y)

∂2u2

∂y2
+ α(y)

∂u2

∂y
= −∂u0

∂t
− 1

2
f2(y)

∂2u0

∂x2
. (4.10)

The operator on the left hand side,

LY =
1
2
β2(y)

∂2

∂y2
+ α(y)

∂

∂y
,

only involves the variable y. Thus t and x are fixed parameters in Equation (4.10).

This Equation (4.10) has solutions with reasonable polynomial growth at infinity only

if the source term

−∂u0

∂t
− 1

2
f2(y)

∂2u0

∂x2

is in the orthogonal complement of the null space of the formal adjoint L∗Y of LY ,

L∗Y = − ∂

∂y
(α(y)·) +

∂2

∂y2

(
1
2
β2(y)·

)
. (4.11)

Let v be a solution of

L∗Y v(y) = 0.

The source function, right hand side of (4.10), should be orthogonal to v with respect

to L2 inner product. Using 〈, 〉 to denote the L2 inner product, we have〈
−∂u0

∂t
, v

〉
−
〈

1
2
f2∂

2u0

∂x2
, v

〉
= 0,

∂u0

∂t
+
〈

1
2
f2, v

〉
∂2u0

∂x2
= 0,

(4.12)

where we use the property of the function v, which is the invariant distribution function,∫ ∞

−∞
v(y)dy = 1.



45

Equation (4.12) finally reduces to the heat equation with constant coefficients and

terminal condition:

∂u0

∂t
+

1
2
〈
f2(y), v

〉 ∂2u0

∂x2
= 0,

u0(T, x) = h(x).
(4.13)

The coefficient of
√
ε in Equation (4.7) gives a similar condition on u1 by the same

reasoning:

1
2
β2(y)

∂2u3

∂y2
+ α(y)

∂u3

∂y
+ ρ1β(y)f(y)

∂2u2

∂x∂y
+
∂u1

∂t
+

1
2
f2(y)

∂2u1

∂x2
= 0,

1
2
β2(y)

∂2u3

∂y2
+ α(y)

∂u3

∂y
= −ρ1β(y)f(y)

∂2u2

∂x∂y
− ∂u1

∂t
− 1

2
f2(y)

∂2u1

∂x2
,

and

ρ1

〈
βf

∂2u2

∂x∂y

〉
+
∂u1

∂t
+

1
2
〈f2, v〉∂

2u1

∂x2
= 0,

∂u1

∂t
+

1
2
〈f2, v〉∂

2u1

∂x2
= −ρ1

〈
βf

∂2u2

∂x∂y

〉
.

From Equations (4.10) and (4.13), we first find u2 from

1
2
β2(y)

∂2u2

∂y2
+ α(y)

∂u2

∂y
=

1
2
〈
f2, v

〉 ∂2u0

∂x2
− 1

2
f2(y)

∂2u0

∂x2
.

Let continuous function φ(y) be a solution of

1
2
β2(y)

∂2φ

∂y2
+ α(y)

∂φ

∂y
= f2(y)−

〈
f2, v

〉
.

Then

u2 = −1
2
φ(y)

∂2u0

∂x2
(t, x) + C(t, x),

where for some function C(t, x).

Finally, we get the following equation for u1, which completes the first order y-

independent approximation:

∂u1

∂t
+

1
2
〈
f2, v

〉 ∂2u1

∂x2
=

1
2
ρ1

〈
βfφ′, v

〉 ∂3u0

∂x3
,

u1(T, x) = 0.
(4.14)

Here, u1 is explicitly given in terms of u0:

u1 = −1
2
(T − t)ρ1〈βfφ′, v〉

∂3u0

∂x3
.
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Therefore, the approximation of u using the first two terms in the
√
ε is given by

u ≈ u0 −
1
2
(T − t)ρ1〈βfφ′, v〉

∂3u0

∂x3

√
ε.

This is a modification of the u0 term with one of order
√
ε.

An error analysis of this approximation is undertaken in [9]. Define

ũε(t, x, y) := E[e−r(T−t)h(XT )|Xt = x, Yt = y] (4.15)

where r is the interest rate. Note that u defined previously does not have the discounting

factor. Fouque, Sircar, Papanicolaou and Solna showed the error between the real

solution ũε(t, x, y) and its approximation wε := u0 +
√
εu1 in their setting [9] obeys

lim
ε→0

| ũε − wε |
ε| log ε|1+p = 0, (4.16)

for any p > 0.
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Chapter 5

Singular Perturbation Methods in Credit Modeling

We examine the use of approximation methods in credit derivative modeling. In §5.1 we

introduce the Gaussian copula with stochastic volatility in [10]. In §5.2 we model the

loss in a portfolio with stochastic intensity and approximate the joint density function

of loss and intensity using the singular perturbation.

5.1 Perturbed Gaussian Copula

In [10] Fouque and Zhou apply the approximation method used for equity option pricing

[8] to the copula model because the Gaussian copula model, which is the most popular

in the financial industry, does not show the tail dependence property. We here review

their work briefly.

Tail dependence reflects the dependence structure when extreme events occur. Let

(Y1, Y2)T be a vector of continuous random variables with marginal distribution func-

tions F1, F2, then the coefficient of the upper tail dependence of (Y1, Y2)T is

λU = lim
u→1

P (Y2 > F−1
2 (u)|Y1 > F−1

1 (u)),

and the coefficient of the lower tail dependence of (Y1, Y2)T is

λL = lim
u→1

P (Y2 < F−1
2 (u)|Y1 < F−1

1 (u)).

If λU > 0, upper tail dependence exists and the positive extreme values can be observed

simultaneously and if λL > 0, there exists lower tail dependence and negative extreme

value can be observed simultaneously.

Some tail dependence can be restored by introducing stochastic volatility on a Gaus-

sian copula. Using the perturbation method, an approximate copula called the perturbed

Gaussian copula is derived here.
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Unlike in the standard Gaussian copula setting, each firm’s value variable Xi has a

stochastic volatility in its dynamics.

We define the probability space (Ω,F ,Ft,Q), F = {F}t≥0. We only consider a

portfolio with two underlying names below:

dXi
t = fi(Yt)dBi

t, for i = 1, 2,

where

dYt =
1
ε
(m− Yt)dt+

v
√

2√
ε
dBY

t ,

and Brownian motions B1
t , B2

t and BY
t are correlated with,

B1
t = ρB2

t +
√

1− ρ2Wt,

B1
t = ρ1YB

Y
t +

√
1− ρ2

1YW
1
t ,

B2
t = ρ2YB

Y
t +

√
1− ρ2

2YW
2
t .

(5.1)

where Brownian motions Wt,W
1
t ,W

2
t are independent to Brownian motions B1

t , B2
t

and BY
t . We are interested in determining the three transition densities,

uε(t, x, y) := Q(X(1)
T ∈ dξ1, X(2)

T ∈ dξ2|Xt = x, Yt = y),

vε
1(t, x, y) := Q(X(1)

T ∈ dξ1|Xt = x, Yt = y),

vε
2(t, x, y) := Q(X(2)

T ∈ dξ2|Xt = x, Yt = y),

(5.2)

where Xt = (X(1)
t , X

(2)
t ) and x = (x1, x2). The singular perturbation method is used

to find the density functions in (5.2) in the following way. We only discuss the case of

uε; the other cases can be treated in a similar way.

The Kolmogorov backward equation [8], [26] for uε is

Lεuε(t, x1, x2, y) = 0,

uε(T, x1, x2, y) = δ(ξ1 − x1)δ(ξ2 − x2),
(5.3)

where δ(ξi − xi) is the Dirac delta measure of xi centered at ξi. The operator Lε has

the decomposition

Lε =
1
ε
L0 +

1√
ε
L1 + L2,
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where

L0 := (m− y)
∂

∂y
+ v2 ∂

2

∂y2
,

L1 := v
√

2ρ1Y f1(y)
∂2

∂x1∂y
+ v

√
2ρ2Y f2(y)

∂2

∂x2∂y
,

L2 :=
∂

∂t
+

1
2
f2
1 (y)

∂2

∂x2
1

+
1
2
f2
2 (y)

∂2

∂x2
2

+ ρf1(y)f2(y)
∂2

∂x1∂x2
.

(5.4)

Expanding the solution uε in powers of
√
ε and substituting it into Equation (5.3), we

obtain the first two terms in the same way as in [8]:

L0u0 = 0, (5.5)

L0u1 + L1u0 = 0, (5.6)

L0u2 + L1u1 + L2u0 = 0, (5.7)

L0u3 + L1u2 + L2u1 = 0. (5.8)

From the first two Equations (5.5) and (5.6), we know that u0, u1 are independent of

y. From the Equation (5.7) for u2, the source term becomes L2u0 since we know that

u1 is independent of y. To have at most polynomial growth of u2 for large values of

x1, x2(see chapter 5 in [8]), we must have

〈L2〉u0(t, x1, x2) = 0,

u0(T, x1, x2) = δ(ξ1 − x1)δ(ξ2 − x2),
(5.9)

where 〈·〉 denotes the average with respect to the invariant distribution N (m, v2) of Yt,

〈g〉 :=
∫ ∞

−∞
g(y)

1
v
√

2π
exp−(y −m)2

2v2
dy.

Note that 〈Li〉 means the coefficients functions of the operator Li are averaged with

respect to the normal distribution N (m, v2). Let

σ̄1 :=
√
〈f2

1 〉, σ̄2 :=
√
〈f2

2 〉, ρ̄ :=
〈ρf1f2〉
σ̄1σ̄2

. (5.10)

Using the notation in Equation(5.10), Equation (5.9) becomes

∂u0

∂t
+

1
2
σ̄1

2∂
2u0

∂x2
1

+
1
2
σ̄2

2∂
2u0

∂x2
2

+ ρ̄σ̄1σ̄2
∂2u0

∂x1∂x2
= 0,

u0(T, x1, x2) = δ(ξ1 − x1)δ(ξ2 − x2).
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Here, u0 is the joint transitional probability density function of two correlated scaled

Brownian motions with instantaneous correlation ρ̄ and scale factors σ̄1 and σ̄2:

u0(t, x1, x2) =
1

2πσ̄1σ̄2(T − t)
√

1− ρ̄2

= exp− 1
2(1− ρ̄2)

(
(ξ1 − x1)

2

σ̄1
2(T − t)

− 2ρ̄
(ξ1 − x1)(ξ2 − x2)

σ̄1σ̄2

(ξ2 − x2)
2

σ̄2
2(T − t)

)
.

We apply the same growth condition as in Equation (5.7) to Equation (5.8) and using

the fact that 〈L2〉u0 = 0 from Equation (5.7) , we have

〈L2〉u1 = 〈L1L−1
0 (L2 − 〈L2〉)〉u0,

with zero final condition,

u1(T, x1, x2) = 0.

Let us denote by φ1(y), φ2(y) and φ12(y) the solutions of the Poisson equations,

L0φ1(y) = f2
1 (y)− 〈f2

1 〉,

L0φ2(y) = f2
2 (y)− 〈f2

2 〉,

L0φ12(y) = f1(y)f2(y)− 〈f1f2〉.

Then L−1
0 (L2 − 〈L2〉) is defined by

L−1
0 (L2 − 〈L2〉) =

1
2
φ1(y)

∂2

∂x2
1

+
1
2
φ2(y)

∂2

∂x2
2

+ ρφ12(y)
∂2

∂x1∂x2
.

By the definition of L1,

L1L−1
0 (L2 − 〈L2〉) = v

√
2ρ1Y f1(y)

[
1
2
φ′1(y)

∂3

∂x3
1

+
1
2
φ′2(y)

∂3

∂x2
2∂x1

+ ρφ′12(y)
∂3

∂x2
1∂x2

]
+ v

√
2ρ2Y f2(y)

[
1
2
φ′1(y)

∂3

∂x2
1∂x2

+
1
2
φ′2(y)

∂3

∂x3
2

+ ρφ′12(y)
∂3

∂x1∂x2
2

]
.

Then the operator 〈L1L−1
0 (L2 − 〈L2〉)〉 is

R1
∂3

∂x3
1

+R2
∂3

∂x3
2

+R12
∂3

∂x1∂x2
2

+R21
∂3

∂x2
1∂x2

,
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with the constant parameters R1, R2, R12, R21 defined as

R1 =
vρ1Y√

2
〈f1φ

′
1〉,

R2 =
vρ2Y√

2
〈f2φ

′
2〉,

R12 =
vρ1Y√

2
〈f1φ

′
2〉+ v

√
2ρρ2Y 〈f2φ

′
12〉,

R21 =
vρ2Y√

2
〈f2φ

′
1〉+ v

√
2ρρ1Y 〈f1φ

′
12〉.

Then u1 is given by

u1 = −(T − t)〈L1L−1
0 (L2 − 〈L2〉)〉u0.

Conditioning on Xt = x, Yt = y, suppose (X(1)
T , X

(2)
T ) has a Gaussian copula C. Then

Q(X(1)
T ≤ ξ1, X

(2)
T ≤ ξ2|Xt = x, Yt = y) = Ψ(ξ1, ξ2) = C(z1, z2), (5.11)

where

z1 = Q(X(1)
T ≤ ξ1|Xt = x, Yt = y),

z2 = Q(X(2)
T ≤ ξ2|Xt = x, Yt = y).

Taking derivatives with respect to ξ1, ξ2 in (5.11) yields

Q(X(1)
T ∈ dξ1, X(2)

T ∈ dξ2|Xt = x, Yt = y) =
∂2C(z1, z2)
∂z1∂z2

∂z1
∂ξ1

· ∂z2
∂ξ2

.

This gives the density function

ψ(ξ1, ξ2) =
∂2Ψ(ξ1, ξ2)
∂ξ1∂ξ2

using equations (5.2) and

ψ(ξ1, ξ2) =
uε

vε
1v

ε
2

. (5.12)

Even though the work in [10] is meaningful in the sense that it gives more interdepen-

dence among extreme events, when it comes to pricing multi-name products with many

names, it still has the drawbacks of bottom-up modeling.
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5.2 Markovian Stochastic Intensity Model

In this section we adapt the top-down intensity approach in Section 3.2.2 to model

the aggregate loss process. We will investigate the use of the singular perturbation

method for approximating the transition density function and analyze the error in the

approximation. The loss process in our model together with stochastic factor in the

intensity makes a two-dimensional Markov process. Thus our model can be seen to be

similar to the models in [12] and [19]. In order to find the transition density function of

Markov process, we apply the method of matched asymptotic expansion inspired by the

work in [15] of Yin and Khasminskii for a certain type of Kolmogorov forward equation;

see [23] for details. As the solution to the Cauchy problem, existence of the probability

density function is studied in [16] and [7]. However, the perturbation method provides

the opportunity to see the asymptotic properties of the solution as the coefficient ε in

the Kolmogorov forward partial differential equation tends to zero.

5.2.1 Model Setting

We construct a loss process Lt in a pool of N names as a continuous-time Markov chain

whose (N + 1)× (N + 1) generating matrix has the form:

A = a(Yt)



−F (t, 0) F (t, 0) 0 · · · 0

0 −F (t, 1) F (t, 1) · · · 0
...

...
. . . . . .

...

0 0 · · · −F (t,N − 1) F (t,N − 1)

0 0 · · · 0 0


,

where a(·) is a continuous bounded deterministic function and the random factor Yt

can be assumed to be a diffusion process:

dYt = µ(t, Yt)dt+ σ(t, Yt)dWt. (5.13)

Let λ be the intensity of the process Lt. The intensity is a deterministic function of the

loss level Lt, the random factor Yt, and the time t:

λ = λ(Yt, Nt, t).



53

We solve the Kolmogorov forward equation to get the joint probability density function.

Since Yt is a continuous random variable and Lt is a discrete variable, we need a

Kolmogorov forward equation which accommodates both types of random variables.

Let Pjk(Y, T |y, t) be a joint density function of Lt and Yt with L(T ) = k, L(t) = j

and YT = Y , Yt = y for 0 ≤ t < T ≤ TM . Then Pjk satisfies the Kolmogorov forward

equation; eee [23], [12], [19] for more details:

∂Pjk

∂T
= − ∂

∂Y
[A1jkPjk] +

1
2!

∂2

∂Y 2
[A2jkPjk] +

∑
i∈{0,1,2,...,N}

akijPji, (5.14)

where

akij = lim
∆T↓0

1
∆T

[Q (NT+∆T = k|NT = i, YT ;Nt = j, Yt)− δki] ,

Anjk = lim
∆T↓0

1
∆T

E [(YT+∆t − YT )n|NT+∆T = k;YT , NT = j;Yt, Nt = j] .

With Equation (5.13), the Kolmogorov forward equation (5.14) becomes

∂Pjk

∂T
= − ∂

∂Y
[µ(T, Y )Pjk] +

1
2!

∂2

∂Y 2
[σ2(T, Y )Pjk]

+ λ(Y, k − 1, T )Pjk−1 − λ(Y, k, T )Pjk,

(5.15)

where the intensity λ(Y, k, T ) of loss Lt can be specified in each model. The initial

condition accompanying (5.15) is

Pjk(Y, t|y, t) = g0 · 1{j=k}, (5.16)

where g0 is the initial distribution of the process Yt. Thus g0 satisfies
∫∞
−∞ g0dy = 1.

Once the backward variables j, y, t are fixed, we have a system of equations for

k ≥ j. We can iteratively solve this system of equations starting from k = j. The first

equation for k = j becomes

∂Pjj

∂T
= − ∂

∂Y
[µ(T, Y )Pjj ] +

1
2!

∂2

∂Y 2
[σ2(T, Y )Pjj ]− λ(Y, j, T )Pjj ,

Pjj(Y, t|y, t) = g0.

(5.17)

For notational simplicity, we assume that the backward time t is zero and Lt = 0. Then

for forward loss level k, the joint density function Pjk becomes P0k. We denote this by
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Pk. Moreover, for the rapidly varying process Yt, we rewrite Equation (5.13) for dYt

with slight notational abuse as

dYt =
1
ε
µ(t, Yt)dt+

1√
ε
σ(t, Yt)dWt. (5.18)

Then Equation (5.15) becomes

∂Pk

∂T
= − ∂

∂Y
[
1
ε
µ(T, Y )Pk] +

1
2!

∂2

∂Y 2
[
1
ε
σ2(T, Y )Pk]

+ λ(Y, k − 1, T )Pk−1 − λ(Y, k, T )Pk,

Pk(0, Y ) = 0,

(5.19)

and equation (5.17) becomes

∂Pj

∂T
= − ∂

∂Y

[
1
ε
µ(T, Y )Pj

]
+

1
2!

∂2

∂Y 2

[
1
ε
σ2(T, Y )Pj

]
− λ(Y, j, T )Pj

Pj(0, Y ) = g0.

(5.20)

In the simple case of periodic conditions imposed on the coefficients of dYt, µ and

σ, and also on the initial function g0, we have the following results in [15] about ap-

proximation formula of

ε
∂pε

∂t
= L∗,εpε, t > 0, (5.21)

with initial data pε(0, y) = g(y) ≥ 0 such that∫ ∞

−∞
g(y)dy = 1,

where ε is a small parameter and the operator L∗,ε is defined by

L∗,ε = L∗1 + εL∗2

L∗i =
1
2
∂2

∂y2
(ai(t, y)·)−

∂

∂y
(bi(t, y)·) for i = 1, 2,

and where additionally we have following assumptions.

(A1) There is an n ∈ Z+ such that for i = 1, 2, ai(·), bi(·) ∈ C
n+1,2(n+1)
b ([0, T ] × R).

Moreover, ∂n+1

∂tn+1ai(·, y) and ∂n+1

∂tn+1 bi(·, y) are Lipschitz continuous of t ∈ [0, T ]

uniformly with respect to y.
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(A2) For each t ∈ [0, T ] and each y ∈ R,

ai(t, y + 1) = ai(t, y), bi(t, y + 1) = bi(t, y),

g(y + 1) = g(y), a1(t, y) > 0.

Khasminskii and Yin intend to show that the solution pε(t, y) can be expanded as an

asymptotic formula in terms of ε such that the leading term is the quasi-stationary

density.

Definition 5.2.1. A function p̄ is said to be a quasi-stationary transition density for

the periodic diffusion with period 1 corresponding to the operator L∗i if p̄(t, ·) is a periodic

function with period 1 and

L∗i p̄(t, y) = 0,
∫ 1

0
p̄(t, y)dy = 1, p̄(t, y) ≥ 0.

A quasi-stationary density on the entire space can be defined similarly by deleting

the periodic conditions.

We will construct an asymptotic formula to its solution pε of the form

P̃ ε
n(t, y) =

n∑
i=0

εipi(t, y) +
n∑

i=0

εiqi(t/ε, y)

= P ε
n(t, y) +Qε

n(t, y),

(5.22)

and show that the asymptotic formula is valid in the sense that

|pε(t, y)− P̃ ε
n(t, y)| ≤ Kεn, (5.23)

where K is a positive real number independent of ε. Substituting Equation (5.22) into

Equation (5.21) and separating the part P ε(t, y) and Qε(t, y) using linearity of the

operator L∗,ε, we get the following system of equations pi by equating the coefficients

of like powers of εi:

L∗1p0 = 0,

L∗1p1 =
∂p0

∂t
− L∗2p0,

...

L∗1pi =
∂pi−1

∂t
− L∗2pi−1.

(5.24)
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Solving Equation (5.24), we find that for i = 0

p̃0(t, y) = C0,2(t) exp
(

2
∫ y

0

b1(t, ξ)
a1(t, ξ)

dξ

)
+ C0,1(t)

∫ y

0
exp

(
2
∫ y

u

b1(t, ξ)
a1(t, ξ)

)
dξ,

and for i ≥ 1,

p̃i(t, y) = Ci,2(t) exp
(

2
∫ y

0

b1(t, ξ)
a1(t, ξ)

dξ

)
+ Ci,1(t)

∫ y

0
exp

(
2
∫ y

u

b1(t, ξ)
a1(t, ξ)

dξ

)
du

+
∫ y

0
exp

(
2
∫ y

u

b1(t, ξ)
a1(t, ξ)

∫ u

0
p
{i}
i−1(t, ξ)dξ

)
du,

(5.25)

where

p̃i(t, y) = a1(t, y)pi(t, y),

p
{i}
i−1(t, y) =

∂pi−1

∂t
− L∗2pi−1

The Coefficients Ci,2(t), and Ci,1(t) can be found using the periodicity of pi and the

auxiliary condition.

We define a “stretched” time variable

τ =
t

ε
.

Substituting Qε
n into Equation (5.21), we get

∂

∂τ
Qε

n(τ, y) = L∗1(ετ, y)Qε
n(τ, y) + εL∗2(ετ, y)Qε

n(τ, y). (5.26)

Expanding the coefficient functions in the operator L∗i as Taylor series in the time

variable, we arrive at

∂

∂τ

n∑
i=0

εiqi(t/ε, y) =

 i∑
j=1

(ετ)j

j!
L∗,(j)1 (0, y)

 n∑
i=0

εiqi(t/ε, y)

+ ε

 i∑
j=1

(ετ)j

j!
L∗,(j)2 (0, y)

 n∑
i=0

εiqi(t/ε, y),

where L∗,(j)i (0, y) denotes the partial derivative of coefficient function of operator L∗i
of order j with respect to the time variable. Equating like powers of ε leads to the
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equations,

∂

∂τ
q0(τ, y) = L∗1(0, y)q0(τ, y),

...

∂

∂τ
qn(τ, y) = L∗1(0, y)qn(τ, y) +

n∑
j=1

sj

j!
L∗,(j)1 (0, x)qn−j(s, x)

+
n−1∑
j=0

sj

j!
L∗,(j)2 (0, x)qn−j−1(s, x),

(5.27)

with initial conditions

qn(Y, 0) =


−pn(Y, 0), for n 6= 0

g0 − pn(Y, 0), for n = 0.
(5.28)

In order to obtain the solutions qi, we need the following lemma.

Lemma 5.2.2. Consider the problem

∂u

∂t
= L∗,ε(t, y),

u(0, y) = u0,

u0(y + 1) = u0(y).

where

L∗,ε(t, y) =
1
2
∂2

∂y2
(a(t, y)·)− ∂

∂y
(b(t, y)·).

Suppose that a(t, y) and b(t, y) satisfy the assumptions (A1) and (A2). Then there

exists a fundamental solution G for the problem.

For proof of this lemma, we refer to Lemma 4.1 in [15].

Using the lemma above, qi can be represented in terms of the fundamental solution

G of the corresponding parabolic equation in Lemma 5.2.2:

q0(τ, y) =
∫ 1

0
G(x, τ, y)q0(0, x)dx,

qi(τ, y) =
∫ 1

0
G(x, τ, y)qi(0, x)dx+

∫ τ

0

∫ 1

0
G(x, τ − s, y)fi(s, x)dxds,

(5.29)

where fi is the inhomogeneous term,

fi(s, x) =
i∑

j=1

sj

j!
L∗,(j)1 (0, x)qi−j(s, x) +

i−1∑
j=0

sj

j!
L∗,(j)2 (0, x)qi−j−1(s, x)
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for i = 1, . . . , n.

Define a differential operator Fε by

Fεf := ε
∂f

∂t
− L∗,εf.

Lemma 5.2.3. Let vε(·, y) be continuous on [0, T ]× [0, 1] and Lipschitz with respect to

t ∈ [0, T ] uniformly in y, and let fε be the solution to the problem

Fεfε = vε(t, y),

fε(0, y) = 0, for y ∈ [0, 1],

vε(t, y + 1) = vε(t, y), for each (t, y) ∈ [0, T ]× [0, 1],∫ 1

0
vε(t, y)dy = 0, for each t ∈ [0, T ],

sup
(t,y)∈[0,T ]×[0,1]

| vε(t, y) | = O(εn+1).

Then for ε > 0 sufficiently small, under conditions (A1) and (A2),

sup
(t,y)∈[0,T ]×[0,1]

| fε(t, y) | = O(εn).

For the proof of this Lemma, we refer to Lemma 6.2 in [15].

With the results obtained about pi in (5.25) and qi in (5.29) above, we now turn to

the error analysis of the approximate solution (5.22). Define

rε
n(t, y) := pε(t, y)− (P ε

n(t, y) +Qε
n(t, y)) .

Proposition 5.2.4. Assume that conditions (A1) and (A2) are satisfied. Then

sup
(t,y)∈[0,T ]×[0,1]

| rε
n(t, y) | = O(εn).
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Proof. First consider the case n = 1. We have

Fεrε
1 = −ε2∂p1(t, y)

∂t
− ε2

1
2
∂b2(t, y)p1(t, y)

∂y
+ ε2

∂2a2(t, y)p1(t, y)
∂y2

+ ε2
1
2
∂2a2(ετ, y)q1(t/ε, y)

∂y2
− ε2

∂b2(ετ, y)q1(t/ε, y)
∂y

+
1
2
∂2

∂y2

((
a1(ετ)− a1(0, y)− ετ

∂a1(0, y)
∂t

)
q0(τ, y)

)
− ∂

∂y

((
b1(ετ)− b1(0, y)− ετ

∂b1(0, y)
∂t

)
q0(τ, y)

)
+
ε

2
∂2

∂y2
((a1(ετ)− a1(0, y)) q1(τ, y))

− ε
∂

∂y
((b1(ετ)− b1(0, y)) q1(τ, y))

+
ε

2
∂2

∂y2
((a2(ετ)− a2(0, y)) q0(τ, y))

− ε
∂

∂y
((b2(ετ)− b2(0, y)) q0(τ, y)) .

(5.30)

By the condition (A1),∣∣∣∣ε2∂p1(t, y)
∂t

∣∣∣∣ = O(ε2), uniformly in t ∈ [0, T ] and y ∈ [0, 1].

Similarly,

sup
(t,y)∈[0,T ]×[0,1]

∣∣∣∣ε2∂2a2(t, y)p1(t, y)
∂y2

∣∣∣∣ = O(ε2),

sup
(t,y)∈[0,T ]×[0,1]

∣∣∣∣ε2∂2b2(t, y)p1(t, y)
∂y2

∣∣∣∣ = O(ε2).

Using the exponential decaying property of qi and a priori estimates for ∂qi

∂y and ∂2qi

∂y2 ,∣∣∣∣ε2 1
2
∂2a2(ετ, y)q1(t/ε, y)

∂y2
− ε2

∂b2(ετ, y)q1(t/ε, y)
∂y

∣∣∣∣ = O(ε2).

By virtue of the Taylor expansion and the decaying property of ∂nqi

∂yn for n = 0, 1, 2, we

have ∣∣∣∣ε2 ∂2

∂y2
((a1(ετ)− a1(0, y)) q1(τ, y))

∣∣∣∣ ≤ Kε2τ

∣∣∣∣ ∂3

∂y2∂t
a1(0, y)

∣∣∣∣ |q1(τ, y)|
+Kε2τ

∣∣∣∣ ∂2

∂y∂t
a1(0, y)

∣∣∣∣ ∣∣∣∣ ∂∂y q1(τ, y)
∣∣∣∣

+Kε2τ

∣∣∣∣ ∂∂ta1(0, y)
∣∣∣∣ ∣∣∣∣ ∂2

∂y2
q1(τ, y)

∣∣∣∣+O(ε3)

≤ Kε2τ exp (−γτ)

= O(ε2).
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We can get similar results for the other terms in Equation (5.30). Putting the

estimates together gives

sup
(t,y)∈[0,T ]×[0,1]

| Fεrε
1(t, y) | = O(ε2).

By Lemma 5.2.2,

sup
(t,y)∈[0,T ]×[0,1]

| rε
1(t, y) | = O(ε).

Next we apply the singular perturbation method to some special examples of dYt.

5.2.2 Fast Mean Reverting Process

We assume the following dynamics of Yt:

dYt =
1
ε
(κ(t)− Yt)dt+

σ√
ε
dWt, (5.31)

where ε� 1. This leads to the Kolmogorov forward equation,

∂Pk

∂T
=

1
ε

(
1− (κ(T )− Y )

∂

∂Y
+ v

∂2

∂Y 2

)
Pk

+ λ(Y, k − 1, T )Pk−1 − λ(Y, k, T )Pk,

(5.32)

where v = σ2

2 and k ≥ 0. At this stage, we assume that we already know Pk−1.

Define

L0 := 1 + (−κ(T ) + Y )
∂

∂Y
+ v

∂2

∂Y 2
= − ∂

∂Y
((κ(T )− Y )·) + v

∂2

∂Y 2

L1 := −λ(Y, k, T ).
(5.33)

Thus we can rewrite Equation (5.32) as

∂Pk

∂T
=

1
ε
L0Pk + L1Pk + λ(Y, k − 1, T )Pk−1. (5.34)

We construct n+ 1 terms of finite power series of ε with two different time scale. One

is called a regular expansion P (n)
k and the other is called a singular expansion Q(n)

k .

P
(n)
k :=

n∑
i=0

εia
(i)
k (Y, T ), (5.35)

Q
(n)
k :=

n∑
i=0

εib
(i)
k (Y, τ), where τ =

T

ε
. (5.36)
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Substituting P (n)
k + Q

(n)
k into Equation (5.34) and separating terms into regular part

with inhomogeneous term and singular part, we have

∂P
(n)
k

∂T
=

1
ε
L0P

(n)
k + L1P

(n)
k + λ(Y, k − 1, T )Pk−1, (5.37)

∂Q
(n)
k

∂T
=

1
ε
L0Q

(n)
k + L1Q

(n)
k . (5.38)

First, let us look at the regular expansion. Following the approach in [15], we expand

the solution of differential equation (5.34) in powers of ε as

P
(n)
k = a

(0)
k + εa

(1)
k + ε2a

(2)
k + · · ·+ εna

(n)
k . (5.39)

Now we substitute (5.39) into Equation (5.37) and collect powers of ε. In this way

we obtain a series of simpler equations as the functions a(0)
k , a

(1)
k , a

(2)
k , . . . . Since ε is

assumed to be very small, we may view the solution as a perturbation of a(0)
k :

∂(a(0)
k + εa

(1)
k + ε2a

(2)
k + · · ·+ εna

(n)
k )

∂T
=

1
ε
L0(Y, T )(a(0)

k + εa
(1)
k + ε2a

(2)
k + · · ·+ εna

(n)
k )

+ L1(Y, j)(a
(0)
k + εa

(1)
k + ε2a

(2)
k + · · ·+ εna

(n)
k )

+ λ(Y, k − 1, T )Pk−1(T, Y )1{k>0}.

(5.40)

By examining the coefficients of powers of ε in (5.40), we see that

L0a
(0)
k = 0,

∂a
(0)
k

∂T
= L0a

(1)
k + L1a

(0)
k + λ(Y, k − 1, T )Pk−1(T, Y )1{k>0},

∂a
(1)
k

∂T
= L0a

(2)
k + L1a

(1)
k ,

∂a
(2)
k

∂T
= L0a

(3)
k + L1a

(2)
k ,

...

∂a
(n−1)
k

∂T
= L0a

(n)
k + L1a

(n−1)
k ,

(5.41)

with conditions ∫ ∞

−∞
a

(n)
k (T, Y )dY =


1{k=0} for n = 0.

0 for n > 0.
(5.42)

We look at the first equation in (5.41).
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Proposition 5.2.5. The equation

− ∂

∂Y

(
(κ(T )− Y )a(0)

k

)
+ v

∂2

∂Y 2
a

(0)
k = 0 (5.43)

with auxiliary condition
∫∞
−∞ a

(0)
k (T, Y )dY = 1{k=0} has a smooth and bounded solution.

Proof. Equation (5.43) can be rewritten as

∂

∂Y

(
∂

∂Y
a

(0)
k − 1

v
(κ(T )− Y )a(0)

k

)
= 0. (5.44)

Then we know that from (5.44)

∂

∂Y
a

(0)
k − 1

v
(κ(T )− Y )a(0)

k

is independent of Y , so

∂

∂Y
a

(0)
k − 1

v
(κ(T )− Y )a(0)

k = C1(T ). (5.45)

Define

H(T, Y ) := −1
v
(κ(T )Y − 1

2
Y 2).

By the integrating factor method, we have

exp (H(T, Y ))
∂

∂Y
a

(0)
k − 1

v
(κ(T )− Y ) exp (H(T, Y ))a(0)

k = exp (H(T, Y ))C1(T )

∂

∂Y

(
exp (H(T, Y ))a(0)

k

)
= exp (H(T, Y ))C1(T ).

(5.46)

By (5.46), a(0)
k can be obtained as

a
(0)
k (Y, T ) = exp (−H(T, Y ))C2(T ) + exp (−H(T, Y ))C1(T )

∫ Y

Y0

exp (H(T, s))ds.

(5.47)

To have boundedness at infinity, we must have the constant C1 equal to zero. We

determine the constant C2 using the auxiliary condition.

In next proposition, we find the a(1)
k from the second equation in (5.41).

Proposition 5.2.6. The equation

∂a
(0)
k

∂T
= L0a

(1)
k + L1a

(0)
k + λ(Y, k − 1, T )Pk−11{k>0} (5.48)

with auxiliary condition
∫∞
−∞ a

(1)
k (Y, T )dY = 0 has a smooth solution.
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Proof. Rearranging terms in (5.48), we have

L0a
(1)
k =

∂a
(0)
k

∂T
− L1a

(0)
k − λ(Y, k − 1, T )Pk−11{k>0}. (5.49)

Let G1(T, Y ) denote the right hand side of this equation.

Then (5.49) is equivalent to

∂

∂Y

(
∂

∂Y
a

(1)
k − 1

v
(κ(T )− Y )a(1)

k

)
=

1
v
G1(T, Y ). (5.50)

Integrating both sides of (5.50) with respect to Y gives

∂

∂Y
a

(1)
k − 1

v
(κ(T )− Y )a(1)

k =
∫ Y

Y0

1
v
G1(T, s)ds+ C1(T )

for some Y -independent function C1. Thus,

exp (H(T, Y ))
∂

∂Y
a

(1)
k − 1

v
(κ(T )− Y ) exp (H(T, Y ))a(1)

k

= exp (H(T, Y ))
(∫ Y

Y0

1
v
G1(T, s)ds+ C1(T )

)
.

(5.51)

The function H(T, Y ) is same as in Proposition 5.2.5. Then (5.51) becomes

∂

∂Y
(exp (H(T, Y ))a(1)

k ) = exp (H(T, Y ))
(∫ Y

Y0

1
v
G1(T, s)ds+ C1(T )

)
. (5.52)

By integrating both sides of (5.52) with respect to Y , we find a(1)
k to be

a
(1)
k (Y, T ) = exp (−H(T, Y ))C2(T ) + exp (−H(T, Y ))×(∫ Y

Y0

exp (H(T, u))
(∫ u

Y0

1
v
G1(T, s)ds+ C1(T )

)
du

)
.

Determination of C1 and C2 should ensure the integrability of a(1)
k .

Now we have found the first two terms a(0)
k , a

(1)
k in the regular expansion (5.39) of

P
(n)
k .

Next we have Q(n)
k for the singular part of an approximation of Pk. As in the regular

expansion, we assume that the backward time t is equal to zero and that Lt = 0. We

have

Q
(n)
k =

n∑
i=0

εib
(i)
k (Y, τ), where τ =

T

ε
. (5.53)
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We rewrite the partial differential equation (5.34) in terms of the stretched time variable

τ :
1
ε

∂Q
(n)
k

∂τ
=

1
ε
L0(Y, ετ)Q

(n)
k + L1(Y, ετ)Q

(n)
k . (5.54)

Because the coefficient functions of the operators L0, L1 include ε, we want to use their

formal Taylor series to collect terms according to the powers of ε. For the operators L1

and L2, we have

Lm(ετ, Y ) =
∞∑

s=0

(ετ)s

s!
L(s)

m (Y, 0) m = 0, 1. (5.55)

Each of L(s)
m (0, Y ) denotes the partial derivative of order s with respect to the time

variable calculated at τ = 0. Using the Taylor series (5.55) above, we have

L0 = − ∂

∂Y
(A(T, Y )·) +

σ2

2
∂2

∂Y 2
, where A(T, Y ) :=

1
ε
(κ(T )− Y )

=
σ2

2
∂2

∂Y 2
− ∂

∂Y

({
A(0, Y ) +

ετ

1!
∂A

∂T
(0, Y ) +

(ετ)2

2!
∂2A

∂T 2
(0, Y ) + · · ·

}
·

)
.

(5.56)

Substituting Equation (5.56) into Equation (5.54) gives

1
ε

∂Q
(n)
k

∂τ
=

1
ε

( ∞∑
s=0

(ετ)s

s!
L(s)

0 (Y, 0)

)
Q

(n)
k +

( ∞∑
s=0

(ετ)s

s!
L(s)

1 (Y, 0)

)
Q

(n)
k . (5.57)

Equating the coefficients of εi in Equation (5.57), we obtain

∂b
(0)
k

∂τ
= L(0)

0 (0, Y )b(0)
k ,

∂b
(1)
k

∂τ
= L(0)

0 (0, Y )b(1)
k + τL(1)

0 (0, Y )b(0)k + L(0)
1 (0, Y )b(0)k ,

∂b
(2)
k

∂τ
= L(0)

0 (0, Y )b(2)
k + τL(1)

0 (0, Y )b(1)k +
τ2

2!
L(2)

0 (0, Y )b(0)
k + L(0)

1 (0, Y )b(1)k

+ τL(1)
1 (0, Y )b(0)

k ,

...

∂b
(n)
k

∂τ
=

n∑
i=0

τ i

i!
L(i)

0 bn−i +
n−1∑
i=0

τ i

i!
L(i)

1 bn−1−i,

(5.58)

with initial condition

b
(n)
k (Y, 0) =


−a(n)

k (Y, 0), for n 6= 0,

g0 − a
(n)
k (Y, 0), for n = 0.

(5.59)
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We would like to solve the system of (5.58) to find the singular part of (5.53). In

order to do this, we use the fundamental solution of the parabolic differential operator

L(0)
0 ,

L(0)
0 (0, Y ) = − ∂

∂Y
(A(0, Y )·) +

σ2

2
∂2

∂Y 2
.

We now discuss the fundamental solution of the general parabolic operator we are

going to use here.

Define

L
(
x, t,

∂

∂t

)
u :=

∂u

∂t
−

n∑
i,j=1

aij(x, t)
∂2u

∂xi∂xj
+

n∑
i=1

ai(x, t)
∂u

∂xi
+ a(x, t)u, (5.60)

on the domain D
(T )
n+1 := Rn × (0, T ) with uniformly parabolic and real smooth coeffi-

cients. In case of unbounded domain, we need to restrict the growth of the solution as

|x| → ∞.

For the construction of fundamental solution, we use the results of the fundamental

solution Z(x, ξ, t, τ) in Chapter 4 of the book [16].

L(x, t,
∂

∂t
)Z(x, ξ, t, τ) = 0 in Rn × (τ, T )

Z(x, ξ, t, τ) = δ(x− ξ) on Rn × {t = τ}.
(5.61)

and Z(x, ξ, t, τ) is bounded for |x| → ∞. They look for the fundamental solution Z in

the form

Z(x, ξ, t, τ) = Z0(x, x− ξ, t, τ) +
∫ t

τ
dλ

∫
Rn

Z0(x− y, y, t, λ)Q(y, ξ, λ, τ)dy,

For t > τ , the function Z0 has the form

Z0(x− ξ, ξ, t, τ) =
1

[4π(t− τ)]
n
2 (detA(ξ, τ))

1
2

× exp

− 1
4(t− τ)

n∑
i,j=1

A(i,j)(ξ, τ)(xi − ξi)(xj − ξj)

 .

Here, A(ξ, τ) is the matrix whose components are given by the leading coefficients

aij(ξ, τ) of the operator, while the A(i,j)(ξ, τ) are the components of the inverse matrix

A−1(ξ, τ). For t < τ , we set Z0(x − ξ, ξ, t, τ) = 0. Here, the function Q is determined

by a calculation to satisfy the equation (5.60). The function Q can be found by solving
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the integral equation. For the detailed construction of function Q, we refer to §11 in

Chapter 4 of the book [16],

Q(x, ξ, t, τ) +
∫ t

τ
dλ

∫
Rn

K(x, y, t, λ)Q(y, ξ, λ, τ)dy +K(x, ξ, t, τ) = 0, (5.62)

where

K(x, y, t, λ) =
∑
i,j

[aij(y, λ)− aij(x, t)]
∂2Z0(x− y, y, t, λ)

∂xi∂xj

+ L1Z0(x− y, y, t, λ),

and

L1 =
n∑

i=1

ai(x, t)
∂

∂xi
+ a

(0)
k (x, t).

We consider the Cauchy problem(see §14 in Chapter4 in [16] for more detailed discus-

sion.) in the domain D(T )
n+1:  L(x, t)v(x, t) = f(x, t)

v|t=0 = ϕ
(5.63)

Assume that f satisfies a Hölder condition in all of its arguments and ϕ is continuous

and bounded. In this case, the solution of Cauchy problem (5.63) can be written in the

form of a sum of two potentials with kernel Z:

v(x, t) =
∫ t

0
dτ

∫
Rn

Z(x, ξ, t, τ)f(ξ, τ)dξ +
∫

Rn

Z(x, ξ, t, 0)ϕ(ξ)dξ. (5.64)

In order to ensure the convergence of the integrals in (5.64), we require that the functions

f and ϕ do not increase too rapidly as |x| → ∞. It is sufficient to require that they

increase no faster than a function eax2
.

Going back to our problem of finding b(n)
k in equation (5.58), we can use the solution

(5.64) of the Cauchy problem to obtain the following result.

Proposition 5.2.7. Let b(n)
k be a solution to the parabolic partial differential equation

∂b
(n)
k

∂τ
=

n∑
i=0

τ i

i!
L(i)

0 bn−i +
n−1∑
i=0

τ i

i!
L(i)

0 b
(n−1−i)
k .

Then b
(n)
k can be represented in a integral form using the fundamental solution.
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Let G(t, y; τ, Y ) denote the fundamental solution for the operator L(0)
0 (0, Y ). We

have

b
(0)
k (τ, Y ) =

∫ ∞

−∞
G(0, y; τ, Y )b(0)k (0, y)dy

b
(1)
k (τ, Y ) =

∫ ∞

−∞
G(0, y; τ, Y )b(1)k (0, y)dy +

∫ τ

0
dt

∫ ∞

−∞
G(t, y; τ, Y )

×
(
τL(1)

0 (0, y)b0(t, y) + L(0)
1 (0, y)b0(t, y)

)
dy.

(5.65)

Similarly, we can construct b(n)
k (τ, Y ) for different n.

Vector-valued Fast Mean Reverting Process

When we have a system of PDE, each PDE of Pk has inhomogeneous term involved

with Pk−1 for k = 1, . . . , N . We assume that exact solution of Pk−1 is available when

we approximate the solution of Pk. However this assumption is not quite right because

we only have an approximate solution to each PDE for Pk and do not know the exact

solution. Thus we use the vector-valued PDE instead of scalar-valued PDE so we

automatically have the approximated value of Pk−1 when we calculate the approximate

value of Pk.

Remember that we approximated the solution Pk of the equation (5.32) with the

regular formula P (n)
k and the singular term Q

(n)
k . Thus we have for k = 0, . . . , N ,

Pk ≈ P
(n)
k +Q

(n)
k

= a
(0)
k (T, Y ) + εa

(1)
k (T, Y ) + · · ·+ εna

(n)
k (T, Y )

+ b
(0)
k (T, Y ) + εb

(1)
k (τ, Y ) + · · ·+ εnb

(n)
k (τ, Y ).

(5.66)

We rewrite the equation (5.32) using vector and matrix notation.

∂ ~P

∂T
=

1
ε
I · ~P − 1

ε
(κ(T )− Y )I · ∂

~P

∂Y
+
v

ε
I · ∂

2 ~P

∂Y 2
+ Λ · ~P , (5.67)

where we have the vector ~P (T, Y ) whose kth component is Pk(T, Y ),

~P (T, Y ) :=


P0(T, Y )

...

PN (T, Y )

 , (5.68)
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and

Λ(T, Y ) :=



−λ(T, 0) 0 0 · · · 0

λ(T, 0) −λ(T, 1) 0 · · · 0
...

...
. . . . . .

...

0 · · · λ(T,N − 2) −λ(T,N − 1) 0

0 0 · · · λ(T,N − 1) −λ(T,N)


,

and I is the (N + 1)× (N + 1) identity matrix.

Similarly as in the (5.66), we want to approximate the vector ~P (T, Y ) with a regular

part vector ~P (n) and a singular part vector ~Q(n).

~P (T, Y ) ' ~P (n) + ~Q(n)

=
n∑

i=0

εi ~A(i)(T, Y ) +
n∑

i=0

εi ~B(i)(τ, Y ),
(5.69)

where

~P (n)(T, Y ) =


P

(n)
0

...

P
(n)
N

 =
n∑

i=0

εi ~A(i)(T, Y ), (5.70)

~Q(n)(τ, Y ) =


Q

(n)
0

...

Q
(n)
N

 =
n∑

i=0

εi ~B(i)(τ, Y ). (5.71)

and

~A(i)(T, Y ) :=


a

(i)
0 (T, Y )

...

a
(i)
N (T, Y )

 , ~B(i)(τ, Y ) :=


b
(i)
0 (τ, Y )

...

b
(i)
N (τ, Y )

 .

We substitute approximation formula ~P (n) + ~Q(n) into Equation (5.67).

∂(~P (n) + ~Q(n))
∂T

=
1
ε
I · (~P (n) + ~Q(n))− 1

ε
(κ(T )− Y )I · ∂(~P (n) + ~Q(n))

∂Y

+
v

ε
I · ∂

2(~P (n) + ~Q(n))
∂Y 2

+ Λ · (~P (n) + ~Q(n))

(5.72)

Once we separate Equation (5.72) into the regular and singular part, we get

∂ ~P (n)

∂T
=

1
ε
I · ~P (n) − 1

ε
(κ(T )− Y )I · ∂

~P (n)

∂Y
+
v

ε
I · ∂

2 ~P (n)

∂Y 2
+ Λ · ~P (n) (5.73)
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and

1
ε

∂ ~Q(n)

∂τ
=

1
ε
I · ~Q(n) − 1

ε
(κ(ετ)− Y )I · ∂

~Q(n)

∂Y
+
v

ε
I · ∂

2 ~Q(n)

∂Y 2
+ Λ · ~Q(n). (5.74)

We consider the case of n = 1 so that ~P (1) = ~A(0) + ε ~A(1) and ~Q(1) = ~B(0) + ε ~B(1).

First we consider the regular part (5.73).

∂( ~A(0) + ε ~A(1))
∂T

=
1
ε
I · ( ~A(0) + ε ~A(1))− 1

ε
(κ(T )− Y )I · ∂( ~A(0) + ε ~A(1))

∂Y

+
v

ε
I · ∂

2( ~A(0) + ε ~A(1))
∂Y 2

+ Λ · ( ~A(0) + ε ~A(1))

(5.75)

Equating the coefficients of like powers of εi, we have

~A(0) − (κ(T )− Y )I · ∂
~A(0)

∂Y
+ vI · ∂

2 ~A(0)

∂Y 2
= 0

~A(1) − (κ(T )− Y )I · ∂
~A(1)

∂Y
+ vI · ∂

2 ~A(1)

∂Y 2
=
∂ ~A(0)

∂T
− Λ · ~A(0).

(5.76)

Each vector-valued equation in (5.76) corresponds to a set of scalar equations for

i = 0, · · · , N .

a
(0)
i − (κ(T )− Y )

∂a
(0)
i

∂Y
+ v

∂2a
(0)
i

∂Y 2
= 0, (5.77)

a
(1)
i − (κ(T )− Y )

∂a
(1)
i

∂Y
+ v

∂2a
(1)
i

∂Y 2
=
∂a

(0)
i

∂T
− λ(i− 1)a(0)

i−1 + λ(i)a(0)
i . (5.78)

Note that the λ(i − 1)a(0)
i−1 term is not included in Equation (5.78) when i = 0. We

notice the difference between Equation (5.78) above and Equation (5.48) which contains

whole λ(Y, i−1, T )Pi−11{i>0} term while (5.78) has the only zeroth order approximation

term λ(i−1)a(0)
i−1 of Pi−1. We can solve equations (5.77), (5.78) using Proposition 5.2.5,

Proposition 5.2.6. We summarize the results about regular expansion into the following

Proposition.

Proposition 5.2.8. Vector of regular expansion ~P (1) consists of two vectors ~A(0) and

ε× ~A(1). Vector ~A(0) has kth component a(0)
k which satisfies the equation,

a
(0)
k − (κ(T )− Y )

∂a
(0)
k

∂Y
+ v

∂2a
(0)
k

∂Y 2
= 0

∫ ∞

−∞
a

(0)
k (T, Y ) =


1 if k = 0,

0 if k 6= 0.

(5.79)
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Vector ~A(1) has kth component a(1)
k which satisfies the equation,

a
(1)
k − (κ(T )− Y )

∂a
(1)
k

∂Y
+ v

∂2a
(1)
k

∂Y 2
=
∂a

(0)
k

∂T
− λ(k − 1)a(0)

k−1 + λ(k)a(0)
k ,∫ ∞

−∞
a

(1)
k = 0.

(5.80)

Proposition 5.2.5 and Proposition 5.2.6 are used to solve each equations.

Next we consider the singular part (5.74).

1
ε

∂( ~B(0) + ε ~B(1))
∂τ

=
1
ε
I · ( ~B(0) + ε ~B(1))− 1

ε
(κ(ετ)− Y )I · ∂( ~B(0) + ε ~B(1))

∂Y

+
v

ε
I · ∂

2( ~B(0) + ε ~B(1))
∂Y 2

+ Λ · ( ~B(0) + ε ~B(1)).

(5.81)

We use the Taylor series expansion up to order ε2 for the functions κ(ετ) and Λ(ετ).

We obtain

∂( ~B(0) + ε ~B(1))
∂τ

= ( ~B(0) + ε ~B(1))− g(0, Y )I · ∂( ~B(0) + ε ~B(1))
∂Y

− ετ
∂g

∂T
(0, Y )I · ∂( ~B(0) + ε ~B(1))

∂Y
+ vI · ∂

2( ~B(0) + ε ~B(1))
∂Y 2

+ ε(Λ(0, Y ) + ετΛ′(0, Y )) · ( ~B(0) + ε ~B(1)).

(5.82)

Equating the coefficients of like powers of εi, from the zeroth order of ε we have

∂ ~B(0)

∂τ
= ~B(0) − g(0, Y )I · ∂

~B(0)

∂Y
+ vI · ∂

2 ~B(0)

∂Y 2
. (5.83)

The corresponding scalar equation is

∂b
(0)
i

∂τ
= b

(0)
i − g(0, Y )

∂b
(0)
i

∂Y
+ v

∂2b
(0)
i

∂Y 2
. (5.84)

From the first order of ε, we obtain

∂ ~B(1)

∂τ
= ~B(1) − g(0, Y )I · ∂

~B(1)

∂Y
+ vI · ∂

2 ~B(1)

∂Y 2
− τ

∂g

∂T
(0, Y )I · ∂

~B(0)

∂Y
+ Λ(0, Y ) · ~B(0),

(5.85)

and the corresponding scalar partial differential equation is,

∂b
(1)
i

∂τ
= b

(1)
i − g(0, Y )

∂b
(1)
i

∂Y
+ v

∂2b
(1)
i

∂Y 2
− τ

∂g

∂T
(0, Y )

∂b
(0)
i

∂Y
+ λ(0, Y, i)b(0)i−1 − λ(0, Y, i)b(0)i .

(5.86)

We use Proposition 5.2.7 to solve Equations (5.84) and (5.86).
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Proposition 5.2.9. Vector of singular expansion ~Q(1) consists of two vectors ~B(0) and

ε× ~B(1). Vector ~B(0) has kth component b(0)k which satisfies the equation,

∂b
(0)
i

∂τ
= b

(0)
i − g(0, Y )

∂b
(0)
i

∂Y
+ v

∂2b
(0)
i

∂Y 2

b
(0)
k (Y, 0) = g0 − a

(0)
k (Y, 0),

(5.87)

Vector ~B(1) has kth component b(1)k which satisfies the equation,

∂b
(1)
k

∂τ
= b

(1)
k − g(0, Y )

∂b
(1)
k

∂Y
+ v

∂2b
(1)
k

∂Y 2
− τ

∂g

∂T
(0, Y )

∂b
(0)
k

∂Y

+ λ(0, Y, i)b(0)k−1 − λ(0, Y, k)b(0)k ,

b
(1)
k (Y, 0) = −a(1)

k (Y, 0).

(5.88)

Proposition 5.2.7 can be used to solve each equations.

5.2.3 Error Analysis

We want to estimate the error occurring in the approximation from singular perturba-

tion, namely

r
(n)
k := Pk − (P (n)

k +Q
(n)
k ) = Pk −

n∑
i=0

εiai(Y, T )−
n∑

i=0

εibi(Y, τ).

We already constructed ai, bi in asymptotic expansion (5.39) and here want to analyze

the error r(n)
k , using the same method as [15]. We only consider the case n = 1 and

k = 0.

Proposition 5.2.10. With the results obtained in Propositions 5.2.5 and 5.2.6 and

equation (5.65), we have

sup
(T,Y )∈(0,TM )×(−∞,∞)

|r(1)0 | = O(ε1).

Proof. In order to prove this, we use the following modified lemma from [15].

Lemma 5.2.11. If Fεfε(t, y) = v(t, y) and

sup
(t,y)∈(0,TM )×(−∞,∞)

|v(t, y)| = O(εm+1),
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where the operator Fε is ε ∂
∂t − L0 − εL1 and fε(0, y) = 0, then for ε > 0 sufficiently

small,

sup
(t,y)∈(0,TM )×(−∞,∞)

|fε(t, y)| = O(εm).

Let

Fε := ε
∂

∂T
− L0 − εL1

f := Pk − (P (n)
k +Q

(n)
k ).

Since we have n = 1 and k = 0:

Fεr1 = ε
∂

∂T
(Pk − (a(0)

k + εa
(1)
k )− (b(0)k + εb

(1)
k ))− L0(Pk − (a(0)

k + εa
(1)
k )− (b(0)k + εb

(1)
k ))

− εL1(Pk − (a(0)
k + εa

(1)
k )− (b(0)

k + εb
(1)
k ))

= −

(
ε
∂a

(0)
k

∂T
− L0a

(0)
k − εL1a

(0)
k

)
− ε

(
ε
∂a

(1)
k

∂T
− L0a

(1)
k − εL1a

(1)
k

)

−

(
ε
∂b

(0)
k

∂T
− L0b

(0)
k − εL1b

(0)
k

)
− ε

(
ε
∂b

(1)
k

∂T
− L0b

(1)
k − εL1b

(1)
k

)
.

Using the definition of operators L0 and L1 in (5.33),

Fεr
(1)
k = −ε

∂a
(0)
k

∂T
− ∂

∂Y

(
(κ(T )− Y )a(0)

k

)
+
σ2

2
∂2a

(0)
k

∂Y 2
− ελa

(0)
k

− ε2
∂a

(1)
k

∂T
− ε

∂

∂Y

(
(κ(T )− Y )a(1)

k

)
+ ε

σ2

2
∂2a

(1)
k

∂Y 2
− ε2λa

(1)
k

−
∂b

(0)
k

∂τ
− ∂

∂Y

(
(κ(τε)− Y )b(0)k

)
+
σ2

2
∂2b

(0)
k

∂Y 2
− ελb

(0)
k

− ε
∂b

(1)
k

∂τ
− ε

∂

∂Y

(
(κ(τε)− Y )b(1)k

)
+ ε

σ2

2
∂2b

(1)
k

∂Y 2
− ε2λb

(1)
k .

Here we use the facts that a(0)
k , a

(1)
k satisfy the equations

L0a
(0)
k = − ∂

∂Y

(
(κ(T )− Y )a(0)

k

)
+
σ2

2
∂2a

(0)
k

∂Y 2
= 0

L0a
(1)
k =

∂a
(0)
k

∂T
− L1a

(0)
k .

This reduces the regular part to

−ε2
∂a

(1)
k

∂T
+ ε2L1a

(1)
k = ε2(−L0a

(2)
k ).
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For the singular part, we use the stretched variable τ = T
ε and denote κ(ετ)−Y by the

function g(ετ, Y ). Then the singular part becomes

−
∂b

(0)
k

∂τ
− ∂

∂Y

(
(κ(ετ)− Y )b(0)k

)
+
σ2

2
∂2b

(0)
k

∂Y 2
− ελb

(0)
k

− ε
∂b

(1)
k

∂τ
− ε

∂

∂Y

(
(κ(ετ)− Y )b(1)k

)
+ ε

σ2

2
∂2b

(1)
k

∂Y 2
− ε2λb

(1)
k

= −
∂b

(0)
k

∂τ
− ∂

∂Y

(
g(ετ, Y )b(0)k

)
+
σ2

2
∂2b

(0)
k

∂Y 2
− ελb

(0)
k

− ε
∂b

(1)
k

∂τ
− ε

∂

∂Y

(
g(ετ, Y )b(1)k

)
+ ε

σ2

2
∂2b

(1)
k

∂Y 2
− ε2λb

(1)
k .

We can replace −∂b
(0)
k

∂τ and −ε∂b
(1)
k

∂τ with terms involving the Y derivatives using equation

(5.58),

∂b
(0)
k

∂τ
= L(0)

0 (Y, 0)b(0)
k

= − ∂

∂Y
(g(0, Y )b(0)

k ) +
σ2

2
∂2b

(0)
k

∂Y 2

∂b
(1)
k

∂τ
= L(0)

0 (Y, 0)b(1)
k + τL(1)

0 (Y, 0)b(0)k + L(0)
1 (Y, 0)b(0)k

= − ∂

∂Y
(g(0, Y )b(1)

k ) +
σ2

2
∂2b

(1)
k

∂Y 2
− τ

∂

∂Y

(
∂g(0, Y )b(0)k

∂T

)
− λ(Y, 0, 0)b(0)k .
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Then the singular term becomes

−
∂b

(0)
k

∂τ
− ∂

∂Y

(
g(ετ, Y )b(0)

k

)
+
σ2

2
∂2b

(0)
k

∂Y 2
− ελb

(0)
k

− ε
∂b

(1)
k

∂τ
− ε

∂

∂Y

(
g(ετ, Y )b(1)k

)
+ ε

σ2

2
∂2b

(1)
k

∂Y 2
− ε2λb

(1)
k

=
∂(g(0, Y )b(0)

k )
∂Y

− σ2

2
∂2b

(0)
k

∂Y 2
+
σ2

2
∂2b

(0)
k

∂Y 2
−
∂g(ετ)b(0)k

∂Y
− ελb

(0)
k

+ ε
∂(g(0, Y )b(1)

k )
∂Y

− ε
σ2

2
∂2b

(1)
k

∂Y 2
+ ετ

∂

∂Y

(
∂g

∂T
(0, Y )b(0)k

)
+ ελ(Y, LT , 0)b(0)

k +−ε
∂(g(ετ, Y )b(1)k )

∂Y
+ ε

σ2

2
∂2b

(1)
k

∂Y 2
− ε2λb

(1)
k

= − ∂

∂Y

(
(g(ετ, Y )− g(0, Y )) b(0)k

)
− ε

(
(λ(Y, LT , ετ)− λ(Y, LT , 0)) b(0)

k

)
− ε

(
∂

∂Y

(
(g(ετ, Y )− g(0, Y )) b(1)k

))
− ε2λb

(1)
k + ετ

∂

∂Y

(
∂g

∂T
(0, Y )b(0)

k

)
= − ∂

∂Y

((
g(ετ, Y )− g(0, Y )− ετ

∂g

∂T
(0, Y )

)
b
(0)
k

)
− ε

(
(λ(Y, LT , ετ)− λ(Y, LT , 0)) b(0)k

)
− ε

(
∂

∂Y

(
(g(ετ, Y )− g(0, Y )) b(1)k

))
− ε2λb

(1)
k

Using the Taylor series expansion,

= −ε2 ∂

∂Y

(
τ2∂

2g(ε′τ, Y )
∂T 2

)
− ε2τ

∂λ(Y, LT , ε
′τ)

∂T
b
(0)
k

− ε2τ
∂

∂Y

(
∂g(ε′τ, Y )

∂T
b
(1)
k

)
− ε2λb

(1)
k .

So |Fεr1| = O(ε2) if coefficients of ε2 are bounded. In order to have this property on

coefficients of ε2, we have the restriction when choosing the function κ in (5.31).

By adapting Lemma 5.2.3, we conclude

sup
(t,y)∈(0,TM )×(−∞,∞)

|r1| = O(ε1).

Error Analysis for Vector-valued PDE

Here, we estimate the error for vector-valued case for Equation (5.32). Error is defined

by

~r
(n)
k := ~P − (~P (n) + ~Q(n)).



75

Let’s consider the case n = 1.

~r (1) = ~P − (~P (1) + ~Q(1)). (5.89)

Define a operator Fε on vector ~v.

Fε~v = ε
∂~v

∂T
+

∂

∂Y
((κ(T )− Y )I · ~v)− vI · ∂

2~v

∂Y 2
− εΛ · ~v.

As in the scalar-valued error analysis before, we also want to show the components of

Fε~r (1) are O(ε2). Using Equation (5.67),

Fε~r (1) = Fε ~P −Fε(~P (1) + ~Q(1))

= −Fε(~P (1) + ~Q(1)).
(5.90)

We consider Fε ~P (1) and Fε ~Q(1) separatively. First Fε ~P (1) is

Fε ~P (1) = Fε
(
~A(0) + ε ~A(1)

)
= ε

∂ ~A0

∂T
+

∂

∂Y

(
(κ(T )− Y )I · ~A0

)
− vI · ∂

2 ~A0

∂Y 2
− εΛ · ~A0

+ ε

(
ε
∂ ~A1

∂T
+

∂

∂Y

(
(κ(T )− Y )I · ~A1

)
− vI · ∂

2 ~A1

∂Y 2
− εΛ · ~A1

)
.

(5.91)

Simplifying Fε ~P (1) using Equations (5.76),

− ~A(0) + (κ(T )− Y )I · ∂
~A(0)

∂Y
− vI · ∂

2 ~A(0)

∂Y 2

are canceled to zero and

−ε ~A(1) + ε(κ(T )− Y )I · ∂
~A(1)

∂Y
− εvI · ∂

2 ~A(1)

∂Y 2

becomes

−ε∂
~A(0)

∂T
+ εΛ · ~A(0).

Thus we obtain

Fε ~P (1) = ε2
∂ ~A(1)

∂T
− ε2Λ · ~A(1). (5.92)

Under our assumption that vector ∂ ~A(1)/∂T and vector Λ · ~A(1) have bounded compo-

nents, Fε ~P (1) also has bounded components. This leads to the results that Fε ~P (1) has

corresponding O(ε2) scalar parts.
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Next we look at Fε ~Q(1),

Fε ~Q(1) =
∂ ~B0

∂τ
+

∂

∂Y

(
(κ(ετ)− Y )I · ~B0

)
− vI · ∂

2 ~B0

∂Y 2
− εΛ · ~B0

+ ε

(
∂ ~B1

∂τ
+

∂

∂Y

(
(κ(ετ)− Y )I · ~B1

)
− vI · ∂

2 ~B1

∂Y 2
− εΛ · ~B1

)
.

(5.93)

We use Equations (5.83) and (5.85) to simplify (5.93). We replace the terms ∂ ~B0/∂τ

and ∂ ~B1/∂τ with the right side of (5.83) and (5.85) respectively. Note that function

g(ετ, Y ) below denotes κ(ετ)− Y .

Fε ~Q(1) = ~B0 − g(0, Y )I · ∂
~B0

∂Y
+ vI · ∂

2 ~B0

∂Y 2

− ~B0 + g(ετ, Y )I · ∂
~B0

∂Y
− vI · ∂

2 ~B0

∂Y 2
− εΛ · ~B0

+ ε ~B1 − εg(0, Y )I · ∂
~B1

∂Y
+ εvI · ∂

2 ~B1

∂Y 2
− ετ

∂g(0, Y )
∂T

I · ∂
~B0

∂Y
+ εΛ(0, Y ) · ~B0

− ε ~B1 + εg(ετ, Y )
∂ ~B1

∂Y
− εvI · ∂

2 ~B1

∂Y 2
− ε2Λ · ~B1

= −ε(Λ(ετ, Y )− Λ(0, Y )) ~B0 − ε2Λ · ~B1

+
(
g(ετ, Y )− g(0, Y )− ετ

∂g(0, Y )
∂T

)
I · ∂

~B0

∂Y
+ ε (g(ετ, Y )− g(0, Y )) I · ∂

~B1

∂Y
.

(5.94)

By virtue of a Taylor expansion, for some ~γ1, γ2, γ3,

Λ(ετ, Y )− Λ(0, Y ) = ετ
∂

∂T
Λ(~γ1, Y )

g(ετ, Y )− g(0, Y )− ετ
∂g(0, Y )
∂T

=
ε2τ2

2
∂2g(γ2, Y )

∂T 2

g(ετ, Y )− g(0, Y ) = ετ
∂g(γ3, Y )

∂T
.

(5.95)

We substitute the right hand side of equations in (5.95) into (5.94) and we can see that

Fε ~Q(1) is O(ε2) provided that coefficients terms of ε2 are bounded.
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Chapter 6

Summary and Future Work

We have seen explained the structure of credit-related multi-name products and have

concluded that the distribution of the cumulative loss distribution Lt plays a crucial

role in pricing the fair value of those financial products.

We started with the Kolmogorov forward equation of the joint density function of

the cumulative loss process Lt and the stochastic factor Yt of its intensity λ. Since the

cumulative loss has the non-decreasing property and discrete values along time, our

Kolmogorov forward equation accommodates both a discrete variable and a continuous

variable. Under certain dynamics of a stochastic process Yt, we implemented the per-

turbation method in order to find the joint density function. We computed the first few

terms of the approximation formula for the joint density function and tried to analyze

the error between the approximation and the joint density function.

For future work, we can consider error analysis for different n and k. The numer-

ical implementation of this work using such as Mathlab can provide practical uses for

computationally challenging credit derivatives pricing problems.
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