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ABSTRACT OF THE DISSERTATION
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HYPERSONIC WIND TUNNELS

by HADASSAH NAIMAN

Dissertation Director: Doyle D. Knight

The purpose of the present work is to integrate CFD into the design of quiet hypersonic

wind tunnels and the analysis of their performance. Two specific problems are considered.

The first problem is the automated design of the supersonic portion of a quiet hypersonic

wind tunnel. Modern optimization software is combined with full Navier-Stokes simulations

and PSE stability analysis to design a Mach 6 nozzle with maximum quiet test length. A

response surface is constructed from a user-specified set of contour shapes and a genetic

algorithm is used to find the “optimal contour”, which is defined as the shortest nozzle with

the maximum quiet test length. This is achieved by delaying transition along the nozzle

wall. It is found that transition is triggered by Goertler waves, which can be suppressed

by including a section of convex curvature along the contour. The optimal design has an

unconventional shape described as compound curvature, which makes the contour appear

slightly wavy.

The second problem is the evaluation of a proposed modification of the test section in the

Boeing/AFOSR Mach 6 Quiet Tunnel. The new design incorporates a section of increased

diameter with the intention of enabling the tunnel to start in the presence of larger blunt

models. Cone models with fixed base diameter (and hence fixed blockage ratio) are selected

for this study. Cone half-angles from 15◦ to 75◦ are examined to ascertain the effect of
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the strength of the test model shock wave on the tunnel startup. The unsteady, laminar,

compressible Navier-Stokes equations are solved. The resulting flowfields are analyzed to

see what affect the shocks and shear layers have on the quiet test section flow. This study

indicates that cone angles ≤ 20◦ allow the tunnel to start.

Keywords: automated optimization, response surface, parabolized stability equations, com-

pound curvature, laminar, wind tunnel, unstart, test section
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Chapter 1

Introduction

One of the major challenges in hypersonic flow research is the accurate prediction of tran-

sition. The location and extent of laminar-turbulent transition is a critical parameter in

hypersonic vehicle design. Transition location affects estimates of aerodynamic heating, skin

friction drag, and other boundary layer properties. Computations of laminar heat transfer

can be made with good accuracy; in many cases, the largest uncertainty in calculating the

total heat flux to a vehicle results from the estimate of transition location [5].

Transition experiments have been carried out in conventional ground testing facilities

for decades. However, most of the experimental data obtained from these facilities are

contaminated by the high levels of noise that radiate from the turbulent boundary layers

normally present on the nozzle walls. The effects of this acoustic noise are profound. These

high noise levels can cause transition to occur at Reynolds numbers that are an order of

magnitude earlier than in flight [6]. Not only is the location of transition affected, but the

parametric trends for transition can also be dramatically different from those in flight [7].

Quiet flow wind tunnels have been developed to simulate hypersonic flow in flight, where

the noise levels are very low. A quiet wind tunnel requires a laminar boundary layer on the

test section walls; a turbulent boundary layer would generate acoustic fluctuations in the

test section core flow. A review of the various efforts worldwide to develop quiet tunnels is

provided in reference [8]. A quiet Mach-3.5 tunnel was the first to be successfully installed at

NASA Langley in the early 1980s. This was followed by a quiet Mach-6 hypersonic facility in

the mid-1990s. Unfortunately, this nozzle was removed from service due to a space conflict,

and is now being reinstalled at Texas A&M. The Boeing/AFOSR Mach-6 Quiet Tunnel

(BAM6QT) at Purdue University was constructed during 1995-2001. It was developed to

provide laminar nozzle-wall boundary layers at high Reynolds numbers, and thus low noise
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levels comparable to flight. It is, at present, the only operational hypersonic quiet tunnel

anywhere in the world [9].

This investigation focuses on two major issues related to the achievement of high Reynolds

number quiet flow in hypersonic tunnels: 1) automated optimal design of quiet hypersonic

tunnels, and 2) tunnel startup in the presence of blunt models. In the former case, a fully

automated design methodology is developed to determine the optimal shape of the supersonic

nozzle to achieve laminar flow on the nozzle walls and maximize the quiet flow test section

size. Chapter 3 describes the automated procedure which replaces the conventional trial-

and-error approach. In the latter case, detailed time-accurate numerical simulations are

performed for a cone model of different angles to demonstrate the limiting size of the model

that permits tunnel startup. A proposed tunnel modification is evaluated to determine if it

will allow larger, blunt models to be started. Results are presented in chapter 7. For both

problems, the BAM6QT configuration conditions are used because of its uniqueness.

1.1 Literature Review

1.1.1 Transition Analysis

Boundary layer transition is the process by which a laminar boundary layer becomes tur-

bulent. While the intricacies of this process are not fully understood at present, certain

features have become clear, and it is known that the process proceeds through a series of

stages. The initial stage of the natural transition process is the “receptivity stage” where

external disturbances in the outer freestream flow, such as freestream turbulence, surface

roughness or acoustic noise, are transformed into internal instability oscillations within the

boundary layer. Upon entering the boundary layer, a wide spectrum of disturbances is

present. Many of these disturbances decay; however, a limited number become amplified

with further downstream development.

The second stage of transition is the exponential growth of these few unstable distur-

bances. Linear Stability Theory (LST) describes it by following the most unstable mode.

It is generally accepted that for subsonic incompressible boundary layers, these initial in-

stabilities will cause transition and ultimately lead to turbulent flow, taking the form of
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Tollmien-Schlichting waves. The third stage is triggered when the amplitudes of the dis-

turbances become large enough to introduce nonlinear effects. At this stage, the uniform

spanwise mean flow becomes modulated by the nonlinear interaction of the disturbances and

the boundary layer thickness can vary strongly in the streamwise direction.

Boundary layer disturbances amplify through one or more of many possible mechanisms,

including first and second mode amplification, roughness-induced transition, crossflow vor-

tices and Goertler instabilities. Different mechanisms dominate under various conditions.

An important part of predicting transition in boundary layers is understanding the differ-

ent mechanisms that drive the transition to turbulence. Numerous reviews and workshops

have focused on the critical ideas of transition modeling via experiments [10], linear theory

[11], parabolized equations [12] and direct numerical simulations [13]. A review of stability

mechanisms in 3D boundary layers is provided in reference [14]. The study of 3D boundary

layers is motivated by the need to understand the fundamental stability mechanism that

causes transition on swept wings.

Mack [15] performed an extensive numerical investigation of the linear stability character-

istics of compressible laminar boundary layers and discovered some major differences between

incompressible and compressible theories. He showed that for a flat plate at supersonic Mach

numbers up to about four, the laminar boundary layer is unstable to what he called first

mode disturbances. These are the compressible counterpart of Tollmien-Schlichting waves,

except that they are most unstable when aligned at an oblique angle of 50◦ − 60◦. At Mach

numbers above that range, a second mode of instability appears. The second mode can be

thought of as a trapped acoustical wave that is most amplified when it is two-dimensional.

Second mode waves are destabilized to a moderate extent by wall cooling, whereas first mode

waves are destabilized by heating. In general, he found that whenever the relative flow is

supersonic over some portion of the boundary layer profile there are an infinite number of

waves for a single phase velocity. These additional disturbances are called higher modes.

Numerous studies have investigated these higher modes, particularly the second mode, in

supersonic and hypersonic flow [16, 17, 18]. The amplification rates for higher modes are al-

ways lower than those of the first two modes and are therefore not responsible for transition

[15].
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A given disturbance frequency cannot be characterized as being of the first or second

mode [15]. The mode identification depends on the Reynolds number, and the same fre-

quency can be both a first and second mode disturbance at different Reynolds numbers.

Wave speed is used to classify instabilities based on their velocity relative to the edge. This

requires an accurate determination of the edge location.

Numerous transition models have been developed over the years and implemented within

CFD codes. These range from simple algebraic models like Baldwin Lomax to the standard

two equation models like k-epsilon that are included in most commercial flow solvers. These

are primarily used to model the effect of the transition region on such quantities as skin

friction and heat transfer [19]. However, in all these models the starting location of transition

is given and the flow solver essentially has some sort of flag that turns the model on when

transition is assumed to have occurred. The business of predicting this location a priori is

left to experiments, correlations or stability analysis.

Stability analysis can be divided into two categories: Linear Stability Theory (LST) and

theory based on the Parabolized Stability Equations (PSE). Linearity implies that there is

no interaction between the mean flow and the disturbances. The fluctuating disturbance is

assumed to be small compared to the mean flow, such that higher order fluctuating terms are

neglected and the resulting equations are linear. LST employs the parallel flow assumption,

which states that the mean flow is assumed to vary only in the body-normal direction. This

assumption is valid for small boundary layer growth over a wavelength of the instability

wave. Depending on the type of flow and instability, nonparallel terms can have significant

influence on the disturbance growth rate [20].

The governing PDEs for the Tollmien-Schlichting and inviscid type (1st and 2ndmode)

disturbances are elliptic, so their solution cannot be obtained by simple marching methods.

However, for boundary layer flows the equation set is only weakly elliptic along the domi-

nant flow direction. Therefore, with appropriate simplifications, the stability equations can

be “parabolized”. From a physical view point, the streamwise ellipticity arises from the

upstream propagation of acoustic waves and the streamwise viscous diffusion. To render the

stability equations parabolic, one must devise a way to suppress this upstream propagation.

Herbert [21] proposed a technique which decomposes the disturbance into a rapidly varying
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wave-like part and a slowly growing shape function. The ellipticity is retained for the wave

part while the parabolization is applied to the shape function. The resulting PSE can be

solved by marching along the streamwise direction.

Unlike the Tollmien-Schlichting type disturbances, the governing PDEs for the Goertler

problem are naturally parabolic and thus the solution can be obtained by direct marching

given a set of initial conditions. A review of the Goertler instability is given by Saric [22].

Goertler vortices arise due to concave curvature, and convex curvature is known to suppress

their growth in incompressible [23] and compressible [24] flows. Goulpie et al [25] compared

linear theory (with the streamwise position held fixed) with a streamwise marching technique

and consistently found that adverse pressure gradients have a destabilizing effect on Goertler

waves. Arnal provides a description of Goertler stability curves and notes that the Goertler

instability is more difficult to influence or control by blowing or suction and that real gas

effects have very little effect on Goertler vortices [11].

The PSE account not only for the streamwise variation of the basic flow, but also for the

streamwise growth of linear and nonlinear disturbances. It has been compared to classical

Orr-Sommerfeld theory [26] and was found to be more consistent in accounting for curvature

effects. Various numerical techniques have been developed to solve the linear and nonlinear

PSE for two-dimensional compressible boundary layers [27]. A comprehensive analysis of

the PSE approach is given by Herbert [12].

Johnson [20] used LST and PSE to investigate the effects of freestream total enthalpy

and chemical composition on transition location on sharp cones in a reacting mean flow. He

found that transition Reynolds number increased with total enthalpy, and the increase was

greater for gases with lower dissociation energies . It was suggested that part of the energy

of disturbance fluctuations is absorbed by the chemical components and causes dissociation

instead of causing transition. The presence of chemical reactions was demonstrated to have

a large effect on disturbance amplification rates, revealing different trends for endothermic

and exothermic reactions.

LST and PSE stability analysis requires a high quality mean flow solution, with suffi-

ciently accurate second derivatives. Full Navier-Stokes solvers can be impractical for design

purposes due to their heavy computational cost. Often, the Parabolized Navier-Stokes (PNS)
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equations are used, particularly for preliminary design and analysis of many high speed vehi-

cles, since their space-marching solution character is more cost effective than time-marching

Navier-Stokes solvers. However, Stanek and Rubin [28] note that PNS base flow solutions

are frequently unsuitable for stability analysis due to pressure gradient “corrections” ap-

plied within the boundary layer, where the streamwise pressure gradient is split in subsonic

regions in order to stabilize the flux calculations. They developed a high-order reduced

Navier-Stokes approximation for the purpose of computing accurate base flows for use in

transition related stability calculations. Stability was maintained through the use of numer-

ical filtering and excellent agreement was found between the results and full Navier-Stokes

simulations.

1.1.2 Quiet Wind Tunnels: BAM6QT

In order to achieve supersonic flow, a wind tunnel must contain (or create) a section of high

pressure gas that acts to accelerate the flow to sonic conditions at the throat. Some sort of

pressure valve or diaphragm is needed to control the release of this high pressure gas into

the tunnel. If this diaphragm is located upstream of the test section, then the turbulence

generated from its bursting will travel downstream and the flow will be turbulent. To create

quiet flow, the diaphragm must be placed downstream of the test section. This is the basis

of a Ludwieg tube.

The BAM6QT is designed as a Ludwieg tube (Fig. 1.1). A Ludwieg tube is a long

pressurized pipe with a converging-diverging nozzle on one end, from which flow exits into

the nozzle, test section, and second throat. A diaphragm is placed downstream of the

test section. When the diaphragm bursts, a shock wave passes downstream into a vacuum

chamber and an expansion wave travels upstream through the test section into the driver

tube. The expansion wave isentropically accelerates the flow, reflecting off the endwall of

the driver tube and returning to the contraction inlet. Expansion wave reflections occur for

a period of time during which the flow remains quiet. Every time the expansion wave in the

driver tube reflects from the entrance to the contraction, the stagnation pressure drops. The

length of the driver tube governs the useful flow duration: the longer the tube the longer the

useful flow. The useful tube run time also depends on the length of time needed to establish
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the flow. This starting time is several times the time needed for a particle to cross the test

section.

Figure 1.1: Schematic of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) [1]

The BAM6QT has been designed to achieve quiet flow for stagnation pressures up to 1034

kPa, corresponding to a unit Reynolds number of 11×106m−1 for a stagnation temperature

of 433 K at Mach 6. Fig. 1.2 is a typical oscilloscope trace from the BAM6QT that illustrates

the substantial difference between noisy and quiet flow. Noise level is defined here as the

root-mean-square pitot pressure normalized by the mean pitot pressure. The noise levels1 in

a “quiet” tunnel are generally less than 0.1% [1]. At time t = 0 sec the diaphragm bursts and

the run begins. Approximately 0.2 sec is required to start up the Mach 6 flow, and quiet flow

is only achieved at t ∼ 1.2 sec. At this point the boundary layer on the nozzle wall switches

from turbulent to intermittently turbulent and finally to laminar. The contraction pressure

is measured on the right-hand axis and is essentially the stagnation pressure, since the Mach

number in the contraction section is less than 0.01. It drops from an initial value of 1100 kPa

(160 psia) to 1000 kPa (146 psia) before the flow becomes quiet. Every 0.2 sec the expansion

wave returns to the contraction and the stagnation pressure drops roughly 1% as the wave

reflects. Five turbulent bursts appear during the course of this run, of approximately 1.5

ms duration each. The run ends after about 7 sec, when the contraction wall pressure has

dropped to 724 kPa (105 psia).

Stability analysis was used in designing the BAM6QT nozzle contour in order to delay

boundary layer transition and ensure quiet flow [29]. 1st and 2nd mode instabilities, as well

1Noise levels are measured as

√

p′2
p

p
p

< 0.0001, where pp is pitot pressure.
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Figure 1.2: Pitot pressure trace showing quiet flow with a few turbulent bursts [1]

as Goertler waves, were studied using LST and the eN method (section 3.6). Experiments

conducted in the BAM6QT reveal how crucial it is to have a quiet flow tunnel for transition

research. For example, testing a sharp cone at angle of attack in a quiet tunnel was found to

have a marked effect on the development of crossflow instabilities [30]. Similarly, experiments

conducted on swept wings at NASA Ames’ Mach 1.6 quiet tunnel revealed that design

practices based on previous results from conventional tunnels were needlessly conservative.

Roughness twice as large as previously thought possible could be applied to the attachment

line of a swept cylinder before triggering transition [31].

Numerous studies have focused on minimizing the noise radiated from turbulent bound-

ary layers in supersonic wind tunnels [32, 33]. Arnal [11] describes the eN method in detail

and analyzes its advantages and shortcomings. He notes that since this technique is based on

linear stability only, receptivity and nonlinear mechanisms are not taken into account. Beck-

with et al [34] conducted a nozzle optimization study for the quiet Mach 3.5 wind tunnel at

NASA Langley using LST and the eN method. They investigated the effect of nozzle design

parameters on the quiet test section length by manipulating the concave curvature and wall

angle at the inflection point. Since Goertler vortices appeared to dominate the transition

process, the design with a long radial section nozzle yielded a 300% increase in quiet test
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region length. A long radial section is significant in that it moves the inflection point far

downstream of the throat, which delays the onset of Goertler instability and minimizes the

growth rates of the vortices.

1.1.3 Design Methods and Optimization

Numerical optimization techniques have been coupled with CFD in many different appli-

cations. The NASA P8 hypersonic inlet was redesigned using an automated numerical

optimization procedure that incorporated a 3D RANS code and a gradient-based optimizer

[35]. The objective of the redesign was to cancel the cowl shock by modifying the centerbody

boundary, and the optimized designs achieved up to 80% improvement. They discovered that

the choice of objective function, which is used to drive the optimization, has a significant

impact on the final design.

Xu et al [36] performed a complete scramjet optimization, including inlet, combustor, and

nozzle, using a Bilevel Integrated System Synthesis (BLISS) methodology. BLISS is a way to

optimize complex engineering systems using decomposition. The system level optimization,

such as the integrated scramjet, which has a relatively small number of design variables, is

separated from the numerous subsystem optimizations that may each have a large number

of design variables. In this case, the inlet, combustor, and nozzle are each autonomous

subsystem optimizations that are conducted concurrently. The system and subsystem op-

timizations alternate, linked by sensitivity data, producing a design improvement in each

iteration.

An airfoil shape was optimized to delay transition by coupling PSE analysis with a

gradient-based optimizer [37]. Because delaying transition implies reduction of the viscous

drag, this shape optimization essentially designed a wing with optimal viscous drag reduc-

tion. While design seems to be the primary area that has been enhanced by linking CFD

with numerical optimization, Hogberg [38] employed similar techniques toward a control

problem, investigating the optimal control of incompressible boundary layer transition using

active control methods such as blowing and suction.

The traditional supersonic nozzle design process involves two separate codes: an invis-

cid design code and a boundary layer correction code. A quiet nozzle requires additional
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stability calculations. First, an inviscid code uses the Method-of-Characteristics (MOC) to

determine a suitable inviscid contour and then a boundary layer program computes the lam-

inar boundary layer displacement thickness. Using the boundary layer code to correct the

inviscid contour is referred to as the MOC/BL method. The theory used in supersonic nozzle

design assumes that the boundary layer thickness is small compared to the characteristic

length (e.g., nozzle radius), so the nozzle flowfield can be treated as inviscid for designing

the aerodynamic lines. Once the aerodynamic characteristics are determined, a correction is

made to account for the displacement thickness of the boundary layer. This basic procedure

has been successfully applied to many supersonic and hypersonic nozzles.

While the MOC/BL method has been the conventional design tool used for axisymmetric

hypersonic nozzles, it incorrectly assumes that the boundary layer and core flow are not

coupled. Figure 1.3 illustrates that each characteristic does not reflect off the inviscid contour

at the boundary layer edge but at a point within the boundary layer, between the inviscid

contour and the wall. Thus, the design characteristic will lag behind the actual characteristic,

resulting in incomplete cancellation of expansion waves and deterioration of the flow quality.

To solve this problem, the final contour is not obtained by doing a classical boundary layer

correction; rather, the inviscid design is used as the starting point for a viscous design

optimization based on CFD. An optimization package that utilizes the PNS equations was

used to design the shock-free nozzle for the University of Queensland’s X3 expansion tube

[39], as well as a Mach 7 shock tunnel nozzle [2]. It was noted, however, that this correction

to the MOC/BL method is important only for nozzles where the boundary layers grow to a

large percentage of the exit radius. This generally occurs for turbulent boundary layers at

M ≥ 7 [2].

Korte [40] modified the MOC/BL design method to account for real gas effects. The

imperfect gas effects are treated only in the source flow region (see section 3.1), before the

turning region, by computing two separate MOC procedures for the upstream and down-

stream supersonic sections with different values of gamma. The geometric area ratio is

computed using a steady, quasi-one dimensional flowfield solution that includes all real gas

effects. Variations of this design procedure have been used to design nozzles at NASA

Langley and elsewhere with high quality results [41].
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Figure 1.3: Lagging of actual characteristic from MOC/BL design characteristic [2]

Designing a quiet nozzle requires not only inviscid design and boundary layer correction,

but also additional stability calculations. Designing the quiet nozzles at NASA Langley

required a considerable amount of operator intervention, with each computer code running

independently and requiring a great deal of data file editing. Furthermore, only one Goertler

wavelength could be tested at a time. This laborious process was streamlined in the 1990s

when the Mach 4 Ludwieg tube at Purdue University was constructed [42, 43]. The out-

put/input from one code to the next was automated so that the series of codes could be run

automatically on a specified nozzle shape, and the stability code was modified to automati-

cally loop through several different frequencies or spanwise wavenumbers in one execution.

This alleviated the amount of manual intervention in processing a single nozzle design. How-

ever, without being linked to an optimizer, each new design still had to be hand-picked, and

it was unclear if it would be an improvement over the previous design.

1.2 Tunnel Startup

Even after an optimal design is found, there is no guarantee that the tunnel will start in the

presence of a particular model. The startup problem for supersonic wind tunnels is hardly

trivial. Unlike subsonic testing, supersonic tunnel startup does not correlate simply with

blockage ratio, due to the differences in the shock/boundary layer interactions generated by

different models [44]. There are no standard criteria for supersonic tunnels and engineers

have tried various techniques – ranging from tunnel modifications to flow alterations to

model adjustments – to achieve tunnel startup in different conditions. During wind tunnel

tests for the Voyager entry capsule, for example, a partial unstart of the test section flow
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forced engineers to lower the Mach number from Mach 2.2 to Mach 2.0 [45]. In a different

experiment, when it was discovered that a diffuser model could not be started in a Mach

3 wind tunnel, the model itself was modified to reduce its blockage ratio, which had the

undesirable side-effect of shifting its configuration off the design point [46]. When the blunt

Apollo model caused the BAM6QT to unstart, engineers increased the initial stagnation

pressure of the tunnel in an attempt to start the tunnel [47]. They also explored the effect of

model position on tunnel startup. Seablom et al plotted blockage ratio against Mach number

for several supersonic tunnels and concluded that tunnel starting is highly dependent on the

model geometry and position. Many tunnels also incorporate a bleed section to control

boundary layer height and shock/boundary layer interactions, which is often the source of

unstart [44]. Wind tunnel models, too, must be designed very carefully, and the desire to

make a model as large as possible in order to increase the instrumentation density must be

balanced with the need for a small enough model to allow the tunnel to start. Holland et al

[48] notes that even basic design features of a scramjet inlet, such as contraction ratio and

cowl location, must be considered when developing a wind tunnel model, as they can impact

the blockage ratio and cause tunnel starting difficulties.

The startup process in a Ludwieg tube, such as the BAM6QT, can be approximated

using a one-dimensional method of characteristic analysis [49]. A diaphragm separates high

pressure gas in the driver tube from low pressure gas in the vacuum tank region. When

this diaphragm bursts, the flow is initiated and an expansion fan propagates upstream.

This expansion fan travels through the entire length of the tunnel and eventually reflects

off the driver tube endwall. To model this startup process numerically would be extremely

expensive, seeing as the driver tube in the BAM6QT is more than 100 feet long and would

require a very large computational domain. Furthermore, this transient startup process has

little effect on the flowfield once it has reached steady-state. The starting time of a test is

defined as the time when steady-state has been reached and the flow properties in the test

section become constant. This occurs after the flow has been accelerated by the expansion

fan to the point where the nozzle throat chokes. When this happens, a shock is formed just

downstream of the throat and slowly travels through the remainder of the nozzle and the

test section. A steady flow is established behind this shock, and the start time is therefore
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defined as the time when this shock passes out of the test section. Hence, it is only necessary

to simulate this shock wave moving through the test section, while the long expansion wave

process that precedes it may be ignored.

1.3 Objectives of Research

The objective of this research is to integrate CFD into the design of quiet wind tunnels and

the analysis of their performance. The goals are as follows:

Design: A fully automated optimization loop is created, which integrates inviscid con-

tour design, boundary layer growth corrections, full Navier-Stokes analysis and stability

calculations to achieve a wind tunnel nozzle with the maximum quiet test section length.

The optimization is performed by first creating a response surface and then using a genetic

algorithm to sift through the feasible design space.

Analysis: Computations are performed to analyze a proposed expansion for the BAM6QT

test section. This modification is designed to enable running larger models with stronger

bow shocks, even when the nozzle-wall boundary layer is laminar [50]. CFD is used to de-

termine if such an expansion would cause noise in the quiet test region, and what size model

would unstart the tunnel.
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Chapter 2

Automated Optimization: Statement of Problem

2.1 Geometry

Each nozzle in the optimization study is modelled after the BAM6QT at Purdue Univer-

sity. The upstream contraction section, including the bleed lip design, matches that of the

BAM6QT and blends seamlessly into each new downstream contour (Fig. 2.1). The design

Mach number is six, corresponding to an inviscid area ratio of Aexit/Athroat = 53.18. Each

inviscid nozzle contour is computed with a default throat radius of 1 inch. The nozzle is

then scaled to BAM6QT coordinates by dividing it by 1.622 so that it is consistent with the

BAM6QT inviscid throat coordinate1. The flow is hypersonic; however, no dissociation or

ionization effects have been observed in experiments, so it is treated here as a perfect gas.

Figure 2.1: Upstream BAM6QT contour with multiple downstream contours

1The inviscid BAM6QT throat coordinate is calculated by computing a boundary layer using EDDYBL
[51] for the BAM6QT contour and subtracting the displacement thickness. This value compares favorably
with the displacement thickness computed from a Navier-Stokes solution of the BAM6QT.
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2.2 Stability Objective

(a) Nozzle that reaches transition

(b) Nozzle that does not reach transition

Figure 2.2: Mach lines indicating the (a) quiet length for a nozzle that reaches transition
and (b) maximum quiet length for a nozzle that does not reach N = 6 transition

Stability measurements in the NASA Langley Mach 6 tunnel and the BAM6QT reveal

that transition occurs at approximately N = 6 using the eN method [52] (see section 3.6).

Calculations are performed for two2 types of instabilities: Goertler and 2nd mode. Goertler

2The crossflow instability, which could dominate in 2D nozzles due to corner effects, is neglected here since
this investigation focuses on axisymmetric nozzles.
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waves develop in regions of concave curvature (denoted as negative curvature). Unfortu-

nately, every wind tunnel must have a region of concave curvature (Fig. 2.2a) which corre-

sponds to the straightening section. This section is crucial for cancelling out the expansion

characteristics and producing uniform flow.

Goertler waves are affected by curvature, while 2nd mode waves are affected by boundary

layer thickness. For a given design Mach number, the exit-to-throat area ratio is predeter-

mined so a shorter nozzle must have greater curvature to achieve the same exit area. A

highly curved nozzle will cause the Goertler instability to grow, but the thin boundary lay-

ers associated with a short nozzle will prevent the growth of 2nd mode waves. Presumably,

the length that will optimally stabilize one instability will tend to destabilize the other.

However, stability measurements from the BAM6QT [29] and the NASA Langley quiet

tunnels [53, 34] indicate that it is the Goertler instability that dominates transition in quiet

hypersonic nozzles. For this reason, the transition point throughout the optimization is

determined by analyzing only the Goertler instability. 2nd mode stability calculations are

performed only on the optimal design to confirm that the 2nd mode does not dominate the

Goertler mode.

Each nozzle extends from the throat until the point where it reaches zero-curvature

constant area (which becomes the test section). If transition is not yet reached in the nozzle

by that point, then, for purposes of comparison and optimization, transition is assumed to

occur at the end of the contour. This imposes a limit on the maximum quiet length (Fig.

2.2b). Uniform flow is determined by extending a Mach line from the end of the nozzle in

the upstream direction toward the centerline. Transition is determined by extending a Mach

line from the transition point at the end of the nozzle in the downstream direction toward

the centerline. Since the design Mach number is M = 6, the Mach angle is constant:

µ = sin−1
(

1

6

)

= 9.59◦ (2.1)

Therefore, the maximum quiet length along the centerline is Lquiet = 54 in. This maximum

quiet length is imposed on any nozzle that does not reach N = 6 transition.
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2.3 Parameterization

Numerous variables affect the stability of a quiet wind tunnel, including shape, temperature

distribution, surface roughness, etc. [29]. This investigation focuses on the stability charac-

teristics of different inviscid shapes. This is determined in the first step of the design process

by the Sivells Design Code [3], which computes the inviscid contour. Three variables are

selected as optimization input parameters for Sivells:

RC = radius of curvature at the throat, normalized by the throat radius

η = expansion angle (in degrees) at the inflection point

bmach = centerline Mach number at the intersection of the characteristic

that emanates from the inflection point

with the following ranges and discretization:

RC = 2 - 20; 1

η = 2◦ - 10◦; 1◦

bmach = 2 - 6; 0.5

These parameters define a unique contour. Fig. 2.3 shows the shape variation as the

three parameters are varied for a nozzle with a design Mach number of six. It appears that

RC (Fig. 2.3c) has little effect on the overall shape of the contour. However, only certain

values of RC will work with any given combination of η and bmach – e.g., a large throat

radius of curvature is incompatible with a high expansion angle and high bmach. RC must

therefore be included in the analysis simply to allow the other parameters to vary across

their ranges.

2.3.1 Trade Study

Decreasing bmach reveals a new class of contours – those with compound curvature (Fig.

2.4). Curvature is defined as

Curv (x) =
f ′′(x)

[1 + f ′(x)2]
3

2

(2.2)

Compound curvature describes a contour with alternating regions of concave and convex

curvature. Nozzles with conventional contours exhibit an expansion section with positive
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(a) η (b) bmach

(c) RC

Figure 2.3: Nozzles with different values of bmach, η and RC

curvature, followed by a straightening section of negative (unstable) curvature. Nozzles with

compound curvature have multiple expansion sections. The first straightening section is

followed by a second expansion section before a final straightening section achieves uniform

flow at the design Mach number (Fig. 2.5). In some cases, the initial “hump” from the first

expansion is so large that transition is triggered immediately; however, a gentler compound

curvature may have a stabilizing effect, since the initial region of negative curvature is

stabilized by the extra section of positive curvature. Indeed, this was also discovered to be

the case for incompressible flow [23].

It is clear from this trade study that the bmach parameter has a nonlinear effect on the

objective of maximuming Lquiet. That is, a small variation in bmach has a tremendous effect

on the curvature – which affects the stability profile of the nozzle. For example, Fig. 2.4
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Figure 2.4: Decreasing bmach generates nozzles with compound curvature

compares contours with bmach varying from 2 to 3. A bmach value of 2 yields a highly

curved compound nozzle with no quiet length (i.e., the nozzle transitions before uniform

flow is reached for Mach 6 flow conditions listed in section 3.5.4), while a bmach value of 2.5

yields a nozzle that does not reach transition at all and is assigned the maximum value of

Lquiet = 54 in.

To avoid this nonlinear relationship, a new parameterization is defined based on more

logical variables to describe each nozzle shape: length and maximum curvature. Each

set of input variables (RC, η, bmach) is used by Sivells to create an inviscid contour. Once

created, a contour’s total axial length and the maximum value of concave curvature are

measured and used to parameterize the design. Thus, the parameters are not known a priori

– i.e., they are not input variables to the Sivells code. First, the design must be created

using the true input variable (RC, η, bmach), and only then can the useful optimization

parameters (axial length, maximum curvature) be extracted.

In order to accomplish this, a comprehensive table is constructed correlating each ordered

set of (RC, η, bmach) with a set of (length, curvature) parameters. The optimizer can then

choose a (length, curvature) combination, and the corresponding values of Sivells input

variables are extracted from the table. This table is created using a simple code that loops

through the design space, at increments of 0.1 for η and bmach and 0.2 for RC, and calls
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Figure 2.5: Two distinct regions of concave curvature

the Sivells procedure to compute the inviscid contour for each design. It is noted whether a

particular design yields a conventional contour, a compound contour, or an error3.

2.3.2 Design Space

Fig. 2.6 explores the viable design space. A longer nozzle has more gentle curvature, which

is expected to delay Goertler-induced transition. Thus, the relationship between length and

curvature seems rather straightforward: as length increases, the maximum concave curvature

decreases and Lquiet will increase. Indeed, Fig. 2.6a shows this to be the case for conventional

nozzles. However, compound nozzles seem to etch out a different pattern within the design

space (Fig. 2.6b). If only one response surface is created to capture these two different

trends, it will likely fail to capture either one. The conventional trend will dilute and smear

the compound trend, and vice versa. Therefore, the optimization is divided into two parts,

with one response surface for each class of contours.

The goal of this optimization is not simply to maximize the quiet length, but also to

minimize the total axial length. From a practical standpoint, a shorter nozzle is more

desirable, as it is cheaper to manufacture and requires less space to install. The green

3Many combinations of RC, η and bmach will not run in the Sivells code because they are mathematically
incompatible. For example, a large throat radius of curvature is incompatible with a high expansion angle
and high bmach. The result is an error message from Sivells.
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(a) Conventional

(b) Compound

Figure 2.6: Conventional and compound design spaces

highlighted designs in Figs. 2.6a,b indicate the contours with the least amount of concave

curvature4, which is expected to correlate with quiet length. This Pareto front confirms that

in order to decrease concave curvature the nozzle must be lengthened. The optimum design

will probably lie on one of these curves. For this reason, these designs are examined closely

when selecting designs with which to create the response surface.

4Since concave curvature is defined as negative curvature, a highly concave nozzle will have a very large
negative curvature value. The “maximum curvature” parameter defined here is actually the most negative
value. To minimize concave curvature (and achieve a gently curved nozzle) this large negative value must be
reduced, so the optimization seeks the most positive values, as close to zero as possible.
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Chapter 3

Automated Optimization: Methodology

This study seeks to automate the design optimization of a quiet hypersonic nozzle by linking

an optimizer with a flow solver and a stability code within a computerized loop. Fig. 3.1

illustrates the procedure. First, an inviscid contour is designed using the Method of Char-

acteristics (MOC). Second, the compressible boundary layer is calculated and the original

contour is corrected for this boundary layer growth. Third, this nozzle shape is supplied

to a grid generator and a mesh is created around the new shape. Fourth, the grid is sent

to a flow solver which solves for the steady-state solution. Fifth, a stability program uses

this flowfield to compute the most unstable disturbance and establish the point of transition

along the nozzle contour. This transition point is used to evaluate the objective function.

Lastly, the optimizer uses this value to create a response surface which is used to select a

new set of parameters for the inviscid contour design.

Figure 3.1: Automated Optimization Loop
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3.1 Inviscid Contour – Sivells Design Code

Flow expansion in supersonic flow occurs through a system of interacting waves originating

from slope changes on the nozzle wall. The upstream, diverging section of the nozzle accel-

erates the flow and the downstream section uses wave cancellation to straighten the flow.

An inflection point separates these two regions. In a conventional “noisy” nozzle, the shape

of the upstream expansion contour up to the inflection point is somewhat arbitrary so long

as the remaining part of the nozzle can correctly cancel the expansion waves. However in

a quiet tunnel, this contour must be carefully designed to minimize the growth of Goertler

vortices (section 3.6.3). The state-of-the-art in supersonic wind tunnel design involves the

use of a 2D or axisymmetric MOC code for determining the inviscid nozzle shapes that

produce uniform exit flow. The program used here is the Sivells Design Code [3], which was

used in the design of the BAM6QT [29].

Fig. 3.2 is a schematic of the different flow regimes computed by Sivells. Computations

generally begin at the throat using a transonic perturbation scheme to compute the flow

near the throat, assuming the flow is nearly parallel there. Thus, the upstream subsonic

flow must deliver a nearly parallel flow to the throat. These transonic perturbation schemes

are only valid for Mach numbers very near one and require some input regarding the shape

of the nozzle near the throat, such as the throat radius of curvature. In this study, the

BAM6QT coordinates are used for the contraction section upstream of the throat, and the

throat radius of curvature specified in the Sivells input is the downstream curvature, which

is seamlessly stitched to the upstream contraction section.

Figure 3.2: Radial flow and expansion regions of inviscid contour [3]

Aside from the input required for this transonic calculation, the nozzle design also requires

the Mach number along the nozzle centerline for some distance (until the downstream parallel
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flow requirement takes over). Sivells determines the appropriate centerline Mach number

distribution that produces a nozzle wall with continuous slope and curvature from the throat

to the exit. The centerline Mach number distribution is based on polynomial functions that

match the flowfield solutions at each flow region boundary. Once this distribution has been

specified, a MOC procedure is used in an inverse design mode to determine an inviscid nozzle

wall contour that produces the desired uniform exit flow. This inviscid contour can then be

scaled to any size, based on a specified throat radius or exit radius.

Sivells is capable of generating nozzles with a region of radial flow between the initial

expansion region and the inflection point, i.e., the point at which the wall is shaped to turn

the initial characteristics so as to produce uniform exit flow. Section 3.6.3 describes how

this helps dampen Goertler waves.

Appendix A contains a sample input file for Sivells. The input parameters are described

in section 2.3: RC, η and bmach. RC is the ratio of the throat radius of curvature to the

throat radius. The throat radius in Sivells is always 1 in. η is the expansion angle at the

inflection points G and A in Fig. 3.2. If the first choice of η results in a nozzle design without

a radial flow section, η can be lowered until a reasonable design is obtained. bmach is the

Mach number at point B in Fig. 3.2 and the design Mach number is the Mach number at

point C, which remains constant at M = 6.

The Sivells output file includes the x and y coordinates of the inviscid contour, as well

as the pressure ratio and Mach number at each point. Sivells also writes out the second

derivatives of the wall contour, which are used to calculate the local wall curvature for

Goertler computations.

3.2 Boundary Layer Correction – EDDYBL

Once the characteristics are determined, a correction is made to account for the displacement

thickness of the boundary layer. The underlying assumption behind this method is that the

boundary layer thickness is small compared to the nozzle radius, allowing the nozzle flowfield

to be treated as inviscid for designing the characteristics. For quiet nozzle investigations,

the boundary layers are assumed to be laminar since the boundary layer is only of interest
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up to the point where it becomes transitional. The laminar, compressible boundary layer

equations are solved using EDDYBL [51]. The inviscid contour output by Sivells is scaled

to the BAM6QT throat height (see section 2.1) and the wall pressure is calculated using the

pressure ratio from the Sivells output and a stagnation pressure of 150 psi, for which the

BAM6QT was designed. The adiabatic wall temperature is 540◦R (300 K), consistent with

the nozzle wall boundary conditions from section 3.5.41. The curvature information from

Sivells is written to an EDDYBL input file. Appendix B contains a sample EDDYBL input

file.

Figure 3.3: Boundary layer correction

The EDDYBL input files for the downstream inviscid contour are appended to the up-

stream contraction section of the BAM6QT. The boundary layer is calculated starting from

the stagnation point on the bleed lip, approximately 1 inch upstream of the throat. The

displacement thickness is extracted from the output file and added to the original Sivells

contour (Fig. 3.3). The displacement thickness at the end of the nozzle is approximately 0.3

in for most designs.

1The wall of the BAM6QT contraction section is heated to 779◦R (433 K), which corresponds to the
inflow conditions in Table 3.1. The nozzle wall is not heated. Once the tunnel is pressurized, the air is left
to settle, and the nozzle wall reaches room temperature.
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3.3 Mesh Generation – GridPro

The commercial software GridPro [54] is used to generate the structured grid. GridPro

is a general purpose elliptic mesh generator that creates a three dimensional, multi-block

structured grid. The user input for Gridpro are the surface geometry and the block topology.

It is important to note that the same topology definition is used during the optimization

while the surface definition changes.

The computational domain has a nonuniform Cartesian mesh (Fig. 3.4) consisting of

eight zones. There are approximately 301, 000 cells in total with the following dimensions:

Zone 1 86 × 1025

Zone 2 81 × 1273

Zone 3 777 × 86

Zone 4 257 × 17

Zone 5 49 × 537

Zone 6 769 × 17

Zone 7 17 × 33

Zone 8 113 × 33

Figure 3.4: Structured grid

Geometric clustering is used near the wall to resolve the boundary layers with a first cell

height of 10−4 mm and a stretching ratio of 1.1. The boundary layer contains approximately

75 points.
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3.4 Flow Solver – GASPex

The flow solver used for these computations is GASPex (General Aerodynamic Simulation

Program) [55], a structured multi-block CFD solver that applies to compressible flowfields

at approximately Mach 0.2 or higher. It has been extensively validated for a wide variety

of hypersonic flows against exact and experimental solutions [19, 56]. The two-dimensional

axisymmetric Navier-Stokes equations are solved using a finite volume spatial discretiza-

tion. The optimization simulations use the steady-state formulation, and the test section

expansion calculations (Section 5) use the time-dependent equations. The computations are

second order accurate in both time and space.

3.5 Navier-Stokes Equations

The governing equations for unsteady, compressible, laminar, viscous flow of a perfect gas

in two dimensions are solved. For an axisymmetric coordinate system, these can be written

in conservative form

∂Q
∂t + ∂(F−Fv)

∂x + 1
r
∂(G−Gv)

∂r = 1
r (S + Sv) (3.1)

where Q(x, t) is the vector of conservative variables

Q =
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(3.2)

The inviscid fluxes, F and G, and the viscous flux vectors, Fv and Gv, and source terms, S

and Sv, are

F =
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ρu2 + p

ρuv

ρuH
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(3.3)
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Fv =
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τrx

uτxx + vτrx + k ∂T∂x
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(3.4)

S =
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, Sv =
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(3.5)

H = ρe+ p, τxx = 2µ
∂u

∂x
, τrr = 2µ

∂v

∂r

τθθ = −2µ
v

r
, τrx = µ

(

∂u

∂r
+
∂v

∂x

)

(3.6)

where x and r denote the axial and radial coordinates; ρ, p, e, T, and H denote the density,

pressure, energy temperature, and enthalpy; u and v denote the velocities in the x and

r directions; µ and k are the viscosity and thermal conductivity of the fluid, respectively.

Viscosity of a gas is given by Sutherland’s Viscosity Law

µ = 1.456 × 10−6 T 3/2

T+Tref
N-sec/m2 (3.7)

where Tref is 110.3 K for air.

3.5.1 Space Discretization

For the inviscid fluxes, Van Leer’s scheme is used in conjunction with the Minmod limiter.

Van Leer’s scheme employs flux vector slitting, where the flux terms are split and discretized

directionally according to the sign of the associated propagation speed. Flux vector splitting

schemes are efficient to solve, and Van Leer’s method is quite robust.

Consider the one–dimensional Euler equations in semi–discrete form

∂Qi
∂t

+
(Fi+1/2 − Fi−1/2)

∆x
= 0 (3.8)

The basic idea behind flux vector splitting is to decompose the flux F into two parts,
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F = F+ + F− (3.9)

where ∂F+

∂Q has non-negative eigenvalues and ∂F−

∂Q has non-positive eigenvalues.

The term F+ corresponds to waves that move from left to right across the cell interface

at i+1/2 since the eigenvalues of its Jacobian ∂F+

∂Q are greater than or equal to zero. Thus it

is reasonable to use Qli+ 1
2

to evaluate F+. Similarly, the term F− represents the contribution

to the flux associated with waves moving from right to left across the cell interface. It is

reasonable to use Qri+ 1
2

to evaluate F−.

Van Leer developed a flux vector splitting method based on Mach number [57, 58]. The

flux vector F can be written as

F =



























ρaM

ρa2

γ (γM2 + 1)

ρa3M [ 1
(γ−1) + 1

2M
2]



























(3.10)

The term involving the Mach number2 is split into two parts, with ρ and a evaluated

using Ql or Qr as appropriate. For the mass flux, the term involving Mach number is simply

M and is split according to

M = M+ +M− (3.11)

The mass flux is taken to be

ρu = ρlalM
+ + ρrarM

− (3.12)

Van Leer proposed

M+ =



























0 for M ≤ −1

f+
1 for −1 ≤M ≤ 1

M for M ≥ 1

(3.13)

and

2Note that in this definition the Mach number can be positive or negative.
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M− =



























M for M ≤ −1

f−1 for −1 ≤M ≤ 1

0 for M ≥ 1

(3.14)

where M is the average Mach number at the interface and may be defined as

M =
ul + ur
al + ar

(3.15)

This yields

ρu =



























ρrarM for M ≤ −1

ρlalf
+
1 + ρrarf

−
1 for −1 ≤M ≤ 1

ρlalM for M ≥ 1

(3.16)

For M < −1, the eigenvalues are negative implying that all waves are moving to the left.

Then, Qr can be used to compute ρ and a. Similarly for M > 1, Ql is used to compute ρ and

a. The f+
1 and f−1 functions are chosen to provide continuity of M± and its first derivative

with respect to M at M = ±1. It can be shown that

f+
1 =

1

4
(M + 1)2

f−1 = −1

4
(M − 1)2 (3.17)

The complete expressions for M± become

M+ =



























0 for M ≤ −1

1
4(M + 1)2 for −1 ≤M ≤ 1

M for M ≥ 1

(3.18)

and

M− =



























M for M ≤ −1

−1
4(M − 1)2 for −1 ≤M ≤ 1

0 for M ≥ 1

(3.19)

For the momentum flux, the term involving the Mach number is split according to

(γM2 + 1) = (γM2 + 1)+ + (γM2 + 1)− (3.20)
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The momentum flux is taken to be

ρu2 + p = γ−1ρla
2
l (γM

2 + 1)+ + γ−1ρra
2
r(γM

2 + 1)− (3.21)

Van Leer proposed

(γM2 + 1)+ =



























0 for M ≤ −1

f+
2 for −1 ≤M ≤ 1

γM2 + 1 for M ≥ 1

(3.22)

and

(γM2 + 1)− =



























γM2 + 1 for M ≤ −1

f−2 for −1 ≤M ≤ 1

0 for M ≥ 1

(3.23)

This yields

ρu2 + p =



























γ−1ρra
2
r(γM

2 + 1) for M ≤ −1

γ−1ρra
2
rf

−
2 + γ−1ρla

2
l f

+
2 for −1 ≤M ≤ 1

γ−1ρla
2
l (γM

2 + 1) for M ≥ 1

(3.24)

Functions f+
2 and f−2 are chosen to provide continuity of (γM2 + 1) and its first derivative

with respect to M at M = ±1.

f+
2 =

1

4
(M + 1)2[(γ − 1)M + 2]

f−2 = −1

4
(M − 1)2[(γ − 1)M − 2] (3.25)

Therefore, the complete expressions for (γM2 + 1)
±

are

(γM2 + 1)
+

=



























0 for M ≤ −1

1
4(M + 1)2[(γ − 1)M + 2] for −1 ≤M ≤ 1

γM2 + 1 for M ≥ 1

(3.26)

and

(γM2 + 1)
−

=



























γM2 + 1 for M ≤ −1

−1
4(M − 1)2[(γ − 1)M − 2] for −1 ≤M ≤ 1

0 for M ≥ 1

(3.27)
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For the energy flux, the term involving the Mach number is M [(γ − 1)−1 + 1
2M

2], and is

split as

M [(γ − 1)−1 +
1

2
M2] = M [(γ − 1)−1 +

1

2
M2]

+

+M [(γ − 1)−1 +
1

2
M2]

−
(3.28)

The energy flux is

(ρe+ p)u = ρla
3
lM [(γ − 1)−1 +

1

2
M2] + ρra

3
rM [(γ − 1)−1] +

1

2
M2]− (3.29)

Van Leer proposed

M [(γ − 1)−1 +
1

2
M2]+ =



























0 for M ≤ −1

f+
3 for −1 ≤M ≤ 1

M [(γ − 1)−1 + 1
2M

2] for M ≥ 1

(3.30)

and

M [(γ − 1)−1 +
1

2
M2]− =



























M [(γ − 1)−1 + 1
2M

2] for M ≤ −1

f−3 for −1 ≤M ≤ 1

0 for M ≥ 1

(3.31)

This yields

(ρe+ p)u =



























ρra
3
rM [(γ − 1)−1 + 1

2M
2] for M ≤ −1

ρla
3
l f

+
3 + ρra

3
rf

−
3 for −1 ≤M ≤ 1

ρla
3
lM [(γ − 1)−1 + 1

2M
2] for M ≥ 1

(3.32)

The functions f+
3 and f−3 are chosen to provide for the continuity of M [(γ − 1)−1 + 1

2M
2]

and its first derivative with respect to M at M = ±1.

f+
3 =

1

8
(γ + 1)−1(γ − 1)−1(M + 1)2[(γ − 1)M + 2]2

f−3 = −1

8
(γ + 1)−1(γ − 1)−1(M − 1)2[(γ − 1)M − 2]2 (3.33)

The complete expressions for M [(γ − 1)−1 + 1
2M

2]± become

M [(γ−1)−1+
1

2
M2]+ =



























0 for M ≤ −1

1
8(γ + 1)−1(γ − 1)−1(M + 1)2[(γ − 1)M + 2]2 for −1 ≤M ≤ 1

M [(γ − 1)−1 + 1
2M

2] for M ≥ 1

(3.34)
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and

M [(γ−1)−1+
1

2
M2]− =



























M [(γ − 1)−1 + 1
2M

2] for M ≤ −1

−1
8(γ + 1)−1(γ − 1)−1(M − 1)2[(γ − 1)M − 2]2 for −1 ≤M ≤ 1

0 for M ≥ 1

(3.35)

3.5.2 Limiter

Van Leer’s method is applied in the direction normal to each face of a computational cell.

The left and right states, Ql and Qr, are obtained by a third order upwind biased MUSCL

reconstruction [59]. A limiter is used to achieve monotonicity of the flow solution, i.e., to

eliminate non-physical oscillations around discontinuities, specifically shocks. The Minmod

limiter controls oscillations by clipping reconstruction outside the bounds of a cell-face’s

neighbor.

minmod(x, y) =



























x if |x| ≤ |y| and xy > 0

y if |x| > |y| and xy > 0

0 if xy < 0

(3.36)

The viscous fluxes employ Sutherland’s Viscosity Model and are second order accurate.

The Prandtl number, which compares the rate of diffusion of momentum with that of heat,

is Pr = 0.72.

3.5.3 Relaxation to Steady State

Gauss Seidel is an iterative technique that becomes efficient when combined with an inner

iteration strategy to improve convergence rate. The Gauss Seidel Relaxation Method [59]

is selected as the inner iteration scheme. Five inner cycle iterations are performed until a

tolerance of 0.001 is satisfied. Each design runs for 30, 000 iterations at a CFL of 0.8.

3.5.4 Boundary Conditions

The following GASPex boundary conditions are applied to the boundaries:
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Inflow

Fixed at Q : Fixed inflow conditions are applied at the boundary as shown in Table 3.1. The

inflow boundary parameters correspond to the stagnation conditions:

Table 3.1: Inflow Conditions
p0 (psi) 150
ρ0 (slug/ft3) 0.01615
T0 (◦R) 779.4
Mach 0.0049

Outflow

Forced Outflow : The primitive variables (density, pressure and velocities) are extrapolated

from the interior cells for the boundary cells, except that the velocity is forced to exit the

boundary.

Bleed Outflow

Riemann/PBack Outflow : A specified backpressure of 1 torr is used for the second ghost

cell, along with the internal entropy, total temperature and flow angle. For the first ghost

cell values, Riemann variables, internal entropy and the flow angle are used.

Nozzle Wall

No Slip Adiabatic: This is a viscous, solid wall boundary condition where the temperature

gradient at the surface is set to zero by extrapolating the pressure. All three velocity

components and the pressure gradient are set to zero at the boundary.

u = v = w = 0 (3.37)

∂p

∂n
= 0 (3.38)

∂T

∂n
= 0 (3.39)
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Contraction Wall

No Slip T=Twall : This is a viscous, solid wall boundary condition where the temperature

is set to 433 K, and the no slip conditions (Eq. 3.37) are satisfied.

3.5.5 Centerline

X-Axis Axisymmetric: This is a boundary condition used for axisymmetric-symmetric flows

where the singular axis lies along the x axis. The quantities around the x axis are equal

except the signs v and w are changed in the ghost cells.

3.5.6 Axisymmetric Side Walls

Positive and Negative Axisymmetric Wall : These are used as side wall boundary conditions

in axisymmetric flows.

3.5.7 Initial Conditions

A steady-state solution for a single design was obtained by initializing the flowfield to zero

velocity. Once this converged, it was used as the initial condition for all subsequent designs.

3.6 Stability Analysis

The linear parabolized stability equations (PSE) are coupled with the eN method to pre-

dict transition location. Since the PSE constitute an initial boundary value problem, the

wavenumber and eigenfunction at the starting location are obtained from linear stability

theory (LST).

The stability equations are obtained from the Navier-Stokes equations by first decompos-

ing the instantaneous flow into mean and fluctuating components, q = q̄ + q′ where q is any

flow variable. This decomposition is substituted into the Navier-Stokes equations, and the

mean flow equation is subtracted, resulting in the disturbance equation. The disturbance

equation can be expressed in the following form for either 2D or axisymmetric flows:



36

Γ
∂φ

∂t
+A

∂φ

∂x
+B

∂φ

∂y
+ C

∂φ

∂z
+Dφ+ Vxx

∂2φ

∂x2
+ Vyy

∂2φ

∂y2

+Vzz
∂2φ

∂z2
+ Vxy

∂2φ

∂x∂y
+ Vxz

∂2φ

∂x∂z
+ Vyz

∂2φ

∂y∂z
+ Fn = 0 (3.40)

where φ = (ρ′1, ρ
′
2, . . . , ρ

′
ns, u

′, v′, w′, T ′, T ′
v)
T . The terms in the Jacobian matrices Γ, A, B,

. . . ,Vyz only depend on the meanflow variables and their derivatives, while all of the nonlinear

terms are grouped together in Fn.

The disturbance quantities are assumed to be travelling waves of the form

φ = χ (ξ, η) expi(βz−ωt) (3.41)

where ξ and η are the body-tangential and body-normal computational coordinates, β is

the real spanwise wavenumber, z is the distance in the spanwise direction, and ω is the real

frequency. Eq. 3.41 is substituted into Eq. 3.40, and the derivatives are evaluated to yield

(in computational coordinates, ξ, η)

D̃φ+ Ã
∂φ

∂ξ
+ B̃

∂φ

∂η
+ V̂ξξ

∂2φ

∂ξ2
+ V̂ηη

∂2φ

∂η2
+ V̂ξη

∂2φ

∂ξ∂η
+ Fn = 0 (3.42)

where the Jacobians are given in Reference [20].

χ is decomposed as,

χ = ψ (ξ, η)A (ξ) (3.43)

A (ξ) = expiθ(ξ) (3.44)

where dθ/dξ = α (ξ), α is the body-parallel wavenumber in computational coordinates

and ψ is the shape function vector. This allows for all of the ellipticity in the wave function

to be retained while parabolizing only the shape factor. After further manipulation, the

disturbance equation can be expressed as a function of ψ:

D̂ψ + Â
∂ψ

∂ξ
+ B̂

∂ψ

∂η
+ V̂ξξ

∂2ψ

∂ξ2
+ V̂ηη

∂2ψ

∂η2
+ V̂ξη

∂2ψ

∂ξ∂η
+ F̂n = 0 (3.45)
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For the PSE approximation, the terms V̂ξξ
∂2ψ
∂ξ2

and V̂ξη
∂2ψ
∂ξ∂η are assumed to be small relative to

the other terms and can therefore be neglected. Since only small disturbances are considered,

their product is small, so the nonlinear terms in F̂n can similarly be neglected. This generates

the linearized version of the PSE :

D̂ψ + Â
∂ψ

∂ξ
+ B̂

∂ψ

∂η
+ V̂ηη

∂2ψ

∂η2
= 0 (3.46)

Eq. 3.46 is an initial boundary value problem for the shape function ψ and wavenumber

α and can be solved by marching. The marching procedure requires an initial wavenumber

solution, which is obtained from linear stability theory (LST). The PSE in Eq. 3.46 can

be reduced to the linear stability equations by assuming a quasi-parallel flow such that

ψ = ψ (η) and dα/dξ = 0. The linear stability equations are

D̂ψ + B̂
∂ψ

∂η
+ V̂ηη

∂2ψ

∂η2
= 0 (3.47)

3.6.1 Transition Prediction using e
N

Since it is not possible to analyze the entire transition process with linear PSE analysis, an

approximation is used. Various empirical correlations exist to relate transition onset with

boundary layer properties. One such correlation is Reθ/Me = C, where Reθ is the Reynolds

number based on boundary layer momentum thickness, Me is the edge Mach number, and C

is an empirical constant in the range of 100− 500 [60]. Transition is assumed to occur when

the local boundary layer properties satisfy this relation. While many correlations exist [61],

no one empirical model can accurately predict transition for a general dataset.

A commonly applied criterion that attempts to predict transition based on the physical

mechanism of transition is the eN method. The value eN , where N is given by Eq. 3.48,

represents the total growth factor of a small amplitude initial disturbance. Presumably,

when the disturbance amplitude reaches a critical value the transition process is triggered.

N (ω, ξ) =

∫ ξ

ξ0
σdξ (3.48)

N is the natural log of the total amplitude growth of unstable boundary layer disturbances

at a particular frequency ω, ξ is the distance along the surface, ξ0 is the location of the first
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critical point at which the disturbance begins to grow, and σ is the disturbance growth rate

defined as

σ = −Im (α) +
1

2E

dE

dξ
(3.49)

E =

∫

n
ρ̄

(

|u′|2 + |v′|2 + |w′|2
)

dn (3.50)

where ρ̄ is the mean flow density,
(

|u′|2 + |v′|2 + |w′|2
)

are the complex fluctuating velocity

components, and n is the direction normal to the body surface.

Figure 3.5: N factor output from stability analysis

The value of N that determines transition is highly dependent on the particular geom-

etry and flow conditions of a given problem, and needs to be chosen from comparisons to

experimental data. For the Mach 6 quiet wind tunnel calculations in this study, N = 6 is

used to determine transition (see Section 2.2). Fig. 3.5 is a sample N-factor output from a

stability calculation. Each curve represents a separate disturbance (as defined by wavenum-

ber, frequency and initial location). The first curve that reaches N = 6 is the most unstable

disturbance that causes the flow transition. The streamwise location along the x-axis where

this curve intersects with the N = 6 line is the transition location along the surface. For the

plot in Fig. 3.5, transition occurs around 2.4 m.
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3.6.2 1
st and 2

nd mode – STABL

Mack [15] showed that disturbances with the form given in Eq. 3.41 can have several modes.

The first mode is analogous to the Tollmien-Schlichting waves in incompressible flow. It is

damped by wall cooling and is most amplified at an oblique angle. The second mode can be

considered a trapped acoustical wave. It is amplified by wall cooling and it is most amplified

when it is 2D. Higher modes exist, but they always have lower amplification rates than the

first or second mode.

The stability code used for these calculations is STABL (Stability and Transition Analy-

sis for Hypersonic Boundary Layers), which was developed by Heath Johnson at University

of Minnesota in the late 1990’s [20]. STABL was verified and validated in 2005 [60] and com-

pares favorably with experiments [62] and older LST codes, such as e**Malik [63]. STABL

has recently been used, with great success, to support transition experiments in the CUBRC

LENS I hypervelocity shock tunnel [64].

A sample script to run STABL in batch mode is included in Appendix C. To test for 1st

and 2nd mode instabilities, a test matrix of initial location (where the PSE marching and

eN integration begin), frequency ω and spanwise wavenumber β must be specified. STABL’s

automatic test matrix generator plots the estimated 2D first and second mode frequencies3.

The first mode disturbance frequencies are estimated based on the boundary layer thickness

and edge velocity. Second and higher modes, which represent acoustic waves, are more

accurately estimated using the characteristic time of wave travel between the wall and the

relative sonic line. Each mode has a range of unstable frequencies at which disturbances

will be amplified. The extent of the test matrix is chosen to contain the likely upstream

values of the critical disturbance frequencies. An initial strategy for creating test matrix

points is to cover the entire 1st and 2nd mode estimate curves. After the initial analysis, if it

turns out the 1st mode disturbances dominate, nonzero values of β can be added to test for

oblique waves [65]. Figs. 3.6a,b show preliminary tests for a sample design to determine the

appropriate range of ω and β. These results are generated by the “automated test matrix

generator” in STABL. Fig. 3.6a shows the N-factors with the corresponding envelope of most

32D waves have a spanwise wave number, β, equal to zero
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unstable frequencies. By comparing the trends of the 1st and 2nd mode frequency estimates

in Fig. 3.6b with the most unstable frequency at each location (green), it is apparent that

while initially 1st mode disturbances are most amplified, 2nd mode disturbances begin to

dominate after approximately 0.8 m. This is clear from the green line which roughly follows

the blue 1st mode estimate until 0.8 m, and then follows the orange 2nd mode estimate. This

seems consistent with Mack’s findings regarding sharp cone boundary layers at M = 6.8 [66].

When he compared his calculated amplification rates with the experimentally determined

rates from Stetson’s famous stability experiments [67], he found that although there were

a number of differences between them, both revealed that the only significant instability at

M = 6.8 comes from the second mode 2D waves.

Since the 2nd mode frequencies dominate, it is not necessary to examine the oblique first

modes with nonzero β. Furthermore, since 2nd mode 2D waves are more unstable than 2nd

mode 3D waves, only 2D waves need to be tested in this investigation. Frequencies that

are tested range from 5 − 500 kHz and the initial locations span the length of the contour

(which changes for each design).

(a) (b)

Figure 3.6: Frequency estimates from STABL indicate that the second mode dominates

Preliminary tests and prior investigations [29, 53] indicate that the 1st and 2nd mode

instabilities do not dominate in quiet hypersonic wind tunnels; rather, the Goertler mecha-

nism dominates the transition process. Therefore, STABL is not run as part of the original

optimization loop. STABL is used only after a set of optimal solutions are obtained, to
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ensure that the 1st and 2nd mode N-factors do indeed fall within the acceptable limit.

3.6.3 Goertler Vortices – LASTRAC

Regions of concave curvature give rise to yet another instability mechanism: Goertler waves.

These are stationary, counter-rotating vortices along the streamwise direction that nonlin-

early modify the meanflow. Wind tunnel design requires concavity at a minimum of one

inflection point in order to cancel the characteristics from the expansion section and achieve

uniform flow. One common method of delaying Goertler-induced transition along nozzle

walls is to insert a straight wall, radial flow section upstream of the inflection point of the

nozzle contour [68, 69]. Thus, the Goertler instability is not initiated until the beginning

of the concave nozzle wall, and then a slow expansion is used to achieve the desired Mach

number. The slower expansion implies larger radii of curvature that result in smaller overall

growth of Goertler vortices.

Goertler stability calculations are carried out using LASTRAC (Langley Stability and

Transition Analysis Code) [70]. LASTRAC is a state-of-the-art stability code that can

model 1st and 2nd mode, crossflow, and Goertler instabilities using LST as well as linear and

nonlinear PSE.

Figure 3.7: Streamwise curvature for each contour is used to determine Goertler growth

A sample LASTRAC input file is included in Appendix D. Goertler waves are steady, so

the frequency is set to 10−4 Hz (close to zero), but it has a range of unstable β values. The
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streamwise curvature at each station must be specified in the meanflow input, and this is

taken from the inviscid curvature values output by Sivells (Fig. 3.7). The curvature is set

to zero between the bleed lip and the throat (since Sivells does not output that portion of

the contour, and the curvature is small in that region anyways). The streamwise curvature

determines when a Goertler mode will grow, so a postprocessing code automatically runs

through the list of curvatures at each streamwise station until it reaches a concave (negative)

curvature of 10−4 m−1. Unlike the STABL input file, a separate LASTRAC input file is

required for each initial location to be tested. Six locations are tested, beginning with the

first station with curvature ≥ 10−4 m−1, denoted as station i, and at stations i + 3, i + 6,

i+9, i+12 and i+15. LASTRAC runs on a single processor, but each of the six input files

can be run simultaneously on different CPUs.

In an axisymmetric boundary layer, the use of an integer azimuthal wavenumber, n, is

more physical than an arbitrary real spanwise wavenumber β [53], so n is specified instead

of β and ranges from 35 to 210. This is equivalent to assuming a fixed number of waves

around the nozzle circumference. The corresponding non-dimensional spanwise wavenumber

is β = nl/rb, where l is the length scale and rb is the local radius. The length scale is simply

the boundary layer similarity length scale defined by l =
√

νex/ue, where the subscript e

indicates boundary layer edge values.

3.7 Optimization Software – modeFRONTIER

All of the software components are linked within the commercial optimization package mod-

eFRONTIER [71]. modeFRONTIER is a multi-objective optimization and design environ-

ment that allows easy coupling to almost any computer aided engineering tool.

3.7.1 Objective Function

The region of useful, quiet flow in a supersonic wind tunnel lies between the characteristics

marking the onset of uniform flow, and the characteristics marking the upstream boundary

of acoustic radiation from the onset of turbulence in the nozzle wall boundary layer (Fig.
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Figure 3.8: Schematic of quiet flow region in a supersonic tunnel [4]

3.8). To maximize the length of this region, the objective function is

f := max [Lquiet] (3.51)

where Lquiet is defined as Xtransition −Xuniform, where X is the axial coordinate along the

centerline (Fig. 2.2). Sivells outputs the centerline location of the onset of uniform flow,

Xuniform. However, the stability codes return the transition location along the contour,

not the centerline, since sound is radiated downstream along Mach lines from the initial

location of transition along the wall. The Mach line is determined by the Mach angle

µ∞ = sin−1
(

1

M∞

)

= sin−1
(

1

6

)

= 9.59◦ (3.52)

Xtransition along the centerline is then calculated from the (xtr, ytr) coordinates of the loca-

tion of transition along the contour according to the formula

Xtransition = xtr +
ytr

tanµ∞
(3.53)

3.7.2 Response Surface Creation

Fig. 3.9 is a workflow diagram that illustrates how the various codes are linked in mode-

Frontier. However, it is not a true optimization loop since there is no optimization algorithm

used to select each successive design. This is merely used to create a database to build the

response surface. The three Sivells input variables are specified, the length and maximum
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curvature are extracted and stored to be used later as input variables for the response sur-

face, and a quiet length, Lquiet, is returned. This is a user-specified test matrix, sampling

the design space around the points that are expected to provide the Pareto front (from Fig.

2.6).

Figure 3.9: Workflow diagram to create the response surface

Once this test matrix is finished running, a database has been created with the following

information from each design: axial length, maximum concave curvature, quiet length. A

response surface is created from this database where the axial length and maximum curvature

are treated as input parameters with the objective to maximize the quiet length. The

response surface is a quadratic polynomial created from 20 designs for the conventional

contour optimization and from 8 designs for the compound contour optimization. The

response surface is written out as a function written in C, which can be run for any set

of (length, curvature) input variables. The function then returns the response surface

value of Lquiet. Appendix E is the response surface program for the conventional contour

optimization.

Table 3.2 lists the response surface properties for both the conventional and compound

optimizations. The regression parameter R2 is calculated as follows :

R2 = 1 −

n
∑

i=1
(yi − ỹi)

2

n
∑

i=1
(yi − ȳi)

2
(3.54)
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Table 3.2: Response Surface Statistics

CONVENTIONAL COMPOUND

Maximum Absolute Error 11.042 37.058
Average Absolute Error 24.948 16.205
Maximum Relative Error 26.780% 70.519%
Average Relative Error 11.309% 34.022%
Regression 0.95996 0.87632

where yi is the real value, ỹi is the predicted value by the response surface and ȳi is the

mean of all real values. A value very close to one indicates a good synthetic model.

Figs. 3.10a,b are contour plots of the response surfaces. The legends for the response

surfaces extend from Lquiet = −200 in to Lquiet = 1000 in The reason for these unrealistic

values is that this is a purely algebraic model, and the surface does not account for error

designs – “holes” in the domain. When the response surface function encounters a steep

gradient it will continue down that gradient even if it no longer represents a physical, realistic

value. The realistic range is 0′′ < Lquiet < 54′′. The only relevant segment of the response

surface is that portion with Lquiet values that lie within this range. The rest of the response

surface is filtered out in the next step.

3.7.3 Response Surface Optimization

After the response surfaces are created, a separate optimization is run on each algebraic

surface using a genetic algorithm (GA). MOGA II is a second generation multi-objective ge-

netic algorithm included in modeFRONTIER. Genetic algorithms are very robust; however,

they require a large number of iterations in order to converge. For this reason, it would be

impractical to attempt to run a GA without a response surface, since each iteration with full

CFD/stability analysis takes hours to run. However, since the response surface is algebraic,

MOGA II runs in under a minute.

Fig. 3.11 shows the workflow diagram for the MOGA II optimization of the response

surface. The input parameters at the top are length and maximum curvature and the

objectives are to maximize Lquiet and to minimize the axial length (which is one of the

input parameters). These two objectives are on the right side of the workflow diagram.
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(a) Conventional

(b) Compound

Figure 3.10: Conventional and compound response surfaces

For each design the length and maximum curvature combination is checked against the

comprehensive tables (see Section 2.3.1) that correlate the three Sivells variables with length

and maximum curvature. If the design is found4, it is allowed to proceed to the response

surface function which calculates Lquiet. If the corresponding values are not found, it is

assumed that that particular length-maximum curvature combination corresponds to a set

of Sivells input parameters that yield an error, and a penalty function is introduced. This

function sets Lquiet to zero, regardless of the response surface value. Therefore, any infeasible

4to within a certain tolerance, since the Sivells input range is discretized to create the table. MOGA II
has a much finer discretization of the response surface, so the values never match up exactly.
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Figure 3.11: Workflow diagram for the response surface optimization

design is assigned a zero quiet length, and will lead the GA to search elsewhere in the design

space.

The run rsm script in the middle of the workflow diagram (Fig. 3.11) is the code that

1) searches for error designs, 2) runs a particular design through the response surface code

to find the “virtual” output, and 3) imposes a penalty if necessary. The optimal solutions

from this optimization are considered “virtual designs” since they are based on the response

surface and not on a full CFD/stability analysis. After the optimal virtual designs are found,

they are tested with the original Sivells-EDDYBL-GridPro-GASPex-LASTRAC loop in Fig.

3.9 to confirm that the solution is accurate and not merely a consequence of a poor response

surface.

3.8 Computing Resources

Computations are performed on a local computer cluster. The Tupolev Linux cluster is

part of the Rutgers Center for Computational Design. Tupolev contains 48 processors with

2.4 GHz speed. Each design utilizes 44 CPUs and takes approximately 15 CPU hours to
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complete. The majority of each run (∼ 12 hours) is spent converging the flow in GASPex.

LASTRAC requires almost three hours and GridPro runs in under an hour.
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Chapter 4

Automated Optimization: Results

The results of the GA optimization are displayed in Fig. 4.1. The only nozzles of interest

are those that do not reach transition and are assigned the maximum Lquiet of 54 inches.

The optimal design is then the shortest of these quiet nozzles.

(a) Conventional

(b) Compound

Figure 4.1: Pareto set for conventional and compound contours
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Virtual designs from the Pareto front are tested individually using the full CFD/stability

analysis that was used to create the response surface. The first design selected from each

plot is that in the upper righthand corner of Figs. 4.1a,b. This design corresponds to the

longest nozzle with the greatest quiet length. When that design yields a real (not “virtual”)

maximum Lquiet of 54 in, the highlighted green design to its left is tested. Subsequent designs

are extracted and tested in this manner, working along the Pareto front from the longest

nozzle towards the shortest nozzle, until a design with Lquiet < 54 in is reached. All points

to the left of this design are rejected. The shortest nozzle that meets the Lquiet = 54 in

criterion is the optimal design.

Figure 4.2: Comparison of the two optimal solutions, one from each class of contours

Since the two response surfaces are created with different sets of data, the two optimiza-

tions are essentially independent of one another, and each one contains an optimal design.

One design has a conventional contour with only one straightening region of concave curva-

ture; the other design has a compound contour with multiple regions of concavity. Both of

these contours do not reach a transition value of N = 6 within the nozzle, and are therefore

assumed to transition at the end of the contour, yielding the maximum quiet length of 54 in.

The optimal conventional contour is labeled in green as ID = 324 in Fig. 4.1a. The response

surface indicates that the quiet length for this design is Lquiet = 47.8 in with an axial length

of 4.41 m. The length and curvature characteristics of this design most closely correspond
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to a real design1 with RC = 12, η = 2, and bmach = 5.4. This combination of input values

generates a conventional contour with an axial length of 4.438 m and a maximum curvature2

of 2.965 × 10−2 m−1. This contour is created with Sivells and a full CFD/stability analysis

confirms that the quiet length is at least 54 in. The design to the left of ID = 324 is also

tested with a full CFD/stability analysis and is found to have a quiet length less than 54 in,

indicating that the nozzle transitions to turbulence. Thus, ID = 324 represents the shortest

conventional nozzle that does not reach transition, and it is 4.438 m long.

The same procedure is applied to the compound response surface in Fig. 4.1b. The

optimal design is found to be ID = 21, corresponding to a real nozzle with design parameters

RC = 20, η = 2.6, and bmach = 2.6. This compound nozzle has an axial length of 3.791 m

and a maximum curvature of 3.769 × 10−2 m−1. The response surface optimization returns

a quiet length of Lquiet = 41.5 in; however, the complete CFD/stability analysis shows that

transition is never reached.

Table 4.1: Comparison of the two optimal solutions

Conventional Compound

axial length (m) 4.438 3.791
max concave curvature (m−1) 2.965 × 10−2 3.769 × 10−2

RC 12 20
η 2 5.4
bmach 2.6 2.6

Fig. 4.2 compares the two optimal solutions. The LASTRAC N-factor curves (Fig.

4.3) provide some insight into the benefit of the compound curvature. The “hump” in

Fig. 4.3b is a direct result of the slight positive curvature that follows the first concave

region. This positive curvature has a stabilizing effect, damping out the growth from the first

concave straightening section. This allows for a steeper contour and accounts for the larger

maximum curvature value in the compound contour versus the conventional contour (Table

4.1). Steeper curvature in the compound nozzle is responsible for a more rapid expansion

1from the comprehensive table that correlates values of RC, η and bmach with axial length and maximum
curvature

2This is the maximum absolute value, since concave curvature is negative
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to the Mach 6 exit diameter, which results in a shorter nozzle. Since the compound contour

has a shorter axial length (3.791 m vs. 4.438 m) it is the optimal solution. The LASTRAC

stability curves indicate that the Goertler waves do not cause boundary layer transition.

Further stability analysis with STABL reveals that 1st and 2nd mode waves do not cause

transition either. Neither set of N-factors reaches N = 6 (Fig. 4.4), and 1st and 2nd mode

waves have significantly lower growth rates all along the nozzle. Fig. 4.5 displays Mach

number contours for the optimal nozzle design.
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(a) Conventional

(b) Compound

Figure 4.3: LASTRAC N-factor results for the optimal designs
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Figure 4.4: STABL and LASTRAC stability envelopes for the optimal design

Figure 4.5: Mach contours for the optimal nozzle design
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Chapter 5

Test Section Expansion: Statement of Problem

An important concern for the Boeing/AFOSR Mach 6 quiet Tunnel (BAM6QT) is its capa-

bility of starting in the presence of a test model. Although slender vehicles are the primary

concern in many transition experiments, blunt vehicles are also affected by transition [72]

and hence are candidates for testing in the BAM6QT [47]. Shocks emanating from the nose

of the test cone and bow shocks from blunter models interact with the boundary layer on

the tunnel wall. While disturbances in supersonic flow can only travel downstream, distur-

bances in the subsonic boundary layer flow in the test section can lead to separated flow

upstream in the tunnel nozzle [73]. Laminar boundary layers are more likely to separate

than turbulent ones, so shock/boundary layer interactions are more likely to affect upstream

flow in a quiet tunnel which has laminar boundary layers at high Reynolds numbers. Lam-

inar shock/boundary-layer interactions are thus a critical issue for determining the largest

possible model that can be started in the quiet tunnel.

Figure 5.1: Unmodified test section of the BAM6QT with model [1]
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The unmodified test section is shown in Fig. 5.1. In this study, computations are

performed for an expanded test section of the BAM6QT to determine the effect of the

model shock strength on tunnel startup (Fig. 5.2). Separation of the upstream boundary

layer is often induced when strong shocks from large and blunt models interact with the

nozzle wall boundary layer. The expansion corner of this new section would generate an

expansion fan and a shear layer. If the bow shock impinges on the shear layer downstream

of the expansion fan, the favorable pressure gradient should inhibit separation from spreading

upstream [73]. On the other hand, the shear layer may grow and effectively reduce the useful

test cross-section. The purpose of this analysis is to predict what sorts of shocks and shear

layers would result from such an expansion, and if this new design would allow larger blunt

models to be tested.

Figure 5.2: Expansion modification of the BAM6QT test section

The selection of an appropriate model to examine the benefits of the test section expan-

sion is a critical issue. Because there are no turbulent boundary layers to contaminate the

core flow, quiet tunnels are an ideal setting for transition studies. Such studies are typically

performed on sharp and blunt cones at varying angles at attack [67, 61, 18] and therefore a

cone at zero angle of attack is selected for this study. A sharp cone is characterized by two

parameters: base diameter and cone angle. The base diameter determines the blockage ratio

(i.e., ratio of projected model cross-sectional area to tunnel cross-sectional area), while the

cone angle affects the strength of the shock wave that forms on the sharp nose of the cone.
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5.0.1 Base Diameter

Subsonic tunnel testing has traditionally used the blockage ratio to determine the maximum

allowable size for a test model and to correct for blockage effects [74]. Supersonic tunnel

testing has also used blockage ratio; however, it is widely recognized that the results on

supersonic tunnel starting do not correlate simply with blockage due to the differences in

the shock/boundary layer interaction generated by different models [44]. Since there is no

universally acceptable criteria for determining the effect of model size on tunnel starting fro

supersonic and hypersonic tunnels, a fixed blockage ratio (i.e., fixed diameter) is chosen for

simplicity. A 7◦ half-angle cone with a 5.5-inch base diameter is the largest model that can

be started in the unmodified BAM6QT test section at zero angle of attack and stagnation

pressure p0 = 620 kPa (90 psia) and stagnation temperature T0 = 433K (779◦R). Therefore,

this study investigates cone models with a fixed 5.5-inch base diameter. This corresponds

to a blockage ratio of 33.3% for the original, unmodified test section, and 15.9% for the

expanded test section.

5.0.2 Cone Angle

Blockage ratio is not the sole criterion that governs the startup process in a supersonic tunnel.

If the shock wave generated by the model is strong enough, the interaction of the shock with

the boundary layer on the tunnel wall can trigger unstart. The cone angle determines the

strength of this shock; the larger the angle, the stronger the shock. This investigation

considers several cone sizes at zero angle of attack with a 5.5-inch base diameter with half-

angles ranging from 15◦ to 75◦, in order to determine how large a cone could fit in the test

section before the tunnel unstarts.
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Chapter 6

Test Section Expansion: Methodology

Six axisymmetric cases are run in total: one of the empty section, and five of the section

with 15◦, 20◦, 30◦, 50◦ and 75◦ half-angle cones with a 5.5-inch base diameter. The empty

section and the 15◦ half-angle cone have a 10◦ compression corner (Fig. 6.1a), but all other

computations use a more gradual 1◦ compression1(Fig. 6.1b).

The structured grids are generated with GridPro [54]. The domain for the empty section

consists of one zone with 23, 760 cells (100× 241) and the domains for the cone cases consist

of four zones and contain approximately 39, 000 points. Grid clustering is performed with a

stretching parameter of 1.105 and a first cell height of 10−4ft, corresponding to y+ = 0.1,

along the wall and cone surfaces in order to resolve the boundary layers (Fig. 6.2).

Time-accurate simulations are performed with GASP [55] (see section 3.4). Roe’s scheme

is used to calculate the inviscid fluxes, along with the Minmod limiter (section 3.5.2) and

MUSCL spatial reconstruction.

6.0.3 Space Discretization

Roe’s scheme is based on characteristic wave disturbances and captures stationary discon-

tinuities exactly. Roe’s method may be derived as follows. The one-dimensional Euler

equations in non-conservative differential form [59] are

∂Q
∂t + A∂Q

∂x = 0 (6.1)

1The compression angle was changed for purely historical reasons. When the computations were started it
was expected that the tunnel would be modified with a 10◦ compression ramp, as this requires a shorter section
of tunnel to be re-fabricated and installed. Later, this was changed to a 1◦ compression, and subsequent
computations were modified accordingly. This variation in geometry should not have a first-order effect on
tunnel unstart. In the vicinity of the compression waves near the compression ramp, the flow is mostly
supersonic, so the effect of these waves is essentially localized to areas downstream and should not travel
upstream and impact the region of interest (the unstart region near the 45◦ expansion).
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(a) 15◦ cone

(b) 50◦ cone

Figure 6.1: Computational domain for (a) 15◦ and (b) 50◦ half-angle cones

where Q is the vector of dependent variables

Q =



























ρ

ρu

ρe



























(6.2)

and A is the Jacobian matrix defined by

A = ∂F
∂Q =



























0 1 0

(γ−3)
2 u2 (3 − γ)u γ − 1

−h0u+ (γ−1)
2 u3 h0 − (γ − 1)u2 γu



























(6.3)

where F is the flux vector and

h0 = e+ p
ρ (6.4)
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Figure 6.2: Mesh of expanded test section with 15◦ cone

is the total enthalpy. The general Riemann problem is solved using an approximate form of

the Euler equations

∂Q
∂t + Ã(Ql,Qr)

∂Q
∂x = 0 (6.5)

where Ã(Ql,Qr) depends on the left and right states, Ql and Qr, of the general Riemann

problem and is assumed constant.

The matrix Ã is an approximation of the Jacobian matrix A and satisfies the following

four properties

1. Ã provides a linear mapping

2. Ã(Ql,Qr) → A(Q) as Ql → Qr → Q

3. For any Ql and Qr, Ã(Ql,Qr) × (Ql − Qr) ≡ Fl − Fr

4. The eigenvectors of Ã(Ql,Qr) are linearly independent

Consider arbitrary piecewise constant functions f and g which have left and right states

indicated by fl, gl and fr, gr, respectively. Identities for these functions are

∆(f + g) = ∆f + ∆g (6.6)
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∆(fg) = f̄∆g + ∆fḡ (6.7)

∆ 1
f = −∆ f

f̂2
(6.8)

where ∆f = fl − fr, ∆g = gl − gr and

f̄ ≡ 1
2(fl + fr) (6.9)

f̂ ≡
√

flfr (6.10)

The matrix Ã can be found as follows. A parameterization vector ν = (ν1, ν2, ν3)
T is

introduced

ν =
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(6.11)

which yields
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ν2
1

ν1ν2
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(γ−1)ν2
2

2γ



























(6.12)

F =
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γ +

(γ+1)ν2
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(6.13)

Since Q and F are quadratic in the elements of ν, it is possible to find matrices B and C

such that

∆Q = B∆ν (6.14)

∆F = C∆ν (6.15)

where ∆Q = Ql − Qr and ∆F = Fl − Fr.

Therefore,

∆F = Ã∆Q (6.16)

C∆ν = ÃB∆ν (6.17)

∆ν = C−1ÃB∆ν (6.18)
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and thus, Ã = CB−1

In order to determine the matrix Ã, B and C must be found.

B =



























2ν̄1 0 0

ν̄2 ν̄1 0

ν̄3
γ

(γ−1)
γ ν̄2

ν̄1
γ



























(6.19)

C =



























ν̄2 ν̄1 0

(γ−1)
γ ν̄3

(γ+1)
γ ν̄2 (γ − 1)ν̄1

0 ν̄3 ν̄2



























(6.20)

and thus

Ã =



























0 1 0

(γ−1)
2 ũ2 (3 − γ)ũ (γ − 1)

−h̃0ũ+ (γ−1)
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where

ũ ≡ ν̄2
ν̄1

=
√
ρlul+

√
ρrur√

ρl+
√
ρr

(6.22)

h̃0 ≡ ν̄3
ν̄1

=
√
ρlh0l+

√
ρrh0r√

ρl+
√
ρr

(6.23)

The quantities ũ and h̃0 are the Roe-averaged velocity and the Roe-averaged total enthalpy,

respectively. The matrix Ã(Ql,Qr) is the Roe matrix.

The eigenvalues λi and the right eigenvectors ẽi of Ã may be found directly

λ̃1 = ũ, λ̃2 = ũ+ ã, λ̃3 = ũ− ã (6.24)
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(6.25)

where ã is the sound of speed based on the Roe-averaged total enthalpy and velocity is given

by

ã =
√

(γ − 1)(h̃0 − 1
2 ũ

2) (6.26)



63

Table 6.1: Boundary Conditions

Empty Section Section with Cone

Inflow pointwise data pointwise data

Boundary layer profile: Boundary layer profile:
Eddybl Eddybl

Meanflow: Meanflow:
T0 = 433 K T0 = 433 K

P0 = 620 kPa [90 psia] P0 = 620 kPa [90 psia]
M = 6.1 M = 6.1

Re = 6.27 × 106 m−1 Re = 6.27 × 106 m−1

Outflow forced outflow forced outflow

Top no slip, isothermal 300 K no slip, adiabatic

Centerline symmetry plane symmetry plane

Cone Surface —– no slip, adiabatic

6.0.4 Time Integration

The unsteady solutions are obtained using an implicit dual time-stepping algorithm with a

time step of 10−6 s and 10 inner cycles. Implicit dual time-stepping is a two step process.

First, a time-dependent source term is added to the residual. This source term controls the

time accuracy of the solution. Second, the residual is reduced to zero while holding the

physical time constant. This step is similar to the convergence of a steady state problem.

Each case runs until unstart occurs or until is appears steady (10-20 ms).

6.0.5 Boundary Conditions

The boundary conditions are listed in Table 6.1. The inflow boundary condition is a user-

specified flow with a boundary layer thickness corresponding to a laminar boundary layer

that has been developing from the stagnation point at the bleed lip near the tunnel throat,

and a uniform Mach 6.1 freestream flow. The boundary layer profile contains 50 points for

the empty section and 40 points for the sections with cones, with a boundary layer thickness

of 0.6 in. The profile is calculated with EDDYBL [51], assuming a stagnation pressure of 90

psia, stagnation temperature of 433 K and choked flow at the throat. The meanflow at the

inflow boundary is described in 6.1.
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6.0.6 Initial Conditions

The initial conditions are chosen to approximate the actual tunnel startup process. Warm-

brod and Struck [49] describe the flow development in a Ludwieg tube as a two stage process

consisting of an expansion wave followed by a shock wave. The rupture of the diaphragm

(downstream of the test section) generates an expansion fan that propagates upstream. This

induces an initial downstream flow in the test section. When the expansion fan reaches the

tunnel throat, the flow at the throat becomes sonic and an approximately normal shock

wave is formed in the diverging section of the nozzle and propagated downstream. The

shock eventually moves to the exit of the tunnel, accelerating the flow to Mach 6 within the

test section. The initial conditions in Table 6.2, along with the inflow conditions from Table

6.1, create a shock wave that propagates into the computational domain in analogy to the

actual tunnel startup process. The flow behind the shock wave is the proper tunnel design

flow, and is determined by the inflow boundary condition. Thus, while the initial conditions

do not precisely simulate the actual tunnel starting phenomena, they qualitatively model

the second stage of the startup process (in which a shock wave travels through the test

section accelerating the flow to design conditions) and provide the proper test section inflow

conditions for the started tunnel.

Table 6.2: Initial Conditions

Empty Section Section with Cone

Pressure (lb/ft2) 4.00 6.18
Temperature (K) 29 22
Density (slug/ft3) 4.498 × 10−5 9.000 × 10−6

Velocity (ft/s) 1000 1000

6.0.7 Post Processing

The geometric parameters, x and y coordinates, and the flow variables, p, ρ,M, u, v and

entropy, are written to a data file every time step (i.e., every 10−6 s) and used to create

numerical schlieren images. The numerical schlieren technique [75] is a grey-scale picture

with a special nonlinear scale. Numerical schlieren images are contour plots of the density
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gradient along the desired plane. First, the density gradient2 is calculated using:

|∇ρ (x, y)| =

√

(

∂ρ

∂x

)2

+

(

∂ρ

∂y

)2

(6.27)

A special non-linear scale is determined using the following function, which is called the

schlieren function:

Sch (x, y) = exp (−ckS (x, y)) (6.28)

where

S (x, y) =
|∇ρ (x, y)| − |∇ρ (x, y)|0
|∇ρ (x, y)|1 − |∇ρ (x, y)|0

(6.29)

Here, |∇ρ (x, y)|0 = c0 |∇ρ (x, y)|max and |∇ρ (x, y)|1 = c1 |∇ρ (x, y)|max. Choosing values

for the constants is a bit of an art and depends on the maximum density gradient for each

frame. Different values will improve the contrast and sharpness of the image. In general,

the constants are approximately c0 = 0.002, c1 = 0.35 and ck = 0.05. The schlieren function

is then plotted in grey scale.

2x, y and ρ are dimensional
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Chapter 7

Test Section Expansion: Results

First, the flowfield in the test section is examined with and without the 15◦ half-angle cone.

The angle of the cone is then increased to determine the largest cone model that will fit in

the tunnel without causing unstart.

7.0.8 Empty Section

Fig. 7.1 is a numerical schlieren snapshot of the flowfield after 20 ms, when the flow appears

to have reached a steady state. The dark lines indicate a density gradient – e.g., shock wave,

expansion fan or shear layer. Even without any model in the test section, the expansion test

section generates a complex flowfield. A conical expansion fan occurs at the 45◦ corner and

intersects the centerline. The recirculation region is separated from the core flow by a shear

layer. Numerous weak shocks radiate from this shear layer and coalesce along the centerline

downstream of the expansion section.

Figure 7.1: Schlieren image at t = 20 ms for empty test section
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7.0.9 Section with 15
◦ Cone

Fig. 7.2 shows the flowfield in the test section with a 15◦ half-angle cone. A shear layer

appears at the 45◦ expansion corner and a series of shocks turn the flow back at the 10◦

compression corner. A recirculation region is formed in the wake of the cone and in the

expansion corner (Fig. 7.3).

Figure 7.2: Schlieren image at t = 20 ms for empty test section with 15◦ half-angle cone

Figure 7.3: Streamlines and U-velocity (ft/s) contours in recirculation regions at t = 20 ms
for 15◦ half-angle cone
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(a) Entropy

(b) Pressure (lb/ft2)

(c) Mach number

Figure 7.4: Numerical schlieren images for 15◦ half-angle cone at 20 ms superimposed on
contour plots of (a) entropy (b) pressure and (c) Mach number

In order to distinguish between shocks, shear layers, and expansion waves, it is helpful

to examine various contour plots. Entropy changes across a shear layer but not across an

expansion, and there is a noticeable change across a normal shock. Pressure changes greatly

across expansion fans and shocks, but only minimally across shear layers. Mach number

changes across all three. The structure of the flowfield is illustrated in Figs. 7.4a-c1 with

1The entropy output from GASPex in 7.4a is calculated as p/ργ , where p and ρ are non-dimensionalized
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contour plots superimposed on numerical schlieren images for the 15◦ half-angle cone at

20 ms.

The flow is unable to make the sharp 45◦ turn so a shear layer is formed and a recirculation

region exists in the extended region. A series of weak shocks gradually turn the flow at the

10◦ compression corner so that it exits normal to the outflow boundary. As the incoming

flow reaches the cone, a shock forms, which interacts first with the shear layer and then

with the boundary layer along the wall. The shock reflects of the wall, providing much of

the compression needed for the flow to turn the 10◦ corner. At the base corners of the cone

there is a small expansion fan which causes the flow to expand to M ∼ 8 (red regions in Fig.

7.4c).

A recirculation region exists behind the cone (Fig. 7.3) with a supersonic region in the

center (Fig. 7.4c). The schlieren image reveals a criss-cross pattern in the wake of the cone

(Fig. 7.2) and the pressure contours display a sequence of expansions and compression (blue

and green contours in Fig. 7.4b). The flow is moving from right to left, towards the base

of the cone, and encounters this series of expansion and compression waves. An expansion

wave accelerates the flow and reflects off the bounding shear layer as a compression wave,

which decelerates the flow and increases the pressure. The compression wave then reflects

off the shear layer as an expansion wave. This process continues in jet-like fashion, giving

rise to the criss-cross pattern. The flow is finally brought to rest by a barrel shock, which

slows the flow to stagnation conditions at the cone base.

Boundary layer transition measurements on the cone surface require uniform inflow con-

ditions upstream of the cone. Figures 7.2-7.4 indicate that the complex interactions of the

shock waves, shear layers and expansions do not generate any upstream disturbances and

therefore the 15◦ cone can be successfully tested.

by reference values. The range of pressures in 7.4b is limited to pressures below 30 lb/ft2 for the purpose of
distinguishing the pressure variation in the wake of the cone. The pressures in the red area downstream of
the compression corner exceed 70 lb/ft2 and a different choice of contours would illuminate variation in this
region as well.



70

7.0.10 Section with 20
◦ Cone

The 20◦ half-angle cone is shown in Fig. 7.5. This appears to be a stable configuration.

There is a very small upstream influence (Fig. 7.6) where the separation bubble spreads

beyond the expansion corner, but unlike with the blunter cones, this separation bubble

appears to be steady and never reaches the upstream boundary. Although the tunnel is not

unstarted, the noise radiating from any small oscillations of this separation bubble upstream

of the corner may interfere with laminar measurements.

Figure 7.5: Schlieren image of developed flowfield at 9.5 ms – 20◦ half-angle cone

Figure 7.6: U-velocity (ft/s) contours and streamlines for the 20◦ half-angle cone
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7.0.11 Section with 30
◦ -75

◦ Cones

The blunter cones appear in Figs. 7.7-7.9. A separation bubble forms at the expansion

corner and bleeds out into the uniform flow. For cones with half-angles from 30◦ to 75◦,

the bubble continues to grow until it reaches the inflow boundary, unstarting the tunnel

(Fig. 7.10). The U-velocity at the inflow boundary becomes negative, even though the

boundary condition is trying the force the flow forward. At this point, the results cease to

be meaningful and the computation is stopped.

Figure 7.7: Schlieren snapshot at 3 ms – 75◦ half-angle cone

Figure 7.8: Schlieren snapshot at 3 ms – 50◦ half-angle cone
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Figure 7.9: Schlieren snapshot at 3 ms – 30◦ half-angle cone

Figure 7.10: U-velocity (ft/s) contours with streamlines of 75◦ half-angle cone unstarting
the tunnel
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Chapter 8

Conclusion

Two main challenges in quiet hypersonic wind tunnels were investigated. First, a quiet

supersonic nozzle was optimized to achieve the longest quiet flow test region. Second, an

expansion of the test section was used to improve tunnel starting cabablities. In both cases,

results were presented that would allow a larger model to be tested – the first, affecting the

length of a model, and the second, affecting its bluntness and overall blockage ratio.

The first goal was to maximize the length of quiet flow in the test section by optimizing

the shape of nozzle to delay boundary layer transition. A quiet Mach 6 wind tunnel nozzle

was designed using an automated optimization methodology. Inviscid design, boundary

layer calculations, grid generation, full Navier-Stokes solutions, and parabolized stability

analysis were linked within an optimizer. Three inviscid parameters were optimized to

obtain the shortest possible nozzle that does not reach N = 6 transition. A trade study

revealed two classes of contours based on their curvature profiles. Conventional contours

contained a single inflection point, whereas nozzles with compound curvature contained

multiple inflection points. A response surface was created for each class of contours and

a genetic algorithm was used to optimize the resulting algebraic surfaces. The Goertler

instability, which is caused by concave curvature, dominated the transition process in all

of the axisymmetric, hypersonic nozzles. The optimal nozzle was found to contain a slight

amount of convex curvature, which helped to suppress Goertler growth. This is consistent

with previous results for incompressible flow [23].

The second goal was to evaluate the startup characteristics of a proposed modification

for the test section of the BAM6QT. The diameter of the test section was expanded so that

shock waves from the nose of a model interacted with a shear layer before hitting the wall

boundary layer, which was suggested as a way to prevent tunnel unstart in the presence
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of blunt models. Several cone sizes were investigated to determine if they would unstart

the tunnel. It was found that a 15◦ half-angle cone with fixed base diameter fit into the

modified section without causing any upstream separation, but the 30◦ − 75◦ half-angle

cones unstarted the tunnel. The 20◦ half-angle cone appeared to be stable and the separation

bubble that formed in the corner moved only slightly upstream and remained in place. Even

though the tunnel was not unstarted, this separation bubble may generate noise that could

interfere with laminar mearsurements. This upstream effect was not evident in the 15◦ half-

angle case, which was an improvement over the 7◦ half-angle cone used in the unmodified

BAM6QT test section.
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Appendix A

Input File for Sivells

sivells m6 0

1.400 1716.563 1.000 1.000 1.000 1.000 0.000 1000.000

2.000 7.000 0.000 2.500 6.000 0.000 0.000 10.000

81 41 0 10 0 81 97 120 99 0 -1 0 10 0 -41 19
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Appendix B

Input File for EDDYBL

IUNIT1 = 2

IUNIT2 = 7

IUNIT3 = 8

IUNIT4 = 9

IUNIT5 = 10

IUPLOT = 11

IUTYPE = 0

MODEL = -1

NVISC = 0

ALPHA = 5.198333E-01

BETA = 7.200000E-02

BETAS = 9.000000E-02

SIGMA = 5.000000E-01

SIGMAS = 5.000000E-01

PRT = 8.900000E-01

CEPS1 = 3.000000E-01

CEPS2 = 1.000000E+00

CMU = 1.600000E+00

SIGMAE = 1.680000E-02

SIGMAK = 3.000000E-01

PSIEPS = 2.600000E+01

ALPHAH = 7.745455E-01

BETAH = 1.963636E-01
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GAMMAH = 4.945454E-01

CC1 = 1.800000E+00

XIS = 0.000000E+00

XMT0 = 2.500000E-01

CONE = 0.000000E+00

DS = 1.000000E-05

G = 1.400000E+00

PR = 7.200000E-01

PT1 = 2.160000E+04

R = 1.716000E+03

REK = 1.000000E+00

RMI0 = 5.912702E-02

SGN = -1.000000E+00

SSTOP = 1.555900E+01

SU = 1.985999E+02

TT1 = 7.794000E+02

USTOP = 0.000000E+00

VISCON = 2.270000E-08

VISPOW = 1.500000E+00

WAVE = 0.000000E+00

XK = 1.040000E+00

XMA = 5.000000E-01

ZIOTAE = 1.000000E-06

ZIOTAL = 1.000000E-02

IBODY = 2

IBOUND = 0

IEDGE = 206

IEND1 = 999

ISHORT = 1

J = 1
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KEBC = 0

KODWAL = 2

MSTART = 2

NFLAG = 1

NUMBER = 500

PROVAL(1) = 1.000000E+10

PROVAL(2) = 1.000000E+10

PROVAL(3) = 1.000000E+10

PROVAL(4) = 1.000000E+10

PROVAL(5) = 1.000000E+10

PROVAL(6) = 1.000000E+10

PROVAL(7) = 1.000000E+10

PROVAL(8) = 1.000000E+10

PROVAL(9) = 1.000000E+10

PROVAL(10)= 1.000000E+10

ALAMM = 1.000000E+00

CF = 4.566321E-02

DELTA = 3.954203E-06

H = 4.600000E+00

R2D = 1.000000E+00

RETHET = 2.460000E+01

SI = 1.000000E-05
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Appendix C

Input File for STABL

#!/usr/bin/perl

# ****************************************************************

# PSE-Chem linear batch script generated automatically

# ****************************************************************

use strict;

use Psechem scripting;

# Create a new Psechem scripting object

my $pse= Psechem scripting⇒new(-mean flow file⇒“stabl meanflow.psx”);

# Set the output directory

$pse⇒output dir(“PSE results”);

# General STABL settings

$pse⇒runtime env(STABL BL IMET ⇒“3”,

STABL BL JMAX ⇒“-1”,

STABL BL JMIN ⇒“4”,

STABL BL RBL ⇒“0.995”,

STABL SH DETDPM ⇒“0.02”,

STABL SH DETJMP ⇒“0”,

STABL SH DETVAR ⇒“Default”);

# Set MPI parameters if needed

$pse⇒mpi params(-mpirun⇒“ /stabl/lam-mpi-pgi/bin/mpirun”,

-np⇒47);

# Set PSE parameters if needed

$pse⇒pse params(iaxi⇒“1”,
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ichem⇒“0”,

ishock method⇒“1”,

ivib⇒“0”);

#2D second mode

$pse⇒pse batch add mat(-betas⇒“0”,

-omegas⇒“5-90;22”,

-slocs⇒“0.1- 4.4 ;90”,

-title⇒“Row 1”);

$pse⇒pse batch add mat(-betas⇒“0”,

-omegas⇒“100-500;30”,

-slocs⇒“0.1- 4.4 ;90”,

-title⇒“Row 2”);

#PSE-Chem solver in batch mode on these cases

$pse⇒run psechem();

exit;
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Appendix D

Input File for LASTRAC

// sample input file for lastrac for Gortler instability

num normal pts = 101

strm curvt = true //must turn on streamwise curvature for Gortler

transv curvt = true //cannot ignore transverse curvature if using

//integer azimuthal wave number, nwave axisym beta

use extrap mprof = false // Navier-Stoke mean flow, avoid extrapolation

mflow filename = “./meanflow.out”

mflow storage type = memory storage

marching method 2d = along station

init station = 333

final station = 700

solution type = marching pse solution

freq unit = in hertz freq

beta unit = nwave axisym beta //using integer azimuthal wavenumber

// Gortler modes are steady state (zero frequency)

// use a very small value for frequency

freq = 32*1.e-4

beta = 35,40,45,50,55,60,65,70,75,80,

85,90,95,100,105,110,115,120,130,140,

145,150,155,160,165,170,175,180,185,190,200,210

// allows a small negative cr for gortler

cr min = -0.004, cr max = 1.2

wall dpdy ratio min = 1.e-12 //mean flow a little noisy, this is necessary
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//to avoid filtering out a good mode

np growth rate min = -0.01 //accept stable modes (check the manual)

alpha i max = 0.01 //filter out upstream modes with large growth rates

//qp approx = true

pns approx = true // avoid numerical instability due to small step size

use l2alpha = false //don’t use l2alpha for noisy meanflow

output eigenfunction = true
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Appendix E

Response Surface Code for Conventional Contours

/*— modeFRONTIER Response Surface —————-

Code Created by

modeFRONTIER - (c) ES.TEC.O srl

modeFRONTIER Version modeFRONTIER 4.0 b20071211

Date Mon Sep 15 17:53:40 EDT 2008

Project Name rsm conventional

Operating System Linux 2.6.18-6-amd64 i386

Java (SDK/JRE) Version 1.6.0 01

Java Vendor Sun Microsystems Inc.

Java Vendor URL http://java.sun.com/

User Name hadassah */

/*————————————————–

x[0] corresponds to variable length

x[1] corresponds to variable max curv

————————————————–*/

/*————————————————–

Response Surface Name : L quiet SVD 0

Response Surface Type : Polynomial SVD

————————————————–*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>
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void svd(double x[], double *y);

int main(){

double x[3];

double *y;

x[0]= 4.715e+00; /* input 1: axial length */

x[1]= -1.869e-02; /* input 2: maximum concave (negative) curvature */

svd(x,y);

exit(0);}

void svd(double x[], double *y){

// SVD data

const double xRange[2][2] = {

{ 1.488524, 4.720294},

{ -0.29456633858267717, -0.01879442913385827};}

const double yRange[2] = { 8.01496781077729, 53.8};

const int alpha[3][3] = {

{ 0, 0},

{ 1, 0},

{ 0, 1}

};

const double b[3] = { -0.03536767819914001, 0.6640549682306915, 0.3055029381760977};

int i, j, k;

double xn[2];

double yn, yy;

double basis;

double point[2];

// normalize input

for (i=0; i<2; i++) {

xn[i] = (x[i]-xRange[i][0])/(xRange[i][1]-xRange[i][0]);}

// perform computations

yn = 0.0;
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for (i=0; i<3; i++) {

basis = b[i];

for (j=0; j<2; j++) {

for (k=1; k≤alpha[i][j]; k++) {

basis *= xn[j];}}

yn += basis;}

// scale output

yy = yRange[0]+(yRange[1]-yRange[0])*yn;

// *y = yy;

printf(“L quiet based on SVD: %f m.”,yy);

return;

}
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