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ABSTRACT OF THE DISSERTATION

Biomechanical Modeling and Simulation of Human

Eye Movement

by Qi Wei

Dissertation Director: Dinesh K. Pai

Studying human eye movement has significant implications for understand-

ing the oculomotor system and treating vision disorders. Existing models of

the oculomotor system either simplify the geometry and mechanics of the or-

bit, or are restricted to static simulation. In this dissertation, we present a novel

three-dimensional (3D) biomechanical modeling framework for simulation of

the oculomotor plant that addresses the above limitations. We aim to lay the

foundation of a biomechanical simulator that will potentially be used for sci-

entific research on ocular motility and clinical applications.

We first propose an efficient method for building subject-specific orbit mod-

els from magnetic resonance imaging (MRI). We reconstruct 3D geometric mod-

els of the orbit by fitting a generic template model to the MRI data of individ-

ual subjects. An automatic fitting process is developed, which combines para-

metric surface deformation with image feature selection. The accuracy of our
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method is validated by comparison to manual segmentation. We also present

3D reconstruction of eyeball models from MRI using the template approach

with subdivision surface fitting.

We then describe a new approach for determining the averaged longitudi-

nal strains of cylindrical soft tissues. Our method does not rely on image fea-

tures to establish tissue correspondences and uses the incompressibility prop-

erty of soft tissues. We demonstrate its usefulness by estimating extraocular

muscle (EOM) strains from reconstructed models. Simulated sensitivity analy-

sis and validation on MRI of a rubber phantom show its accuracy. Integrating

estimated EOM strains as deformation constraints, we register EOM models

across eye positions in a physically consistent way.

Finally, we develop a 3D dynamic biomechanical model for simulating oc-

ular motility. We model EOMs as “strands,” which are modeling elements for

musculotendon mechanics. Realistic muscle paths and cross sectional areas of

the EOM strands are based on 3D geometric models reconstructed from human

subject MRI. Nonlinear EOM mechanics are incorporated and pulley hypothe-

ses are implemented. Simulation of fixations, smooth pursuits, and saccades

are demonstrated. The model generates realistic gaze trajectories from neural

control signals. We validate our simulator by comparing simulations to exper-

imental data. Our model is the first one that simulates dynamics and includes

anatomical and physiological properties.
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Preface

Portions of this dissertation are based on work previously published or sub-

mitted for publication by the author [Wei and Pai, 2008; Wei et al., 2008, 2009;

Wei and Pai, 2009; Wei et al., 2010].
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Chapter 1

Introduction

Vision is one of our most important senses. Rapid and accurate eye move-

ments are crucial for coordinated direction of gaze. Many kinds of disorders

that impair human vision are associated with pathological eye movements.

Understanding how the eye moves is driven by the demand for better treat-

ment for these diseases. For instance, strabismus, or binocular misalignment,

is a common visual defect in which two eyes do not look at the same point at

the same time when focusing. Approximately 4 percent of the U.S. population

suffer from strabismus [AAPOS].

Each eye has six muscles, called the extraocular muscles (EOMs). Strabismus

is typically caused by uncoordinated extraocular muscles. Strabismus can be

treated surgically; this involves manipulating the unbalanced EOMs. Because

of the difficulty of predicting the mechanical effects of operations, current di-

agnosis and treatment are mostly based on simple heuristics, intuition, and ex-

perience [Miller and Demer, 1999]. As a result, the success rates of strabismus

surgeries are not satisfying. Many operational treatments are found ineffective

in improving vision, and re-operations are generally required. To advance the

knowledge of binocular misalignment and human eye movement in general,

much effort has been devoted to reexamine the anatomy and biomechanics of

the orbital plant. In particular, the orbital connective tissues have been studied

using histology and MRI [Miller, 1989; Demer, 2004, 2007]. Researchers have
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found that a 3D computational model of the orbit that realistically represents

the anatomical and physiological findings is indispensable in understanding

the mechanics and neural control of ocular motility [Haslwanter, 2002; Miller

et al., 2003; Demer, 2007].

Computational modeling provides a powerful tool to analyze biological

systems, complementary to experimental studies. It aims to build realistic

models for individual components of the system to describe the underlying

mechanism. Such a model normally employs physical principles and compu-

tational methods. Validation is performed through simulation and comparison

to the empirical findings. Computational models are not isolated from experi-

mental observations. Incorporating anatomical and physiological properties is

critical for their realism and accuracy, and for their utility in scientific studies

and clinical applications. In turn, modeling efforts and predictions can provide

insights into the structures and aid in the design of better experiments.

Studying human eye movement has other significant implications. The

oculomotor plant is an unique mechanical system. It is organized in a seem-

ingly simple way – three pairs of extraocular muscles work as three agonist-

and-antagonist pairs and control 3D rotation with three degrees of freedom.

However, the oculomotor system exhibits complicated behaviors that are yet

to be understood, such as the mechanism behind Listing’s law: in head fixed

eye movement, the unique ocular torsion in any gaze direction and regardless

of the gaze trajectory [von Noorden and Campos, 2001]. How Listing’s law

is implemented on the globe with noncommutative rotation is under debate

[Miller, 2007; Demer, 2007], with the possibility that the cause is mechanical,

neural, or both. Surely, any progress on understanding the kinematics and

neural control of the eye will aid in the study of other human movements and
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in humanoid robots.

1.1 Thesis Statement

A realistic computational model of the human oculomotor plant can be con-

structed and simulated based on mechanical principles, physiological mea-

surements, and imaging.

1.2 Contributions

In this dissertation, we present several studies on modeling and simulating

human eye movement using medical imaging techniques and biomechanical

simulators. We aim to lay the foundation of a biomechanical framework for

simulating the oculomotor plant, which eventually will be used for clinical

applications. Our main contributions and their associations are summarized

in Figure 1.1, and are described in the following.

Figure 1.1: Main contributions of the dissertation and their connections.
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• Efficient reconstruction of 3D orbit models

We propose a semi-automatic computational framework to efficiently re-

construct individualized orbit models from Magnetic Resonance Imaging

(MRI).

Advances in medical imaging have greatly benefitted clinical diagnosis

and scientific research. Computed Tomography (CT) and MRI have been

employed in the diagnosis and evaluation of ocular motility disorders

[Gonzales et al., 1986; Demer et al., 1994; Velez et al., 2004; Clark and

Demer, 2006; Rutar and Demer, 2009] and anatomical studies [Miller,

1989; Tian et al., 2000; Clark et al., 2000; Kono et al., 2002a; Demer et al.,

2003a,b]. MRI has the advantage of excellent soft tissue contrast and of

non-invasiveness. Three dimensional imaging provides valuable infor-

mation about the anatomical features of the intrinsic orbital structures,

including the globe [Mutti et al., 2007; Hoerantner et al., 2007] and the

extraocular muscles [Demer et al., 1994; Clark and Demer, 2002; Oh et al.,

2002; Rutar and Demer, 2009]. MRI scans are becoming routine examina-

tions for diagnosis and treatment planning. Manual image-based recon-

struction of the orbital structures is too labor intensive to be practical; au-

tomated approaches on the computer will facilitate patient-specific data

analysis.

Our method requires minimal manual work. It combines template-based

deformable models with adaptive edge selection. It does not depend on

user intervention and is robust with respect to image noise, which makes

the approach suitable to generate models for many subjects. The recon-

structed geometric models are important for realistic biomechanical sim-

ulation of the oculomotor plant. We also demonstrate building detailed
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geometric models of the eyeball from MRI automatically, as an applica-

tion of the reconstruction method. The resulting eyeball meshes are po-

tentially useful for biomechanical modeling and shape analysis in clinical

applications.

• Estimation of longitudinal strains

We present a simple yet effective technique for estimating one-dimensional

longitudinal deformation of cylindrical soft tissues.

Assessing how tissues deforms is important for understanding its me-

chanical properties and functions. For instance, quantifying the defor-

mation of the orbital layer and global layer of an extraocular muscle at

different eye positions can provide evidence for or against the hypothe-

sis that the two layers contract differentially [Miller et al., 2006]. Imag-

ing techniques and physical markers are often employed to study tissue

properties. However, with traditional medical imaging modalities, such

as CT and MRI, material properties related to movement are hard to re-

solve either due to the limitations of these techniques or the intrinsic chal-

lenges of the target tissues, such as homogeneous intensity. As a result,

advanced imaging techniques, such as tagged MRI [Osman et al., 1999]

and Magnetic Resonance Elastography [Muthupillai and Ehman, 1996],

are required to quantify tissue deformation.

Motivated by the limitations of existing imaging techniques, we propose

a method that does not rely on image features to establish tissue corre-

spondences. It is especially useful for cases where images are inadequate

for providing interior tissue features. Our method uses the incompress-

ibility property of soft tissues and is sufficiently general to be applicable
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to many tissue types. We apply our approach to analyze extraocular mus-

cle deformation using the reconstructed 3D EOM meshes. The results

show inhomogeneity of EOM deformation as a function of eye position.

• Physically consistent model registration

We describe an algorithm to apply deformation properties during model

registration such that the resulting models are physically consistent.

Typically, geometric models reconstructed independently from different

deformed states of the structures only represent the shape variations, and

do not show underlying deformation. We enforce deformation consis-

tency constraints in the surface fitting process to regulate positions of the

points on the mesh. The registered models are associated with each other

by the deformation properties. Mechanically meaningful material corre-

spondences of the models are provided directly. The method can be gen-

eralized to create realistic models for biomechanical simulation. Using

the reconstructed meshes and estimated longitudinal muscle strains de-

scribed above, we demonstrate registration of extraocular muscle models

at various horizontal eye positions.

• Biomechanical simulation of eye movement

We develop a new biomechanical simulation framework for studying

ocular motility. It is the first biomechanical model that realistically im-

plements extraocular muscle pulleys and simulates dynamics eye move-

ments.

Several computational models have been developed to improve our un-

derstanding of the mechanics and control of ocular motility. Models us-

ing simplified anatomical and mechanical properties of the orbit have
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been proposed for studying the neural control of saccadic movements

[Schnablok and Raphan, 1994; Raphan, 1998; Quaia and Optican, 1998].

In these models, simplifications are made such that analytical solutions

can be found. However, these simplifications limit the models’ accu-

racy and thus their usefulness in the study of ocular motility [Quaia and

Optican, 2003]. These simplified models are insufficient for use in clini-

cal predictions. On the other hand, biomechanical models that incorpo-

rate anatomically realistic muscle paths and empirical EOM innervation-

length-tension relationships have been implemented [Robinson, 1975; Miller

and Robinson, 1984; Miller et al., 1995; Haslwanter et al., 2005], mainly

for planning strabismus surgical treatment through binocular alignment

simulation. One drawback of the currently available biomechanical mod-

els is that none of them can simulate dynamic eye movements, such as

saccades. Our biomechanical simulator addresses the limitations of pre-

vious models. By using a novel muscle-modeling primitive, our model

of the orbital plant incorporates the nonlinear mechanical characteris-

tics of existing biomechanical models while supporting dynamic simula-

tion. We include realistic anatomy of the EOMs by using subject-specific

muscle paths and cross sectional areas provided by the geometric mod-

els reconstructed from clinical MRI of patients. Possessing these desired

features, our biomechanical model can be used to simulate both static

and dynamic eye movements. One of our main contributions is that the

model’s generality and flexibility allow new anatomical and physiolog-

ical findings, such as the recently proposed pulley hypotheses [Miller,

1989; Kono et al., 2002a; Demer, 2004], to be included. Such a model will

benefit both laboratory studies and clinical surgical treatment.
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1.3 Outline

The rest of this dissertation is organized as follows. We first present back-

ground on eye movements in Chapter 2. In Chapter 3, we describe our template-

based reconstruction approach. We show reconstructed 3D models of the orbit

as well as validations of model accuracy. We also introduce a subdivision fit-

ting procedure for building detailed models of the eyeball from MRI. In Chap-

ter 4, we present a longitudinal strain estimation method. To assess the ef-

fectiveness and accuracy of the approach, we apply it to real MR images of a

rubber phantom and conduct sensitivity analysis using computer simulations.

The practical application of the approach is further demonstrated by study-

ing EOM deformation and registering EOM models in a physically consistent

way. In Chapter 5, we describe two biomechanical models with different im-

plementation of the rectus muscle pulleys. Simulations of fixations, saccades,

strabismus, as well as model validation are presented. Finally, we conclude the

dissertation with discussion and plan for future work in Chapter 6.
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Chapter 2

Background

In this chapter, I introduce background knowledge on eye movement. It is a

big topic and I provide a brief outline on the subject matters relevant to this

dissertation. See [Leigh and Zee, 2006] or [von Noorden and Campos, 2001]

for more information.

2.1 Anatomy and Physiology

The orbit is a complicated structure. The globe (eyeball) is held in position in

the eye socket by ligaments, muscles, and fascial sheaths connected to the or-

bital wall. Three pairs of muscles insert on the globe and are coupled through

complex connective tissues. These six muscles, named the extraocular muscles

(EOMs), are innervated to generate force and rotate the globe to reach or track

a visual target object and to stabilize the image of the object on the retina. Fig-

ure 2.1 shows a 3D model of a human orbit reconstructed from MRI [Wei et al.,

2009].

2.1.1 EOM Anatomy and Physiology

The six EOMs include four rectus muscles and two oblique muscles. The four

rectus muscles originate from the annulus of Zinn; they course anteriorly, pass

through the Tenon’s capsule, and insert on the sclera. The muscle lengths of the
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Figure 2.1: 3D model of a human right eye reconstructed from MRI viewed
from above and from the medioinferior side.

rectus muscles are all about 37mm and the tendon lengths vary between 3mm

and 7mm [von Noorden and Campos, 2001]. The origin of the superior oblique

(SO) muscle is on the periorbita of the superonasal orbital wall [Demer, 2007].

The SO tendon passes through the trochlea, a cartilaginous pulley structure

attached to the orbital wall, which reflects the SO path inferiorly by 54◦. The

SO has a long tendon about 30mm and its muscle is about 30mm. The inferior

oblique (IO) muscle originates from the orbital wall anterioinferior to the globe

center, courses superiorly, posteriorly, and laterally to its insertion on the sclera

posterior to the globe equator. The length of the IO muscle is about 37mm; the

IO tendon is less than 2mm long.

The EOMs are controlled by the cranial nerves. The abducens nerve (cranial

nerve VI) innervates the lateral rectus (LR) muscle. The oculomotor nerve (cra-

nial nerve III) innervates the superior rectus (SR), inferior rectus (IR), medial

rectus (MR), and inferior oblique (IO) muscles. The superior oblique muscle is

controlled by the trochlear nerve (cranial nerve IV).

Two horizontal rectus muscles, LR and MR EOMs, form the horizontal



11

agonist-antagonist pair. Contraction of the LR produces abduction (see Fig-

ure 2.2d) – movement in the temporal direction. Contraction of the MR ro-

tates the eye towards the nose; such a movement is called an adduction (see

Figure 2.2f). Each of the LR and the MR only has one action direction from the

straight-ahead eye position.

(a) Tertiary (b) Elevation (c) Tertiary

(d) Abduction (e) Primary (f) Adduction

(g) Tertiary (h) Depression (i) Tertiary

Figure 2.2: Primary gaze: (e). Secondary movements: (d) abduction; (f) ad-
duction; (b) elevation (supraduction); (h) depression (infraduction). Tertiary
movements: (a); (c); (f); (h).

Vertical eye movement is controlled by the two vertical rectus muscles and
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the two oblique muscles. The vertical EOMs are the superior rectus and infe-

rior rectus muscles. SR and IR share a muscle plane that forms an angle about

23◦ with the median (vertical) plane of the body. SR primarily contributes to

elevation (supraduction) of the eye while IR mainly contributes to depression (in-

fraduction). See Figure 2.2b and Figure 2.2h for simulated elevation and de-

pression. Contractions of SR and IR also affect eye rotation about the line of

sight, called cycloduction. The secondary actions of SR and IR cause incycloduc-

tion (inward rotation) and excycloduction (outward rotation) respectively [von

Noorden and Campos, 2001]. They also adduct the eye slightly.

The superior oblique and inferior oblique muscles form the third agonist-

antagonist pair, which primarily influences cycloduction. Contractions of SO/IO

lead to incycloduction/exclyduction. SO and IO also produce depression and

elevation respectively as their secondary roles. They contribute to abduction

as well.

Accurate eye movement requires cooperative control of the six EOMs. A

single EOM never works alone to produce a desired movement. Empirical

laws have been proposed to explain this coordination in simple cases with a

pair of antagonistic muscles, but it not clear how well the laws generalize to

more comprehensive models of the orbit. According to Sherrington’s law of re-

ciprocal innervation, an antagonist muscle is relaxed when an agonist muscle

is innervated. Such interplay between opposing EOMs makes eye movement

smooth and steady [von Noorden and Campos, 2001]. Furthermore, due to the

anatomical arrangement of EOMs, any vertical gaze involves innervations of

both the vertical and the oblique EOM pairs.

Since humans have binocular vision, EOM neural control of one eye is as-

sociated with the control of the other eye to produce synchronized movements
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of both eyes, except for pathological conditions. Hering’s law of equal inner-

vation explains such associations – during eye movements, the corresponding

muscles in two eyes receive the same amount of innervations.

Global Layer and Orbital Layer

EOMs are bilaminar and consist of two layers with different fiber types [Porter

et al., 1995]. The orbital layer (OL) of an EOM is on the outer side, adjacent

to the orbital wall. The inner global layer (GL) of a rectus muscle is adjacent

to the globe. The GL of the oblique EOMs constitutes the central core [Demer,

2007].

The anterior GL becomes tendinous and inserts on the sclera while the OL

terminates posterior to the EOM tendon. The rectus OL inserts on the con-

nective tissue pulleys, important evidence based on which the active pulley

hypothesis was developed [Demer et al., 2000].

Pulley Connective Tissues

Pulleys refer to the connective tissues that stabilize the rectus muscle paths

even in extreme eye positions [Miller, 1989]. Rectus muscle pulleys are be-

lieved to play a significant role in the mechanics and neural control of eye

movement [Miller, 2007]. One of the reasons that these mechanically impor-

tant structures were ignored from orbit anatomy is because they are distributed

structures that can only be characterized as condensations of smooth muscles,

elastin, and collagen revealed in histological images [Demer et al., 1995; Kono

et al., 2002b]. The functional positions of pulleys, identified by the sharp inflec-

tions of EOM paths were quantified from MRI studies [Clark et al., 2000; Kono

et al., 2002a]. More details about pulleys will be given in Section 5.5.1.
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2.1.2 Eye Movements

When the eyes are looking straight ahead, that position is named the primary

position (see Figure 2.2e); a mathematically precise definition can be found in

[Tweedw et al., 1990]. Pure horizontal or vertical eye rotations are called sec-

ondary positions. Gazes with both horizontal and vertical components are ter-

tiary gazes (see Figure 2.2a for an example). There are five basic types of eye

movements.

During fixation, the eyes maintain the gaze on a single target. However,

eyes are never completely stationary. Microsaccades – are small and involun-

tary saccades – and ocular drifts are usually involved in fixational eye move-

ments.

A saccades is the rapid eye movement that we make to quickly change

visual attention from one target to another. A saccade brings the image of

the target to the fovea, which has the highest concentration of photoreceptors

on the retina and provides the best visual resolution. Saccades are the fastest

movements of human body and can reach 1000◦/s. Due to the high speed,

vision is blurred during the execution of a saccade.

When an eye is following a slowly moving target, the motion is called a

smooth pursuit. The eyes try to foveate the image of the target continually dur-

ing pursuit. Pursuit is often accompanied by catch-up saccades and is driven

by visual feedback.

The above eye movements are conjugate movements, during which two

eyes rotate the same angle in the same direction. When the two eyes move

in the opposite directions, a disjunctive movement, or vergence occurs. Inward
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vergence is called convergence and outward vergence is called divergence. Track-

ing an object who’s distance from the viewer varies involves vergence move-

ment.

Vestibular-ocular movement is a reflex eye movement that does not de-

pend on visual feedback. Its function is to stabilize the retinal image of a sta-

tionary target being fixated while the head is moving using inertial sensors for

head movement called the vestibular organs. The eyes involuntarily move in

the opposite direction as the head moves in order to compensate for the head

movement.

2.2 Strabismus

Strabismus, or squint, is the misalignment of two eyes due to dysfunction of

extraocular muscles and/or lack of coordination among them. The cause of

strabismus is complicated. It could be innervational, mechanical, or a combi-

nation of both.

A visual axis refers to the vertical or horizontal axis of the eyeball that is

on the equatorial plane. Characteristics of the visual lines (lines of sight) and

visual axes are used to accurately describe orientation of the eyes [von Noor-

den and Campos, 2001]. In normal cases, visual lines are parallel in distance

fixation and properly converged in near vision. Strabismic eyes are subject

to deviation of the visual axes and visual lines. Based on deviation direction,

strabismus can be classified into various kinds.

• Horizontal deviation. Esotropia refers to the convergence of the vertical

visual axes and exotropia refers to the divergence of the visual axes. Two

examples are illustrated in Figure 2.3:A and Figure 2.3:B.
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• Vertical deviation. If the visual line of the left/right eye is higher than the

right/left, the left/right eye is said to have hypertropia (see Figure 2.3:C).

Hypotropia defines the situation when the visual line is lower in one eye

than the other (see Figure 2.3:D).

• Cyclodeviation. Clockwise mis-rotation about the visual line causes ex-

cyclotropia; counter-clockwise rotation leads to incyclotropia. See Figure 2.3:E

and Figure 2.3:F.

Figure 2.3: Classification of strabismus by direction of deviation (illustration
from [von Noorden and Campos, 2001]). A: Right esotropia. B: Left exotropia.
C: Left hypertropia. D: Right hypotropia. E: Right incyclotropia. F: Right
excyclotropia.

Strabismus is also classified into comitance and incomitance by the deviation

pattern. Incomitant strabismus exhibits varying deviation angles in different

eye positions. Paralytic extraocular muscles typically cause incomitant stra-

bismus; the deviation is more dramatic in the major acting direction of the

underacting muscle. Deviation of comitant strabismus is constant in all eye

positions. Comitant strabismus is primarily due to causes other than anatomi-

cal and mechanical pathologies, such as generic factors, innervational defects,

uncorrected refractive errors, etc. [Lang, 2000]
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Chapter 3

3D Reconstruction of the Orbit

3.1 Introduction

In this chapter, we present a template-based approach to building subject-

specific models of the human orbit (the contents of the eye socket, including

the extraocular muscles that move the eye) from magnetic resonance images.

Our goal is to build subject-specific geometric representations of ocular struc-

tures efficiently and accurately, with minimal manual work.

Motivations

Modern imaging techniques, in particular MRI, make the evaluation of abnor-

malities of orbital structures of alert humans possible and thus have been used

in clinical diagnosis. Quantitative morphometric analysis of EOMs using MRI

can be used in the objective diagnosis of superior oblique (SO) muscle palsy

[Demer et al., 1994; Demer and Miller, 1995]. Cross sectional areas can be mea-

sured from coronal images that reveal the size and contractile changes of SO.

Patients with SO palsy normally have smaller SO size and show abnormal con-

tractile changes. High resolution MRI in alert humans combined with com-

puter simulation has shown that heterotopic pulleys, i.e., pulleys with abnor-

mal positions, can account for incomitant strabismus [Clark et al., 1997, 1998].
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Previous studies have employed MRI to quantify the size and shape of eye-

balls [Atchison et al., 2005; Singh et al., 2006]. One of the interesting findings is

that the axial length of an eyeball increases as the degree of myopia increases

[Atchison et al., 2005]. Such observations and further investigations are useful

for interpreting ocular imaging and better understanding myopia and refrac-

tive errors.

Current analysis is mainly done manually, which is time consuming and

inconsistent due to the dependence on human operators. Reconstructing pa-

tient specific 3D models of the orbit from medical images on a computer will

greatly aid in ocular disorder diagnosis, as many key characteristics can be

inferred directly from these models.

Efficient and accurate orbital model reconstruction also has important ap-

plications in assisting the planning of surgical treatment with individual pa-

tients. Associated with biomechanical properties (innervations, contractile forces,

elasticities, etc.), these models can be used to simulate patient-specific disor-

ders. Using appropriate biomechanical simulators, such as the ones introduced

in Chapter 5 and others developed previously [Miller et al., 1995; Haslwanter

et al., 2005], ophthalmologists can apply surgical manipulations on the models

to predict surgical outcomes and gain insights on effectiveness of operations.

Reconstruction of the orbit has been studied previously. Li et al. [2002] de-

veloped a system that generates 3D models by assisting the user with the time-

consuming task of segmenting 2D contours of the orbital structures from MRI.

Even with the tools provided, this frame-by-frame image-based reconstruction

process is prohibitively expensive for anything other than a research study.

In addition, due to the geometric representations they use, the reconstructed

models lack sufficient resolution and do not have smooth shapes. Miller et al.
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[2003] produced 3D reconstructions of orbital tissues using different types of

images, including MR images and histological images. The strong structures

in the orbit as well as other important connective tissues were reconstructed.

However, their technique involves significant manual segmentation and fea-

ture identification, making it difficult to generate many subject-specific mod-

els. The surfaces for generating the finite element meshes in [Schutte et al.,

2006] were also built from manually traced contours.

In summary, previous approaches of orbit reconstruction are based on time-

consuming manual image segmentation. We develop a semi-automatic com-

putational framework for building subject-specific models of the orbit from

MRI efficiently. The template surfaces are adaptively fitted to the refined fea-

ture points selected by using 3D spatial information and 2D image intensity.

Our surface fitting approach is a variant of the iterative closest point (ICP) al-

gorithm. See [Rusinkiewicz and Levoy, 2001] for a review of ICP variants. We

use an automatic point selection algorithm to define the closest points in each

iteration. The “closeness” depends not only on Euclidean point-to-surface dis-

tances but also on regional textures.

Outlines

In Section 3.2, we first review related work in 3D model reconstruction. We

present the details of the proposed approach in Section 3.3. In addition to

showing reconstructed orbit models of different normal subjects in Section 3.4,

we demonstrate the clinical application of the framework to studying patho-

logical subjects with geometric abnormalities. We also evaluate the accuracy of

the reconstruction by comparing our results with manual segmentation. Un-

derstanding the mechanisms of eye movement is difficult without a realistic,
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biomechanically complete model. In Section 3.4.4, we discuss how to build

individualized biomechanical models of the orbit from reconstructed three-

dimensional meshes. The resultant models can be used in physically-based

simulations to test various scientific hypotheses, predict surgical outcomes,

and improve our understanding of the orbital motility. Finally, in Section 3.5,

we present 3D reconstruction of detailed models of the eyeball from MRI us-

ing the template approach with an additional procedure – subdivision surface

fitting.

3.2 Related Work

Methods for 3D reconstruction from volumetric data can be broadly catego-

rized into two types: primitive-based and model-based.

Low-level primitive-based reconstruction does not assume any prior knowl-

edge of the topology of the structure being reconstructed. It is a bottom-up

approach and generates surfaces from the (normally dense) surface primitives.

Shape recovery from 3D range data such as a point cloud (which is a set of

unorganized vertices) [Hoppe et al., 1992] and range images [Reed and Allen,

1999] has been studied extensively. Methods based on radial basis functions

(RBF) [Hoppe et al., 1992], mesh sweeping [Reed and Allen, 1999], Voronoi Di-

agram and Delaunay Triangulation [Edelsbrunner and Mucke, 1994; Amenta

et al., 32], and level sets [Zhao et al., 2001] have been investigated. Recon-

struction of tissues from medical image data normally involves segmenting

boundaries in image slices and building surfaces from a stack of contours [Li

et al., 2002]. Marching Cubes is a commonly used algorithm that extracts iso-

surfaces from volumetric data [Lorensen and Cline, 1987]. This approach is

straightforward and practical for objects with complex topological structures.
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However, the resultant meshes usually contain too many vertices and have

topological consistency problems [Treece et al., 1999]. A general problem with

primitive-based generative reconstruction is its inability to achieve consistent

representation across many data sets unless parametrization or remeshing is

performed post processing [Treece et al., 1999].

Another powerful tool is model-based reconstruction that uses deformable

models. Our method falls into this category. The basic idea is to use known

shapes as prior knowledge to bootstrap the solution. Instead of generating the

model from low-level image primitives directly, a template is first created to

encode the generic geometric and topological information of the object being

reconstructed. The template is then deformed to generate the model fitted to

the data. Model-based methods are more efficient for producing a series of

models of similar shapes. They are robust to image noise, but implementation

can be more complicated. Deformable models [Kass et al., 1987; Terzopou-

los et al., 1987; Metaxas and Terzopoulos, 1993], which are based on physical

elasticity theory, have been successfully applied in medical image segmenta-

tion, registration, and reconstruction [McInerney and Terzopoulos, 1996]. They

initiate the development of top-down model-based approaches incorporating

prior knowledge with local constraints in shape reconstruction [McInerney and

Terzopoulos, 1996]. Statistical anatomical atlases, which model average shapes

and the most significant variations of tissues named the principal modes, have

been applied in image registration [Chen et al., 2000; Sadowsky et al., 2007].

By deforming initially constructed organ meshes to manually identifies tissue

boundaries through some intermediate trivariate tensor volumes, Fernandez

et al. [2004] described building anatomically-based finite element geometric

models of the musculoskeletal systems. Our approach combines parametric
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surface fitting studied in digital geometry processing [Liu et al., 2005] with an

automatic edge point selection algorithm. These two steps alternate until a sat-

isfactory model is achieved. We do not use the commonly employed image

gradient to guide surface deformation but the selected edge points.

Segmenting multiple objects from image data is non-trivial. Two-dimensional

segmentation approaches using multiple active contours have been proposed.

These models deform to boundaries [Srinark and Kambhamettu, 2004] or are

combined with local spatial information and global intensities [Huang et al.,

2004; Xie et al., 2002]. Gilles et al. [2006] presented a framework that uses

multi-resolution simplex meshes to segment 3D models through simulation.

It is a complicated system designed for musculoskeletal systems, with struc-

tures in contact with each other and complex attachment constraints. All the

structures are solved simultaneously in a global setting. In our proposed ap-

proach, we take advantage of the fact that extraocular muscle (EOM) bellies

are not in close contact with each other. Thus, our method is efficient to treat

EOMs individually, distinguish nearby structures by distances and intensities,

and fit them iteratively to updated edge points.

3.3 Methods

Figure 3.1 shows an overview of our template-based reconstruction frame-

work. We first build a template model of the orbit consisting of the orbital

wall, the globe, the optic nerve, and the six extraocular muscles (EOMs). Our

template-based reconstruction approach is motivated by the observation that,

except in rare abnormalities and following certain unusual surgical procedures,

the topological relationship of the extraocular structures is fixed. Therefore, if

we can build a template model defining the average anatomical and structural
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properties of the orbit, we can fit this carefully constructed template to MR im-

ages of a new subject by deforming it to model individual variations. Using

the template to define prior knowledge of the orbital anatomy is efficient and

robust for building individualized models. We develop an iterative computa-

tional procedure for generating subject-specific models using the template. As

shown in Figure 3.1, our method involves deformable surface fitting to a dense

point cloud and adaptive feature selection.

Figure 3.1: Overview of the template-based reconstruction approach.

Build Template Model of the Orbit

We use a uniform bicubic B-spline surface as the geometric representation for

modeling the orbital structures, considering its smoothness and continuity, ef-

ficiency in modeling and computation, and suitability for simulation. B-spline
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surfaces are parametric tensor product surfaces and their basis functions are

the products of two univariate functions with interval domains. A uniform

bicubic B-spline surface is defined as

D(u, v, P) =
3

∑
i=0

3

∑
j=0

Pi,jBi(i)Bj(v), (3.1)

where Pi,j is a set of sixteen control points called the control mesh for the surface,

and Bi is the ith cubic B-spline basis. The four basis functions are

B0(u) =
1
6

(
−u3 + 3u2 − 3u + 1

)
,

B1(u) =
1
6

(
3u3 − 6u2 + 4

)
, (3.2)

B2(u) =
1
6

(
−3u3 + 3u2 + 3u + 1

)
,

B3(u) =
1
6

u3.

D(u, v, P) is a weighted sum of the control points with the basis functions as

the weights. B-spline surfaces provide inherent smoothness and C2 continu-

ity. They are also computationally efficient since we only need to compute the

positions of the control points, and the surface patches can be evaluated via

Equation 3.1. For more details about B-spline surface computation, see [Cohen

et al., 2001].

The template of the orbit is constructed based on standard textbooks [von

Noorden and Campos, 2001; Moore and Dalley, 1999] and the OrbitTM model

in [Miller et al., 1995]. 3D modeling software, Autodesk Maya, is used to build

the template shown in Figure 3.1. Except for the superior oblique (SO) muscle,

each EOM is represented by a cylindrical B-spline surface with seventy-two

control points arranged around nine rings. The SO muscle passes through the

trochlea and bends at an acute angle about 54◦. More control points are needed

to model SO’s irregular shape especially near the trochlea. In total, ninety-six

control points are used for the SO muscle.
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Fit Template to Subject Image Data

To build subject-specific models, the template is fitted to MR image by deform-

ing the template meshes to fit the edge points of the extraocular structures.

Considering the anisotropic 3D image resolution (slice resolution 2.0mm vs.

image resolution 0.3125mm), we decided not to use the commonly employed

image gradient to guide mesh deformation. Instead, we develop an automatic

edge point selection algorithm and incorporate it in the iterative fitting process.

Given the mesh configuration solved from the previous iteration, edge points

that most likely belong to one structure are chosen based on their Euclidean

distances to the mesh and regional image intensities. Doing so, we avoid time-

consuming manual segmentation of the EOM contours.

The proposed reconstruction algorithm is outlined in Algorithm 1 and de-

scribed in details as follows.

• Step 1-2 in Algorithm 1

Given a new subject, a global registration is performed at the begin-

ning. The registration scales, rotates, and translates the template to align

roughly with the image data. Currently this step is done manually. Then

the Canny edge detector is applied to each image to compute all the fea-

ture candidates. The Canny algorithm consists of multiple operations

to optimally detect edges in an image [Canny, 1986]. We use the Mat-

lab implementation of Canny edge detector and set the two parameters

“THRESH” and “SIGMA” to 0.125 and 0.8 through our experiments. The

edges are transformed into the 3D patient space using the magnetic res-

onance (MR) sequence parameters in the image headers. Some of these
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Algorithm 1 Template-based EOM reconstruction algorithm
1: Register template meshes initially
2: Acquire all possible edge candidates and transform them to 3D
3: for each EOM Xi do
4: for iteration t do
5: Compute point-to-surface distances
6: Discard distant points
7: for MR image d do
8: Pick three good edge points
9: while there is any unchecked edge point ck do

10: if adding ck results in a convex texture similar to the prior then
11: Accept ck
12: else
13: Discard ck
14: end if
15: end while
16: Remove interior edge points
17: end for
18: Compute new positions of the control points (Equation 3.7)
19: Update control points (Equation 3.9)
20: end for
21: end for

edge points are on the contours of the structures that we are not inter-

ested in or from noisy edge features caused by the imaging process. Our

strategy is to pick the most likely features automatically using some fair

metric and deform the mesh to fit to these data points in the least squares

sense at each iteration. Both false positives and false negatives in edge

selection may occur during earlier iterations. Nevertheless, as the alter-

nation of the two steps goes on, the mesh deforms closer to the actual

position and feature selection becomes easier and more accurate.

• Step 5-6 in Algorithm 1

EOM meshes are reconstructed separately, and their edge points are se-

lected independently. Two criteria are considered for point selection:
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3D point-to-surface distance and regional image intensity statistics. First, we

compute the distances of all the points to each EOM B-spline surface, Xi.

Only those points with distances smaller than some threshold (2.5mm in

our experiment) are passed to the next stage. The 3D distances are used

to prune the unlikely points quickly.

• Texture analysis in Step 7-17 in Algorithm 1

These chosen points are further filtered to remove the ones belonging to

other nearby structures, such as another EOM or the orbital bone. Here

we check edge points in every image using the local image texture in-

formation. The EOM image texture prior is learned from the union of

several EOM regions in one MR image. The idea is that a true EOM re-

gion in the same image data set has similar texture to the learned prior.

Our objective is to choose those points that form a convex region having

such texture characteristics.

We adopt the texture representation and analysis presented in [Huang

et al., 2004]. In region merging segmentation algorithms, the mean and

variance of an intensity distribution are commonly used as the metric to

measure the similarity of two regions. Such metric may not be sufficient

for MR images since the pixel intensities of one type of tissue may not

be homogeneous but vary within some range. To account for this de-

ficiency, we use the Kullback-Leibler (K-L) divergence as the similarity

measurement. The K-L distance (or K-L divergence) between two proba-

bility distributions f and g is defined as

MKL( f |g) = ∑
i

f (i) log
f (i)
g(i)

. (3.3)

The K-L distance is an asymmetric metric. f (x) denotes the intensity
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density from new data, and g(x) is from the learned texture prior. Non-

parametric kernel functions are used to robustly model the intensity dis-

tribution of the pixels in each region:

f (x) =
1
M

M

∑
j=1

hj(x), (3.4)

where hj is a Gaussian kernel function for pixels pj(j = 1, 2, . . . , M),

hj(x) =
1√
2πσ

exp

(
−(x− pj)2

2σ2

)
. (3.5)

For small regions where the number of samples is relatively small, us-

ing the kernel functions instead of the pixel values is especially useful.

The example in Figure 3.2 and Figure 3.3 illustrates the regional intensity

analysis based on K-L distances. The non-EOM Region 2 shows similar

intensity statistics to the EOM regions 1, 3, and 4 – the mean intensities

of Region 1-4 are 48.7, 46.6, 44.0, and 44.8 respectively and the standard

deviations are 8.8, 12.2, 9.6, and 10.4 respectively. Therefore, relying on

regional intensity means and standard deviations makes it difficult to dis-

tinguish Region 2 from others.

Based on the computed intensity densities in Figure 3.3, the K-L distances

of Region 2, Region 3, and Region 4 to Region 1 are 0.91, 0.42, and 0.36

respectively. The K-L distances show a clear differentiation of the non-

EOM region (Region2) from the true EOM regions. We conclude that K-L

distance is an effective metric in classifying EOMs in MRI.

• Step 7-17 in Algorithm 1

All the points on the same image assigned to one EOM passed from

the 3D point-to-surface distance filter are considered for further selec-

tion (steps 7-17 in Algorithm 1). We first generate a hundred of triplets of
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(a) A coronal image (b) Four regions with similar in-
tensity

(c) Intensity histogram of Region 2 (d) Intensity histogram of Region 4

Figure 3.2: An example showing the texture analysis. (a) A coronal MR image
posterior to the globe equator. (b) Four regions with seemingly similar inten-
sity are identified. Region 1 (blue), Region 3 (green), and Region 4 (red) are
inside EOMs; Region2 (cyan) is outside the orbital wall but has similar inten-
sity texture to the EOMs. (c) and (d) compare the pixel intensity histograms
and intensity densities using kernel functions of Region 2 and Region 4. It is
difficult to distinguish Region 2 and 4 by using the intensity mean (Region 2 -
46.6; Region4 - 44.8) and standard deviation (Region 2 - 12.2; Region 4 - 10.4)
as the metric.

points by randomly picking three points from all the candidates for each

triplet. We then compute the similarity of each triangular area formed by

one triplet to the learned texture using K-L distance as the metric. The

smaller the computed K-L distance from one triplet is, the more similar

the triangular area’s intensity texture is to the prior texture. The triplet

with the smallest K-L distance is chosen as the initial points to bootstrap
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Figure 3.3: Intensity distributions of the four regions in Figure 3.2b.

the selection of more points.

Next, all other candidate points are processed sequentially. When consid-

ering a feature point ck, we calculate the convex hull of the already cho-

sen points and ck. If the new convex region is sufficiently similar to the

texture prior (i.e., K-L distance smaller than a threshold), ck is accepted.

Otherwise, ck is discarded. Notice that mis-acceptance may happen if ck

is not on the convex hull but located in the interior. In this case, ck is an

interior point but not an edge point, therefore it should not be chosen.

However, including ck does not change the existing convex hull and the

original algorithm will still pick it. To detect these interior points, after all

the feature points are processed, we apply one more filter by computing

the distance from each point to the convex hull formed by all accepted

features. If a point is too far from the convex hull (distance larger than

0.2 times the minor axis length of the convex hull), it is discarded. All the

points that pass this step are used for surface fitting.

• Step 18 in Algorithm 1

The contour points provide the discrete details of the EOM surface, and
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the parametric template represents the prior knowledge of smooth and

continuous shape of the EOM. The objective is to compute the positions

of the control points of the template mesh such that the template closely

approximates the structure. What needs to be solved is a parametric sur-

face fitting problem, which is normally formulated as a total least squares

problem [Pottmann and Leopoldseder, 2003]. The error to minimize is

the sum of all point-to-surface squared distances:

min
P

N

∑
k=1
||X(uk, vk, P)− ck||22, (3.6)

where X(uk, vk, P) is a function of the control points Pi,j to be solved. A

quadratic term that encourages smooth surfaces [Hormann, 2000] and

serves as a regularization term to stabilize the numerics can be added

to the objective function. Written in matrix form, the complete objective

function is

min
P
||AP− c||22 + αFsmoothness. (3.7)

The elements in the kth row in matrix A are the spline coefficients pa-

rameterizing the closest point on the spline surface to a data point ck.

Fsmoothness is the smoothness constraint based on the surface curvature. α

is set to 0.05 in our experiments. We use the simplified thin plate func-

tion [Hormann, 2000], one of the commonly adopted approximate energy

functions,

Fsmoothness =
∫

u

∫
v

(
X2

uu + X2
uv + X2

vv

)
dudv. (3.8)

Equation 3.7 is solved using the Singular Value Decomposition (SVD).

• Step 19 in Algorithm 1

At each iteration t, we only update the positions of the control points by
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a fraction of the solution Pt
i,j solved from Equation 3.7,

Pt
i,j ← Pt−1

i,j +
1
ω

(
Pt

i,j − Pt−1
i,j

)
, (3.9)

ω ≥ 1 is to reduce the influence of the mis-selected edge points in this

round and enforces gradual updates. ω is set larger in the first few itera-

tions due to the uncertainty of the selected points. After a few iterations,

as the surface deforms closer to the improved feature points, ω is de-

creased in order to accelerate the fitting process.

Figure 3.4 shows an example of surface fitting. The original template and

its deformed configuration are plotted side by side.

(a) Template mesh (b) Fitted mesh

Figure 3.4: (a) Template B-spline surface of the medial rectus muscle (MR).
Green spheres are the control points. (b) MR mesh is deformed to match the
selected feature points shown as cyan spheres.

3.4 Results

3.4.1 Reconstruction of Orbital Models

MRI data was acquired at the University of California, Los Angeles. Each sub-

ject underwent high-resolution, T1-weighted MRI scans using a 1.5 T General

Electric Signa (Milwaukee, WI) scanner. Multiple quasi-coronal and sagittal
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MR images 2.0mm in thickness were obtained using a 256× 256 matrix over an

8-cm2 field of view, giving pixel resolutions of 0.312mm. Details of the image

acquisition protocol can be found in [Clark et al., 2000]. MRI was anonymized

and sent to us by Dr. Joseph Demer at UCLA.1

Figure 3.5 shows the reconstructed models from two representative subjects

from different views (RMS fitting error of 0.370mm).

(a) (b)

(c) (d)

Figure 3.5: Reconstructed geometric models of the orbit of two subjects:(a) (b)
subject 1; (c) (d) subject 2.

The shape variation of the orbital structures is observed (for example, see

1 IRB approvals on sharing anonymous data has been obtained at both universities.
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the difference of the lateral rectus and superior rectus muscles). The optic

nerves are reconstructed in the same way as the EOMs. The orbital wall is

represented by a B-spline surface fitted to the edges obtained using the Canny

edge detection algorithm followed by fitting active contours with distance forces

[Cohen and Cohen, 1993]. The eyeball is approximated as spherical and its cen-

ter coordinates and radius are fitted using least squares to the boundaries of the

globe manually segmented from images. It is difficult to automatically detect

the globe boundaries in T1-weighted MRI, due to the poor contrast between

the sclera and EOM tendon. We will describe automatic eyeball reconstruction

from T2-weighted MRI in Section 3.5. Since EOM tendons are hard to segment

from images, we use the template geometry directly and gradually blend it to

the detectable muscle edge points. In some data sets, EOM contours are seg-

mented manually on one or two images near the equator, where the Canny

edge detector fails to find edges between EOMs and the eyeball.

3.4.2 Validation of Reconstruction Accuracy

In order to assess the accuracy of the proposed reconstruction approach, we

compare the reconstructed models with manual segmentation obtained from

tracing the EOM contours. Since our method produces three-dimensional mod-

els of the EOM, we can conveniently obtain the true cross sectional areas at the

original imaging planes for comparison. Computer graphics rendering tech-

niques are employed. By properly setting the two clipping planes of the vir-

tual camera, the near plane and the far plane, we display the 3D mesh locally

with very thin thickness at desired locations along the medial axis of the mesh.

Applied simple image processing operators, cross sectional areas can then be

computed from the rendered images.
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We choose the Dice coefficient (DC), commonly used in validating image

segmentation, to measure the overlap between two areas A and B,

DC(A, B) =
2|A⋂ B|
|A|+ |B| . (3.10)

Figure 3.6 shows the validation results of the horizontal rectus muscles in three

subjects at two eye positions, distance and convergence viewing. Each num-

ber is the average overlap over a series of images, from which the 3D model

is reconstructed. We observe that all muscles have high Dice coefficients over

0.83. This result indicates good agreement of the reconstruction and the man-

ual segmentation. The accuracy of the proposed method is proved.

Figure 3.6: Dice coefficients (DC) of reconstructed model to manual segmen-
tation. Analysis is performed on the two horizontal rectus muscles of three
subjects during binocular fixation of a target at distance and convergence re-
spectively.

Furthermore, we evaluate the reconstruction accuracy visually in Figure 3.7

by displaying the reconstructed LR and MR muscle models together with MR

images in the same coordinate system and checking the intersections. The

intersection curves of the model with the MR images match the actual EOM

boundaries reasonably well; the usefulness of the proposed framework is proved.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.7: Visual evaluation of reconstruction accuracy. (a) Reconstructed hor-
izontal rectus muscle models are displayed in three-dimensional patient coor-
dinates. Magnetic resonance images are rendered as textures in the same coor-
dinates. (b)-(g) Intersection contours of the 3D models with contiguous 2-mm-
thick coronal magnetic resonance images from posterior to anterior imaging
planes.
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3.4.3 Reconstruction of Inferior Sagging Abnormality

Subject-specific models reconstructed from patients with abnormalities can be

used for clinical diagnosis and surgical treatment planning. In the following,

we use the horizontal rectus muscle inferior sagging (pulley heterotopy) as an

example to demonstrate the application of our method.

Previous studies have investigated the inferior displacement of the hori-

zontal rectus muscles due to aging [Clark and Demer, 2006] or degeneration of

lateral rectus-superior rectus (LR-SR) band [Rutar and Demer, 2009]. This ab-

normality may lead to esotropia and hypotropia; its extreme case is associated

with the “heavy eye syndrome” [Demer, 2007]. In these studies, centroids of

cross sectional areas are analyzed in quasi-coronal MR images.

(a) A normal subject

(b) A subject with sagged LR muscle

Figure 3.8: Magnetic resonance images in quasi-coronal planes (on the left) at
and just posterior to the globe-optic nerve conjunction in central gaze and (on
the right) 4−mm posterior to the globe-optic nerve conjunction. Anonymous
MRI was provided by Dr. Joseph Demer.

Figure 3.8 shows MR images of a normal subject and another subject with
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inferior sagging of the LR muscle. MR images at two quasi-coronal planes

are displayed as representatives. We observe that in addition to the inferior

displacement of the LR centroids, the sagged LR muscle exhibits abnormally

thinned superior compartment as well as clockwise rotation around its longitu-

dinal axis. These abnormal characteristics may not be revealed by quantifying

the centroids only.

(a) Frontal view (b) Frontal view (transparent rendering)

(c) Frontal view with horizontal plane (d) Top view with horizontal plane

(e) Sagittal view from the right eye (f) Sagittal view from the left eye

Figure 3.9: Reconstruction of a subject with inferiorly sagged LR muscle. Mod-
els are rendered in different configurations for better visualization.

We apply our approach described above and reconstruct the 3D models of

the LR and MR muscles to visualize this pathological case. The template mesh
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of the LR is first manually translated to model the displaced LR path. Then

the automated surface fitting procedure is executed. The reconstructed models

in Figure 5.30 clearly show the LR geometric abnormalities in both the left eye

and the right eye. Sagging starts from the middle parts of both LR muscles.

Quantitative analysis such as the EOM paths shown in Figure 3.10 can also

be performed automatically. The maximum inferior displacement is about

5mm for both LR muscles.

Figure 3.10: Vertical positions of the horizontal rectus muscle of both the left
eye (OS) and the right eye (OD) along their paths in the central gaze in the
oculocentric coordinate system. Zero position on the horizontal axis (EOM
path in oculocentric coordinates) is the globe center.

3.4.4 Building Biomechanical Orbit Model for Simulation

We use the reconstructed geometric models to build biomechanical models for

simulation. Finite element models (FEMs) [Schutte et al., 2006] and “strand”

models [Sueda et al., 2008] are two biomechanical models that are well suited

for studying the biomechanics and neural control of eye movements. Most ex-

isting models use simplified geometries and lumped assumptions about the
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active force-innervation relationship [Tweed and Vilis, 1987; Schnablok and

Raphan, 1994; Quaia and Optican, 1998]. The OrbitTM gaze mechanics simula-

tion [Miller et al., 1995] does not have subject-specific 3D shapes or dynamics.

In contrast, FEM and strand models can be anatomically realistic and capable

of simulating dynamics.

Our modeling framework described in Figure 3.11 eases the development

of biomechanical simulators.

Figure 3.11: Procedure flow to build individualized biomechanical models.
Given the reconstructed 3D models, strands are generated automatically to
represent realistic EOM anatomy. Mechanical constraints are then specified
to define the biomechanical properties of the orbital plant and couplings of the
orbital structures. The resulting model is simulated to study eye movement.

Our modeling procedure avoids tedious manual contour segmentation and

can generate models of many subjects efficiently. We use the strand modeling

primitive as an example. For FEMs, once we have the reconstructed B-spline
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surfaces, generating finite element tetrahedral meshes is straightforward. For

instance, the commercial software as discussed in [Schutte et al., 2006] or the

mesh mapping approach in [Blemker and Delp, 2005] can be applied.

To illustrate the usefulness of subject-specific reconstruction, we describe

our approach of automatically fitting strands to subject specific EOMs. The

strand-based biomechanical simulation of eye movements will be presented

in Chapter 5. Each strand is based on a uniform cubic B-spline curve with

associated mass. A point S on a cubic spline is evaluated at its spline parameter

t as

S(t, P) =
3

∑
i=1

PiBi(t), (3.11)

where Pi is a set of four adjacent control points and Bi is the ith cubic B-spline

basis given in Equation 3.1. By representing each EOM as one or more strands,

we incorporate subject-specific muscle path, associate realistic 3D muscle ge-

ometry, model tissue interaction, and simulate dynamic eye movements. Using

multiple strands interacting with each other by applying volume preservation

constraint, larger muscles can be realistically modeled and simulated. We have

developed two methods based on different desired configurations to generate

multiple strands given a reconstructed mesh. One is to generate strands on the

surface, and the other is to model strands inside the muscle. These modeling

approaches are not restricted to extraocular muscles; they can be applied to

skeletal muscles as well. In the following, we introduce these two methods.

Method One: Model Strands on the Surface

We consider the problem of modeling each EOM as a few strands on the mesh.

Specifically, our goal is to position the strands along the direction of the longi-

tudinal axis of the EOM as well as to minimize the distances from the strands
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to the mesh. It is also desirable to have the strands distributed uniformly on

the surface to achieve a regular representation.

Our approach is straightforward and efficient for generating subject-specific

strand models. Initially, the strands are defined directly on a template that has

uniformly distributed control points. When the template is deformed to fit

the subject image data, the strands on the template are deformed accordingly

with the new positions of the control points. The resulting strands are nearly

uniformly distributed on the surface due to their initialization and smooth de-

formation of the control points.

Recall that our template is a cylindrical surface with control-points arranged

around a sequence of rings (see Figure 3.12a).

(a) B-spline surface of SR muscle (b) Generated mesh points (c) Fitted strands

Figure 3.12: Model a muscle by six strands (ns = 6). (a) The superior rectus (SR)
muscle is represented by a cubic B-spline surface (nrings = 9; ncps = 8). The
green spheres are the control points of the surface. (b) The surface is sampled at
higher resolution. Six sets of points are extracted, each of which has the same
transverse v coordinates. Points in the same set are visualized by the same
color. (c) Six B-spline curves are fitted to selected surface points that are on the
B-Spline surface. The blue spheres are the curve control points.

We let the number of control point rings on the template be nrings and the

number of control points per ring be ncps. In order to create a strand on the

surface, we first need to generate sample points on the surface in the longi-

tudinal direction. A strand can then be fitted to these sample points that are
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computed at a high resolution, as shown in Figure 3.12b. Sample point gener-

ation is easy because the template is a regular cylindrical surface with control-

points arranged around a sequence of rings (see Figure 3.12a). Let the number

of strands per EOM specified by the user be ns. For the ith strand, we fix the

longitudinal parameter u = i/ns whereas we vary the transverse parameter v

to generate a sequence of sample points, Xi, in the longitudinal direction (see

Figure 3.12b).

A B-spline curve is fitted to the points in each point set Di such that the

deviation from all points to the curve is minimized. Like the surface fitting

problem, this curve fitting can be solved using least-squares. The following

objective function is minimized for each spline curve:

min
P

nrings

∑
j=1
‖ Si(t, P)− Xi

j ‖2
2, (3.12)

where Xi
j is the jth point in Xi and Si(t, P) is the closest point on the spline

curve Si to Xi
j.

Figure 3.12c shows the resulting curves fitted to the B-spline surface of the

SR muscle in Figure 3.12a. The volumetric deformation of an EOM modeled

by strands can be visualized by rendering the bicubic B-spline patches. Each

patch is influenced by 4× 4 (16) control points from four neighboring strands

coupled by volume preservation constraints.

We show the complete strand-based model of subject 1 (in Figure 3.5a) in

Figure 3.13. Each EOM is modeled by six strands. Every strand of the rec-

tus muscles and the inferior oblique muscle has 8 control points. The superior

oblique muscle has 18 control points to represent its more complex geome-

try. The strands approximate the reconstructed surfaces closely to a root mean

square error (spline to surface) of 0.1mm.
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Figure 3.13: A biomechanical model of the orbit using strands fitted to the
reconstructed model in Figure 3.5a.

Finally, in Figure 3.14, we show two simulation examples of the strand-

based biomechanical orbit model in Figure 3.13 by specifying EOM activations

through a Graphical User Interface (GUI). Shortening muscles are visualized

in green and lengthening EOMs are in blue. Realistic EOM volumetric defor-

mation is observed.

(a) (b)

Figure 3.14: Forward biomechanical simulation of the biomechanical model
with manually specified EOM activations. (a) Superior rectus and medial rec-
tus muscles are activated. (b) Inferior rectus muscle is activated. Shortening
EOMs are visualized in green and lengthening EOMs are in blue.
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Method Two: Model Strands inside the Volume

In this section, we present a solution to the problem of generating multiple

strands inside a quasi-cylindrical musculotendinous structure. Given a 3D

mesh, our goal is to embed N strands inside the mesh uniformly, along the

same direction as the main axis of the mesh (which is the muscle contraction

direction). Different from the previous modeling requirement of being on the

mesh, we want the strands to spread out inside the mesh as much as possible.

Another requirement is to maximize the distance between any two neighbor-

ing strands to achieve uniformness. If we think of each strand as a cylinder of

some radius, we want to solve the locations of the strands as well as the radius

of the cylinder such that the union of these disjoint cylinders covers as much

space as possible inside the mesh.

Many problems of this type are NP-hard problems [Baur and Fekete, 1998].

Therefore, we explore practical approximation methods. We propose an ap-

proach consisting of two steps. First, we solve a point location problem in

2D. Then, we employ spatial consistency and construct the strands in 3D from

those 2D locations.

• Proposed Approach to 2D Locations

Using the graphics rendering technique mentioned in Section 3.4.2, we

get local cross sectional contours of the mesh by rendering camera clip-

ping planes. Given these 2D contours, our objective is to solve the desired

locations of N data points inside each contour. We develop an algorithm

for closed convex contours as it is sufficient for muscles in general.

We name a convex contour as C. The discrete contour points on C are

Qk := (xk, yk), k = 1, 2, . . . , m in clock-wise order. The inside 2D strand
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points to solve are pi := (xi, yi), i = 1, 2, . . . , n. In addition to the position

variables, we have a radius variable r for all strands. We define that each

strand point has a circular cover area centered at the point itself with

radius r. The problem is to solve for the largest feasible r such that three

criteria are satisfied simultaneously. First, pi is inside the convex contour

C. Second, every strand point pi is at least with distance r away from all

the contour points. Third, these circles do not overlap. Mathematically, it

can be formulated as an optimization problem,

max(r) (3.13)

s.t. pi is inside C,

D2(pi, pj) ≥ (2r)2,

D2(pi, Qk) ≥ r2,

where i, j = 1, 2, . . . , n, i 6= j, k = 1, 2, . . . , m.

D(pi, pj) =
√

(pix − pjx)
2 + (piy − pjy)

2 is the 2D Euclidean distance

function of two points, pi and pj.

There are many algorithms to determine if a query point is inside a poly-

gon. Since we assume the contour is convex, we add linear constraints

using the contour center to enforce that the points stay inside the con-

tour. We compute the center of mass c := (cx, cy) of all the boundary

points Qk := (xk, yk), k = 1, 2, . . . , m. If one point pi is inside the convex

hull C, pi and c should be on the same side of any line passing through

two adjacent boundary points. Given a line Akx + Bky + Fk = 0 passing

through Qk and Qk+1, the constraint on a strand point pi is formulated

as,

(Ak · cx + Bk · cy + Fk)(Ak · pix + Bk · piy + Fk) > 0 (3.14)
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Equation 3.13 is a quadratic constrained linear programming (QCLP) prob-

lem and is solved by the sequential quadratic programming (SQP) routine in

MATLAB. We notice that only the radius variable r appears in the ob-

jective function. The other position variables are expressed in the con-

straints. From our experiment, the objective converges to a local optimal

only when the initial positions are close to a good solution.

• Sequential Automatic Solver After we compute the strand locations pi

with good initialization specified by the user in the first frame, we can

use pi to set a good initialization for the next contour by warping (de-

forming) the first contour. Such initialization helps convergence of the

optimization problem of the second frame without asking for user input,

and can be applied in a sequential order to all other frames.

The algorithm consists of the following steps.

1. Given two sequential contours Ci and Ci+1 with ordered contour

points QCi and QCi+1 , we establish the one-to-one correspondence

between the two sets of points. We simply look for the closest points

because of the relatively simple shapes of muscle. An example is

shown in Figure 3.15b. For revolute geometry, contour shapes have

to be aligned first.

Given the correspondences, we first solve the deformation from the

first contour Ci to the second contour Ci+1. Then the solved strand

location pCi of Ci can be deformed correspondingly, and pCi is used

to bootstrap Ci+1. Here we take advantage of the spatial consistency

of sequential contours.

2. Next, we set up a 2D free form deformation (FFD) grid for Ci+1 (see
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Figure 3.15b). Every intersection on the grid is a control point. Then

we solve the deformation of the control points and move the contour

points accordingly from QCi to Qi+1 (see Figure 3.15c). This step in-

volves inverse free form deformation (IFFD) and can be formulated

as a linear system. We solve it by the preconditioned conjugate gra-

dient method.

3. Given the new control point locations, we compute the new loca-

tions of the strand points in the previous slice. The updated po-

sitions serve as the initialization for the solver for Ci+1. See Fig-

ure 3.15c.

(a) (b) (c)

Figure 3.15: (a) Contour Ck is in blue and its solved strand points PCk are shown
as the blue stars. The next contour Ck+1 is in magenta. (b) Correspondences
between QCk and QCk+1 . (c) FFD grid deformation is computed such that QCk

are transferred to match QCk+1 . PCk are also deformed accordingly, which are
used to initialize the solution of Ck+1.

• 3D Strand Modeling

Using the algorithms described above, we solve for the 2D strand points

for every contour in sequence. We then fit cubic B-spline curves to the
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2D positions and complete 3D strand construction. Figure 3.16 shows the

fitted six strands of the LR muscle.

Figure 3.16: Six strands are fitted uniformly to the lateral rectus muscle mesh.

Recently, Levin et al. [2008] proposed a more general approach on gener-

ating multiple strands distributed throughout the 3D geometry of a skeletal

muscle, on and inside the mesh. The method is based on a collection of energy

minimizing active curves and it incorporates underlying muscle fiber direc-

tions from diffusion tensor imaging data.

3.5 Reconstruction of Eyeballs

Previous studies have employed MRI to quantify the size and shape of an eye-

ball. Curvatures of the retinal surfaces are analyzed [Atchison et al., 2005;

Mutti et al., 2007] and 3D eyeball models are built [Singh et al., 2006]. A pos-

itive correlation between the axial length of the eyeball and the degree of my-

opia has been found. There are many other clinically important topics of the

eyeball geometry that have not been investigated, such as the statistical varia-

tions of the eye shape of a large population and the possible gaze-dependent

eye shape changes of normal subjects. Detailed and accurate eye models re-

constructed from images are needed for such studies.
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We extend our template-based reconstruction approach and develop a pro-

cedure to reconstruct detailed 3D models of the eyeballs from T2-weighted

MRI provide by Dr. Joseph Demer at UCLA. Compared to T1-weighted MRI,

T2-weighted MRI provides excellent contrast between the eyeball and its sur-

rounding tissues and hence enables automated boundary detection.

Our method is described in Algorithm 2. The image segmentation involves

simple thresholding and hole-filling operators. A registration process is re-

quired to correct the head movement during two scans of the same subject.

We use a variant of the iterative closest point (ICP) algorithm to find the best

alignment. None of the two sets of boundary points Bc and Bs completely sam-

ple the whole shape because some of the images near the poles of the eyeball

are too blurry to show accurate boundaries. In addition, Bc and Bs are from

two nearly orthogonal imaging directions. As a result, the closest correspon-

dence found in the other set may not be a truly close point. Instead of applying

the ICP optimization on all data points from two image sets, we set a minimum

distance threshold and only consider those points whose corresponding points

are sufficiently close to avoid false correspondences.

Algorithm 2 Template-based Reconstruction of Eyeballs
1: Segment globe boundaries Bc from coronal MR images.
2: Segment globe boundaries Bs from sagittal MR images.
3: Register edges points Bc to Bs using ICP variant; Bc → B′c.
4: Fit a B-spline surface SBSpline to B′c ∩ Bs which are sparse in space.
5: Fit a subdivision surface Ssubdiv to densely sampled vertices P from SBSpline

(see Algorithm 3).

The fitted B-spline surface closely models the geometry of the eyeball. How-

ever, since we use a B-spline surface with opening endings, artifacts occur at
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two ends. It is also a bit hard to maintain mesh uniformness which is impor-

tant for shape analysis. Here, we employ the Loop subdivision surface [Loop,

1987] based on an approximating subdivision scheme. Algorithm 3 describes

Step 5 in Algorithm 2, fitting subdivision surface Ssubdiv to vertices P, in more

details. In our experiment, 10 iterations are in general sufficient to achieve a

good fit.

Algorithm 3 Subdivision Surface Fitting
1: for Each iteration do
2: for Each vertex vi of Ssubdiv do
3: Find vi’s three “closest” vertices in P: p1, p2, and p3
4: Compute vi’s projection v̄i on the plane formed by p1, p2, and p3
5: vi ← v̄i
6: end for
7: Perform mesh smoothing on Ssubdiv
8: end for

Figure 3.17 shows the reconstructed eyeballs from anonymous subjects,

which are identified by their two-letter IDs. MRI data is provided by Dr. Joseph

Demer. Asymmetry of the two eyes of each subject as well as the nonspherical

shape characteristic is observed. Eyeballs of some subjects (for example Subject

RB) are more oblate than other eyeballs.

3.6 Conclusions

We have developed a computational framework for building subject-specific

models of the orbit from MRI, using adaptive feature selection and parametric

surface fitting. It is a template-based approach and uses the anatomy of the or-

bit as the prior knowledge to bootstrap 3D reconstruction of different subjects.

Our framework eases quantitative analysis of orbital anatomy and mor-

phology. It is useful for both laboratory studies and clinical applications. The
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(a) Subject BB (top view) (b) Subject BB (side view)

(c) Subject CS (top view) (d) Subject CS (side view)

(e) Subject GA (top view) (f) Subject GA (side view)

(g) Subject GP (top view) (h) Subject GP (side view)

Figure 3.17: Reconstructed eyeballs from T2-weighted MRI.
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(i) Subject HU (top view) (j) Subject HU (side view)

(k) Subject KP (top view) (l) Subject KP (side view)

(m) Subject LG (top view) (n) Subject LG (side view)

(o) Subject LW (top view) (p) Subject LW (side view)
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(q) Subject MU (top view) (r) Subject MU (side view)

(s) Subject PL (top view) (t) Subject PL (side view)

(u) Subject RB (top view) (v) Subject RB (side view)

(w) Subject WC (top view) (x) Subject WC (side view)



55

method can be used to simultaneously reconstruct geometries, EOM deforma-

tion, and path inflection in different eye positions. Biomechanical simulation

will benefit from these models by incorporating estimated EOM strains (to be

introduce in Section 4.4) and inferred pulley locations [Clark et al., 2000; Kono

et al., 2002a].
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Chapter 4

Longitudinal Strain Estimation in Cylindrical
Tissues from MRI

4.1 Introduction

Estimating deformation properties of soft tissues is a fundamental problem

in biomechanics. It is useful for understanding tissue mechanical properties

and functions. For instance, the strain field showing the deformation pattern

of the material is commonly used to determine tissue mechanical properties,

such as elasticity. Realistic biomechanical modeling and simulation also re-

quire knowledge of material properties, as well as reconstruction of geomet-

ric models with minimal distortion. However, accurate and efficient material

property estimation in vivo is challenging.

Our study is motivated by the observation that sometimes conventional

imaging techniques are insufficient to infer muscle and tendon mechanical

properties, due to limited image resolution, homogeneous intensity, etc. For

example, although high resolution MRI has already become a routine diag-

nosis tool for strabismus patients, it is still impossible to estimate extraocular

muscle (EOM) deformation property as a function of gaze directly from these

images because of the lack of distinguishable features inside EOMs. We pro-

pose an approach to determining EOM longitudinal deformation from recon-

structed 3D geometric models. It does not rely on image features to establish
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tissue correspondences; therefore, it does not suffer from the image inadequacy

problem.

4.1.1 Related Work

Different imaging modalities have been widely employed to estimate mate-

rial properties by tracking tissue deformation. We list a few representatives

here. Ultrasound is used for measuring strains [Lubinski et al., 1996; Witte

et al., 2006], because of its noninvasive feature and real time capability. In

particular, ultrasound elastography has been developed to measure the elastic

properties of tissues, leading to important applications including lesion de-

tection in breasts and prostates. MRI [Gilchrist et al., 2004] and fluoroscopic

imaging [DeFrate et al., 2006] have also been used for strain estimation. Most

of these approaches compute the material displacement through finding tissue

correspondences in two images. Tissue correspondence refers to the mapping of

the tissue in one state to the “corresponding” tissue in another. However, it is

not always possible to establish correspondences due to poor image resolution,

homogeneous intensity across the material, smooth shape deformation, etc.

One approach to solve the correspondence problem is the MRI tagging tech-

nique which introduces tags in the imaging process to capture the underlying

tissue movement. Tagged MR images have been applied in estimating my-

ocardial strains [Osman et al., 1999; Reichek, 1999; Qian et al., 2007], hamstring

strains [Fiorentino et al., 2007], and extraocular muscle deformation [Piccirelli

et al., 2007]. Magnetic Resonance Elastography (MRE) combines MRI with

low-frequency sound waves. It is able to measure the viscoelastic properties of

tissues [Muthupillai and Ehman, 1996; Dresner et al., 2001; Bensamoun et al.,
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2007]. Cine phase-contrast MRI has also been proven to be effective (RMS er-

ror of 1mm) for tracking skeletal muscle motion [Asakawa et al., 2003; Zhong

et al., 2008]. Applications using these techniques are limited by their availabil-

ity and time efficiency. They are mostly restricted to two-dimensional strains,

assuming that the off-plane tissue movement is negligible. Three-dimensional

cardiac strains are estimated from 4D Cine-MRI by modeling the preferential

stiffness of the myocardium tissue along fiber directions as a transversely lin-

ear elastic model [Papademetris et al., 2000], and from tagged MRI by tracking

motions with meshless deformable models [Wang et al., 2008].

Another way is to introduce extra tissue markers that are easier to track.

Dye lines of elastin stain are applied on the gastrocnemius tendon-muscle unit

for measuring longitudinal strain [Trestik and Lieber, 1993]. Markers are at-

tached to the surfaces of the tendon and muscle [van Donkelaar et al., 1999;

Wren et al., 2001; DeFrate et al., 2006] or implanted in the extraocular muscles

[Miller et al., 2006]. The surface markers are limited to the study of cadaver

tissues or superficial live tissues. The bead implant is complicated and appar-

ently cannot be applied on human subjects.

4.1.2 Outline

We propose a new algorithm for measuring the longitudinal strain of an ob-

ject when the images are inadequate for providing enough information of the

object interior. Usually, the boundaries are relatively easy to extract through

automated or manual segmentation because of the contrast between different

tissues. Our goal is to compute the one-dimensional strain field along the ma-

jor deformation axis, given only the boundaries of the tissue of generalized

cylindrical shape. A generalized cylinder (GC) is defined as a cylindrical object
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resulting from sweeping a possibly varying cross section along a trajectory,

which is an arbitrary space curve [O’Donnell et al., 1994]. Note that the cylin-

der does not have to be axis-symmetric since the cross sections can be arbitrary

too. The flexibility of a GC makes it a realistic geometric representation of

muscles and tendons.

Instead of the transverse strain, we focus on the longitudinal strain – one of

the most important parameters in measuring material properties of ligaments

and tendons [Trestik and Lieber, 1993; Wren et al., 2001; DeFrate et al., 2006].

The key point of our method depends on the fact that most soft tissues are in-

compressible to a very good approximation [Lubinski et al., 1996; van Donke-

laar et al., 1999; Epstein et al., 2006]. In other words, the volume of the tissue

material is nearly constant in different deformed states as well as in the steady

state. By using only this physical property, we compute longitudinal strains

by finding segment-to-segment correspondences instead of discrete point-to-

point correspondences.

In Section 4.2, we introduce our methodology by using a 2D synthetic ex-

ample for the simplicity of conveying the idea. It is straightforward to extend

the method to three-dimensions. To validate the effectiveness of the approach,

we apply it to real MR images of a rubber phantom modeling a muscle (see

Section 4.3.1). Predicted longitudinal displacements are compared with the

ground truth (gold standard) given by markers in the phantom. Further eval-

uation is performed by sensitivity analysis of computer simulated data in Sec-

tion 4.3.2. Finally, in Section 4.3.3 we present a practical application of our ap-

proach to estimating longitudinal strains of EOMs from human subject MRI.

Estimated deformation can be used as physical constraints to register EOM

models in different eye positions (see Section 4.4). We conclude by discussing
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the limitations of the proposed method and future work in Section 4.5.

4.2 Methods

To ease illustration, we describe our algorithm using a simulated 2D muscle-

like elastic object. The method applies directly to any generalized cylinder.

We demonstrate the method using the segmented data of MRI from a rubber

phantom presented in Section 4.3.1.

Figure 4.1a shows a 2D object in the steady state, the boundary of which is

outlined in red. Figure 4.1b represents the object after deformation, which is

being elongated to the positive x direction. (The objects could also be in two

deformed states.) The total area is constant. Given only the boundaries, we

show how our algorithm computes the strain field along x-axis. In general, the

boundary does not have to be as smooth as this example (see Section 4.3.2 for

applications on noisy data).

(a) Before deformation (b) After deformation

Figure 4.1: A 2D example showing an object (a) before deformation and (b)
after deformation.

The whole area (volume if in 3D) is first discretized into M equal area seg-

ments along the x-axis as follows. The cumulative area function fc over x
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(shown as a blue curve in Figure 4.2) is first computed. A finite difference

approximation is used to calculate the area,

Vtotal =
N−1

∑
i=1

(xi+1 − xi)(li+1 + li)/2, (4.1)

where li is the length (area in 3D) of the vertical section at x = xi and N is

the number of samples. Then the total area along the vertical volume-axis is

uniformly divided (shown as the cyan line segments in Figure 4.2). These divi-

sions intersect fc at M locations, which are then projected onto the x axis. The

magenta lines in Figure 4.2 show the projections, and they define the equal

area segments. The accuracy of the uniform partition depends on the number

of segments.

Figure 4.2: The cumulative volume function and the resulting segments of
same area from projection.

In Figure 4.3a, the example is uniformly partitioned into 4 segments in both

states. We use fewer segments here for clearer demonstration. All segments

have approximately the same area, ∆Vbe f ore = ∆Va f ter = Vtotal/4. Therefore,
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each segment before deformation can be associated with one afterwards, fol-

lowing the sequential order along the x-axis. Instead of tracking image-based

point-to-point correspondences, 1D shape-based segment-to-segment corre-

spondences, shown as the purple dashed arrows in Figure 4.3b, are established

using incompressibility.

(a) Area division (b) Segment correspondences

Figure 4.3: (a) Each object is divided into 4 segments of equal area. (b) Purple
arrows indicate segment correspondences.

The longitudinal strain of each segment is computed as

si = ln
wi

wi , (4.2)

where wi and wi are the weighted average widths of the ith segment before and

after deformation (see Figure 4.3b). Figure 4.4 shows the estimated strain of
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the above example in 20 segments. The green curve is the spline interpolation

of the raw strain field computed at the centers of the 20 segments (shown as

yellow squares). As expected, nonuniform strain is observed for this example.

Figure 4.4: Estimated longitudinal strains shown as the yellow squares are
computed for 20 segments. A continuous strain field is obtained by interpo-
lating the discrete strain estimates, shown as the green curve.

4.3 Results

To validate the effectiveness of our approach, we apply it to real MR images of

a 3D tissue phantom, as described in Section 4.3.1. Predicted longitudinal de-

formation is compared with the ground truth given by the markers inside the

phantom. Further evaluation is performed by sensitivity analysis of computer

simulated data in Section 4.3.2. We assess the accuracy of the method in noisy

conditions. Finally, we present the estimated longitudinal strains of extraocu-

lar muscles from clinical human subject MRI to demonstrate the usefulness of

our approach (see Section 4.3.3).
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4.3.1 3D Phantom Validation

In order to test the applicability of this approach in real applications, evalu-

ation is first performed on real MR images of a rubber phantom mimicking

generalized cylindrical soft tissues. MRI is used since it is widely used for

in vivo imaging the musculoskeletal system and the ocular system of human

subjects.

Experiment Design

The tissue phantoms were made from silicone rubber (Smooth-On, Easton,

PA) embedded with glass beads (BioSpec, Bartlesville, OK). MR images of the

phantoms at different stretched states were acquired with 0.5mm voxel resolu-

tion from a Philips 3.0 Tesla MRI scanner. We compare the phantom deforma-

tion estimated by our algorithm to the ground truth obtained by tracking the

displacements of the glass bead markers.

Figure 4.5a shows two rubber phantoms glued to two fiber glass boards

in a MR compatible box, viewed from the top. The box stabilizes the phan-

toms in different stretching states. At the rest state, each phantom is about

83.5mm(L)× 25mm(W)× 18mm(H). The two phantoms were made from rub-

bers of different hardness. The upper phantom was made of silicone rubber

EcoflexTM with hardness 00-30A and the lower one was from Dragon SkinTM

with hardness 10A 1. About 40 solid glass beads (∼ 1mm in diameter) were

scattered inside the phantom. The beads appear dark in the MR images due to

their MRI invisibility, while Silicone rubbers appear bright. Such nice contrast

enables easy tracking of the bead locations and gives us ground truth of the

1 Hardness is measured by Shore durometer. Echoflex 00-30A has Shore 00 scale and
durometer 30. Dragon Skin 10A has Shore A scale and durometer 10
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phantom deformation.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: Photos and the corresponding MR images of the phantoms which
were (a)(b) at the reference state; (c)(d) elongated by 1.11; (e)(f) elongated by
1.22; (g)(h) elongated by 1.33. The dimensions of the box are 135mm(L) ×
75mm(W)× 70mm(H). The total lengths of the phantoms in the four states are
83.5mm, 92.7mm, 101.6mm, and 111.2mm respectively.
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Experiment Results

T1-weighted gradient echo 3D MR images were acquired from a Philips Achieva

3.0 Tesla MRI scanner in the MRI Research Centre in the University of British

Columbia. The scan matrix is 400× 200 and the voxel size of the isotropic 3D

image data is 0.5mm. 60 coronal images were scanned in each elongation state

of the phantom. Figure 4.5 shows pictures of the phantoms at different elon-

gation states as well as the corresponding MR images. The amount of each

elongation was determined by the spacing of the vertical slots that supports

the phantom in the box. Each glass marker shows up in at least one voxel.

In the following, we mainly discuss the results from the EcoflexTM phantom.

From our data analysis, Dragon SkinTM performs similarly to EcoflexTM.

Axial images are reconstructed from 3D image data. The slice thickness is

the same as the spatial resolution, which is 0.5mm. Threshold segmentation is

applied to the axial images. The cross sectional areas are estimated from the

segmented areas and shown in Figure 4.6. We apply our method to the part

between the first and the last recognizable markers along the longitudinal axis

of the phantom and we call it the valid phantom volume.

We first check the validity of the incompressible assumption on our phan-

tom. Figure 4.7 plots the accumulated valid volume of the phantom along the

longitudinal axis at each state. The total volumes are summarized in Table 4.1.

The most stretched state (elongation by 1.33) has the maximal volume loss

(about 1.22%) compared to the reference state. The volume loss might be

caused by the blurry boundaries in MR images of the elongated phantom (see

Figure 4.5h). This volume loss leads to less accurate image segmentation. The

blur is caused by the change of resonance due to vibration of the phantom

under the mechanical noise created by the scanner. The more stretched the
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Figure 4.6: Measured and (spline) interpolated cross sectional areas of the
phantom at different elongation states. Data from four states are aligned along
the longitudinal axis z by the first recognizable marker in the phantom.

phantom is, the more vibration the phantom might experience. However, vol-

ume loss of about one percent is still small and negligible. We conclude that

the volume preservation assumption holds for the rubber phantom.

Figure 4.7: Accumulated (valid volume) of the phantom at different states.
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State Elongation Volume (mm3) Volume loss (%)
1 0 14695 0
2 1.11 14692 0.02
3 1.22 14638 0.39
4 1.33 14516 1.22

Table 4.1: Total valid volumes of all states.

Figure 4.8: Axial displacement error e at three elongations.

Glass beads embedded in the phantoms are identified and their centers of

mass are used as their 3D locations. Our approach is validated by computing

the error, defined as the difference between the bead location predicted by the
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method described above and the actual bead location. Figure 4.8 plots the

errors of all the markers in three elongation states. Note that the errors are all

bounded by the MRI resolution 0.5mm. The result proves the accuracy of the

method.

We also compare the estimated longitudinal strains with the phantom to

the actual strains interpolated from the tracked bead displacements. We use

those beads that are at least 2mm apart in the rest state such that errors in-

troduced by imaging resolution 0.5mm and marker size (∼ 1mm in diameter)

can be diminished. Figure 4.9 shows the strain comparison in three elongated

configurations. Our estimated strains well approximate the true strains.

Figure 4.9: Comparison of strains estimated from our approach and true strains
interpolated from actual bead displacements.
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4.3.2 Simulated Sensitivity Analysis

In the sensitivity analysis using simulated data, the input is perturbed by either

adding errors to the boundary measurement or violating the basic assump-

tions. The method described in Section 4.2 is applied on the perturbed input,

and errors are analyzed with respect to the noise level.

Shearing

In this experiment, we assume that the tissue shears to some extent (see Fig-

ure 4.10 for an example). A simple 2D shearing model is considered. Math-

ematically, each point (x, y) in the object moves to (x′, y′), where x′ = x +

y tan α, y′ = y. α is the shear angle.

Obviously, volume is preserved. Both the true x-strain and y-strain are

zero. If we apply our method, we will not get exactly zero strain along the x-

axis because of the geometric distortion perpendicular to the x-axis. Figure 4.10

shows the estimated strains. The maximum strain error is about 0.0085.

Figure 4.10: Example showing estimated strains with shearing along the x axis.
Original tissue in blue is sheared by 20 degrees and becomes the object in red.
Estimated strains are shown as the green curve. The vertical scale of strain is
magnified to make the small variation in strain visible.
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Strain fields at different shearing angles are computed. Intuitively, the

strain error increases as the shearing angle increases. The magnitude of the

strain error is studied, which is just the absolute value of the estimated strain

because |si − si
0| = |si − 0| = |si|, where si is the strain of the ith segment and

si
0 is the true longitudinal strain under shearing. Figure 4.11 shows the error

statistics max(|si|) and average(|si|) at 26 different shearing angles. The maxi-

mum error is only about 0.015, even with shearing of 26 degrees. We conclude

that the error due to tissue shearing along the longitudinal axis is small and

the method is robust to 1D shearing.

Figure 4.11: The statistics of strain errors given different shearing angles.

High frequency Gaussian noise

Next, we consider the cases where boundary measurement is imperfect. Here

the boundary is assumed to be corrupted by additive Gaussian noise. An ex-

ample is shown in Figure 4.12. Independent boundary noise is applied on the

before-deformation tissue in magenta and the after-deformation tissue in cyan.

We observe that the estimated strains with noisy input deviates from the true
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strains by small amounts, varying along the x axis.

Figure 4.12: An example showing strain errors due to additive Gaussian noise
(σ2 = 0.032) on the boundaries.

Strain errors at thirteen noise levels, specified by the variance of the Gaus-

sian noise, are studied. For each level, the following process is repeated for 100

times and the average is taken as the error measurement. Random Gaussian

noise is generated and added to the original boundary. Then the strain fields,

s0 from the original data and s from the noisy data, are estimated respectively.

The maximum and average of the strain error magnitude, max(|si − si
0|) and

average(|si − si
0|), are recorded. Figure 4.13 shows the statistics of the strain

error. The error increases almost linearly with the noise variance. Even with

the largest perturbation, the maximum error is still below 0.01. It is possible

that the high frequency Gaussian boundary noise is canceled to some extent in

the cumulative segment partition and thus the influence due to noise is dimin-

ished. We conclude that this kind of high frequency noise does not affect the

overall performance much.
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Figure 4.13: The maximum and average strain errors given different Gaussian
noise variance.

Low frequency sinusoidal noise

Here we consider sinusoidal noise added to the boundary,

d(x) = A cos(2π f x). (4.3)

We analyze the relationship between the strain error and the magnitude and

frequency of sinusoidal noise. The experimental procedure is same as the one

described in the previous section on Gaussian noise. In our simulation, we ob-

serve that the strain error increases linearly with the noise magnitude (see Fig-

ure 4.14a). Figure 4.14b shows the maximum and average strain errors due to

noise with different frequencies with fixed magnitude d(x) = 0.055 cos(2π f x).

We do not see analytical relationship between the error and the noise frequency.

The maximum error reaches its peak where the noise frequency is about 4. One

possible explanation is that as the frequency increases, the additive noise might

be canceled in the cumulative volume calculation, like in the case with Gaus-

sian noise. The number of segments is another important factor that influences

the error curve.
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(a) Strain error with varying noise magnitude

(b) Strain error with varying noise frequency

Figure 4.14: The maximum and average absolute strain errors given different
sinusoidal noise (a) magnitudes and fig:sinusoidalErrors:b frequencies.

4.3.3 Longitudinal Strains of Extraocular Muscles from MRI

We now demonstrate the application of our method to extraocular muscles

mechanics. Understanding how EOMs deform in vivo as a function of gaze is

important in studying the physiological and mechanical properties of the ocu-

lomotor plant. However, measuring EOM deformation is challenging. Miller

et al. [Miller et al., 2006] implanted gold beads in the orbits of monkeys and
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tracked these markers using CT imaging. Clearly, this technique cannot be

used on human subjects. Motion-encoded MRI has recently been used to as-

sess EOM motion [Piccirelli et al., 2007]. However, limited by the imaging reso-

lution and imaging dimensions, local deformation along the EOM axis has not

been available [Piccirelli et al., 2007]. Neither paper reports local EOM strains

quantitatively.

As pointed out by Piccirelli et al. [2007], EOM deformation cannot be di-

rectly acquired from conventional MRI. Our method solves this problem by

computing longitudinal strains from models reconstructed from MRI instead

of from the images themselves. We see our approach as complementary to the

above techniques because of its simplicity and usefulness on widely available

conventional MRI data from human subjects.

Models of the two horizontal muscles (LR and MR) in the right eye of a hu-

man subject in three eye positions are reconstructed from MRI 2. The template-

based reconstruction method described in Chapter 3 is used. The 3D models in

adduction, primary, and abduction gazes as well as three magnetic resonance

images acquired at about the same spatial location are shown in Figure 4.15.

LR and MR muscle boundaries are outlined in red in the MRI.

EOM deformation can be seen from the 3D shape variations and from the

segmented boundaries in MR images. Compared with the primary gaze, the

LR cross sectional area in abduction gaze becomes larger due to its contraction

while the MR cross section is smaller because of passive elongation. Similar

systematic EOM deformation pattern is also observed in the adduction gaze.

The medial axis of an EOM is estimated from the reconstructed mesh and

represented by a cubic B-spline curve. It is used as the longitudinal axis. Note

2 Anonymous MRI data was provided by Dr. Joseph Demer.
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(a) Adduction (b) Primary (c) Abduction

Figure 4.15: Reconstructed geometric models of LR muscle and MR muscle,
and corresponding magnetic resonance images at the imaging planes indicated
by the green lines in (a) adduction gaze, (b) primary gaze, and (c) abduction
gaze.

that our method is sufficiently general to apply on curved tissues. The whole

volume is discretized along the medial axis into cross sections, perpendicular

to the axis. The cumulative volume is the discrete integral of the cross sec-

tional areas along the axis. Longitudinal strains are then estimated from the

computed axial displacements of the segments.

In Figure 4.16, we show the estimated longitudinal strains of LR and MR

when the eye moves from the primary straight ahead position to adduction

and abduction respectively. We compute the strains of the middle EOM bellies,

which are less affected by tissue distortion near the EOM origin and insertion.

Positive strain is in the EOM elongation direction and negative strain is in the



77

shortening direction.

(a) LR in abduction (b) MR in abduction

(c) LR in adduction (d) MR in adduction

Figure 4.16: Longitudinal strains of LR and MR estimated from the recon-
structed models in Figure 4.15. (a) and (b) show the strains in abduction. (c)
and (d) show strains in adduction.

Nonuniform shortening of skeletal muscles with parallel-fibered architec-

tures has been studied [Pappas et al., 2002; Blemker and Delp, 2005]. Although

EOMs are different from other skeletal muscles in many aspects, they do share

some common properties, such as the constant muscle volume and nonlinear

force-length relationship. It is useful to see whether EOM also deforms het-

erogeneously. Our results in Figure 4.16 show that EOM deformation is also

nonuniform in both active shortening (LR in abduction and MR in adduction)

and passive elongation (LR in adduction and MR in abduction). The nonuni-

form deformation is consistent with our proposition and could lead to other

studies on EOM functions.
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4.4 Application

In this section, we illustrate an important application of the strain estimation

method to building realistic biomechanical models. We show that the esti-

mated longitudinal strains presented in Section 4.3.3 can be used in physically

consistent registration of the reconstructed EOM meshes. Constrained by the

estimated EOM deformation, the resulting models can be both more anatom-

ically accurate and physically meaningful. The models are discretized in ma-

terial coordinates in each state and consistent with the real tissue deforma-

tion. Material correspondences are provided directly, which ease biomechani-

cal simulation and model parameter estimation. Our method is not restricted

to modeling EOMs but can be generalized to other incompressible generalized

cylindrical objects in various deformed configurations.

The rest of this section is organized as follows. In Section 4.4.1, we in-

troduce the motivation behind this study and related work. The registration

approach formulated as a constrained optimization problem is presented in

Section 4.4.2. Results on the rubber phantom and extraocular muscles are de-

scribed in Section 4.4.4.

4.4.1 Introduction

High resolution MRI provides valuable characteristics of the orbital structures

in vivo and has led to important discoveries of the biomechanics of the ocu-

lomotor plant [Miller, 1989; Clark et al., 2000; Piccirelli et al., 2007]. Different

configurations of the orbit in various eye positions can be captured in volu-

metric data. Figure 4.17 shows the reconstructed models of two horizontal

EOMs in three gazes. Deformation due to EOM contraction and elongation is
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observed. We suggest that these different deformed states of the orbit not only

present the shapes of the orbital tissues, but also encode mechanical charac-

teristics of the EOMs. In Section 4.3.3, we have shown that EOM mechanical

properties, such as strain fields, can be estimated by correlating the static tissue

configurations across eye positions. In the rest of this section, we demonstrate

that the material properties inferred from models can be applied back onto the

models to improve their realism and make them more useful in biomechanical

simulation.

(a) (b) (c)

Figure 4.17: Reconstructed surfaces of two horizontal EOMs, medial rectus
(MR) and lateral rectus (LR), in the (a) adduction, (b) primary, and (c) abduc-
tion gazes. (b) and (c) are the same as the ones in Figure 4.15 but rendered
differently.

There are numerous discrete representations of the shape of an object on

a computer, if no additional constraints are imposed. For instance, both a

polygonal mesh and a parametric surface can model and visualize the same

object at sufficiently good accuracy. Note that in Figure 4.17b and Figure 4.17c

the surfaces of the lateral rectus (LR) muscle have no correspondences to each

other; the control points are arbitrarily distributed as long as the overall shape
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closely approximates LR. In other words, these reconstructed surfaces are in-

dependent of each other. We show that these models can be correlated to be

more useful. If we apply material constraints, such as the deformation prop-

erty introduced in Section 4.2, we can register LR surface in adduction gaze

to the LR surface in primary gaze in a physically consistent way. The resul-

tant surface shown in Figure 4.17a realistically shows how LR deforms from

the primary gaze to the adduction gaze. All control points move consistently

towards the medial direction, which is the elongation direction. Such a model

is more meaningful than the unregistered LR surface in Figure 4.17c.

These physically realistic models are discretized in material coordinates

and provide immediate correspondences. Building such consistent models can

ease discretization for biomechanical simulations using FEM [Schutte et al.,

2006; Blemker and Delp, 2005] or strands [Sueda et al., 2008]. Furthermore,

although MR images in only a few key eye positions are acquired, given the

correspondences, we can generate realistic intermediate configurations to ani-

mate continuous EOM deformation by using interpolation techniques.

Establishing the mapping between two models has been studied in digital

geometry processing; it has wide applications from texture transfer to shape

analysis [Sheffer et al., 2006]. Various techniques for registration [Allen et al.,

2003] and parameterization [Praun et al., 2001; Sheffer et al., 2006] have been

developed. However, these approaches cannot be directly applied for our pur-

pose because they use geometric features that do not necessarily correspond to

physical materials. A flexible framework that incorporates nonuniform stiff-

ness in mesh deformation is presented in [Popa et al., 2006]. Positions of the

vertices on triangular meshes are optimized to follow the transformations of
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anchor triangles specified by the user while the material constraints are satis-

fied. It is developed for easy control of mesh manipulation to generate new

poses instead of reparameterizing existing meshes. Taking advantage of the

specific applications to generalized cylinders and efficient parametric surface

representation, we derive a simple constrained parametric surface fitting for-

mulation instead.

4.4.2 Methods

Figure 4.18 gives an overview of our approach. It consists of three parts. We

first reconstruct geometric models of the target tissue from imaging data ac-

quired in different deformed configurations. Then we estimate tissue defor-

mation using the approach introduced in Section 4.2. Finally, the estimated

tissue motion is applied to reparameterize the reconstructed model to improve

its physical realism. If multiple configurations are available, a consistent dis-

cretization in the material coordinates is achieved across different deformation

states.

Mesh
Config. 1

Mesh
Config. 2

Deformation
Estimation

�
�

�
� Constrained

Registration

�
�

�
�- - -

6

Figure 4.18: Overview of our physically constrained registration approach

4.4.3 Physically Consistent Registration

The reconstructed models from different gazes have no correspondence be-

tween them, as shown in Figure 4.17. The fitting process only optimizes the
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closeness of the mesh to the boundary for one set of images. We realize that

the estimated strains relate the deformation configurations to each other and

can be used to improve the physical realism of the reconstruction.

Given the estimated axial strain, we reparameterize the reconstructed sur-

face in the second configuration by constraining the nodes on the mesh to move

consistently with the strain field. We use the estimated displacement field in-

stead of strains because we need the information about where the nodes are

supposed to move. The strain/displacement fields are estimated at the discrete

partitions. They are interpolated by splines which give a good approximation

to the continuous fields in the one-dimensional axial material coordinates. In

other words, we have a mapping from the axial coordinate to the estimated

displacement field. For every control point and vertex on one surface, we first

project it onto the medial axis to calculate its axial coordinate. Then we get its

axial displacement from its current position to the other configuration based

on the mapping.

The axial displacement does not constrain movement in the transverse di-

rection. Therefore, we formulate the displacement constraint as being on a

plane perpendicular to the axis. q is a surface point and mq is q’s projection on

the medial axis. m′q is mq’s predicted point on the axis following the estimated

displacement field. The destination plane of q passes through m′q and is per-

pendicular to the medial axis. Let −→n (m′q) = [A, B, C] be the axis tangent at m′q.

The predicted plane function of q is calculated as Ax + By + Cz−−→n (m′q) ·m′q =

0.

Our reconstructed models are represented as tensor product bicubic B-spline

surfaces that are linear parametric surfaces. A surface point is a linear function
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of the control points. Therefore, instead of constraining surface points, we im-

pose constraints on the control points. The original surface fitting problem in

Equation 3.7 is augmented as a constrained optimization problem,

min
P

‖AP− c‖2
2 + αFsmoothness

s.t. AiPi
x + BiPi

y + CiPi
z + Di = 0, i = 1, ..., N

Pxmin ≤ Pi
x ≤ Pxmax, (4.4)

Pi ∈ R3 : Pymin ≤ Pi
y ≤ Pymax,

Pzmin ≤ Pi
z ≤ Pzmax.

The objective function is same as that of Equation 3.7, except that s is a list

of sample points from the mesh in the second configuration. The first set of

equality constraints states that a control point Pi(Pi
x, Pi

y, Pi
z) should be on the

plane Aix + Biy + Ciz + Di = 0. The other constraints enforce lower and up-

per bounds on the variables so that they are solved within the feasible range

near the reconstructed surface. We use the QL package [Schittkowski, 2005],

which implements the primal-dual method of Goldfarb and Idnani, to solve

this convex quadratic programming problem. The solution is the reparameter-

ized surface of the second configuration, representing realistic axial deforma-

tion.

Our formulation of the reparameterization problem is a simpler version of

the variational surface modeling approach [Welch and Witkin, 1992]. Varia-

tional modeling extremizes some fairness functions that are integrals of the

surface, subject to geometric constraints. We model conforming to a surface as

minimizing the stretch and bending from the rest shape. In our method, we

treat the reparameterization as a constrained fitting problem and minimize the

distance deviation from the surface, defined as the distance sum from some
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sampled points on the surface.

4.4.4 Results

We first describe our validation experiment on registering the surfaces recon-

structed from MR images of the rubber phantom presented in Section 4.3.1.

Then we present results on the parameterization of orbit models.

Rubber Phantom Models

We reconstructed the surfaces of the rubber phantom from MR images at dif-

ferent elongation configurations. We use this example as a validation of our

approach. We choose the models from the rest state and the most elongated

state (1.33). Details of the phantom and imaging protocols are presented in

Section 4.3.1. Although the originally reconstructed surfaces have the same

control point arrangement (a grid of 8 by 8 control points), they have no corre-

spondences to each other (see Figure 4.19a and Figure 4.19c).

We first specify the axial displacement constraints on the control points of

the second state. The blue rectangles in Figure 4.19b show the target planes of

the control points. The predicted displacements in Figure 4.20 are used to com-

pute the axial positions of the planes. To simplify validation, the control points

are initially arranged in rings orthogonal to the axis such that control points on

the same ring are enforced to have the same axial coordinates. Therefore, there

are fewer planes than the actual number of control points in Figure 4.19b, since

some of them share the same plane.

We then apply the physically consistent registration approach and repa-

rameterize the second model shown in Figure 4.19c. We have two observations

by comparing the resulting model in Figure 4.19d with the original model in
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(a) (b)

(c) (d)

Figure 4.19: (a)(c) Reconstructed surfaces of the phantom in two states. (b)
Displacement constraints of the control points. (d) Registered surface that fits
to the shape while satisfying the displacement constraints.

Figure 4.19c. First, the new model closely represents the shape of the second

configuration; this means that the reparameterization does not sacrifice model-

ing accuracy. Second, the control points correctly move to the assigned planes,

obtained based on the estimated deformation. We conclude that the registered

model in Figure 4.19d has direct material correspondence to the model in Fig-

ure 4.19a, accurately maintaining the geometric shape.

In Figure 4.20, we show that both the actual displacements of the control

points solved by Equation 4.4 and the resultant surface points follow the con-

straints nicely.

Figure 4.21 presents the reparameterized surface in different colors to show

the computed correspondences. Every point is assigned a color based on its

initial axial coordinate. Each color segment represents a part of the object

with uniform volume. Realistic nonuniform deformation is observed from the

change of segment width. For example, the top green segment is stretched
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Figure 4.20: Estimated displacement field used as input, actual displacements
of the control points, and the surface points after reparameterization.

more than the yellow green segment in the middle.

(a) (b) (c) (d)

Figure 4.21: (a)(c) Surface in one configuration. (b)(d) Reparameterized surface
in another configuration. Models are visualized in two different ways for better
comparison.
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Orbit Models

Figure 4.22 compares the originally reconstructed EOM surfaces to the phys-

ically registered surfaces in three eye positions. Control points are also dis-

played for ease of comparison. The registered models show realistic EOM

deformation. The surface points move consistently with EOM contraction or

elongation, satisfying the displacement constraint. Nonuniform stiffness is ob-

served visually. On the contrary, in the unregistered model in Figure 4.22a, the

tendon points inside the green dashed box show unrealistic negative stiffness.

Moreover, the control points in the magenta oval move anteriorly closer to the

globe, which is opposite to the actual EOM contraction direction.

Similarly, the difference in realism and consistency is shown in a different

rendering scheme in Figure 4.23. We map chessboard textures to the surfaces

to demonstrate the correspondences across eye positions.

In conclusion, the registered EOM models provide physically consistent

correspondences of surface points and are more meaningful in visualizing de-

formation. They are ready to be used in biomechanical simulations to study

EOM functions and to estimate parameters such as elasticity and forces, com-

bined with the mechanical properties of other orbital structures.

4.5 Conclusions

We presented a simple and effective method for estimating longitudinal strains

in musculotendons and other generalized cylinders, in cases where local cor-

respondences are hard to find directly from images. The underlying idea is

to find segment-to-segment correspondences utilizing the incompressibility of

soft tissues. This approach is very practical since the geometries of soft tissues
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(a) Adduction (unregis-
tered)

(b) Primary (c) Abduction (unregis-
tered)

(d) Adduction (registered) (e) Primary (f) Abduction (registered)

Figure 4.22: (a)(b)(c) Original horizontal recti muscle models in adduction, pri-
mary, and abduction gazes. (d)(e)(f) Physically consistent models after regis-
tration.
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(a) Adduction (unregis-
tered)

(b) Primary (c) Abduction (unregis-
tered)

(d) Adduction (registered) (e) Primary (f) Abduction (registered)

Figure 4.23: (a)(b)(c) Original horizontal recti muscle models in adduction, pri-
mary, and abduction gazes. (d)(e)(f) Physically consistent models after regis-
tration.
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can be obtained conveniently either from medical images or recently devel-

oped laser reflectance system for measuring cross sections [Pokhai et al., 2008].

We demonstrate the usefulness of this method by estimating extraocular

muscle strains using models reconstructed from MRI of human subject. Nonuni-

form strains are observed in both shortened and elongated EOMs. Simulated

sensitivity analysis shows that with moderate noise, the algorithm produces

small errors. Validation on MR images of a rubber phantom further proves the

accuracy of our approach.

We also present an approach to realistically model extraocular muscles in

different deformation states by using the estimated axial strains and applying

physically constrained registration. We achieve a consistent parameterization

across different configurations. The discretization is in material coordinates,

and thus makes the resulting models suitable for biomechanical simulations.

The proposed method is limited to one-dimensional longitudinal strains

and lumped in the transverse directions. It is designed for tendons, ligaments,

and fusiform muscles such as the biceps brachii and extraocular muscles. In

these muscles, fibers are arranged nearly parallel to each other. Our method

cannot accurately predict strains from muscles with more complex architec-

tures.
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Chapter 5

3D Biomechanical Simulator of Oculomotor Plant

5.1 Introduction

In order to fully understand the biomechanics and neural control of the ocu-

lomotor plant, it is necessary to develop a computational model that describes

the underlying mechanism, interprets empirical observations, and verifies sci-

entific hypotheses [Haslwanter, 2002; Miller et al., 2003]. Such a model is re-

quired to accurately represent the anatomical and neurophysiological findings

of the eye. It also should be capable of realistically simulating different kinds

of eye movements under both normal and pathological situations.

Our study is motivated by the need of a realistic and accurate model with

all desired properties. Previously developed models have limitations in dif-

ferent aspects, which restrict their applications to many important issues. For

instance, the recently discovered pulley connective tissues are believed to have

kinematic functions that are important to the oculomotor plant. MRI and his-

tological studies have looked at the anatomical and physiological properties

of these pulley tissues [Miller, 1989; Clark et al., 2000; Kono et al., 2002b,a;

Demer, 2004] and suggested their possible functions in simplifying the ocular

motor control [Kono et al., 2002a; Demer, 2004, 2007]. Clinical evidence also

shows that pulley pathology is associated with certain strabismus patterns,

which calls for attentions to the functions of pulleys. However, there has not



92

been a model that realistically implements the pulley mechanics.

We develop a new biomechanical simulation framework that addresses

the limitations of previous models. Our orbital simulator incorporates real-

istic nonlinear anatomical and mechanical properties of the ocular plant. Indi-

vidualized parameters, such as the extraocular muscle geometries and pulley

pathologies, can be easily included. The simulator supports simulation of var-

ious kinds of eye movements, including fixations, smooth pursuits, and sac-

cades. The model is sufficiently flexible such that the pulley hypotheses can be

implemented and examined.

5.1.1 Related Work

Computation has played an important role in improving our understanding

of the mechanics and control of eye movements. Robinson [1975] performed

the first quantitative study of the extraocular muscle cooperation and predic-

tion of strabismus surgery, using digital computers. From his modeling work,

Robinson realized that the conventionally believed shortest path hypothesis

on EOM paths would have produced large side-slips that were unrealistic. He

then proposed a “permitted side-slip” model, which constrains EOM side-slip.

Later, using magnetic resonance imaging and computerized 3D reconstruction,

Miller [1989] found that the rectus muscle bellies are quite stable in the orbit

even with large ocular rotations. Based on this observation, Miller first pro-

posed that muscle sheaths at, and posterior to, the equator of the globe —

which he named “pulleys” — couple rectus muscles to the orbital wall and

constrain the transverse shift of muscle path. This is the foundation of the

modern notion of extraocular muscle pulley theory, and has inspired the re-

examination of orbit anatomy and revolutionized study of ocular motility.
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Robinson’s model [Robinson, 1975] is the groundwork of several other 3D

models of the oculomotor plant that have been developed in the past two

decades. These models have played an important role in providing insight

and scientific bases for better understanding oculomotor biomechanics, con-

trol of eye movements, and strabismus. Existing models can be categorized in

the following two types, based on their anatomical and physiological realism.

Simplified models. Models using simplified anatomical and EOM me-

chanical properties of the orbit have been developed [Schnablok and Raphan,

1994; Raphan, 1998; Quaia and Optican, 1998]. These models assume that three

pairs of EOMs act on three planes that are orthogonal to each other. They also

do not take into account the anatomical variations of different EOMs, such as

muscle lengths and cross sectional areas. Another critical assumption to sim-

plify the analytical solution is that the EOM force is simply proportional to

the muscle innervation, whereas the actual EOM mechanics is quite complex.

Such models have the advantage of supporting dynamic simulations and have

been used to study neural control of saccades and pulley hypothesis [Raphan,

1998; Quaia and Optican, 1998]. These simplifications, however, may limit the

models’ accuracy and plausibility, as has been illustrated by Quaia and Opti-

can [2003]. An improved model with anatomically accurate EOM geometries

and advanced EOM dynamics is also proposed [Quaia and Optican, 2003] and

compared with previous simplified models. However, the EOM constitutive

model is still an approximation of the actual properties.

Biomechanical models. The first computerized biomechanical model due

to Robinson solves for equilibrium of net force on the orbit [Robinson, 1975]. It

incorporates anatomically realistic muscle paths and empirical EOM innervation-

length-tension relationships to study normal binocular alignment, strabismus



94

and its surgical corrections. Two models were developed independently that

improved Robinson’s model, Miller and Robinson’s SQUINT model [Miller

and Robinson, 1984] and Simonsz’s model [Simonsz and Spekreijse, 1996]. The

SQUINT model was further extended to a widely used software tool, called the

OrbitTM gaze mechanics simulation, to provide a graphical user interface and

implement passive pulleys [Miller et al., 1995]. Porrill et al. [2000] implement

some functions of OrbitTM in MATLAB for theoretical study on the separa-

bility of EOM control. SEE++ is a Windows-based modern software package

developed from OrbitTM [Haslwanter et al., 2005] that aims to provide highly

interactive computer simulation environment for strabismus surgeries. Lately,

Quaia et al. [2008] present simulation of superior oblique palsy using a model

refined from their previous work [Quaia and Optican, 2003]. All of the above

models are restricted to static fixations only and could not simulate dynamic

eye movements which is supported by the simplified models. They all follow

the computational procedures of Robinson’s original model. EOM innerva-

tions are solved for three agonist-antagonist pairs and Sherrington’s reciprocal

innervation law is applied.

5.1.2 Outline

We develop two biomechanical models of the ocular plant with different im-

plementation of pulley connective tissues. The remainder of the chapter is

organized as follows. In Section 5.2, we introduce background knowledge in-

cluding the ocular biomechanics and the strand simulator. The first model

(called the idealized pulley model) that represents pulleys as prismatic joints is

descrbied in Section 5.4. Simulated fixation and saccadic movements are pre-

sented in Section 5.4.1. In Section 5.5, we describe another strand-based model



95

(called the physiological pulley model), which represents pulleys as elastic sus-

pensions. System validations on the pulley locations as well as representative

strabismus alignment simulation are shown in Section 5.5.4.

5.2 Background

5.2.1 Ocular Biomechanics

In this section, we introduce the key mechanical properties of the components

in the oculomotor plant including the eyeball (globe), passive tissues of the

eyeball, extraocular muscles, pulley connective tissues, and motoneural inner-

vations. A comprehensive review can be found in [Robinson, 1981].

The eyeball is a nonrigid spheroidal structure, filled with vitreous that con-

tains 98% of water. The moment of inertia of the eyeball is small and negligible

in the highly damped plant. The passive connective tissues of the eyeball apply

a restoring force that brings the eyeball back to the central position when the

net force from EOMs is zero. The static mechanical properties of these restrain-

ing tissues have been studied by passively rotating the eyeball and recording

forces at various positions [Robinson et al., 1969; Collins, 1971]. Force-length

relationships are reported [Robinson et al., 1969; Collins, 1971]. The quick re-

lease experiment was conducted to analyze the dynamic mechanical proper-

ties of the passive orbital tissues [Robinson, 1964; Collins, 1971]. Experimental

data on monkey eyeball mechanics is published recently [Sklavosa et al., 2005;

Quaia et al., 2009a]. Based on the empirical data, constitutive models of the

restraining tissues were proposed and they consist of one or more viscoelastic

elements [Robinson et al., 1969; Collins, 1971; Clark and Stark, 1974; Robinson,

1981; Sklavosa et al., 2005; Quaia et al., 2009a].
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The three-element Hill muscle model [Hill, 1938] has been widely applied

in describing the force generation mechanism of skeletal muscles. The Hill-

type muscle constitutive model has been adopted to describe the extraocular

muscle mechanics [Robinson, 1964; Cook and Stark, 1967; Clark and Stark,

1974; Collins et al., 1975; Robinson, 1981]. It consists of an active contractile

element (CE), a series elastic element (SE), and a parallel elastic element (PE).

See Figure 5.1 for a representative model.

CE : FCE = a · fl · fv SE

PE

Figure 5.1: Three-element Hill-type muscle constitutive model. CE: contractile
element; PE: parallel elastic element; SE: series elastic element.

CE describes the active muscle force. It depends on the muscle activa-

tion dynamics (a), the active force-length relationship fl, and the active force-

velocity relationship fv. PE models the passive muscle force, which is charac-

terized by the passive force-length curve. The active force-length and passive

force-length relationships have been measured from human subjects and cats

[Robinson et al., 1969; Robinson, 1975; Collins et al., 1975]. More recent work

on the nonlinear viscoelastic stress-strain behaviors of extraocular muscles in-

cludes experiments on bovine EOMs [Yoo et al., 2009] and monkey EOMs

[Quaia et al., 2009a,b]. Models of fv have been proposed based on Hill’s force-

velocity curve of skeletal muscles, experimental data on rat EOMs, and maxi-

mum saccadic velocity of human eye [Clark and Stark, 1974; Robinson, 1981].

SE represents the passive muscle force from elastic elements in series with

the contractile element. Tendons and connective tissues within muscles con-

tribute to SE. EOM tendons are extremely stiff, therefore the EOM SE element
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is mainly in the muscle sarcomeres. Unfortunately the series elastic element of

EOMs has not been well quantified [Robinson, 1981].

5.2.2 Strand Simulator

One key issue in developing a realistic oculomotor plant model is the simula-

tion of extraocular muscle mechanics. We model EOMs, consisting of parallel

fibers, as a collection of musculoskeletal “strands” – novel computational mod-

eling primitives for musculoskeletal simulations [Pai et al., 2005; Sueda et al.,

2008]. EOM orbital and global layers as well as pulley connective tissues can

be conveniently incorporated.

The first strand model, called the Cosserat strand, is a fiber-like, volumetric,

incompressible structure [Pai, Sueda, and Wei, 2005]. It curves in 3D and makes

contact with its neighbors. The Cosserat strand is based on Cosserat theory of

elastic rods. Figure 5.2 shows a Cosserat strand. Each strand has a collection

of nodes, which are fames embedded in the material. The segment between

any two nodes defines the viscoelastic coupling of the nodes; it also models

the local musculotendon geometry. Free Form Deformation (FFD) is used for

smooth local deformation of segments with approximate volume preservation.

The Cosserat strand offers both the efficiency of line-based muscle models and

the realism of physically based deformable solids.

The more recently developed Spline strand is based on a spline with iner-

tia [Sueda et al., 2008]. We use this new strand model for all the simulations

presented in this chapter. Each strand represents a part of the musculotendon

aligned with the fibers. Depending on the level of detail needed, a strand can

be as fine as a single fascicle or as coarse as an entire muscle. The geometry
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Figure 5.2: A Cosserat strand.

of a strand is described by a cubic B-spline curve that models realistic one-

dimensional muscle path. The generalized coordinates, positions and veloci-

ties, of the strand control points define the strand dynamics. A strand may only

need a few control points to model the musculotendon geometry and compute

the underlying continuous mechanical states. This parametric representation

makes the strand simulator efficient. Figure 5.3 shows a Spline strand that fol-

lows the medial axis of an extraocular muscle.

Figure 5.3: A Spline strand (in blue). It has eight control points, shown as the
yellow crosses.

Empirical muscle constitutive models, such as the force-length and force-

velocity relationships introduced in Section 5.2.1, can be specified on a strand
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and included in the strand dynamics computation. Various kinds of mechani-

cal constraints are supported to model complex interactions of the structures,

such as mechanical couplings and surface contacts. See [Sueda et al., 2008] for

more details of the Spline strand.

5.3 Strand-based Biomechanical Orbit Model

In this section, we describe a novel three-dimensional biomechanical simula-

tion framework of the oculomotor plant for studying the mechanics and neural

control of ocular motility and assisting strabismus surgical treatment. We use

the Spline strand [Sueda et al., 2008] to model extraocular muscle mechanics.

Our proposed model has the following desirable properties:

• Strand-based EOMs are associated with realistic subject-specific muscle

anatomy, such as paths and cross sections. Individualized EOM anatomy

is important for customized surgical planning.

• Physiologically accurate EOM constitutive models are incorporated.

• Latest discoveries of the oculomotor plant, such as the pulley hypothesis,

can be easily implemented.

• Contact between EOM tendon and the globe is physically modeled, not

only for visualization but also for realistic simulation.

• More importantly, our biomechanical model can simulate dynamic eye

movements. Dynamic simulation has not been supported by previous

biomechanical models.
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We develop two strand-based biomechanical models. The difference lies

mainly in the implementations of the pulley connective tissues. Figure 5.4 com-

pares these two models.

(a) Idealized pulley model (b) Physiologically realistic pulley model

Figure 5.4: Strand-based biomechanical models of the orbit. (a) First model
with idealized pulleys implemented as prismatic joints. (b) Second model with
physiologically realistic pulleys implemented as passive suspensions.

In the first model shown in Figure 5.4a, pulleys of the rectus muscles are

represented as prismatic joints. These joints allow one-dimensional sliding

motion along the joint axis and zero movement in the transverse direction. We

call it the idealized pulley model, because it abstracts the mechanical functions of

the rectus muscle pulleys and neglects the small transverse displacements of

pulleys. Due to its simplicity, fewer undetermined parameters are introduced

into the model, which makes it suitable for studying the dynamics and neural

control of ocular motility.

The second model in Figure 5.4b uses passive elastic springs to model pul-

leys in a complicated mechanical arrangement. Mechanical linkages of the rec-

tus muscles to the orbital wall and the intermuscular couplings are explicitly

represented. Compared with the first model, the second one is a more realis-

tic implementation of the connective tissues architectures in the orbit, revealed
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by MRI and histological studies [Kono et al., 2002b; Miller et al., 2003; Demer,

2004]. The second model correctly incorporates the active pulley hypothesis

[Demer et al., 2000; Demer, 2004] and allows transverse shifts of rectus mus-

cle pulleys. Small amounts of pulley shifts are observed from MRI of human

subjects under normal physiological conditions [Clark et al., 2000]. We name

this model the physiological pulley model. It can be used to understand the ac-

tive pulley hypothesis and facilitate surgical treatment of strabismus caused

by pulley pathologies.

In the remaining context of this section, we introduce the common model-

ing strategies and model properties shared by these two models. In Section 5.4

and Section 5.5, we describe their specific characteristics and simulation re-

sults.

5.3.1 Model Description

In our biomechanical model, each extraocular muscle is modeled as one or

more strands. Other ocular structures are defined as mechanical constraints. In

the following, we use the first model with idealized pulleys shown in Figure 5.5

to describe the common model components.

a. The globe is approximated as a spherical rigid body (radius = 12.43mm)

with a ball-and-socket joint allowing rotation around its center of mass

in three dimensions. The globe is actually nonrigid. However, because

the moment of inertia of the globe is small, modeling the globe as a rigid

body only introduces trivial errors. The translational movement of the

globe is assumed negligible. The elasticity of the passive suspensory tis-

sues of the globe is 0.5g/deg [Robinson, 1981]. Six extraocular muscles

exert torques on the globe through attachment constraints.
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Figure 5.5: Biomechanical model of the orbit using strands and mechanical
constraints.

b. Each of the four rectus muscles has two contractile-elastic strands mod-

eling the global and orbital layers [Kono et al., 2002b]. The constitutive

model of the EOM strands will be discussed in Section 5.3.1. The superior

oblique (SO) muscle and the inferior oblique (IO) muscle are each asso-

ciated with one contractile-elastic strand. Subject-specific EOM anatomy,

such as EOM path and size defined by cross sectional areas, can be in-

corporated for individualized surgical treatment prediction. The cross

sectional area is a variable along the strand, which allows simulation of

realistic EOM deformation locally.

c. Each EOM, except for the IO muscle, has a non-contractile, nearly inelas-

tic strand modeling the tendon. The tendon strand of the SO muscle is

quite long (30mm). The IO muscle has a very short tendon (1− 2mm) that

is assumed negligible.

d. EOM origins and insertions are implemented as attachment constraints,
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which couple their positions to the attachment sites.

e. By using strands to model EOMs and applying additional constraints,

we can incorporate the pulley models (see [Miller, 2007] for a review)

that have been proposed.

f. Contact between the extraocular tendons and the globe is handled to pre-

vent penetration. A parametric B-spline surface is used to represent the

geometry of the globe for computing contact locations on the fly. Surface

sliding constraints are specified on the EOM tendon strands such that

tendons always slide on the globe without penetrating. Our model is the

first that deals with EOM-globe contact interaction.

g. The superior oblique trochlea is modeled as a sliding constraint to enforce

SO tendon to pass through the trochlea of superior oblique that is fixed

in the orbit.

EOM Strands

We have two types of strand elements in the model, contractile-elastic strands

and non-contractile elastic strands. A contractile-elastic strand models muscle

fibers; its total force is the sum of the active force and the passive force Fm =

FCE + FPE. The series elastic (SE) element in the three-element Hill model illus-

trated in Figure 5.1 is not included in our EOM constitutive model. As Robin-

son [1981] has pointed out, the force mechanism of the EOM series element has

not been quantified well due to the lack of physiological data. As a result, it

is difficult to derive a reasonable model for the SE element. None of the exist-

ing biomechanical models has incorporated the SE component because of its

indeterminacy, and we follow this common choice.
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As introduced in Section 5.2.1, the active force of the contractile element

(CE) is a function of the muscle activation a, active force-length (FL) relation-

ship fl, and active force-velocity (FV) relationship fv: FCE = a · fl · fv. a is

assumed to be a variable between 0 and 1. a = 1 means the muscle is fully

innervated. Both fl and fv have complex nonlinear characteristics, so is the

passive force FPE.

We adopt the the active force-length curve of a fully innervated EOM and

the passive force-length curve in the OrbitTM 1.8 simulator [Miller et al., 1995],

which best approximate published empirical data. Figure 5.6a shows the FL

curves of a lateral rectus muscle, from which the physiological data was ac-

quired [Robinson, 1975]. In our simulation, the muscle strengths of other EOMs

are scaled automatically by the ratios of their maximum cross sectional areas

to the LR maximum cross section. We slightly adjust the parameters of the

force-velocity model in [Robinson, 1981] and use it in simulating saccadic eye

movements. Figure 5.6b shows the FV curve.

(a) Force-length relationship (b) Force-velocity relationship

Figure 5.6: (a) Force-length curves of EOMs, based on Orbit 1.8TM. The con-
tractile force is assumed on a fully innervation EOM. (b) Force-velocity rela-
tionship.
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Non-contractile elastic strands are used to model tendons, pulley suspen-

sions, and intermuscular bands. These strands are passively stretched because

of the attachments; they do not actively contract to generate force. EOM ten-

dons are very stiff and thus we apply high stiffness on the tendon strands. The

mechanical properties of the pulley suspensions and intermuscular bands will

be presented in Section 5.5.

5.3.2 Simulations

Two kinds of simulations are performed. In inverse control simulations, we com-

pute the EOM innervations that hold the eye at the target position or follow

the target trajectory. In forward simulations, given a set of EOM innervations,

the equilibrium eye position or dynamic movement trajectory is computed.

We extend the activation (innervation) solver in Sueda et al. [2008] to com-

pute innervations of the EOMs, a ∈ [0, 1] a unitless scalar, given the desired

trajectory vx, specified as the desired velocity of the globe:

min
a

wa‖a‖2 + wx‖(Hxa + v f )− vx‖2

s.t. 1 ≥ ai > a0
i cv(veye) cp(peye)

(5.1)

where wa and wx are blending weights and the lower bounds of the constraints

are modulated as a function of eye velocity and position as described below.

The first term in the objective function minimizes the total activation such

that among the numerous possible solutions, the set of innervations with the

minimal summed energy are found. It also adds regularization to the quadratic

problem. The second term guides the dynamics of the system towards the tar-

get motion. The matrix Hx can be thought of as the effective inverse inertia
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experienced by the muscle activation levels in order to produce the target mo-

tion. The v f vector is the velocity of the target due to the non-active forces

acting on the system.

The constraint terms specify the innervation bounds of each EOM. The

lower bound is non-zero to be consistent with the well known fact that the

innervation in primary gaze at rest is not zero [Collins et al., 1975]. We denote

this minimal innervation as a0
i for EOMi. This lower bound is reduced to zero

with increasing eye velocity so that lower bound is zero during saccades; such

a constraint models the observation that an antagonist may completely cease

firing during saccades [Sylvestre and Cullen, 1999]. We define

cv(veye) = max(0,
vmax − |veye|

vmax
), (5.2)

cp(peye) = max(0,
pmax − |peye|

pmax
). (5.3)

Here peye and veye are the position and velocity of the eye. vmax is the veloc-

ity defining the onset and offset of a saccade, which is set to 20◦/s [Sylvestre

and Cullen, 1999]. The cp factor linearly decreases the lower bound with the

eccentric eye position. pmax is the maximum OFF direction eye position, at

which the EOM’s innervation is completely off; we assume pmax = 30◦ in our

experiments.

In order to deal with the redundancy problem (3 degrees of freedom of the

eye rotation vs. six EOMs), previous models [Robinson, 1975; Miller et al., 1995;

Haslwanter et al., 2005] apply Sherrington’s Law of Reciprocal Innervation by

using a symmetric hyperbola function to explicitly define the innervation re-

lationship of an agonist and antagonist pair. Realizing the deficiency of this

symmetry assumption, Quaia et al. [2008] apply an asymmetric constraint and

data-based heuristics on superior oblique/inferior oblique muscle innervation
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computation. Our simulator does not incorporate the reciprocal control model

but solves for the innervations of the six EOMs separately and simultaneously.

Since we correctly model the orbital plant anatomy and physiology, the recip-

rocal innervation behavior of three EOM pairs is obtained automatically with-

out being enforced as assumptions.

5.4 Idealized Pulley Model

The first model, called the idealized pulley model, represents the rectus muscle

pulleys as prismatic joints. As the eye moves to different positions, a rectus

muscle pulley moves longitudinally along the joint axis that is along the EOM

tangent. The pulleys also restrict the transverse side-slip of the rectus muscles.

Rectus muscle paths are inflected at pulley locations in secondary and tertiary

gazes, consistent with MRI findings [Clark et al., 2000; Kono et al., 2002a].

In this model, we assume that the two contractile-elastic strands represent-

ing the global layer and orbital layer of a rectus muscle are anatomically and

physiologically identical, and are always innervated equally. Therefore, the

innervation variable, a in Equation 5.1, is a 6× 1 vector corresponding to the

six EOMs. The radius of each rectus layer strand is 1√
2

times the radius of

the whole rectus muscle such that the summed cross section of the two layer

strands belonging to one rectus muscle equals the original cross section.

Figure 5.7 shows simulated horizontal eye movements. The influence of the

pulleys on rectus muscle paths is clearly observed. As the eye rotates horizon-

tally, the LR and MR pulleys move along the joint axes anteroposteriorly while

the SR and IR pulleys remain stable in the mediolateral direction. The SR and

LR pulleys cause sharp muscle path inflections – the posterior SR, IR muscle



108

bellies are stable relative to the orbit and their anterior paths follow rotation of

the globe in eccentric gazes.

(a) Adduction gaze (b) Primary gaze (c) Abduction gaze

Figure 5.7: Simulated horizontal eye movements of the idealized pulley model.
Rectus muscle pulleys are represented as prismatic joints, shown as green ar-
rows. Note the inflection of the SR and IR muscle paths and anteroposterior
movement using the LR and MR pulleys.

Figure 5.8 shows simulated vertical eye movements. Note that the LR

and MR pulleys have no transverse side-slip in supraduction and infraduc-

tion gazes. Sharp inflections of the LR and MR muscle paths at their pulley

locations are observed. The SR and IR pulleys move anteroposteriorly with

the eye rotation.

In summary, by using prismatic joints to implement idealized pulleys, we

apply zero longitudinal stiffness and infinitely large transverse stiffness on the

pulleys to stabilize EOM paths. This simplified implementation of pulleys has

the advantage of introducing fewer undetermined parameters while still cap-

turing the main functions of pulleys.
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(a) Supraduction (elevation) gaze

(b) Primary gaze

(c) Infraduction (depression) gaze

Figure 5.8: Simulated vertical eye movements using the idealized pulley
model. Rectus muscle pulleys are represented as prismatic joints, shown as
green arrows. Note the inflection of the LR and MR muscle paths.

5.4.1 Results

We validate the model by evaluating whether the simulated eye movements

can reproduce empirical data. We first show that extraocular muscle strains in

a simulated smooth pursuit movement are nonhomogeneous along the EOM
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paths, consistent with the findings based on motion-encoded MRI (see Sec-

tion 5.4.1. Simulation of fixations is presented in Section 5.4.1 to assess in-

versely computed muscle innervations. We then describe simulated saccadic

eye movements using recorded abducens neuron firing rates as the control of

the lateral rectus muscle in Section 5.4.1. The model generates realistic eye tra-

jectories for saccades with different amplitudes. Realism of the orbital model

is illustrated. Finally, in Section 5.4.1, we demonstrate that the idealized pulley

model predicts both the static and dynamic deviation patterns of strabismus

due to palsy of the superior oblique muscle (SOP). Surgical correction to elimi-

nate vertical deviation caused by SOP is also simulated as a clinical application.

EOM Strains

Extraocular muscle deformation as a function of gaze and time is an important

parameter in studying extraocular mechanics. We validate the dynamic EOM

deformation pattern of our model by comparing simulation to the in vivo EOM

motion data. Motion-encoded MRI was recently proposed to assess EOM mo-

tion during smooth pursuit eye movement [Piccirelli et al., 2007]. Sparse tissue

points on the transverse imaging planes of tagged MRI were tracked as the

subject was instructed to visually pursue a slowly moving stimulus. EOM de-

formation was inferred by analyzing recorded positions of the tissue points.

Stretch ratio, defined as the ratio between the deformed muscle length and

its initial length, was used to quantify the deformation. Along the longitudinal

axis in primary eye position, each EOM path was divided into three segments

of equal length. Stretch ratios of the segments in the two horizontal rectus

muscles were analyzed [Piccirelli et al., 2007].

We simulate the same smooth pursuit movement as in [Piccirelli et al.,
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2007]. The eye moves horizontally from 20 degree in abduction to 20 degree

in adduction with zero vertical movement. The velocity is a sinusoidal func-

tion with 2 second period. The maximum speed is 6.4deg/sec. Applying the

same analysis scheme, we show the simulation results in Figure 5.9. For com-

parison, simulated EOM strains are overlaid on top of the in vivo EOM motion

data reproduced from [Piccirelli et al., 2007].

Our simulated deformation of LR and MR muscles is consistent with the

published data. All EOM segments have sinusoidal deformation pattern. Nonuni-

form shortening and elongation are observed in the two horizontal EOMs. The

middle segment, which has larger cross sections, deforms more than the pos-

terior segment. The anterior part contains more tendinous tissue and deforms

the least. Our simulated deformation trends follow the MRI data. The dispar-

ity occurs at middle segments. Simulated LR and MR show larger deformation

than the data. Due to low contrast, it is difficult to accurately identify EOM in-

sertions from MR images. The tracking curves manually placed on the images

(see Figure 2. in [Piccirelli et al., 2007]) show more posterior insertional ends

than the actual insertions. We suspect that this variation in delineating mus-

cle paths may partially contribute to the discrepancy in the analyzed muscle

strains.

Simulation of Fixations

We simulate fixations at nine eye positions ±20◦ in a 3 × 3 grid. The EOM

innervations that move the eye to each position are first computed from the

inverse activation solver described in Section 5.3.2. Applying the computed

EOM innervations, we then perform a forward simulation. Figure 5.10 shows

the simulated fixation positions, which are close to the target positions. We
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(a) LR Anterior Segment
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(b) MR Anterior Segment
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(c) LR Middle Segment
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(d) MR Middle Segment
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(e) LR Posterior Segment
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(f) MR Posterior Segment

Figure 5.9: Comparison of lateral rectus and medial rectus muscle strains from
simulation and imaging data. Shaded regions show the average stretch ratios
(mean ±1S.D.) from 7 subjects over time (reproduced from [Piccirelli et al.,
2007]). Solid curves show simulated strain. Values larger than one indicate
muscle lengthening; values smaller than one indicate muscle shortening.
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conclude that estimated EOM innervations are capable of stabilizing the eye at

desired gazes.

Figure 5.10: Simulated fixations using computed EOM innervations. Cycloro-
tation is shown as the tilt of the crosses.

Simulation of Saccades

The neural drive to produce a rapid saccadic eye movement can be character-

ized by a pulse component to overcome the viscoelasticity of the orbital plant,

a step component to stabilize the eye in the new position, and a slide compo-

nent that models the gradual transition between the pulse and step [Robinson,

1964].

The neural control of saccadic fast movement has been studied extensively

[Robinson, 1964; Fuchs and Luschei, 1970; Sylvestre and Cullen, 1999]. The

activities of neurons are characterized by discharge rates recorded at the neu-

ronal sites. In particular, the abducens neuron discharges during saccades can

be approximated as a first order equation [Sylvestre and Cullen, 1999]:

FR = b + kE + rĖ. (5.4)
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The model approximates the abducens motoneurons (ABNs) firing rates as a

linear function of the eye position E and velocity Ė. b is a bias constant, which

is the neural activities at stationary central eye position. k and r are constants

and their optimal values have been estimated through fitting the above model

to actual neuron discharge recordings.

Figure 5.11 shows simulation of an abduction saccade of 20 degrees while

the eye is elevated by 20 degrees. This saccadic movement from a secondary

position to a tertiary position is more interesting and challenging than a one-

dimensional horizontal saccade. The torsional component in the tertiary gaze

is a key parameter to evaluate the accuracy of an eye movement and plausibil-

ity of a biomechanical plant.

Figure 5.11a shows the saccadic trajectory which starts from a secondary

position in 20 degree elevation. Figure 5.11b shows the approximated ab-

ducens motoneuron firing rate profile for a 20 degree saccade based on the

model in Equation 5.4. The three coefficients of the model are b = 156, k = 4.2,

and r = 5.0. Figure 5.11c plots our estimated innervations of LR and MR mus-

cles, the major rectus muscles contributing to this horizontal saccade. Note

that the computed LR innervation has the pulse-slide-step characteristics of

saccadic neural control. Also note that the computed MR innervation realis-

tically models the behavior of antagonist motoneurons during OFF direction

saccades – most of them completely cease firing after saccade onsets [Sylvestre

and Cullen, 1999; Horn and Cullen, 2009]. The model-based firing rate pro-

file in Figure 5.11b is linearly scaled such that the starting and ending values

match the computed innervation. The scaled profile is plotted in Figure 5.11c,

overlaying on the estimated innervation for comparison. We observe that the
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(a) 20 degree saccade (b) Model-based firing
rate

(c) Innervation

(d) Simulation validation

Figure 5.11: Simulated 20 degree abduction saccade in 20 degree elevation.

computed LR innervation dynamics agrees with the fitted empirical ABNs dis-

charge dynamics. We use the scaled empirical neural discharge profile as the

neural drive of LR and simulate the 20 abduction saccade. The simulation re-

sults in Figure 5.11d show that the simulated saccade treasonably follows the
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desired saccadic trajectory. Note that associated torsion is very small, which

further demonstrates the accuracy of the simulation and plausibility of the

plant model.

We also simulate abduction saccades at other amplitudes, 10 and 30 de-

grees. Simulation results are shown in Figure 5.12 and Figure 5.13. Agreement

on the eye position and velocity trajectories is also achieved.

One interesting observation is that the inversely computed saccadic con-

trol has a short delay from the empirical ABNs discharges. One possible ex-

planation is that the delay is due to the dynamic coupling of the LR and MR

innervations. Looking at the innervation plots in Figure 5.13c for instance,

we see that the LR innervation does not start climbing until MR completely

ceases firing. When the eye is moving at lower speed at the beginning of an

abduction saccade, both the LR increment and the MR decrease contribute to

the lateral movement. There are many possible combinations of the six EOM

innervations, as long as the net force from the EOMs and the passive orbital

tissues drives the orbital plant to achieve the same movement. Because we do

not apply Sherrington’s reciprocal innervation law explicitly, the control solver

knows nothing about the paired agonist-antagonist EOMs. It treats all EOMs

independently and picks one solution based on its formulation.

Simulation of Superior Oblique Palsy

In the following, we study a pathological case caused by abnormal EOM neu-

ral control. When the innervation of an EOM is impaired (completely lost),

it is said to have paresis (paralysis). Although the pathology is due to muscle

innervation, EOM palsy changes the mechanical properties of the oculomotor

plant and consequently affects the ocular motility. More specifically, because
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(a) 10 degree saccade (b) Model-based firing
rate

(c) Innervation

(d) Simulation validation

Figure 5.12: Simulated 10 degree abduction saccade in 20 degree elevation.
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(a) 30 degree saccade (b) Model-based firing
rate

(c) Innervation

(d) Simulation validation

Figure 5.13: Simulated 30 degree abduction saccade in 20 degree elevation.
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the contractibility is diminished, a paretic EOM’s generated force is inadequate

in moving the eye to the target gaze. As a result, ocular misalignment occurs.

EOM Paresis is one of the causes of incomitant strabismus – the devia-

tion angle varies as a function of eye positions, depending on which muscles

are impaired. Biomechanical simulation of these pathological cases is useful

for quantitatively and systematically understanding the mechanical effects of

paretic EOMs. Surgical procedures on paretic muscles typically involve reces-

sion, resection, or Botox injection to the antagonist muscle [von Noorden and

Campos, 2001]. We simulate surgical manipulation on EOMs to correct the

deviation and aim to provide insights for operational treatment.

We look at the case in which the superior oblique (SO) muscle action is

weakened due to paralysis of the Fourth cranial nerve (trochlear nerve). In

order to simulate superior oblique palsy (SOP), we first compute the muscle

innervations that stabilize a normal eye in various eye positions. Figure 5.14

shows the innervations for fixating at nine eye positions within the range ±20

degrees. The nine eye positions are simulated sequentially. To mimic a com-

pletely paralyzed SO, we set the SO innervation to zero. Then we apply the

updated EOM innervations to move the eye and record new fixation locations

that are the predicted eye positions of a pathological eye with SOP. The SOP

simulation is shown in Figure 5.14.

We compare simulation results with published empirical data from a mon-

key with acute SOP [Shan et al., 2007a; Quaia et al., 2008]. In their experiment,

the intracranial trochlear nerve that innervates SO was severed and the post-

operational changes in ocular alignment were investigated. We choose this

data for comparison because that the nicely controlled experimental procedure

rules out other abnormalities contributing to the deviation.
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Figure 5.14: Simulation of superior oblique palsy. Computed innervations of
the six EOMs to stabilize the eye in nine eye positions are shown on the left.
The SO innervation is set to zero, which models the zero contractility of a par-
alyzed SO muscle. The biomechanical model is driven by the computed inner-
vations with zero SO innervation to predict new eye positions of a pathological
eye with SOP.

Our goal is to evaluate whether our model is able to predict deviation pat-

terns that are qualitatively consistent with observed pathology. Quantitative

assessment is difficult because the degree of deviation due to SOP varies much

due to anatomical variations [Quaia et al., 2008].

The predicted eye positions of a SOP eye are plotted in Figure 5.15. Mon-

key alignment data, reproduced from [Quaia et al., 2008], is also presented for

comparison.

Incomitant deviation, which is dependent on eye position, is observed. Our

simulation shows a vertical deviation for every fixation; the deviation is great-

est with the eye adducted and down. Extorsional deviation is also observed,

presented as the angle between the vertical bar of the cross and the vertical

axis. We conclude that simulated SOP alignment shows static deviation pat-

terns consistent with experimental acute SOP data in [Quaia et al., 2008].

We also study the dynamic characteristics of SOP and compare our simula-

tion to the monkey data reported in [Shan et al., 2007b]. Figure 5.16 shows the

results of a 20 degree downward saccade in 10 degree adduction. It is the same
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Figure 5.15: Simulated eye positions of a SOP eye shown as black crosses. Grey
crosses are monkey data, reproduced from [Quaia et al., 2008]. Cyclorotation,
multiplied by 1.5 for better visualization, is shown as the vertical tilt of the
crosses. Courtesy of Christian Quaia for the monkey data.

saccadic movement from which the monkey data was recorded [Shan et al.,

2007b]. The simulation procedure is similar to the static SOP simulation. Com-

puted IR and SO innervations in Figure 5.16b clearly have the pulse-slide-step

characteristics of saccadic neural control. Innervations of the two antagonists,

SR and IO, are completely ceased during the execution of saccade, which is

physiologically realistic. The vertical and torsional deviation patterns in Fig-

ure 5.16e and Figure 5.16f show qualitative agreement with the reported acute

SOP dynamic data (see Figure 1. in [Shan et al., 2007b]). Our SOP simulation

shows that the saccade vertical amplitude becomes smaller by about 5 degrees.

Static torsion towards extorsion (positive) is observed, which is up to 3 degrees.

We also simulate a 20 degree downward saccade in 10 degree abduction.

The simulation results in Figure 5.17 are qualitatively consistent with the em-

pirical data from the same saccadic movement (see Figure 1. in [Shan et al.,
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(a) Horizontal and vertical saccade tra-
jectory

(b) Estimated EOM innervations

(c) Normal downward
saccade in adduction

(d) Downward saccade
in adduction with SOP

(e) Temporal vertical and torsional positions (f) Torsion as a function of eye position

Figure 5.16: Simulated SOP vertical and torsional deviation in a 20 degree
downward saccade in 10 degree adduction.
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2007b]). The decrease of vertical saccade amplitude is about 3 degrees, smaller

than the adduction movement. Static torsion towards extorsion up to 5 degrees

is observed.

(a) Normal downward
saccade in abduction

(b) Downward saccade
with SOP in abduction

(c) Temporal vertical and torsional positions (d) Torsion as a function of eye position

Figure 5.17: Simulated SOP vertical and torsional deviation in a 20 degree
downward saccade in 10 degree abduction.

There are several surgical operations for treating strabismus due to SOP. We

show an example of simulating surgical correction on SOP. We model the pro-

cedures of tucking SO muscle by 5mm and recessing IR muscle by 3.5mm. The

former strengthens SO and the latter weakens IR for a more balanced configu-

ration. The primary goal is to reduce or ideally eliminate the vertical deviation

in the primary eye position. Operations on other EOMs might also be per-

formed to treat associated horizontal and torsional deviations. As Figure 5.18

shows, after the EOM manipulations, the vertical deviation at primary gaze as
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well as secondary horizontal gazes is corrected.

Figure 5.18: Simulated surgical correction on SOP. Vertical deviation in the pri-
mary gaze and other horizontal gazes is reduced.

5.5 Physiological Pulley Model

Different from the idealized pulley model in Section 5.4, the second model ex-

plicitly represents the mechanical linkages of the rectus muscle pulleys and the

inter-muscular couplings based on histological and MRI findings. Gaze-related

transverse shifts of rectus muscle pulleys, observed from MRI of human sub-

jects under normal physiological conditions [Clark et al., 1997], are included.

The second model is a realistic implementation of the orbital connective tis-

sue architectures and the Active Pulley Hypothesis (APH) [Demer et al., 2000;

Kono et al., 2002a; Demer, 2002]. Since a lot of physiological evidences are in-

corporated, the model is called the physiological pulley model. It is suitable for

understanding the APH and facilitating the surgical treatment of strabismus

caused by pulley pathologies.
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In Section 5.5.1, we first review the active pulley hypothesis that is the foun-

dation of the model. Then we present the details of pulley implementation in

Section 5.5.2 and EOM innervation solver and Section 5.5.3. Finally we describe

simulation results on system validation and strabismus in Section 5.5.4.

5.5.1 Active Pulley Hypothesis

Histological examinations on the orbital connective tissue architectures and the

fiber layers of rectus muscles have been conducted [Demer et al., 2000; Kono

et al., 2002a; Demer, 2002; Lim et al., 2007]. Demer et al. [1995] demonstrate

a diagrammatic representation of the orbital connective tissues on a coronal

plane posterior to the globe equator, shown in Figure 5.19a. This complex fi-

bromuscular structure consists of dense collagen, elastin, and smooth muscles

[Demer et al., 1995]. Based on these histological evidences and extensive MRI

studies, Demer et al. [2000] propose the Active Pulley Hypothesis (APH). A

schematic representation of the structures in APH from [Demer, 2002] is shown

in Figure 5.19b.

In the following, we briefly introduce the APH; details of APH can be found

in [Demer et al., 2000; Demer, 2002; Miller, 2007; Demer, 2007]. Rectus muscle

pulleys are rings of collagenous tissues that encircle the EOMs posterior to the

globe equator (see Figure 5.19b). Each rectus muscle has a global layer (GL)

and an orbital layer (OL). The GL passes through the pulley ring. Anteriorly

GL becomes tendinous and inserts on the sclera. The OL inserts on the pul-

ley connective tissues and moves the pulley anteroposteriorly in coordination

with the EOM insertion. The vertical positions of the pulleys are stabilized

through suspensory connective tissues and intermuscular couplings shown in

Figure 5.19a. Rectus pulleys act as the functional origins of the rectus muscles;
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(a) Coronal view of connec-
tive tissues

(b) Connective tissues and EOM fiber layers

Figure 5.19: Schematic representation of orbital connective tissues and rectus
muscle layers in the active pulley hypothesis. (a) is from [Demer et al., 1995]
and (b) is from [Demer, 2002] with permission. Courtesy of Dr. Joseph Demer.

they make the rotational axis of the eye no longer fixed in the orbit but depen-

dent on the gaze. With coordinated pulleys, the kinematics of the oculomotor

plant implements Listing’s law in head-fixed eye movement [Demer, 2007].

Although the functions of pulleys are still controversial, there is no doubt

that the discovery of pulley connective tissues has significant implications on

understanding the underlying mechanism of eye movement and associated

disorders. While extensive experiments in anatomy, neurophysiology, histol-

ogy, and MRI are being carried out, it has also been realized that a biomechan-

ical model is essential in describing pulleys’ kinematic functions.

The development of the two models presented in this chapter aims to pro-

vide such a computational framework. The question that we want to answer
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from this study is whether the APH is mechanically plausible, that is, whether

we can build a model of the orbital plant implementing the APH such that its

behavior agrees with experimental data. If so, the model can then be used for

further scientific research on ocular motility and clinical applications.

5.5.2 Model Description

Figure 5.20 shows the physiological pulley model. We use MR muscle as an ex-

ample to describe how the APH is implemented; the modeling choices directly

apply to the other rectus muscles.

Figure 5.20: Physiological pulley model.

Similar to the idealized pulley model, each of the four rectus muscles has

two contractile-elastic strands modeling the global layer (GL, shown as a white

curve) and the orbital layer (OL, shown as a red string of disks). To be anatom-

ically realistic, the lengths and cross sections of GL and OL are changed. In-

stead of being treated equally, now the GL strand is longer than OL in order

to realistically represent the dual insertions of GL and OL [Demer, 2007]. The
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lengths of the extraocular muscles and tendons in a simulated normal model

are summarized in Table 5.1. They agree with the published EOM lengths [von

Noorden and Campos, 2001] and the model parameters in Orbit 1.8TM [Miller

et al., 1995]. Because the OL contains approximately 40% of the muscle fibers,

its cross section is set to 40% of the total cross section along its path before

decreasing to zero near its insertional end (see Figure 5.21 for an example).

LR MR SR IR SO IO
Global Layer 40.7 38.2 39.5 39.9 31.1 36.7Orbital Layer 33.2 28.6 30.8 31.1

Tendon 6.4 3.8 5.0 5.0 31.2 -

Table 5.1: Extraocular muscle and tendon lengths (mm) of a normal model.

Figure 5.21: Cross sections of the GL strand (in white) and OL strand (in red) of
the LR muscle. Each strand is visualized as a generalized cylinder, the radius
of which is a parameter that varies along the strand path. The cross section of
the OL strand is about 40% of the total cross section; the cross section of the GL
strand is about 60%.

A rectus muscle also has the following noncontractile strands: a stiff elas-

tic tendon (yellow curve anterior to GL), two elastic musculo-orbital pulley

suspensions branching away from the globe (yellow segments), and an elas-

tic intermuscular band coupling GL and OL (green dashed segment). In total,

each rectus muscle has six strands.

The tendon strand has very high stiffness since EOM tendon is nearly in-

extensible. Two pulley suspension strands insert on the OL insertional end
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and stabilize the transverse shift of the rectus muscle belly. The origins of the

pulley suspension course anteriorly and attach to the orbital wall. Figure 5.22

shows the stretch-force function specified on the pulley suspension strands.

The stretch-force curve is chosen based on two criteria. Firstly, the two pulley

suspensions of each rectus muscle should exert sufficiently large force trans-

versely to stabilize the rectus muscle path. Secondly, the longitudinal compo-

nent of the pulley suspension force should be small compared to the rectus

muscle contraction force; otherwise, the anteroposterior movement of the pul-

ley would be restricted.

Figure 5.22: Stretch-force curve of the passive pulley suspensions.

In primary gaze, the eight pulley suspensions of the four rectus muscles are

under tension, and their lengths are set to be 200% beyond their rest lengths.

Enforcing tension in the primary gaze ensures that the pulley suspensions are

always under positive tension even in the OFF direction movement. As a re-

sult, strand slacking never occurs.

The insertional end of OL is elastically coupled with GL through an elastic

strand (shown as the short green dashed strand in Figure 5.20), called a GL-OL

coupling strand. It simulates the possible laminar movement between GL and

OL [Miller, 2007]. A GL-OL strand has linear elasticity (constant Young’s mod-

ulus between 50kPa and 70kPa) and deforms through its attachments to GL
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and OL. Its length is gaze-dependent, which is affected by its stiffness, the pul-

ley suspension stiffness, and innervations of GL and OL (will be discussed in

Section 5.5.3). To avoid transverse separation of GL from OL, GL is constrained

to frictionlessly slide through OL’s insertional end. A prismatic joint defined

on OL (not fixed in the orbit) is used to allow longitudinal movement of GL

relative to OL’s insertional end (pulley) and minimize their relative separation

in the transverse direction.

Figure 5.23 shows simulated horizontal eye movements. The influence of

the rectus pulleys on rectus muscle paths is clearly observed. As the eye rotates

horizontally, the LR and MR pulleys move anteroposteriorly in coordination

with the LR and MR insertions. The SR and IR pulleys remain relatively stable

in the mediolateral direction to stabilize the muscle bellies as the eye rotates. In

Section 5.5.4, we show that different from the idealized pulley model, SR and

IR pulleys do have small transverse shifts within physiological range, which

is hard to see from these figures. The SR muscle path is inflected at its pulley

position and its interior path follows movement of the SR insertion. Note that

lengths of the pulley suspensions change, as the pulleys move coordinately

with eye positions. As the eye moves in the ON direction of an EOM, its sus-

pension strands are elongated towards the EOM origin; as the eye moves in

the OFF direction of an EOM, its suspension strands shorten.

Figure 5.24 shows simulated vertical eye movements. The transverse shift

of the LR pulley (and MR pulley on the medial side hidden by the globe) is

very small. LR (and MR) path is sharply inflected at its pulley location. The SR

and IR pulleys move anteroposteriorly with eye rotation and lengths of the SR

and IR pulley suspensions change accordingly. There is another intermuscular

elastic strand modeling the coupling between LR and IO [Demer et al., 2003b],
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(a) Adduction gaze (b) Primary gaze (c) Abduction gaze

Figure 5.23: Simulated horizontal eye movements using the physiological pul-
ley model. Note the SR muscle path inflection and the anteroposterior move-
ment of the LR and MR pulleys.

visible in Figure 5.24a and Figure 5.24c. It is named the LR-IO strand and also

contributes to stabilizing the LR pulley in the transverse direction.

The SO muscle is modeled as a contractile-elastic muscle strand and a very

stiff tendon strand. The IO muscle is represented as a single contractile-elastic

muscle strand and its short tendon is negligible. The IR-IO coupling [von No-

orden and Campos, 2001; Demer et al., 2003b] is modeled as a linearly elastic

strand, attached to IR and IO at their intersection in primary gaze. In a non-

primary gaze, the IR-IO strand is elongated passively to constrain the relative

movement between IR and IO, shown in Figure 5.25. MRI studies have shown

that IO moves anteroposteriorly by about 50% of the IR insertion’s travel [De-

mer et al., 2003b]. Young’s modulus of the IR-IO strand is chosen as 750Pa such

that the half distance relationship is implemented at good approximation.



132

(a) Supraduction (elevation) gaze

(b) Primary gaze

(c) Infraduction (depression) gaze

Figure 5.24: Simulated vertical eye movements using the physiological pulley
model. Note the LR muscle path inflection.
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Figure 5.25: The IR-IO coupling is modeled as an elastic strand connecting IR
and IO at their intersection. The strand is stretched in a depressed gaze. The
IO moves nearly half as far as IR insertion travels DIO = 0.5DIR.

5.5.3 Innervation Computation

EOM innervations are computed to follow desired trajectories. Different from

the previous model, now each rectus muscle has two different contractile-

elastic strands that need to be solved. Modeling the possibly, slightly dif-

ferential control of GL and OL [Miller, 2007], the system is even more over-

constrained than the previous one. The innervation variable a is a 10× 1 vector

composed of innervations of the ten contractile-elastic EOM strands (two for

the GL and OL of each rectus muscle plus one for SO and one for IO).

The objective function of the innervation optimization for this more com-

plicated model has extra constraints than the objective in Equation 5.1, and is
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given as follows:

min
a

wa‖a‖2 + wx‖(Hxa + v f )− vx‖2

s.t. 1 ≥ ai > a0
i cv(veye) cp(peye)

aOL
i − aGL

i ≥ 4a EOMi’s ON direction

(5.5)

The additional constraint aOL
i − aGL

i ≥ 4a models the relationship between

the innervations of GL and OL of a rectus muscle. The constraint enforces that

when the eye is moving or fixating in the ON direction, the OL innervation

is at least 4a higher than the GL innervation. This constraint term is an ap-

proximation of Collins’ measured GL and OL fiber activities in various fixation

positions (see Figure 5 in [Collins et al., 1975]), which show a nearly constant

offset.

5.5.4 Results

Computed EOM Innervations

We first simulate fixations at nine eye positions over the range ±20◦. Fig-

ure 5.26 shows estimated EOM innervations as a function of horizontal and

vertical eye positions.

Innervations are interpolated and plotted as iso-innervation curves to il-

lustrate innervation levels more clearly. The GL and OL strands of a rectus

muscle have similar innervation patterns, with nearly constant difference. The

LR and MR innervations are mainly dependent on the horizontal eye position,

implying separable control of the horizontal EOMs. The result is consistent

with known anatomy and neurophysiology of the horizontal EOMs [von No-

orden and Campos, 2001]. Computed innervations of the vertical and oblique

EOMs are more complex, due to their non-orthogonal anatomical arrangement
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Figure 5.26: Computed EOM innervations shown as iso-innervation curves
over the two-dimensional eye positions.

and coupled actions. Different from LR and MR, each of these four EOMs con-

tributes to all three degrees of freedom of eye rotation; nevertheless, their pri-

mary and secondary action directions are different [von Noorden and Campos,

2001].

EOM Paths in Secondary Gazes

To validate the physiological pulley model, we first check the locations of the

rectus pulleys in secondary gazes. Figure 5.27 shows the muscle paths in four

secondary gazes (±24◦), plotted in the same way as the measured pulley posi-

tions from MRI [Clark et al., 2000].

One characteristics of this pulley model is that the physiological transverse
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Figure 5.26: Computed EOM innervations shown as iso-innervation curves
over the two-dimensional eye positions.

shifts of the rectus pulleys are allowed. The shifts are still sufficiently small

such that rectus muscle bellies are stabilized. Clark et al. [2000] report approx-

imately 0.5mm side-slip of MR in the direction of gaze. As Figure 5.27b shows,

simulated MR pulley has maximal sideslip about 0.7mm, consistent with the

MRI data. Clark et al. [2000] report approximately 0.5mm side-slip of LR in the
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(a) LR (b) MR

(c) SR (d) IR

Figure 5.27: Rectus muscle paths in secondary gazes.

opposite direction of gaze, due to the coupling between LR and IO. Simulated

LR pulley in Figure 5.27a exhibits side-slip about 0.8mm in the opposite direc-

tion of gaze, realistically modeling this interesting phenomenon. The LR-IO

strand in our model is the key component that results in realistic LR pulley

shifts. The simulated SR pulley has small side-slip in the same direction of

gaze, consistent with [Clark et al., 2000]. The only discrepancy occurs on IR.

The small transverse shift of simulated IR pulley is also in the gaze direction,

whereas Clark et al. [2000] find IR shift in the opposite direction. We suspect

that it is due to the implementation of the IR-IO coupling, which needs to be
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improved. To conclude, this model produces plausible pulley movements that

are in good agreement with the MRI data in [Clark et al., 2000].

Pulley Locations in Tertiary Gazes

We record rectus pulley positions in tertiary gazes to validate the model’s im-

plementation of the active pulley hypothesis. Nine eye positions ±24◦ are

simulated and analyzed using the analysis approach in [Kono et al., 2002a].

Simulation results are presented in Figure 5.28.

Figure 5.28: Relationship of the anteroposterior positions of the rectus pulleys
to eye positions. Abscissa zero is referenced to the globe center.

The theoretical pulley positions are estimated from the EOM insertions. As

the APH describes, ideally, the distance from an EOM insertion to the globe

center and the distance from its pulley to the globe center are equal at any eye
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position. Our simulated pulley anteroposterior positions show desired gaze-

dependent characteristics and reasonably approximate the theoretical pulley

locations.

Simulation of Superior Oblique Palsy

We simulate the ocular misalignment due to palsy of the superior oblique mus-

cle (SOP). The simulation procedure is the same as the first model (see Sec-

tion 5.4.1). The result is shown in Figure 5.29.

Figure 5.29: Simulated eye positions of an eye with SOP, shown as the red
crosses. Cyclorotation, multiplied by 3 for better visualization, is shown as the
tilt of the crosses.

Similar to the previous simulation, we observe vertical deviation that is

greatest with the eye adducted and down. The simulation also shows gaze de-

pendent torsional deviation as well as horizontal deviation that are the greatest

in depression. We demonstrate that the physiological pulley model is also able

to predict the deviation patterns caused by SOP.
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Simulation of LR Sagging

Clinical studies have shown that the degeneration of the elastic band coupling

SR muscle and LR muscle due to aging could lead to strabismus [Rutar and

Demer, 2009]. Due to the decreased elasticity of the SR-LR band, in these pa-

tients, LR normally has an vertical displacement inferior to the vertical center

of the globe. As a mechanical consequence, the effective force of LR muscle is

diverted from lateral to inferior and cyclotorsion. Therefore, LR muscle is less

effective as an actuator in the abduction direction. Esotropia and hypotropia

are typically observed from these elderly patients. SR muscle might also ex-

hibit deviation in the temporal direction, but is mechanically negligible.

To better understand the mechanical effects of LR sagging, we simulate this

pathology using our model. The SR-LR band is modeled as a noncontractile

elastic strand, coupling SR and LR and sliding on the globe surface. The stiff-

nesses of the LR pulley suspensions and the LR-SR band are adjusted to model

the LR-SR degeneration. The LR rest length is increased by 10%. As a result,

LR muscle is displaced inferiorly by 5.7mm and SR muscle is displaced tem-

porally by 0.7mm in primary gaze. Figure 5.30 shows the simulated model

without and with sagged LR. Note how the LR muscle is displaced inferiorly.

We first estimate the EOM innervations using the normal model in Fig-

ure 5.30a. We then simulate the model with sagged LR using the computed

innervations and show the results in Figure 5.31. Esotropia and hypotropia are

observed, consistent with clinical findings [Rutar and Demer, 2009]. Esotropia

is the largest in depression and abduction. Hyoptropia is larger in elevation.
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(a) Normal (b) LR sagging

Figure 5.30: Comparison of the model (a) without and (b) without LR sagging.

Figure 5.31: Simulation of ocular misalignment due to LR sagging.

5.6 Conclusions

We present a 3D biomechanical simulation framework for studying the me-

chanics and neural control of human eye movement and facilitating surgical

treatment. Limitations of previous models are addressed. Our biomechani-

cal model of the oculomotor plant takes into account the nonlinear EOM ge-

ometry and can include individualized anatomical data. We model EOMs as
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strands, which are musculotendinous modeling primitives. Complicated EOM

constitutive models derived from empirical data are incorporated in the plant

mechanics. Various kinds of eye movements, including fixations, smooth pur-

suits, and saccades can be simulated. We develop two models that provide

different implementation of the rectus pulleys.

The first model, called the idealized pulley model, represents the rectus muscle

pulleys as prismatic joints. Anteroposterior movements of pulleys are allowed

and transverse pulley shifts are strictly restricted. Due to its simplicity, fewer

undetermined parameters are introduced into the model, which makes it suit-

able for studying the dynamics and neural control of ocular motility. Simula-

tion results show nonhomogeneous EOM deformation during smooth pursuit

movement, consistent with motion encoded MRI data. Given EOM innerva-

tions, the model generates realistic saccadic trajectories. Strabismus deviation

patterns caused by superior oblique palsy can also be predicted.

The second model, called the physiological pulley model, explicitly represents

the mechanical linkages of the rectus muscle pulleys and the inter-muscular

couplings based on the Active Pulley Hypothesis. Known physiological evi-

dence of the orbital connective tissues are incorporated in the model. Gaze-

related transverse shifts of rectus muscle pulleys are modeled. From sim-

ulations and validations, we show that the active pulley hypothesis is me-

chanically plausible using strands to represent EOMs and pulleys. The model

has important clinical application in simulating strabismus caused by pulley

pathologies.
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Chapter 6

Conclusion

This dissertation presented several studies on biomechanical modeling and

simulation of human eye movement. Our objective is to lay the foundation of

a biomechanical and computational framework that possesses fewer assump-

tions than previous models and is sufficiently general for both scientific re-

search and clinical applications. To achieve this goal, we developed several

methodologies and validate simulation results against experimental data.

Plausible biomechanical simulation requires models with realistic anatom-

ical properties. Building subject-specific 3D models of the orbit from medical

imaging data is especially important for potential clinical simulation of surgi-

cal outcomes, which needs to incorporate patient-specific characteristics and

pathologies. We presented an efficient and robust method on reconstructing

3D geometric models of the orbit from magnetic resonance images acquired

from human subjects. A template model is used as the prior and is deformed

to fit individual data. The template resolves the uncertainty in the boundary

between EOM and tendon due to limited image contrast, and leads to a com-

plete model. Our method is suitable for reconstructing geometric models with

minimum manual work for many subjects and at different eye positions. We

also applied the template fitting approach to build detailed 3D meshes of the

eyeball from MRI, which can potentially be used in simulation and analysis of

clinical myopia.
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Measuring EOM deformation in vivo is useful for understanding EOM biome-

chanics but is also challenging. Motivated by the difficulty of inferring defor-

mation properties directly from conventional images, we proposed a longitu-

dinal strain estimation approach. Our method is sufficiently general for study-

ing the mechanical properties of fusiform muscles (for instance, extraocular

muscles) and tendons in vivo. The fiber bundles in these tissues are arranged

in parallel and the functionally most important deformation is along the lon-

gitudinal axis. We took advantage of the incompressibility of soft tissues to

find correspondences between discrete tissue segments in different deforma-

tion states. Our approach uses geometric models as input, and is independent

of image intensity-based correspondences that are harder to get. We validated

the accuracy of the method through MRI phantoms and computer simulation.

We also computed EOM deformation at various horizontal gazes by using re-

constructed EOM models. We observed inhomogeneous muscle deformation

as a function of eye positions. The method is very efficient to compute and en-

ables estimation of soft tissue deformation when advanced imaging facilities

are unavailable.

Utilizing the reconstructed 3D models of the extraocular muscles and the

estimated longitudinal strains, we demonstrated that EOM meshes in various

eye positions can be registered and correlated. We described an algorithm to

apply deformation properties in surface registration such that the resulting

geometries provide direct correspondences in the material coordinates. Nor-

mally, geometric models reconstructed from different deformed states only

represent the shape variations; they do not show consistent deformation and

are independent of each other. We enforced physical consistency constraints

in surface fitting to regulate positions of the mesh points. The method can be



145

generalized to create realistic models for biomechanical simulation.

To understand the mechanics and neural control of human eye movement,

it is important to have a model of the oculomotor plant that incorporates its

anatomical and physiological properties. We developed such a biomechani-

cal model that satisfies the requirements for scientific research and clinical use.

The extraocular muscles are represented as strands, which are musculotendi-

nous modeling primitives. Realistic EOM paths and cross sectional areas of

these EOM strands are based on geometric models reconstructed from human

subject MRI, applying our proposed template fitting approach. Nonlinear con-

stitutive properties are associated with the EOMs. Our simulator is the first

biomechanical model of the orbital plant that simulates dynamic eye move-

ments. An important contribution of our model is that we represent the me-

chanical functions and architectures of the pulley connective tissue. The active

pulley hypothesis (APH) is realistically modeled. We showed that the mechan-

ical linkages and intermuscular couplings hypothesized in APH are quantita-

tively plausible, which is a major step towards investigating pulley functions

in ocular motility.

Before using the biomechanical model to answer scientific questions and

for clinical simulations, we need to assess the plausibility and accuracy of the

simulator. We performed several validations from different aspects, which not

only evaluate the realism of our strand-based biomechanical model of the or-

bit, but also provide guidance for choosing model parameters. EOM deforma-

tion during smooth pursuit was examined and compared to published motion-

encoded MRI data. Consistent deformation patterns were observed. We sim-

ulated saccadic eye movements that abduct at different amplitudes. Empirical
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abducens motoneuron discharges were used to drive the lateral rectus mus-

cle, the primary EOM that is active in these eye movements. We found that

the simulated saccadic trajectories reasonably follow the desired trajectories,

which shows the realism of the plant mechanics. We also simulated strabis-

mus caused by superior oblique muscle palsy. The predicted deviations in

various directions were qualitatively consistent with experimental data from

controlled subjects. Finally, EOM paths at different gazes were quantitatively

analyzed to ensure the transverse stability of pulleys. Based on the results, we

conclude that our simulator with nonlinear orbital mechanics and MRI-based

anatomical properties is able to generate realistic static and dynamic eye move-

ments and can be applied in further scientific and clinical studies.

6.1 Future Work

In future studies, we would like to extend our current work in the following

directions.

6.1.1 Functional Reconstruction

We plan to visualize orbital connective tissues from histological images [Miller

et al., 2003; Kono et al., 2002b; Demer, 2008] and build a complete biomechani-

cal model of the orbit including these structures. To understand the two-layer

structures of extraocular muscles and the connective tissue pulleys, high reso-

lution digital light micrographs were taken from histologically stained extraoc-

ular muscles and representative fascicles were traced manually from those im-

ages [Lim et al., 2007]. It would be useful to develop an automated approach
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to track a majority of the EOM fibers to learn their architectures. With an ef-

ficient tracing program, we can also study the physiological change of EOMs

associated with certain pathology, such as acute superior oblique palsy.

6.1.2 Statistical Eyeball Shape Analysis

We will perform a statistical analysis of eyeball shape on a larger population of

normal subjects, by using either principal component analysis (PCA) or spher-

ical harmonics to describe the shape variations. It is clinically useful to inves-

tigate the relationship of eye shape to refractive error and to strabismus. An-

other important topic is to quantify eyeball deformation as a function of eye

position; it has not been analyzed previously. All of these studies will provide

information about impact of globe shape on ocular motility.

6.1.3 General Strain Estimation

We plan to study strain estimation from more general deformation with shear-

ing and non-homogeneous tissue properties. If few sparse correspondences are

available, we will exploit the incompressibility constraint to deal with struc-

tures that are more complex. We would also like to apply physically registered

models in finite element models and strand simulations to analyze other prop-

erties of the extraocular muscles.
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6.1.4 Ocular Biomechanics

One of the motivations of developing a realistic computational model is the

need of such a model to understand the complex behaviors of the oculomo-

tor plant. One central question under debate is how Listing’s law is imple-

mented. By using computational models, it has been shown mathematically

that properly placed pulleys simplify the neural control of saccades – a com-

mutative saccadic generator can produce realistic saccades obeying Listing’s

law [Raphan, 1998; Quaia and Optican, 1998]. However, these models made

linearity assumptions on the orbital plant. In order to accurately study the

kinematic functions of the extraocular muscle pulleys, nonlinearity of the oc-

ular mechanics needs to be incorporated. Our biomechanical model provides

anatomical and physiological realism and has been validated against experi-

mental data. We would like to drive the model by the proposed controllers,

and test the plausibility of the pulley hypothesis.

6.1.5 Quantitative Clinical Simulation

Our biomechanical model is suitable for simulating strabismus and its surgi-

cal outcomes. The model is customizable for individual patients for subject-

specific prediction. It is easy to incorporate anatomical properties (such as

EOM paths and cross sections) and orbital pathologies (such as pulley het-

erotopy). Proper parameters can be estimated such that the predicted behavior

of the individual plant model matches the clinical measurement of the subject,

for instance the alignment chart. Then surgical treatment can be simulated and

planned. We would like to conduct quantitative clinical simulation along this

line by first validating the model against post-operative data.
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