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ABSTRACT OF THE DISSERTATION

Nonparametric and Semiparametric Regression, Missing

Data, and Related Algorithms

by MINGYU LI

Dissertation Director: Minge Xie

This dissertation consists of two chapters:

• Chapter 1 develops nonparametric and semiparametric regression methodologies

which relate the group testing responses to the individual covariates information.

In this chapter, we extend the parametric regression model of Xie (2001) for bi-

nary group testing data to the nonparametric and semiparametric models. We

fit nonparametric and semiparametric models and obtain estimators of the pa-

rameters by maximizing penalized likelihood function. For implementation, we

apply EM algorithm considering the individual responses as complete data and

the group testing responses as observed data. Simulation studies are performed

to illustrate the methodologies and to evaluate the finite sample performance of

our methods. In general, group testing involves a large number of subjects, hence,

the computational aspect is also discussed. The results show that our estimation

methods perform well for estimating both the individual probability of positive

outcome and the prevalence rate in the population.

• Chapter 2 studies a partially linear regression model with missing response vari-

able and develops semiparametric efficient inference for the parametric component
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of the model. The missingness considered here includes a broad range of miss-

ing patterns. For the estimation method, we use the concept of least favorable

curve, least favorable direction and the generalized profile likelihood in Severini

and Wong (1992). Asymptotic distributions for the estimators of the paramet-

ric components are obtained. It is shown that the estimators are asymptotically

normally distributed under some conditions. Furthermore, we prove that the

asymptotic covariance of the estimators achieves the semiparametric lower bound

under the regularity conditions and additional conditions given in the appendix.

We also propose an algorithm which runs iteratively between fitting parametric

components and fitting nonparametric components while holding the other fixed.

EM algorithms are used in estimating the parametric components by a semipara-

metric estimating equation and in estimating the nonparametric components by

smoothing methods. It is proved that the estimators from this iterative algo-

rithm equal to the conditional expectations (conditioned on observed data) of

the semiparametric efficient estimators from complete data. The methodology is

illustrated and evaluated by numerical examples.
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Chapter 1

Nonparametric and Semiparametric Regression Analysis

of Group Testing Samples

1.1 INTRODUCTION

Group testing, or pooled testing, where the samples are tested in pools instead of indi-

vidually, was first introduced by Dorfman (1943) to reduce cost and increase efficiency

of tests. Since then, the group testing method has been widely used in blood or urine

tests, chemical compound screening and infectious disease diagnostic tests; see, Cardoso

et al. (1998), Kacena et al. (1998a), (1998b), Thorburn et al. (2001), Lindan et al.

(2005) and Rours et al. (2005), among others. When the testing method is perfectly

accurate, the group testing result is positive if at least one sample in the corresponding

pool is positive, and negative if none of the samples are positive in that pool. Therefore,

in a study of large population with rare disease, group testing can significantly reduce

the total number of tests than individual testing.

Group testing has successful applications whether the objective of the study is to

eliminate all positive individuals or to estimate the overall prevalence of the disease in

large population. Chen and Swallow (1990) mentioned that group testing can substan-

tially reduce the mean square error of the estimator of prevalence rate and the cost per

unit information under some conditions. Vansteelandt, Goetghebeur, and Verstraeten

(2000) pointed out that testing pools can lower false positive and false negative rates

in low prevalence cases and yield more precise prevalence estimators. Depending on

the purpose of study, the group testing schemes and the information contained in the

group testing results may vary. If the objective is to identify all positive individuals, all

samples in the pools with positive group testing results may be retested. In this case,

the individual sample responses are all available. In many other cases, the individual
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outcomes can not be implied completely from the group testing results, if the study

is designed to estimate only the percentage of positive subjects or for the purpose of

protecting privacy. The method developed in this chapter is especially for the latter

case.

The optimal designs under various group testing schemes and the efficiency of group

testing have also been studied in the literature. Dorfman (1943) calculated the optimal

group size which minimizes the total number of tests, given selected prevalence rates in

a study designed to weed out all syphilitic men. Yao and Hwang (1990) studied optimal

nested group testing algorithms. Other publications include Hughes-Oliver and Swallow

(1994), Phatarfod and Sudbury (1994) and Brookmeyer (1999).

In many studies, the individual covariate information, such as age, gender, and

general health information, is available and it is of interest to explore whether such

information is related to the responses or not. Vansteelandt et al. (2000), Xie (2001)

and Chen et al. (2009) have each developed parametric regression methodologies to an-

alyze the relationship between the group testing responses and the covariate variables.

Vansteelandt et al. (2000) directly maximized the likelihood function of the group test-

ing responses, while Xie (2001) considered the individual responses and group testing

responses as the complete data and observed data respectively and applied the EM al-

gorithm. Chen et al. (2009) studied heterogeneous populations and included a random

effect covariate in the regression model. So far, the research on the regression method

in group testing has focused on the parametric models, and nonparametric or semi-

parametric regression models have not been considered in the analysis of group testing

samples.

In this chapter, we extend the parametric regression analysis of Xie (2001) to non-

parametric and semiparametric regression analyses. We use the penalized maximum

likelihood method and the EM algorithm. Penalized likelihood contains the likelihood

function and a roughness penalty term and the smoothing parameter controls the trade-

off between goodness-of-fit and smoothness. Green and Silverman (1994) provided a

thorough discussion on the penalized maximum likelihood method for nonparametric

and semi-parametric regression and generalized linear models. Green (1990) applied
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the EM algorithm to the penalized maximum likelihood estimator and pointed out that

the parameter can represents a smooth function that has been discretized. In our work,

we will combine the algorithms in Green and Silverman (1994) and the methodologies

in Green (1990) and apply the EM algorithm to the nonparametric and semiparametric

regression. The results of numerical examples show that our estimation methods per-

form well in estimating both the individual probability of positive outcome and sample

prevalence rate. In the simulation studies, we consider two pooling strategies, ‘alike’

and ‘random’ for comparison, and it turns out that ‘alike’ pooling provides notable

improvement of the estimators, even for the multiple covariates models. However, we

need to keep in mind that ‘alike’ pooling strategy may be impractical to implement

in many studies. Bilder and Tebbs (2009) discussed and compared various grouping

strategies, including ‘alike’ and ‘random’.

The rest of the chapter is organized as follows. In section 1.2, we present the models,

estimation methodology and algorithm; In section 1.3, simulation studies are conducted

to illustrate the implementation and to evaluate the performance of the estimation

methods for nonparametric and semiparametric models; Section 1.4 summarizes the

results.

1.2 ESTIMATION METHOD

1.2.1 Notation and model

In a group testing experiment, samples from N subjects are grouped into, say, n pools

and the entire pool is tested first. Then some individuals or the subsets of the n pools

will be further tested. We use similar notation as in Xie (2001) in the following.

Let yi denote whether the sample from the ith individual is positive or not, which is

equal to 1 if positive and equal to 0 if negative, for i = 1, · · · , N . Suppose that m tests

in total are performed on m (usually m ≥ n) sets of individuals, say g1, g2, · · · , gm,

where the sets correspond to the pools or the subsets of the pools depending on the

group testing scheme or the purpose of the study. Denote the m testing results as

t = {t1, · · · , tm} corresponding to the sets G = {g1, · · · , gm}. The testing result ti is
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equal to 1 if positive and 0 otherwise. In general, the testing methods are not perfectly

accurate and sensitivity and specificity are used to specify the accuracy of a testing

method. Let η and θ denote the sensitivity and specificity respectively, then we have

0 < η ≤ 1 and 0 < θ ≤ 1. Under this assumption, ti can be decided by

ti = Wi1(
∑
j∈gi

yj>0) + (1− Vi)1(
∑
j∈gi

yj=0),

where Wi and Vi are independent Bernoulli random variables equal to 1 with probability

η and θ respectively and 1(·) is the indicator function.

When covariate variables of individual subjects are available, we can fit generalized

linear regression models for the individual responses. If we assume that the covariates

are linearly related to the link function h(·), we can construct parametric GLM:

h
[
P (yi = 1)

]
= xTi β; (1.1)

and if we assume that a covariate may be related to the link function by an unknown

smooth function, we can use nonparametric GLM:

h
[
P (yi = 1)

]
= f(vi); (1.2)

or semiparametric GLM can be fitted if we think that some covariates are linearly

related and some are related to the link function by an unknown smooth function,

h
[
P (yi = 1)

]
= xTi β + f(vi), (1.3)

where xi is p× 1 covariate vector and vi is covariate variable. The link function h(·) is

a known monotonic function, which is differentiable. We are interested in estimating

unknown smooth function f(·) in model (1.2) and β and f(·) in model (1.3). The most

commonly used link function for binary responses is h(p) = logit(p) = log
(
p/(1− p)

)
.

Model (1.1) has been discussed in Xie (2001) and we will develop estimation methods

for models (1.2) and (1.3) in this chapter.

Sometimes, it is possible to identify all the individual testing results y = (y1, · · · , yN )

from the testing results t = {t1, · · · , tm}. However, in many other cases, the individual

testing results can not be fully determined from the group testing results, and our
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focus is on the latter case. The earlier case can be regarded as a special case of the

latter one. For some testing schemes, the explicit formula for the likelihood function

of (t1, · · · , tm) (observed likelihood) may not be available or may be very complicated.

Thus direct maximization of the observed likelihood function could be a tedious task,

if not impossible. On the other hand, the log-likelihood function of complete data has

simple form for generalized linear models. Therefore, EM algorithms for nonparametric

and semiparametric GLMs are developed in the following.

1.2.2 Estimation method for nonparametric model

Under the model (1.2), the log-likelihood function of (y1, · · · , yN ) is very simple:

l(f1, · · · , fN |y1, · · · , yN ) =
N∑
i=1

[
yifi − log(1 + efi)

]
,

where fi = f(vi). We consider y = (y1, · · · , yN ) as the complete data, which is not

completely observed and t = (t1, · · · , tm) as the observed data.

We want to maximize the penalized observed log-likelihood function,

l(f1, · · · , fN |t1, · · · , tm)− α/2
∫
f ′′(v)2dv, (1.4)

to obtain the estimator of f(·), f̂(·). Here, l(f1, · · · , fN |t1, · · · , tm) is the log-likelihood

function of t = (t1, · · · , tm) and α is the smoothing parameter. By taking conditional

expectation, the first term of (1.4) can be written as

l(f1, · · · , fN |t1, · · · , tm) = logP (t1, · · · , tm|f1, · · · , fN )

= logP (y|f1, · · · , fN )− logP (y|t, f1, · · · , fN )

= E
[

logP (y|f1, · · · , fN )|t, f̃1, · · · , f̃N
]

−E
[

logP (y|t, f1, · · · , fN )|t, f̃1, · · · , f̃N
]
, (1.5)

where P (·) is the probability density function, and f̃ = (f̃1, · · · , f̃N ) are estimators

of (f1, · · · , fN ) in the previous iteration. By the information inequality, maximizing

the first term of (1.5) for f = (f1, · · · , fN ) increases the value of the first term of

(1.4). Hence, instead of maximizing the penalized observed log-likelihood (1.4) directly,
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we maximize the conditional expectation of penalized complete log-likelihood given

observed data, (1.6) iteratively until convergence.

E
[

logP (y|f1, · · · , fN )|t, f̃1, · · · , f̃N
]
− α/2

∫
f ′′(v)2dv

=
N∑
i=1

[
E(yi|t, f̃)fi − log(1 + efi)

]
− α/2

∫
f ′′(v)2dv. (1.6)

Then we have the following EM algorithm to obtain the estimator, f̂(·).

• Step 1. Select starting points f [0](vi) of f(vi) for i = 1, 2, · · · , N .

• Step 2. (E-step) For given f [k](vi) for i = 1, · · · , N at the [k]th iteration, calculate

the conditional expectations

c
[k]
i = E

[
yi|t1, · · · , tm, f [k](v1), · · · , f [k](vN )

]
, i = 1, · · · , N.

• Step 3. (M-step) Given (c[k]
1 , · · · , c[k]

N ) for fixed k = 0, 1, 2, · · · , update the esti-

mator at the [k + 1]th iteration, f [k+1](vi), for i = 1, · · · , N , by maximizing the

following penalized log-likelihood function:

N∑
i=1

[
c

[k]
i fi − log(1 + efi)

]
− α/2

∫
f ′′(v)2dv. (1.7)

• Step 4. Repeat step 2 and 3 until
∥∥f [k+1] − f [k]

∥∥ is very small, that is, until the

algorithm converges numerically.

The maximization of (1.7) in Step 3 will be discussed in the following subsection.

1.2.3 Computational consideration

For a fixed α, maximizing (1.7) can be solved via iterating on the penalized weighted

least squares problem (refer to Gu (1992))

min
N∑
i=1

[
b′′i (zi − fi)2

]
+ α

∫
f ′′(v)2dv, (1.8)

where b′′i = ef̃i/(ef̃i + 1)2, zi = f̃i + (c[k]
i − b′i)/b′′i , b′i = ef̃i/(ef̃i + 1) and f̃i = f̃(vi) is

evaluation of the f(vi) in last iteration.
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By Green and Silverman (1994), the solution of problem (1.8) is natural cubic spline

and the penalty term can be written as

α

∫
f ′′(v)2dv = αfTKf ,

for natural cubic spline, where K = QR−1QT and f = (f(v(1)), · · · , f(v(N))). Here Q

is a n× (n− 2) band matrix and R is a (n− 2)× (n− 2) symmetric band matrix and

each element of these two matrices is a function of (v(1), · · · , v(N)), which is the ordered

values of (v1, · · · , vN ). The matrices, Q and R are given in Appendix 1.5.1. All the

notations b′′i , b
′
i and zi are based on the ordered values of (v1, · · · , vN ), (v(1), · · · , v(N))

afterwards. For instance, b′′i = ef̃(v(i))/(ef̃(v(i)) + 1)2.

Let W is a diagonal matrix with Wii = b′′i and working response vector z =

(z1, · · · , zN ), then the matrix form of problem (1.8) is

minS(f) = (z− f)TW (z− f) + αfTKf , (1.9)

and the solution of (1.9) is

fnew = (W + αK)−1Wz. (1.10)

In group testing, the sample size N is usually very large, hence direct use of (1.10) is

not appropriate and is too time consuming for general use. So we can apply the Reinsch

algorithm for weighted smoothing (refer to Green and Silverman (1994)) to calculate

(1.10). The steps of the algorithm are given in Appendix 1.5.2 and each step can be

performed in O(N) algebraic operations.

1.2.4 Choosing the smoothing parameter

Generalized cross-validation (GCV) is a common method for choosing the smoothing

parameter, so we apply the following GCV criteria to choose α.

minGCV (α) =

∥∥∥W 1
2 (z− f)

∥∥∥2

n
{

1− 1
n tr
[
(W + αK)−1W

1
2

]}2 =
n
∥∥∥W 1

2 (z− f)
∥∥∥2

[
tr(αW−

1
2KW−

1
2 )
]2 , (1.11)

where W , z and f are all evaluated at the converged estimator, f̂(·).

Other criteria, like cross validation and likelihood based cross validation, can also

be used.
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1.2.5 Estimation method for the semiparametric model

Semiparametric model can be analyzed by using similar estimation method and al-

gorithm used in nonparametric model. Under the semiparametric model (1.3), the

log-likelihood function of (y1, · · · , yN ) is very simple:

l(β, f1, · · · , fN |y1, · · · , yN ) =
N∑
i=1

[
yi(xTi β + fi)− log(1 + ex

T
i β+fi)

]
,

where fi = f(vi).

We want to maximize the penalized observed log-likelihood function,

l(β, f1, · · · , fN |t1, · · · , tm)− α/2
∫
f ′′(v)2dv, (1.12)

to obtain the estimators of β and f(·), β̂ and f̂(·). Here, l(β, f1, · · · , fN |t1, · · · , tm) is

the log-likelihood function of (t1, · · · , tm), and α is the smoothing parameter. The first

term of (1.12) can be written as

l(β, f1, · · · , fN |t1, · · · , tm) = logP (t1, · · · , tm|β, f1, · · · , fN )

= logP (y|β, f1, · · · , fN )− logP (y|t, β, f1, · · · , fN )

= E
[

logP (y|β, f1, · · · , fN )|t, β̃, f̃1, · · · , f̃N
]

−E
[

logP (y|t, β, f1, · · · , fN )|t, β̃, f̃1, · · · , f̃N
]
, (1.13)

where β̃ and (f̃1, · · · , f̃N ) are estimators of β and (f1, · · · , fN ) in the previous iteration

respectively. By the information inequality, maximizing the first term of (1.13) for β and

(f1, · · · , fN ) increases the value of the first term of (1.12). Hence, instead of maximizing

the penalized observed log-likelihood (1.12), we maximize the conditional expectation

of the penalized complete log-likelihood given observed data, (1.14) iteratively until

converge.

E
[

logP (y|β, f1, · · · , fN )|t, β̃, f̃1, · · · , f̃N ]− α/2
∫
f ′′(v)2dv

=
N∑
i=1

[
E(yi|t, β̃, f̃)(xTi β + fi)− log(1 + ex

T
i β+fi)

]
− α/2

∫
f ′′(v)2dv

≡
N∑
i=1

[
ci(xTi β + fi)− log(1 + ex

T
i β+fi)

]
− α/2

∫
f ′′(v)2dv, (1.14)
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where ci = E(yi|t, β̃, f̃) for i = 1, · · · , N . Similar to the nonparametric GLM, the

integration part in the second term of (1.14) can be written by fTKf for natural cubic

splines. By Theorem 5.2 of Green and Silverman (1994), the Fisher scoring algorithm

for maximizing the penalized log-likelihood (1.14) with respect β and f(·) for fixed α

is given by solving XTWX XTW

WX W + αK

 β

f

 =

 XTWz

Wz

 , (1.15)

where the working response vector z = (z1, · · · , zN ) has the form

zi = xTi β̃ + f̃i + (ci − b′i)/b′′i ,

and b′′i = ex
T
i β̃+f̃i/(ex

T
i β̃+f̃i + 1)2, b′i = ex

T
i β̃+f̃i/(ex

T
i β̃+f̃i + 1), X = (x1, · · · , xN )T and

W is a diagonal matrix with Wii = b′′i . Here β̃ and f̃i = f̃(vi) are evaluations of β and

f(vi) in the last iteration. The b′′i , b
′
i, zi and f̃i are all based on the ordered values of

(v1, · · · , vN ) afterwards.

Equation (1.15) forms a system of p + n equations, and it may not be convenient

to solve this system directly. However, (1.15) can be written as a pair of simultaneous

matrix equations (refer to Green and Silverman (1994)),

XTWXβ = XTW (z− f),

(W + αK)f = W (z−Xβ).

Therefore, the semiparametric GLM can be fitted by the following algorithm which

runs iteratively between fitting parametric components and fitting nonparametric com-

ponents while holding the other fixed. This method is also known as back-fitting:

• Step 1. Select starting points β[0] and f
[0]
i for i = 1, 2, · · · , N .

• Step 2. (E-step for parametric part) For given β[k] and f
[k]
i for i = 1, · · · , N ,

update

c
[k]
i = E(yi|t1, · · · , tm, β[k], f

[k]
1 , · · · , f [k]

N ), i = 1, · · · , N.
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• Step 3. (M-step for parametric part) Given (c[k]
1 , · · · , c[k]

N ) for fixed k = 0, 1, 2, · · · ,

update the estimator at the [k + 1]th iteration, β[k+1], by

β[k+1] = [XTWX]−1XTW (z− f [k]).

• Step 4. (E-step for nonparametric part) For given β[k+1] and f [k]
i for i = 1, · · · , N

at the [k]th iteration, calculate

c
[k]
i = E(yi|t1, · · · , tm, β[k+1], f

[k]
1 , · · · , f [k]

N ), i = 1, · · · , N.

• Step 5. (M-step for nonparametric part) Given (c[k]
1 , · · · , c[k]

N ) for fixed k =

0, 1, 2, · · · , update the estimator at the [k+1]th iteration, f [k+1]
i , for i = 1, · · · , N ,

by

f [k+1] = (W + αK)−1W (z−Xβ[k+1]).

• Step 6. Repeat Step 2 to Step 5 until both the
∥∥β[k+1] − β[k]

∥∥ and
∥∥f [k+1] − f [k]

∥∥
are very small; that is, until the algorithm converges numerically.

The Reinsch algorithm for weighted smoothing can be applied in Step 3, and the

GCV criteria can be used to choose the smoothing parameter.

1.3 SIMULATION STUDIES

In this section we conduct simulation studies to evaluate the finite sample performance

of the penalized maximum likelihood estimation methodology proposed in Section 1.2.

We apply the Gastwirth-Hammick (GH) group testing scheme proposed by Gastwirth

and Hammick (1989) for illustration.

Under the GH group testing scheme, individual samples to be tested are batched

into pools first. Then a screening test is performed for each pool. After that, those

pools classified as positive are given confirmatory tests. In general, the screening test is

cheap but not quite accurate while the confirmatory test is almost perfect with higher

cost. Gastwirth and Hammick (1989) noted that in blood testing practice for screening
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HIV positives, the commonly used screening test is the ELISA kit and the standard

confirmatory test is the Western blot (WB) analysis.

Without loss of generality, we assume that total N = nk individual samples are

grouped into n pools of size k. The same group size is used in the simulation studies

for simplicity. However, the proposed algorithm can be applied to different group sizes

in the same way. Denote the screening testing results by t
(s)
1 , · · · , t(s)n (t(s)i is equal

to 1 if positive; 0 otherwise) corresponding to pools g1, · · · , gn respectively. Suppose

there are r positive outcomes t(s)j1 , · · · , t
(s)
jr of n screening tests, and they correspond

to the pools gj1, · · · , gjr. Let t(c)j1 , · · · , t
(c)
jr denote the r confirmatory testing results.

Therefore, we have testing results t = {t(s)1 , · · · , t(s)n , t
(c)
j1 , · · · , t

(c)
jr } from pools G =

{g1, · · · , gn, gj1, · · · , gjr} and the total number of tests is m = n+ r.

For the screening tests, the testing results can be written as

t
(s)
j = W

(s)
j 1(

∑
i∈gj

yi>0) + (1− V (s)
j )1(

∑
i∈gj

yi=0), (1.16)

where W (s)
j and V (s)

j are independent Bernoulli random variables equal to 1 with prob-

ability η(s) and θ(s) respectively; for the confirmatory tests, the testing results can be

expressed as

t
(c)
jl = W

(c)
l 1(

∑
i∈gjl

yi>0) + (1− V (c)
l )1(

∑
i∈gjl

yi=0), (1.17)

where W (c)
l and V (c)

l are independent Bernoulli random variables equal to 1 with prob-

ability η(c) and θ(c) respectively. In fact, (η(s), θ(s)) are sensitivity and specificity of

screening tests and (η(c), θ(c)) are sensitivity and specificity of confirmatory tests.

We carry out two simulation studies, one is for nonparametric model, and the other

is for semiparametric model. The simulation study for the semiparametric model is

based on the chlamydia data collected by the state of Nebraska as part of the Infertility

Prevention Project.

1.3.1 Nonparametric model

Suppose that individual i belongs to the group gj , then by Bayes formula, it is easy to

verify that the conditional expectation of yi given (t1, · · · , tm) and (f1, · · · , fN ) has the
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following explicit formula,

E(yi|f1, · · · , fN , t1, · · · , tm)

=
(1− η(s))pi

(1− η(s))
[
1−

∏
i′∈gj (1− pi′)

]
+ θ(s)

[∏
i′∈gj (1− pi′)

]1
(t

(s)
j =0)

+
η(s)(1− η(c))pi

η(s)(1− η(c))
[
1−

∏
i′∈gj (1− pi′)

]
+ (1− θ(s))θ(c)

[∏
i′∈gj (1− pi′)

]1
(t

(s)
j =1,t

(c)
j =0)

+
η(s)η(c)pi

η(s)η(c)
[
1−

∏
i′∈gj (1− pi′)

]
+ (1− θ(s))(1− θ(c))

[∏
i′∈gj (1− pi′)

]1
(t

(s)
j =t

(c)
j =1)

,

where pi = exp(fi)/
(
1 + exp(fi)

)
for i = 1, · · · , N .

The assumption of η(c) = θ(c) = 1, which was used in Gastwirth and Hammick

(1989), that is the confirmatory test is perfectly accurate, is also adopted in the simu-

lation studies. In this case,

E(yi|f1, · · · , fN , t1, · · · , tm)

=
(1− η(s))pi

(1− η(s))
[
1−

∏
i′∈gj (1− pi′)

]
+ θ(s)

[∏
i′∈gj (1− pi′)

]1
(t

(s)
j =0)

+
pi

1−
∏
i′∈gj (1− pi′)

1
(t

(s)
j =t

(c)
j =1)

. (1.18)

For each replication, we generate independent random samples of size N of (vi, yi)

for i = 1, · · · , N , where vi is from uniform distribution U(−6.28, 6.28) and yi is Bernoulli

random variable, which is equal to 1 with probability pi. We take logit(pi) = f(vi) =

a + b sin(vi/2), where a = −2.65 and b = 0.6. Under this sin curve setting, the mean

probability that y equal to 1 is about 7.08% (range from 3.73% to 11.41%). After that

the N individuals are pooled into n = N/5 groups (g1, · · · , gn) of size 5. For simplicity,

we use the same size for all the pools and take pool size 5 for illustration. After grouping,

the results of screening tests are generated according to (1.16) with η(s) = 0.923 and

θ(s) = 0.996, the same sensitivity and specificity used in the simulation study of Xie

(2001). Furthermore, the results of confirmatory tests are generated by (1.17) assuming

η(c) = θ(c) = 1 for the pools with positive screening test results. Our purpose is to

estimate f(·) given (v1, · · · , vN ) and t = (t1, · · · , tn, tj1, · · · , tjr) and then estimate the

overall prevalence based on the estimators of f(·). Under this group testing scheme,

only 21.4% of tests are needed compared to the individual tests.
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We generate 200 replications with sample size N = 5000 and 10000. For each

replication, we estimate f̂(·). Since we know the true f(·), we can choose the smoothing

parameter α = αMISE by minimizing the mean integrated squared error (MISE) of

the estimators f̂(·). We also use generalized cross validation criteria (1.11) to choose

α = αGCV and compare the estimators using αGCV to those using αMISE and true f(·)

values. The optimum smoothing parameter α is searched on the grid 0.1(0.05)1.

Bilder and Tebbs (2009) compared 3 different pooling strategies — ‘alike’, ‘random’

and ‘different’. In this chapter we consider ‘alike’ and ‘random’ grouping methods. In

‘alike’ pooling strategy, samples with similar covariates are grouped together. This can

be done by ordering the covariate first and then forming groups, when there is only one

covariate. For multiple covariates models, Vansteelandt et al. (2000) suggested that

one can sort by ‘the most important’ covariate first, and then sort the second most

important covariate within sorted values of the first one. This approach continues until

all covariates have been sorted. In ‘random’ pooling strategy, samples are randomly

assigned to pools, regardless of their covariate values.

The simulation results are summarized in Table 1.1. Table 1.1 shows the integrated

relative bias, the integrated standard error, the integrated MISE and the estimator

of prevalence rate. In the table, α = αGCV (‘random’) means the ‘random’ pool-

ing strategy is used and the smoothing parameter α is selected by minimizing GCV

score. Similarly, α = αMISE (‘alike’) means the ‘alike’ pooling strategy is used and the

smoothing parameter α is selected by minimizing MISE value and so on.

Insert Table 1.1 here.

From Table 1.1, we can see that ‘alike’ method provides better estimators than

‘random’ method for both α = αMISE and α = αGCV , which is intuitive. In addition,

using α = αMISE gives a little better estimator than using α = αGCV for both pooling

strategies, which is also expected. When sample size N is equal to 10000, the relative

bias and empirical MISE are reduced about half compared to those when N is equal to

5000 for both α = αMISE and α = αGCV . Compared to the true prevalence 7.08%, the

estimators of the prevalence are very close to true value for all cases.
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The point-wise average of the estimated nonparametric curves f̂(·) over 200 repli-

cations are displayed in Figure 1.1. The left panel of Figure 1.1 shows the estimators

using N = 5000 and the right panel is for the estimators using N = 10000.

Insert Figure 1.1 here.

In Figure 1.1, the blue dotted curve represents the true values; the red solid curve is

for the estimator using αGCV and ‘random’ pooling, while the red dashed curve repre-

sents the estimator using smoothing parameter αMISE and ‘random’ pooling; the green

solid curve is for the estimator using αGCV and ‘alike’ pooling, while the green dashed

curve represents the estimator using smoothing parameter αMISE and ‘alike’ pooling.

First of all, the point-wise average curves of the estimators from 4 methods are all

close to the true curve. Second, the estimator using αMISE is closer to the true curve

than the one using αGCV given the same pooling strategy, which is expected, however,

the difference becomes smaller as the sample size N increases. In addition, the ‘alike’

pooling method has notable improvement compared to the ‘random’ pooling method.

When sample size increases, the difference from pooling strategies and smoothing pa-

rameter selection criteria becomes smaller and all the estimators are very close to the

true curve in the whole support of the covariate.

Figure 1.2 illustrates the point-wise variances of the estimators of f̂(·) over 200

replications, with the left panel for N = 5000 and right panel for N = 10000.

Insert Figure 1.2 here.

In Figure 1.2, the red solid curve is for the estimator using αGCV and ‘random’

pooling, while the red dashed curve represents the estimator using smoothing parameter

αMISE and ‘random’ pooling; the green solid curve is for the estimator using αGCV and

‘alike’ pooling, while the green dashed curve represents the estimator using smoothing

parameter αMISE and ‘alike’ pooling. All the variance curves have similar trend. They

have larger variances in the margin of the support of v and when the corresponding

probability of positive, pi is low. Furthermore, the variances decrease dramatically

when the sample size increases, and ‘alike’ method has smaller point-wise variances

than ‘random’ method.
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In conclusion, the simulation studies demonstrate that our proposed estimation al-

gorithm for nonparametric model performs well and generalized cross validation criteria

chooses proper smoothing parameters in these settings.

1.3.2 Semiparametric model

In this section we conduct a simulation study based on the chlamydia data example

studied in Chen et al. (2009). Chen et al. (2009) developed regression method to

fit mixed effect models for group testing samples, and applied their method to the

chlamydia data collected by the state of Nebraska. The data set consists of chlamydia

infection statuses for 6138 subjects, and the risk covariates like age, gender, urethritis

status and infection symptoms status. The sample prevalence is 7.8 percent.

In our example, we consider two covariates, age and some continuous covariate V ,

and assume that age is linearly related to the link function, while V has nonparametric

relationship with the link function. We fit the semiparametric GLM:

logit
{
P (yi = 1)

}
= β ∗ agei + f(vi), (1.19)

and estimate β and f(·).

Under the assumption that η(c) = θ(c) = 1, E(yi|β, f1, · · · , fN , t1, · · · , tm) has the

same formula as (1.18), where pi = exp(xTi β+fi)/
(
1+exp(xTi β+fi)

)
for i = 1, · · · , N .

For simplicity, we take the total number of subjects N equal to 6140 and group the

samples into 1228 pools with group size 5. Again, the smoothing parameter α is selected

by minimizing GCV, and is searched on the grid 0.1(0.05)1. We use both ‘alike’ and

‘random’ pooling strategies. For the ‘alike’ grouping, there are two approaches: ‘alike’

by par-non and ‘alike’ by non, depending on sorting by which covariate first. The ‘alike’

by par-non means that we sort by the age, and then sort by V in the same value of

Age; while ‘alike’ by non means that we sort the samples by V (assume that there

are no ties in V ). For model (1.19), the covariate Age is generated randomly from

{15 : 45}, V is a continuous random variable from uniform distribution U(1.57, 7.85)

and f(v) = −1.25 + sin(v). Assume that true β is equal to -0.05 and η(s) = 0.95 and

θ(s) = 0.98. Under these settings, the overall positive percentage is about 7.8 percent
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and only 21.6% tests are needed compared to the individual testing. For the model

(1.19), we estimate β and f(·) by the EM algorithm proposed in Section 1.2.5.

In this example, we generate 200 replications. Table 1.2 shows the average and

standard error of 200 estimators β̂, and the integrated relative bias, the integrated S.E.

and the integrated MISE of f̂(·). The estimator of prevalence rate is also calculated.

Insert Table 1.2 here.

Table 1.2 shows that for the parametric part β, all of the three pooling strategies

—‘random’, ‘alike’ by par-non and ‘alike’ by non, provide good estimators, which are

very close to the true value -0.05 with small standard errors. Among them, ‘random’

and ‘alike’ by non have similar S.Es and ‘alike’ by par-non has smallest S.E. For the

nonparametric part, ‘alike’ by non has smallest relative bias and empirical MISE and

‘alike’ by par-non has the smallest empirical SE. In addition, all the three pooling

methods provide the estimators of prevalence rate very close to the true value, 7.8%.

The box-plot of the estimators of β is displayed in Figure 1.3 for ‘random’, ‘alike’

by par-non and ‘alike’ by non.

Insert Figure 1.3 here.

This plot shows clearly that averages of the estimators of β are all very close to the

true value -0.05 (the dotted line) for 3 pooling strategies.The standard error of ‘alike’

by par-non is the smallest and ‘random’ method has similar standard error with the

‘alike’ by non approach.

The point-wise average (left panel) and point-wise variance (right panel) of the

estimators f̂(·) over 200 replications are displayed in Figure 1.4.

Insert Figure 1.4 here.

In Figure 1.4, the blue dotted curve represents the true values; the red solid curve is

for ‘random’; and the green solid curve is for ‘alike’ by par-non, while the green dashed

curve is for ‘alike’ by non pooling strategy.
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From left panel of 1.4, we can notice that the point-wise average curves from two

‘alike’ methods are a little closer to the true curve than ‘random’ method. For the

point-wise variance curve, the ‘alike’ by par-non method gives smallest variances in the

whole support of v, and the ‘random’ and ‘alike’ by non methods have similar variance

curves.

In conclusion, our estimation methodology gives good estimators for both the para-

metric component and nonparametric component and prevalence rate in semiparametric

model.

1.4 DISCUSSION

In this chapter, we generalized the parametric model in Xie (2001) and fitted non-

parametric and semiparametric models for group testing responses using the covariate

information. We maximize the penalized likelihood function of group testing results

and apply the EM algorithm, considering the group testing as the missing data case.

By the information inequality, the EM algorithm can be used in both nonparametric

and semiparametric models.

For the group testing experiment, since the number of subjects is usually very large,

direct use of available software may not be practical. Therefore, the computational

aspect has been discussed, and the method of choosing the smoothing parameter has

also been considered.

The simulation studies confirm that our proposed estimation methodologies perform

very well for both nonparametric and semiparametric models for group testing samples.

In simulation studies, we use ‘random’ and ‘alike’ pooling strategies, and the results

show that ‘alike’ method improves the estimators significantly, which agrees with the

results from other research paper.
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1.5 APPENDICES

1.5.1 Q and R matrices

Let (v(1), · · · , v(N)) are ordered values of (v1, · · · , vN ) and assume that there is no tie.

Let hi = v(i+1) − v(i) for i = 1, · · · , N − 1. Then Q is a N × (N − 2) band matrix with

entries qij , for i = 1, · · · , N and j = 2, · · · , N − 1, given by

qj−1,j = h−1
j−1, qjj = −h−1

j−1 − h
−1
j , and qj+1,j = h−1

j ,

for j = 2, · · · , N − 1, and qij = 0 for |i− j| ≥ 2. The columns of Q are numbered

starting at j = 2, so that the top left element of Q is q12.

Q =



q12 q13 . . . q1,N−1

q22 q23 . . . q2,N−1

...
...

. . .
...

qN−1,2 qN−1,3 . . . qN−1,N−1

qN2 qN3 . . . qN,N−1



=



h−1
1

−h−1
1 − h

−1
2 h−1

2 0

h−1
2 −h−1

2 − h
−1
3

. . .
. . . . . . . . .

0
. . . −h−1

N−3 − h
−1
N−2 h−1

N−2

h−1
N−2 −h−1

N−2 − h
−1
N−1

h−1
N−1


The symmetric band matrix R is (N − 2) × (N − 2) with elements rij , for i and j

both from 2 to (N − 1), given by

rii =
1
3

(hi−1 + hi) for i = 2, · · · , N − 1,

ri,i+1 = ri+1,i =
1
6
hi for i = 2, · · · , N − 2,

and rij = 0 for |i− j| ≥ 2.
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R =



r22 r23 . . . r2,N−1

r32 r33 . . . r3,N−1

...
...

. . .
...

rN−1,2 rN−1,3 . . . rN−1,N−1



=



h1+h2
3

h2
6 0

h2
6

h2+h3
3

h3
6

h3
6

h3+h4
3

. . .
. . . . . . hN−2

6

0 hN−2

6
hN−2+hN−1

3


1.5.2 Reinsch algorithm for weighted smoothing

Define the (N − 2)-vector γ as γi = ∂2g(v(i))/∂v2
(i) for i = 2, · · · , N − 1, then we have

QT f = Rγ for natural cubic spline (refer to Green and Silverman (1994)).

The solution of (1.8) satisfies f = (W + αQR−1QT )−1Wz, which implies

W f = Wz− αQR−1QT f = Wz− αQγ.

Therefore, f = z− αW−1Qγ. Again, by QT f = Rγ,

QT f = QT z− αQTW−1Qγ

Rγ = QT z− αQTW−1Qγ

(R+ αQTW−1Q)γ = QT z.

The algorithm for weighted spline smoothing is

• Step 1 Evaluate the vector QT z.

• Step 2 Find the non-zero diagonals of R + αQTW−1Q, and its Cholesky decom-

position factors L and D.

• Step 3 Solve LDLTγ = QT z for γ by forward and back substitution.

• Step 4 Use f = z− αW−1Qγ to find f .
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Table 1.1: Simulation results for nonparametric model based on 200 replications.

Relative bias1 Empirical S.E.2 Empirical MISE3 prev.4(7.08%)

α = αGCV (‘random’)

N = 5000 0.026 0.422 0.0076 6.68

N = 10000 0.014 0.301 0.0022 6.86

α = αMISE (‘random’)

N = 5000 0.020 0.341 0.0041 6.79

N = 10000 0.011 0.247 0.0014 6.93

α = αGCV (‘alike’)

N = 5000 0.008 0.237 0.0006 6.99

N = 10000 0.005 0.180 0.0002 7.03

α = αMISE (‘alike’)

N = 5000 0.005 0.188 0.0002 7.02

N = 10000 0.003 0.143 0.0001 7.05

1. Relative bias:
∫ ∣∣∣[f̂(v)− f(v)]/f(v)

∣∣∣ dF (v).

2. Empirical SE:
∫
ŜE{f̂(v)}dF (v).

3. Empirical MISE:
∫

[f̂(v)− f(v)]2dF (v).
4. prevalence:

∫
exp(f̂(v))/[1 + exp(f̂(v))]dF (v).



21

Figure 1.1: Point-wise average of the estimated nonparametric curve f̂(·) for nonpara-
metric model based on 200 replications. Left panel is for N = 5000 and right panel is
for N = 10000: the blue dotted curve is the true values; the red solid curve is for αGCV
and ‘random’ pooling, while the red dashed curve is for αMISE and ‘random’ pooling;
the green solid curve is for αGCV and ‘alike’ pooling, while the green dashed curve is
for αMISE and ‘alike’ pooling.

Figure 1.2: Empirical point-wise variances of the estimated nonparametric curve f̂(·)
for nonparametric model based on 200 replications. Left panel is for N = 5000 and
right panel is for N = 10000: the red solid curve is for αGCV and ‘random’ pooling,
while the red dashed curve is for αMISE and ‘random’ pooling; the green solid curve
is for αGCV and ‘alike’ pooling, while the green dashed curve is for αMISE and ‘alike’
pooling.
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Table 1.2: Simulation results for semiparametric model based on 200 replications.

β̂ f̂(·)
pooling Mean S.E. Relative Empirical Empirical prev.
strategy (-0.05) bias S.E. MISE (7.8%)

‘random’ -0.050 0.011 0.052 0.410 0.0018 7.58

‘alike’ by par-non -0.050 0.006 0.036 0.226 0.0006 7.73

‘alike’ by non -0.049 0.013 0.031 0.400 0.0006 7.87

Figure 1.3: Box-plot of the estimated β for semiparametric model for ‘random’, ‘alike’ by
par-non and ‘alike’ by non pooling strategies based on 200 replications. The horizontal
dotted line correspondes to the true value of β -0.05.
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Figure 1.4: Simulation results of the estimated nonparametric curve f̂(·) for semipara-
metric model based on 200 replications. Left panel is for point-wise average and right
panel is for point-wise variance: the blue dotted curve is for the true values; the red
solid curve is for ‘random’; and the green solid curve is for ‘alike’ by par-non, while the
green dashed curve is for ‘alike’ by non.
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Chapter 2

Semiparametric Efficient Estimation and the EM

algorithm for Partially Linear Models with Missing Data

2.1 INTRODUCTION

Semiparametric models, which incorporate both the parametric and nonparametric

components, have been studied extensively in statistics and econometrics since their

introduction by Stein (1956). The available literature on semiparametric regression

models mainly discusses estimation methods in complete data cases, but little literature

studies efficient semiparametric inference in the presence of general missing data. In

this chapter we prove that the asymptotic covariance of the estimator, which maximized

the generalized profile likelihood, achieves the semiparametric efficiency bound under

some conditions, and propose an estimation algorithm for the estimator of parametric

component and nonparametric component in a partially linear regression model with

general missing response values.

Consider a partially linear regression model with homoscedastic Gaussian error,

Yi = W T
i β + g(Vi) + εi, for i = 1, 2, · · · , n, (2.1)

where Yi is the response variable, Wi is a q× 1 vector of covariate variable, β is a q× 1

vector of unknown parameter, g(·) is an unknown smooth function taking values in a

compact subset of the real line, Vi is a r × 1 vector of covariate variables, and εi has a

normal distribution with mean 0 and variance σ2. This model assumes that Yi depends

on covariate Wi in a linear way and depends on Vi in a nonparametric way by the

unspecified smooth function g(·). The partially linear regression model was introduced

by Engle et al. (1986) to study the effect of weather on electricity demand and has

been widely used.
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An efficient estimator of the parameter β for model (2.1) without missing data was

given in Ma et al. (2006). In this chapter, we assume that y = (y1, · · · , yn) are not

completely observed, and denote the observed data by z = (z1, · · · , zm)T . Our goal

is to estimate the parameter of interest β in the presence of the infinite-dimensional

nuisance parameter g(·) and missing data.

Missing data is a common problem in practice. Little and Rubin (2002) describe

missing data types in detail. However, the existing literature mainly focuses on para-

metric regression model with missing data, but little literature discusses nonparametric

or semiparametric regression with missing data. Wang et al. 2004 studied semipara-

metric regression with outcomes missing at random, but the missing patterns they

considered only includes the case where each outcome is observed with certain proba-

bility, and missing otherwise. The missing structure we consider here is very general

and is the same as the one studied in Wu (1983) and Green (1990). Suppose we have

two sample spaces Y and Z and there is a many-to-one mapping from Y to Z . Instead

of observing the complete data y in Y , we observe the incomplete data z = z(y) in

Z . Let the density function of y be f(y|θ) with parameters θ ∈ Θ and let the density

function of z be given by f(z|θ) =
∫
Y (z) f(y|θ)dy, where Y (z) = {y : z(y) = z}. This

type of missingness includes group testing studied in Xie (2001) and is broader than

what considered in Wang et al. (2004).

The motivation of our work is from several aspects, for instance, income report and

education score report. In the annal household income report, it is common that only

the median income of each town is recorded instead of each household for the privacy

reason; in the education score report, average score of each class is available instead of

individual scores. In these situations, we want to estimate the parameters given that

only the median or mean of each group is observed. Our estimation method can be

applied to more general missing data cases as long as there is a many to one mapping

between complete data and observed data.

One of the effective methods for dealing with the missing data is the EM algorithm.

The EM algorithm is a general approach to maximum likelihood estimation, and it

can be used both in parametric regression models, see Dempster et al. (1977) and Wu
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(1983), and penalized likelihood estimation when the parameter represents a smooth

function that has been discretized, see Green (1990). Silverman et al. (1990) modified

the EM approach by introducing a simple smoothing step at each EM iteration and

developed the EMS algorithm.

Much work has been done on modeling semiparametric regression for complete data.

In most cases, the main interest or objective is to estimate the finite dimensional para-

metric part, while the nonparametric component is considered as the infinite dimen-

sional nuisance parameter. For some particular classes of semiparametric models, ef-

ficient estimator of the parametric component is given in the literature. Severini and

Wong (1992) proposed an estimation method maximizing the generalized profile likeli-

hood under the conditionally parametric model and proved that the estimation method

leaded to an asymptotically efficient estimator of the parameter of interest; Ahmad et

al. (2005) proposed a general series method to estimate semiparametric partially linear

varying coefficient model and and showed that the estimator of the finite dimensional

parameters is semiparametrically efficient when the error is conditionally homoskedas-

tic; Ma et al. (2006) proposed a family of consistent estimators and showed that the

optimal semiparametric efficiency bound can be reached by a semiparametric kernel

estimator in this family; Boente et al. (2006) introduced a family of robust estimates

under a generalized partially linear model and showed that their estimates of para-

metric component had root n convergence rate; Xie et al. (2008) developed efficient

semiparametric inference for the parametric component under a class of heteroscedastic

generalized linear regression models in which a subset of the regression parameters were

rescaled nonparametrically; Lam and Fan (2008) considered the generalized varying co-

efficient partially linear model allowing the number of predictors to increase with the

sample size and established root-n asymptotic results. Here efficiency refers to the usual

asymptotic efficiency, see Newey (1990) for the detailed discussion on semiparametric

efficiency bounds.

In this chapter we use the estimation method, which maximized the generalized

profile likelihood and prove that the estimator is root-n consistent and efficient under

the conditions given in appendix. We also propose an estimation algorithm, which runs



29

iteratively between fitting parametric components and fitting nonparametric compo-

nents while holding the other fixed. The estimators from this iterative algorithm are

conditional expectation (conditioned on the observed data) of the semiparametric effi-

cient estimator without missing data. The algorithm utilizes EM algorithm to estimate

the parametric components by a semiparametric estimating equation and to estimate

the nonparametric components by smoothing methods.

The rest of the chapter is organized as follows. In Section 2.2 we present our esti-

mation method and the large sample properties of the estimator, including consistency

and efficiency. Estimation algorithm using EM algorithm is given in Section 2.3. After

that we evaluate the finite sample performance of proposed algorithm by two simula-

tion studies in Section 2.4. Discussion is given in Section 2.5 and Appendix provides

technical details and assumptions.

2.2 GENERALIZED PROFILE LIKELIHOOD APPROACH

2.2.1 Generalized profile likelihood and regularity conditions

Let (yi, wi, vi, εi), for i = 1, 2, · · · , n, be n independently and identically distributed

replicates of (Y,W, V, ε) and denote y = (y1, · · · , yn)T , w = (wT1 , · · · , wTn )T , v =

(v1, · · · , vn)T , g = g(v) =
(
g(v1), · · · , g(vn)

)T and ε = (ε1, · · · , εn)T . The complete

log-likelihood function for model (2.1) is

l
(
β, g(·); y,w,v

)
= log f

(
y,w,v;β, g(·)

)
= log f

(
y; w,v, β, g(·)

)
+ log f(w,v),

where

log f
(
y; w,v, β, g(·)

)
= −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

[
yi − wTi β − g(vi)

]2
,

and f(w,v) is the marginal density function of (w,v). The observed log-likelihood

function is

l
(
β, g(·); z,w,v

)
= log f

(
z,w,v;β, g(·)

)
= log f

(
z; w,v, β, g(·)

)
+ log f(w,v).

Since f(w,v) does not depend on β or g(·), we consider log f
(
y; w,v, β, g(·)

)
as the

complete log-likelihood and log f
(
z; w,v, β, g(·)

)
as observed log-likelihood and denote

them by l
(
β, g(·); y,w,v

)
and l

(
β, g(·); z,w,v

)
respectively afterward.
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We use the same estimation method as in Severini and Wong (1992). For any

fixed β, suppose gβ is any least favorable curve and ĝβ is a consistent estimator of

gβ for that β. Then l
(
β, ĝβ(·); z,w,v

)
= log f

(
z; w,v, β, ĝβ(·)

)
is called a general-

ized profile likelihood for β. The estimator of β can then be obtained by maximizing

log f(z; w,v, β, ĝβ(·)). The concept of least favorable curve and the least favorable

direction have been discussed in Severini and Wong (1992) in detail.

For each m, define β̂ ≡ β̂m to be any element of parameter space B satisfying

l
(
β̂, ĝβ̂(·); z,w,v

)
= sup

β∈B
l
(
β, ĝβ(·); z,w,v

)
,

then the the estimator β̂ is a consistent and semiparametric efficient estimator of true

β, β0 under some coditions. To prove this, we need the following assumptions and the

conditions given in Appendix 2.6.1.

First, we require that the joint probability density function of z = (z1, · · · , zm)

satisfies the following identifiability (I) and continuity (C) conditions.

CONDITIONS I. For a fixed but arbitrary β, and any least favorable curve gβ(·),

where β ∈ B, gβ(vi) ∈ R, and gβ(·)|β=β0 = g0(·), suppose that

m−1
{
l
(
β, gβ(·); z,w,v

)
− E0

[
l
(
β, gβ(·); z,w,v

)]}
→p 0

and

m−1E0

[
l
(
β, gβ(·); z,w,v

)]
→p l0(β),

where l0(β) is the limiting function of m−1l
(
β, gβ(·); z,w,v

)
, as m→∞.

The limiting function is used to identify the true parameters (β0, g0) and we assume

that l0(β) is maximized at true β, β0.

CONDITIONS C. Suppose that log f
(
z; w,v, β, g(·)

)
is Lipschitz continuous in β

and g(·). Therefore, there exist Am and Bm such that

1
m

∣∣log f
(
z; w,v, β1, g1(·)

)
− log f

(
z; w,v, β2, g2(·)

)∣∣
≤ Am |β1 − β2|+Bm ‖g1 − g2‖ ,

where Am and Bm are bounded by constants A and B respectively.
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Second, the estimator of the nonparametric part ĝβ(·) must satisfy the Nuisance

parameter conditions, Conditions NP in Severini and Wong (1992).

CONDITIONS NP. (a) For each v in a finite interval [a, b] and each β ∈ B, ĝβ(v)

converges in probability to some constant as m → ∞; denote that constant by g̃β(v).

Assume that for each β ∈ B, g̃β ∈ Λ =
{
h ∈ C2[a, b] : h(v) ∈ int(R) for all v ∈ [a, b]

}
,

and that for all r, s = 0, 1, 2, r + s ≤ 2,

∂r+sg̃β(v)
∂vr∂βs

and
∂r+sĝβ(v)
∂vr∂βs

exist. Let

g̃0 = g̃β

∣∣∣
β=β0

and g̃′0 =
d

dβ
g̃β

∣∣∣
β=β0

.

Then suppose

‖ĝ0 − g̃0‖ = op(m−α) and
∥∥ĝ′0 − g̃′0∥∥ = op(m−β),

where α+ β ≥ 1/2 and α ≥ 1/4.

Furthermore, suppose that supβ∈B ‖ĝβ − g̃β‖, supβ∈B
∥∥∥ĝ′β − g̃′β∥∥∥ and supβ∈B

∥∥∥ĝ′′β − g̃′′β∥∥∥
are all of order op(1) as m→∞.

For some δ > 0, assume that∥∥∥∥∂ĝ0

∂v
− ∂g̃0

∂v

∥∥∥∥ = op(m−δ) and
∥∥∥∥∂ĝ′0∂v

− ∂g̃′0
∂v

∥∥∥∥ = op(m−δ).

(b)The curve g̃β is a least favorable curve.

2.2.2 Theoretical results

The estimator, which maximizes the generalized profile likelihood function has the

following large sample properties.

Theorem 1 states that if β̂ maximizes the generalized profile likelihood, then it is a

consistent estimator of true β, β0, under some conditions.

Theorem 1 (Consistency). Under the Conditions I, C and NP,

β̂ →p β0 as m→∞.
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The proof is given in Appendix 2.6.2.

Theorem 2 establishes that β̂ is asymptotically normally distributed with asymptotic

variance equal to the semiparametric efficiency bound, i−1
β .

Theorem 2 (Efficiency). Under the conditions C1− C10 given in Appendix,

√
m(β̂ − β0)→D N(0, i−1

β ),

where i−1
β is the semiparametric efficiency bound.

Let

îβ = − 1
m

dl2
(
β, ĝβ(·); z,w,v

)
dβ2

∣∣∣
β=β̂

.

Then,

îβ →p iβ as m→∞.

The proof is given in Appendix 2.6.2.

2.3 ESTIMATION ALGORITHM

2.3.1 Iterative algorithm

The observed log-likelihood log f
(
z; w,v, β, g(·)

)
depends on the missing structure and

can be very complicated. Therefore, direct maximization of the observed log-likelihood

function may not be practical. However, the complete log-likelihood function has a

simple form and hence the EM algorithm is an effective way to deal with missing data

in this case. We propose an EM algorithm for estimating the parametric part β mak-

ing only smoothness assumptions on the unknown function g(·) in model (2.1) with

missing data. The key idea of the algorithm is similar to the backfitting algorithm and

is based on the concept of generalized profile likelihood. In this algorithm, first we

fix the parametric component and estimate the nonparametric component using EM

algorithm and some smoothing method; this estimator depends on the value at which

the parametric component is held fixed, that is nonparametric part can be considered

as a function of parametric part. This estimator of nonparametric component is then
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used to create a generalized profile likelihood of parametric part using the observed

log-likelihood function. Then, the estimator of parametric component can be obtained

by using EM algorithm and semiparametric estimating equation. In implementation,

the algorithm iterates between estimating parametric component and estimating non-

parametric component while holding the other fixed until converge, and utilizes the EM

algorithm in each iteration to deal with the missing data.

For simplicity, we consider the case in which the covariate V is one-dimensional.

Extension to multivariate V involves no fundamentally new idea. Then the estimation

algorithm iterates between the following two modules:

• Estimating parametric component: Fix the current estimator of nonparametric

function and its first derivative with respect to β, say ĝcur(·) and ĝ′cur(·). Then

update the estimate of parametric part β̂new and σ̂new using the estimating equa-

tion and EM algorithm.

• Estimating nonparametric component: Fix the current estimators of β and σ, say

β̂cur and σ̂cur. Update the estimator of nonparametric function ĝ(·) and its first

derivative to β, say ĝ′(·) iteratively until converge to get ĝnew(·) and ĝ′new(·) using

EM algorithm and smoothing methods.

In the first module, consider updating the estimator of parametric component β

given β̂cur, ĝcur, ĝ′cur and σ̂cur. By taking conditional expectation, the observed log-

likelihood can be written as

log f(z; w,v, β, ĝcur)

= E
[

log f(y; w,v, β, ĝcur)|z, β̂cur, ĝcur
]
− E

[
log f(y; z,w,v, β, ĝcur)|z, β̂cur, ĝcur

]
= Q(β, ĝcur|β̂cur, ĝcur)−H(β, ĝcur|β̂cur, ĝcur),

where

Q(β, ĝcur|β̂cur, ĝcur)

= −n
2

log(2πσ̂cur2)− 1
2σ̂cur2

n∑
i=1

[
E(y2

i |z,w, β̂cur, ĝcur, σ̂cur2)

−2E(yi|z,w, β̂cur, ĝcur, σ̂cur2)
(
wTi β + ĝcur(vi)

)
+
(
wTi β + ĝcur(vi)

)2]
.
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By information inequality, maximizingQ function for β increases observed log-likelihood.

Hence β̂new can be updated by the following E-step and M-step:

• E-step. Calculate

u1 = E(y|z,w, β̂cur, ĝcur, σ̂cur).

• M-step. Solve the following estimating equation to get β̂new,[
u1−wβ − ĝcur(v)

]T [w + ĝ′cur(v)
]

= 01×q. (2.2)

Here E(y|z,wβ,g, σ) =
(
E(y1|z,wβ,g, σ), · · · , E(yn|z,w, β,g, σ)

)
and ĝ′(v) = ∂ĝ(v)/∂β.

The estimating equation (2.2) is similar to the estimating equation (c) for complete data

in Ma et al. (2006), with y replaced by u1, and is derived from the efficient score func-

tion. The σ̂new can be updated by maximum likelihood

σ̂new2 =
1
n

n∑
i=1

[
E(y2

i |z,w, β̂new, ĝcur, σ̂cur)− 2E(yi|z,w, β̂new, ĝcur, σ̂cur)
(
wTi β̂

new

+ĝcur(vi)
)

+
(
wTi β̂

new + ĝcur(vi)
)2]

. (2.3)

Repeat (2.3) until converge to get the estimator of σ corresponding to β̂new, σ̂new.

In the second module, maximum likelihood approach is used to estimate the function

g(·) and g′(·) nonparametrically for a fixed β and a fixed σ. Given β̂new, ĝcur and σ̂new,

the observed log-likelihood can be written as

log f(z; w, β̂new,g)

= E
[
logf(y; w, β̂new,g)|z, β̂new, ĝcur

]
− E

[
logf(y; z,w, β̂new,g)|z, β̂new, ĝcur

]
= Q(β̂new,g|β̂new, ĝcur)−H(β̂new,g|β̂new, ĝcur),

where

Q(β̂new,g|β̂new, ĝcur)

= −n
2

log(2πσ̂new2)− 1
2σ̂new2

{∥∥∥g − [E(y|z,w, β̂new, ĝcur, σ̂new2)−wβ̂new
]∥∥∥2

+
n∑
i=1

[
E(y2

i |z,w, β̂new, ĝcur, σ̂new2)− E(yi|z,w, β̂new, ĝcur, σ̂new2)2
]}
.

Again by the information inequality, maximizing Q(β̂new,g|β̂new, ĝcur) for g increases

log f(z; w, β̂new,g). Hence, ǧnew and ǧ′new can be updated by the following E-step and

M-step (set ǧcur = ĝcur and ǧ′cur = ĝ′cur before EM steps):
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• E-step. Calculate

u2 = E(y|z,w, β̂new, ǧcur, σ̂new),

and take derivative to β,

u3 = D(z, β,g,g′), σ)|β=β̂new,g=ǧcur,g′=ǧ′cur,σ=σ̂cur .

• M-step. Update ǧnew by

ǧnew = u2−wβ̂new.

and update ǧ′new by

ǧ′new = u3−w.

Smooth the estimators by

ǧnew(v) = Mu2− (Mw)β̂new,

and

ǧ′new(v) = Mu3−Mw,

where

D
(
z, β,g,g′), σ

)
= ∂E

(
y|z,w, β,g, σ

)
/∂β

=
(∂E(y|z,w, β,g, σ)

∂β1
, · · · ,

∂E
(
y|z,w, β,g, σ

)
∂βq

)
is a function of β, σ, g and g′. The projection matrixM is defined byM = P (P TP )−1P T ,

where P is a n × s matrix, ith row of which is s B-spline basis functions of vi. The

B-spline basis functions and the selection of s will be discussed in the simulation part.

In the M-step, we can use other nonparametric smoothing methods to smooth the esti-

mator of nonparametric part. However, by using projection matrix, we can connect our

estimator to the efficient estimator without missing data given in Ahmad et al. (2005).

The connection is stated in Theorem 3.

Repeating above two steps iteratively until converge gives ĝnew(·) and ĝ′new(·), which

are the updated estimators of nonparametric function gβ(·) and its derivative to β, g′β(·).

In conclusion, our estimation method iterates between the two modules and repeats

the EM algorithm in each module until converge, that is, both
∥∥∥β̂new − β̂cur∥∥∥ and

‖ĝnew − ĝcur‖ are very small.
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2.3.2 Connection to the efficient estimators from complete data

There is a relationship between the estimators from the above iterative algorithm and

the efficient estimator from the complete data, which is stated in Theorem 3.

Theorem 3 (Connection to the efficient estimator without missing data). The

estimators, β̂ and ĝ(·), from the above iterative algorithm have the following connection

to the semiparametric efficient estimator without missing data. The estimators, β̂ and

ĝ = ĝ(v), are the solution of  β = E[β̂∗|z,w, β,g]

g = E[ĝ∗|z,w, β,g],

where β̂∗ is the semiparametric efficient estimator given (y1, · · · , yn), and ĝ∗ is the

corresponding estimator of nonparametric component. By Ahmad et al. (2005), β̂∗

and ĝ∗ are given by β̂∗ =
[
(w −Mw)T (w −Mw)

]−(w −Mw)T (y −My)

ĝ∗ = M(y −wβ̂∗).

The proof is given is Appendix 2.6.2.

2.3.3 Estimator of asymptotic variance of β̂

Theorem 2 gives the estimator of the asymptotic variance of β̂. However, in many

missing data cases, direct calculation of the estimator given in Theorem 2 may be

difficult and the following approach can be applied to obtain the estimator. Suppose

the length of β is 1.

− 1
m

d2l
(
β, gβ(·); z,w,v

)
dβ2

= − 1
m

{
E
[d2 log f

(
y; w,v, β, gβ(·)

)
dβ2

|z,w,v, β, gβ(·)
]

−E
[d2 log f

(
y|z,w,v, β, gβ(·)

)
dβ2

|z,w,v, β, gβ(·)
]}

= − 1
m

{
E
[d2 log f

(
y; w,v, β, gβ(·)

)
dβ2

|z,w,v, β, gβ(·)
]

+V ar
[d log f

(
y; w,v, β, gβ(·)

)
dβ

|z,w,v, β, gβ(·)
]}

= − 1
m

(I1 + I2). (2.4)
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Notice that

d log f
(
y; w,v, β, gβ(·)

)
dβ

=
1
σ2

(
y −wTβ − gβ(v)

)T (w + g′β(v)
)

d2 log f
(
y; w,v, β, gβ(·)

)
dβ2

= − 1
σ2

(
w + g′β(v)

)T (w + g′β(v)
)
,

therefore,

I1 = − 1
σ2

(
w + g′β(v)

)T (w + g′β(v)
)

and

I2 =
1
σ4

n∑
i,j=1

{[
E
(
yiyj |z,w,v, β, gβ(·)

)
− E

(
yi|z,w,v, β, gβ(·)

)
E
(
yj |z,w,v, β, gβ(·)

)]
(
wi + g′β(vi)

)(
wj + g′β(vj)

)}
.

Hence, if we can calculate E
(
yiyj |z,w,v, β, gβ(·)

)
, then the estimator of asymptotic

variance can be obtained by substituting the estimators for the true parameters in (2.4)

with I1 and I2 given above.

2.4 SIMULATION STUDIES

In this section we use two simulation studies to examine the finite sample performance

of the proposed estimation methodology. The two simulation studies use the same

set of complete data, but with different missing data structures. In the first study,

the observed likelihood function has a simple form, while in the other study the ob-

served response variable has a complicated likelihood function. And we show that our

algorithm works well in both cases.

Consider the following data generating process from a partially linear regression

model:

yi = wiβ + g(vi) + εi, i = 1, · · · , n,

where g(vi) = 1 + 6 sin(2πvi) and β = 4. The error εi are i.i.d normal random variables

with mean 0 and standard deviation σ = 0.25, wi = u1i+2u2i and vi = u2i+u3i, where

uji, j = 1, 2, 3 are i.i.d from uniform U[0, 0.5]. The (yi, wi, vi) for i = 1, · · · , n are

complete data set. Both of the two simulation studies use this complete data set, but
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with different missing data structures. First, yi are randomly grouped by size k = 5,

and only the sum of each group is observed instead of individual yi. Second, we assume

only the maximum of each group is observed, where yi are still randomly grouped by

size k = 5. Under this missing structure, the distribution of the observed data has a

complicated form and direct estimation from the likelihood function of observed data

is hard to obtain. The group size k can be any value, as long as the number of groups

has the same order as n. Without loss of generality, we take k = 5, and take n as a

multiple of k for the simplicity of implementation. The estimator β̂ from complete data

(suppose that y = (y1, · · · , yn) are available completely) using the estimation method

given by Ahmad et al. (2005) are obtained for the purpose of comparison. The sample

sizes are n = 500 and n = 1000 and we repeat 500 times for both simulations.

We use the proposed algorithm to fit the simulation data and obtain the point

estimator of β, estimated mean squared error (MSE) of β̂ defined by MSE(β̂) =∑500
j=1 (β̂ − β)2/500, estimator of the asymptotic variance of β̂ to measure the perfor-

mance of parametric estimation and use estimated mean average squared error (MASE)

of ĝ(·) defined by MASE(ĝ(·)) =
∑500

j=1 [ 1
n

∑n
i=1 (ĝ(vi)− g(vi))2]/500 to measure the

performance of nonparametric estimation, where β̂ and ĝ(vi) are the estimates of β and

g(vi) from the jth replication respectively. We use a univariate cubic B-spline basis

function defined by

B(v|t0, · · · , t4) =
1
3

4∑
j=0

(−1)j
[

max(0, v − tj)
]3
,

where t0, · · · , t4 are the evenly-spaced design knots. In fitting the nonparametric part

g(·), we need to select the number of interior knots r of the B-spline as in any non-

parametric model fitting. In our simulation studies, r is selected by minimizing the

generalized cross-validation criterion for missing data (GCVM) defined as following:

GCVM(r) = m× residual sum of squares for observed data
(equivalent degrees of freedom)2

= m×
∑m

j=1(zj − ẑj)2(
m− (r + 5)

)2 ,
where (z1, · · · , zm) are observed data (m = n/k) and ẑj is the estimator of zj . The

equivalent degrees of freedom is m− (r+5), because the univariate cubic B-spline basis
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function with r interior knots has r + 4 free parameters and β is one dimension in our

examples. Here GCVM is modified from the definition of GCV in Mao and Zhao (2003).

In their model, they used free-knot polynomials, that is both the knot locations and

the regression coefficients are considered to be unknowns and to be estimated.

In the pilot study of the first simulation setting for n = 1000 with 200 replications,

we found that MASE and GCVM are minimized at almost the same number of knots

and MSE is not affected much by the number of knots in 1:50 as shown in Figure 2.1.

Insert Figure 2.1 here.

Therefore, in the following simulation studies, we will use GCVM to select the

number of the knots from {2(2)20} to reduce the computational burden. We use GCVM

for our proposed method, then use the same number of nknots for the complete data

observed case.

Table 2.1 represents the point estimator of β, MSE(β̂), AV AR(β̂), MASE(ĝ) and

σ̂ for sample sizes n = 500 and n = 1000 from the first simulation study. The ‘proposed’

is the results using our proposed algorithm with missing data and ‘com. lik.’ is the

results from maximizing the complete likelihood function.

Insert Table 2.1 here.

From Table 2.1, we notice that our proposed method performs pretty well with only

1/5 response values. The point estimators of β with missing data are the same as the

true value 4 with both sample sizes. The MSE(β̂) and MASE(ĝ) from the proposed

method are all very small. Furthermore, MSE and MASE reduce to about half as

sample size doubles. The estimators of σ are all close to the true value 0.25.

Figure 2.2 shows the box-plots of the estimators of β from group sum observed case

for n = 500 (left panel) and n = 1000 (right panel).

Insert Figure 2.2 here.

In Figure 2.2, for sample sizes n = 500 and n = 1000, both the proposed method

with missing data and complete data have the median of the estimators of β around the
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true value. When sample size increases, the interquartile of the estimators decreases a

lot for both the proposed method with missing data and the complete data. In addition,

when n = 1000,the proposed method with missing data and the complete data have

the similar interquartile.

Figure 2.3 shows the point-wise average of the estimators of g(·) for group sum

observed case for n = 500 (left panel) and n = 1000 (right panel).

Insert Figure 2.3 here.

In Figure 2.3, blue dotted curve presents true g(·), red solid curve is the point-wise

average of the estimators of g(·) by proposed algorithm and green dashed curve is the

point-wise average of the estimators of g(·) for complete data. The average curve from

proposed algorithm almost overlaps with the true curve in the whole support of v, so

does the average curve from complete data.

Figure 2.4 shows the point-wise variance of the estimators of g(·) from proposed

algorithm (red solid curve) and from complete data (green dashed curve) for n = 500

(left panel) and n = 1000 (right panel).

Insert Figure 2.4 here.

The point-wise variance is large in the margin of v, however, in the middle of the

support of v, the variances are very small for proposed algorithm with missing data.

The variances decrease as the sample size increases, especially for the margin of v.

Table 2.2 shows the point estimator of β, MSE(β̂), AV AR(β̂), MASE(ĝ) and σ̂ for

sample sizes n = 500 and n = 1000 from the second simulation study (the estimator of

asymptotic variance is given in Appendix 2.6.3). The ‘proposed’ represents the result

using our proposed algorithm with missing data and ‘com. lik.’ represents the result

from maximizing the complete likelihood function.

Insert Table 2.2 here.

Table 2.2 shows that in the case of group maximum observed, our method still

works well. The point estimators of β are close to the true value 4 for both sample
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sizes. The MSE and MASE are all very small and decrease significantly as the sample

size increases. In addition, the estimators of σ are all close to the true value 0.25.

Figure 2.5 shows the box-plot of the estimators of β from group maximum observed

case for n = 500 (left panel) and n = 1000 (right panel).

Insert Figure 2.5 here.

In 2.5, the proposed method with missing data and the complete data have the

median of the estimators both around the true value 4. When sample size increases,

the interquartile decreases and the proposed method with missing data has similar

interquartile with the complete data when n = 1000.

Insert Figure 2.5 here.

Figure 2.6 shows the point-wise average of the estimators of g(·) from proposed

algorithm (red solid curve) and from complete data (green dashed curve) for n = 500

(left panel) and n = 1000 (right panel).

Insert Figure 2.6 here.

Figure 2.7 displays the point-wise variance of the estimators of g(·) from proposed

algorithm (red solid curve) and from complete data (green dashed curve) for n = 500

(left panel) and n = 1000 (right panel).

Insert Figure 2.7 here.

In the group maximum observed case, the point-wise average curves and the true

curve almost overlap and the point-wise variance curves have similar trend with the

group sum observed case.

In conclusion, simulation studies demonstrate that our proposed estimation algo-

rithm perform well in these settings.
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2.5 DISCUSSION

In this chapter, we discussed about estimation method and algorithm for partially linear

regression model with missing response variables. The missing pattern we considered

has a general meaning and includes the case when each response is missing by certain

probability.

For the estimation method, we applied the approach to maximizing the generalized

profile likelihood function and showed that the estimator of parametric part, which

maximizes the generalized profile likelihood, is a consistent and semiparametric effi-

cient estimator under some conditions. In addition, we proposed an iterative algorithm

to obtain the estimators. The algorithm runs iteratively between two modules, one of

which uses EM algorithm and estimating equation to get the estimator of parametric

component; the other uses EM algorithm and smoothing methods to obtain the esti-

mator of nonparametric component. Simulation studies were performed to illustrate

the proposed methodology and the simulation results showed that our algorithm works

well in finite sample cases.

2.6 APPENDICES

2.6.1 Assumptions

The conditions C1−C10 are given in the following. Some of the conditions are regularity

conditions and some of them are conditions needed because of the potential dependency

of the observed data and semiparametric model.

The conditions C1−C7 are similar to the efficiency conditions in Bar-Shalom (1971)

for parametric models with dependent response variables and the condition C8− C10

are extra conditions for semiparametric model.
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The joint probability density function of z = (z1, · · · , zm) can be written as

f
(
z1, · · · , zm;β, gβ(·),w, v1, · · · , vn

)
= f

(
z1|β, gβ(·),w, t1

)
f
(
z2|z1, β, gβ(·),w, t2

)
· · · f

(
zm|zm−1, · · · , z1, β, gβ(·),w, tm

)
=

m∏
k=1

fk(β, gβ(·), tk),

where fk
(
β, gβ(·), tk

)
= f

(
zk|zk−1, · · · , z1, β, gβ(·),w, tk

)
. Here vector tk is a subset

of (v1, · · · , vn) and contains all v′is involved in the probability density function fk
(
β, gβ(·), tk

)
.

We also assume that any k, k = 1, · · · ,m, there exists a constant K < ∞, such that

c(k) < K, where c(k) is the length of vector tk and K does not depend on m. For

simplicity, we use the notation, l
(
β, gβ(·), tk

)
= log fk

(
β, gβ(·), tk

)
.

C1.

Assume that for all r, u = 0, · · · , 4, r + u ≤ 4, the derivative

∂r+ul
(
β, gβ(·), tk

)
∂βr∂gβ(tks)u

, s = 1, · · · , c(k),

exists for almost all z = (z1, · · · , zm) and

E0

{
sup
β∈B

sup
gβ(tks)∈R

∣∣∣∣∣∂r+ul
(
β, gβ(·), tk

)
∂βr∂gβ(tk,s)u

∣∣∣∣∣
2}

<∞.

C2.

E0

[dl(β, gβ(·), tk)
dβ

]∣∣∣
β=β0

= 0

C3.

ik(β0) = E0

[dl(β, gβ(·), tk)
dβ

]2∣∣∣
β=β0

≤ C1 <∞,

where C1 is independent of k and ik(β0) is the information in l(β, gβ(·), tk). In addi-

tion, iβ ≡ limm→∞
1
m

∑m
k=1 ik(β0) exists and i−1

β is the semiparametric efficiency bound.

C4.

E0

[d2l
(
β, gβ(·), tk

)
dβ2

]∣∣∣
β=β0

= −ik(β0)
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C5.

There exists a (µk)-measurable function Hk(zk) such that∣∣∣∣∣d3l
(
β, gβ(·), tk

)
dβ3

∣∣∣∣∣ < Hk(zk),∀β ∈ B,

and Hk(zk) is finite except on a set of probability zero, i.e.

∀ε > 0, ∃A <∞, P{Hk > A} < ε,

where A is independent of β and k.

Conditions C6 and C7 are required because of the potential dependency of (z1, · · · , zm).

C6.

E
[dl(β, gβ(·), tj

)
dβ

dl
(
β, gβ(·), tk

)
dβ

]∣∣∣
β=β0

= 0, ∀j 6= k.

C7.

V ar
[d2l

(
β, gβ(·), tk

)
dβ2

]∣∣∣
β=β0

≤ C2 <∞,

where C2 is independent of k and

lim
|k−j|→∞

Cov
[d2l

(
β, gβ(·), tj

)
dβ2

,
d2l
(
β, gβ(·), tk

)
dβ2

]∣∣∣
β=β0

= 0.

C8.

The derivative g′0(·) satisfies

λ′kE
[∂l(β, gβ(·), tk

)
∂g(tk)T

∂l
(
β, gβ(·), tk

)
∂g(tk)

∣∣tk]∣∣∣
β=β0

= −E
[∂l(β, gβ(·), tk

)
∂β

∂l
(
β, gβ(·), tk

)
∂g(tk)

∣∣tk]∣∣∣
β=β0

,

where

λ′k =
(
g′0(tk,1), · · · , g′0(tk,c(k))

)
,

and

∂l
(
β, gβ(·), tk

)
∂g(tk)

=
(∂l(β, gβ(·), tk

)
∂g(tk,1)

, · · · ,
∂l
(
β, gβ(·), tk

)
∂g(tk,c(k))

)
.

Here g′0(·) is the least favorable direction.
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C9.

(i)
1√
m

m∑
k=1

d

dβ

[ c(k)∑
s=1

∂l
(
β, gβ(·), tk

)
∂g(tk,s)

∣∣
β=β0

(
ĝ0(tk,s)− g0(tk,s)

)]
= op(1),

(ii)
1√
m

m∑
k=1

[ c(k)∑
s=1

∂l
(
β, gβ(·), tk

)
∂g(tk,s)

∣∣
β=β0

(
ĝ′0(tk,s)− g′0(tk,s)

)]
= op(1).

When there is no missing data, that is zi = yi for i = 1, · · · , n, condition C9 corresponds

to Lemma 2 in Severini and Wong (1992), which has been proved under the regularity

conditions. For the block missing structure, where the observed data has independent

and identical distribution, condition C9 can be proved following the same arguments

for Lemma 2 under the regularity conditions. With more general missing patterns, it

is not easy to simplify this condition.

C10.

(i)
m∑
k=1

[
l
(
β, ĝβ(·), tk

)
− l
(
β, gβ(·), tk

)]
= r(1)

m (β),

where

sup
β

∣∣∣∣∣m−1d
2r

(1)
m (β)
dβ2

∣∣∣∣∣ = op(1).

(ii)
m∑
k=1

l
(
β, ĝβ(·), tk

)
=

m∑
k=1

l
(
β, gβ(·), tk

)
+

m∑
k=1

[ c(k)∑
s=1

∂l
(
β, gβ(·), tk

)
∂g(tk,s)

(
ĝ′β(tk,s)− g′β(tk,s)

)]
+r(2)

m (β)

where

m−1/2dr
(2)
m (β)
dβ

|β=β0 = op(1).

This condition is the Lemma 3 in Severini and Wong (1992) without missing data

and has been proved under regularity conditions. For the block missing structure, this

condition can be proved following the same arguments for Lemma 3. With more general

missing patterns, it is not trivial to simplify either.

2.6.2 Proofs

Proof of Theorem 1. The proof follows the proof of Proposition 1 in Severini and

Wong (1992). Under the regularity conditions, l
(
β, gβ(·); z,w,v

)
is continuous in β
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and a measurable function of z; v1, · · · , vn for each β. Therefore, it follows that β̂ is

measurable.

By Conditions I,

m−1l
(
β, gβ(·); z,w,v

)
→p l0(β) for each β ∈ B,

furthermore, for β1, β2 ∈ B,

m−1
∣∣l(β1, gβ1(·); z,w,v

)
− l
(
β2, gβ2(·); z,w,v

)∣∣
= m−1

∣∣ log f
(
z; w,v, β1, gβ1(·)

)
− log f

(
z; w,v, β2, gβ2(·)

)∣∣
≤ Am |β1 − β2|+Bm ‖gβ1 − gβ2‖

≤ Am |β1 − β2|+Bm sup
β

∥∥g′β∥∥ |β1 − β2|

≡ Cm|β1 − β2|.

Since by Conditions C, Cm is bounded in probability, it follows that

{
m−1l

(
β, gβ(·); z,w,v

)
: β ∈ B

}
is tight and hence,

m−1l
(
β, gβ(·); z,w,v

)
→D l0(β) in C(B).

For each β, by Conditions C,

m−1
∣∣l(β, ĝβ(·); z,w,v

)
− l
(
β, gβ(·); z,w,v

)∣∣
= m−1

∣∣ log f
(
z; w,v, β, ĝβ(·)

)
− log f

(
z; w,v, β, gβ(·)

)∣∣
≤ Bm sup

β
‖ĝβ − gβ‖.

Therefore, by Condition NP

sup
β

1
m

∣∣l(β, ĝβ(·); z,w,v
)
− l
(
β, gβ(·); z,w,v

)∣∣→p 0 as m→∞

and hence,

sup
β

∣∣ 1
m
l
(
β, ĝβ(·); z,w,v

)
− l0(β)

∣∣→p 0 as m→∞.
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Furthermore, since (suppose that l0(β) is unimodal)

sup
β

1
m
l
(
β, ĝβ(·); z,w,v

)
→p sup

β
l0(β) = l0(β0),

it follows that

l0(β̂)→p l0(β0) as m→∞.

For a given β ∈ B, there exists an ε > 0 and an open neighborhood Nβ of β such

that

inf
β1∈Nβ

|l0(β1)− l0(β0)| > ε.

Therefore,

P0(β̂ ∈ Nβ) ≤ P0

( ∣∣∣l0(β̂)− l0(β0)
∣∣∣ > ε

)
→ 0 as m→∞.

Let N0 denote an open neighborhood of β0 and consider the compact set B0 = B\N0.

Let {Nβ : β ∈ B, β 6= β0} denote the open cover of B0 constructed by the preceding

procedure. By compactness of B0 there exists a finite subcover {Nβ1 , · · · , Nβk}. Then

P0(β̂ /∈ N0) = P0(β̂ ∈ B0) ≤
k∑
j=1

P0(β̂ ∈ Nβj )→ 0 as n→∞.

Therefore,

β̂ →p β0 as m→∞.

Proof of Theorem 2. As given in the Section 2.6.1, the joint probability density

function of z = (z1, · · · , zm) can be written as

f
(
z1, · · · , zm|β, gβ(·),w, v1, · · · , vn

)
=

m∏
k=1

fk
(
β, gβ(·), tk

)
,

where fk
(
β, gβ(·), tk

)
= f

(
zk|zk−1, · · · , z1, β, gβ(·),w, tk

)
and denote l

(
β, gβ(·), tk

)
= log fk

(
β, gβ(·), tk

)
.

Using a Taylor’s expansion,

0 =
d
∑m

k=1 l
(
β, ĝβ(·), tk

)
dβ

∣∣∣
β=β̂

=
d
∑m

k=1 l
(
β, ĝβ(·), tk

)
dβ

∣∣∣
β=β0

+
d2
∑m

k=1 l
(
β, ĝβ(·), tk

)
dβ2

∣∣∣
β=β̂∗

(β̂ − β0),
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where β̂∗ lies between β0 and β̂ and by Theorem 1, β̂∗→pβ0. Hence,

√
m(β̂ − β0) = −

(1/
√
m)
(
d
∑m

k=1 l
(
β, ĝβ(·), tk

)
/dβ|β=β0

)
(1/m)

(
d2
∑m

k=1 l
(
β, ĝβ(·), tk

)
/dβ2|β=β̂∗

) . (2.5)

Conditions C9 and C10 imply the following two equations:

1√
m

d
∑m

k=1 l
(
β, ĝβ(·), tk

)
dβ

∣∣∣
β=β0

=
1√
m

d
∑m

k=1 l
(
β, gβ(·), tk

)
dβ

∣∣∣
β=β0

+ op(1), (2.6)

and

sup
β

∣∣∣∣∣ 1
m

d2
∑m

k=1 l
(
β, ĝβ(·), tk

)
dβ2

− 1
m

d2
∑m

k=1 l
(
β, gβ(·), tk

)
dβ2

∣∣∣∣∣ = op(1). (2.7)

Then with equations (2.6) and (2.7) and by the conditions C1− C8, we have

E
(√
m(β̂ − β0)

)2 =
( 1
m

m∑
k=1

ik(β0)
)−1
→ i−1

β as m→∞,

therefore, the estimator is semiparametric efficient.

The result

îβ →p iβ as m→∞,

follows from (2.7) and Theorem 1.

Proof of Theorem 3. By Ahmad et al. (2005), β̂∗ and ĝ∗ are given by β̂∗ =
[
(w −Mw)T (w −Mw)

]−(w −Mw)T (y −My)

ĝ∗ = M(y −wβ̂∗).

For any fixed β, the corresponding estimator of nonparametric component from the

iterative algorithm satisfies the following equation:

ĝβ = ME(y|z,w, β, ĝβ)−Mwβ

≡ ME1−Mwβ,

and its derivative to β is

ĝ′β = M
∂E(y|z,w, β, ĝβ)

∂β
−Mw

≡ ME2−Mw,
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where E1 = E(y|z,w, β, ĝβ) and E2 = ∂E(y|z,w, β, ĝβ)/∂β. The estimator β̂ is the

solution of

(E1−wβ − ĝβ)T (w + ĝ′β) = 0,

that is

0 =
[
(E1−ME1)− (w −Mw)β

]T (w −Mw +ME2)

= (E1−ME1)TME2− βT (w −Mw)TME2

+(E1−ME1)T (w −Mw)− βT (w −Mw)T (w −Mw)

= (E1−ME1)T (w −Mw)− βT (w −Mw)T (w −Mw).

The third equation is from MT = M and MTM = M . Therefore,

β =
[
(w −Mw)T (w −Mw)

]−1[(w −Mw)T (E1−ME1)
]

= E[β̂∗|z,w, β, ĝβ],

and

ĝβ = ME1−Mwβ

= E(My|z,w, β, ĝβ)− E(Mwβ̂∗|z, β, ĝβ)

= E[ĝ∗|z, β, ĝβ].

Hence, the estimators from iterative algorithm are the solution of β = E[β̂∗|z,w, β,g]

g = E[ĝ∗|z,w, β,g].

2.6.3 Estimator of asymptotic variance in group maximum observed

case

In group maximum observed case, E
(
yiyj |z,w,v, β, gβ(·)

)
is not easy to calculate. So

we need to use another way to estimate the covariance matrix part. Suppose β is length
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1. Notice that, with m→∞,

1
m
V ar

[dl(β, gβ(·); y,w,v
)

dβ

∣∣∣z]→ E
{ 1
m
V ar

[dl(β, gβ(·); y,w,v
)

dβ

∣∣∣z]}
=

1
m

{
V ar

[dl(β, gβ(·)|y,w,v
)

dβ

]
− V ar

[
E
(dl(β, gβ(·)|y,w,v

)
dβ

|z
)]}

=
1
m

(II1− II2),

where

II1 = V ar
[ 1
σ2

(
y −wβ − gβ(v)

)T (w + g′β(v)
)]

=
1
σ2

(
w + g′β(v)

)T (w + g′β(v)
)
,

and

II2 = V ar
[
E
((y −wβ − gβ(v)

)T (w + g′β(v)
)

σ2

∣∣∣z)]
=

1
σ4
V ar

[
E
( n∑
i=1

(
yi − wTi β − g(vi)

)(
wi + g′(vi)

)∣∣z)
, E
( n∑
i=1

(
yi − wTi β − g(vi)

)(
wi + g′(vi)

)∣∣z)].
In group maximum observed case, II2 can be written as

II2 =
1
σ4
V ar

[ m∑
j=1

E(sj |z),
m∑
j=1

E(sj |z)
]

=
1
σ4

m∑
i=1

V ar
[
E(sj |z), E(sj |z)

]
=

1
σ4

m∑
i=1

E
[
E(sj |z)E(sj |z)

]
(2.8)

≈ 1
σ4

m∑
i=1

E(sj |z)E(sj |z), (2.9)

in first equation

E(sj |z) = E
( ∑
i∈group j

(
yi − wTi β − g(vi)

)(
wi + g′β(vi)

)
|z,w,v

)
=

∑
i∈group j

(
E(yi|z,w,v)− wTi β − g(vi)

)(
wi + g′β(vi)

)
,

depends on the group j only and is independent by groups, so we have second equation.

Third equation is from E
[
E(sj |z)

]
= 0, for j = 1, · · · ,m. As m → ∞, (2.8) can be
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approximated by (2.9). The negative information matrix is

− 1
m

d2l(β, gβ(·); z,w,v)
dβ2

≈ 1
m
II2

≈ 1
mσ4

m∑
i=1

[
E(sj |z)E(sj |z)

]
. (2.10)

Then the asymptotic variance of β̂ can be estimated by inverse of estimator of (2.10),

where β, g, g′ and σ are replaced by β̂, ĝβ̂, ĝ′
β̂

and σ̂ respectively.
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Figure 2.1: Pilot study for n = 1000 with 200 replications. Left panel is the GCVM
values for the number of nknots in 1:50; right panel is the MSE(β̂) (red solid curve)
and MASE(ĝ) (green dashed curve).

Table 2.1: Simulation results for estimators from group sum observed case based on
500 replications.

β̂ (β = 4) ĝ(·) σ̂

Mean MSE ˆAV AR MASE (0.25)

n = 500 proposed 4.0 0.003 0.33 0.014 0.24

com. lik. 4.0 0.001 0.34 0.002 0.25

n = 1000 proposed 4.0 0.001 0.33 0.008 0.24

com. lik. 4.0 0.0003 0.34 0.001 0.25
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Figure 2.2: Simulation results for group sum observed case: box-plot for estimators of
β. Left panel is for n = 500 and right panel is for n = 1000.

Figure 2.3: Simulation results for group sum observed case. The blue dotted curve
presents true g(·), red solid curve is the point-wise average of the estimators of g(·) by
proposed algorithm with missing data and green dashed curve is the point-wise average
of the estimators of g(·) for complete data; left panel is for n = 500 and right panel is
for n = 1000.
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Figure 2.4: Simulation results for group sum observed case. The red solid curve is the
point-wise variance of the estimators of g(·) by proposed algorithm with missing data
and green dashed curve is the point-wise variance of the estimators of g(·) for complete
data; left panel is for n = 500 and right panel is for n = 1000.

Table 2.2: Simulation results for estimators from group maximum observed case based
on 500 replications.

β̂ (β = 4) ĝ(·) σ̂

Mean SE ˆAV AR MASE (0.25)

n = 500 proposed 4.0 0.003 0.38 0.017 0.24

com. lik. 4.0 0.001 0.34 0.003 0.25

n = 1000 proposed 4.0 0.001 0.36 0.012 0.25

com. lik. 4.0 0.0004 0.34 0.002 0.25
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Figure 2.5: Simulation results for group maximum observed case: box-plot for estima-
tors of β. Left panel is for n = 500 and right panel is for n = 1000.

Figure 2.6: Simulation results for group maximum observed case. The blue dotted curve
presents true g(·), red solid curve is the point-wise average of the estimators of g(·) by
proposed algorithm and green dashed curve is the point-wise average of the estimators
of g(·) for complete data; left panel is for n = 500 and right panel is for n = 1000.



56

Figure 2.7: Simulation results for group maximum observed case. The red solid curve
is the point-wise variance of the estimators of g(·) by proposed algorithm and green
dashed curve is the point-wise variance of the estimators of g(·) for complete data; left
panel is for n = 500 and right panel is for n = 1000.
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