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ABSTRACT OF THE DISSERTATION 

The spatial distribution of lead in urban residential soil and correlations with 

urban land cover of Baltimore, Maryland 

by KIRSTEN SCHWARZ 

Dissertation Co-Directors: 

Dr. Steward T.A. Pickett 

Dr. Richard G. Lathrop, Jr. 

 

Lead contamination of the urban environment is not a new phenomenon.  A great 

deal of research has focused on the health effects of lead-based paint.  Less 

attention, however, has been given to the potential problem of soil contaminated 

with lead from the past use of lead-containing products such as lead-based paint 

and leaded gasoline.  Identifying areas of high contamination is necessary in 

order to prioritize soil remediation and public health efforts.  This requires a 

comprehensive understanding of a highly heterogeneous and dynamic system.   

This research addresses whether land use or land cover is a better predictor of 

lead concentrations in soil.  Specifically, this research addresses whether 

landscape features, including trees, lawns, buildings, and roads, can be used to 

predict lead concentrations in soil.  Through a method of rapid assessment of soil 

lead concentrations, I gathered spatially explicit data from urban residential yards 

to generate several models that predict the spatial distribution of lead in soil.  

Using the results of these models, potential inequities associated with the 
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modeled spatial distribution of lead in soil and socio-demographic features were 

explored.   

The results of this study suggest that the distribution of lead in urban residential 

soils is more closely correlated with features of urban land cover compared to 

metrics of land use.  Specifically, the spatial distribution of lead in urban 

residential soils is strongly influenced by three factors: housing age, distance to 

the major road networks, and distance to built structures.  Through the 

comparison of various spatial models, this research demonstrates that a greater 

amount of variation in the data is explained by machine learning techniques 

compared to traditional modeling techniques.  In addition, important correlations 

between the modeled distribution of lead in soil and socio-demographic features 

such as race and poverty have been identified.  Specifically, a greater amount of 

soil contamination is predicted to be present in high poverty areas.   

This research contributes to the growing field of urban ecology by advancing our 

knowledge of how spatial heterogeneity affects the distribution of a critical 

pollutant in urban systems.  This work also tests the suitability of using land cover 

as a predictive ecological variable. 
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INTRODUCTION 

In many ways the story of lead poisoning in the United States is a public health 

success.  The ban on lead containing products resulted in dramatic decreases in 

the blood lead levels of children.  Therefore, many are surprised to learn that 

lead continues to be a current public health threat with children still affected by 

the legacy of lead in the environment.  Lead's toxicity combined with its persistent 

nature and widespread use set the stage for a serious and long term public 

health issue. 

Many sources of lead can contribute to elevated blood lead levels in humans.  

One important source that has not gained much attention is elevated levels of 

lead in urban soils.  Lead from deteriorating lead-based paint and leaded 

gasoline has polluted many urban soils.  While we know that lead concentrations 

in soil can be influenced by features in the landscape, we need more information 

regarding what features are most important to the spatial patterning of lead and 

how those features together with the larger landscape context form the patterns 

observed in the field.  Ecologists can contribute to our understanding of lead 

contaminated soil by using the tools of landscape and ecosystem ecology to 

examine relationships between urban ecosystem structure and the ecosystem 

function of lead retention.  

With the United States Department of Health and Human Services declaring the 

elimination of childhood lead poisoning a national health priority, many states 

have committed to eliminating childhood lead poisoning by 2010.  In order to 
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meet this goal, there is a need to focus on less concentrated and widely 

dispersed sources of lead in the environment.  Models depicting the spatial 

distribution of lead in soil are necessary in order to identify areas of high 

contamination in the landscape and to protect vulnerable populations.   

The overarching question of this research is: what features of the urban 

landscape contribute to the spatial patterning of lead in urban residential soils?  I 

approach the question of lead contamination in soil by first examining 

correlations between lead in soil and urban land use and cover.  Specifically, 

chapter one addresses whether land cover, in contrast to land use, can serve as 

a useful predictor of lead levels in soil.  Chapter one also examines the 

importance of legacies to the spatial patterning of current concentrations of lead 

in soil by considering both present land cover and land cover during peak 

deposition of lead.   

Next, both intensive and extensive sampling of urban soil was conducted to 

examine patterns between lead in soil and individual landscape features.  

Chapter two examines the contribution of both fine scale landscape features, 

such as trees, lawns, and buildings, and the larger landscape context, including 

road networks and housing age, to the spatial patterning of lead.  While much is 

known regarding the effect of individual features and landscape scale patterns of 

lead deposition, little is known about the combined effect of fine scale and 

landscape scale patterns.  Chapter two also tests the assumption that lead is 

concentrated at the surface of soil.  Finally, chapter two examines the 

contribution of different lead sources to the urban environment. 
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Building on the results from chapter two, in chapter three I present three 

empirical models in a Geographic Information System and test their validity using 

an independent dataset.  All three models use readily available data for urban 

areas to model the distribution of lead in residential soils.   

Partnering the results from the empirical model with census tract data, chapter 

four examines potential correlations between the modeled distribution of lead in 

soil and social characteristics.  Specifically, I examine race and poverty rates to 

address whether communities of color and economically disadvantaged 

communities are disproportionately exposed to lead pollution in soil. 
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CHAPTER 1. CORRELATIONS BETWEEN PRESENT AND HISTORIC LAND 
COVER AND LEAD CONCENTRATIONS IN URBAN SOILS OF BALTIMORE, 
MARYLAND USA 
 
 

Abstract 

The inextricable link between ecological structure and function is a fundamental 

principle of landscape ecology.  However, structure and function describe 

different aspects of a landscape.  Land cover, or structure, defines the landscape 

features that are present, while land use, or function, describes their utility.  

Although it is widely assumed that land use is a predictor of ecosystem services, 

common measures of land use often conflate structure and function.  Thus, the 

assumed link between land use and services may be inherently flawed when 

ecosystem services are primarily dependent on ecological structure.  Urban soils 

act as a sink for anthropogenic lead.  Previous studies in Baltimore, MD have 

found that this ecosystem service of lead retention shows no relationship to land 

use as described by an Anderson Level II land use classification.  I test the 

hypothesis that in contrast to land use, land cover describing ecological structure, 

may be a better predictor of lead in urban soils by partnering an urban land cover 

classification scheme called HERCULES (High Ecological Resolution 

Classification for Urban Landscapes and Environmental Systems) with soil lead 

data collected in 2000 for the Urban Forest Effects (UFORE) Model.  This 

comparison was made using recent (2004) and historic (1968) imagery to test 

whether current soil lead patterns correlate more strongly with present land cover 

or land cover during peak deposition from automobiles which occurred in the late 

1960s and early 1970s.  A statistically significant positive correlation was found 
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between lead in soil and 2004 building (p = 0.0287, r2 = 0.0386) and pavement (p 

= 0.0078, r2 = 0.0566) cover.  Bare soil, lawns, and trees showed no relationship.  

Historic land cover from 1968 showed a similar pattern with a statistically 

significant positive correlation between lead in soil and building (p = 0.0004, r2 = 

0.197) cover.  Although not statistically significant, lead in soil and 1968 

pavement cover were also related (p = 0.0641, r2 = 0.0589).  While the r-squared 

values are low, suggesting only a small percentage of the variation can be 

accounted for in correlations with one land cover type, these data support the 

idea that the distribution of lead in urban soils is dependent on the spatial pattern 

and density of certain landscape features.  These data also highlight the 

importance of historic land cover in examining current patterns of a persistent 

environmental chemical.    
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Introduction 

Lead, a naturally occurring element present in very small quantities in the Earth's 

crust, has found its way into modern society in numerous ways.  The two main 

anthropogenic sources of lead are lead-based paints and leaded gasoline.  The 

widespread use of these two products has resulted in contamination of the urban 

environment.  Lead in the environment is a potential public health issue, given 

that lead, a heavy metal, is a potent neurotoxin (Silbergeld 1992).  Urban soils 

act as a sink for anthropogenic sources of lead in the environment (Wong et al. 

2006).  Therefore, describing the spatial distribution of lead in urban soils is a 

goal of both the public health community and ecologists.  A first step to 

describing the spatial distribution of lead in soil is testing the assumption that 

land use is a predictor of ecosystem services, specifically lead retention in urban 

soils.  The following research addresses whether land use or land cover is a 

better predictor of lead concentrations in urban soil.       

 

Lead's chemical and physical properties made it invaluable during the early 20th 

century.  Thomas Midgley Jr., while working as a chemist for General Motors, 

discovered that the addition of Tetra-Ethyl lead eliminated engine knocking.  This 

discovery spurred the formation of the Ethyl Corporation, which was followed by 

the worldwide use of leaded gasoline.  Although the problem of engine knocking 

was solved, the public health and environmental trade-offs were severe with lead 

persisting in the environment more than 20 years after its widespread use in the 

United States.  The addition of lead to gasoline from 1920-1986 resulted in the 
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release of 4 to 5 million metric tons of lead into the atmosphere (ATSDR 1988).  

It is estimated that 75% of lead from gasoline was deposited along roadways via 

exhaust with the remaining 25% staying in the engine and/or oil (ATSDR 1988).  

Lead is found in large quantities in the soil adjacent to roadways (Lagerwerff and 

Specht 1970) with a precipitous decline observed with greater distances from the 

road (Motto et al. 1970, Wang et al. 2006).  Since urban areas, including 

residential neighborhoods, exhibit both a higher density of roads and increased 

traffic volume, it is not surprising that lead is a common pollutant found in urban 

soils.   

 

Beginning in the late 19th century, lead was also added to some paints as a 

pigment and to increase durability.  The amount of lead in paint changed during 

the time period it was used (1884-1978), varying from 1-50% lead by dry weight 

(Browne and Laughnan 1953, Shannon 1996).  Lead-based paints that contain 

more than 0.06% lead were banned for residential use in 1978 (United States 

Department of Housing and Urban Development, Legislative history of lead-

based paint, hud.gov).  The legacy of lead-based paint, however, remains, 

primarily due to the impressive pervasiveness of lead-based paints.  An 

estimated 24 million dwellings built before 1978 contain some lead-based paint 

(United States Department of Housing and Urban Development, Lead, hud.gov).   

When interior and exterior paint deteriorate over time, especially on friction 

surfaces like windowsills and door jams, it chips and peels, finding its way into 

the soil surrounding homes.  
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In addition to its pervasiveness, lead is a known neurotoxin that is especially 

dangerous to certain populations, including children under the age of six and 

pregnant women.  Lead contamination of the urban environment remains one of 

the largest public health concerns facing urban populations, with approximately 

310,000 children aged 1-5 affected by lead poisoning in the US during the 1999-

2002 survey period (CDC 2005).  The Centers for Disease Control and 

Prevention (CDC) level of concern for blood lead levels (BLLs) has been lowered 

by 88% over the last 40 years (Miranda et al. 2002) and currently stands at 10 

µg/dL (CDC, Standard surveillance definitions and classifications, cdc.gov).  

Some have argued for a reduction in the current standard from 10 to 2 µg/dL 

(Gilbert and Weiss 2006) citing studies that demonstrate BLLs below the current 

CDC level of concern can result in intellectual impairment (Lanphear et al. 2000, 

see also Koller et al. 2004).  Children and pregnant women are not the only 

populations affected by elevated lead levels.  Recent studies have highlighted 

the many adverse health effects experienced by adults and aging populations 

(Payton et al. 1998, Schwartz et al. 2000, Stewart et al. 2006).  In addition, the 

burden is not equally distributed among socio-economic classes, with low income 

minority children living in older homes or urban areas more likely to be affected 

by elevated BLLs (CDC 1997, CDC 2005).  Although residents of more rural 

areas are not immune to anthropogenic lead contamination, urban areas are 

disproportionately affected by consistently higher lead poisoning rates compared 

to national averages.  For example, the incidences of lead poisoning in 
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Cleveland, Providence, Philadelphia, Buffalo, Milwaukee, Chicago, Detroit, St. 

Louis, and Baltimore all exceed the national average (Environmental Health 

Watch, Childhood lead poisoning, ehw.org).  This is especially pertinent 

considering 80% of the US population (United States Census Bureau, 

Geographic Comparison Table, census.gov) and 50% of the global population 

(The United Nations Population Fund, Linking population, poverty, and 

development, unfpa.org) live in cities.   

 

While soil serves as a sink for anthropogenic lead, it may also be a source of 

lead contamination to human populations under certain environmental conditions.  

However, research on lead and lead poisoning has largely focused on lead-

based paint.  While lead-based paint is indisputably a major contributor to 

childhood lead poisoning, soil cannot be overlooked.  Lead in the form of both 1) 

deteriorating lead-based paint and 2) lead in soil and dust from leaded gasoline 

and lead-based paint can have direct effects on public health.  Several studies 

have concluded that soil is an important contributor to children's lead burden 

(Duggan and Inskip 1985, Mielke 1997).  Supporting this idea is the revealing 

pattern that cities with greater concrete coverage, like Manhattan, have lower 

percentages of children with elevated BLLs compared to cities with more 

exposed soil, for example, New Orleans and Philadelphia (Mielke 1999).   

 

Lead in soil comes from multiple sources and cannot be explained by only one 

variable.  For example, soil lead patterns in Baltimore cannot be explained by 
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paint alone.  In fact, in large cities, soil lead levels have been found to correlate 

strongly with traffic patterns (Kelly et al. 1996).  This is especially important 

considering that lead is emitted from automobiles in the form of small particles.  

Smaller particles of lead pose a greater health threat since they are more easily 

absorbed in the gastrointestinal and pulmonary tracts (Miranda et al. 2002).  Soil 

can also be an important indoor contaminant when it is tracked into the home 

(Caravanos et al. 2006).   

 

The public health community has historically focused on children consuming 

lead-based paint chips as a pathway for childhood lead poisoning.  However, 

lead can be transferred to humans by a variety of pathways.  Auto and industrial 

emissions can be inhaled via ambient air (USEPA 2006).  Soil lead from auto 

emissions and paint can be inhaled, ingested directly, incorporated into house 

dust that is ingested or inhaled, adsorbed to plants that are eaten by humans, or 

taken up by certain species of plants known as hyper-accumulators and then 

consumed by humans.  Children, who exhibit pica, or cravings for non-food 

items, are especially vulnerable to soil lead exposure.   Public awareness of 

leaded dust and soil as potential pathways for human exposure is lacking.  A 

public health survey on caregivers’ knowledge of childhood lead poisoning 

showed that while 61% of participants identified eating paint chips as a source of 

lead poisoning, only 15% identified lead paint dust and less than 3% identified 

soil (Mahon 1997).  This is in stark contrast to studies that have identified soil as 

an important pathway of human exposure (Mielke and Reagan 1998).   
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Lead is a chemically "sticky" molecule. Given the right soil properties, lead can 

remain in the soil for a very long time with some estimates of residence time 

greater than 100 years (Reiners et al. 1975, Smith and Siccama 1981).  Even in 

competitive situations where other metals are available in the soil, lead strongly 

adsorbs to soil (Gomes et al. 2001).  Lead binds to organic matter and oxides of 

manganese and iron in the soil (Yesilonis et al. 2008).  This is especially 

important in residential areas given that organic matter is generally higher, 

especially in older turf grass systems, compared to native soils and some other 

urban land uses (Pouyat et al. 2008).  Soil pH is also an important factor.  Neutral 

and alkaline soils have fewer hydrogen ions and thus more available sites for 

lead to bind.  Acidic soils on the other hand have a greater concentration of 

hydrogen ions, which generally translates to lead being more mobile in the soil 

(Elless et al. 2007).   

 

In order to facilitate remediation efforts, the spatial pattern of lead in soil must be 

identified.  While geospatial mapping of contamination accomplishes this task it is 

time intensive and costly.  Therefore, there is a need to identify strong predictive 

variables so that one can calculate the spatial distribution of lead contamination 

in soil.  This would allow for remediation efforts to be concentrated in the most 

highly polluted areas.  The question remains as to whether land use, a functional 

variable, or land cover, a structural variable, is a better predictor of lead levels in 

urban soils.   
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Previous work in Baltimore, Maryland has shown that no correlation exists 

between lead levels in soil and land use as defined by a well known land use 

classification scheme called Anderson Level II (Pouyat et al. 2007).  Specifically, 

the authors examine whether various land use categories, including commercial 

or transportation, industrial or urban open, unmanaged forest, park or golf 

course, residential, and industrial were correlated with lead concentrations in 

surface soils (0-10 cm).  An ANOVA demonstrated that none of the land use 

categories were statistically significant at the 0.05 probability level.  The authors 

conclude that the lack of correlation between land use and heavy metal 

concentrations in soil suggests “that these elements are more related to site 

history and the spatial arrangement of contaminant sources in urban landscapes” 

(Pouyat et al. 2007, p. 1017).  Commonly-used land use classifications are not at 

the appropriate categorical resolution to identify landscape features that may be 

important contaminant sources or sinks of anthropogenic lead.  In addition, 

commonly-used land use classifications do not exhibit the fine scale resolution 

necessary to address the spatial arrangement of contaminant sources.  

Therefore, it is necessary to describe the landscape in such a way that accounts 

for 1) landscape features that may be important sources and/or sinks for 

anthropogenic lead and 2) fine scale heterogeneity that may be important to the 

spatial patterning of lead in soil. 
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Here I test the hypothesis that land cover, as defined by a new land cover 

classification scheme called HERCULES (High Ecological Resolution 

Classification for Urban Landscapes and Environmental Systems, Cadenasso et 

al. 2007), is a better predictor of lead concentrations in soil.  Earlier studies 

support this hypothesis by demonstrating that individual landscape features are 

important to lead sequestration in soil.  For example, “splash zones” close to 

heavily traveled roads exhibit elevated lead levels (Lagerwerff and Specht 1970).  

Lead adheres to the surface of buildings and other structures and can be rinsed 

to the soil near the foundation by rain, resulting in elevated lead levels at the 

foundations of buildings, even those with no history of lead-based paint use 

(Mielke 1999).  Lead can also be scrubbed out of the atmosphere by vegetation.  

Weathers et al. (2000) found a difference between coniferous and deciduous 

vegetation, with high-elevation coniferous forests exhibiting higher soil lead 

concentrations, supporting the idea that conifers are more efficient at removing 

gases and particulates from the atmosphere.  All of these landscape features - 

roads, soil, buildings, and trees - are present in the urban matrix and can affect 

lead sequestration.  What remains unknown is the collective importance of these 

different landscape features and which structures are most important in 

predicting lead sequestration in urban soils.  By partnering existing soil lead data 

from Baltimore, Maryland with urban land cover data, we can begin to address 

these questions.    

 

Methods 
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In order to test the hypothesis that land cover, in contrast to land use, is a better 

predictor of lead concentrations in soil, I partnered existing soil lead data that 

was collected in 2000 as part of the Urban Forest Effects Model (United States 

Department of Agriculture Forest Service, Urban Forest Effects Model, fs.fed.us) 

with urban land cover data that was generated using the HERCULES 

(Cadenasso et al. 2007) land cover classification.  Below the individual datasets, 

including soil lead, HERCULES, and the aerial photographs, are described in 

more detail. 

 

Data - Soil Lead 

Soil lead data were available from study plots (n = 125) that were established in 

1999 as part of the Baltimore Ecosystem Study (BES).  Data collected from the 

plots were originally used to calibrate the Urban Forest Effects (UFORE) Model.  

The UFORE model was developed by David Nowak of the United States 

Department of Agriculture (USDA) Forest Service, Northeastern Research 

Center to characterize the structure of urban forests.  UFORE plots in Baltimore 

City were selected using a stratified random sampling scheme.  Plots were 

stratified by land use with type corresponding roughly to Anderson Level II land 

cover classes (Anderson et al. 1976) and weighted by area.  The distribution of 

plots by land-use type was: commercial (n = 2); industrial (n = 3); institutional (n = 

10); transportation right-of-ways (n = 7); high density residential (n = 19); medium 

density residential (n = 33); golf course (n = 3); riparian (n=2); park (n = 10); 

urban open (n = 10); and forest (n = 26).  With the intended goal of characterizing 
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urban soils, composite soil samples were collected at the UFORE plots from the 

surface 10 cm in the summer of 2000 (Pouyat et al. 2007).  The samples were air 

dried and passed through a 2 mm sieve.  Samples were acid digested using a 

modified USEPA method 3050B (United States Environmental Protection 

Agency, Method 3050B, epa.gov) at the BES and University of Maryland, 

Baltimore County lab.  The digested samples were filtered and sent to Cornell 

University Nutrient Analysis Laboratory where they were run on an Inductively 

Coupled Plasma (ICP) and analyzed for Al, Ca, Cd, Co, Cu, Cr, Fe, K, Mg, Mn, 

Mo, Na, Ni, P, Pb, S, Ti, V, and Zn (Pouyat et al. 2007).   

 

Data - HERCULES 

Most common land use classification schemes have not been able to capture the 

rich spatial heterogeneity that is characteristic of urban areas.  Urban residential 

areas are often classified as simply "urban" in standard land classification 

schemes (Cadenasso et al. 2007).  This indicates very little about the ability of 

that landscape to retain important environmental pollutants such as lead.  

Cadenasso et al. (2007) developed a new object-based land cover classification 

called HERCULES.   HERCULES characterizes urban structure based on the 

composition of three landscape features: buildings, surface material, and 

vegetation (Figure 1).  Object-based classifications have been proposed as 

alternatives better suited to capture the spatial heterogeneity of urban areas 

compared to traditional pixel-based techniques.  Studies comparing traditional 

pixel-based techniques to object-based classifications have shown improved 
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classification accuracy in urban areas (Felipe et al. 2003, Flanders et al. 2003, 

Tadesse et al. 2003, Moeller et al. 2004).  HERCULES classifies land cover, 

keeping structure separate from function.  This allows examination of individual 

landscape features and their contribution to lead retention in urban soil.  Thus, 

this research moves beyond the traditional budgetary approach of studying what 

is moving in and out of a defined system, and instead, focuses on the specific 

features of the system that control the ecosystem service of lead retention.  

 

Data - Aerial Photos  

False-color infrared aerial photos of Baltimore City taken in August 2004 were 

used in this study.  These photos were obtained in digital format and did not 

require any post processing.  Historical black and white aerial photos of 

Baltimore City from March 1968 were acquired from the Baltimore City 

Department of Planning.  These photos represent Baltimore’s land cover during 

peak deposition from leaded gasoline use in automobiles, which was estimated 

to occur during the late 1960s and early 1970s (Mielke 1999).  The historical 

photos were scanned and georeferenced at the University of Vermont's Spatial 

Analysis Lab in 2009 using ArcGIS 9.3. 

 

GIS Analysis 

Within a Geographic Information System (ArcGIS 9.3), I spatially joined the 

UFORE soil data to the HERCULES land cover classification system for the 2004 

photographs to examine possible correlations between individual landscape 
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features and lead levels in soil.  A 30 meter radius buffer was added to each of 

the 125 UFORE soil-sampling points.   The distance of 30 meters was selected 

based on literature that has documented an increase in soil lead concentrations 

adjacent to major roadways (Motto et al. 1970, Ordonez et al. 2003, Wang et al. 

2006).  Within the 30 meter buffer, individual landscape features as defined by 

HERCULES (bare soil, coarse vegetation, fine vegetation, buildings, and roads) 

were classified using a heads-up digitizing technique (Figure 2).  This method 

was also applied to the 1968 photographs; however, only a subset of the 

Baltimore City 1968 aerial photographs was available for analysis.  Imagery from 

1968 was available for 59 of the UFORE study plots.  Area was calculated for the 

individual landscape features within each buffer using the Xtools Pro extension in 

ArcGIS (Data East 2003).  Next, the total area for each land cover type was 

calculated within each 30 meter buffer and assigned the associated soil lead 

concentration from the UFORE plot.  Single factor regression analyses on 

individual land cover types and lead concentrations were performed using JMP 

statistical software (SAS Institute 2007).   

 

Results  

For the 2004 aerial photos, a statistically significant positive relationship between 

lead concentrations in soil and building (p = 0.0287, r2 = 0.0386) and pavement 

(p = 0.0078, r2 = 0.0566) cover was found (Figure 3).  Bare soil (p = 0.6136, r2 = 

0.0021), coarse vegetation (p = 0.1370, r2 = 0.0180), and fine vegetation (p = 

0.2978, r2 = 0.0089) showed no relationship.  For the 1968 aerial photos, a 
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similar pattern was discovered.  A statistically significant positive relationship 

between lead concentrations in soil and building (p = 0.0004, r2 = 0.197) cover 

was found (Figure 4).  There appears to be a relationship between lead in soil 

and pavement cover; however, it was not statistically significant (p = 0.0641, r2 = 

0.0589).  Bare soil (p = 0.4004, r2 = 0.0124), coarse vegetation (p = 0.1410, r2 = 

0.0376), and fine vegetation (p = 0.4276, r2 = 0.0111) showed no relationship.   

 

Discussion 

By partnering existing soil lead data with land cover data, this research tests the 

hypothesis that land cover is a better predictor of lead concentrations in soil 

compared to land use.  The results support the idea that certain landscape 

features, specifically pavement and building cover, are important to the spatial 

patterning of lead in soil.  The relationship between lead in soil and building and 

pavement cover was expected given that buildings and roads represent the two 

main anthropogenic sources of lead to the environment: lead-based paint and 

leaded gasoline.  However, the relationship between lead in soil and land cover 

features does not account for much of the variation in the data, supporting earlier 

claims that additional factors may be more important to the spatial patterning of 

lead in soil (Pouyat et al. 2007).  Even though the relationship is not strong, 

evidenced by low r2 values, these data support the idea that metrics of land cover 

that account for individual landscape features, in contrast to land use, may be 

better suited to mapping the spatial distribution of lead in soil. 

 



19 
 

 

 

The high variability of lead in soil may impact the relationship between soil lead 

levels and land cover features within a 30 meter buffer.  High variability within a 

plot may result in lead levels better correlating with land cover directly where the 

samples were collected and not as strongly to the surrounding area.  Soil 

samples collected from the UFORE plots were composite samples.  By 

combining multiple samples into one, much of the inherent variability in lead 

concentrations may have been lost explaining weak relationships between lead 

concentrations in soil and metrics of both land use and cover.  In addition, the 

soil lead data used in this analysis were not originally collected to examine 

patterns of soil lead in the landscape.  Studies conducted with the specific goal of 

measuring lead in soil generally sample surface soils.  Sampling the top 10 cm of 

soil could result in lower lead measurements since lead is generally concentrated 

in the topmost layer of soil.  

 

A slightly stronger relationship between soil lead levels and 1968 building cover 

compared to 2004 building cover (Figures 3 and 4) was discovered.  This 

highlights the importance of considering historic data when examining current 

patterns of a persistent environmental chemical.  This could be a real pattern due 

to the 1968 land cover more accurately describing the landscape features on the 

ground during peak deposition from automobiles.  However, it could also be an 

artifact of the photographs.   
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There are several land cover patterns that could explain the difference between 

lead levels and 1968 and 2004 building cover.  Buildings that were constructed 

after 1968 would be included in the 2004 building cover estimates.  However, 

these building would be less likely to contain lead-based paint and therefore not 

contribute to lead concentrations in soil.  This in particular could account for the 

weaker relationship between lead in soil and 2004 building cover.  Plant growth 

and the associated increase in canopy cover between 1968 and 2004 could 

result in greater coarse vegetation cover in 2004 and a reciprocal decrease in 

building cover as the rooflines become obscured by vegetation.  This could also 

contribute to the weaker relationship between lead in soil and 2004 land cover.  

 

Beyond temporal differences such as increased vegetation, there are differences 

in the actual photographs that may contribute to differences in the 1968 and 2004 

analyses.  The 1968 photographs are leaf-off compared to the 2004 photographs 

which are leaf-on.  Therefore, building footprints are much more visible in the 

1968 photographs (Figure 5).  The differences between photograph series could 

result in an underestimation of coarse vegetation cover and an overestimation of 

building cover which could have important implications for the relationships 

observed.  In addition, the 2004 photographs are false-color infrared making 

vegetation appear red and therefore easier to identify compared to the 1968 

photographs.  Although steps were taken to reduce potential biases due to 

difference among photograph series, these challenges are unavoidable when 

conducting historical photograph analyses.  
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Land use and land cover relationships with lead in soil yield contrasting results.  

The analyses presented here support the hypothesis that some individual 

features of land cover are better predictors of lead retention in urban soils than 

land use.  While past research in Baltimore has shown no correlation with lead 

levels in soil and land use (Pouyat et al. 2007), these results suggest that lead 

levels are better correlated with some elements of land cover, such as building 

and impervious cover.  These results have important implications to our 

understanding of the spatial distribution of lead in soil and can be used to map 

areas of high contamination in the landscape.  An adequate understanding of the 

spatial distribution of lead in soil is needed in order to inform remediation efforts 

and protect vulnerable populations from potential exposure to a serious 

neurotoxin. 

 

To gain a more complete understanding of the distribution of lead in soil, future 

work should focus on the contribution that individual landscape features make to 

the spatial patterning of lead in soil.  This can be accomplished by conducting 

fine scale intensive soil sampling stratified by land cover features predicted to be 

important to the spatial patterning of lead, such as buildings and roads.  In 

addition to fine scale patterns of lead in soil, a better understanding regarding the 

influence of the larger landscape context is also needed.  For example, future 

studies, in addition to fine scale sampling, could also consider where the 

sampling location is in relation to the major road networks or the age of the 
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neighborhood that the sample is collected from.  Consideration of both fine scale 

patterns in partner with the larger landscape context should provide the most 

accurate information regarding the spatial distribution of lead in soil.   
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Figure Legends 

Figure 1. Hierarchy of urban landscape structure as defined by HERCULES 
(Cadenasso et al. 2007).  These landscape features may be important to lead 
retention. 
 
Figure 2. Land cover features in the 30 meter buffer around a soil lead sample 
point (red point) in Baltimore, MD.  The top panel shows the individual landscape 
features or elements: BD = Building, CV = Coarse Vegetation (trees and shrubs), 
FV = Fine Vegetation (grasses and herbs) and PV = Pavement.  The bottom 
panel shows the same buffer with solid colors representing the individual 
landscape elements. 
 
Figure 3.  Soil lead levels (ppm) regressed against the area (m2) of individual 
landscape features for the 2004 aerial photographs.  A significant relationship 
was found between lead and buildings (p = 0.0287) and lead and pavement (p = 
0.0078).  Bare soil, coarse vegetation, and fine vegetation showed no 
relationship. 
 
Figure 4.  Soil lead levels (ppm) regressed against the area (m2) of individual 
landscape features for the 1968 aerial photographs.  A significant relationship 
was found between lead and buildings (p = 0.0004).  Pavement, although not 
statistically significant, also showed a relationship with lead in soil (p = 0.0641).  
Bare soil, coarse vegetation, and fine vegetation showed no relationship. 
 
Figure 5. Land cover features in the 30 meter buffer around a soil lead sample 
point in Baltimore, MD.  The top panel shows the land cover for 1968 while the 
bottom panel shows the land cover for 2004.  Of importance to the visual 
interpretation of these photos is that the 1968 photographs are leaf-off while the 
2004 photographs are leaf-on.  The 2004 photographs are also false color 
infrared and therefore vegetation is red. 
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CHAPTER 2. ASSSESSING THE IMPORTANCE OF LANDSCAPE CONTEXT 
AND INDIVIUDAL LANDSCAPE FEATURES TO THE SPATIAL DISTRIBUTION 
OF LEAD IN URBAN RESIDENTIAL SOILS OF BALTIMORE, MARYLAND USA.  

 
 
Abstract 

The ecosystem concept has traditionally been used to understand the pools, 

fluxes and cycling of nutrients in a defined system.  I apply the ecosystem 

concept to an urban system to examine the internal controls that regulate the 

spatial distribution of a critical environmental pollutant, lead, in residential soils.  

Lead contamination of urban residential soils is a public health concern.  While 

most are aware of the dangers associated with lead based paint, fewer are 

cognizant of the legacy that lead containing products, including paint and leaded 

gasoline, have left in soil.  Lead contamination of soil is widely dispersed and 

highly variable.  As a result, there is as a great need to identify hotspots in the 

landscape in order to facilitate successful remediation of lead contaminated soil.  

Ecologists often assume that land use is a predictor of environmental 

contamination.   However in the case of soil lead concentrations, previous 

research in Baltimore, Maryland has shown that land use is not a useful proxy.  

Based on earlier work that showed a correlation between lead concentrations in 

soil and some elements of land cover, I propose that land cover is a better 

predictor of lead contamination in the urban environment.  Thus, I have 

conducted fine scale intensive sampling of soil lead on 61 residential properties 

in Baltimore Maryland using a field portable x-ray fluorescence (XRF) multi-

element analyzer to examine which elements of land cover are most important to 

the spatial patterning of lead in soil.  Sampling was stratified by landscape 
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features that are predicted to affect lead levels including housing age, distance to 

major road networks, and housing material.   Thirty percent of the properties 

sampled had average XRF lead concentrations that exceed the United States 

Environmental Protection Agency (USEPA) reportable limit of 400 ppm and 53% 

had at least one reading that exceeded the USEPA reportable limit.  The mean 

value for all field measurements within the detection limit of the XRF was 362 

ppm and the median value was 123 ppm.  Field results were confirmed using 

Atomic Absorption Spectroscopy (AAS) and showed a very strong correlation 

with field results (p = <0.0001, r2 = 0.82).  XRF field results were also confirmed 

using an XRF lab technique (p = <0.0001, r2 = 0.87).  Fine scale measurements 

of lead in residential soils of Baltimore City highlight the prevalence of a 

persistent environmental pollutant in residential soils which could potentially pose 

a public health risk, especially to vulnerable populations.  These data will be used 

in future work to construct an empirically based model of soil lead concentrations 

in Baltimore City residential soils. 
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Introduction 

Lead (Pb), a naturally occurring metal found in very small quantities of the 

Earth’s crust, has become a common and widely dispersed environmental 

pollutant.  Urban areas, in particular, have been significantly affected by greater 

amounts of lead in the environment.  Background levels of lead in unpolluted 

agricultural soils typically average 10 ppm (Holmgren et al. 1993); however, 

urban areas commonly exhibit background levels that are much higher.  Wong et 

al. (2006) found an order of magnitude difference between mean urban soil Pb 

concentrations in Hong Kong (89.9 ppm) and rural soil Pb concentrations (8.66 

ppm).  Lead contamination in soil stems primarily from two important 

anthropogenic sources: lead-based paints and leaded gasoline.  Even though 

these products are generally no longer used in the United States, old lead-based 

paint and particulates from the combustion of leaded gasoline have become 

incorporated into the soil.  Approximately 24 million dwellings built before 1978, 

contain lead-based paint (United States Department of Housing and Urban 

Development, Lead, hud.gov) and an estimated 4 to 5 million metric tons of lead 

was released into the atmosphere from the combustion of leaded gasoline 

(ATSDR 1988). 

 

Lead contaminated soil may contribute to childhood blood lead levels.  In 

recognition of the dangers associated with lead in soil, the United States 

Environmental Protection Agency (USEPA) has set two separate guidelines for 

lead in soil: 400 parts per million (ppm) for children’s play areas and 1,200 ppm 

for all other areas of the yard (USEPA, Federal register 40 CFR Part 745 Lead; 
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Identification of dangerous levels of lead; Final Rule, epa.gov).  Reducing the 

amount of lead in soil may reduce children’s blood lead levels.  For example, a 

study addressing the effect that soil lead abatement had on children's blood lead 

levels found that a reduction of 2060 ppm lead in soil translated to a 2.25 to 2.70 

µg/dL decrease in blood lead levels (Aschengrau et al. 1994).  Although children 

are not the only population affected by elevated soil lead, they are particularly 

vulnerable to the effects of lead due to 1) increased hand-to-mouth activity, 2) 

greater absorption of lead compared to adults, and 3) greater sensitivity to the 

effects of lead (USEPA, Lead in paint, dust, and soil, epa.gov).  Historically the 

focus surrounding lead and public health has been on children ingesting leaded 

paint chips.  However, it is now widely accepted that lead dust and lead in soil 

pose a significant public health threat to children (Duggan and Inskip 1985, 

Mielke 1997).  The issue of exposure is further complicated by lead speciation 

(Ge et al. 2000, Ryan et al. 2004) and particle size (Miranda et al. 2002), which 

can affect the bioavailability and metal sorption intensity of lead.  For example, 

concentrations of lead have been found to increase with decreasing particle size 

due to an increase in surface area (Thuy et al. 2000).  In addition, smaller lead 

particles can absorb more easily into the gastrointestinal and pulmonary tracts 

(Miranda et al. 2002).   

 

It is clear that lead is both widely dispersed in the urban environment and a 

potential health threat, especially to children.  Therefore, it is essential that we 

establish a conceptual framework in which to study the factors impacting the 
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spatial distribution of this critical environmental pollutant.  The ecosystem 

concept has been used by ecologists to understand the pool, fluxes, and cycling 

of nutrients and energy through a defined system.  Earlier explorations of the 

ecosystem concept measured inputs and outputs to an ecosystem.  Using this 

information, researchers were able to quantify the amount of nutrients or energy 

remaining in the system.  As the field of ecosystem science progressed, the 

ecosystem concept evolved from simply measuring system inputs and outputs to 

defining the controls within the system.  We can apply the ecosystem approach 

to urban systems as well, asking not only what enters and leaves a system but 

what internal processes and characteristics regulate the pools and fluxes of 

environmental pollutants as well as nutrients.   

 

Scientists have previously used the ecosystem approach to understand lead 

dynamics in a forested ecosystem (Siccama and Smith 1978, Smith and Siccama 

1981).  Studies conducted at the Hubbard Brook long term ecological research 

site in New Hampshire have shown that while there is a significant input of 

atmospheric lead to a watershed, low levels of lead are present in water draining 

from that watershed (Siccama and Smith 1978, Bormann and Likens 1979).  This 

work illustrates the ability of forest soils to sequester lead.  The ecosystem 

function of lead sequestration is influenced by ecosystem structure including 

forest type and elevation (Weathers et al. 2000), soil organic matter, oxides of 

manganese and iron (Yesilonis et al. 2008a), and soil pH (Elless et al. 2007).  In 

addition to forested systems, the ecosystem approach has also been applied to 
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urban systems (Pickett el al. 1997).  Here I extend the ecosystem approach to 

study soil lead dynamics in an urban system.   

 

In addition to serving as the “brown infrastructure” of cities (Pouyat et al. 

submitted), human altered soils often provide ecosystem services comparable to 

those of unaltered soils, including reduced bioavailability of pollutants (Effland 

and Pouyat 1997).  If urban soils, like forested soils, serve as a sink for 

anthropogenic sources of lead, a logical hypothesis is that the ecosystem 

function of lead sequestration remains correlated with ecosystem structure.  

However, structure in an urban setting is very different than that of a forested 

system and can be defined by three main components: surface material, 

buildings, and vegetation (Ridd 1995).  The different components that describe 

urban structure could affect lead retention in soil by 1) serving as a source of 

lead to the environment in the case of surface material and buildings and/or 2) 

serving as a surface for lead particles to adhere to, in the case of buildings and 

vegetation.   

 

An ecosystem approach to studying the lead dynamics in an urban system 

promotes a broader conceptual understanding of the issue of lead contaminated 

soil.  Specifically, this approach accounts for the controls within the system, such 

as the distribution and density of landscape features that may affect the 

ecosystem function of lead retention.  Identifying and understanding controls 

within the system is the first step towards forming a predictive model, which can 
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help identify potential hotspots of lead contamination in the landscape thus 

informing remediation efforts and protecting human populations from potential 

exposure.  In order to address this, I examined 1) what individual landscape 

features have the greatest influence on the spatial distribution of lead and 2) how 

the larger landscape context influences the distribution of lead in soil (Figure 1).  

In this research, the study system is Baltimore City.  I applied intensive soil lead 

sampling at a spatially extensive scale to characterize the distribution of lead in 

soil. 

 

Methods 

Sampling Scheme 

Residential parcels were selected using a stratified sampling scheme.  The focus 

on residential soil was intentional since it is arguably the most important in 

regards to public health.  Properties were stratified by 1) housing age (1986-

present and pre-1978), 2) distance to major road networks (0-30 meters, 30+ 

meters) and 3) housing material (brick and wood frame).  Newer houses 

constructed in 1986 or later were built after the 1978 ban on lead-based paint 

and the 1986 ban on leaded gasoline.  Housing age was determined using the 

Maryland Property View Dataset (Maryland Department of Planning, Maryland 

property data, state.md.us).  The contribution of lead from automobiles can be 

assessed both spatially and temporally.  Parcels within 0-30 meters of a road 

may be more heavily affected by historic leaded gasoline deposition than parcels 

30 meters or farther from a road.  The distance of 30 meters was selected based 

on several sources that have documented an increase in soil lead concentrations 
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adjacent to major roadways (Motto et al. 1970, Ordonez et al. 2003, Wang et al. 

2006).  In the absence of reliable traffic density data, road size was used as a 

surrogate variable.  Major roads were identified using the Census Bureau’s 

Topologically Integrated Geographic Encoding and Referencing (TIGER) 

database (United States Census Bureau, Topologically Integrated Geographic 

Encoding and Referencing (TIGER) database, census.gov).  Roads described as 

“primary highways with limited access,” “primary roads without limited access,” 

and “secondary and connecting roads” were classified as major road networks1.  

Both brick and wood frame homes were sampled.  This contrast in housing 

material was aimed at distinguishing between the different sources of lead 

contamination (lead-based paint and leaded gasoline).  This assumes that brick 

homes contain little or no external lead-based paint.  

Our sampling scheme consisted of four sampling groups (Table 1).  Sampling 

groups 1 and 2 represent older homes close to the major road networks that 

differ in housing material with group 1 consisting of brick buildings and group 2 

consisting of wood frame buildings.  Sampling groups 1 and 3 represent older 

brick homes that differ in their distance to the major road networks.  Properties in 

group 1 are within 30 meters of the major road networks while properties in group 

                                                            
1 Primary highways with limited access (A1) are described in the TIGER classification: “Interstate highways and some toll 

highways are in this category (A1) and are distinguished by the presence of interchanges.  These highways are accessed 
by way of ramps and have multiple lanes of traffic.  The opposing traffic lanes are divided by a median strip.  The 
TIGER/Line files may depict these opposing traffic lanes as two distinct lines in which case, the road is separated”.  
Primary roads without limited access (A2) are described in the TIGER classification: “This category (A2) includes 
nationally and regionally important highways that do not have limited access as required by category A1.  It consists 
mainly of US highways, but may include some state highways and county highways that connect cities and larger towns.  
A road in this category must be hard-surface (concrete or asphalt).  It has intersections with other roads, may be divided 
or undivided, and have multi-lane or single-lane characteristics”.  Secondary and connecting roads are described in the 
TIGER classification: “This category (A3) includes mostly state highways, but may include some county highways that 
connect smaller towns, subdivisions, and neighborhoods.  The roads in this category generally are smaller than roads in 
category A2, must be hard-surface (concrete or asphalt), and are usually undivided with single-lane characteristics.  
These roads usually have a local name along with a route number and intersect with many other roads and driveways”.   
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3 are farther than 30 meters from the major road networks.  Sampling groups 1 

and 4 correspond to brick homes close to the major road networks that differ in 

housing age with group 1 representing older homes and group 4 representing 

newer houses.  The contrasts achieved through this design allows us test the 

importance of landscape context by examining the contribution of housing age, 

housing material, and distance to major roadways to the lead burden of 

residential soils.  Sixty one properties were sampled because a minimum of 60 

sampling locations (parcels) is recommended for subsequent spatial analysis 

(Fortin and Dale 2005).   

 

Site Selection 

Sampling was limited to owner occupied housing to avoid potential tenant 

landlord conflicts.  Ownership status was identified using the Maryland Property 

View Dataset and confirmed using the Maryland Department of Assessment and 

Taxation Real Property Data Search (Maryland Department of Assessment and 

Taxation, Real property data search, resiusa.org).  Within a Geographic 

Information System (GIS), potential properties were identified using the query 

function.  In addition to selecting homeowners based on the sampling criteria, 

potential sites were also selected based on their proximity to one another and 

geographic distribution across Baltimore City.  Letters were sent to homeowners 

to solicit participation in the project.  Following initial letters, reminder post cards 

were sent and follow-up phone calls were placed.  When phone calls were not 



44 
 

 

 

possible, home visits were conducted.  The overall response rate for homeowner 

recruitment was approximately 8%. 

 

Sampling 

Residential parcels in Baltimore City were sampled November 2007 through 

September 2008.  Soil lead measurements were made in situ using a USEPA 

approved x-ray fluorescence (XRF) multi-element spectrum analyzer, which 

allows for efficient in-field soil sampling for lead concentrations.  A Niton XLt 700 

series multiple element analyzer was used for the measurements.  Soil metal 

content to a depth of approximately 2 mm was evaluated with in situ surface 

measurement.  Following USEPA method 6200 (2007), Field Portable X-Ray 

Fluorescence Spectrometry for the Determination of Elemental Concentrations in 

Soil and Sediment, a minimum of 5% of in situ samples were confirmed via 

laboratory analyses.  Samples were analyzed for lead concentration at an 

independent USEPA recognized lab (BTS laboratories, Richmond VA) using 

Atomic Absorption Spectroscopy (AAS) analyses.   

 

XRF technology has been used extensively by the USEPA and others (Clark et 

al. 1999, Carr et al. 2008).  In x-ray fluorescence, an atom is hit with a high 

energy photon.  The source of the high energy photon comes from a radio 

isotope or miniature x-ray tube.  The high energy photon results in an electron 

being ejected from the K or L shell of an atom.  The ejected electron is replaced 

by an electron from the L or M shell.  The replacement electron drops down to a 
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shell of lower energy releasing energy in the form of an x-ray.  The x-ray that is 

emitted is unique for each element and is measured by the XRF analyzer.  This 

information is converted into a spectrum, which qualitatively evaluates whether or 

not that element is present.  Based on what medium is being tested a mode 

calibration (thin, thick, or paint) is selected.  The mode calibration converts the 

spectra into a quantitative output.  The thick/bulk mode is used for soil analysis.  

This assumes that a sample is infinitely 'thick'.  This is problematic in that 

obstructions in the soil (rock etc.) prevent the x-ray from reaching the detector, 

which may affect the results.  In addition, soil moisture is known to affect results.  

Water in the soil absorbs x-rays preventing them from reaching the detector 

resulting in decreased lead concentration readings.  Even with the restraints 

inherent in XRF field measurements, this method allowed us to gather the 

density of samples necessary to examine spatial patterns of lead in urban 

residential soil.  The limit of detection (LOD) for lead is dependent on the type of 

sample being tested and the other elements that are present in the sample; 

however, for our purposes, lead concentrations were high enough to be detected 

except in very few cases where readings were below the LOD of the instrument.  

 

Within each parcel, soil samples were collected in transects extending from the 

house.  At every site an attempt was made to take a reading as close to the 

structure as possible.  Moving away from the structure a minimum of 3 samples 

were collected.  At each sampling location, the corresponding landscape feature 

was recorded as 1) open lawn with no tree canopy above 2) under tree canopy, 
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3) adjacent, i.e. within 1 meter, to building, 4) next to the road, meaning the 

measurement that was closest to the major road network, or 5) landscaped 

(flower beds, etc.).  All the landscape features that applied per location were 

recorded.  The number of samples taken per parcel was dependent on the size 

of the parcel.  

 

In addition to surface samples, three soil cores were collected at each site using 

a soil probe with a ¾ inch diameter.  When possible, core sampling locations 

were restricted to the backyard to reduce any visible disturbance to the yard.  

Sample locations were selected randomly within the backyard but generally 

restricted to the open lawn if possible.  If the backyard was inaccessible or there 

was no soil present in the backyard, samples were collected in the front yard.  

Each core was collected to a depth of 12 cm.  In the field, the sample was 

divided into four sub-samples representing different depths (0-3 cm, 3-6 cm, 6-9 

cm, and 9-12 cm) for a total of 12 samples per site.  A total of 732 core samples 

were collected.    

 

Sample preparation was completed at the Cary Institute of Ecosystem Studies in 

Millbrook, NY.  Samples were dried at 60°C until a consistent weight was 

maintained.  Wet and dry weights were recorded and gravimetric water content 

was calculated using the following equation: (wet weight – dry weight)/dry weight.  

Samples were passed through a 2 mm sieve (Fisher Scientific Company) and 

ground in a ball mill (Kleco Model 4200).  Samples were analyzed for total Pb 
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content at BTS laboratories in Richmond, VA (www.btslabs.com) using USEPA 

method SW-846, 7420 (lead, atomic absorption, direct aspiration).  

 

In contrast to the XRF field technique, where no sample preparation was 

involved, our XRF lab technique involved sample preparation by drying, sieving, 

and grinding, as described above.  At least 10 grams of soil was then placed in 

an XRF cup, which consists of a plastic ring and cup, mylar sheet, whatman filter 

paper, and polyester fiberfill.  The samples were run on a Niton XLt 700 series 

multi-spectrum analyzer at the Cary Institute of Ecosystem Studies.  Core 

samples were also prepared and analyzed via XRF at the Cary Institute. 

 

Results 

Lab Results 

Following USEPA method 6200 (2007) for field portable XRF, a minimum of 5% 

of field samples were confirmed in a laboratory setting by comparing field results 

to AAS results.  Regression analysis showed a very strong correlation between 

XRF field results and AAS lab results (p = <0.0001, r2 = 0.82, Figure 2).  The 

slope of the line (y = 0.7637x + 15.765) indicates that our field measurements 

underestimate the amount of lead in soil compared to AAS lab results.  I also 

compared the field results to a XRF lab technique and found a very similar 

relationship (p = <0.0001, r2 = 0.87).  The slope of the line (y = 0.6715x + 21.8) 

again indicates that our field measurements underestimate the amount of lead in 

soil compared to XRF lab results.  In comparing the two lab techniques, 
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regression analysis showed a very strong correlation between the XRF lab 

technique and the AAS lab technique (p = <0.0001, r2 = 0.97, Figure 3).  The 

slope of the line (y = 1.1549x - 25.102) reveals a slight overestimation using the 

XRF lab technique.  This is comparable to results reported in the literature.  

Griffith et al. (2008) reported a similar relationship between lab XRF and ICP 

measurements (r2 = 0.972).     

 

Field Results 

The USEPA has set two separate guidelines for lead in soil: 400 parts per million 

(ppm) for children’s play areas and 1,200 ppm for all other areas of the yard 

(USEPA, Federal register 40 CFR Part 745 Lead; Identification of dangerous 

levels of lead; Final Rule, epa.gov).  Many publications compare results to the 

more conservative guideline of 400 ppm.  I will do the same here.  The mean 

value for all measurements taken within the detection limit of the instrument (n = 

1121) was 363 ppm.  The standard deviation was 794 ppm and the standard 

error was 24 ppm.  The median value was 124 ppm.  The lowest reading within 

the level of detection was collected from a landscaped portion of the yard of an 

older brick house far from a major road (7.4 ppm).  The highest reading (9151 

ppm) within the upper limits of the XRF (10,000 ppm) was collected adjacent to a 

painted porch of an older brick building far from a major road.  Thirty percent of 

the properties sampled had average Pb values that exceeded 400 ppm and 53% 

had at least one reading somewhere on the property that exceeded 400 ppm.  

Median lead values were higher next to buildings compared to other areas in the 
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yard that were sampled (Figure 4).  This pattern was consistent for both brick and 

wood frame homes.  When examining data from all 61 properties together, an 

ANOVA indicates mean lead concentrations are significantly different among 

landscape features (F = 63.491, df = 3, p < 0001). The lead concentration data 

was log transformed in order to meet the assumption of a normal distribution.  

Using Tukey’s multiple comparison test, I found significant differences between 

classes in which soil lead concentrations near buildings were significantly greater 

than all other landscape features and concentrations near major roads were 

significantly greater than those near lawns or under trees (Figure 4).  The 

significance of these results, however, may be confounded by the block sampling 

design, in which multiple XRF readings were taken within each yard.   None of 

the properties built after 1986, after the ban on leaded gasoline and lead-based 

paint, exhibited any field readings that exceed the USEPA reportable limit of 400 

ppm (Figure 5). 

 

When examined for all sampling groups, the soil core data showed very little 

change in lead concentration with depth.  The median Pb value for the 0-3 cm 

samples was 182 ppm and only increased slightly with depth: 185 ppm for the 3-

6 cm samples, 186 ppm for the 6-9 cm samples, and 186 ppm for the 9-12 cm 

samples.  Examining the core data by sampling group provides more information 

(Figure 6).  Median lead values for all sampling depths are higher for the older 

brick and frame homes that are close to a major road compared to other 

sampling groups.    
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Field lead concentration results were categorized as 0-400 ppm (low), 400-2000 

ppm (moderately high), 2000-5000 ppm (high) and greater than 5000 ppm (very 

high).  These categories were based on the USEPA lead safe yard project 

(USEPA, Lead safe yard project, epa.gov).  The field results were distributed to 

homeowners (Figure 7a) through color coded maps.  In addition, homeowners 

were also provided with a USEPA fact sheet regarding lead poisoning and a 

Maryland Cooperative Extension fact sheet on lead in garden soils.  XRF field 

data was added to a GIS in order to calculate distance to roadways and distance 

to buildings for every field measurement taken (Figure 7b).  Lead levels decrease 

with increasing distance from major roads and buildings. 

 

A Note on Sources 

Determining the sources of lead in soil is beyond the scope of this study; 

however, the XRF provides information on many elements and some interesting 

patterns have been identified that are worth mentioning. There are several 

patterns in the data that 1) point to multiple sources of Pb in Baltimore’s soil and 

2) highlight the importance of leaded-gasoline, in addition to leaded paint, to soil 

lead pollution in Baltimore.   

 

Previous studies have looked at element ratios, specifically Lead/Titanium 

(Pb/Ti), to determine the source of lead in soil (Clark et al. 2006).  Since Ti is a 

component of both lead-based paint (Pb titanate) and lead-free paint (titanium 
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dioxide), Ti is an indicator of total paint products in soil.  Soils contaminated with 

lead-based paint exhibit enrichment of both Pb and Ti, while soils contaminated 

with leaded-gasoline exhibit higher Pb levels compared to Ti (Clark et al. 2006).  

In our Baltimore study soils, Pb and Ti in soil do not appear to be enriched in the 

same way, as evidenced by the lack of a strong correlation between the two 

elements (p = <0.0001, r2 = 0.067, Figure 8).  If paint was the only source of lead 

to soil, one would expect a stronger correlation (higher r2 value) between the two 

elements.  In addition, other studies have shown that Pb/Ti ratios from non-urban 

paint sources are typically less than 1 (Clark et al. 2006).  Samples collected in 

this study exhibit Pb/Ti ratios greater than 1 for samples collected next to both 

brick and wood frame buildings indicating Ti concentrations are lower than Pb 

concentrations (Figure 9).  This suggests multiples sources of lead, such as lead-

based paint and leaded gasoline, are at play.  Finally, examination of the small 

percentage of samples that exceeded 1000 ppm Pb indicates the possibility of 

contamination from both lead-based and lead-free paint (Figure 10).  Paint is 

generally assumed to contribute to lead levels that are this high.  Soil samples 

with high Pb values and lower Ti values are likely contaminated with lead-based 

paint while samples with high Ti values and lower Pb levels are likely 

contaminated with lead-free paint.  The fact that soil may be contaminated from 

both types of paint makes pinpointing sources even more challenging.   

 

Discussion 
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It is imperative to understand the effect that urban characteristics, including 

physical, biological, and chemical, have on the distribution of trace metals (Wong 

et al. 2006).  Previous studies, such as the USEPA lead safe yard project, have 

examined fine scale patterns of lead on residential properties, but their focus was 

not on relating the distribution of lead to the distribution of landscape features.  In 

addition, these studies did not consider the larger landscape context in which 

residential parcels are embedded.  Consideration of fine scale patterns in partner 

with the larger landscape context, is necessary if the goal is to predict lead 

distribution in soil at the city scale.  Spatial prediction at this scale requires 

knowledge regarding both the influence of landscape context, such as road 

networks and neighborhood age, and spatial patterns at the scale of the 

individual parcel, such as the influence of buildings, trees, and lawns. 

 

The results of this study illustrate the influence of both landscape context and 

landscape features.  A graph of the field measurements plotted by distance to the 

major road networks shows a sharp decrease in lead concentration with 

increasing distance away from the road network (Figure 11a).  A noticeable 

exception to this pattern occurs at approximately 1,500 meters.  This anomaly is 

likely due to a lead-based paint source at a particular sampling location.  When 

measurements that were taken directly adjacent to buildings were eliminated and 

the pattern re-examined, the overall pattern of decreasing lead with increasing 

distance from the road remained while the anomaly disappeared (Figure 11b).  

Housing age is also an important predictor of lead concentrations in soil.  
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Although Baltimore City was more progressive regarding its stance on lead-

based paint by banning interior lead-based paint in 1951 and requiring warning 

labels on leaded paint in 1958 (Mushak and Crocetti 1990), federal regulations 

did not ban the sale of paint containing more that 0.06% lead until 1978.  The fact 

that Baltimore City banned interior lead paint and required warning labels on all 

leaded paint in the 1950s might speak to a potentially important regional 

influence.  Examining all field measurements by housing age reveals that the 

highest lead levels are present in homes built during the 1920s and 1930s 

(Figure 5).  This corresponds to the time period when lead-based paint was 

heavily used.  Measurements taken from houses built after the ban on lead-

based paint and leaded gasoline do not exceed the USEPA reportable limit of 

400 ppm.  This is especially important considering that previous work has 

demonstrated the re-suspension of contaminated soil in urban soils (Clark et al. 

2008, Laidlaw and Filippelli 2008).  Re-suspension of fine particulates, which are 

easily inhaled, can have important health implications (Wong et al. 2006).  If re-

suspension of contaminated soil is occurring on the properties that were built 

after 1986, it is not at a level considered toxic by the USEPA. 

 

In addition to the influence of landscape context, I also examined the importance 

of individual landscape features.  In comparing measurements taken from four 

locations 1) immediately adjacent to a built structure, 2) next to a major road, 3) 

in the lawn but away from buildings and the road, and 4) under tree canopy but 

away from buildings and the road, a difference in lead concentrations relative to 
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sampling location is revealed (Figure 4).  This is consistent with earlier work done 

by Mielke et al. (2004) which reported a difference among sampling locations and 

median Pb levels in New Orlean’s soil with samples near the foundation of 

buildings exhibiting the highest lead levels, followed by busy streets, residential 

streets, and open areas.  Results from this study show that measurements taken 

close to buildings and roads are higher compared to measurements taken in the 

lawn or under tree canopy.  In addition to having a higher mean and median 

value, measurements taken directly adjacent to a building, regardless of building 

material, also exhibit a much wider range.  Since measurements taken next to 

buildings may be influenced by a paint source, this variability could be explained 

by both paint condition and the variable amounts of lead used in lead-based 

paints.   

 

The patterns revealed by the results are not surprising considering that both 

buildings and roads represent a source of lead to the environment.  These 

sources, however, seem to be operating at different spatial scales.  Lead 

contamination of the soil associated with built structures seems to be very 

localized operating at a very fine spatial scale (Figure 12) whereas roads appear 

to have a much more extensive influence (Figure 11).  This is most likely due to 

differences in the mode of distribution and particle size.  Mielke (1999) has 

suggested that particles from the combustion of leaded gasoline accumulate next 

to roadways as well as travel and adhere to buildings resulting in elevated lead 

next to buildings.  Others (Cook and Ni 2007) have proposed a modification of 
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this hypothesis (modified aerosol hypothesis), suggesting that only particles of 

intermediate mass have an affinity for buildings.  Smaller particles, they suggest, 

become blanket contamination while larger particles are deposited close to the 

source.  This is consistent with the patterns found in this study where paint 

sources seem to contribute to higher lead concentrations that are localized and 

gasoline contributes to more spatially disperse lower levels of contamination. 

 

The patterns revealed by the lead and titanium data are important because they 

highlight the complexity of lead sources that are found in urban systems.  The 

lack of a strong correlation between lead and titanium suggest that soil lead 

contamination in Baltimore is a combination of multiple sources and cannot be 

accounted for by paint alone.  Therefore, hotspots next to buildings are likely to 

occur in the absence of paint and hotspots next to painted surfaces may be the 

result of a combination of lead sources.  In addition, there may be contamination 

of Ti from both lead-based and lead-free paint, which further complicates 

modeling efforts.  The results for Pb:Ti ratios in Baltimore are very different than 

what has been documented in Boston.  In a study with a similar number of soil 

samples collected from urban gardens in Boston using the same XRF 

techniques, much higher Ti numbers are observed highlighting the importance of 

paint to soil lead contamination (Clark et al. 2006, Clark et al. 2008).  This further 

strengthens the argument that leaded gasoline is an important source in 

Baltimore.  
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The patterns revealed by the soil core data are also noteworthy.  Lead 

concentrations have been shown to be higher at the surface of the soil profile 

compared to lower in the soil profile (Wang et al. 2006); however, this study 

examines the vertical distribution of lead in finer increments.  The results indicate 

that in urban systems, where disturbance of the soil profile is common, lead may 

not be concentrated in the top of the soil profile.  Looking at all samples together, 

there was very little difference in lead concentration with sampling depth.  Upon 

closer examination of the results by sampling group, differences exist between 

groups, but there was still no distinct pattern with depth.  Interestingly, none of 

the sampling groups show the highest median values at the surface 0-3 cm.  This 

could be due to burial of lead in the soil profile, leaching of lead in the soil profile, 

or physical disturbance of the soil profile.  New brick homes close to a major road 

exhibit the highest median lead values at depths of 9-12 cm.  This might be 

explained by clean fill that is brought in during construction possibly covering up 

older lead contamination.  The soil core data suggest that assumptions regarding 

lead concentration and depth may not be true for complex urban systems where 

disturbance of the soil profile is common.  

 

While interpreting the results of this study, it is important to keep in mind that this 

work addresses total lead concentrations.  Although studies have shown that 

total lead concentrations correlate with the amount of bioavailable lead (Clark et 

al. 2006), total lead concentrations do not represent the amount of lead in the soil 

that is readily available.  The amount of bioavailable lead in soil is dependent on 
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speciation (Ge et al. 2000) and particle size (Miranda et al. 2002).  It is also 

important to recognize that 400 ppm is a federal standard.  Some states have set 

guidelines for lead in soil that are much lower than this; for example, Minnesota 

has a bare soil standard of 100 ppm.  Reagan and Silbergeld (1989) have 

advocated for a national lead soil standard of 100 ppm based on protecting 

vulnerable populations.  Other countries, as well, have set lower standards for 

soil.  For example, the Netherlands have a target bare soil lead standard of 85 

ppm (Yesilonis et al. 2008b).  Using the Netherlands target value of 85 ppm, 95% 

of properties sampled in this study would exhibit lead contamination above the 

target level.   

 

This research highlights the spatially heterogeneous distribution of lead in a 

complex ecosystem type.  Residential landscapes are a rapidly expanding 

important component of the human dominated urban landscape.   I used the 

ecosystem concept to address the spatial distribution of a critical environmental 

pollutant in complex urban ecosystems, and specifically within residential areas.  

Overall, I found both individual landscape features and the larger landscape 

context influence the spatial distribution of lead in urban residential soils.  Lead 

concentrations varied by sampling location in which samples collected next to a 

building exhibited higher lead values compared to all other areas sampled.  In 

addition, lead values decreased with increasing distance from the road networks, 

thus highlighting the importance of landscape context.  Additionally, the field 

sampling technique used in this study, which strongly correlated with accepted 
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laboratory analyses, allowed me to collect a large amount of data that will be 

used in future modeling efforts. Through the ecosystem approach utilized here, 

we can start to understand how fine scale individual landscape features partner 

with the larger landscape context to drive the spatial distribution of lead in soil.  

This knowledge is essential for modeling the spatial distribution of lead in urban 

residential soils, predicting lead hotspots, and targeting remediation efforts to 

minimize human exposure.  
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Figure Legends 

Figure 1. Conceptual model depicting the sampling strategy.  Individual parcels 
serve as the unit of study (panel b).  In order to understand the spatial distribution 
of lead in soil the larger urban matrix in which the parcel is embedded (panel a) 
must be considered.  In addition, collecting measurements at a fine spatial scale 
allows exploration of the contribution each landscape feature makes to lead 
retention (panel c).  
 
Figure 2.  Regression analysis of XRF field results and AAS lab results showing 
a strong correlation between field and lab results.   Dashed line represents a 1:1 
ratio; solid line represents the relationship between field and lab results.    
 
Figure 3.  Regression analysis of XRF lab results and AAS lab results showing a 
very strong correlation between both lab techniques.  Dashed line represents a 
1:1 ratio; solid line represents the relationship between lab techniques. 
 
Figure 4.  Lead concentrations (ppm) by sampling location.  The “lawn” 
classification represents areas of the lawn not adjacent to a major roadway or 
building.  The “under tree” classification represents samples collected directly 
under a tree canopy, not adjacent to a major roadway or building.  The “near 
major road” classification represents samples closest to a major roadway defined 
as primary and secondary roads in the TIGER classification.  The “near building” 
classification represents samples collected directly adjacent to a built structure.  
Error bars represent the lowest and highest values falling within 1.5 times the 
interquartile range.  Median values are represented by the change in bar color 
from grey to black.   Mean values are represented by the white diamonds; 
different letters represent a significant difference between means.  Observations 
outside the error bars are not shown; however, they were not removed from the 
dataset.    
 
Figure 5.  XRF field measurements and housing age.  The dotted black line 
represents the time period when leaded-paint was used (1884-1978).  The solid 
black line represents the time period when leaded gasoline was used (1929-
1986).  The USEPA reportable limit for lead in soil (400 ppm) is represented by 
the soil gray line.  
 
Figure 6.  Vertical distribution of lead in the soil profile by sampling group.  Older 
brick and wood frame houses close to a major road exhibit the highest lead 
levels, although none of the groups show a strong pattern with increasing depth. 
 
Figure 7.  An example of the color coded map that was sent to homeowners (a) 
and the corresponding GIS dataset with aerial photos of Baltimore City (b).  
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Figure 8.  Lead and Titanium concentrations do not show a strong relationship.  
If paint was the only source of lead to soil, a stronger correlation between the two 
elements would be expected. 
 
Figure 9.  Lead/titanium ratios and distance to building.  Ratios are higher close 
to the building and decrease with distance.  Ratios greater than one highlight the 
possibility of multiple sources of lead in the soil. 
 
Figure 10.  Relationship between lead and titanium for samples with high (> 
1000 ppm) lead concentrations.  The sample circled in green exhibits much 
higher titanium levels compared to lead.  This could be an example of lead-free 
paint contamination.  In contrast, the sample circled in red exhibits high lead 
levels in relation to titanium and could be an example of lead-based paint 
contamination. 
 
Figure 11.  XRF field measurements and distance to the major roadways, 
defined as primary and secondary roads in the TIGER classification.  The 
samples circled in red on the top graph are likely contaminated by a paint source.  
As shown in the bottom graph, they disappear when samples that were collected 
adjacent to buildings are eliminated. 
 
Figure 12.  XRF field measurements and distance to built structures.  
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Table 1. Contrasts achieved through the sampling scheme.  Sites were stratified 
by housing age, distance from road, and housing material. 
 

Group Housing Age Distance 

to Road 

Housing 

Material 

Number of Plots 

1 >29 (1978 and older) 0-30m Brick 17 

2 >29 (1978 and older) 0-30m Wood 11 

3 >29 (1978 and older) >30m Brick 25 

4 <21 (1986-2007) 0-30m Brick 7 

 

Contrast Achieved in Sampling Scheme 

Housing Material Group 1 vs. Group 2 

Distance from Major Road Group 1 vs. Group 3 

Housing Age Group 1 vs. Group 4 
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Figure 1.  
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Figure 2.  
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Figure 3. 
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Figure 4.  
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Figure 5.  
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Figure 6.  
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Figure 7.  

 

 

 

 

 

 

 

 

 

 

 

 

A B 



74 
 

 

 

Figure 8.  
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Figure 9.  
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Figure 10.  
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Figure 11a.  

 

Figure 11b. 
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Figure 12.  
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CHAPTER 3. AN EMPIRICALLY-BASED GIS MODEL OF RESIDENTIAL SOIL 
LEAD CONCENTRATIONS IN BALTIMORE, MARYLAND USA. 
 

Abstract 

Lead (Pb) contamination of Baltimore’s residential soil is widespread, highly 

variable, and a potential public health concern.  With the inception of Maryland’s 

plan to eliminate childhood lead poisoning by 2010, attention has been focused 

on old lead-based paint sources.  Lead-based paint is an important factor in 

childhood lead exposure; however, it is not the only source of lead in the 

environment.  Soil contaminated with lead from past use of leaded gasoline, 

deteriorating lead-based paint and industrial sources is also an important source 

of lead in the environment.  Intensive sampling of 61 residential properties in 

Baltimore City revealed that 53% had soil Pb levels that exceeded the United 

States Environmental Protection Agency (USEPA) reportable limit of 400 ppm.  

These data were used as the input to several models to predict the spatial 

distribution of lead in urban residential soils throughout Baltimore City.  Here I 

examine three different modeling approaches within a geographic information 

systems (GIS) environment: a traditional general linear model (GLM), and two 

machine learning techniques: Classification and Regression Trees (CART) and 

Random Forests (RF).  The GLM revealed that housing age, distance to road, 

distance to building, and the interactions between distance to road and housing 

age, and distance to building and distance to road explained 38% of the variation 

in the data.  The CART model confirmed the importance of these variables, with 

housing age, distance to building, and distance to major road networks 
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determining the terminal nodes of the CART model.  Using the same three 

predictor variables, the RF model was able to explain 42% of the variation in the 

data.  An independent dataset was used to evaluate the accuracy of the models.  

The overall accuracy, which is a measure of agreement between the model and 

an independent dataset, was 89.66% for the GLM model, 82.76% for the CART 

model, and 72.41% for the RF model.  The producer’s and user’s accuracy, 

which indicate errors of omission and commission, was greater for the low 

classification of lead concentrations (Pb < 400 ppm) compared to the high 

classification (Pb > 400 ppm) for all three models.  This research highlights the 

usefulness of empirical models to predict the spatial distribution of lead in urban 

residential soils.  Empirically-based GIS models have the potential to assist 

public health officials and city agencies in focusing efforts on contaminated soil 

removal and remediation.       
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Introduction 

Baltimore City has several defining characteristics that indicate the presence of 

multiple environmental lead (Pb) sources.  It’s an older urban area with a 

centralized transportation network that at one time had a strong industrial 

presence.  Urban areas often have higher soil Pb concentrations compared to 

their rural counterparts.  For example, Wong et al. (2006) reported an order of 

magnitude difference between mean urban soil Pb concentrations and rural soil 

Pb concentrations.  Zhai et al. (2003) found soil Pb levels in the capital city of 

Gaborone, Botswana to be 5.7 times those of rural soils.  A similar pattern was 

discovered in New Orleans by Mielke et al. (2004) where the median soil Pb 

levels for inner-city soils were highly enriched (656 ppm) compared to median 

soil Pb levels for suburban soils (12 ppm).  The median soil Pb levels for New 

Orleans’ suburban soils fell within the range of Pb naturally occurring in soils as 

reported by Holmgren et al. (1993).  

 

Baltimore city, like many other U.S. cities, experienced increased growth in the 

early twentieth century.  The increase in growth translated to a large portion of 

the Baltimore housing stock being built during a time when lead-based paint and 

leaded gasoline were widely used.  Baltimore has approximately 368,000 homes 

that were built before 1950 and 897,000 homes that were built between 1950 and 

1978 (Maryland Department of the Environment 2007).  Any home built before 

the 1978 ban on lead-based paint is more likely to contain lead-based paint.  

Seventy five percent of homes built between 1950 and 1978 likely have lead-
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based paint, while 95% of homes built before 1950 likely contain lead-based 

paint (Maryland Department of the Environment 2007). 

 

The year a house was built not only indicates the potential for the presence of 

lead-based paint, but it also indicates how long a house may have been 

accumulating lead from the exhaust of cars burning leaded gasoline (Mielke 

1999).  Previous studies have shown a correlation between elevated soil Pb 

levels and the presence of road networks (Facchinelli et al. 2001, Imperato et al. 

2003, Ordonez et al. 2003, Li et al. 2004, Wang et al. 2006, Yesilonis et al. 

2008).  In addition, research has also shown a decrease in soil Pb levels with 

increasing distance away from road networks (Motto et al. 1970, Wang et al. 

2006).  This highlights the fact that within Baltimore City, the centralized 

transportation network could be an important historic source of lead to the 

environment and will likely influence the spatial distribution of lead in soil.  In fact, 

other studies have documented differences in soil Pb concentrations at different 

sampling locations within cities.  Chirenje et al. (2004) found higher levels of lead 

in soil in residential and commercial areas compared to urban parks.  Mielke et 

al. (2004) reported a difference among sampling locations and median Pb levels 

in New Orleans soil with samples near the foundation of buildings exhibiting the 

highest lead levels, followed by busy streets, residential streets, and open areas.  

Finally, industrial land use has been correlated with an increase in soil Pb levels 

in multiple cities (Thuy et al. 2000, Facchinelli et al. 2001, Imperato et al. 2003, 

Wang et al. 2006).  These studies support the idea that urban soil lead 
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concentrations are greatest near buildings, specifically those built before 1978, 

major roads and industrial areas.       

 

Baltimore’s older housing stock, extensive transportation network and the 

presence of heavy industry are all likely sources of lead to the environment and 

have the potential to contribute to elevated lead levels in Baltimore’s soil.  This 

poses a potential public health concern, particularly in older residential 

neighborhoods.  Elevated soil Pb concentrations are thought to contribute to 

elevated blood lead levels (BLLs) in children (Duggan and Inskip 1985, 

Aschengrau et al. 1994, Mielke et al. 1997).  Specifically, Mielke et al. (1997) 

showed that soil lead concentrations were more closely related to children’s BLLs 

than housing age.  Elevated BLLs in children can result in devastating and 

irreversible health effects.  Perhaps even more alarming is the fact that adverse 

health effects have been associated with BLLs below the current threshold 

(Lanphear et al. 2000, Koller et al. 2004), which is defined by the Centers for 

Disease Control and Prevention and the World Health Organization as 10 µg/dL.   

 

Given that elevated soil Pb levels pose a potential public health concern, it is 

necessary to describe the spatial distribution of soil Pb levels.  Although many 

studies have reported on soil Pb levels, fewer have described the spatial 

distribution of lead in soil (Markus and McBratney 2001).  Studies that have 

examined the spatial distribution of lead in soil have often used geostatistical 
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techniques, such as kriging, to estimate lead concentrations (Shinn et al. 2000, 

Cattle et al. 2002).  Kriging, which creates predictions based on interpolating 

neighboring values, has served as a useful tool in predicting soil Pb values.  

Other studies that have used portable x-ray florescence (XRF) and geographic 

information systems (GIS) to map lead contamination (Carr et al. 2008) have 

employed a regular grid design and intensively sampled one location, which 

makes interpolation between samples possible.  In contrast, our data, which was 

collected in residential areas of Baltimore City, consists of 61 intensively sampled 

areas which are very distant from one another resulting in several areas with an 

abundance of lead data and vast stretches between that contain no data.  This 

data structure is not optimal for kriging techniques especially given that the 

variability of lead in residential soils has been shown to be very high (Machemer 

and Hosick 2004).  Instead I have created three different empirically-based GIS 

models, one that uses a traditional general linear model or GLM (Weathers et al. 

2006), and two machine learning techniques: classification and regression trees 

or CART (Breiman 1984) and Random Forests or RF (Cutler et al. 2007).  The 

development of three different models allowed me to evaluate which model was 

the most useful in predicting the spatial pattern of lead in soil. 

 

Methods 

Detailed soil Pb data were collected from 61 residential parcels in Baltimore, 

Maryland from November 2007 through September 2008.  Measurements were 

collected using a handheld portable XRF multi-element analyzer (n = 1121).  See 
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chapter 2 for more details regarding the sampling scheme.  Sampling locations 

were added to a GIS and soil Pb data were joined to the sampling points using 

the “join field” function in ArcGIS 9.3.  The primary and secondary roads from the 

TIGER classification (United States Census Bureau, Topologically Integrated 

Geographic Encoding and Referencing (TIGER) database, census.gov) were 

digitized to create a layer that represented the major road networks.  Building 

footprints were obtained from the City of Baltimore and used with permission 

under a license agreement through the City.  The building footprints dataset 

represents photogrammetrically captured building footprints that exceed 100 

square feet.  The dataset was created by the Sanborn Map Company and 

reflects ground conditions during 2003.  Finally, distance of each soil lead sample 

to the major road networks and building footprints were calculated using the 

“near” function in ArcGIS 9.3.  The data were then exported from ArcGIS for use 

in additional software packages. 

 

Model Construction - General Linear Model (GLM) 

Following a method developed by Weathers et al. (2006), I created an empirical 

model that predicts total soil Pb concentrations in residential areas as a function 

of landscape features.  First, values in the dataset that exceeded the range of the 

sampling XRF instrument, which included lead values lower than the level of 

detection and values that exceeded 10,000 ppm, were eliminated from the 

dataset (n = 9).   In testing for normality, the original data failed the Shapiro-Wilk 

W test for normality (W=0.403684, prob<W = 0.0000).  After log transforming the 
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data, the data still failed the Shapiro-Wilk W test for normality (W=0.980644, 

prob<W = 0.0001); however, the distribution of the data more closely resembled 

that of a normal distribution (Figure 1).  I then constructed a general linear model 

in JMP (v.7.0.2, SAS Institute 2007) using the log transformed data.  Soil Pb 

concentration served as the dependent variable for the GLM while housing age, 

distance to major road networks, distance to building, and the interactions served 

as the independent variables.  After removing variables that were not statistically 

significant, the GLM parameter estimates were recalculated (Table 1).  The GLM 

revealed that housing age, distance to road, distance to building, and the 

interactions between distance to road and housing age, and distance to building 

and distance to road explained 38% of the variation in the data 

 

In order to apply the parameter estimates across the city, GIS layers with 

continuous data for all of the predictor variables are needed.  Within a GIS, a 

raster for distance to road and distance to building was created using the 

“Euclidean distance” tool in the spatial analyst extension of ArcGIS.  A 1m2 cell 

size was used in the construction of both raster layers.  In order to create a raster 

of housing age, a parcel boundary layer obtained from the City of Baltimore was 

joined to the Maryland Property View Assessors and Taxation point file which 

contains housing age information using the “spatial join” function in ArcGIS 9.3.  

Only parcels described as residential were retained in the dataset. Building 

footprints were extracted from the residential parcels using the “erase” function in 

ArcGIS 9.3 to eliminate areas were no soil is present.  Finally, the parcel polygon 
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layer was converted to a raster using the “polygon to raster” conversion tool in 

ArcGIS 9.3 with housing age as the value field and a 1m2 cell size.   

 

The following equation described in Weathers et al. (2006) was used to create a 

GIS based model of soil lead concentration as a function of landscape features.  

Model = [ß0 (at x,y)] + [ß1 x (Z1 at x,y)] 

 + [ß2 x (Z2 at x,y)] 

 + [ß3 x (Z1 at x,y) x (Z2 at x,y)] 

 +...+ [ßn x (Zn at x,y)] 

Where Z1, Z2, Zn = independent variables (i.e. Distance to major road networks, 

distance to buildings, and housing age), 

ß0 = intercept, 

ß1 = landscape variable Z1 coefficient, 

ß2 = landscape variable Z2 coefficient, and 

ß3 = interaction 

 

Using the parameter estimates from the GLM (Table 1), the following expression 

was entered into the raster calculator, which is part of the spatial analyst 

extension in ArcGIS: 

Pb = (26.506363 - (0.000272 * [EucDistRoad]) - (0.034337 * [EucDistBuild]) - 

(0.012447 * [YearBuilt]) - (0.00001637 * (([EucDistRoad] - 284.694) * ([YearBuilt] 

- 1936.61))) - (0.000019 * (([EucDistBuild] - 4.19982) * ([EucDistRoad] - 

284.694)))) 
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The raster calculator performs mathematical calculations on raster datasets 

which represent the independent variables.  The resulting raster based model 

reflects spatially explicit log transformed lead values.  I used the following 

equation in the raster calculator to create a model that reflected actual values: 

Exp10([LogPbModel]).  Finally, the resulting GIS model was reclassified using 

the “reclassify” tool in ArcGIS so that cells would reflect a binary model of values 

that were greater or less than the USEPA’s reportable limit of 400 ppm (Figure 

2).  The conversion to a binary model was made for two reasons, 1) to reflect 

metrics relevant to management and 2) to compare with the CART model, which 

does not generate continuous lead values. 

 

Model Construction – Classification and Regression Trees (CART) 

Classification and Regression Trees (CART) were used to construct an 

alternative model to the one based on a GLM.  CART is a non-parametric, 

machine learning, statistical method used in ecology for exploration, description, 

and prediction of grouped data (De’Ath and Fabricius 2000, Golubiewski 2006).  

CART models are an approach to classification that does not assume data 

normality (Sutton 2005).  Classification and regression trees produce a hierarchy 

of decision rules displayed in the form of a binary tree (Sutton 2005).  They are 

often used in place of multiple regressions.  Compared to linear models, tree-

based models are easier to interpret, can handle missing data, capture non-

additive behavior (De'Ath and Fabricius 2000) and are resistant to outliers 
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(Sutton 2005).  Gahegan (2003) cautions that while machine learning techniques 

offer the capability to improve predictive power with complex data there are only 

as good as “(1) the data are representative, and (2) the methods are capable of 

learning the trend contained therein” (p. 86).  Compared to more traditional 

statistical techniques, machine learning techniques differ in the amount of a priori 

knowledge, in other words they rely on patterns in the data rather than any 

underlying theory (Gahegan 2003).  One potential advantage to this approach is 

the ability to discover novel and unexpected patterns (Gahegan 2000).  CART 

modeling was chosen for all of these reasons, specifically because it allows for 

use of non-normal, complex data. 

 

Lead values for each sampling location were categorized as either low (0-400 

ppm) or high (> 400 ppm) and used as the dependent variable in a classification 

tree.  The classification tree was constructed in S-Plus (version 6.1, Insightful 

Corporation 2005).  Several variables were evaluated as independent or 

predictor variables including: 1) sample location, 2) sample group, 3) housing 

age, 4) housing material, 5) distance to major road networks, and 6) distance to 

building.  The algorithm evaluates which variables to include in the actual tree 

construction.   Only housing age, distance to major road networks, and distance 

to building were included.  The terminology used to interpret classification trees 

parallels the terminology used to describe actual trees.  For example, the top 

node of the tree is referred to as the “root”.  Terminal nodes are referred to as 

“leaves” and a split is a rule that results in the formation of new “branches.”   
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One issue in building (i.e. growing) classifications trees is deciding which trees 

are significant.  A common problem with CART analysis is growing the tree too 

long, thus making the tree overly complex.  This results in the model fitting the 

original dataset very well, but limits its applicability to more general situations, in 

other words, overfitting the data.  In order to evaluate which trees were significant 

I examined the misclassification error rate in relation to the complexity of the tree 

or number of terminal nodes (Figure 3).  With increasing tree complexity there 

was a decrease in the misclassification error rate, which was expected.  

However, after 6 nodes an increase in tree complexity did not result in a lower 

misclassification error rate.  I therefore examined classification trees with 5 and 6 

nodes and determined that the 5 node tree was most reasonable.  The rule 

associated with the 6th node appeared to be an artifact of the sampling design.  

Specifically, the 6th node predicted lead contamination was restricted to within 

14.5 meters of the major road networks.  This prediction was most likely a result 

of the fact that more than half of the properties sampled were within 30 meters of 

a major roadway by design.  The rule associated with the 6th node does not 

account for contamination on parcels that are farther than 30 meters from the 

road, a pattern that was observed in 28% of the properties sampled.  

 

The predications from the 5 node classification tree (Figure 4) were mapped in 

ArcGIS 9.3 using Model Builder.  The rules determined by the CART model were 

translated into a series of conditional statements that were constructed in Model 
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Builder using the “single output map algebra” tool (Figure 5).  The resultant map 

(Figure 6) shows the areas were soil Pb levels are predicted to exceed the 

USEPA reportable limit of 400 ppm.  

 

Model Construction – Random Forest (RF) 

In contrast to CART, which produces a single tree, Random Forests (RF) 

combines many trees (Breiman 2001).  Each tree is constructed using a subset 

of the training data (i.e. field data).  The remaining data are said to be “out-of-

bag” (Cutler et al. 2007).  The multiple trees generated in RF, each constructed 

from a subset of data, are then used to predict the withheld or "out-of-bag" 

observations as a means of accuracy assessment (Cutler et al. 2007).  RF 

models are ideally suited for ecological data.  RF models can handle complex 

interactions, missing data and exhibit high classification accuracy (Cutler et al. 

2007).   

 

Models developed using RF have been shown to be more robust compared to 

other modeling techniques.  For example, Peters et al. (2007) compared two 

different models, a multiple logistic regression in a GLM framework and RF, to 

predict vegetation type occurrence based on various habitat descriptors.  In 

comparing the two techniques, they concluded that the RF model could lead to 

better predictive ecohydrological models (Peters et al. 2007).  In addition, Cutler 

et al. (2007) used RF models to classify presence-absence data and found 

increased accuracy with RF models compared to other classifiers.   
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In R, I used "ModelMap" (Freeman and Frecino 2009), which uses a RF package 

(Liaw and Wiener 2009), to create a RF model based on the training data.  Then 

the model is used to predict on new data with the same predictor variables as 

used in the original model.  The field data collected with the XRF served as the 

training data.  A composite raster containing the three predictor variables 

(housing age, distance to road, distance to building) was created using the 

"Composite Bands" function in ArcGIS 9.3 and served as the new data.  A RF 

regression model consisting of the default value of 500 trees explained 42 % of 

the variation in the data.  Models developed using RF consistently show that 

distance to building and housing age are more important predictors compared to 

distance to major road networks.  Moreover, distance to building and housing 

age are roughly equal in terms of variable importance.  The output from the 

ModelMap package is an ASCII grid file that was converted to a raster using the 

"ASCII to raster" function in ArcGIS 9.3.  The raster file was reclassified resulting 

in a map (Figure 7) that shows areas were soil Pb levels are predicted to exceed 

the USEPA reportable limit of 400 ppm. 

 

Model Validation 

In order to test the accuracy of the models, soil Pb data that was collected as 

part of the Urban Forest Effects Model (United States Department of Agriculture 

Forest Service, Urban Forest Effects Model – UFORE, fs.fed.us) was overlaid 

with the resulting models to evaluate the amount of agreement between the 
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model predictions and an independently collected dataset.  Only those UFORE 

soil samples that were collected in residential areas that intersected the model 

were used in the accuracy assessment (n = 29).  For the GLM model 26 of the 29 

UFORE soil samples were correctly classified as lead concentrations (< or >) 400 

ppm based on the model predictions, resulting in an overall accuracy of 89.66% 

(Table 2).  The producer's accuracy, representing errors of omission, for samples 

classified as low (0-400 ppm) is 96% and for high (over 400 ppm) is 50% (Table 

2).  The user's accuracy, representing errors of commission, for the low category 

(0-400 ppm) is 92.31% and for the high category (over 400 ppm) is 66.66% 

(Table 2).   

 

For the CART model 24 of the 29 UFORE soil samples were correctly classified 

based on the model predictions resulting in an overall accuracy of 82.76% (Table 

3).  The producer's accuracy for samples classified as low (0-400 ppm) is 92% 

and for high (over 400 ppm) is 25% (Table 3).  The user's accuracy for the low 

category (0-400 ppm) is 88.46% and for the high category (over 400 ppm) is 

33.33% (Table 3).  The RF model classified 21 of the 29 UFORE soil samples 

correctly, resulting in an overall accuracy of 72.41% (Table 4).  The producer's 

accuracy for samples classified as low (0-400 ppm) is 76% and for high (over 

400 ppm) is 50% (Table 4).  The user's accuracy for the low category (0-400 

ppm) is 90.48% and for the high category (over 400 ppm) is 25% (Table 4). 
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The models more accurately predicted samples in the low category (<400 ppm) 

than in the high lead concentration (>400 ppm) category.  This could be an 

artifact of the field data that was used as the input to the model since a greater 

number of measurements fell into the low category compared to the high 

category.  Lower accuracy in the high lead concentration category could also be 

due to the limited number of samples in the independent UFORE dataset used to 

validate the models that were part of the high category (n=4).  In addition, the soil 

samples collected as part of the UFORE project were sampled to a depth of 10 

cm.  The samples collected via XRF, which were used as the input to the model, 

are surface measurements that roughly correspond to the upper 2 mm of surface 

soil.  It is assumed that soil Pb is concentrated in surface soils and decreases 

with depth (Wang et al. 2006, Griffith et al. 2008); therefore the UFORE samples 

may represent more dilute Pb levels compared to XRF readings.  

 

Results and Discussion 

Visual examination of the predictions of the three models reveals a similar 

pattern with contamination concentrated in the city center and along the major 

road networks (Figures 2, 6, and 7).  This pattern is consistent with other studies 

in Baltimore City, which have found elevated soil Pb in older parts of the city and 

areas with higher road densities (Yesilonis et al. 2008).  These results are also 

consistent with earlier work that has found a correlation between elevated soil 

lead and roads (Facchinelli et al. 2001, Imperato et al. 2003, Ordonez et al. 2003, 
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Li et al. 2004, Wang et al. 2006) and work that has found a spatial and temporal 

component to the distribution of lead in soils (Yesilonis et al. 2008). 

 

The area predicted to be above the USEPA reportable limit of 400 ppm differed 

among models.  The GLM model predicted an area of 1,215,611 square meters 

would exhibit soil Pb levels above 400 ppm, while the CART model predicted an 

area of 4,077,071 square meters would be above 400 ppm.  The RF model 

predicted the greatest amount of area, 10,575,386 square meters, to be above 

400 ppm.  Close examination of a detailed section of the mapped lead levels 

highlights the difference in areas predicted to be above the USEPA limit among 

the three models (Figure 8).  One potential reason that the CART model predicts 

more than three times the area predicted by the GLM to be contaminated could 

be the fact that it applies a blanket statement that elevated soil Pb levels will 

occur within 1.5 meters of any building built before 1934 regardless of housing 

material.  This prediction, not surprisingly, is consistent with patterns that I 

observed in the XRF data in which elevated levels of lead were found next to 

both brick and wood frame homes.  This prediction is also consistent with other 

studies which have documented elevated soil Pb in the absence of frame homes 

(Shinn et al. 2000).  The RF Model predicts even greater amounts of 

contamination compared to the CART model.  The difference between the two 

models can be explained by two patterns observed in the RF model predictions: 

1) contamination is not limited to homes built before 1934 as in the CART model 

and 2) in contrast to CART model predictions that state contamination will occur 
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within 1.5 meters of a building, the RF model predicts contamination to be more 

widespread, in some cases occurring throughout the entire parcel.  The patterns 

observed in the RF model predictions are also consistent with the XRF field data 

which exhibited soil contamination in homes built after 1934 and occasionally 

revealed contamination throughout a parcel.   

 

It is important to keep in mind that even though the model predictions differ in the 

extent of contamination, an independent dataset that was used to validate the 

models resulted in similar numbers for overall accuracy.  Overall accuracy is an 

important indicator of how well a model describes actual conditions; however, the 

data used in the validation have their limitations as well.  Therefore, it is also 

important to keep in mind that although the Random Forest displayed the lowest 

overall accuracy (72.41%), the model explained the greatest amount of variation 

(42%) in the data.  This is consistent with the idea that classification techniques 

are better suited at describing complex, non-normal data compared to general 

linear models.     

 

Many public health programs that focus on lead remediation remain mitigative as 

opposed to preventive (Miranda et al. 2002).  There is a great need to shift to 

more preventative measures (Griffith et al. 2008).  With the realization that 

elevated soil Pb is a potential public health issue, there is also a great need to 

accurately predict hotspots of elevated soil Pb.  GIS has been proposed as a 

technique that can help to explain the spatial structure of environmental data 
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(Getis et al. 2004).  With increasing GIS capacity and an abundance of spatial 

statistic techniques, researchers now have the ability to create empirically-based 

models that can predict hotspots of lead contamination in urban residential soils.  

These new techniques hold great potential and can increase our understanding 

of environmental health issues such as childhood Pb poisoning (Miranda and 

Dolinoy 2005).  In addition, using GIS-based models could alleviate the need for 

costly and time-intensive clinical trials (Griffith et al. 2008).   

 

When examining spatial patterns of ecological data, the use of several different 

techniques is encouraged (Perry et al. 2002).  Here I compared the use of 

empirically-based GIS models using a traditional GLM technique and two 

machine learning techniques, CART and RF.  Although the GLM model out-

performed the CART and RF model in terms of overall, producer and user’s 

accuracy, all three models exhibited overall accuracies above 70%.  The 

resulting models predict the spatial distribution of lead in soil for residential areas 

of Baltimore City.  The methods used in this work could be applied to other urban 

areas; however, the resulting models may be regionally constrained.  Urban 

centers in the southeastern United States are less affected by lead contamination 

compared to their rural counterparts because the growth phase of those cities 

occurred after the ban on products containing lead (Miranda et al. 2002).  The 

models described above would most likely be applicable to cities in the 

Northeastern United States with similar housing stock and transportation 

networks.   
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This research highlights the usefulness of empirical models to predict the spatial 

distribution of lead in urban residential soils and improves our knowledge of the 

effect that various landscape features have on lead concentrations in soil.  

Empirically-based GIS models have the potential to improve upon current soil 

remediation efforts by pinpointing areas of high contamination, thus reducing the 

cost of intensive soil sampling.  Accurate characterization of soil lead 

concentrations can also assist the public health community in focusing on a 

widely dispersed source of lead in the environment.   

 

The multiple models created provide the public health community with several 

screening tool options.  The more restricted GLM and CART model predictions 

provide a reasonable option if resources for further study are limited.  However, if 

resources are available for comprehensive follow-up studies, the RF model 

predictions are less likely to exclude possible lead contamination by erring on the 

side of commission rather than omission.  Therefore, public health policy based 

on the RF model predictions may be more protective of human health.  
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Figures Legends 

 
Figure 1.  Distribution of soil Pb data before and after log transformation.  Both 
distributions failed the Shapiro-Wilk W test for goodness of fit; however, the log 
transformed data more closely resembles a normal distribution. 
 
Figure 2.  A map illustrating the predictions of the GLM model.  Areas in green 
are predicted to fall below the USEPA reportable limit of 400 ppm while areas in 
red are predicted to be higher than 400 ppm.  No data are available for areas 
where only the aerial photo is shown. 
 
Figure 3. A graph of the CART misclassification error rates by number of 
terminal nodes on the tree.  As the tree gains complexity the misclassification 
error rate decreases; however after 6 nodes an increase in complexity does not 
result in a lower misclassification error rate.  
 
Figure 4.  Classification tree from S-Plus showing the 5 terminal nodes and 
corresponding thresholds.  The length of the branch is proportional to the 
variance explained with longer branches explaining more variance. 
 
Figure 5.  A series of conditional statements constructed in ArcGIS Model 
Builder.  These rules are derived from the predictions of the 5 node classification 
tree.   
 
Figure 6.  A map illustrating the predictions of the CART model.  Areas in green 
are predicted to fall below the USEPA reportable limit of 400 ppm while areas in 
red are predicted to be higher than 400 ppm.  No data are available for areas 
where only the aerial photo is shown. 
 
Figure 7.  A map illustrating the predictions of the Random Forest model.  Areas 
in green are predicted to fall below the USEPA reportable limit of 400 ppm while 
areas in red are predicted to be higher than 400 ppm.  No data are available for 
areas where only the aerial photo is shown. 
 
Figure 8.  Area of detail showing model predictions from the three different 
models.  The GLM model predictions are shown in panel A, the CART model 
predictions in panel B, and the Random Forest predictions in panel C. 
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Table 1.  GLM created in JMP using log transformed data with Pb concentration 
as the dependent variable and distance to major road networks, distance to 
buildings, housing age, and interactions as the independent variables.  As 
indicated by the R square value, the model describes 38% of the variation in the 
data. 
 
Response Log10Pb 
Summary of Fit 
    

RSquare 0.380777 
RSquare Adj 0.378 
Root Mean Square Error 0.428757 
Mean of Response 2.163011 
Observations (or Sum Wgts) 1121 
 
 

Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  26.506363 1.125501 23.55 <.0001 
Housing_Ag  -0.012447 0.00058 -21.45 <.0001 
Dist_Road  -0.000272 3.023e-5 -8.99 <.0001 
Dist_Build  -0.034337 0.003151 -10.90 <.0001 
(Dist_Road-284.694)*(Housing_Ag-1936.61)  -1.637e-5 2.123e-6 -7.71 <.0001 
(Dist_Build-4.19982)*(Dist_Road-284.694)  -0.000019 7.822e-6 -2.44 0.0150 

 
 
 
 
Table 2. Error matrix of the GLM model and UFORE soil lead data.   
 

Model Predictions Pb 
(ppm) 

UFORE (Reference Data) Pb (ppm) 

0-400 ppm (low) Over 400 ppm (high) 

0-400 ppm (low) 24 2 

Over 400 ppm (high) 1 2 

Overall Accuracy = 26/29 = 89.66% 

 

Producer's Accuracy  
(measure of omission error) 

User's Accuracy  
(measure of commission error) 

0-400 ppm (low) = 24/25 = 96%  
4% omission error 

0-400 ppm (low) = 24/26 = 92.31% 
7.69 % commission error 

over 400 ppm (high) = 2/4 = 50% 
50% omission error 

over 400 ppm (high) = 2/3 = 66.66% 
33.33% commission error 
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Table 3. Error matrix of the CART model and UFORE soil lead data.   
 

Model Predictions Pb 
(ppm) 

UFORE (Reference Data) Pb (ppm) 

0-400 ppm (low) Over 400 ppm (high) 

0-400 ppm (low) 23 3 

Over 400 ppm (high) 2 1 

Overall Accuracy = 24/29 = 82.76% 

 

Producer's Accuracy  
(measure of omission error) 

User's Accuracy  
(measure of commission error) 

0-400 ppm (low) = 23/25 = 92%  
8% omission error 

0-400 ppm (low) = 23/26 = 88.46% 
11.54 % commission error 

over 400 ppm (high) = 1/4 = 25% 
75% omission error 

over 400 ppm (high) = 1/3 = 33.33% 
66.66% commission error 

 
 
 
 
Table 4. Error matrix of the Random Forest model and UFORE soil lead data.   
 

Model Predictions Pb 
(ppm) 

UFORE (Reference Data) Pb (ppm) 

0-400 ppm (low) Over 400 ppm (high) 

0-400 ppm (low) 19 2 

Over 400 ppm (high) 6 2 

Overall Accuracy = 21/29 = 72.41% 

 

Producer's Accuracy  
(measure of omission error) 

User's Accuracy  
(measure of commission error) 

0-400 ppm (low) = 19/25 = 76%  
24% omission error 

0-400 ppm (low) = 19/21 = 90.48% 
9.52 % commission error 

over 400 ppm (high) = 2/4 = 50% 
50% omission error 

over 400 ppm (high) = 2/8 = 25% 
75% commission error 
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Figure 1. 
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CHAPTER 4. ENVIRONMENTAL INEQUITIES ASSOCIATED WITH THE 

SPATIAL DISTRIBUTION OF LEAD IN SOIL IN RESIDENTIAL AREAS OF 

BALTIMORE, MARYLAND USA. 

 
Abstract 

Valued for its unique chemical properties of corrosion resistance and low melting 

point, lead was historically used in several commercial products, most notably 

lead-based paint and leaded gasoline.  Through these products, lead has made 

its way into our homes, our environment, and our bodies.  Lead poisoning is an 

important public health concern because there is no safe level of lead in the 

body, and the effects of lead poisoning are devastating and irreversible.  Lead 

poisoning is an entirely preventable disease.  Yet, every year children who are 

most vulnerable to the effects of lead poisoning due to their unique physiology 

and increased hand-to-mouth activity continue to be poisoned.  In addition, the 

incredible burden of lead poisoning does not appear to be equally distributed 

among populations.  Poor, African American children living in large metropolitan 

areas and older homes are more likely to have elevated blood lead levels (BLLs).  

Many sources of lead can contribute to elevated BLLs, including lead-based 

paint, atmospheric lead, and lead in water, food, and soil.  Here I partner an 

empirical model for residential soil lead concentrations in Baltimore, Maryland 

with census tract data to examine potential associations between demographic 

data and areas predicted to have soil lead concentrations above the United 

Stated Environmental Protection Agency’s (USEPA) reportable limit of 400 ppm.  

In order to examine potential relationships between race and elevated soil lead 

concentrations, model predictions were overlaid with majority black (>50%) 
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census block groups and majority white (>50%) census block groups.  A greater 

percent of area in the majority black census block groups is predicted to have 

elevated soil lead concentrations (11.57%) compared to the majority white 

census block groups (10.82%); however, this difference is small.  In order to 

examine potential relationships between socio-economic variables and elevated 

soil lead concentrations, model predictions were overlaid with census blocks that 

exhibited poverty rates above the national average (12%) and those below.  The 

model predicts that census blocks with poverty rates above the national average 

have a greater percent of soil with lead levels in excess of 400 ppm (18.35%) 

compared to census blocks with poverty rates below the national average 

(10.70%).  Based on empirical model predictions, the data suggest that important 

associations exist between demographic data and the spatial patterning of lead 

in soil in Baltimore, Maryland.  These results support earlier research conducted 

in Baltimore that demonstrated environmental inequities are not limited to 

communities of color, but rather affect all economically disadvantaged groups.      
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Introduction  

The health impacts of lead poisoning are severe.  Each year children continue to 

be exposed to harmful amounts of a known potent neurotoxin, lead (Pb), and the 

results of excessive exposure are devastating and irreversible (Rogan and Ware 

2003).  Lead exposure in children has been found to have profound negative 

effects on cognitive and behavioral function (Wakefield 2002) with some studies 

documenting adverse health effects below the current Centers for Disease 

Control’s (CDC) level of concern of 10 µg/dL (Lanphear et al. 2000, Koller et al. 

2004).  These findings highlight the fact that there is no “safe” level of lead in the 

body.  Adverse health effects of lead exposure are many and range from 

intellectual impairment and hyperactivity to coma, convulsions and death 

(ATSDR 1999).  In addition, some scientists argue that lead exposure is 

associated with criminal activity or elevated risk for adjudicated delinquency 

(Needleman et al. 2002, Nevin 2007, Wright et al. 2008, Nevin et al. 2009).  

 

Lead is especially dangerous to children.  Children’s bodies absorb more lead, 

an estimated 30-50%, compared to adults who only absorb 10-20% (Shannon 

1996).  Additionally, children are more sensitive to the effects of lead (USEPA, 

Lead in paint, dust, and soil, epa.gov). Once lead enters the body through 

ingestion or inhalation, short-term storage occurs in the blood, while longer term 

storage occurs in bone.  Lead not stored in bones is eventually excreted in urine 

and feces.  However, the amount excreted differs between adults and children.  

Adults excrete an estimated 99% while children only excrete about 32% (ATSDR 
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1999).  Severe childhood lead poisoning can be treated with chelation therapy; 

however, studies have shown that even after undergoing treatment, cognitive 

loss does not appear to be restored (Rogan et al. 2001).   

 

The toxic properties of lead have been known for a very long time.  J. Lockhart 

Gibson was one of the first people to link childhood lead poisoning with lead-

based paint in 1904 (as cited in Markowitz and Rosner 2000), but global lead 

pollution dates back to ancient times (Nriagu 1996).  As evidence became clear 

of the toxic properties of lead-based paint in the 1920s and 1930s, many 

countries banned or restricted the use of interior lead-based paint.  France, 

Belgium, Austria, Tunisia, Greece, Czechoslovakia, Great Britain, Sweden, 

Belgium and Poland all banned or placed restrictions on interior lead-based paint 

in the 1920s (as cited in Markowitz and Rosner 2000).  The United States was 

slow to follow, only banning the use of lead-based paint in 1978.   The sluggish 

response in the United States was potentially related to a trade group that 

represented lead pigment manufacturers called the Lead Industries Association 

(LIA) (Markowitz and Rosner 2000).  The LIA actively tried to counter claims by 

the public health sector with an aggressive advertising campaign.  It was also 

suggested that LIA marketing was directed toward urban populations.  In a 

review of this ad campaign and the LIA's role in promoting a dangerous product, 

it is noted that "the LIA specifically targeted markets in urban areas" (Markowitz 

and Rosner 2000, p.41).   
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The burden of lead poisoning is not equally distributed.  Even though great 

progress has been made in reducing the use of lead, lead poisoning is still a 

major public health concern, especially for children in urban areas.  Although 

residents of more rural areas are not immune to anthropogenic lead 

contamination, urban populations are often more affected by lead poisoning 

(Laidlaw and Filippelli 2008).  For example, the rates of lead poisoning in some 

cities are as high as 15-20% (Laidlaw and Filippelli 2008), much higher than the 

2006 national average of 1.2% (CDC, CDC’s national surveillance data, cdc.gov).  

Earlier studies have shown that elevated BLLs are significantly associated with 

age, African American race, low income, and older homes (Pirkle et al. 1998).  It 

is well-documented that low-income minority communities have 

disproportionately higher rates of elevated BLLs (Kraft and Scheberle 1995).  

Direct evidence from Baltimore suggests that African Americans experience 

disproportionately higher lifetime lead doses as evidenced by higher tibia lead 

concentrations compared to Whites (Theppeang et al. 2008).  Differences in 

socio-economic status did not explain the differences in tibia lead concentrations 

between African Americans and Whites.  The authors argue differences are due 

to cumulative environmental lead exposures (Theppeang et al. 2008).   

 

These data, along with the literature suggest that lead poisoning is an important 

environmental justice issue in urban areas (Kraft and Scheberle 1995).  

However, previous studies in Baltimore have shown that the accepted patterns of 

environmental racism do not hold true for some point sources of pollution.  This is 
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evidenced by higher concentrations of toxic release inventory (TRI) facilities in 

white working-class neighborhoods (Boone 2002).  The pattern may be different 

for non-point sources of pollution such as elevated concentrations of lead in soil.   

 

The societal costs of lead poisoning are also enormous.  Those who balk at the 

potential high cost of remediation efforts fail to recognize that the annual cost of 

poisoning from environmental lead in the United States is $43.3 billion (Landrigan 

et al. 2002).  That high number might be difficult to put in context.  Consider that 

the same study estimates the annual cost of pediatric asthma of environmental 

origin to be $2 billion and the cost of childhood cancer of environmental origin to 

be $0.3 billion; it becomes very clear that the battle over lead poisoning has yet 

to be won.  Interestingly, a study that examined the benefits associated with 

replacing windows in pre-1960 housing, a common source of childhood lead 

poisoning, estimated that there would be a net benefit, which considered energy 

savings, cost, market value benefit, and lifetime earning benefit, of $67 billion 

(Nevin et al. 2008).  Given the fact that lead poisoning is 1) entirely preventable, 

2) carries devastating health consequences that cannot be reversed, and 3) is 

costing the United States billions of dollars every year, it is clear that the public 

health focus needs to be on prevention (Rogan and Ware 2003).   

 

Identifying the source of lead is a challenging task.  Soil is an important sink for 

environmental lead and is thought to contribute to elevated BLLs (Duggan and 

Inskip 1985, Aschengrau et al. 1994, Mielke 1997); however, soil is one of many 
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lead sources with which children may come into contact.  To further complicate 

matters, some argue that pinpointing a single lead source, i.e. paint, is more 

difficult when lead poisoning is low (10-20 µg/dL) because multiple sources may 

be at play (Shannon 1996).  In addition, at low BLLs, ingesting paint chips is 

probably not the source of poisoning.  If lead paint chips were the source of lead 

poisoning BLLs would likely be much higher (Shannon 1996).  In addition to the 

issue of multiple sources, other factors are also important to total lead body 

burdens.  Nutrition has been found to be an important factor in lead absorption in 

the body, such that both calcium and iron deficiencies have been associated with 

greater lead absorption (Shannon 1996, Ryan et al. 2004).  In addition, diets high 

in fat have also been associated with increased lead absorption (Shannon 1996).  

Pica, or ingestion of non-food items, is also thought to be a risk factor.  

Identifying the multiple sources of lead in the environment and assigning risk to 

those sources is not the aim of this study.  Here I focus on one potential source 

of lead in the environment and the possible relationships between that potential 

source and certain demographic features.  

 

In this study I examine potential associations between demographic data and soil 

lead concentrations in order to address possible environmental justice inequities 

in Baltimore Maryland.  Specifically, I partner an empirical model of residential 

soil lead concentrations above and below the USEPA reportable limit of 400 ppm 

in Baltimore, Maryland with census tract data.  This study, therefore, examines 

geographic equity defined by Bullard (1994) as "the location and spatial 
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configuration of communities and their proximity to environmental hazards and 

locally unwanted land uses" (p. 13).  Social equity, which considers 

environmental decision-making, is not addressed in this study.  A more complete 

understanding of which communities are predicted to experience higher levels of 

lead in soil could aid soil remediation efforts. 

 

Methods 

Within a GIS, a map of the predicted soil lead values derived from an empirical 

model was overlaid with census tract data (Figures 1 and 2).   The empirical 

model is based on soil lead concentrations that were collected in Baltimore City, 

Maryland in 2007-2008 using field portable x-ray fluorescence.  The model was 

developed using classification and regression trees (CART) and predicts soil lead 

concentrations in two categories: those predicted to be below the USEPA 

guideline of 400 ppm (low) and those predicted to be above the USEPA guideline 

(high).  In an earlier study, I compared several different models that predicted the 

spatial patterning of lead in soil as a function of landscape features.  One model 

utilized a traditional general linear model (GLM) while another model used 

Classification and Regression Trees (CART), a machine learning technique.  I 

used the model developed with CART for this analysis because CART models 

have been shown to better capture complex patterns that linear models 

sometimes miss (De’Ath and Fabricius 2000).  CART models may therefore be 

more adept at predicting soil lead concentrations in highly heterogeneous 

environments, particularly urban areas.  In addition, the predictions of the CART 
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model more closely resemble spatial patterns revealed by previous research on 

the distribution of heavy metals in Baltimore City (Yesilonis et al. 2008).  The 

CART model also captures important hotspots in the landscape detected in the 

field data that was used to construct the model.  By combining existing census 

tract data with predicted soil lead concentrations I was able to examine potential 

associations between demographic factors and the spatial distribution of lead in 

soil.  

 

I first examined relationships between race and areas predicted to have soil lead 

concentrations greater than 400 ppm.  I chose to examine majority black and 

majority white census block groups because they are the predominant races 

represented in Baltimore City; approximately 95.9% of Baltimoreans self-

identified as either black (64.3%) or white (31.6%) on the last United States 

Census (United States Census Bureau, Baltimore City Quickfacts, census.gov).  

Areas predicted to exceed 400 ppm by the CART model were converted from 

raster to polygon format.  Using the census tract data, I calculated the percent of 

black and white residents at the census block level and created two new layers.  

One layer consisted of the majority black census block groups and the other 

consisted of the majority white census block groups.  I defined “majority” as 

greater than fifty percent.  Using the “dissolve” function in ArcGIS 9.3, the 

majority black census block groups were converted to one continuous polygon.  

The same was done for the majority white census block groups.  Next, I used the 

Hawths Tools Extension “Polygon in Polygon Analysis” to calculate the area 
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predicted to have high lead concentrations (> 400 ppm) in the majority black and 

majority white census block layers.  I then repeated this process for areas 

predicted to have low lead concentrations (< 400 ppm).  This allowed the total 

modeled area that was contained within the different census block groups to be 

calculated.  The total modeled area includes only residential parcels that contain 

housing age data.  In addition, the model does not include the area occupied by 

building footprints.  The calculations are: 

 

(Area Predicted > 400 ppm for the Majority Black Census Blocks) / (Total 

Modeled Area) = 1,957,194 m2 / 16,919,219 m2 *100 = 11.57%  

 

(Area Predicted > 400 ppm for the Majority White Census Blocks) / (Total 

Modeled Area) = 1,979,896 m2 / 18,303,631 m2 *100 = 10.82%  

 

A similar analysis was done to examine correlations between soil lead levels and 

the percent of residents living below the poverty line.  The percentage of people 

living below the poverty line in the United States is 12% (Central Intelligence 

Agency, The world factbook (2004 estimate), cia.gov).  Using 12% as a 

threshold, I divided the census block groups of Baltimore City into those with 

poverty rates below the national average and those with poverty rates above the 

national average.   Again I used the Hawths Tools Extension “Polygon in Polygon 

Analysis” to calculate the amount of area predicted to have lead levels greater 
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and less than 400 ppm in each of the census block groups.  The calculations are 

below: 

 

(Area Predicted > 400 ppm for Census Blocks with >12% of Population Living 

Below the Poverty Line) / (Total Modeled Area) = 408,195 m2 / 2,224,797 m2 

*100 = 18.35% 

 

(Area Predicted > 400 ppm for Census Blocks with <12% of Population Living 

Below the Poverty Line) / (Total Modeled Area) = 3,416,401 m2 / 31,933,595 m2 

*100 = 10.70% 

 

Results and Discussion 

A greater percentage of area in the majority black census block groups is 

predicted to have elevated soil lead concentrations (11.57%) compared to that in 

the majority white census block groups (10.82%); however, this difference is 

slight.  A greater percentage of area in census blocks with poverty rates above 

the national average is predicted to have elevated soil lead concentrations 

(18.35%) compared to areas with poverty rates below the national average 

(10.70%).   

 

It is necessary to address important caveats to this study.  This study does not 

address elevated BLLs.  Instead, this study addresses whether or not 

associations exist between demographic features and the spatial distribution of 
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lead in soil.  Lead in soil is only one of many important sources of lead in the 

environment that may contribute to elevated BLLs.  Therefore, this study does 

not address the association of soil contaminated with lead to elevated BLLs or 

the associated risk.  In addition, the model used in this study is a physical 

environmental model and does not take into account socio-economic variables 

that may be important to predicting the spatial patterning of lead.   

 

By partnering an empirical model that predicts lead concentrations in soil with 

census tract data I was able to identify associations between certain 

demographic features and the spatial distribution of lead in soil.  The results 

indicate that areas with poverty rates above the national average may be 

disproportionately burdened with a greater amount of area predicted to have 

elevated soil lead concentrations.  These results parallel earlier research 

conducted in Baltimore that showed that environmental inequities are not limited 

to communities of color but rather affect all economically disadvantaged groups 

(Boone 2002, Pickett et al. 2008).  Further research is needed to explain why 

these inequities exist and what role, if any, history, racial biases, and politics 

played in the resultant pattern.     
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Figure Legends 

Figure 1.  The green areas represent the majority black (>50%) census block 
groups.  The blue areas represent the majority white (>50%) census block areas.  
Areas that are predicted to have soil lead values above the USEPA reportable 
limit of 400 ppm are depicted in red.  
 
Figure 2.  The orange areas represent census block groups with >12% of the 
population living below the poverty line.  The purple areas represent census 
block groups with <12% of the population living below the poverty line.  Areas 
that are predicted to have soil lead values above the USEPA reportable limit of 
400 ppm are depicted in red. 
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133 
 

 

 

Figure 2. 
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CONCLUSIONS 

Lead contamination of the urban residential environment in Baltimore, Maryland 

is highly variable and pervasive.  This research has demonstrated that the spatial 

distribution of lead in urban residential soils is influenced by land cover, legacies 

of lead-containing products, and spatial heterogeneity and has important 

implications for environmental inequity in some communities.  This research has 

shown that in contrast to land use, land cover is a predictor of lead 

concentrations in soil.  In addition, historical land cover is also an important 

predictor of lead in soil.  Certain features of land cover are more important than 

others.  Housing age, distance to roads, and distance to building strongly 

influence the spatial distribution of lead in soil and explain up to 42% of the 

variation in the data.  The various spatial models in this dissertation demonstrate 

similar overarching patterns of contamination; however, the models predict 

differing extents of contamination.  Further work is needed in order to determine 

which model is most appropriate.  Finally, by partnering the modeled soil lead 

predictions with demographic features, I have found that a larger amount of 

contamination is predicted to occur in high poverty areas.  This finding supports 

earlier work in Baltimore that suggested environmental inequities are not limited 

to communities of color and instead affect all economically disadvantaged 

groups. 

There are several implications of this work.  The first implication is that land 

cover, in contrast to land use, may be a better predictor of lead concentrations in 

urban residential soils.  The importance of land cover as a predictive ecological 
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variable can likely be applied to other ecosystem functions that may be based on 

spatially differentiated source and sink patches, and networks of connection.  

This suggests that for spatially complex situations where sources and sinks are 

interspersed, metrics describing ecosystem structure, such as land cover, may 

be more appropriate to ecological studies than classifications that focus on 

coarse categories of land use.  The second implication is that legacies of lead in 

the environment are important to the current spatial distribution of lead in soil.  

The third implication is the necessity to use intensive sampling to capture 

inherent variability in urban residential soil lead concentrations.  Therefore, a 

sample collected from the middle of the yard would likely exclude areas of high 

contamination.  In addition, composite samples can reduce variability, missing 

hotspots in the landscape.  This information should be considered when 

conducting geochemical mapping of the urban residential environment.  The 

fourth implication is the utility of spatial models in describing the spatial 

distribution of lead in soil.  Although the modeling work in this dissertation is 

focused on Baltimore, Maryland, this approach is applicable to other urban areas 

because the features that were found to be significant to the spatial distribution of 

lead in this study, including housing age, distance to road, and distance to 

building are likely important in other cities of similar structure, age, and history.  

Finally, the information from this dissertation can be used in remediation efforts 

to target areas of high contamination in the yard, for example soil adjacent to 

buildings, thereby reducing cost and the challenge of contaminated soil disposal.  

Knowledge regarding the association between impoverished communities and 



136 
 

 

 

high soil lead concentrations can inform the public health community and help 

protect vulnerable communities from potential exposure to an important 

environmental contaminant. 
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