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Many interesting problems in Discrete and Computational Geometry involve partitioning.

A main question is whether a given set, or sets, may be separated into parts satisfying

certain properties. Sometime we also need to find an efficient way to do it - in other words

an algorithm. In this thesis, we discuss several of problems and results of this kind.

First we give a combinatorial proof of the existence and the uniqueness of the gener-

alized ham-sandwich cut for well separated point sets in Rd, that have the weak general

position property. The combinatorial proof allows us to derive an O(n(log n)d−3) running

time algorithm to find a generalized cut for d given well separated point sets in Rd.

A second problem concerns the 6-way partition of a given convex set in R2 using 3

lines. We reopen an old question and show that when the direction of one line is fixed,

there is unique partition such that 6 regions have the same area.
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In the Voronoi game two players A and B each play n points in a compact set S in Rd.

They obtain scores equal to the total volume of the Voronoi cells of their points. There

are one round and alternating versions of the game. We give the player A’s best strategy

to minimize the area of player B’s one(first) Voronoi cell.

iii



Acknowledgements

I would like to take this opportunity to thank my supervisor, Professor William Steiger,

for his constant guidance, motivation and support during this research. He trained me

how to approach a problem and how to establish formal proofs. He also guided me through

the early years of difficulties and confusions. This thesis contains the joint work with him

published in the papers [35, 36, 37, 38, 39].

Professor Mario Szegedy served on my committee. I thank him for his many penetrat-

ing questions, his interesting conjectures and helpful advices. The results in Chapter 3 is

based on the joint work with him and Professor William Steiger presented in [39].

Professor Bahman Kalantari expressed his interest in discrete and computation geom-

etry and had lots of helpful discussions with me. I also leaned convex geometry concepts

in his course.

iv



Dedication

To Qin, Nathan

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Generalized Ham-sandwich Cut . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1. Previous Result on Discrete Ham-sandwich Cut . . . . . . . . . . . . . . . . 10

2.2. Well-Separated Sets and Generalized Ham-sandwich Theorem . . . . . . . . 12

2.3. Proof of Generalized Ham-Sandwich Theorem, Discrete Version . . . . . . . 14

2.3.1. Positive Transversal Halfspace . . . . . . . . . . . . . . . . . . . . . 15

2.3.2. Proof of Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. An Algorithm for Generalized Cuts. . . . . . . . . . . . . . . . . . . . . . . 18

2.5. A Simple Proof for the Continuous Case . . . . . . . . . . . . . . . . . . . . 23

2.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3. Six-way Equipartitioning by Three Lines in the Plane . . . . . . . . . . . 28

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2. Structure and Area Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



3.2.1. Structure of Three Cutting Lines . . . . . . . . . . . . . . . . . . . . 31

3.2.2. Area Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3. Two Useful Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4. Existence and Uniqueness of Six-way Equipartition . . . . . . . . . . . . . . 39

3.5. The Area of Central Triangle of Six-Way Equipartition . . . . . . . . . . . . 41

3.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4. Voronoi Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1. Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2. Equilateral Triangular Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3. One Round Game on Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4. Minimizing Maximal Area of Player B’s First Move . . . . . . . . . . . . . 55

4.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 59

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii



List of Figures

3.1. The existence of the concurrent six-way equipartition. . . . . . . . . . . . . 29

3.2. Seven regions by three lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3. Moving cutting lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4. Segments of two cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5. Area functions A1 and A5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1. A random B’s point on equilateral triangular lattice. . . . . . . . . . . . . . 49

4.2. Square lattice: The area of B’s Voronoi cell is 0.5. . . . . . . . . . . . . . . 51

4.3. Square lattice: The maximal of B’s Voronoi cell. . . . . . . . . . . . . . . . 51

4.4. Two B’s strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5. B’s strategy: Stripe case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6. The maximal in hexagonal grid case. . . . . . . . . . . . . . . . . . . . . . 54

viii



1

Chapter 1

Introduction

Computational Geometry is a young field of Computer Science. The research studies in

this fields began in the early 1970’s. Since its numerous and strong interactions with

various fields such as Algorithms and Data Structures, Graphics, Combinatorial Mathe-

matics, Euclidean Geometry, Convexity, and Optimization, Computational Geometry has

attracted the interest of a large number of researchers.

On the other hand, Discrete Geometry is a relative old field which once stood for

packing, covering, and tiling, but grew rapidly to include the problems in Combinatorial

Geometry, Convex Polytopes, and Arrangements of geometric objects, such as points,

lines, planes, circles.

Now the two fields have significant overlaps, and this overlap becomes one common

practice as well: mathematicians and computer scientists are working on some of the

same geometric problems and using some of the same techniques and method. Two great

handbooks survey the well established results in these researching areas: one is Hand-

book of Discrete and Computational Geometry edited by Jacob E. Goodman and Joseph

O’Rourke[22], another is Handbook of Computational Geometry edited by J.-R. Sack and

J. Urrutia[32].

In Discrete and Computational Geometry, many problems involve partitioning. A

main question is whether a given set, or sets, may be separated into parts satisfying some
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properties. Voronoi diagrams, polygon decompositions, point sets dissection are some

problems of this type. For example, with Voronoi diagrams, we are given n points in Rd,

the goal is a partition of Rd( or a bounded set in Rd) into n cells such that each cell is the

set of points closer to one given point than all other given points. Sometime we also need

to find an efficient algorithm to find the partitioning having desired properties.

In this thesis, we will discuss three main problems of the partitioning types. In this first

chapter, we will give some background for these problems and describe the organization

of this thesis.

We first address a problem related to the ham-sandwich theorem- itself an important

partitioning result in Discrete and computational Geometry. Given d sets S1, S2, ..., Sd ⊂

Rd, a ham–sandwich cut is a hyperplane h that simultaneously bisects each Si. “Bisect”

means that µ(Si ∩ h+) = µ(Si ∩ h−) < ∞, h+, h− the closed halfspaces defined by h,

and µ a suitable, “nice” measure on Borel sets in Rd, e.g., the volume. The well–known

ham-sandwich theorem states that such a cut always exists. That is, given d measurable

sets in d-dimensional space, it is always possible to find a (d − 1)-dimensional flat that

divides each set into two parts, each part having half of the total measure.

The ham-sandwich theorem takes its name from the case when n = 3 and the three sets

are a chunk of ham and two chunks of bread. The theorem says that each can be bisected

with a single guillotine cut (i.e., a plane). According to Beyer and Zardecki [8], Steinhaus

first conjectured the ham-sandwich theorem in a published paper and Banach gave the

first proof, specifically for d = 3. Stone and Tukey[40] later proved the ham-sandwich

theorem in a more general setting for measures.

One way to prove this theorem - and many other partitioning theorems - is using a

tool from algebraic topology: the Borsuk-Ulam theorem, one version of which is,
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Theorem 1.1 [Borsuk-Ulam theorem] If f is a continuous function from the unit

sphere in Rn+1 into Rn, there is a point x where f(x) = f(−x); i.e., some pair of antipodal

points has the same image..

Borsuk-Ulam is an important theorem because it has several different equivalent ver-

sions, many different proofs, many extensions and generalizations, and many interesting

applications. Matous̆ek’s recent book[27] explains the Borsuk-Ulam theorem, its back-

ground, and some of its many consequences in algebraic topology, algebraic geometry, and

combinatorics.

While the original ham-sandwich theorem holds for continuous mass functions, there

is also interest in the problems in the discrete context. Here we can define the measures

as the counting measure, that is, the mass functions that count the numbers of the points

contained in the closed (or open) halfspaces of the cut. However, the theorem no longer

applies directly since the mass functions are not continuous.

There is a general approach for extending the continuous version to the discrete case.

We define a continuous family of well behaved d-dimensional mass distributions for each

finite multiset of points (see Edelsbrunner’s book [16]). For example, we could take the

sum of k symmetric d-dimensional normal distributions, one centered at each of k data

points. We decrease the variance of the distributions to zero, and argue about the limit

of the cuts.

There are several examples where we can derive combinatorial statements that give

discrete versions of these results and we in turn can find efficient algorithm to find the

asserted combinatorial object. For example in the ham-sandwich case, Lo et. al. [25] gave

a direct combinatorial proof and described algorithms to compute ham-sandwich cuts for

point sets.



4

Another example of the extension of Borsuk-Ulam theorem is the recent result by

Bárány and Matoušek[4], who combined Borsuk-Ulam with equivariant topology to show

that three finite, continuous measures in R2 can be equipartitioned by a 2-fan, the re-

gion spanned by two half-lines incident at a point. Bereg[6] strengthened this statement

for finite set of points. He proved a discrete version and described a beautiful algorithm

to find such a partitioning. Finally, Roy, and Steiger[31] followed a similar path to ob-

tain complexity results for several other combinatorial consequences of the Borsuk-Ulam

theorem.

Our first problem in this thesis is in the same spirit. We are trying to generalize the

ham-sandwich theorem not only for bisecting, but for other fractions. We start from the

recent result by Bárány etc [3], find a combinatorial proof in the discrete setting and then

derive an efficient algorithm to find the unique generalized ham-sandwich cut. In Chapter

2, we will do the following:

• We first formulate the discrete version of the generalized ham-sandwich cut theorem:

Given d well-separated point sets in Rd, P1, . . . , Pd, and a1, . . . , ad are positive

integers, ai ≤ |Pi|, then

(i) if an (a1, ..., ad)-cut exists, it is unique. Also

(ii) if the points have weak general position, then a cut exists for each (a1, ..., ad),

1 ≤ ai ≤ |Pi|.

• Then we give the new combinatorial proof of the existence and uniqueness of gener-

alized ham-sandwich cut in for well-separated point sets in Rd, with the weak general

position property.

• From the combinatorial proof, we derive an O(n logd−3 n) running time algorithm

to find the unique generalized ham-sandwich cut.
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• Furthermore, we prove the converse of the theorem for discrete case, that is, well-

separation and weak general position are also necessary if all (a1, ..., ad) cuts exist.

• Finally we extend the proof to the continuous case show the partial converse of the

theorem.

This is the joint work with William Steiger and some results appeared in the papers

[36, 37, 38].

Our second problem involves partitions of a bounded convex set in R2 by lines. It is

easily observed that any set in the plane can be cut by a pair of lines into four parts of

equal area. And we have one degree of freedom left. Courant and Robbins [13] showed

that (1) we can choose the first bisecting line of arbitrary direction, or, (2) the pair of

lines can be taken to be perpendicular.

In 1949, Buck and Buck[9] showed that for any convex body K in the plane, there

always exists three concurrent lines that equipartition K; that is, each of the six sectors

they define cuts of the same area in K. This is called a concurrent six-way equipartition.

In general, three lines don’t meet in one point: when the three intersection points are

in K, these lines divide the set into seven regions. The central, bounded one is a triangle

T , that degenerates into a point if the lines are concurrent. We assume area(K) = 1. In

[9] Buck and Buck also showed that no convex set can be partitioned by three lines into

seven regions, each with area 1/7. They then asked whether there are partitions where

six of the seven regions each has area (1− t)/6, and the seventh has area t. The previous

statement shows this is impossible for every K when t = 1/7, and their original result

shows it is always possible for every K when t = 0.

Finally they showed that if such a six-way partitioning of K did exist, then the only

region having different area t must be the central triangle. They conjectured that in every
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six-way equipartition with three lines, area(T ) = t is at most t0 = 1/49. This is the

value that does occur when K is, itself, a triangle. It is easily seen that this K may be

six-way equipartitioned by lines parallel to its own sides. The fact that t0 is the maximum

central triangle area over any possible six-way equipartition of any convex body K was

later proved by Sholander [34].

As the second problem in this thesis, we reopen an apparently unexplored aspect of

the six-way equipartitioning. This is the topic of Chapter 3:

• We first show that given a convex body K ⊂ R2 with area(K) = 1, and a unit vector

d ∈ R2, there exists a unique trio of lines that form a six-way equipartition of K,

and where one of them has normal vector d.

• Let θ ∈ [0, π) and define function fK(θ) as the area of the central triangle such that

one cut has normal direction (cos θ, sin θ). We study the behavior of the function

fK(θ) for some special cases.

This chapter is based on the joint work with William Steiger and Mario Szegedy. We

presented some results in [39].

Our third partitioning topic addresses the Voronoi game. Given a finite point set

P ⊂ Rd, the Voronoi region of a point p ∈ P is defined as

Definition 1.2 Vor(p) := {x ∈ Rd : dist(x, p) < dist(x, q) for all q ∈ P\{p}}.

where dist(x, y) is the Euclidean distance between the points x and y. So the Voronoi

region of p contains all the points in Rd closer to p than all the other points. And the

Voronoi regions partition of the whole space. Its complement is Voronoi diagram. The

whole region can also be a bounded set S ⊂ Rd. Its Voronoi diagram is clipped by the

boundary of S.
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The Voronoi game is a two-player game. Both players play n distinct points on a

bounded set S ⊂ Rd. The score of each player is the total volume of the union of the

Voronoi regions of his points. There are two versions of the games. In the one round

version, the first player A places all his points and then the second player B places hers.

In the alternating version, A plays and then B plays, in each of the n successive rounds.

Ahn et. al.[1] first studied the Voronoi game for d = 1. An illustrative case is S = S1,

the unit circle in R2 (or any simple closed curve). In the one-round version B can achieve

a tie by just placing a point in each of the intervals allocated by A’s n points. In fact he

can win unless A plays “correctly”, and equally spaces his points.

If S is “cut” and opened into a finite interval, or segment, now A can always win the

one-round version by playing the n “critical” (evenly spaced) points. Also, B can always

win the alternating game (by getting as many critical points as possible and then playing

cleverly).

Cheong et. al. [12] took S to be a square of area one, and studied the one-round

version, where the behavior is now completely opposite to the d = 1 segment case. Now,

A need not win because there are no “critical” points to guarantee victory. In fact, they

proved that B always has a winning strategy. Using a beautiful probabilistic argument,

they showed that ∃β > 0 and an n0 so that when n > n0, B can get 1/2 + β no matter

what points A plays. They also showed this holds in higher dimensions.

We study the one-round Voronoi game for d = 2. We work on the torus and study

player B’s strategy when A plays on both a square grid and a hexagon grid (when A plays

on equilateral triangular lattice). This allows us to bound B’s payoff in the one-round

game. Using the numerical optimization techniques, we show that the area of B’s first

point is minimized when A places his points on the equilateral triangular lattice.
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Chapter 4 contains the work on the Voronoi games. This is the joint work with William

Steiger. Some of the result was presented in [35].

In the final chapter, we discuss some interesting open problems and some possible direc-

tions for future work.
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Chapter 2

Generalized Ham-sandwich Cut

We are given d sets S1, . . . , Sd ⊂ Rd, each set Si measurable with respect to a suitable,

“nice” measure µi. The ham-sandwich theorem states that there exists a hyperplane h

with the property that µi(Si ∩ h+) = µi(Si ∩ h−) = 1
2µi(Si), i = 1, ..., d. The hyperplane

h is called a ham-sandwich cut. It “slices off” the fraction αi = 1/2 from each set.

A natural question is whether we can ask for other fractions αi ∈ [0, 1] to slice off by

the cut: i.e. is there a hyperplane h such that µi(Si ∩ h+) = αiµi(Si), i = 1, ..., d. Such

an h is called a generalized ham-sandwich cut. Bárány, Hubard, and Jerónimo [3] recently

showed an interesting result about generalized ham–sandwich cuts for sets with finite, nice

measures. They showed that generalized ham-sandwich cuts always exist when the sets

are well-separated.

In this chapter, we formulate a discrete version of this problem and give a direct

combinatorial proof for a discrete version of Bárány, Hubard, and Jerónimo’s results. We

did this because of the interest in the algorithmic problem where, given n points distributed

among d well-separated sets in Rd, the object is to actually find the cut for given a1, . . . , ad.

It is interesting that in general the best-known algorithm for the discrete ham-sandwich

cuts does not scale well with dimension d having running time O(nd−1−αd), 0 < αd → 0

as d→∞. Our combinatorial proof of the discrete case leads directly to the formulation

of an efficient, O(n(log n)d−3) algorithm to compute generalized cuts for dimension d ≥ 3.



10

This algorithm may be practical because it scales well as the dimension increases. It is

nearly linear and it is one of our main results.

There are two other useful consequences of an direct combinatorial proof. The ideas

in the proof for the discrete case can be applied in the continuous case and we get an

alternative, simpler proof for the original result of Bárány, Hubard, and Jerónimo [3].

Also, as a corollary to the existence theorem we observe that in the discrete case, the

conditions for the existence and uniqueness of all cuts are also necessary. This enabled

us to strengthen the original theorems by showing that something similar holds in the

continuous context.

The topic is based on the joint work with William Steiger. And is based on the papers

appeared in [36, 37, 38].

This chapter is organized as follows: In Section 2.1, we survey the previous results on

the discrete version of ham-sandwich theorem and on the efficient algorithms to compute

it in low dimensions (d ≤ 3). These facts are part of the new algorithm for generalized

ham-sandwich cuts. In Section 2.2, we give rigorous definitions for well-separation and

for the generalized ham-sandwich theorem. We prove the discrete version of generalized

ham-sandwich theorem in Section 2.3 and describe the algorithm in Section 2.4. In Section

2.5 we adapt the proof to the continuous case for general measures and give other results.

2.1 Previous Result on Discrete Ham-sandwich Cut

The discrete version of ham-sandwich cut is defined as follows.

Definition 2.1 Let P be a set of n points in Rd. A hyperplane h is called a bisector of

P if neither of the two open half-spaces defined by h contains more than n
2 points of P .

In this case, we also say that h bisects P .
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Throughout we assume that points are in general position. If not, there are standard

perturbation techniques that enforce this[16]. Also we assume without loss of generality

that the cardinality of P is odd, since otherwise we may delete any point q; any bisector h

of P\{q} also bisects P . In this case n is odd and every bisector h must be incident with

at least one point of P . The discrete ham-sandwich theorem is:

Theorem 2.2 Let P1, . . . , Pd be d non-empty finite sets of points in Rd, then there exists

a hyperplane h that simultaneously bisects P1, . . . , Pd.

This theorem automatically leads to the computational problem of finding a ham-

sandwich cut given n points in Rd partitioned into sets P1, . . . , Pd.

In two dimensions, Megiddo [29] first described an O(n) algorithm for the special,

separated case. Here sets P1, P2 of |P1| + |P2| = n points are linearly separated. The

ham-sandwich theorem implies that there is a point x ∈ P1 and a point y ∈ P2: the line

xy bisects both P1 and P2. Megiddo’s algorithm finds these points in the dual setting.

Since the two sets are separated, the points in first set, P1 may be dualized to (red) lines

having positive slopes and those in second set, P2, to (blue) lines having negative slope.

His algorithm works in stages. In each stage, a fraction t ∈ (0, 1) of all points are pruned

because they cannot be x or y. The running time is linear in the number of points entering

the stage. Therefore the overall complexity is also linear.

Later, Edelsbrunner andWaupotitsch [17] showed how to adapt Megiddo’s algorithm to

the general, not necessarily separated case in R2. It’s running time is O(n log n). Finally,

Lo and Steiger [24] found an optimal linear running time algorithm. This algorithm was

extended to higher dimensions by Lo, Matoušek, and Steiger [25]. They showed that the

ham-sandwich cut can be computed in time proportional to the (worst-case) time needed

to construct a given level in the arrangement of n given hyperplanes in Rd−1. They also
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show that, for d = 3, if these sets have the separation property whereby there is no line

transversal meeting all three convex hulls, and each pair is linearly separated, then a

ham-sandwich cut may be found in linear time.

2.2 Well-Separated Sets and Generalized Ham-sandwich Theorem

The previous results are all for bisectors. The problem of slicing off factors αi ∈ [0, 1]

other than 1/2, however only can be done under extra conditions. Some examples are in

[3]. We will show that well-separation is necessary for the discrete case if we want the

generalized ham-sandwich cut to exist for all possible factors.

The well-separation property is defined as,

Definition 2.3 (see [23]) Given k ≤ d + 1, a family S1, . . . , Sk of connected sets in Rd

is well-separated if, for every choice of xi ∈ Si, the affine hull of x1, . . . , xk
1 is a (k − 1)-

dimensional flat in Rd.

There are several equivalent forms of the well-separation property for connected sets [5],

in particular the fact that such a family is well-separated if and only if the convex hulls

are well-separated. These equivalent forms include

C1 Sets S1, . . . , Sk, k ≤ d+1 are well-separated if and only if, when I and J are disjoint

subsets of 1, . . . , d + 1, there is a hyperplane separating the sets Si, i ∈ I from the

sets Sj , j ∈ J .

C2 S1, . . . , Sd are well-separated in Rd if and only if there is no (d− 2)-dimensional flat

that has non-empty intersection with all Conv(Si), i = 1, . . . , d.

We define the discrete version as follows,

1The affine hull of x1, . . . , xk is defined as the set {
∑

k

i=1
λixi|

∑
k

i=1
λi = 1, λi ∈ R, i = 1, . . . , k}.
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Definition 2.4 Point sets P1, ..., Pd in Rd are well-separated if their convex hulls, Conv(P1),

. . . ,Conv(Pd), are well-separated.

In view of this definition, properties (C1) and (C2) hold for the discrete context as

well. We will use these equivalent forms in the proofs later.

The maximum number of affinely independent points in Rd is d + 1. The maximum

possible value of k in Definition 2.3 is d+1; that is, the maximum number of well-separated

sets is d+ 1. But for k = d+ 1, the affine hull of d+ 1 points will be the whole of Rd. So

from now on, we will assume that k ≤ d.

In [3], Bárány, Hubard, and Jerónimo showed the existence of generalized ham–sandwich

cuts for well–separated convex measurable sets. They proved the following:

Theorem 2.5 [Generalized ham-sandwich theorem] Let K1, ...,Kd be well-separated

convex bodies in R
d and β1, . . . , βd given constants with 0 ≤ βi ≤ 1. Then there is a unique

hyperplane h ⊂ Rd with the property that Vol(Ki ∩ h+) = βi·Vol(Ki), i = 1, . . . , d.

Here h+ denotes the closed, positive transversal halfspace defined by h: that is the halfs-

pace where, if Q is an interior point of h+ and zi ∈ Ki ∩ h, the d–simplex ∆(z1, ..., zd, Q)

is negatively oriented [3]. Specifying one particular choice of halfspaces is what allows h

to be uniquely determined. Bárány et. al. gave analogous results for such generalized

ham-sandwich cuts for other kinds of well-separated sets that support suitable measures.

We are interested in the discrete version of Theorem 2.5 for n points partitioned into d

sets in Rd; i.e., points in S = P1∪· · · ∪Pd, Pi∩Pj = ∅, i 6= j, |S| = n. For this context we

need some kind of general position condition, and will assume the following, weak form.

Definition 2.6 Points in S = P1 ∪ . . . ∪ Pd have weak general position if, for each

(x1, . . . , xd), xi ∈ Pi, the affine hull of x1, . . . , xd is a (d−1)-dimensional flat that contains

no other point of S.
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Notice that this does not prohibit more than d data points from being in a hyperplane,

e.g. if they are all in the same Pi. Thus it does not imply general position.

For the discrete analogue of a generalized cut we use

Definition 2.7 Given positive integers ai ≤ |Pi|, an (a1, ..., ad)-cut is a hyperplane h for

which h ∩ Pi 6= φ and |h+ ∩ Pi| = ai, 1 ≤ i ≤ d.

As in Theorem 2.5, a cut is a transversal hyperplane for the convex hulls of P1, . . . , Pd

(here incident with at least one data point in each Pi) and h+ its positive closed halfspace.

The discrete version of Theorem 2.5 is

Theorem 2.8 [Generalized ham-sandwich theorem, discrete version] If P1, . . . , Pd

are well-separated point sets in Rd, and a1, . . . , ad are positive integers, ai ≤ |Pi|, then

(i) if an (a1, ..., ad)-cut exists, it is unique. Also

(ii) if the points have weak general position, then a cut exists for every (a1, ..., ad),

1 ≤ ai ≤ |Pi|.

It might be possible to prove this using the results of [3] along with the standard

argument we described before (see [16]). Instead here we give a direct combinatorial proof

in next section. We did this because of the interest in the algorithmic problem:

Problem 2.9 Given a set S of n points partitioned into well-separated sets P1, ..., Pd in

Rd, and in weak general position, along with positive integers ai ≤ |Pi|, find an (a1, ..., ad)-

cut for S.

2.3 Proof of Generalized Ham-Sandwich Theorem, Discrete Version

We are given d well-separated point sets, P1, . . . , Pd, in Rd, First of all, we define the

positive transversal halfspace formally, closely following [3].
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2.3.1 Positive Transversal Halfspace

We are given n points partitioned into d non-empty sets in Rd; i.e., points in S = P1∪· · ·∪

Pd, Pi ∩ Pj = ∅, i 6= j, |S| = n, and these d point sets are well-separated. For each point

set Pi, i = 1, . . . , d, we pick one point pi ∈ Conv(Pi), i = 1, . . . , d (not necessarily data

points in S), then the hyperplane h determined by {p1, . . . , pd} is a transversal hyperplane

of dimension d− 1.

As in Bárány et. al. [3], if a unit vector c satisfies 〈c, pi〉 = t for some fixed constant t

and for all i, the unit normal vector v of h can be chosen as either c or −c. The positive

transversal hyperplane arises when v is chosen so that,

det

∣

∣

∣

∣

∣

∣

∣

∣

p1 p2 · · · pd v

1 1 · · · 1 0

∣

∣

∣

∣

∣

∣

∣

∣

> 0.

Writing h as {p ∈ Rd : 〈p, v〉 = t}, h+, the positive transversal halfspace is

h+ = {p ∈ Rd : 〈p, v〉 ≤ t}.

The relation p ∈ h+ is invariant under translation and rotation.

Fixing one point set, say P1, we can find a hyperplane π which separates P1 from the

other sets. Picking a point p ∈ Conv(P1), we connect p to each point, q ∈ S, q 6∈ P1 by a

ray −→pq. We call −→pq ∩ π the ray projection image of q on π from point p, denote as qπp .

It is easy to check that h+ ∩ π is also the positive halfspace in π for all projection

images, qπp ’s.

2.3.2 Proof of Main Theorem

The proof is by induction. The base case d = 2 is probably folklore (but see [29]). “Well-

separated” implies that points in P1 may be dualized to (red) lines having positive slopes
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and those in P2, to (blue) lines having negative slope. If a red/blue intersection q has a1

red lines and a2 blue lines above it, vertex q is the dual of an (a1, a2)-cut. It must be the

unique one because the red levels have positive slope and blue ones have negative slope,

proving (2.8)i.

If P1 and P2 also have weak general position, every red/blue intersection in the dual

is a distinct vertex, |P1| · |P2| of them in all, and each is incident with just those two lines.

This implies that each level in the first arrangement has a unique intersection with every

level of the second, proving (2.8)ii. In fact the unique intersection can be found in linear

time by adapting Megiddo’s prune-and-search algorithm [29] for the unique intersection

of median levels.

Next, suppose the claims in Theorem 2.8 hold in every dimension j < d; we show

they also hold in Rd. Let π be a hyperplane that separates P1 from
⋃d

i=2 Pi. Fix a

point x ∈ Conv(P1) and project each data point q ∈
⋃d

i=2 Pi onto π via the mapping

Mx : q → −→xq ∩ π. Write P π
i for the multiset of images in π of the points q ∈ Pi, i ≥ 2.

Lemma 2.10 P π
2 , . . . , P

π
d are d− 1 well-separated sets in π.

Proof: If not, there is a (d− 3)-flat ρ ⊂ π that meets all Conv(P π
i ), i ≥ 2. But the span

of x and ρ is a (d − 2)-flat that meets all Conv(P1), . . . ,Conv(Pd), a contradiction with

the fact that P1, . . . , Pd are well-separated.

Lemma 2.11 If P1, . . . , Pd have weak general position, and if we project from a point

x ∈ P1, then P π
2 , . . . , P

π
d have weak general position in π.

Proof: This follows because each qπ ∈ P π
i is the image of a distinct point q ∈ Pi, i ≥ 2.

A transversal flat ρx ⊂ π has dimension d− 2 by Lemma 2.10. If it contains one point qπi
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from each P π
i , i ≥ 2 and any other z ∈

⋃d
i=2 P

π
i , then x and ρx span a hyperplane that

violates weak general position for P1, . . . , Pd.

These facts show that the induction hypotheses apply to the images P π
2 , . . . , P

π
d in π.

Given a point x ∈ Conv(P1) and (a2, . . . , ad), a hyperplane hx containing x is called

an (a2, . . . , ad) semi-cut (or just a semi-cut) if, for each i ≥ 2, it is incident with a point

pi ∈ Pi and |h+x ∩ Pi| = ai. The following useful fact is straightforward:

Lemma 2.12 Given x ∈ Conv(P1) and (a2, . . . , ad), if there is an (a2, . . . , ad) semi-cut

hx then it is unique.

Proof: Suppose h1 and h2 are distinct (a2, . . . , ad) semi-cuts incident with x ∈ Conv(P1).

Then there are points qi = h1 ∩ Pi and q′i = h2 ∩ Pi, i = 2, . . . , n, and the images of these

points in π would be distinct (a2, . . . , ad) cuts, in violation of the induction hypothesis.

To advance the induction, fix (a1, . . . , ad) and suppose hx is a cut with these values,

x ∈ P1. By Lemma 2.12, it is the unique semi-cut cut containing x, so suppose there

is an (a2, . . . , ad) semi-cut hy through y ∈ P1, y 6∈ hx. Hyperplanes hx and hy cannot

meet in Conv(P1) since otherwise any point in the intersection would be in two different

(a2, . . . , ad) semi-cuts, violating Lemma 2.12.

But this implies that |P1 ∩ h+y | 6= a1: if y ∈ h+x , for every z ∈ P1 ∩h+y , we have z ∈ h+x ,

then |P1 ∩ h+y | < a1 since x ∈ h−y . Similar for y ∈ h−x , we have |P1 ∩ h+y | > a1. Therefore

hx is unique cut with value a1, which proves statement (i) in Theorem 2.8.

Now suppose P1, . . . , Pd have weak general position and fix p ∈ P1 and (a2, . . . , ad).

Projecting from p, there is a unique (a2, . . . , ad)-cut ρp ⊂ π by the induction hypothesis

and the fact that each qπ ∈ ⋃d
i=2 P

π
i is the image of a distinct q ∈ ⋃d

i=2 Pi. The hyperplane
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hp determined by p and ρp is an (mp, a2, . . . , ad)-cut, mp denoting |P1 ∩ h+p |. Lemma 2.12

implies that there is no other (mp, a2, . . . , ad)-cut. Also, repeating this procedure for every

p ∈ P1, existence and uniqueness imply that the integers mp, p ∈ P1 form a permutation

of 1, . . . , |P1|. So for some p ∈ P1 we have the unique (a1, . . . , ad)-cut, and this proves

statement (2.8)(ii).

In fact the conditions of the Theorem 2.8 are also necessary.

Corollary 2.13 Well separation and weak general position are necessary if every (a1, . . . , ad)-

cut exists and is unique.

Weak general position is necessary for the existence and uniqueness of all (a1, . . . , ad)-cuts

by simple counting. There are |P1| · |P2| · · · |Pd| different d-tuples (a1, . . . , ad) and there

are this many different transversal hyperplanes through data points only if we have weak

general position.

Now suppose P1, . . . , Pd are not well-separated. By property 1 at the beginning of

this section, there is a partition I ∪ J of {1, . . . , d}, such that A = Conv(
⋃

i∈I Pi) ∩

Conv(
⋃

j∈J Pj) 6= φ. For points in A on the boundaries of the convex hulls, weak general

position is violated. For points of A interior to both convex hulls, any half space containing

⋃

i∈I Pi also contains at least one point of
⋃

j∈J Pj in its interior. If we set ai = 1 for i ∈ I,

ai = |Pi| for i ∈ J , no (a1, . . . , ad)-cut can exist.

2.4 An Algorithm for Generalized Cuts.

From now on we assume weak general position and well-separation. Theorem 2.8 implies

that for every 1 ≤ ai ≤ |Pi|, i = 1, . . . , d, there is a unique set of data points p1, . . . , pd,

pi ∈ Pi, for which the affine hull of (p1, . . . , pd) is an (a1, . . . , ad)-cut. So we could use a

brute force enumeration and find it in O(nd+1), O(n) being the cost to test each d-tuple.



19

A small improvement can be obtained by resorting to the following algorithmic result

in Proposition 2.14. In [25], Lo, Matoušek, and Steiger [25] described an algorithm to

find a ham-sandwich cut in high dimensions. We state their main results here (slightly

improved to reflect new upper bounds on k-sets [15], [33], [28]).

Proposition 2.14 Given n points in Rd which are partitioned into d sets P1, . . . , Pd in

Rd, a ham-sandwich cut can be computed in time proportional to the (worst-case) time

needed to construct a given level in the arrangement of n given hyperplanes in Rd−1. The

latter problem can be solved within the following bounds:

O(n4/3 log2 n/ log∗ n) for d = 3,

O(n5/2 log1+δ n) for d = 4,

O(n4− 2

45 log1+δ n) for d = 5,

O(nd−1−a(d)) for d ≥ 6.

Here δ > 0 is an appropriate constant and a(d) > 0 a small constant; also a(d) → 0 as

d→∞. They also show that, for d = 3, if these sets have the separation property whereby

there is no line transversal meeting all 3 convex hulls and each pair is linearly separated,

then a ham-sandwich cut may be found in linear time.

We can apply the ham-sandwich algorithms in [25] to the generalized cuts for well-

separated points sets having weak general position - given that they exist - and in this

way, the complexity of finding generalized cuts may be reduced to O(nd−1−a(d)).

Here, we will describe a much more practical algorithm, applying ideas from the proof

in Section 2.3. We showed there that for each data point p ∈ P1 and (a2, . . . , ad), there is

a unique (mp, a2, . . . , ad)-cut hp that contains p. Furthermore, for each j, 1 ≤ j ≤ |P1|,

there is a unique p ∈ P1 for which mp = j, where mp = |P1 ∩h+p |. Thus we could consider

in turn all x ∈ P1. For each we project onto π, find the unique (a2, . . . , ad) cut ρp ⊂ π,
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and compute mx = |P1 ∩ h+p | for hp, the hyperplane spanned by p and ρp. At some stage

we will discover the unique z ∈ P1 for which mz = a1 and hz is the (a1, . . . , ad)-cut. The

cost would be bounded by the cost to solve n problems in Rd−1.

In fact we will find the desired z ∈ P1 by solving at most O(log n) problems in Rd−1.

The key is the ability to prune a fixed fraction of remaining points in P1 after a search

step with p ∈ P1 by using the fact that if mp < a1, no point y ∈ h+p ∩ P1 has my = a1. In

order to do that, we use the idea of ǫ-approximation of the remaining points in P1. Here

is the entire algorithm. The details are explained after.

ALGORITHM GEN-CUT

1. choose c > 0, a small, fixed integer (say 10)

2. Find a hyperplane π that separates P1 from P2 ∪ · · · ∪ Pd

3. C ← P1

4. a← a1

5. WHILE |C| > c DO

(a) Construct A, an ǫ-approximation to C with repect to halfspaces

(b) FOR each x ∈ A DO

i. Project each y ∈ P2∪· · · ∪Pd onto π; let P π
i

denote the projections of the

points in Pi

ii. Find the (a2, ..., ad)-cut ρx ⊂ π for the projections P π
2 , . . . , P

π

d
by solving

a (d− 1)-dimensional problem

iii. Get hx, the hyperplane that spans x and ρx.

iv. Compute the number of points of C in the positive transversal halfspace

h+
x

v. END FOR
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(c) Prune from C points x ∈ P1 whose nx is too small or too large, and adjust

C and a

(d) END WHILE

6. For each remaining data point in x ∈ C, project, find the (a2, ..., ad)-cut ρx in π

for the projections by solving a (d−1)-dimensional problem, get hx and compute

nx = |P1 ∩ h+
x |, stopping when nx = a1.

Now we explain the various steps. In Step 2, finding a separating hyperplane π can

be formulated as a linear programming problem and can be solved in time O(n), for fixed

dimension d. In Step 3, C is the set of candidates for the sought point z ∈ P1; initially

C = P1. The number of undeleted points in the positive transversal halfspace of z’s

semicut is denoted by a; initially a = a1.

In the WHILE loop we construct an ǫ-approximation to C. The range space (C,A), has

VC dimension d+1, whereA denotes the set of all halfspaces inRd that contain some points

in C. By [10], in O(|C|) time [i.e., linear; in fact its O((d + 1)3(d+1)( 1
ǫ2
log d+1

ǫ )d+1|C|)]

we can construct an ǫ-approximation A ⊂ C, having constant size [in fact, |A| = k =

O(d+1
ǫ2

log d+1
ǫ )].

The FOR loop in 5b is traversed k ≡ |A| times. The cost of each traversal is dominated

by O(Bd−1), the cost of the (d−1)-dimensional problem in (ii); the cost of (i) is O(n) and

(iv) is O(|C|).

At the end of the FOR we have for each x ∈ A, the value of nx = |h+x ∩C|. These distinct

values order the elements x ∈ A, and our target value, a, is (1) less than the smallest nx,

(2) greater than the largest nx, or (3) between a successive pair in the ordering. In the

first case we delete all y ∈ C, y 6∈ h+u , where nu = min (nx, x ∈ A). In the second case we

delete all y ∈ C, y ∈ h+v , where nv = max (nx, x ∈ A); here we also reduce a by a← a−nv.
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Finally, for the middle case, we have nl < a < nu where (nl, nu) is a successive pair for

some points l, u, then we only keep the points of P1 lying between hyperplanes hl and

hu and change the value of a to a − nl. Since A is an ǫ-approximation, only a constant

fraction (< 1/(k + 1) + 2ǫ) of the points in C remains after pruning.

The geometric decrease in |C| implies that the number of iterations of the WHILE

loop is bounded by O(log |P1|) = O(log n). Therefore Step 5b contributes O(Bd−1 log n)

to the total cost of the loop, where Bk denotes the complexity of the present algorithm in

dimension k. This dominates the total cost of the loop because all other steps have cost

either O(n) or (O|C|) and contribute a total of O(n log n) to the loop.

When the loop terminates, each remaining point in C is treated in time O(Bd−1) by

executing Steps (i) - (iv) in 5b. Then, instead of Step 5c, we test whether |h+ ∩ P1| = a1;

exactly one point will have this property. Since the base case for dimension d = 2 has

linear running time, the present algorithm will find a generalized cut in O(n(log n)d−2).

Finally, we can reduce the power of log n to d− 3. In R3, Lo, et. al. [25] showed how

to find a ham-sandwich cut for well-separated point sets in linear time. That algorithm is

easily adapted to generalized cuts. Using this as the base case when d > 2, the algorithm

just described will now have running time O(n(log n)d−3) for dimensions d ≥ 3, and we

have shown

Theorem 2.15 Given n points partitioned into well-separated sets P1, . . . , Pd and having

weak general position, and (a1, . . . , ad) ∈ [0, 1]d, an (a1, . . . , ad)−cut can be found in time

O(n(log n)d−3), d ≥ 3, and in linear time if d = 2.

The dependency of the running time on dimension d can also be calculated as follows:

First of all, we do O(log n) ǫ-approximation problems in step 5(a). The running time for

this step will be bounded by O
(

(d+ 1)3(d+1)( 1
ǫ2
log d+1

ǫ )d+1n log n
)

. Then we will solve
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O
(

log nd+1
ǫ2 log d+1

ǫ

)

problems in dimension d−1. It’s easy to check the total running time

is bounded by,

O

(

(d+ 1)3(d+1)

(

1

ǫ2
log

d+ 1

ǫ

)d+1

n(log n)d−3

)

.

In other words, the running time is dominated by finding O(log n)d−3) ǫ-approximations.

Remark: The importance of the algorithm is that it scales well with the dimension and

is nearly linear.

2.5 A Simple Proof for the Continuous Case

In this section, we apply the inductive approach we used in the proof of Theorem 2.8 to

give a new, simple proof for the continuous case. We need to extend the approach to nice

measures and, to be self-contained, we repeat notations and terminology from Bárány et.

al. [3].

Writing v ∈ Sd−1 for the unit outer normal vector of a halfspace H, we denote the

halfspace {x ∈ Rd : 〈x, v〉 ≤ t} by H(v ≤ t). Analogously we write H(v = t) = {x ∈

Rd : 〈x, v〉 = t}. Given a set K ⊂ Rd, a unit vector v and a scalar t , we denote the set

H(v = t) ∩K by K(v = t); analogously K(v ≤ t) = H(v ≤ t) ∩K.

Let µ be a finite measure on the Borel subsets of Rd and let v ∈ Sd−1 be a unit vector.

Define

t0 = t0(v) = inf{t ∈ R : µ(H(v ≤ t)) > 0},

t1 = t1(v) = sup{t ∈ R : µ(H(v ≤ t)) < µ(Rd)}.

We write H(s0 ≤ v ≤ s1) for the closed slab between the hyperplanes H(v = s0) and

H(v = s1) and define the set K by

K =
⋂

v∈Sd−1

H(t0(v) ≤ v ≤ t1(v)).
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K is called the support of µ. It is convex and µ(Rd\K) = 0.

Barany et al [3] used the following

Definition 2.16 A measure µ on Rd is nice if:

(1) t0(v) and t1(v) are finite for every v ∈ Sd−1.

(2) µ(H(v = t)) = 0 for every v ∈ Sd−1 and t ∈ R.

(3) µ(H(s0 ≤ v ≤ s1)) > 0 for every v ∈ Sd−1 and for every s0, s1 satisfying

t0(v) ≤ s0 < s1 ≤ t1(v).

We observe that

Lemma 2.17 Condition (3) in the Definition 2.16 is equivalent to

(3’). For any two hyperplanes h1, h2 with h1∩K 6= φ, and h2∩K 6= φ but h1∩h2∩K =

φ, the measure of the closed slab of K between h1 and h2 is positive.

Proof: Condition (3) is a special case of (3’). On the other hand, given h1 ∩ h2 ∩K = φ,

let x ∈ h1 ∩K be a point with the minimum distance from h2. Then the hyperplane h′

incident with x and parallel to h2, together with h2 form a slab with positive measure, by

(3), and this is a subset of the slab defined by h1 and h2 since K is convex.

The generalized ham-sandwich theorem (Theorem 3 in [3]) is

Proposition 2.18 Suppose µi is a nice measure on Rd with support Ki, i ∈ {1, . . . , d}.

Assume the family F = {K1, . . . ,Kd} is well-separated and let α = (α1, . . . , αd) ∈ [0, 1]d.

Then there is a unique positive transversal halfspace H, such that µi(Ki∩H) = αi ·µi(Ki),

i = 1, . . . , d.
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Here is a simple proof along the lines we used for Theorem 2.8.

Proof: We will use induction on dimension d. First we normalize each measure so that

µi(R
d) = 1. As before, a hyperplane h is an (α1, . . . , αd)-cut if its corresponding corre-

sponding positive halfspace h+ has measure µi(Ki ∩ h+) = αi · µi(Ki), i = 1, . . . , d.

For the base case, take d = 1 under the nice measure µ1. From Definition Definition

2.16(1), the support K1 is a finite line segment [l, u]. From Definition 2.16 and Lemma

2.17, the function f : x 7→ µ1(v ≤ x) is easily seen to satisfy

(i) f(x) = 0, x ≤ l and f(x) = 1, x ≥ u and

(ii) f(x) is strictly increasing and continuous on [l, u], properties that guarantee the exis-

tence and uniqueness of an α1-cut for every α1 ∈ [0, 1].

Now suppose the claim holds for every dimension j < d. Let π be a hyperplane that

separates K1 from
⋃d

i=2 Ki. For a point x ∈ K1 and y ∈ ⋃d
i=2 Ki, define Mx(y) = xy ∩ π,

a mapping that projects each Ki onto π, i > 1. We write

PKi := Mx(Ki)

for the image of Ki in π and define the measure µπ
i on π by

µπ
i (S) := µi{v|v ∈ Rd,Mx(v) ∈ S}.

for all measurable S ⊆ π.

From the definition of nice measure, it easily follows that for each i = 2, . . . , d, µπ
i is

also a nice measure on π. In addition, following the same argument as in the proof of the

discrete case, we have,

Fact: PK2, . . . , PKd are d− 1 well-separated sets in π.

Therefore the induction hypotheses apply to PK2, . . . , PKd and an (α2, . . . , αd)-cut, ρx ⊂

π exists for PK2, . . . , PKd under measures µπ
2 , . . . , µ

π
d , and it is unique. Here, as in Section
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2.3, we call the hyperplane hx determined by x and ρx an (α2, . . . , αd)-semicut (or just a

semi-cut). By the definition of µπ
i we have µi(Ki ∩ h+x ) = αi, i = 2, . . . , d where h+x is the

positive halfspace of hx. Similar to Lemma 2.12 for the discrete case, we have

Lemma 2.19 Fix x ∈ K1 and (α2, . . . , αd), an (α2, . . . , αd) semi-cut hx exists and is

unique.

This in turn implies that, for any x 6= y ∈ K1, the semicuts hx, hy either are the same or

they do not meet in K1. Finally, fix (α2, . . . , αd) and define the function f : x ∈ K1 7→

µ1(K1 ∩ h+x ), h
+
x the positive halfspace of semicut hx. Because µ1 is a nice measure, and

in view of (3’), f(y) < f(x) if y ∈ h+x , and f is continuous. Therefore the existence and

uniqueness of an (α1, . . . , αd)-cut follows and the induction advances.

Now consider a partition I ∪ J of {1, ..., d}. A cut h with αi = 0 for i ∈ I and αj = 1

for j ∈ J exists only if
⋃

i∈I Ki and
⋃

j∈J Kj are in different closed halfspaces of h. Letting

I and J range over all 2d partitions of {1, . . . , d} we either have well-separation or, for

some I, J , and corresponding h, there are points Pi ∈ Ki ∩ h and these d points do not

span a d − 1 flat. We call this degenerate non-separation, and we have the following a

partial converse to Proposition 2.18.

Corollary 2.20 If all possible cuts exist, either the Ki are well-separated or they are

degenerately non-separated.

2.6 Summary

Starting from the recent interesting extension of the ham-sandwich theorem of Bárány,

Hubard, and Jerónimo, we formulated a discrete version for n points partitioned into d

sets in Rd. We gave a simple direct proof for this case and showed that the converse
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is true. Most importantly, we found an O(n logd−3 n) algorithm for discrete generalized

ham-sandwich cut. Finally, we applied the same proof technique to the continuous case

of generalized ham-sandwich theorem and showed the partial converse.
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Chapter 3

Six-way Equipartitioning by Three Lines in the Plane

3.1 Introduction

In this chapter we discuss the problem involving partitions of a bounded convex set in the

plane by lines. It is easily observed that any Borel measurable set in the plane can be cut

by a pair of lines into four parts of the same measure. And there is still some freedom

left. Courant and Robbins [13] showed that (1) we can choose the first bisecting line of

arbitrary direction: the ham-sandwich theorem then implies the existence of a unique line

which with the first line forms the desired partition or (2) the pair of lines can be taken

to be perpendicular.

This is not true if we want partition factors other than bisecting. For example, we

want to cut the set into four regions with factors α, β, γ and 1 − (α + β + γ) of the total

measure with α, β, γ, 1 − (α + β + γ) ∈ (0, 1). The ham-sandwich theorem implies that

we can always do it and we can also let the first cut have arbitrary direction. But we no

longer can enforce the cutting lines to be perpendicular.

In [9], R. C. Buck and E. F. Buck considered the problem of partitioning a convex set

K ⊂ R2 using three lines. In general, three lines will divide K into seven regions if the

intersections of the lines are all within K. The central, bounded triangle T degenerates

into a point if the lines are concurrent. Throughout we will assume area(K) = 1. Buck

and Buck showed the following:
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• For any convex body K in the plane, there always exists three concurrent lines that

equipartition K; that is, each of the six sectors they define has area = 1/6. This is

called a concurrent six-way equipartition.

• No convex set can be partitioned by three lines into seven regions, each with area

1/7. So 7-way equipartitions never exist for convex bodies in R2.

• If six out of the seven regions do have the same area, then the central triangle T

must be the one with the different area. And the area of T is < 1/7.

ab

c

d

o

e

f

Figure 3.1: The existence of the six-way concurrent equipartition

The existence of the concurrent 6-way equipartition can be proved directly. See in

Figure 3.1. We start with the unique horizontal line ba bisecting K. By the ham-sandwich

theorem, there exists a unique halving line dc ofK that meets ba at o such that area(bod) =

area(aoc) = 1/6. There exists unique rays oe and of that separate K into 6 wedges with

area 1/6 each. If ∠eof = 180◦, we have a concurrent 6-way equipartition. Otherwise,

we rotate ba continuously, e.g. counter-clockwise 180◦, and preserve the above structure.

Notice that

∠eofbegin + ∠eofend = 360◦.

And the ∠eof also changes continuously. So at some position of ba, ∠eof is 180◦, and
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this gives the concurrent 6-way equipartition.

Let the area of the central triangle T be t. To make things concrete we give,

Definition 3.1 Given a convex body K in R2 with area(K) = 1, lines l1, l2, l3 form a

six-way equipartition of K if

(i) the points Pij = li ∩ lj , i < j are in K,

(ii) the triangle T = △P12P13P23 has area t, and

(iii) each of the other six regions of K\T has area (1− t)/6.

From Buck and Buck’s results, we can see that it is always possible to find a six-way

equipartition for every K when t = 0 and when t = 1/7 it is never possible. They stated

the conjecture that in every six-way equipartition with three lines, area(T ) = t is at most

t0 = 1/49. This is the value that does occur when K is, itself, a triangle. It is easily seen

that this K may be six-way equipartitioned by lines parallel to its own sides such that

t = t0.

The fact that t0 is the maximum central triangle area over any possible six-way equipar-

tition of any convex body K was later proved by Sholander[34], and he showed that the

upper bound occurs when K is a triangle. See also [18, 19, 20] for another proof given by

Eggleston.

Here we reopen an apparently unexplored aspect of the six-way equipartitioning. Sur-

prisingly it is the crucial question concerning existence of 6-way equipartitions with t > 0.

Our main result is

Theorem 3.2 Given a convex body K ⊂ R2 with area(K) = 1 and a unit vector d ∈ R2,

there exists a unique trio of lines that form a six-way partition of K, and where one of

them has normal vector d.
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Before this result, the basic question of the existence was open except when t = 0. Ac-

cording to Theorem 3.2, for each convex body K and θ ∈ [0, 2π) there is a unique six-way

equipartition of K where one of the lines has direction d = (cos θ, sin θ). We write fK(θ)

as the area t of the central triangle in the partition. In Section 3.5, we will study this

function and use it to characterize certain convex sets K.

3.2 Structure and Area Functions

Before we prove Theorem 3.2, we discuss our approach and introduce the notations and

ideas that will be used..

3.2.1 Structure of Three Cutting Lines

Given a convex body K ⊂ R2 with area(K) = 1, we introduce three cutting lines l0, l1

and l2. If their intersection points are within K, they create a six-way equipartition if and

only if they satisfy the following properties:

(C1) Each line li cuts K into two parts: K−
i with area α for some α ≤ 1

2 . And the other

part, K+
i has area 1− α;

(C2) For each i, K−
i is equipartitioned into three regions by two other lines lj, j 6= i.

Clearly, when l0, l1 and l2 satisfy both (C1) and (C2), the central triangle T =
⋂3

i=1 K
+
i .

Given a fixed a unit vector d ∈ R2, we let l0 have the direction d. Without loss of

generality, we assume that d is the vertical direction, so l0 is a vertical line.

Let α ≤ 1/2 be the area of K−
0 , the smaller part cut by l0. Let l

+
1 denote the halfplane

above l1, l
+
2 the halfplane above l2. We choose lines l1 and l2 satisfying following invariants.

(I1) area(l+1 ∩K−
0 ) = α/3, area(l+1 ∩K+

0 ) = 2α/3;
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(I2) area(l+2 ∩K−
0 ) = 2α/3, area(l+2 ∩K+

0 ) = 1− 5α/3.

For example, as shown in Figure 3.2, the part to the right of l0 has smaller area α ≤ 1/2,

it is K−
0 . And A1, the intersection of K−

0 and l+1 , has area α/3, and A5 ∪A6 (= l+1 ∩K+
0 )

have total area 2α/3. Similarly, A1 ∪ A2 (= l+2 ∩K−
0 ) have total area 2α/3, and A6 ∪ T

(= l+2 ∩ K+
0 ) has total area 1 − 5α/3, or A4 ∪ A5 have total area 2α/3. So in this case,

A1, A2 and A3 have the same area α/3. If A5 also has area α/3, l0, l1, and l2 create a

six-way equipartition.

x

l0

l1

l2

A1

A2

A3A4

A5

A6

T

Figure 3.2: Three cutting lines and seven regions. l0, l1 and l2 are bisectors of K when
x = 0 and δ(x) = 0.

Once the position of l0 is fixed, the lines l1 and l2 satisfying (I1) and (I2) respectively

are both unique since K−
0 and K+

0 are separated convex bodies in the plane. And the

seven regions are also determined.

Since l0 is a vertical line, we describe the position of l0 using its x-coordinates. We

take x = 0 when l0 is the vertical bisector of K. In this case, we have α = 1 − α = 1/2,

we pick K−
0 as the right side. But in fact, no matter how we pick K−

0 , l1 and l2 are the
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same set of lines.

On the other hand, lines l1, l2 satisfying both (I1) and (I2) automatically satisfy (C1).

If the intersection of l1 and l2 is within K+
0 , as in Figure 3.2, l0, l1, and l2 satisfy (C2)

when A5 has the same area as A1 and create a six-way equipartition. That is, we meet a

six-way equipartition when A5 and A1 have the same area with invariants (I1) and (I2).

Fact: A six-way equipartition with l0 of direction d must satisfy (I1) and (I2) and A5

and A1 have the same area. Furthermore, if the central triangle of six-way equipartition

T has area t, then α = 1−t
2 .

3.2.2 Area Functions

Let δ ≡ 1
2 − α. By the definition of α, we have δ ≥ 0. And δ is a function of x. We write

is as δ(x). When x = 0, δ(x) = 0 since α = 1/2. If l0, l1 and l2 are concurrent, we have

a concurrent six-way equipartition. Otherwise, the central triangle, T , will have positive

area. Without loss of generality, we assume that T is on the left side (the side where

x < 0) of l0. We label the other six regions as A1, ..., A6 in clockwise order as shown in

Figure 3.2.

We denote the area of Ai as Ai(x), i = 1, ..., 6 and denote the area of T as T (x). When

the value of x is given, all cutting lines l0, l1 and l2 are uniquely determined. So are the

regions of A1, ..., A6 and T . Thus Ai(x)’s and T (x) are well defined functions of x. The

first observation is that we can exclude the cases for x < 0.

Lemma 3.3 Given the cuts as in Figure 3.2 when x = 0, that is, the central triangle is

on the left of l0, there is no six-way equipartition for x < 0.

Proof: For a fixed x < 0, the vertical cuts moves to l0(x). In this case, K−
0 is on the left

of l0. If triangle T is on the left of l0, we have A1(x) = A3(x) =
1
6 −

δ(x)
3 . By invariants
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(I1) and (I2), we have,

A2(x) =
1

2
+ δ(x) −A1(x)−A3(x) =

1

6
+

5

3
δ(x).

If triangle T moves to the right of l0(x), then A1(x) = A3(x) =
1
6 −

δ(x)
3 − T (x). And

A2(x) =
1

2
+ δ(x) −A1(x)−A3(x)− T (x) >

1

6
+

5

3
δ(x).

We always have A2(x) >
1
6 , it is impossible to find a six-way equipartition.

So in what follows, we assume that x ≥ 0. By invariants (I1) and (I2), we will have

the following equalities:

Proposition 3.4

• A1(x) = A2(x) = A3(x) =
1
6 − 1

3δ(x);

• A6(x) = A4(x);

• A5(x) =
1
6 − 2

3δ(x)−A4(x)=
1
6 − 7

3δ(x) + T (x).

And A5(x) = A1(x) if and only if l0, l1 and l2 create a six-way equipartition of K.

Especially when x = 0, δ(0) = 0, we have,

• A1(0) = A2(0) = A3(0) =
1
6 ;

• A6(0) = A4(0) =
1
6 − T (0);

• A5(0) =
1
6 + T (0) > A1(0).

We will prove Theorem 3.2 in two steps:

1. First we move l0 continuously, starting from where it bisects K to xmax > 0 where it

is the right vertical tangent to K. Throughout l1 and l2 satisfy invariants (I1) and

(I2). We will show that during this process, all area functions change continuously.
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In fact, they have continuous derivatives with respect to x. If a six-way equipartition

exits, we will meet it at some x ∈ [0, xmax].

2. Then we establish the existence by showing that A1(x) = A5(x) for some x′ ∈

[0, xmax]. From the invariants, area functions A1(), ...A(6) are equal at x = x′. We

also show that once x > x′, A5(x) < A1(x). Since A5(0) ≥ A1(0), once we pass a

six-way equipartition in the continuous motion of l0, we never meet another one.

Thus there is a unique 6-way equipartition with one line vertical.

3.3 Two Useful Lemmas

In order to prove Theorem 3.2, we need to study the area functions Ai(x)’s and T (x) first.

The following lemma is about the smoothness of these functions. This result may be well

known, but we still give the proof.

Lemma 3.5 Ai(x)’s and T (x) are continuous functions on x. Furthermore, the first

derivatives of Ai(x)’s exist and are continuous.

Proof: Suppose x is changed to x + ∆x where ∆x > 0 and small. And the chord on l0

moves from CD to C ′D′ as shown in Figure 3.3. By the convexity of K, the differences

between lengths |CD| and |C ′D′| is O(∆x) when A1(·) keeps positive. So the area of K−
0

reduces with amount |CD|∆x + O(∆x2). This implies that A1(x), A2(x) and A3(x) are

continuous functions and the first derivatives of these functions is just the one third of

|CD|. And the length |CD| is a continuous function with respect to x by the convexity of

K.

Now consider the movement of l1, as shown in Figure 3.3. Let Px be the x-coordinate

value of P , the intersection of lines l0 and l1 and we write l1 as the line y = ax + b and

new position l′1 as y = (a+∆a)x+ (b+∆b).
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Notice that the part of K above l′1, K
−
1 will have the same area as the part of K on

the right of l′0, K
−
0 by the invariants (I1) and (I2). So we have, (the area functions used

here are with sign, for example, the area below EF will cancel out the area above EF .)

area(EE′F ′F ) = area(CC ′D′D)

area(CC ′Q′P ) + area(P ′F ′FQ′) =
1

3
area(CC ′D′D)

x

l0 l′
0

l1

l′
1

C C′C C′

D D′

E′

E

F ′

F

l2

I

J

G

H

P

P ′

Q

Q′

Figure 3.3: The position of l0 moves from x to x+∆x. We only show the movements of
l0 and l1. New positions are l′0 and l′1.

By the convexity ofK, the x-coordinates difference between F ′ and F is O(|∆a|+|∆b|).

The same is true for E′ and E, and we may rewrite the above equation as,

∫ Fx

Ex

[∆ax+∆b]dx = |CD|∆x+O(|∆a|+ |∆b|+∆x)2;

∫ Fx

Px

∆ax+∆bdx =

[

1

3
|CD| − |CQ|

]

∆x+O((|∆a|+ |∆b|+∆x)2.
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One consistent solution of the above equations exists when |∆a| = O(∆x), |∆b| =

O(∆x). By the uniqueness of l′1, this is the only solution. In such a case, as ∆x→ 0,

(F 2
x − E2

x)∆a+ (Fx − Ex)∆b ≈ |CD|∆x

(F 2
x − P 2

x )∆a+ (Fx − Px)∆b ≈
[

1

3
|CD| − |CQ|

]

∆x.

This shows that ∆a,∆b are changing linearly with respect to ∆x. If we write l1 as

y = a(x)z + b(x) where x is the current position of l0, then a(·), b(·) are both continuous

functions. Furthermore, the first derivatives of a(·) and b(·) depend only on the shape of

K and x and they are continuous functions of x.

Applying the same arguments on l2, we can see that the “movement” of I, the inter-

section of l1 and l2 is O(∆x). And the change of A5(·) on segments EI and GI are both

continuous with continuous first derivatives. So A5(·) is also a continuous function with

continuous first derivative.

Using the fact in Proposition 3.4, we can see that A4(·), A6(·) and T (·) are also con-

tinuous functions with continuous first derivatives.

One implication of Lemma 3.3 is that triangle T is always on the left of l0: given T (·) is

continuous, if T moves to the right of l0, then there exists some x such that T (x) = 0, we

will have a concurrent six-way equipartition. But this contradicts the fact that A1(x) <
1
6

for all x > 0.

We also need to compare the first derivatives of the area functions, which in turn

depend on the length of segments as shown in Figure 3.3. The following lemma is about

the length of segments introduced by two cuts for a convex body K when each cut “slices

off” K with one piece having area α.
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Lemma 3.6 Given a bounded convex body K in R2, two cuts both “slice off” K with one

piece having area α and intersects at point o as in Figure 3.4. So two cuts divides K into

4 regions R1, R2, R3 and R4 such that R1 and R3 have the same area. Using the labels in

Figure3.4, we have the following inequalities,

|ao|
|ab| +

|co|
|cd| ≥

area(R4)

area(R1) + area(R4)
,
|bo|
|ab| +

|do|
|cd| ≥

area(R2)

area(R1) + area(R2)
. (3.1)

And the larger of the sums in (3.1) is at least 1. They are both 1 if one is 1.

Proof: Draw the line ad passing both a and d and line bc passing both b and c. If ad and

bc are parallels, then both sums are 1.

a

c

o

b

d

p

q

R1

R2

R3

R4

Figure 3.4: Lengths of segments of two cuts.

Otherwise, w.l.o.g, ad intersects with bc at point p as shown in Figure 3.4. We connect

o and p, We also draw a line aq which is parallel to bc and interests with od at q. Then it

is easy to check,

|bo|
|ab| +

|do|
|cd| =

|co|
|cq| +

|do|
|cd| >

|co|
|cd| +

|do|
|cd| = 1.
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And we have

|co|
|cd| =

area(△pco)

area(△pcd)
,
|ao|
|ab| =

area(△pao)

area(△pab)
.

Say area(△pab) ≥ area(△pcd), we have,

|ao|
|ab| +

|co|
|cd| ≥

area(pcoa)

area(pcoa) + area(△ocb)
.

By the convexity of K, R4 is contained in quadrilateral pcoa, and △ocb is contained in

R3, we have,

|ao|
|ab| +

|co|
|cd| ≥

area(R4)

area(R4) + area(△ocb)
≥ area(R4)

area(R1) + area(R4)
.

We can also see that for the smaller sum, the inequality becomes equality only when

R4 is exact the quadrilateral pcoa (that is, △pac ⊆ R4), and R1, R3 are triangles △ocb

and △oab which have the same area.

3.4 Existence and Uniqueness of Six-way Equipartition

Now we are ready to prove Theorem 3.2. In previous section, we showed that when

x = 0, A5(0) > A1(0) = 1
6 . As in Figure 3.3, for small ∆x, the area of A1 is reduced

on segment CQ and PF and the total reduced area is 1
3 |CD|∆x. And on l1, the average

movement(orthogonal to EF ) will be ∆1 =
|CD|
|EF |∆x. Now by Lemma 3.6, we have

|CQ|
|CD| +

|PF |
|EF | ≥

1

3
.

This implies the average movement on PF is no greater than ∆1. So the average movement

on EP is larger than ∆1, so on segment EI . By similar argument, the average movement

(in absolute value) on GI is larger than |CD|
|GH|∆x. This shows that A5(x) is a decreasing

function on x.
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Keep moving line l0, A1(x) = 0 when l0 is tangent to K, say for x = xmax. But for

some x0 < xmax, l1 and l2 intersect on the boundary of K and region A5 vanishes. So

A1(x0) > A5(x0) = 0. Since the Ai(x)’s are continuous functions, there exists at least one

x ∈ (0, x0) such that A1(x) = A5(x). And this is a six-way equipartition.

When A5(x) ≥ A1(x), by Lemma 3.6, we also have,

|JH|
|GH| +

|JD|
|CD| ≥

1

3
,
|GI|
|GH| +

|EI|
|EF | ≥

1

3
.

As shown in the proof of Lemma 3.6, one inequality becomes equality only when, say

K−
0 and K−

1 are both triangles and A1 is the quadrilateral K−
0 ∩K−

1 . So for any convex

K ⊂ R2, at most one of three such inequalities can be equality. So A5(x) decreases faster

than A1(x) when A5(x) > A1(x). By the continuities of the derivatives, there exists a

θ > 0 such that for all x with A5(x) ≥ A1(x)− θ, we have

dA5(x)

dx
≤ dA1(x)

dx
< 0.
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Figure 3.5: Area functions A1 and A5. The right one is for T (0) = 0, the concurrent
six-way equipartition case.

The uniqueness of the intersection of A1(x) and A5(x) follows from the fact that once

A5(x) < A1(x), A5(x) cannot exceed A1(x)− θ for larger x. So the six-way equipartition
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is unique. The argument also applies to the concurrent six-way equipartition case. Figure

3.5 shows the graph of functions A1(·) and A5(·).

3.5 The Area of Central Triangle of Six-Way Equipartition

Another interesting function is the area of the central triangle in the six-way equipartition

as the function of the direction of the one line. We can define the direction of l0 as

d = (cos θ, sin θ), θ ∈ [0, π), and the area of the central triangle as fK(θ). By Theorem 3.2,

fK(θ) is a well defined function.

Following the same idea as in the proof of Lemma 3.5, starting from a 6-way equiparti-

tion with fixed θ, once we change θ by a small angle δ, areas functions A1(·) and A5(·) are

changed proportionally to δ, as are their differences. By Lemma 3.5, A1(·) and A5(·) have

continuous first derivatives, so fK(θ) − fK(θ + δ) = O(δ). Thus, fK(θ) is a continuous

function on θ.

We can characterize fK(θ) for a convex set K ⊂ R2,

• From the existence of concurrent six-way equipartition, fK(θ) has at least 3 zeros

since we restrict θ within [0, π).

• Sholander’s results[34] shows that maxK fK(θ) = 1/49 for all K ∈ R2 with area 1.

And fK(θ) = 1/49 when K is a triangle and one side has direction (cos θ, sin θ).

Furthermore, we have the following interesting properties as immediate corollaries of

Theorem 3.2:

Lemma 3.7 If convex region K is central symmetric, three lines in a 6-way equipartion

must always be concurrent, i.e., fK(θ) ≡ 0.

When K have an axis of symmetry, we can move the point p along the axis starting
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from the intersection of the boundary and the axis. We also make the two trisecting rays

starting from p for each half on both sides of the axis. At some position, four trisecting rays

become two lines by symmetry, that is a 6-way equipartition. So we have the following:

Lemma 3.8 If K has a axis of symmetry, there exist concurrent 6-way equipartition with

one of line being the axis.

For example, when K is a regular n-gon, we have

• For even n, fK(θ) ≡ 0 since the regular n-gon has a center of symmetry.

• For odd n, regular n-gon has n axes of symmetry where each axis passes one vertex.

When n is divisible by 3, the concurrent 6-way equipartition with one line passing a

vertex must have all lines passing vertices. So we have n θ’s with fK(θ) = 0. If n is

odd and not divisible by 3, we have n concurrent 6-way equipartitions with one line

passing a vertex. Using Theorem 3.2, it’s easy to show that all n concurrent 6-way

equipartitions are different. So we have at least 3n θ’s in [0, π] with fK(θ) = 0.

When n is even, clearly regular n-gon minimizes max fK(θ) for all polygons with n

sides. This is not true for n odd and n > 3: we can always cut one angle of a regular

(n − 1)-gon and make the cut off small enough. By Lemma 3.5, max fK(θ) will also be

smaller than that of regular n-gon. But we have the following conjecture:

Conjeture 3.9 Regular n-gon maximizes the number of different concurrent six-way equipar-

titions over all polygons with n sides.

This conjecture is true when n even and when n = 3. The first none trivial case is

n = 5.
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3.6 Summary

In this chapter we reopen an apparently unexplored aspect of the six-way equipartition-

ing by three lines in the plane. We prove the existence and uniqueness of the six-way

equipartitioning when the direction of one line is given.

For a convex set K in the plane, we also introduce the function fK(θ) as the area of

the central triangle where θ is the given direction. We show that fK(θ) is related to the

symmetry of K.
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Chapter 4

Voronoi Games

In this chapter, we discuss a simple geometric version of a location game, the Voronoi

game. In the Voronoi game two players A and B each play n points in a bounded playing

arena S ⊂ Rd. In this game, a point p “owns” the part of the playing arena that is closer

to p than to any of the other 2n − 1 points; that is the Voronoi cell of p. There are two

ways to play the game, one round and alternating. In the one round version, A places all

his n points and then B places her n points. In the alternating version A plays and then

B plays, in each of the n successive rounds. The score for a player in the game is the total

volume of his/her Voronoi cells.

The one dimensional Voronoi game was recently studied by Ahn et. al.[1]. The game

is played on a closed curve or open curve (e.g., a segment). When plays on a segment,

A can always win the one round version by playing equally spaced points, the so called

critical points. B can control this amount by which she loses. In the alternating version,

B has a winning strategy.

Less is known for dimension d ≥ 2. Cheong et. al. [12] took S to be a square of

area one, and studied the one-round version, where the situation is opposite to the d = 1

segment game. Using a beautiful probabilistic argument they proved that for n > n0, B

has a winning strategy. They also extended these results to higher dimensions and showed

that B still has a winning strategy for if n large enough.
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An interesting followup paper by Fekete and Meijer [21] explored the continuum be-

tween a square and a segment by allowing S to be a rectangle of base x and height 1/x.

As x ≥ 1 increases, S becomes more “linear”, more like a segment. At a certain point, the

behavior of the one round Voronoi game on S ⊂ R2 switches to be that of the game on a

segment: once x ≥
√

n/2, n ≥ 3, there are again critical points which, if A takes them in

his move, will guarantee victory. Almost nothing is known about the alternating version

in dimension d ≥ 2.

In this chapter, we amplify the results of Cheong et. al. [12]. We investigate A’s

best strategy to minimizing his disadvantage in several different ways. Some results were

presented in [35].

4.1 Previous Results

In the one dimensional game, Ahn et. al.[1] first studied the one round game. On the

a simple closed curve, e.g., the unit circle in R2, B can achieve at least half of the total

curve length by the simple strategy of placing one point within each interval created by

A’s n points thereby winning half of each interval. In fact unless A plays correctly (by

evenly spacing his n points), B can win as follows:

1. Placing two points in the longest of A’s intervals, arbitrarily close to the endpoints,

(B gets nearly all, i.e. maxI −δ );

2. Placing one point arbitrarily in each of the remaining intervals except the smallest(B

get 1/2 of each);

3. Avoiding the shortest of A’s intervals with length minI .
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In this way, B wins because A did not play evenly spaced points. B gets totally maxI −δ

from the longest and shortest intervals, combined, and half of the other n − 2 intervals.

With maxI −minI = σ > 0 and as long as δ < σ/2,

max
I
−δ >

maxI +minI
2

greater than even share. So the A’s best strategy is to place her points equally-spaced

(these locations are called “critical” points), and in this case the best result of player B

is a tie.

If S is “cut” and opened into a finite interval, or segment, these same observations

can be used to show that now A can always win the one-round version by playing the

“critical” points; 1/(2n), 3/(2n), ..., (2n − 1)/(2n) along the length of S. There are n + 1

intervals, two of length L/2n, the rest of length L/n. By A’s placement, B must concede

one interval and a positive part of another. She therefore loses, though by a margin she

can control.

In the alternating version, B now always has the winning strategy by getting as many

critical points as possible and then playing cleverly. Notice for the closed curve, the

positions of the critical points depends on the position of first A’s point. Player B needs

to cover at least one “critical” point and has a winning strategy, but A can capture at

least 1
2 − ε of the curve for any ε > 0, in other words, she can make B’s wins as small as

possible.

For d = 2, Cheong et. al. [12] took S to be a square of area one, and studied the one-

round version. First, they study the square Q under the topology of a torus by identifying

the top edge with the bottom edge, and the left edge with the right edge. Let the area of

Q be one. In the one round game, once player A plays all his n points in Q, for a random



47

point x, the expected area of the Voronoi region of x is

E[vol(Vor(x,A))] = 1

n

∫

Q
vol({x ∈ Q : y ∈ Vor(x,A)})dy.

Here vol(·) is the measure(or area), A is the point set of player A, Vor(x,A) is the Voronoi

cell of x w.r.t A on Q. We use dist(x, y) to denote the l2-distance between two points

x, y ∈ R2. We also define dist(x,S) for a point x and some points set S as

dist(x,S) := min
s∈S

dist(x, s).

A point y ∈ Q lies in Vor(x,A) if and only if dist(y, x) < r = dist(y,A), so we have,

{x ∈ Q : y ∈ Vor(x,A)} = {x ∈ Q : dist(x, y) < r}.

By splitting Q by the Voronoi cells of A only, we have

E[vol(Vor(x,A))] = π

n

∑

w∈A

∫

Vor(w)
dist(y,w)2dy. (4.1)

where Vor(w) is the Voronoi cell of the point w.

On the other hand, by the following lemma by L. Fejes Tóth (see [30].),

Lemma 4.1 Let O = {O1, ..., On} be n points in the plane, let H be a regular hexagon,

and f be a monotone increasing function, then

∫

H
f(dist(x,O))dx ≥ n

∫

H′
f(|x|)dx,

where H ′ is a regular hexagon with A(H ′) = A(H)/n, centered at 0.

Since the equilateral triangular lattice has regular hexagonal Voronoi cells, this implies

that the equilateral triangular lattice minimizes the expected area of one point played at

random by B, under the torus topology.
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4.2 Equilateral Triangular Lattice

On the equilateral triangular lattice, each point p has 6 closest neighbors. The convex hull

of these 6 closest neighbors is a regular hexagon with p as the center. The Voronoi region

of p is also a regular hexagon.

We study B’s strategy when A plays on equilateral triangular lattice. First, we show

how to embed an equilateral triangular lattice in a square with torus topology. From now

on, we will scale the Q to have area n to make this presentation clearer.

Let the distance between 2 lattice points on the equilateral triangular lattice be a.

The hexagonal Voronoi cell for each point has area
√
3
2 a2. So when a = 4

√

4
3 , each point’s

Voronoi cell has area 1.

And the distance between two furthest layers on lattice is
√
3
2 a, so we cannot embed

the equilateral triangular lattice perfectly on Q when Q is a square. But by Minkowski’s

theorem (see [26][30]), we can always find two integers i1 and i2 such that,

∣

∣

∣

∣

∣

√
3

2
− i1

i2

∣

∣

∣

∣

∣

≤ 1

i22
.

Then we can set n = i1i2, and let distance a = 4

√

4
3 to embed the lattice on Q. For i2

(and so i1) large enough, the embedding error is sufficiently small.

Now each point’s hexagonal Voronoi cell will have area 1. And we consider the one

round Voronoi game. Using Lemma 4.1, we already know that the equilateral triangular

lattice minimizes the expected area of one random point played by B. In fact its value is

easy to calculate. Two adjacent lattice point has distance a = 4
√

4/3. Let one point at 0,

its Voronoi cell H is the regular hexagon centered at 0 with area 1 and the length of each

side H is a/
√
3. The minimum expected value as in Equation 4.1 is:

π

∫

H
|x|2dx = 12π

∫ a

0

∫ x√
3

0
(x2 + y2)dydx =

5
√
3π

54
= 0.5038....
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So we have the following result:

Lemma 4.2 Let Q be a square of torus topology with area n large enough, the expected

area of the Voronoi region of a random point x on the torus is minimized when player A

puts her n points on the equilateral triangular lattice, and the expectation is 5
√
3π

54 .

Figure 4.1: A random B’s point on equilateral triangular lattice.

4.3 One Round Game on Lattices

We are interested in the question that what’s B’s best response when A plays on a lattice

grid. We will study two lattice grid cases, the square grid and the hexagonal grid. For

each grid, we will try to find the maximum area which B’s first point can catch. Before

we study the lattice grids, we show the following fact for any lattice.

Lemma 4.3 Suppose A plays all her n points on some lattice on the torus Q, and for

each of A’s points, B plays one point has the same offset ~r. In other words, B places all

his points on a shifted lattice. Then the result is a tie.

Lemma 4.3 is easy to prove: let p be one bisecting point on the line segment of one pair

of A’s and B’s point with offset ~r. We do the 180◦ rotation centered at p. Then position
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of A’s and B’s lattices will swap. So the result must be a tie.

Now consider B’s first move x. Let ax be the closest point of A. If B places more

points to make x on a shifted lattice from A’s lattice, the area of the Voronoi cell of x is

either reduced or not impacted. So Lemma 4.3 gives us the following corollary

Corollary 4.4 Suppose A plays n lattice point on Q, and B places a point x on Q, then

the area of the Voronoi region of x is at least 0.5. Furthermore, if we can place more

points on A’s neighbor point with the same offset as x from its closest point of A, and this

does not impact the Voronoi cell of x, then the area of the Voronoi region of x is exactly

0.5.

Square Grid

As the first step, we study the case in which player A places points on square grids. In

this case, each of A’s Voronoi cells is a unit square ( before the player B moves).

For a particular point of A, it has 4 closest neighbors and 4 second closest neighbors.

We call the line segment connecting the point to one closest neighbor “w-edge” and the

line segment connecting the point to one second closest neighbor “w-diagonal”.

Now we study the first move of player B. Call this point x. If x is placed on “w-

diagonal”as shown in Figure 4.2, the Voronoi cell of x is an isosceles trapezoid. And if we

place the other point like x in the neighbor cells, these trapezoids do not intersect. So we

can see that the area of the Voronoi cell of x is minimized on these diagonals.

All w-diagonals split Q into small squares with area 0.5. So if x is placed on the

boundary of these squares, area(Vor(x,A)) = 0.5. Another property of these square is

that if x is placed as the interior point in one of these squares, the set of A’s points which

determine the Voronoi cell of x remains the same, and they are in convex position. By a
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Figure 4.2: Square lattice: The area of B’s Voronoi cell is 0.5.

result of Dehne et al, [14], there is a unique maximal xmax within one such square which

maximizes the area of its Voronoi cell.

By symmetry of the square, the only possible xmax must be the center of the small

square, which is also the mid point of one w-edge. And the maximal area is 0.5625.

Figure 4.3: Square lattice: The maximal of B’s Voronoi cell.

Player B may have two classes of strategies to win the game:

W1 She places some points on locations with the maximal Voronoi region. By Lemma

4.3, she cannot place all her points on such locations. Then she try to break player

A’s largest Voronoi regions;
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W2 She places her points on some period “stripe” locations.

The following configurations are for W1. The configuration with win 0.5208 is the best

strategy we could find.:

Figure 4.4: Two B’s strategies with wins 0.5156, 0.5208.

Figure 4.5: Stripe case of B, wins 0.5185.

For strategies of type W2, we have following lemma.

Lemma 4.5 Using strategy of type W2, player B cannot have wins > 0.5185.
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Proof: We can see that period is 2. Let coordinates of one B’s point be (a, b), the closest

B’s point are (1− c, 1+ d) and (1− c,−1+ d) with 1
2 ≥ a > b ≥ 0. It is easy to show that

the optimal will need the 1
2 ≥ c > d ≥ 0.

We can show that the area will increase if we project the points to w-edges or let

b = 0, d = 0. Then the wins of B will be 0.5 plus a factor times (1 − a − c)2(a + c), it

will be maximized when a+ c = 1
3 . Figure 4.5 shows the corresponding Voronoi diagram

when a = c = 1
6 and B wins 0.5185.

Hexagonal Grid

If A plays on the equilateral triangular lattice, we have similar results to the square lattice

case.

First of all, if B’s first point x is on the boundary of one regular hexagonal Voronoi

cell or she places a point one the segment connecting two neighbor lattice point, by

the similar argument as in square grid which is based on Corollary 4.4, we must have

area(Vor(x,A)) = 0.5.

One hexagonal cell is separated by these minimal lines into 6 similar quadrilaterals.

Again, if x is placed in the same quadrilaterals, its Voronoi cell is given by 5 points of A

in the convex position. Let these points be (0, 0), (0, 2), (0,−2), (
√
3, 1), (

√
3,−1) (Here we

scale the unit to make the calculation easier). And the quadrilateral will be the convex

hull of (0, 0), (
√
3
2 , 12 ), (

2√
3
, 0), (

√
3
2 ,−1

2).

Again, by the result in [14], there is only one point whose Voronoi region has local

maximal area in the quadrilateral. And since the quadrilateral is symmetric about the

line y = 0, the position of the local maximal must be on the line segment between (0, 0)

and ( 2√
3
, 0).
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(0, 0) 

(0, 2) 

(0, -2) 

(a, 0) 

( 3, 1) 

( 3, -1) 

v
0

v
1

v
2

v
3

v
4

Figure 4.6: The maximal in hexagonal grid case.

Let x = (a, 0), 0 < a < 2√
3
be a point on this line segment. Then we have,

f(a) = area(Vor(x,A)) =
(

√
3 +

3a3 − 4
√
3a2 + 4a

4(a2 − 3
√
3a+ 6)

)

.

The function f(a) is maximized when f ′(a) = 0. So amax is a root of the following

polynomial:

g(x) =
√
3x3 − 16x2 + 18

√
3x− 12.

The numerical result shows amax = 0.511953... and area(Vor(amax)) is 0.51273.... So we

have the following result:

Lemma 4.6 If A plays on the equilateral triangular lattice, the maximal area of the

Voronoi region for a single point played by B is 0.51273.

Clearly B cannot win 0.51273 in this case, we tried different configurations and cannot

find the win of B exceed 0.5064.
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4.4 Minimizing Maximal Area of Player B’s First Move

From the results of the previous section, we have a strong belief that playing on the

equilateral triangular lattice is A’s best strategy to minimize the area of B’s first Voronoi

cell. In this section, we will use computer simulations and optimization techniques to

support this claim.

Euler Formula for the Torus

First of all, the Voronoi diagram is a planer graph with vertices (without player’s points),

faces and edges. For a connected planer graph, the well-known Euler Formula is

f − e+ v = 2,

where f is the number of cells(faces), e is the number of edges and v is the number of

vertices. For the torus topology, the formula is changed to:

f − e+ v = 0.

Since each vertex is adjacent to at least 3 edges and each edge is adjacent to exactly

2 vertices, we have,

2e ≥ 3v.

But this implies that e ≤ 3f, v ≤ 2f . So the average number of Voronoi edges per cell on

the torus is at most 6. Now we consider an arbitrary Voronoi diagram with n cells on the

torus.

If some cell is triangle, its contribution to the Euler’s formula is c ≤ 1− 3/2+1 = 1/2.

For quadrilateral cell, the contribution is c ≤ 1 − 2 + 4/3 = 1/3. Similarly, we have the

following table for the upper bound of the c:
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i 3 4 5 6 7 8 9 ...

max(c) 1/2 1/3 1/6 0 -1/6 -1/3 -1/2 ...

For example, if we have an enneagon(9-gon) cell in the Voronoi diagram, we also need

to have at least one triangle cell, or one quadrilateral cell with one pentagon cell or 3

pentagon cells in the diagram.

Now consider the Voronoi diagram generated by A’s points. We want to calculate

the maximal area that one point can capture for different shapes of the Voronoi cells by

simulation. We already showed that the maximal area of B’s single point is 0.51273 if

player A plays on the equilateral triangular lattice. So if any cell has area greater than

1.0255, B can always always find a position to capture at least half area of it, which means

A has a worse result than equilateral triangular lattice case. So the first condition is that

no cell can have area greater than 1.0255.

The Voronoi cell having more edges will decrease the factor of area that B’s point can

capture. But from the Euler formula, we must have some cell with less than 6 edges if we

want to allow a cell with more than 6 edges. We want to study the triangle, quadrilateral

and pentagon cases to show that the cost to have cells with less than 6 edges is just too

high. That is, having these cells will increase the average area of other cells.

The easiest case is the triangle cell: since we can always use a point to capture at least

5/9 of the triangle area, we need the area of the triangle to be less than 0.922914. Now even

with three heptagon(7-gon)s to offset its effect, at least one of them has area ≥ 1.025695,

we can always find a position when the Voronoi area is greater than > 0.51273. So having

a triangle cell will increasing the average area of other cells.

For convex quadrilateral and pentagon cells, we will do the computer simulation using

the technique from numerical optimization. The idea of simulation is as follows: fix one
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point of A and one edge in direction of the x-axis. We treat the coordinates of the vertices

of the Voronoi cell as variables. For example, a quadrilateral Voronoi cell will have 6

variables, a pentagonal Voronoi cell will have 8 unknowns.

Once the position of the vertices are given, we can have the edges and the neighbor

points of the Voronoi cell. We will find the position of x for which the captured area is

maximized. We do this by using Newton’s method (with multiple variables). The maximal

area is a function that depends only on the unknown variables. Then we can calculate the

Hessian matrix and gradient vector by changing the coordinates by a small value. In the

next step we apply Newton’s method to move the solution to a new solution.

Using these numerical optimization techniques, we have the following results:

• for a quadrilateral Voronoi cell with area 1, we can always find a position in the cell

which has Voronoi area > 0.54861.

• for a pentagon Voronoi cell with area 1, we can always find a position in the cell

which has Voronoi area > 0.5277.

Both facts shows that the cost of having cells with less than 6 edges will increasing

the average of the other cells. Therefore the optimal strategy of player A cannot have

Voronoi cells that are of triangles, quadrilaterals and pentagons. Neither can it have cell

with more than 6 edges, by Euler formula. The only shape of the cell is a hexagon.

Again, by computer simulation, we find that the regular hexagon minimized the area

of the Voronoi region of a single point of player B. This result supports our belief.
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4.5 Summary

In this chapter, we discuss several player strategy for player B when A plays on lattice

grids when the Voronoi game is played on a torus, and when the number of points is large.

And we also gave the evidence that playing on the equilateral triangular lattice is A’s

best strategy to minimize the area of B’s first Voronoi cell.
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Chapter 5

Conclusions and Future Work

There are many interesting questions and problems in Discrete and Computational Ge-

ometry. We discussed three such problems in this thesis: the generalized ham-sandwich

theorem, six-way equipartitions of convex bodies, and the Voronoi game.

Our results give rise to a variety of questions and open problems. We list some of these

questions below,

Generalized ham-sandwich theorem

In Chapter 2, we gave an algorithm with running time O(n(log n)d−3) to find a generalized

ham-sandwich cut. One question is the complexity of this problem:

Problem 5.1 What is the complexity of finding the generalized ham-sandwich cut in di-

mension d?

Lo et. al. [25] showed that for d = 3, the complexity is O(n) by giving an optimal

running time algorithm. It would be interesting to know if there is a linear time algorithm

in higher dimensions, or whether there is a super linear lower bound.

Six-way equipartition

In Chapter 3 we showed that every convex body has a unique six-way equipartition by 3

lines, where one of the lines has a fixed orientation. And we state the conjecture 3.9 states
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that regular n-gons maximizes the number of different concurrent six-way equipartitions

over all polygons with n sides.

There are also related algorithmic problems. Given n points on the plane, Roy and

Steiger[31] gave an optimal O(n log n) algorithm to find a concurrent six-way equipartition.

The running time is linear when points are in convex positions. There remains interesting

algorithmic questions. One such question is related to Theorem 3.2:

Problem 5.2 Given n points in R2 and a vector d, find a six-way equipartition such that

one line has direction d.

And we can also formulate the problem for the number of the points in the central

triangle.

Problem 5.3 Given n points on the plan, find a six-way equipartition such that the num-

ber of points in the central triangle in the largest.

In 6-way equipartition, we enforce that six of the seven pieces have the same areas.

And the ratio of the minimum area (of which is the central triangle) over the maximum

area is at most 1/8 when K is a triangle. Professor B. Kalantari asked the following

question:

Problem 5.4 For a convex set K ⊂ R2 with three cutting lines, what is the maximum

ratio between the smallest area and the larger area of the seven regions.

It looks like that the triangle will still be the extremal body.

Voronoi game

The main problem is still open:
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Problem 5.5 What is B’s best strategy for the Voronoi game in dimension d ≥ 2, either

one-round or alternating?

And

Problem 5.6 What is player A’s best strategy in Voronoi game in dimension d ≥ 2,

either one-round or alternating?

In fact, under the assumption that n is large and we can place the points arbitrarily

close, the numerical results shown in Chapter 4 shows that for either the one-round or

alternating Voronoi game, A can just play on the equilateral triangular lattice grid and

force B’s payoff to be lower than 0.51273. We conjecture that this is in turn A’s best

strategy for one-round game.

And we are also interested in a rigorous proof of

Problem 5.7 The equilateral triangular lattice is the play for A that will minimize the

maximum area of B’s first point.
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[25] Lo, C.-Y., Matoušek, J., and Steiger, W., “Algorithms for ham-Sandwich cuts”. Dis-
crete Comput. Geom. 11, pp. 433-452 (1994)
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