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ABSTRACT OF THE THESIS

Numerical modeling of microfluidic two-phase

electrohydrodynamic instability

by Venkat raman Thenkarai Narayanan

Thesis Director: Professor Hao Lin

Organic-aqueous liquid (phenol) extraction is one of many standard techniques

to efficiently purify DNA directly from cells. Effective dispersion of one fluid

phase in the other increases the surface area over which biological component

partitioning may occur, and hence enhances DNA extraction efficiency. Electro-

hydrodynamic (EHD) instability can be harnessed to achieve this goal and has

been experimentally demonstrated by Zahn and Reddy (2006). In this work,

analysis and simulation are combined to study two-phase EHD instability. In the

problem configuration, the organic (phenol) phase flows into the microchannel in

parallel with and sandwiched between two aqueous streams, creating a three-layer

planar geometry; the two liquid phases are immiscible. An electric field is applied

ii



to induce instability and to break the organic stream into droplets. The Taylor-

Melcher leaky-dielectric model is employed to investigate this phenomenon. A

linear analysis is carried out with a Chebyshev pseudo-spectral method, whereas

a fully nonlinear numerical simulation is implemented using a finite volume, im-

mersed boundary method (IBM). The results from both models compare favorably

with each other. The linear analysis reveals basic instability characteristics such

as kink and sausage modes. On the other hand, the nonlinear simulation predicts

surface deformation in the strongly nonlinear regime pertinent to droplet forma-

tion. These numerical tools will be used to investigate the effects of the applied

electric field, geometry, and convective flow rate on mixing and dispersion. The

eventual objective is to maximize surface area of the organic phase under given

experimental conditions for optimized DNA extraction.
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Chapter 1

Introduction

1.1 Electrohydrodynamics in microchannel flows

Microfluidic systems usually utilize microchannels of planar geometry which are

typically 10-100 µm wide, 1-50 µm deep and several mm long. The key compo-

nents of a microfluidic control system include micro-pumps, micro-valves, micro-

actuators and micro-sensors. In the last fifteen years, there has been a grow-

ing demand for analyzing biological materials such as proteins, DNA, cells and

chemical reagents using microfluidic devices. The advantages of these devices

include substantially reduced sample size, extremely short analysis times, high

throughput and portability. Towards achieving this goal, development of minia-

turized diagnostic platforms called micro total analysis systems (µTAS) which

mimic conventional laboratory processes on microchips have been attracting ex-

tensive research studies over the past decade. In particular, active and passive

micromixing techniques have received increased attention with developments in

microreactors, where two chemical species are mixed prior to introducing them

into a reaction chamber. Micromixers are concerned with efficient mixing of two

or more miscible or immiscible phases and being severely disadvantaged by the
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low Reynolds number regimes in a typical microchannel flow, employ either a com-

plex geometry modification (passive mixing) or an external field (active mixing)

to improve mixing. A basic understanding and modeling of microfluidic processes

are essential for optimizing the performance of these microdevices.

Electrokinetics is the study of electric field and flow field interfaction close

(usually a few nanometers) to the microchannel walls. Solid-liquid interfaces in

the presence of electrolytes (aqueous buffer solutions) carry electrostatic charge,

as a result of which there is an electric double layer (EDL) in the region close to

the channel wall [1]. The EDL field is fundamentally responsible for two basic

electrokinetic phenomena: electroosmosis and electrophoresis. Electroosmosis is

related to the fluid flow due to interaction between the EDL close to the walls and

the applied electric field while electrophoresis is the motion of a charged particle

relative to the surrounding fluid under an applied electric field. On the contrary,

electrohydrodynamics (EHD) is the study of electric field effects on the fluid flow

in the bulk (far away from the walls). Electrohydrodynamic theory has been used

to explain the evolution of liquid-liquid interfaces in the bulk, far from the solid-

liquid interfaces, where electrokinetic effects are negligible. The interface between

two miscible/immiscible fluids with different electrical properties (like electrical

conductivity) can be destabilized with an applied electric field due to charge

deposition on the interface and henceforth, an electric body force acting on the

interface. Such an instability is termed electrohydrodynamic (EHD) instability

and has been actively studied since Melcher’s initial works [17], [18] on the subject.
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(a) Deformation. (b) Rupture. (c) Droplet formation.

Figure 1.1: EHD instability experiments in a two fluid interface [15]. Interfacial
deformation, rupture and subsequent droplet formation can be observed.

The use of EHD instabilities to induce mixing in miscible fluids has been reported

in the experimental work of Oddy et al. [10], Glasgow et al. [11] and Lin et al.

[12]. They have also been used in microchannels for the generation of droplets

in immiscible fluids and have been experimentally observed using a two-fluid

interface by Ozen et al. [15] as seen in figure 1.1. Another potential application

explored by Zahn and Reddy [3] is aimed at utilizing EHD instabilities towards

miniaturizing the organic-aqueous extraction technique for DNA purification.

1.2 Motivation: Organic-aqueous extraction

Genomic or plasmid DNA extraction using aqueous-organic liquids is one of the

most commonly used techniques for DNA purification in biological laboratories

(Sambrook et al. [2]). Briefly speaking, cells are lysed in an aqueous solution

(the lysis buffer), and then mixed with an equal volume of organic fluid (phenol,

chloroform and isoamyl alcohol, 25:24:1 by volume). Cell components naturally

distribute themselves , termed “biological partitioning”, into the two immiscible

phases: the membrane components and proteins partition to the organic-aqueous
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Figure 1.2: Schematic of the set-up for EHD instability in a three-layer stratified
flow [3]. The electric field is applied perpendicular to the direction of flow.

interface, whereas DNA stays in the aqueous phase. The latter phase containing

the purified DNA is then extracted for further processing. In order to efficiently

partition the cell components, the two phases need to be well-dispersed to maxi-

mize the surface areas in contact and maximize DNA purification. This “mixing”

step is particularly challenging when implementing the technique in a microfluidic

platform. In a previous work by Zahn and Reddy [3], it was demonstrated that

EHD instability could be utilized to break a stream into droplets and increase

the interfacial area available for partitioning. A schematic of the experimental

set-up of Zahn and Reddy [3] is shown in figure 1.2. We can observe a three-

inlet geometry in which an organic solution is sandwiched between two layers of

aqueous solutions and an electric field is applied perpendicular to the direction

of flow. This induces electrohydrodynamic instability leading to interfacial defor-

mation and droplet formation. Some of the experimental observations are shown

in figure 1.3.
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(a) E0 = 8.2×105V/m. (b) E0 = 8.4×105V/m. (c) E0 = 8.8× 105V/m.

Figure 1.3: EHD instability experiments in a three-layer stratified flow [3]. The
formation of droplets and enhanced mixing as electric field is increased can be
observed.

1.3 Previous work

Yih [4] first analyzed the problem of hydrodynamic instability due to viscosity

stratification in a two-layer fluid flow for both plane Couette and plane Poiseuille

base flows. Using a method of non-singular perturbation for long waves ([5]), he

observed the presence of an unstable mode for a finite Reynolds number flow,

however small the Reynolds number was, and concluded that this unstable mode

was primarily due to the viscosity stratification. This mode is referred to as an

“interfacial mode”. Following Yih’s work, Li [6] extended the stability analy-

sis to plane Couette base flow with three-layer fluids of different viscosities and

noted the existence of two modes of disturbances corresponding to the two sur-

faces of discontinuity. Refering to Yih’s conclusion of the cause of instability due

to viscosity stratification, Li also pointed out that the flow can be stabilizing

or destabilizing depending on the viscosity ratio and depth ratio of the fluids.

Yiantsios and Higgins [9], utilizing Hooper and Boyd’s [7] asymptotic analysis for

Couette flow in an infinite region, studied the linear stability of plane Poiseuille
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flow of two superimposed fluids of different densities and viscosities. They essen-

tially extended Yih’s work for small wavenumbers [4] to large wavenumbers and

also considered the effects of density ratio, thickness ratio, gravity and interfacial

tension. Explaining the instabilities not only due to the “interfacial mode” (as

observed by Yih) but also to “shear mode” of the Tollmien-Schlichting type for

high Reynolds number, they asymptotically analyzed the long-wave and short-

wave cases to compare with the experimental results of Kao and Park [8]. Joseph

and Renardy [22] provide an extensive summary of linear analysis of two-fluid

flows.

For analyzing EHD instability, two different approaches have been considered:

(1) surface coupled model, in which the charges are assumed to accumulate only

on the interface and hence, the electric stresses are coupled to the fluid flow

only at the interface and (2) bulk coupled model, in which charges accumulate

over a diffuse interface with a conductivity gradient along its thickness and the

diffuse interface experiences an electric body force. Melcher and co-workers first

used the surface coupled model to study stability of a two fluid interface subject

to a parallel electric field [17] and perpendicular electric field [18]. Hoburg and

Melcher [19] later studied the two fluid diffuse interfacial stability subject to a

parallel electric field using bulk coupled model and included viscous diffusion

effects. Mohamed et al. [20] examined the electrohydrodynamic stability of an

interface, formed by an upper conducting fluid and a lower dielectric fluid of

different viscosities and densities, which is subjected to a normal electric field
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between two parallel plates. A long-wave asymptotic analysis was performed for

a plane Couette-Poiseuille base flow. They concluded that the normal electric

field produced destabilizing effects for all Reynolds numbers and the stability was

enhanced if the depth of the lower layer was increased. Abdella and Rasmussen

[21] concentrated on linear stability of a planar interface between two unbounded

fluids with different viscosities, densities and electrical properties subjected to a

Couette flow and derived the dispersion relation in terms of Airy functions and

integrals. They considered two limiting cases: one in which the fluid interface

is perfectly conducting and hence supports free charges and the other in which

the interface does not support any free charges as a result of which polarization

charges play a key role in the instability and electrical shear forces are zero at

the interface. G.I. Taylor introduced the concept of leaky dielectrics in his work

[16] in which he mentioned that immiscible fluids when subjected to electric fields

resulted in the accumulation of electric charges on their interfaces irrespective of

the magnitude of electrical conductivities of either fluids. Melcher and his co-

workers [17], [18], [19] used the theory extensively to study electrohydrodynamic

flows and the theory has been summarized along with potential applications by

Saville [26].

Several experimental and numerical works have been reported for EHD in-

stability in microchannels. Lin et al. [12], following Melcher’s framework for

a bulk-coupled model and considering diffusion of electrical conductivity as in

Baygents and Baldessari [13], numerically analyzed the electrokinetic temporal
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instability of a diffuse inteface formed between two miscible fluids with a con-

ductivity gradient. Based on their linear analysis for 2D, 3D cases and fully

nonlinear simulations using spectral methods, they emphasized the increased sta-

bility due to the presence of side walls and detailed the range of validity of the

electroviscous scaling proposed by Hoburg and Melcher [19]. Chen et al. [14]

used depth-averaged linearized governing equations to study the convective and

absolute instabilities in the microchannel. Ozen et al. [23], following their experi-

mental work [15], derived dispersion relations for the case of an interface between

two immiscible leaky dielectrics in a plane Couette Poiseuille base flow and solved

the eigenvalue problem using Chebyshev pseudospectral methods. For the case

when the charge relaxation times are much smaller than the fluid flow time scale,

they concluded that the permittivity and conductivity ratios play an important

role in determining if the electric field plays a stabilizing or a destabilizing role.

Li et al. [24] performed a long-wave asymptotic analysis for the same problem,

compared the results with the numerical solution obtained using Chebyshev pseu-

dospectral methods for all wavenumbers and highlighted the importance of the

electrical property ratios and surface tension effects. Furthermore, Uguz et al. [25]

provided a qualitative comparison of the linear stability of the interface between

two leaky dielectrics for the cases of parallel and perpendicular electric fields,

concluding that the normal electric field had a destabilizing effect over a wider

range of parametric values compared to that of the parallel electric field. Zahn

et al. [3] theoretically derived the dispersion relations for a three-layer stratified
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flow configuration with a zero base flow and a limiting case of infinite conduc-

tivity ratio between the sandwiching and sandwiched fluid. The most interesting

characteristics observed are two distinct modes called the “kink” and “sausage”

modes, with the kink mode having the two interfacial perturbations in phase with

each other and the sausage mode having the two interfacial perturbations out of

phase by π. Our current work focuses on the linear stability analysis for a gener-

alized three-layer EHD flow with property variations and a Plane-Poiseuille base

flow.

Apart from the linear stability analysis of EHD flows, understanding the

breakup of an interface separating immiscible fluids of different mechanical and

electrical properties is of considerable importance in microfluidic applications like

optimizing aqueous-organic extraction. Significant progress has been made re-

cently with regard to numerical simulations of multiphase flow, especially ho-

mogeneous bubbly flows and drops in channel flows. Numerical simulations of

electrohydrodynamic flows of droplets considering simplified flow assumptions

like Stokes flow or inviscid flow have been conducted by several authors [27], [28]

using boundary integral methods. The axisymmetric interaction of drops in the

limiting case of zero Reynolds number was comprehensively studied by Baygents

et al. [29] using boundary integral technique. Basaran et al. [30]-[33] utilized

finite element methods to simulate drop deformations of pendant and sessile con-

ducting drops due to electric field and characterized equilibrium drop shapes as

well as their morphological evolution. Tsukuda et al. [34], using Galerkin finite
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element method, described the circulation produced inside and outside a single

suspended drop and subsequently, studied the effects of gravity and electrohydro-

dynamic forces [35]. The results were found to be in good agreement with their

experimental observations and Taylor’s theoretical results. Fernandez et al. [36]

studied the response of an emulsion of drops in a channel subjected to an electric

field using interface front tracking method [37] and concluded that the drop dis-

tribution depends strongly on the dielectric properties of both fluids. Zhang and

Kwok [46] simulated 2D drop deformation in electric field using a Lattice Boltz-

mann method. A few numerical simulations for behaviour of flat interfaces with

and without the influence of an electric field have also been reported. Tauber et al.

[45] analyzed the Kelvin-Helmholtz instability of an initial flat interface between

two immiscible fluids using front-tracking method and explained the formation

of 2D fingers for different density ratios, Reynolds numbers and Weber numbers.

Recently, Tomar et al. [47] devised a numerical method to simulate two-phase

electrohydrodynamic flows using a combination of volume of fluid (VOF) and level

set (LS) methods and presented results for the cases of flat interface between two

dielectric fluids and droplets. In our work, we extend the interface front tracking

method [37] for simulating interface evolution in a three-layer stratified flow in

the presence of an electric field directed parallel to the conductivity gradient.
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1.4 Issues and challenges

Electrohydrodynamic mixing has been a subject of investigation in the past

decade. In the case of immiscible fluids, the mixing involves a complex cou-

pling between the fluid flow (viscous stresses) and electric surface forces (Maxwell

stresses) due to charge accumulation at the interfaces. Such a complex multiscale

and multiphysics process makes it difficult for a theoretical analysis without var-

ious simplifying assumptions. Currently, the formation of droplets resulting from

interfacial rupture is a subject of intense research and as on date, a cogent model

to explain the physics of this phenomenon is still in progress. Numerical models

using level set or volume of fluid methods use an arbitrary scheme based on grid-

size to artificially rupture the interfaces to form droplets. As mentioned above,

though several computational models have been developed to address this process,

a complete three-dimensional (3D) computational model which employs interface

rupture and subsequent droplet formation is further needed. Such a tool would

provide a detailed understanding of this complex, multiscale and multiphysics

process.

1.5 Scope of the thesis

In this work, analysis and simulation are combined to study two phase electrohy-

drodynamic instability. In the problem configuration, the organic (phenol) phase

flows into the microchannel in parallel with and sandwiched between two aque-

ous streams, creating a three layer planar geometry, the two liquid phases are
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immiscible. An electric field is applied to induce instability and break the organic

stream into droplets. We consider a two-dimensional (2D) three-layer stratified,

immiscible fluid flow with non-uniformities in density, viscosity, dielectric permit-

tivity and electrical conductivity. The objective of this thesis is two-fold - (a)

To perform linear stability analysis using Chebyshev pseudo-spectral methods

and (b) a 2D nonlinear numerical simulation using a finite volume/front track-

ing immersed boundary technique. The combination of the linear analysis and

nonlinear simulation provides us the necessary tools to investigate and optimize

droplet dispersion in favor of efficient DNA extraction. The linear stability anal-

ysis is presented in Chapter 2. The numerical methodology for the fully nonlinear

simulation is presented in Chapter 3. The discussion on results from linear analy-

sis and nonlinear simulations are provided in Chapters 2 and 3 respectively. The

main conclusions and future work are also outlined in Chapter 4.
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Chapter 2

Linear stability analysis

2.1 Problem specification

We consider two-dimensional, three-layer viscous stratified flow of immiscible flu-

ids in a microchannel subjected to a constant applied electric field E0 in the

positive y-direction (figure 2.1). The channel is bounded by two infinitely long

flat plates placed parallel to the X-axis in the XY coordinate system as shown.

The height of the channel is 2a+ b, where a and b are the thickness of fluid layers

“a” and “b” respectively. The sandwiching fluid (layers 1 and 3) has proper-

ties ρ1, µ1, ϵ1 and σ1 while the sandwiched fluid (layer 2) has different properties

ρ2, µ2, ϵ2 and σ2. Here, ρ, µ, ϵ and σ refer to the density, viscosity, dielectric per-

mittitivity and electrical conductivity of the fluids respectively. Furthermore,

we assume the immiscible fluids under consideration to be incompressible, leaky

dielectrics and employ the “surface-coupled” model to study the interfacial de-

formation characteristics (as against the “bulk-coupled” model considered by Lin

et al. [12]). We also assume that the gravity forces have negligible effects. The

interfacial deformations of the top and bottom interfaces are given by ζ1 and ζ2.

The interface normals are then obtained as n1 = [−ζ1x, 1] and n2 = [−ζ2x, 1]
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Figure 2.1: Two dimensional domain for linear analysis of three-layer viscous
stratified flow. The schematic shows the electric field applied parallel to the
conductivity gradient.

respectively, where the subscript “x” denotes the partial differentiation with re-

spect to x. Correspondingly, the tangent vectors at the two interfaces become

t1 = [1, ζ1x] and t2 = [1, ζ2x] respectively. A convective base flow (Plane-Poiseuille

flow) may also be imposed.

2.2 Governing equations

The fluid motion is governed by the continuity and Navier-Stokes equations in

each layer (j = 1, 2 and 3) as:

∇ · u(j) = 0, (2.2.1)

ρj

(
∂u(j)

∂t
+ u(j) · ∇u(j)

)
= −∇p+ µj∇2u(j), (2.2.2)

No-slip boundary conditions for velocities are specified at the wall. The absence of

an electric body force term on the right-hand side of the Navier-Stokes equation
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is a consequence of the surface-coupled model, which stipulates (1) a jump in

electrical properties (electrical conductivity and dielectric permittivity) at the

interfaces and (2) zero electric charge density and hence, zero electric body forces

in the bulk. The electric field in each layer is related to the electric potential

as E(j) = −∇Φ(j). In absence of charge density in the bulk, the charge density

evolution equation reduces to the Ohmic equation [12].

∇ ·
(
σ∇Φ(j)

)
= 0,

Since the electrical conductivities are constant in each layer, the Ohmic equation

reduces to Laplace’s equation for electric potential distribution in each layer:

∇2Φ(j) = 0, (2.2.3)

with a constant potential of V0 at the lower wall and zero potential at the upper

wall being specified. The total stress tensor τ is the sum of (1) the fluid stress

tensor Tf , which includes pressure and viscous stress tensor, and (2) the Maxwell’s

electric stress tensor Te:

τ = Tf + Te,

Tf = −pI+ µ
(
∇u+∇uT

)
,

Te = ϵEE− 1

2
ϵ|E|2I, (2.2.4)
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The problem is completely specified with the jump conditions on each interface.

We denote the jump discontinuity of a variable “.” across the interface as ∥.∥.

Pertaining to the electrical variables on each interface, we require the conti-

nuity of electric potential and continuity of Ohmic current:

∥Φ∥ = 0, (2.2.5)

∥σ∇Φ · n∥ = 0, (2.2.6)

Regarding the flow variables, the velocities are continuous across each interface

and the interfaces advect with the local fluid velocities. In an equational form,

these conditions can be expressed as:

∥u∥ = 0, (2.2.7)

v =
Dζ

Dt
, (2.2.8)

where, D denotes the material derivative (following the particle). While the

total tangential stress is continuous across each interface, the jump in the total

normal stress is balanced by the surface tension forces. We denote the surface

tension coefficient by γ and the interfacial curvature by κ. The jump in the total

tangential and normal stresses can be written as:

∥t · τ · n∥ = 0, (2.2.9)
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∥n · τ · n∥+ γκ = 0, (2.2.10)

Equations (2.2.1)-(2.2.10) along with the relevant boundary conditions at the

walls need to be solved to obtain the velocity field.

2.3 Numerical solution via pseudospectral methods

Before discussing the numerical method to study the stability of the system at

arbitrary wavenumbers, we first derive the governing equations for the long-wave

asymptotic behaviour for small wavenumbers or long wavelengths (k →0). The

detailed derivation considering a convective base flow is given in Appendix A.

The primary intention is to enumerate the governing equations, although an an-

alytical solution exists for the final forms of equations derived herein (using a

procedure similar to the one outlined in [24]). The discussion of the analytical

solution would be taken up in future works. Since long-wave asymptotic methods

are limited to very small wavenumbers, numerical methods are required for an-

alyzing the system behaviour at arbitrary wavenumbers. Spectral methods have

been found particularly to be attractive because of ease of implementation and

high accuracy. Chebyshev pseudospectral method has been employed in our cur-

rent work, which eventually reduces the perturbation analysis to an “eigenvalue

problem” (explained in later sections). On the other hand, the perturbation anal-

ysis in Zahn and Reddy [3], whose earlier work for infinite electrical conductivity

ratio is currently extended to general electrical conductivity ratios, results in a

“root-finding problem”. It is worth pointing out that though the details of the
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“root-finding” solution would not be provided in this report, the results from the

pseudospectral method provided in this report were verified against the results

from the root-finding method and both are in excellent agreement with each other.

Most importantly, the “root-finding” methodology is applicable only for the case

of zero convective base flow.

2.3.1 Scaling and dimensionless parameters

The governing equations are made dimensionless by using d = b/2 as the charac-

teristic length scale, the electro-viscous velocity Uev = ϵ2E
2
0d/µ2 as the velocity

scale and t∗=d/Uev as the time scale. The pressure is scaled by p∗ = µ2Uev/d.

The electric potential and electric field are scaled with V0 and E0 respectively.

The fluid properties (electrical and mechanical) are scaled with respect to the

properties of the sandwiched fluid. The major dimensionless parameters are:

η = 2n+ 1, n =
a

b
, (2.3.1)

σ =
σ1
σ2
, ϵ =

ϵ1
ϵ2
, µ =

µ1

µ2

, ρ =
ρ1
ρ2
, (2.3.2)

Re1,2 =
ρ1,2Uevd

µ2

, (2.3.3)

Ca =
µUev

γ
, (2.3.4)

Here, Re is the Reynolds number and Ca is the capillary number, which is the

ratio of viscous force to the interfacial tension force.
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2.3.2 Dimensionless governing equations

Based on the scaling considered, the Navier stokes equation in each layer is given

as

Re1

(
∂u1

∂t
+ u1 · ∇u1

)
= −∇p1 + µ∇2u1, −h ≤ y1 ≤ h (2.3.5a)

Re2

(
∂u2

∂t
+ u2 · ∇u2

)
= −∇p2 + µ∇2u2, −1 ≤ y ≤ 1 (2.3.5b)

Re1

(
∂u3

∂t
+ u3 · ∇u3

)
= −∇p3 + µ∇2u3, −h ≤ y1 ≤ h (2.3.5c)

The forms of other governing equations, boundary and jump conditions remain

the same as in (2.2.1)-(2.2.9) except for the normal stress jump condition (2.2.10).

In dimensionless terms, the jump in the normal stress is expressed as:

∥n · τ · n∥+ 1

Ca
κ = 0, (2.3.6)

2.3.3 Perturbation analysis

We are primarily interested in perturbation analysis of a base state with a Poiseuille

flow of zero velocity. Following the standard perturbation analysis procedure, we

denote the perturbation variables with a prime (′) and the base state variables

with a subscript of “0”. Hence, the total velocity, pressure, electric potential

and electric field are denoted as u = [U + u′, v′], p = p0 + p′, Φ = Φ0 + Φ′ and

E = [E ′
x, E0 + E ′

y] respectively (The subscripts in the perturbation components

of electric field imply x-, y- components and not partial differentiation). The
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generalized base state Poiseuille flow velocity profile can be obtained as:

U1 =
Uc

µ

(
y21 + 2 (1 + h) y1 − 3h2 − 2h

)
, −h ≤ y1 ≤ h

U2 = Uc

((
y21 − 1

)
− 4

µ

(
h2 + h

))
, −1 ≤ y ≤ 1

U3 =
Uc

µ

(
y21 − 2 (1 + h) y1 − 3h2 − 2h

)
, −h ≤ y1 ≤ h

Uc =
1

2

∂p

∂x
, (2.3.7)

where, Uc is a user-defined parameter (known). Also, the base state electric field

in each layer can be obtained as:

E1 = E0
2a+ b

2a+ σb
= E0

η

η + σ − 1
,

E2 = E0σ
2a+ b

2a+ σb
= E0σ

η

η + σ − 1
,

E3 = E0
2a+ b

2a+ σb
= E0

η

η + σ − 1
, (2.3.8)

The continuity equation for perturbation flow velocities (dimensionless) in each

layer is given by:

∂u′1
∂x

+
∂v′1
∂y

= 0, (2.3.9a)

∂u′2
∂x

+
∂v′2
∂y

= 0, (2.3.9b)

∂u′3
∂x

+
∂v′3
∂y

= 0, (2.3.9c)

On substituting the flow variables (base + perturbation) into the dimensionless

Navier Stokes’ equation (2.3.5a), we have for x-momentum and y-momentum
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equations for fluid layer 1:

Re1

(
∂u′1
∂t

+ u′1
∂u′1
∂x

+ v′1
∂u′1
∂y

)
= −∂p

′
1

∂x
+
∂2u′1
∂x2

+
∂2u′1
∂y2

, (2.3.10a)

Re1

(
∂v′1
∂t

+ u′1
∂v′1
∂x

+ v′1
∂v′1
∂y

)
= −∂p

′
1

∂y
+
∂2v′1
∂x2

+
∂2v′1
∂y2

, (2.3.10b)

Similarly, from (2.3.5b) for layer 2:

Re2

(
∂u′2
∂t

+ u′2
∂u′2
∂x

+ v′2
∂u′2
∂y

)
= −∂p

′
2

∂x
+
∂2u′2
∂x2

+
∂2u′2
∂y2

, (2.3.11a)

Re2

(
∂v′2
∂t

+ u′2
∂v′2
∂x

+ v′2
∂v′2
∂y

)
= −∂p

′
2

∂y
+
∂2v′2
∂x2

+
∂2v′2
∂y2

, (2.3.11b)

and likewise, from (2.3.5c) for layer 3:

Re1

(
∂u′3
∂t

+ u′3
∂u′3
∂x

+ v′3
∂u′3
∂y

)
= −∂p

′
3

∂x
+
∂2u′3
∂x2

+
∂2u′3
∂y2

, (2.3.12a)

Re1

(
∂v′3
∂t

+ u′3
∂v′3
∂x

+ v′3
∂v′3
∂y

)
= −∂p

′
3

∂y
+
∂2v′3
∂x2

+
∂2v′3
∂y2

, (2.3.12b)

The no-slip conditions on the upper and lower wall result in: u′1 = v′1 = u′3 =

v′3 = 0. The electric potential perturbations obey the Laplace’s equation in each

layer, since the base state electric potentials obey the same:

∂2Φ′
1

∂x2
+
∂2Φ′

1

∂y2
= 0, (2.3.13a)

∂2Φ′
2

∂x2
+
∂2Φ′

2

∂y2
= 0, (2.3.13b)
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∂2Φ′
3

∂x2
+
∂2Φ′

3

∂y2
= 0, (2.3.13c)

The constant potentials applied at the upper and lower wall lead to: Φ′
1 = Φ′

3 =

0. Expanding the potential continuity and Ohmic current equations (2.2.5) and

(2.2.6), and neglecting terms second-order and higher, we get the dimensionless

forms as: ∥∥∥∥−E∂ζ∂x +
∂Φ′

∂x

∥∥∥∥ = 0, (2.3.14)

∥∥∥∥σ(−E +
∂Φ′

∂y

)∥∥∥∥ = 0, (2.3.15)

where, σ is the conductivity ratio and E is the base state electric field in the

layer. Similarly, substituting the field variables into the stress continuity equations

(2.2.9) and (2.2.10), expanding and neglecting terms second-order and higher, the

dimensionless forms are obtained as:

∥t · τ · n∥ =

∥∥∥∥µ(∂u′∂y
+
∂v′

∂x

)
+ ϵE2ζx + ϵEE ′

x

∥∥∥∥ = 0, (2.3.16)

∥n · τ · n∥ =

∥∥∥∥−p′ + 2µ
∂v′

∂y
+ ϵEE ′

y

∥∥∥∥+
1

Ca

∂2ζ

∂x
= 0, (2.3.17)

where, µ is the viscosity ratio in the layer and ϵ is the dielectric permittivity

ratio. Equations (2.3.7)-(2.3.17) represent the linearized equations satisfied by

the perturbation variables and together with the boundary conditions, can be

solved to determine the perturbation variables and their evolution.

In our current work, we are primarily concerned with the temporal stability

analysis and hence, we assume perturbations of the form f ′ = f̂(y)eikx+st, where
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“f ′” represents any perturbation variable (velocity, electric potential etc.). Here,

“k” is the real wavenumber and “s” is the complex growth rate i.e. s = sr + isi

where sr is the real part and si is the imaginary part of the growth rate. From the

definition, we can state that the system would be “stable” if sr is negative while

the system would be “unstable” if sr is positive. Convective stability analysis of

this system would be considered in our future work. Proceeding with the temporal

analysis and considering fluid layer 1 (−h ≤ y1 ≤ h), the x-momentum equation

of (2.3.10a) is expressed as:

Re1 (sû1) = −ikp̂1 + µ
(
D2 − k2

)
û1, (2.3.18a)

subject to the no-slip condition at the wall and velocity continuity (2.2.7):

û1(h) = 0, û1(−h) +DU1(−h)ζ̂1 = û2(1) +DU2(1)ζ̂1, (2.3.18b)

and the y-momentum equation of (2.3.10b) can be written as:

Re1 (sv̂1) = −Dp̂1 + µ
(
D2 − k2

)
v̂1, (2.3.18c)

subject to the no-slip condition at the wall and velocity continuity (2.2.7):

v̂1(h) = 0, v̂1(−h) = v̂2(1), (2.3.18d)
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and finally, the continuity equation (2.3.9a) is given by:

ikû1 +Dv̂1 = 0, (2.3.18e)

Here, “D” in the above equations denotes differentiation with respect to “y”. Pro-

ceeding similarly for layer 2, the x-momentum (2.3.11a), y-momentum (2.3.11b)

and continuity (2.3.9b) equations are expressed as:

Re2 (sû2) = −ikp̂2 + µ
(
D2 − k2

)
û2, (2.3.19a)

Re2 (sv̂2) = −Dp̂2 + µ
(
D2 − k2

)
v̂2, (2.3.19b)

ikû2 +Dv̂2 = 0, (2.3.19c)

The perturbation electric potential Laplace equation for layer 1 is written as:

(
D2 − k2

)
ϕ̂1 = 0, (2.3.20a)

subject to the zero perturbation at the upper wall and the potential continuity

condition from (2.3.14):

ϕ̂1(h) = 0, −E1ζ̂1 + ϕ̂1(−h) = −E2ζ̂1 + ϕ̂2(1), (2.3.20b)

From the normal and tangential stress matching conditions (2.3.16) and (2.3.17)
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for the top interface, we get:

−
(
µ (Dû1(−h) + ikv̂1(−h)) + ikϵE2

1 ζ̂1 − ikϵE1ϕ̂1(−h)
)

+(Dû2(1) + ikv̂2(1)) + ikϵE2
2 ζ̂1 − ikϵE2ϕ̂2(1) = 0, (2.3.21a)

−
(
−p̂1(−h) + 2µDv̂1(−h)− ϵE1Dϕ̂1(−h)− k2

Ca
ζ̂1

)
(
−p̂2(1) + 2Dv̂2(1)− E2Dϕ̂2(1)

)
= 0, (2.3.21b)

Finally, for layer 3, the x-momentum (2.3.12a), y-momentum (2.3.12b) and con-

tinuity (2.3.9c) equations are expressed as:

Re1 (sû3) = −ikp̂3 + µ
(
D2 − k2

)
û3, (2.3.22a)

Re1 (sv̂3) = −Dp̂3 + µ
(
D2 − k2

)
v̂3, (2.3.22b)

ikû3 +Dv̂3 = 0, (2.3.22c)

subject to the boundary and jump conditions:

û3(h) +DU3(h)ζ̂2 = û2(−1) +DU2(−1)ζ̂2, û1(−h) = 0, (2.3.22d)

v̂3(h) = v̂2(−1), v̂3(−h) = 0, (2.3.22e)
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The perturbation potential Laplace equation for layer 2 is written as:

(
D2 − k2

)
ϕ̂2 = 0, (2.3.23a)

subject to the Ohmic current continuity for the top interface (from (2.3.15)),

σDϕ̂1(−h) = Dϕ̂2(1), (2.3.23b)

and Ohmic current continuity for the bottom interface (from (2.3.15)),

Dϕ̂2(−1) = σDϕ̂3(h), (2.3.23c)

The perturbation potential Laplace equation for layer 3 is written as:

(
D2 − k2

)
ϕ̂3 = 0, (2.3.24a)

subject to the zero perturbation at lower wall and from potential continuity at

the bottom interface (2.3.14),

ϕ̂3(−h) = 0, −E1ζ̂2 + ϕ̂3(h) = −E2ζ̂2 + ϕ̂2(−1), (2.3.24b)

The tangential and normal stress matching conditions for the bottom interface



27

are

(Dû2(−1) + ikv̂2(−1)) + ikϵE2
2 ζ̂2 − ikϵE2ϕ̂2(−1)

−
(
µ (Dû3(h) + ikv̂3(h)) + ikϵE2

1 ζ̂2 − ikϵE1ϕ̂3(h)
)
= 0, (2.3.25a)

(
−p̂2(−1) + 2Dv̂2(−1)− E2Dϕ̂2(−1)− k2

Ca
ζ̂2

)
−
(
−p̂3(h) + 2µDv̂3(h)− ϵE1Dϕ̂3(h)

)
= 0, (2.3.25b)

The inteface advection equation (2.2.8) becomes:

v̂ = sζ̂ + ikUζ̂, (2.3.26)

i.e. for the top interface (with U=0):

ζ̂1 =
v̂2(1)

s
, (2.3.27)

and for the bottom interface (with U=0):

ζ̂2 =
v̂2(−1)

s
, (2.3.28)

(2.3.18a)-(2.3.28) are the set of perturbation equations that need to be solved

to obtain the solution for perturbation variables. We attempt to solve these

equations numerically using Chebyshev pseudospectral methods.
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2.3.4 Chebyshev pseudospectral method

The fundamental concept of a spectral method is to assume an approximation of

the unknown variable u(x) by a sum of N+1 basis functions ϕn(x):

u(x) ≈ uN(x) =
N∑
i=0

anϕn(x) (2.3.29)

Substituting this series into the equation of the form

Lu = f(x) (2.3.30)

where L is the operator of the partial differential equation, results in a “residual

function” defined by

R(x; a0, a1, ...., aN) = LuN − f (2.3.31)

For the exact solution, the residual function R(x; an) is identically equal to zero.

Hence, we need to choose the series coefficients an so that the residual function

is minimized. In the case of pseudospectral methods, the strategy for residual

minimization is to make the residual zero at a set of points called “collocation” or

“interpolation” points. Since the pseudospectral method evaluates the residual

function only at the collocation points, the grid point values of the approximate

solution, uN(xi), are taken as the unknowns instead of the series coefficients. We

then compute the (N+1) series coefficients an through polynomial or trigonomet-

ric interpolation, having known the value of a function at (N+1) points. The
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error ϵ of a pseudospectral method is

ϵ ≈ O[(1/N)N ] (2.3.32)

The error decreases faster than any finite power of N since the power in the for-

mula is always increasing. This is known as the “infinite order” or “exponential”

convergence [48]. One of the most important basis functions used in (2.3.29) are

the Chebyshev polynomials which are defined by

Tn(cos θ) = cos(nθ) (2.3.33)

The Chebyshev pseudospectral method is a commonly used pseudo-spectral method

for problems with non-periodic boundary conditions.

We solve the linearized three-layer electrohydrodynamic instability problem

numerically using Chebyshev pseudospectral methods. The computational do-

main is mapped to (-1,1) in each fluid layer, which is a standard procedure in

numerical solution using Chebyshev polynomials. We follow the notation used

in the “matrix differentiation suite” for MATLAB devised by Wiedemann and

Reddy, 2000 [51]. Following their terminology, we suitably replace the differen-

tial operator “D” to its numerical counterparts “D1” in the first layer, “D2” in

the second layer and “D3” in the third layer. Here, D1 = D2/h, D
2
1 = D2

2/h
2,

D3 = D1 and D2 is the standard differentiation assuming −1 ≤ y∗ ≤ 1. From the

perturbation analysis performed in the previous subsection, we can see that there
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are totally 14 variables to be determined i.e. ûi, v̂i, p̂i, ϕ̂i (i=1,2,3), ζ̂1 and ζ̂2.

The equations for the layers 1, 2 and 3 are arranged suitably into matrices with

the boundary conditions suitably incorporated to obtain the final form Ax=b,

where x is the set of 14 unknown variables. We refer the readers to [49], [50] and

[51] for the relevant details. We then solve the matrix system to obtain the eigen-

values and eigenvectors of the matrix A. The eigenvalues provide us the growth

rate values corresponding to the kink and sausage modes, while the eigenvectors

contain the flow and electric variable perturbations corresponding to the kink and

sausage modes.

2.4 Results from pseudospectral method

Firstly, we provide representative results from the pseudospectral method with

regard to five important effects viz. - (1) Electrical property ratio effects, (2)

depth ratio effects, (3) electric field effects, (4) surface-tension effects and (5)

convective base flow effects. The influence of the afore-mentioned parameters on

the stability (or, instability) of the kink and sausage modes would be addressed

in the following sections. It is assumed that the density ratio equals 1 and the

viscosity ratio is kept fixed as 0.284. The experimental value of 1×10−4 N/m for

the surface tension coefficient and a zero base flow velocity are used in all sections

except for those where the effects of surface tension and convective base flow are

studied.
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2.4.1 Effects of electrical property ratios

In the long-wave asymptotic analysis presented in Appendix A, it was deduced

that the electrical properties play a crucial role in deciding the flow stability

through their contributions to the tangential ((QT )1 and (QT )2) and normal stress

((QN)1 and (QN)2) continuity. Especially, the contributions of electrical proper-

ties to the total tangential stress (QT )1 and (QT )2 were found to be of utmost im-

portance when ϵ=σ2. Another similar observation is that when ϵ=σ, both ((QT )1

and (QT )2) become zero implying a non-zero contribution from the ((QN)1 and

(QN)2) terms alone. In this section, we simplify the expressions of (QT )1, (QT )2,

(QN)1 and (QN)2 for kink (ŝ1=ŝ2) and sausage (ŝ1=-ŝ2) modes and illustrate the

significance of electrical properties with respect to the results provided herein.

On substituting ŝ1=ŝ2 for the kink mode in (A.3.7), (A.3.9), (A.3.11) and

(A.3.13), we get:

(QT )1 =
ŝ1

(1− σ − η)2

{
σ (ϵ− σ) (thsh+ ch)

thsh+ σch

}
, (2.4.1a)

(QT )2 =
ŝ1

(1− σ − η)2

{
σ (σ − ϵ) (thsh+ ch)

thsh+ σch

}
, (2.4.1b)

(QN)1 =
−ŝ1

(1− σ − η)2

{
(σ − 1) (σ2 − ϵ) ksh

thsh+ σch

}
, (2.4.1c)

(QN)2 =
−ŝ1

(1− σ − η)2

{
(σ − 1) (σ2 − ϵ) ksh

thsh+ σch

}
, (2.4.1d)

from which we observe that (QT )1 and (QT )2 are equal in magnitude but opposite

in sign while (QN)1 and (QN)2 are equal for the kink mode. Proceeding similarly
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with ŝ1=-ŝ2 for the sausage mode, we obtain:

(QT )1 =
ŝ1

(1− σ − η)2

{
σ (ϵ− σ) (thch+ sh)

thch+ σsh

}
, (2.4.2a)

(QT )2 =
ŝ1

(1− σ − η)2

{
σ (ϵ− σ) (thch+ sh)

thch+ σsh

}
, (2.4.2b)

(QN)1 =
−ŝ1

(1− σ − η)2

{
(σ − 1) (σ2 − ϵ) kch

thch+ σsh

}
, (2.4.2c)

(QN)2 =
ŝ1

(1− σ − η)2

{
(σ − 1) (σ2 − ϵ) kch

thch+ σsh

}
, (2.4.2d)

noting that (QT )1 = (QT )2 and (QN)1 = -(QN)2 for the sausage mode. It can

also be inferred that the signs of (QN)1 and (QN)2 in both the modes change

depending on whether ϵ > σ2 or ϵ < σ2 meaning that the normal stress acting

across the interface can have different directions based on the values of ϵ and

σ2. It is also worth pointing out from the expressions of (QN)1 and (QN)2 that

it is not just the value of “(σ2 − ϵ)”, but the product “(σ − 1) (σ2 − ϵ)” which

plays a crucial role in stabilizing or destabilizing the flow. This observation has

been reported earlier in Ozen et al. [15] albeit for the case of a single interface

undergoing EHD instability. We consider 5 different cases of interest for results

to further substantiate the inferences above: (a) σ2 > ϵ and σ >1 (Case A),

(b) σ2 < ϵ and σ <1 (Case B), (c) σ2 > ϵ and σ <1 (Case C) , (d) σ2 < ϵ

and σ >1 (Case D) and (e) σ2 = ϵ (Case E). It can be easily seen that for

cases A and B (denoted together as “Type-I” from now on for convenience), the

product “(σ − 1) (σ2 − ϵ)” is positive, for the cases C and D (“Type-II”) it is

negative while for case E (“Type-III”) it is zero. The depth ratio n is taken to
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Figure 2.2: The plot of imaginary part of dimensional growth rate (Im(ω)) vs. the
dimensional wavenumber (kx) for cases A and B (Type-I) for which the product
(σ − 1) (σ2 − ϵ) is positive. Higher growth rates for both modes compared to
cases C and D (Type-II) are predicted primarily because the electrical properties
considered have a destabilizing effect on the flow. In figure (a), σ = 101, ϵ = 101

and in figure (b) σ = 10−0.5, ϵ = 101 have been used.

be equal to 1. The imaginary part of dimensional growth rate (Im(ω)) is plotted

against the dimensional wavenumber (kx) for the cases A and B in figure 2.2.

The growth rate versus wavenumber plot for the cases C and D are provided

in figure 2.3. By comparing the growth rate results in figures 2.2 and 2.3, it

can be observed that for both kink and sausage modes, the maximum growth

rates corresponding to type-I are much higher compared to those of type-II and

concluded that the electrical properties are expected to have a destabilizing effect

when the product “(σ − 1) (σ2 − ϵ)” is positive and stabilizing effect when the

product is negative. This is in agreement with the conclusion of Ozen et al. [23]

for an interface sandwiched between two immiscible fluids and can be regarded

as an extension to a two-interface case having two distinct modes of perturbation

(kink and sausage). It can also be noted from figure 2.2 that the kink mode has
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(a) Case C (σ2 > ϵ and σ <1).
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Figure 2.3: The plot of imaginary part of dimensional growth rate (Im(ω)) vs. the
dimensional wavenumber (kx) for cases C and D (Type-II) for which the product
(σ − 1) (σ2 − ϵ) is negative. Lower growth rates for both modes compared to cases
A and B (Type-I, figure 2.2) can be observed. The electrical properties considered
are said to have a stabilizing effect on the flow. In figure (a) σ = 10−0.5, ϵ = 10−1.5

and in figure (b) σ = 100.25, ϵ = 101 are used.
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Figure 2.4: The plot of imaginary part of dimensional growth rate (Im(ω)) vs.
the dimensional wavenumber (kx) for cases E (Type-III) for which the product
(σ − 1) (σ2 − ϵ) is zero. The stability/instability of the flow is dictated by the
tangential stress contributions (QT )1 and (QT )2 alone. The values of σ = 100.5,
ϵ = 101 are used.
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Figure 2.5: Log-log plot of electrical conductivity ratio (σ) against dielectric
permittivity ratio (ϵ) depicting maximum growth rate values for the case of kink
mode with the depth ratio n=1. The neutral stability curve (red) and other
constant growth rate curves have been plotted. Three dashed lines corresponding
to ϵ = σ, ϵ = σ2 and σ=1 are also drawn to highlight the regions pertaining to
types I and II.

slightly higher maximum growth rates than the sausage mode for case A while

the contrary is true for case B. For the case C, the growth rates of short waves for

the kink mode are slightly negative (and hence, unstable) while the sausage mode

is extremely stable (growth rates are positive). On the other hand, the kink mode

is stable while sausage mode has small negative growth rates in the short wave

region for the case D (figure 2.3). Furthermore, the results for case E in figure

2.4 are similar to those observed for case D except that the growth rates for the

sausage mode are slightly higher for case D compared to case E. Of course, these

inferences are true for the electric property ratios specifically chosen for each of
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Figure 2.6: Log-log plot of electrical conductivity ratio (σ) against dielectric
permittivity ratio (ϵ) with maximum growth rate values for the case of sausage
mode with the depth ratio n=1. The neutral stability curve (red), a few constant
growth rate curves and the three dashed lines corresponding to ϵ = σ, ϵ = σ2 and
σ=1 are plotted.

these cases and a more detailed analysis by varying these ratios is required for

generalization.

Although the particular values of ϵ and σ chosen in cases A-E above provide

some basic qualitative understanding, it would be worthwhile to have a growth

rate plot for a certain range of permittivities and conductivities. Uguz et al. [25]

presented such a plot for the single interface case to mark regions with stabiliz-

ing or destabilizing effects of parallel or perpendicularly applied electric fields,

albeit for a very narrow range of electrical property values (omitting very low

values). In this work, we provide a detailed log-log plot for electrical conductivity
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and dielectric permittity values each ranging between 10−2 to 102 and the corre-

sponding maximum growth rate value for each possible combination. In this plot,

the neutral stability curve (zero growth rate) and certain other constant growth

rate regions are marked thereby clearly demarcating stable and unstable regions.

Such a plot would provide valuable information about growth rate characteristics

in different regions corresponding to cases A-D. Though the stability regions are

altered with change in depth ratio n, applied electric field and mechanical property

ratios, the plots in this section address the case where depth ratio n=1, density

ratio ρ=1, viscosity ratio µ=0.284 and applied electric field E=3×105V/m. The

plots for kink and sausage modes are given in figures 2.5 and 2.6 respectively.

Three dashed lines marking ϵ = σ, ϵ = σ2 and σ=1 can also be seen. For the kink

mode, as predicted earlier, the most stable region (the one inside the neutral sta-

bility curve) belongs predominantly to the one where the product (σ − 1) (σ2 − ϵ)

is negative. The lowest growth rates are observed in the left hand corner of the

third quadrant (ϵ << 1 and σ << 1) while the growth rates in the right hand

corner of the fourth quadrant (ϵ >> σ) are the highest. Lower growth rates are

observed on the ϵ = σ2 line compared to those slightly away from the line. The

sausage mode plot depicts slightly different features compared to the kink mode,

although certain similarites can be deduced. The similarities include (a) the sta-

ble region being associated with Type-II characteristics, (b) lowest and highest

growth rates in the corners of third and four quadrants respectively and (c) lower

growth rates on the ϵ = σ2 line. The major differences are: (a) the stable region is

observed in the third quadrant and (b) relatively higher growth rates are seen in
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Figure 2.7: The plot of imaginary part of dimensional growth rate (Im(ω)) vs.
the dimensional wavenumber (kx) for cases A and B (Type-I) and the depth ratio
n equals 0.5. Higher growth rates for both modes compared to cases C and D
(Type-II) are predicted as the electrical properties tend to destabilize the flow.
In figure (a), σ = 101, ϵ = 101 and in figure (b) σ = 10−0.5, ϵ = 101.

the first quadrant region obeying Type-II characteristics. An interesting finding

is that the ϵ = σ2 line divides the plot almost symmetrically with growth rates

increasing along the line from the third quadrant to the first quadrant.

2.4.2 Effects of depth ratio

In the previous section, results were presented for the case where the three layers

were of equal thickness i.e. n=1. Quite obviously, the kink and sausage mode

characteristics would be quite different for a different depth ratio. Based on the

analytical expression obtained from their long-wave analysis for a single interface,

Li et al. [24] explained the importance of depth ratio using cases where the

viscosity ratio µ > n2 and µ < n2. We temporarily consider these cases as the

derivation of analytical solution for long-wave behaviour of three-layer instability
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will be undertaken in future. With the viscosity ratio being fixed at µ=0.284, the

depth ratio n=1 belongs to µ < n2 category. In this section, the sandwiched layer

is assumed to be twice as much thick as the sandwiching layers. This implies

a depth ratio of n=0.5 and hence belongs to µ > n2 category. Even though a

detailed log-log plot as provided earlier for n=1 is still a work in progress, some

exemplary results are provided for cases A-D. The growth rate plot for the cases

A and B is provided in figure 2.7. On comparing with n=1 results for cases A

and B in figure 2.2, no significant changes in the growth rate pattern is observed.

But the maximum growth rate values are higher (approximately twice as high for

case A) for n=0.5. From comparison of the growth rate plots for cases C and D

in figures 2.8 and 2.3, the maximum growth rate for the kink mode with n=0.5

is found to be twice as that for n=1 while there is an order of magnitude (about

thirty times) reduction in the maximum growth rate for the sausage mode with

n=0.5.

2.4.3 Effects of electric field

The flow stability behaviour can be altered significantly by varying the applied

electric field. Though it is expected that increasing the electric field would result

in increase in growth rates, we shall provide examples to show that this is not

always the case. Kink and sausage mode results for cases A and D are presented

in this section. The capillary number “Ca” depends on the electro-viscous veloc-

ity and in turn, on the square of the applied electric field. The depth ratio n is
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Figure 2.8: The plot of imaginary part of dimensional growth rate (Im(ω)) vs.
the dimensional wavenumber (kx) for cases C and D (Type-II) and the depth
ratio n equals 0.5. Lower growth rates for both modes compared to cases A and
B (Type-I, figure 2.2) can be observed. The electrical properties are said to have
a stabilizing effect on the flow. In figure (a) σ = 10−0.5, ϵ = 10−1.5 and in figure
(b) σ = 100.25, ϵ = 101 are used.
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Figure 2.9: The growth rate plot for kink mode perturbation pertaining to cases
A and D with various electric field values. The specific values of σ = 101, ϵ = 101

and σ = 100.25, ϵ = 101 are taken for figures (a) and (b) respectively. With
increasing electric field, flow tends to be more unstable with higher growth rates
for case A. An opposite effect is observed for case D.
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(a) Sausage mode (Case A).
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Figure 2.10: The growth rate plot for sausage mode perturbation pertaining to
cases A and D with various electric field values. Same parametric values as figure
2.9 are used. An anologous behaviour as in the case of kink mode (figure 2.9)
has been observed except that for case D, growth rates increase with increase in
electric field for low wavenumbers.

taken to be equal to 1. Three values of electric field: E=3×105V/m (Ca=1.45),

E=2.49×105V/m (Ca=1) and E=1×105V/m (Ca=0.16) have been considered.

The growth rate plots for the kink mode perturbation related to cases A and D

are provided in figure 2.9. As the electric field is increased, the flow stability

is considerably reduced for case A (figure 2.9(a)) resulting in higher maximum

growth rates and a higher fastest growth rate wavenumber. On the contrary,

stability is enhanced for case D (figure 2.9(b)) with higher electric fields. For the

sausage mode, a very similar qualitative behaviour as the kink mode is observed

for cases A and D, as can be seen in figure 2.10. A slight difference which can be

observed for case D (figure 2.10 (b)) is that the growth rates of low wavenumbers

are reduced while the high wavenumbers tend to become slightly more unstable
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Figure 2.11: The growth rate plot for case A and various surface tension coef-
ficients. The decrease in surface tension results in failure to stabilize the waves
with high wavenumber (or small wavelength) resulting in higher growth rate val-
ues and a wider range of fastest growth rate wavenumbers. This trend has been
observed for both kink (figure (a)) and sausage (figure (b)) modes. The values of
σ = 101 and ϵ = 101 were used.

with decreasing electric field. These results indicating opposite effects of increas-

ing electric fields depending on the electrical properties (cases A and D) are in

agreement with those of single interface case in Li et al. [24].

2.4.4 Effects of surface tension

From the long-wave asymptotic analysis in Appendix A, it can be noticed that

surface tension effects do not contribute to terms first-order or lower and hence

do not affect the stability behaviour of long waves. Nonetheless, surface tension

effects have a third-order contribution and lead to stabilization of short waves.

Hence with reduction of surface tension (say, with the help of surfactants), short

waves would tend to become more unstable with significantly higher growth rates

and it might lead to a wider range of wavenumbers corresponding to the fastest
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(b) Kink mode (Case D).

Figure 2.12: The growth rate plot for kink mode and various superposed base-
flow values (user-defined parameter Uc). Long wave growth is suppressed while
short wave growth rates increase with increase in the user-defined parameter Uc

(pressure gradient). The fastest growth rate wavenumbers increase correspond-
ingly. For case A, σ = 101 and ϵ = 101 were used while for case D, σ = 100.25 and
ϵ = 101 were used.

growth rates. This is exactly what can be observed for the cases of γ = 1 ×

10−6N/m and γ = 1× 10−7N/m in figure 2.11 where the growth rate results are

plotted for three different values of surface tension coefficient (γ). Both kink and

sausage modes exhibit this behaviour immaterial of the electrical property values

(other cases not shown for brevity). The depth ratio n is taken as 1 and the

applied electric field is E=3× 105V/m.

2.4.5 Effects of convective base flow

In all the results mentioned above, the base flow was assumed to be “quiescent”.

Now, we examine the effects of a superposed plane-Poiseuille base flow on the

flow stability. In particular, the growth rates are compared for three different

values of the user-defined parameter Uc (refer to chapter 2 for details): Uc=0,
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Figure 2.13: The growth rate plot for sausage mode and various superposed base-
flow values (user-defined parameter Uc). Same parametric ratios as figure 2.12 are
considered. Similar conclusion as that for the kink mode applies for the sausage
mode.

Uc=2 and Uc=4. Kink and sausage mode results are presented in figures 2.12 and

2.13 respectively. To detect any contribution from the electrical property ratios

towards alteration of stability characteristics, cases A and D are considered. The

depth ratio n equals 1 and the applied electric field is E=3 × 105V/m. First

considering kink mode and comparing the results for cases A and D in figure 2.12,

we note that increasing the parameter Uc (and hence the dimensionless pressure

gradient), the long waves are stabilized while the short waves are destabilized.

The growth rates of the short waves increase and so does the fastest growth rate

wavenumber. Contrary to the results for electric field effects, the there does not

seem to be any change in trend for cases A and D. The same inference can be

drawn from the results of cases A and D shown in figure 2.13 corresponding to

the sausage mode.
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Chapter 3

Fully nonlinear simulation

In this section, the details of the computational methods utilized to simulate the

nonlinear electrohydrodynamic instability in a three-layer viscous stratified flow

are discussed. Surface tension effects would be neglected temporarily, though it

is straightforward to add using the numerical technique considered. The primary

reason for neglecting surface tension is that for the parameters to be considered in

the simulations, it was verified from the linear stability analysis that the error due

to neglection of surface tension effects resulted in an error of less than about 5%

for the growth rate results (See chapter 4 for more details). This would be relaxed

in the future simulations and surface tension effects can be easily included using

the front-tracking method. We also consider the presence of a pressure-gradient

based convective base flow (Plane-Poiseuille).

3.1 Nonlinear simulation methodology

3.1.1 Governing equations

The schematic for the problem was shown in the previous section (figure 2.1).

The channel is assumed to be infinitely long in the X-direction and hence, we
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incorporate periodic boundary conditions in the X-direction to reduce the size of

the computational domain. We consider the channel width to be 2H and channel

length to be 2πH, with an aspect ratio of π. The fluids under consideration have

different densities (ρ), viscosities (µ), electrical conductivities (σ) and dielectric

permittivities (ϵ). The governing equations for fluid flow are given by:

∇ · u = 0, and (3.1.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ ·

[
µ
(
∇u+∇uT

)]
+ Fe, (3.1.2)

Here, we consider a body-force term in the flow equations, Fe(x, t), due to the

interaction of conductivity and permittivity gradients with the electric field. The

electric body force Fe can be expressed as Fe = ρEE− 1
2
ϵ|E|2 (Melcher and Taylor

1969), where ρE represents the charge density. The inclusion of electric body force

Fe term on the right hand side is a standard procedure in front-tracking method

in which the interfacial stresses are distributed onto the Cartesian grids, and

treated as body forces in the Navier-Stokes equations. The use of a single flow

field variable u is a consequence of the “one-fluid” formulation [37]. The electric

potential field and hence the electric field required to obtain the body force term

Fe are obtained by solving the Ohmic equation:

∇ · (σ∇Φ) = 0, (3.1.3)
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Here σ(x, t) is the electrical conductivity in the entire fluid: in the sandwiched

layer, σ = σ2, and for sandwiching layers, σ = σ1. Similar definitions hold for the

density, viscosity and permittivity variables. The interfaces advect with the local

fluid velocity:

dx

dt
= u(x), (3.1.4)

where, x represents the interface coordinates.

3.1.2 Scaling and dimensionless parameters

We use the channel half-width (H) as the length scale and the electro-viscous

velocity Uev = ϵ2E
2
0H/µ2 for scaling the velocity. The pressure is scaled by

p∗ = ρU2
ev. The fluid properties are scaled with respect to the properties of

the sandwiched (organic) fluid. The constant applied potential V0 and constant

applied electric field E0 are used to scale electric potential and electric field re-

spectively. The most important dimensionless parameter is the Reynolds number

Re =
ρ2UevH

µ2

, (3.1.5)

3.1.3 Numerical solution technique

The simulation technique employed to track the interfaces is the front-tracking /

immersed boundary method (Peskin [39], Unverdi & Tryggvason [38], Tryggvason

et al. [37]) for multiphase flows. The chief characteristic of the front tracking

method is the usage of a single set of equations for both the phases called the
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“one-fluid” formulation. Such a formulation implicitly accounts for the requisite

interface jump conditions and it can be verified that this formulation contains the

equations written separately for each fluid and the jump conditions. An Eulerian

(fixed) grid for solving the flow variables and a Lagrangian (moving) grid for

tracking the fluid-fluid interfaces are employed. As the interface front deforms,

the fluid properties need to be updated suitably. In the front tracking method,

the two different fluids are identified using an indicator (Heaviside) function and

the interfaces between them are marked by a nonzero value of the gradient of

indicator function. In our case, the indicator function is assigned a value of 1 for

the aqueous fluid and 0 for the organic fluid. It was verified that the choice of

the values for aqueous and organic fluids had no effect on the numerical solution.

The gradient of indicator function G is defined as:

G = −
∫
S

δ2(x− x′)n′ds′, (3.1.6)

where, S represents the interface contour, δ2 is the 2D dirac delta function and n′

is the unit normal to the interface. The δ function used in (3.1.6) is the product

of two 1D δ functions:

δ2(x− x′) = δ(x− x′)δ(y − y′), (3.1.7)

Peskin’s distribution function D is commonly utilized as the discrete and smooth

form of Dirac-delta function δ in the front tracking method, whose numerical form
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is given as

D(x− x′) =
1

16∆2

2∏
i=1

(
1 + cos

π

2∆
(xi − x′i)

)
for |xi − x′i| ≤ 2∆, i = 1, 2,

D(x− x′) = 0 otherwise, (3.1.8)

where, ∆ is the Eulerian grid size. The Peskin’s distribution function D imparts

a finite thickness to the interface and the fluid properties vary smoothly over a

circle of diameter 2∆ or roughly four fixed grid points close to the actual interface

positions. Knowing G, the indicator function I(x) can be obtained by solving

the following Poisson equation:

∇2I = ∇ ·G, (3.1.9)

Once the indicator function has been obtained, the fluid properties, like electrical

conductivity for example, are updated as:

σ(x) = σ2 + (σ1 − σ2)I(x), (3.1.10)

3.1.4 Staggered grid

Before proceeding to discuss the methodology for solving the flow equations, we

discuss briefly the finite-volume spatial discretization of the governing partial

differential equations in the flow domain. Staggered grids offer enormous advan-

tages, like stability and better conservation properties, over the co-located grids.
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The control volumes for the u velocity, v velocity and pressure are depicted in

figure 3.1, figure 3.2 and figure 3.3 respectively. For the 2D problem considered,

the points at which the velocity in the x-direction (u) is calculated are indicated

by circles (◦), the points at which the velocity in the y-direction (v) is calculated

are indicated by crosses (×) and the points at which the pressure (p) is calcu-

lated are indicated by dark dots (•). The fluid properties like density, viscosity,

dielectric permittivity and conductivity are calculated on the pressure points, the

electric potential is calculated on the pressure points, while the electric field in

the x-direction (Ex) is calculated in the u-velocity points and the electric field in

the y-direction (Ey) is calculated in the v-velocity points.
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Figure 3.1: control volume for u, Ex
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Figure 3.2: control volume for v, Ey

3.1.5 Interface tracking

Since we consider a 2D problem, the interface is a curve and is discretized us-

ing 1D line elements with two nodes (marker points). The interface front points

are maintained as linked lists, which makes it easier to insert a new point when

two neighbouring interface points drift too far apart or remove new points when

two neighbouring points come extremely close to each other. The interfaces are

tracked in a Lagrangian manner. Since the interfaces advect with the local fluid

velocity, the interface velocity is computed after solving the Navier-Stokes equa-

tion at each step as

u(x′) =

∫
S

u(x)δ2(x− x′)dx, (3.1.11)
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Figure 3.3: control volume for p, σ, µ, ϵ, ρ and Φ

where, S indicates the entire flow domain. The discrete delta function defined in

(3.1.8) is used to represent δ in (3.1.11), resulting in a weighted mean interpolation

of Eulerian fluid velocities which satisifies the continuity of velocity across the

interfaces. The Lagrangian marker points are then advected as

dx′

dt
= u(x′), (3.1.12)

First-order explicit Euler’s method is used to numerically integrate the above

equation in time.

x′
n+1 = x′

n +∆tu(x′
n), (3.1.13)
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where, n, n+1 denote the current and next time steps. As a result of using explicit

Euler scheme, the overall numerical scheme is first order accurate in time. Second-

order accurate schemes have also been proposed [37], which will be implemented

in the future works.

3.1.6 Flow solver

The initial interface positions, x(l)s, are known. From the known interfacial co-

ordinates, the gradient of the indicator function (Heaviside function) (I(x)), de-

noted by G(x), is calculated as

G =
∑
l

D(x− x(l))n(l)∆s(l), (3.1.14)

where, D(x−x(l)) is defined in (3.1.8) and ∆s represents the length of the interface

element. The indicator function is then obtained by solving the Poisson’s equation

(3.1.9), in the control volume of the figure 3.3, using the ADI method:

AcIi,j + ArIi+1,j + AlIi−1,j + AtIi,j+1 + AbIi,j−1 + A0 = 0, (3.1.15)

where,

Ac =

(
2

∆x2
+

2

∆y2

)
,

Ar = Al =
−1

∆x2
, At = Ab =

−1

∆y2
, (3.1.16)

A0 =
(Gx)i+1,j − (Gx)i−1,j

2dx
+

(Gy)i,j+1 − (Gy)i,j−1

2dy
,
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Here, Gx and Gy refer to the x- and y- components of G (a vector). Once the

indicator function is known, the electrical conductivity field is obtained using

(3.1.10) and the electric potential field is obtained by solving the Ohmic current

equation. Referring to figure 3.3, integration of equation (3.1.3) in the control

volume and rearrangement gives

AcΦi,j + ArΦi+1,j + AlΦi−1,j + AtΦi,j+1 + AbΦi,j−1 = 0, (3.1.17)

where,

Ac = −
[(

σi+1,j + σi,j
2∆x2

)
+

(
σi,j + σi−1,j

2∆x2

)]
−
[(

σi,j+1 + σi,j
2∆y2

)
+

(
σi,j + σi,j−1

2∆y2

)]
Ar =

1

∆x2

(
σi+1,j + σi,j

2

)
Al =

1

∆x2

(
σi,j + σi−1,j

2

)
(3.1.18)

At =
1

∆y2

(
σi,j+1 + σi,j

2

)
Ab =

1

∆y2

(
σi,j + σi,j−1

2

)

(3.1.17) is solved using the Iterative Alternating Direction Implicit (ADI) method.

The dielectric permittivity (ϵ) field is calculated using:

ϵ = ϵ2 + (ϵ1 − ϵ2)I(x) (3.1.19)
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where, ϵ2 and ϵ1 are the dielectric permittivities of the sandwiched (phenol) and

sandwiching (aqueous buffer) fluids respectively. The charge density (ρE) can be

determined using Gauss’s law as

−∇ · (ϵ∇Φ) = ρE, (3.1.20)

Integration of equation (3.1.20) using the control volume of figure (3.3) gives:

∫
Vi,j

∇ · (−ϵ∇Φ) dV =

∫
∂Vi,j

(−ϵ∇Φ) dA

=
−1

∆x2

[(
ϵi+1,j + ϵi,j

2

)
(Φi+1,j − Φi,j)

]
−1

∆x2

[
−
(
ϵi,j + ϵi−1,j

2

)
(Φi,j − Φi−1,j)

]
−1

∆y2

[(
ϵi,j+1 + ϵi,j

2

)
(Φi,j+1 − Φi,j)

]
−1

∆y2

[
−
(
ϵi,j + ϵi,j−1

2

)
(Φi,j − Φi,j−1)

]
= (ρE)i,j (3.1.21)

Having obtained the electric potential and charge density fields, the next step is

to solve the Navier-Stokes equation together with the continuity equation. Time-

integration of the Navier-Stokes equation is performed using the two-step projec-

tion method (Chorin [41]). The first step is called the “predictor step” in which

an advection diffusion equation is solved, without including the pressure-gradient

term. The expanded form of x- and y- momentum equations are
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∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
=

1

Re

(
2
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂u

∂y

))
+

1

Re
(Fe)x (3.1.22a)

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2)

∂y
=

1

Re

(
∂

∂x

(
µ
∂v

∂x

)
+

∂

∂x

(
µ
∂u

∂y

)
+ 2

∂

∂y

(
µ
∂v

∂y

))
+

1

Re
(Fe)y (3.1.22b)

where, (Fe)x and (Fe)y are the x- and y- components of the electric body force Fe.

The density and viscosity fields for the next time step ρn+1, µn+1 are determined

as:

ρ = ρ2 + (ρ1 − ρ2)I(x) (3.1.23)

µ = µ2 + (µ1 − µ2)I(x) (3.1.24)

where, ρ2, µ2 are the density and viscosity of the organic fluid, while ρ1, µ1

are the density and viscosity of the aqueous fluid. In the time-integration, the

non-linear terms are treated explicitly using the second-order Adams-Bashforth

scheme and the diffusion, electric body force terms are treated semi-implicitly us-

ing the second-order Crank-Nicholson scheme. The discretized advection-diffusion

equation is then solved using the Iterative Alternating Direction Implicit (ADI)

method. For the sake of convenience, in the discretized form of the x-momentum
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equation (3.1.22a), we denote the nonlinear terms as INX1 and INX2, diffu-

sion terms as VIX1, VIX2 and VIX3, electric body force terms as ELX1 and

ELX2 respectively. Similar notations are employed for the discretized form of

y-momentum equation. The x-momentum and y-momentum equations on dis-

cretization yield:

(ρu)∗ − (ρu)n

∆t
= −3

2
[INX1 + INX2]n +

1

2
[INX1 + INX2]n−1

+
1

2Re
[VIX1 + VIX2 + VIX3]∗ +

1

2Re
[VIX1 + VIX2 + VIX3]n

+
1

2Re
[ELX1 + ELX2]∗ +

1

2Re
[ELX1 + ELX2]n , (3.1.25a)

(ρv)∗ − (ρv)n

∆t
= −3

2
[INY1 + INY2]n +

1

2
[INY1 + INY2]n−1

+
1

2Re
[VIY1 + VIY2 + VIY3]∗ +

1

2Re
[VIY1 + VIY2 + VIY3]n

+
1

2Re
[ELY1 + ELY2]∗ +

1

2Re
[ELY1 + ELY2]n , (3.1.25b)

where [u∗, v∗] are velocities at an intermediate time between “n” and “n+1”,

which do not satisfy the continuity equation and hence, aren’t divergence free.

For the spatial discretization, we employ the second-order central differencing.

Considering the control volume for u-velocity as illustrated in figure 3.1, the

spatial discretization scheme for various terms in equation (3.1.25a) yields:

INX1 =
1

∆x

[
ρi+1,j

(
ui+ 3

2
,j + ui+ 1

2
,j

2

)2

− ρi,j

(
ui+ 1

2
,j + ui− 1

2
,j

2

)2
]
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INX2 =
1

∆y

(
ρi,j+1 + ρi,j + ρi+1,j+1 + ρi+1,j

4

)(
vi+1,j+ 1

2
+ vi,j+ 1

2

2

)
(
ui+ 1

2
,j+1 + ui+ 1

2
,j

2

)
−1

∆y

(
ρi,j + ρi,j−1 + ρi+1,j + ρi+1,j−1

4

)(
vi+1,j− 1

2
+ vi,j− 1

2

2

)
(
ui+ 1

2
,j + ui+ 1

2
,j−1

2

)
VIX1 =

1

∆x2

[
µi+1,j

(
ui+ 3

2
,j − ui+ 1

2
,j

)
− µi,j

(
ui+ 1

2
,j − ui− 1

2
,j

)]
VIX2 =

1

∆y2

[(
µi,j+1 + µi,j + µi+1,j+1 + µi+1,j

4

)(
ui+ 1

2
,j+1 − ui+ 1

2
,j

)]
− 1

∆y2

[(
µi,j + µi,j−1 + µi+1,j + µi+1,j−1

4

)(
ui+ 1

2
,j − ui+ 1

2
,j−1

)]
VIX3 =

1

∆x∆y

[(
µi,j+1 + µi,j + µi+1,j+1 + µi+1,j

4

)(
vi+1,j+ 1

2
− vi,j+ 1

2

)]
− 1

∆x∆y

[(
µi,j + µi,j−1 + µi+1,j + µi+1,j−1

4

)(
vi+1,j− 1

2
− vi,j− 1

2

)]
ELX1 =

[
(ρE)i+1,j + (ρE)i,j

2

]
(Ex)i+ 1

2
,j

ELX2 =

[
1

2

(
(E2

x)i+ 1
2
,j + (E2

y)i+ 1
2
,j

)
(ϵi,j − ϵi+1,j)

]
, (3.1.26)

Similarly, considering the control volume for v as illustrated in figure 3.2, the

spatial discretization scheme for various terms in equation (3.1.25b) gives:

INY1 =
1

∆x

(
ρi,j+1 + ρi,j + ρi+1,j+1 + ρi+1,j

4

)(
ui+ 1

2
,j+1 + ui+ 1

2
,j

2

)
(
vi+1,j+ 1

2
+ vi,j+ 1

2

2

)
−1

∆x

(
ρi,j + ρi,j+1 + ρi−1,j + ρi−1,j+1

4

)(
ui− 1

2
,j+1 + ui− 1

2
,j

2

)
(
vi,j+ 1

2
+ vi−1,j+ 1

2

2

)
INY2 =

1

∆y

[
ρi,j+1

(
vi,j+ 3

2
+ vi,j+ 1

2

2

)2

− ρi,j

(
vi,j+ 1

2
+ vi,j− 1

2

2

)2
]
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VIY1 =
1

∆y2

[
µi,j+1

(
vi,j+ 3

2
− vi,j+ 1

2

)
− µi,j

(
vi,j+ 1

2
− vi,j− 1

2

)]
VIY2 =

1

∆x2

[(
µi,j+1 + µi,j + µi+1,j+1 + µi+1,j

4

)(
vi+1,j+ 1

2
− vi,j+ 1

2

)]
− 1

∆x2

[(
µi,j + µi,j+1 + µi−1,j + µi−1,j+1

4

)(
vi,j+ 1

2
− vi−1,j+ 1

2

)]
VIY3 =

1

∆x∆y

[(
µi,j+1 + µi,j + µi+1,j+1 + µi+1,j

4

)(
ui+ 1

2
,j+1 − ui+ 1

2
,j

)]
− 1

∆x∆y

[(
µi,j + µi,j+1 + µi−1,j + µi−1,j+1

4

)(
ui− 1

2
,j+1 − ui− 1

2
,j

)]
ELY1 =

[
(ρE)i,j + (ρE)i,j+1

2

]
(Ey)i,j+ 1

2

ELY2 =

[
1

2

(
(E2

x)i,j+ 1
2
+ (E2

y)i,j+ 1
2

)
(ϵi,j − ϵi,j+1)

]
, (3.1.27)

Substituting the terms in (3.1.26) into the x-momentum equation (3.1.25a) and

rearranging, we get,

Acu
∗
i+ 1

2
,j
+ Aru

∗
i+ 3

2
,j
+ Alu

∗
i− 1

2
,j
+ Atu

∗
i+ 1

2
,j+1

+ Abu
∗
i+ 1

2
,j−1

+ A0 = 0, (3.1.28)

where, the coefficients are given by,

Ac =

(
ρ∗i,j + ρ∗i+1,j

2

)
+

∆t

Re∆x2
µ∗
i,j +

∆t

Re∆x2
µ∗
i+1,j

+
∆t

2Re∆y2

(
µ∗
i,j+1 + µ∗

i,j + µ∗
i+1,j+1 + µ∗

i+1,j

4

)
+

∆t

2Re∆y2

(
µ∗
i,j + µ∗

i,j−1 + µ∗
i+1,j + µ∗

i+1,j−1

4

)
Ar = − ∆t

Re∆x2
µ∗
i+1,j

Al = − ∆t

Re∆x2
µ∗
i,j

At = − ∆t

2Re∆y2

(
µ∗
i,j+1 + µ∗

i,j + µ∗
i+1,j+1 + µ∗

i+1,j

4

)
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Ab = − ∆t

2Re∆y2

(
µ∗
i,j + µ∗

i,j−1 + µ∗
i+1,j + µ∗

i+1,j−1

4

)
A0 = − ∆t

2Re∆x∆y

(
µ∗
i,j+1 + µ∗

i,j + µ∗
i+1,j+1 + µ∗

i+1,j

4

)(
v∗
i+1,j+ 1

2
− v∗

i,j+ 1
2

)
+

∆t

2Re∆x∆y

(
µ∗
i,j + µ∗

i,j−1 + µ∗
i+1,j + µ∗

i+1,j−1

4

)(
v∗
i+1,j− 1

2
− v∗

i,j− 1
2

)
−
(
ρni,j + ρni+1,j

2

)
un
i+ 1

2
,j
+

3

2
∆t [INX1]n − 1

2
∆t [INX1]n−1

+
3

2
∆t [INX2]n − 1

2
∆t [INX2]n−1 − ∆t

Re
[V IX1]n − ∆t

2Re
[V IX2]n

− ∆t

2Re
[V IX3]n − ∆t

2Re
[ELX1]∗ − ∆t

2Re
[ELX1]n − ∆t

2Re
[ELX2]∗

− ∆t

2Re
[ELX2]n , (3.1.29)

Similarly, substituting the terms (3.1.27) into the y-momentum equation (3.1.25b)

and rearranging, we obtain,

Acv
∗
i,j+ 1

2
+ Arv

∗
i+1,j+ 1

2
+ Alv

∗
i−1,j+ 1

2
+ Atv

∗
i,j+ 3

2
+ Abv

∗
i,j− 1

2
+ A0 = 0 (3.1.30)

where, the coefficients are given by,

Ac =

(
ρ∗i,j+1 + ρ∗i,j

2

)
+

∆t

Re∆y2
µ∗
i,j +

∆t

Re∆y2
µ∗
i,j+1

+
∆t

2Re∆x2

(
µ∗
i,j+1 + µ∗

i,j + µ∗
i+1,j+1 + µ∗

i+1,j

4

)
+

∆t

2Re∆x2

(
µ∗
i,j + µ∗

i,j+1 + µ∗
i−1,j + µ∗

i−1,j+1

4

)
Ar = − ∆t

2Re∆x2

(
µ∗
i,j+1 + µ∗

i,j + µ∗
i+1,j+1 + µ∗

i+1,j

4

)
Al = − ∆t

2Re∆x2

(
µ∗
i,j + µ∗

i,j+1 + µ∗
i−1,j + µ∗

i−1,j+1

4

)
At = − ∆t

Re∆y2
µ∗
i,j+1
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Ab = − ∆t

Re∆y2
µ∗
i,j

A0 = − ∆t

2Re∆x∆y

(
µ∗
i,j+1 + µ∗

i,j + µ∗
i+1,j+1 + µ∗

i+1,j

4

)(
u∗
i+ 1

2
,j+1

− u∗
i+ 1

2
,j

)
+

∆t

2Re∆x∆y

(
µ∗
i,j + µ∗

i,j+1 + µ∗
i−1,j + µ∗

i−1,j+1

4

)(
u∗
i− 1

2
,j+1

− u∗
i− 1

2
,j

)
−
(
ρni,j + ρni,j+1

2

)
vn
i,j+ 1

2
+

3

2
∆t [INY 1]n − 1

2
∆t [INY 1]n−1

+
3

2
∆t [INY 2]n − 1

2
∆t [INY 2]n−1 − ∆t

Re
[V IY 1]n − ∆t

2Re
[V IY 2]n

− ∆t

2Re
[V IY 3]n − ∆t

2Re
[ELY 1]∗ − ∆t

2Re
[ELY 1]− ∆t

2Re
[ELY 2]∗

− ∆t

2Re
[ELY 2]n , (3.1.31)

Equations (3.1.28) and (3.1.30) are solved using the iterative ADI method to

obtain the velocities u∗ and v∗.

Next, we move to the second step of the projection method called the corrector

step in which we include the pressure gradient term and solve for the velocity field

at time step “n+1”

un+1 − u∗

∆t
= −∇P

or, by taking divergence,

∇ · un+1 −∇ · u∗

∆t
= −∇2P (3.1.32)

where, the pressure field is obtained by using the constraint of un+1 to be divergence-

free and hence,

∇2P n+1 =
ρ(∇ · u∗)

∆t
(3.1.33)
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Considering the control volume in figure 3.3, the Poisson’s equation for pressure

(3.1.33) can be discretized to obtain

aP n+1
i,j + bP n+1

i+1,j + cP n+1
i−1,j + dP n+1

i,j+1 + eP n+1
i,j−1 + f = 0, (3.1.34)

where, the coefficients are given by,

a =

[
∆t

∆x2ρn+1
i+ 1

2
,j

+
∆t

∆x2ρn+1
i− 1

2
,j

+
∆t

∆y2ρn+1
i,j+ 1

2

+
∆t

∆y2ρn+1
i,j− 1

2

]

b = − ∆t

∆x2ρn+1
i+ 1

2
,j

c = − ∆t

∆x2ρn+1
i− 1

2
,j

d = − ∆t

∆y2ρn+1
i,j+ 1

2

e = − ∆t

∆y2ρn+1
i,j− 1

2

f =
1

∆x
[(u∗

i+ 1
2
,j
− u∗

i− 1
2
,j
)] +

1

∆y
[(v∗

i,j+ 1
2
− v∗

i,j− 1
2
)], (3.1.35)

In the above equation, “f” is known as the source term. The solution to the

pressure Poisson equation should be such that the source term is close to machine

zero for the continuity equation to be satisfied. The pressure Poisson equation

can be solved with the iterative alternating-direction-implicit (ADI) technique.
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3.2 Validation

3.2.1 Step size accuracy

The front tracking algorithm implemented for the current study is first-order ac-

curate in time step size ∆t and second-order accurate in spatial discretization

size ∆x. We verify the time step size accuracy for two different cases: (1) with

electrical conductivity variation alone and (2) with electrical conductivity and

density variations, using data collected from simulations with different time step

sizes. It is worth mentioning that in the following sections, time step sizes ∆t and

grid sizes ∆x are dimensionless. Time step sizes ∆t = 5× 10−4, 1× 10−3, 1.25×

10−3, 2 × 10−3, 2.5 × 10−3, 4 × 10−3, 5 × 10−3, 8 × 10−3, 0.01, 0.02, 0.025, 0.05 and

0.1 were considered. Since there is neither an analytical solution nor Direct Nu-

merical Simulation data available for the nonlinear problem under consideration,

we assume that the data corresponding to ∆t = 5 × 10−4 is the most accurate

and hence use that as the baseline for the relative error norm calculation. The

u-velocity data has been used for the relative error norm calculation in both the

afore-mentioned cases. Figures 3.4(a) and (b) show the log-log plot of the relative

error norm (2-norm) against the time-step size for cases (1) and (2) respectively.

The slope of the log-log plot gives us the order of accuracy with respect to the

time-step size and we obtain slope values of 0.8123 and 0.7528 for cases (1) and (2)

respectively. This verifies that the algorithm is approximately first-order accurate

in time.
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Figure 3.4: Log-log plot for error norm variation with time-step size for (a) σ
variation alone and (b) σ and ρ variations. The slope values obtained are (a)
0.8123 and (b) 0.7528 respectively, meaning that the algorithm is approximately
first-oder accurate.

3.2.2 Growth rate calculation accuracy

In our current work, we are primarily interested in comparing the growth rate

values obtained from both the linear stability analysis and non-linear simulations.

Hence, it would be worthwhile to verify the accuracy of the growth rate calcu-

lations using different time-step sizes. From the non-linear simulation data, we

plot the maximum interfacial displacement (with respect to equilibrium configu-

ration) against time. A least-squares (LS) fit is performed from which the slope

is obtained, which provides us an estimate of the growth rate. The growth rate

calculation from three different time-step values of ∆t=5 × 10−4, 1 × 10−3 and

5 × 10−3 for cases (1) and (2) are shown in Figures 3.5(a) and (b) respectively.

For case (1) σ variation alone, we obtain growth rate values of 1.87689× 105s−1,

1.87576 × 105s−1 and 1.87409 × 105s−1 for ∆t=5 × 10−4, 1 × 10−3 and 5 × 10−3
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(a) σ variation alone.
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(b) σ and ρ variations.

Figure 3.5: Semi-log plot of maximum interface displacement with time for (a) σ
variation alone and (b) σ and ρ variations for three different time-step sizes. With
respect to the baseline values obtained for ∆t=5×10−4, the maximum error in the
growth rate calculation for cases (a) and (b) are 0.15% and 0.11% respectively.

respectively. With respect to the value obtained for ∆t=5× 10−4, the maximum

error in the growth rate calculation is 0.15%. Similarly, for case (2) σ and ρ

variations, we obtain growth rate values of 1.614 × 105s−1, 1.615 × 105s−1 and

1.61579×105s−1 for ∆t=5×10−4, 1×10−3 and 5×10−3 respectively. With respect

to the baseline value from ∆t=5 × 10−4, the maximum error in the growth rate

calculation is 0.11%. In the simulation results and growth rate results provided

in subsequent sections, the time-step size employed in the numerical simulations

is 5×10−4, which has been observed to be highly accurate.

3.2.3 Grid resolution validation

Finally, we provide preliminary validation results with regard to grid resolution.

The growth rate results from the original and double grid resolution datasets are
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Figure 3.6: Growth rates extracted from nonlinear simulation for k∗=10.0, sausage
mode for a conductivity ratio of 100, density ratio of 0.752, permittivity ratio of
10.974, viscosity ratio of 0.284. The extracted growth rate for double resolu-
tion (DR) case is 3.331×104s−1, a 2.67% difference from the growth rate result
obtained from the original resolution (OR) dataset captured in the same time
interval.

compared and plotted in figure 3.2.3. It can be observed from the plot that data

sets captured for the double resolution (mentioned as DR in the legend) case

with two different time step sizes of 5×10−4 and 2.5×10−4 are in agreement with

each other, thereby validating the time-step size accuracy. Such a validation is

also necessitated by the fact that with increase in grid resolution and hence a de-

crease in ∆x, there is a possibility of the Courant-Friedrichs-Levy (CFL) stability

criterion violation. Such a violation was not observed with the grid resolution

and time-step size combinations considered in the simulation. The slopes of the

least-squares plot are 3.42×104s−1 and 3.331×104s−1 for the original resolution
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(mentioned as OR in the legend) and double grid resolution cases respectively, a

relative error of around 3%. Inspite of the excellent agreement with the growth

rate results, the interfacial displacements between the two cases can be observed

to be noticeably different. The reasons for this disagreement would be considered

in a future study.

3.2.4 Miscellaneous validations

There are some additional validations performed which would not be covered

in detail for the sake of brevity of the report. They are outlined briefly in the

following subsections:

Discretization of convective terms

It is well understood that the convective terms are the major source of numer-

ical issues in the solution of Navier-Stokes equations: (a) With the the central-

differencing scheme mentioned earlier, unphysical oscillatory behaviour maybe

observed in certain regions of flow where convection effects dominate viscous

effects and (b) although the first-order upwind schemes sidestep difficulties men-

tioned in (a), numerical diffusion errors are introduced when the Reynolds number

(Re) of the flow is increased. Hence, the numerical method needs to be validated

with higher-order convective schemes to minimize both the oscillatory behaviour

and artificial numerical diffusion. Some of these schemes were considered in nu-

merical simulation of the hydraulic jump by Ferreira et al. [42]. In addition to

the central-difference scheme (CD) implemented originally, higher-order schemes
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Quadratic Upstream Interpolation for Convective Kinematics [43] (QUICK) and

Sharp and Monotonic Algorithm for Realistic Transport [44] (SMART) were also

additionally considered and the results compared with the central-differencing

scheme. The solution relative error norms were well within 1% meaning that the

CD scheme was accurate enough.

Effect of interface elements number

Apart from discretizing the flow domain, we also discretize the top and bottom

interfaces using 2D line elements. Tryggvason et al. [37] suggested that the

number of interface elements to be around 4 or 5 per grid point. Our numerical

scheme was tested with 3, 5, 10 and 20 elements per grid point and it was indeed

found that 5 elements per grid point were providing accurate numerical results

(less than 1% error with respect to the denser 10 and 20 element results). For

our original resolution cases (∆x=1/70), the number of interface elements used

was 1100 while for the double resolution cases (∆x=1/140), 2200 elements were

used.

3.3 Results from nonlinear analysis

In the following sections, we compare the growth rates from both the linear anal-

ysis and nonlinear simulation with each other. For this purpose, we initiated

the nonlinear simulation with a single mode (kink or sausage), and capture the

maximum interface deformation from the equilibrium position at various times.
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The resulting slope of the semi-log plot provides an estimate for the growth rate.

We simulate the nonlinear two-phase instability mechanism for the experimental

values of density ratio ρ=0.75, permittivity ratio ϵ=10.97, viscosity ratio µ=0.28

but utilize a conductivity ratio of σ=100 rather than the experimental value of

5405. As mentioned earlier, we also neglect surface tension effects in the cur-

rent work. The parametric ratios used in the simulation results of the following

sections are chosen in such a way that the variation between growth rate re-

sults obtained from linear stability analysis for (a) the parameters considered

(i.e. σ=100 and γ=1 × 10−16N/m) and (b) the experimental parameters (i.e.

σ=5405 and γ=1 × 10−4N/m) is less than 5%. We briefly quantify using two

examples here, the first in which we compare the growth rate results in the pres-

ence of conductivity variations alone, with all other property ratios equaling 1.

The error resulting from considering σ=100 and γ=1 × 10−16N/m compared to

the experimental values is around 3%. In the second example, density, viscosity

and permittivity variations are included. The growth rate result variation result-

ing from σ=100 and γ=1 × 10−16N/m with respect to the experimental values

is around 2.3%. A dimensionless wavenumber value of k∗ = 10 was used in the

afore-mentioned results and the same value would also be used in our nonlinear

simulations. Hence, the neglection of surface tention is justified for the para-

metric values considrered in our results. Nonetheless, the surface tension has

been implemented in the linear code, and can be added straightforwardly in the

nonlinear simulation following the Immersed Boundary Method outline provided

in the previous chapter. For all cases the applied field strength is E=9 kV/cm
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and since the electric field is applied in the positive y-direction, positive charges

accumulate on the bottom interface and negative charges accumulate on the top

interface resulting in electric body forces on both the interfaces leading to inter-

face deformation. The base flow field is set to be quiescent, unless mentioned

otherwise.

3.3.1 Electrical conductivity variation

Firstly, we provide representative results for the case of electrical conductivity

variation alone. The electrical conductivity ratio is 100, while all the other prop-

erty ratios are set to be equal to 1. Figure 3.7 provides snapshots of the evolution

of conductivity and charge density profiles respectively, at various time instants

prior to the droplet formation. The initial condition in figure 3.7 is biased with

a sausage-mode with a dimensionless wavenumber of k∗=10, and a dimensionless

amplitude of 5× 10−3, both scaled with the channel half-width (H=75 µm). The

electroviscous velocity scale, time scale and the Reynolds number are calculated

to be 43.011 m/s, 1.75µs and 3226 respectively. Note that regions of different

conductivity also represent regions of different liquid, because the conductivity

is uniform within a single phase. From the figures, it is clear that the interfacial

deformations are out of phase with each other by π meaning the profile evolu-

tion reflects the initial perturbation mode. From the linear analysis, the growth

rate for the sausage-mode perturbation with a conductivity ratio σ=100, dimen-

sionless wavenumber k∗=10 and electric field E=9× 105V/m is determined to be
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1.733×105s−1. On the other hand, from the nonlinear simulation data collected
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Figure 3.7: Electrical conductivity profile evolution for the case of conductivity
ratio 100 and all other property ratios equal to 1. The (a) initial profile, profiles
at (c) 25 µs and (e) 30 µs for conductivity are shown. Red denotes the high con-
ductivity regions (aqueous phase), and blue, the low conductivity region (phenol).
(b), (d) and (f) depict the charge density snapshots at corresponding times.

in the linear regime, the slope of the Least-Squares fit for the semilog plot shown

in figure 3.3.1 is calculated to be 1.877×105s−1. The relative error in growth

rate calculation with respect to the linear analysis is 8.25%, providing favourable

agreement. The discrepancy arises possibly due to the nature of the front-tracking

method used in nonlinear simulation. In this method, the interfacial forces are
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Figure 3.8: Growth rates extracted from nonlinear simulation for conductivity
variation alone with k∗=10.0, sausage mode. The ‘×’ are from the simulation
with a dimensionless time step size of ∆t=5×10−4, and the line is from least-
square (LS) fitting, from which the growth rates are calculated. The extracted
growth rate is 1.877×105s−1, an 8.25% difference from the linear analysis result.

spread over a finite width (typically a few grid points), whereas in the linear

analysis the interfaces are considered sharp (with zero thickness).

3.3.2 Electrical conductivity and density variations

Next, we add density variation with the experimental density ratio value of 0.752.

The organic fluid is slightly more dense compared to the aqueous fluid. An

initial bias of a sausage-mode with a dimensionless wavenumber of k∗=10, and

a dimensionless amplitude of 5 × 10−3 is applied. The density profiles at two

different time instants are shown in figure 3.9. The electroviscous velocity scale

and time scale are the same as that for the conductivity variation case while the

Reynolds number is 4290 which is higher because of introducing higher density
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Figure 3.9: Interface evolution for the case of conductivity ratio 100, density ratio
0.752 and all other property ratios equal to 1. The profiles at (b) 26 µs and (c)
30 µs are shown. Red denotes the high density region (phenol), and blue, the low
density regions (aqueous phase).

value for the organic fluid. Comparing the interface deformation profiles in the

current case with the case of just conductivity variation alone, we do not observe

any significant differences since the density ratio is close to 1. Hence, we can

predict that the growth rate results for these two cases would not show substantial

difference and this indeed is found to be observed. The growth rate obtained from

the linear analysis for this case is 1.619×105s−1, while the slope of the nonlinear

simulation data shown in figure 3.3.2 is 1.615×105s−1. The relative error with

respect to the linear analysis result is about 0.35%, showing excellent agreement

with the linear analysis result.

3.3.3 Electrical conductivity, density and permittivity vari-

ations

The next level of complexity is the addition of dielectric permittivity variation.

The experimental permittivity ratio value is 10.974. The initial condition in this
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Figure 3.10: Growth rates extracted from nonlinear simulation with k∗=10.0,
sausage mode for a conductivity ratio 100 and density ratio 0.752. The ‘+’ are
from the simulation with a dimensionless time step size of ∆t=5×10−4. The
extracted growth rate is 1.615×105s−1, a 0.35% difference from the linear analysis
result.

case is taken to be a kink-mode disturbance with a dimensionless wavenumber of

k∗=10, and a dimensionless amplitude of 5× 10−3. The permittivity profile and

charge density evolution snapshots at two different instants of time are provided

in figure 3.11. The electroviscous velocity scale for this case is calculated to be

3.92 m/s, time scale being 19.13 µs and the Reynolds number is 391. We can

predict from velocity scale that the growth rate value would be significantly lower

than the previous cases. A similar conclusion can be arrived at by comparing

the electroviscous time scales as well and this is substantiated by the calculated

growth rate values. The growth rate from linear analysis for the kink-mode distur-

bance is obtained as 4.005×104s−1. From the nonlinear simulation data plotted

in figure 3.3.3, the slope of the least-squares fit is calculated to be 4.602×104s−1,
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Figure 3.11: Interface evolution for the case of conductivity ratio 100, density
ratio 0.752, permittivity ratio 10.974 and viscosity ratio 1. The profiles at (a) 95
µs and (c) 125 µs for permittivity are shown. Red denotes the high permittivity
regions (aqueous phase), and blue, the low permittivity region (phenol). The
corresponding charge density snapshots are shown in (b) and (d) respectively.

a relative error of 14.9% compared to the linear analysis result. The magnitude of

the relative error for the kink mode is observed to be higher than that for sausage

mode (simulation results not shown here for brevity) perturbation. The exact

reason for this difference is yet to be determined and will be analyzed in a future

investigation.

3.3.4 Electrical conductivity, density, permittivity and vis-

cosity variations

Finally, the effects of viscosity variation are included by considering the experi-

mental viscosity ratio of 0.284. Phenol is about 3.5 times more viscous than the
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Figure 3.12: Growth rates extracted from nonlinear simulation for k∗=10.0, kink
mode for a conductivity ratio 100, density ratio 0.752 and permittivity ratio
10.974. The ‘2’ are from the simulation with a dimensionless time step size of
∆t=5×10−4. The extracted growth rate is 4.602×104s−1, a 14.90% difference
from the linear analysis result.

aqueous phase. This represents the complete set of property variations consid-

ered in the experiments of Zahn and Reddy [3], albeit with a lower conductivity

ratio and negligible surface tension values due to the justification provided ear-

lier. It is also worth mentioning that solving the Poisson’s equation for indicator

function with a very high conductivity ratio (for example, the experimental ratio

of 5405) was found to be computationally expensive with the current solution

methodology and highly efficient algorithms like Multigrid methods need to be

implemented in such a situation. A detailed study and implementation of such

algorithms is out of scope of the current work and will be considered in future

works. The initial condition in this case is taken to be a sausage-mode distur-

bance with a dimensionless wavenumber of k∗=10, and a dimensionless amplitude
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Figure 3.13: Interface evolution for the case of conductivity ratio 100, density
ratio 0.752, permittivity ratio 10.974 and viscosity ratio 0.284 with an initial
sausage-mode perturbation of k∗=10.0. The profiles at (a) 75 µs and (b) 150
µs are shown. Red denotes the high viscosity region (phenol), and blue, the low
viscosity regions (aqueous phase).

of 5× 10−3. The viscosity profile evolution snapshots at two different instants of

time are provided in figures 3.13. The electroviscous velocity scale for this case is

calculated to be 1.11 m/s, time scale being 67.35 µs and the Reynolds number is

32. The electroviscous time scale is higher than that for the case without viscos-

ity variation and hence, we would expect the growth rate would be smaller. The

growth rate from linear analysis for the sausage-mode disturbance is obtained as

3.014×104s−1. From the nonlinear simulation data plotted in figure 3.3.4, the

slope of the least-squares fit is calculated to be 3.306×104s−1, a relative error

of 9.7% compared to the linear analysis result, showing reasonable agreement

with the linear analysis result. All the afore-mentioned simulation results pertain

to an idealization with regard to the initial condition viz., biasing with either a

low-amplitude kink or a sausage-mode perturbation. In order to simulate more

realistically experimental conditions as in [3], we perturb the initially quiescent

interface with a white Gaussian noise of dimensionless amplitude 6.67× 10−4 and
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Figure 3.14: Growth rates extracted from nonlinear simulation for k∗=10.0,
sausage mode for a conductivity ratio 100, density ratio 0.752, permittivity ratio
10.974 and viscosity ratio 0.284. The ‘▽’ are from the simulation with a dimen-
sionless time step size of ∆t=5×10−4. The extracted growth rate is 3.298×104s−1,
a 9.70% difference from the linear analysis result.

provide some preliminary results showing the evolution of the interface fronts.

The snapshots taken at t=270 µs and t=320µs for conductivity are shown in

figure 3.15. As can be seen from the figures, the resulting interfacial deforma-

tion exhibits mixed kink and sausage modes at different wavenumbers. It is well

known that though the interface profile evolution exhibits mixed modes, there

is a certain mode (kink/sausage) of suitable wavenumber which has the highest

growth rate and is most prominently observed. To determine the fastest growth

rate wavenumber and the corresponding mode, a Fourier-mode spectrum anal-

ysis on the white noise results needs to be performed after sufficient validation

of comprehensive data sets. In this regard, addition of surface tension becomes

important as surface tension sufficiently stabilizes the high wavenumbers. This
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Figure 3.15: Interface profile evolution snapshots at (a) 270 µs and (b) 320 µs
for the interfaces initialized with small-amplitude white-noise disturbance and
properties mentioned in figure 3.13. The profiles exhibit mixed unstable modes
of different wavenumbers as observed in experiments of Zahn and Reddy [3].

Case Linear Nonlinear Rel.
(Mode - Sausage (S) or Kink (K)) (s−1) (s−1) error (%)

I (σ=100 (S)) 1.733×105 1.877×105 8.25
II (σ=100, ρ=0.75 (S)) 1.619×105 1.615×105 0.35

III (σ=100, ρ=0.75, ϵ=10.97 (K)) 4.005×104 4.602×104 14.9
IV (σ=100, ρ=0.75, ϵ=10.97, µ=0.28 (S)) 3.014×104 3.306×104 9.7

Table 3.1: Summary of growth rate results comparison between linear and non-
linear analyses for the four different cases.

has not yet been performed and would be conducted as part of future research.

The comparison between linear and nonlinear analyses results for the various

parametric ratios considered above have been summarized in table 3.1.

3.3.5 Grid resolution results

It was mentioned earlier that the front-tracking algorithm employed for the sim-

ulations was second-order accurate with respect to grid resolution ∆x. Though

in-depth grid resolution related studies and validations are earmarked for future
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work, we provide some preliminary results for the case where all property vari-

ations are considered and the grid resolution is doubled. The initial condition

is biased with a sausage-mode perturbation with a dimensionless wavenumber

of k∗=10, and a dimensionless amplitude of 5 × 10−3, so that a comparison of

growth rate results with the original grid resolution is possible. Figure 3.16 de-

picts snapshots at 80 µs and 120 µs for conductivity and charge density profiles.
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Figure 3.16: Interface profile evolution for the case of conductivity ratio of 100,
density ratio of 0.752, permittivity ratio of 10.974, viscosity ratio of 0.284 with
an initial sausage-mode perturbation of k∗=10.0 and double the grid resolution
compared to the previous cases. Conductivity and charge density snapshots at
80 µs are given in (a) and (b) respectively. Snapshots at 120 µs are provided in
(c) and (d).
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Chapter 4

Conclusions and directions of future work

4.1 Summary of the thesis

Linear stability analysis and fully nonlinear simulations for two-dimensional elec-

trohydrodynamic (EHD) instability in a three-layer viscous stratified (immiscible

fluid) flow are presented. The motivation for the problem stems from the de-

sired application of aqueous-organic (phenol) extraction technique in microfluidic

platforms where efficient mixing of the two phases are limited by low Reynolds

numbers. To overcome the shortcoming, electric fields are utilized to deform and

ultimately rupture the fluid interfaces into droplets leading to efficient disper-

sion of one phase into another. The linear stability analysis was performed using

Chebyshev pseudo-spectral method where growth rates corresponding to arbitrary

wavenumbers were calculated by a solution of an eigenvalue problem. The results

of the pseudo-spectral calculations specifically for the case of quiescent base flow

were independently verified by solution using a root-finding methodology (not

presented in this report). On the other hand, the methodology for nonlinear

simulations is based on a front-tracking immersed boundary method to track in-

terfacial deformation until the merging of the two interfaces. This tracking till
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interface merger is done fundamentally because a cogent multiphysics model to

explain the progression from interface rupture to droplet formation is still a work

in progress. In this thesis, our eventual objective is comparison of the growth rate

results of “kink” (in-phase interfacial deformation) and “sausage” (interfacial de-

formations out of phase by π) modes from both linear and nonlinear analyses.

The major results from the thesis are summarized as follows.

We outline the results from the linear stability analysis first. Based on the

governing equations derived for the long-wave asymptotic analysis, it was de-

termined that the electrical properties - electrical conductivity σ and dielectric

permittivity ϵ play the most crucial role in determining the stability/instability of

the fluid flow. The contribution of the electrical properties is primarily through

the terms (QT )1, (QT )2, (QN)1 and (QN)2 in tangential and normal shear stress

balances at the two interfaces. Five different cases - A, B, C, D and E were

considered based on the sign of the product “(σ − 1)(σ2 − ϵ)”. The property

ratios under the categories A and B (together called “Type-I”) have a positive

value for (σ − 1)(σ2 − ϵ), those under the categories C and D (together named

“Type-II”) have a negative value and those under category E have a value of

zero. We showed, for the cases of depth ratios “n” equaling 0.5 and 1, that the

perturbation growth rates are substantially higher for type-I compared to type-II

meaning that a positive value leads to destabilizing effects and a negative value

has stabilizing effects of the electric field. This finding was observed for both

kink and the sausage modes and extends the results of EHD instability in a single
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interface between two immiscible fluids considered by Ozen et al. [23]. For the

depth ratio n=1, a detailed log-log plot for a wide range (10−2 to 102) of electrical

properties combination exemplified the significant differences in characteristics of

the maximum growth rates between kink and sausage modes. Next, we studied

the effects of the electric field on growth rates and found that increase in electric

field produces stabilizing or destabilizing effects based on the electrical property

ratios. Overall for kink and sausage modes, with the increase in electric field,

the flow was found to be stabilizing for case D with the contrary effect for case

A. Subsequently, surface-tension effects were studied which revealed that with

decrease in surface-tension, the growth rates for the short waves increased lead-

ing to a wider range of wavenumbers with the fastest growth rate. This clearly

reflected the importance of surface tension in stabilizing short waves and resolv-

ing the fastest growth rate wavenumber. Finally, the effects of a convective base

flow (plane Poiseuille) were considered. The results showed decrease in growth

rates of the long waves and an increase in growth rates of the short waves leading

to a conclusion that increase in the pressure gradient stabilized the long waves

and destabilized the short waves. This behaviour was observed for both kink and

sausage modes of cases A and D although the actual growth rate values were much

higher for case A compared to case D (as expected from the earlier discussion).

We turn to the nonlinear simulation results next. The front tracking algorithm

employed for the simulations was found to be first-order accurate in time. Since

the immiscible fluids under consideration possess different mechanical (density
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and viscosity) and electrical (conductivity and permittivity) properties, it was

necessary to introduce variations in sequence as a means of proving the robust-

ness of the algorithm. The most important variation of electrical conductivity was

considered first, followed by addition of density variation next, dielectric permit-

tivity variation added subsequently and finally the viscosity ratio was included.

The interfacial fronts and hence the relevant properties’ profile evolution were

tracked and plotted at several time instants for each of these cases. We tem-

porarily ignore the surface tension effects and verified using the linear analysis

that for the parametric ratios and wavenumbers considered in the simulation re-

sults, the neglection of surface tension results in an error of less than 3% in the

growth rate calculation. The growth rate results were calculated from the slope of

a least-squares fit of a semilog plot containing maximum interfacial deformation

as the ordinate and time (in seconds) as the abscissa. The calculated growth rate

results from nonlinear analysis for both kink and sausage modes provide reason-

able to excellent agreement with those from linear analysis. The growth rates for

the wavenumber considered (k∗=10) were found to be the highest for the case

with conductivity variation alone and decreased with a subsequent introduction

of other property ratios, with the dielectric permittivity inclusion contributing to

the most significant decrease. Lastly, exemplary results were provided for growth

rate calculation considering all the property variations but with the resolution

(grid points) doubled. It was shown that the growth rate calculation was in

excellent agreement with that calculated using the original resolution data.
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4.2 Future directions

The need for efficient mixing of immiscible fluids in miniaturized microfluidic

platforms has led to research studies aimed at control of droplet formation us-

ing external fields. The increase in attention has been fueled particularly due to

the immense applications of mixing in chemical and biomedical fields like drug

delivery systems, bio-purification systems to name a few. Interface deformation,

rupture and subsequent droplet formation using electric fields in a microfluidic

device is an extremely complex multiphase, multiscale problem and hence a com-

prehensive modeling of these processes is out of scope for a single thesis. This

thesis is a preliminary work on stability analysis of generalized two phase microflu-

idic mixing using electric fields and therefore further research work is required.

We address the future directions in the following paragraphs.

With regard to the linear analysis, the study of long-wave asymptotic be-

haviour would provide further invaluable insights into the contributions of elec-

trical properties and depth ratio towards stabilization/destabilization of flow.

The derivation of an analytical solution for long wave behaviour (governing equa-

tions provided in this thesis) in two-dimensional three layer viscous stratified flow

would be taken up first and the results would be validated with the pseudospectral

method. Simlar to the analytical expressions obtained for the single interface case

in Li et al. [24], we expect detailed study of various important parameters like

the depth ratio. For a quiescent base flow case for which this long wave analysis

would not be valid, the “root-finding” methodology (not provided in this thesis)
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would be employed. Neutral stability curves for a wide range of depth ratios,

electrical property ratios and electric fields (and hence, Capillary numbers) for

both quiescent and plane Poiseuille base flows would be the eventual objective.

It was mentioned earlier that surface tension effects were neglected in the non-

linear simulations since the parametric ratios considered in the results yielded an

error of less than 3% without its inclusion. Nonetheless, from the linear analy-

sis it was noted that surface tension stabilizes short waves and hence needs to be

included in the future for simulating kink and sausage modes for higher wavenum-

bers. The growth rate results for kink mode from the simulation data was found

to be less accurate compared to those for sausage mode. The reasons for this

observation need to be investigated. Furthermore, all the simulation results were

for the case of a quiescent base flow and therefore plane Poiseuille base flow (with

different pressure gradient values) results would need to be provided. Most im-

portantly, it was stated that the algorithm was second-order accurate in space

while validation of the algorithm for grid resolution independence was not pro-

vided. Even though growth rate results were in excellent agreement for original

and double resolution cases, a noticeable difference in the maximum interfacial de-

formations was observed. Grid resolution studies and related discrepancies would

be addressed in future works. Finally, parallelization and efficient numerical al-

gorithms suitable for very high conductivity ratios would be implemented.
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Appendix A

Long-wave asymptotic analysis

A slightly different convention (refer to Chapter 2) is adopted here: the bottom

interface is numbered 1, its displacement denoted by S1(x, t) and the top interface

is numbered 2 with its displacement denoted by S2(x, t).

A.1 Scaling and dimensionless parameters

We intend to provide the dimensionless forms of the governing equations (as in

[24]), the solution of which would provide key understanding of the effects of var-

ious important dimensionless parameters on flow stability. The scales considered

in the long-wave analysis are listed in table A.1 and the dimensionless ratios are

given in equation (A.1.1):

µ =
µ1

µ2

, ρ =
ρ1
ρ2
, σ =

σ1
σ2
, ϵ =

ϵ1
ϵ2
, , η = 2n+ 1, n =

a

b
,

Ca =
µ2Uev

γ
, Rej =

ρjUev(d)

µ2

(j = 1, 2),
Re2
Re1

=
1

ρ
, (A.1.1)

where, Uev is the electro-viscous velocity scale [12] representing the balance be-

tween electric body force and the viscous forces, tev is the electro-viscous time

scale, n is the depth ratio and η is the channel half-width, Ca is the capillary
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Parameter Scale Scale description
Length d = b/2 Half width of sandwiched layer
Velocity Uev = ϵ2E

2
0(d)/µ2 Electro-viscous velocity

Time tev = d/Uev Electro-viscous time
Pressure ρ2U

2
ev

Potential V0 Lower wall electric potential
Viscosity µ2 Viscosity of organic fluid
Density ρ2 Density of organic fluid

Conductivity σ2 Conductivity of organic fluid
Permittivity ϵ2 Permittivity of organic fluid

Table A.1: Various scales used in the long-wave analysis.

number which is the ratio of the viscous force to the surface tension force and Re

is the Reynolds number. σ, ϵ, ρ and µ are the electrical conductivity, dielectric

permittivity, density and viscosity ratios respectively.

A.2 Dimensionless governing equations

Firstly, the fluid flow variables i.e., velocities in x- and y- directions are considered.

The continuity equation in each layer is given by:

∂u(j)

∂x
+
∂v(j)

∂y
= 0, (j = 1, 2, 3) (A.2.1)

The x- and y-momentum equations in each layer are given by:

∂u(1)

∂t
+ u(1) · ∇u(1) = −1

ρ

∂p(1)

∂x
+

1

Re1

(
∂2u(1)

∂x2
+
∂2u(1)

∂y2

)
, 1 ≤ y ≤ η (A.2.2a)

∂v(1)

∂t
+ u(1) · ∇v(1) = −1

ρ

∂p(1)

∂y
+

1

Re1

(
∂2v(1)

∂x2
+
∂2v(1)

∂y2

)
, 1 ≤ y ≤ η (A.2.2b)
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∂u(2)

∂t
+ u(2) · ∇u(2) = −∂p

(2)

∂x
+

1

Re2

(
∂2u(2)

∂x2
+
∂2u(2)

∂y2

)
, −1 ≤ y ≤ 1 (A.2.2c)

∂v(2)

∂t
+ u(2) · ∇v(2) = −∂p

(2)

∂y
+

1

Re2

(
∂2v(2)

∂x2
+
∂2v(2)

∂y2

)
, −1 ≤ y ≤ 1 (A.2.2d)

∂u(3)

∂t
+u(3) ·∇u(3) = −1

ρ

∂p(3)

∂x
+

1

Re1

(
∂2u(3)

∂x2
+
∂2u(3)

∂y2

)
, −η ≤ y ≤ −1 (A.2.2e)

∂v(3)

∂t
+u(3) ·∇v(3) = −1

ρ

∂p(3)

∂y
+

1

Re1

(
∂2v(3)

∂x2
+
∂2v(3)

∂y2

)
, −η ≤ y ≤ −1 (A.2.2f)

subject to the no-slip wall boundary conditions:

u(3)(−η) = 0, v(3)(−η) = 0, (A.2.2g)

at the lower wall and,

u(1)(η) = 0, v(1)(η) = 0, (A.2.2h)

at the upper wall. Next, the conditions at the two interfaces need to be specified.

The continuity of x- and y- velocity at the two interfaces require:

u(2) = u(3), v(2) = v(3), at y = −1 + S1(x, t), (A.2.2i)

S1t + S1xu
(j) = v(j), at y = −1 + S1(x, t), (A.2.2j)

for the bottom interface where j=2,3 and,

u(1) = u(2), v(1) = v(2), at y = 1 + S2(x, t), (A.2.2k)

S2t + S2xu
(j) = v(j), at y = 1 + S2(x, t), (A.2.2l)
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for the top interface where j=1,2. Equations (A.2.2j) and (A.2.2l) represent the

kinematic constraints imposed on the lower and upper interfaces respectively.

Secondly, the electrical field variables are considered. The electric potential in

each layer satisfies the Laplace equation (2.2):

∂2Φ(j)

∂x2
+
∂2Φ(j)

∂y2
= 0, (j = 1, 2, 3), (A.2.3a)

subject to the potential wall boundary conditions:

Φ(3)(−η) = 1, (A.2.3b)

for the applied electric potential at the lower wall and,

Φ(1)(η) = 0, (A.2.3c)

for the grounded upper wall. The continuity of tangential electric field (2.2.5)

entails:

S1x

(
Φ(3)

y − Φ(2)
y

)
+
(
Φ(3)

x − Φ(2)
x

)
= 0, at y = −1 + S1(x, t), (A.2.3d)

for the bottom interface and,

S2x

(
Φ(2)

y − Φ(1)
y

)
+
(
Φ(2)

x − Φ(1)
x

)
= 0, at y = 1 + S2(x, t), (A.2.3e)
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for the top interface. Similarly, the normal electric field continuity (2.2.6) can be

expanded to obtain:

S1x

(
σΦ(3)

x − Φ(2)
x

)
=

(
σΦ(3)

y − Φ(2)
y

)
, at y = −1 + S1(x, t), (A.2.3f)

for the bottom interface and,

S2x

(
Φ(2)

x − σΦ(1)
x

)
=

(
Φ(2)

y − σΦ(1)
y

)
, at y = 1 + S2(x, t), (A.2.3g)

for the top interface. Note that the subscripts in (A.2.3d)-(A.2.3g) denote the

partial differentiation with respect to the relevant variable (x or y). Finally, the

total stress continuity in the tangential and normal direction to the interfaces

have to be satisfied. Substituting the expression for the total stress tensor (sum

of fluid and electric stress tensors) in (2.2.4) into the tangential stress continuity

equation (2.2.9) and expanding, it becomes:

S1x

{
2µ

(
∂v(3)

∂y
− ∂u(3)

∂x

)
− 2

(
∂v(2)

∂y
− ∂u(2)

∂x

)}
+
(
1− S2

1x

){
µ

(
∂u(3)

∂y
+
∂v(3)

∂x

)
−
(
∂u(2)

∂y
+
∂v(2)

∂x

)}
+ S1x

{
ϵ
(
E

(3)2
2 − E

(3)2
1

)
−

(
E

(2)2
2 − E

(2)2
1

)}
+
(
1− S2

1x

){
ϵE

(3)
1 E

(3)
2 − E

(2)
1 E

(2)
2

}
= 0, at y = −1 + S1(x, t), (A.2.4)
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for the lower interface and:

S2x

{
2

(
∂v(2)

∂y
− ∂u(2)

∂x

)
− 2µ

(
∂v(1)

∂y
− ∂u(1)

∂x

)}
+
(
1− S2

2x

){(∂u(2)
∂y

+
∂v(2)

∂x

)
− µ

(
∂u(1)

∂y
+
∂v(1)

∂x

)}
+ S2x

{(
E

(2)2
2 − E

(2)2
1

)
− ϵ

(
E

(1)2
2 − E

(1)2
1

)}
+
(
1− S2

2x

){
E

(2)
1 E

(2)
2 − ϵE

(1)
1 E

(1)
2

}
= 0, at y = 1 + S2(x, t), (A.2.5)

for the upper interface. Proceeding similarly for the normal components of viscous

and the electric stresses in (2.2.10), we obtain the normal stress continuity as:

(
1 + S2

1x

)
Re2 (p2 − p3) + 2µ

{
S2
1x

∂u(3)

∂x
− S1x

(
∂u(3)

∂y
+
∂v(3)

∂x

)
+
∂v(3)

∂y

}
− 2

{
S2
1x

∂u(2)

∂x
− S1x

(
∂u(2)

∂y
+
∂v(2)

∂x

)
+
∂v(2)

∂y

}
+
(
S2
1x − 1

){1

2

(
E

(2)2
2 − E

(2)2
1

)
− ϵ

2

(
E

(3)2
2 − E

(3)2
1

)}
(A.2.6)

− 2S1x

{
ϵE

(3)
1 E

(3)
2 − E

(2)
1 E

(2)
2

}
− 1

Ca
S1xx

(
1 + S2

1x

)−1/2
= 0, at y = −1 + S1(x, t),

for the lower interface and:

(
1 + S2

2x

)
Re2 (p1 − p2) + 2

{
S2
2x

∂u(2)

∂x
− S2x

(
∂u(2)

∂y
+
∂v(2)

∂x

)
+
∂v(2)

∂y

}
− 2µ

{
S2
2x

∂u(1)

∂x
− S2x

(
∂u(1)

∂y
+
∂v(1)

∂x

)
+
∂v(1)

∂y

}
+
(
S2
2x − 1

){ ϵ
2

(
E

(1)2
2 − E

(1)2
1

)
− 1

2

(
E

(2)2
2 − E

(2)2
1

)}
(A.2.7)

− 2S2x

{
E

(2)
1 E

(2)
2 − ϵE

(1)
1 E

(1)
2

}
− 1

Ca
S2xx

(
1 + S2

2x

)−1/2
= 0, at y = 1 + S2(x, t),
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for the upper interface. Note that E1 and E2 in the equations (A.2.4)-(A.2.7)

denote the electric fields in x- and y-directions respectively. Equations (A.2.1)-

(A.2.7) represent the complete set of dimensionless equations and relevant bound-

ary conditions that fully specify the three-layer immiscible fluid EHD instability

problem.

A.3 Perturbation analysis

We now perform the temporal stability analysis i.e. test the stability of the system

subject to perturbations of the form f ′(x, y, t) = f̂(y)e(ik(x−ct)). “f” can denote

any variable (flow related or electrostatic). Here, f̂(y) represents the amplitude

(complex), k is the wavenumber (real) and c(=cr+ici) is the growth rate (complex)

of the perturbation. cr and ci are the real and imaginary parts of the growth rate

respectively. From the form of the perturbation, we can observe that the system

is said to be stable if ci is negative and unstable if ci is positive. The bottom and

top interfacial displacement amplitudes are denoted by ŝ1 and ŝ2 respectively.

We first derive the base state solution for the velocity and electric potential.

The convention of representing the base state values using the subscript “0” will

be followed unless mentioned otherwise. We assume a pressure-gradient driven

convective base flow. By solving the continuity and Navier-Stokes equations with
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no-slip at the wall and velocity continuity at the interfaces, the velocity (dimen-

sionless) in each layer can be obtained as:

U
(1)
0 = A1y

2 + b1, 1 ≤ y ≤ η,

U
(2)
0 = A2y

2 + b2, −1 ≤ y ≤ 1,

U
(3)
0 = A1y

2 + b1, −η ≤ y ≤ −1, (A.3.1)

where, A1 = (Re2/2µ)(∂p/∂x), b1 = −A1η
2, A2 = µA1 and b2 = (1− µ− η2)A1.

Note that (∂p/∂x) is the base state dimensionless pressure gradient which is a

constant and assumed to be known. The base state electric potential satisfies

the Laplace’s equation in each layer and combined with the tangential and nor-

mal electric field continuity at the interfaces, the solution for electric potential

(dimensionless) in each layer can be expressed as:

Φ
(1)
0 (y) =

y − η

2(1− σ − η)
, 1 ≤ y ≤ η,

Φ
(2)
0 (y) =

σy

2(1− σ − η)
+

1

2
, −1 ≤ y ≤ 1,

Φ
(3)
0 (y) =

y + η

2(1− σ − η)
+ 1, −η ≤ y ≤ −1, (A.3.2)

For the interfaces in equilibrium, the dimensionless normal stress balance at the



95

top and bottom interfaces yield:

Re2

(
p
(1)
0 − p

(2)
0

)
+
η2

2

(σ2 − ϵ)

(1− σ − η)2
= 0, at y = 1,

Re2

(
p
(2)
0 − p

(3)
0

)
+
η2

2

(ϵ− σ2)

(1− σ − η)2
= 0, at y = −1, (A.3.3)

respectively. Having obtained the base state profiles, we now proceed to the linear

analysis. Considering the flow field first, we linearize the Navier-Stokes equations

using u(j) = U
(j)
0 + u′(j), v(j) = v′(j), p(j) = p

(j)
0 + p′(j) (j=1,2,3), where the primes

indicate perturbation variables. We utilize streamfunction “ψ” instead of primi-

tive variables (x- and y- velocities), following the approach of Yih [4] and Li et al.

[24]. The velocity perturbations are related to their streamfunction counterparts

as u′(j) = ∂ψ(j)/∂y, v′(j) = −∂ψ(j)/∂x, where ψ(j)(x, y, t)=ϕ(j)exp(ik(x−ct)) with

ϕ(j) being the complex amplitude. Substituting the total velocities and pressure

into the Navier-Stokes equations (A.2.2a)-(A.2.2f), and neglecting second-order

terms and higher, we obtain the classical Orr-Sommerfeld equation for each fluid

layer by combining the expressions for x- and y- momentum equations:

(
d2

dy2
− k2

)2

ϕ(1) = ikRe1

[(
U

(1)
0 − c

)(
d2

dy2
− k2

)
ϕ(1) − ϕ(1)d

2U
(1)
0

dy2

]
,

(A.3.4a)(
d2

dy2
− k2

)2

ϕ(2) = ikRe2

[(
U

(2)
0 − c

)(
d2

dy2
− k2

)
ϕ(2) − ϕ(2)d

2U
(2)
0

dy2

]
,

(A.3.4b)(
d2

dy2
− k2

)2

ϕ(3) = ikRe1

[(
U

(3)
0 − c

)(
d2

dy2
− k2

)
ϕ(3) − ϕ(3)d

2U
(3)
0

dy2

]
,

(A.3.4c)
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subject to boundary conditions (A.2.2g)-(A.2.2l) rewritten in terms of the stream-

function as:

ϕ(3)(−η) = 0,
dϕ(3)

dy
(−η) = 0, (A.3.4d)

ϕ(1)(η) = 0,
dϕ(1)

dy
(η) = 0, (A.3.4e)

ϕ(2) = ϕ(3) = ϕ(−1),
dϕ(3)

dy
(−1)− dϕ(2)

dy
(−1) =

2ϕ(−1)

c′I
(A1 − A2) , (A.3.4f)

S1 =
ϕ(−1)

c′I
exp(ik(x− ct)), (A.3.4g)

ϕ(1) = ϕ(2) = ϕ(1),
dϕ(2)

dy
(1)− dϕ(1)

dy
(1) =

2ϕ(1)

c′II
(A1 − A2) , (A.3.4h)

S2 =
ϕ(1)

c′II
exp(ik(x− ct)), (A.3.4i)

where, c′II = c − U
(1)
0 (1) = c − U

(2)
0 (1) and c′I = c − U

(2)
0 (−1) = c − U

(3)
0 (−1).

Proceeding to the electric field related effects, we denote the total electric potential

as Φ(j) = Φ
(j)
0 + χ(j) (j=1,2,3), where χ(j) = χ̂(y)exp(ik(x − ct)) is the electric

potential perturbation. Substituting the total potential into (A.2.3a)-(A.2.3g),

and cancelling out base-state terms, the governing equations for the potential

perturbations are:

∂2χ(j)

∂x2
+
∂2χ(j)

∂y2
= 0, (j = 1, 2, 3), (A.3.5a)

subject to the potential wall boundary conditions:

χ(3)(−η) = 0, (A.3.5b)
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χ(1)(η) = 0, (A.3.5c)

and interfacial continuity conditions:

S1x
(1− σ)

2 (1− σ − η)
+
(
χ(3)
x − χ(2)

x

)
= 0, at y = −1, (A.3.5d)

S2x
(σ − 1)

2 (1− σ − η)
+
(
χ(2)
x − χ(1)

x

)
= 0, at y = 1, (A.3.5e)

χ(2)
y = σχ(3)

y , at y = −1, (A.3.5f)

σχ(1)
y = χ(2)

y , at y = 1, (A.3.5g)

Equations (A.3.5a)-(A.3.5g) can be solved straightforwardly to obtain the poten-

tial perturbations in each layer as:

χ̂(1) =
(σ − 1) sinh ({η − y} k)

4 (1− σ − η) cosh ({η − 1} k)
[K1 (ŝ1 + ŝ2) sh−M1 (ŝ1 − ŝ2) ch] ,

(A.3.5h)

χ̂(2) =
−σ (σ − 1)

4 (1− σ − η)
[K1 (ŝ1 + ŝ2) cosh(ky)−M1 (ŝ1 − ŝ2) sinh(ky)] , (A.3.5i)

χ̂(3) =
(σ − 1) sinh ({y + η} k)

4 (1− σ − η) cosh ({η − 1} k)
[K1 (ŝ1 + ŝ2) sh+M1 (ŝ1 − ŝ2) ch] ,

(A.3.5j)

where, K1 = (thsh+ σch)−1, M1 = (thch+ σsh)−1, th = tanh ({η − 1} k),

sh = sinh(k) and ch = cosh(k). Note that sinh and cosh are the hyperbolic

sine and cosine functions respectively. Finally, substituting the total velocities

and electric potential into the tangential and normal stress balance at the two
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interfaces in equations (A.2.4)-(A.2.7), and neglecting terms second-order and

higher, we obtain the final forms as:

[
µ

(
d2

dy2
+ k2

)
ϕ(3)(−1)−

(
d2

dy2
+ k2

)
ϕ(2)(−1)

]
+ ikη2 (QT )1 = 0, (A.3.6)

for the lower interface, where, (QT )1 represents the contribution of the electric

stresses to the tangential stress continuity at top interface and is expressed as:

(QT )1 =
ŝ1 (ϵ− σ2)

(1− σ − η)2
+

(σ − 1)

2 (1− σ − η)2

{
(ϵthsh+ σ2ch)

thsh+ σch
(ŝ1 + ŝ2)

}
+

(σ − 1)

2 (1− σ − η)2

{
(ϵthch+ σ2sh)

thch+ σsh
(ŝ1 − ŝ2)

}
, (A.3.7)

and:

[(
d2

dy2
+ k2

)
ϕ(2)(1)− µ

(
d2

dy2
+ k2

)
ϕ(1)(1)

]
+ ikη2 (QT )2 = 0, (A.3.8)

for the upper interface, where, (QT )2 represents the contribution of the electric

stresses to the tangential stress continuity at bottom interface and is expressed

as:

(QT )2 =
ŝ2 (σ

2 − ϵ)

(1− σ − η)2
− (σ − 1)

2 (1− σ − η)2

{
(ϵthsh+ σ2ch)

thsh+ σch
(ŝ1 + ŝ2)

}
+

(σ − 1)

2 (1− σ − η)2

{
(ϵthch+ σ2sh)

thch+ σsh
(ŝ1 − ŝ2)

}
, (A.3.9)

Proceeding similarly for the normal stress continuity, the final forms are:
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[
µ

(
d2

dy2
− 3k2

)
dϕ(3)

dy
(−1)−

(
d2

dy2
− 3k2

)
dϕ(2)

dy
(−1)

]
+ ik

[
ρ (Q0)1 −

k2ŝ1
Ca

]
− ikη2 (QN)1 = 0, (A.3.10)

for the lower interface, where, in addition to the electric stress contribution (QN)1,

we also have the contribution of the pressure terms (Q0)1 to the normal stress

continuity at the top interface. The expressions for (QN)1 and (Q0)1 are given

by:

(QN)1 =
(ϵ− σ2) (σ − 1) k

2 (1− σ − η)2

{
sh

thsh+ σch
(ŝ1 + ŝ2)

}
+

(ϵ− σ2) (σ − 1) k

2 (1− σ − η)2

{
ch

thch+ σsh
(ŝ1 − ŝ2)

}
, (A.3.11)

(Q0)1 = −Re2
[(
c− U (3)(−1)

)(1

ρ

dϕ(2)

dy
− dϕ(3)

dy

)
+ 2ϕ(−1)

(
A1 −

A2

ρ

)]
,

and:

[
µ

(
d2

dy2
− 3k2

)
dϕ(2)

dy
(1)−

(
d2

dy2
− 3k2

)
dϕ(1)

dy
(1)

]
+ ik

[
ρ (Q0)2 −

k2ζ̂1
Ca

]

− ikη2 (QN)2 = 0, (A.3.12)

for the upper interface, where, (Q0)2 and (QN)2 represent the contributions of

the pressure terms and electric stresses to the normal stress continuity at bottom

interface and are given as:
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(QN)2 =
(ϵ− σ2) (σ − 1) k

2 (1− σ − η)2

{
sh

thsh+ σch
(ŝ1 + ŝ2)

}
− (ϵ− σ2) (σ − 1) k

2 (1− σ − η)2

{
ch

thch+ σsh
(ŝ1 − ŝ2)

}
, (A.3.13)

(Q0)2 = −Re2
[(
c− U (2)(1)

)(dϕ(1)

dy
− 1

ρ

dϕ(2)

dy

)
+ 2ϕ(1)

(
A1 −

A2

ρ

)]
,

It is worth mentioning that (Q0)1 and (Q0)2 would also contain contributions from

body force terms (for example, gravity as considered in Li et al. [24]) considered

in the fluid momentum equations. Since we neglect gravity, such a contribution

is absent in those expressions. As discussed in Li et al. [24], we verify our results

for the two limiting cases of (1) perfect dielectrics and (2) perfectly conducting

surface where one fluid is highly conductive compared to the other. Substituting

ϵ=σ for the case of perfect dielectrics in the expressions of (QT )1 and (QT )2, we

get (QT )1 = (QT )2 = 0, thereby recovering the result that perfect dielectrics do

produce electrical normal stresses alone and no electrical tangential shear stresses.

Subsequently, as σ → ∞, we obtain (QT )1 → 0 and (QT )2 → 0 thereby verifying

that electrical tangential stresses vanish at perfectly conducting interfaces. It can

also be observed that when ϵ=σ2, (QN)1 = (QN)2 = 0 while (QT )1 ̸= 0 and

(QN)2 ̸= 0, implying that electrical tangential stresses do not vanish and hence

would be fundamentally responsible for deciding the flow stability for this case.

This observation is also in agreement with that from Li et al. [24].
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