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ABSTRACT OF THE DISSERTATION

Imputation of Automatic Control Algorithms

and Estimation in High-Dimensional Linear

Regression

by FEI YE

Dissertation Director: Professor Cun-Hui Zhang

This thesis contains two parts. In the first part, we study a semiparametric

imputation method to simulate a time series of blood glucose level under certain

closed-loop control algorithm of a diabetic patient equipped with a continuous

glucose monitor and an insulin pump, from the “frozen” measurements under

self-adjusted open-loop control. The Star One data set provided by Medtronic Inc

illustrates the feasibility of a simple PID algorithm, as an example of automatic

control algorithms, in controlling blood glucose levels from the perspective of

reducing the A1c level and controlling hypoglycemia risk.

In the second part, we consider ℓ1-penalized selection of variables and esti-

mation of regression coefficients in a high-dimensional linear model. Under an ℓ0

sparsity condition on the regression coefficients, we sharpen an upper bound of

Candes and Tao [4] for the ℓ2 loss of the Dantzig selector and extend it to the ℓq

loss and the Lasso. By allowing q = ∞, our bound implies the variable selection

ii



consistency of threshold Dantzig selectors. For the estimation of regression coef-

ficients in ℓr balls, we provide minimax lower bounds for the ℓq risk and the tail

quantiles of the ℓq loss as well as sufficient conditions on the design matrix and

penalty level for the Dantzig and Lasso estimators to attain these minimax rates.
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Chapter 1

Introduction

1.1 Imputation of Blood Glucose Levels and HbA1c’s for

Automatic Control Algorithms

This thesis concerns two problems. The first problem considers imputation of

blood glucose levels and HbA1c’s for automatic control algorithms from the

“frozen” measurements under self-adjusted open-loop control. The Star One data

set of 137 diabetic patients contains continuous blood glucose measurements G(t),

subcutaneous insulin deliveries u(t), and A1c measurements for one year. Each

patient is equipped with a continuous glucose monitor and an insulin pump. The

monitor reads the blood glucose level G(t) every 5 minutes. The pump delivers

the insulin according to a prespecified basal rate and self-controlled bolus rate

for meals. The patients receive no other source of insulin except through their

insulin pumps. Our goal is to simulate a time series of blood glucose level had

certain closed-loop control algorithm been applied to the diabetic patient.

Inspired by the novel nonparametric statistical imputation method of Mastro-

totaro et al [15], we study a semiparametric imputation method which utilizes an

insulin absorption model and an insulin action model as parametric components

and a nonparametric life-style component. We describe the insulin absorption

using a two-compartment plasma insulin concentration model of Hovorka et al

[14] and the insulin action using a revised minimal insulin action model of Steil

et al [21]. For simplicity we denote the insulin absorption system as H(⋅) such
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that I(t) = H(u(s), s ≤ t), where I(t) is the plasma insulin concentration at time

t and {u(s), s ≤ t} are discrete subcutaneous insulin deliveries up to time t. The

revised minimal insulin action model can be written as

G(t+Δt)−G(t) = ¯0(t) + ¯1G(t) + ¯2G(t)
∑
s≤t

I(s)e−w(t−s), (1.1)

where ¯0(t) is the nonparametric life-style component of the patient, ¯1, ¯2 are

unknown parameters and w is an unknown weight of the exponential moving

average of {I(s), s ≤ t}.
Consider an individual patient in the Star One data set. Suppose measure-

ments are taken in days d = 1, . . . ,m at time points tk, k = 1, . . . , n with fixed

Δt = tk+1− tk (5 minutes). Let ud(tk) be the actual amounts of subcutaneous in-

sulin delivery and Gd(tk) be the actual blood glucose measurements. From ud(tk),

the plasma insulin concentration Id(tk) are computed using the insulin absorption

model H(⋅). We describe the semiparametric imputation method as follows:

Step 1: Estimate ¯1, ¯2, w and the life-style component ¯0(⋅) using (1.1) and

all time/day points. In this step, ¯0(⋅) is approximated by a cubic spline function

ˆ̄
0(⋅).
Step 2: Compute the adjustment ²d(tk) of life-style component for each day

using the estimated parameters { ˆ̄1, ˆ̄2, ŵ}, ˆ̄0(⋅) from Step 1 and the actual data

for that day,

²d(tk) = Gd(tk+1)−Gd(tk)− ˆ̄
0(tk)− ˆ̄

1G(tk)− ˆ̄
2G(tk)

∑

j≤k

Id(tj)e
−ŵ(tk−tj).

Step 3: Dynamically update ũd(tk), Ĩd(tk) and impute the blood glucose level

G̃d(tk+1) for a given closed-loop control algorithm A(⋅),

ũd(tk) = A(G̃d(tj), j ≤ k)

Ĩd(tk) = H(ũd(tj), j ≤ k)

G̃d(tk+1) = G̃d(tk) + ˆ̄
0(tk) + ˆ̄

1G̃d(tk) + ˆ̄
2G̃d(tk)

∑

j≤k

Ĩd(tj)e
−ŵ(tk−tj) + ²d(tk).
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As an example we impute the glucose levels under a simple proportional-

integral-derivative (PID) algorithm. PID algorithm could be used to control

the blood glucose level toward a desired target by providing suitable dose of

insulin delivery. In PID, the insulin dose is calculated using continuous glucose

measurements G(t) as a linear combination of three components: proportional

(P), integral (I) and derivative (D). PID algorithm can be written as PID(t) =

Pcontrol(t) + Icontrol(t) +Dcontrol(t) where Pcontrol(t) = ·p(G(t)−Gtarget),

Icontrol(t) = Icontrol(t− 1)+·i(G(t)−Gtarget) and Dcontrol(t) = ·dG
′(t) with

G′(t) being the derivative of G(t).

HbA1c, or A1c, is the percentage of glycated hemoglobin molecules in a red

blood cell. The higher blood glucose level, the more glucose molecules would

join hemoglobin, resulting in a higher A1c level. Hemoglobin A1c test is the

standard measure of diabetic hyperglycemia. Palerm, Shepp, Cabrera and Zhang

[20] proposed a mathematical formula to estimate A1c based on continuous blood

glucose levels. The A1c’s under PID are imputed by applying the mathematical

formula for A1c to the imputed time series of blood glucose level. We compare

PID-imputed A1c’s with laboratory measured A1c’s to evaluate the feasibility of

the simple PID algorithm.

Besides hyperglycemia, the other risk of diabetic disorder is hypoglycemia,

which could lead to ketoacidotic coma. Hypoglycemia happens when a diabetic

patient injects too much insulin and has no matching carbohydrate intake to

spend the insulin. An efficient closed-loop control algorithm should keep low

both risks of hyperglycemia and hypoglycemia. To this end, we define a number of

hypoglycemia measures and compare each of them between the PID algorithm and

the open-loop control. Although the simple PID algorithm has good performance

in controlling hyperglycemia, we find it difficult for the PID to further lower

hypoglycemia risk, compared with the open-loop control. The reason is that the

Star One data set has the survival bias. No diabetic patients die in the clinical
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trial due to ultra low glucose levels. When they feel uncomfortable or hungry,

they would simply eat some additional food to keep up their blood glucose levels.

This component is not imputed.

1.2 Selection and Estimation with the ℓ1 Penalty

The second problem considers estimation in high-dimensional linear regression.

We assume a linear model

y = X¯ + " =

p∑
j=1

¯jxj + "

where y ∈ ℝn is a response vector, X = (x1, . . . ,xp) ∈ ℝn×p is a design matrix

and " ∈ ℝn is a vector of stochastic errors. Ordinary least squares estimator

argminb ∥y − Xb∥2 is neither parsimonious nor unique thus it is difficult to

interpret the selected model, in the case of p > n. In many statistical and

engineering applications, the number p of design variables (features, covariates)

can be larger or even of large order than the sample size n. For example, in signal

processing (sparse recovery, compressed sensing), a sparse p-dimensional signal ¯

is encoded through a linear transformation X to an n-dimensional vector y =

X¯+ " with stochastic or deterministic noises ", stored or transmitted in the n-

dimensional form, and then recovered using some appropriate algorithm. In linear

regression, a popular approach for model selection and parameter estimation is

to impose a suitable penalty on the empirical loss. In a high-dimensional linear

regression, p is often large enough thus it is computationally infeasible to select

the model minimizing ℓ0-penalized empirical loss. Tibshirani [22] proposed the

Lasso, an ℓ1-penalized estimator

ˆ̄
Lasso(¸) = argmin

b

{
∥y −Xb∥2/(2n) + ¸∥b∥1

}

for the regression coefficients. For the simplest orthonormal design X ′X/n = I,

the Lasso estimator is the soft-threshold least squares estimator. In the signal
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processing literature, the Lasso is known as basis pursuit [6]. The Lasso has

the interpretation as boosting [11, 12] and is computationally feasible for high-

dimensional data [18, 19, 9]. Recently Candes and Tao [4] proposed another

ℓ1-penalized method called the Dantzig selector,

ˆ̄
Dantzig(¸) = argmin

b

{
∥b∥1 : ∣x′

j(y −Xb)/n∣ ≤ ¸, ∀j
}
.

It is a simple convex program that can be recast as a convenient linear program.

The Dantzig and Lasso estimators share some theoretical properties from the

perspective of variable selection and parameter estimation. We consider variable

selection and estimation of a sparse vector of regression coefficients in a linear

model simultaneously for the Dantzig and Lasso estimators.

An estimator is variable selection consistent if the set of nonzero estimated

coefficients matches that of the “true” nonzero regression coefficients with large

probability. One of the important properties of the Lasso is that it can be used

for variable selection. Donoho et al [8] showed that penalties with a discontinuous

derivative at the origin possess the variable selection feature of shrinking some

coefficients exactly to zero. Meinshausen and Buhlmann [16], Tropp [23], Zhao

and Yu [29] and Wainwright [25] proved that the Lasso is variable selection con-

sistent under a strong irrepresentable condition on the Gram matrix X ′X/n and

some other regularity conditions. Zhang and Huang [27] proved the consistency

of the Lasso in the order of the dimension and bias of the selected model under

a regularity condition on the eigenvalues of sub-Gram matrices. More recently,

Candes and Plan [5] proved the selection consistency of the Lasso under random

permutation and sign-change of regression coefficients and a mild condition on

the maximum absolute correlation among design vectors. Zhang [28] studied the

selection consistency of the Lasso through its ℓ∞ loss. Although it was pointed

out in [10, 2] that the Dantzig and Lasso estimators are quite similar, it is still

unclear in the existing literature if the Dantzig selector possesses selection con-

sistency properties parallel to those mentioned above for the Lasso.
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Another focus of recent research of the ℓ1-penalized least squares estimators

has been on the estimation loss for the regression coefficients. Candes and Tao [4]

derived an elegant probabilistic upper bound of the ℓ2 loss for the Dantzig selector

under a condition on the number of nonzero coefficients and a uniform uncertainty

principle (UUP) on the Gram matrix. The similar analysis of upper bounds for

the ℓq loss ∥ˆ̄−¯∥q of the Lasso estimator has been studied by Bunea, Tsybakov

and Wegkamp [3] and van de Geer [24] for q = 1, Zhang and Huang [27] for

q ∈ [1, 2], Meinshausen and Yu [17] for q = 2, Bickel, Ritov and Tsybakov [2] for

q ∈ [1, 2], and Zhang [28] for q ≥ 1. Under different sets of regularity conditions

on the Gram matrix and sparsity of regression coefficients ¯ ∈ ℝp, these results

provide upper bounds of the form ∥ˆ̄Lasso(¸) − ¯∥q ≤ O(k1/q¸), where k is of

the order of an intrinsic dimensionality of the sparse estimation problem. For

N(0, ¾2) errors and standardized designs with ∥xj∥ =
√
n, the required penalty

levels ¸ in these studies on the Lasso are all greater by a constant factor than

the universal penalty level ¸univ = ¾
√

(2/n) log p in the inequality of Candes and

Tao [4]. Different sets of regularity conditions lead to different forms of constant

factors in the upper bounds so that the existing upper bounds are typically not

directly comparable mathematically.

For the estimation of a target vector ¯, we derive oracle inequalities which

bounds the ℓq loss of the Dantzig and Lasso estimators in terms of the oracle error

bound ½k(¯) =
∑

j ∕∈Jk ∣¯j∣ with Jk = argmax∣S∣=k

∑
j∈S ∣¯j∣ and error measures

on y−X¯. For k ≥ 0 and all 1 ≤ q ≤ ∞, in the event ∥X ′(y−X¯∗)/n∥∞ ≤ ¸

∥ˆ̄Dantzig(¸)− ¯∥q ≤ (1 + ¿ q)1/q max
A,u

min
v

max
B

2¸GA,u,v + 2k1/q−1½k(¯)

(1− FA,B,u,v)+

where ∣A∣ = k + ℓ with A ⊃ Jk and 1 ≤ ℓ ≤ p − k, u ∈ ℝA with ∥u∥q = 1,

0 ∕= v ∈ ℝA, ∣B∣ = ℓ with A ∩ B = ∅, FA,B,u,v = ℓ−1∥uJk∥1∥ΣB,Av∥1/(u′ΣAv)+,

GA,u,v = ∥v∥1/(u′ΣAv)+ and ¿ = (k/ℓ)1−1/q. Moreover, for 0 < ® < 1

∥ˆ̄Lasso(¸/®)− ¯∥q ≤ (1 + »q¿ q)1/q max
A,u

min
v

max
B

»′¸GA,u,v + 2k1/q−1½k(¯)

(1− »FA,B,u,v)+
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with » = (1 + ®)/(1 − ®) and »′ = 1 + 1/®. For the Lasso with v = fs(u)

and fs(x) = sgn(x)∣x∣s, GA,u,v =
∥vJk

∥1
(u′ΣAv)+

+
{

(1+1/®)−s¸−s½k(¯)∥v∥q/s
(u′ΣAv)+

}1/(s+1)

is also

allowed. Simple upper bounds are obtained for the ℓq loss of the Lasso and Dantzig

estimator under an assumption on the ℓ0 sparsity of a target vector of regression

coefficients that ∥¯∥0 = k. By explicitly allowing q = ∞, our bound implies the

variable selection consistency of threshold Dantzig selectors. Our error bounds

sharpen and unify a number of existing approaches and extend the inequality

of Candes and Tao [4] from q = 2 to 1 ≤ q ≤ ∞ and the Lasso. By taking

v = u, applying Hölder inequality, and taking the worst scenarios in both the

numerator and denominator of the constant factors, our bounds improves upon

a result of Bickel, Ritov and Tsybakov [2] and the inequality of Candes and Tao

[4]. The choices of v = fq−1(u) and v = Σ−1
A fq−1(u) provides upper bounds of

∥ˆ̄Lasso−¯∥q, slightly improving upon a result of Zhang [28]. Although the error

bounds for the Dantzig and Lasso estimators are of the same format, the Lasso

bounds require a larger penalty level ¸/® (® < 1) compared with the panelty

level ¸ for the Dantzig bounds.

We also prove that both the Dantzig and Lasso estimators achieve rate min-

imaxity in the ℓq risk E¯∥ˆ̄ − ¯∥q and loss ∥ˆ̄ − ¯∥q for the estimation of re-

gression coefficients in ℓr balls, by providing lower bounds for general estimators

and matching upper bounds. We extend the results of Donoho and Johnstone [7]

from orthonormal design to linear regression design. For 0 < r ≤ q, we prove

that the minimax ℓq risk inf± sup∥¯∥r≤R E¯∥±(X,y)−¯∥qq and loss in ℓr balls are

bounded from below by Rr¸q−r
mm, where ¸mm = ¾

{
2
n
log

(
¾rp

nr/2Rr

)}1/2

is a certain

minimax penalty level and R is the radius of the ℓr ball. When ¸mm is of the

same order as ¸univ = ¾
√

(2/n) log p, we prove that the Dantzig and Lasso esti-

mators both attain the rate of the minimax risk and loss for 0 < r ≤ 1 ≤ q. In

simulation studies and applications, a penalty level ¸ < ¸univ is often empirically

the best choice. For ¸mm/¸univ = o(1), performance bounds requiring penalty
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levels ¸ ≥ ¸univ do not match the lower bounds of the minimax rate Rr¸q−r
mm. We

close this gap by providing a minimax upper bound for the tail quantile of the ℓq

loss for the Lasso estimator with ¸ ≍ ¸mm = o(¸univ) for 0 < r ≤ 1 ≤ q ≤ 2.
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Chapter 2

Imputation of Blood Glucose Levels and

HbA1c’s for Automatic Control Algorithms

2.1 Introduction

Diabetes is a disorder of metabolism preventing the human body from using

digested food for energy and growth. Type 1 diabetes is a form of diabetes

mellitus, an autoimmune disease that results in the permanent destruction of

insulin-producing beta cells of the pancreas. The lack of insulin holds glucose in

the blood, which would have been transfered into cells if enough insulin works

in an appropriate way. When the blood glucose level rises above 180 mg/dL,

it starts to appear in the urine making it sweet “mellitus”. Type 1 diabetes is

lethal unless treatment of insulin injection or a functional replacement of pan-

creatic insulin-producing beta cells is provided. On the other hand, overdose of

insulin injection may cause ketoacidotic coma, an extremely dangerous situation.

There is currently no preventive action that can be taken against type 1 diabetes.

Although the cause of type 1 diabetes is still not fully understood, wise diet and

appropriate exercise may help insulin to act more effectively.

Hemoglobin (Hb) is an oxygen-transporting compound in red blood cells.

In the normal 60-120 day life span of a red blood cell, glucose molecules join

hemoglobin, forming glycated hemoglobin. Once a hemoglobin molecule is gly-

cated, it remains that way. HbA1c, or A1c, is the percentage of glycated hemoglobin

molecules in a red blood cell. The higher blood glucose level, the more glucose

molecules would join hemoglobin, resulting in a higher A1c level. Increases in
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the quantities of glycated hemoglobins are observed for individuals with poorly

controlled diabetes. Accumulation of glycated hemoglobins within a red blood

cell reflects the average blood glucose level to which the cell has been exposed

during its life cycle. The A1c level of a normal person is about 5 and an out-of-

control diabetic patient has an A1c level of 8 or more. While hemoglobin A1c

test is now considered the best and standard measure of diabetic hyperglycemia,

effective management of type 1 diabetes usually indicates a lower A1c level while

controlling hypoglycemia risk.

In the past few years many researchers have been working on the develop-

ment of a feasible automated closed-loop insulin delivery system to replace the

open-loop control based on prespecified basal rate and self-adjusted bolus rate.

In self-adjusted open-loop control, continuous glucose monitor provides the pos-

sibility to alert patients to the presence of high and low blood glucose levels.

From time to time additional bolus injection is performed to avoid hyperglycemia

events in the presence of scheduled meals and extra food or snacks are eaten to

avoid hypoglycemia events. However, many other factors other than carbohy-

drate intake affect glucose levels, including hormones, exercise, stress, illness, etc.

Moreover, it is almost impossible for a patient to read his glucose levels “con-

tinuously” and take corresponding actions of “eat” and/or “inject”. Patients are

often distracted, misguided by what he thinks he should do, and overreact. For

a “careless” diabetic patient, it could be extremely helpful to use a closed-loop

system that automatically determines and delivers the necessary amount of in-

sulin to control hyperglycemia events. To this end, it is necessary to have three

major design elements for an automated closed-loop insulin delivery system: an

insulin pump to deliver precise amount of insulin on time, a real-time glucose

monitor to accurately measure blood glucose levels, and an effective algorithm

with a few prespecified parameters to calculate the amount of insulin delivery

from continuous glucose measurements.
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Inspired by the novel nonparametric statistical imputation method of Mas-

trototaro et al [15], we study a semiparametric imputation method to simulate a

time series of blood glucose level had certain closed-loop algorithm been in con-

trol of the diabetic patients, from the “frozen” measurements under self-adjusted

open-loop control. The semiparametric imputation method utilizes an insulin

absorption model and an insulin action model as parametric components and

a nonparametric life-style component. Palerm, Shepp, Cabrera and Zhang [20]

proposed a mathematical formula to estimate A1c based on continuous blood

glucose levels. The A1c’s under certain automatic control algorithm are imputed

by applying the mathematical formula for A1c to the imputed time series of

blood glucose level. The mathematical formula for A1c makes it possible to con-

tinuously evaluate the performance of a closed-loop control algorithm and the

open-loop control. As an example in this chapter we impute the blood glucose

levels under a simple proportional-integral-derivative (PID) algorithm. To this

end, we will have three A1c’s to compare for each subject. Measured A1c is the

laboratory measured value at the end of the period. Estimated A1c is calculated

from the “frozen” blood glucose measurements. PID-imputed A1c is calculated

from the imputed blood glucose levels under the simple PID algorithm. We define

a number of hypoglycemia measures and compare each of them between the PID

algorithm and the open-loop control. The process can be summarized as in the

following diagram:

real data (measured A1c) =⇒ estimated A1c

⇓
imputation method =⇒ program =⇒ imputed A1c

⇑
control algorithm

The Star One data set of 137 diabetic patients is provided by Medtronic Inc.
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Each of the 137 patients is equipped with an insulin pump and a continous glu-

cose monitor. The monitor reads the blood glucose level G(t) every 5 minutes.

The pump delivers the insulin according to a prespecified basal rate and self-

controlled bolus rate for meals. The patients receive no other source of insulin

except through their insulin pumps. The times and dosages of the insulin deliver-

ies are determined only by each patient. Although the Star One data set contains

some additional information for each patient, for example, patient-estimated car-

bohydrate intake, we use three most relevant variables, the continuous blood

glucose measurements (CGM) G(t), the subcutaneous insulin deliveries u(t), and

the laboratory measured A1c’s.

The rest of the chapter is organized as follows. In Section 2.2, we explain the

research design and methods, including a semiparametric imputation method, a

simple PID algorithm, and the mathematical formula for A1c. In Section 2.3,

we screen the data set to obtain the subjects with the best quality of data and

interpolate the missing values of G(t) within each subject. In Section 2.4, nu-

merical experiments are carried out to impute blood glucose levels and calculate

A1c values of the corresponding subjects. In Section 2.5, we define hypoglycemia

measures and evaluate hypoglycemia risk under the simple PID algorithm and

the open-loop control. In Section 2.6, we make a few remarks.

2.2 Research Design and Methods

In this section, we propose a semiparametric imputation method under a simple

PID algorithm and describe the mathematical formula for A1c.

2.2.1 Semiparametric Imputation Method

The semiparametric imputation method utilizes an insulin absorption model and

an insulin action model as parametric components and a nonparametric life-style



13

component. For definiteness, we describe here the statistical methods based on a

two-compartment plasma insulin concentration model of Hovorka et al [14] and a

revised minimal insulin action model of Steil et al [21].

In Hovorka et al [14], the two-compartment modeling of insulin absorption

subsystem is proposed to calculate the insulin concentration I(t) from subcuta-

neous insulin delivery u(t) (basal and bolus infusion). The pump may cause some

delay because it is placed in subcutaneous fat rather than in bloodstream to avoid

infection. For now we will use the two-compartment modeling of insulin subsys-

tem and keep the values of model parameters. Insulin absorption and plasma

insulin concentration are modeled as

dS1(t)

dt
= u(t)− S1(t)

tmax,I

,
dS2(t)

dt
=

S1(t)

tmax,I

− S2(t)

tmax,I

, (2.1)

UI(t) =
S2(t)

tmax,I

,
dI(t)

dt
=

UI(t)

VI

− keI(t),

where S1(t) and S2(t) are a two-compartment chain representing absorption of

subcutaneous delivery of insulin and UI(t) is the insulin absorption rate (appear-

ance of insulin in plasma). tmax,I = 55 min is the time-to-maximum insulin ab-

sorption, ke = 0.138 min−1 is the fractional elimination rate and VI = 0.12 L/kg

is the distribution volume. Figure 2.1 illustrates the effect of 1 unit subcutaneous

delivery u(0) of insulin on the plasma insulin concentration I(t) over the next

24 hours. Note that there is a gap of about an hour between the subcutaenous

delivery and the peak of the plasma insulin concentration, and the coverage of

subcutaneous delivery of insulin lasts about 5 hours. For simplicity we denote

the insulin absorption system (2.1) as H(⋅) such that

I(t) = H(u(s), s ≤ t)

Once the plasma insulin concentration I(t) is calculated from the subcuta-

neous insulin delivery u(t), a natural next-step is to model the action of insulin

on the blood glucose level, along with the meal absorption. How insulin regu-

lates glucose levels has not been fully understood and usually it is modeled as a
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Figure 2.1: The insulin concentration after 1 unit subcutaneous delivery of insulin.

dynamic system. Blood glucose levels are quite volatile, even for healthy people

without diabetic diseases. The ups and downs of glucose levels are similar to

stock prices. Carbohydrate intake drives up the glucose level just as bid order

pushes up the stock price, while insulin pulls down the glucose level as ask order

does. And blood glucose levels are cycled daily, rise and fall serveral times due

to scheduled meals. One example is the insulin action subsystem and the glu-

cose subsystem of Hovorka et al [14], where the insulin action subsystem outputs

the (remote) effects of insulin on glucose distribution/transport, glucose disposal

and endogenous glucose production based on the input of plasma insulin con-

centration I(t). And the glucose subsystem ouputs the masses of glucose in the

accessible and non-accessible compartments based on the inputs from the insulin

action subsystem. It is plausible but has many model constants to measure and

many model parameters to calibrate. To keep model simple and make model

parameters identifiable, we model the meal absorption and insulin-meal-glucose

kinetics together as a semiparametric model. The nonparametric part is called

the life-style component, inspired by the revised minimal insulin action model in

Steil et al [21]. To account for conditions other than IVGTT such as meals and

snacks, we could assume an arbitrary rate of glucose appearance Ra(t) that is the
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sum of endogenous and exogenous glucose sources. The revised minimal insulin

action model could be written as

dG(t)

dt
= −[p1 + x(t)]G(t) +

Ra(t)

VT

, G(0) = G0

dx(t)

dt
= −p2x(t) + p3I(t), x(0) = 0,

where p1 is the “glucose effectiveness at zero insulin” in [21], or equivalently,

dG(t)

dt
=

Ra(t)

VT

− p1G(t)− p3G(t)

∫ t

0

ep2(s−t)I(s)ds.

The discretization of the above integro-differential equation could be written as

G(t+Δt)−G(t)

Δt

=
Ra(t)

VT

− p1G(t)− p3ΔtG(t)

t/Δt∑
j=1

ep2(jΔt−t)I(jΔt)

=
Ra(t)

VT

− p1G(t)− p3ΔtG(t)
∑
s≤t

I(s)e−p2(t−s). (2.2)

Under a regression setup, (2.2) suggests a simple semiparametric model

G(t+Δt)−G(t) = ¯0(t) + ¯1G(t) + ¯2G(t)
∑
s≤t

I(s)e−w(t−s), (2.3)

where ¯0(t) is the nonparametric life-style component of the patient, ¯1, ¯2 are

unknown parameters and w is an unknown weight of the exponential moving aver-

age of {I(s), s ≤ t}. Before we calibrate the parameters {¯1, ¯2, w} and estimate

the nonparametric ¯0(⋅), it is necessary to remove the abnormal days that do not

reflect the particular lifecycle of the patient during the period under investigation,

based on the continuous blood glucose measurements. The data during these ab-

normal days are not included in estimating the life-style component or used in

the imputation. K-means clustering on CGM’s is applied to seperate the normal

days of the subject.

Consider an individual patient in the Star One data set. Suppose measure-

ments are taken in days d = 1, . . . ,m at time points tk, k = 1, . . . , n with fixed

Δt = tk+1− tk (5 minutes). Let ud(tk) be the actual amounts of subcutaneous in-

sulin delivery and Gd(tk) be the actual blood glucose measurements. From ud(tk),
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the plasma insulin concentration Id(tk) are computed using the insulin absorption

model (2.1). We describe the semiparametric imputation method as follows:

Step 1: Estimate ¯1, ¯2, w and the life-style component ¯0(⋅) using (2.3) and

all time/day points. In this step, ¯0(⋅) is approximated by a cubic spline function

ˆ̄
0(⋅) with appropriate number of knots to represent the carbohydrate intake and

exercise as well as to achieve smoothness.

Step 2: Compute the adjustment ²d(tk) of life-style component for each day

using the estimated parameters { ˆ̄1, ˆ̄2, ŵ}, ˆ̄0(⋅) from Step 1 and the actual data

for that day,

²d(tk) = Gd(tk+1)−Gd(tk)− ˆ̄
0(tk)− ˆ̄

1Gd(tk)− ˆ̄
2Gd(tk)

∑

j≤k

Id(tj)e
−ŵ(tk−tj).

Step 3: Dynamically update ũd(tk), Ĩd(tk) and impute the blood glucose level

G̃d(tk+1) for a given closed-loop control algorithm A(⋅),

ũd(tk) = A(G̃d(tj), j ≤ k)

Ĩd(tk) = H(ũd(tj), j ≤ k)

G̃d(tk+1) = G̃d(tk) + ˆ̄
0(tk) + ˆ̄

1G̃d(tk) + ˆ̄
2G̃d(tk)

∑

j≤k

Ĩd(tj)e
−ŵ(tk−tj) + ²d(tk).

2.2.2 PID Algorithm

As an example we impute the glucose levels under a simple proportional-integral-

derivative (PID) algorithm. PID algorithm is a generic closed-loop control algo-

rithm widely used in engineering applications. PID algorithm could be used to

control the blood glucose level toward a desired target by providing suitable dose

of insulin delivery. In PID, the insulin dose is calculated using continuous glucose

measurements G(t) as a linear combination of three components: proportional

(P), integral (I) and derivative (D). The proportional component delivers insulin

to bring down the glucose level to the glucose target Gtarget. The integral and

derivative components deal with the slow rise and rapid rise of glucose levels. PID
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algorithm can be written as PID(t) = Pcontrol(t) + Icontrol(t) + Dcontrol(t)

where Pcontrol(t) = ·p(G(t)−Gtarget), Icontrol(t) = Icontrol(t− 1)+·i(G(t)−
Gtarget) and Dcontrol(t) = ·dG

′(t) with G′(t) being the derivative of G(t).

In our specific application, the target Gtarget is fixed at 100 mg/dL, ·p =

4.44×10−4TDD, ·i = ·p/150 and ·d = 60·p, where TDD denotes the estimated

total daily dose and is approximately 0.6 of the body weight in kilograms, the time

interval between two measurements is 1 minute, values of which are suggested by

experts of Medtronic Inc.

The three components of PID algorithm can be understood from an intuitive

perspective. The proportional component increases insulin delivery when the cur-

rent glucose level is above the glucose target and reduces insulin delivery when

glucose is below target. When the glucose level is at the target level, the integral

component provides insulin for fasting glucose, and Icontrol(t) adjusts upward

when glucose level is above target, downward when glucose level is below target,

helping to stabilize the system. The derivative component increases insulin deliv-

ery when the glucose level is rising and reduces insulin delivery when the glucose

level is falling, using momentum indicator to stabilize the system.

2.2.3 Mathematical Formula for A1c

Parlerm, Shepp, Cabrera and Zhang [20] derived a simple but accurate theoretical

formula to estimate A1c based on continuous blood glucose measurements. Once

the relationship between A1c and blood glucose measurements is established,

some questions can be answered, for instance, which one is A1c more related

to, short-term or long-term glucose levels. More importantly, the semiparametric

imputation method allows us to evaluate and compare the performance of different

control algorithms, open-loop or closed-loop, in controlling hyperglycemia risk

from the perspective of A1c value. For completeness, we briefly reproduce the

mathematical A1c formula as follows.



18

Consider a hemoglobin molecule in a red cell. Suppose the survival model for

a red blood cell is an exponential distribution with mean 1
°
days.

A1c/100 = P (glycated) =

∫ ∞

0

P (glycated∣age = t) °e−°tdt. (2.4)

Another assumption is that glycation satisfies an inhomogeneous Poisson process

with the hazard rate proportional to glucose level G(t), i.e.,

P (glycated∣age = t) = 1− e−
∫ t
0 G(x)®dx. (2.5)

Combine (2.4) and (2.5),

P (glycated) =

∫ ∞

0

(
1− e−

∫ t
0 G(x)®dx

)
°e−°tdt

= 1− °

∫ ∞

0

e−°t−∫ t
0 G(x)®dxdt (2.6)

To estimate the parameters ° and ® of (2.6), it is necessary to make some as-

sumptions. Assume that the average lifetime of red blood cells is 120 days, i.e.,

° = 1/120. Also assume that the glycation rate ® is a constant for everyone, so

that the data of a normal person can be used to estimate ®. It is known that nor-

mals have A1c = 5 and assume G(t) ≡ 100 mg/dL. Newton’s method is applied

to calculate the reasonable ® for a given subject in practice.

2.3 Data Screening and Interpolation of Missing Values

Due to unknown causes, there are quite a few missing blood glucose measurements

G(t) listed as “NA” in the Star One data set. This section explains how we screen

the data and select 21 subjects with the best quality of data and interpolate the

missing values of G(t) within each subject. Since the goal is to compare PID-

imputed A1c’s with estimated and laboratory measured A1c’s, it is natural to

partition the data set so that each 3-month data G(t), u(t) of a patient is one

subject under investigation with the corresponding laboratory measured A1c at

the end of the period.
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The mathematical formula for A1c in [20] implies that the weights of recent

(late) glucose levels in determining A1c’s are exponentially larger than the distant

(early) ones. If there are a lot of missing CGM values near the end of the 3-month

period, it would bring larger bias for estimation of the “true” A1c’s. Therefore

we use the following criterion to assign a score of data quality to each subject.

If the percentage of the total missing glucose levels for a day is less than 25%,

we tag that day with “not missing”. The score of data quality for a subject is

defined as
∑J−1

j=0 I{dayJ−j not missing}Rj, where R satisfies
∑J−1

j=0 R
j = 20 and

J is the length of the period. We use 18 out of 20 (90%) as a cut-off threshold

for good data quality. Under this criterion, we have a total of 21 subjects out of

137 patients. The “Score” column of Table 2.1 summarizes the scores of these 21

subjects with good quality of data.

For each subject, it is possible that CGM’s of certain day tagged with “not

missing” still have some missing values, but the missing percentage is less than

25%. Then we use cubic splines to interpolate these missing values. Figure 2.2 is

a typical example of the cubic spline interpolation. Note the difference had linear

interpolation been used instead of cubic spline interpolation. For the missing

values of a day tagged with “missing”, we keep them as is and include them in

the A1c calculation but not the imputation.

2.4 Numerical Experiments

After the data is well screened and part of missing CGM values are interpolated,

we impute the blood glucose levels under the simple PID algorithm and calculate

A1c’s of the imputed glucose levels as well as the “frozen” ones.

Figure 2.3 illustrates the life-style component ˆ̄0(⋅) of patient 14 approximated

by a cubic spline with 23 internal knots, and the average blood glucose levels be-

tween 8/8/2005 and 11/3/2005. The life-style component has 3 peaks, indicating
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Patient Period Score PID-imputed A1c Estimated A1c Measured A1c
14 1 19.244 6.501161 6.926936 7.0
14 2 19.065 6.790962 7.365180 7.0
17 1 19.710 6.780308 7.613608 7.7
17 2 18.662 6.619161 7.212557 7.3
25 3 19.516 10.08607 8.114699 7.4
25 4 18.907 7.623908 8.311716 7.5
32 1 19.514 6.611458 7.439253 6.6
32 2 18.163 6.646665 7.253497 6.5
37 1 18.717 6.531904 6.994606 7.2
37 2 19.441 6.818421 7.403225 7.4
55 1 19.518 6.549876 7.492541 6.7
55 2 19.855 6.656363 7.675616 6.6
55 3 19.731 6.637304 7.841469 7.0
79 1 19.466 7.053136 8.457546 7.9
79 2 18.167 6.606708 7.649595 7.7
114 1 18.284 10.84451 11.100841 9.1
122 1 18.277 6.642880 7.671015 7.7
122 2 19.823 6.666476 7.541406 7.8
125 1 19.338 6.470646 7.009722 6.2
125 2 18.659 6.516138 6.989586 6.5
134 1 18.739 8.803752 11.738476 9.7

Table 2.1: Scores of data quality, 3 types of A1c’s of 21 subjects: PID-imputed
A1c’s, estimated A1c’s based on “frozen” CGM’s and laboratory measured A1c’s.

patient 14 normally had 3 meals per day during that period that are responsible

for the corresponding climb-ups of the average glucose level. Note that ˆ̄
0(⋅) is

not always positive. Carbohydate intake would push up the curve and exercise

would have the opposite effect. Regular snacks should be taken by type 1 diabetes

patients to avoid low blood glucose levels due to the continuous basal infusion

of insulin. There is some delay between carbohydrate intake and glucose level

climb-up. ˆ̄
2 = −0.00026 is expected to be negative, indicating that insulin does

help bring down glucose level.

Table 2.1 compares the A1c’s under the PID and the open-loop control. PID-

imputed A1c’s are estimated A1c values based on PID-imputed blood glucose

levels and (2.6). Estimated A1c’s aer estimated A1c values based on the “frozen”
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Figure 2.3: Left: the life-style component of patient 14; right: average blood
glucose levels of patient 14 from 8/8/2005 to 11/3/2005.

blood glucose levels and (2.6). The laboratory measured A1c’s are the true A1c’s

at the end of a 3-month period. Figure 2.4 visualizes the comparison between PID-

imputed and measured A1c’s. The blue straight line is a diagonal line of equal

PID-imputed and measured A1c’s. Out of the 21 subjects with good quality

of data, there are 8 subjects when the open-loop control performs better than

the simple PID algorithm, and for the rest 13 subjects the PID decreases A1c’s

significantly. A careful look into these patients where the PID loses tells us that

the estimated A1c’s differ from the laboratory measured A1c’s significantly. This

phenomenon occurs in different A1c periods of the same few patients. Palerm,



22

Shepp, Cabrera and Zhang [20] claims that the A1c value treats some individuals

differently than it treats others. Among the most significant determinants of A1c

is the biologic difference in the rate of glycation. In our cases, patient 114 and

134 might be “overwarned” by the mathematically estimated A1c’s in that the

mathematically estimated A1c’s are at least 2 points higher than the laboratory

measured ones.
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Figure 2.4: Left: PID-imputed A1c’s and measured A1c’s; right: PID-imputed
A1c’s and estimated A1c’s.

It is not fair to compare the PID-imputed and measured A1c’s, because the

former are estimated using the mathematical formula for A1c (2.6) and the latter

are true values without estimation error. Thus the comparison should be made

between PID-imputed and estimated A1c’s. Figure 2.4 provides the compari-

son between PID-imputed A1c’s and mathematically estimated ones. It is found

that the simple PID algorithm lowers A1c’s compared with the open-loop control,

expect during period 3 of patient 25. This finding agrees with the results of Mas-

trototaro et al [15]. A simple t-test showes the difference between PID-imputed

A1c’s and estimated A1c’s is significant. Table 2.2 shows that period 3 of patient

25 has the smallest sample standard deviation 44.3 among all 21 subjects. It is

possible that patient 25 was a careful diabetic patient during period 3 who knew

what had been eaten, what would be eaten, what exercise had been and would
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be performed, and what the stress and illness level was, while the PID had no in-

formation other than the continuous glucose measurements. Therefore the simple

PID algorithm without tuning the parameters cannot guarantee a better solution

for this subject.

Table 2.2 shows that the PID reduces the average blood glucose levels with

only a relatively small contribution to the variability of glucose levels within the

21 subjects under investigation.

Patient Period CGM CGM (PID)
14 1 138.96 (48.3) 127.54 (49.7)
14 2 147.93 (57.0) 135.28 (57.9)
17 1 153.92 (58.6) 135.24 (64.3)
17 2 147.15 (52.6) 131.77 (57.8)
25 3 162.22 (44.3) 200.71 (63.4)
25 4 168.50 (51.4) 154.34 (52.7)
32 1 151.15 (56.3) 133.75 (58.9)
32 2 145.35 (55.4) 132.35 (60.1)
37 1 145.39 (53.4) 133.07 (54.9)
37 2 150.84 (52.8) 137.45 (54.4)
55 1 151.41 (44.1) 131.25 (49.3)
55 2 158.25 (48.4) 135.00 (54.8)
55 3 159.37 (48.0) 134.98 (54.9)
79 1 173.76 (58.3) 142.36 (63.4)
79 2 158.00 (54.7) 138.06 (57.9)
114 1 227.62 (48.4) 221.68 (48.3)
122 1 152.76 (57.5) 132.75 (62.0)
122 2 154.35 (58.0) 135.36 (63.7)
125 1 148.65 (50.9) 133.83 (52.9)
125 2 140.69 (49.9) 130.98 (54.0)
134 1 244.04 (52.4) 182.49 (71.9)

Table 2.2: Some descriptive statistics of “frozen” CGM’s and PID-imputed
CGM’s for 21 subjects: sample mean and sample standard deviation.

Let us take a close look at how differently the simple PID algorithm would

work from the open-loop control. Figure 2.5 illustrates the glucose levels, sub-

cutaneous insulin deliveries and plasma insulin concentration for patient 14 on

8/9/2005. As we can see, continuous insulin deliveries calculated from our semi-

parametric imputation model under the PID have rapid effect on reducing the
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blood glucose levels.
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Figure 2.5: Left: glucose levels, insulin deliveries and insulin concentration of
patient 14 on 8/9/2005; right: imputed glucose levels, calculated insulin deliveries
and insulin concentration of patient 14 on 8/9/2005.

Before the feasibility of an automated system of insulin delivery has been fully

validated, it is difficult as well as dangerous to test the performance of an auto-

matic control algorithm on diabetic patients for a long period in a clinical trial.

The semiparametric imputation method makes it possible to evaluate the perfor-

mance of different control algorithms using a “frozen” data set. The Star One

data set provides evidence that the simple PID algorithm has good performance

in controlling hyperglycemia. However, we have yet tested any other closed-loop

control algorithm thus there is no evidence that PID is the best. And the question

whether closed-loop or open-loop control is better for a careful diabetic patient

is not fully answered.

2.5 Hypoglycemia Measures

Subsection 2.2.3 quantifies hyperglycemia risk as A1c and Section 2.4 evaluates

the numerical performance of PID algorithm in controlling A1c from above. Be-

sides hyperglycemia, the other risk of diabetic disorder is hypoglycemia, which

could lead to ketoacidotic coma. Hypoglycemia happens when a diabetic patient
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injects too much insulin and has no matching carbohydrate intake to spend the

insulin. A diabetic patient would feel uncomfortable or hungry if the period when

glucose level dives below 60 mg/dL lasts for a long time and happens frequently.

A reasonable closed-loop control algorithm should keep low both risks of hyper-

glycemia and hypoglycemia. To this end, we define a number of hypoglycemia

measures: the number of hypoglycemia episodes of a subject, the duration of

each hypoglycemia episode, and the average area underneath the threshold of 60

mg/dL, AUT =
∑{60−G(t)}+∑

IG(t)<60
, whereas the latter two measures are more important

than the first one.

Table 2.3 summarizes three hypoglycemia measures for the PID and open-

loop control. For almost all subjects, medians of PID-imputed AUT’s are smaller

than 10 and medians of PID-imputed durations underneath the threshold of 60

mg/dL are shorter than 1 hours. Incidence of hypoglycemia is similar for the

PID and open-loop control. There are no episodes of severe hypoglycemia under

the PID. Although the simple PID algorithm has good performance in controlling

hyperglycemia, we find it difficult for the PID to further lower hypoglycemia risk,

compared with the open-loop control. The reason is that the Star One data set

has the survival bias. When diabetic patients feel uncomfortable or hungry, they

would simply eat some additional food to keep up their blood glucose levels. It

is challenging for closed-loop control algorithms to control hypoglycemia risk be-

cause algorithms do not deliver food to spend the insulin. This component is not

imputed. Figure 2.6 is an example of patient 79 on 1/4/2006 illustrating when

and how hypoglycemia events happen under the PID. From 5:00 to 8:30, the PID

worked well to reduce the glucose level towards the glucose target 100 mg/dL

slowly. When the patient ate the breakfast during 8:30 and 9:00, the glucose level

rose rapidly and the PID algorithm started to alert the insulin pump to deliver

more insulin. While there was some delay before insulin action on the glucose
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level, the pump kept delivering insulin so that the insulin concentration accu-

mulated and kept reducing the glucose level below 60 mg/dL until the algorithm

found out the hypoglycemia event or the patient had lunch to keep up the glucose

level.
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Figure 2.6: Left: glucose levels, insulin deliveries and insulin concentration of
patient 79 on 1/4/2006; right: imputed glucose levels, calculated insulin deliveries
and insulin concentration of patient 79 on 1/4/2006.
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Patient Period # Episodes (PID) Duration (PID) AUT (PID)
14 1 34 (85) 0.38 (0.50) 2.12 (3.71)
14 2 46 (101) 0.42 (0.58) 4.19 (4.94)
17 1 53 (165) 0.50 (0.75) 4.39 (8.46)
17 2 46 (127) 0.29 (0.92) 2.56 (9.24)
25 3 4 (3) 0.21 (0.17) 3.56 (1.84)
25 4 0 (33) 0 (0.33) 0 (2.85)
32 1 54 (142) 0.38 (0.54) 3.65 (7.26)
32 2 51 (141) 0.46 (0.67) 4.12 (6.60)
37 1 34 (96) 0.46 (0.75) 3.80 (7.00)
37 2 20 (98) 0.33 (0.58) 5.14 (6.15)
55 1 9 (114) 0.08 (0.71) 2.18 (7.65)
55 2 5 (126) 0.17 (1.00) 2.35 (10.42)
55 3 7 (103) 0.42 (1.08) 5.14 (9.35)
79 1 1 (107) 0.75 (1.17) 2.31 (12.70)
79 2 40 (126) 0.17 (0.58) 3.99 (7.17)
114 1 0 (0) 0 (0) 0 (0)
122 1 43 (131) 0.25 (0.83) 4.27 (9.11)
122 2 41 (143) 0.42 (0.92) 4.10 (7.43)
125 1 18 (88) 0.50 (0.58) 3.70 (6.26)
125 2 84 (196) 0.25 (0.42) 3.26 (5.75)
134 1 0 (42) 0 (0.50) 0 (10.00)

Table 2.3: Some hypoglycemia measures of “frozen” CGM’s and PID-imputed
CGM’s for 21 subjects: number of hypoglycemia eposides, median of durations
(in hours), median of average areas underneath the threshold of glucose level 60
mg/dL.

2.6 Discussion

This chapter proposes an imputation method to simulate a time series of blood

glucose level under certain closed-loop control algorithm, from the “frozen” mea-

surements. Use the mathematical formula for A1c to quantify hyperglycemia

risk and define a few hypoglycemia measures, it is possible to evaulate and com-

pare the performance of different closed-loop control algorithms and self-adjusted

open-loop control. We apply a simple PID algorithm as a closed-loop control

algorithm while the glucose target Gtarget and 3 parameters ·p, ·i, ·d of the algo-

rithm are fixed arbitrarily in the imputation of glucose levels. These parameters

could be tuned for individual diabetic patient to minimize a combined risk of
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hyperglycemia and hypoglycemia, for example, duration-penalized and/or AUT-

penalized A1c value. However, we do not include the optimization of the simple

PID algorithm because the main message we want to deliver in this chapter is the

idea of imputation from “frozen” measurements.

In our numerical experiment, we have seen that for a careful type 1 diebetic

patient 25, it is difficult for the PID to gain any edge from the perspective of

lowering the blood glucose level. Can any closed-loop control algorithm beat self-

adjusted open-loop control? This kind of question is hard to answer. One of

the reasons is that there is quite some delay between the subcutaneous insulin

delivery and the insulin action on glucose levels. Therefore a closed-loop control

algorithm based only on continuous glucose measurements would have difficulty

competing with the action a careful diabetic patient would take if the patient has

some experience dealing with type 1 diabetes and keeps a regular and healthy life

style.
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Chapter 3

Selection and Estimation with the ℓ1 Penalty

3.1 Introduction

As modern information technologies relentlessly generate increasingly voluminous

and complex data, penalized high-dimensional regression methods have been the

focus of intense research activities in machine learning and statistics in the past

few years.

In many statistical and engineering applications, the number p of design vari-

ables (features, covariates) can be larger or even of larger order than the sample

size n, but the number of important variables is still smaller than the sample

size. In the microarray technology, the expression levels of thousands of genes are

collected simultaneously from a relatively small number of samples. In signal pro-

cessing (sparse recovery, compressed sensing), a p-dimensional signal is encoded

through a linear transformation to an n-dimensional vector, stored or transmitted

in the n-dimensional form, and then recovered. In such applications, one seeks

a parsimonious model that fits the data well. Many applications also require an

easy interpretation of the selected model. In linear regression, a popular approach

for model selection is to impose a suitable penalty on the empirical loss.

This chapter considers variable selection and estimation of a sparse vector of

regression coefficients in a linear model. Specifically, we are interested in the vari-

able selection consistency of threshold Dantzig selectors and the rate minimaxity

of the Dantzig and Lasso estimators under the ℓq loss for regression coefficients

in ℓr balls. The first goal requires an upper bound for the ℓ∞ loss of the Dantzig
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selector. The second goal requires lower bounds of the minimax ℓq risk and min-

imax (tail quantiles of the) ℓq loss over all estimators as well as matching upper

bounds for the Dantzig and Lasso estimators.

Let y ∈ ℝn be a response vector and X = (x1, . . . ,xp) ∈ ℝn×p be a design

matrix. The Lasso [22] is an ℓ1-penalized estimator

ˆ̄
Lasso(¸) = argmin

b

{
∥y −Xb∥2/(2n) + ¸∥b∥1

}
(3.1)

for the regression coefficients. In the signal processing literature, the Lasso is

known as basis pursuit [6]. The Lasso has the interpretation as boosting [11, 12]

and is computationally feasible for high-dimensional data [18, 19, 9]. Recently

Candes and Tao [4] proposed another ℓ1-penalized method called the Dantzig

selector,

ˆ̄
Dantzig(¸) = argmin

b

{
∥b∥1 : ∣x′

j(y −Xb)/n∣ ≤ ¸, ∀j
}
. (3.2)

It is a simple convex program that can be recast as a convenient linear program.

Variable selection is fundamental for the interpretation of models with hign-

dimensional data in statistical, engineering and social science applications. An

estimator is variable selection consistent if the set of nonzero estimated coefficients

matches that of the “true” nonzero regression coefficients with large probability.

In general, consistent variable selection implies near optimal parameter estimation

and prediction. One of the important features of the Lasso is that it can be used

for variable selection. Meinshausen and Buhlmann [16], Tropp [23], Zhao and Yu

[29] and Wainwright [25] proved that the Lasso is variable selection consistent

under a strong irrepresentable condition on the Gram matrix X ′X/n and some

other regularity conditions. Zhang and Huang [27] proved the consistency of

the Lasso in the order of the dimension and bias of the selected model under

a regularity condition on the eigenvalues of sub-Gram matrices. More recently,

Candes and Plan [5] proved the selection consistency of the Lasso under random

permutation and sign-change of regression coefficients and a mild condition on
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the maximum absolute correlation among design vectors. Zhang [28] studied the

selection consistency of the Lasso through its ℓ∞ loss. Although the Dantzig and

Lasso estimators are quite similar, it is still unclear in the existing literature if

the Dantzig selector possesses selection consistency properties parallel to those

mentioned above for the Lasso.

Another focus of recent studies of the ℓ1-penalized least squares estimators

has been on the estimation loss for the regression coefficients. Candes and Tao

[4] derived an elegant probabilistic upper bound of the ℓ2 loss for the Dantzig

selector under a condition on the number of nonzero coefficients and a uniform

uncertainty principle (UUP) on the Gram matrix. Efron, Hastie and Tibshirani

[10] questioned whether a similar performance bound holds for the Lasso estima-

tor as well. Upper bounds for the ℓq loss of the Lasso estimator has being studied

by Bunea, Tsybakov and Wegkamp [3] and van de Geer [24] for q = 1, Zhang and

Huang [27] for q ∈ [1, 2], Meinshausen and Yu [17] for q = 2, Bickel, Ritov and

Tsybakov [2] for q ∈ [1, 2] with a parallel analysis of the Dantzig selector, and

Zhang [28] for q ≥ 1. Under different sets of regularity conditions on the Gram

matrix and sparsity of regression coefficients ¯ ∈ ℝp, these results provide upper

bounds of the form ∥ˆ̄ − ¯∥q ≤ O(k1/q¸), where k is of the order of an intrinsic

dimensionality of the sparse estimation problem. For N(0, ¾2) errors and stan-

dardized designs with ∥xj∥ =
√
n, the required penalty levels ¸ in these studies

on the Lasso are all greater by a constant factor than the universal penalty level

¾
√

(2/n) log p in the inequality of Candes and Tao [4]. Different sets of regularity

conditions lead to different forms of constant factors in the upper bounds so that

the existing upper bounds are typically not directly comparable mathematically.

Technical discussion on the constant factors and conditions on the Gram ma-

trix will be presented after we introduce the necessary terminologies and specific

results.

Although this chapter focuses on the selection of variables and estimation
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of regression coefficients, we would like to mention that the prediction of future

responses is another important question in high-dimensional data. In a vague

sense, the estimation of regression coefficients is related to the prediction or the

estimation of the mean response Ey as it could be viewed as a careful application

of a suitable partial inversion of the design matrix X to a good predictor, in view

of the persistency of the Lasso [13] and the convergence rate k1/q¸ discussed in

the previous paragraph.

The main results of this chapter contribute to two specific problems in high-

dimensional regression. Firstly, under an assumption on the ℓ0 sparsity of a target

vector of regression coefficients, we obtain simple upper bounds for the ℓq loss of

the Dantzig and Lasso estimators. Our upper bounds sharpen and unify a number

of existing approaches and extend the inequality of Candes and Tao [4] from q = 2

to 1 ≤ q ≤ ∞ and the Lasso. By explicitly allowing q = ∞ and thresholding

the Dantzig selector, the bounds imply variable selection consistency. Secondly,

we prove that both the Dantzig and Lasso estimators are rate minimax in the ℓq

risk and loss for the estimation of regression coefficients in ℓr balls. This requires

lower bounds for general estimators and matching upper bounds for the Dantzig

and Lasso estimators. For 0 < r ≤ q, we prove that the minimax ℓq risk and loss

in ℓr balls are bounded from below by Rr¸q−r
mm, where ¸mm is a certain minimax

penalty level and R is the radius of the ℓr ball. These lower bounds extend the

results of Donoho and Johnstone [7] from orthonormal designs. When ¸mm is of

the same order as ¾
√

(2/n) log p, we prove that the Dantzig and Lasso estimators

attain the rate of the minimax risk and loss for 0 < r ≤ 1 ≤ q. We also prove that

the Lasso attains the minimax rate for the ℓq loss in ℓr balls for 0 < r ≤ 1 ≤ q ≤ 2

in the difficult case of ¸ ≍ ¸mm = o(¾
√

(2/n) log p).

The rest of the chapter is organized as follows. In Section 3.2, we study error

bounds and variable selection under the ℓ0 sparsity of regression coefficients. In

Section 3.3, we study the estimation of regression coefficients under the ℓq loss in
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ℓr balls and provide non-probabilistic oracle inequalities for approximation of a

given target vector ¯∗. In Section 3.4, we provide all proofs. In Section 3.5, we

make a few final remarks.

We use the following notation throughout the sequel. For vectors v = (v1, . . . , vp)
′,

∥v∥0 = #{j : vj ∕= 0} and ∥v∥q = (
∑

j ∣vj∣q)1/q is the ℓq norm with the special

∥v∥ = ∥v∥2 and the usual extension to q = ∞. Functions are applied to vec-

tors in individual components, f(v) = (f(v1), . . . , f(vp))
′. For matrices M and

0 ≤ a, b ≤ ∞, ∥M∥a,b = max{∥Mv∥b : ∥v∥a = 1} is the operator norm from ℓa

to ℓb. For subsets A and B of {1, . . . , p}, XA = (xj, j ∈ A), ΣA,B = X ′
AXB/n,

ΣA = ΣA,A, and P A is the projection from ℝn to the linear span of {xj : j ∈ A}.
For real x, x+ = max(x, 0) and 1/x+ = ∞ for x ≤ 0. For simplicity, the depen-

dence of the Dantzig and Lasso estimators on the penalty level ¸ is suppressed

unless otherwise stated.

3.2 Error bounds and variable selection under ℓ0 sparsity

Two types of error bounds will be considered in this chapter. The first type

specifies sparse vectors ¯ of regression coefficients (or targets ¯∗) and conditions

on the data (X,y) for upper bounds of the ℓq loss ∥ˆ̄ − ¯∥q. The second type

provides upper bounds for the ℓq risk E¯∥ˆ̄ − ¯∥qq and quantiles of the ℓq loss

under certain probability measures P¯. For simplicity, we assume

y = X¯ + " =

p∑
j=1

¯jxj + " (3.3)

with ∥xj∥2 = n and " ∼ N(0, ¾2In) under P¯, although the normality and

unbiasedness assumptions can be weaken as discussed in Section 3.5. Theorem 1

below presents both types of error bounds respectively in two parts under the ℓ0

sparsity of ¯. Define

¸mm = ¾
{ 2

n
log

( ¾rp

nr/2Rr

)}1/2

, ¸univ = ¾
√

(2/n) log p, (3.4)
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as penalty levels associated with the variance ¾2 under P¯ and the radius R of ℓr

balls.

Theorem 1. (i) Let q ∈ [1,∞], ¯ ∈ ℝp with J = {j : ¯j ∕= 0} and ∥¯∥0 =

∣J ∣ = k ≥ 0, 1 ≤ ℓ ≤ p − k and z∗∞ = ∥X ′(y −X¯)/n∥∞. Let ˆ̄ = ˆ̄
Dantzig(¸)

with {®̃, », C̃} = {0, 1, 2} or ˆ̄ = ˆ̄
Lasso(¸/®) with ® ∈ (0, 1) and {®̃, », C̃} =

{®, (1 + ®)/(1 − ®), 1 + 1/®}. For A ⊂ {1, . . . , p}, let TA(u) be mappings from

ℝA to ℝA and define w = TA(u)/(u
′ΣATA(u))+ as a function of {A,u}. Then,

in the event z∗∞ ≤ ¸,

∥ˆ̄ − ¯∥s ≤ max
A,B,u

{(1 + »)∥uJ∥1}(q/s−1)/(q−1)GA,u

(1 + »q(k/ℓ)q−1)(1/s−1)/(q−1)(1− »FA,B,u)+
, 1 ≤ s ≤ q, (3.5)

where FA,B,u = ∥uJ∥1∥ΣB,Aw∥1/ℓ, GA,u = C̃¸∥w∥1 min{1, (1 + »)∥uJ∥1/∥u∥1}
and the maximum is taken over A ⊃ J with ∣A∣ = k+ℓ, B∩A = ∅ with ∣B∣ ≤ ℓ and

u ∈ ℝA with ∥u∥q = 1. Moreover, if ˆ̄ = ˆ̄
Lasso(¸/®) and sgn(TA(u)) = sgn(u),

then (3.5) also holds with GA,u = C̃¸∥wJ∥1.
(ii) Let P¯ be probabilities giving the linear model (3.3). For ¸ = ¾

√
(2/n) log(p/²),

(3.5) holds with at least probability P¯{z∗∞ ≤ ¸} ≥ 1− ²/
√

¼ log(p/²).

In the rest of the section, we discuss an implication of Theorem 1 on variable

selection and its connections to the results of Candes and Tao [4], Bickel, Ritov

and Tsybakov [2] and Zhang [28] via different choices of the mappings TA(u).

We shall focus on the Dantzig selector and omit parallel statements for the Lasso

with different (®̃, », C̃).

For (∣A∣, ∣B∣, ∥u∥, ∥v∥) = (d, ℓ, 1, 1) with A ∩B = ∅, define

±±d = max
A,u

{
±

(
∥ΣAu∥ − 1

)}
, ±d = ±+ ∨ ±−, µd,ℓ = max

A,B,u,v
v′ΣB,Au. (3.6)

For q = 2, (3.5) with the option TA(u) = u gives

∥ˆ̄Dantzig − ¯∥s ≤ max
A,B,u

22/s{∥u∥1 ∧ (2∥uJ∥1)}(1 + k/ℓ)1−1/s∥uJ∥2/s−1
1 ¸

(u′ΣAu− ∥ΣB,Au∥1∥uJ∥1/ℓ)+
≤ 22/s{(1 + ℓ/k)1/2 ∧ 2}(1 + k/ℓ)1−1/sk1/s¸

(1− ±−k+ℓ)+{1− (k1/2/ℓ)maxA,B,u ∥ΣB,Au∥1/u′ΣAu}+
,
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where the worst {A,u} are taken separately with ∥u∥1 ≤
√

∣A∣ = √
k + ℓ and

∥uJ∥1 ≤
√
k by Cauchy-Schwarz, and the lower bound u′ΣAu ≥ 1− ±−k+ℓ is used.

Corollary 1. Suppose ∥¯∥0 = k ≥ 0. Then, for ∥X ′(y − X¯)∥∞ ≤ ¸ and

1 ≤ q ≤ 2,

∥ˆ̄Dantzig(¸)− ¯∥q ≤ 22/q(1 + k/ℓ)1−1/q{(1 + ℓ/k)1/2 ∧ 2}k1/q¸

(1− ±−k+ℓ)+{1− F̃}+
, (3.7)

where 1 ≤ ℓ ≤ p− k and for ∣A∣ = k + ℓ, ∣B∣ = ℓ and A ∩B = ∅,

F̃ = min
{k1/2maxA,B ∥ΣB,A∥2,1

ℓ(1− ±−k+ℓ)+
,

√
k/ℓ µℓ,k+ℓ

(1− ±−k+ℓ)+
,

√
k(1 + ±+ℓ )

ℓ(1− ±−k+ℓ)+

}
. (3.8)

The first upper bound in (3.8) is of the sharpest form among the three due

to the factor ℓ in the denominator. For (ℓ, q) = (k, 2), inserting the second upper

bound in (3.8) and the inequality ±−2k ≤ ±2k to (3.7) yields the upper bound

4
√
k/(1− ±2k − µk,2k)+ of Candes and Tao [4]. The upper bound (7.6) of Bickel,

Ritov and Tsybakov [2] is of a different form. However, inserting the third upper

bound in (3.8) to (3.7) improves upon inserting Lemma 4.1 (ii) into (7.6) in their

paper by a factor greater than 1/{1− F̃}+.
Another option in Theorem 1 is TA(u) = Σ−1

A fq−1(u), where fs(x) = sgn(x)∣x∣s.
For this option, u′ΣATA(u) = ∥u∥qq = 1 and w = TA(u). Since GA,u ≤ 2¸∥w∥1
and ∥w∥1 ≤ ∥Σ−1

A ∥q/(q−1),1 = ∥Σ−1
A ∥∞,q, separate maximization over u in (3.5)

yields

∥ˆ̄Dantzig(¸)− ¯∥q ≤ max
A,B

2¸∥Σ−1
A ∥∞,q(1 + (k/ℓ)q−1)1/q

{1− (k1−1/q/ℓ)∥Σ−1
A ΣA,B∥∞,q}+

, 1 ≤ q ≤ ∞, (3.9)

in the event ∥X ′(y −X¯)∥∞ ≤ ¸, where A and B are as in (3.5).

For q = ∞, this option provides the selection consistency of threshold Dantzig

selectors and an oracle property of the Gauss-Dantzig selector of Candes and Tao

[4],

ˆ̄
GD = argmin

b

{
∥y −Xb∥ : ∣ ˆ̄j∣ ≤ ¸′ ⇒ bj = 0,∀j, ˆ̄ = ˆ̄

Dantzig(¸)
}
. (3.10)
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For any threshold function t(x;¸) satisfying {x : t(x;¸) = 0} = {x : ∣x∣ ≤ ¸} and

xt(x;¸) ≥ 0, define the threshold Dantzig selector as

ˆ̄
TD = t

(ˆ̄
Dantzig(¸);¸

′ ). (3.11)

Examples include the hard threshold function t(x;¸) = xI{∣x∣ > ¸} and the soft

threshold function t(x;¸) = sgn(x)(∣x∣ − ¸)+. Define the oracle estimator

ˆ̄
oracle = argmin

b

{
∥y −Xb∥ : ¯j = 0 ⇒ bj = 0,∀j

}
. (3.12)

Theorem 2. Suppose (3.3) holds with ∥¯∥0 = k. Let ˆ̄
GD and ˆ̄

TD be as in

(3.10) and (3.11) respectively with the penalty level ¸ = ¸univ and a threshold

level ¸′ satisfying

max
A,B,v

2∥Σ−1
A v∥1{1 ∨ (k/ℓ)}¸univ

(1− (k/ℓ)∥ΣB,AΣ
−1
A v∥1)+

≤ ¸′ < min
¯j ∕=0

∣¯j∣/2,

where ¸univ is as in (3.4) and the maximum is taken over A ⊃ {j : ¯j ∕= 0} with

∣A∣ = k + ℓ, B ∩ A = ∅ with ∣B∣ = ℓ, and v ∈ ℝA satisfying ∥v∥1 = 1. Then,

P
{
sgn(ˆ̄TD) ∕= sgn(¯) or ˆ̄

GD ∕= ˆ̄
oracle

}
≤ 1/

√
¼ log(p) → 0.

Remark 1. The basic requirement on X in Theorem 2 is (k/ℓ)∥ΣB,AΣ
−1
A ∥1,1 < 1

uniformly. Meanwhile, the strong irrepresentable condition for the selection con-

sistency of the Lasso without post-thresholding is ∥ΣJc,JΣ
−1
J ∥∞,∞ < 1 uniformly.

Inequality (3.9) and another version of (3.5) with the option TA(u) = fq−1(u)

and GA,u = C̃¸∥wJ∥1 ≤ C̃¸k1/q∥w∥q/(q−1) are related to the error bounds in

Zhang [28] for the Lasso, where the connection between ℓ∞ bounds and variable

selection has been explored. For ∥¯∥0 = k, error bounds of [28] can be written as

∥∥ˆ̄
Lasso(¸/t

∗)− ¯
∥∥
q
≤ 32(1 + F ∗)G∗

C̃(1− F ∗)2+
for z∗∞ ≤ ¸, 1 ≤ q ≤ ∞, ℓ ≥ k, (3.13)

with F ∗ = maxA,B,u(k
1−1/q/∥uJ∥1)FA,B,u, G

∗ = C̃¸(k + ℓ)1/q maxA,u ∥w∥q/(q−1)

for TA(u) = Σ−1
A fq−1(u), G

∗ = C̃¸k1/q maxA,u ∥w∥q/(q−1) for TA(u) = fq−1(u),
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C̃ = (1+ 1/t∗) and t∗ = (1−F ∗)/{4(1 +F ∗)}, where w = TA(u)/(u
′ΣATA(u))+

is as in (3.5). In either cases, G∗ ≥ maxA,u GA,u and F ∗ ≥ maxA,B,u FA,B,u

due to applications of the Hölder inequality. It turns out that for the Lasso

with ® = t∗, the right-hand side of (3.5) is smaller than 5/12 of the right-hand

side of (3.13). For small k/ℓ, Zhang [28] pointed out the smaller order k1/q¸

of G∗ for TA(u) = fq−1(u) as an advantage for the Lasso, compared with the

order (k + ℓ)1/q¸. The cost of this advantage is the square of (1 − F ∗)+ in the

denominator of (3.13), compared with (3.7) and (3.9) for the Dantzig selector.

Moreover, the error bound in (3.7) for the Dantzig selector is also of the order

k1/q¸ for q ≤ 2 with much smaller constants, and the difference between k1/q and

(k + ℓ)1/q diminishes for large q as in Theorem 2. Thus, the advantage of the

Lasso in this aspect has some limitations.

We have observed that Theorem 1 sharpens and unifies a number of existing

error bounds for the Dantzig and Lasso estimators after applying the Hölder

inequality and taking the worst scenarios in both the numerator and denominator

in (3.5). We would like to mention that without additional applications of the

Hölder inequality, (3.5) typically gives error bounds of a sharper form such as

(3.9) involving the dimension-normalized ∥ ⋅ ∥∞,q norm for matrices instead of

the ∥ ⋅ ∥q,q norm. In addition, since the mappings v = TA(u) are allowed to

depend on {A,u}, our approach actually allows to replace “maxA,B,u” in (3.5)

with potentially much smaller “maxA,u infv maxB”. More general error bounds for

∥¯∥0 > k are given in Subsection 3.3.4 as oracle inequalities. Although the error

bounds in Theorem 1 for the Dantzig and Lasso estimators are of the same format,

the Lasso bounds require a larger penalty level ¸/® and larger {®̃, », C̃}. This

theoretical advantage of the Dantzig selector reverses when ∥ˆ̄Dantzig(¸)∥1 ≤ ∥¯∥1
for z∗∞ ≤ ¸ is replaced by ∥ˆ̄Dantzig(¸)∥1 ≤ ∥ˆ̄Lasso(¸)∥1 for z∗∞ > ¸ in our proofs.

See Section 3.5.
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3.3 Estimation with ℓq loss in ℓr balls

We state in four subsections our results on lower bounds for the minimax risk and

loss in ℓr balls, upper bounds for the maxima of the estimation risk in ℓr balls for

the Dantzig and Lasso estimators, upper bounds for the Lasso estimation loss,

and oracle inequalities used to derive the upper bounds.

3.3.1 Lower bounds for the estimation risk and loss

Donoho and Johnstone [7] proved that for 0 < r < q and based on a p-vector

ỹ ∼ N(¯, ¾2
nIp), the minimax ℓq risk in the ℓr ball Θr,R = {v : ∥v∥r ≤ R} is

approximately

inf
±

sup
¯∈Θr,R

E¯

∥∥±(ỹ)− ¯
∥∥q

q
= (1 + o(1))Rr¸q−r

mm

and achieved within an infinitesimal fraction by threshold estimators at the thresh-

old level ¸mm, provided that ¸mm/¾n → ∞ and Rr/¸r
mm → ∞. Here ¸mm is as

in (3.4) with ¾n = ¾/
√
n and the infimum is taken over all Borel mappings ± of

proper dimensions. The following theorem extends their result to the estimation

of regression coefficients in the linear model (3.3).

Theorem 3. Let P¯ be as in (3.3), R > 0, q ≥ r > 0, ¾n = ¾/
√
n and ¸mm be

as in (3.4). Suppose Rr/¸r
mm → ∞ and ¸mm/¾n → ∞. Then,

R(Θr,R;X) = inf
±

sup
∥¯∥r≤R

E¯∥±(X,y)− ¯∥qq ≥ (1 + o(1))Rr¸q−r
mm, (3.14)

and for all 0 ≤ ² ≤ 1,

inf
X

inf
±

sup
∥¯∥r≤R

P¯

{∥±(X,y)− ¯∥qq ≥ (1− ²)Rr¸q−r
mm

} ≥ ²+ o(1)

3q
. (3.15)

Remark 2. By (3.4), ¸mm ≤ ¸univ iff R ≥ ¾n. For ¸univ ≍ ¸mm, theorems in

Subsection 3.3.2 provide conditions under which both the Dantzig and Lasso esti-

mators attain the minimax rate in ℓr balls. For smaller ¸mm, the rate minimaxity

of the Lasso estimator is provided in Subsection 3.3.3.
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3.3.2 Upper bounds for the Dantzig and Lasso estimation

risk

Here we present upper bounds for the minimax ℓq risk E¯∥ˆ̄−¯∥qq for the Dantzig
and Lasso estimators. Our upper bounds match the lower bound (3.14) up to

constant factors of the form

Mq,ℓ,∗(C1, C2) = max
A,B,v

{
C1∥v∥1/ℓ1/q + C2(1 + ∥ΣB,Av∥q1/ℓ)1/q

}
(3.16)

where the maximum is taken over ∣A∣ = ∣B∣ = ℓ, A∩B = ∅ and ∥ΣAv∥q/(q−1) = 1,

and

Mq,d,ℓ,¿ (C1, C2) = max
A,B,v

(1 + ¿ q)1/q(C1∥v∥1/ℓ1/q + C2)

(1− ¿∥ΣB,Av∥1/ℓ1/q)+ . (3.17)

where the maximum is taken over ∣A∣ = d, ∣B∣ = ℓ, A∩B = ∅ and ∥ΣAv∥q/(q−1) =

1.

Theorem 4. Let ¸mm and ¸univ be as in (3.4) and q ≥ 1. Suppose (log p)/n =

O(1) and Rr/¸r
mm ≍ d ≤ n∧ p for some integer d → ∞ satisfying (log d)/ log p ≤

c0 < 1. Let 0 < ®0 < 1 and ˆ̄ be either the Dantzig or the Lasso estimator with

¸ = ¸univ/®0. Suppose p1−(®1/®0)2(nq + dq/r)/d → 0 for a certain ®1 ∈ (®0, 1).

For given {k, ℓ}, define

C1 = (1 + 1/®0)(ℓ¸
r
mm/R

r)1/q/
√
1− c0, C2 = 2{Rr/(¸r

mmk)}1/r−1/q.

(i) Set ℓ = ⌈d/(1− ®0)
q/(q−1)⌉ for the Lasso estimator and ℓ = d for the Dantzig

selector. Set k = d in the definition of C2. Then,

sup
∥¯∥r≤R

E¯∥ˆ̄ − ¯∥qq ≤ (1 + o(1))M q
q,ℓ,∗

(
C1, C2

)
Rr¸q−r

mm, r = 1. (3.18)

(ii) Let ¿ > 0 and {k®, ℓ®} be integers satisfying 0 < k
1−1/q
® (1+®) ≤ ¿ℓ

1−1/q
® (1−®)

and k® + ℓ® = d. For the Lasso estimator, let (k, ℓ) = (k®0 , ℓ®0) and assume

Mq,d,ℓ®,¿ (C1, C2) = O(1)Mq,d,ℓ,¿ (C1, C2), ℓ® = O(ℓ) and 1/k® = O(1/k) for a
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certain ® ∈ (®1, 1). For the Dantzig selector, let {k, ℓ} be integers satisfying

k1−1/q ≤ ¿ℓ1−1/q and d = k + ℓ. Then,

sup
∥¯∥r≤R

E¯∥ˆ̄ − ¯∥qq ≤ (1 + o(1))M q
q,d,ℓ,¿

(
C1, C2

)
Rr¸q−r

mm, 0 < r ≤ 1. (3.19)

Remark 3. The risk bounds in Theorem 4 match the minimax risk in (3.14) up to

constant factors. The constant factors are particularly simple when Rr/¸r
mm = k,

where C1 = (1 + 1/®0)(ℓ/k)
1/q/

√
1− c0 and C2 = 2.

Remark 4. Since ∥ΣB,Av∥1 is increasing in ∣B∣ and ℓ ≤ d, it follows from (3.17)

that

Mq,d,ℓ,¿ (C1, C2) ≤ (d/ℓ)1/qMq,d,d,¿(d/ℓ)1/q(C1, C2),

so that we may pick a suitable ¿ in Theorem 4 (ii) to control the denominator of

(3.17).

Remark 5. If (n+d1/r)/p = O(1), then p1−(®1/®0)2(nq+dq/r)/d → 0 for a certain

fixed ®1 ∈ (®0, 1) when ®0 ∈ (0, 1/
√
q + 1) is fixed. The proof of Theorem 4 (ii)

actually provides slightly stronger results where the set A in (3.17) is restricted

to contain the indices of the k = d − ℓ largest ∣¯j∣ for given ¯. The condition

(log d)/ log p ≤ c0 < 1 fails and ¸mm/¸univ = o(1) when log p = (1 + o(1)) log d.

This difficult case will be considered in the next subsection.

Theorem 4 differs from existing results by directly comparing the ℓq risk of

estimators with the minimax risk, instead of finding upper bounds for the ℓq

loss. The quantities (3.16) and (3.17) are best understood by comparisons with

functions of (3.6) and

´q,d = max
A

∥Σ−1
A ∥∞,q/d

1/q, ·q,d,ℓ = max
A,B

∥Σ−1
A ΣA,B∥∞,q/ℓ

1/q, (3.20)

´∗q,d = max
A

∥Σ−1
A ∥q,q, ·∗

q,d,ℓ = max
A,B

∥Σ−1
A ΣA,B∥q,q, °q,d = max

A
∥ΣA∥q,q,(3.21)

where the maxima are taken over ∣A∣ = d, ∣B∣ = ℓ and A ∩ B = ∅. These

quantities also facilitate comparisons between our and existing upper bounds on
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the loss as in the derivation of Corollary 1. In such comparisons, the Hölder

inequality and (3.6) give

´q,d ≤ ´∗q,d, ·q,d,ℓ ≤ ·∗
q,d,ℓ, ´∗2,d ≤ 1/(1− ±−d ), ·∗

2,d,ℓ ≤ µd,ℓ´
∗
2,d. (3.22)

The constant factors (3.16) and (3.17) are bounded from the above by func-

tions of quantities in (3.20), (3.21) and (3.6) if we take the maxima with indi-

vidual norms before arithmetic operations and apply the Hölder inequality as in

(3.22). If maxima are taken over ∥ΣAv∥q/(q−1) = 1 as in (3.16), maxv ∥Mv∥1 =
max∥u∥q/(q−1)=1 ∥MΣ−1

A u∥1 = ∥Σ−1
A M ′∥∞,q for all matrices M . Taking M = Iℓ

or M = ΣB,A, we find

Mq,ℓ,∗(C1, C2) ≤ C1´q,ℓ + C2

(
1 + ·q

q,ℓ,ℓ

)1/q
(3.23)

with M2,ℓ,∗(C1, C2) ≤ {C1 + C2((1− ±−ℓ )
2 + µ2ℓ,ℓ)

1/2}/(1− ±−ℓ )+, and

Mq,d,ℓ,¿ (C1, C2) ≤ C1´q,d(d/ℓ)
1/q + C2

(1 + ¿ q)−1/q(1− ¿·q,d,ℓ)+
(3.24)

with M2,d,ℓ,¿ (C1, C2) ≤
√
1 + ¿ 2{C1

√
d/ℓ + C2(1 − ±−d )}/(1 − ±−d − ¿µd,ℓ)+. The

upper bounds for q = 2 follows from ·∗
2,d,ℓ ≤ µd,ℓ´

∗
2,d and ´∗2,d ≤ 1/(1−±−d ). In view

of (3.24) and Remark 4, Theorem 4 immediately implies the following theorem

on rate minimaxity.

Theorem 5. Suppose the conditions of Theorem 4 with fixed c0 and ®0 in (0, 1).

Suppose ´q,d + ·q,d,d = O(1). Then, for both the Dantzig and Lasso estimators at

¸ = ¸univ/®0,

sup
∥¯∥r≤R

E¯∥ˆ̄ − ¯∥qq = O(1) inf
±

sup
∥¯∥r≤R

E¯∥±(X,y)− ¯∥qq, 0 < r ≤ 1 ≤ q.

Remark 6. For q = 2, the conditions on (3.20) for the rate minimaxity in

Theorem 5 hold when ±−d ≤ ±∗ < 1 for a fixed ±∗. For p ≫ n, random matrix

theory can be applied to validate conditions on (3.16), (3.17), (3.6), (3.20) and

(3.21) up to k ≍ ℓ ≍ d ≍ n/ log(p/n).



42

3.3.3 Upper bounds for the Lasso estimation loss

The upper bounds for the estimation risk in Subsection 3.3.2 are obtained from

an oracle inequality which also provide upper bounds for the tail probability of

the estimation loss at penalty level ¸ = ¸univ/®0, with 0 < ®0 < 1 for the Lasso

and 0 < ®0 ≤ 1 for the Dantzig selector. However, in applications and simulation

studies, a penalty level ¸ < ¸univ is often empirically the best choice. As we

mentioned in Remark 2, ¸mm < ¸univ iff R > ¾/
√
n. For ¸mm/¸univ = o(1),

performance bounds requiring penalty levels ¸ ≥ ¸univ do not match the lower

bounds for the minimax rates in Theorem 3. For example, when p = n log n, the

order of d ≍ Rr/¸r
mm could be as large as n/ log log n for regularity conditions on

X to hold, so that ¸mm/¸univ → 0 as n → ∞. Theorem 6 below closes this gap

by providing a minimax upper bound for the tail quantile of the ℓq loss for the

Lasso estimator with ¸ ≍ ¸mm = o(¸univ).

For 1 ≤ ℓ ≤ d ≤ p and ¿ > 0 define

Nd,ℓ,¿ (C1, C2) = max
A,B,u

C1 + C2u
′ΣAu

(u′ΣAu− ¿∥ΣB,Au∥1/
√
ℓ)+

, (3.25)

where the maximum is taken over ∣A∣ = d, ∣B∣ = ℓ, A ∩B = ∅ and ∥u∥ = 1.

Theorem 6. Let ¸mm and ¸univ be as in (3.4) and °2,ℓ be as in (3.21). Let

{d, k, ℓ} be positive integers with k + ℓ = d and k ≍ ℓ ≍ d, ¸ = min
(
¸univ, (1 +

²0)°
1/2
2,ℓ ¸mm

)
/® with 0 < ²0 ≤ ® < 1. Let 0 < r ≤ 1 ≤ q ≤ 2, ¿ =

√
k/ℓ(1 +

²0)/(1 − ®) and G̃ = (1 + ²0) + (1 + ®)/2 for ¸ = ¸univ/®, ¿ = {(1 + ²0)
2k/ℓ +

®2}1/2/(1−®) and G̃ = ¿(1−®)
√

ℓ/k+1/2 for ¸ < ¸univ/®, C∗ = (1+¿ 2)1−1/q(1+

¿
√

ℓ/k)2/q−1 and

C1 = C∗G̃(¸/¸mm)(k¸
r
mm/R

r)1/q, C2 = (5/2)C∗(k¸r
mm/R

r)1/q−1/r. (3.26)

Suppose n ∧ p ≥ d ≍ Rr/¸r
mm → ∞ and ¸mmn

1/2/¾ → ∞. Then,

sup
∥¯∥r≤R

P¯

{
∥ˆ̄Lasso − ¯∥qq ≥ N q

d,ℓ,¿

(
C1, C2

)
Rr¸q−r

mm

}
→ 0.
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Remark 7. The upper bound in Theorem 6 matches the minimax lower bound in

(3.15) up to a constant factor. The constant factor N q
q,d,ℓ,¿ (C1, C2) is particularly

simple when Rr/¸r
mm = k, where C1 = C∗G̃¸/¸mm and C2 = (5/2)C∗.

Similar to (3.23) and (3.24), upper bounds for (3.25) can be obtained by

bounding the ℓ1 norm with the ℓ2 norm and taking maxima before arithmetic

operations. In fact,

Nd,ℓ,¿ (C1, C2) ≤ C1 + C2(1− ±−d )
(1− ±−d − ¿µd,ℓ)+

. (3.27)

Theorem 7. Let 1 ≤ q ≤ 2. Suppose n ∧ p ≥ d ≍ Rr/¸r
mm → ∞, ¸mmn

1/2/¾ →
∞, ±−d < 1 and µd,ℓ = O(1). Then, with the ¸ in Theorem 6, the Lasso estimator

is rate minimax in the following sense:

inf
[
t : sup

∥¯∥r≤R

P¯

{
∥ˆ̄Lasso − ¯∥qq ≥ tqRr¸q−r

mm

}
≤ ²

]

= O(1) inf
[
t : inf

±
sup

∥¯∥r≤R

P¯

{
∥±(X,y)− ¯∥qq ≥ tqRr¸q−r

mm

}
≤ ²

]
, ∀ ² > 0.

3.3.4 Oracle inequalities

If one is allowed to approximate a target ¯∗ with a vector with at most k nonzero

entries, the best can be done under the ℓq losses is to pick the k largest elements

of ¯∗ in absolute value. The ℓq loss of this oracle approximation is

½q,k(¯
∗) =

∑

j ∕∈Jk
∣¯∗

j ∣q, ½k(¯
∗) = ½1,k(¯

∗), where Jk = argmax
∣S∣=k

∑
j∈S

∣¯∗
j ∣. (3.28)

Here we provide oracle inequalities which bounds the ℓq loss of the Dantzig and

Lasso estimators in terms of ½s,k(¯
∗) and error measures on y−X¯∗. The oracle

inequalities make assertions about ∥ˆ̄−¯∗∥q in certain domain of {X,y,¯∗} and

thus do not require distributional assumptions about the error y −X¯∗.

For q > 0 and ℓ ≥ 1, define

z∗q,ℓ = max
∣A∣=ℓ

z∗q,A, z∗q,A = ∥X ′
A(y −X¯∗)/n∥q/∣A∣1/q, z∗∞ = z∗∞,1. (3.29)
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Since z∗q,ℓ is the length normalized ℓq norm of the ℓ largest elements of {∣x′
j(y −

X¯∗)/n∣, j ≤ p}, z∗q,ℓ is increasing in q and decreasing in ℓ, and z∗q,ℓ ≤ z∗∞ for all

ℓ ≥ 1. We first deal with the case where the penalty level ¸ is no smaller than

z∗∞.

Theorem 8. Let q ∈ [1,∞], k ≥ 0, 1 ≤ ℓ ≤ p − k, 0 ≤ ®∗ ≤ ®, and

{Jk, ½k(¯∗), z∗∞,Jk
, z∗∞} be as in (3.28) and (3.29). Let {ˆ̄, ®̃, »} = {ˆ̄Dantzig(¸), 0, 1}

with ® ≤ 1 or {ˆ̄, ®̃, »} = {ˆ̄Lasso(¸), ®, (1 + ®∗)/(1 − ®)} with ® < 1. For A ⊂
{1, . . . , p}, let TA(u) be mappings from ℝA to ℝA and define w = TA(u)/(u

′ΣATA(u))+

as a function of {A,u}. Let s > 0 and fs(x) = sgn(x)∣x∣s. Then, in the event

{z∗∞ ≤ ®¸, z∗∞,Jk
≤ ®∗¸},

∥ˆ̄ − ¯∗∥q ≤ GA,u{1 + (»∥uJk∥1/ℓ1−1/q)q}1/q
(1− »FA,B,u)+

+
2½k(¯

∗)
(
1 + ∥ΣB,Aw∥q1/ℓ

)1/q
ℓ1−1/q(1− ®̃)(1− »FA,B,u)+

,(3.30)

with FA,B,u = ∥uJk∥1∥ΣB,Aw∥1/ℓ and GA,u = (1 + ®)¸∥w∥1, and

∥ˆ̄ − ¯∗∥1 ≤ GA,u∥uJk∥1(1 + »)

(1− »FA,B,u)+
+

2½k(¯
∗)(1 + FA,B,u)

(1− ®̃)(1− »FA,B,u)+
, (3.31)

for certain A ⊃ Jk with ∣A∣ = k + ℓ, B ∩ A = ∅ with ∣B∣ ≤ ℓ and u ∈ ℝA with

∥u∥q = 1. Moreover, (3.30) and (3.31) also hold with

GA,u = (1 + ®)¸∥w∥1(1 + »)∥uJk∥1/∥u∥1 +
{2½k(¯

∗)(1 + ®)¸∥w∥1
(1− ®̃)∥u∥1

}1/2

(3.32)

and for ˆ̄ = ˆ̄
Lasso(¸) with TA(u) = fs(u)

GA,u = (1 + ®∗)¸∥wJk∥1 +
{
(1 + ®)¸½s,k(¯

∗)∥w∥q/s
}1/(s+1)

. (3.33)

Remark 8. Let ¿ = »(k/ℓ)1−1/q. Since ∥uJk∥1 ≤ k1−1/q, »FA,B,u ≤ ¿∥ΣB,Aw∥1/ℓ1/q.
For ¿∥ΣB,Aw∥1/ℓ1/q ≤ 1, »∥uJk∥1/ℓ1−1/q ≤ ¿ , ∥ΣB,Aw∥q1/ℓ ≤ 1/¿ q and ¿ℓ1−1/q(1−
®̃) = k1−1/q»(1 − ®̃) ≥ k1−1/q. Thus, (3.30) and (3.31) implies that for all

1 ≤ s ≤ q

∥ˆ̄ − ¯∗∥s ≤ (1 + ¿ q)(1−1/s)/(q−1)k1/s−1/q

(1 + »)(1/q−1/s)/(1−1/q)
max
A,B,u

{GA,u + 2½k(¯
∗)/k1−1/q}

(1− ¿∥ΣB,Aw∥1/ℓ1/q)+ , (3.34)
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with an application of the Hölder inequality ∥h∥s ≤ ∥h∥(1/s−1/q)/(1−1/q)
1 ∥h∥(1−1/s)/(1−1/q)

q .

This is especially simple for v = TA(u) = Σ−1
A fq−1(u), with w = v as in (3.9)

and the equivalence of the maximizations over ∥u∥q = 1 and ∥ΣAv∥q/(q−1) = 1.

Our next theorem provides error bounds for the Lasso estimator under the

weaker condition z∗1,ℓ < ¸ instead of z∗∞ < ¸ in Theorem 8.

Theorem 9. Let {q, k, ℓ, Jk, ½k(¯
∗), TA(u),w, fs} be as in Theorem 8 and {z∗s,ℓ, z∗s,Jk}

as in (3.29). Let q′ = q/(q−1), ¿ = »(k/ℓ)1/q
′
and » = {(®∗+1)q

′
+®q′

q′ℓ/k}1/q
′
/(1−

®) with ® = ®1 ∈ (0, 1) and positive {®∗, ®q′}. Then, in the event {z∗q′∨q,Jk ≤
®∗¸, z∗s,ℓ ≤ ®s¸, s = 1, q, q′},

∥ˆ̄Lasso(¸)− ¯∥q ≤ GA,u(1 + ¿ q)1/q

(1− »FA,B,u)+
+

2½k(¯
∗)((»FA,B,u)

q + ¿ q)1/q

¿ℓ1/q′(1− ®)(1− »FA,B,u)+
(3.35)

with FA,B,u = k1/q′∥ΣB,Aw∥1/ℓ and GA,u = ∥w∥q′{(®∗ + 1)qk + (®q + 1)qℓ}1/q¸,
and

∥ˆ̄Lasso(¸)− ¯∥1 ≤ GA,u(∥uJk∥1 + »k1/q′)

(1− »FA,B,u)+
+

2½k(¯
∗){k1/q′ + ∥uJk∥1FA,B,u}

k1/q′(1− ®)(1− »FA,B,u)+
,(3.36)

for certain A ⊃ Jk with ∣A∣ = k + ℓ, B ∩ A = ∅ with ∣B∣ = ℓ, and u ∈ ℝA with

∥u∥q = 1. If TA(u) = fs(u) with s > 0, then (3.35) and (3.36) hold with

GA,u = ∥w∥q′
{
(®∗ + 1)qk + ®q

qℓ
}1/q

¸+
{
¸½s,k(¯

∗)∥w∥q/s
}1/(s+1)

. (3.37)

Remark 9. Similar to Remark 8, inserting ∥uJk∥1 ≤ k1/q′ and »FA,B,u ≤ 1 in

the numerators of (3.35) and (3.36) yields (3.34) as a simple version of Theorem

9 with the respective ». Consider the special case where ¯∗ = ¯ and y −X¯ ∼
N(0, ¾2In). Since Jk is fixed given ¯, we typically have ®∗ = o(®q′), which implies

¿ ≈ (k/ℓ+ ®q′
q′)

1/q′/(1− ®) for k/ℓ = O(1).

3.4 Proofs

We prove the lower bounds, the oracle inequalities, and then the upper bounds.

Lemmas are stated and proved as needed.
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3.4.1 Proofs of lower bounds

Let P¹,w be a (prior) probability distribution under which (zj, ¯j) are iid vectors

with

zj∣¯j ∼ N(¯j, ¾
2
n), P¹,w{¯j = ¹} = w = 1− P¹,w{¯j = 0},

where ¹ = ¸mm(1 − ²) and w = (1 − ²)(R/¸mm)
r/p. Since z̃j = x′

j(y −
∑

k ∕=j ¯kxk)/n is sufficient for ¯j given (X,y,¯k, k ∕= j) and z̃j and zj are iid

given ¯. The minimum Bayes risk is bounded from below by

E¹,w

p∑
j=1

min
t

E¯

[
∣t− ¯j∣q

∣∣∣X,y
]

≥ E¹,w

p∑
j=1

min
t

E¯

[
∣t− ¯j∣q

∣∣∣X,y, ¯k, k ∕= j
]

= E¹,w

p∑
j=1

min
t

E¯

[
∣t− ¯j∣q

∣∣∣zj
]

= (1 + o(1))Rr¸q−r
mm

as (Rr/¸r
mm, ¸mm/¾n) → (∞,∞) and then ² → 0. The approximation in the last

step above is given in Donoho and Johnstone [7]. Let

±∗ = argmin
±

E¹,wE¯

[∥±(X,y)− ¯∥qq
∣∣X,y,¯ ∈ Θr,R

]
.

Since the conditional Bayes risk of ±∗ is no greater than the minimax risk in Θr,R,

(1 + o(1))Rr¸q−r
mm

≤ E¹,wE¯

[∥±∗ − ¯∥qq
∣∣¯ ∈ Θr,R

]
+ E¹,wE¯∥±∗ − ¯∥qqI{¯ ∕∈ Θr,R}

≤ R(Θr,R;X) + 2(q−1)+E¹,wE¯

(∥±∗∥qq + ∥¯∥qq
)
I{¯ ∕∈ Θr,R}. (3.38)

Since E¹,wE¯[∥±∗ − ¯∥qq
∣∣X,y,¯ ∈ Θr,R

] ≤ E¹,w[∥¯∥qq
∣∣X,y,¯ ∈ Θr,R

] ≤ Rr¹q−r,

∥±∗∥qq ≤ 2(q−1)+Rr¹q−r almost surely. Let N = #{j : ¯j = ¹}. We have ∥¯∥qq =
¹qN and ¯ ∕∈ Θr,R if and only if N > Rr/¹r = wp/(1 − ²)1+r under P¹,w. Thus,

since N ∼ Binomial(p, w) with pw → ∞,

E¹,wE¯

(∥±∗∥qq + ∥¯∥qq
)
I{¯ ∕∈ Θr,R}
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≤ 2(q−1)+Rr¹q−rP{N > wp/(1− ²)1+r}+ ¹qE¹,wNI{N > wp/(1− ²)1+r}
= o(1)Rr¸q−r

mm. (3.39)

The combination of (3.38) and (3.39) gives (3.14).

Now consider the loss L(±,¯) = I{∥± − ¯∥q > c(R/¸mm)
r/q¸mm} in (3.15).

Define

ˆ̄ = ±(X,y)I
{
∥±(X,y)∥q ≤ (1 + c)(R/¸mm)

r/q¸mm

}
.

Since ∥¯∥qq ∼ N¹q and ∥ˆ̄∥∞ ≤ ¹ under P¹,w, in the event ∥¯∥r ≤ R,

∥ˆ̄ − ¯∥qq ≤ cqRr¸q−r
mmI

{
∥± − ¯∥q ≤ c(R/¸mm)

r/q¸mm

}

+
(
∥¯∥q + (1 + c)(R/¸mm)

r/q¸mm

)q

I
{
∥± − ¯∥q > c(R/¸mm)

r/q¸mm

}

and ∥¯∥qq ≤ Rr¹q−r ≤ Rr¸q−r
mm. It follows that

E¹,wE¯∥ˆ̄ − ¯∥qq ≤ cqRr¸q−r
mm + (2 + c)qRr¸q−r

mm max
∥¯∥r≤R

E¯L(±(X,y),¯)

+2q−1E¹,w

(
¹qN + (1 + c)qRr¸q−r

mm

)
I{∥¯∥r > R}.

Since E¹,w

(
¹qN + (1 + c)qRr¸q−r

mm

)
I{∥¯∥r > R} = o(1)Rr¸q−r

mm,

sup
∥¯∥r≤R

E¯L(±(X,y),¯) ≥ 1− cq + o(1)

(2 + c)q

Since the o(1) is uniform in the choice of ±(X,y), we find

inf
±

sup
∥¯∥r≤R

P¯

{
∥±(X,y)− ¯∥qq > (1− ²)Rr¸q−r

mm

}
≥ ²+ o(1)

3q
, ∀0 < ² < 1.

This gives (3.15) and completes the proof of Theorem 3. □

3.4.2 Proofs of oracle inequalities

As mentioned at the beginning of Subsection 3.3.4, we consider the estimation

of an arbitrary target ¯∗ from data points (X,y) without any distributional

assumption on the error y −X¯∗. The following lemma, which provides upper

bounds in our proofs for tails of various inner products, can be viewed as a

variation of Lemma 3.1 of Candes and Tao [4].
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Lemma 1. Let h ∈ ℝp, Jk ⊂ {1, . . . , p} with ∣Jk∣ = k, and A be the union of Jk

and the indices of the ℓ largest ∣ℎj∣ with j ∕∈ Jk, 1 ≤ ℓ ≤ p − k. Then, for any

vector w ∈ ℝp,

∑

j ∕∈A
wjℎj ≤ ∥hJc

k
∥1max

{
∥wB∥1/ℓ : B ∩ A = ∅, ∣B∣ ≤ ℓ

}
.

Proof. Let B1, . . . , Bm form a partition of J c
k with decreasing values of ∣ℎj∣

such that B1 = A ∖ Jk, ∣Bj∣ = ℓ for j < m and ∣Bm∣ ≤ ℓ. Since ∥hBj
∥∞ ≤

∥hBj−1
∥1/ℓ,

∑

j ∕∈A
wjℎj =

m∑
j=2

w′
Bj
hBj

≤
m∑
j=2

∥wBj
∥1∥hBj

∥∞ ≤ max
B

∥wB∥1
k∑

j=2

∥hBj−1
∥1/ℓ.

The proof is complete, since
∑k

j=2 ∥hBj−1
∥1 ≤ ∥hJc

k
∥1. □

Proof of Theorem 8. Let h = ˆ̄ − ¯∗ for both estimators. The negative

gradient is

g = X ′(y −X ˆ̄)/n = X ′("̃−Xh
)
/n, with ∥g∥∞ ≤ ¸,

where "̃ = y − X¯∗. Define ³S(a) = {a′(X ′
S"̃/n − gS)}+ for S ⊂ {1, . . . , p},

v = TA(u),

A = argmax
A:A⊃Jk,∣A∣=k+ℓ

∑

j∈A∖Jk
∣ℎj∣, u =

hA

∥hA∥q , B = argmax
B:B∩A=∅,∣B∣≤ℓ

∥ΣB,Av∥1. (3.40)

Since X ′
AXh/n = X ′

A"̃/n− gA, (3.40) and Lemma 1 give

v′ΣAhA = v′X ′
A(Xh−XAchAc)/n ≤ ³A(v) + (∥ΣB,Av∥1/ℓ)

∥∥hJc
k

∥∥
1
. (3.41)

Since v′ΣAhA = v′ΣAu∥hA∥q and w = v/(u′ΣAv)+,

∥hA∥q ≤ ³A(w) + (∥ΣB,Aw∥1/ℓ)
∥∥hJc

k

∥∥
1
. (3.42)

Let ˆ̄ = ˆ̄
Lasso. Since sgn( ˆ̄j)gj = ¸ for ˆ̄

j ∕= 0, for fs(x) = sgn(x)∣x∣s

fs(ℎj)(zj − gj) ≤ {(∣¯∗
j ∣s ∧ ∣ℎj∣s)(∣zj∣+ ¸)} ∧ {2∣¯∗

j ∣s¸+ ∣ℎj∣s(∣zj∣ − ¸)} (3.43)
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for all 1 ≤ j ≤ p, ∣zj∣ ≤ ¸ and s > 0. Since z∗∞ ≤ ®¸ and z∗∞,Jk
≤ ®∗¸, this gives

∥Xh∥2/n = h′(X ′"̃/n− g) ≤ ∥hJk∥1(®∗¸+ ¸) + ∥hJc
k
∥1(®¸− ¸) + 2¸½k(¯

∗).

Since ∥hJk∥1 = ∥hA∥q∥uJk∥1 and z∗∞ ≤ ®¸ < ¸, the above inequality implies

∥hJc
k
∥1 ≤ 2½k(¯

∗)/(1− ®) + ∥hJk∥1(1 + ®∗)/(1− ®)

= 2½k(¯
∗)/(1− ®̃) + »∥uJk∥1∥hA∥q. (3.44)

The combination of (3.42) and (3.44) yields

(1− »FA,B,u)∥hA∥q ≤ ³A(w) + (∥ΣB,Aw∥1/ℓ)2½k(¯∗)/(1− ®̃)

with the factor »FA,B,u = »∥uJk∥1∥ΣB,Aw∥1/ℓ, and

(1− »FA,B,u)∥hJc
k
∥1 ≤ 2½k(¯

∗)/(1− ®̃) + »∥uJk∥1³A(w).

Since ∥h∥qq ≤ ∥hA∥qq +
(∥hJc

k
∥1/ℓ1−1/q

)q
by Lemma 1, these inequalities imply

∥h∥q ≤ ³A(w)(1 + (»∥uJk∥1/ℓ1−1/q)q)1/q

(1− »FA,B,u)+
+

2½k(¯
∗)
(
1 + ∥ΣB,Aw∥q1/ℓ

)1/q
ℓ1−1/q(1− ®̃)(1− »FA,B,u)+

.(3.45)

Moreover, since ∥h∥1 = ∥uJk∥1∥hA∥q + ∥hJc
k
∥1, they also imply

∥h∥1 ≤ ³A(w)∥uJk∥1(1 + »)

(1− »FA,B,u)+
+

2½k(¯
∗){1 + ∥uJk∥1(∥ΣB,Aw∥1/ℓ)}
(1− ®̃)(1− »FA,B,u)+

.

=
³A(w)∥uJk∥1(1 + »)

(1− »FA,B,u)+
+

2½k(¯
∗)(»FA,B,u + »)

»(1− ®̃)(1− »FA,B,u)+
. (3.46)

Thus, (3.30) and (3.31) hold if ³A(w) can be replaced by GA,u in (3.42).

For ˆ̄ = ˆ̄
Dantzig, z

∗
∞ ≤ ¸ implies ∥ˆ̄∥1 ≤ ∥¯∗∥1, so that ∥hJc

k
∥1 ≤ ∥¯∗

Jc
k
∥1 +

∥ˆ̄∥1 − ∥ˆ̄Jk
∥1 ≤ ∥¯∗

Jc
k
∥1 + ∥¯∗∥1 − ∥ˆ̄Jk

∥1 ≤ 2∥¯∗
Jc
k
∥1 + ∥hJk∥1. Thus,

∥hJc
k
∥1 ≤ 2½k(¯

∗) + ∥hJk∥1 = 2½k(¯
∗) + ∥uJk∥1∥hA∥q. (3.47)

This effectively drops {®, ®∗} from (3.44), or replaces {®̃, »} = {®, (1+®∗)/(1−®)}
with {®̃, »} = {0, 1}. Thus, (3.45) and (3.46) hold with {®̃, »} = {0, 1}. Again,

(3.30) and (3.31) hold if ³A(w) can be replaced by GA,u in (3.42).



50

It remains to prove that ³A(w) can be replaced by GA,u in (3.42) under

respective conditions. Since ³A(w) = {w′(X ′
A"̃/n − gA)}+ ≤ ∥w∥1(z∗∞ + ¸),

GA,u = ∥w∥1(1 + ®)¸ is always allowed.

For the Lasso estimator with v = TA(u) = fs(u), (3.43) and the condition

z∗∞,Jk
≤ ®∗¸ yield ³A(fs(hA)) ≤ ¸{(1 + ®∗)∥fs(hJk)∥1 + (1 + ®)½s,k(¯

∗)}. Thus,

as in (3.41),

∥hA∥s+1
q v′ΣAu = fs(hA)

′ΣAhA

≤ ³A(fs(hA)) + (∥ΣB,Afs(hA)∥1/ℓ)∥hJc
k
∥1

≤ ¸{(1 + ®∗)∥hA∥sq∥vJk∥1 + (1 + ®)½s,k(¯
∗)}+ ∥hA∥sq(∥ΣB,Av∥1/ℓ)∥hJc

k
∥1.

Since axs+1 ≤ bxs + c implies x ≤ b/a+ (c/a)1/(s+1) for positive {a, b, c},

∥hA∥q ≤ (1 + ®∗)¸∥vJk∥1
(u′ΣAv)+

+
((1 + ®)¸½s,k(¯

∗)
(u′ΣAv)+

)1/(s+1)

+ (∥ΣB,Aw∥1/ℓ)∥hJc
k
∥1.

Thus, since ∥w∥q/s = 1/(uΣAv)+, ³A(w) can be replaced by (3.33) in (3.42).

In general, the combination of (3.44) and (3.47) imply

∥hA∥1 ≤ (1 + »)∥hJk∥1 + 2½k(¯
∗)/(1− ®̃) = (1 + »)∥hA∥q∥uJk∥1 + 2½k(¯

∗)/(1− ®̃).

Since ∥u∥1∥hA∥q = ∥hA∥1 and (3.42) holds with ³A(w) ≤ ∥w∥1(1 + ®)¸,

∥u∥1∥hA∥2q ≤ ∥hA∥1{∥w∥1(1 + ®)¸+ (∥ΣB,Aw∥1/ℓ)∥hJc
k
∥1}

≤ {(1 + »)∥hA∥q∥uJk∥1 + 2½k(¯
∗)/(1− ®̃)}∥w∥1(1 + ®)¸

+∥hA∥q∥u∥1(∥ΣB,Aw∥1/ℓ)∥hJc
k
∥1.

Thus, it follows from the argument for the Lasso with TA(u) = fs(u) for s = 1

that ³A(w) can be replaced by (3.32) in (3.42). This completes the proof. □

Proof of Theorem 9. We use the notation of the proof of Theorem 8. Since

(3.42) still holds, we need a version of (3.44) and an upper bound for ³A(w).

Let ˆ̄ = ˆ̄
Lasso(¸). Set ³A,Jk(a) = a′

AX
′
A"̃/n− a′

Jk
gJk

. Since ∥u∥q = 1,

³A,Jk(u) ≤ ∥uJk∥q(z∗q′,Jk + ¸)k1/q′ + ∥uA∖Jk∥qz∗q′,ℓℓ1/q
′
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≤ {(z∗q′,Jk + ¸)q
′
(k/ℓ) + (z∗q′,ℓ)

q′}1/q′ℓ1/q′ ≤ »k1/q′(1− ®)¸, (3.48)

due to » = {(®∗ + 1)q
′
+ ®q′

q′ℓ/k}1/q
′
/(1− ®). It follows from Lemma 1 and (3.29)

that (X ′
Ac "̃/n)′hAc ≤ z∗1,ℓ∥hJc

k
∥1 ≤ ®¸∥hJc

k
∥1. Thus, by (3.43)

∥Xh∥2/n = h′(X ′"̃/n− g)

= ∥hA∥q³A,Jk(u) + (X ′
Ac "̃/n)′hAc − h′

Jc
k
gJc

k

≤ ∥hA∥q»k1/q′¸(1− ®) + ®∥hJc
k
∥1¸− ∥hJc

k
∥1¸+ 2½k(¯

∗)¸.

This gives as a version of (3.44) in the form

∥hJc
k
∥1 ≤ 2½k(¯

∗)/(1− ®) + »k1/q′∥hA∥q.

Replacing »∥uJk∥1 by »k1/q′ in the derivation of (3.45) and (3.46), we find that

∥h∥q ≤ ³A(w)(1 + ¿ q)1/q

(1− »FA,B,u)+
+

2½k(¯
∗)
(
1 + ∥ΣB,Aw∥q1/ℓ

)1/q
ℓ1/q′(1− ®)(1− »FA,B,u)+

.

with FA,B,u = k1/q′∥ΣB,Aw∥1/ℓ and ¿ = »(k/ℓ)1/q
′
, and

∥h∥1 ≤ ³A(w)(∥uJk∥1 + »k1/q′)

(1− »FA,B,u)+
+

2½k(¯
∗){1 + ∥uJk∥1(∥ΣB,Aw∥1/ℓ)}
(1− ®)(1− »FA,B,u)+

.

It remains to prove that ³A(w) can be replaced by GA,u. Similar to (3.48),

³A(w) ≤ ∥w∥q′{(z∗q,Jk + ¸)qk + (z∗q,ℓ + ¸)qℓ}1/q,

so that GA,u = ∥w∥q′{(®∗ + 1)qk + (®q + 1)qℓ}1/q¸ is always valid. For TA(u) =

fs(u),

³A(fs(hA)) ≤ ∥hA∥sq∥v∥q′
{
(®∗ + 1)qk + ®q

qℓ
}1/q

¸+ ¸½s,k(¯
∗),

so that (3.37) is allowed as in the proof of the validity of (3.33) in Theorem 8. □

3.4.3 Proofs of upper bounds

The oracle inequalities are used to prove upper bounds on ∥ˆ̄ − ¯∥q. Since the

purpose here is to estimate ¯, we set the target ¯∗ = ¯.
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Proof of Theorem 1. Since ∥¯∥0 = k, we are allowed to apply the oracle in-

equalities in Theorem 8 with {¯∗, ½k(¯
∗), Jk} = {¯, 0, J}. Since ∥uJ∥1 ≤ k1−1/q,

this gives

∥ˆ̄ − ¯∥q ≤ max
A,B,u

GA,u(1 + »q(k/ℓ)q−1)1/q

(1− »FA,B,u)+
, ∥ˆ̄ − ¯∥1 ≤ max

A,B,u

GA,u∥uJ∥1(1 + »)

(1− »FA,B,u)+
,

with C̃ = (1 + 1/®) in GA,u for the penalty level ¸/® for the Lasso. This implies

(3.5) by the Hólder inequality as in Remark 8. Finally, consider the Lasso in the

case where v = TA(u) agrees in sign with u. Since {wj, vj, uj, ℎj, ˆ̄j, gj} have

the same sign for j ∕∈ J , wj(x
′
j(y −X¯)/n − gj) ≤ ∣wj∣(z∗∞ − ¸/®) < 0. Thus,

³A(w) ≤ ∑
j∈J wj(x

′
j(y −X¯)/n− gj) ≤ ∥wJ∥1(1 + 1/®)¸ for z∗∞ ≤ ¸ as in the

proof of Theorem 8. This allows GA,u = C̃¸∥wJ∥1. Part (ii) follows directly from

x′
j"/n ∼ N(0, ¾2/n) under P¯. □

Proof of Theorem 2. This theorem is a direct consequence of Theorem 1

with q = ∞, since ∥ˆ̄ − ¯∥∞ ≤ ¸′ < min¯j ∕=0 ∣¯j∣/2 guarantees {j : ∣ ˆ̄j∣ > ¸′} =

{j : ¯j ∕= 0}. □

Our proofs of risk bounds require the following lemma.

Lemma 2. Let ˆ̄ be either the Dantzig or the Lasso estimator at penalty level

¸. Suppose ∥¯∥r ≤ R with 0 < r ∨ 1 ≤ q. For any event Ω0 with t∗ =
√

2 log(1/P¯(Ω0)) ≥ 1,

E¯∥ˆ̄ − ¯∥qqIΩ0 ≤ 2q−1P¯(Ω0)
{ Γ(2q + 1)

(t2∗n¸/¾2)q
+
((t∗ +

√
n)2

n¸/¾2
+ 2p(1−1/r)+R

)q}
.(3.49)

In particular, if (log p)/n+ ¾2/(n¸2) +Rr/(n¸r) + ¸r/Rr = O(1), then

E¯∥ˆ̄ − ¯∥qqIΩ0 = o(1)Rr¸q−r, (3.50)

provided that P¯(Ω0)(¸
r/Rr){(¾/¸)2q + pq(1−1/r)+(R/¸)q} = o(1).

Remark 10. Since the unit sphere Sn−1 ⊂ ℝn is covered by (2/² + 1)n ²-balls

for all ² > 0, a certain ² ball contains at least m unit vectors xj/∥xj∥ for ² =
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(log(p/m))/(2n). It follows that the set of design vectors xj contains some highly

correlated clusters when (log p)/n ≥ 2. Thus, the condition (log p)/n = O(1) is

natural for the estimation of ¯.

Proof of Lemma 2. Let ˆ̄ be the Lasso estimator. Since ˆ̄ minimizes the

penalized loss, ¸∥ˆ̄∥1 ≤ ∥"∥2/(2n) + ¸∥¯∥1, so that

∥ˆ̄∥1 + ∥¯∥1 ≤ ∥"∥2
2n¸

+ 2∥¯∥1 ≤
(∥"∥/¾ − t∗ −

√
n)2+

n¸/¾2
+

(t∗ +
√
n)2

n¸/¾2
+ 2p(1−1/r)+R.

Since ∥"/¾∥ is a Lip(1) function of "/¾ ∼ N(0, In) and E¯∥"∥/¾ ≤ √
n, the

Gaussian isoperimetric theorem gives P¯{∥"∥/¾ −√
n > t} ≤ e−t2/2, so that

E¯(∥"∥/¾ − t∗ −
√
n)2q+ ≤

∫ ∞

0

P¯{∥"∥/¾ − t∗ −
√
n > t}dt2q

≤
∫ ∞

0

e−t2∗/2−t∗tdt2q = P¯(Ω0)Γ(2q + 1)/t2q∗ .

The above inequalities yield (3.49) due to ∥ˆ̄ − ¯∥qq ≤ (∥ˆ̄∥1 + ∥¯∥1)q for q ≥ 1.

It follows from (3.49) that

E¯∥ˆ̄ − ¯∥qqIΩ0

Rr¸q−r
= O(¸r/Rr)P¯(Ω0)

{
O(1) + (t2∗/n+ 1)q(¾/¸)2q + pq(1−1/r)+Rq/¸q

}
.

Since the right-hand side is of no greater order than P¯(Ω0){(t2∗+n)q +pqnq/r} =

o(1) for t2∗/(n ∨ log p) → ∞, it suffices to consider the case t2∗/n = O(1). Hence,

(3.50) holds under the specified conditions. The same conclusions hold for the

Dantzig selector, since ∥ˆ̄Dantzig∥1 ≤ ∥ˆ̄Lasso∥1. □

Proof of Theorem 4. We first bound ¸univ/¸mm and the expected loss

for large z∗∞ = ∥X ′"/n∥∞. Let ¾n = ¾/
√
n. Since Rr/¸r

mm ≍ d and ¸2
mm =

2¾2
n log(p¾

r
n/R

r),

2¾2
n log(p/d) = 2¾2

n

{
log(p¸r

mm/R
r) +O(1)

}
(3.51)

= ¸2
mm

[
1 + 2(¾n/¸mm)

2
{
log(¸r

mm/¾
r
n) +O(1)

}]
≈ ¸2

mm.

Thus, since (log d)/ log p ≤ c0 < 1, (1−c0)¸
2
univ = (1−c0)2¾

2
n log p ≤ 2¾2

n log(p/d) ≈
¸2
mm.
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Let Ω0 = {z∗∞/¸ > ®} with any ® ∈ (®1, 1). Since z∗∞ is the maximum of p

variables from N(0, ¾2
n), P¯{Ω0} ≤ p exp(−n(®¸)2/(2¾2)) ≤ p1−(®1/®0)2 for large

n. Thus, due to ¸2/¾2
n ≍ log p and n ≥ d ≍ Rr/¸r

mm ≍ Rr/¸r → ∞, we have

P¯(Ω0)(¸
r/Rr){(¾/¸)2q + (R/¸)q} = O(1)p1−(®1/®0)2(nq/d+ dq/r−1) = o(1).

Since 0 < r ≤ 1, Lemma 2 gives E¯∥ˆ̄ − ¯∥qqI{z∗∞/¸ > ®} = o(Rr¸q−r
mm).

(i) Let k = 0, ℓ = ⌈d/(1−®0)
q/(q−1)⌉ and v = TA(u) = Σ−1

A fq−1(u) in Theorem

8, so that ∥uJk∥1 = FA,B,u = 0 and w = v as in (3.9). For z∗∞ ≤ ®¸ < ¸, (3.30)

implies

∥ˆ̄ − ¯∥q ≤ max
A,B,v

{
(1 + ®)¸∥v∥1 + 2Rd1/q−1(1 + ∥ΣB,Av∥q1/ℓ)1/q

}
(3.52)

for both the Dantzig and Lasso estimators. Thus, since P¯{z∗∞ > ¸univ = ®0¸} →
0,

E¯∥ˆ̄ − ¯∥qqI{z∗∞/¸ ≤ ®}
≤ (1 + o(1))M q

q,ℓ,∗
(
(1 + ®0)(ℓ¸mm/R)1/q¸/¸mm, 2{R/(d¸mm)}1−1/q

)
R¸q−1

mm

for both the estimators with the Mq,ℓ,∗(x, y) in (3.16). This proves (3.18), due

to the proven
√
1− c0¸univ ≤ (1 + o(1))¸mm and E¯∥ˆ̄ − ¯∥qqI{z∗∞/¸ > ®} =

o(Rr¸q−r
mm).

(ii) Since k
1−1/q
® (1 + ®) ≤ ¿ℓ

1−1/q
® (1− ®), (3.34) with s = q yields

∥ˆ̄Lasso − ¯∥qq ≤ (1 + ¿ q) max
A,B,v

[(1 + ®)¸∥v∥1 + 2½k®(¯)k®
1/q−1

(1− ¿∥ΣB,Av∥1/ℓ1/q® )+

]q

in the event z∗∞ ≤ ®¸. For 0 < r < 1, the (k® + 1)-th largest ∣¯j∣ is no greater

than R/(k®+1)1/r, so that ½k®(¯) ≤ Rr{R/(k®+1)1/r}1−r ≤ Rk®
1−1/r. It follows

that

∥ˆ̄Lasso − ¯∥qq ≤ M q
q,d,ℓ®,¿

(C1,®, C2,®)R
r¸q−r

mm (3.53)

with C1,® = (1 + ®)¸ℓ
1/q
® ¸−1

mm(¸
r
mm/R

r)1/q, C2,® = 2Rk®
1/q−1/r¸−1

mm(¸
r
mm/R

r)1/q

and the Mq,k,ℓ,¿ (x, y) in (3.17). Moreover, since Mq,d,ℓ®,¿ (C1, C2)/Mq,d,ℓ,¿ (C1, C2)
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and Cj,®/Cj are all bounded and we have already dealt with the case z∗∞/¸ > ®,

(3.53) implies (3.19).

Similarly, for the Dantzig selector with k + ℓ = d and k1−1/q ≤ ¿ℓ1−1/q, (3.34)

yields M q
q,d,ℓ,¿ (C1, C2)R

r¸q−r
mm as an upper bound for ∥ˆ̄Dantzig − ¯∥qq. □

The proof of Theorem 6 requires the following lemma.

Lemma 3. Let p̃ℓ be the positive number satisfying 2 log p̃ℓ − 1 − log(2 log p̃ℓ) =

(2/ℓ) log
(
p
ℓ

)
. Suppose " ∼ N(0, ¾2In) under probability P . Then,

P
{
max
∣A∣=ℓ

∥P A"∥ ≥ ¾
√

2ℓ log p̃ℓ

}
≤ 1

2
√

log p̃ℓ
≤ 1√

2
,

where P A = XA(X
′
AXA)

−1X ′
A is the projection to the linear span of {xj, j ∈ A}.

Proof. Since " ∼ N(0, ¾2In), ∥P A"∥2/¾2 ∼ Â2
ℓ variables. Let x > 0. Since

Â2
ℓ/(1+x) has a gamma distribution, change of variable t → t2 and some algebra

give

P
{ Â2

ℓ

1 + x
≥ ℓ

}
=

e−ℓ(1+x)/2(1 + x)ℓ/2

Γ(ℓ/2)2ℓ/2

∫ ∞

√
ℓ

2 exp
{
− (1 + x)(t2 − ℓ)/2 + (ℓ− 1) log t

}
dt

Since the derivatives of f(t) = (1+x)(t2−ℓ)/2−(ℓ−1) log t satisfy {(∂f)/(∂t)}(
√
ℓ) ≥

0 and {(∂2f)/(∂t)2}(t) ≥ (1 + x), the Stirling formula gives

P
{ Â2

ℓ

1 + x
≥ ℓ

}
≤ e−ℓ(1+x)/2(1 + x)ℓ/2

Γ(ℓ/2)2ℓ/2
e−f(

√
ℓ)

∫ ∞

√
ℓ

2 exp
{
− (1 + x)(t−

√
ℓ)2/2

}
dt

≤ e−ℓ(1+x)/2(1 + x)ℓ/2

(ℓ/2)ℓ/2−1/2e−ℓ/2
√
2¼2ℓ/2

ℓ(ℓ−1)/2
( 2¼

1 + x

)1/2

= 2−1/2e−xℓ/2(1 + x)(ℓ−1)/2.

Setting x = 2 log p̃ℓ − 1, we have (x− log(1 + x))(ℓ/2) = log
(
p
ℓ

)
, so that

P
{
max
∣A∣=ℓ

∥P A"∥ ≥ ¾
√

2ℓ log p̃ℓ

}
≤

(
p

ℓ

)
e−(x−log(1+x))ℓ/2

21/2(1 + x)1/2
=

1

2
√

log p̃ℓ
.

The conclusion follows from 2 log p̃ℓ ≥ 1. □

Proof of Theorem 6. There are two cases. We first apply Theorem 9 to the

case ¸ < ¸univ/®, i.e. (1+²0)°
1/2
2,ℓ ¸mm < ¸univ. Since ∥X ′

A"/n∥ ≤ °
1/2
2,ℓ ∥P A"∥/

√
n,

P¯

{
z∗1,ℓ ≤ z∗2,ℓ ≤ °

1/2
2,ℓ ¾

√
(2/n) log p̃ℓ

}
≥ 1− 1/(2

√
log p̃ℓ) → 1.
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Since Rr/¸r
mm ≍ d ≍ ℓ and ¸mmn

1/2/¾ → ∞, ¸mm = (1 + o(1))¾
√

(2/n) log(p/ℓ)

by (3.51). By Stirling, log
(
p
ℓ

)
= (1 + o(1))ℓ log(p/ℓ) for p/ℓ → ∞. It follows

that ¸mm = (1 + o(1))¾
√

(2/n) log p̃ℓ. Thus, z∗1,ℓ ≤ z∗2,ℓ ≤ °
1/2
2,ℓ ¾

√
(2/n) log p̃ℓ ≤

®¸ with large probability. Moreover, since E¯(z
∗
2,Jk

)2 = trace(¾2ΣJk/(nk)) =

(¾2/n) = o(¸2), z∗2,Jk ≤ ®∗¸ with large probability for certain ®∗ = o(1). It follows

that (3.34) is valid with large probability for the ¿ = {(1+²0)
2k/ℓ+®2}1/2/(1−®).

Let q = 2 and TA(u) = u in (3.34) and switch notation (q, s) → (2, q). By

(3.37),

GA,u + 2½k(¯)/
√
k ≤ ∥w∥{¿(1− ®)

√
ℓ+

√
k/2}¸+ (2 + 1/2)½k(¯)/

√
k.

Since ½k(¯) ≤ Rr(Rr/k)(1−r)/r = Rk1−1/r and w = u/(u′ΣAu), we have

GA,u + 2½k(¯)/
√
k ≤ G̃

√
k¸/(u′ΣAu) + (5/2)Rk1/2−1/r (3.54)

for the G̃ = ¿(1− ®)
√

ℓ/k + 1/2. Thus, (3.34) gives

∥ˆ̄ − ¯∥q ≤ C∗k1/q max
A,B,u

G̃¸/(u′ΣAu) + (5/2)R/k1/r

{1− ¿∥ΣB,Au∥1ℓ−1/2/(u′ΣAu)}+ , 1 ≤ q ≤ 2,

for the C∗ = (1 + ¿ 2)1−1/q(1 + ¿
√

ℓ/k)2/q−1. In view of the definitions in (3.25)

and (3.26), this gives ∥ˆ̄ − ¯∥q ≤ Nd,ℓ,¿ (C1, C2))R
r/q¸

1−r/q
mm .

We apply Theorem 8 to the second case where ¸ = ¸univ/®. Since E(z∗2,Jk)
2 =

(¾2/n) = o(¸2), P¯{z∗∞ ≤ ®¸, z∗∞,Jk
≤ ®∗¸} → 1 with ®∗ = ²0. Thus, (3.34) is

valid with large probability for the ¿ = »
√

k/ℓ =
√

k/ℓ(1 + ²0)/(1 − ®) due to

∥uJk∥1 ≤
√
k. By (3.33),

GA,u + 2½k(¯)/
√
k ≤ (1 + ²0)¸∥wJk∥1 + (1 + ®)¸∥w∥

√
k/2 + (2 + 1/2)½k(¯)/

√
k.

Since ∥wJk∥1 ≤
√
k∥w∥ and ∥w∥ = 1/(u′ΣAu), (3.54) holds for the G̃ = (1 +

²0)+ (1+®)/2. The rest of the proof is the same as the first case and omitted. □

3.5 Discussion

Since the oracle inequalities apply directly to data points (X,y) and target vec-

tors ¯∗, the normality assumption on the error in (3.3) is not crucial for our upper
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bounds for the estimation risk and loss (not even the condition E¯y = X¯). For

example, for the estimation of a target ¯∗ with X¯∗ ≈ Ey, the upper bounds

in Theorem 6 are valid for ∥ˆ̄Lasso − ¯∗∥qq with large probability under P and

¾ = ¾1 + ¾2, provided that

E exp(v′X ′(y − Ey)) ≤ exp(−n¾2
1v

′Σv/2), max
∣A∣=ℓ

∥P A(Ey −X¯∗)∥ ≤ ¾2

√
2ℓ log(p/ℓ).

For design matrices X with iid sub-Gaussian rows, our results can be extended

to ¯ in ℓr balls with 1 < r ≤ 2 due to ¾2 ≤ O(1)½2,ℓ(¯) when the target is

¯∗ = argminb ∥¯ − b∥ subject to ∥b∥0 = k = ℓ.

The proofs in this chapter do not completely deal with the most difficult case

of q > 2 and ¸mm = o(¸univ). For example, an application of Theorem 9 under

P¯ in (3.3) would require an upper bound for the z∗q,ℓ with ¯∗ = ¯ in (3.29).

Let ˜̄ = ˆ̄
Dantzig(¸) and ˆ̄ = ˆ̄

Lasso(¸). Since ∥˜̄∥1 ≤ ∥ˆ̄∥1,

∥(˜̄ − ¯∗)Jc
k
∥1 ≤ ∥(˜̄ − ˆ̄)Jc

k
∥1 + ∥(ˆ̄ − ¯∗)Jc

k
∥1

≤ 2∥ˆ̄Jc
k
∥1 + ∥(˜̄ − ˆ̄)Jk∥1 + ∥(ˆ̄ − ¯∗)Jc

k
∥1

≤ {3∥(ˆ̄ − ¯∗)Jc
k
∥1 + 2½k(¯

∗) + ∥(ˆ̄ − ¯∗)Jk∥1}+ ∥(˜̄ − ¯∗)Jk∥1.

This and the results for the Lasso in Theorem 9 would yield slightly worse error

bounds of the same type for the Dantzig selector with ¸ < ¸univ. We have decided

to omit an explicit statement of this result.

The proofs of Theorem 9 can be modified to extend the oracle inequalities for

the Dantzig selector to

˜̄ = argmin
b

{
∥b∥1 : max

∣A∣=d
∥X ′

A(y −Xb)∥ ≤
√
d¸

}
(3.55)

in the event z∗2,d ≤ ¸ = o(¸univ) in (3.29). This will provide sharper error bounds

for the smaller ¸ and q ≤ 2. We omit this modification since the computational

issues with the convex programming for (3.55) and a data-driven choice of d for

d > 1 are not completely clear to the authors at the time of this writing, although

˜̄ = ˆ̄
Dantzig for d = 1.
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