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ABSTRACT OF THE DISSERTATION 

Estimation and Equalization of Communications Channels Using Wavelet Transforms 

By CANUTE VAZ 

 

Dissertation Director:  
Professor David G. Daut 

 

 

This dissertation features the development of signal processing strategies for the 

estimation of channel impulse responses and the equalization of the effects of channels on 

communications signals propagating through them using the Discrete Wavelet Transform 

(DWT).  The two strategies are developed as part of a wavelet-based signal processing 

platform, which can be used to enable reconfigurable radio transceivers. 

 

The approach taken is to recast standard discrete time-domain signal processing 

procedures into a DWT-based framework.  To facilitate this, three equivalent techniques 

of DWT-based convolution that use both subband coding as well as polyphase filter 

implementations are devised. 

  

A DWT-based deconvolution procedure is derived analytically and is applied to perform 

estimation of several time-invariant multipath communications channels.  Conditions of 

slow and fast fading are considered, and faded test signals are corrupted by Additive 

White Gaussian Noise (AWGN) that results in ratios of bit-energy-to-noise-power-density, 

0bE N , in the range of 0 to 30 dB.  Monte Carlo simulations of the estimation of the 
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channel impulse responses yield Mean-Square Error (MSE) results with excellent 

agreement for coarse levels of DWT resolution when compared with standard discrete 

time-domain deconvolution. 

 

Using DWT-based convolution the linear equalization techniques of Zero Forcing 

Equalization (ZFE) and Minimum Mean-Squared Error (MMSE) equalization, are 

formulated and implemented in the wavelet-domain.  Monte Carlo simulations of the 

equalization of a fast fading channel with 0bE N  in the range 0 dB to 60 dB show that the 

performance of both linear equalizers in the time- and wavelet-domains is essentially  

identical. 

 

Allied with the primary objective of the dissertation, both DWT-based channel estimation 

and equalization are included in communications systems.  In Monte Carlo simulations of 

these systems, signals that are digitally modulated using Binary Amplitude Shift Keying 

(BASK), Binary Frequency Shift Keying (BFSK) and 16-Quadrature Amplitude 

Modulation (16-QAM) schemes are propagated through a fast fading channel.  The faded 

signals are corrupted by AWGN resulting in 0bE N  in the range 0 dB to 20 dB.  The 

performance of these hybrid time- and DWT-based communications systems is evaluated 

with Symbol Error Rate (SER) curves showing no decrease in performance when 

compared with discrete time-domain system methods. 
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Chapter 1 

Introduction 
 

Contemporary communications systems employ a wide variety of signal transmission, 

reception, and processing techniques [1].  Advanced methodologies for high-speed 

communications, such as various time [2], frequency [3,4], and spatial [5,6] multiplexing 

techniques, are being commonly used in such systems, and are rapidly maturing. 

 

In order to guide the design of such systems a wide range of standards and protocols are 

in use, with new technologies being invented regularly.  It has recently been recognized 

that a new paradigm is needed for the development of future communications systems.  A 

focus on interoperability between standards is necessary for both commercial and 

military applications. 

 

One such platform is that of reconfigurable radios [7-9].  Ideally, such systems are 

reconfigurable in the sense that signals can be transmitted at different carrier frequencies 

and different modulation schemes, and can then be reliably identified and appropriately 

demodulated in real-time by a receiver that acquires these. 

 

It is postulated that the use of Wavelet Transforms (WTs) [10-12] can enable such 

reconfigurable radios.  The development of a Wavelet Platform for reconfigurable radios 
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is the primary motivation of this dissertation because two of the vital signal processing 

elements required in such a system are channel estimation and channel equalization. 

 

Therefore, the foci of this research study are two-fold: 

1. To investigate the feasibility of estimating channel impulse responses using the WT. 

2. To investigate the feasibility of equalizing channel effects on a propagating signal 

with the use of the WT. 

 

1.1  Motivation:  A Wavelet Platform for 
Communications Systems 

 

 

 
Fig. 1.1.1.  Major system components of a communications receiver [13]. 

 

Communications receivers can be fundamentally reduced to consisting of three main 

stages, as seen in Fig. 1.1.1: 

1. A Radio Frequency (RF) front-end; 

2. A mixed-signal section; 

3. Demodulation and baseband processing units. 
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The RF front-end is typically composed of analog electronic sub-systems such as 

mixers, Local Oscillators (LOs), Band-Pass Filters (BPFs), Variable Gain Amplifiers 

(VGAs), and antennae [14].  Apart from conditioning the analog signal, the RF front-end 

also downconverts a received passband signal to an Intermediate Frequency (IF) for ease 

of subsequent processing [15]. 

 

The mixed-signal stage of a receiver serves to digitize the downconverted signal output 

by the RF front-end.  This stage is essential if the signal is to be digitally processed, but is 

omitted in the case of analog receivers [14]. 

 

The demodulator recovers the baseband data that were transmitted [16].  Any decoding 

operations that must be performed on the recovered data are handled by a baseband 

processor [4]. 

 

Radio transmitters also use a similar signal processing strategy as the receiver described, 

except in reverse.  In transmitters, baseband data are first encoded as needed and are then 

used to modulate a carrier signal at an intermediate frequency.  Such a modulated signal 

is then upconverted to the RF passband and transmitted. 

 

The topological duality of radio transmitters and receivers is illustrated in Fig. 1.1.2. 
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Baseband 
Processor

Original 
Baseband Data

Modulator

LO

Baseband 
Processor

Recovered 
Baseband Data

Demodulator

Transmitter

Receiver

DAC

ADC
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Fig. 1.1.2.  Typical essential sub-systems in a radio transceiver [13]. 

 

Recent efforts in the research and development of wireless communications systems have 

been focused on techniques such as Orthogonal Frequency Division Multiplexing 

(OFDM) [17-19], Multiple-Input Multiple-Output (MIMO) systems [20-22], and hybrid 

OFDM-MIMO techniques as well [23-26]. 

 

One limitation of these advanced techniques, however, is the same as of basic systems: 

the lack of interoperability between radios designed to implement different 

communications standards.  A major hindrance to the interoperability between systems 

using different standards is that often each standard requires the use of different 

modulation schemes [27-33].  A trivial solution to this problem is to simply construct 

receivers with banks of demodulators specific to several modulation schemes of interest. 
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A more elegant solution would be to construct a receiver that has the ability to 

automatically identify the modulation scheme used in a received signal and then 

automatically demodulate the signal as well.  In the literature, the process of 

automatically identifying modulation schemes is formally called Automatic Modulation 

Recognition (AMR) [34]. 

 

The wavelet transform is one mathematical theory that can be used to develop such a 

receiver.  In fact, the concepts of wavelet-based AMR and demodulation have already 

been recently invented [35,36].  Studies have shown that these new systems perform with 

exceptional robustness even when signals are corrupted by a large amount of additive 

noise [36]. 

 

In a general sense, wavelets are rapidly decaying oscillatory functions that can be used as 

basis functions to represent signals.  They are especially useful in representing practical 

signals, which are usually not monochromatic. 

 

With the use of the Fourier transform, a time-domain signal can be expressed in terms of 

a sinusoidal set of basis functions in the spectral domain.  In this process, however, the 

temporal detail of the signal is obscured.  The Short-Time Fourier Transform (STFT) 

[37], on the other hand, does allow for temporal details of a signal to be preserved as it 

makes use of windowed basis functions.  The window functions, however, cannot be 

varied in size.  Therefore, the STFT is subject to the problem of finite resolution:  a 

narrow, highly-localized time-domain window provides poorly localized spectral-domain 
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resolution, and conversely a poorly-localized time-domain window of fixed size provides 

highly localized spectral resolution.  This drawback of fixed window sizes is especially 

problematic in the analysis of digitally modulated communications signals. 

 

In the case of wavelet transforms, the window functions, i.e., the wavelets, can be 

temporally translated and can be dilated in time as well.  This latter feature allows for the 

variation of the width of wavelet windows to a specific desired resolution.  Comparing 

translated and scaled (dilated) wavelets with the original signal yields cross-correlation 

coefficients such that each correlation contains the frequency information of the original 

signal while automatically preserving the temporal information of the signal. 

 

It is this powerful feature of wavelets that is used in the wavelet transform-based 

automatic modulation recognition and demodulation techniques, which form the core of 

the Wavelet Platform for reconfigurable radios. 

 

A system-level illustration of the Wavelet Platform in a communications system is 

provided in Fig. 1.1.3.  As seen in Fig. 1.1.3, the Wavelet Platform is composed of five 

major signal processing operations: 

 1. De-noising 

 2. Channel Estimation 

 3. Channel Equalization 

 4. Automatic Modulation Recognition 

 5. Demodulation. 
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Fig. 1.1.3.  System-level view of a reconfigurable radio transceiver built on the Wavelet 

Platform [38]. 

 

In Fig. 1.1.3, the Wavelet Platform is shown as a part of a reconfigurable radio receiver, 

which is in turn a part of a reconfigurable radio transceiver.  The dashed lines indicate 

that the Wavelet Platform can provide appropriate information to sub-systems in both the 

transmitter and receiver so that operating parameters such as the modulation scheme, 

carrier frequency, filter frequency response characteristics, etc., may be altered if needed.  

Such feedback of relevant information enables reconfigurability of the transceiver while 

it is operating. 

 

The signal processing strategies of channel estimation and channel equalization are 

essential components of any practical communications system [3,16].  They are, 
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therefore, integral components of the Wavelet Platform as well.  The core components of 

the Wavelet Platform, however, are the wavelet transform-based AMR and automatic 

demodulation sub-systems.  Also, one well-developed application of wavelet transforms 

is the de-noising of signals [39-41].  For this reason it is also included in the Wavelet 

Platform [42]. 

 

In brief, the intention of developing wavelet-based methodologies for channel estimation 

and channel equalization is to augment the processes of wavelet-based AMR and 

automatic signal demodulation. 

 

Viewed independently, an investigation into determining whether wavelet-based channel 

estimation and equalization is feasible, and, if so, practicable, directly serves to advance 

the state of the art of communications receiver technology. 

 

1.2  Objectives of the Research 

There are six primary objectives of this research study: 

1. To determine whether it is possible to estimate the time-domain impulse response of 

an unknown channel using a wavelet transform approach. 

2. If possible, to develop and verify a method for wavelet transform-based channel 

estimation. 

3. To determine whether it is possible to equalize the fading effects of channels on 

signal using a wavelet transform-based approach. 
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4. If possible, to develop and verify a method for wavelet transform-based channel 

equalization. 

5. Utilize the wavelet transform-based channel estimation and equalization 

methodologies in  communication systems, and evaluate the performance of the new 

systems. 

6. Compare the performance of the wavelet transform-based signal processing 

methodologies and the new communications systems with corresponding discrete 

time-domain methodologies and systems. 

 

All of the wavelet transform-based methodologies that are developed in this dissertation 

use the Discrete Wavelet Transform (DWT) [10-12].  In particular, the filter bank 

approach of DWT, which is implemented using the well-established signal processing 

methodology called Multiresolution Analysis (MRA) [43,44], is to be used. 

 

Channel Estimation 

Channel estimation is to be carried out with the use of pilot signals, which are used to 

sound the channel prior to the transmission of the actual message signal.  In the 

corresponding case of time-domain signals, such an estimation can be computed by the 

deconvolution of an uncorrupted transmitted signal from the corrupted received signal. 

 

Therefore, in this investigative effort, the desired DWT-based channel estimation 

procedure is to be a DWT-based deconvolution procedure. 
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An analytical formulation of DWT-based deconvolution is to be developed, and is to be 

validated using computer simulations.  The simulations are to be Monte Carlo 

experiments so as to provide statistically significant results.  Test channel models that are 

used in the communications literature are to be used. 

 

Channel Equalization 

Two types of channel equalization are to be considered.  The first is Minimum Mean-

Squared Error (MMSE) equalization, and the second is Zero-Forcing Equalization (ZFE).  

A common approach for DWT-based equalization is to be developed, and then 

implemented with both MMSE equalization and ZFE. 

 

DWT-based equalization is to be described analytically, and verified using Monte Carlo 

computer simulation experiments.  For the purposes of validation, a channel with a 

Gaussian Power Delay Profile (PDP) is to be used in conjunction with the digital 

modulation schemes Binary Amplitude Shift Keying (BASK), Binary Frequency Shift 

Keying (BFSK), and 16-symbol Quadrature Amplitude Modulation (16-QAM).  

 

DWT-based Convolution 

Both DWT-based estimation and equalization require the development of the technique 

of DWT-based convolution.  The procedures are to be developed and described 

analytically. 
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Application in Communication Systems 

The efficacy of the DWT-based channel estimation and channel equalization procedures 

is to be tested in communication systems.  Specifically, three systems are to be used, each 

consisting of a transmitter and receiver pair that implement BASK, BFSK and 16-QAM.  

Performance of these new systems is to be evaluated by computing Symbol Error Rates 

(SERs). 

 

Noise Processes 

Test signals in all Monte Carlo simulations are to be corrupted by Additive White 

Gaussian Noise (AWGN) . 

 

Experiments and Controls 

For all of these studies there exist well-defined counterparts in the time-domain, 

specifically in the discrete time-domain.  Thus, the veracity of results for each DWT-

based research topic described in this section can directly be compared to the results in 

the time-domain for each corresponding topic. 

 

The control experiments and the corresponding DWT-based research topics in this study 

are provided in Table 1.2.1. 
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Table 1.2.1  Experiments and corresponding controls 

 Experiment Control 

1. DWT-based channel estimation 
Discrete time-domain-based channel 
estimation 

2. DWT-based MMSE equalization 
Discrete time-domain-based MMSE 
equalization 

3. DWT-based ZFE Discrete time-domain-based ZFE 

4. 
Communication systems with DWT-
based signal processing components 

Communication systems with standard 
discrete time-domain-based signal 
processing components 

 

1.3  Organization of the Dissertation 

As has been described in Section 1.2, this dissertation has multiple research topics at its 

core.  The four topics are identified as follows. 

1. Enabling research:  DWT-based convolution 

2. Development:   DWT-based channel estimation 

3. Development:   DWT-based channel equalization 

4. Application:   Communication systems with WT-based sub-systems 

 

The development of DWT-based convolution is necessary for the other three topics.  

DWT-based estimation and DWT-based equalization are independent topics when 

viewed as signal processing strategies.  They are both, however, used in conjunction with 

each other in communications systems. 
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Therefore, each of these topics is addressed in separate chapters.  Each of these chapters 

is replete with specific objectives, hypotheses,  theoretical formulations, and 

experimental validations. 

 

Following this first, introductory, section, the theoretical aspects of several prerequisite 

communications concepts are provided in Chapter 2.  The specific concepts include 

communication signal, channel, and system models and the standard theories of MMSE 

equalization and ZFE.  A comprehensive survey of the literature relevant to the topics 

researched in this study is presented in Chapter 3.  The theory of WTs is formally 

introduced in Chapter 4, with emphasis being on MRA and the DWT. 

 

Procedures for DWT-based convolution are provided in Chapter 5.  Specifically, four 

equivalent methods are analytically derived and explained with the aid of illustrations. 

DWT-based deconvolution is described in Chapter 6.  The procedure is validated via 

simulation experiments involving several channel models, and the results are discussed.  

In Chapter 7 a technique for DWT-based channel equalization is presented, using which 

DWT-based MMSE equalization and DWT-based ZFE are implemented in simulation 

experiments. 

 

Chapter 8 contains three communications systems that use DWT-based channel 

equalizers and channel estimators, as needed.  The performance of the systems is 

evaluated, and results compared with their standard, discrete time-domain, counterparts. 
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The dissertation is concluded in Chapter 9 with a summary of the research that has been 

presented, an exposition of the limitations of the topics, and a list of suggested future 

work that could be carried out as extensions of this dissertation. 
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Chapter 2 

Theoretical Preliminaries 
 

The formal definitions of signals, as used in this dissertation and in the general context of 

communications, are presented in Section 2.1.  Commonly-used terms, such as baseband 

signals, low-pass equivalent signals, passband and band-pass signals, etc., are explained.  

The standard discrete-time channel model is presented in detail in Section 2.2.  The 

concepts that are used in the model are used throughout this work, either in conjunction 

with other concepts of communications channels or independently. 

 

The concept of linear equalization of signal is described in Section 2.3.  Analytical 

formulations of the two specific types of equalization that are used in this dissertation, 

i.e., MMSE equalization and ZFE, are also provided in the section. 

 

In Section 2.4 the concepts of multipath channels and the consequential undesirable 

phenomenon of Intersymbol Interference (ISI) are introduced.  The fading effects of 

multipath channels on signals are discussed in Section 2.5. 
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2.1  Signal Definitions 

Consider a real-valued time-domain signal,  s t , that is to be transmitted, and has 

spectral content located about the frequency, fc, which denotes the carrier frequency of 

the signal.  The frequency spectrum of  s t , i.e.,  S f , is shown in Fig. 2.1.1.  

 

-fc fc

 S f

f

 

Fig. 2.1.1.  Frequency spectrum of a band-pass signal. 

 

A signal of this type is called a band-pass signal since it can be filtered by a band-pass 

filter prior to transmission and still retain most (if not all) of its spectral content.  The 

band-pass filter serves to limit the spectral content of the signal to a specific bandwidth 

about a specific center frequency.  In general, the bandwidth of the signal to be 

transmitted is smaller than its center frequency, fc.  A band-pass signal is also sometimes 

referred to as a passband signal, and the two terms may be used interchangeably. 

 

A band-pass signal can be generally expressed as [3] 

     2Re cj f t
ls t s t e    (2.1.1) 
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where  ls t  is called the low-pass equivalent of  s t , the band-pass signal.  In 

particular,  ls t  can be conveniently described in polar form as 

      j t
ls t a t e      (2.1.2) 

where  a t  is called the envelope of  s t ,  t  the phase of  s t , and, therefore,  ls t  

itself is called the complex envelope of  s t . 

 

The expression for  s t  in (2.1.1) can be simplified using Euler’s formula to explicitly 

show the cosine function comprising the band-pass signal 

       2Re cj t j f ts t a t e e   

       2Re cj f t ts t a t e       

       cos 2 cs t a t f t t    . (2.1.3) 

 

An alternative expression for the band-pass signal is also available by expressing the low-

pass equivalent signal in (2.1.2) in Cartesian form, i.e.,  

      I Q
l l ls t s t s t  .   (2.1.4) 

Substituting (2.1.4) into (2.1.1), allows for the band-pass signal to expressed as 

       2IRe cj f tQ
l ls t s t js t e      

          I cos 2 sin 2Q
l c l cs t s t f t s t f t    . (2.1.5) 
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The cosine term in (2.1.5) is commonly referred to as the In-phase (I) carrier component 

of the band-pass signal, and the sine term is referred to as the Quadrature (Q) 

component, as it is 2  radians out-of-phase with respect to the I carrier component.  

From the definition of a band-pass signal in (2.1.5)  I
ls t  and  Q

ls t  can be thought of as 

multiplying function that modulate the amplitude of the I and Q carrier components, 

respectively [3]. 

 

2.2  Standard Channel Model 

In the remainder of this dissertation, only low-pass equivalent signals are considered 

instead of band-pass signals for the sake of convenience, without any loss of generality 

[3].  Consider a discrete information-bearing sequence of symbols, represented by  nI , 

and a pulse that is generated by a low-pass filter having an impulse response  g t .  The 

pulse is assumed to have a band-limited frequency spectrum,  G f , such that 

  0G f     f W , where W is the bandwidth of  G f .  The transmitted signal can, 

therefore, be described in terms of  nI  and  g t  as 

      
0n

s t I n g t nT




  ,  (2.2.1) 

where T is the duration of the  g t . 
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The signal,  s t , is transmitted through a channel, the impulse response of which is 

denoted by  c t .  A functional block diagram depicting the signal propagation path from 

transmitter to receiver, along with the fundamental sub-systems in typical 

communications transmitters and receivers, is shown in Fig. 2.2.1. 

 

 nI  nI

     h t g t c t   

Fig. 2.2.1.  Block diagram of signal transmission and reception. 

 

The convolution operations performed by the low-pass transmitter filter and the channel 

can be combined into one impulse response function,  h t , as 

      h t g c t d  




  . (2.2.2) 

Hence, the low-pass signal that is acquired by a radio receiver can be represented by 

        
0n

r t I n h t nT z t




   , (2.2.3) 

where  z t  is used to denote noise that may be added to the signal during propagation 

through the channel. 

 

Upon reception, the signal is filtered by a matched filter, i.e., a filter with an impulse 

response that is matched to the combined impulse responses of the transmit filter and the 
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channel,  h t .  Specifically, the impulse response of such a matched filter at the receiver 

is  h t  . 

 

At a higher level of abstraction, an impulse response function  x t  can be defined as the 

response of the matched filter,  h t  , to an excitation  h t , i.e., 

      x t h t h t nT dt






  . (2.2.4) 

This definition is depicted in Fig. 2.2.2. 

 

 nI  nI

     h t g t c t 

     x t h t h t    

Fig. 2.2.2.  Block diagram of systems and channel, with  x t  shown. 

 

The output of the matched filter,  y t , can now be described as 

        
0n

y t I n x t nT v t




    (2.2.5) 

where  v t  is the response of the matched filter to the noise  z t , i.e., 

      t z h t d   






  . (2.2.6) 
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Following matched filtering, the signal  y t  is sampled at a rate of 1 T  samples/s, i.e., at 

t kT  for 0,1,k  .  The output of the sampler can be described analytically as 

        
0n

y kT I n x kT nT v kT




    

        
0n

y k I n x k n v k




    . (2.2.7) 

Note that the delay due to propagation of the signal through the channel is omitted in this 

formulation. 

 

Equation (2.2.7) can be also be expressed as 

            
0

0
n
n k

y k x I k I n x k n v k





    . (2.2.8) 

Setting  0 1x   for convenience, causes the output of the sampler to be expressed as 

          
0n

n k

y k I k I n x k n v k





    . (2.2.9) 

 

In the expression of the sampled matched filtered version of the received signal, i.e., in 

(2.2.9),  I k  is the information symbol at the kth sampling instant that is to be recovered, 

the summation    
0n

n k

I n x k n





  represents the interference of all of the other symbols 

with the kth symbol, i.e., the ISI, and  v k  is the filtered additive noise at the kth sampling 

instant. 
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2.3   Linear Equalization 

As seen in (2.2.4),  x t  denotes the combined impulse response of the transmitter filter, 

the physical channel, and the receiver (matched) filter, i.e., 

      x n h t h t nT dt






  . 

Let  X z  be the double-sided z-transform of  kx , i.e., 

    
L

k

k L

X z x k z



  ,   (2.3.1) 

where the approximation is made that the kth symbol output by the matched filter is 

affected by ISI due to the L symbols that precede it and the L symbols follow it. 

 

The channel, expressed as a z-domain summation in (2.3.1), is depicted as a tapped-delay 

line filter having 2L + 1 tap weights and 2L  delays in Fig. 2.3.1.  Each delay corresponds 

to the time interval T, which is the baseband symbol rate, and is represented by 1z  in the 

z-domain.  The input to the channel is the original symbol sequence at the transmitter, 

 kI , the noise that is added to the sampled signal after matched filtering is  k , and the 

resulting output, from which estimates of the symbols must be recovered, is  ky . 
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Fig. 2.3.1. A tapped-delay line model of a communications channel. 

 

The output of the discrete-time channel model seen in Fig. 2.3.1. is 

          
0n

n k

y k I k I n x k n v k





    . (2.3.2) 

 

In order to mitigate the effects of the channel, the discrete-time sequence  ky  is input to 

an equalizer.  The function of the equalizer is to reduce the superposition of the second 

(summation) term in (2.2.8) on  I k .  By supplying the decision mechanism with such 

an equalized signal an estimate of the original baseband symbol sequence,  n̂I , can be 

obtained.  

 

An updated block diagram of the typical communications system containing an equalizer 

is provided in Fig. 2.3.2.  The illustration also shows the transfer functions of several of 
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the systems in the z-domain, as well as some time-domain representations.  Of particular 

interest is transfer function of the equalizer,    1B z X z . 

 

 nI  nI

     h t g t c t 

     x t h t h t  

   
1

B z
X z



 

Fig. 2.3.2.  Communications system and channel block diagram, including equalization. 

 

Fig. 2.3.3. is an illustration of a typical channel equalizer that is implemented as a tapped-

delay line with tap coefficients  kb .  The output of the equalizer is the discrete-time 

sequence  kw , which is denoted by  W z  in the z-domain. 

 

 t KT   t  t KT   1t K T  

 

Fig. 2.3.3.  A channel equalizer implemented as a tapped-delay line filter. 
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As shown in Fig. 2.3.3, let the equalizer have 2K + 1 tap weights and 2K taps.  Therefore, 

the transfer function of the filter can be expressed as 

    
K

m

m K

B z b m z



  .  (2.3.3) 

Assume that the input to the equalizer is, generally, a discrete-time function  y k , which 

has the z-transform 

     k

k

Y z y k z






  .   (2.3.4) 

 

The output of the equalizer having the transfer function  B z  and an input  Y z , as 

shown in Fig. 2.3.3, is, therefore, 

      W z Y z B z  

      
K

k m

k m K

W z y k z b k z


 

 

      
  
   

        
K

k m

k m K

W z b m y k z


 

 

    . (2.3.5) 

 

Let l k m   so that (2.3.5) can be rewritten as 

      
K

l

k m K

W z b m y l m z




 

   . (2.3.6) 

Defining the output of the equalizer as the convolution 

      
K

m K

w l b m y l m


    (2.3.7) 

enables the z-transform of the output of the equalizer, in (2.3.5) to be expressed as 
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     l

l

W z w l z






  .   (2.3.8) 

 

2.3.1   Zero-Forcing Equalization 

Consider the scenario where an arbitrary signal  V z  is originally transmitted through 

the channel  X z  instead of a baseband symbol sequence  nI .  Following Fig. 2.3.2, in 

the absence of noise, the input to the equalizer is 

      Y z V z X z    (2.3.9) 

and, therefore, the output of the equalizer is 

        W z V z X z B z .  (2.3.10) 

This allows the transfer function of the equalized system to be described as 

    
     W z

H z X z B z
V z

  . (2.3.11) 

 

From (2.3.11) it is clear that in order for the equalized signal to be equal to the signal that 

is originally transmitted, the condition 

   1H z   

    
1

B z
X z

       (2.3.12) 

must be satisfied.  This condition implies that in order to reverse any channel effects the 

received signal must be operated on by a filter having a transfer function that is the 

reciprocal of the transfer function of the channel. 
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In the discrete time-domain the impulse response of this equalized system can be 

expressed as the convolution 

      h k x k b k   

      
K

m K

h k b m x k m


   . (2.3.13) 

 

In order to have a perfectly equalized signal that is free of ISI, according to (2.3.12), 

  
1, 0

0, 0

k
h k

k


  

.   (2.3.14) 

By the imposition of this condition in (2.3.14), the contributions of ISI components at all 

discrete instants of time to the kth signal sample are forced to be equal to zero by the 

equalizer.  For this reason the equalizer satisfying the condition in (2.3.14) is called a 

Zero-Forcing Equalizer. 

 

Practically, however, the condition in (2.3.12), and its time-domain equivalent in 

(2.3.14), cannot be enforced since they would require filters with an infinite number of 

taps.  Therefore, ZFEs with finite numbers of taps, such as 2L + 1 must be designed.  To 

this end, (2.3.14) is approximated as 

  
1, 0ˆ
0, 1, 2, ,

k
h k

k K


      

 (2.3.15) 

so that when K  , ˆ
k kh h . 
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By expressing the convolution between the input signal and the equalizer in (2.3.13) in 

Toeplitz matrix form, and applying the approximate condition for equalization in 

(2.3.15), the tap weights of the equalizer can be found by solving the matrix equation 

 

0 1 1 2

1 0 1 2 1 1

1 0 1 0

1 2 1 0 1 1

2 1 1 0

0

0

1

0

0

K K K K K

K K

K K

K K

K K K K K

x x x x x b

x x x x x b

x x x x x b

x x x x x b

x x x x x b

      

     

 

  

 

     
     
     
     
          
     
     
     
        

 
        

 
 
 

        
 

. (2.3.16) 

 

2.3.2   Minimum Mean-Squared Error Equalization 

In order to implement MMSE equalization, a pilot signal,  d t , is transmitted prior to the 

transmission of the message signal,  s t .  This additional signal is used to gauge the 

effects of the channel on the signal so that the coefficients of the MMSE equalizer can be 

determined.  

 

Let y and d be the inputs to a tapped-delay line equalizer.  The vector y denotes the 

received signal that is to be equalized with respect to the pilot signal d.  It is assumed that 

both y and d are Wide-Sense Stationary (WSS) and the autocorrelation functions of both 

signals are known.  The tap weights of the equalizer are given by the vector b, which is of 

length 2 1K  . 

 

The output of the equalizer is denoted by  w n , and is defined by the convolution 
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      
K

i K

w n b i y n i


 .  (2.3.17) 

 

Let the error between any nth element of the output sequence  ny  and the corresponding 

nth element of the pilot vector d, i.e., of the sequence  nd  be defined as 

      e n d n y n  .   (2.3.18) 

 

Note that d and w are generally not of equal lengths, as is required in (2.3.18).  Therefore, 

either the longer of the two vectors must be truncated to become the same length as the 

other, or the shorter vector must be padded with zeros at the beginning and end so as to 

become the same length as the longer vector. 

 

An intuitive way to interpret (2.3.18) is to think of  e n  as the instantaneous error 

between  d n  and  w n .  In order to construct a filter to equalize all elements of w, 

however, a more general measure of the error between d and w is needed.  Such a metric 

must take into consideration both d and w in their entirety, and not just any nth element of 

w and the corresponding element of d.  In fact, the average value of each such nth error 

could be used as a statistical metric.  Such an approach is especially powerful since both 

d and y can be generally considered to be random processes. 

 

One such average error metric is the Mean Squared Error (MSE) criterion.  The MSE 

between the two random processes can also be interpreted in a more intuitive fashion as 

being the average error between the records d and w when taken in their entirety, and not 
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element-wise.  Such an interpretation is analogous to the concept of the average power of 

an (electromagnetic) signal, which is averaged over the entire time duration of the signal.  

On the other hand, the instantaneous error,  e n , is akin to the instantaneous power of a 

signal, which is evaluated only at a particular instant of time, i.e., at one sample or slice 

of time. 

 

Hence, the MSE between d and w is therefore defined as the objective function, J, in 

terms of  e n  as 

   2
J E e n  

     2
J E d n w n   ,  (2.3.19) 

where  E   is the expectation value operator. 

 

In the case where d and w are real, (2.3.18) becomes 

      2
J E d n y n   

           2 22J E d n E d n y n E y n    . (2.3.20) 

 

Substituting (2.3.17) in (2.3.20) results in the expanded expression 

             
2

2 2
K K

i K i K

J E d n E d n b i x n i E b i x n i
 

             
     

  . (2.3.21) 
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The MSE between d and w must now be minimized.  More precisely, the gradient of 

objective function of the MSE, i.e., J, is to be minimized with respect to the tap weights 

of the equalizer, each  b i .  This condition is expressed as 

 
 

0J
b i





  for , 1 ,0, , 1,i K K K K      . (2.3.22) 

Enforcing (2.3.22) on (2.3.23) results in 

             0
K K K

i K i K j K

E d n x n i b j E x n j x n i
  

        . (2.3.23) 

 

Recognizing that the autocorrelation function of y is 

       ,yyR i j E y n i y n j    (2.3.24) 

and the cross-correlation function of d and y is 

       dyR j E d n y n j  , (2.3.25) 

(2.3.23) can be recast as 

      ,
K K K

yy dy
i K j K i K

b j R i j R i
  

    (2.3.26) 

      ,
K

yy dy
j K

b j R i j R i


   for , 1 ,0, , 1,i K K K K      . (2.3.27) 

 

This equation can be expressed concisely in matrix form as 

 T T
yy dyR b R      (2.3.27) 

where yyR  is the autocorrelation matrix of the input signal y, and is defined as 
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         
         

         

         

, 1, 0, 1, ,

, 1 1, 1 0, 1 1, 1 , 1

,0 1,0 0,0 1,0 ,0

, 1 1, 1 0, 1 1, 1 , 1

yy yy yy yy yy

y yy yy yy yy

yy yy yy yy yyyy

yy yy yy yy yy

R K K R K K R K R K K R K K

R K K R K K R K R K K R K K

R K R K R R K R K

R K K R K K R K R K K R K K

R

        
             

   

        

R

 
 

      
 

      
 

         , 1, 0, 1, ,yy yy yy yy yyK K R K K R K R K K R K K

 
 
 
 
 
 
 
 
 
      

, 

the equalizer tap weight vector b is of the form 

  1 0 1K K K Kb b b b b   b    

and the cross-correlation vector of d and x is 

          1 0 1dy dy dy dy dy dyR K R K R R K R K      R   . 

Hence, the desired equalizer tap weights can be found by solving the inverse problem 

 T 1 T
yy dy
b R R ,     (2.3.29) 

which results from (2.3.27). 

 

When the random process  ny  is WSS, the condition on the autocorrelation function of 

y that 

    1 2 1 2, ,yy yyR t t R t t        (2.3.30) 

must hold.  This condition implies that 

    , ,yy yyR i j R i k j k   . (2.3.31) 

Also note that, 

    , ,yy yyR i j R j i .   (2.3.32) 

Although most generally yyR  is a symmetric matrix, it is seen from (2.3.31) and (2.3.32) 

that with the assumptions that have been made, viz.,  ny  is WSS, yyR  is in fact a 
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Hermitian Toeplitz matrix.  Therefore, when yyR  is non-singular, (2.3.29) can be 

efficiently solved by using a suitable procedure for computing the inverse yyR .  

 

2.4  Multipath Channels 

Signals that propagate through wireless channels are subject to a myriad of propagation 

effects such as harmonic distortion, dispersion and reflections from objects that the 

signals may be inadvertently incident upon.  The signal acquired by the antenna of a 

receiver is, therefore, a distorted version of the transmitted signal.  Typically, however, 

the received signal is a superposition of several such time-delayed distorted signals.  This 

detrimental phenomenon that channels subject on propagating signals is called fading, 

and the channels that cause such effects are called fading channels. 

 

Fading channels which cause multiple time-delayed copies of a transmitted signal, i.e., 

provide multiple propagation paths for a transmitted signal, are called multipath 

channels. 

 

As mentioned previously, ISI is an important effect that fading channels have on 

transmitted signals.  This is particularly significant when the information-bearing 

baseband signal is a digital pulse.  The corresponding digitally modulated band-pass 

signal that is transmitted then has spectral components occupying a wide bandwidth.  If 

the physical and electrical characteristics of the channel cause it to be dispersive, the 

signal is detrimentally affected.  Such a faded signal effectively represents baseband 
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digital pulses that have been spread out temporally and interfere either constructively or 

destructively with adjacent pulses.  This phenomenon is called ISI. 

 

 

Fig. 2.4.1. Baseband bit sequence represented by a transmitted band-pass signal. 

 

Time

Amplitude

 

Fig. 2.4.2. Baseband bit sequence represented by a transmitted band-pass signal that has 

been affected by ISI. 

 
Figure 2.4.1 is an illustration of a baseband digital pulse train that represents the bit 

sequence {1 0 1 1 0 0 1}.  Figure. 2.4.2 is an illustration of the same baseband signal 

except after the effect of ISI.  Note that the rendering of ISI in Fig. 2.4.2 only shows the 

overlaps, i.e., the smearing, of the pulses, and not the actual resultant signal.  The actual 
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signal will be a continuous time-domain signal that contains superpositions of any of the 

pulse overlaps. 

 

In order to minimize ISI signals are typically filtered prior to transmission through a 

bandlimited channel so that the signal bandwidth is restricted, thereby preemptively 

reducing the effect of ISI. 

 

2.4.1  Mathematical Definitions 

Consider the band-pass transmitted signal, as defined in (2.1.1), 

     2Re cj f t
ls t s t e  .  (2.4.1.1) 

Let the channel,  c t , consist of multiple propagation paths with each path being defined 

by a propagation delay and an attenuation factor.  Let  n t  be the attenuation factor for 

the nth path and  n t  be the propagation delay for the nth path.  Therefore, the received 

signal can be generally described as 

      n n
n

r t t s t t     . (2.4.1.2) 

Substituting (2.4.1.1) in (2.4.1.2) in order to express the received signal in terms of the 

transmitted signal components gives 

         2Re c nj f t t

n l n
n

r t t s t t e           

        2 2Re c n cj f t j f t
n l n

n

r t t e s t t e           
  
 . (2.4.1.3) 
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From the convolution operation implicit in (2.4.1.3), the low-pass equivalent received 

signal can be identified as 

        2 c nj f t
l n l n

n

r t t s t t e       . (2.4.1.4) 

Hence, the low-pass equivalent multipath channel impulse response can be inferred from 

(2.4.1.4) to be 

        2; c nj f t
n n

n

c t t e t t        . (2.4.1.5) 

 

Of course, multipath channels can also be defined in continuous-time as well.  In this 

scenario, the received signal can be expressed generally in terms of the transmitted 

signal,  s t , and the attenuation factor,  t , as 

      ;r t t s t d   




  . (2.4.1.6) 

Substituting the expression for the transmitted signal in (2.4.1.1) into (2.4.1.6) gives 

         2; Re cj f t
lr t t s t e d    






   

      2 2Re ; c cj f j f t
lr t t e s t d e     






       
   
 . (2.4.1.7) 

Again, identifying the convolution operation implicit in (2.4.1.7), the impulse response of 

a multipath channel in the continuous-time case is recognized to be 

     2; ; cj f tc t t e     .  (2.4.1.8) 
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2.4.2  Interpretation of Definitions 

Let a sinusoid, i.e., an unmodulated carrier, be transmitted through the multipath channel 

defined in (2.4.1.4).  In this case,   1ls t     t .  Therefore, the received signal is 

      2 c nj f t
l n

n

r t t e     

      nj t
l n

n

r t t e      (2.4.2.1) 

where    2n c nt f t   . 

 

It is seen in (2.4.2.1) that when  n t  changes by a factor of 1 cf  the phase of the nth 

received sinusoid changes by 2 .  Since typical contemporary communications systems 

transmit signals with frequencies in the MHz and GHz ranges, this observation implies 

that even small changes in the physical structure of the channel can effect significant 

changes in the phase of a signal. 

 

A reasonable assumption is that changes in the propagation delays,   n t s, that are 

associated with the various paths are independent of the changes of the delays of other 

paths, and change randomly.  This assumption allows for the received signal,  lr t , to be 

modeled as a random process.  In particular, when the channel is composed of a large 

number of paths the central limit theorem can be applied, and  lr t  can be modeled as a 

complex-valued Gaussian random process.  This implies that the impulse response of the 

channel itself,  ;c t , can also be modeled as a complex-valued Gaussian process [3]. 
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Of particular significance are the two general cases that arise depending on whether or 

not a multipath channel contains a Line-of-Sight (LoS) propagation path.  When an LoS 

path exists, the channel impulse response,  ;c t , can be modeled as a zero-mean 

complex-valued Gaussian process and its envelope, i.e.,  ;c t , is Rayleigh distributed, 

in the variable t.  Such a channel is called a Rayleigh fading channel.  As wireless 

channels are usually passive, i.e., do not provide any signal gain, the power of the 

received LoS component of the received signal is the largest when compared with the 

other components [3]. 

 

On the other hand, a wireless channel that does not contain LoS path, but is only 

composed of other fixed and moving scatterers, cannot be modeled as a complex-valued 

Gaussian process having zero-mean.  The complex envelope of such a channel can be 

modeled by using a Rice distribution.  Such a channel is called a Rician fading channel 

[3]. 

 

In both Rayleigh and Rician fading channels the phase of the channel impulse response is 

uniformly distributed over the interval (0,2 ] . 
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2.5  Fading Effects of Multipath Channels 

In order to explore the fading effects of multipath channels two assumptions are made.  

The first assumption is that the impulse response of a multipath channel, i.e.,  ;c t , is 

Wide-Sense Stationary.  In general, a random process,  x t , is WSS iff 

 1. Its mean is constant, i.e., 

        E Ex t x t      t . 

 2. Its autocorrelation function,  1 2,xR t t , depends only on the difference between 

the time instants 1t  and 2t , i.e., 

        1 2 1 2 1 2, , ,0x x xR t t R t t R t t         t . 

Again, the operator  E   denotes the expected value, i.e., the mean, of the argument. 

 

In keeping with this assumption of WSS, the autocorrelation function of the channel 

impulse response is defined as [3] 

       1 2 1 2

1
, ; E ; ;

2c t c t c t t        , (2.5.1) 

where t  is the time that elapses between two observations of  1 2,c   . 

 

The second assumption is that the attenuation and phase deviation associated with one 

path in the multipath channel are uncorrelated with the attenuation and phase deviation of 

any other path in the channel.  The type of multipath propagation that occurs according to 

this assumption is called Uncorrelated Scattering (US). 
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Therefore, the autocorrelation function of the channel impulse response in (2.5.1) can be 

modified for the case of a WSS-US channel to be 

         1 1 2 1 2

1
; E ; ;

2c t c t c t t           . (2.5.2) 

 

If the autocorrelation function of the channel impulse response is evaluated for 0t   it 

becomes simply  c  , which is the average power output by the channel when excited 

by an impulse.  Since this average output power is a function of the delay time associated 

with the channel, the function  c   is called the Power Delay Profile (PDP) of the 

channel. 

 

Additionally, the general time-variant transfer function of the channel can be expressed in 

the Fourier-domain as 

     2; ; j fC f t c t e d  






  . (2.5.3) 

Since the channel is assumed to be WSS-US, the transfer function of the channel in 

(2.5.3) is 

       1 2 1 2

1
, ; ; ;

2c f f t E C f t C f t t     . (2.5.4) 

Substituting (2.53) into (2.5.4) results in the frequency-domain expression 

         1 1 2 22
1 2 1 2 1 2

1
, ; ; ;

2
j f f

c f f t E c t t c t t e d d     
 



 

      

        1 1 2 22
1 2 1 1 2 1 2, ; ; j f f

c cf f t t e d d         
 



 

       
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      1 2 12
1 2 1 1, ; ; j f f

c cf f t t e d    






     

      12
1 2 1 1, ; ; ;j f

c c cf f t t e d f t     


 



        (2.5.5) 

where 2 1f f f   . 

 

It is seen in (2.5.5) that  ;c f t    is simply the Fourier transform of the channel PDP, 

 c  .  In addition, this equation for  ;c f t    explicitly shows the US property of the 

channel since the autocorrelation function of the channel transfer function only depends 

on the difference between the frequencies 2f  and 1f .  The function  ;c f t    is called 

the spaced-frequency, spaced-time correlation function of the channel [3]. 

 

The function  ;c f t    can be interpreted in two ways.  The first is by letting the 

difference in the observation times of the function, i.e., t , be 0.  In this case the function 

becomes  ;0c f  , and is the spaced-frequency correlation function of the channel 

[3].  Conversely, in the second interpretation the difference in the fundamental 

frequencies corresponding to the different path delays, i.e., 1f  and 2f  to 1  and 2 , 

respectively, is zero.  In other words, 0f  .  In this case the function  ;c f t    is 

reduced to  0;c t  , which is called the spaced-time correlation function [3]. 

 

Beginning with the first case, i.e., of the spaced-frequency correlation function of the 

channel, let 0t  . Therefore, for brevity, let    ;0c cf f     and    ;0c c    .  
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Evaluating  ;c f t    in (2.5.5) for 0t   gives the relationship between the 

autocorrelation functions of the channel impulse response in the time- and frequency-

domains to be 

     2j f
c cf e d    


 



   . (2.5.6) 

 

The illustrations in Fig. 2.5.1 are provided as a visual aid to understanding the concepts 

of the PDP and the spaced-frequency correlation function of a channel. 

 

  

(a) Power delay profile. (b) Spaced-frequency correlation function. 

Fig. 2.5.1.  Illustrations of a general spaced-frequency correlation function and the power 

delay profile of a multipath channel [3]. 

 

In Fig. 2.5.1(b), the quantity  c
f  denotes the coherence bandwidth of the channel.  If 

the bandwidth of a transmitted signal is less than the channel coherence bandwidth then 

the channel is frequency non-selective, and is called a flat fading channel.  On the other 

hand, if the signal bandwidth is greater than  C
f , then the frequency content of the 
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signal that lies outside  C
f  will be faded.  In this case the channel is said to be a 

frequency selective channel. 

  

Analogously, in the time-domain, corresponding to  C
f  is the quantity mT , which is 

shown in Fig. 2.5.1(a).  mT  is called the multipath spread of the channel.  It denotes the 

range of the time delay,  , over which the PDP of the channel is non-zero.  In the case 

when a digitally modulated signal is transmitted, if the period of the baseband symbol, 

ST , is shorter than the duration of mT . then the channel is a flat fading channel.  If, 

however, the symbol period is longer than the duration of mT , then the channel is 

frequency selective. 

 

mT  is also called the coherence time of the channel.  It has an inverse relationship to the 

coherence bandwidth, which can be approximately expressed as [3, 45] 

   1
C

m

f
T

  .     (2.5.7) 

 

The second interpretation of,  ;c f t   , the spaced-frequency, spaced-time correlation 

function of the channel, is the spaced-time correlation function, which is denoted by 

 0;c t  . In this case, only temporal variations of the channel are considered and, so, 

f  is set to 0.  The variations of the channel impulse response, and consequently the 

channel correlation function, are ascribed to Doppler effects associated with motion of 

the transmitter, the receiver or the multipath scatterers of the channel. 
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Let the Fourier transform of  ;c f t    with respect to t  be denoted by  ;CS f  , i.e., 

     2; ; j t
C CS f f t e d t 


 



     , (2.5.8) 

where   is the Doppler frequency. 

 

Now let 0f   and let    0;C CS S   for brevity, so that (2.5.8) becomes 

     20; j t
C CS t e d t 


 



   , (2.5.9) 

where  CS   is called the Doppler power spectrum of the channel. 

 

  

(a) Spaced-time correlation function. (b) Doppler power spectrum. 

Fig. 2.5.2.  Illustrations of a general Doppler power spectrum and the spaced-time 

correlation function of a multipath channel with Doppler effects [3]. 

 

As seen in Fig. 2.5.2 (b), the range of frequencies over which the Doppler power 

spectrum,  CS  , is non-zero is called the Doppler spread of the channel, and is 

denoted by dB .  Correspondingly, as seen in Fig. 2.5.2(a), the channel coherence time is 
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denoted by  C
t , which is essentially the duration of time between observations of the 

channel impulse response during which the channel impulse response is non-zero. 

 

In the case when the channel coherence time is shorter than the symbol period of the 

transmitted signal, i.e.,   SC
t T  , fast fading occurs.  This condition implies that the 

impulse response of the channel can change during the duration of a baseband symbol. 

Conversely, when the channel coherence time is longer than the symbol period, i.e., 

  SC
t T  , the fading of the signal occurs slowly in the sense that the channel impulse 

response does not change during the duration of a baseband symbol.  This condition is 

called slow fading. 

 

When observed in the Fourier-domain, since the Doppler spread of the channel is 

inversely related to the channel coherence time, i.e., 

 
 

1
d

C

B
t




, 

a small Doppler spread is indicative of a fast fading channel, and a large Doppler spread 

of a slow fading channel. 

 

The Fourier transform pairs that have been presented for the cases of fading based on 

multipath delay spread and Doppler spread are provided in a concise format in Table 

2.5.1.  Furthermore, the concepts of channel fading that have been presented in this 

section are summarized in Tables 2.5.2 and 2.5.3. 
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Table 2.5.1. Fourier transform pairs for the two types of fading considered. 

Fading based on Time-Domain Frequency-Domain 

Multipath Time Delay Spread    
 

 1

F

C CF
f  




  

Doppler Spread    
 

 1

F

C CF
t S 




   

 
 

 

 

Table 2.5.2. Summary of channel fading based on multipath time delay spread. 

 Flat Fading Frequency-Selective Fading 

Time 
-Domain 

Multipath delay spread is smaller 
than symbol period, i.e., m ST T . 

Multipath delay spread is longer 
than symbol period, i.e., m ST T . 

Frequency 
-Domain 

Signal bandwidth is smaller than 
the channel coherence bandwidth, 
i.e.,  C

W f  . 

Signal bandwidth is greater than 
the channel coherence bandwidth, 
i.e.,  C

W f  . 
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Table 2.5.3. Summary of channel fading based on Doppler spread. 

 Fast Fading Slow Fading 

Time 
-Domain 

Channel coherence time is shorter 
than the symbol period, i.e., 
  SC

t T  . 

Channel coherence time is longer 
than the symbol period, i.e., 
  SC

t T  . 

Frequency 
-Domain 

Doppler spread of the channel, dB , 

is large. 

Doppler spread of the channel, dB , 

is small. 
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Chapter 3 

Literature Survey 
 

The two focal points of the research presented in this dissertation are the development of 

wavelet-based channel estimation and equalization procedures.  The approach that is 

taken to accomplish these tasks involves establishing intuitive and analytically robust 

techniques for DWT-based convolution.  The techniques are developed in this 

dissertation.  A survey of the published literature on all of these three topics is presented 

in this chapter. 

 

The first topic that is developed in this dissertation is DWT-based convolution.  Prior 

publications on this topic by the mathematics and engineering communities are identified, 

discussed and critiqued in Section 3.1.  The new research on DWT-based convolution is 

presented in Chapter 5. 

 

Literature on the topic of DWT-based channel estimation is discussed in Section 3.2.  The 

technique of DWT-based deconvolution and its application to channel estimation, both of 

which are highlights of this dissertation, are described in Chapter 6. 

 

The third topic that is developed in this dissertation is DWT-based channel equalization.  

Existing literature on this topic is discussed in Section 3.3.  Channel equalization that is 

developed using DWT-based convolution procedures developed in this dissertation is 

described in Chapter 7. 
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It must be noted here that several publications containing varied implementations of 

DWT-based channel estimation and equalization have been found after extensive 

searches, and the most relevant literature is presented in this chapter.  Despite detailed 

searches, however, no publications regarding the implementation of such strategies in 

communications systems, which is the ultimate objective of this dissertation, have been 

found. 

 

3.1 Discrete Wavelet Transform-Based Convolution 

Since the early development of the theory of wavelet transforms, there have been major 

research efforts to represent mathematical operators using orthonormal bases of 

compactly supported wavelets [46-52].  The representation of differential operators has 

been of particular interest in such studies. 

 

Expressing operators using wavelets can lead to easily solvable systems of equations.  

One example is the case of systems of differential equations.  Expressing differential 

operators using wavelet bases, and thus transforming the equations using the wavelet 

transform, leads to systems of algebraic equations that may then be solved in a much 

simpler manner.  This procedure has been successfully applied in the area of transmission 

lines research for the solutions of couple multiconductor transmission line equations 

using wavelet representations of operators [53-57]. 
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With such applications being a motivating factor, it has been shown, in rigorous 

mathematical detail, that the differential operator n nd dx  can be represented using 

wavelets in the non-standard form [49].  In the same work the convolution operator is 

also represented using wavelet bases in the non-standard form. 

 

While the advantage of such a formulation is that numerical solutions of various systems 

of equations may be rendered more tractable, there exists an inherent drawback.  The 

formulation is not developed in the typical sense of MRA and the DWT, i.e., with a filter 

bank approach.  Due to this fact the expression of operators using wavelet bases in the 

non-standard form does not lend itself to direct use in signal processing systems that 

primarily use filter banks. 

 

Recognizing this shortcoming, a study on the implementation of operators via filter banks 

has been published [52].  In this particular filter bank approach, operators are expressed 

as filters.  Specifically, the mathematical theory developed involves combining operators 

with prefect reconstruction filters so that the resulting filters have the simultaneous effect 

of convolution and wavelet analysis (decomposition). 

 

The primary focus of the abovementioned research is to combine one of two functions to 

be convolved with one of the two DWT analysis filters.  This new filter is then used as a 

replacement for the original filter.  The second convolving function is then analyzed 

using this new filter and the other analysis filter that is intact.  Synthesizing the resulting 
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wavelet coefficients using the original high-pass and low-pass synthesis filters then 

provides the desired convolution result. 

 

While this method is ideal for the purposes of this dissertation, the inherent intricacies 

that are involved in computing the necessary filters do not lend it to be a readily 

practicable solution for many engineering problems. 

 

An alternative approach to solving the problem of wavelet-based convolution is found in 

the field of digital signal processing, specifically in the area of multirate filter banks [58].  

Specifically, the theory of convolution is implemented with the use of orthonormal filter 

banks.  In keeping with the concepts of multirate filter banks, a theory for the use of such 

filter banks with unequal decimation in subbands is developed [59,60]. 

 

In the abovementioned set of research works a multidimensional subband convolution 

theorem is developed within the general framework of orthonormal and biorthonormal 

filter banks [61].  Since the DWT is expressly implementable as such filter banks, an 

immediate consequence was the special case of the wavelet convolution theorem [61].  

The specific method for DWT-based convolution was derived graphically. 

 

This particular method is the genesis of the DWT-based convolution procedures 

developed in this dissertation.  Furthermore, analytical derivations are accompanied by 

graphical illustrations of the steps as described in Chapter 5. 
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It should also be mentioned, for the sake of completeness, that there have been other 

research efforts in developing wavelet-based convolution.  Among these are a publication 

on convolution using the Undecimated DWT (UDWT) [62] and one describing a 

convolution theorem for the Continuous Wavelet Transform (CWT) [63]. 

 

3.2 Discrete Wavelet Transform-Based Channel 
Estimation 

Wavelets have been used to the blind identification of system impulse responses, and by 

extension to Finite Impulse Response (FIR) channels [64-66].  These studies use wavelet 

basis function for the expansion of system and channel models.  Second-order statistics of 

the expansion coefficients are used in order to estimate the system and channel model 

coefficients. 

 

In the general procedure followed in these studies, first a time-varying channel model is 

considered, with known input and output functions.  The unknown channel impulse is 

then expanded with the use of wavelet basis functions.  A linear Least Squares (LS) 

approach is then used to recover correlation information of the expansion coefficients.  A 

subspace method is then applied to the correlation matrix of the coefficients to recover 

the desired expansion coefficients.  The unknown system or channel impulse responses 

are then estimated [66]. 

 

In another study that uses a similar approach multiplicative channel fading is modeled as 

an autoregressive process [67].  Filter banks are used to precode symbols transmitted 
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through the channel, and second-order statistics of the output data are computed.  From 

these data the correlation information of the channel are obtained.  A Kalman filter is 

then used to track time variations of the channel, and transmitted symbols are recovered 

by block processing.   

 

The second important set of studies on wavelet-based channel estimation is based on the 

abovementioned techniques [68-70].  In these, again, the model coefficients of an 

unknown time-varying channel are decomposed using orthonormal wavelets.  The 

applications of these studies, however, are specific for use in the design of macrocell 

wireless communications systems. 

 

Specifically, a multipath channel is represented in a reduced-order dimensional space by 

matching the scattering function of the channel to its decomposition.  With the 

assumption of a multi-user multipath channel model, the second-order statistics of the 

time variations of the channel are obtained.  Using such a wavelet-based representation of 

the channel, generalized likelihood detection statistics for TDMA [68] and DS/CDMA 

[69] signals are devised.   

 

Although the theories developed in these studies [64-70] are analytically well-developed, 

they do not use the method that is desired in this dissertation, i.e., channel estimation 

using a wavelet-based convolution procedure, or more appropriately using wavelet-based 

deconvolution. 
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In addition to the two main research efforts previously discussed there have also been a 

few other studies on the use of wavelets for channel estimation.  One recent work extends 

the concepts of expanding unknown time-varying channels using wavelet basis functions, 

and estimating the unknown coefficients with the use of an LS approach [71].  A 

parametric study using several different wavelets was also included in the study. 

 

Another recent research work makes use of pilot symbols for use in a Maximum 

Likelihood (ML) channel estimation procedure [72].  The estimation is based on an LS 

algorithm.  The connection to wavelets in this case is oblique, however, since this 

estimation is an applied to the case of Ultra Wideband (UWB) signals that are based on a 

wavelet packet modulation scheme.  As such, this study is not useful for the purposes of 

this dissertation. 

 

A study in which OFDM UWB channels are estimated using wavelets is also available in 

the literature [73].  In this particular study, a multiband OFDM channel is modeled over 3 

subbands, which are expressed in the wavelet-domain.  By choosing a Bernoulli-

Gaussian a priori distribution for the wavelet coefficients of the channel, a Maximum A 

Posteriori (MAP) estimator yields a thresholding procedure in an Expectation 

Maximization (EM) algorithm.  Due to the esoteric nature of the methodologies used in 

this study they are not amenable for use in the context of this dissertation. 

 

Other interesting publications in the area of wavelet-based channel estimation include a 

study on using the wavelet packet transform for the identification of underwater acoustic 
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channels [74], and a study on application of blind channel identification in seismic signal 

processing [75].  The latter work uses statistical methods to accomplish the desired 

deconvolution operation in that application. 

 

3.3 Discrete Wavelet Transform-Based Channel 
Equalization 

In the literature on wavelet-based methods of channel equalization it is found that almost 

all methods exclusively use one particular formulation.  This formulation involves the 

expansion of a signal that has been faded by a channel using wavelet bases [76-83].  The 

wavelet coefficients are then equalized based on a mean-square error minimization 

criterion.  The equalized wavelet coefficients are then synthesized into an equivalent, 

equalized, time-domain signal using an inverse wavelet transform procedure.  It must be 

noted that this common, general, procedure is used in order to accomplish adaptive 

equalization of signals propagated through channels with time-varying impulse 

responses. 

 

For the purposes of this dissertation the general methodology outlined above is not useful 

because it does not provide a common framework using which different linear 

equalization strategies can be implemented in the wavelet-domain.  Such a framework is 

developed in this dissertation with the use of wavelet-based convolution. 

 

One of the earlier works on this subject made use of a general topology of a transform-

domain Least Mean Squares (LMS) adaptive filter [84], and adapted it for use with 
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wavelets.  The topology calls for the transformation of a signal using orthogonal basis 

functions.  The coefficients of such an expansion are then equalized using an LMS 

algorithm.  The basis functions used in this particular case were the Haar and 

Daubechies4 wavelets. 

 

A second set of studies continues with this approach, but extends it to include the non-

linear procedure called Decision Feedback Equalization (DFE) [77,78].  In these studies 

16-QAM test signals are analyzed with a Daubechies4 wavelet.  The results of wavelet-

based DFE and LMS equalization are compared with standard time-domain-based DFE 

and LMS equalization and appear to be in good agreement.  The main drawback of both 

of these studies is that details of the analytical formulations and implementations are not 

provided clearly, as is needed for replication of the methods. 

 

Two more research studies that implement very similar procedures are also found in the 

literature [79,80].  A sixth such study attempts to extend the generality of the approach in 

inserting filters at each subband of an MRA scheme [80].  A seventh publication also 

inserts adjustable FIR filters within each subband of a wavelet-analyzed signal, and then 

uses an LMS algorithm to update the filter tap coefficients [81]. 

 

These latter two studies [80,81],  do follow the same general ideology of this dissertation, 

but with two major differences 

1. There are no rigorous analytical justifications of the techniques. 

2. Dyadic decimation in analysis filter banks is neglected. 
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The research developed in this dissertation addresses both of these issues by providing a 

thorough system-theoretic analytical framework for DWT-based channel equalization and 

also use equalizers in conjunction with the necessary dyadic decimators. 

 

In addition to the main publications on wavelet-based equalization previously described, 

there are also a few others that use wavelets, but in methods dissimilar to the ideology of 

wavelet-based equalization in this dissertation.  Among these are a study on using 

wavelet-packet based LMS equalization strategy [83], and the use of wavelet-based 

channel estimation techniques for adaptive equalization [85,86].  Other research works 

make use of wavelet neural networks for channel equalization but are not pertinent in the 

context of this dissertation [87-91]. 
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Chapter 4 

Wavelet Transforms 
 

The wavelet transform can be viewed as a mapping of a time-domain signal to a joint 

time-scale representation.  It makes use of window functions that called wavelets.  With 

the use of windows of wide width, low-frequency components of a signal can be 

analyzed, and with narrow windows high-frequency spectral components can be analyzed 

[44]. 

 

The Continuous Wavelet Transform (CWT) is expressed in integral form as being the 

cross-correlation between a wavelet and the signal of interest.  The DWT, however, is 

typically obtained via the filter theory approach called Multiresolution Analysis (MRA). 

 

Section 4.1 provides a brief outline of the CWT to illustrate the genesis of wavelet 

transforms and the subsequent development of the DWT.  The filter theory of MRA 

implemented by the technique of subband coding is described in detail in Section 4.2.  

The Perfect Reconstruction (PR) criterion for the generation of Quadrature Mirror Filters 

(QMFs) that are needed for signal analysis and synthesis are derived, as are two examples 

of PR QMFs. 

 

In Section 4.3 wavelets are applied to the theory of subband coding, and the premise of 

using a filter theoretic approach is analytically justified.  Section 4.4 contains the formal 

definitions of the DWT. 



59 
 

Before proceeding further, it has to be noted that Sections 4.2, 4.3 and 4.4 closely follow 

the presentation in a review article on the DWT that was published in the October 1998 

issue of the IEEE Antennas and Propagation Magazine [92]. 

 

4.1  Continuous Wavelet Transform 

Consider a continuous-time, square-integrable, function,  f t , and a set of basis 

functions,  ,a b t  , which are the wavelets.  The CWT of  f t  is a decomposition of 

 f t  into  ,a b t  , i.e., 

      ,,f a bW a b f t t dt   . (4.1.1) 

 

In (4.1.1), the symbol   denotes complex conjugation, a is the dilation parameter, b is the 

translation parameter, and the scaled-and-translated wavelets,  ,a b t , are generated 

from a single wavelet, i.e., as 

  ,

1
a b

t b
t

aa
     

 
.  (4.1.2) 

It is seen from (4.1.2) that when 1a   the wavelets are dilated and when 1a   the 

wavelets are contracted.  Hence, regardless of the dilation, and also translation, wavelets 

retain their functional form, i.e., time-domain shape. 

 

Wavelets are also subjected to energy normalization of the form 

    2 2

, 1a b t dt t dt    , (4.1.3) 
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which results in the normalization constant of 1 a  that appears in (4.1.2). 

 

The design of wavelets must generally satisfy the fundamental properties that are listed 

below [44]. 

A.  Admissibility 

The Fourier transform of a wavelet must have a zero component at zero frequency.  This 

condition of admissibility is described mathematically as  

 
  2

c d

 








     (4.1.4) 

where     is the Fourier transform of the wavelet,  t , and c  is called the 

admissibility constant.  This condition also allows for the definition of the inverse 

wavelet transform.  By implementing this condition wavelets are required to be square 

integrable functions. 

B.  Regularity 

Since wavelets can be scaled temporally, the inverse relationship between scale and 

bandwidth can be detrimental in practical applications because scaling to a fine resolution 

(i.e., high localization in time) leads to very large bandwidths.  The regularity condition 

is, therefore, imposed so that the wavelet transform coefficients decrease quickly in 

magnitude as the scaling increases, i.e., becomes finer. 
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This condition can be interpreted to mean that a wavelet can be localized in the 

frequency-domain by causing it to vanish rapidly in the time-domain.  A measure of the 

regularity of a wavelet can be determined from the condition 

   0p
pM t t dt    0,1, 2, ,p n   , (4.1.5) 

where pM  is the pth moment of the wavelet,  t , then the wavelet is said to be of order 

n.  Note that from the admissibility condition 0 0M  . 

 

The regularity condition in (4.1.5) may be expressed equivalently in the Fourier-domain.  

In this case, the derivatives of the Fourier transform of a wavelet of order n, must be 

equal to zero, i.e., 

    
0

0p


 


   0,1, 2, ,p n   . (4.1.6) 

C.  Linear Transformations 

Wavelets must also satisfy the linear transformation properties of superposition, 

translation, and rescaling.  Specifically, 

 i.)  Linear Superposition:      
1 2 1 2

, , ,f f f fW a b W a b W a b    (4.1.7) 

 ii.)  Translation:          
0 0, ,f tf t tW a b W a b t    (4.1.8) 

 iii.)  Rescaling:           1 2 , ,f tm f mt
W a b W ma mb . (4.1.9) 

An example of a wavelet function is the Morlet wavelet.  It is a complex sinusoid that is 

modulated by a Gaussian function according to 

   2
0 2j t tt e e  .    (4.10) 
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The Fourier transform of the real part of the Morlet wavelet is 

  
   0 0

2 2

2
e e

    
  

     
  

. (4.1.11) 

 

As seen in Figs. 4.1.1 and 4.1.2, the Morlet wavelet readily decays in the time-domain 

and is band-limited in the frequency-domain.  This particular wavelet does not, however, 

satisfy the admissibility condition since  
0

0 c
 


    . 
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Fig. 4.1.1.  The Morlet wavelet in the time-domain. 
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Fig. 4.1.2.  The Morlet wavelet in the frequency-domain. 
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The Morlet wavelet is, however, still practicable in the case of a large value of 0 , due to 

which  0 0  .  For example, if 0 5 rad s  , then  

   25 2 50 2 10e     , 

which may be considered negligibly small in numerical computations.  In Fig. 4.1.2 

0 10 rad s  . 

 

4.2    Multiresolution Analysis Using Subband Coding 

Multiresolution analysis is a technique that allows for the analysis of signals in multiple 

frequency bands.  The analysis and synthesis of signals into wavelet bases can be carried 

out using MRA.  The specific approach of MRA that is most commonly used for DWT is 

called subband coding.  In subband coding the frequency spectrum of a signal is divided 

into several independent subbands.  Each resulting subband may then be operated upon as 

desired. 

 

 G z

 X z

 G z

 H z  H z

 X̂ z

 U z

 V z
2

2 2

2
 V z

 U z

 V z

 U z

 

Fig. 4.2.1.  Two-channel subband coding analysis and synthesis. 
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The system block diagram shown in Fig. 4.2.1 is that of a one-level MRA.  The input 

signal is demultiplexed into two parallel streams, one of which is analyzed by a low-pass 

filter and the other by a high-pass filter. 

 

Consider a discrete-time input signal,  x n , that has the z-transform 

     n

n

X z x n z    (4.2.1) 

where 

 jz e  .      (4.2.2) 

Let  x n  have a bandwidth, xBW , of rad s .  The precursor continuous time signal 

from which  x n  is obtained is sampled at the Nyquist rate of 2  rad s s .  

 

In Fig. 4.2.1 the relevant quantities are defined as: 

 G z   is the analysis high-pass filter to which  x n  is input, and has a bandwidth of 

2    , 

 H z   is the analysis low-pass filter to which  x n  is also input, and has a 

bandwidth of 0 2   , 

 G z   is the synthesis high-pass filter, and 

 H z    is the synthesis low-pass filter. 

 

Now, the intermediate signals obtained after filtering  X z  with the analysis filters are 

      V z X z G z   and  (4.2.3) 



65 
 

      U z X z H z  .   (4.2.4) 

 

Following the signal path,  V z  and  U z  are decimated, i.e., downsampled, by a 

factor of 2.  The decimated signals can be expressed as 

      1 2 1 21

2
V z V z V z       and (4.2.5) 

      1 2 1 21

2
U z U z U z      . (4.2.6) 

 

Next, these signals are upsampled by a factor of 2, which results in two more 

intermediate signals, i.e., 

    2V z V z   and   (4.2.7) 

    2U z U z  .    (4.2.8) 

Substituting (4.2.3) in (4.2.5) and (4.2.4) in (4.2.6) results in 

      1

2
V z V z V z        and (4.2.9) 

      1

2
U z U z U z       . (4.2.10) 

 

Hence, the output of the filter bank can be written as 

          X̂ z V z G z U z H z    . (4.2.11) 

Substituting (4.2.9) and (4.2.10) in (4.2.11) gives 

              1 1ˆ
2 2

X z V z V z G z U z U z H z              
  . (4.2.12) 
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The synthesized output,  X̂ z , can now be expressed in terms of the original signal, 

 X z , by substituting (4.2.3) and (4.2.4) into (4.2.12) yields 

 
           

         

1ˆ
2
1

2

X z X z G z X z G z G z

X z H z X z H z H z

      

    




 

 
           

         

1ˆ
2
1

.
2

X z G z G z H z H z X z

G z G z H z H z X z

     

     

 

 
 (4.2.13) 

The estimated signal,  X̂ z , in (4.2.13) contains both the original transmitted signal (the 

first term) and an alias of the signal (the second term). 

 

In order to remove the aliasing, the second term of (4.2.13) must be equal to zero, i.e., 

         0G z G z H z H z     . (4.2.14) 

For (4.2.14) to be realizable, consider  H z  to be a Finite Impulse Response (FIR) filter 

of order 1N  , where N is always an odd number. 

 

The anti-aliasing condition in (4.2.14) can be satisfied by choosing 

    G z H z   and   (4.2.15a) 

    G z H z  .     (4.2.15b) 

Upon imposition of the anti-aliasing condition, the output of the filter bank,  X̂ z , in 

(4.2.13) becomes 
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            1ˆ
2

X z G z G z H z H z X z   
  . (4.2.16) 

Now, consider the definitions that 

    1NH z z H z      (4.2.17a) 

    h n h N n       (4.2.17b) 

and 

    1NG z z G z      (4.2.18a) 

    g n g N n   .    (4.2.18b) 

 

By combining (4.2.15b) and (4.2.17a),  G z  can be expressed in terms of  1H z  as 

         1N
G z H z z H z

       

    1NG z z H z        (4.2.19) 

since N is always odd. 

 

By substituting (4.2.15a), (4.2.17a) and (4.2.19) into (4.2.16),  X z  can now be 

expressed only in terms of  H z  as 

             1 11

2
N NX z z H z H z H z z H z X z          

  

            1 11

2
NX z H z H z H z H z z X z        

 . (4.2.20) 

Equation (4.2.20) implies that if the filter  H z  is designed in such a way that 

        1 1 2H z H z H z H z     , (4.2.21) 
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then the synthesized estimate of  X z , i.e.,  X z , will be exactly equal to  X z , albeit 

with a delay of N samples. 

 

Substituting the mapping 

 jz e  ,      (4.2.22) 

into (4.2.21) gives, after some manipulation, 

      22

2jjH e H e     . (4.2.23) 

 

Equation (4.2.23), and equivalently (4.2.21), is called the Perfect Reconstruction (PR) 

criterion.   H z  and  G z  are called Quadrature Mirror Filters (QMFs). 

 

From the preceding derivation it is seen that if the filter  H z is known, then the other 

three filters can be readily derived so as to form a perfect reconstruction filter bank.  

Specifically, if  H z  is known, then (to summarize) 

    1NG z z H z    ,  (4.2.19) 

    1NH z z H z  ,   (4.2.17a) 

and 

    G z H z   .    (4.2.15a) 

 

Example:  Consider the case where 3N  .  In this case  H z  can be expressed as 

          1 2 30 1 2 3H z h h z h z h z      . (4.2.24) 
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Using (4.2.19), the analysis high-pass filter,  G z , for this case, can be expressed as 

          1 2 33 2 1 0G z h h z h z h z      . (4.2.25) 

Similarly, using (4.2.17) the synthesis low-pass filter becomes 

          1 2 33 2 1 0H z h h z h z h z      , (4.2.26) 

and using (4.2.15) the synthesis high-pass filter can be expressed as 

          1 2 30 1 2 3G z h h z h z h z       . (4.2.27) 

 

The coefficients of  H z  must now be solved for.  The first step in this process is to 

revisit the PR condition in (4.2.21) and to then substitute (4.2.24) into it.  This procedure 

gives 

 
                 
                 

1 2 3 2 3

1 2 3 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 2

h h z h z h z h h z h z h z

h h z h z h z h h z h z h z

  

  

      

      
 

 
               

       

2 2 2 2 2

2

0 2 1 3 0 1 2 3

0 2 1 3 1.

h h h h z h h h h

h h h h z

           
    

 (4.2.28) 

Equating the coefficients of both sides of (4.2.28) gives the relationships 

        2 2 2 20 1 2 3 1h h h h     and (4.2.29) 

        0 2 1 3 0h h h h  . (4.2.30) 

 

The two equations (4.2.29) and (4.2.30) can be used to solve for the four unknowns.  

Next, assume that the frequency responses of  H z  and  G z  are as shown in Fig. 
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4.2.2.  Note that Fig. 4.2.2a is an illustration of typical, i.e., practical, QMFs while the 

ideal cases are shown in Fig. 4.2.2b. 

 

2 

 H z  G z

 

Fig. 4.2.2a.  Typical frequency response of the QMFs. 

 

2 

 H z  G z

 

Fig. 4.2.2b.  Ideal frequency response of the QMFs. 

 

Now, due to the fact that  G z  is an HPF, at 0   

  
0

0G z


 . 

This property can be reflected in  H z  by using it in (4.2.19), which gives 

  1

0
0Nz H z



 


    
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  1 0H        (4.2.31) 

        0 1 2 3 0h h h h     . (4.2.32) 

 

Furthermore, the PR condition can also be evaluated at 0  , which results in 

    2 2
1 1 2H H   .  (4.2.33) 

 

Substituting (4.2.31) into (4.2.33) yields 

   2
1 2H   

  1 2H       (4.2.34) 

        0 1 2 3 2h h h h     . (4.2.35) 

 

Adding (4.2.32) and (4.2.35) gives 

     1
0 2

2
h h  ,   (4.2.36) 

and subtracting (4.2.32) from (4.2.35) gives 

     1
1 3

2
h h  .    (4.2.37) 

Equations (4.2.36) and (4.2.37) are two more equations that can be used to solve for the 

four unknown coefficients of  H z .  It should be noted, however, that (4.2.29), (4.2.30) 

and (4.2.35) are linearly dependent.  Therefore, a one more, independent, equation is still 

required. 
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One method of obtaining such an equation was developed by Daubechies [11].  In this 

method it is required that all derivatives of  H z , up to order p, be equal to zero at 

0  .  This results in  H z  being smooth.  Equivalently, the pth derivative of  G z  can 

be set equal to zero, i.e., 

    1 0pG  .     (4.2.38) 

 

Since, 

          1 2 30 1 2 3G z h h z h z h z       , (4.2.39) 

          1

1
1 2 2 3 3

z
G z h h h


     , 

using (4.2.36) yields 

      1 2 2 3 3 0h h h    . (4.2.40) 

 

Now, let  3h  be the first variable to be solved for.  Therefore, from (4.2.37), 

    1
3 3

2
h h  ,   (4.2.41) 

and using (4.2.40) and (4.2.41) 

      1
2 1 3 3

2
h h h     

    1
2 3

2 2
h h   .   (4.2.42) 

 

Substituting (4.2.42) in (4.2.36) gives 
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    1
0 3

2 2
h h  .   (4.2.43) 

 

Substituting the expressions for  0h ,  1h , and  2h , (4.2.43), (4.2.41) and (4.2.42) 

respectively, into (4.2.29) gives 

        2 2 2 20 1 2 3 1h h h h     

        
2 2 2

21 1 1
3 3 3 3 1

2 2 2 2 2
h h h h

                 
     

. (4.2.44) 

 

Solving the quadratic equation in (4.2.44) results in two unique solutions, both of which 

are valid and may be used.  In this example only one solution is selected: 

   1 3
3 0.1294

4 2
h


   .  (4.2.45) 

Substituting (4.2.45) into (4.2.43) to obtain  0h  results in 

   1 3
0 0.4830

4 2
h


  ,  (4.2.46) 

substituting (4.2.45) into (4.2.41) to solve for  1h  gives 

   3 3
1 0.8365

4 2
h


  ,  (4.2.47) 

and finally substituting (4.2.45) into (4.2.42) gives 

   3 3
2 0.2241

4 2
h


  .  (4.2.48) 

 

Hence, the desired fourth-order FIR filter,  H z , has been derived to be 
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   1 2 30.4830 0.8365 0.2241 0.1294H z z z z      . (4.2.49) 

Immediately, using (4.2.25), (4.2.26) and (4.2.27), the other three filters are found to be 

   1 2 30.1294 0.2241 0.8365 0.4830G z z z z       , (4.2.50) 

   1 2 30.1294 0.2241 0.8365 0.4830H z z z z        (4.2.51) 

and 

   1 2 30.4830 0.8365 0.2241 0.1294G z z z z       . (4.2.52) 

 

The QMFs,  H z  and  G z , that have just been derived are associated with the 

Daubechies2 wavelet and scaling function.  In fact, when implementing the DWT using 

the Daubechies2 wavelet it is exactly these filters (4.2.49)-(4.2.52) that are used in the 

filter banks.  This relationship is elaborated on in Sections 4.3 and 4.4. 

 

4.3    Combining Wavelets and Subband Coding 

Having explored the technique of MRA and its implementation using subband coding, 

the concepts of these filter theories and the theory of wavelets must be established. 

 

It should be noted that wavelets cannot be expressed as discrete time functions but only 

as continuous time functions.  In addition, the dilation equation, which is the most 

important relationship in MRA, can only be solved with continuous time functions.  For 

these reasons the theory that is presented from this point onwards makes use of 
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continuous time signals and functions.  These may be sampled at a suitable rate as needed 

in order to produce discrete time signal sequences that are needed. 

 

Consider the signal,  x t , which, as previously defined, has a bandwidth from 0 to  .  

Also consider a new function  t .  Assume that translating  t  by integer values of m 

results in functions  t m   that form a Riesz basis for the space in which  x t  is 

defined.  The compact notation 

    m t t m       (4.3.1) 

is used to describe such shifts for the sake of brevity. 

 

Let dilated versions of  t  be represented by combinations of the shifted versions of 

 t  that are weighted by some coefficients   h m  as 

      
0

2 2
N

m

t h m t m 


    

      
0

2 2
N

m

t h m t m 


    , (4.3.2) 

which is known as the dilation equation, or the two-scale relation, or the two-scale 

difference equation.  This equation describes how the function  t  can be expressed as 

a weighted sum of dilations and translations of  t  itself. 

 

Equivalently, since the weighting coefficients can be expressed as 

    h n h N m  ,    (4.3.3) 
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(4.3.2) can be rewritten as 

      
0

2 2
N

m

t h N m t m 


   . (4.3.4) 

The function  t , which solves the dilation equation for a particular sequence of  h m , 

or  h m , is called the scaling function, or the father wavelet. 

 

Now, all functions  t m   are required to be normalized, i.e., 

   1t m dt   .    (4.3.5) 

 

Substituting (4.3.2) in (4.3.5), and using a suitable change in variables, results in 

      
0

2 2
2 2 1

2

N

m

t k m
h m d t





 
   

  
0

2
1

2

N

m

h m


    

  
0

2
N

m

h m


   .    (4.3.6) 

 

Note that the condition in (4.3.6) is the same as the condition established in (4.2.34), 

which was a consequence of the PR condition found in the theory of subband coding.  

 

The wavelets can now be correspondingly defined as 

      
0

2 2
N

m

t g m t m 


   . (4.3.7) 
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Since  g m  can be written in terms of  h m  as 

      1
m

g m h N m    , (4.3.8) 

equation (4.3.7) can be rewritten as 

        
0

2 1 2
N

m

m

t h N m t m 


      , (4.3.9) 

where the function  t  is called the mother wavelet. 

 

Hence, if the filter coefficients   h m  are known, the scaling function,  t , can be 

found by iteratively solving the dilation equation in (4.3.4).  In order to do so, first  t  

is assumed to be a Heaviside function, which is filtered using   h m .  The outputs of 

this operation are then also filtered using the coefficients   h m , and this process of 

filtering is repeated until the desired convergence is reached.  Once  t  is obtained, 

 t  is then solved for by using either (4.3.7) or (4.3.9). 

 

Example:  The Haar Wavelet 

For the case of 1N  , the filter coefficients   h m  according to (4.3.6) or equivalently 

by using the perfect reconstruction formulation in Section 4.2 on subband coding, i.e., 

according to (4.3.32),  

   1
0

2
h   and    (4.3.10a) 
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   1
1

2
h  .     (4.3.10b) 

Using these values the dilation equation in (4.3.4) becomes 

      2 2 1t t t     .  (4.3.11) 

 

One solution to (4.3.11) is the scaling function 

  
1, 0 1

0, otherwise.

t
t

 
 


 (4.3.12) 

The mother wavelet that is generated by using this scaling function is 

  
1, 0 1 2

1, 1 2 1

0, otherwise.

t

t t
  
  



 (4.3.13) 

The function  t  in (4.3.13) is known as the Haar wavelet, and  t  in (4.3.12) is the 

corresponding scaling function.  The Haar wavelet and scaling function are graphically 

illustrated in Figs. 4.3.1a and b. 

 

1 2

 t

 

 

 t

 

Fig. 4.3.1a.  The Haar wavelet. Fig. 4.3.1b.  The Haar scaling function. 
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Before moving on to the formal definition of the framework of the DWT it must be noted 

that the scaling function is, in general, orthogonal to translated versions of itself, i.e., 

     0t t m dt 




  .  (4.3.14) 

The mother wavelet and translations of itself are also orthogonal, i.e., 

     0t t m dt 




  .  (4.3.15) 

 

4.4  Discrete Wavelet Transform 

The original function,  x t , may be expressed in terms of wavelets in an infinite 

summation as 

    , ,k n k n
n k

x t d t
 

 

     (4.4.1) 

where 

    2
, 2 2n n

k n t t k    . (4.4.2) 

Note that the functions used in (4.4.1) and (4.4.2) are defined in continuous time, and the 

variable n is the dilation parameter and k is the translation parameter. 

 

The wavelets,  ,k n t , are orthonormal (with the multiplier 22 n  being a normalization 

factor), i.e., 

    , , , ,j k n i j n k it t dt    , (4.4.3) 
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where ,j n  and ,k i  are Kronecker delta functions.  Hence, the coefficients in (4.4.1), 

,k nd , can be defined as the inner product of the signal and the wavelet, i.e., 

    , ,k n n kd x t t dt   

 , ,,k n n kd x   ,    (4.4.4) 

and are called the detail coefficients in the DWT. 

 

As with the mother wavelet in (4.4.2), the scaling function can be described compactly as 

    2
, 2 2i i

i j t t j    .  (4.4.5) 

The scaling function is orthogonal to its own translations, i.e., 

    , , ,j k j n k nt t dt   ,  (4.4.6) 

and wavelets and scaling functions are orthogonal to each other for any dilation or 

translation that is 

    , , 0j k i nt t dt    i j  . (4.4.7) 

 

The approximation coefficients of the DWT can now be defined as the inner product of 

the signal and the scaling function, i.e., 

    , ,k n k nc x t t dt   

 , ,,k n n kc x   .     (4.4.8) 

 

The detail coefficients, ,k nd , can now be obtained recursively by using the approximation 

coefficients, ,k nc .  From (4.4.3), (4.4.6) and (4.4.7) it can be inferred that the set 
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     ;
k

t k t k 



    (4.4.9) 

is an orthonormal set that represents a basis.  From the dilation equation in Section 4.3, 

i.e., (4.3.4), and from (4.3.7), 

   2 2
k

t k



     (4.4.10) 

also form an orthonormal set for the same space.  These definitions are for the scale 

0n  , as defined by (4.4.2). 

 

Therefore, any function,  p t , can be expanded as 

      0 2 2
k

p t a k t k   (4.4.11a) 

           1 1

k

p t a k t k b k t k        . (4.4.11b) 

In (4.4.11a),  0a k  are the coefficients used to represent  p t  with  2t k  .  In 

general terms,  ja k  and  jb k  are the coefficients used to weight the scaling function 

and the mother wavelet, respectively, at the scale j. 

 

Again, using the dilation equation for the scaling function, (4.3.4), 

      2 2 2
k

t n h k t n k      , (4.4.12) 

and, similarly, by using (4.3.7) the mother wavelet can be expressed as 

      2 2 2
k

t n g k t n k      . (4.4.13) 

 

Now,  1a n , the coefficients used to represent  p t  with  t n  , can be expressed as 
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      1a n p t t n dt




   

        1 2 2 2
k

a n p t h t t n k dt




      

      1 0 2
k

a n h k a n k     

      1 0 2
k

a n a k h k n    . (4.4.14) 

Similarly, 

      1 0 2
k

b n a k g k n   . (4.4.15) 

 

A bijective mapping can now be formed between  1a n  and  1b n  in (4.4.14) and 

(4.4.15) and the approximation and detail coefficients, ,k jc  and ,k jd , respectively, i.e., 

  ,
j

k jc a k  and    (4.4.16a) 

  ,
j

k jd b k .     (4.4.16b) 

  

Hence, (4.4.14) and (4.4.15) can be generalized in order to express the approximation and 

detail coefficients recursively as 

  , 1 , 2k j n j
n

c c h n k      (4.4.17a) 

  , 1 , 2k j n j
n

c c h N k n     0j   (4.4.17b) 

and 

  , 1 , 2k j n j
n

d c g n k      (4.4.18a) 
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  , 1 , 2k j n j
n

d c g N k n     0j  . (4.4.18b) 

 

This set of equations, (4.4.17) and (4.4.18), provide the method by which the DWT of  

function may be performed.  The most striking aspect of these recursion relations is that 

there is no need for the scaling function or the mother wavelet to be explicitly known in 

order for the DWT to be practicable.  All that is required are the PR filters,   h n , 

  g n ,   h n  and   g n . 

 

A caveat of the DWT is that  x t  was expressed as an infinite sum of  t  basis 

functions in (4.4.1) as 

    , ,k n k n
n k

x t d t
 

 

   . 

From a practical standpoint, however,  x t  must be expressed as a finite sum instead.  

This condition can be enforced by making use of the scaling function so that  x t  may 

now be expressed as 

      , , , ,
0

M

k n n k k M M k
n k k

x t d t c t 


   . (4.4.19) 

 

Notice in (4.4.19) that  x t  is expressed predominantly in terms of the detail coefficients 

corresponding to translations of the mother wavelet, i.e., the HPFs, except at the final, or 

finest, scale of resolution, M.  At the level of resolution n M , the signal is expressed in 

terms of both detail and approximation coefficients. 
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In order to complete this presentation on wavelet transforms it is necessary to address the 

issue of synthesizing, i.e., reconstructing,  x t  from the detail and approximation 

coefficients in (4.4.19).  Therefore, again consider a function  p t  expressed as 

              1 12 2 2 2 2 2
k n n

p t a k h n t k n b k g n t k n         
     

              1 12 2 2 2 2
k n n

p t a k h n k t n b k g n k t n          
    . (4.4.20) 

 

Equating (4.4.20) to  p t  in (4.4.11a) establishes the relationship 

          0 1 12 2
n

a k a n h k n b n g k n        . (4.4.21) 

          0 1 12 2
n

a k a n h N n k b n g N n k         . (4.4.22) 

 

Now if this IDWT process is started at the mth scale, or level, or resolution with the 

coefficients ,k mc  and ,k md , then the approximation coefficients of the next higher, i.e., 

coarser, scale can be found using 

    , 1 , ,2 2k m n m n m
n

c c h k n d g k n         . (4.4.23) 

If this process is continued recursively, the values of , 1kc   comprise the synthesized 

estimate of  x t . 
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Chapter 5 

Convolution Using the Discrete Wavelet 
Transform 
 

Convolution is one of the most widely used operations in the analysis and manipulation 

of electrical signals. The operation is well-defined in commonly used domains such as the 

time-, Fourier-, Laplace-, and z-domains.  It has not, however, been adequately defined 

for use in conjunction with the DWT. 

 

Definition of convolution in the context of wavelet transforms allows for signal 

processing strategies using the DWT to be devised.  Two of these strategies are channel 

estimation and channel equalization.  Studies of the feasibility and efficacy of both of 

these strategies comprise Chapters 6, 7 and 8 of this dissertation. 

 

The development of DWT-based channel estimation and equalization is, however, hinged 

on the ability to convolve finite-length discrete-time signal sequences within the 

framework of the DWT. 

 

A method of enabling convolution while using the DWT has been developed in the 

literature in the context of the implementation of subband coding with the use of 

multirate filters.  This method was titled the Wavelet Convolution Theorem [61].  The 

underlying concept of the approach is the “merging” or “moving” a filter that is placed at 

the output of a DWT filter bank from that position outside the filter bank to a position in 
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the synthesis part of the DWT filter bank.  This procedure is termed the Backward Merge 

Approach in this dissertation. 

 

In this chapter, the Backward Merge Approach has been extended by using polyphase 

filters, which provides an equivalent mechanism for DWT-based convolution.  In 

addition, the concept has been used to merge filters initially placed at the input of a DWT 

filter bank to positions in the analysis section of the filter bank.  This procedure is termed 

the Forward Merge Approach, and has also been extended for use with polyphase filters. 

 

Before exploring the four methodologies for DWT-based convolution, the multirate 

signal processing concepts of the noble identities and polyphase filtering are described in 

Section 5.1.  The Backward Merge Approach, upon which this work is based, is 

explained in Section 5.2, and is implemented with polyphase filters in Section 5.3.  The 

Forward Merge Approach is developed in Section 5.4, and it is implemented with 

polyphase filters as described in Section 5.5. 

 

A central component of the DWT that has been described in Chapter 4 is the use dyadic 

decimation and interpolation within the filter banks.  The filter banks used in the theory 

subband coding described in Chapter 4 are specific cases of maximally-decimated 

uniform filter banks [58,94].  An M-channel maximally-decimated filter bank is shown in 

Fig. 5.1.1. 
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In Fig. 5.1.1 the filters  mH z  are the analysis filters and  mF z  are the synthesis filters.  

The input signal  x n  is split into M streams, which are input to the analysis filters.  The 

analysis filters output M subband signals that are decimated by a factor M, i.e.,  mx n .  

These decimated signals  can then be upsampled by a factor of M and then synthesized 

into  x̂ n  by the synthesis filters,  mF z . 

 

 0H z

 1H z

 1MH z

 x n
 0x n

 1Mx n

 1x n

 0F z

 1F z

 1MF z

 x̂ n

 

Fig. 5.1.1.  M-channel maximally-decimated uniform filter bank. 

 

5.1  Noble Identities and Polyphase Filtering 

Consider the operation of filtering followed by decimation as shown in Fig. 5.1.2. 

 

 MH z x n  y n
 u n

 

Fig. 5.1.2.  Filtering followed by decimation. 

 

After filtering by  MH z , the input signal becomes 
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      MU z X z H z ,  (5.1.1) 

while the output can be expressed as [58] 

    
1

1 2

0

1 






 
M

M j k M

k

Y z U z e
M

. (5.1.2) 

 

Therefore, the output of the process can be written in terms of the input as 

            1 11 M MY z H z X z H z X z H z
M

      

        1 11 M MY z X z X z H z
M

      , (5.1.3) 

which implies that the input signal can first be decimated by a factor of M and then 

filtered, instead of being filtered first and then decimated. 

 

This relationship is known as the first noble identity. and is illustrated in Fig. 5.1.3. 

 

 

 H z x n  y n  MH z x n  y n
 

Fig. 5.1.3.  The first noble identity. 

 

 H z x n  y n
 u n

 

Fig. 5.1.4.  Filtering followed by upsampling. 
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Next, consider the case where a signal is first filtered and then upsampled, as shown in 

Fig. 5.1.4.  In this case 

      U z X z H z    (5.1.4) 

and 

    MY z U z .    (5.1.5) 

      M MY z X z H z  , (5.1.6) 

which implies that the input signal,  x n , may be filtered and then upsampled instead of 

being upsampled first and then filtered.  This relationship is called the second noble 

identity, and is illustrated in Fig. 5.1.5. 

 

 H z x n  y n  MH z x n  y n
 

Fig. 5.1.5.  The second noble identity. 

 

While the two noble identities are very useful in manipulating filtering sequences, there is 

one major drawback.  In the event that a signal is input to a filter having a transfer 

function  H z  and the output of the filter is to be decimated by a factor M, according to 

the first noble identity the order of operations can be swapped as long as the new filter 

has a transfer function that is  1 MH z .  Such a filter, however, cannot be readily 

generated from  H z . 
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A similar situation also occurs with the second noble identity.  In the case where a signal 

is upsampled by a factor of M and is then filtered by  H z , the second noble identity 

indicates that the order of operations can be swapped with the use of a new filter 

 1 MH z .  Once again, this is not a feasible solution. 

 

Unfortunately it is exactly these two scenarios that occur in the M-channel maximally-

decimated uniform filter bank in Fig. 5.1.1, and in the DWT.  A solution that allows for 

the swapping of positions as described above is found with the use of polyphase filters. 

 

Consider the transfer function of a filter that is defined as 

     n

n

H z h n z






  ,   (5.1.7) 

which can be expanded and grouped as 

 
           

       

4 2 2 4

1 4 2 2

4 2 0 2 4

3 1 1 3 .

H z h z h z h h z h z

z h z h z h h z





          
        

 

 
. (5.1.8) 

 

Let the two sets of grouped terms in (5.2.8) be denoted by 

    0 2 n

n

E z h n z






    (5.1.9a) 

and 

    1 2 1 n

n

E z h n z






  . (5.1.9b) 

Therefore, the filter  H z  can now be expressed as 
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      2 1 2
0 1H z E z z E z  . (5.1.10) 

In discrete time notation, the two sub-sequences that  h n  has been split into are 

    0 2e n h n      (5.1.11a) 

and 

    1 2 1e n h n  .    (5.1.11b) 

Such a representation is called the two-component polyphase decomposition of  H z .  

Furthermore, the new filters,  0E z  and  1E z , are called the polyphase components of 

 H z . 

 

This formulation can be immediately extended to represent  H z  as an M-component 

polyphase decomposition, i.e.,  

    
1

0

M
k M

k
k

H z z E z






  .  (5.1.12) 

Here also, the filters  kE z  are the polyphase components of  H z  and are expressed in 

discrete time as 

    ke n h nM k    0 1k M    . (5.1.13) 

 

An important cautionary note about the polyphase decomposition of a filter is that the 

polyphase components,  kE z , depend on the number of subsequences into which  H z  

is to be decomposed, i.e., on M.  For example, the two polyphase components,  0E z  

and  1E z  generated for the case when 2M   will generally not be equal to the 
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polyphase components  0E z  and  1E z  when 3M  .  (In the latter case a third filter 

 2E z  will also be generated.) 

 

Polyphase Implementation of Decimation Filters 

Polyphase decomposition can now be applied to the case of a decimation filter.  Consider 

the case where a signal  x n  is to be filtered by  H z  and then decimated by a factor of 

3.  This scenario is shown in Fig. 5.1.6. 

 

 H z x n  y n
 

Fig. 5.1.6.  Decimation filter ( 3M  ). 

 
By using (5.1.12),  H z  can be decomposed into the 3-component polyphase form 

        3 1 3 2 3
0 1 2H z E z z E z z E z    . (5.1.14) 

Based on (5.1.14), the decimation filter can be redrawn to the form shown in Fig. 5.1.7. 

 

 3
0E z x n  y n3

 3
1E z

 3
2E z

1z

2z

 

Fig. 5.1.7.  Decimation filter showing polyphase decomposition. 
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It should be noted here that the operation of decimation is commutative.  Specifically, for 

two functions  1X z  and  2X z , the following relationship holds 

        1 2 1 2M M M
X z X z X z X z

  
             . (5.1.15) 

 

The decimation filter in Fig. 5.1.7 can now be modified with the use of (5.1.15).  The 

decimator is, therefore, moved inside the summation operator, as seen in Fig. 5.1.8. 

 

 3
0E z x n  y n

 3
1E z

 3
2E z

1z

2z

 

Fig. 5.1.8.  Decimation filter in an intermediate step of derivation. 

 

At this stage, the first noble identity can be invoked and the orders of the filters and 

decimators in each sub-channel can be interchanged.  This, finally, leads to the polyphase 

implementation of the decimation filter, which is shown in Fig. 5.1.9.  The polyphase 

components used in Fig. 5.1.9 can be easily derived from  h n  by using (5.1.13), i.e., 

    0 3e n h M ,    (5.1.16a) 

    1 3 1e n h M  , and  (5.1.16b) 

    2 3 2e n h M  .   (5.1.16c) 
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By following this procedure, the polyphase implementation of any M-fold decimation 

filter can be derived. 

 

 0E z x n  y n

 1E z

 2E z

1z

2z

 

Fig. 5.1.9.  Polyphase implementation of the decimation filter ( 3M  ). 

 

The polyphase implementation of an M-fold decimation filter is more computationally 

efficient by a factor of M.  In order to establish this improvement, let the length of the 

sequence   x n  be N, and the length of the filter  H z  be L.  Discrete time-domain 

convolution between  x n  and  h n  requires NL multiplications.  This is the case in a 

decimation filter, such as the example shown in Fig. 5.1.6.  The polyphase 

implementation of the filter, as shown in Fig. 5.1.9, however, requires only 3NL  

multiplications.  In general, M-component polyphase implementations of decimation 

filters have an  order of complexity given by  O NL M . 
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Polyphase Implementation of Interpolation Filters 

The polyphase implementation of interpolation filters can be obtained in a manner similar 

to the decimation filters.  Consider a signal  x n  that is to be interpolated by a factor of 

M and then filtered by  H z  as shown in Fig. 5.1.10. 

 

 H z x n  y n
 

Fig. 5.1.10.  Interpolation filter ( 3M  ). 

 

 3
0E z x n  y n

 3
1E z

 3
2E z

1z

2z

3

 

Fig. 5.1.11.  Interpolation filter showing polyphase decomposition. 

 

As in the case of the decimation filter, using (5.1.14),  h z  can be decomposed into the 

3-component polyphase form.  The resulting interpolation filter is shown in Fig. 5.1.11, 

and an equivalent form of this interpolation filter is shown in Fig. 5.1.12.  It should be 

noted that in Figs. 5.1.11 and 5.1.12 the delays, 1z  and 2z , are placed after the 

polyphase components  3
1E z  and  3

1E z , respectively, instead of before as was done 

previously (Figs. 5.1.7 - 5.1.9 for the decimation filters). 
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 3
0E z x n  y n

 3
1E z

 3
2E z

1z

2z

 

Fig. 5.1.12.  Interpolation filter in an intermediate step of derivation. 

 

The second noble identity can be applied to the interpolation filter shown in Fig. 5.1.13.  

The result is the polyphase implementation of the interpolation filter for the case when 

3M  .  The coefficients of the polyphase components are the same as in (5.1.16).  

Again, by following this procedure the polyphase implementation of M-fold interpolation 

filters can be realized. 

 

 0E z x n  y n

 1E z

 2E z

1z

2z

 

Fig. 5.1.13.  Polyphase implementation of the interpolation filter ( 3M  ). 

 

The polyphase implementation of an M-fold interpolation filter is also more 

computationally efficient than a standard M-fold interpolation filter by a factor of M.  
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Again, let the length of   x n  be N, and the length of the  H z  be L.  The 3-fold 

interpolation filter shown in Fig. 5.1.10, requires 3NL multiplications, whereas the 

polyphase implementation of the same filter, shown in Fig. 5.1.13, requires only NL 

multiplications.  In general, polyphase implementations of M-fold interpolation filters 

have an order of complexity given by  O NL . 

 

The concepts of the polyphase implementation of decimation and interpolation filters can 

be applied to a maximally-decimated uniform filter bank with two subbands.  The choice 

of two subbands is because the DWT is implemented with a PR filter bank having two 

subbands.  The resulting filter, which is composed of polyphase implementations of 

decimation and interpolation filters is shown in Fig. 5.1.14. 
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5.2  The Backward Merge Approach 

One method for DWT subband convolution has previously been established in a research 

study available in the literature [61].  The method was labeled the Wavelet Convolution 

Theorem by the authors of the study.  This method is used as a start-point for the 

development of the topics in this dissertation.  The approach taken in the Wavelet 

Convolution Theorem is called the Backward Merge Approach in this dissertation, and 

has inspired three new variations of DWT-based convolution.  These three new variations 

are described in the remaining sections of this chapter. 

 

Wavelet Convolution Theorem 

Consider the case where a pair of DWT and IDWT exist so that the PR condition is 

satisfied.  A function  x t  can be expanded using wavelet bases as 

      , k
DWT k

k n

x t x k n f t na T   (5.2.1) 

where 

      , k
DWT kx k n x t h na T t dt





  . (5.2.2) 

 

The convolution of two signals  x t  and  y t  can therefore be computed as 

        x t y t x y t d  




   

        , k
DWT k

k

x t y t x k n y t na T     (5.2.3) 

where  ky t  is the output of the filter  kf t  and  y t  is the input to the filter. 
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This theorem is arrived at graphically in three steps.  Note that in Figs. 5.2.1 - 5.2.3 only 

one channel of the filter bank is shown but the convolution procedure is to be applied at 

every channel of the filter bank. 

Step 1  As seen in Fig. 5.2.1,  x t  is analyzed and then synthesized by a DWT and 

IDWT filter bank, the output of which is  x t  again.  This output is then input 

to a filter  Y j , which is the Fourier transform of  y t . The result of this 

operation is    x t y t . 

 

 x t  kH j kt na T
 ,DWTx k n

 kF j  Y j
 x t

   x t y t

 

Fig. 5.2.1.  Step 1 of the Wavelet Convolution Theorem. 

 

Step 2  Using the distributive property of (Fourier-domain) multiplication, the filter   

    Y j  is moved inside the filter bank. 

 

 x t  kH j kt na T
 ,DWTx k n

 kF j  Y j    x t y t

 

Fig. 5.2.2.  Step 2 of the Wavelet Convolution Theorem. 

 
Step 3  Since the cascading the filters  kF j  and  Y j  is equivalent to filtering   

    y t  with  kF j , i.e., 
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               1

F

k k k kF
Y j Y j F j y t y t f t      , (5.2.4) 

   this relationship is used so that each  ky t  is convolved with  ,DWTx k n . 

 

 x t  kH j kt na T
Sampler  ,DWTx k n

   x t y t

 y t  kF j

Convolver

 ky t

 

Fig. 5.2.3.  Step 3 of the Wavelet Convolution Theorem. 

 

Now, as a complement to the Wavelet Convolution Theorem that has been described, 

consider that the two signals to be convolved,  x t  and  y t , are square integrable and 

have bounded energy.  The two signals are also of finite time duration. 

 

Let both signals be sampled at a rate of nT , which results in two finite-length signal 

sequences  x n  and  y n  of lengths NX and NY, respectively, and there exist the z-

transforms of both sequences, i.e., 

    
0

xN
n

n

X z x n z



  and  (5.2.5) 

    
0

yN
n

n

Y z y n z



  .   (5.2.6) 
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Let  r n  denote the convolution of  x n  and  y n , which gives the transform pair, 

            1

Z

Z
r n x n y n R z X z Y z   . (5.2.7) 

 

Suppose that  x n  is to be expressed using the DWT and then the IDWT, and the 

synthesized copy of  x n  is to be convolved with  y n .  Equivalently,  X z  is to be 

wavelet transformed using an analysis/synthesis filter bank as seen in Chapter 4, and the 

synthesized copy of  X z  is to be multiplied with  Y z .  This latter scenario is shown 

in Fig. 5.2.4 with  X z  input to a 1-level DWT and IDWT filter bank. 

 

 G z

 X z

2  G z

 R z

2

 H z 2  H z2

 Y z
 X z

 U z

 V z

 

Fig. 5.2.4.  1-level DWT and convolution of  X z . 

 
Within the filter bank, let the variables  U z  and  V z  denote the signals that are 

input to the synthesis HPF,  G z , and the LPF,  H z , respectively.  The output of the 

filter bank is 

          X z V z G z U z H z    (5.2.8) 

and therefore, 

            R z V z G z U z H z Y z    
  
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              R z V z G z Y z U z H z Y z     (5.2.9) 

which implies that the filter  Y z  can be moved inside the summation in Fig. 5.2.4.  The 

order of filtering can also be interchanged since the product of  Y z  with  G z  or 

 H z  is commutative, i.e., 

              R z V z Y z G z U z Y z H z   . (5.2.10) 

This result is shown graphically in Fig. 5.2.5, and is analogous to Fig. 5.2.2.  

 

 G z

 X z

 G z

 R z

 H z  H z

 Y z

 U z

 V z

 Y z
 

Fig. 5.2.5.  The Backward Merge Approach of DWT convolution. 

 

For the purposes of practical implementation there is no need to follow Step 3 of the 

Wavelet Convolution Theorem, and the system shown in Fig. 5.2.5 can be directly used. 

 

This methodology for DWT convolution involves moving the signal  y n  and the 

convolution operation from the output of the filter bank to a position inside, and thus 

essentially causing the cascaded, i.e., merged, filters    Y z G z  and    Y z H z .  

Therefore, for the purposes of this dissertation, it is called the Backward Merge Approach 

of DWT convolution. 
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The case of analyzing a signal at 2 levels of DWT is shown in Fig. 5.2.6.  Recall that the 

second level of analysis is actually a 1-level DWT of the approximation coefficients at 

the first level of the overall DWT,  1c n . 

 

 X z  X z

 G z

 H z

 G z

 H z

 G z

 H z

 G z

 H z

 1d n

 2d n

 2c n

 1c n

 

Fig. 5.2.6.  2-level DWT and IDWT. 

 

It is seen in Fig. 5.2.6 that the synthesized output of level-2, i.e.,  1c n , is exactly the 

sequence of level 1 detail coefficients.  After being synthesized,  1c n  is upsampled by a 

factor of 2 and filtered.  The upsampling operation, however, obeys the distributive 

property.  Therefore, the upsampler that operates on  1c n  can be moved into the 

synthesis filter bank at level 2.  This move is shown in Fig. 5.2.7. 

 

 X z  X z

 G z

 H z

 G z

 H z

 G z

 H z

 G z

 H z

 1d n

 2d n

 2c n

 1c n

 

Fig. 5.2.7.  Upsampler moved from level 1 to level 2. 
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This move immediately allows for the use of the second noble identity since the filters 

 G z  and  H z  in the synthesis bank at level 2 are each followed by an upsampling 

operation.  Furthermore, upsampling a signal by a factor of 2 twice in succession is 

equivalent to upsampling a signal by a factor of 4 once.  Using both of these conditions, 

the 2-level DWT filter bank in Fig. 5.2.7 is updated as shown in Fig. 5.2.8. 

 

 X z  X z

 G z

 H z

 G z

 H z

 G z

 H z

 2G z

 2H z

 1d n

 2d n

 2c n

 1c n

 

Fig. 5.2.8.  Equivalent 2-level DWT. 

 

Note that in Fig. 5.2.8, the order of the synthesis filters is doubled, i.e., the filters are 

 2G z  and  2H z .  The coefficients of these filters are   2g n  and   2h n , 

respectively. 

 

Therefore, if  X z  is to be convolved with  Y z ,  X z  can be expressed at 2 levels of 

DWT, and the Backward Merge Approach can once again be used.  It is applied in the 

same way at each level of resolution, and the resulting filter bank is shown in Fig. 5.2.9. 
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In order to gauge the computational complexity of the Backward Merge Approach, let the 

length of  X z  be NX, the length of  Y z  be NY, and the lengths of all the DWT filters 

be L.  Furthermore, assume that the two signals are much longer discrete-time sequences 

than the filters, i.e., XN L  and YN L .  Referring to Fig. 5.2.9, the order of 

complexity required in the level 1 detail subband is 

    X X Y X YO n N N N N N     (5.2.11a) 

   X YO n N N  .    (5.2.11b) 

For the level 1 approximation subband, which includes the operations at level 2 as well, 

the order of complexity is 

    2 2 3X X Y X YO n N N N N N     (5.2.12a) 

   2 X YO n N N  .    (5.2.12b) 

 

5.3  The Backward Merge Approach with Polyphase 
Filters 

The Backward Merge Approach can be taken one step further by making use of 

polyphase filtering.  Notice in Fig. 5.2.5 that the DWT coefficients are first upsampled by 

a factor of 2 and then filtered by  Y z .  Instead, the polyphase components of  Y z  can 

be easily generated and used in the DWT convolution process so that the order of the 

operations of upsampling by a factor 2 and filtering with  Y z  can be interchanged. 
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As described in (5.1.9) and (5.1.10),   Y z  can be expressed as the 2-component 

polyphase decomposition 

      2 1 2
0 1Y z E z z E z   (5.3.1) 

where the polyphase components are  

    0
0

2
yN

n

n

E z y n z



   and   (5.3.2a) 

    1
0

2 1
yN

n

n

E z y n z



  .  (5.3.2b) 

 

 0E z

 1E z 1z

 Y z

 

Fig. 5.3.1.  Polyphase implementation of the  Y z  interpolation filter. 

 

Note that the same polyphase components can be used in the 1-level DWT filter bank 

shown in Fig. 5.2.5 since the DWT coefficients in each channel are upsampled by the 

same factor, i.e., by 2. Therefore, the filter bank implementing the Backward Merge 

Approach, in Fig. 5.2.5, can be updated to include polyphase filtering as shown in Fig. 

5.3.2.  This methodology can also be implemented for 2 levels of DWT.  In Fig. 5.2.9 it is 

seen that there are 2-fold upsamplers and 4-fold upsamplers in the 2-level 
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implementation.  Due to this  Y z  must be expressed as a 2-component polyphase 

decomposition at level 1 and a 4-component polyphase decomposition at level 2. 

 

 

 G z

 X z

 G z

 R z

 H z  H z

 0E z

 1E z 1z

 0E z

 1E z 1z

 

Fig. 5.3.2.  The Backward Merge Approach with polyphase implementation at one level 

of DWT. 

 

To avoid confusion, the mth polyphase component at the kth level of DWT is denoted by 

 k
mE z  in the z-domain, and the corresponding discrete time sequence is denoted by 

 k
me n .  Using this notation the polyphase components to be used at level 1 of the DWT 

are  1
0E n  and  1

1E n , and the polyphase components for use at level 2 of the DWT are 

 2
0E n ,  2

1E n ,  2
2E n  and  2

3E n . 

 

The resulting filter bank that incorporates the Backward Merge Approach of convolving 

 X z  and  Y z  at two levels of DWT with the use of polyphase filtering is shown in 

Fig. 5.3.3. 
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In Fig. 5.3.3, let the length of  X z  be NX, the length of  Y z  be NY, the lengths of all 

DWT analysis and synthesis filters be L.  Assuming that XN L  and YN L , the 

number of arithmetic operations that have to be performed in the level 1 detail subband is 

of the order 

    
2

X Y
X X Y

N N
O n N N N     (5.3.3a) 

  
2

X YN N
O n  .    (5.3.3b) 

In the level 1 approximation subband, which includes all operations at level 2, the 

complexity is 

    2 3
2

X Y
X X Y

N N
O n N N N     (5.3.4a) 

 
2

X YN N
O n  .    (5.3.4b) 

 

5.4  The Forward Merge Approach 

Using the idea of the Backward Merge Approach an alternative approach can be 

developed, albeit based essentially on the corollary to the Backward Merge Approach.  In 

this new approach a filter is merged with a DWT filter bank by starting at the input of the 

filter bank.  This procedure, called the Forward Merge Approach, is more intuitively 

appealing than the Backward Merge Approach because it follows the commonly used 

diagrammatic direction of signal flow: from left to right. 
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Once again, starting with two signals,  x n  and  y n , which, when convolved, result in 

      x n y n r n  ,   (5.4.1) 

or, equivalently, 

      X z Y z R z .   (5.4.2) 

 

In the Backward Merge Approach  X z  was transformed using the DWT and IDWT.  In 

this case, however,  R z  is transformed using the DWT and IDWT instead.  This 

scenario is depicted in Fig. 5.3.1 with 1-level DWT. 

 

 X z  R z Y z
 R z

 U z

 V z
 G z

 H z  H z

 G z

 

Fig. 5.4.1.  1-level DWT and IDWT of  R z . 

 

From Fig. 5.4.1, the intermediate signals output by the analysis filters are 

      V z R z G z   and  (5.4.3) 

      U z R z H z  .   (5.4.4) 

Using (5.4.2), these intermediate signals can be rewritten as 

        V z X z Y z G z   and (5.4.5) 

        U z X z Y z H z  . (5.4.6) 
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It is immediately seen in (5.4.5) and (5.4.6) that the orders of filtering, being 

commutative, can be interchanged.  This allows for the signal  Y z  to be embedded 

within the DWT filter bank that is analyzing  R z .  By this action the convolution 

operation that was originally outside the DWT/IDWT filter bank can be moved inside it 

and can essentially be merged with the analysis filters.  Explicitly, these merged filters 

would be    G z Y z  and    H z Y z . 

 

 X z  R z

 Y z

 G z

 H z  H z

 G z2

2 2

2 Y z

 

Fig. 5.4.2.  The Forward Merge Approach of DWT convolution. 

 

As in the case of the Backward Merge Approach, in order to implement the Forward 

Merge Approach at 2 levels of DWT a modified form of the 2-level DWT filter bank 

must be first established.  In particular, the 2-fold decimator following  H z  at level 1 

has to be moved to level 2.  Fortunately, since the decimator precedes the two analysis 

filters at level 2, the first noble identity can be used.  The original 2-level DWT/IDWT 

filter bank is shown in Fig. 5.4.3.  The modified  2-level filter bank is shown in Fig. 5.4.4. 
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 R z  R z

 G z

 H z

 G z

 H z

 G z

 H z

 G z

 H z

 1d n

 2d n

 2c n

 1c n

 

Fig. 5.4.3.  Original 2-level DWT/IDWT filter bank. 

 

 

 R z  R z

 G z

 H z

 G z

 H z

 2G z

 2H z

 G z

 H z

 1d n

 2d n

 2c n

 1c n

 

Fig. 5.4.4.  Modified 2-level DWT/IDWT filter bank. 

 

The Forward Merge Approach of convolving  X z  and  Y z  can now be implemented 

by using the modified filter bank in Fig. 5.4.4.  The resulting filter bank is shown in Fig. 

5.4.5.  Using the modified DWT/IDWT filter banks the Forward Merge Approach can be 

implemented for any number of levels of DWT analysis. 
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Using the same notations for signal lengths as in the Backward Merge Approach, the 

number of computations required for the Forward Merge Approach at each DWT level 

can be determined from Fig. 5.4.5.  In the level 1 detail subband, the number of 

computations is 

    X X Y X YO n N N N N N     (5.4.7a) 

   X YO n N N  .    (5.4.7b) 

In the level 1 approximation subband, which includes the operations at level 2, the order 

of complexity is 

    3 2 2X X Y X YO n N N N N N     (5.4.8a) 

   2 X YO n N N  .    (5.4.8b) 

 

5.5  The Forward Merge Approach with Polyphase 
Filters 

Using polyphase filtering the Forward Merge Approach can be modified into an 

equivalent form.  For the case of 1-level DWT, as seen in Fig. 5.4.2, the output of the 

 Y z  filter in each channel is decimated by a factor of 2.  Such a filtering operation 

followed by decimation, which is called a decimation filter, may be implemented using 

the polyphase components of  Y z . 

 

By following the procedure used to generate Fig. 5.1.9, for the case of 2-fold decimation, 

the 2-component polyphase decomposition of  Y z  is 
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      2 1 2
0 1Y z E z z E z   (5.5.1) 

where 

    0
0

2
yN

n

n

E z y n z



   and   (5.5.2a) 

    1
0

2 1
yN

n

n

E z y n z



  .  (5.5.2b) 

 

Note that this polyphase decomposition and the components are exactly the same as in 

Section 5.3, the Backward Merge Approach with Polyphase Filters.  The difference lies 

in the actual implementation of the filters in conjunction with the decimator.  In Section 

5.3, the filters were used along with upsamplers instead.  The polyphase implementation 

of the  Y z  decimation filter is shown in Fig. 5.5.1. 

 

 Y z

1z  1E z

 0E z

 

Fig. 5.5.1.  Polyphase implementation of the  Y z  decimation filter. 

 



118 
 

Therefore, the 1-level DWT convolution using the Forward Merge Approach shown in 

Fig. 5.4.2 is modified by using the polyphase form of the  Y z  interpolation filter shown 

in Fig. 5.5.1.  This equivalent form is illustrated in Fig. 5.5.2. 

 

 X z

 G z

 R z

 H z

 G z

 H z

1z  1E z

 0E z

1z  1E z

 0E z

 

Fig. 5.5.2.  The Forward Merge Approach with polyphase implementation at one level of 

DWT. 

 

Taking into consideration that at two levels of DWT there are 2-fold decimators at level 1 

and 4-fold decimators at level 2, two sets of polyphase components are required for the 

polyphase decomposition of  Y z .  The notation established in Section 5.3 is used here 

as well.  For the sake of completeness the coefficients of the two decompositions are 

provided as follows. 

 

The coefficients of the polyphase components to be used at level 1 are 

    1
0 2e n y n  and   (5.5.3a) 

    1
1 2 1e n y n  .    (5.5.3b) 

The coefficients to be used at level 2 are 
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    2
0 4e n y n ,    (5.5.4a) 

    2
1 4 1e n y n  ,   (5.5.4b) 

    2
2 4 2e n y n   and  (5.5.4c) 

    2
3 4 3e n y n  .   (5.5.4d) 

 

The resulting filter bank is seen in Fig. 5.5.3 in which the convolution of  X z  and 

 Y z  is implemented using the Forward Merge Approach with polyphase filtering at two 

levels of DWT.  This process can readily be extended for any number of levels of DWT. 

 

Using Fig. 5.5.3, the computational complexity of the Forward Merge Approach with 

polyphase implementation can be determined.  Again, let the length of  X z  be NX, the 

length of  Y z  be NY, and the lengths of the DWT filters be L.  Assuming that XN L  

and YN L , the order of complexity in the level 1 detail subband is 

    
2

X Y
X X Y

N N
O n N N N     (5.5.5a) 

  
2

X YN N
O n  .    (5.5.5b) 

The complexity in the level 1 approximation subband, which includes all operations at 

level 2, is 

    3 2
2

X Y
X X Y

N N
O n N N N     (5.5.6a) 

  
2

X YN N
O n  .    (5.5.6b) 
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Chapter 6 

Discrete Wavelet Transform-Based 
Channel Estimation 
 

A procedure for the deconvolution of signals using the DWT is developed in this chapter 

in order to complement the approaches for DWT-based convolution in Chapter 5.  The 

first application of DWT-based convolution and deconvolution is in the estimation of 

communications channels.  In this application pilot-assisted channel estimation is 

developed. 

 

In the computer simulation experiments, a test signal is first transmitted through a 

channel and the distorted signal is acquired by a receiver.  A copy of the distortion-free 

pilot signal is available at the receiver, which is deconvolved from the received signal in 

order to obtain an estimate of the impulse response of the channel. 

 

A point worthy of note is that the procedure of deconvolution using the DWT is not 

developed here exclusively for the purpose of channel estimation, but rather as a general 

methodology that can be used in any suitable application. 

 

The methodology for DWT deconvolution is developed in Section 6.1.  The procedure 

for generating analytical forms of channels suitable for use in computer simulation 

experiments is described in Section 6.2, along with a description of the test signals that 

are used.  The deconvolution procedure is applied to five types of channels, which are 
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characterized by their PDPs.  The results of the simulation experiments are presented in 

Section 6.3.  A discussion of the methodologies used and the results is provided in 

Section 6.4. 

 

6.1  Deconvolution Using the Discrete Wavelet 
Transform 

Suppose  x n  and  y n  are two finite-length discrete time sequences such that  x n  

and  y n  are convolved to produce  r n , i.e., 

      r n x n y n  .   (6.1.1) 

 

Using the Forward Merge Approach, let this convolution be performed using the DWT.  

Specifically, the z-transform equivalents of the signals,  X z  and  Y z , are DWT 

convolved without using polyphase filters, as shown in Fig. 6.1.1. 

 

 X z  R z

 Y z

 G z

 H z  H z

 G z2

2 2

2 Y z
 XYV z

 XYU z

 XYA z

 XYB z

 1
XYD z

 1
XYC z

 XYV z

 XYU z

Analysis Synthesis  

Fig. 6.1.1.  DWT convolution of  X z  and  Y z . 
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Several variables have been shown in Fig. 6.1.1. Among these,  1
XYD z  and  1

XYC z  are 

the most important as they are the z-transforms of the detail and approximation 

coefficients, respectively, within the DWT convolution process.  Specifically, 

    
1

1 1
0

dL
XY n

n

D z d n z



  and (6.1.2) 

    
1

1 1
0

cL
XY n

n

C z c n z



  ,  (6.1.3) 

where 1dL  is the length of   1d n  and 1cL  is the length of   1c n .  The superscript XY 

is used to denote that the variables are a part of the DWT convolution of  X z  and 

 Y z . 

 

In the synthesis filter bank in Fig. 6.1.1, the detail and approximation coefficients, 

 1
XYD z  and  1

XYC z , are upsampled by a factor of 2, which results in 

    2
1
XY

XYV z D z   and  (6.1.4) 

    2
1
XY

XYU z C z  .   (6.1.5) 

These signals are then filtered by the synthesis filters and added together to produce the 

convolved result, i.e., 

             
XY XYR z V z G z U z H z , (6.1.6) 

Using (6.1.5)  R z  can be expressed in terms of the detail and approximation 

coefficients as 

          2 2
1 1
XY XYR z D z G z C z H z   . (6.1.7) 
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Next, consider the case where  R z  is, by itself, analyzed and then synthesized by a 

DWT/IDWT filter bank.  This scenario is shown in Fig. 6.1.2, along with the 

intermediate signals in the z-domain. 

 

 R z  R z

 G z

 H z  H z

 G z2

2 2

2
 RV z

 RU z

 1
RD z

 1
RC z

 RV z

 RU z

Analysis Synthesis
 

Fig. 6.1.2.  DWT and IDWT of  R z . 

 

From the synthesis filter bank in Fig. 6.1.2,  R z  can be expressed in terms of the detail 

and approximation coefficients,  1
RD z  and  1

RC z , as 

          2 2
1 1
R RR z D z G z C z H z   . (6.1.8) 

 

Equations (6.1.7) and (6.1.8) now provide two expressions for  R z  in terms of the 

DWT coefficients.  In the first expression, (6.1.7), the DWT coefficients that are used to 

synthesize  R z  are a result of the DWT convolution of  X z  and  Y z .  This case is 

depicted in Fig. 6.1.1.  In the second expression, (6.1.8), the DWT coefficients from 

which  R z  is synthesized are solely obtained from the DWT of  R z  itself.  This case 

is shown in Fig, 6.1.2. 
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Based on this observation, the results of the two equations, (6.1.7) and (6.1.8), are equal.  

Therefore, the coefficients of both equations can be directly compared, and it is seen that 

    2 2
1 1
XY RD z D z  and  (6.1.9) 

    2 2
1 1
XY RC z C z ,   (6.1.10) 

which imply that 

    1 1
XY RD z D z  and   (6.1.11) 

    1 1
XY RC z C z .    (6.1.12) 

 

These two relationships, (6.1.11) and (6.1.12), are significant because they require that in 

order to synthesize  R z  the DWT coefficients in both cases must be exactly equal. 

 

Revisiting Fig. 6.1.1, the DWT coefficients can be expressed in terms of the intermediate 

signals just prior to the 2-fold decimation as 

      1 2 1 2
1

1

2
XY

XY XYD z A z A z      and (6.1.13) 

      1 2 1 2
1

1

2
XY

XY XYC z B z B z     . (6.1.14) 

 

Similarly, from Fig. 6.1.2, the DWT coefficients can be expressed as 

      1 2 1 2
1

1

2
R

R RD z V z V z       and (6.1.15) 

      1 2 1 2
1

1

2
XY

R RD z U z U z      . (6.1.16) 
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Due to the equivalence of DWT detail and approximation coefficients for the 2 cases 

established in (6.1.11) and (6.1.12), respectively, it follows from (6.1.13)-(6.1.16) that 

    XY RA z V z  and   (6.1.17) 

    XY RB z U z .    (6.1.18) 

These two equations, (6.1.17) and (6.1.18), show that the outputs of the  Y z  filters in 

the DWT convolution of  X z  and  Y z  are exactly equal to the outputs of the analysis 

filters in the independent DWT of the convolved signal  R z . 

 

Once again revisiting Fig. 6.1.1, which depicts the DWT convolution of  X z  and 

 Y z , it is seen that 

      XY XYA z V z Y z  and (6.1.19) 

      XY XYB z U z Y z .  (6.1.20) 

 

Substituting (6.1.17) into (6.1.19) results in 

      R XYV z V z Y z     (6.1.21) 

and substituting (6.1.18) in (6.1.20) yields the relationship 

      R XYU z U z Y z  .  (6.1.22) 

 

Expressing  XYV z  and  XYU z  as inverses, these two equations can be rewritten as 

      1
XY RY z V z V z   and  (6.1.23) 
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      1
XY RY z U z U z  .  (6.1.24) 

 

The two equations, (6.1.23) and (6.1.24), provide the means for DWT-based 

deconvolution of  X z  from  R z  that can be used to obtain estimates of  Y z .  In 

(6.1.23),  Y z  is obtained by deconvolving the DWT detail coefficients of the 

convolution of  X z  and  Y z  using the Forward Merge Approach from the detail 

coefficients of  R z .  Equation (6.1.24) provides a similar explicit expression of  Y z  

except for the fact that the deconvolution involves the approximation coefficients instead. 

 

As with the four approaches to DWT convolution in Chapter 5, this DWT deconvolution 

procedure may be applied to as many levels of resolution as necessary by extension of the 

preceding theory.  The result of the deconvolution at any level of resolution will be an 

estimate of  Y z . 

 

Notice that both (6.1.21) and (6.1.22)  are expressions of convolution.  In (6.1.21)  X z  

filtered by  G z , i.e.,  XYV z , is convolved with  Y z  to produce  RV z , which is 

 R z  also filtered by  G z .  Equation (6.1.22) expresses a similar procedure, except 

with the use of  H z  instead of  G z . 

 

Equation (6.2.21) can be expressed in discrete time notation as 

      r xyv n v n y n  .   (6.1.25) 
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Practically, this discrete time convolution can be computed with the use of a Toeplitz 

matrix formulation. 

 

Matrices with elements that are constant along each diagonal are called Toeplitz matrices.  

Formally, T is a Toeplitz matrix if there exist scalars 1 0 1, , ,n np p p     such that [95]   

 ij j ia p   ,i j .    (6.1.26) 

For example, a 4 4  Toeplitz matrix will have the form 

 

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0



 

  

 
 
 
 
 
 

p p p p

p p p p

p p p p

p p p p

T . (6.1.27) 

 

Suppose that   xyv n  and   y n  are composed of four elements each.  The convolution 

operation in (6.1.25) for this case can be implemented as the familiar matrix equation 

  xy rV y v       (6.1.28) 

where  

 

 
   
     
       

     
   

 

0 0 0 0

1 0 0 0

2 1 0 0

3 2 1 0

0 3 2 1

0 0 3 2

0 0 0 3

xy

xy xy

xy xy xy

xy xy xy xy

xy xy xy

xy xy

xy

v

v v

v v v

v v v v

v v v

v v

v

 
   
   
       
   
 

  
  

xyV , (6.1.29) 

         T
0 1 2 3y y y y   y  and (6.1.30) 

               T
0 1 2 3 4 5 6r r r r r r rv v v v v v v          rv . (6.1.31) 
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It is immediately seen that (6.1.28) is an overdetermined equation and can be reduced by 

selecting a suitable square sub-matrix of xyV .  The vector rv  must also be truncated 

correspondingly.  An example of this step is 

 

 
   
     
       

 
 
 
 

 
 
 
 

0 0 0 0 0 0

1 0 0 0 1 1

2 1 0 0 2 2

3 2 1 0 3 3

xy r

xy xy r

xy xy xy r

xy xy xy xy r

v y v

v v y v

v v v y v

v v v v y v

      
                    
                  

. (6.1.32) 

 

The matrix in (6.1.32) is in lower triangular form and the unknown values of y can be 

readily found by forward substitution.  It should be noted that in (6.1.32) the leading 

transient elements of rv  are selected, which is the reason why the lower triangular square 

sub-matrix of xyV  is obtained. 

 

Generally, however, the elements of the central portion of rv  could be considered and a 

square sub-matrix of xyV  that is not in lower triangular form would result.  Solving for 

the unknown y in these cases can be accomplished with the use of an efficient procedure 

such as the Levinson-Durbin algorithm for solving Toeplitz matrices.  Appendix A 

contains the Levinson-Durbin algorithm for the case of non-Hermitian Toeplitz matrices, 

an example of which is in (6.1.32).  The computational complexity of the algorithm is on 

the order of  2O n [95]. 
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For the purposes of this dissertation, i.e., to simply verify that DWT-based deconvolution 

is possible, it is, however, sufficient to use the Least Squares Inversion (LSI) routine built 

into MATLAB [96]. 

 

Computational Complexity 

As described in this section, DWT-based deconvolution minimally requires two partial 

DWT analyses, with each DWT analysis in a single subband.  Specifically, two functions 

are required for the deconvolution: 

1. The signal  XYV z , which is the output of the high-pass analysis filter,  G z , when 

excited by the known signal  X z . 

2. The signal  RV z , which is the output of the high-pass analysis filter,  G z , when 

excited by the known signal  R z  

The signal  XYV z  is to be deconvolved from  RV z  to provide the unknown  Y z . 

 

In order to evaluate the computational complexity involved in this operation, first let the 

length of the filter  G z  be L.  Next, let the length of the signal  X z  be NX, and the 

length of the signal  R z  be NR.  Hence, the length of  XYV z  is 1XN L  , and the 

length of  RV z  is 1RN L  .  Making the assumption that the input signal  X z  is 

much longer than the filter  G z , i.e., XN L , the length of  XYV z  can be 

approximated to is NX, and the length of  RV z  to NR. 

 



131 
 

Now, the DWT-based deconvolution operation to obtain an estimate of  Y z  has been 

shown in (6.1.23) to be  

      1
XY RY z V z V z   

while standard z-domain deconvolution of  X z  from  R z  is 

      1Y z X z R z .   (6.1.33) 

 

Comparing the DWT-based deconvolution in (6.1.23) and standard z-domain, or discrete-

time domain, deconvolution in (6.1.33), it is seen that the lengths of the respective 

functions involved are approximately the same.  Specifically, 

 length of  XYV z  = length of  X z  = NX 

and 

 length of  RV z  = length of  R z  = NR. 

Therefore, the computational complexity of DWT-based deconvolution is almost equal to 

the complexity of standard deconvolution.  The exact order of complexity depends on the 

specific deconvolution technique used in both cases.  If a technique such as LU 

decomposition is used the order of complexity is  3
XO N , while a technique such as the 

Levinsion-Durbin algorithm possesses complexity on the order of  2
XO N . 
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6.2  Setup and Design of Computer Simulation 
Experiments 

In order to test the theory of DWT deconvolution that has been established in Section 6.1 

by way of computer simulation experiments there are two critical factors that have to be 

addressed.  The first is the generation of impulse responses of channels.  The second is 

the generation of test signals. 

 

For implementation in a simulation environment, such as MATLAB, the impulse 

response of a communications channel is necessary.  As mentioned in Chapter 2, 

channels are not, however, typically characterized by a time-domain impulse response in 

either analytical or empirical models as well as in measurements.  Instead, the power 

delay profile of a channel is established, either as an analytical model or empirically by 

channel sounding measurements. 

 

The procedure of generating an impulse response of a channel from a PDP is described in 

Section 6.2.1.  The test signals that will be used in all simulations are defined analytically 

in Section 6.2.2. 

 

6.2.1  Generation of Channels for Computer Experiments 

The channel impulse response at any discrete-time instant nT can be described by its In-

phase (I) and Quadrature (Q) components as 

      I Qc n c n jc n  .  (6.2.1.1) 
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The PDP of the channel is denoted by  p n .  The channel impulse response,  c n , is a 

complex zero-mean Gaussian random process with variance  p n .  Therefore,  Ic n  

and  Qc n  are uncorrelated Gaussian random processes as well [97]. 

 

Now, according to the Bienaymé equality, the variance of the sum of uncorrelated 

random variables is the sum of the variances of each random variable, i.e., 

  
1 1

var var
n n

i i
i i

X X
 

   
 
  . (6.2.1.2) 

Hence, the variance of each component of the channel impulse response, i.e., of  Ic n  

and of  Qc n , is   2p n . 

 

Next, a Gaussian random vector, c, of length 2N can be composed of the I and Q 

components of  c n  for various values of n, i.e., 

             1 1 2 2, , , , , ,I Q I Q I N Q Nc n c n c n c n c n c nc  . (6.2.1.3) 

 

Now, the covariance of two real-valued processes, X and Y, is 

        cov ,X Y E X E X Y E Y     . (6.2.1.4) 

    cov , varX X X  .  (6.2.5) 

 

Hence, by applying (6.2.1.5) to (6.2.1.3), the covariance matrix of c is given by 
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 

 

1

1
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0
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0
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N

p n

p n

p n

p n
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 
 
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 
 

  
 
 
 
 
 
  

M  . (6.2.1.6) 

 

In a computer simulation environment the vector c can now be generated from a Gaussian 

distribution that satisfies the covariance matrix M.  In this manner all of the N I and Q 

components of the channel impulse response may be generated.  A test signal is then 

convolved with the channel impulse response to emulate the physical process of 

transmission, and the real part of the convolved result is taken to be the received signal. 

 

It should be noted that for a particular PDP, every time this procedure is run the actual 

channel impulse response that is generated will be different.  This is due to the generation 

of pseudo-random numbers taken from a Gaussian distribution.  A single PDP may, 

therefore, be common to a very large number of channel impulse response realizations.  

This fact is easily seen if the channel is considered to be a continuous time function, 

 c t .  By definition, 

        c t c t p t t t     (6.2.1.7) 

where  denotes an ensemble average, and 

     2
p t c t .    (6.2.1.8) 
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6.2.2  Test Signals 

The test signals that are used in all simulation experiments are composed of 

superimposed sinusoids.  Each test signal is the sum of a specific number of odd 

harmonics of a fundamental sinusoidal component.  The general form of the signal 

sequence is described in discrete time as 

     0
1

cos 2 1 2
K

k s k
k

s n A k f nT 


      (6.2.2.1) 

where 

  s n  is the nth element of the test signal sequence, 

 K  is the number of sinusoidal harmonic components in the test signal, 

 Ak  is the amplitude of the kth harmonic component, 

 0f   is the frequency of the fundamental harmonic, 

 Ts  is the sampling rate, and 

 k   is the additional phase offset for the kth harmonic. 

 

The values of the amplitude and the phase of each harmonic component, kA  and k , 

respectively, are obtained from uniform distributions of each parameter.  The values of 

the amplitudes are limited to the numerical range 0 to 10, while the phase offsets range 

from 0 to 2  radians.  The frequency of the fundamental harmonic, 0f , is fixed at a 

nominal value of 2 Hz, and the number of odd harmonics, K, is chosen to be 7. 
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6.2.3  Procedure of Experiments 

The procedure for DWT-based deconvolution theorized in Section 6.1 is examined via 

simulation experiments for the following scenarios: 

 1. Five channel PDP models; 

 2. Two cases of fading per channel; 

 3. Addition of white Gaussian noise to every received signal. 

 

In each experiment a test signal is convolved with a channel impulse response, which 

creates the received signal.  WGN is then added to the received signal.  The noisy 

received test signal is then transformed using the DWT without decimation.  The 

resulting DWT coefficients are then used for DWT-based deconvolution as described in 

Section 6.1. 

 

The noise that is added to all transmitted signals is Additive White Gaussian Noise 

(AWGN) with a double-sided Power Spectral Density (PSD) of 0 2N .  The metric of 

0bE N  is used throughout this work to provide a relative measure of the energy 

contained in every “bit” that is transmitted, bE , to the power of the noise that is added to 

the signal. 

 

Each received signal is analyzed to four levels of resolution, which gives five estimates 

of  c n , i.e.,  ĉ n .  Four of these estimates are obtained from the detail coefficients at 



137 
 

each of the four levels of resolution and the fifth estimate from the approximation 

coefficients at the fourth level of resolution. 

 

The Haar wavelet is used in all simulations.  For the first channel, viz., the channel 

defined by a Gaussian PDP in Section 6.3.1, 3 additional wavelets are used for the 

purposes of comparisons.  These are the Daubechies2 (db2), Daubechies3 (db3) and 

Daubechies 4 (db4) wavelets. 

 

In every simulation experiment the Mean-Squared Error (MSE) between the actual 

channel impulse response and each estimate is computed.  For each channel scenario a 

total of 1,001 test signals are transmitted for each value of 0bE N .  An average of the 

resulting ensemble of 1,001 MSEs for each value of 0bE N  is then computed.  The 

results are illustrated graphically in Figs. 6.3.2 - 6.3.9. 

 

6.3  Simulation Experiments and Results 

Five different channel PDP models are considered: 

 1. Gaussian PDP 

 2. Exponential PDP 

 3. Equal Amplitude Two-Ray PDP 

 4. Unequal Amplitude Three-Ray PDP 

 5. Hilly Area PDP 
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Two fading scenarios are considered for each channel profile.  The first is a case of fast 

fading, which is implemented by selecting the normalized delay time of the channel, d, to 

be 0.2.  The second case is of a slow fading channel, in which case a normalized delay 

time of 0.2d   is used. 

 

Consider, for the sake of illustration, a channel with a Gaussian PDP, which is defined as 

  
 2

2
1

2

t

c t e





 .   (6.3.1) 

In (6.3.1) the quantity   denotes the Root-Mean-Squared (RMS) delay spread, and is 

defined by 

 symdT  ,      (6.3.2) 

where symT  is the period of the baseband digital symbols on which the transmitted signals 

are based.  In all experiments the baseband symbol period, symT , is set as 1 s. 

 

Before proceeding further it must be noted that the channel PDPs, and, therefore, the 

channel impulse responses require the definition of a baseband symbol period, symT .  For 

this reason the test signals that are used are several units of  s n , defined in (6.2.10), 

concatenated one after the previous.  Each unit may be considered to be a “baseband 

symbol.” 

 

The control experiment is a direct deconvolution of a copy of the uncorrupted test signal 

from the noisy received signal in the discrete time-domain.  Such deconvolution 

generates an estimate of the channel impulse response.  The normalized MSE of the 
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estimate so obtained and a copy of the channel impulse response is then computed.  This 

process is repeated 1,001 times for each value of 0bE N  and an ensemble average of the 

1,001 MSEs for each value of 0bE N  is then computed.  These ensemble-averaged 

MSEs are then compared with the corresponding MSEs obtained from the DWT 

deconvolution. 

 

6.3.1  Channel 1:  Gaussian Power Delay Profile 

The Gaussian PDP used as a model for channel 1 was defined previously in (6.3.1) as 

  
 2

2
1

2

t

c t e





 . 

The duration of  c t  is fixed as 5 s for all simulations using this Gaussian channel.  The 

baseband symbol period for the test signal is 1 s, and the test signal is composed of 10 

symbols.  Each symbol is represented by a sinusoidal signal defined by (6.2.10).  

Furthermore, each symbol period is sampled at a rate of 10 samples/symbol.  Due to this 

condition the test signal is composed of 100 numerical sample values, and the channel 

impulse response is composed of 50 sample values. 

 

Two PDPs defined by (6.3.1) are shown in Fig. 6.3.1.  In Fig. 6.3.1a the case of a slow 

fading channel, with 2.5d  , is illustrated while the case of a fast fading channel, with 

0.2d  , is shown in Fig. 6.3.1b. 
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Fig. 6.3.1.  Gaussian PDP for the (a) slow fading case of 2.5d  ; (b) fast fading case of 

0.2d  . 

 

In Fig. 6.3.2, the results from the case of a slow fading channel are shown.  DWT 

analysis is carried out with the Haar wavelet to four levels of resolution.  The MSEs 

between the five DWT-based estimates and the actual channel impulse response are 

plotted using the various colored lines, and datum markers.  The phrase “Level 1 Detail” 

in the legend in Fig. 6.3.2 indicates the MSEs between the estimate of the channel 

impulse response obtained from the detail coefficients at the 1st level of resolution and the 

actual channel impulse response.  The other captions in the legend can be interpreted in a 

similar manner. 

 

The MSE of the control experiment is plotted as a solid black line, with the data marked 

by asterisks.  The phrase “time-domain” is used in the legend to indicate the control data 
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obtained by deconvolving the received signal from a copy of the uncorrupted transmitted 

signal directly in the discrete time-domain. 
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Fig. 6.3.2. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Haar wavelet (for 2.5d  ). 
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Fig. 6.3.3. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Daubechies2 wavelet (for 2.5d  ). 
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The 95% confidence intervals for the MSE data of the level 1 Detail estimates are also 

shown.  A 95% confidence interval [99] for a mean value,  , is an interval 

k k       that contains   with a probability of 0.95. 

 

The second set of simulations involved the use of the Daubechies2 wavelet instead of the 

Haar.  The normalized MSEs that resulted from this experiment are plotted in Fig. 6.3.3.  

By comparing Figs 6.3.2 and 6.3.3 it is seen that the estimation errors in the latter plot 

(using the Daubechies2 wavelet) are significantly greater that the errors in the former 

plot, in which case the Haar wavelet was used. 
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Fig. 6.3.4. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Daubechies3 wavelet (for 2.5d  ). 

 

The Monte Carlo simulation experiment for the slowly fading case of 2.5d   was 

repeated a third time, but in this iteration the Daubechies3 wavelet was used.  Following 
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the trend seen from the cases of the Haar and the Daubechies2 wavelets, in Figs. 6.3.2 

and 6.3.3, the estimation errors increase even more. 

 

The last experiment for the Gaussian channel with 2.5d   involves the use of the  

Daubechies4 wavelet.  Once again the estimation errors at every level of resolution 

increased as the values of 0bE N  increased.  The estimation errors are also seen in Fig,. 

6.3.5 to be collectively greater in the case of the Daubechies4 wavelets, than when the 

previous three wavelets were used. 
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Fig. 6.3.5. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Daubechies4 wavelet (for d = 2.5). 

 

The second set of simulation experiments for estimating the Gaussian channel were based 

on the channel having a normalized delay time, d, of 0.2.  This condition results in a fast 

fading channel for the test signals previously defined.  As with the case of the slow 
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fading channel, with 2.5d  , the same four wavelets are used in succession so as to 

compare the performance of DWT-based deconvolution for the different wavelets. 
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Fig. 6.3.6. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Haar wavelet (for d = 0.2). 

 

The results of the simulations that used the Haar wavelet are plotted in Fig. 6.3.6.  As 

expected, the MSEs of the estimates increase as the power of the noise added increases.  

A comparison of results is now in order.  In Figs. 6.3.1 and 6.3.6 the errors in estimating 

the Gaussian channel with the use of the Haar wavelet are presented.  The results in Fig. 

6.3.1, however, are for the slowly fading Gaussian channel while the results in Fig. 6.3.6 

are for the fast fading Gaussian channel.  It is seen from the two figures that the 

estimation errors at all levels of resolution are greater in the case of the fast fading 

channel than in the case of the slow fading channel. 
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Fig. 6.3.7. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Daubechies2 wavelet (for d = 0.2). 
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Fig. 6.3.8. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Daubechies3 wavelet (for d = 0.2). 
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In Figs. 6.3.7 and 6.3.8 the estimation errors that resulted from the use of the 

Daubechies2 and Daubechies3 wavelets, respectively, are plotted.  In both cases it is seen 

that the errors in estimating the channel from the detail coefficients at level 2 are 

significantly larger than the errors in the channel estimates obtained from any other level 

of resolution. 
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Fig. 6.3.9. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Daubechies4 wavelet (for d = 0.2). 

 

The final simulation experiment involving the Gaussian channel made use of the 

Daubechies4 wavelet.  The estimation errors from this case are shown in Fig. 6.3.9.  The 

results follow the trends that are readily apparent in Figs. 6.3.2-6.3.8. 
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6.3.2  Channel 2:  Exponential Power Delay Profile 

The second channel considered in this dissertation has the functional form of an 

exponential decay.  The PDP is defined as 

  
1

, 0

0, otherwise

t

c

e t
t



 
  



. (6.3.2) 

As with the Gaussian PDP in (6.3.1), this channel model is also a one-sided, strictly 

causal, function. 

 

The duration of the channel impulse response was fixed at 5 s.  The numerical values of 

the impulse response were generated at a rate of 10 samples/s, which resulted in the 

length of the discretized impulse response being 50 samples. 
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Fig. 6.3.10.  Exponential PDP for the (a) slow fading case of 2.5d  ; (b) fast fading case 

of 0.2d  . 
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For this channel two cases of fading are considered: slow fading with 2.5d  , and fast 

fading with 0.2d  .  Plots of the channel impulse response for these two conditions are 

shown in Fig. 6.3.10 (a) and (b), respectively. 

 

For both cases of fading the channel estimates are obtained at four levels of resolution 

with the use of the Haar wavelet.  Unlike in Section 6.3.1, no other wavelets are used for 

this channel.  
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Fig. 6.3.11. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Haar wavelet (for d = 2.5). 
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Fig. 6.3.12. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Haar wavelet (for d = 0.2). 

 

As expected the errors in the channel estimates at each level of resolution increase with 

the addition of increasing amounts of noise to the received signals in both cases of fading.  

It is also seen from Figs. 6.3.11 and 6.3.12 that the estimation error is generally larger for 

the case of the fast fading channel than for the slow fading channel.  It is also seen, 

however, that the differences in the MSEs at corresponding levels in the two plots are 

only slightly different.  This latter observation is subjective but can be placed into context 

by comparisons with Figs. 6.3.2 and 6.3.6, in which the estimation errors of the Gaussian 

channels for the same two cases of fading are shown. 
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6.3.3  Channel 3:  Equal Amplitude Two-Ray Power Delay 
Profile 

Although practically unrealizable, a channel impulse response consisting of impulses is 

an interesting case to consider theoretically.  The third channel considered is, therefore, a 

simple model of a double echo.  Each echo of a transmitted test signal is facilitated 

analytically and numerically, with the use of delta functions.  The particular channel PDP 

that is used in this set of experiments is composed of two equal-amplitude impulses, and 

is defined by 

      1
2

2
p t t t         . (6.3.3) 
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Fig. 6.3.13.  Equal amplitude two-ray PDP for the (a) slow fading case of 2.5d  ;  

(b) fast fading case of 0.2d  . 

 

It should be noted that in (6.3.3) the PDP is defined as a continuous time function, and, 

therefore, Dirac delta functions are used.  Equivalently, however, in a discrete-time 

implementation Kronecker delta functions are used. 
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The equal-amplitude two-ray PDPs for the cases of slow and fast fading, with 2.5d   

and 0.2d  , respectively, are shown in Fig. 6.3.13.  Each channel is set to be 5 s in 

duration, and evaluated numerically at a rate of 10 samples/s.  The test signals are the 

same as in Sections 6.3.1 and 6.3.2. 

 

The errors in estimating the channel from the DWT coefficients at four levels of 

resolution, using the Haar wavelet, are shown graphically in Figs. 6.3.14 and 6.2.15.  

Although the results display general trends of increasing error magnitudes with 

increasingly powerful AWGN, it is immediately seen that the estimation errors for this 

channel are larger than for the Gaussian or the exponential channels in Sections 6.3.1 and 

6.3.2, respectively. 
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Fig. 6.3.14. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Haar wavelet (for d = 2.5). 
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Fig. 6.3.15. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Haar wavelet (for d = 0.2). 

 

6.3.4  Channel 4:  Unequal Amplitude Three-Ray Power 
Delay Profile 

In keeping with the concept of echo delays, a second channel PDP is considered.  This 

channel, however, results in three echoes of the transmitted test signal.  By design, the 

amplitudes of the delta functions in this channel model are unequal. 

 

The PDP of this unequal-amplitude three-ray channel is defined in continuous-time as 

        0.8 0 0.2 0.5 2c t t t          . (6.3.4) 

Once again, the cases of slow and fast fading, with 2.5d   and 0.2d  , respectively, are 

considered.  The PDP of the channel for each of these cases is illustrated graphically in 

Fig. 6.3.16. 
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Fig. 6.3.16.  Unequal amplitude three-ray PDP for the (a) slow fading case of 2.5d  ; 

(b) fast fading case of 0.2d  . 

 

As seen in Fig. 6.3.16, the duration of the channel PDP, and, therefore, impulse response 

is 5 s, and is numerically evaluated at a rate of 10 samples/s.  The discrete-time sequence 

representing the channel impulse response is, therefore, 50 samples in length. 

 

The estimation errors for both cases of fading are shown graphically in Figs. 6.3.17 and 

6.3.18.  As with the previous three channels, the errors in estimating this channel increase 

rapidly as the power of the WGN increases. 
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Fig. 6.3.17. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Haar wavelet (for d = 2.5). 
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Fig. 6.3.18. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Haar wavelet (for d = 0.2). 
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6.3.5  Channel 5:  Hilly Area Power Delay Profile 

The final channel model that is considered is based on the exponent function.  Under a 

program called European Cooperation in Science and Technology (COST), several 

multipath channel models have been developed.  The particular sub-program of interest 

in this dissertation is the COST Action 207.  Of interest here are the channel PDP models 

for signal transmission in hilly areas. 

 

Specifically, the COST 207 reference PDP model for a hilly urban area is 

    

/1 ms

5 ms /1 ms

, 0 5 ms

0.5 , 5 ms 10 ms,

t

c t

e t
t

e t




 

   
 

 (6.3.5) 

and the PDP for a hilly rural area is 

    

3.5 ms /1 ms

15 ms /1 ms

, 0 2 ms

0.1 , 15 ms 20 ms.

t

c t

e t
t

e t




 

   
 

 (6.3.6) 

 

The two models in (6.3.5) and (6.3.6) cannot, however, be used in conjunction with test 

signals of any arbitrary fundamental frequency since the durations of the PDPs are 

defined in milliseconds.  Furthermore, the RMS delay spread parameter,  , is also absent 

from these models. 

 

Therefore, a new model having a functional form similar to the COST 207 PDPs in 

(6.3.5) and (6.3.6) is defined as 

    

10 /

5 0.5 /

, 0 0.5

0.5 , 0.5

t

c t

e t
t

e t



 




 



 

   
 

, (6.3.7) 
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which may be with any test signal.  Since this PDP is based in the two “hilly area” PDPs 

from COST 207, it is referred to as a Hilly Area PDP in this work. 

 

As seen in Fig. 6.3.19, the duration of this channel was fixed at 2 s, and (6.3.7) was 

evaluated at a rate of 16 samples/s.  The previous four channels, however, were each 5 s 

in duration and evaluated at a rate of 10 samples/s.  This change in parameters was 

required in order to generate meaningful hilly area channel PDPs and impulse responses 

for the cases of 2.5d   and 0.2d  . 
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Fig. 6.3.19.  Hilly area PDP for the (a) slow fading case of 2.5d  ; (b) fast fading case 

of 0.2d  . 
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Fig. 6.3.20. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Haar wavelet (for d = 2.5). 

 

The noisy received signals were analyzed to four levels of resolution using the Haar 

wavelet.  The MSEs of the channel estimates at each level for both fading conditions are 

provided in Figs. 6.3.20 and 6.3.21. 

 

Although the MSE curves in Fig. 6.3.20 appear similar to all other MSE plots in this 

chapter, there is one striking difference:  the magnitudes of the estimation errors at all 

four levels are much smaller that the corresponding MSEs in all of the other graphs.  The 

reasons for this anomaly may be two-fold.  First, when using this channel there are fewer 

samples of the received signal than when the previous 4 channels were used.  Second, 

this channel does not consist of long durations with zero amplitude.  These two reasons 

will be examined in detail in Section 6.4. 
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Fig. 6.3.21. Normalized ensemble-averaged MSEs between the actual channel impulse 

response and the estimates using the Haar wavelet (for d = 0.2). 

 

6.4  Discussion 

General comparisons with time-domain control experiments 

The estimation of the impulse response of a channel is implemented by way of DWT-

based deconvolution.  In Section 6.1 such a deconvolution methodology is described 

analytically.  Estimates of the channel impulse response are obtained by direct 

deconvolution of appropriate detail and approximation coefficients from undecimated 

DWT analyses of received pilot signals and uncorrupted original pilot signals. 

 

The control experiment is the deconvolution of an uncorrupted pilot signal from a 

received signal in the discrete time-domain.  The signals and channels used in the control 

experiments follow the same setup as those used for the DWT-based deconvolution 
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experiments.  In all control experiments 1,000 Monte Carlo trials have been used for each 

value of 0bE N , which is also the case in all DWT-based deconvolution simulations. The 

results of all simulation experiments that yield channel estimates from DWT 

deconvolution have been compared with the results of the corresponding control 

experiments in Section 6.3. 

 

It can be observed from every plot of error estimates in Section 6.3 that deconvolution in 

the discrete time-domain outperforms DWT deconvolution at low values of 0bE N .  This 

trend is clearly seen in all MSE plots in Section 6.3 especially when the values of 0bE N  

approach 0 dB.  At higher values of 0bE N , however, the estimation errors from both 

techniques converge asymptotically.  Such convergence is seen to occur at around 30 dB, 

and improves as the power of the WGN decreases. 

 

From one level of resolution to the next, the errors in channel estimation appear to follow 

a particular order regardless of the actual channel impulse response or the wavelet used.  

Arranged in order of increasing difference with the time-domain estimates the wavelet 

coefficients are: 

 1. Level 1 detail 

 2. Level 4 approximation 

 3. Level 4 detail 

 4. Level 3 detail 

 5. Level 2 detail. 
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A general inference can be drawn from this ordered list:  the best channel estimate is 

obtained from the detail coefficients at the first level of resolution.   Also, a channel 

estimate obtained from the approximation coefficients at the Nth level of resolution will 

usually be as robust as an estimate from the level 1 detail coefficients.  In addition, it is 

seen from the results in Section 6.3 that channel estimates obtained from the detail 

coefficients at any level except the first are always inferior to the estimates obtained from 

the level 1 detail and level N approximation coefficients.  A cause of this phenomenon 

may be due to the high- and low-pass filtering performed on the received signal.  In all of 

the results shown in this chapter it is seen that the MSEs of the channel estimates 

obtained from DWT coefficients at all levels of resolution converge towards 0 as the 

values of 0bE N  increase.  This observation suggests that the accuracy DWT-based 

deconvolution depends on the filtering operations performed on a noisy received signal. 

 

As evidenced from the MSE plots in Figs. 6.3.2-6.3.9, these trends of the level-by-level 

accuracy of DWT deconvolution are the same regardless of whether the Haar, the 

Daubechies2, Daubechies3, or the Daubechies4 wavelet was used. 

 

Trends of MSEs with respect to the wavelets used 

In the case of the Gaussian channel in Section 6.3.1 the Monte Carlo simulation 

experiments were repeated so that four wavelets were used.  For both fading scenarios the 

best results were obtained with the Haar wavelet, followed by the Daubechies2 wavelet, 

the Daubechies3 wavelet, and then Daubechies4 wavelet. 
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From a numerical computational standpoint, the only differences between each of the 4 

cases are the lengths of the analysis and synthesis filters.  The lengths of the filters 

associated with each wavelet are: 

 Haar   - 2 elements 

 Daubechies2 - 4 elements 

 Daubechies3 - 6 elements 

 Daubechies4 - 8 elements. 

 

It is seen in Figs. 6.3.2-6.3.5, for the case of the slowly fading Gaussian channel, that as 

the length of the wavelet filters increased, from Haar to Daubechies4, the quality of the 

channel estimates from DWT deconvolution deteriorated rapidly.  The best results were 

obtained by using the shortest filter, and the worst by the longest of the four.  The same 

observations can be made by viewing Figs. 6.3.6-6.3.9, which depict the case of the fast 

fading Gaussian channel. 

 

Trends of MSEs with respect to lengths of channel impulse responses 

One anomalous set of results is seen in Fig. 6.3.20, which is the case of the slowly fading 

hilly area channel.  The lengths of test signals used in the simulations involving this 

channel are the same as in all other simulations, and the Haar wavelets is used as well.  

The difference in this particular experiment is the length of the channel, which was 

chosen to be 2 s long.  At a rate of 16 samples/s, hilly area channel impulse responses that 

were generated contained 32 numerical elements, as opposed to 50 for the other four 

channels. 
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The errors in the channel estimates for this slow fading channel, seen in Fig. 6.3.20, are 

significantly smaller than the errors obtained from estimating the other four slow fading 

channels with the Haar wavelet. 

 

Since the length of the discrete-time channel is shorter than in the other corresponding 

cases, it follows that the MSE of the channel estimate will generally be smaller as well 

since there are fewer elements.   

 

Possible erroneous MSE trends due to amplitude nulls in channel impulse responses 

One source of systematic errors in the results of the simulations is the fact that some of 

the channels have very small, or even zero-valued, amplitudes for long durations.  

Ideally, any estimates of these channels should reproduce all of these small amplitudes 

faithfully.  The addition of WGN to the received signals renders this idea practically 

impossible, and errors in estimation necessarily occur. 

 

In the cases of the channels in Section 6.3.3 and 6.3.4, the two channels modeled with 

sparse impulse responses, this problem of mostly zero-valued elements is particularly 

problematic.  The MSEs between channel estimates and the actual channels at all levels 

of DWT resolution can be reduced if fewer samples are used. 
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Chapter 7 

Discrete Wavelet Transform-Based 
Channel Equalization 
 

The underlying hypothesis of this chapter is that the equalization of signals is possible in 

the wavelet-domain by using linear equalizer methodologies used in the time-domain.  

The two types of equalization that are considered are Zero-Forcing Equalization (ZFE) 

and Minimum Mean-Squared Error (MMSE) equalization in the wavelet-domain. 

 

Viewed with a different perspective, in this chapter the typical formulations of ZFE and 

MMSE equalization methodologies in time-domain are translated into wavelet-domain 

formulations. 

 

To this end, the focus of this chapter is on demonstrating the possibility and, 

subsequently, the efficacy of wavelet-domain channel equalization.  Such a 

demonstration is provided by the development of theories that support the hypothesis 

made above and empirical evidence that supports the hypothesis. 

 

Expression of these linear equalization techniques in the wavelet-domain is facilitated by 

mathematical treatments as well as pictorial derivations.  The latter consist of series of 

systems-level block diagrams that provide logical insight into the evolution of wavelet-

domain ZFE and MMSE equalization methodologies from their corresponding precursor 

time-domain block diagram structures. 
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This chapter does not, however, attempt to adapt the aforementioned methodologies for 

use in communications systems.  Instead, such adaptations are examined in Chapter 8, 

Communications Receivers with Wavelet-Domain Sub-Systems. 

 

In Section 7.1 the general methodology of channel equalization in the wavelet-domain is 

documented.  The development of the methodology from the typical time-domain 

implementation to two types of wavelet-domain implementations are described both 

analytically as well as in the form of block diagrams.  The first type of wavelet-domain 

implementation does not make use of the concept of polyphase filtering while the second 

type does.  Also included in Section 7.1 are the algorithms for MMSE equalization and 

ZFE using the implementation with polyphase filtering. 

 

Section 7.2 is devoted to the computer simulations of the performance of the 

methodologies devised in Section 7.1.  First, parameters such as the control experiments, 

test signals, types of wavelets, etc., that are used in the Monte Carlo simulations are 

presented.  This is followed by the results of the simulations of the MMSE equalization 

experiments and then the results of the ZFE experiments. 

 

The possibility of extending these methodologies towards the formulation of adaptive 

equalization in the wavelet-domain is explored in Section 7.4.  Finally, a discussion of 

the results and the techniques presented follows in Section 7.5. 
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7.1    Methodology for Wavelet-Domain Channel 
Equalization 

Both of the types of equalization that have been described in Chapter 2 are implemented 

with the use of pilot signals to train the equalizers, i.e., to determine the transfer functions 

of the equalizer filters. 

 

The equalizer is actually an FIR filter that is implemented in the direct form, which is 

called known as a tapped delay line.  The coefficients of the z-domain polynomial are 

then simply the weights assigned to each tap of the tapped delay line filter, and are 

referred to either as tap weights or tap coefficients. 

 

In the process of pilot-assisted equalization, particularly in the context of 

communications receivers, a pilot signal is first transmitted through a channel and is 

subsequently acquired by the receiver.  The pilot signal is used to generate the tap 

coefficients of the channel equalizer.  The message signal is then transmitted through the 

same channel, and upon being acquired by the receiver is immediately equalized. 

 

A generalized depiction of this equalization process is shown pictorially in Fig. 7.1.1.  

Although not shown, the message signal,  x n , is transmitted after the pilot,  p n , with 

a deliberate time-lapse in between to allow for the necessary signal processing at the 

receiver. 
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Replica of p(n) 
(available at the 

receiver)

 p n

 x n

Generation of equalizer 
coefficients, {b(n)}

 B z

 Y z

 Y z
 r n

 x̂ n

 q n

 p n

Channel RXTX  

Fig. 7.1.1.  System-level description of a typical pilot-assisted channel equalization 

procedure. 

 

The quantities appearing in Fig. 7.1.1 are described as follows: 

 p n  is the transmitted pilot signal, expressed in discrete-time notation, 

 q n  is the received pilot signal, 

 x n  is the transmitted message signal, 

 r n  is the received message signal, 

 x̂ n  is the equalized received message signal, 

 Y z  is the transfer function of the channel, expressed in the z-domain, with the 

corresponding channel impulse response denoted by  y n , and  

 B z  is the transfer function of the channel equalizer, expressed in the z-domain, which 

corresponds to the impulse response of the filter denoted by  b n . 
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As seen in Fig. 7.1.1, the received pilot signal can be expressed in the  

z-domain as 

      Q z P z Y z .   (7.1.1) 

The received message signal can be expressed in the form 

      R z X z Y z ,   (7.1.2) 

while the estimate of the message signal, i.e., the output of the equalizer, is 

      X̂ z R z B z .   (7.1.3) 

Therefore, the estimate of the message signal can be expressed as 

        X̂ z X z Y z B z .  (7.1.4) 

This concise expression, viz., (7.1.4), can be expressed as the system-level block diagram 

shown in Fig. 7.1.2. 

 

 Y z  B z x n  x̂ n
 r n

 

Fig. 7.1.2.  Concise block diagram of signal transmission and equalization. 

 

The estimate of the message signal, i.e.,  x̂ n , can be expressed in the wavelet-domain 

with the use of the DWT.  Specifically,  x̂ n  is analyzed by the high-pass and low-pass 

filters  G z  and  H z , respectively.   G z  and  H z  comprise the analysis filter bank 

for this 1-level DWT operation.  The outputs of these two analysis filters, which are in 



168 
 

the discrete time-domain, are then dyadically decimated.  Subjecting these resulting 

DWT coefficients to an IDWT synthesis filter bank again yields the original signal, 

which, in this case, is  x̂ n .  This procedure is depicted in Fig. 7.1.3 

 

 x n  x̂ n B z Y z
 r n  x̂ n

 G z

 H z  H z

 G z

 

Fig. 7.1.3.  DWT and IDWT of the estimated message signal,  x̂ n . 

 

The Forward Merge Approach for DWT-based convolution, devised in Chapter 5, can 

now be applied to the wavelet-domain representation of  x̂ n , shown in Fig. 7.1.3. The 

resulting system, which is seen in Fig. 7.1.3, is essentially a representation of channel 

equalization using the DWT. 

  

 x n  x̂ n Y z
 r n

 B z G z

 H z  H z

 G z

 B z

 

Fig. 7.1.4. A general topology for DWT-based channel equalization. 
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The equalizer filter,  B z , can also be expressed in the wavelet-domain with the use of 

the Forward Merge Approach with polyphase implementation.  For this purpose it must 

be described in terms of polyphase components, as described in Chapter 5.  Specifically, 

for 1-level DWT, the two polyphase components of  B z  are defined in the discrete 

time-domain as 

    0 2b n b n  and   (7.1.5) 

    1 2 1b n b n  .    (7.1.6) 

Using the z-transforms of (7.1.5) and (7.1.6), the filter  B z  can be expressed as 

      2 1 2
0 1B z B z z B z  . (7.1.7) 

 

The block diagram representation of channel equalization based on the Forward Merge 

Approach with polyphase implementation at one level of DWT resolution is, therefore, 

shown in Fig. 7.1.5.  The 2-level block diagram is provided in Fig. 7.1.6.  
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Algorithm for Wavelet-Domain Channel Equalization 

   
 1. A pilot signal is transmitted through a channel, and the corrupted pilot signal is 

acquired by the receiver. 

2. The filter coefficients of the equalizer are then generated with the use of the 

received pilot signal and a locally-stored replica of the uncorrupted pilot. 

3. Depending on the number of levels of DWT, polyphase filters are then derived 

from the filter generated in Step 2.  The number of phases, pN , (i.e., the 

number of  polyphase filters) is related to the number of levels of DWT 

required, M ,  by the formula 2M
pN  . 

4. After a time delay sufficient to allow the completion of Steps 2 and 3, the 

message signal is transmitted through the channel and is subsequently also 

acquired by the receiver. 

5. The message signal is analyzed, i.e., decomposed, to as many levels of DWT 

as desired but are not decimated. 

6. The signals in Step 5 are then delayed and decimated as necessary, and then 

filtering by the polyphase equalizer filters generated in Step 3. 

7. The output of the polyphase filters at each level DWT are then summed 

element-wise, to form the equalized detail and approximation coefficients of 

what will be the estimate of the message signal. 

8. IDWT is performed on the detail and approximation coefficients obtained in 

Step 7, which results in the final output of the entire process: the equalized 

estimate of the message signal. 
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Computational Complexity 

Let the length of the received signal,  R z , be denoted by NR, the length of the channel 

equalizer,  B z , be denoted by LB, and the lengths of the DWT filters by L.  The 

assumption is made that both the received signal and the channel equalizer filter 

sequences are longer than the DWT filters, i.e., RN L  and BL L . 

 

For the case of DWT-based equalization at 1 level of resolution, as depicted in Fig. 7.1.5, 

the computational complexity is 

    2 R R B R BO n N N L N L     (7.1.8a) 

   R BO n N L  .     (7.1.8b) 

 

When equalization at two levels of DWT resolution is considered, as in Fig. 7.1.6, the 

order of complexity for the level 1 detail subband is 

    
2
R B

R R B

N L
O n N N L     (7.1.9a) 

   R BO n N L       (7.1.9b) 

and for the level 1 approximation subband, which includes the level 2 operations as well, 

is  

    3 2
2
R B

R R B

N L
O n N N L     (7.1.10a) 

   R BO n N L  .     (7.1.10b) 
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7.2    Computer Simulations 

The general methodology that has been presented theoretically in Section 7.1 has been 

implemented using the MATLAB simulation software package.  It has then been adapted 

for use with both the ZFE and MMSE equalization techniques.  The efficacy of these two 

resulting wavelet-domain equalization methodologies is demonstrated by using Monte 

Carlo simulation experiments.  This approach enables verification of the techniques. 

 

7.2.1  Setup of the Simulations 

The test signals that are used for all Monte Carlo trials are sums of sinusoids.  

Specifically, the signals are the sums of a user-defined number of odd harmonics of a 

fundamental sinusoidal component.  The signal itself is of the general form 

     0
1

cos 2 1 2
K

k s k
k

s n A k f nT 


      (7.2.1) 

where 

  s n  is the nth element of the test signal, expressed in the discrete time-domain, 

 K  is the number of sinusoidal harmonic components in the test signal, 

 Ak  is the amplitude of the kth harmonic component, 

 0f   is the frequency of the fundamental harmonic, 

 Ts  is the sampling rate, and 

 k   is the additional phase offset for the kth harmonic. 

The values of the amplitude and the phase of each harmonic component are obtained 

from uniform distributions of each parameter.  In this work the values of the amplitudes 
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are limited to the range from 0 to 10, and the values of the phase offsets range from 0 to 

2 .  The frequency of the fundamental harmonic, 0f , was chosen to be a nominal 2 Hz, 

and the number of odd harmonics, K, was chosen to be 7. 

 

In order to emulate the transmission of data symbols that are represented by finite-length 

sinusoidal signals, every pilot and message signal that was generated was a packet of 10 

successively concatenated signals described by (7.2.1). 

 

A channel with a Gaussian PDP,  c t , of the form 

  
 2

2
1

2

t

c t e





 ,   (7.2.2) 

where   is the Root-Mean-Square (RMS) delay spread, and is defined as 

 symdT  .      (7.2.3) 

In this definition, d is the normalized delay time of the channel and symT  is the period of 

the baseband symbols on which the transmitted signals are fundamentally based.  The 

channels were selected to have a normalized delay time of 0.2sd  .  Since the symbol 

period, symT , is selected to be 1 s, this normalized delay time corresponds to fast-fading 

channels.  For the purposes of numerical implementation, the actual values of the 

magnitude of each channel are generated for a length of 2 baseband symbol periods. 

 

The noise that is added to all transmitted signals is AWGN with a double-sided power 

spectral density of 0 2N .  The metric of 0bE N  is used throughout this work to provide 
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a relative measure of the energy contained in every “bit” that is transmitted, bE , to the 

power of the noise that is added to the signal. 

 

The metric of Signal-to-Noise Ratio (SNR), which is the ratio of signal power to noise 

power, was not used since ultimately the performance of the equalizers is examined with 

the use of Symbol Error Rate (SER) curves.  The SER curves generated in this 

dissertation use the metric of 0bE N  instead of SNR.  These SER curves indicate the 

performance of the communications systems that have wavelet-domain equalizers 

embedded within, are the subject of Chapter 9. 

 

For every value of 0bE N  the MSE between the output of the equalizer and the 

uncorrupted message signal is computed and recorded.  This procedure is repeated 1,001 

times to mimic 1,001 successive transmissions and equalizations.  The signals and 

channel generated for each Monte Carlo trial may be considered as an independent event.  

The MSE is normalized to the power contained by the corresponding uncorrupted 

message signal. 

 

The average MSE of every ensemble of 1,001 MSEs recorded for each value of 0bE N is 

also computed and then presented graphically. 

 



177 
 

7.2.2  Minimum Mean-Squared Error Equalization 

For each Monte Carlo trial the coefficients of the MMSE equalizer filter are generated 

based on the minimization of the MSE between the received pilot signal and a replica of 

the uncorrupted transmitted pilot signal, which is stored in the receiver.  The length of the 

MMSE equalizer is chosen to be equal to the length of the received message signal in 

discrete time, RxmL  (or the next odd integer if TxmL  is even). For the simulation setup 

described in Section 7.2.1, each such MMSE equalizer has 49 taps. 

 

Three experiments are performed with the MMSE equalizer that is generated. 

1. The first is the control experiment in which the received message signal is equalized 

in the discrete time-domain.  The output of the MMSE equalizer is an estimate of the 

transmitted message signal.  This is the output that is expected with the standard 

formulation and implementation of MMSE equalization in the z-domain and, 

equivalently, in the discrete time-domain. 

 

2. The second experiment involves the implementation of the MMSE equalizer as 

polyphase filters.  The received message signal is transformed using a 1-level DWT 

filter bank, and the resulting approximation and detail coefficients are equalized by 

the polyphase MMSE equalizer filters.  The output of the polyphase equalizers are 

estimates of the approximation and detail coefficients of the transmitted message 

signal at 1 level of DWT resolution.  An IDWT operation is performed on these 

estimates of the coefficients, which produces the estimate of the transmitted message 

signal, in the discrete time-domain. 
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3. The third experiment is similar to the second experiment in every aspect except one:  

DWT and MMSE equalization are carried out at two levels of analysis instead of just 

one level. 

 

The mother wavelet used in all three experiments is the Daubechies3 wavelet.  Plots of 

the mother wavelet and the corresponding scaling function are provided in Fig. 7.2.1. 
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Fig. 7.2.1a.  The Daubechies3 wavelet. 
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Fig. 7.2.1b.  The Daubechies3 scaling function. 

 

The ensemble-averaged MSEs for 0bE N  values ranging from 60 dB down to 0 dB for 

both the control experiment, i.e., MMSE equalization in the discrete time-domain, and at 

1-level of DWT are shown graphically in Fig. 7.2.2.  Each datum that comprises the 
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graph represents the average MSE between the estimated message signal and the 

transmitted message signal over 1,001 independent trials. 

 

Also shown on the graph are the 95% confidence intervals [99] for each of the wavelet-

domain MSE data.  A 95% confidence interval for a mean value,  , is an interval 

k k       that contains   with a probability of 0.95. 

 

Furthermore, all MSE values shown in Fig. 7.2.2 are normalized to the average variance 

of the transmitted message signal, which can also be viewed as normalization to the 

average power of the transmitted message signal. 
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Fig. 7.2.2. Normalized ensemble-averaged MSE plot for 1-level wavelet-domain MMSE 

equalization. 
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It is seen in Fig. 7.2.2 that the average errors of the wavelet-domain estimates are close to 

the average errors in the time-domain control equalization experiment, which is standard 

MMSE, implemented in the discrete time-domain.  It can also be inferred from the graph 

that wavelet-domain MMSE equalization at 1 level of DWT performs as well as time-

domain MMSE equalization for the entire range of 0bE N  values.  Another point of note 

is that the 95% confidence intervals, depicted by the horizontal bars, become smaller as 

0bE N  increases. 
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Fig. 7.2.3. Normalized ensemble-averaged MSE plot for 2-level wavelet-domain MMSE 

equalization. 

 

In Fig. 7.2.3 the graphs of the MMSE equalization results at 2 levels of DWT and from 

the control experiment are shown.  As in the case of MMSE equalization at 1-level, the 

average errors between wavelet-domain and discrete time-domain MMSE equalization 
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are statistically convergent.  The 95% confidence intervals also follow the same trend of 

decreasing in size as noise of decreasing power is added to the faded signals. 

 

7.2.3  Zero-Forcing Equalization 

Following the same procedure for MMSE equalization, the coefficients of the ZFE are 

first generated by using the received message signal and an uncorrupted replica of the 

transmitted message signal.  The length of the ZFE is chosen to be 6 1hL  , i.e., six times 

the length of the discrete time channel.  Hence, according to the setup described in 

Section 7.2.1, each ZFE is a 55-tap filter.  The mother wavelet used in all three 

experiments is the Haar wavelet, which plotted along with the corresponding scaling 

function in Fig. 7.2.4. 

 

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

Time base

A
m

pl
itu

de
 o

f 
th

e 
m

ot
he

r 
w

av
el

et

 
0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5

Time base

A
m

pl
itu

de
 o

f 
th

e 
sc

al
in

g 
fu

nc
tio

n

 

Fig. 7.2.4a.  The Haar wavelet. Fig. 7.2.4b.  The Haar scaling function. 
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Fig. 7.2.5. Normalized ensemble-averaged MSE plot for 1-level wavelet-domain ZFE. 

 

In Fig 7.2.5 it is seen that the average MSE values for each value of 0bE N  obtained 

using ZFE at 2 levels of DWT correlate very well with the average MSE values obtained 

in the time-domain.  As expected, the magnitude of the errors resulting from wavelet 

-domain equalization are greatly diminished as the power of the noise added to the faded 

transmitted message signals decreases.  The 95% confidence intervals also decrease in 

size as the values of 0bE N  increase. 
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Fig. 7.2.6. Normalized ensemble-averaged MSE plot for 2-level wavelet-domain ZFE. 

 

The results of the experiment of ZFE in 2-level DWT are shown in Fig. 7.2.6.  Again it is 

seen that the ZFE in the wavelet-domain performs as well as ZFE in the time-domain 

even if an additional level of DWT is used. 

 

7.3    Strategies for Discrete Wavelet Transform-Based 
Adaptive Equalization 

In this dissertation the assumption that channels are time-invariant has been made.  

Specifically, it is the impulse responses,  c t , of such channels that are considered to be 

constant.  In practical situations, however, time-varying channels are more likely to be 

encountered.  In order to equalize the effects of time-varying channels adaptive filters are 

necessary.  Adaptive filters are equipped with the ability to change the filter tap 

coefficients automatically. 
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 q n

 p n

 B z  p̂ n

+

-  e n

 

Fig. 7.3.1.  Feedback structure of an adaptive equalizer [100]. 

 

Consider the general topology of an adaptive equalizer shown that is in Fig. 7.3.1.  The 

discrete time signal  p n  denotes a pilot signal that is transmitted through an unknown 

channel, and a copy of which is available at the receiver for use by the equalizer.  The 

signal  q n  is the received pilot signal,  B z  is the transfer function of the equalizer 

filter, and  p̂ n  is the equalized pilot signal.  The error between the original pilot signal 

and the received pilot signal, denoted by  e n , is 

      ˆe n p n p n  .   (7.3.1) 

 

As in the case of the MMSE equalizer, by minimizing the error between the uncorrupted 

pilot signal and equalized received pilot signal the equalizer coefficients can be obtained.  

The procedure of MMSE , which has been described in Chapter 2, requires the inversion 

of the autocorrelation matrix of the received pilot signal,  q n .  A different, popular, 

procedure for minimizing the error,  e n , is the LMS algorithm, in which the filter 

coefficients are recursively updated instead of being obtained by direct matrix inversion 
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[3].  For the purposes of adaptive equalization either MMSE equalization or the LMS 

algorithm may be used [101]. 

In this section, however, the structures of adaptive equalizers using a DWT-based 

framework are the subject of interest, rather than the well-established algorithms that may 

be used for the realization of these structures.  Two strategies for DWT-based adaptive 

equalization are identified. 

 

The first strategy involves the use of the original pilot signal,  p n , and the equalized 

pilot signal,  p̂ n , directly.  The received pilot signal,  q n , is, transformed using the 

DWT, and the resulting wavelet coefficients are equalized, as described in Section 7.1.  

The error between  p n  and  p̂ n  is then computed and a suitable algorithm, such as 

MMSE or LMS, can be used to obtain the coefficients of the equalizer,   b n .  This 

strategy merges the DWT-based equalization described in Section 7.1 with the feedback 

structure depicted in Fig. 7.3.1, and is shown in Fig. 7.3.2. 

 

 B z q n

 p n

 e n

 p̂ n

 

Fig. 7.3.2.  DWT-based adaptive equalization using the synthesized signal estimate. 
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In the second strategy, both the copy of the original pilot signal and the received pilot 

signal are transformed using the DWT.  The undecimated DWT coefficients at 

corresponding levels of resolution of the two signals are then compared to produce error 

signals.  Each error signal could then be used to generate the coefficients of an 

independent equalizer.  In this manner each set of DWT coefficients of the received pilot 

signal has a dedicated equalizer, and is equalized separately.  All equalized DWT 

coefficients are then synthesized by the IDWT filter bank, which results in the equalized 

estimate of the pilot signal.  This second strategy is depicted in Fig. 7.3.3 for 1 level of 

DWT resolution. 

 

 p̂ n

 H z

 G z

 p n  G z

 1DB z q n  G z

 1P De n

 1ˆQ Dv n 1Q Dv n

 1P Dv n

 1DB z

 1P Ae n

 1ˆQ Av n 1Q Av n

 1P Av n

 H z

 H z

 

Fig. 7.3.3.  DWT-based adaptive equalization directly using wavelet coefficients. 

 

As seen in Fig. 7.3.3, 1 level of DWT resolution requires 2 subbands, both of which yield 

a set of DWT coefficients.  The level-1 detail and approximation coefficients of the 

original pilot signal,  p n , are labeled  1P Dv n  and  1P Av n , respectively.  Similarly, the 

level-1 detail and approximation coefficients of the received pilot signal are denoted by 
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 1Q Dv n  and  1Q Av n , respectively.  The error signal that results from the detail 

coefficients is 

      1 1 1ˆP D P D Q De n v n v n    (7.3.2) 

and the error that results from the approximation coefficients is 

      1 1 1ˆP A P A Q Ae n v n v n   . (7.3.3) 

The signals  1ˆQ Dv n  and  1ˆQ Av n  are the equalized undecimated DWT coefficients of the 

received pilot signal,  q n . 

 

Using a suitable equalization algorithm, the equalizer filters  1DB z  and  1AB z , 

corresponding to the level-1 detail and approximation coefficients, respectively, can be 

generated.   

 

7.4    Discussion of Results  

In this chapter, a framework for wavelet-domain channel equalization has been 

developed.  The initial hypothesis was that discrete time-domain equalization could be 

moved into the wavelet-domain by the use of suitable analytical means.  An implication 

of this hypothesis was, however, that verification must also be provided by implementing 

specific equalization methodologies using the framework.  ZFE and MMSE equalization, 

being fundamental as well as popular, methodologies were selected for this purpose.  

Such verification is a necessary condition required to prove that the framework for 

wavelet-domain equalization is correct. 
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The average MSE graphs seen in Figs. 7.2.2, 7.2.3, 7.2.5 and 7.2.6 provide evidence that 

the wavelet-domain equalization framework that was developed in Section 7.1 is indeed 

accurate.  In addition, these results also show that both MMSE equalization and ZFE can 

be implemented as effectively with the use of the DWT as in the discrete time-domain. 

In Figs. 7.2.2 and 7.2.3, the good convergence of the average errors of wavelet- and time-

domain estimates indicates that the use of 1,001 Monte Carlo trials for each value of 

0bE N  produces statistically significant results.  This inference is further validated by 

the results of the ZFE experiments, which are shown in Figs. 7.2.5 and 7.2.6. 

 

Another notable trend evidenced in both types of equalization is that the 95% confidence 

intervals decrease in size as the value of 0bE N  increases.  A plausible explanation for 

this observation is that the magnitude of outliers, which in this case are errors in 

estimation that are several standard deviations from an average MSE, reduces as less 

powerful noise is added to the faded signal. 

 

Such containment of outliers is expected since the equalizer filters are generated partly 

based on the pilot signal that is received.  The noise added to the transmitted pilot signal 

in every simulation trial is independent of the noise added in any other trial.  Due to this 

pseudo-random generation and implementation of AWGN, it is reasonable to assume that 

for a particular value of 0bE N  the numerical value(s) of the noise process may cause an 

equalizer that is sub-optimal.  Such sub-optimality of filter coefficients may arise due to 
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the necessary solution of equations that contain ill-conditioned matrices in both MMSE 

equalization and ZFE procedures. 

 

Another factor along these lines that does not allow perfect convergence of the time- and 

wavelet-domain results is the generation of the channels.  As with the AWGN, the 

impulse responses of the fading channels that are used in every trial are independent of 

the impulse responses in every other trial, and are also pseudo-randomly generated with 

the aid of a Gaussian distribution.  Due to this setup sometimes channels that lead to ill-

conditioned matrix equations are generated. 

 

The result of “unfavorable” noise or channels, as explained above, is non-convergent 

filters.  To minimize this problem heuristic limits of convergence were set for the ZFE 

and MMSE filters.  For all ZFE experiments, 
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and for all MMSE equalization experiments 
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The application of these upper bounds on filter convergence resulted in the reduction of 

the outliers in the time- and wavelet-domain experiments. 

 

The outcomes of this chapter are summarized as follows. 
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1. A general framework for pilot-assisted wavelet-domain channel equalization has been 

established, specifically by making use of the techniques of wavelet-domain 

convolution developed in Chapter 5. 

2. Two variations of the framework are provided:  one with polyphase filtering and the 

other without. 

3. The techniques of MMSE equalization and ZFE have been successfully applied to the 

wavelet-domain framework. 

4. Simulation experiments have shown that signals propagated through fast-fading 

multipath channels can be equalized as well using wavelet-domain equalization as 

with time-domain equalization. 

5. The experiments also show that the performance of time- and wavelet-domain 

equalization procedures is comparable for a large range of AWGN power levels. 
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Chapter 8 

Communications Receivers with Wavelet 
-Based Sub-Systems 
 

The concepts of DWT-based channel estimation and equalization have been developed in 

Chapters 6 and 7, respectively.  The analytical and algorithmic formulations of these 

estimation and equalization methodologies have been presented as general signal 

processing strategies that can be adapted for use in appropriate applications. 

 

One area in which these strategies can be applied is communications receivers.  The 

primary hypothesis of this chapter is that the DWT-based channel estimation and 

equalization strategies can be used in communications receivers. 

 

Furthermore, it is postulated that the performance of communications receivers composed 

partially of DWT-based sub-systems is comparable to the performance of receivers with 

discrete time-domain sub-systems that perform the same signal processing tasks.  This 

second hypothesis stems the results of the computer simulations in Chapters 6 and 7.  In 

these results it was seen that the performance of each DWT-based sub-system is indeed 

similar to the performance of the corresponding discrete time-domain sub-system. 
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8.1  Communications Systems 

The typical form of a communications system that is composed of a transmitter, a 

channel, and a receiver is provided in Fig. 8.1. 

 

 nI  nI

 

 
Fig. 8.1.  Basic communications system. 

 

Note that in Fig. 8.1 the transmit filter referred to in previous chapters of this dissertation 

is now called the modulator.  This change in nomenclature is simply to emphasize the 

actual application of a transmit filter in a communications system, which is to modulate a 

carrier signal in a specific manner dictated by each symbol in the baseband message 

sequence,  nI . 

 

Similarly, the basic system in Fig. 8.1 also now contains a demodulator, which is 

fundamentally composed of three operations: 

 1. A receive filter, with an impulse response matched to the impulse response of the 

transmit filter 

 2. A sampler, with sampling intervals defined by the baseband symbol rate 

 3. A decision-making device, which ultimately yields an estimate of the transmitted 

baseband message sequence. 
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The ideal, basic, system illustrated in Fig. 8.1 can be readily augmented to include the 

case of additive noise, and the compensation for the effects of the channel, which is an 

equalizer.  This augmented system is depicted in Fig. 8.2. 

 

 nI  nI

 

 
Fig. 8.2.  Augmented communications system. 

 

Although the communications signal processing strategy presented in Fig. 8.2 is 

intuitively appealing, an alternative approach can also be used.  In this alternative 

approach, the transmitted signals are designed in such a manner that the signal processing 

effort in equalizing the received signals is greatly reduced.  Specifically, instead of 

equalizing and restoring the fidelity of a complete received signal, only discrete samples 

of the received signal after matched filtering are equalized. 

 

 nI  nI

 

 
Fig. 8.3.  Traditional discrete-time communications system. 
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This alternative approach [3] has been described in detail in Chapter 2, and is shown in 

Fig. 8.3 for convenient reference.  In this chapter, however, the traditional system in Fig. 

8.3 is not implemented.  Instead, the more intuitive approach of equalizing the complete 

received signal, seen in Fig. 8.2, is used. 

 

In the preceding chapters channel estimation is performed with the use of deconvolution 

procedures, in the discrete time- and wavelet-domains.  Channel equalization is 

implemented using MMSE equalization and ZFE, both in the discrete time- and wavelet-

domains.  Between these two equalization strategies, MMSE does not require an estimate 

of the channel impulse response, but ZFE does. 

 

Therefore, there are three combinations of these signal processing strategies considered in 

this chapter.  These are introduced as sub-systems in communications receivers, and are: 

 1. MMSE equalization of received signals, in both discrete time- and wavelet-

domains. 

 2. ZFE of received signals, in both discrete time- and wavelet-domains, with a priori 

knowledge of the channel impulse responses. 

 3. ZFE of received signals, in both discrete time- and wavelet-domains, with a 

posteriori estimation of the channel impulse responses. 

Block diagram illustrations of these three cases are provided in the respective sections 

that follow.   
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All of the receiver structures are evaluated in communications systems that use the 

BASK, BFSK, and 16-QAM modulation schemes.  The transmitted signals are corrupted 

by AWGN resulting in the 0bE N  range of  0dB, 20 dB . 

Setup of Simulations 

All results presented in this chapter have been obtained from simulations performed in 

MATLAB.  The specific parameters used in the simulations are listed as follows.  These 

parameters are largely common for all cases of MMSE equalization and ZFE, with and 

without channel estimation. 

Signal Parameters 

1. Modulation schemes:    BASK, BFSK, 16-QAM 

2. Carrier frequency (fc):    1 Hz (BASK, 16-QAM), 

          1 Hz and 2 Hz (BFSK basis functions) 

3. Carrier amplitude (A):    1 V (BFSK), 

          1 V and 2 V (BASK basis functions), 

          1 V and 3 V (16-QAM basis functions) 

3. Baseband symbol period (Ts):  1 s 

4. Samples per symbol (Ns):   4 (BASK, 16-QAM), 

          8 (BFSK) 

Channel Parameters 

1. Power Delay Profile:    Gaussian 

2. Normalized delay spread (d):   2.5 (slow fading condition) 

3. Channel length (Lc):    2 baseband symbol periods 
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Noise Parameters 

1. Type of Noise:     Additive White Gaussian 

2. 0bE N  range:      0 dB to 20 dB 

Wavelet Parameters 

1. Wavelet:       Haar 

2. Levels of resolution (N):   1 

Monte Carlo Simulation Parameters 

1. Number of trials:     1,000 

2. Symbols per transmission:   10 

Equalizer Filter Parameters 

1. Filter length:      2Lc + 1 (MMSE equalizers) 

          6Lc + 1 (ZFE) 

2. Upper bound:      100 (max. sum of filter tap coefficients) 

 (for filter convergence) 

 

8.2  Receiver with Wavelet-Based Minimum Mean 
-Squared Error Equalization 

It has been established in Chapter 7, Discrete Wavelet Transform-Based Channel 

Equalization, that the performance of the DWT-based MMSE equalization procedure is 

similar to the performance of discrete time-domain-based MMSE equalization. 

 

In this section the DWT-based MMSE equalization strategy is applied to three 

communications systems.  Each communications system implements one of the three 
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modulation schemes - BASK, BFSK, and 16-QAM.  The effect of DWT-based MMSE 

equalization in each system is evaluated with the use of SER curves. 

 

 nI  nI

 nP

 

 
Fig. 8.2.1.  Experimental system #1, with DWT-based MMSE equalization. 

 

In a similar fashion, a second set of simulation experiments is performed, but with the use 

of standard, discrete time-domain-based, MMSE equalization instead of DWT-based 

MMSE equalization.  The effect of using discrete time-domain-based MMSE 

equalization in each of the three systems is also determined with the aid of SER curves. 

 

 nI  nI

 nP

 

 
Fig. 8.2.2.  Experimental system #2, with discrete time-domain-based MMSE 

equalization. 

 

The control experiment for each of the three cases is the operation of each 

communications system without the use of any equalization procedure.  Thus, a third set 
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of SER curves is obtained, which represents the worst-case scenario from the perspective 

of robust recovery of the transmitted baseband symbols. 

 

 nI  nI

 

 
Fig. 8.2.3. Control experiment - communications system with no equalization. 

 

These three sets of SER curves for each modulation scheme are overlaid and compared 

graphically. 

 

Results 

The results of the Monte Carlo simulations for BASK are illustrated graphically in Fig. 

8.2.4, for BFSK in Fig. 8.2.5, and for 16-QAM in Fig. 8.2.6. 
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Fig. 8.2.4.  SER curves for BASK, with MMSE equalization. 
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Fig. 8.2.5.  SER curves for BFSK, with MMSE equalization. 
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Fig. 8.2.6.  SER curves for 16-QAM, with MMSE equalization. 

 

It is seen in Figs. 8.2.1-8.2.3 that the errors in symbol recovery for all three modulation 

schemes reduce in number as the noise power decreases.  In all three cases the systems 

using DWT-based MMSE equalization perform as well as corresponding systems that use 

discrete time-domain-based equalization. 

 

These results, being statistically significant, verify the predictions that were made based 

on the underlying hypothesis of this chapter, i.e., communications systems that use DWT-

based MMSE equalization performs as well as similar systems that use discrete time-

domain-based MMSE equalization. 
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8.3  Receiver with Wavelet-Based Zero-Forcing 
Equalization 

Having validated the predictions of the performance DWT-based MMSE equalization in 

communications systems, the next prediction involves DWT-based ZFE.  An important 

consideration in this case is that the impulse response of the channel is assumed to be 

known a priori, and is available at the receiver for the generation of the equalizer filter 

tap coefficients. 

 

It has been demonstrated in Chapter 7 that DWT-based ZFE is a perfectly viable and 

practicable signal processing strategy that performs as well as discrete time-domain-

based ZFE.  Therefore, the natural progression stemming from this observation, in the 

context of this dissertation, is to place a DWT-based ZFE in a communications system 

and to evaluate the performance of such the new system.  Such a system can be compared 

with one that contains a discrete time-domain-based ZFE instead of a DWT-based ZFE. 

 

The prediction in this case is that the performance of both systems, implemented for 

BASK, BFSK, and 16-QAM modulation schemes, will be statistically similar.  The 

performance of the systems is characterized once again with the use of SERs. 

 

The control experiments are the operation of communications systems implementing 

BASK, BFSK, and 16-QAM, that do not implement any equalization strategy. 
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 nI  nI

 nP

 

 
Fig. 8.3.1.  Communications system with DWT-based ZFE. 

 

 

 nI  nI

 nP

 

 
Fig. 8.3.2.  Communications system with discrete time-domain-based ZFE. 

 

System-level block diagrams of the two communications systems that are used in this 

section are illustrated in Figs. 8.3.1 and 8.3.2.  The system used in the control experiment 

is exactly same as the one used in Section 8.2, and is shown in Fig. 8.2.3. 

 

Results 

The SERs obtained for the systems implementing BASK, BFSK, and 16-QAM with ZFE 

equalization are presented graphically in Figs. 8.3.3-8.3.5, respectively. 
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Fig. 8.3.3.  SER curves for BASK, with ZFE but no channel estimation. 
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Fig. 8.3.4.  SER curves for BFSK, with ZFE but no channel estimation. 
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Fig. 8.3.5.  SER curves for 16-QAM, with ZFE but no channel estimation. 

 

Again, the results of the simulations validate the prediction that was postulated: the 

performance of communications systems using DWT-based ZFE, such that the channel 

impulse response is known a priori, is essentially identical to systems using, standard, 

discrete time-domain-based ZFE. 

 

8.4  Receiver with Wavelet-Based Zero-Forcing 
Equalization and Channel Estimation 

This final application of DWT-based signal processing strategies in communications 

systems involves the use of the DWT-based channel estimation procedure developed in 

Chapter 6 and the DWT-based ZFE procedure from Chapter 7. 
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In this case the impulse response is assumed to not be known a priori, but must be 

estimated by the receiver a posteriori.  As is required to accomplish this task, pilot 

signals are used.  The specific procedures have been described in Chapter 6. 

 

In Chapter 6 it was shown that DWT-based deconvolution is statistically comparable in 

performance to standard discrete time-domain deconvolution at all levels of resolution 

when signals are corrupted by low-power noise.  It was also seen, however, that when 

more powerful noise is added to signals, resulting in 0bE N  values in the range of 0 dB 

to 20 dB, DWT-based deconvolution at high levels of resolution is very prone to errors. 

 

The prediction for this experiment is: DWT-based channel estimation at a low level of 

resolution and DWT-based ZFE can be implemented in communications systems such 

that the performance of the systems is statistically comparable to similar systems with 

discrete time-domain-based channel estimation and ZFE. 

 

 nI  nI

 nP

 

 
Fig. 8.4.1.  Communications system with DWT-based channel estimation and ZFE. 
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 nI  nI

 nP

 

 
Fig. 8.4.2.  Communications system with discrete time-domain-based channel estimation 

and ZFE. 

 

Block diagrams of these systems are provided in Figs. 8.4.1 and 8.4.2.  The control 

experiment is, again, the case where no equalization is implemented for any of the three 

modulations schemes.  The general block diagram for this system is illustrated in Fig. 

8.1.3. 

 

The DWT is carried out to one level of resolution, and the estimate of channel impulse 

responses are obtained by deconvolution of the undecimated detail coefficients of the 

received pilot signal and the corresponding coefficients of an uncorrupted copy of pilot 

signal.  This procedure was described in Chapter 6. 

 

Results 

The SERs obtained from simulations of the BASK system are illustrated graphically in 

Fig. 8.4.3, of BFSK in Fig. 8.4.4, and of 16-QAM in Fig. 8.4.5. 
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Fig. 8.4.3.  SER curves for BASK, with ZFE and channel estimation. 
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Fig. 8.4.4.  SER curves for BFSK, with ZFE and channel estimation. 
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Fig. 8.4.5.  SER curves for 16-QAM, with ZFE and channel estimation. 

 

In this third scenario as well the Monte Carlo simulation results verify the predictions that 

were made.  Communications systems that implement both DWT-based channel 

estimation and DWT-based ZFE offer identical performance as systems that contain 

discrete time-domain-based channel estimation and ZFE, as seen in Figs. 8.4.3-8.4.5. 

 

This is the case regardless of whether the modulation scheme implemented is BASK, 

BFSK, or 16-QAM, as evidenced by the SER curves in Figs. 8.4.3-8.4.5.  Also, as 

expected, the systems that include channel estimation and equalization perform better 

than systems that do not use these signal processing strategies. 

 

. 
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8.5  Summary 

The primary hypothesis posited at the beginning of this chapter was that DWT-based 

channel estimation and equalization strategies can be successfully introduced into 

communications systems.  The secondary hypothesis dealt with the degree of such 

success.  In particular, it was predicted that the performance of communications systems 

with DWT-based sub-systems would be comparable to the performance of corresponding 

systems with discrete time-domain-based channel estimation and equalization. 

 

The results of the simulation experiments presented in this chapter validate both 

hypotheses.  The performance of the two classes of communications systems, with DWT-

based sub-systems and with discrete time-domain-based sub-systems, is consistently 

similar for the cases of: 

1. BASK, BFSK, and 16-QAM modulation schemes. 

2. AWGN resulting in the range of 0bE N  values from 0 dB to 20 dB 

3. Slow fading Gaussian channel (d = 2.5). 

 

It has thus been shown that DWT-based channel estimation, MMSE equalization, and 

ZFE can indeed be used within communications systems as replacements for the 

corresponding time-domain sub-systems.  The drawback in the utility of these signal 

processing strategies is the additional computation complexity of the DWT and the 

IDWT.  The accuracy of these alternative methods, however, is statistically identical to 

similar discrete time-domain-based strategies. 
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Chapter 9 

Conclusions 
 

The conclusion of this dissertation is composed of three sub-sections.  Each is a reflection 

of the research that has been presented from differing points of view. 

 

In the first section, 9.1, is a summary in which the salient features of each research topic 

addressed in this dissertation are highlighted.  Insight that has been gained during the 

development of each topic, as well as regarding the efficacy and utility of the Wavelet 

Platform for communications systems is discussed as well. 

 

Section 9.2 is a commentary on the limitations of the work in its current state.  The 

individual parts as well as the dissertation as a whole are viewed critically in order to 

provide a measure of objectivity in evaluating the success of the research.  Possible 

extensions of this thesis are discussed in the final section, Section 9.3. 

 

9.1  Summary 

In response to the six primary objectives that were identified in Section 1.2, the following 

observations are in order: 

1. It is indeed possible to estimate the time-domain impulse response on an unknown 

communications channel using a DWT-based approach, in Chapter 6. 
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2. A methodology for DWT-based channel estimation has been subsequently developed, 

in Chapter 6. 

3. It has been shown that DWT-based channel equalization is indeed possible, as shown 

in Chapter 7. 

4. A procedure for DWT-based channel equalization has been developed and verified in 

Chapter 7. 

5. Combinations of DWT-based channel equalization and estimation procedures have 

been incorporated into communications systems, and the efficacy of these new 

systems has been established in Chapter 8. 

6. The performance of DWT-based estimation and equalization techniques, as well as 

communications systems that include such techniques, have been compared in 

Chapters 6, 7, and 8, respectively. 

7. All analytical formulations been verified and simulations experiments have been 

carried using the MATLAB simulation environment [102-107]. 

 

Convolution Using the DWT 

Four equivalent methods for convolving discrete time-domain signals within a DWT 

framework have been described in Chapter 5.  Three of these four methods have been 

developed in this dissertation.  These are the Forward Merge Approach, and the 

Backward and Forward Merge Approaches with the use of polyphase filtering.  Each 

method has been described with the aid of analytical formulations using system-theoretic 

concepts, and has also been presented in the form of filter bank block diagrams as well. 
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A useful feature of the DWT-based convolution procedures presented in this dissertation 

is that they make use of a filter bank approach, and can be readily implemented in 

engineering applications.  This fact is significant since none of the alternative wavelet 

transform-based convolution methods surveyed in Chapter 3 lend themselves to use in 

practical applications such as the Wavelet Platform for reconfigurable radios. 

 

DWT-Based Channel Estimation 

Following the development of DWT-based convolution a procedure for DWT-based 

deconvolution was developed in Chapter 6.  The method of deconvolution makes use of 

one of the four equivalent methods of convolution, viz., the Forward Merge Approach.  

The procedure has been described analytically, and has also been depicted pictorially 

using block diagrams. 

 

This deconvolution procedure uses a partial DWT analysis operation instead of standard 

DWT analysis.  In the partial DWT analysis the wavelet coefficients at all levels of 

resolution are not decimated by the appropriate dyadic factor.  Instead, the undecimated 

DWT coefficients are used for the purposes of deconvolution, which immediately yield 

the desired channel impulse response. 

 

Deconvolution of the DWT coefficients is then carried out at each level of resolution, as 

explained in Section 6.1, in the same manner that standard discrete time-domain 

deconvolution is performed, e.g., with Toeplitz matrix formulations coupled with 

Gaussian elimination or the Levinson-Durbin algorithm. 
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The resulting methodology has been applied to test signals in conjunction with ten 

different channel scenarios.  Five channel models have been used, with each channel 

defined to reflect fast fading and for slow fading conditions.  The faded test signals have 

also been corrupted by AWGN of varying power levels.  Results of Monte Carlo 

computer simulations of the DWT-based deconvolution procedure applied to each of the 

ten scenarios provided consistent results that were both statistically significant and 

interesting. 

 

It is seen that an unknown channel impulse response can be obtained completely by 

applying the deconvolution procedure to the wavelet coefficients at any one level of 

resolution.  It is also seen that the accuracy of the estimate differs between levels. 

 

In the case where very small amounts of WGN have been added to a signal the channel 

estimates at all levels of resolution are asymptotically identical to within a small degree 

of uncertainty.  In the cases of powerful AWGN, however, the most accurate channel 

estimates are obtained from the detail coefficients at the first level of resolution.  The 

estimates obtained from the approximation coefficients at the finest level of resolution are 

also almost as accurate.  The accuracy of the estimates obtained from the detail 

coefficients at all other levels decreases as the resolution becomes finer. 

 

Therefore, the optimal procedure is to obtain a channel estimate at the coarsest level of 

resolution using the DWT-based approach. 
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DWT-Based Channel Equalization 

Based on the theory of DWT-based convolution a general procedure for channel 

equalization within a DWT framework has been developed in Chapter 6.  Specifically, 

the Forward Merge Approach has been used.  As a result, MMSE equalization and ZFE 

have been implemented using DWT convolution.  DWT-based equalization, like DWT-

based channel estimation, has been developed as a general signal processing strategy that 

can be used in any application deemed appropriate. 

 

The emphasis in this dissertation, however, is on the application of these signal 

processing strategies in communication systems.  Therefore, the validation of the efficacy 

of DWT-based channel equalization is carried out with test signals that are transmitted 

over a channel with a Gaussian PDP as well as AWGN. 

 

The two methods of equalization have been applied using the DWT in a series of Monte 

Carlo simulations.  The results obtained show that the accuracy of DWT-based channel 

equalization is essentially identical to corresponding standard discrete time-domain 

equalization. 

 

This observation is significant in the context of the Wavelet Platform.  It was previously 

unknown whether DWT-based equalization was possible, and, if so, with what measure 

of accuracy.  It is now known that this procedure can indeed be used as a component of 

the Wavelet Platform, and both MMSE equalization and ZFE can both be used with 

excellent accuracy. 
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Communications Receivers with Wavelet-Based Sub-Systems 

The ultimate intention of developing DWT-based signal processing strategies was so that 

they can be applied directly in communications systems.  This was accomplished in 

Chapter 8.  Three types of systems were selected: 

 1. A receiver with DWT-based MMSE equalization; 

 2. A receiver with DWT-based ZFE, but with the channel assumed known a priori; 

 3. A receiver with DWT-based channel estimation and DWT-based ZFE. 

Each system was specifically implemented to accommodate the BASK, BFSK and 16-

QAM modulation schemes, and all test signals were corrupted by AWGN to model the 

effects of thermal noise sources in communications systems. 

 

The Monte Carlo simulations conducted to evaluate the performance of each of the nine 

systems showed that the performance of the receivers with DWT-based sub-systems was 

essentially identical to the corresponding receivers that used standard discrete time-

domain sub-systems. 

 

These results are important because they show that wavelet-based channel estimation and 

equalization are perfectly viable alternatives to existing standard procedures in terms of 

performance. These results are more significant, however, when the gestalt that is the 

Wavelet Platform is considered.  In this context the results validate the hypothesis that a 

Wavelet Platform for communication receivers that consists of several wavelet-based 

signal processing sub-systems can be invented. 
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Computational Complexities 

In the case of, DWT-based convolution, as shown in Chapter 5, the convolution of two 

discrete-time signals with lengths NX and NY at M levels of DWT resolution requires 

approximately X YMN N  number of multiplications.  This order of complexity, 

 X YO N N , is essentially the same as the order of complexity of standard discrete time-

domain convolution, which requires X YN N  number of multiplications. 

 

Next, for DWT-based channel estimation a partial DWT is required, with just one level of 

resolution being sufficient.  In this case the excess computational complexity stems from 

convolving the signal with one analysis filter.  For a signal of length N, and a DWT 

analysis filter of length L, this excess complexity is  O NL .  Of course, if the signal 

length is much greater than a typically-used wavelets, that are short in length, i.e., 

N L , the excess complexity is  O N .  This computational complexity is in excess 

of the complexity of the algorithm that is used for the deconvolution, which would also 

be used for the deconvolution of the signal in the time-domain as well. 

 

In DWT-based channel equalization, multiple levels of resolution may be desired.  Once 

again, when N L , the computational complexity of DWT-based equalization is 

comparable to discrete time-domain equalization.  This is because the DWT-based 

equalization procedure is based on the efficient DWT-based convolution. 
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9.2  Future Work 

DWT-Based Adaptive Equalization 

The topic of wavelet-based adaptive equalization was briefly discussed in Section 7.3.  

Being that the foundations for DWT-based equalization have been laid in this 

dissertation, the natural progression would be to extend these to adaptive schemes.  Such 

schemes are very important in contemporary communication systems, and would greatly 

enhance the value of the Wavelet Platform. 

 

Choice of Wavelets 

Throughout this research study the Haar wavelet and wavelets from the Daubechies 

family have been used.  There are, however, many more wavelets that have been well 

established in the literature.  A systematic study in which the performance of DWT-based 

deconvolution and DWT-based MMSE equalization and ZFE is evaluated with several 

different wavelets would be useful. 

 

Integration into the Wavelet Platform 

Since the Wavelet Platform for reconfigurable radios is the major motivating factor for 

this research, the performance of DWT-based estimation and equalization in conjunction 

with wavelet-based de-noising algorithms should be the subject of a significant research 

study.  After that, these strategies must be integrated with wavelet-based Automatic 

Modulation Recognition and automatic signal demodulation algorithms for a complete 

realization of the Wavelet Platform. 
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Appendix A 

The Levinson-Durbin Recursion 
Algorithm for Non-Hermitian Toeplitz 
Matrix Equations 
 

Consider the case where the scalars 1 2 1, , , nr r r  , 1 2 1, , , np p p   and 1 2 1, , , nb b b   are 

known, and they form a system of linear equations, Tx b , which is of the form 

 

 

1 2 1 1 1

1 1 2 2 2

2 1 3 3 3

1 2 3 1 1

1

1

1

1

n

n

n

n n n n n

r r r x b

p r r x b

p p r x b

p p p x b







    

     
     
     
     
     
     
          

x bT





      


. (A1) 

 

The matrix T is a non-Hermitian Toeplitz matrix, the elements of which are known, x is 

vector, the elements of which are unknown and are to be solved for, and b is a vector, the 

elements of which are known. 

 

In order to find the unknown vector x, the leading principle sub-matrices 

 1: ,1:k k kT T , 1: 1k n  , must be non-singular. 

 

From the matrix T, three systems of equations, which need to be solved, can be described 

according to 
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  TT
1 2k kr r r   T y r  ,  (A2) 

  T1 2k kp p p   T w p  , (A3) 

and 

  T1 2k kb b b T x b  .  (A4) 

 

It is worthy to note that (A2) and (A3) are the Yule-Walker equations. 

 

An n n  exchange matrix, E, in which the elements on the counterdiagonal are 1s 

whereas all other elements are 0s, is defined as 

 ,

1,

0,i j

j n i
E

j n i

 
   

.   (A5) 

An example of a 4 4  exchange matrix is 

 

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 
 
 
 
 
 

E .   (A6) 

  

Now, (A2), (A3) and (A4) can be expressed, respectively, as 

   1T
k


 y T r ,    (A7) 

 1
k
 w T p ,     (A8) 

and 

 1
k
x T b .      (A9) 
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In order to solve (A2), (A3) and (A4) an assumption is made that the solution to the kth 

equation is known.  

 

Now, (A2) can be expressed as 

 
T

T
11

k k

k k 

    
     

    

T E r rz

p E r
 

 
T

T T
11

k k

kk  

    
      

    

rzT E p

rr E
. (A10) 

 

The first equation from (A10) is 

 T
k k   T z E p r  

    1 1T T
k k k 

 
   z T r T E p . (A11) 

Substituting y from (A9) into (A11) gives 

   1T
k k 


 z y T E p  

  T1
k k   z y T E p .   (A12) 

 

Since kT  is persymmetric, i.e., 

 T
k kT ET E ,     (A13) 

it follows that 

  T1 1
k k k k
 T E E T .   (A14) 

 

Substituting (A14) into (A12) gives 
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 1
k k  z y E T p ,    (A15) 

and introducing w from (A8) into (A15) results in 

 k z y E w .     (A16) 

 

Now, the second equation from (A10) is 

 T
1k k   r E z r  

 T
1k k    r r E z .    (A17) 

 

Substituting the previously-obtained expression for z, from (A16), into (A17) gives 

  T
1k k k    r r E y E w  

 T T
1k k k k     r r E y r E E w . (A18) 

 

Applying the property that the product of an exchange matrix with itself results in an 

identity matrix, i.e., 

 k k kE E I ,      (A19) 

to (A18) results in the simplified expression 

 T T
1k k    r r E y r w  

  T T
1k k      r w r r E y  

 
T

1
T1

k k  
 


r r E y

r w
.   (A20) 

Next, the second Yule-Walker equation, (A3), i.e., 

 k  T w p , 
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can be expressed as 

 
11

k k
T

k k 

    
     

    

T E r pu

p E p
. (A21) 

 

The first linear equation from this expression is 

 k k   T u E r p  

 1 1
k k k     u T p T E r .   (A22) 

 

Introducing w from (A8) into (A22) results in the expression 

 1
k k  u w T E r .    (A23) 

 

Since kT  is persymmetric,  

  T1 1
k k k k
 T E E T ,   (A24) 

(A23) can be written as 

  T1
k k  u w E T r .   (A25) 

 

Furthermore, since 

    1 TT 1
k k

 T T     (A26) 

and, from (A7), i.e., 

   1T
k


 y T r , 

(A25) can be described in terms of y as 
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 k  u w E y .    (A27) 

 

Next, the second equation from (A21) is 

 T
1k k   p E u p  

 T
1k k    p p E u .   (A28) 

 

Substituting u from (A27) into (A28) results in the expression 

  T
1k k k    p p E w E y  

 T T
1k k k k     p p E w p E E y  

 T T
1k k     p p E w p y  

 T T
1k k      p y p p E w  

 
T

1
T1

k k  
 


p p E w

p y
.   (A29) 

 

Now that recursive solutions for the two Yule-Walker equations have been obtained, the 

non-Hermitian Toeplitz matrix equation, k T x b , (A4), can be solved.  Similar to the 

previous two equations, (A4) too can be expanded and expressed in terms of a known 

reduced-order solution as 

 
11

k k
T

k k 

    
    

    

T E r bv

p E b
. (A30) 

 

The first equation from (A30) is 
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 k k  T v E r b  

 1 1
k k k    v T b T E r .   (A31) 

 

Introducing x from (A9) into the expression in (A31) yields 

 1
k k  v x T E r .    (A32) 

 

Again, due to the persymmetry of kT ,  

  T1 1
k k k k
 T E E T ,   (A33) 

which, when substituted in (A32) gives 

  T1
k k  v x E T r .   (A34) 

 

Now, recalling (A7), 

   1T
k


 y T r , 

and the property, 

    1 TT -1
k k


T T ,    (A35) 

which is due to the persymmetry of kT , (A34) can be rewritten as 

  -1T
k k  v x E T r  

  k  v x E y .     (A36) 

 

Next, the second equation from (A30) is 
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 T
1k k  p E v b  

 T
1k k   b p E v .    (A37) 

 

Introducing the expression for v, from (A36), into (A37) gives 

  T
1k k k   b p E x E y  

 T T
1k k k k    b p E x p E E y  

 T T
1k k    b p E x p y  

 T T
1k k     p y b p E x  

 
T

1
T1

k k  



b p E x

p y
.    (A38) 

 

A recapitulation of the main results of this derivation thus far is composed of the 

following results: 

 k z y E w  

 
T

1
T1

k k  
 


r r E y

r w
 

 k  u w E y  

 
T

1
T1

k k  
 


p p E w

p y
 

 k  v x E y  

 
T

1
T1

k k  



b p E x

p y
. 
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Now consider the denominator of the expression for the scalar coefficient   in (A20). 

Let the denominator be denoted by  , and more specifically by k  for the kth recursive 

evaluation of the expression, i.e., 

    T

1 k k
k     r w .   (A39) 

 

Now,  1kw  has been expressed in terms of u and   in (A21) as 

  
 

1
k

k


  
  
 

u
w      (A40) 

  
   

1
k k

k k k

k




  
   

 

w E y
w ,  (A41) 

having substituted the expression for u from (A27) into (A41).  Hence, the expression for 

k , in (A39) can be updated as 

  
   

T
1 1

1 1 1

1

1
k k

k k k
k k

k

r



 
  



         

w E y
r  

          T T1 1 1 1
1 11 k k k k

k k k r    
 

          r w r E y . (A42) 

 

Simplifying (A42) with the use of (A39) and (A20) results in the expression 

  1 1 1 1k k k k k           

   1 1 11k k k k       .  (A43) 
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In a similar fashion, let   denote the denominator of the expression for   in (A29), 

therefore let k  denote the value of the denominator of the kth recursion of  , i.e., 

    T

1 k k
k     p y .   (A44) 

Again, since  1ky  has been expressed in (A10) as 

  
 

1
k

k


  
  
 

z
y ,     (A45) 

and since it has been shown in (A29) that 

      k k k
k z y E w , 

(A44) can be recast as 

  
   

T
1 1

1 1 1

1

1
k k

k k k
k k

k

p



 
  



         

y E w
p  

          T T1 1 1 1
1 11 k k k k

k k k kp    
 

          p y p E w . (A46) 

 

Simplifying (A46) with the use of (A44) and (A29) gives 

  1 1 1 1k k k k k           

   1 1 11k k k k       .  (A47) 

 

Finally, let   denote the denominator of the expression for   in (A39), let k  denote the 

value of the denominator during the kth recursion of the expression, i.e., 

    T

1 k k
k     p y .   (A48) 
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Once again using the expression for  1ky  from (A10), i.e., 

  
 

1
k

k


  
  
 

z
y ,  

and the expression for z in (A29), i.e., 

      k k k
k z y E w , 

(A48) becomes 

  
   

T
1 1T

1 1 1

1

1
k k

k k k
k k

k

p



 
  



         

y E w
p  

          T T1 1 1 1
1 11 k k k k

k k k kp    
 

          p y p E w . (A49) 

 

Simplifying (A49) using (A48) and (A29) therefore gives 

  1 1 1 1k k k k k           

  1 1 1 1k k k k k         .  (A50) 

 

Hence, the denominators of the scalar variables  ,  , and  , in (A20), (A29), and 

(A38), respectively, can be updated by using the expressions found in (A43), (A47), and 

(A50), respectively: 

 
T

1k k

k




 
 

r r E y
,   (A51) 

 
T

1k k

k




 
 

p p E w
,   (A52) 

and 
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T

1k k

k




 


b p E x
.    (A53) 

 

The final set of equations needed to solve the original equation Tx b  for x is: 

 k z y E w  

 
T

1k k

k




 
 

r r E y
 

  1 1 11k k k k        

 k  u w E y  

 
T

1k k

k




 
 

p p E w
 

  1 1 11k k k k        

 k  v x E y  

 
T

1k k

k




 


b p E x
 

 1 1 1 1k k k k k         . 

 

The algorithm is described in pseudocode below. 

 

    1 1y r  ;     1 1w p  ;       1 1x b ; 

 1  ;    1  ;    

  1r   ;   1p   ;  

 for 1: 1k n   
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      ; 

        T
1 1: : 1:1b k p k x k     ; 

       1: 1: : 1:1v k x k y k   ; 

     1: 1 1:x k v k      ; 

  if 1k n   

    1    ; 

         T
1 1: : 1:1p k p k w k      ; 

        1: 1: : 1:1u k w k y k   ; 

      1: 1 1:w k u k      ; 

    1    ; 

         T
1 1: : 1:1r k r k y k      ; 

        1: 1: : 1:1z k y k w k    

      1: 1 1:y k z k       

  end 

 end 
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