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ABSTRACT OF THE DISSERTATION

Local Intensity and its Dynamics in Multi-Name Credit

Derivatives Modeling

by Ming Shi

Dissertation Director: Paul Feehan

We import the problems and techniques developed for the local volatility model in equity

derivatives to multi-name credit modeling, propose and solve analogous problems. In

particular, we analyze the properties of the local intensity of the default counting process

and explore the stochastic evolution of the local intensity surface under the “Top-

down” credit modeling framework. The analogue of Dupire formula, Gyöngy’s theorem,

backward and forward equations are developed and parametric factor models for the

dynamics of the local intensity surface will be discussed.
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4.2. Term structure model of Schönbucher . . . . . . . . . . . . . . . . . . . 74

4.2.1. No-arbitrage conditions . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.2. Static local intensity surfaces . . . . . . . . . . . . . . . . . . . . 76

4.3. Parametric factor models . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1. Parametric factor models . . . . . . . . . . . . . . . . . . . . . . 78

4.3.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.3. Derivatives pricing by parametric factor models . . . . . . . . . 83

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vi



1

Chapter 1

Introduction

This dissertation is dedicated to the study of mathematical models used for valuation

and risk analysis of multi-name credit derivatives such as index-credit default swaps

(CDS), collateralized debt obligations (CDO), and other exotic portfolio credit deriva-

tives. Specifically, in this dissertation, we analyze the properties of the local intensity

of the default counting process Nt and explore the stochastic evolution of the local

intensity surface of Nt under the “top-down” credit modeling framework. In this intro-

ductory section I will briefly review the background of the top-down approach, show

how my work fits into the literature, and then discuss my future research interests.

1.1 Overview

Credit derivatives are tools for transferring and hedging credit risk. The credit deriva-

tives market has grown rapidly both in volume and in the breadth of the instruments

offered. Multi-name credit derivatives are among the most complex of these instru-

ments and their values are derived from an underlying portfolio of corporate bonds

or other credit-sensitive securities. They enable investors to buy and sell protection

against default losses in the portfolio. Valuation and risk analysis of a multi-name

credit derivative is challenging due to the complex economic phenomena that drive cor-

related corporate default risk and the dependency of the distribution of portfolio loss on

multiple time horizons. The shortage of reliable mathematical models was highlighted

by the recent subprime mortgage crisis.

Although it has been widely used, it is well known that the copula model (Vasicek

[25], Li [17]) in industry does not provide a satisfactory modeling solution, since it is a

static model unable to capture the dynamic evolution of default probabilities. Reduced
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form models are generally now preferred and have become a standard tool for modeling

the dynamics of credit risk. Reduced form models assume that default occurs without

warning at an exogenous default rate, or intensity. The dynamics of the intensity can

be specified under the pricing or risk neutral probability measure. Therefore, instead of

asking why the firm defaults, the intensity model is calibrated directly from the market

prices of traded instruments. To construct an intensity model one must give a model

to describe the dynamics of the intensity and then seek the distribution of the default

probability.

Reduced form models are distinguished by the way in which the intensity of the

default process is specified. In a bottom up model, the portfolio intensity is modelled by

specifying both the intensities of individual constituents and the dependency structure

among them. Such a specification is appropriate for the analysis of portfolios of highly

heterogeneous constituents. It brings the information of the single-name market to

bear on the calibration of the model. However, the dependence among single defaults

is partly arbitrary and consistent calibration is difficult or practically impossible. For

further information about the bottom up model, see Papageorgiou & Sircar [8], Frey

& Backhaus [10], Duffie & Garleanu [6], and others. In contrast, top-down models

directly specify the portfolio default intensity λ(t) = lim
h↘0

1
h
P(N(t+h)−N(t) = 1|Ft) 1

without reference to the portfolio constituents, where N(t) is the number of defaulted

obligors in the portfolio. The loss distribution can be expressed in terms of a few

economically meaningful parameters appearing in the specification of λ(t); this leads

to a tractable credit derivatives valuation model which can be addressed by a variety

of efficient methods.

By assuming name homogeneity 2 and constant recovery rates in the portfolio,

the default counting process N(t) becomes the modeling primitive and is completely

determined by λ(t). Frey and his coauthors [10] specified N(t) as a birth process

1We assume at most one jump during a sufficiently short time period; Schönbucher [23] showed
that this is only a very slight deviation from a fully general model allowing multiple jumps. Multiple
instantaneous defaults have also been discussed in [1].

2Different names (of companies) in the portfolio have equal notional values, so names are inter-
changeable. The name dependence structure is implicit in this specification. It does not matter which
name defaults. This is a typical assumption in valuation of multi-name credit derivatives.
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λ(t) = ν+αN(t) and also gave a nonlinear generalization λ(t) = ν+α2

β (e
β
α

(Nt−µ(t))+−1).

Under such specifications, N(t) is a time-inhomogeneous Markov chain. A more popular

generalization of a Markovian loss process is to incorporate other sources of randomness

in the specification of the intensity by letting λ = λ(Y(t), N(t)), where Y(t) contains

other random factors independent of N(t). If λ = Y (t), we obtain doubly stochastic

intensity. If λ = Y (t) · (N − N(t)), N is the total number of names, then we ob-

tain a doubly stochastic death process. If λ = Y (t)f(N(t))(N − N(t)), where f(·) is

some deterministic function, we obtain the bivariate spread loss process of Arnsdorf

& Halperin [13]. The specification may be also given in a differential form, such as

dλ(t) = κ(ρ(t,N(t)) − λ(t)) + σ
√

λ(t)dt in Lopatin & Misirpashaev [18]. Another in-

teresting specification of portfolio intensity is given by the self-exciting Hawkes process

[19], where λ(t) = ν +
∫ t

0
αe−β(t−s)dN(s). The Hawkes process does not use any other

source of randomness, but unlike the Markov chain model where λ(t) only depends on

the current loss level N(t), it depends on the whole path of N(t)

Motivation from equity derivatives modeling

All of the above multi-name credit models give more or less realistic dynamics of the loss

process N(t), and can model the “contagion” feature of defaults. In this dissertation,

we explore approaches to credit modeling inspired by the perspective of local volatility

models from equity derivative modeling, providing new methods and addressing new

questions suggested by equity derivative modeling.

In Dupire’s local volatility asset price model [7], which is mainly used in equity

derivative modeling, one assumes that the volatility has the form σ(t, S(t)) (for some

suitable deterministic function, σ(t, x)) and the asset price process S(t) has the dy-

namics dS(t) = rS(t)dt + σ(t, S(t))S(t)dW (t). Under this specification, S(t) is a one

dimensional Markovian process. The local volatility can be expressed in terms of the

prices of European call options by Dupire’s formulae σ2(T,K) =
∂C
∂T + rK ∂C

∂K
1
2K2 ∂2C

∂K2

, when

those call option prices C(T,K) are quoted for all maturities and strikes.

Gyöngy’s theorem asserts that there is a Markovian asset price process Ŝ(t) with



4

local volatility having the same marginal distributions as a given asset price pro-

cess S(t) with arbitrary adapted stochastic volatility σ(ω, t), if the corresponding lo-

cal volatility Σ(t, x) equals a conditional expectation of the stochastic volatility, i.e.,

Σ2(t, x) = E[σ2(ω, t)|S(t) = x]. So the local volatility model is general enough in the

sense of pricing European style derivatives, whose prices only depend on the marginal

distribution of the underlying asset.

While Dupire only assumes that the local volatility surface Σ(·, ·) is fixed. Carmoma

and Nadtochiy [3] considered the dynamics of this local volatility surface Σt(·, ·). There

is no static arbitrage as long as local volatility is positive, but in order to avoid dynamic

arbitrage, the differential equations governing the dynamics of local volatility surface

have to satisfy a very complex drift condition. The problems around the dynamics of

the local volatility surface are very interesting and challenging.

1.2 Dissertation summary

My dissertation research pursued the following two themes.

Investigation and analysis of local intensity surface and local intensity

model.

We import the problems and techniques developed for the local volatility model in

equity derivatives to multi-name credit modeling, and propose and solve analogous

problems. By analogy with the definition of the local volatility σ = Σ(t, S(t)), we call

λ = Λ(t,N(t)) the local intensity and the bivariate function Λ(·, ·) the local intensity

surface, though the second argument only takes discrete values. A top down model with

such a specification is called a local intensity model. Other general adapted intensity

specifications are called stochastic intensity models.

Summary of main results

1. In order to see the relation between the local intensity and the distribution of

N(t) or derivative prices, in section (3.1), we show that there exists an analogue
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of Dupire’s formula which expresses the local intensity surface in terms of the

marginal distributions of N(t), or the prices of European-style vanilla multi-name

credit derivatives.

Λ(T, n) = − 1
pn(T )

n∑

k=0

∂

∂T
pn(T ) Λ(T, n) = − 1

∆−∆+C(T, n)
∂

∂T
∆+C(T, n)

(1.1)

where, pn(T ) = P(NT = n), C(T, n) = E[(N(T ) − n)+], ∆+C(T, n) = C(T, n +

1)− C(T, n), ∆−C(T, n) = C(T, n)− C(T, n− 1)

2. We prove an analogue of Gyöngy’s theorem [12] in theorem (3.3.2), which as-

serts that there is a Markovian counting process N̂(t) with local intensity Λ(T, n)

having the same marginal distributions as a given counting process N(t) with

arbitrary adapted stochastic intensity λ(t). The corresponding local intensity is

expressed as a conditional expectation of the stochastic intensity

Λt(T, n) = E[λ(T )|N(T ) = n,Ft]. (1.2)

The bivariate local intensity function changes in time t with respect to the evolu-

tion of the counting process with stochastic intensity: that is, the local intensity

surface is not fixed with respect to time unless the stochastic intensity model is

already a local intensity model.

3. We extend Gyöngy’s theorem from pure jump models to jump diffusion models in

section 3.4.2. We show that the marginal distributions of a discontinuous semi-

martingale can be matched by a Markov process with local volatility and local

intensity for its diffusion and jump components. We also give a partial integro-

differential equation for the transition density function of the semi-martingale.

This result extends the Kolmogorov forward equations to a non-Markovian set-

tings.

4. We derive the Kolmogorov forward and backward difference (in state) and dif-

ferential (in time) equations obeyed by the distribution function of N(t) and the

price function of European style vanilla options on N(t) respectively in the local
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intensity model in section 3.2. Those equations can be reduced to system of or-

dinary differential equations. By solving these ODEs iteratively, we are able to

address the problem of CDO pricing 3.

5. For the benchmark, doubly stochastic intensity model and the Hawkes model, we

derive formulae for their local intensities, using our analogue of Dupire’s formula

in section 3.5. The models with these local intensities will have the same marginal

distribution as the given stochastic intensity models.

Investigation of the dynamics of the local intensity surface

The local intensity surface is not necessarily fixed, since the counting process N(t) is not

Markovian in general. It is interesting to consider problems related to the dynamics of

the local intensity surface. Namely, what is the time evolution of the local intensity sur-

face Λt(·, ·). Schönbucher in [23] interpreted the local intensity as a “forward transition

rate” and suggested the HJM-style term structure model to characterize its dynamics.

He also gave the no-arbitrage drift condition. However, HJM models are generally in-

finite dimensional, so they are unsuitable for implementation purposes. Therefore, we

are interested in the finite dimensional realization problem, that is to specify a dynam-

ics for the local intensity surface that are driven by a finite number of random factors

and that do not allow arbitrage.

Summary of main results

1. We propose parametric factor models in section 4.3.1 for the dynamics of the

local intensity surface since they are automatically finite dimensional. We give

a concrete example of a parametric factor model which satisfies the no-arbitrage

drift condition.

2. We discuss two examples of one dimensional factor models in section 4.3.2. If

the local intensity surface is scaled or shifted by a single factor Zt ie, Λt(T, n) =

3The price (spread) of CDO tranches can be written in terms of the European call option price
E[(N(t)−K)+]
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Zt ·Λ0(T, n) or Λt(T, n) = Λ0(T, n)+Zt, then the drift condition forces Zt to be 1

and 0 respectively. Therefore, random scaling and shifting models are reduced to

the local intensity model. This fact shows the restrictiveness of the no-arbitrage

condition.

Future research plans

We plan to pursue our study of the framework of parametric factor families to model

local intensity surfaces. Parametric families of forward curves have played an important

role in the analysis of interest rate modeling. Carmona [3] advocates this approach for

modeling local volatility surfaces. We believe that this approach will lead to new multi-

name credit derivative models.

We also plan to investigate the relationship between local intensity and stochastic

intensity and try to answer the following two questions: (1) What is the corresponding

initial local intensity surface, given a stochastic intensity model. (2) Given a stochastic

intensity model, what are the dynamics of the corresponding local intensity surface?

The first question is inspired by the question of how to find the local volatility surface

for the Heston model (a benchmark stochastic volatility model), which is only partially

solved. The second question is much more challenging, and has not caught the attention

of equity modelers so far. This question is also clearly related to the dynamics of local

intensity problem.
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Chapter 2

Background and preliminaries

This is an introductory chapter, in which we will give necessary definitions, descriptions

and theorems in both finance and mathematics which are used in later chapters.

The first section is dedicated to the introduction of credit derivatives. We will give

the definition and analyze the payoff of single-name and multi-name credit derivatives.

Pricing and hedging of these derivatives are the main problems considered in academia

and industry today.

In the second section we briefly introduce the mathematical tools used in credit

modeling. We will present intensity of jump processes, time-inhomogeneous Markov

chain, Itô-Doeblin’s formula for point processes.

In the third section, we give a brief introduction of intensity based Top-down models.

In the fourth section, we introduce the local volatility model and Gyöngy’s theorem.

2.1 Credit derivatives

In recent years, credit derivatives have become the main tools for transferring and

hedging credit risk. The value of a credit derivative is derived from the credit risk on

underlying bonds, loans or other financial assets. It is a bilateral contract which allows

the buyer and seller to transfer credit risk.

There are several ways of classifying credit derivatives. We will consider single-name

versus multi-name.
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In order to give the definition of various credit derivatives by using accurate math-

ematics, we assume all processes and random variable we discuss later on are defined

on a complete filtered probability space (Ω,F ,P) equipped with a filtration (Ft)(t≥0),

where Ω represents the set of all possible states of nature. P is the pricing measure

that attaches probabilities to the events in Ω. The filtration (Ft)(t≥0) represents the

information available at time t. Throughout this dissertation, we assume that (Ft)(t≥0)

satisfies the usual conditions. 1. We use the following notations:

τ = random default time of a certain company (2.1)

Q(t, T ) = P [τ ≤ T |Ft] default probability (2.2)

P (t, T ) = P [τ > T |Ft] survival probability (2.3)

B(t, T ) = time t value of risk free zero coupon bond expiring at T (2.4)

B̄(t, T ) = time t value of defaultable zero coupon bond expiring at T (2.5)

r(t) = short risk free interest rate (2.6)

D(t, T ) = e−
∫ T

t r(s)ds discount factor from t to T (2.7)

R = Recovery rate (2.8)

1that means (Ω,F ,P) is complete; F0 contains all events of measure zero; (Ft)(t≥0) is right continuous
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2.1.1 Single-name credit derivatives

Single-name credit derivatives involve protection against a default or other credit event

by a single reference entity. These instruments account for the majority of trading

activity in the current marketplace. The most popular single name credit derivatives

are defaultable bond and credit default swap (CDS)

1. Defaultable bond

A defaultable zero coupon bond with maturity T is the simplest credit derivative, which

behaves the same as an ordinary zero coupon bond, but might fail to deliver the prin-

cipal in case default occurs before maturity; that is, the payoff is

1{τ>T} =





1 τ > T (default after T ),

0 τ ≤ T (default before T ),

where τ is the random time of default. The price of a defaultable zero coupon bond is

B̄(t, T ) = E
[
D(t, T )1{τ>T}|Ft

]
(2.9)

= B(t, T )P (t, T ) (2.10)

where P (t, T ) = P(τ > T |Ft) is the survival probability, if we assume default is inde-

pendent of the risk free interest rate.

2. Credit default swap (CDS)

A credit default swap (CDS) is a swap designed to transfer the credit exposure of fixed

income products between parties. It is the most widely used credit derivative. It is an

agreement between a protection buyer and a protection seller whereby the buyer period-

ically or continuously pays a premium over the lifetime of the contract to the protection

seller in exchange for a payment by the seller contingent upon a credit event (such as

a default) occurring in the reference entity. The spread is usually paid quarterly. The

most common maturities are 3, 5, 7 and 10 years.

Most CDS contracts are physically settled, where upon a credit event the protection

seller must pay the par amount of the contract against the protection buyer’s obligation
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to deliver a bond or loan of the name against which protection is being sold.

Consider a CDS with notional $1, written at time t, with coupon payment dates

T1, · · · , Tn, and the annualized premium spread S. Assume that in default, the CDS

pays 1 − R right after the default, where R ∈ [0, 1] is the recovery rate. Assume that

default probability is independent of risk free interest rate, then the present value of

the premium leg PL is

PL = Et

[
n∑

i=1

(Sδi)D(t, Ti)1{τ>Ti}

]
(2.11)

= S
∑

δiD(t, Ti)P (τ > Ti) (2.12)

where δi is the accrual factor (the number of days between Ti−1 and Ti divided by the

number of days in year, under a suitable day-count convention). D(t, Ti) is the discount

factor, meaning the time t value of a dollar at Ti.

The present value of the default leg DL is

DL = Et

[
n∑

i=1

(1−R)D(t, Ti)1{Ti−1<τ≤Ti}

]
(2.13)

= (1−R)
n∑

i=1

D(t, Ti) [P (Ti−1 < τ ≤ Ti)] . (2.14)

So the fair price constraint PL = DL produces the par spread formula

S = (1−R)
∑n

i=1 D(t, Ti) [P (Ti−1 < τ ≤ Ti)]∑n
i=1 δiD(t, Ti)P (τ > Ti)

. (2.15)

2.1.2 Multi-name credit derivatives

A multi-name credit derivative is a security contingent on an underlying portfolio of

corporate bonds or other credit-sensitive securities. It enables investors to buy and sell

protection against the default losses in the portfolio.
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Consider a portfolio of N̄ firms. If Ii denotes the notional of a security referencing

firm i, then the notional of the portfolio is the sum

I =
N̄∑

i=1

Ii.

If name i defaults, the corresponding loss is (1−Ri)Ii, where Ri is the recovery rate of

name i. The portfolio loss at time t is

Lt =
N̄∑

i=1

(1−Ri)Ii1{τi≤t}.

The default counting process

Nt =
N̄∑

i=1

1{τi≤t}

gives the number of defaulted firms by time t. Multi-name products are usually deriva-

tives on Lt or Nt. We gave several examples of the most popular multi-name credit

derivatives as follows.

1. Index credit default swap

A credit default swap index is a credit derivative used to hedge credit risk or to take a

position on a basket of credit entities. Unlike a credit default swap, which is an single

name and over the counter credit derivative, an index credit default swap is multi-name

and completely standardized credit security. It may therefore be more liquid and trade

at a smaller bid-offer spread. There are currently two main families of CDS indices:

CDX and iTraxx. CDX indices contain North American and Emerging Market com-

panies and are administered by CDS Index Company (CDSIndexCo) and marketed by

Market Group Limited, and iTraxx contain companies from the rest of the world and

are managed by the International Index Company (IIC).

The protection buyer promises to pay at the payment date tm a protection fee S

(spread) times the remaining notional of the index times a day-count fraction. It is

important to note that at a default, the notional on which the fee is paid is reduced.

If we assume all names have same notional, then at time t, the remaining notional is
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I − Lt = I(1− Nt

N̄
). So the present value of the premium leg is

PL = Et

[ ∑
tm>t

SδmD(t, tm)I(1− Ntm

N̄
)

]
(2.16)

=
∑
tm>t

SδmID(t, tm)
(

1− Et [Ntm ]
N̄

)
. (2.17)

The default leg is a stream of payments at tm that cover the portfolio losses in the

time period (tm−1, tm), until maturity T which is typical 3, 5, 7 or 10 years. So present

value of the default leg DL is

DL = Et

[ ∑
tm>t

D(t, tm)(Ltm − Ltm−1)

]
(2.18)

=
∑
tm>t

D(t, tm)
I

N̄
(Et[Ntm ]− Et[Ntm−1 ]). (2.19)

So the fair price constraint PL = DL produces the par spread formula

S =

∑
tm>t D(t, tm)(Et[Ntm ]− Et[Ntm−1 ])∑

tm>t δmD(t, tm)(N̄ − Et [Ntm ])
(2.20)

2. Collateralized debt obligation (CDO)

Like index CDS, a collateralized debt obligation (CDO) is also a transaction that trans-

fers the credit risk on a reference portfolio of assets. The extra feature of a CDO

structure is the tranching of credit risk. Those investors who are interested in specific

risk profiles can invest in contracts based on a slice of the portfolio (tranche), with

notional Itranche = I(K2 − K1), where, a lower attachment point K1 ∈ [0, 1] and a

upper detachment point K2 ∈ [K1, 1].

To analyze the loss leg and default leg of the tranches of synthetic CDOs, consider a

synthetic CDO tranche on a given reference portfolio defined by an interval of percentage

losses [K1,K2] on the total portfolio notional I that the tranche investor is responsible

for. The tranche investor receives periodic spread payments from the CDO issuer (the

premium leg) and makes payments to the CDO issuer when defaults affect the tranche

(the protection leg). Note that for a synthetic CDO, any default corresponds to a credit

event under a CDS in the reference portfolio.
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Recall that, the total loss of the portfolio at time t is given by

Lt =
N̄∑

i=1

(1−Ri)Ii1{τi≤t} (2.21)

= (1−R)I
Nt

N̄
. (2.22)

The default leg is a stream of payments that cover portfolio losses given that the

cumulative losses are larger than K1 but do not exceed K2 The cumulative loss in the

tranche [K1,K2] is

L[K1,K2](t) = (Lt − IK1)+ − (Lt − IK2)+. (2.23)

The present value of the default DL is

DL = Et

[ ∑
tm>t

D(t, tm)(L[K1,K2](tm)− L[K1,K2](tm−1))

]

=
∑
tm>t

D(t, tm)[(Et(L(tm)−K1)+ − Et(L(tm)−K2)+)−

(Et(L(tm−1)−K1)+ − Et(L(tm−1)−K2)+)]. (2.24)

The present value of the premium leg PL is

PL = Et

[ ∑
tm>t

SδmD(t, tm)(I(K2 −K1)− L[K1,K2](tm))

]
. (2.25)

So the fair par spread is

S =
Et

[∑
tm>t D(t, tm)(L[K1,K2](tm)− L[K1,K2](tm−1))

]

Et

[∑
tm>t δmD(t, tm)(I(K2 −K1)− L[K1,K2](tm))

] . (2.26)

3. CDO squared

A CDO squared is a single tranche CDO (outer) where the underlying portfolio consists

of other tranche swaps (inner) instead of a CDS as an ordinary synthetic CDO. The

cumulative loss associated with the outer CDO portfolio is a single aggregate of losses

in each of the M inner CDOs.

The aggregate loss of the outer CDO is

Louter
t =

M∑

m=1

(Um
t ) (2.27)
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where Um
t is the loss of the m-th inner CDO,

Um
t = (Lm

t − ImKm
1 )+ − (Lm

t − ImKm
2 )+,

where Lm
t is the aggregate loss of the underlying portfolio of the m-th tranche swap.

The factor Im is the notional of the underlying portfolio of the m-th tranche swap.

The quantities Km
1 ,Km

2 are the corresponding attachment and detachment points of

the m-th tranche swap.

The cumulative loss in the outer tranche [K1,K2] is

L[K1,K2](t) = (Louter
t − IK1)+ − (Louter

t − IK2)+. (2.28)

The present value of default leg DL is

DL = Et

[ ∑
tm>t

D(t, tm)(L[K1,K2](tm)− L[K1,K2](tm−1))

]
(2.29)

=
∑
tm>t

D(t, tm)[(Et(L(tm)−K1)+ − Et(L(tm)−K2)+)−

(Et(L(tm−1)−K1)+ − Et(L(tm−1)−K2)+)]. (2.30)

The present value of premium leg PL is

PL = Et

[ ∑
tm>t

SδmD(t, tm)(I(K2 −K1)− L[K1,K2](tm))

]
. (2.31)

So the fair par spread is

S =
Et

[∑
tm>t D(t, tm)(L[K1,K2](tm)− L[K1,K2](tm−1))

]

Et

[∑
tm>t δmD(t, tm)(I(K2 −K1)− L[K1,K2](tm))

] . (2.32)

Remark:

The above four multi-name credit derivatives are usually regarded as static. Because

the evaluation of the spread only depends on the marginal distribution of the aggregate

loss Lt at the various coupon payment date t = tm, the payoff of such multi-name credit

derivatives is path independent. For the purpose of pricing, we only need a static model

to evaluate the expectations involving Lt, or Nt if we assume name homogeneity. The

dynamics of the time t distribution of aggregate loss is not necessary to consider.
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The next three credit derivatives are dynamic in the sense that the payoff is path

dependent.

4. Forward starting STCDO

A T1 × (T2 − T1) forward-starting STCDO with attachment point K1, detachment

point K2 is a contract, in which at time T1 investors enters into a CDO over [T1, T2]

where the protection fee has already been fixed at the initial time t < T1, at the level Sf .

The twist is that the attachment and detachment are reshifted by any loss amounts that

occur before T1; that is, it turns into a STCDO with [K̃1, K̃2] = [LT1
I +K1,

LT1
I +K2] not

simply [K1,K2] (The latter is straightforward to price). The notional is also reduced

to Ĩ = I −LT1 . At T1, the value of the position to the protection seller is the difference

of the predetermined spread Sf and time T1 realized spread S times the expected fee.

Payoff =
[
Sf − S

]
Fee(K̃1,K̃2)(T1, T2)

=
[
Sf − S

]
ET1


 ∑

T1<tm≤T2

δmD(T1, tm)(Ĩ(K2 −K1)− L[K̃1,K̃2](tm))


 , (2.33)

where S = S(K̃1,K̃2)(T1, T2) is the time T1 valued spread of an ordinary CDO tranche

over [T1, T2] with attachment and detachment [K̃1, K̃2].

5. Tranche options

A put (payer) option is usually defined as the right to buy protection (that is, sell

risk) and a call (receiver) option as the right to sell protection(that is, buy risk). The

simplest tranche option could be as follows:

At maturity time T1, the payoff of the European Put on a forward-starting STCDO is

Payoff =
(
Sf − S

)+
· Fee(K̃1,K̃2)(T1, T2),

where S = S(K̃1,K̃2)(T1, T2) is the realized spread at time T1 and Fee(K̃1,K̃2)(T1, T2) is

the same as in (2.33). It is regarded as a put because the holder expects a decrease of

market value of S(K̃1,K̃2)(T1, T2) and with Sf treated as predetermined strike.
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6. Leveraged super-senior tranches

A Leveraged super-senior tranch can be treated as a variant of the STCDO in which

the maximum loss to the investor is capped at a fraction of the super senior portion.

In addition the leveraged super-senior structure typically includes loss triggers. The

triggers are usually specified in terms of a hitting time of Lt or a hitting time of

portfolio spread, or a combination upon trigger events. The protection seller makes a

payment to the protection buyer which is linked to the value of a given STCDO.
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2.2 Default counting process and intensities

All processes and random variable we discuss later on are defined on a complete filtered

probability space (Ω,F ,P) equipped with a filtration (Ft)(t≥0), where Ω represents

the set of all possible states of nature. P is the probability measure that attaches

probabilities to the events in Ω. The filtration (Ft)(t≥0) represents the information

available at time t. Throughout this dissertation, we assume that (Ft)(t≥0) satisfies the

usual conditions. 2

We model the arrival of a default event as an unknown random time τ ∈ R+. It

is convenient to include ∞ in case default never occurs. Since naturally at the time of

default, it is known that the event has occurred, τ is an Ft stopping time.

A stopping time is the mathematical description of one event. As introduced in

[22], Point process we consider here is a collection of increasing stopping times τi, i ∈ N.

We assume there are only a finite number of such points over any finite time horizon

almost surely. This provides good enough mathematical framework in which to analyze

the risk of multiple defaults. We turn this collection of time points into a stochastic

process using the associated counting process,

N(t) :=
∑

i

1{τi≤t}

Where N(t) counts the number of events that lie before t. If the τi are greater than

zero almost surely, a sample path of N(t) would be a step function that starts at zero

and increases by one at each τi. In credit modeling, from the top-down point of view,

we interpret the counting process N(t) as the number of defaults up to time t. This is

the key modeling objective, so later on we will use the whole machinery of stochastic

analysis to model and analyze N(t)

2that means (Ω,F ,P) is complete; F0 contains all events of measure zero; (Ft)(t≥0) is right continuous
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2.2.1 Intensity and compensator

The counting process N(t) is an increasing process, thus a submartingale. By the Doob-

Meyer decomposition theorem, there exists an unique increasing process A(t) such that

A(0) = 0 and N(t) − A(t) is a martingale. The process A(t) is right continuous and

predictable. The unique process A(t) counteracts the upward trend in N(t) and is

therefore often called the compensator.

The compensator gives information about the probabilities of jumps over the next

time step. We have

E[N(t + ∆t)−N(t)|Ft] = E[A(t + ∆t)−A(t)|Ft]

Over small time steps, if we assume that N(t + ∆t)−N(t) can only take value 1 or 0,

E[A(t + ∆t)−A(t)|Ft] = 1P[N(t + ∆t)−N(t) = 1|Ft] + 0P[N(t + ∆t)−N(t) = 0|Ft]

= P[N(t + ∆t)−N(t) = 1|Ft]

If at time t, A has a jump of size ∆A, then the local jump probability over the next

time instant is ∆A. Because the compensator is predictable, its increments over the

next time step are known. Thus, the compensator is a running measure of the local

jump probabilities of the counting process N(t).

If A(t) does not have discrete jumps, the probability of a jump of N(t) in the next

instance is infinitesimally small. If A(t) is absolutely continuous, this leads to the

concept of jump intensity

Definition 2.2.1. The non-negative, progressively measurable process λ(t) is the in-

tensity of the counting process N(t) if and only if

A(t) :=
∫ t

0
λ(s)ds

is the predictable compensator of N(t), that is, N(t)−A(t) is a martingale.

We assume that A(t) is not only increasing, but also differentiable with derivative

λ(t). This is not an innocuous assumption. a firm’s value-based structural model does

not have a differentiable predictable compensator for the default indicator process. Due
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to this issue, incomplete information models are of interest. However, our attention are

focused on the class of models where a finite intensity exists. Such models are usually

called reduced form models or intensity based models.

Theorem 2.2.2. (Aven, 1985) Let {εn}∞n=1 be a sequence which decreases to zero and

let Yn(t), t ∈ R+ be a measurable version of the process

Yn(t) :=
1
εn

E [N(t + εn)−N(t)|Ft]

Assume there are non-negative and measurable process g(t) and y(t),t ∈ R+ such that

(i) for each t

lim
n→∞Yn(t) = g(t) a.s.

(ii) for each t there exists for almost all ω ∈ Ω an n0 = n0(t, ω) such that

|Yn(s, ω)− g(s, ω)| ≤ y(s, ω), ∀s ≤ t, n ≥ n0,

(iii) ∫ t

0
y(s)ds < ∞ a.s. t ∈ R+,

then N(t)− ∫ t
0 g(s)ds is a local martingale, and

∫ t
0 g(s)ds is the compensator of N(t).

From this theorem, we are able to derive the default intensities if we are able to

compute

lim
n→∞

1
εn

E [N(t + εn)−N(t)|Ft]

This is usually the case when the conditional survival probabilities are known. Much of

the analysis in the rest of this dissertation is devoted to the problem of finding realistic

specifications for the default intensity.
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2.2.2 Time-inhomogeneous Markov chain

A continuous-time Markov chain is a stochastic process X(t) : t ≥ 0 that satisfies the

Markov property and takes values in a discrete state space S . The Markov property

states that at any times s > t > 0, the probability distribution of X(s) conditioning on

the whole history of the process up to and including time t depends only on the state

of the process at time t. In effect, the state of the process at time s is conditionally

independent of the history of the process before time t, given the state of the process

at time t.

Definition 2.2.3 (Transition probability). Suppose the state space is finite with

elements indexed from 1 to N . then the transition probability matrix P (t, T ) for the

time interval [t, T ] is

P (t, T ) =




p11(t, T ) p12(t, T ) · · · p1N (t, T )

p21(t, T ) p22(t, T ) · · · p2N (t, T )

· · · · · · . . . · · ·
pN1(t, T ) pN2(t, T ) · · · pNN (t, T )




.

For all i, j ∈ S, the component pij(t, T ) ≥ 0 is the probability that X changes to state

j at time T , given that it was in state i at time t:

pij(t, T ) = P [X(T ) = j|X(t) = i] ∀i, j ∈ S, t ≤ T.

As a remark, for conservation of probability, we must have
∑N

i=1 pij(t, T ) = 1 for

all i. And over zero time, no transition takes place: P (t, t) = I, where I is the

identity matrix. Also notice that since X(t) is Markovian, P [X(T ) = j|X(t) = i] =

P [X(T ) = j|X(t) = i,Ft]

The probability transition matrix P (t, T ) satisfies the well known Chapman-Komogorov

equation

P (t, T ) = P (t, s)P (s, T ) ∀t ≤ s ≤ T.

For the continuous time setup, we assume that P (t, T ) is continuous in T at T = t.

This amounts to assuming that transitions 3 come as surprises, there is no scheduled

3Transition will be interpreted as default event later on in the credit model
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time at which a transition will happen with positive probability. At such a point in

time a discontinuity would occur in P (t, T ). It can be shown (in [21]) that in this case

P (t, T ) is differentiable with respect to T at T = t. For small time intervals ∆t the

transition probability matrix can be approximated by a Taylor series. Similar to the

construction of the Poisson process, we assume that the transition probability from

state i to j in the small time interval ∆t is approximately proportional to ∆t:

P(X(t + ∆t) = j|X(t) = i) = λij(t)∆t, ∀i 6= j.

The diagonal elements λjj(t) are defined by λjj(t) = −∑
i6=j λij(t). Since the transition

probabilities must sum up to 1, therefore,

P(X(t + ∆t) = j|X(t) = j) = 1−
∑

i6=j

λij(t)∆t

= 1 + λjj(t)∆t.

Then if we consider the matrix Λ(t) = (λij)1≤i,j≤N , the transition probability matrix

for the time interval [t, t + ∆t] is

P (t, t + ∆t) = I + ∆tΛ(t) + o(∆t2).

Definition 2.2.4. The matrix Λ(t) is called the generator matrix of the continuous

Markov chain X(t) if it exists

If Λ is a constant matrix, the Markov chain is time-homogeneous. Usually, in credit

modeling, we don’t make such assumption and let Λ be time dependent, in which

case X(t) is in fact a time-inhomogeneous Markov chain. In addition, the transition

probability matrix P (t, T ) is related with Λ(t) through the Kolmogorov forward and

backward equations.

Forward equation:
∂

∂T
P (t, T ) = P (t, T )Λ(T ), P (t, t) = I, (2.34)

Backward equation:
∂

∂t
P (t, T ) = −Λ(t)P (t, T ), P (T, T ) = I. (2.35)

If the generator matrix Λ(t) = Λ = const, these differential equations have solution

P (t, T ) = exp{(T − t)Λ} :=
∞∑

n=0

1
n!

((T − t)Λ)n.
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If the generator matrices Λ(t) and Λ(s) commutes for all t 6= s, then the solution above

generalizes to the time-inhomogeneous case:

P (t, T ) = exp{
∫ T

t
Λ(s)ds}.
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2.2.3 Itô Doeblin’s formula for jump processes

The Itô’s lemma is a very powerful tool to derive pricing equations for derivative se-

curities. Here we give Itô’s lemma for an enough general class of stochastic processes,

semi-martingales with a finite number of jumps over finite time intervals a.s. All pro-

cesses that we will encounter in this dissertation are members of this class of processes,

that is, we will not consider examples of Lévy processes that have an infinite number

of jumps over a finite time interval.

In most applications, the dynamics of X to be considered is a jump diffusion process

of the form

dXi = αidt +
K∑

k=1

σikdWk +
∫

Rn

hi(x)µX(dx, dt) (2.36)

The process is driven by a K-dimensional Brownian motion W and the jump measure

µX . The drift αi, volatilities σi and jump sizes hi are all predictable stochastic process.

Furthermore, the jump measure µX of X has compensator measure νX which can be

decomposed as

νX(dx, dt) = K(t, dx)dA(t) (2.37)

Theorem 2.2.5 (Itô’s lemma for jump diffusion processes). Let X = (X1, ..., Xn)

be an n-dimensional jump diffusion process of the form (2.36), and let f be a twice

continuously differentiable function on Rn. Then f(X) is also a semi-martingale, and:

f(X(t)) = f(X(0))+
n∑

i=1

∫ t

0

∂f(X(s−))
∂xi

αidt +
n∑

i=1

K∑

k=1

∫ t

0

∂f(X(s−))
∂xi

σikdWk

+
1
2

n∑

i,j=1

∫ t

0

∂2f(X(s−))
∂xi∂xj

(σσT )ijdt

+
∫ t

0

∫

Rn

f(X(s−) + x)− f(X(s−))µX(dx, ds) (2.38)

Proof. A formal proof of this theorem can be found in [14].

The only difference between theorem 2.2.5 and the familiar form of Itô lemma for

continuous processes is the jump term ∆f = limh→0 f(X(t + h)−X(t)).
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2.3 Intensity based Top-down models

In this section, we give brief introduction of intensity based Top-down model. It is

in contrast to the Bottom-up model. In a Bottom-up model, the portfolio intensity is

modelled by specifying both the intensities of individual constituent and the dependency

structure among them. Such specification is appropriate for the analysis of portfolios

of highly heterogeneous constituents. It brings the information of the single-name

market to bear on the calibration of the model. Bottom-up modeling has been popular

for the early days of credit derivatives because of its instinctively clear structure and

computationally tractability. However, The dependence among single defaults is partly

arbitrary and modelling all possible interactions amongst names leads to a huge number

of parameters which results in high dimensional hurdle. Hence, consistent calibration

is usually difficult or practically impossible.

Related literature includes Papageorgiou & Sircar [8], Frey & Backhaus [10], Duffie

& Garleanu [6]

2.3.1 Top-down approach

The core problem in multi-name credit derivative modeling is that of pricing. That is

we need to find the no-arbitrage price of multi-name credit derivative, including index

CDS, CDOs, and so on.

As we can tell from the pricing formulae (2.20) and (2.26) in section 2.1.2, the value

of index CDS and CDOs only depends on the distribution of the portfolio loss process

L(t) at multiple coupon payment dates t. The idea of the Top-down approach is to

specify the dynamics of the cumulative loss Lt or look at the forward loss distribution

without reference to the constituents.

The cumulative loss process Lt is a piecewise constant process with upward jumps at

each default event. Its sample path is therefore completely characterized by the default

times {τi}i≥1, representing default events and jump sizes ∆L(τi) representing the loss

given default (LGD).

Here τj denotes the j-th default event event observed in the portfolio: the subscript
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j is not associated with the default of a given obligor indexed by j, but with the ordering

in time of the events. The main idea in top-down models is to investigate the default

events sequence {τi}i≥1 by modeling the rate of occurrence of defaults in the portfolio

via the portfolio default intensity λt.

While for the loss given defaults ∆L(τi). we can deal with it by the name homo-

geneity assumption:

Assumption 2.3.1 (Name homogeneity and constant recovery rate). The no-

tional Ii and recovery rate Ri are constant and equal across all names. I = IiN̄ ,

L(t) =
N(t)
N̄

I(1−R)

Therefore, L(t) and N(t) differ only by a constant. and

∆L(τi) =
I(1−R)

N̄

So under the name homogeneity assumption, it is enough to consider the portfolio

default counting process N(t). This counts the number of default obligors in the port-

folio. All names are inter-changeable. The name dependence structure is implicit in

this specification. It does not matter which name defaults. This is a typical assumption

in valuation of multi-name credit derivatives like CDO.

The aggregate counting process N(t) is increasing. By the Doob-Meyer decompo-

sition theorem, there exists a predictable compensator A(t) such that N(t)−A(t) is a

martingale. We in addition assume that A(t) is absolutely continuous, that is, there

exists a positive process λ(t) such that

A(t) =
∫ t

0
λ(s)ds.

By Aven’s Theorem (1985): Under mild condition, we have

λ(t) = lim
h↘0

1
h

E[N(t + h)−N(t)|Ft].

Since we don’t consider multiple defaults during a sufficiently short time period, that

is, the probability that the number of defaults larger than one is o(∆t),

λ(t) = lim
∆t→0

P(N(t + ∆t)−N(t) = 1|Ft)
∆t
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where Ft denotes the history of the point process N(t). Thus λ(t) measures the likeli-

hood of the next default. It is the key ingredient in modeling the jump process N(t).

The simplest approach is to let λ(t) be deterministic, then N(t) is just a time-

dependent Poisson process.

2.3.2 Markovian loss model

The simplest approach beyond deterministic intensities is to let λ(t) depend on both t

and current loss N(t); i.e.,

λ(t) = f(t,N(t)) (2.39)

Then N(t) is a time-dependent Markov chain. We call this model a Markovian loss

model. Such a specification of intensity λ(t) is analogous to the local volatility in equity

modeling, in which we assume the volatility has the form σ(t, S(t)) and the asset S(t)

has the dynamics

dS(t) = µ(t)dt + σ(t, S(t))S(t)dW (t)

The Markovian loss model is simple but still exhibits enough flexibility to capture the

default dependence, which arises from the transitions of the default counting process

and the corresponding changes in the transition rate.

Example 2.3.2. The simplest model is the linear counterparty risk model, where

f(t, n) = λ0 + αn ν > 0, α ≥ 0, l ∈ {0, 1, ..., N̄} (2.40)

The interpretation of (2.40) is that the first default arrives at a basis rate λ0 and

all the following defaults increases the default intensity of surviving firms by a constant

amount α. A jump process with such specification of intensity is also called a birth

process. If α = 0, the aggregate loss process is simply a Poisson process. In the linear

counterparty risk model, the distribution of Nt has an analytical expression:

P [Nt = k] =
Γ(λ0

α + k)

Γ(λ0
α )k!

e−λ0t(1− e−αt)k.



28

The mean and variance of Nt are

E[Nt] =
λ0

α
(eαt − 1),

V ar[Nt] =
λ0

α
(eαt − 1)eαt.

Example 2.3.3. Frey, Rüdiger and Backhaus generalized the above model to convex

counterparty risk, where

f(t, n) = λ0 +
α2

β

(
e

β
α

(n−µ(t))+ − 1
)

λ0 > 0, α, β ≥ 0, n ∈ {0, 1, ..., N̄}. (2.41)

In this model, the default intensity of the surviving firms increases away from λ0

only if N(t) exceeds some deterministic threshold µ(t) measuring the expected number

of defaulted firms up to time t. The quantity λ0 is again the basis intensity and α plays

the same role as in (2.40). It gives the slope of f(t, n) with respect to n at µ(t) so

that it indicates the strength of intensity increase upon default. The new parameter β

controls the degree of convexity of f . It gives the second derivative of f with respect to

n. It implies that a large value of (N(t)− µ(t))+ leads to a high value of default inten-

sity increase. In the limit as β approaches zero, (2.41) reduces to the linear model (2.40).

We do not assume that the Markovian loss model is the real dynamics of N(t).

However for any general counting process N(T ), starting from t, there always exists a

Markov point process L̃(T ) (that is, L̃(T ) is a time-dependent Markov chain) such that

L̃(T ) and N(T ) have the same Ft-marginal distribution; That is, for any T > t,

P(N(T ) ≤ x|Ft) = P(L̃(T ) ≤ x|Ft).

We will discuss this in detail in the following sections.

2.3.3 Stochastic intensity modeling

Empirically, the default counting process N(t) is not Markovian. The process λ(t)

should have a more complex structure. So instead of assuming the dependency of λ(t)

on t and N(t) only, we can treat λ(t) itself as a stochastic process. The following

benchmark stochastic intensity models are well known.
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Doubly stochastic intensity

The process λt has its own dynamics, driven by some other “market factor”, and inde-

pendent of the realized number of defaults. For example, we may choose Itô diffusion

dynamics for λt,

dλt = µ(t, λt)dt + σ(t, λt)dWt. (2.42)

Then N(t) is a Cox process; conditional on the realization of λt, N(t) is a time-

inhomogeneous Poisson process.

Hawkes process

The intensity of the self exciting Hawkes process Nt (in [19]) takes the form

λ(t) = ν +
∑

si≤t

αe−β(t−si), (2.43)

where {si} are the jump times of the counting process Nt.

In short, the occurrence of one default generates a sudden increase α in the intensity

of the default counting process Nt and this increase decays exponentially with rate β. If

β tends to infinity, the Hawkes process degenerates to the Poisson process with rate ν.

If β tends to zero, the Hawkes process degenerates to the birth process (2.40). Under

Hawkes’ specification, the intensity involves no other randomness, but depends on the

path of N(t)

Bivariate spread-loss model (Igor Halperin)

This model assumes that the default intensity is given by

λt = Ytf(Nt)(N −Nt)

where f(·) is a deterministic function and Yt contains other random factors independent

of Nt.
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Two-dimensional Markovian model (Lopatin, Misirpashaev)

This model assumes that the default intensity is given by

dλt = κ(ρ(t,Nt)− λt)dt + σ
√

λtdWt.

The intensity satisfies a mean reverting dynamics, and the long term mean ρ de-

pends on time t and number of default Nt.

The default counting process N(t) is usually not Markovian. So non-Markovian models

have more realistic and flexible dynamics. However, non-Markovian models are usually

not mathematically tractable, and few analytical properties can be derived. The com-

putation involved in pricing problem greatly relies on numerical methods. We can think

about the stochastic volatility models in the equity case for the sake of comparison.
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2.4 Local volatility surface in equity modeling

We aim to explore the approaches to credit modeling inspired by the perspective of

equity derivative modeling and then provide new methods and address new questions

suggested by equity derivative modeling. In this section, we give a short summary of

the theory of local volatility for equity derivatives modeling first introduced by Dupire

[7] and also the idea of modeling the dynamics of local volatility surface advocated by

Carmona [3].

Gyöngy’s theorem

The local volatility model is strongly connected with the early work of Gyöngy in his

article on mimicking the marginal distribution of a continuous semi-martingale [12].

Theorem 2.4.1. (Gyöngy’s theorem) Let X(t) be an n-dimensional Itô process which

satisfies

dX(t) = β(t)dt + σ(t)dWt, (2.44)

where Wt is a d-dimensional Brownian motion. β(t) is a bounded n-dimensional adapted

process and σ(t) is a bounded n× d-dimensional adapted process such that σ(t)σT (t) is

uniformly positive definite. Then there exist measurable functions a and b

a2(t, x) = E[σ(t)σT (t)|X(t) = x]

b(t, x) = E[β(t)|X(t) = x],

and there exists a weak solution Y (t) to the SDE:

dY (t) = b(t, Y (t))dt + a(t, Y (t))dW̃t, (2.45)

where W̃t is a n-dimensional Brownian motion, and X(0) = Y (0), such that X and Y

have the same marginal distributions for all t > 0.

This theorem states that for any Itô process Xt of type (2.44), there is a Markov

process X̃t with deterministic (local) drift and volatility coefficients of type (2.45) that

“mimic” the marginal distribution of the given process Xt for all t > 0.
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Local volatility model

To establish the link between Gyöngy’s theorem and the local volatility model, we con-

sider a stock price process St, whose dynamics is governed by the stochastic differential

equation

dSt

St
= rdt + σ(t, ω)dWt, (2.46)

where Wt is the driven Brownian motion under a certain risk neutral measure, and the

process σ(t, ω) is the stochastic volatility, which is a bounded 1-dimensional adapted

process and σσT is uniformly positive definite. Denote Xt = ln St
S0

. Then by Itô’s

lemma, we have

dXt = (r − 1
2
σ2(t, ω))dt + σ(t, ω)dWt. (2.47)

According to Gyöngy’s theorem, we can have a Markov process X̃t with dynamics

dX̃t = µ̃(t, X̃t)dt + σ̃(t, X̃t)dW̃t, X̃0 = 0,

and

µ̃(t, x) = E[r − 1
2
σ2(t, ω)|Xt = x] (2.48)

σ̃2(t, x) = E[σ2(t, ω)|Xt = x] (2.49)

We now define S̃t = S0e
X̃t . Since St = S0e

Xt and X̃t has the same marginal distribution

as Xt, it is clear that S̃t has the same marginal distribution as St. In order to find

volatility of S̃t, we apply Itô’s lemma again, we obtain

dS̃t

S̃t

=
[
µ̃(t, X̃t) +

1
2
σ̃2(t, X̃t)

]
dt + σ̃(t, X̃t)dW̃t (2.50)

Note that

µ̃(t, X̃t) +
1
2
σ̃2(t, X̃t)

=
[
E[r − 1

2
σ2(t, ω)|X̃t] + E[

1
2
σ2(t, ω)|X̃t]

]

= r
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Then equation (2.50) becomes

dS̃t

S̃t

= rdt + σ̃(t, X̃t)dW̃t (2.51)

We define σL(t, S) = σ̃(t, ln( S
S0

)). Then

σL(t, S) = E

[
σ2(t, ω)|Xt = ln(

S

S0
)
]

= E[σ2(t, ω)|St = S].

Replacing σ̃ by σL, we have

dS̃t

S̃t

= rdt + σL(t, S̃t)dW̃t (2.52)

Thus we obtain the local volatility model (2.52). The process S̃t is the mimicking

process having the same marginal distribution of St in (2.46) for all t > 0. The local

volatility of S̃t is defined by

σ2
L(t, S) = E[σ2(t, ω)|St = S].

Moreover, there is a one-to-one correspondence between the risk neutral marginal

distribution and the prices of European-style vanilla options. The local volatility model

(2.52) produces the same prices for European-style calls and puts as those produced by

the model (2.44).

Backward equation

The price of any European style derivative Ct is the conditional expectation of final pay-

off at maturity T of a certain risk neutral measure Ct = E[h(ST )|Ft]. If the underlying

stock St is from a local volatility model

dSt

St
= rdt + σL(t, St)dWt

Where St is a one-dimensional Markov process, then by Markov property,

Ct = E[e−rT h(ST )|St] = C(t, St)

the function C(t, x) satisfies the well known Kolmogorov backward equation,




ct(t, x) + rxvx(t, x) + 1
2σ2

L(t, x)x2cxx(t, x)− rc(t, x) = 0,

c(T, x) = h(x)
(2.53)
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If the payoff function h(x) = (x − K)+, equation (2.53) leads to the Black Sc-

holes formula. For other payoff functions h, equation (2.53) can at least be solved by

appropriate numerical methods.

Dupire’s formula

If we consider an European-style call option with strike K and maturity T , then its

price at time t with spot price x can be found by solving equation (2.53). Conversely,

if the European-style call option prices C(T,K) at a given initial time t and spot price

x are known as functions of C(T, K), then Dupire’s formula gives σL(T,K)

σ2
L(T, K) =

∂C
∂T + rK ∂C

∂K
1
2K2 ∂2C

∂K2

(2.54)

when those call option prices C(T,K) are quoted for all maturities and strikes 4.

Dynamics of local volatility surface

In Dupire’s local volatility model, we treat the local volatility function σL(·, ·) as a

surface R+ × R+ → R+. The function σL(·, ·) is regarded as fixed. Local volatility

models are widely used in practice because they enable fast and accurate pricing of

derivatives when only marginal distributions are required. However, the local volatility

process does not give a complete representation of the true stochastic dynamics driving

the underlying asset price. The local volatility model is merely a simplification that

is useful in practice for describing a price process with non-constant volatility. More

precisely, although the marginal distributions of St and S̃t are the same at the time when

the local volatility is calibrated, they do not follow the same dynamics and therefore

they do not necessarily have the same joint distributions for all time t > 0. Hence

more exotic path dependent option prices computed with St and S̃t obtained will differ

significantly. More accurate models will have to take the changing of local intensity

surface into account.

4This is not a realistic assumption, since in reality, option prices are quoted only for a small number
of maturities and strikes
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Carmona and Nadtochiy [3] considered the dynamics of this local volatility surface

σ̂t(·, ·). There is no static arbitrage as long as local volatility is positive, but in order

to avoid dynamic arbitrage, the differential equations governing the dynamics of local

volatility surface have to satisfy a very complex drift condition.

Finally, since we will discuss similar problems in credit modeling, we list the com-

parison of equity modeling and credit modeling in the following table.

Equity modeling Credit modeling

underlying: St underlying: Nt

volatility σ(t) intensity λ(t)

local volatility local intensity

σ(t) = σ(t, St) λ(t) = λ(t,Nt)

stochastic volatility stochastic intensity

dσ(t) = · · · dλ(t) = · · ·

Table 2: Comparison of equity modeling and credit modeling.
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Chapter 3

Local intensity surface

3.1 Local intensity surface

In this section we will define the notion of a local intensity surface and examine some

basic properties of this surface.

For the Markovian loss model, the default counting process Nt is characterized by

its aggregate intensity λt through the specification

λt = f(t,Nt), (3.1)

where the bivariate deterministic function f is usually assumed to be at least C1 con-

tinuous in the first argument t. The process N(t) takes the integer values from 0 to N̄

(the total number of names in the portfolio).

Under this specification, Nt is a continuous time inhomogeneous Markov chain as

in §2.2.2 with finite state space {0, 1, 2, · · · , N̄}. The generator Q-Matrix A(t) is bi-

diagonal because we only allow Nt to jump by one at each default event. Namely,

simultaneous multiple defaults are not allowed at this point. So A(t) takes the form

A(t) =




−a0(t) a0(t)

−a1(t) a1(t)

· · ·
−aN−1(t) aN−1(t)

0 0 · · · 0,




(3.2)

where an(t) is defined as

an(t) = lim
h→0

1
h
P [N(t + h) = n + 1|N(t) = n]
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It’s clear that the transition rate an(t) from n to n + 1 is just f(t, n). Let P (t, T ) be

the transition probability matrix. It satisfies Kolmogorov forward equation:

∂

∂T
P (t, T ) = P (t, T )A(T ). (3.3)

That is

∂

∂T
Pnm(t, T ) = −am(T )Pnm(t, T ) + am−1(T )Pn,m−1(t, T ), (3.4)

with initial condition Pnm(t, t) = 1{n=m}. This equation can be solved iteratively, using

Pnm(t, T ) =





0 m < n,

e−
∫ T

t an(s)ds m = n,

∫ T
t Pn,m−1(t, s)am−1(s)e−

∫ T
s am(u)duds m > n.

(3.5)

Definition 3.1.1 (Local intensity surface). We define the function

f : R+ × Z≥0 → R>0

to be the local intensity surface of the counting process Nt in model (3.1).

Note that since the second argument n only takes integer values, the local intensity

surface is not really a surface but a sequence of curves f(t, n) indexed by n. The function

f vanishes for n > N̄ , consistent with the fact that the default counting process Nt

is stopped at level N̄ . Without causing any confusion, we still call it a local intensity

surface in the remainder of this dissertation.

It is readily seen that the local intensity surface is just the geometric name for

the function f which characterizes the Markovian process Nt. All the probability in-

formation of Nt is encapsulated in the shape of the surface. Namely, the probability

distribution of Nt is completely determined by the local intensity surface. However, the

above definition only applies to the Markovian model. Actually, as we will see later, we

can generalize the notion of local intensity surface to non-Markovian model, in which

case, Nt can have any adapted intensity process λt. But this generalization will be

made after we introduce an important result which we will discuss in section 3.3.
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Figure 3.1: The local intensity surface of two local intensity model. left: Linear Counterparty
risk model (2.40) f(t, n) = λ0 + αn with λ0 = 30, α = 0.5. right: Linear Counterparty risk
model (2.41) f(t, n) = λ0 + α2

β

(
e

β
α (n−µ(t))+ − 1

)
with λ0 = 30, α = 1, β = 0.025, µ(t) = 0

For a Markovian loss model, the local intensity Λ(t, n) has to satisfy the following

formula, which is an analog of Dupire’s formula in the local volatility modeling.

Lemma 3.1.2 (Dupire’s formula). Suppose there is a counting process Ñt, with local

intensity Λ(t, Ñt). Then Λ(t, n) satisfies the equation,

Λ(t, n) = − 1
pn(t)

n∑

k=0

∂

∂t
pk(t), (3.6)

where pn(t) = P(Ñt = n)

Proof. By definition of local intensity,

Λ(t, n) = lim
h→0

1
h
P

[
Ñ(t + h) = n + 1|Ñ(t) = n

]
,

where Ñt is a time-inhomogeneous Markov chain, therefore we have the following Kol-

mogorov forward equation




∂
∂tpk(t) = −Λ(t, k)pk(t), k = 0,

∂
∂tpk(t) = −Λ(t, k)pk(t) + Λ(t, k − 1)pk−1(t), k ≥ 1.

(3.7)

Add the preceding equations for k ranging from 0 to n to obtain

n∑

k=0

∂

∂t
pk(t) = −pn(t)Λ(t, n).

This proves (3.6).
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We call (3.6) a “Dupire” formula because the terms appearing on the right side of

(3.6) come from the marginal distribution, which can in principle be determined by the

market.
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3.2 Backward and forward equation

3.2.1 Backward equation

From section 2.1.2, we know from (2.24) that if we assume name homogeneity, in order

to find the price of a CDO tranche, it suffices to evaluate E[(NT −K)+] for all coupon

payment dates T and constants K. This expectation can be regarded as the initial price

of a European call option on the underlying Nt with strike K and maturity date T ,

(assuming zero risk free rate). The time t value of such an option has the form E[(NT −
K)+|Ft]. In the framework of the Markovian loss model, the underlying process Nt is

a time-inhomogeneous Markovian chain. Then E[(NT −K)+|Ft] = E[(NT −K)+|Nt]

This expectation only depends on t and Nt. Denote it as c(t,Nt). The function c(t, n)

satisfies the following backward equation.

Theorem 3.2.1. If Nt is a time-inhomogeneous Markov chain with local intensity

surface Λ(t,Nt), denote an(t) = Λ(t, n). Then c satisfies the backward equation and

terminal condition




∂
∂tc(t, n) + an(t)(c(t, n + 1)− c(t, n)) = 0,

c(T, n) = (NT − n)+,

(3.8)

for all 0 ≤ n ≤ N̄ and 0 ≤ t ≤ T .

Proof. By Itô-Doeblin’s formula for a jump process (2.2.5)

c(t,Nt) = c(0, N0) +
∫ t

0
ct(u,Nu)du +

∫ t

0
cx(u,Nu)dN c

u +
∑

0≤u≤t

[
c(u,Nu)− c(u,Nu−)

]

(3.9)

Nt is a pure jump process and hence N c
t = 0. c(t,Nt) − c(t,Nt−) is associated with

the jump in the price process when a default occurs in the credit portfolio. The jump
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intensity of N is λ(t) = Λ(t,Nt) = aNt(t). Define Mt = Nt −
∫ t
0 λ(s)ds, it is a Ft-

martingale. dMt = dNt − λtdt. So

c(t,Nt) = c(0, N0) +
∫ t

0
ct(u,Nu)du +

∫ t

0

[
c(u,Nu− + 1)− c(u,Nu−)

]
dNu

= c(0, N0) +
∫ t

0

[
ct(u,Nu) + Λ(u,Nu)(c(u,Nu− + 1)− c(u,Nu−))

]
du

+
∫ t

0

[
c(u,Nu− + 1)− c(u,Nu−)

]
dMu. (3.10)

Since Mt is an martingale and the function c(u,Nu−+1)− c(u,Nu−) is left continuous,

the last integral in (3.10) is a martingale. Also, c(t,Nt) = E[(NT − K)+|Ft] is a

martingale. This implies
∫ t
0

[
ct(u,Nu) + Λ(u,Nu)(c(u,Nu− + 1)− c(u,Nu−))

]
du is also

a martingale, which forces the integrand to be zero for any value of u and Nu. Since

jumps occur on a zero measure time set, the jump term in the above integrand can be

replaced by c(u,Nu + 1)− c(u,Nu). Finally, we obtain the backward equation

∂

∂t
c(t, n) + an(t)(c(t, n + 1)− c(t, n)) = 0,

as desired

The backward equation in (4.36) is actually a system of linear ordinary differential

equations. To make notation simpler, we denote c(t, n) = cn(t) and ∂
∂tc(t, n) = c′n(t).

Then we obtain:




c′0(t) = −a0(t)[c1(t)− c0(t)], c0(T ) = (0−K)+,

c′1(t) = −a1(t)[c2(t)− c1(t)], c1(T ) = (1−K)+,

· · ·

c′
N̄−1

(t) = −aN̄−1(t)[cN̄ (t)− cN̄−1(t)], cN̄−1(T ) = ((N̄ − 1)−K)+,

c′
N̄

(t) = 0, cN̄ (T ) = (N̄ −K)+,

This system can simply be solved iteratively by starting from the last equation. The

general solution is




cn(t) = N̄ −K, if n = N̄ ,

cn(t) = (n−K)+e−
∫ T

t an(u)du +
∫ T
t an(s)cn+1(s)e−

∫ s
t an(u)duds, if n < N̄.

(3.11)
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3.2.2 Forward equation

The backward equation is satisfied for the price of European call option on Nt considered

as a function of the backward variable t and current loss level Nt, while maturity T

and K are treated fixed. In this section, we show that if we fix a certain initial time

and number of default, and treat the price as a function of T and K, then it satisfies a

forward equation. Let’s denote C(T, K) = E[(NT −K)+]. Here we use capital letter C

in order to distinguish from the low case c in the backward equation. Let’s also introduce

the forward and backward difference operator ∇±C(T,K) = C(T, K + 1) ± C(T,K).

Then the option price C and distribution function of Nt is linked by the following

relation.

Lemma 3.2.2. Let C(T,K) be price of European-style call option with Maturity T and

strike K (nonnegative integer) at time t with Nt ≥ 0. Then we have

∇+C(T,K) = −
N̄∑

j=K+1

pj(T ), (3.12)

∇−∇+C(T, K) = pK(T ), (3.13)

where pK(T ) = P(NT = K|Ft).

Proof. Observe that

∇+C(T,K) = C(T, K + 1)− C(T, K)

= E[(NT − (K + 1))+]− E[(NT −K)+]

=
N̄∑

j=K+2

(j − (K + 1))pj(T )−
N̄∑

j=K+1

(j −K)pj(T )

=
N̄∑

j=K+2

−pj(T )− pK+1(T )

= −
N̄∑

j=K+1

pj(T ),
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and

∇−∇+C(T,K) = ∇−(C(T, K + 1)− C(T,K))

= [C(T,K + 1)− C(T, K)]− [C(T, K)− C(T, K − 1)]

= −
N̄∑

j=K+1

pj(T )− (−
N̄∑

j=K

pj(T ))

= pK(T ).

This concludes the proof.

The preceding lemma shows that the European call option on Nt in fact determines

the time T marginal distribution of NT through (3.12). Since an(T ) is related to pk(T )

through Dupire’s formular (3.6), we can express the transition rate an(T ) in terms of

C(T,K), which in turns implies the forward equation.

Theorem 3.2.3. If Nt is a time-inhomogeneous Markov chain with local intensity

surface Λ(t,Nt), denote an(T ) = Λ(T, n). Then C(T,K) satisfies the forward equation

and initial condition (3.14),




∂
∂T C(T, K) =

∑N̄
j=K C(T, j)(∇−∇+aj(T )) + aK(T )C(T,K − 1)− C(T, K)aK−1(T )

C(t,K) = (Nt − n)+.

(3.14)

for all 0 ≤ K ≤ N̄ and T ≥ t.

Proof. From Dupire’s formula (3.6)

aK(T ) = − 1
pK(T )

∂

∂T

K∑

j=N(t)

pj(T )

= − 1
∇−∇+C(T,K)

∂

∂T
(1−

N̄∑

j=K+1

pj(T ))

= − 1
∇−∇+C(T,K)

∂

∂T
(1 +∇+C(T, K))

= − 1
∇−∇+C(T,K)

∂

∂T
(∇+C(T, K))
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aK(T )∇−∇+C(T, K) = − ∂

∂T
(∇+C(T,K)) (3.15)

We list the above equations for K ranging from K to N̄





aK(T )
[
C(T, K + 1)− 2C(T, K) + C(T,K − 1)

]
= − ∂

∂T (C(T, K + 1)− C(T,K)),

aK+1(T )
[
C(T, K + 2)− 2C(T,K + 1) + C(T, K)

]
= − ∂

∂T (C(T, K + 2)− C(T,K + 1)),

· · ·

aN̄−1(T )
[
C(T, N̄)− 2C(T, N̄ − 1) + C(T, N̄ − 2)

]
= − ∂

∂T (C(T, N̄)− C(T, N̄ − 1)),

aN̄ (T )
[
C(T, N̄ + 1)− 2C(T, N̄) + C(T, N̄ − 1)

]
= − ∂

∂T (C(T, N̄ + 1)− C(T, N̄)).

(3.16)

Add the equations in (3.16) and notice that C(T, N̄) = 0. Using the discrete version of

integration by parts on the left side of the equations in (3.16), we have

∂

∂T
C(T,K) =

N̄∑

j=K+1

C(T, j)(∇−∇+aj(T ))

+ C(T,K)(aK+1(T )− 2aK(T )) + aK(T )C(T, K − 1)

=
N̄∑

j=K+1

C(T, j)(∇−∇+aj(T )) + C(T,K)(aK+1(T )− 2aK(T ) + aK−1(T ))+

+ aK(T )C(T,K − 1)− C(T, K)aK−1(T )

=
N̄∑

j=K

C(T, j)(∇−∇+aj(T )) + aK(T )C(T,K − 1)− C(T, K)aK−1(T ).

In addition to considering the European-style call option C(T, K) = E[(NT −K)+],

we note that the European-style put option P (T, K) = Et[(K−NT )+] satisfies a similar

forward equation.

First, we note that there exists a similar result as lemma 3.2.2 to link the option

price P and the distribution of Nt.
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Lemma 3.2.4. Let P (T, K) be price of European-style call option with Maturity T and

strike K (nonnegative integer) at time t with Nt ≥ 0. Then we have

∇+P (T,K) =
K∑

j=N(t)

pj(T ), (3.17)

∇−∇+P (T,K) = pK(T ), (3.18)

where pK(T ) = P(NT = K|Ft).

Proof. Observe that

∇+P (T, K) = P (T,K + 1)− P (T, K)

= E[((K + 1)−NT )+]− E[(K −NT )+]

=
K∑

j=N(t)

(K + 1− j)pj(T )−
K∑

j=N(t)

(K − j)pj(T )

=
K∑

j=N(t)

pj(T ),

and

∇−∇+P (T, K) = ∇−(P (T,K + 1)− P (T,K))

= [P (T,K + 1)− P (T,K)]− [P (T,K)− P (T,K − 1)]

=
K∑

j=N(t)

pj(T )−
K−1∑

j=N(t)

pj(T )

= pK(T ).

This concludes the proof.

The above lemma shows that the European-style call option on Nt determines the

time T marginal distribution of NT through (3.17). Since an(T ) is related to pk(T )

through Dupire’s formula (3.6), we can express the transition rate an(T ) in terms of

P (T, K), which in turn implies the forward equation.

Theorem 3.2.5. If Nt is a time-inhomogeneous Markov chain with local intensity

surface Λ(t,Nt), denote an(T ) = Λ(T, n). Then P (T, K) satisfies the forward equation
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and initial condition (3.19).




∂
∂T P (T,K) = −∑K−1

j=1 P (T, j) (∇−∇+aj(T )) + aK(T )P (T, K − 1)− P (T, K)aK−1(T )

P (t,K) = (K −Nt)+.

(3.19)

for all N(t) ≤ K ≤ N̄ and T ≥ t.

Proof. From Dupire’s formula (3.6)

aK(T ) = − 1
pK(T )

∂

∂T

K∑

j=N(t)

pj(T )

= − 1
∇−∇+P (T,K)

∂

∂T
(

K∑

j=N(t)

pj(T ))

= − 1
∇−∇+P (T,K)

∂

∂T
(∇+P (T,K))

aK(T )∇−∇+P (T,K) = − ∂

∂T
(∇+P (T, K)) (3.20)

List the above equations for K ranging from 0 to K − 1:




aK−1(T )
[
P (T,K)− 2P (T, K − 1) + P (T, K − 2)

]
= − ∂

∂T (P (T,K)− P (T, K − 1))

aK−2(T )
[
P (T,K − 1)− 2P (T, K − 2) + P (T, K − 3)

]
= − ∂

∂T (P (T,K − 1)− P (T,K − 2))

· · ·

a1(T )
[
P (T, 2)− 2P (T, 1) + P (T, 0)

]
= − ∂

∂T (P (T, 2)− P (T, 1))

a0(T )
[
P (T, 1)− 2P (T, 0)

]
= − ∂

∂T (P (T, 1)− P (T, 0))

(3.21)

Add the equations and notice that P (T, 0) = 0. Using the discrete version of integration
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by parts on the left side of the equations, we have,

− ∂

∂T
P (T, K) =

K−2∑

j=1

P (T, j)(∇−∇+aj(T ))+

P (T,K)(aK−1(T )− 2aK−1(T )P (T,K − 1) + aK−2(T )P (T,K − 1)

=
K−2∑

j=1

P (T, j)(∇−∇+aj(T )) + P (T,K − 1)(aK(T )− 2aK−1(T ) + aK−2(T ))

− P (T,K − 1)aK(T ) + aK−1(T )P (T,K)

= −
K−1∑

j=1

P (T, j)(∇−∇+aj(T ))− aK(T )P (T, K − 1) + P (T, K)aK−1(T )

All the above forward equations (3.12) and (3.17) are linear systems of ODE. They

can be solved iteratively. If we combine them together, we have the following

Corollary 3.2.6. If Nt is a time-inhomogeneous Markov chain with local intensity

surface Λ(t,Nt), denote an(T ) = Λ(T, n). Then C(T,K) and P (T, K) satisfies the

following equation.

∂

∂T

[
C(T,K)− P (T,K)

]
=

K−1∑

j=1

P (T, j)(∇−∇+aj(T )) +
N̄∑

j=K

C(T, j)(∇−∇+aj(T ))

+ aK(T )(C(T,K − 1)− P (T, K − 1))

− aK−1(T )(C(T, K)− P (T, K)) (3.22)

Proof. This is an immediate result by adding the forward equation (3.14) for the

European-style call option and the forward equation (3.19) for the European-style put

option.
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3.3 Gyöngy’s theorem for jump process

As discussed in section 2.4, Gyöngy’s theorem [12] shows that it is possible to construct

a Markovian diffusion process with the same one-dimensional marginal distributions as

a given initial Itô process. This is closely related to work by Dupire that shows how to

construct a local volatility model such that the European-style option prices implied by

the model agree with a given set of market prices. In this section, we give an analog of

Gyöngy’s theorem for jump process and use this to define the notion of local intensity

surface for counting processes with arbitrary stochastic intensity.

3.3.1 Gyöngy’s theorem for counting process

Theorem 3.3.1 (Gyöngy’s theorem for counting process). Let Nt be a counting

process with adapted stochastic intensity λt, define Λ(t, l) = E [λt|Nt− = l]. Let Ñt

be a Markovian counting process with an adapted (local) intensity λt = Λ(t, Ñt), and

suppose Ñ(0) = N(0) = 0, then Nt and Ñt have same the marginal distribution, that

is, P(Nt = n) = P(Ñt = n) for any n ≥ 0

Proof. As a pure counting process, Nt is associated with its jump measure µ(dx, dt).

Nt =
∫ t

0

∫

R
µ(dx, dt)

If we treat Nt as a marked point process. The compensator measure is

ν(dx, dt) = κ(t, dx)λ(t)dt

Since Nt has constant unit jump size, the jump size measure is a Dirac delta measure

κ(t, dx) = δ{Y =1}dx. The process λ(t) is just the jump intensity of Nt which is a

predictable stochastic process.

For any bounded measurable function f : R→ R,

f(Nt) = f(N0) +
∫ t

0

∫

E
(f(N(s−) + x)− f(N(s−)))µ(dx, ds)

= f(N0) +
∫ t

0

∫

E
(f(N(s−) + x)− f(N(s−))) (µ(dx, ds)− κ(s, dx)λ(s)ds)

+
∫ t

0

∫

E
(f(N(s−) + x)− f(N(s−)))κ(s, dx)λ(s)ds



49

Since f(N(t−)+x)−f(N(t−)) is predictable,
∫ t
0

∫
E (f(N(s−) + x)− f(N(s−))) (µ(dx, ds)−

κ(s, dx)λ(s)ds) is a local martingale. Take expectations of both sides:

E(f(Nt)) = f(N0) + E

[ ∫ t

0

∫

E
(f(N(s−) + x)− f(N(s−)))κ(s, dx)λ(s)ds

]
.

Since κ(s, dx) = δ{Y =1}dx, we have

E(f(Nt)) = f(N0) + E

[ ∫ t

0
(f(N(s−) + 1)− f(N(s−)))λ(s)ds

]

= f(N0) +
∫ t

0
E

[
E

[
(f(N(s−) + 1)− f(N(s−)))λ(s)|N(s−)

]]
ds

= f(N0) +
∫ t

0
E

[
(f(N(s−) + 1)− f(N(s−)))E

[
λ(s)|N(s−)

]]
ds.

Choose f be the payoff function of a European-style put option with strike K, and let

f(x) = [K − x]+, then

E[(K −Nt)+] = K +
∫ t

0
E

[(
(K − (N(s−) + 1))+ − (K −N(s−))+

)
E

[
λ(s)|N(s−)

]]
ds

E[(K + 1−Nt)+] = K + 1+
∫ t

0
E

[(
(K + 1− (N(s−) + 1))+ − (K + 1−N(s−))+

)
E

[
λ(s)|N(s−)

]]
ds

Subtract the first equation from the second equation and use equation

K∑

j=0

pj(t) = E[(K + 1−Nt)+]− E[(K −Nt)+],

as in (3.17), where pj(t) = P(Nt = j), then we obtain

K∑

j=0

pj(t) = 1−
∫ t

0
E

[(
(K + 1−N(s−))+ − 2(K −N(s−))++

(K − 1−N(s−))+
)
E

[
λ(s)|N(s−)

]]
ds

Note that

(K + 1−N(s−))+ − 2(K −N(s−))+ + (K − 1−N(s−))+ (3.23)
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is a hump payoff function of a butterfly option. In the case of an integer valued N(s−),

The expression (3.23) equals 1{N(s−)=K}. So

K∑

j=0

pj(t) = 1−
∫ t

0
E

[
1{N(s−)=K}E

[
λ(s)|N(s−)

]]
ds

= 1−
∫ t

0
E

[
λ(s)|N(s−) = K

]
P(Ns− = K)ds.

Since

P(Ns− = K) =P(Ns− = K − 1)P(Ns −Ns− = 1)

+P(Ns− = K)P(Ns −Ns− = 0),

and P(Ns−Ns− = 1) = 0, P(Ns−Ns− = 0) = 1, we have P(Ns− = K) = P(Ns = K) =

pK(s). Therefore,

K∑

j=0

pj(t) = 1−
∫ t

0
E

[
λ(s)|N(s−) = K

]
pK(s)ds.

Taking a derivative on the preceding equation with respect to t,

∂

∂t

K∑

j=0

pj(t) = −E
[
λ(t)|N(t−) = K

]
pK(t)

−1
pK(t)

∂

∂t

K∑

j=0

pj(t) = E
[
λ(t)|N(t−) = K

]
. (3.24)

Therefore, the marginal distribution pK(t) of Nt, K = 0, · · · , N̄ , is completely de-

termined by λ(t) through the conditional expectation E
[
λ(t)|N(t−) = K

]
, for all

K = 0, · · · , N̄ .

We now define a Markovian counting process Ñt with local intensity Λ(t, Ñt) where

Λ(t, n) = E[λ(t)|N(t−) = n]. We have the Dupire’s formula (3.6). Namely, The

marginal distribution p̃K(t) of Ñt, K = 0, · · · , N̄ satisfies the same equation (3.24),

−1
p̃K(t)

∂

∂t

K∑

j=0

p̃j(t) = Λ(t, Ñt) = E
[
λ(t)|N(t−) = K

]
(3.25)

which admits unique solution as solved in (3.5). So Nt and Ñt have the same marginal

distribution.



51

Theorem 3.3.1 tells us that as long as Λ(t, n) = E[λt|Nt = n] and N0 = Ñ0 in distri-

bution, Nt and Ñt share the same marginal distribution. For some future time t > 0, in

order to have the Markovian counting process Ñ again share the same marginal distri-

bution conditioning on Ft, we necessarily need Ñt = Nt and the local intensity should

be the expectation conditioning on Ft. Precisely, theorem 3.3.2 can be immediately

extended to the following

Theorem 3.3.2 (Gyöngy’s Theorem). For any non-Markovian counting process Nt

with instantaneous intensity λt. At any time t > 0, there exists a Markovian counting

process Ñ t
T starting from T = t, sharing the same marginal distribution with NT . That

is, for all k,

P(NT = k|Ft) = P(Ñ t
T = k|Ft) , T > t.

In addition, Ñ t
T , as a time-inhomogeneous Markovian chain, has the local intensity

Λt(T, n) = E[λT |NT = n,Ft], (3.26)

for any T ≥ t and n ≥ Nt.

The Markovian process Ñ t
T is usually called the “mimicking process” which mimics

the marginal distribution of NT at time t. Kellerer in [15] gave a similar result which

showed that the existence of the mimicking Markov point process can be applied to a

more general point process which may not even have intensity.

Definition 3.3.3 (Local intensity surface). For any counting process Nt with adapted

instantaneous intensity λt, we define the local intensity surface of Nt at time t to be the

function

Λt(·, ·) : R+ × Z≥0 → R>0

where Λt(T, n) = E[λT |NT = n,Ft] as given in Theorem 3.3.2

Remark: This definition is consistent with the previous Definition 3.1.1. For a Marko-

vian counting process Nt with λt = f(t,Nt), the mimicking process is just itself. Ac-

cording to Definition 3.3.3, the local intensity surface of Nt is simply f(·, ·) which does

not change over time.
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Figure 3.2: The horizontal line represents an counting process NT with stochastic
intensity. The Markov process N t1

T with local intensity function Λ1 mimics the marginal
distribution of NT conditioning on Ft1 , therefore NT has the local intensity surface
Λt1(·, ·) at time t1. The Markov process N t2

T with local intensity function Λ2 mimics
the marginal distribution of NT conditioning on Ft2 , therefore NT has the local intensity
surface Λt2(·, ·) at time t2.

3.3.2 Example of a parametric family of local intensity Surfaces

For a certain counting process Nt with stochastic intensity λt, the local intensity surface

at time t is defined in Definition 3.3.3. In this section, we give a simple example of a

stochastic intensity model whose local intensity surface can be explicitly expressed as

a parametric function.

We randomize the intensity of aggregate loss process N(t) by assuming that it takes

the value of λ1, λ2, λ3 with probability c1, c2, c3 = 1− c1 − c2 respectively. The initial

local intensity surface Λ0(T, n) can be derived from the probability pk(T ) = P(N(T ) =

k),

pk(T ) =
3∑

i=1

P(N(T ) = k|λ = λi) · ci,

where the probability P(N(T ) = k|λ = λi) is Poisson distributed with parameter λi,

pik(T ) = P(N(T ) = k|λ = λi) =
e−λiT (λiT )k

k!
.
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Therefore,

Λ0(T, n) = − 1
pn(T )

n∑

k=0

∂

∂T
pk(T )

= −
∑n

k=0
∂

∂T

∑3
i=1 cipik(T )∑3

i=1 cipin(T )

= −
∑3

i=1 ci

( ∑n
k=0

∂
∂T pik(T )

)

∑3
i=1 cipin(T )

= − 1∑3
i=1 cipin(T )

3∑

i=1

ci

n∑

k=0

(−λie
−λiT (−λiT )k

k!
+

λie
−λiT k(λiT )k−1

k!

)

=
∑3

i=1 ciλie
−λiT (λiT )n

n!∑3
i=1 cie−λiT (λiT )n

n!

,

so we obtain the local intensity of this example,

Λ0(T, n) =
∑3

i=1 ciλ
n+1
i e−λiT

∑3
i=1 ciλn

i e−λiT
(3.27)

1) As T ↘ 0,

Λ0(T, n) → c1λ
n+1
1 + c2λ

n+1
2 + c3λ

n+1
3

c1λn
1 + c2λn

2 + c3λn
3

.

This is a weighted sum of λi with weight
ciλ

n
i∑3

i=1 ciλn
i

. when n = 0 (assume no default in

the beginning), Λ0(0, n) is just the expectation of λ. When n is large, Λ0(0, n) is close

to the maximum of λi.

2) As T ↗∞,

Λ0(T, n) → min{λ1, λ2, λ3}

If λ is distributed with density ρ(λ) for λ > 0, similarly, we have

Λ0(T, n) =

∫∞
0 λn+1e−λT ρ(λ)dλ∫∞
0 λne−λT ρ(λ)dλ

,

and extreme behavior of the initial local intensity can be obtained in the same manners.
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Figure 3.3: Graph of a model implied local intensity surface: Above is a sample of local
intensity surface Λ0(T, n), implied from the model in section 3.3.2. with c1 = 0.2, c2 =
0.5, c3 = 0.3, λ1 = 10, λ2 = 20 and λ3 = 30.

3.4 Further extensions of Gyöngy’s theorem

In this section, we further extend Gyöngy’s mimicking theorem. We first provide a

new proof of the original Gyöngy theorem for Itô process as in [12]. The proof uses the

Fourier transform method. This method later motivates the proof of a further extended

Gyöngy’s theorem for discontinuous semi-martingales.

3.4.1 Proof of Gyöngy’s theorem using the Fourier transform Method

We provide a proof for the following Gyöngy’s theorem.

Theorem 3.4.1. Let X(t) be an n-dimensional Itô process which satisfies

dX(t) = β(t)dt + σ(t)dWt,

where Wt is a d-dimensional Brownian motion. β(t) is a bounded n-dimensional adapted

process and σ(t) is a bounded n× d-dimensional adapted process such that σ(t)σT (t) is
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uniformly positive definite. Then there exist measurable functions a and b

a2(t, x) = E[σ(t)σT (t)|X(t) = x]

b(t, x) = E[β(t)|X(t) = x],

and there exists a weak solution Y (t) to the SDE:

dY (t) = b(t, Y (t))dt + a(t, Y (t))dW̃t,

where W̃t is a n-dimensional Brownian motion, and X(0) = Y (0), such that X and Y

have the same marginal distributions for all t > 0.

Proof. Consider the function f(x) = e−iξ·x, x, ξ ∈ Rn. Itô’s lemma shows that

f(XT ) = f(X0) +
∫ T

0

n∑

j=1

∂f

∂xj
dXj(t) +

1
2

∫ T

0

n∑

j,k=1

∂2f

∂xj∂xk
dXj(t)dXk(t)

= f(X0) +
∫ T

0

n∑

j=1

−iξje
−iξ·X(t)dXj(t)

−1
2

∫ T

0

n∑

j,k=1

ξjξke
−iξ·X(t)

(
σ(t)σT (t)

)
jk

dt

= f(X0) +
∫ T

0

n∑

j=1

−iξje
−iξ·X(t)

(
βj(t)dt +

d∑

k=1

σjk(t)dWk(t)

)

−1
2

∫ T

0

n∑

j,k=1

ξjξke
−iξ·X(t)

(
σ(t)σT (t)

)
jk

dt

Taking expectation on both sides, we get

E[f(XT )] = f(X0) + E




∫ T

0

n∑

j=1

−iξje
−iξ·X(t)βj(t)dt




−E


1

2

∫ T

0

n∑

j,k=1

ξjξke
−iξ·X(t)

(
σ(t)σT (t)

)
jk

dt




= f(X0) +
∫ T

0

n∑

j=1

−iξjE
[
e−iξ·X(t)βj(t)

]
dt−

1
2

∫ T

0

n∑

j,k=1

ξjξkE
[
e−iξ·X(t)

(
σ(t)σT (t)

)
jk

]
dt
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Using the tower property in the inner expectation, we get

E[f(XT )] = f(X0) +
∫ T

0

n∑

j=1

−iξjE
[
e−iξ·X(t)E [βj(t)|X(t)]

]
dt

−1
2

∫ T

0

n∑

j,k=1

ξjξkE
[
e−iξ·X(t)E[

(
σ(t)σT (t)

)
jk
|X(t)]

]
dt

= f(X0) +
∫ T

0

n∑

j=1

−iξjE[e−iξ·X(t)bj(t,Xt)]dt−

1
2

∫ T

0

n∑

j,k=1

ξjξkE[e−iξ·X(t)a2
jk(t,Xt)]dt

Taking a derivative with respect to T on both sides , we have

∂

∂T
E[f(XT )] =

n∑

j=1

−iξjE[e−iξ·XT bj(T,XT )]− 1
2

n∑

j,k=1

ξjξkE[e−iξ·XT a2
jk(T, XT )].

The E[f(XT )] term is just the Fourier transform of the transition density function

pXT
(T, x) 1 of the random variable XT (assuming the density function exists at least

weakly). That is

E[f(XT )] = F [pXT
(T, x)](ξ)

Therefore, we can rewrite the above equations in terms of Fourier transform

∂

∂T
F [pXT

(T, x)](ξ) =
n∑

j=1

−iξj

∫

Rn

e−iξ·xbj(T, x)pXT
(T, x)dx

−1
2

n∑

j,k=1

ξjξk

∫

Rn

e−iξ·xa2
jk(T, x)pXT

(T, x)dx

=
n∑

j=1

−iξjF [bj(T, x)pXT
(T, x)](ξ)−

1
2

n∑

j,k=1

ξjξkF [a2
jk(T, x)pXT

(T, x)](ξ)

= −
n∑

j=1

F [
∂

∂xj
bj(T, x)pXT

(T, x)](ξ)

+
1
2

n∑

j,k=1

F [
∂2

∂xj∂xk
a2

jk(T, x)pXT
(T, x)](ξ)

1The transition density function should be written as pXT (t, y; T, x), the shortcut notation pXT (T, x)
is used since here we fix the backward variable t and y.
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Here we assume pXT
(T, x) satisfies enough regularity condition so that we can in-

terchange of ∂
∂T and Fourier transform. Then taking inverse transform gives

∂

∂T
pXT

(T, x) = −
n∑

j=1

∂

∂xj
bj(T, x)pXT

(T, x)

+
1
2

n∑

j,k=1

∂2

∂xj∂xk
a2

jk(T, x)pXT
(T, x) (3.28)

In fact, f can be chosen as any arbitrary smooth test function. And we can also

derive that pXT
(T, x) is a weak solution of (3.28).

Equation (3.28) is the well-known Kolmogorov forward equation satisfied by the

probability density function pXT
(T, x). Suppose Yt is a stochastic process which follows

dY (t) = b(t, Y (t))dt + a(t, Y (t))dW̃t,

and its has a probability density function pYt(t, y), then clearly, pYT
(T, y) also satisfies

(3.28). In order to show that X(t), Y (t) have the same marginal distributions, it suffices

to show that (3.28) has a unique solution. We know the uniqueness for parabolic PDEs

is guaranteed according to Evans [9], since b(t, x) and a(t, x) are bounded and a2(t, x)

is uniformly positive definite.

3.4.2 Gyöngy’s theorem for semi-martingales

We now consider a result mimicking the marginal distribution of a quite general class

of stochastic process with both diffusion and jumps.

Theorem 3.4.2. Let X(t) be an Itô semi-martingale given by the following decompo-

sition.

Xt = X0 +
∫ t

0
βsds +

∫ t

0
σsdWs +

∫ t

0

∫

‖y‖≤1
yM̃X(ds, dy) +

∫ t

0

∫

‖y‖>1
yMX(ds, dy)

where Wt is a Rd-valued Brownian motion, MX is a random measure on [0,∞] × Rn

with compensator µX , M̃X = MX − µX is the compensated measure. We assume µX
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has a density mX(ω, t, y), βt and σt are bounded adapted processes in Rn and Rn×Rd.

σtσ
T
t is uniformly positive definite.

Define

a2(t, x) = E[σ(t)σT (t)|X(t−) = x]

b(t, x) = E[β(t)|X(t−) = x]

mY (t, A, x) = E[mX(·, t, A)|X(t−) = x],

for all t ≥ 0, x ∈ Rn, and A which is a Borel set in Rn. There exists a stochastic

process Y (t), which is a weak solution for the stochastic differential equation

Yt = X0 +
∫ t

0
b(s, Ys)ds +

∫ t

0
a(s, Ys)dW̃s

+
∫ t

0

∫

‖y‖≤1
yM̃Y (dsdy) +

∫ t

0

∫

‖y‖>1
yMY (dsdy)

where W̃t is an n-dimensional Brownian motion, MY is a random measure on [0,∞)×
Rn with compensator mY (t, dy, Yt−)dt. Then X and Y have the same marginal distri-

bution for all t > 0.

Proof. Let f be a C2 function on Rn, we use the following Itô lemma for semi-martingale

f(XT ) = f(X0) +
n∑

j=1

∫ T

0

∂

∂xj
f(Xt−)dXj

t +
1
2

n∑

j,k=1

∂2

∂xj∂xk
f(Xt−)(dXj

t , dXk
t )

+
∑

t≤T


f(Xt− +4Xt)− f(Xt−)−

n∑

j=1

∂

∂xj
f(Xt−)4Xj

t



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For the semi-martingale Xt in our specification

f(XT ) = f(X0) +
∫ T

0
∇f(Xt−) · βtdt +

∫ T

0
∇f(Xt−) · σtdWt

+
1
2

∫ T

0

n∑

j,k=1

∂2

∂xj∂xk
f(Xt−)(σ(t)σT (t))jkdt

+
∫ T

0

∫

‖y‖≤1
(∇f(Xt− · y))M̃X(dt, dy) +

∫ T

0

∫

‖y‖>1
(∇f(Xt− · y))MX(dt, dy)

+
∫ T

0

∫

Rn

(f(Xt− + y)− f(Xt−)− y · ∇f(Xt−))Mx(dt, dy)

= f(X0) +
∫ T

0
∇f(Xt−) · βtdt +

∫ T

0
∇f(Xt−) · σtdWt

+
1
2

∫ T

0

n∑

j,k=1

∂2

∂xj∂xk
f(Xt−)(σ(t)σT (t))jkdt +

∫ T

0

∫

‖y‖≤1
(∇f(Xt− · y))M̃X(dt, dy)

+
∫ T

0

∫

Rn

(f(Xt− + y)− f(Xt−)− 1‖y‖≤1y · ∇f(Xt−))MX(dt, dy)

Taking expectations on both side, we get

E[f(XT )] = f(X0) + E

[∫ T

0
∇f(Xt−) · βtdt

]

+
1
2
E




∫ T

0

n∑

j,k=1

∂2

∂xj∂xk
f(Xt−)(σ(t)σT (t))jkdt




+E

[∫ T

0

∫

Rn

(f(Xt− + y)− f(Xt−)− 1‖y‖≤1y · ∇f(Xt−))mX(t, dy)dt

]
.

We can apply Fubini’s theorem,

E[f(XT )] = f(X0) +
∫ T

0
E [∇f(Xt−) · βt] dt

+
1
2

∫ T

0

n∑

j,k=1

E

[
∂2

∂xj∂xk
f(Xt−)(σ(t)σT (t))jkdt

]

+
∫ T

0
E

[∫

Rn

(f(Xt− + y)− f(Xt−)− 1‖y‖≤1y · ∇f(Xt−))mX(t, dy)
]

dt.
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Using the iterated expectation condtioned on Xt−, we have

E[f(XT )] = f(X0) +
∫ T

0
E [∇f(Xt−) · E[βt|Xt−]] dt

+
1
2

∫ T

0

n∑

j,k=1

E

[
∂2

∂xj∂xk
f(Xt−)E[(σ(t)σT (t))jk|Xt−]dt

]

+
∫ T

0
E

[
E[

∫

Rn

(f(Xt− + y)− f(Xt−)

−1‖y‖≤1y · ∇f(Xt−))mX(t, dy)|Xt−]

]
dt

E[f(XT )] = f(X0) +
∫ T

0
E[∇f(Xt−) · b(t,Xt−)]dt

+
1
2

∫ T

0

n∑

j,k=1

E

[
∂2

∂xj∂xk
f(Xt−)a2

jk(t,Xt−)
]

dt

+
∫ T

0
E

[∫

Rn

(f(Xt− + y)− f(Xt−)− 1‖y‖≤1y · ∇f(Xt−))mY (t, dy, Xt−)
]

dt

Again, we choose f(x) = e−iξ·x, then ∇f(x) = (−iξ1e
−iξ·X , · · · ,−iξne−iξ·X), and

∂2

∂xj∂xk
f(x) = −ξjξke

−iξ·x. Therefore,

E[f(XT )] = f(X0) +
∫ T

0

n∑

j=1

E
[
−iξje

−iξ·Xt−bj(t,Xt−)
]
dt

−1
2

∫ T

0

n∑

j,k=1

ξjξkE
[
e−iξ·Xt−a2

jk(t,Xt−)
]
dt

+
∫ T

0
E




∫

Rn

(e−iξ·(Xt−+y) − e−iξ·Xt− −
n∑

j=1

1‖y‖≤1yjiξje
−iξ·Xt−)mY (t, dy, Xt−)


 dt

Taking derivatives with respect to T on both sides, we get

∂

∂T
E[f(XT )] =

n∑

j=1

−iξjE[e−iξ·XT−bj(T, XT−)]− 1
2

n∑

j,k=1

ξjξkE[e−iξ·XT−a2
jk(T, XT−)]

+E[
∫

Rn

(e−iξ·(XT−+y) − e−iξ·XT− −
n∑

j=1

1‖y‖≤1yjiξje
−iξ·XT−)mY (T, dy, XT−)]
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If XT has a probability density function pXT
(T, x), we have

∂

∂T

∫

Rn

e−iξ·xpXT
(T, x)dx =

n∑

j=1

−iξj

∫

Rn

e−iξ·xbj(T, x)pXT
(T, x)dx

−1
2

n∑

j,k=1

ξjξk

∫

Rn

e−iξ·xa2
jk(T, x)pXT

(T, x)dx

+
∫

Rn

∫

Rn

(e−iξ·(x+y) − e−iξ·x

−
n∑

j=1

1‖y‖≤1yjiξje
−iξ·x)mY (T, dy, x)pXT

(T, x)dx

We can rewrite this equation in terms of Fourier transform,

∂

∂T
F [pXT

(T, x)](ξ)

=
n∑

j=1

−iξjF [bj(T, x)pXT
(T, x)](ξ)− 1

2

n∑

j,k=1

ξjξkF [a2
jk(T, x)pXT

(T, x)]

+
∫

Rn

F [(e−iξ·y − 1−
n∑

j=1

1‖y‖≤1yjiξj)mY (T, dy, x)pXT
(T, x)](ξ)

= −
n∑

j=1

F [
∂

∂xj
bj(T, x)pXT

(T, x)](ξ) +
1
2

n∑

j,k=1

F [
∂2

∂xj∂xk
a2

jk(T, x)pXT
(T, x)](ξ)

+F [
∫

Rn

pXT
(T, x− y)mY (t, y, x− y)− pXT

(T, x)mY (t, y, x)

−
n∑

j=1

1‖y‖≤1
∂

∂xj
(mY (T, y, x)pXT

(T, x))dy)](ξ)

Here we assume pXT
(T, x) satisfies enough regularity condition so that we can inter-

change of ∂
∂T and Fourier transform. Then after taking the inverse Fourier transform,

pXT
(T, x) satisfies

∂

∂T
pXT

(T, x) = −
n∑

j=1

∂

∂xj
bj(T, x)pXT

(T, x) +
1
2

n∑

j,k=1

∂2

∂xj∂xk
a2

jk(T, x)pXT
(T, x)

+
∫

Rn

pXT
(T, x− y)mY (t, y, x− y)− pXT

(T, x)mY (t, y, x)

−
n∑

j=1

1‖y‖≤1
∂

∂xj
(mY (T, y, x)pXT

(T, x))dy (3.29)

This is the Kolmogorov forward equation satisfied by the transition density function

pXT
(T, x) 2 of a discontinuous semi-martingale XT . In fact, f can be chosen as any

2The transition density function should be written as pXT (t, y; T, x), the shortcut notation pXT (T, x)
is used since here we fix the backward variable t and y.
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arbitrary smooth test function. And we can also derive that pXT
(T, x) is a weak solution

of (3.29).

Suppose the process Yt is a weak solution to the SDE

Yt = X0 +
∫ t

0
b(s, Ys)ds +

∫ t

0
a(s, Ys)dW̃s (3.30)

+
∫ t

0

∫

‖y‖≤1
yM̃Y (dsdy) +

∫ t

0

∫

‖y‖>1
yMY (dsdy)

and Yt has a probability density function pYt(t, y). Then clearly, pYT
(T, y) also satisfies

equation(3.29). In order to show that X(t), Y (t) have the same marginal distributions,

it again suffices to show that equation (3.29) has a unique solution. However, the

equation (3.29) is not like the standard forward equation (3.28) for Itô process we

discussed in section 3.4.1. We believe under mild conditions for b(t, x), a(t, x) and

m(t, x, y), equation (3.29) also admits unique solution. Here we leave the problem and

pursue the complete answer in the future.

Remark: all we really need to complete the entire proof is the uniqueness of solutions

to a pseudo-parabolic integro-differential equation (3.29) on Rn. This part of work is

being explored in collaboration with Jin Wang. The most relavant references we will

rely on are Friedman [11], Kumanogo [16] and Treves [24].

Cont and Bentata in [4] consider the same problem of extending the “mimicking

theorem” of Gyöngy [12] to discontinuous semimartingales. That is the flow of marginal

distributions of a discontinuous semimartingale X can be matched by a Markov process

whose infinitesimal generator is expressed in terms of the local characteristics of X.

Their proof mainly relies on the solution of martingale problem.
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3.4.3 Mimicking result for discrete time processes

Let’s now consider to extend the originally Gyöngy theorem for Itô process to discrete

time stochastic processes. First we consider the following example.

Example 1

Suppose we are given a discrete time stochastic process {Xn} in a given filtered proba-

bility space (Ω,F ,P, {Fn}n≥0). X0 = x0 and where Xn satisfies the following dynamics,

Xn+1 = Xn + σnεn,

where εn are i.i.d. with standard normal distribution N(0, 1), and σn is the stochastic

volatility adapted to {Fn}n≥0. The process Xn can be viewed as a discrete version of Itô

process. It is natural to ask if {Xn} can be mimicked by a discrete time Markov process

{X̃n}, so that they have the same marginal distribution. Inspired by the continuous

time Gyöngy theorem, {X̃n} is defined by X̃0 = x0, and

X̃n+1 = X̃n + σ̃n(X̃n)ε̃n,

where ε̃n are i.i.d. with standard normal distribution N(0, 1) independent to εn and

σ̃2
n(x) = E[σ2

n|Xn = x]

It turns out that Xn and X̃n may not have same marginal distribution. To construct

a counterexample, we suppose X0 = X̃0 = 0 and σ0 = 1. then σ̃2(X̃0) = E[σ2
0|X0 =

X̃0] = 1. Therefore,

X1 = X0 + σ0ε0 = ε0,

X̃1 = X̃0 + σ̃0(X̃0)ε̃0 = ε̃0.

The random variables X1 and X̃1 are both standard normally distributed.

Next, we assume that the stochastic volatility σn = XnYn for n ≥ 1, where Yn is
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standard normal independent of Xn. Then

σ̃2
1(x) = E[σ2

1|X1 = x]

= E[X2
1Y 2

1 |X1 = x]

= x2E[Y 2
1 |X1 = x]

= x2.

Therefore

X2 = X1 + σ1ε1 = X1 + X1Y1ε1,

X̃2 = X̃1 + σ̃1(X̃1)ε̃ = X̃1 + X̃1ε̃1.

Clearly, X2 and X̃2 have distinct distributions since X1Y1ε1 is a product of three inde-

pendent standard normals, which has a different distribution to X̃1ε̃1 which is a product

of two independent standard normals.

Example 1 gives a counterexample of the naive extension of the continuous Gyöngy

theorem to the discrete time case. However the following extension is correct.

Proposition 3.4.3. Consider a discrete time discrete state stochastic process {Xn} in

a filtered probability space (Ω,F ,P, {Fn}n≥0). Assume that

pn(z) = P(Xn+1 = z|Fn) = fn(Xn, Yn; z)

where Yn is a factor process independent of Xn. If we define another discrete time,

discrete state process {X̃n} whose transition probability is

P(X̃n+1 = z|Fn) = p̃n(X̃n; z)

where p̃n(x; z) = E[pn(z)|Xn = x], then Xn and X̃n have same distribution for all n.
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Proof. Observe that

P(Xn+1 = z) =
∑

s

P(Xn+1 = z|Xn = s)P(Xn = s)

=
∑

s

[ ∑
y

P(Xn+1 = z|Yn = y, Xn = s)P(Yn = y|Xn = s)
]
P(Xn = s)

=
∑

s

[ ∑
y

fn(s, y; z)P(Yn = y|Xn = s)
]
P(Xn = s)

=
∑

s

[
E[pn(z)|Xn = s]

]
P(Xn = s)

=
∑

s

p̃n(s; z)P(Xn = s)

By induction on n, P(Xn = s) is equal to P(X̃n = s), so

P(Xn+1 = z) =
∑

s

p̃n(s; z)P(Xn = s)

=
∑

s

p̃n(s; z)P(X̃n = s)

= P(X̃n+1 = z).

The above version of the discrete time, discrete state Gyöngy’s theorem also holds

if Yn is a vector. It can be extended as long as pn(z) is adapted to Fn. Proposition

3.4.3 is true because we localize the stochastic transition probability instead of only

localizing the stochastic volatility, which is a very strong condition.
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3.5 Relation to stochastic intensity models

In this section, we investigate the local intensity surface implied from two stochastic

intensity models: doubly stochastic intensity model (2.42) and Hawkes intensity model

(2.43).

3.5.1 Local intensity of jump process with doubly stochastic intensity

Given a default counting process Nt with doubly stochastic intensity in (2.42), the

initial local intensity function Λ0(T, n) satisfies Dupire’s formula (3.6)

Λ0(T, n) = − 1
pn(T )

n∑

k=0

∂

∂T
pk(T )

= −
∑n

k=0
∂

∂T E
[
e−

∫ T
0 λsds(

∫ T
0 λsds)k 1

k!

]

E
[
e−

∫ T
0 λsds(

∫ T
0 λsds)n 1

n!

]

= −
∑n

k=0 E
[
−λT e−

∫ T
0 λsds(

∫ T
0 λsds)k 1

k! + e−
∫ T
0 λsdsk(

∫ T
0 λsds)k−1λT

1
k!

]

E
[
e−

∫ T
0 λsds(

∫ T
0 λsds)n 1

n!

]

=
E(λT e−

∫ T
0 λsds(

∫ T
0 λsds)n 1

n!)

E(e−
∫ T
0 λsds(

∫ T
0 λsds)n 1

n!)
(3.31)

If the joint distribution of (λT ,
∫ T
0 λsds) is known, the expectation terms in (3.31) can

be computed explicitly. This is for example the case if λt satisfies Hull-White model.

3.5.2 Local intensity of Hawkes process

Suppose we are given a default counting process Nt whose intensity λt is a Hawkes

process in (2.43), the intensity λt satisfies

λ(t) = ν +
∫ t

0
αe−β(t−s)dNs (3.32)

The probability generating function of Nt is defined as φ(x, t) = E[xNt ]. According

to Hawkes in [19],

φ(x, t) = exp
(
− ν

β
(1− ψ(x, t))− ν

∫ t

0
1− ψ(x, u)du

)
,

where ψ(x, t) is determined by

βt = −
∫ 1−ψ

0

1

xe
−α

β
u + u− 1

du
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Denote φ(n)(x, t) = ∂n

∂xn φ(0, t). By Dupire formula (3.6) and noticing that pk(T ) =

P(Nt = k) = φ(n)(0,T )
n! , we can compute the initial local intensity surface:

Λ0(T, n) = − 1
pn(T )

n∑

k=0

∂

∂T
pk(T )

= −
∂
∂t

(
φ(0, T ) + φ′(0, T ) + · · ·+ φ(n)(0,T )

n!

)

φ(n)(0,T )
n!

Next, we investigate some properties of the local intensity surface implied by the

Hawkes process.

Lemma 3.5.1. Suppose the intensity of the default counting process Nt satisfies the

Hawkes dynamics (3.32), then for n ≥ Nt,

Λt(t, n) = λt + (n−Nt)α (3.33)

Proof. By definition 3.3.3,

Λt(t, n) = lim
h↘0

Et

[
λt+h

∣∣Nt+h = n
]
, (3.34)

where in the Hawkes setting,

λt+h = ν +
∫ t+h

0
αe−β(t+h−s)dNs (3.35)

= ν +
∫ t

0
αe−β(t+h−s)dNs +

∫ t+h

t
αe−β(t+h−s)dNs. (3.36)

As h tends to zero, time t conditional expectation of the first two terms converge to

ν +
∫ t
0 αe−β(t−s)dNs, which equals λ(t). As for the conditional expectation of last term

Et

[
α

∫ t+h

t
αe−β(t+h−s)dNs

∣∣∣Nt+h = n
]

=
∫

0<h1<...<hn−N(t)<h
α

n−N(t)∑

i=1

e−β(h−hi)dµ,

(3.37)

where µ is the joint distribution of waiting time of such n−N(t) many jumps occurred

between time t and t + h. The above term converges to (n − N(t))α as h approaches

to zero.

.
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Corollary 3.5.2. If the intensity of the default counting process Nt satisfies the Hawkes

dynamics (3.32), the implied initial local intensity surface Λ0(T, n) can not match given

arbitrary initial local intensity a0(T, n) for 0 ≤ n ≤ N .

Proof. By Lemma 3.5.1, Λt(t,Nt + n) = λ(t) + nα for all t ≥ 0. Necessarily, if we let t

approach to zero, Λ0(0, n) has to satisfy

Λ0(0, n) = Λ0(0, 0) + [n−N(0)]α.

That is, the terms Λ0(0, n) for all n are distinct only by a constant increment α. This

violates the arbitrariness of the given initial local intensity a0(T, n).

The reason of Hawkes intensity fails to match market data is caused by a constant

jump size of intensity upon jump of Nt. In order to fix this problem. The jump size α

has to depend on the number of default Nt
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3.6 Calibration of initial local intensity surface to market data

In this section we briefly discuss the calibration problem. For a detailed discussion, refer

to Carmona [2]. The model calibration problem for the initial local intensity surface is

defined as the problem of recovering the local intensity function Λ0(T,K) from market

observations, which consist of spreads for a small number of CDO tranches and index

CDS.

Denote by T1 < · · · < Tm the maturities of the observed CDO tranches (usually

3, 5, 7 and 10 years) with T = Tm being the largest maturity and 0,K1, · · · ,KI the

attachment points. The coupon payment dates are denoted as {tj}, j = 1, · · · , J . At

t = 0 we observe the tranche spreads (S0(Ki,Ki+1;Tk), i = 1, ..., I − 1; k = 1, ..., m).

The calibration problem for the CDO pricing model can be formulated as follows:

Problem 3.6.1 (Calibration Problem). . Given a set of observed CDO tranche

spreads (S0(Ki,Ki+1;Tk), i = 1, ..., I−1; k = 1, ..., m) at time 0 for a reference portfolio,

find the initial local intensity surface Λ0(·, ·) so that the Markovian default counting

process Ñ(t) and associated loss process L̃(t) with local intensity λ(t) = Λ0(t, Ñ(t)) can

produce the spreads to match the market observations:

S0(Ki,Ki+1;Tk) =

∑
tj≤Tk

B(0, tj)E
[
(L[Ki,Ki+1](tj)− L[Ki,Ki+1](tj−1))

]
∑

tj≤Tk
δjB(0, tj)E

[
(I(Ki+1 −Ki)− L[Ki,Ki+1](tj))

] (3.38)

The above calibration problem as stated is ill-posed since it requires us to recover

the whole local intensity surface from only a small number of tranche spreads. There is

little chance of obtaining a unique solution, let alone to compute it in a stable manner.

Nevertheless, we can approach calibration problem by the following ad-hoc methods.

We proceed by decomposing the calibration problem into two sub-problems, and then

attempt to solve them separately.

Problem 1

Since L[a,b](t) = (L(t)−a)+−(L(t)−b)+, the right side of (3.38) only depends on expec-

tations of the form E(L(tj)−Ki)+. Under the usual assumption of name homogeneity
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assumption in 2.3.1, the equation (3.38) simplifies to

S0(Ki,Ki+1;Tk) =

∑
tj≤Tk

B(0, tj) [Ci,j − Ci+1,j − Ci,j−1 + Ci+1,j−1]
∑

tj≤Tk
(tj − tj−1)B(0, tj)

[
(K̃i+1 − K̃i)− Ci,j + Ci+1,j

] , (3.39)

where Ci,j = E[N(tj)−K̃i]+, and K̃i are the adjusted constant attachment points equal

to Ñ
1−RKi. So our first goal is to extract the values of all expectations C = {Ci,j}.

Problem 3.6.2 (Least square minimization problem). Given a set of observed

CDO tranche spreads (S0(Ki,Ki+1;Tk), i = 1, ..., I− 1; k = 1, ..., m) at time 0 for a ref-

erence portfolio, extract a set of expectations C that solves the lease square minimization

problem

[Cj,k] = arg inf
C

∑

i,m

wi,m

∣∣∣∣∣∣
S0(Ki,Ki+1;Tk)−

∑
tj≤Tk

B(0, tj) [Ci,j − Ci+1,j − Ci,j−1 + Ci+1,j−1]
∑

tj≤Tk
(tj − tj−1)B(0, tj)

[
(K̃i+1 − K̃i)− Ci,j + Ci+1,j

]
∣∣∣∣∣∣

2

(3.40)

where the weights wi,m are chosen to be increasing in liquidity and inversely proportional

to the bid-ask spread of the quotes of tranche spreads.

This problem is also not well posed as there are more expectations (I ×J) than the

number of tranche spreads (I ×m). So this discrepancy of numbers prohibits a unique

solution of the minimization problem. Despite all that, it is common to assume that

the values of

Ci,j = E[N(tj)− K̃i]+, i = 1, ..., I; j = 1, ..., J

are all known.

Problem 2

As we already know, the local intensity surface Λ0(t,K) and marginal distribution

pK(t) = P (Nt = K) for t > 0,K = 0, ..., N̄ are completely determined by each

other through Dupire formula (3.6). So in order to extract the local intensity function

Λ0(t,K), it suffices to extract the marginal distribution from Ci,j = E[N(tj) − K̃i]+

obtained from Problem 1. So our second goal is to solve:
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Problem 3.6.3 (Extrapolation problem). Given a set of expectations

Ci,j = E[N(tj)− K̃i]+, i = 1, ..., I; j = 1, ..., J

solve for the marginal distributions pK(t) = P (Nt = K) for all t > 0,K = 0, ..., N̄

For t = tj and K = K̃i, we have pK(t) = ∇−∇+E[N(t) − K]+. In general, the

distribution pk(t) for the whole set of t > 0 and K = 0, ..., N̄ can not be completely

recovered from the mere knowledge of Ci,j for a small number of Ki and tj unless extra

information on the distribution is available. There are many ways to extrapolate these

values of C to obtain for each t a convex function of K which coincides with the value

derived for all K = K̃i. As in [5], one could have a finite sum of point masses or a prior

distribution.

Alternative approach

A common alternative, ad-hoc approach is to assign an empirical parametric function

form for Λ(T, K) and then do parametric optimization.
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Figure 3.4: Graph of a model implied local intensity surface computed from parametric
function: Above is a sample of local intensity surface Λ0(T, n), calibrated to the market
data of the spreads of the tranches on Dow Jones CDX.NA.IG.7 quoted on January 12,
2007.
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Chapter 4

Dynamics of the local intensity surfaces

4.1 Introduction

A local intensity model (3.1) assumes a fixed local intensity surface Λt(T, n) for all

t ≥ 0 and hence the default counting process Nt is a one dimensional Markov process.

The Markovian property of the underlying process Nt is not realistic. So in general,

the local intensity surface should change with time and be viewed as a random surface

Λt(·, ·). The idea of modeling the dynamics of the local intensity surface is along the

lines of modeling the local volatility surface in equity case in Carmona and Nadtochiy

[3].

If we use a Markovian loss model (3.1), the local intensity surface Λt(T, n) is fixed

with respect to t. The default counting process Nt is then a time-inhomogeneous

Markov chain. The Markov property of Nt is unrealistic. The local intensity surface

is generally changing with time, so in general it should be viewed as a function-valued

random process.

Therefore, we consider modeling the dynamics of the local intensity surface. In

this chapter, we will start with HJM style term structure model for the local intensity

Λt(T, n), as first proposed by Schönbucher in [23] for the equivalent forward transition

rate. We will examine the no arbitrage conditions given by Schönbucher. The HJM style

models are necessarily infinite dimensional, which makes implementation difficult for

practical use. We then consider the finite dimensional realization problem, and propose

parametric factors models consistent with the no arbitrage conditions. Finally, we will

analyze some simple examples of the parametric factor models and briefly consider the

pricing issue.
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4.2 Term structure model of Schönbucher

Schönbucher in [23] discussed the modeling of the so called forward transition rate

an(t, T ):

an(t, T ) = lim
h↘0

Pt(N(T + h) = n + 1|N(T ) = n)
h

(4.1)

It is clear that an(t, T ) is equivalent to Λt(T, n), which is interpreted as a local

intensity surface in this dissertation.

In Schönbucher, the dynamics of the forward transition rate an(t, T ) are modelled

by the HJM style differential equation

dan(t, T ) = µn(t, T )dt + σn(t, T )dWt (4.2)

So an(T, n) is a diffusion process, driven by a Brownian motion W , where n = 0, · · · , N̄ ,

µn(t, T ) and σn(t, T ) are predictable process with all necessary regularity properties (to

guarantee the existence and positiveness of an(t, T )). Actually µn(t, T ) is uniquely de-

termined by σn(t, T ) via a drift condition (which is much more complicated than the

drift condition of HJM model).

4.2.1 No-arbitrage conditions

In order to derive the drift condition, Schönbucher first characterized the dynamics of

the transition probability Pnm(t, T ) = P(N(T ) = m|N(t) = n). That is

dPnm(t, T ) = unm(t, T )dt + vnm(t, T )dW (4.3)

dPN(t),m(t, T ) = uN(t),m(t, T )dt + vN(t),m(t, T )dW + φm(t, T )dL(t) (4.4)

As the dynamics of PN(t),m(t, T ) are already uniquely determined by the dynamics

of N(t) and an(t, T ), the above is notation and not an assumption. The parameters of

the above dynamics (4.4) are given by straightforward computation:
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φm(t, T ) =





0 m < N(t),

−PL(t−),m(t, T ) m = N(t),

PL(t−)+1,m(t, T )− PL(t−),m(t, T ) m > N(t),

(4.5)

unm(t, T ) =





0, m < n,

[
an(t, t)− ∫ T

t µn(t, s)ds + 1
2

( ∫ T
t σn(t, s)ds

)2]
Pnm(t, T ), m = n,

−am−1(t, t)Pmm(t, T )1m=n+1 +
∫ T
t e−

∫ T
s am(t,u)du

[−Pnm(t, s)µm(t, s) + µPa
n,m−1(t, s)− σm(t, s)vnm(t, s)]ds, m > n,

(4.6)

vnm(t, T ) =





0, m < n,

Pnm(t, T )e−
∫ T

t σn(t,s)ds, m = n,

∫ T
t e−

∫ T
s am(t,u)du[σPa

n,m−1(t, s)− Pnmσm(t, s)]ds, m > n,

(4.7)

where µPa
n,m−1(t, s) and σPa

n,m−1(t, s) are the drift and diffusion coefficients of

Pn,m−1(t, T )am−1(t, T ) for m > n,




µPa
n,m−1(t, T ) = am−1(t, T )un,m−1(t, T ) + Pn,m−1(t, T )µm−1(t, T ) + σm−1(t, T )vn,m−1(t, T )

σPa
n,m−1(t, T ) = Pn,m−1(t, T )σm−1(t, T ) + am−1(t, T )vn,m−1(t, T )

(4.8)

Proof of the above results is in Schönbucher(2005).

Proposition 4.2.1 (No-arbitrage condition). The dynamics (4.2) are consistent

with the default counting process N(t) and admit no arbitrage if and only if the following

conditions are satisfied:

(i) The diffusion parameters of an(t, T ) satisfy for all 0 ≤ n ≤ N , t ≤ T ,

Drift Condition: PN(t),n(t, T )µn(t, T ) = −σn(t, T )vN(t),n(t, T ), (4.9)
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(ii) the instantaneous intensity of N(t) is given by

Consistency Condition: λ(t) = aN(t)(t, t), (4.10)

Proof of the above results is in Schönbucher(2005).

Observe that when n < N(t) the drift condition doesn’t exist, since Λt(T, n) van-

ishes. When n = N(t), the drift condition can be simplified as

µt(T, n) = σt(T, n)
∫ T

t
σt(s, n)ds (4.11)

Which has exactly the same form of HJM drift condition. When n > N(t), unfor-

tunately, the drift condition (4.9) is very complicated. which is the main obstacle to

further work

Moreover, unlike the drift condition of the original HJM model, in which the drift

parameter is completely determined by the diffusion parameter, not only σn(t, T ), but

also the realization of N(t) determine the drift parameter µn(t, T ) in (4.9). So one of

the main problems afterward is to specify a form of σn(t, T ) with necessary amenable

properties. Also we need to analyze how the term σn(t, T ) affects the dynamics of the

default counting process N(t).

4.2.2 Static local intensity surfaces

In the dynamics of the local intensity surface,

dan(t, T ) = µn(t, T )dt + σn(t, T )dWt,

if σn(t, T ) = 0 for all t > 0, then we have the dynamics of a deterministic local intensity

model. From the drift condition (4.9)

PN(t),n(t, T )µn(t, T ) = −σn(t, T )vN(t),n(t, T )

and positiveness of PN(t),n(t, T ), we have µn(t, T ) = 0. Consequently, an(t, T ) =

an(0, T ), the local intensity surface stays at the initial surface an(0, T ) and does not

change at all. From the consistency condition (4.10), we obtain

λt = aN(t)(t, t) = aN(t)(0, t) = f(t,N(t)).
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Hence, the instantaneous intensity λt only depends on time and number of defaults

N(t) through a bivariate function f . Therefore, if the local intensity does not move,

the default counting process N(t) is a time-dependent Markov chain. If it moves at all,

it does so stochastically. In summary we prove

Proposition 4.2.2. The local intensity surface is static if and only if the aggregate loss

process is a time-dependent Markov chain.
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4.3 Parametric factor models

The HJM style term structure models for the dynamics of the local intensity surface

Λt(T, n) is general enough to cover the possible evolution of the local intensity surface.

However, the infinite dimensionality of these models is a big obstacle to their implemen-

tation. As a solution to the finite dimensional realization problem. we look for a class

of parametric factor models which is automatically finite dimensional. Namely, the

dynamics of local intensity surface is controlled by a finite number of random factors.

Such factors may or may not have economic meanings.

4.3.1 Parametric factor models

The static parametric family of models are usually introduced in the following way. We

start from a function G from Z × [0,∞)× Z≥0 into Z>0, where Z is an open set in Rd

which we interpret as the set of possible values of a vector Z of parameters Z1, · · · , Zd.

In this way, for each Z ∈ Z the surface G(Z, ·, ·) : (T, n) 7→ G(Z, T, n) can be viewed

as a possible candidate for the local intensity surface.

We now introduce factor models from the notion of parametric family formalized

above. We assume that we are given a parametric family G as before and we suppose

that Z = {Zt}t≥0 is a d-dimensional semi-martingale with values in the parameter space

Z. We then set

Λt(T, n) = G(Zt, T, n), T ≥ t ≥ 0, n = 0, · · · , N̄ (4.12)

Definition 4.3.1 (Parametric factor model). We assume that the time t local

intensity surface of a default counting process is specified directly by:

Λt(T, n) = G(Zt;T, n), (4.13)

where Zt ∈ Z ⊂ Rd is an Z valued d-dimensional Markov process which is a strong

solution to a stochastic differential equation,

dZt = µ(t, Zt)dt + σ(t, Zt) · dWt, (4.14)

and G : Rd × R≥0 × Z≥0 → R>0 is an appropriately chosen positive function.
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The process Zt is interpreted as economic factors driving the dynamics of the term

structure of local intensity surface. If Zt is a constant process, then the parametric factor

model (4.13) is reduced to Markovian loss model due to proposition 4.2.2. Usually we

do not put t as an argument in the G function explicitly, since we may consider one

component of the random vector Zt be time t.

Though the finite dimensionality is a direct result of the model specification, the

no-arbitrage conditions should still be considered. For a certain G function, assuming

further that G is twice continuously differentiable in the variables Zj , we can use Itô’s

formula to derive the dynamics of Λt(T, n). The drift condition (4.9) then imposes

restrictions on µ and σ. So the main problem in analyzing the parametric factor models

is to find appropriate functions G so that the drift condition imposed on µ and σ can

be greatly simplified.

4.3.2 Examples

Given the general form (4.13) of the parametric factor models for the local intensity

dynamics, we analyze several examples in this section. Some of these examples are

trivial ones which exhibits the restrictiveness of the drift condition (4.9). One non-

trivial example is given in the end.

1) Random scaling

We first consider a very simple specification of a one factor model. The time t local

intensity Λt(T, n) is obtained by multiplying a positive factor process Zt with the initial

local intensity Λ0(T, n). that is,

Λt(T, n) = Zt · Λ0(T, n), Z0 = 1. (4.15)

We can show that this specification reduces to the trivial static local intensity case:

Proposition 4.3.2. The drift condition (4.9) forces Zt in the random scaling model

(4.15) to be constant. Therefore the random scaling model is reduced to the Markovian

loss model.
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Proof. Taking the differential of Λt(T, n) under the random scaling specification (4.15),

we have the following dynamics

dΛt(T, n) = Λ0(T, n)dZt (4.16)

= µ(t, Zt)Λ0(T, n)dt + σ(t, Zt)Λ0(T, n)dWt (4.17)

For n = Nt, consider the drift condition at n = Nt (4.11). The following equation must

hold.

µ(t, Zt)Λ0(T, n) = σ(t, Zt)Λ0(T, n)
∫ T

t
σ(t, Zt)Λ0(s, n)ds (4.18)

= σ2(t, Zt)Λ0(T, n)
∫ T

t
Λ0(s, n)ds. (4.19)

This implies that

µ(t, Zt) = σ2(t, Zt)
∫ T

t
Λ0(s, n)ds. (4.20)

Since equation (4.20) holds for all T ≥ t, and Λ0(S, n) is positive. we must have

µ(t, Zt) = σ(t, Zt) = 0 for arbitratry Zt. (4.21)

Therefore, dZt = 0 and Zt ≡ Z0 = 1. the local intensity surface is actually a constant

surface and according to proposition (4.2.2), the random scaling model reduces to a

Markovian loss model.

2) Random shifting

We next consider another similar simple specification of a one factor model. The time

t local intensity Λt(T, n) is obtained by adding a factor process Zt to the initial local

intensity Λ0(T, n). i.e.,

Λt(T, n) = Λ0(T, n) + Zt, Z0 = 0.

We can show that this specification also reduces to the trivial static local intensity case.

Proposition 4.3.3. For some deterministic initial local intensity surface Λ0(T, n) and

a Markovian random factor Zt with Z0 = 0. The drift condition (4.11) forces Zt to be

constant. Therefore, the random shifting model is reduced to Markovian loss model.
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Proof. Taking the differential of Λt(T, n) under the random shifting specification (4.22),

we have the following dynamics

dΛt(T, n) = dZt (4.22)

= µ(t, Zt)dt + σ(t, Zt)dWt (4.23)

For n = Nt, consider the drift condition at n = Nt (4.11), the following equation must

hold.

µ(t, Zt) = σ(t, Zt)
∫ T

t
σ(t, Zt)ds (4.24)

= σ2(t, Zt)(T − t). (4.25)

This implies that

µ(t, Zt) = σ2(t, Zt)(T − t). (4.26)

Since this equation holds for all T ≥ t, we must have

µ(t, Zt) = σ(t, Zt) = 0, for arbitratry Zt, (4.27)

and therefore, dZt = 0 and Zt ≡ Z0 = 0. The local intensity surface is actually a

constant surface and according to proposition (4.2.2), the random scaling model reduces

to the Markovian loss model.

Can we find non-trivial examples?

3) Individual spread factor model

Even though the general drift condition (4.9) is very complicated. It simplifies in

σn(t, T )





> 0, n = N(t),

≡ 0, n > N(t).
(4.28)

Namely, the diffusion of local intensity surface Λt(T, n) only applies to n = Nt not

n > Nt. Then, according to (4.9), the drift condition becomes

µn(t, T ) =





σn(t, T )
∫ T
t σn(t, s)ds, n = N(t),

0, n > N(t).
(4.29)
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The specification (4.28) was called the Individual Spread Blow-Out Model at Schönbucher

[23], because the factor only drives the intensity rate of the next default, and does not

affect the remaining transition rates.

Inspired by the result of finite dimensional realization of original HJM model for

forward interest rate by Ritchken [20], we consider the following parametric factor model

Definition 4.3.4 (Individual spread factor model). We assume the time t local

intensity surface is given by the following specification:

Λt(T, n) =





0, n < N(t),

Λ0(T, n), n > N(t),

G(t, Z1(t), Z2(t);T, n), n = N(t),

(4.30)

The parametric functional G is defined as

G(t, z1, z2;T, n) = Λ0(T, n) + z2H(t, T )− (Λ0(t, n)− z1)K(t, T ) (4.31)

where H(t, T ) = e−
∫ T

t κ(s)ds(
∫ T
t e−

∫ u
t κ(s)dsdu) and K(t, T ) = e−

∫ T
t κ(s)ds, where the

dynamics of the factors Z1 and Z2 are given by



dZ1(t) = µ(Z1, t)dt + σ(t)dW (t), Z1(τn) = Λτn(τn, n),

dZ2(t) = [σ2(t)− 2κ(t)Z2(t)]dt, Z2(τn) = 0,

(4.32)

with

µ(Z1, t) = κ(t)[Λ0(t, n)− Z1(t)] + Z2(t) +
∂

∂t
Λ0(t, n), (4.33)

where κ(s) is a deterministic function, σ(s) is an adapted process, and τn is the n-th

default time.

Proposition 4.3.5. The Individual Spread Factor Model (4.30) satisfies the no-arbitrage

condition (4.9).

Proof. The proof is straightforward by using the drift condition for n = N(t). In fact, at

t, the only non-trivial drift condition is for the n that equals Nt, and the drift condition

is exactly same as the drift condition considered for the HJM model. Then, we assign

the parametric form (4.31) as in Ritchken and Sankarasubramanian [20], which leads

to the desired result immediately.
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4.3.3 Derivatives pricing by parametric factor models

Suppose we have a 1-dimensional parametric factor model of the local intensity surface;

Λt(T, n) = G(Zt;T, n) (4.34)

dZt = µ(t, Zt)dt + σ(t, Zt)dWt

We assume the N(0) = 0 and Z(0) > 0 are given initial data. G is a certain appro-

priately chosen parametric function. µ and σ in the dynamics of factor Zt satisfies the

no arbitrage condition. Unlike stochastic intensity models, where we assign a dynamics

for the stochastic involution of instantaneous intensity λ(t). Here we don’t actually

consider anything on the instantaneous intensity. In this section, we consider how to

price multi-name credit derivatives, given the model (4.34),

European style derivatives

Consider a European-style contingent claim c with payoff function f(NT ) at maturity

T . The time t distribution of NT , T ≥ t is completely determined by Nt and Zt. In

fact, at time t, the distribution of NT is characterized by the local intensity surface at

time t, which is completely determined by Zt. In terms of the transition probability,

P(NT = n|Nt) satisfies equation (3.5), which reads at

PNt,n(t, T ) =





0, n < Nt,

e−
∫ T

t G(Zt;s,n)ds, n = Nt,

∫ T
t PNt,n−1(t, s)G(Zt; s, n− 1)e−

∫ T
s G(Zt;u,n)duds, n > Nt.

(4.35)

Given the above distribution, we are able to compute the price at time t as the expec-

tation Et[f(NT )]. Therefore c can be written as c(t,Nt, Zt). The price c can also be

computed by solving the backward equation as in (4.36).

∂

∂t
c(t, n, z) + G(z, t, n)(c(t, n + 1, z)− c(t, n, z)) = 0 (4.36)

for all n, with terminal condition c(T, n, z) = f(n).
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Path dependent derivatives

Here we consider the pricing problem of forward starting product. A typical example

is forward starting CDO. Such product starts at an effective date Te > 0 and expires at

a maturity date T > Te. The price of forward starting products depends on the joint

distribution of NT and NTe . It can be usually written as E[f(NT , NTe)]

Given a stochastic intensity model of Nt, the generic method is to use Monte Carlo

simulation. which need to simulate the whole path of Nt and σt from 0 to T .

However, for solving the pricing problem in our parametric factor dynamic local

intensity model, the method to be used is different. We first suppose there is a forward

starting product starts at Te and matures at T . The time Te value of such product is

simply an European-style product

V (Te) = ETe [f(T, Te)] := V ∗(Te, NTe , ZTe) (4.37)

where V ∗ is the solution of the backward equation (4.36) with terminal condition

V (T, n, z) = f(n,NTe). The time 0 price is then the expectation of V ∗(Te, NTe , ZTe)

V (0) = E[V ∗(Te, NTe , ZTe)] (4.38)

To evaluate this expectation, we have to use Monte Carlo simulation for both Nt and

Zt for t ranging from 0 to Te.

To sum up, the pricing problem in our parametric factor dynamic local intensity

model requires a Monte Carlo simulation for time ranging from 0 to Te plus solving

a backward equation for time ranging from Te to T . The computing time needed is

shorter than an entirely Monte Carlo simulation for time ranging from 0 to T as in

stochastic intensity models.
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