
INFORMATION THEORETIC AND

SPECTRAL METHODS OF TEST POINT,

PARTIAL-SCAN AND FULL-SCAN

FLIP-FLOP INSERTION TO IMPROVE

INTEGRATED CIRCUIT TESTABILITY

BY RAGHUVEER AUSOORI

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Michael L. Bushnell

and approved by

New Brunswick, New Jersey

October, 2009

c© 2009

Raghuveer Ausoori

ALL RIGHTS RESERVED

ABSTRACT OF THE THESIS

Information Theoretic and Spectral Methods of

Test Point, Partial-Scan and Full-Scan Flip-Flop

Insertion to Improve Integrated Circuit

Testability

by Raghuveer Ausoori

Thesis Director: Prof. Michael L. Bushnell

We present a radically new design for testability (DFT) algorithm, which

inserts test points (TPs) and scanned flip-flops (SFFs) into large circuits to make

them testable. The algorithm measures testability using Shannon’s entropy mea-

sure (from information theory), which will be shown to be a vastly superior way

to measure testability, and spectral co-efficients. The spectral measures are supe-

rior in measuring fault coverage (FC) improvement. The algorithm can determine

the DFT candidates using a gradient descent method or using an integer linear

program (ILP). The optimal insertion of the TPs and SFFs reduces the amount

of DFT hardware, since the algorithm trades off inserting a TP versus inserting a

SFF. Various other derived measures are used and found to be effective in making

the circuit testability better at various stages. The integer linear program finds

the optimal solution to the optimization, and the testability measures are used

to maximize information flow through the circuit-under-test (CUT). The result,

on full-scan designs with test points, is a 40.05% reduction in test volume (TV)

ii

and a 54.24% reduction in test application time (TAT), compared to a full-scan

design without test points. The method, used in conjunction with the Synopsys

TetraMAXTM automatic test pattern generator (ATPG), achieves 1.55% higher

fault coverage (FC) and 100% fault efficiency (FE) on ITC ’99 benchmark circuits

compared to conventional methods and reduces the ATPG time by 90.24%. The

method works better than all prior methods on partial-scan circuits, as well. We

achieve TV reductions of 19.56% and 33.42% and TAT reductions of 21.63% and

31.23%, over the previous best SPARTAN PS+TP1 and PS+TP2 partial scan

ideas, respectively, on ISCAS ’89 benchmark circuits. We also get 32.62% TV

reduction and 25.39% TAT reduction over the mpscan algorithm.

iii

Acknowledgements

I would like to express my gratitude to Prof. Bushnell for helping me and spending

his valuable time with me to bring my thesis to fruition. I am thankful for all

the attention he diverted toward my work especially during the latter part of the

thesis. I would also like to convey my special thanks to Dr. Tapan Chakraborty

and Dr. Xinghao Chen for their feedback and ideas to make this work as good as

it is now.

I would like to acknowledge my parents and family for their faith in me, which

is all I needed to keep pushing myself through the hardest of times. I also want

to convey my gratitude to my roommates, Hari, Shyam, Shiva and Venkat, who

were my family away from home, without whom I could not have survived a day

after landing in the US.

My acknowledgments would not be complete without the mention of my men-

tors Dr. Rajamani Sethuram and Dr. Omar Khan from whom I have learned

much about DFT and I would like to thank them for all their insight and timely

advice. I also thank my other seniors Dr. Hari Vijay, Varadan, Roystein, Sha-

ranya and Aditya for making my lab visits something to look forward to. I thank

all of my friends for making my graduate and personal life a lot more fun.

iv

Dedication

To my parents Banu and Krishna, my grandmother Janakibhai Kannan, my

uncle and aunt Hanumantha Rao and Sasikala, my aunt Nalini Sathyakumar,

my uncle Rajendran, my uncle Narendran, my roommates Hari, Shyam, Shiva

and Venkat, and all my friends.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . xi

List of Figures . xii

1. Introduction . 1

1.1. Need for DFT Insertion . 2

1.2. Original Contributions . 4

1.2.1. Fully Automated Procedure 4

1.2.2. Combined Scan Flip-Flop and Test Point Insertion 4

1.2.3. Entropy Analysis . 5

1.2.3.1. Unbiasing . 5

1.2.3.2. Integer Linear Programming 6

1.2.3.3. Derivative Measures 6

1.2.4. Spectral Analysis . 7

1.2.4.1. High Speed Bit-Wise Computation 7

1.3. Results . 7

1.4. Outline of the Thesis . 8

2. Prior Work . 9

2.1. Entropy as a Testability Measure 9

2.1.1. Why Entropy is a Better Testability Measure 10

vi

2.2. Partial Scan . 14

2.2.1. Designing Circuits with Partial Scan 14

2.2.2. An Exact Algorithm for Selecting Partial Scan Flip-Flops . 15

2.2.3. Partial-Scan Design Based on Circuit State Information and

Functional Analysis . 18

2.2.4. SPARTAN – A Spectral and Information Theoretic Ap-

proach to Partial-Scan . 20

2.2.5. Other Partial Scan Algorithms 22

2.3. Test Point Insertion in Non-Scan Designs 23

2.3.1. Self-Driven Test Structure for Pseudo-random Testing of

Non-Scan Sequential Circuits 23

2.3.2. Non-Scan Design-for-Testability Techniques for Sequential

Circuits . 24

2.3.3. Non-Scan Design for Testability for Synchronous Sequential

Circuits Based on Conflict Resolution 26

2.4. Test Point Insertion in Full-Scan and Partial Scan Designs 28

2.4.1. Constructive Multi-Phase TPI for Scan-Based BIST 28

2.4.2. Timing-Driven TPI for Full-Scan and Partial-Scan BIST . 31

2.4.3. Zero Cost TPI Technique for Structured ASICs 33

2.4.4. SPARTAN – A Spectral and Entropy-based Partial-scan

and Test Point Insertion Algorithm 35

2.4.5. Other Test Point Insertion Algorithms 36

2.5. Summary . 37

3. Integer Linear Programming Approach and Formulation 39

3.1. Why We Chose an Integer Linear Program to Select Scan-Flops

and Test Point Candidates . 39

3.1.1. Advantages of Integer Linear Programs over Greedy Algo-

rithms . 40

vii

3.2. Integer Linear Program Formulation 41

3.2.1. Sets . 41

3.2.2. Parameters . 41

3.2.3. Variables . 42

3.2.4. Objective Function . 43

3.2.5. Constraints . 44

3.3. Convergence of the ILP . 45

3.4. Summary . 46

4. Algorithm . 47

4.1. Strongly Connected Components 47

4.2. Logic Simulation . 48

4.2.1. Advantages over Parker-McCluskey Equations 49

4.3. Entropy Calculation . 50

4.4. Spectra Calculation . 53

4.5. Candidate Selection . 54

4.5.1. ILP Mode . 55

4.5.2. Gradient Descent Mode 55

4.5.3. Probability Mode . 55

4.5.4. Entropy Mode . 56

4.5.5. Unbiased Entropy Mode 56

4.5.6. Accumulated Entropy Mode 56

4.5.7. Entropy Gain Mode . 56

4.5.8. Entropy Differential Mode 57

4.5.9. Spectral Mode . 58

4.6. DFT Insertion . 59

4.7. Flow Chart . 60

4.8. Complexity Analysis of the Algorithm 60

4.9. Summary . 63

viii

5. Results . 65

5.1. Preliminaries . 65

5.2. Full Scan with Test Point Insertion Results 68

5.2.1. Experimental Conditions and Validation 69

5.2.2. Fault Coverage Results . 70

5.2.3. Fault Efficiency Results 77

5.2.4. Test Vector Length Results 83

5.2.5. Test Volume Results . 87

5.2.6. Test Application Time Results 91

5.2.7. ATPG Time Results . 95

5.2.8. Entropy Run Time Results 99

5.2.9. Calculation of Unbiasing factor 103

5.2.10. Reasons for Algorithm Performance 104

5.2.11. Summary of Full Scan with Test Point Results 104

5.3. Partial Scan with Test Point Insertion Results 105

5.3.1. Experimental Conditions 105

5.3.2. Fault Coverage and Overhead Results 107

5.3.3. Test length, Test Volume and Test Application Time Results111

5.3.4. Reasons for Algorithm Performance 116

5.3.5. Summary of Partial Scan with Test Point Results 116

6. Implementation . 117

6.1. Writing out the Data file . 117

6.2. Transferring Data and Output Files 118

6.3. Secure Shell . 118

6.4. Reading the Output File . 119

6.5. Summary . 119

7. Conclusions and Future Work . 121

7.1. Conclusions . 121

ix

7.2. Future Work . 123

References . 125

Appendix A. Entropy User Guide . 131

x

List of Tables

4.1. Truth table for example circuit. 50

5.1. Characteristics and parameters for ITC ’99 Benchmark Circuits . 69

5.2. Fault Coverage results of ITC ’99 Benchmark Circuits 72

5.3. Fault Efficiency results of ITC ’99 Benchmark Circuits 78

5.4. Test Vector Length results of ITC ’99 Benchmark Circuits 84

5.5. Test Volume results of ITC ’99 Benchmark Circuits 88

5.6. Test Application Time results of ITC ’99 Benchmark Circuits . . 92

5.7. ATPG Time results (in sec) for ITC ’99 Benchmark Circuits . . . 96

5.8. Run Time results (in sec) for ITC ’99 Benchmark Circuits 100

5.9. Unbiasing Factor for ITC ’99 Circuits 103

5.10. Characteristics and parameters of ISCAS ’89 Benchmark Circuits 106

5.11. GATEST parameters . 106

5.12. Partial-Scan Scanned Flip-Flop Count, Test Point Count, Fault

Coverage, and Hardware Overhead for ISCAS ’89 Circuits 108

5.13. Partial-Scan Test Vector Count, Test Volume and Test Application

Time for ISCAS ’89 Circuits . 112

xi

List of Figures

2.1. Entropy, E, vs. p(1) for a signal 10

3.1. Range of values for a sub-problem 40

4.1. Example circuit . 50

4.2. Flow chart of the algorithm . 61

5.1. Example gate showing modification of b05 68

5.2. Fault Coverage comparison: Entropy vs. Spectral 73

5.3. Fault Coverage comparison: Entropy vs. Spectral 74

5.4. Fault Coverage comparison: Entropy Modes 75

5.5. Fault Coverage comparison: Entropy Modes 76

5.6. Fault Efficiency comparison: Entropy vs. Spectral 79

5.7. Fault Efficiency comparison: Spectral Modes 80

5.8. Fault Efficiency comparison: Entropy Modes 81

5.9. Fault Efficiency comparison: Entropy Modes 82

5.10. Test Vector Length comparison: Entropy vs. Spectral 85

5.11. Test Vector Length comparison: Entropy Modes 86

5.12. Test Volume comparison: Entropy vs. Spectral 89

5.13. Test Volume comparison: Entropy Modes 90

5.14. Test Application Time comparison: Entropy vs. Spectral 93

5.15. Test Application Time comparison: Entropy Modes 94

5.16. ATPG Time comparison: Entropy vs. Spectral 97

5.17. ATPG Time comparison: Entropy Modes 98

5.18. Run Time comparison: Entropy vs. Spectral 101

5.19. Run Time comparison: Entropy Modes 102

xii

5.20. Fault Coverage comparison . 109

5.21. Hardware Overhead comparison 110

5.22. Test Vector Length comparison 113

5.23. Test Volume comparison . 114

5.24. Test Application Time comparison 115

xiii

1

Chapter 1

Introduction

The Equation below represents Moore’s Law [45], which stated that the num-

ber of transistors on a chip will double roughly every year and a half. This is

mathematically shown by Bell [5] as follows:

Transistors per chip = 2t−1959 for 1959 ≤ t ≤ 1975

216 × 2(t−1975)/1.5 for t ≥ 1975

The first half of the Equation shows that every year after 1959, the number of

transistors per chip doubles from the previous year. The growth in the integrated

circuit (IC) industry was so rapid that Moore’s Law had to be modified as shown

in the second half of the Equation, which shows that the number of transistors in

a chip doubles every one and a half years. The transistor count on each chip has

already broken the one billion barrier and continues to increase rapidly. It is now

commonplace to have netlists with more than 50 million logic gates. By 2010,

scalable CMOS microprocessors could combine into powerful, multiple processor

clusters of up to one million independent computing streams [5]. Designing and

fabricating these devices pose a tough challenge to the industry and this challenge

has to be met with less cost than for the previous generation to survive in the

market. Companies strive to be the first to release new chip sets and capture a

greater share of the market. In order to achieve this, a good fabrication line and

a good testing scheme are required.

2

1.1 Need for DFT Insertion

Hardware testing is the process of testing the chip to determine whether the chip

has been fabricated properly. The cause of failure can be that the fabrication

process was faulty or there could be a design or specification mistake or the test

itself was wrong to begin with. The role of testing is to detect whether something

went wrong and if anything did, then the defect can be diagnosed and rectified,

and the process is repeated. A good test helps remove the bad chips in a short

amount of time. While testing, the metric that is observed is fault coverage

(FC), which is the percentage of faults detected by the tests. The higher the FC,

the better the quality of the chip. Getting high FC on chips with one billion

transistors is hard and to make the process easy, the chips are designed so that

they are easily testable. This concept is called as design-for-testability (DFT). In

DFT, the chip logic is altered so that the chip is easier to test with higher FC,

while maintaining the original functionality. The following are some ideas used

in DFT:

• Full Scan: Scanning is the process of converting the hard-to-test flip-flops

present in the circuit into shift registers, and thus, making them easier to

control from the pins. When all of the flip-flops present in the circuit are

scanned, then the circuit acts as a combinational circuit and it is said to

be full-scanned. Combinational circuits are easier to test with high FC, but

have high hardware and delay overheads.

• Partial Scan: When only a subset of flip-flops present in the circuit are

scanned, then the circuit is said to be partially-scanned [2]. The circuit

still remains sequential but a good partial-scan algorithm should be able

to achieve high FC [35, 36]. The hardware overhead is less than for a full-

scanned circuit.

• Test Point Insertion: Test points are special designs that help introduce

a certain logic value into a particular combinational part of the circuit or

3

help observe the output of a gate. They help improve the testability of

combinational parts of the circuits [62]. Another advantage of test points is

that when placed properly, they can help reduce the amount of time taken

to test the circuit [57].

Testing a chip costs money and it is estimated that testing alone comprises about

33% to 40% of the chip cost [10]. Automatic test equipment (ATE) is very costly

and its operating cost increases with every second. ATE tests the chips by ap-

plying certain inputs to the pins of the chip and observing the outputs to detect

faults. The inputs that are applied to the chips are called test vectors, which are

determined before the fabrication of the chip. The test vector sets are processed

to achieve high FC with fewer vectors. The total number of vector bits stored in

the ATE is called the test volume (TV) and the time taken by the ATE to apply

the test vectors to one chip and read its outputs is called the test application time

(TAT). Higher TV and TAT add to the test cost of the chip. Testing cost with

the latest equipement is estimated to be 7 cents per second. The more time each

chip spends on the ATE, the higher the testing cost incurred. For example, let us

assume that the test time for a digital application specific IC (ASIC) is around

10 seconds and that 100,000 chips are fabricated every day.

Testing Cost = 7× 10× 100, 000 = 7, 000, 000 cents = $70, 000 per day

By using the DFT ideas discussed above intelligently, the TV and TAT can be

reduced, which in turn, helps reduce the test cost. The ideas proposed in this

thesis help reduce the TV by 40.05% and TAT by 54.24%, while acheiving a near

100% stuck-at FC. Now the testing cost calculation becomes:

Testing Cost = 7× 10× 100, 000× (1− 0.5424) = $32, 032 per day

Using the ideas proposed here, the testing cost is cut in half. Hence, DFT insertion

not only contributes to higher FC, but it can also help reduce the cost of the

product.

4

1.2 Original Contributions

The previous section explained why DFT insertion is important from the quality

and economic viewpoint of the IC industry and how the ideas proposed in this

thesis help with better DFT. This section explains what makes the ideas unique

and better than existing ideas.

1.2.1 Fully Automated Procedure

Existing automated methods insert partial-scan or full-scan DFT hardware. How-

ever, for high-performance designs, the DFT insertion process is largely manual,

because various performance and low power design constraints make it difficult to

fully automate this. This leads to a very labor intensive process of an expert test

engineer inserting the DFT hardware by hand into a high-performance design,

such as a microprocessor or cell phone chip. This thesis provides better design

automation, because the algorithm for DFT hardware insertion allows perfor-

mance critical nets in the circuit to be weighted, so that the algorithm will never

put DFT hardware on those nets, but instead the hardware is driven off of the

nets onto other sites. The algorithm, thus, reduces the manual process involved

in DFT insertion and reduces the design time and time-to-market of the product.

1.2.2 Combined Scan Flip-Flop and Test Point Insertion

Existing partial scan with test point insertion algorithms first scan the flip-flops

and then insert test points [35, 36, 37]. Following this two-step procedure could

increase the hardware overhead and TV of the circuit. One original idea here

is to simultaneously insert test points while scanning the flip-flops, so that the

advantages of either can be weighed and a wiser choice can be made. In the

former method, if the testability of a combinational block is found to be low, a

nearby flip-flop will be scanned to improve the testability but if this does not

help the cause, then the second stage of the algorithm will insert a test point,

5

thus increasing overhead. The latter method would automatically insert a test

point at the appropriate point in the combinational block. This concept can be

observed through the results obtained where the idea performs better than the

previous best idea with less overhead.

1.2.3 Entropy Analysis

Entropy is the amount of information flowing through a particular point of in-

terest in the circuit, first proposed by Shannon [59]. If there is more information

flowing through a gate, then there is more activity in the gate and, hence, it can

be more easily controlled. Increasing the information flow throughout the circuit

translates into better circuit testability. Entropy is a very simple testability mea-

sure that can be easily calculated by logic simulating the circuit with a certain

number of random input vectors. The entropy analysis is explained in detail in

the Chapter 4. Using entropy as a testability measure has been proposed before

by Dussault [23]. He proposed a way to calculate the entropy and conditional

entropy of the gates in the circuit and defined observability, controllability and

testability measures from the entropy values. Agrawal [3] proposed a method to

use entropy for digital fault testing. He calculates the detection probability of

a fault and explains how to suitably design a pattern generator to improve the

detection probability. Thearling and Abraham [64] proposed information theory

based testability measures at the functional level. Probabilities were estimated

either via logic simulation, called sampling, or by using functional level infor-

mation of the circuit components, known as composition. They also proposed

partitioning of the circuit, to improve testability, using entropy-related measures.

We use the following ideas to obtain better performance.

1.2.3.1 Unbiasing

Entropy is calculated using logic simulation. This simulation does not exhaust

the input space for the circuit as that can be very time consuming for larger

6

circuits and, hence, a sample of the input space is used for logic simulation. This

input vector sampling can introduce a statistical sample bias into the entropy

values [28, 31]. We propose a novel way of calculating this bias and a method to

remove the bias. Our bias removal improves the algorithm performance greatly

when compared to using biased entropy as the testability measure.

1.2.3.2 Integer Linear Programming

Integer linear programming is an optimization algorithm that chooses the optimal

solution for the problem. The proposed algorithm uses an integer linear program

to choose candidates for scanning and test point insertion based on the testability

measures. Another advantage with using an integer linear program is that in the

case of many candidates having the same testability measure, the selection is made

randomly, which works better than selecting based on a candidate characteristic

such as the gate name.

1.2.3.3 Derivative Measures

Entropy as such can be an effective testability measure for candidate selection

but the entropy measure only accounts for difficult-to-control gates. To account

for difficult-to-observe gates, derivative measures were invented:

• Entropy gain selects candidates by the increase in entropy at the fan-out

gates if the candidate is scanned or receives a combinational logic test point.

• Entropy differential selects candidates by the drop in entropy from the can-

didate to its fan-out gates.

After inserting a test point or scanning a flip-flop, the variables used for the

entropy calculation are cleared for recalculation of the entropy in the next simu-

lation. When these variables are not cleared, the information from previous sim-

ulations accumulates and the entropy calculated using this information is called

accumulated entropy. The calculations of all of the measures are explained in

detail in the Chapter 4.

7

1.2.4 Spectral Analysis

Spectral analysis of a circuit gives information about the types of frequencies

that best excite the circuit. The output from each gate for 32 clock periods is

multiplied with a 32×32 Hadamard matrix, to calculate the spectral co-efficients

of the gate. The spectral co-efficients calculated from the result help identify the

natural response frequencies for the gate. Using spectral co-efficients as testability

measures has been done before [35, 36, 37] and in this thesis, we use the existing

ideas of spectral analysis in combination with our entropy ideas.

1.2.4.1 High Speed Bit-Wise Computation

The original contribution to spectral analysis from the approach here is a high

speed bit-wise computation to multiply the 32 × 32 Hadamard matrix with the

output of each gate to calculate its spectral co-efficients. The matrix multiplica-

tion is replaced with a bit-wise XNORing operation. Each row of the Hadamard

matrix is transformed into a 32-bit word and the 32-bit logic response from the

gate is bit-wise XNORed with each row to obtain the spectral co-efficients. This

method speeds up the spectral analysis many fold.

1.3 Results

The complexity of the proposed gradient descent algorithm is O(N2) with logic

simulation taking the most computation time. The complexity of the algorithm

while using integer linear program is O(2N), but the AMPL solver used manages

to find a solution in a very short time and hence, this method can be used prac-

tically. The algorithm can be made to insert test points in a full-scan circuit or

to insert test points and scan flip-flops in a partial-scan circuit. By inserting test

points into a full-scan circuit, the algorithm was able to achieve a 40.47% TV and

a 54.24% TAT reduction over a full-scan circuit with no test points. The fault

coverage went up by 1.64% while keeping the hadware overhead below 10%, on

8

average. By inserting both test points and scan flip-flops into a circuit with par-

tial scan, the algorithm acheives 19.56% TV reduction and 21.63% TAT reduction

over the previous best algorithm.

1.4 Outline of the Thesis

This thesis is organized as follows. Chapter 2 discusses the prior work in the

DFT field. Section 2.1 introduces various interesting ideas used for partial scan,

Section 2.2 explains the algorithms that insert test points into sequential circuits

with no scan flip-flops, Section 2.3 discusses test point insertion algorithm in full-

scan and partial scan designs and Section 2.4 introduces entropy as a testability

measure and discusses its advantages. Chapter 3 discusses the integer linear

programming approach and the formulation used by the algorithm to select the

test point candidates. Chapter 4 explains the algorithm in detail including the

various testability measures used and provides a flow chart of the entire procedure.

Chapter 5 discusses in detail the various results obtained for various runs of the

algorithm. Chapter 6 explains the implementation of the algorithm. Chapter 7

presents the conclusion and future work.

9

Chapter 2

Prior Work

The design-for-testability (DFT) techniques are required to improve the testabil-

ity and reduce the test cost of the circuit. DFT techniques include ad-hoc and

structured techniques. Test point insertion (TPI) is a common ad-hoc DFT tech-

nique to improve the circuit testability and scan design is the most widely used

structured DFT methodology. Full-scan, partial-scan and random-access scan

(RAS) design are the three most common scan architectures. Full-scan tech-

niques scan all the flip-flops in the circuit and make the circuit combinational so

that it is easier to test. Partial scan techniques scan a subset of the flip-flops

in the circuit and, hence, incur smaller hardware overhead and test volume than

full-scan techniques. RAS techniques group the flip-flops present in the circuit

into random access memory (RAM) and write the test vectors into them by using

a special address scan register and address decoding hardware. TPI techniques

concentrate on increasing the testability of the circuit by inserting controllability

and observability points.

2.1 Entropy as a Testability Measure

Entropy as proposed in Shannon’s Information Theory [59] is an effective measure

of randomness in data. It is widely used as a measure of information in signals

to combat noise-related errors of communication.

10

2.1.1 Why Entropy is a Better Testability Measure

In this work, we use entropy as a testability measure to estimate the testability

of circuits. The Entropy E of a signal that has n distinct values [44, 73, 74] is:

E = −
n
∑

i=1

pi log2(pi),

where pi = probability of outcome i (2.1)

Equation 2.1 is plotted in Figure 2.1 with Entropy E on the ordinate and the

probability of an outcome being 1, p(1), on the abscissa. The maximum entropy

in Figure 2.1 occurs when 0 and 1 are equally likely. Consider an 8-input AND

Figure 2.1: Entropy, E, vs. p(1) for a signal

gate, with p(0) = p(1) = 0.5 on each input. From SCOAP measures [26], the

difficulty of setting the output to a 1 is CC(1) = 9, and the difficulty of setting

it to a 0 is CC(0) = 2. From COP measures [49], the probability of the output

being 1 is p(1) = 1/256 and p(0) = 255/256. However, the entropy measure of

the output, which incorporates both 0 and 1 values, is 0.03687.

Dussault proposed the first information theoretic testability measure [23]. He

proposed a way to calculate the entropy and conditional entropy of the gates in

the circuit. Conditional entropy is the average information required to specify an

event x ∈ X after y ∈ Y is known as shown in Equation 2.2. X and Y are events

11

of logic 0 or logic 1 occurring at a gate or a primary input or a primary output.

E(X|Y) = −
∑

x,y

P (x, y) log2 P (x|y) (2.2)

He also defines the following measures for a circuit with inputs being X and

outputs being Y:

Observability measure =
1

E(X|Y)
(2.3)

Controllability measure =
1

E(Y |X)
(2.4)

Testability measure = I(X; Y) = E(X)− E(X|Y) (2.5)

= E(Y)− E(Y |X)

Based on these measures he proposes to select test points for the circuit. Lines

with low observability measures are observability test point candidates, lines with

low controllability measures are controllability test point candidates, lines with

low testability measures are complete test point candidates. He also proposes

to calculate these measures using logic simulation or using Parker-McCluskey

Equations [52]. He does not report any experimental results for his ideas, but the

concepts he proposed were investigated further by Agrawal [3] and Thearling and

Abraham [64].

Agrawal proposed an information theoretic approach to testing digital circuits

[3] and derived the probability P (T) of detecting a stuck-at fault by a vector

sequence T as:

P (T) = 1− 2−EoT/k (2.6)

where k is the number of lines through a circuit partition where the detectable

fault exists and Eo is the entropy at the output of the circuit. Consider a 2-input

AND gate with inputs i1, i2 and output Z. If the probability of logic 0 (logic 1)

occurring at the inputs is 0.5 (0.5), the entropies at the inputs, i1 and i2, are:

Ei1 = Ei2 = −0.5 log2(0.5)− 0.5 log2(0.5) = 1.0 (2.7)

12

Therefore, the total information present at the inputs is 1+1 = 2. The probability

of logic 0 (logic 1) at output Z is 0.75 (0.25) and the entropy of Z is:

EZ = −0.25 log2(0.25)− 0.75 log2(0.75) = 0.811 (2.8)

So, the AND gate has information loss of 2.0− 0.811 = 1.189. Agrawal proposed

an ATPG method that reduces the loss (by increasing entropy) of information

and maximizes P (T) in the circuit by adjusting the probabilities of 0 and 1 at the

inputs. He discusses a way to generate test patterns that increases the information

flow in the circuit based on the functionality of the circuit. Since he uses the

functionality of the circuit to generate patterns, different implementations of the

same functionality can produce different results. By increasing the information

flow in the circuit, he is able to detect permanent faults and intermittent faults,

faults that become active intermittently.

For sequential circuits, he calculates the information flow on a per pattern basis.

Consider a circuit that is designed to perform n operations. Let us assume that

the jth operation requires an input sequence of vj patterns and can produce

mj distinct output sequences. The information output of this operation will be

maximum when each of the mj output sequences are made equiprobable. Then

the average information output of jth operation is given as:

hj =
log2mj

vj

bits/pattern (2.9)

If the probability of executing jth operation is pj, the average information output

of the circuit is:

Ho =
n
∑

j=1

pj × hj bits/pattern (2.10)

In order to generate patterns, first, pj’s are assigned to the various operations such

that the output information as given by Equations 2.10 and 2.9 is maximized. The

pattern generator would then proceed by selecting operations with the assigned

probabilities and generating an input pattern sequence for the selected operation.

An input pattern sequence is generated from the functional description of the

13

circuit and data patterns are selected to make all possible outputs equiprobable.

These patterns are then stored as the test patterns for the circuit.

Thearling and Abraham proposed information theory based testability mea-

sures at the functional level [64]. They use relative information and mutual infor-

mation measures instead of absolute values. They use the information transmis-

sion co-efficient (InTC) as their testability measure. InTC is defined as a measure

of the fraction of information that can be transmitted through a line. It is com-

puted by taking the ratio of the entropy on the inputs of a line and the entropy

of the outputs of the line. They use InTC as their controllability measure. For

an observability measure, they use the ratio of mutual information of an output

with an internal circuit node and the entropy of the output. Probabilities of logic

0 (logic 1), p(0) (p(1)), were estimated either via logic simulation, called sam-

pling, or by using functional level information of the circuit components, known

as composition.

They also proposed partitioning of the circuit, to improve testability, using entropy-

related measures. By partitioning a circuit, increased controllability and observ-

ability can be achieved through DFT insertion. When data flows through a

circuit, it may be difficult to produce desired values on the inputs of some gates.

Similarly, data from gates may not always flow to the outputs. To alleviate this

problem, the circuit is partitioned and additional controllability and observability

are added. Their basic idea is to use their testability measures to determine the

amount of information compression occurring in a circuit and then to use that

knowledge to perform partitioning of the circuit. They provide an algorithm to

effectively partition the circuit. The basic premise of the partitioning algorithm is

to first push the limits of the partition until signal paths have a controllability less

than the desired threshold. The partition limits are then pulled back until each

path in the partition has an observability greater than than the desired threshold.

This is repeated until the entire circuit has been partitioned. Their results show

that partitions with higher values of controllability and observability threshold

achieve higher fault coverages.

14

From the above mentioned work, it is clear that the advantage of using en-

tropy, rather than conventional testability measures, is that it can be reliably

calculated using a limited number of simulation vectors and it is a single metric

that accurately reflects the information flow in the circuit.

2.2 Partial Scan

2.2.1 Designing Circuits with Partial Scan

Agrawal et al. [2] discuss two methods of selecting flip-flops for scanning. In this

scan design methodology, only selected faults are targeted for detection. The

targeted faults are those not detected by the functional vectors and the test

generator decides exactly which flip-flop to scan using one of the two ways. By

using partial scan, they achieve 40% savings over the full scan overhead while

using comparatively fewer test vectors to obtain similar fault coverages.

In the first method known as the Frequency Approach, all of the possible tests

are generated for each targeted fault and then the test vectors that require the

fewest flip-flops to be scanned are selected. This approach uses a modified path

oriented decision making (PODEM) test generation program [25] to generate all

possible tests for the targeted fault by only setting inputs that are needed to be

set while leaving all other inputs as “don’t care’s.” The fault and corresponding

vectors are analyzed to obtain a minimal set of vectors that covers the maximum

faults but requires fewer flip-flops to be scanned. This is done by selecting vectors

that detect hard-to-detect faults and removing all the faults that get detected by

these vectors from the fault list. The flip-flops required by these vectors are

scanned. Then the flip-flops and vectors that test the remaining faults, which can

also be considered as flip-flops with higher frequency, are selected for scanning.

The second approach is the Distance Approach, which generates only one

test per fault. The test vectors are generated by setting the primary inputs (PI)

nearest to the fault site and propagating the fault to the nearest primary outputs

15

(PO). In the distance approach, all the PIs and POs are assigned 0 distance, while

combinational logic whose inputs and outputs are derived from flip-flops is set to

a distance value of 100. Once a flip-flop is scanned, these inputs and outputs get

a distance value of 0.

They also provide an option table to the designer for each approach suggesting

the fault coverage that can be obtained by selecting a certain percentage of flip-

flops. So, the designer will have a choice of selecting the number of flip-flops that

he needs to scan to obtain the desired fault coverage.

They achieve fault coverages comparable to full scan, but by only scanning a

smaller percentage of flip-flops for the same circuit. The total vectors required

for partial scan are less than half compared to full scan for some circuits. The

frequency approach fares better than the distance approach as they obtain an

optimized set of test vectors for the targeted faults. But, the test generation time

for the frequency approach can be very high for big circuits as multiple vectors

are generated for each fault. They also do not provide the test generation time

for either of the approaches. They use PODEM [25] for test generation, which is

an outdated algorithm and better test generation algorithms have been developed

since.

2.2.2 An Exact Algorithm for Selecting Partial Scan Flip-

Flops

Chakradhar et al. [12] develop an exact algorithm for selecting flip-flops in partial

scan design to break all feedback cycles. They make use of graph transformations,

partitioning schemes and integer linear programming (ILP) to develop their al-

gorithm, which performs well on the ISCAS ’89 benchmark circuits and several

production VLSI circuits within reasonable computation time.

Their main idea in this algorithm is to cut all of the feedback paths except self-

loops present in a circuit as proposed previously by Cheng and Agrawal [14] and

Gupta and Breuer [27]. For this they model the circuit as a directed graph called

16

the S-graph with the flip-flops in the circuit as vertices and the arcs (or edges)

connecting the vertices modeling the combinational logic present in the circuit.

The problem of selecting flip-flops to break all feedback cycles is equivalent to the

problem of finding a set of vertices whose removal makes the S-graph acyclic. The

vertex set is referred as the minimum feedback vertex set (MFVS) and this problem

is an NP-hard problem. But, by using an MFVS-preserving graph transformation

that defines a new class of graphs, they solve the problem in polynomial time

complexity.

They propose three graph transformations that are MFVS-preserving. If there

exists an arc from (vi→ vj), then vi is the predecessor of vj and vj is the successor

of vi. Let remove(vi) denote the process of removing all incoming and outgoing

arcs of vertex vi. The three transformations are as follows:

• T1: If vi has a self-loop then remove(vi) from the s-graph and return vi.

A MFVS for the S-graph is obtained by adding vi to any MFVS of the

modified graph.

• T2: If vi has either indegree or outdegree equal to 0 then remove(vi) from

the s-graph. The MFVS’s of the S-graph and the modified graph are iden-

tical.

• T3: If vi has either indegree or outdegree equal to 1 but no self-loop then

ignore(vi), which connects each predecessor of vi to all its successors, re-

move(vi) and collapses multiple arcs (if any) into a single arc. Any MFVS

of the modified graph is an MFVS for the S-graph.

Each of these transformations will remove one vertex and they are applied to

the S-graph until no more transformations are applicable. If these transforma-

tions reduce the S-graph to an empty graph, then this S-graph is called a two-way

reducible graph and the MFVS can be determined in polynomial time complex-

ity. If an S-graph is not two-way reducible then its MFVS can be computed in

polynomial time, and it is classified as scc-compressible. If the S-graph is not

17

scc-compressible then these transformations will reduce it to a final graph con-

taining one or more strongly connected components (SCC). An SCC that cannot

be further reduced is called a compressed scc.

The branch-and-bound partitioning scheme is used when the above transfor-

mations cannot reduce the graph completely. A Boolean variable xi is assigned to

each vertex vi in the graph. For any assignment of 0-1 values to the Boolean vari-

ables, they construct a vertex set that includes only those vertices for which the

corresponding Boolean variables assume the value 1. The 0-1 assignments that

correspond to feedback vertex sets are called feasible solutions and the rest are

infeasible solutions. The branch-and-bound procedure systematically searches the

space of all 0-1 vectors for an optimum solution corresponding to the MFVS. This

way the graphs that cannot be reduced by graph transformation are converted

into vertex clusters using branch-and-bound partitioning.

The MFVS for the compressed SCCs is found by formulating the problem as

an integer linear program (ILP). Weights wi are associated with each vi and start

with the requirement that for every arc (vi → vj), wi −wj ≥ 1. But for feedback

loops, this will not be true. Hence they add n to the weight of vi where n is the

number of arcs in the longest cycle. Now the requirement can be expressed as: for

every arc (vi → vj), wi − wj + nxi ≥ 1. Here xi is a Boolean variable associated

with vi and is set to 1 whenever vi is on a cycle. Now to find an MFVS, it suffices

to minimize
∑

xi.

They compare their results with Lee and Reddy [41], PASCANT [6] and OPUS

[17]. They compute optimal solutions for large circuits in ISCAS ’89 benchmarks

in less than a minute while the other methods only produce sub-optimal solutions.

They also provide results for three production VLSI circuits. But, they do not

show the results for the fault coverage obtained, which is the basic metric to

compare the quality of the algorithms. Moreover, breaking the feedback loops

present in a circuit alone is not enough to ensure that the overall testability of

the circuit is increased.

18

2.2.3 Partial-Scan Design Based on Circuit State Infor-

mation and Functional Analysis

Xiang and Patel [70] present a multi-phase flip-flop selection approach that breaks

critical cycles and selects flip-flops based on conflict resolution. Critical cycles are

broken using a combination of valid circuit state information and conflict analysis.

Circuit state information is obtained using logic simulation and is updated after

selection of a few flip-flops for scanning. Valid-state-based testability measures

and conflict-based testability measures are presented in this work.

The definitions and notations provided by them to understand their work

better are as follows:

Definition 1:

A state for a fault-free circuit is an assignment of Boolean values {0, 1} to the

output values of the flip-flops. The reset state is a state that can be reached from

any state of the circuit.

Definition 2:

A state is called a valid state if it is reachable from the reset state; a state is called

an invalid state if it is not reachable from the reset state. Let v1, v2, ..., vn ∈ {0, 1},

i1, i2, ..., ik ∈ {1, 2, ..., n} and k ≤ n. Assume that a state is an n-tuple, where

n is the number of flip-flops in the circuit, and a partial state (vi1 , vi2 , ..., vik) is

called a partial invalid state if the corresponding state is invalid. State mapping

maps a state to all of the cycles in the circuit, where each cycle contains a subset

of circuit flip-flops.

Definition 3:

The vertices of the directed s-graph of a sequential circuit are the flip-flops of the

circuit. There is an edge (vm, vn) in the s-graph if there is a combinational path

from flip-flop vm to flip-flop vn.

19

Definition 4:

The density of encoding of a circuit is defined as V
2n , where n is the number of

flip-flops in the circuit, and V is the number of valid states in the circuit. The

number of valid states V for a circuit with n flip-flops is usually much less than

2n. When V
2n is much less than 1, the test generator may frequently justify invalid

states. An invalid state indicates that backtracks are needed.

Definition 5:

A conflict is defined as follows: A line l is assigned value v. In the previous

process of test generation, l needs to be assigned the value v′. If the intersection

of v and v′ produces a value in the logic system, line l is assigned value v ∩ v′;

otherwise, a conflict occurs on l.

The conflict measures are calculated for the circuit using:

• i − Controllability, C(i), of a node l, which is the potential number of

conflicts and the number of clock cycles required in order to justify a signal

requirement (l, i), where i ∈ {X, 0, 1}.

• v − Observability, OA(v) (v ∈ {D,D}), reflects the number of conflicts or

the number of clock cycles required to propagate fault effect v along the

easiest fault effect propagation (EFEP) path.

These were adapted from their previous work [72], which gives a clear explanation

on how the conflict analysis is done.

The valid state analysis is performed by logic simulating the circuit from either

a reset state (if known) or by having all of the flip-flops in the unspecified state.

Then, the number of 0→ 1 and 1→ 0 transitions for two continuous valid states

is observed for each flip-flop. With the results from this analysis, they conclude

that if a circuit has many flip-flops that do not transition much and if a circuit

with cycles has few valid states, then the testability of the circuit is poor. Based

on the valid state and conflict analysis, they define a new testability measure

20

T (f, c) and testability improvement potential (TIP), which gives the improvement

obtained by scanning a flip-flop. The summation of TIP with the controllability

and observability values for each flip-flop is adopted for scan flip-flop selection.

They achieve high fault coverages on the ISCAS ’89 benchmarks. They com-

pare their results with OPUS [17] and COP [49], which use partial scan designs,

ZSCAN [54], OPSCAN [69] and SDSCAN [20], which are implemented using valid

state information, and SAMSON [34], which uses the implicit state enumeration

method. They achieve better results than all of these algorithms on most of the

ISCAS ’89 benchmarks.

2.2.4 SPARTAN – A Spectral and Information Theoretic

Approach to Partial-Scan

Khan et al. [35, 36] propose a greedy algorithm that analyzes the circuit-under-

test (CUT) and selects scan flip-flops (SFFs) using three measures: spectral

analysis of the flip-flop oscillations, entropy from information theory, and logic

gate circuit level information to measure observability and controllability. They

use the spectral analysis and entropy combination because spectral analysis incor-

porates only functional information and does not use any structural information

of the CUT. The experimental results show that they achieve very high fault

coverages comparable to full-scan designs.

To select flip-flops for scanning, they construct an s-graph from the circuit

with each node as a flip-flop. They condense this s-graph to contain nodes that

are only SCCs. They propose a two-step approach to select flip-flops for scanning:

• Step 1: Calculate correlation coefficients using spectral analysis and select

flip-flops based on this information.

• Step 2: Calculate entropy information passing through each flip-flop and

select flip-flops based on this entropy analysis

The final set of scan flip-flops is selected by combining the sets of candidates

obtained by spectral analysis and entropy analysis.

21

The spectral analysis first logic simulates the circuit with random vectors.

Spectral coefficients (SCs) are calculated based on the logic simulation values for

each flip-flop and PO using the 16 × 16 Rademacher-Walsh transform (RWT).

These coefficients describe the controllability of the flip-flop. The SCi avg is cal-

culated for each flip-flop and PO using the following equations:

SCi avg =

∑k
i=1 wi × |SCi|

k
(2.11)

wi =
ϕi + 1

∑k
j=1(ϕi + 1)

(2.12)

where ϕi is the sequency of a transform matrix row, which represents the number

of 1 → −1 and −1 → 1 transitions in a matrix row; |SCi| represents the SC

of each row; and k represents the number of rows in the matrix. If SCi avg of

a flip-flop and any of the POs in its fanout cone are equal, then the flip-flop is

considered to have good observability. The flip-flops that have poor observability

and have lower SCi avg than an SC Threshold are marked for scanning. Then,

the largest SCCs in the condensed graph are selected and flip-flops in these SCCs

that are marked for scanning are scanned. This ensures that the cycles in the

circuit are also broken. The number of flip-flops that are scanned is limited to

25% of the total number of flip-flops present in the circuit.

The entropy analysis logic simulates the circuit with random vectors to com-

pute p(0) and p(1), which are the probabilities of a flip-flop being 0/1, respectively.

The entropy H(Q) and average conditional entropies H(D|PI) and H(Q|PO) are:

H(Q) = −(p(0) log2 p(0) + p(1) log2 p(1)) (2.13)

Havg(D|PI) =

∑p
x=1 H(D|PIx)

p
(2.14)

Havg(D|PO) =

∑q
x=1 H(D|POx)

q
(2.15)

where p is the number of PIs in the fanin cone of the flip-flop and q is the number

of POs in the fanout cone of the flip-flop. Now for each SCC, a flip-flop is scanned

and the entropies are updated. Flip-flops that give the maximum improvement

to the entropy of the SCC are scanned.

22

Experimental results show that SPARTAN performs better than the previous

best result of MPSCAN [70] on all ISCAS ’89 benchmark circuits. They achieve

higher fault coverage with lower test volume than MPSCAN. But, they achieve

this at the cost of scanning more flip-flops than MPSCAN.

2.2.5 Other Partial Scan Algorithms

A variety of partial-scan design methods have been developed to improve the fault

coverage obtained by automatic test pattern generators (ATPGs). They can be

classified into the following three categories: structure-based [4, 12, 13, 14, 16, 27,

40, 41, 51, 61], testability-measure based [1, 7, 16, 33, 34, 38, 49, 51, 54, 66, 71],

and test-generation-based methods [29, 42, 43, 50, 60].

Cheng and Agrawal [14] proposed a structure-based method in order to break

cycles and reduce sequential depth for the first time. They pointed out that

test generation complexity may increase exponentially with the number of cycles

present in the circuit and linearly with the sequential depth. Algorithms were

presented to break cycles and reduce the sequential depth. Gupta and Breuer

[27] presented a structure-based method that requires only combinational test

generation and attains complete coverage of all detectable faults. Scan flip-flops

are selected in such a way that the resulting kernel belongs to a so-called bal-

anced sequential structure (B-structure), test generation of which can be treated

as that of combinational logic. Jiang et al. [32] proposed a novel method to

reduce the length of the synchronizing sequences by scanning several flip-flops of

the sequential machines. Trischler [66] introduced a simple testability measure

to select scan flip-flops, which is the first testability-analysis based partial-scan

design method. Parikh and Abramovici [49] presented a partial-scan design based

on a simple testability measure. The testability measure represents the number

of clock cycles required to activate, propagate or detect a fault. Abramovici et al.

[1] selected partial-scan flip-flops by untestability analysis. Many methods have

been introduced to reduce test application time. Narayanan et al. [47] proposed

an optimal k-scan chain configuration using dynamic programming, which can

23

get an optimal solution in O(k ·N2) (N is the number of scan flip-flops).

2.3 Test Point Insertion in Non-Scan Designs

2.3.1 Self-Driven Test Structure for Pseudo-random Test-

ing of Non-Scan Sequential Circuits

Muradali and Rajski [46] introduce a self-driven test point structure that permits

at-speed, on-chip, non-scan, sequential testing using parallel pseudo-random test

patterns applied only to the primary inputs of the circuit-under-test. The test

network is unique in that aside from a test mode flag, all I/O signals needed

for test system operation are tapped from within the circuit itself. They achieve

high single stuck-at fault coverage for a number of ISCAS ’89 benchmarks. This

is the only paper to come out on non-scan built-in self-test (BIST) with test point

insertion.

The testability measure they use is based on probability analysis of gate I/Os

obtained after logic simulation. They analyze the fault-free information local to

a circuit line, which can be used to quickly recognize regions that might hinder

fault detection. The observability is estimated using the sampled OLi, which

is the probability that the bit value, i, at that gate input is observable at the

gate output, obtained from a circuit tracing method similar to STAFAN [31].

Observability point candidates are selected by calculating observabilities of each

gate as a weighted sum of the products of local observabilities evaluated along

each combinational path backtraced from the output of a gate toward its inputs.

That is, such a path concludes when a flip-flop is reached. Observabilities are

calculated for every time frame by backtracing paths that start from each flip-

flop encountered in the previous time frame. Therefore, the upper bound on the

number of time frames is equal to the sequential depth of the longest path. Since

sequential loops can exist, the number of time frames per calculation is limited.

24

Controllability point candidates are accumulated using threshold-driven back-

tracing techniques in which flip-flops are transparent, given an initial reference

switching profile determined using logic simulation. This begins by identifying

all lines with a OLi value below a user defined block threshold (that is, blocking

lines). Next, since the OLi at a gate input is influenced by the bias at the other

inputs to that gate, for each blocking line, the circuit is backtraced along the most

controlling path commencing at the neighbor of the blocking line and terminating

when an OLi value above a user-defined stop threshold is reached. The backtrace

may also begin at lines that switch below a threshold rate. For each backtrace,

the appropriate controllability point can be determined by the start gate and the

number of inversions encountered.

The most interesting part of their work is their self-driving test-point struc-

ture, which does not need any external input to drive it. This is done by extracting

candidate test-point source lines from circuit regions suspected to be uncorrelated

to the activity of the respective test points and connecting these source lines to

the corresponding control points. They achieve high stuck-at fault coverage for all

the ISCAS ’89 benchmarks and the results show that this BIST scheme outper-

forms their automatic test pattern generator (ATPG) method. But, they assume

that all flip-flops are initialized and do not include the area overhead due to the

initializing hardware into their calculations.

2.3.2 Non-Scan Design-for-Testability Techniques for Se-

quential Circuits

Chickermane et al. [18] introduce a new technique of parallel loading of flip-flops

in test mode for enhanced controllability combined with probe point insertion

for enhanced observability. Selection of candidate flip-flops and probe points is

done by their tool, OPUS-NS, which is their previous work. They achieve fault

coverages higher than 96% and ATPG effectiveness improvement greater than

99.7%. ATPG effectiveness is the percentage of faults either detected or proven

25

to be untestable within the gate-level logic simulation constraints. Their work is

not fully focused on test point insertion but has good results.

Flip-flop selection is based on cycle cutting and SCOAP [26] measures. After

fault simulation, observation points are inserted based on information from hard-

to-detect faults. Another alternative to their method is to do fault simulation first

and then target flip-flops based on hard-to-detect faults. But they have dealt only

with their former idea in this paper.

Parallel loading of flip-flops means that the inputs of those flip-flops that are

scanned will be directly connected to the PIs in test mode and hence they have

an upper bound of scanning only as many flip-flops in a circuit as the number of

PIs. For enhancing the controllability of the circuit, some flip-flops are selected

to be scanned depending upon the criteria that they help in cutting cycles in the

circuit and based on SCOAP measures. They calculate a variable called profit

depending upon the improvement of SCOAP values of a circuit by scanning a

flip-flop and select those with high profit. They do not provide a clear idea on an

observability point (OP) selection procedure but propose two schemes to reduce

pin overhead due to the OP insertion. One is to use XOR gates to compress their

outputs into one pin and the other is to connect the outputs of these points to

POs making only one of the POs or OPs observable at any given time.

They use HITEC [48] for test generation and obtain high fault coverages for

selected ISCAS ’89 benchmarks and achieve high improvements in HITEC per-

formance. But, their parallel load scheme requires as much hardware as normally

scanning the flip-flop and does not provide any better results. Their results are

beaten in the paper discussed next.

26

2.3.3 Non-Scan Design for Testability for Synchronous Se-

quential Circuits Based on Conflict Resolution

Xiang et al. [72] propose a non-scan design-for-testability method for synchronous

sequential circuits. A testability measure called conflict based on conflict analy-

sis in the process of synchronous sequential circuit test generation is introduced.

Reconvergent fanouts with non-uniform inversion parity are still one of the main

causes of redundancy and backtracking in the process of sequential circuit test

generation. A new concept called sequential depth for testability is introduced to

calculate the conflict-analysis-based testability measure. Potential conflicts be-

tween fault effect activation and fault effect propagation are also checked because

they are closely related. The testability measure estimates the number of poten-

tial conflicts to occur or the number of clock cycles required to detect a fault. The

non-scan design for testability method based on the conflict measure can reduce

many potential backtracks, make many hard-to-detect faults easy-to-detect and

make many redundant faults testable; therefore, it can greatly enhance the fault

coverage of the circuit. It is believed that non-scan design for testability using

the conflict measure can improve the actual testability of a circuit. They present

extensive experimental results to demonstrate the effectiveness of the method.

Some definitions are provided in their paper that will help one to understand

the calculation of conflict measures,

Definition 1:

A conflict is defined as follows: A line l is assigned value v. In the previous

process of test generation, l needs to be assigned value v′. If the intersection

of v and v′ produces a value in the logic system, line l is assigned value v ∩ v′;

otherwise, a conflict occurs on l.

27

Definition 2:

Inversion parity of a path is defined as the number of inversions in the path

modulo 2. Inversion parity invv(B, A) (v ∈ {0, 1}) from node A to B is defined

as a two-bit binary number with these meanings:

• 00 if there is no path from A to B or no signal requirement on node A in

order to meet signal requirement (B,v).

• 01 if the easiest way to justify (B,v) passes only a path of odd inversion

parity from A to B.

• 10 if the easiest way to justify (B,v) passes only a path of even inversion

parity from A to B.

• 11 if the easiest way to justify (B,v) passes at least one path of even inversion

parity and one path of odd inversion parity from A to B, respectively.

Definition 3:

Sequential depth for testability seqv(l, s) (v ∈ {0, 1}) from a fanout stem s to a line

l is defined as the number of clock cycles required to justify a signal requirement

(l, v) at the line l to the fanout stems in the easiest way.

The paper provides formulas for calculating invv(B, A) and seqv(l, s) for each

type of node present in a circuit. The controllability and observability of each line

is calculated similar to SCOAP [26] measures but they incorporate the invv(B,

A) and seqv(l, s) values calculated for each gate into these measures. Then, they

choose the lines with hard faults and their immediate successors and predeces-

sors as test point candidates (TPCs) on the basis of conflict. The testability

gain (TG) function is calculated for each candidate from the conflict measures.

Then, depending upon the requirement, they insert a 1-controllability point, a

0-controllability point, or an observability point and update the conflict mea-

sures. The inputs to controllability points are derived from existing PIs and

28

easy-to-control nodes while taking into consideration the conflicts and reconverg-

ing fanouts introduced into the circuit due to this. Exclusive-OR chains are used

to drive the observability point outputs to the POs.

They also provide a new test point structure that uses internal lines to drive

the test points but, unlike Muradali and Rajski [46], they use extra pins to drive

test points in some cases. They implement a system called nscan to test the non-

scan circuit. They achieve higher fault coverages than OPUS-NS by Chickermane

et al. [18] and HITEC [48]. Their test volume is higher than HITEC but they

claim that this is because they manage to detect hard-to-detect faults, which

HITEC does not. They have the best results for test point insertion in a non-

scan design.

2.4 Test Point Insertion in Full-Scan and Partial Scan De-

signs

2.4.1 Constructive Multi-Phase TPI for Scan-Based BIST

Tamarapalli and Rajski [62] present a novel test point insertion algorithm based

on a constructive methodology. They partition the circuit and conduct tests in

multiple phases while inserting test points in each phase targeting a specific set

of faults. Control points within a particular phase are enabled by fixed values,

resulting in a simple and natural sharing of the logic driving them. By inserting a

few test points and with a minimal number of phases, they achieve high fault cov-

erages. In each phase, control point candidates are selected using a probabilistic

fault simulation technique, which accurately computes the impact of a new con-

trol point in the presence of the control points selected so far. Observation points

maximally enhancing the fault coverage are selected by a covering technique that

utilizes the probabilistic fault simulation information.

Their BIST scheme contains a phase decoder block. The inputs of the phase

decoder are driven by a pattern counter, which is part of the BIST controller. The

29

outputs of the phase decoder, which indicate the current phase in progress, drive

control points inserted in the combinational logic. Given the number of phases N ,

the phase decoder block can be synthesized with the number of outputs ranging

from ⌈log2 N⌉ to (N − 1) based on the constraints on routing and area overhead.

In each phase, a set of control points is enabled by the phase decoder outputs and

a specific number of patterns is applied. Each phase thus facilitates detection of

a specific set of faults and contributes to the fault coverage obtained so far.

For every phase from 0 to (N -1), probabilistic fault simulation is performed

to determine, for each node in the circuit, the list of faults that propagate to it,

along with the associated detection probabilities. The conditional probability of

a D or D occurring at an output when the inputs are {0, 1, D,D} is calculated

for each node in the circuit. The node that offers a higher improvement to the

testability of the circuit is selected as the control point candidate. The formulas

for the probability calculation are given in the paper.

The observability point candidates are selected such that detection probability

of a maximum number of faults meets a user specified threshold DTh. A three

step process explained below is followed to achieve this objective.

1. Probabilistic fault simulation is performed to determine the propagation

profile. This information is represented internally as a sparse two-dimensional

matrix TM×N , with the collected nodes as rows, undetected faults as columns,

and the probability of detecting a fault j, at a node i, as entry T [i.j]. The

problem of selecting a pre-specified number of observation points now be-

comes equivalent to that of selecting the set of rows that maximizes the

number of columns satisfying the detection threshold DTh.

2. The partial covering (PCj) of a column j represents the approximate cu-

mulative detection probability of the corresponding fault at nodes corre-

sponding to the selected rows. A row i is said to cover a column j if

PCj < DTh and PCj +T [i, j] ≥ DTh. Let Wi =
∑N

j=1 max(0,min((DTh−

PCj), T [i, j])) denote the weight of a row i, where i = 1 to M . The selection

30

of rows is performed iteratively and in each step, the row that covers the

maximum number of columns is selected. When two or more rows cover the

same number of faults, their weight function is used to select them. This se-

lection process continues until a pre-specified number of observation points

are selected or no observation point meets the minimum-benefit-per-cost

criterion.

3. Following the completion of the selection process, an improvement of the set

of selected rows is performed. Since the selection of a row at iteration i does

not consider the effect of rows selected in subsequent iterations, the final

number of columns covered by such a row could be less than the number

of columns covered by it at the point of selection. Hence, the selected row

that covers the least number of columns at the end of the selection process

is returned and the partial cover of affected columns is changed accordingly.

The best unselected row is then determined. The returned selected row is

replaced by the best unselected row, if it covers fewer columns than the

latter.

The advantages of their method are its ability to converge, due to partitioning,

and increased accuracy in predicting the impact of multiple control points, due

to the usage of fixed values. In addition, the number of ineffective control points

is reduced, since conflicting control points are enabled in different phases. They

achieve optimal or near optimal fault coverage for large benchmark circuits with

only few phases. But, the disadvantage with their method is that they need to

fault simulate for every phase and this would increase the design time for large

circuits if the fault simulation takes longer.

31

2.4.2 Timing-Driven TPI for Full-Scan and Partial-Scan

BIST

Cheng and Lin [15] introduce a gradient-based approach to estimate the random

pattern testability improvement factors for the test point candidates of either full-

scan based or partial-scan based BIST. They also propose a symbolic computation

technique to compute testability for circuits under the partial-scan based BIST

scheme. They use a greedy approach to select one test point at each iteration.

The selection is based on a cost function that comprises the profit of global

random pattern testability and the penalty of timing. Timing analysis is done to

determine the slack available in each node as the candidate test points can only

be at the cell boundaries but not inside the cells as they could disrupt the timing

of the chip.

An observation point is inserted at a node to improve the observabilities of

the node and all the other nodes that feed the node directly or indirectly. The

effect of inserting an observation point increases the observability of all of the

nodes present in the fanin cone of the observation point. Actual implementation

of an observation point is done by simply connecting the node to the output data

compactor. A control point is inserted at a node to improve controllabilities as

well as observabilities of nodes in a circuit. Changing the controllability of a node

changes also the controllabilities of nodes in the fanout cone of the node. The

1-controllability Cs and observability Os of a node s are calculated using the COP

[49] measures. They define a cost function U based on these measures as:

U =
1

|F |

(

∑

i∈F

1

pdi

)

(2.16)

pdi = Cs ·Os (2.17)

pdi = (1− Cs) ·Os (2.18)

where pdi is the reciprocal of the expected test length of the fault at i, F represents

the fault set and |F | is the cardinality of F . Equation 2.17 represents the pdi for

i being a stuck-at 0 fault at s and Equation 2.18 represents the pdi for i being a

32

stuck-at 1 fault at s.

For better use of the cost function U , they define the controllability gradient

as in Equation 2.19 and the observability gradient as in Equation 2.20:

GCs
=

dU

dCs

(2.19)

GOs
=

dU

dOs

(2.20)

To improve the testability measure still further they make use of a cost reduction

factor (CRF) to approximate the Actual Cost Reduction, which is the reduction

of U due to insertion of a test point. The CRFs of OR and AND gates and those

of inserting an observability point are given in the paper. Based on the slack

and CRFs at each node, they select test point candidates to increase the fault

coverage. The difference between the implementations of this algorithm in full-

scan and partial-scan BIST is only during the calculation of the COP measures.

Since partial-scan circuits will still have some flip-flops left in them, there will

exist feedback loops for which Cs and Os cannot be calculated easily. Due to the

feedback loops, the equations of Cs and Os no longer remain linear. To overcome

this, they suppress any high order exponents contributed by the feedback loops to

eliminate the inaccuracy caused by the statistical dependence among the fanout

branches [52].

The experimental results indicate that test point insertion without taking tim-

ing into account usually yields a better fault coverage but with some performance

degradation while zero performance degradation and a comparatively lower fault

coverage of random patterns can be achieved by their timing-driven test point

insertion algorithm. For some circuits, they claim they insert more test points

in order to achieve a high fault coverage without inserting test points at critical

nets. But, they do not explain how they will test faults present in these critical

nets.

33

2.4.3 Zero Cost TPI Technique for Structured ASICs

Sethuram et al. [57] show different ways in which unused multiplexers (MUXes)

and scan flip-flops in a structured application specific integrated circuit (SA) design

can be re-configured to insert test points to drastically reduce test volume and test

generation time. SAs are an alternative technology to full-custom chip designs

and are different from cell-based ASICs by virtue of there being pre-defined logic,

clock, power and test metal layers (thus reducing manufacturing time and cost)

and pre-characterization of what is on the silicon (thus reducing design cycle

time). Since only unused hardware is used, the proposed test point insertion

(TPI) technique does not entail any extra hardware overhead. Test points are

inserted using timing information, so they do not degrade performance. They

also present novel gain functions that quantify the reduction in test volume and

ATPG time due to TPI and are used as heuristics to guide the selection of signal

lines for inserting test points. Experimental results show that they reduced ATPG

time by up to 63.1% and test data volume by up to 64.5% while also achieving a

near 100% fault efficiency for very large industrial designs.

Their work is an extension of Sethuram et al.’s [58] work where they insert

only observation points using a novel gain function to increase the number of

don’t cares present in the test vector. In this paper they present four new test

point designs, which use the unused flip-flops present in the SA, and describe

their effectiveness and give the gain functions of each test point. Their main

objective in this paper is to increase the number of don’t cares in the test vectors

by inserting control points, which enable the ATPG to not set some PIs that

may be required to sensitize a fault site or propagate a fault effect. This will be

accomplished using the control point. The four test points are:

1. A conventional control point (CP)

2. A complete test point (CTP)

3. A pseudo-control point (PCP)

34

4. An inversion test point (ITP)

The structure of the above test points and their gain functions are discussed elab-

orately in the paper. The gain function of inserting a CTP at line l is calculated

as given in Equation 2.21:

GCTP (l) = G1
CP (l) + G0

CP (l) + GOP (l) (2.21)

where G1
CP (l), G0

CP (l), and GOP (l) are the gain functions of inserting a conven-

tional 1-control point, a conventional 0-control point, and an observability point

at line l, respectively. These are calculated as follows:

G1
CP (l) = (F 1

C(l) + F 1
O(l))×N1

C(l) (2.22)

G0
CP (l) = (F 0

C(l) + F 0
O(l))×N0

C(l) (2.23)

GOP (l) = Nf (l)×Ni(l) (2.24)

where F
1/0
C (l) is the number of faults excited by a CP at l, F

1/0
O (l) is the number

of faults observed by a CP at l, N
1/0
C (l) is the number of PIs or pseudo-primary

inputs (PPI) that must be specified to control l, Nf (l) is the total number of

faults in the fanin cone of l, and Ni(l) is the total number of PIs/PPIs that must

be specified to observe the fault effect at l.

The gain function formulas for other test points are given in the paper and

also an O(n) algorithm is described to calculate the values of F
1/0
C (l), F

1/0
O (l),

N
1/0
C (l), Nf (l), and Ni(l) in the paper. Their overall algorithm is as follows:

• Collapse faults into a condensed fault set.

• Calculate the gain functions for all the nodes.

• Select a test point candidate.

• Update the circuit testability measures.

• Insert the test point into the circuit.

• Repeat the above three steps until the required test points are inserted.

35

Experimental results show that they reduce test generation time and test data

volume on all of the industrial and ITC benchmarks. The ATPG CPU time is

shorter in all cases except one for which they claim that the compaction of test

vectors took significantly longer than for other methods. They also show results

of inserting different test points into the circuit and a CTP insertion gives a better

result than all others as it increases both the controllability and observability of

the circuit. They reduce test generation time by 63.1% and test data volume by

64.5% overall. Since they use unused hardware in the SAs, no extra overhead

is incurred but if their algorithm is to be used in a full-custom design, then the

hardware overhead needs to be investigated.

2.4.4 SPARTAN – A Spectral and Entropy-based Partial-

scan and Test Point Insertion Algorithm

Khan et al. [37] extend their greedy algorithm, SPARTAN [35, 36], that ana-

lyzes the circuit-under-test (CUT) and selects scan flip-flops (SFFs) to insert

test points. The experimental results show that they achieve very high fault cov-

erages comparable to full-scan designs with lower test volume and test application

time than full-scan on all ISCAS ’89 benchmark circuits except s38417.

They first scan the flip-flops in the circuit and then insert test points. They

propose two test point insertion algorithms for selecting candidates:

• TPI1: In this algorithm, they randomly select candidate lines from the cir-

cuit and perform spectral and entropy analysis [35, 36]. Then they perform

observability primary input (OPI) analysis on the remaining lines. OPIs are

PIs that are needed to be set to propagate a fault effect to the PO and by

inserting a CTP at a line l, all of the OPIs corresponding to the line l need

not be set. Lines with large numbers of OPIs are selected for test point

insertion.

• TPI2: In this algorithm, they get the value of level range from the user

and perform OPI, spectral, and entropy analysis on the lines that fall within

36

the level range.

Experimental results show that the partial scan algorithm with TPI1 achieves

lower test volume and the partial scan algorithm with TPI2 achieves higher fault

coverage than full-scan implemented with TRAN [11]. They have implemented

the algorithm only for CTPs. They have not tried other types of test points such

as conventional control points, observability points, and inversion test points.

Their TPI1 algorithm randomly selects candidates for analysis, which can be

done more cleverly.

2.4.5 Other Test Point Insertion Algorithms

Optimal placement of test points in circuits with reconvergent fanouts has been

shown to be NP-complete [39]. Several approximate techniques for test point

placement have been developed, which can be categorized depending on whether

the technique uses fault simulation or testability measures to place the test points.

For fault simulation techniques, the set of patterns generated by the test gener-

ator is used to fault simulate the circuit to identify the undetected faults. Test

points are then inserted so that the undetected faults are detected. Iyenger et al.

[30] use fault simulation to locate gates that block faults and insert test points

at these gates to allow fault propagation. Touba and McCluskey [65] use path

tracing to identify a set of test point solutions for each undetected fault and a

covering algorithm that gives the minimum number of test points to detect these

undetected faults. The limitation of fault simulation-based techniques is that

they require test patterns ahead of time. Furthermore, for very big designs, fault

simulation itself can take a long time, which can prolong the design process. Also,

a late change in the design can change the test patterns and annul the test point

analysis.

Testability measure-based techniques avoid these problems because they do

not require any ATPG knowledge. The testability measures approximate the

detection probability of random-pattern-resistant faults. Seiss et al. [55] form a

37

cost function based on the COP [49] testability measures and then compute, in

linear time, the gradient of the function with respect to each possible test point.

The gradients are used to approximate the global testability impact for inserting

each test point. The test point with the maximum benefit is inserted and COP

measures are recomputed. The process continues iteratively until the testability

of the circuit is satisfactory. Boubezari et al. [8] compute the testability measures

at the register-transfer level (RTL) allowing RTL synthesis to take the test points

into consideration when optimizing the design. Timing-driven test point insertion

techniques have been developed to address the problem of adding test points on a

critical timing path, causing the circuit to fail the timing requirements. Tsai et al.

[67] compute the timing slack of each node and eliminate any node whose slack

is not sufficiently long as a test point candidate. As the test points are inserted,

the slack information is updated. The number of test points needed to achieve

sufficient fault coverage may increase because test points cannot be inserted in

some locations due to the timing constraints. Cheng and Lin [15] improve the

work by Tsai et al. with COP measures and cost reduction functions.

2.5 Summary

After analyzing the quality of the results attained by the algorithms discussed,

the best results for partial scan algorithm were reported by Khan et al. for their

partial scan algorithm SPARTAN [35, 36], they improved on the previous best

results obtained by Xiang and Patel [70]. The best results for test point insertion

algorithm in a full scan design were reported by Sethuram et al. [57]. Xiang et al.

[72] report the best results for their conflict-based test point insertion algorithm

in a non-scan design and Khan et al. report the best results for their test point

insertion algorithm SPARTAN [37] in a partial-scan design.

Simultaneous scan-flop insertion and test point insertion has never been tried

before, which could increase the testability of the circuit better than a two-step

approach of first scanning, and then inserting, test points. Inserting test points

38

other than the CTP must also be investigated. Reducing the test volume and

increasing the test application time while achieving high fault coverage is the

direction partial scan and test point insertion algorithms need to take.

39

Chapter 3

Integer Linear Programming Approach and

Formulation

3.1 Why We Chose an Integer Linear Program to Select

Scan-Flops and Test Point Candidates

A linear program (LP), or in general, a Mathematical Program, is an optimiza-

tion problem subject to constraints. Given an objective function and a set of

constraints, the program will try to find a solution that will either maximize or

minimize the objective function depending on the requirement. Integer Linear

Programs (ILPs) are LP problems that require whole number, or integer, values

of the variables in order to be properly solved. Since the solver needs to find

integer solutions, Integer LP is harder to solve than normal LP problems. In a

digital circuit, the number of scan-flops and test points that are being inserted

will be a whole number, and hence, an Integer Linear Program is most suitable for

DFT hardware insertion. This was demonstrated by Chakradhar et al. [12] who

used ILPs to select partial scan flip-flops. From here on in this work, the acronym

ILP refers to an Integer Linear Program. ILP algorithms are in many practical

situations NP-hard with complexity of O(2N). The challenge lies in formulating

an ILP algorithm that converges and is solvable in a reasonable amount of time.

40

3.1.1 Advantages of Integer Linear Programs over Greedy

Algorithms

A greedy algorithm solves a problem by choosing the best candidate at every

step and solves the subproblems that arise later. The choice made by a greedy

algorithm may depend on choices made so far but not on future choices or on

all of the solutions to the subproblem. It iteratively makes one greedy choice

after another, reducing each given problem into a smaller one. In other words, a

greedy algorithm never reconsiders its choices. So it may happen that the greedy

algorithm ends up choosing the local maximum or minimum while there exists

a global maximum or minimum for the subproblem, as shown in Figure 3.1.

For example, let us consider the change-making problem. The change-making

Figure 3.1: Range of values for a sub-problem

problem is a knapsack type problem, which addresses the following question:

“How can a given amount of money be made with the least number of coins of

given denominations?” A greedy algorithm of picking the largest denomination

of coin that is not greater than the remaining amount to be made will always

produce the optimal result. This is not automatically the case, though: if the

coin denominations were 1, 3 and 4, then to make 6, the greedy algorithm would

choose three coins (4, 1, 1) whereas the optimal solution is two coins (3, 3).

Hence, a greedy algorithm does not always find the optimum solution to the given

41

problem. The optimization algorithms such as LP or genetic algorithms are better

than greedy algorithms in the sense that they always find the global maximum or

minimum for a problem and its subproblem. The LP manages to find an optimal

solution to all problems unlike a greedy algorithm and, hence, is better suited for

DFT insertion where the hardware overhead is a big issue.

3.2 Integer Linear Program Formulation

The ILP is formulated in terms of sets, parameters, variables, a cost function,

and constraints.

3.2.1 Sets

A Set in an AMPL [24] model defines a collection. The various sets we use in our

AMPL model are the following:

• gate: Set of all the logic gates present in the circuit

• flop: Set of all the flip-flops present in the circuit

• cycles: Each SCC in the circuit is represented by a cycle number. Set

cycles represents the set of all cycle numbers of SCCs present in the circuit,

with size greater than 1, that is, there are more than 1 flip-flop in that SCC.

3.2.2 Parameters

Parameters can store a single scalar value or a collection of values indexed by a

set. The following are the parameters used in the model:

• L: The total number of logic gates present in the circuit. L should always

be greater than 0 as a circuit will have some logic gates present.

• F: The total number of flip-flops present in the circuit. F is 0 for a purely

combinational circuit and greater than 0 for a sequential circuit.

42

• nCycles: The total number of SCCs present in the circuit. Parameter

nCycles can be greater than or equal to 0.

• Ei: The testability measure of i, where i can be a gate or a flip-flop. The

entropy of any gate or flip-flop will always lie between 0 and 1.

• SCC: The collection of flip-flops present in each SCC.

• wPS: The Partial Scan weight. Parameter wPS governs the number of

scan-flops being inserted into the circuit and its value is between 0 and 1.

The higher the value, the fewer scan flip-flops inserted.

• wTP: The Test point weight. Parameter wTP governs the number of test

points being inserted in the circuit and its value is between 0 and 1. The

higher the value, the fewer test points inserted.

3.2.3 Variables

Variables are those whose values are determined by the AMPL solver. The fol-

lowing are the variables used in the formulation:

• Xi: The state of logic gate i. If 0, the gate is not a test point candidate,

else if 1, the gate is a test point candidate.

• Yi: The state of flip-flop i. If 0, the flip-flop is not a candidate for scanning,

else if 1, the flip-flop is a scan flip-flop candidate.

• T: The total testability is the sum of entropies of all gates and flip-flops. It

is calculated using the Equation 3.1.

• nPS: The number of scan flip-flop candidates. It is equal to the sum of the

Yi.

• nTP: The number of test point candidates. It is equal to the sum of the

Xi.

43

• DFT: The total number of DFT candidates. It is equal to the sum of nPS

and nTP .

Equation 3.1 gives the formula for calculating the total testability T of the circuit.

T =
∑

i∈gate

(X[i] + E[i]× (1−X[i])) +
∑

j∈flop

(Y [j] + E[j]× (1− Y [j]))(3.1)

Equation 3.1 will be easier to understand when split into smaller equations.

T1 =
∑

i∈gate

X[i] (3.2)

T2 =
∑

i∈gate

E[i]× (1−X[i]) (3.3)

T3 =
∑

j∈flop

Y [j] (3.4)

T4 =
∑

j∈flop

E[j]× (1− Y [j]) (3.5)

T = T1 + T2 + T3 + T4 (3.6)

T1 in Equation 3.2 is the sum of entropies of all test point candidates. Since in-

serting a test point or scanning a flip-flop will make the Entropy of that particular

candidate go to 1, it is enough to add the state of test point candidates, X[i], as

they are already 1. T2 in Equation 3.3 is the sum of entropies of all gates that

are not test point candidates. A gate is not a test point candidate when X[i] is

equal to 0. The entropy coefficients of these gates can be identified by calculating

(1−X[i]) and then multiplying it by its corresponding entropy E[i]. T3 in Equa-

tion 3.4 and T4 in Equation 3.5 are similar to T1 and T2 respectively, but they are

calculated using the entropies of flip-flops. It is clear from all the above equations

that X[i] and Y [i] are the variables whose values the ILP needs to determine

inorder to calculate other variables and maximize the objective function.

3.2.4 Objective Function

The objective function is the quantity the ILP will try to maximize or minimize by

assigning values to variables, in our model X[i] and Y [i]. The objective function

44

for our ILP model is given in Equation 3.7.

Maximize (T − wPS × nPS − wTP × nTP) (3.7)

From Equation 3.7 we can observe that our ILP model tries to maximize the

total testability, T , of the circuit while reducing the number of scan-flops and

test points being inserted. From the testability T we subtract the number of

scan flip-flop candidates and test point candidates chosen, multiplied by their

corresponding weight factors. With this objective function, we are guiding the

ILP to choose values for X[i] and Y [i] that will maximize the testability of the

circuit with as little DFT hardware as possible.

3.2.5 Constraints

Constraints are conditions given to the ILP model that are to be satisfied while

maximizing or minimizing the objective function. Constraints have to be chosen

properly as they could be too restrictive and make the ILP unable to find any

solution satisfying them. The constraints for the proposed ILP model are given

by Equations 3.8, 3.9 and 3.10.

0 ≤
∑

i∈flop

Y [i] ≤ F (3.8)

SCC[nCycles, F]× Y [F] ≥ 1 (3.9)

DFT = nCycles if nCycles ≥ 5 else 5 (3.10)

The constraint in Equation 3.8 is the scan limit. This constraint is set to select

a minimum of 0 scan flip-flop candidates to a maximum of all flip-flops in the

circuit. This constraint can be varied according to the requirement, to limit the

amount of scan flip-flops inserted in the circuit.

The constraint in Equation 3.9 is the cycle breaking constraint. When there are

SCCs present in the circuit, this constraint asks the ILP to select at least one

flip-flop as a scan flip-flop candidate in each SCC cycle. This way, the model

ensures that any SCC present in the circuit will be broken. The number of scan

45

flip-flop candidates to be selected in each SCC can be varied depending upon

requirements.

The constraint in Equation 3.10 specifies the number of candidates to be selected

for one iteration. Since the cycle-breaking constraint requires the ILP to select

one flip-flop in each SCC, when the number of SCCs, nCycles, is greater than

5, the candidate limit is set to nCycles. When nCycles becomes less than 5, as

SCCs are broken in each iteration, the ILP is asked to return 5 candidates for

each iteration. The value 5 is arbitrarily chosen and can be varied depending

upon the user, but this value should always be greater than 1. Setting this value

to 1 constrains the model too much and the AMPL solver fails to converge to a

solution. The candidate limit constraint is used as the stopping criterion during

partial-scan with test points experimentation. The algorithm is set to terminate

when the ILP model returns less than 5 candidates. This is done to ensure that

the ILP has full control in deciding the optimal amount of DFT hardware to insert

and once the ILP cannot find even 5 candidates, it translates to the testability of

the circuit being high and, hence, the algorithm is terminated. For full-scan with

test points experiment, the user was allowed to decide the number of test points

to insert into the circuit.

3.3 Convergence of the ILP

The complexity of an ILP is O(2N) and for some cases an ILP is categorized as an

NP-hard problem. The discussed formulation converges to a solution when the

number of DFT candidates it is asked to return is greater than 1. Even though

the ILP is of exponential complexity, the AMPL solver manages to find a solution

in a short time and hecne, the ILP can be used for practical purposes. This is

evident from the results, which are discussed in Chapter 5. As the size of the

circuit increases, the number of logic gates and flip-flops increase and hence, the

number of variables for the ILP also increase. The AMPL solver is found to take

longer time to solve the model for larger circuits but it has always converged for

46

all benchmark circuits.

3.4 Summary

Chapter 3 introduces the concepts of an integer linear program and why we chose

an integer linear program to select the scan-flop and test point candidates. Integer

linear programs are ILP problems that require the solutions to be integers and are

harder to solve than normal ILP problems. Integer ILPs are advantageous over

greedy algorithms as greedy algorithms choose the best option that is available

at every step but may end up choosing a local maxima or minima while the

ILP always works toward the global maxima or minima. Section 3.2 discusses

the ILP formulation in terms of sets, parameters, variables, a cost function and

constraints. A set defines a collection, parameters can store values, variables are

those whose values are determined by solver, the cost function is the function that

the ILP will try to maximize or minimize and constraints are conditions given to

the ILP model that are to be satisfied while maximizing or minimizing the cost

function.

47

Chapter 4

Algorithm

This algorithm analyzes the circuit and selects candidates for test point insertion

and scanning using six measures:

• Probability

• Entropy

• Unbiased Entropy

• Accumulated Entropy

• Entropy Gain

• Entropy Differential

• Spectral Coefficients

A good candidate will enhance the testability of the circuit, which allows the

ATPG to attain higher fault coverage with fewer test patterns. The entropy

analysis uses the structural information of the circuit while the spectral analysis

uses the functional information of the circuit. The chapter explains each step

of analysis being carried out on the circuit immediately after it is read from the

input file.

4.1 Strongly Connected Components

In a sequential circuit, an s-graph [68] is the logic circuit graph where each node

represents a flip-flop and an edge between two nodes is a path through combi-

national logic between the flip-flops. When the s-graph is condensed, each node

48

of a condensed s-graph is called an SCC. The SCC is a graph where all the ver-

tices are reachable from each other. The algorithm to form SCCs for a circuit

graph G is obtained from Introduction to Algorithms [19], which is as follows,

STRONGLY-CONNECTED-COMPONENTS(G)

1. Call DEPTH-FIRST-SEARCH(G) (DFS) to compute finishing times

f [u] for each flip-flop u. The finishing time f [u] is the time stamp that

records when the DFS finishes examining u’s adjacency list.

2. Compute the transpose, GT .

3. Call DEPTH-FIRST-SEARCH(GT), but consider the flip-flops in order

of decreasing f [u].

4. Output the vertices of each tree in the depth-first forest formed in above

step as a separate SCC.

SCCs are formed every time after a flip-flop is scanned and not after a test point

is inserted in the circuit. Scanning a flip-flop means replacing the flip-flop with

a pseudo-primary input and pseudo-primary output. Hence, the cycle that the

flip-flop has been removed from may not exist anymore or it could have broken

down into smaller cycles. So the SCCs have to be formed after scan insertion.

4.2 Logic Simulation

The logic simulator used is a pseudo-random logic simulator that simulates 32

vectors in parallel and stores the logic value of each gate in a 32 bit integer. First,

the state machine is initialized to a randomly-chosen state. Warm-up simulation

is performed with a user-specified number of warm-up random vectors. Flip-flop

states and output logic values of each gate are obtained via logic simulation. The

number of ones occurring at the output of a gate or flip-flop is counted and stored.

At the end of the simulation, the probability p(1) is calculated using Equation

49

4.1 and probability p(0) is calculated as 1− p(1).

p(1) =
Number of ones occurring

Total number of random vectors
(4.1)

Entropy recalculation after inserting a test point or scan-flop can be done the

same way as described above, but fewer random vectors are used, which reduces

the run time. Iterative simulation is performed using a user-specified number of

iterative random vectors for entropy recalculation. As explained already, this is

one advantage of entropy as a testability measure, that it can be reliably calcu-

lated using a limited number of simulation vectors. While selecting a scan-flop or

test point candidate, one of the important assumptions made is that the entropy

of the node becomes 1.0 after inserting a test point at the gate or scanning the

flip-flop. To make this assumption a valid one, the scan-flops and test points are

given an alternating 0 and 1 sequence as input during entropy recalculation. Do-

ing this ensures that equal number of logic 0’s and 1’s appear at the scan-flops and

test points, thus making their entropy 1.0 and validating the assumption. This

step is required so that we update the entropies of the gates lying in the fan-out

cone of the candidates, even if we already know the entropy of the candidate.

4.2.1 Advantages over Parker-McCluskey Equations

Parker and McCluskey proposed equations to calculate the p(1) of any gate,

called Parker-McCluskey equations (PME) [52]. These equations use probability

principles to calculate p(1) and are faster than logic simulation but to calculate the

probabilities accurately, it requires exponential time. Seth and Agrawal developed

PREDICT [56] that calculates the probability accurately using PME but their

computational complexity is exponential in the size of the circuit. Probabilities

can be calculated quickly using PME but they will not be accurate. This can be

understood better if we analyze the circuit in Figure 4.1. Let us assume that p(1)

for the inputs a, b and c are 0.5 and using PME we get the value of p(1) of output

z to be 0.15625. Table 4.1 gives the truth table for the circuit. From the table we

can calculate the value of p(1) of z to be 0.25. We can clearly see the discrepancy in

50

Figure 4.1: Example circuit

the values of actual probability and PME probability calculated. Logic simulation

on this circuit would yield the actual probability even if it is slower than PME

calculations. Since signal probabilities and entropies calculated from them are

the core of the algorithm, we need accurate values and logic simulation is faster

for computing than either PME or PREDICT calculations.

Table 4.1: Truth table for example circuit.
a b c z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

4.3 Entropy Calculation

After logic simulation, we have the probability information for all of the gates

and flip-flops. Using this information, we can calculate the entropy of each gate

using Equation 2.1. Pseudo-random logic simulation is not an exhaustive logic

simulation. We simulate only a sample of vectors from the total available vector

set for each circuit. Vector sampling could lead to biasing in the result as discussed

by Heragu et al. [28] and Jain and Agrawal [31] and hence, the final result needs

to be unbiased to capture the real property of the circuit. Let x0 be the mean

51

probability of all the gates in the circuit simulated for the sample of vectors and

E0 be the entropy corresponding to the mean x0. x0 and E0 differ from the actual

mean and entropy that the circuit would have when it is exhaustively simulated.

This difference is the bias that needs to be calculated for every circuit. The

expected value of Entropy of a gate with p(1) = x is:

E(E) =
1

2σ ln 2

[

−
∫ x0+σ

x0−σ
x ln x dx−

∫ x0+σ

x0−σ
(1− x) ln(1− x) dx

]

where σ is the standard deviation of the probabilities of the circuit.

E(E) can be written as follows for easier understanding:

E(E) =
−1

2σ ln 2
[I1 + I2] , where (4.2)

I1 =
∫ x0+σ

x0−σ
x ln x dx

I2 =
∫ x0+σ

x0−σ
(1− x) ln(1− x) dx

To solve I1 we need to use integration by parts as shown below:

Let u = ln x ⇒ du =
1

x
dx

v =
x2

2
⇒ dv = x dx

Using
∫

u dv = u v −
∫

v du

I1 =

[

x2

2
ln x

]x0+σ

x0−σ

−
∫ x0+σ

x0−σ

x

2
dx

I1 =

[

x2

2
ln x

]x0+σ

x0−σ

−

[

x2

4

]x0+σ

x0−σ

I1 =

[

(x0 + σ)2

2
ln(x0 + σ)−

(x0 − σ)2

2
ln(x0 − σ)

]

−

[

(x0 + σ)2

4
−

(x0 − σ)2

4

]

I1 =

[

x2
0 + σ2

2
ln
(

x0 + σ

x0 − σ

)

+ x0σ ln(x2
0 − σ2)

]

−
[

4x0σ

4

]

(4.3)

I2 can also be solved in a similar procedure as I1 to get:

I2 =

[

(1− x0)
2 + σ2

2
ln
(

1− x0 + σ

1− x0 − σ

)

+ (1− x0)σ ln
(

(1− x0)
2 − σ2

)

]

−
[

4σ

4
−

4x0σ

4

]

(4.4)

52

Substituting Equations 4.3 and 4.4 in Equation 4.2, we get:

E(E) =
−1

2σ ln 2

[

x2
0 + σ2

2
ln
(

x0 + σ

x0 − σ

)

+ x0σ ln(x2
0 − σ2)

]

+
−1

2σ ln 2

[

(1− x0)
2 + σ2

2
ln
(

1− x0 + σ

1− x0 − σ

)

]

+
−1

2σ ln 2

[

(1− x0)σ ln
(

(1− x0)
2 − σ2

)

−
4σ

4

]

Assuming that σ2 is very small, we get:

E(E) = −x0 ln x0 − (1− x0) ln(1− x0) +
1

2 ln 2

−
x2

0

4σ ln 2
ln
(

x0 + σ

x0 − σ

)

−
(1− x0)

2

4σ ln 2
ln

(

(1− x0) + σ

(1− x0)− σ

)

E(E) = E0 + γ (4.5)

where γ is the bias:

γ =
1

2 ln 2
−

x2
0

4σ ln 2
ln
(

x0 + σ

x0 − σ

)

−
(1− x0)

2

4σ ln 2
ln

(

(1− x0) + σ

(1− x0)− σ

)

(4.6)

The γ in the above equations is the bias arising due to logic simulation with only

a sample of vectors. This bias has to removed from the probabilities of the gates

as it affects the quality of DFT hardware inserted in some circuits. To calculate

the actual mean probability of the circuit from the expected value of the entropy

calculated in Equation 4.5 is very complicated. Hence, the unbiasing factor for

probabilities is calculated using Equation 4.7 and the unbiased probability pu(1)

of each gate is calculated using Equation 4.8:

θ = γ/β (4.7)

where β is found empirically

pu(1) = θ × p(1) (4.8)

Depending upon the mode the algorithm operates in, the corresponding proba-

bility values are chosen to calculate the entropy. Various modes of operation of

the algorithm are explained later in this chapter. The steps involved in finding

the value of β will be discussed in the results chapter.

53

4.4 Spectra Calculation

Spectral calculation is done after each logic simulation. Spectra of each gate

can be calculated by two methods. The first method of calculating the spectra

is by multiplying the responses of each gate with a 32 × 32 Hadamard matrix,

but this multiplication is done by overlapping the responses for every gate for all

the random vectors as proposed by Khan [37]. This method is found to be time

consuming to calculate spectra for all the logic gates and flip-flops in the circuit.

Hence a quicker and less accurate method is adopted, which is the non-overlapping

method, that calculates the spectra without overlapping the responses for each

gate.

H(1) =







1 1

1 −1





 (4.9)

H(2) =







H(1) H(1)

H(1) −H(1)





 (4.10)

H(3) =







H(2) H(2)

H(2) −H(2)





 (4.11)

H(4) =







H(3) H(3)

H(3) −H(3)





 (4.12)

A 32 × 32 Hadamard matrix is chosen for spectra calculation because each step

of logic simulation has 32 responses. The fourth order Hadamard matrix is repre-

sented in Equation 4.12. After one step of logic simulation, the 32-bit response of

each gate is multiplied with each row of the Hadamard matrix. This multiplica-

tion yields 32 spectral coefficients (SC) corresponding to each row and gives the

input vector’s correlation with that row. The average of these SCs are calculated

using Equation 4.13.

SCavg =

∑32
i=1 wi × |SCi|

32
(4.13)

wi =
ϕi + 1

∑32
j=1(ϕj + 1)

(4.14)

54

The wi in Equation 4.14 is the weight attached to the ith row of the Hadamard

matrix and ϕi is the sequency of the ith row, ϕ, which is analogous to frequency, is

the number of 1→ −1 and −1→ 1 transitions in that row. Matrix multiplication

is a time consuming process and to repeat it for all the steps of logic simulation is

very tedious. To facilitate the process, the −1 in the Hadamard matrix is replaced

with 0 and each row is converted into a 32 bit binary integer containing only 1

and 0. Then the 32-bit logic response from a gate is bit-wise XNORed with each

row of the transformed Hadamard matrix. This is equivalent to a multiplication

of the logic response with the Hadamard matrix row. The SCs of each row are

calculated using the following algorithm:

1. Repeat for i = 1 to 32

(a) result← H(4)[i]⊕ logic response

(b) Repeat for all 32 bits of result

i. Peel one bit off result and if this bit is 1, increment SC[i], else

decrement SC[i]

Replacing the matrix multiplication with bit-wise XNOR operation speeds up the

spectra calculation considerably. The SCs calculated this way are normalized by

dividing them by the number of times the above mentioned steps are repeated,

which is equal to the number of random logic vectors divided by 32. SC and

SCavg for each gate are calculated and stored.

4.5 Candidate Selection

Candidates for test point insertion and scan-flops are selected using the entropy

and spectral measures that have been already calculated. Various ideas have

been tried to achieve better results and these ideas have been incorporated in

the algorithm as different modes of operation that can be run individually or

simultaneously. In all of the modes, candidates connected to a PI or a PO are

discarded. During each iteration, five test point and/or flip-flop candidates are

55

selected. The reason for selecting five candidates was already explained in the

ILP formulation chapter.

4.5.1 ILP Mode

The integer linear program formulation explained in the previous chapter is used

to select five candidates based on the testability measures. In this mode, an

AMPL compatible data file is written out, sent to the AMPL solver and the

output from the solver is obtained. The candidates from the output file are read

in and the best one among them is chosen.

4.5.2 Gradient Descent Mode

In this mode, candidates are chosen without using the integer linear program. The

candidates are sorted into an array as soon as the testability measure is calculated.

The array size is set to five in order to be consistent with the ILP mode. Gradient

descent mode is slightly faster than ILP mode as the candidates are available

immediately after all of the calculations are finished. Since the candidates are

sorted into an array as soon as the testability measures are calculated, if there

are more than one candidate with equal values, then the gate with the lowest

gate number is put ahead in the array. This is the main disadvantage of gradient

descent mode, as the ILP mode gives a random selection of candidates in the

same scenario. Hence, the results will vary between gradient descent mode and

ILP mode.

4.5.3 Probability Mode

Using the probability information from logic simulation, five candidates with the

least p(1) or pu(1) are selected for test point insertion and scanning. Out of these

five candidates, the one with the lowest probability is selected.

56

4.5.4 Entropy Mode

Entropies of the gates are calculated using Equation 2.1 and five candidates with

the least entropy are selected for test point insertion and scanning. Out of these

five candidates, the one with the lowest entropy is selected.

4.5.5 Unbiased Entropy Mode

As explained earlier, calculating entropy without accounting for the bias that may

arise due to vector sampling could reduce the performance of the algorithm. In

this mode, the probabilities are calculated using Equation 4.8 and the entropy

values are calculated from them. Five candidates are chosen with the least entropy

and the best candidate is chosen as the one with the lowest entropy.

4.5.6 Accumulated Entropy Mode

After every iteration, the number of ones that occurred at each gate are cleared

and the circuit is simulated to calculate the new ones count for each gate. In

accumulated entropy mode, the ones count is not cleared but instead gets accu-

mulated after every iteration. By doing this, the complete history of transitions

at each gate is maintained and the probability and entropy values calculated from

these accumulated count could be a better testability measure for the algorithm

to select the DFT candidates. Five candidates are chosen with the least entropy

and the best candidate is chosen as the one with the lowest entropy.

4.5.7 Entropy Gain Mode

For each logic gate and flip-flop in the circuit, the gain in entropy achieved by

inserting a test point or scanning the flip-flop is calculated. For each candidate,

the gain is calculated as the sum of gain in entropy of the candidate and the

gain in entropy of the fan-out gates of the candidate. The gain in entropy of

the candidate is calculated using Equation 4.15 as it is assumed that when a test

57

point or flip-flop is scanned the entropy of the candidate becomes 1.0. The gains

of fan-out gates of the candidate are calculated by assuming that the p(1) and

p(0) of the candidate are 0.5 and using PMEs to calculate what the probabilities

of the fan-out gates would be if the candidate is scanned or a test point is inserted.

Using PME to estimate the probability is easier than logic simulation in this case.

As we are using PME to calculate the probabilities for only the fan-out gates of the

candidate, there is not much signal correlation involved and hence, the calculated

probabilities will be correct. From these probabilities, the new entropies of the

fan-out gates are calculated using Equation 4.16. The total entropy gain of the

candidate is calculated using Equation 4.17.

G0 = 1.0− entropy (candidate) (4.15)

Gi = PME entropy (fanouti) (4.16)

− entropy (fanouti)

entropy gain (candidate) = G0 +
∑

i

Gi (4.17)

where i = 1 to # of fanout gates of candidate

After calculating the entropy gains of all the gates, the five candidates with the

highest entropy gain are chosen and the candidate with the highest gain among

the five is chosen as the best candidate. Entropy gain mode can be used only

in gradient descent mode as the ILP formulation only accounts for choosing the

nodes with lowest values of any testability measure passed to it.

4.5.8 Entropy Differential Mode

For each logic gate and flip-flop in the circuit, the entropy difference between the

gate and its fan-out gate is calculated and stored. If more than one fan-out gate

exists, then the difference with the highest value is stored as shown in Equation

4.18.

Di = entropy (candidate)− entropy (fanouti)

entropy differential (candidate) = MAX(Di) (4.18)

58

where i = Number of fanout gates of the candidate

After calculating the entropy differentials of all the gates, the five candidates with

the highest entropy differential are chosen and the candidate with the highest

entropy differential among the five is chosen as the best candidate. Entropy

differential mode, like entropy gain mode, can be used only in gradient descent

mode as the ILP formulation only accounts for choosing the nodes with lowest

values of any testability measure passed to it.

4.5.9 Spectral Mode

The spectral measures calculated for each gate can be used in various ways for

candidate selection. Each variation is implemented as a separate mode as follows:

Mode 1 – Entropy + Controllability Mode:

From the average SC calculated for each logic gate and flip-flop, the maximum

SCavg and minimum SCavg are identified and the spectral threshold (SCT) is calcu-

lated as the average of the maximum and minimum SCavg as shown in Equation

4.19. The gates with SCavg lesser than SCT are considered to have poor controlla-

bility. Mode 1 should be used in conjunction with any other mode that identifies

the best candidate, as identifying the best candidate from many candidates with

poor controllability is not possible.

SCT =
SCavg max + SCavg min

2
(4.19)

Mode 2 – Entropy + Observability Mode:

For each gate, the POs that lie in the fan-out cone of the gate are identified.

Each of the 32 SCs of the gate is compared with the corresponding SC of each

PO lying in the fan-out cone. If there is a PO such that all of its SCs match with

all of the SCs of the gate, then the gate is considered to have good observability.

If there is no such PO, then the gate is considered to have poor observability.

59

Mode 2 should be used in conjunction with any other mode that identifies the

best candidate, as identifying the best candidate from many candidates with poor

observability is not possible.

Mode 3 – Entropy + Controllability and Observability Mode:

This is the combination of Modes 1 and 2. Gates with poor controllability and

observability are identified using the methods discussed in Modes 1 and 2, which

are summarized below:

• if (SCavg(gate) < SCT) poor controllability(gate) = TRUE

• if (SCi (PO) == SCi (gate)) ∀i = 1 to 32,

then poor observability (gate) = FALSE

Mode 3, like Modes 1 and 2, should be used in conjunction with any other mode

that identifies the best candidate.

Mode 4 – Controllability and Observability Mode:

In this mode, five candidates with the least SCavg and poor observability are

identified and the best candidate is chosen as the one with the lowest SCavg.

Entropy measures are not used in this mode.

4.6 DFT Insertion

In each mode, one best candidate is selected. If the candidate is a logic gate, then

a test point is inserted at the output of the gate, otherwise if the candidate is a

flip-flop, then it is scanned. If a selected candidate is a logic gate connected to

a flip-flop, then the flip-flop is scanned instead of inserting a test point, to save

on hardware overhead. The corresponding test point or scan flip-flop counter is

incremented. The above process is repeated until the scan limit and/or test point

limit are satisfied and, in the case of ILP mode, until the AMPL solver returns

less than five candidates.

60

A way to speed up the algorithm would be to insert the selected five candidates

in every iteration. After inserting the first candidate, the gates in the fan-in and

fan-out cone of the candidate are marked to prevent further DFT insertion. So, if

any of the remaining candidates are in the marked cones, they will not be scanned

nor will any test point be inserted. When the next candidate does not fall in the

marked cones, DFT is inserted. This way, a maximum of five times speed up can

be obtained. The number of candidates selected in each iteration can be made

into a user specified parameter.

4.7 Flow Chart

The flow chart in Figure 4.2 gives the top level view of the algorithm. It gives a

clear idea of how a circuit is taken through each step of the algorithm until the

end.

4.8 Complexity Analysis of the Algorithm

Assume Pi PIs, Po POs, N logic gates, F flip-flops and L lines are present in the

circuit. The circuit is logic simulated with V vectors.

• The SCC formation depends on the DFS on the s-graph. The complexity

of DFS is O(N + L + F) [19].

• The complexity of logic simulation is O((V/32)× (N + F)).

• The complexity of entropy calculation is O(Pi + Po + N + F).

• The overlapping spectra of the circuit are calculated by bitwise XNORing

a 32× 32 RWT matrix with the 32 bit logic response of the gate and POs.

As explained earlier, the SCs are found by sliding the RWT matrix over the

response of the gates bit by bit. The complexity of this analysis is explained

in detail by Khan [37]. The complexity of calculating overlapping spectra

is O((F + N + Po)× (V − 31)× 32).

61

Figure 4.2: Flow chart of the algorithm

62

• The non-overlapping spectra of the circuit are calculated similarly to over-

lapping spectra but without analyzing the logic response bit by bit. The

complexity of this analysis is O((F + N + Po)× (V/32)).

• The complexity of entropy gain and entropy differential analysis is O(N+F).

• Gradient mode has the complexity of O(Pi +Po +N +F) in entropy mode,

O((F +N +Po)× (V − 31)× 32) in overlapping spectra mode, O((F +N +

Po) × (V/32)) in non-overlapping spectra mode and O(N + F) in entropy

gain or entropy diffrential mode. The ILP mode requires the data and

output files to be transferred. This depends on the speed of the network

and the size of the files. The time AMPL takes to solve the model is also

dependent on the size of the circuit. All these overheads remain constant

for a particular circuit. The complexity of the ILP is O(2N). Hence, the

complexity of ILP mode is O(L + N + F + 2N) plus the complexity of the

different modes listed above.

Depending on what mode the algorithm is using the complexity varies but logic

simulation and SCC formation are required steps. The worst case complexity of

the algorithm is when running in overlapping spectra mode, which would have the

complexity of O((V/32)×(N+F)+(F +N+Po)×(V −31)×32). If V ≈ N,F <<

N and Po << N , then the approximate complexity of the algorithm is O(N2).

The complexity of non-overlapping spectra mode is O((V/32)×(N+F)+(F +N+

Po)×(V/32)). Applying the same assumptions as above, we get the complexity of

non-overlapping spectra to be O(N2). The complexity of non-spectral ILP mode

is O((V/32)× (N + F) + (L + N + F + 2N) + (Pi + Po + N + F)), which becomes

O(2N) with the assumptions. The complexity of non-spectral gradient descent

mode is O((V/32)×(N +F)+(Pi +Po +N +F)), which becomes O(N2) with the

assumptions. The overall complexity of the algorithm is O(N2) for the gradient

descent mode and O(2N) for ILP mode.

63

4.9 Summary

This chapter introduces the algorithm used to select the scan-flop and test point

candidates. Various ideas have been tried and implemented in the algorithm.

Once the circuit netlist is read in, if it is a sequential circuit, then the SCCs

are formed. Then logic simulation is performed using user-specified number of

pseudo-random vectors. After logic simulating with each vector, the ones counts

of all of the PIs, gates, flip-flops and POs are updated. If the algorithm is in

spectra mode, then the SCs are calculated by bitwise XNORing the 32 × 32

RWT matrix with the logic response of gates, flip-flops and POs. After all of

the vectors are simulated, the ones probabilities, p(1), of PIs, gates, flip-flops and

POs are calculated. Calculating probabilities by logic simulation is slower than

using PMEs but is more accurate. After calculating the probabilities and SCs,

entropy and SCavg for each gate is calculated.

If the algorithm iruns in ILP mode, then a data file is written out based on

the testability measure being used by the algorithm. Then the data file is sent

to AMPL and the output file from AMPL with the selected candidates is read

in. If the algorithm is in gradient descent mode, five candidates based on the

testability measure used by the algorithm are chosen and the best among them

is selected. In probability mode, the candidates with lowest p(1) or pu(1) are

chosen depending on the user’s preference. In entropy mode, the candidate with

lowest entropy is chosen. In unbiased entropy mode, the candidate with the

lowest unbiased entropy is chosen. In entropy gain mode, the gain in entropy

obtained by inserting a test point or scan-flop at each gate is calculated and the

candidate with the highest entropy gain is chosen. In entropy differential mode,

the difference in entropy between a gate and its fanout is calculated and the

candidate with the highest difference is chosen. In spectra mode 1, the spectral

threshold SCT is calculated for the circuit and the candidate with lowest entropy

and SCavg less than SCT is chosen. In spectra mode 2, observabilities of the gates

are analyzed by comparing their SCs with the SCs of the POs in their fanout

64

cones. If any of SCs do not match with POs, then the gate is considered to have

poor observability. The candidate with lowest entropy and poor observability is

chosen. In spectra mode 3, the candidate with lowest entropy, SCavg less than

SCT , and poor observability is chosen. In spectra mode 4, the candidate with the

lowest SCavg and poor observability is chosen and entropy measures are not used.

After the candidate is selected, if it is a logic gate, a test point is inserted after it;

otherwise, if the candidate is a flip-flop, it is scanned. After DFT insertion, the

algorithm repeats until the user-specified number of test points and/or flip-flops

is inserted. The complexity of the algorithm is found to be O(N2) for the gradient

descent mode and O(2N) for ILP mode.

65

Chapter 5

Results

In this chapter we present the fault efficiency (FE), fault coverage (FC), test

vector length (V), test volume (TV), test application time (TAT) and hardware

overhead (O) results obtained for partial scan with test point insertion and full

scan with test point insertion. The partial scan results are compared with the

best partial scan results reported by Khan et al. [35, 36, 37] for the ISCAS ’89

benchmark circuits [9] and the full scan results are compared for the ITC ’99

benchmark circuits [21] before and after the entropy algorithm was run on them.

5.1 Preliminaries

Fault Coverage

Fault coverage is defined as the percentage of faults detected by the ATPG for

all faults present in the circuit.

FC =
Faults detected by ATPG

Total faults in circuit
× 100

Fault Efficiency

Fault efficiency is defined as the percentage of faults detected by the ATPG for

all testable faults present in the circuit. FE gives a better picture about the

testability of the circuit than FC, which does not account for the untestable

faults.

FE =
Faults detected by ATPG

Total faults in circuit − Untestable faults
× 100

66

Test Vector Length

Test vector length is defined as the number of vectors generated by ATPG while

testing the circuit. These vectors are stored in the automatic test equipment

(ATE) memory and are loaded into the fabricated chip while testing. The test

vector length reduction is calculated using Equation 5.1. Vold represents the vector

length of the circuit before DFT insertion and Vnew represents the vector length

after DFT insertion. Parameters TVold and TVnew and TATold and TATnew, have

analogous meanings.

V Reduction (%) =
Vold − Vnew

Vold

× 100 (5.1)

Test Volume

Test volume is the total number of bits stored in the ATE that will be fed into the

chip being tested. The total number of bits applied to a circuit per test vector

is the sum of the bits applied to each primary input and the number of bits

shifted into the scan chain. Parallel vectors are vector sequences generated by

the sequential ATPG program with scan flops and test points as Pseudo-PIs and

Pseudo-POs. These parallel test sequences are then serialized according to the

scan structure and the final serialized test vectors are developed. Each serialized

vector includes the test vector that will be applied to the PIs and the scan-in and

scan-out sequences for each parallel test sequence generated by the ATPG. The

total number of bits applied to the primary inputs will be nPI , where nPI is the

number of PIs. Similarly, the total number of bits shifted into the scan chain is

nSFF + nTP , where nSFF is the number of scan flops and nTP is the number of

test points present in the circuit. Therefore, the total number of bits per vector

will be (nPI + nSFF + nTP) and the total number of bits for the complete test set

with V vectors will be:

TV = V × (nPI + nSFF + nTP + 1) (5.2)

TV Reduction (%) =
TVold − TVnew

TVold

× 100 (5.3)

67

TVold represents TV of the circuit before DFT insertion and TVnew represents

TV after DFT insertion. The less the TV, the less ATE memory that is required

to store the bits. By reducing TV, the amount spent on ATE memory can be

reduced.

Test Application Time

Test application time is the time taken to apply all of the vectors to the chip and

read out the responses. When all of the scan flops and test points are connected

into one long scan chain, the TAT is given by Equation 5.4 [10]. The TAT can

be reduced considerably by breaking the long scan chain into smaller scan chains

of length N that can be loaded in parallel. In this case, the TAT is given by

Equation 5.5. By reducing TAT, the total cost of testing a chip can be reduced,

so the TAT reduction in Equation 5.6 is a very important parameter. TATold

represents TAT of the circuit before DFT insertion and TATnew represents TAT

after DFT insertion.

TAT = (V + 2)(nSFF + nTP) + V + 4 (5.4)

TAT = (V + 2)×N + V + 4 (5.5)

TAT Reduction (%) =
TATold − TATnew

TATold

× 100 (5.6)

Hardware Overhead

Inserting scan flops and test points comes at the cost of extra hardware. The

percentage of extra hardware added to the circuit by means of DFT is called

hardware overhead. Each logic gate has 4 transistors on average and each flip-flop

has 18 transistors. Each complete test point has 18.25 transistors and scanning

a flip-flop increases its transistor count to 24. The hardware overhead for partial

scan with test points is given by Equation 5.7. The hardware overhead for full

scan circuits with test points is given by Equation 5.8. The hardware for full scan

circuits accounts for flip-flops having scan hardware from the onset, and hence,

only test points are considered as overhead. That is why Equation 5.8 has only

68

nTP in the numerator.

OPS+TP =
24× nSFF + 18.25× nTP

4× ngates + 18× nFF

× 100 (5.7)

OFS+TP =
18.25× nTP

4× ngates + 24× nFF

× 100 (5.8)

5.2 Full Scan with Test Point Insertion Results

Many options explained in Appendix A were tried in the full scan mode. The

full scan results were generated using the ITC ’99 benchmark circuits [21]. The

circuit b05 was modified to accommodate buses present to suit the tool as the

rutmod netlist format, which the algorithm is implemented to parse, does not

support buses. The rutmod netlist format does not allow the same name to refer

to different fanout branches of the same fanout stem. To accommodate for buses

in b05, the gate driving the buses was replicated and each line of the bus was

given a different name, as shown in Figure 5.1. The modified b05 netlist is called

as b05s. The number of test points inserted into the benchmark circuits has been

Figure 5.1: Example gate showing modification of b05

restricted such that they incur only 10% of hardware overhead. It is assumed

that the scan and test point chains are broken into parallel chains of length 64 to

reduce the TAT. Hence, for calculating TAT from Equation 5.5, N = 64 will be

used. Each circuit was warmed up with a fixed number of warmup vectors and the

testability measures were updated with a fixed number of update vectors. The

characteristics and parameters of the ITC ’99 benchmark circuits that remain the

69

same for all of the experiments are shown in Table 5.1. The TP penalty column

in the table indicates the penalty of inserting a TP in the ILP cost function.

Table 5.1: Characteristics and parameters for ITC ’99 Benchmark Circuits
Ckt. PIs FFs Gates Test Warmup Update TP

Points Vectors Vectors Penalty
b01 2 5 32 1 51200 512 0.90
b02 1 4 19 1 102400 1024 0.90
b03 4 30 103 3 102400 1024 0.90
b04s 11 66 463 19 100000 1000 0.90
b05s 1 34 783 21 100000 1000 0.95
b06 2 9 36 2 100000 1000 0.85
b07s 1 49 326 13 100000 1000 0.90
b08 9 21 116 5 100000 1000 0.90
b09 1 28 115 6 100000 1000 0.90
b10 11 17 139 5 100000 1000 0.90
b11s 7 31 388 12 100000 1000 0.90
b12 5 121 817 34 51200 512 0.90
b13s 10 53 236 12 100000 1000 0.90
b14s 32 245 4124 123 200000 2000 0.90
b15s 36 449 7844 231 51200 512 0.99
b17s 37 1415 21556 659 200000 2000 0.99
b20s 32 490 8189 245 200000 2000 0.90
b21s 32 490 8544 252 200000 2000 0.90
b22s 32 735 13162 385 200000 2000 0.90

5.2.1 Experimental Conditions and Validation

Full scan results were generated by running the C program on the ITC ’99 bench-

marks on Sun Ultra 5 machines. Full scan results were generated for various

modes of operation of the program, which are listed in Appendix A. The inte-

ger linear programming algorithm was run using AMPL on an IBM PC. Tests

were generated for the ITC ’99 benchmark circuits using the Synopsys TetraMAX

ATPG before TP insertion and after TP insertion. The results were compared.

The ATPG was run in auto mode to enable dynamic compaction during test gen-

eration and the generated vectors were compacted statically using built-in options

in TetraMAX that are listed as follows:

70

• read netlist file name

• run build model

• run drc

• add faults -all

• run atpg -auto compression -ndetects 1

• run pattern compress 20

The options run atpg and run pattern compress were repeated until satisfac-

tory results were obtained, such as 100% fault efficiency or a lower vector length.

5.2.2 Fault Coverage Results

The FC results for various modes of operation of the algorithm are shown in Table

5.2. All of the algorithm options are run in gradient descent mode unless specified

otherwise. The second column in Table 5.2 is the FC result for circuit with no

TPs inserted. The third column is the result using pu(1) (unbiased probability)

as the testability measure. The fourth column is the result using Entropy without

unbiasing as testability measure. The fifth column is the result using Unbiased

Entropy as the testability measure and the sixth column uses the same Unbi-

ased Entropy but the algorithm was run in ILP mode. The seventh column is

the result using accumulated ones counts from each iteration of the algorithm to

calculate the Unbiased Entropy measures. The eighth column is the result using

Unbiased Entropy measures but inserting more than one TP in each iteration.

The ninth column is the result using Entropy Gain as the testability measure

and the tenth column is the result using Entropy Differential as the testability

measure. Unbiasing is not used with Entropy Gain mode or Entropy Differential

mode because the gain and differential measures are calculated based on entropy

increase or decrease, respectively. The sample bias will be removed automatically

when these measures are calculated as a difference in entropies of each gate and its

71

fanouts. The eleventh column is the result using Unbiased Entropy together with

Overlapped Spectral controllability (Mode 1) to select TP candidates. The twelfth

column is the result using Unbiased Entropy together with Non-Overlapped Spec-

tral controllability (Mode 1) to select candidates. The thirteenth column is the

result using Unbiased Entropy together with Non-Overlapped Spectral observ-

ability (Mode 2) to select candidates. The fourteenth column is the result using

Unbiased Entropy together with Non-Overlapped Spectral controllability and ob-

servability (Mode 3) to select candidates. The fifteenth column is the result using

Non-Overlapped Spectral controllability and observability (Mode 4) to select can-

didates but no entropy measures are used. The last column in Table 5.2 is the

collection of best FCs obtained for each circuit using any of the modes from the

algorithm.

It can be observed from these tables that the FC gets better with insertion of

TPs and the best FC obtained by inserting TPs is on average 1.64% more than

the FC obtained without them. Figures 5.2 and 5.3 compare the FC of Biased

Entropy with Spectral-based results. The Biased Entropy measure is chosen to be

compared with Spectral measures because it has the highest average FC among

all of the Entropy modes. Figures 5.4 and 5.5 compare the FC of various Entropy-

based results. From the figures and table presented, it can be observed that to

get the highest FC, Biased Entropy should be chosen as the testablity measure.

72

Table 5.2: Fault Coverage results of ITC ’99 Benchmark Circuits
Ckt. No Proba- Biased Unbiased Unbiased Accum- Multi Entropy Entropy Overlap Non-overlap Spectra Best

TP -bility Entropy Entropy Entropy -ulated TP Gain Differ- Spectra Mode 1 Mode 2 Mode 3 Mode 4
ILP mode Entropy -ential Mode 1

b01 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b02 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b03 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b04s 99.27 99.87 99.87 99.87 99.87 99.87 99.87 99.87 99.87 100.00 99.87 99.87 99.87 99.87 100.00

b05s 80.08 90.94 92.80 90.94 90.98 89.82 91.06 89.16 91.41 83.00 90.94 91.13 91.13 92.88 92.88

b06 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b07s 99.47 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b08 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b09 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b11s 97.66 99.10 99.11 99.11 99.11 98.89 98.89 99.18 99.41 99.48 100.00 99.11 98.89 99.11 100.00

b12 99.96 99.96 99.96 99.99 99.97 99.99 99.97 100.00 100.00 100.00 99.97 99.97 99.97 100.00 100.00

b13s 96.97 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.89 100.00 100.00 100.00 98.75 100.00

b14s 97.86 99.94 99.94 99.95 99.95 99.95 99.95 99.53 99.09 99.60 99.95 99.95 99.95 97.89 99.95

b15s 97.77 99.60 99.60 99.61 99.68 99.68 99.68 99.71 99.67 99.80 99.63 99.53 99.54 99.49 99.80

b17s 97.91 99.67 99.67 99.68 99.69 99.69 99.68 99.70 99.66 99.87 99.68 99.69 99.70 99.50 99.87

b20s 98.08 99.96 99.96 99.97 99.97 99.93 99.97 99.52 99.13 99.90 99.97 99.97 99.97 99.21 99.97

b21s 98.13 99.85 99.85 99.86 99.86 99.89 99.86 99.54 99.30 99.94 99.85 99.85 99.85 99.32 99.94

b22s 98.07 99.84 99.84 99.84 99.85 99.89 99.85 99.45 98.55 99.87 99.79 99.84 99.80 99.17 99.89

Avg. 97.96 99.41 99.51 99.41 99.42 99.35 99.41 99.25 99.27 98.02 99.46 99.42 99.40 99.22 99.60

Variability: 99.51% - 1.55% + 0.09%

73

Figure 5.2: Fault Coverage comparison: Entropy vs. Spectral

74

Figure 5.3: Fault Coverage comparison: Entropy vs. Spectral

75

Figure 5.4: Fault Coverage comparison: Entropy Modes

76

Figure 5.5: Fault Coverage comparison: Entropy Modes

77

5.2.3 Fault Efficiency Results

The FE results for various modes of operation of the algorithm is shown in Table

5.3. Inserting TPs using the proposed algorithm helps it to achieve 100% FE

on of all the circuits, which is 0.21% more than the FE achieved without any

TPs inserted into the circuits. Figure 5.6 compares the FE of Entropy Gain with

Spectral-based results. The Entropy Gain measure is chosen to be compared

with Spectral measures because it has the highest average FE among all of the

Entropy modes. Figure 5.7 compares the FE of Overlap Spectra Mode 1 with

other spectral modes. Figures 5.8 and 5.9 compare the FE of various Entropy-

based results. From Table 5.3 and the figures, it can be observed that the highest

FE is acheived by running the algorithm in Overlapped Spectra Mode 1.

78

Table 5.3: Fault Efficiency results of ITC ’99 Benchmark Circuits
Ckt. No Proba- Biased Unbiased Unbiased Accumu- Multi Entropy Entropy Overlap Non-overlap Spectra Best

TP -bility Entropy Entropy Entropy -lated TP Gain Differen- Spectra Mode 1 Mode 2 Mode 3 Mode 4
ILP mode Entropy -tial Mode 1

b01 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b02 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b03 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b04s 99.60 99.87 99.87 99.87 99.87 99.87 99.87 99.87 99.87 100.00 99.87 99.87 99.87 99.87 100.00

b05s 99.91 99.24 99.92 99.24 99.28 99.32 99.24 99.61 100.00 99.86 99.24 99.32 99.32 100.00 100.00

b06 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b07s 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b08 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b09 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b11s 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b12 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b13s 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

b14s 99.44 100.00 99.63 100.00 100.00 100.00 100.00 100.00 99.88 100.00 100.00 100.00 100.00 99.44 100.00

b15s 99.12 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.99 100.00 100.00 100.00 100.00 100.00 100.00

b17s 99.04 100.00 99.99 100.00 100.00 100.00 100.00 100.00 99.99 100.00 100.00 100.00 100.00 99.99 100.00

b20s 99.58 100.00 99.67 100.00 100.00 100.00 100.00 100.00 99.85 100.00 100.00 100.00 100.00 99.68 100.00

b21s 99.60 100.00 99.72 100.00 100.00 100.00 100.00 100.00 99.93 100.00 100.00 100.00 100.00 99.61 100.00

b22s 99.65 100.00 99.70 100.00 100.00 100.00 100.00 100.00 99.75 100.00 100.00 100.00 100.00 99.69 100.00

Avg. 99.79 99.95 99.92 99.95 99.96 99.96 99.95 99.97 99.96 99.99 99.95 99.96 99.96 99.91 100.00

Variability: 99.99% - 0.02% + 0.01%

79

Figure 5.6: Fault Efficiency comparison: Entropy vs. Spectral

80

Figure 5.7: Fault Efficiency comparison: Spectral Modes

81

Figure 5.8: Fault Efficiency comparison: Entropy Modes

82

Figure 5.9: Fault Efficiency comparison: Entropy Modes

83

5.2.4 Test Vector Length Results

The Test Vector Length results for various modes of operation of the algorithm

are shown in Table 5.4. The maximum average vector length reduction that can

be achieved by using the various modes proposed is 48.68%. The last row in

Table 5.4 represents the average V for the largest ITC ’99 benchmark circuits of

b14s to b22s. The maximum vector length reduction achieved on larger circuits

is 59%. Figure 5.10 compares the V of Accumulated Entropy with spectral-

based results. The Accumulated Entropy measure is chosen to be compared with

Spectral measures because it has the highest average vector length reduction,

48.26% on all circuits and 54.04% on larger circuits, among all of the Entropy

modes. Figure 5.11 compares V of various Entropy-based results. From Table 5.4

and Figures 5.10 and 5.11, it can be observed that the shortest vector length can

be achieved by using the Accumulated Entropy as the testability measure.

84

Table 5.4: Test Vector Length results of ITC ’99 Benchmark Circuits
Ckt. No Proba- Biased Unbiased Unbiased Accumu- Multi Entropy Entropy Overlap Non-overlap Spectra Best

TP -bility Entropy Entropy Entropy -lated TP Gain Differen- Spectra Mode 1 Mode 2 Mode 3 Mode 4
ILP mode Entropy -tial Mode 1

b01 16 15 16 15 15 15 15 15 17 16 15 15 15 16 15

b02 11 10 11 10 10 10 10 11 12 10 11 10 11 11 10

b03 24 15 21 15 15 15 14 19 20 15 15 15 15 21 14

b04s 54 40 45 40 40 43 40 38 43 42 40 46 43 45 38

b05s 65 76 73 75 73 65 78 67 67 67 76 72 72 71 65

b06 16 15 16 15 15 15 15 15 17 15 15 15 15 16 15

b07s 44 29 34 29 29 32 34 32 39 39 33 32 31 38 29

b08 36 30 35 30 30 31 28 35 33 41 30 30 30 37 28

b09 29 16 21 16 16 16 18 26 11 19 26 16 26 23 11

b10 40 32 38 32 32 32 32 34 39 39 38 32 38 35 32

b11s 58 37 52 37 37 39 41 55 51 50 34 37 39 54 34

b12 89 74 82 74 74 79 75 55 86 75 74 80 80 82 55

b13s 29 26 28 26 26 26 25 24 29 29 22 25 23 30 22

b14s 410 195 348 196 196 167 193 233 315 252 203 193 210 351 167

b15s 436 213 356 213 218 237 217 196 253 195 229 307 299 383 195

b17s 531 258 361 260 260 274 269 228 215 225 258 265 257 389 215

b20s 419 203 400 203 203 163 209 276 391 219 207 192 252 404 163

b21s 420 175 365 176 168 199 192 276 319 217 216 180 246 385 168

b22s 445 213 413 220 219 175 217 282 421 266 205 231 279 403 183

Avg. 166.95 88.00 142.90 88.53 88.21 85.95 90.63 100.89 125.16 96.37 91.95 94.37 104.26 147.05 85.69

(b14s 443.50 209.50 373.83 211.33 210.67 202.50 216.17 248.50 319.00 229.00 219.67 228.00 257.17 385.83 181.83

-b22s)

Variability: 202.50 - 28.67 + 241

85

Figure 5.10: Test Vector Length comparison: Entropy vs. Spectral

86

Figure 5.11: Test Vector Length comparison: Entropy Modes

87

5.2.5 Test Volume Results

The Test Volume results for various modes of operation of the algorithm are shown

in Table 5.5. The TV is calculated using Equation 5.2. As TV depends on V

and number of TPs inserted in the circuit, some circuits could have a better TV

without any TPs in them, such as b01, b02, b05s and b06, as shown in the table.

These circuits have a very low vector length to begin with and inserting TPs

does not help in reducing the vector length further. The maximum average TV

reduction, calculated using Equation 5.3, that can be achieved by using the various

modes proposed is 40.05%. The last row in Table 5.5 represents the average TV

for the largest ITC ’99 benchmark circuits of b14s to b22s. The maximum TV

reduction achieved on larger circuits is 40.47%. Figure 5.12 compares the TV of

the larger ITC ’99 circuits for Accumulated Entropy with spectral-based results,

as the smaller circuits have very low TV compared to the larger circuits and do

not show up well in the charts. The Accumulated Entropy measure is chosen

to be compared with Spectral measures because it has the highest average TV

reduction, 30.39% on all circuits and 30.95% on larger circuits, among all of the

Entropy modes. Figure 5.13 compares the TV of various Entropy-based results

for the larger ITC ’99 circuits. From Table 5.5 and the Figures 5.12 and 5.13,

it can be observed that the highest TV reduction can be achieved by using the

Accumulated Entropy as the testability measure.

88

Table 5.5: Test Volume results of ITC ’99 Benchmark Circuits
Ckt. No Proba- Biased Unbiased Unbiased Accum- Multi Entropy Entropy Overlap Non-overlap Spectra Best

TP -bility Entropy Entropy Entropy -ulated TP Gain Differ- Spectra Mode 1 Mode 2 Mode 3 Mode 4
ILP mode Entropy -ential Mode 1

b01 128 135 144 135 135 135 135 135 153 144 135 135 135 144 135
b02 66 70 77 70 70 70 70 77 84 70 77 70 77 77 70
b03 840 570 798 570 570 570 532 722 760 570 570 570 570 798 532

b04s 4212 3880 4365 3880 3880 4171 3880 3686 4171 4074 3880 4462 4171 4365 3686

b05s 2340 4332 4161 4275 4161 3705 4446 3819 3819 3819 4332 4104 4104 4047 3705
b06 192 210 224 210 210 210 210 210 238 210 210 210 210 224 210
b07s 2244 1856 2176 1856 1856 2048 2176 2048 2496 2496 2112 2048 1984 2432 1856

b08 1116 1080 1260 1080 1080 1116 1008 1260 1188 1476 1080 1080 1080 1332 1008

b09 870 576 756 576 576 576 648 936 396 684 936 576 936 828 396

b10 1160 1088 1292 1088 1088 1088 1088 1156 1326 1326 1292 1088 1292 1190 1088

b11s 2262 1887 2652 1887 1887 1989 2091 2805 2601 2550 1734 1887 1989 2754 1734

b12 11303 11914 13202 11914 11914 12719 12075 8855 13846 12075 11914 12880 12880 13202 8855

b13s 1856 1976 2128 1976 1976 1976 1900 1824 2204 2204 1672 1900 1748 2280 1672

b14s 113980 78195 139548 78596 78596 66967 77393 93433 126315 101052 81403 77393 84210 140751 66967

b15s 211896 152721 255252 152721 156306 169929 155589 140532 181401 139815 164193 220119 214383 274611 139815

b17s 771543 544896 762432 549120 549120 578688 568128 481536 454080 475200 544896 559680 542784 821568 454080

b20s 219137 155904 307200 155904 155904 125184 160512 211968 300288 168192 158976 147456 193536 310272 125184

b21s 219660 135625 282875 136400 130200 154225 148800 213900 247225 168175 167400 139500 190650 298375 130200

b22s 341760 245589 476189 253660 252507 201775 250201 325146 485413 306698 236365 266343 321687 464659 201775

Avg. 100345 70658 118775 71364 71159 69849 73204 78634 96210 73201 72798 75868 83075 123363 60156

(b14s 312996 218821 370582 221066 220438 216128 226770 244419 299120 226522 225538 235081 257875 385039 186336

-b22s)

Variability: 216128 -29732 + 168911

89

Figure 5.12: Test Volume comparison: Entropy vs. Spectral

90

Figure 5.13: Test Volume comparison: Entropy Modes

91

5.2.6 Test Application Time Results

The Test Application Time results for various modes of operation of the algorithm

are shown in Table 5.6. The TAT is calculated using Equation 5.4. Both TAT and

TV depend on V and the number of TPs inserted in the circuit, so some circuits

could have a better TAT without any TPs in them, such as b01, b02, b05s and

b06, as shown in the table. These circuits have a very low vector length to begin

with and inserting TPs does not help in reducing the vector length further. The

maximum average TAT reduction, calculated using Equation 5.6, that can be

achieved by using the various modes proposed is 54.24%. The last row in Table

5.6 represents the average TAT for the largest ITC ’99 benchmark circuits of b14s

to b22s. The maximum TAT reduction achieved on larger circuits is 58.77%.

Figure 5.14 compares the TAT of the Accumulated Entropy mode with spectral-

based results. The Accumulated Entropy measure is chosen to be compared with

Spectral measures because it has the highest average TAT reduction, 48.38% on

all circuits and 54.09% on larger circuits, among all of the Entropy modes. Figure

5.15 compares the TAT of various Entropy-based results for the larger ITC ’99

circuits. From Table 5.6 and the Figures 5.14 and 5.15, it can be observed that

the highest TAT reduction can be achieved by using the Accumulated Entropy

as the testability measure.

92

Table 5.6: Test Application Time results of ITC ’99 Benchmark Circuits
Ckt. No Proba- Biased Unbiased Unbiased Accum- Multi Entropy Entropy Overlap Non-overlap Spectra Best

TP -bility Entropy Entropy Entropy -ulated TP Gain Differ- Spectra Mode 1 Mode 2 Mode 3 Mode 4
ILP mode Entropy -ential Mode 1

b01 110 121 128 121 121 121 121 121 135 128 121 121 121 128 121
b02 67 74 80 74 74 74 74 80 86 74 80 74 80 80 74
b03 808 580 784 580 580 580 546 716 750 580 580 580 580 784 546

b04s 3642 2732 3057 2732 2732 2927 2732 2602 2927 2862 2732 3122 2927 3057 2602

b05s 2347 4370 4202 4314 4202 3754 4482 3866 3866 3866 4370 4146 4146 4090 3754
b06 182 206 218 206 206 206 206 206 230 206 206 206 206 218 206
b07s 2302 1955 2270 1955 1955 2144 2270 2144 2585 2585 2207 2144 2081 2522 1955

b08 838 866 1001 866 866 893 812 1001 947 1163 866 866 866 1055 812

b09 901 632 807 632 632 632 702 982 457 737 982 632 982 877 457

b10 758 784 922 784 784 784 784 830 945 945 922 784 922 853 784

b11s 1922 1718 2378 1718 1718 1806 1894 2510 2334 2290 1586 1718 1806 2466 1586

b12 5917 4942 5462 4942 4942 5267 5007 3707 5722 5007 4942 5332 5332 5462 3707

b13s 1676 1822 1952 1822 1822 1822 1757 1692 2017 2017 1562 1757 1627 2082 1562

b14s 26782 12807 22752 12872 12872 10987 12677 15277 20607 16512 13327 12677 13782 22947 10987

b15s 28472 13977 23272 13977 14302 15537 14237 12872 16577 12807 15017 20087 19567 25027 12807

b17s 34647 16902 23597 17032 17032 17942 17617 14952 14107 14757 16902 17357 16837 25417 14107

b20s 27367 13327 26132 13327 13327 10727 13717 18072 25547 14367 13587 12612 16512 26392 10727

b21s 27432 11507 23857 11572 11052 13067 12612 18072 20867 14237 14172 11832 16122 25157 11052

b22s 29057 13977 26977 14432 14367 11507 14237 18462 27497 17422 13457 15147 18267 26327 11507

Avg. 10275 5436 8939 5471 5451 5304 5604 6219 7800 5924 5664 5852 6461 9207 4702

(b14s 28959 13749 24431 13868 13825 13294 14182 16284 20867 15017 14410 14952 16847 25211 11939

-b22s)

Variability: 13294 - 1355 + 15665

93

Figure 5.14: Test Application Time comparison: Entropy vs. Spectral

94

Figure 5.15: Test Application Time comparison: Entropy Modes

95

5.2.7 ATPG Time Results

The ATPG Time is the time taken by the TetraMAX ATPG to test and generate

test vectors for the ITC ’99 benchmark circuits. The ATPG time results for var-

ious modes of operation of the algorithm are shown in Table 5.7. The maximum

average ATPG time reduction that can be achieved by using the various modes

proposed is 90.24%. The last row in Table 5.7 represents the average ATPG

time for the largest ITC ’99 benchmark circuits of b14s to b22s. The maximum

ATPG time reduction achieved on larger circuits is 90.32%. Figure 5.16 com-

pares the ATPG of the Accumulated Entropy mode with spectral-based results

for the circuits b05s and b14s to b22s. The ATPG times for other circuits are

insignificantly low, and hence, are not included in the chart comparison. The

Unbiased Entropy measure in ILP mode is chosen to be compared with Spectral

measures because it has the highest average ATPG time reduction, 88.82% on all

circuits and 89.35% on larger circuits, among all of the Entropy modes. Figure

5.17 compares the ATPG time of various Entropy-based results for b05s and b14s

to b22s. From Table 5.7 and the Figures 5.16 and 5.17, it can be observed that

the highest ATPG time reduction can be achieved by using the Unbiased Entropy

as the testability measure in ILP mode.

96

Table 5.7: ATPG Time results (in sec) for ITC ’99 Benchmark Circuits
Ckt. No Proba- Biased Unbiased Unbiased Accum- Multi Entropy Entropy Overlap Non-overlap Spectra Best

TP -bility Entropy Entropy Entropy -ulated TP Gain Differ- Spectra Mode 1 Mode 2 Mode 3 Mode 4
ILP mode Entropy -ential Mode 1

b01 0.07 0.09 0.07 0.08 0.07 0.07 0.08 0.09 0.07 0.06 0.10 0.07 0.07 0.08 0.06

b02 0.06 0.06 0.06 0.07 0.08 0.07 0.06 0.06 0.08 0.05 0.06 0.06 0.06 0.05 0.05

b03 0.12 0.09 0.10 0.10 0.09 0.10 0.08 0.11 0.15 0.10 0.09 0.08 0.11 0.12 0.08

b04s 0.83 0.45 0.50 0.44 0.43 0.50 0.41 0.50 0.45 0.42 0.52 0.45 0.53 0.57 0.41

b05s 2.15 4.97 2.11 7.43 5.27 7.11 4.74 5.36 1.75 6.96 11.84 4.37 6.39 2.19 2.11

b06 0.08 0.06 0.06 0.07 0.06 0.07 0.07 0.10 0.10 0.08 0.06 0.06 0.08 0.07 0.06

b07s 0.34 0.25 0.29 0.28 0.26 0.31 0.28 0.29 0.31 0.31 0.28 0.30 0.30 0.31 0.25

b08 0.18 0.16 0.16 0.15 0.15 0.15 0.17 0.13 0.15 0.16 0.15 0.14 0.17 0.17 0.13

b09 0.13 0.10 0.13 0.10 0.10 0.11 0.10 0.12 0.11 0.11 0.12 0.11 0.14 0.12 0.10

b10 0.15 0.16 0.16 0.17 0.16 0.17 0.15 0.17 0.20 0.16 0.15 0.16 0.17 0.18 0.15

b11s 0.61 0.39 0.52 0.39 0.39 0.44 0.38 0.50 0.45 0.48 0.40 0.38 0.47 0.60 0.38

b12 0.93 0.88 0.83 0.86 0.81 0.91 0.80 0.77 0.87 0.88 0.87 0.88 0.93 0.98 0.77

b13s 0.18 0.17 0.19 0.18 0.17 0.19 0.18 0.18 0.25 0.21 0.17 0.18 0.18 0.21 0.17

b14s 37.70 9.17 35.12 18.69 8.92 8.78 8.92 11.24 18.13 11.43 9.95 9.82 11.08 59.88 8.78

b15s 120.70 20.32 34.71 19.33 19.09 22.06 20.20 21.30 25.82 15.86 20.85 31.93 28.04 44.49 15.86

b17s 890.77 60.79 100.61 61.97 61.88 60.54 63.24 66.07 62.73 53.78 70.99 70.17 70.18 122.83 53.78

b20s 81.54 16.61 69.47 15.94 15.95 16.06 16.47 18.11 38.82 19.11 17.94 16.22 22.70 118.98 15.94

b21s 93.37 15.48 60.51 14.57 14.43 20.59 15.46 18.21 35.57 17.24 18.11 16.27 23.37 112.57 14.43

b22s 148.51 30.60 125.22 31.03 25.90 24.07 27.22 38.13 98.83 28.79 37.47 36.77 43.69 137.58 24.07

Avg. 72.55 8.46 22.67 9.05 8.11 8.54 8.37 9.55 14.99 8.22 10.01 9.92 10.98 31.68 7.24

(b14s 228.77 25.50 70.94 26.92 24.36 25.35 25.25 28.84 46.65 24.37 29.22 30.20 33.18 99.39 22.14

-b22s)

Variability: 24.36 - 2.22 + 204.41

97

Figure 5.16: ATPG Time comparison: Entropy vs. Spectral

98

Figure 5.17: ATPG Time comparison: Entropy Modes

99

5.2.8 Entropy Run Time Results

The Run Time is the time taken by the proposed algorithm to insert the TPs in

the circuit and it varies for each mode of the algorithm. The Run Time results

for various modes of operation of the algorithm are shown in Table 5.8. The

columns No TP and Best from the previous results tables have been omitted

here, because No TP refers to circuits without running the algorithm on them.

This table compares the run time for each mode, hence, highlighting the best

run time for each circuit does not provide valuable information. The last row

in Table 5.8 represents the average run time for the largest ITC ’99 benchmark

circuits of b14s to b22s. Figure 5.18 compares the run time of the Multi-TP mode

with spectral-based results for the circuits b14s to b22s. The run times for other

circuits are insignificantly low and the run time of Overlapping Spectra mode

is very high compared to other modes, and hence, they are not included in the

chart comparison. The Multi-TP mode is chosen to be compared with Spectral

measures because it has the lowest average run time, 936.57 seconds on all circuits

and 2940.11 seconds on larger circuits, among all of the Entropy modes. Figure

5.19 compares the run times of various Entropy-based results for b14s to b22s.

From Table 5.8 and the Figures 5.18 and 5.19, it can be observed that the largest

run time is achieved by using the Unbiased Entropy as the testability measure in

Multi-TP mode.

100

Table 5.8: Run Time results (in sec) for ITC ’99 Benchmark Circuits
Ckt. Proba- Biased Unbiased Unbiased Accum- Multi Entropy Entropy Overlap Non-overlap Spectra

-bility Entropy Entropy Entropy -ulated TP Gain Differ- Spectra Mode 1 Mode 2 Mode 3 Mode 4
ILP mode Entropy -ential Mode 1

b01 0.29 0.63 0.63 2.61 0.62 0.62 0.68 0.59 302.33 10.10 3.38 3.39 3.44
b02 0.31 0.73 0.71 2.71 0.71 0.69 0.77 0.69 371.98 12.35 4.09 4.15 4.11
b03 2.20 4.79 4.78 9.63 4.80 4.63 5.11 4.68 2042.67 68.67 22.89 22.93 22.75
b04s 11.12 23.46 23.33 52.19 23.28 20.19 24.42 22.60 9282.91 315.55 105.61 105.74 104.69
b05s 27.82 52.94 53.05 84.90 52.79 45.45 54.89 50.99 14906.36 521.04 174.83 175.01 173.26
b06 0.69 1.57 1.57 5.07 1.57 1.52 1.70 1.51 775.52 26.50 8.81 8.79 8.71
b07s 9.17 18.58 18.52 38.33 18.59 16.75 19.29 18.02 6215.00 216.62 72.34 72.47 71.74
b08 2.85 5.89 5.91 13.87 5.90 5.65 6.26 5.84 2175.68 75.22 25.06 25.06 24.86
b09 2.27 4.95 4.94 14.37 4.92 4.61 5.27 4.88 2193.50 76.34 25.04 24.99 24.80
b10 2.95 6.17 6.20 14.16 6.17 5.78 6.64 6.23 2452.49 84.45 28.03 28.06 27.79
b11s 11.68 22.76 22.81 40.92 22.54 20.56 23.60 21.98 6962.88 244.69 81.58 81.77 80.92
b12 10.96 23.27 23.19 75.19 23.15 17.87 24.60 22.46 9054.62 320.64 105.99 106.12 105.12
b13s 4.87 10.69 10.72 29.44 10.66 9.79 11.37 10.35 4824.21 164.97 54.98 55.02 54.51
b14s 678.38 1278.51 1263.00 1461.96 1289.09 727.28 1160.13 1221.34 278617.26 10172.43 3413.36 3417.56 3386.54
b15s 542.95 1040.55 977.84 1349.22 985.66 504.39 955.39 942.53 183227.23 7384.09 2445.45 3452.48 2444.22
b17s 16251.75 29790.52 28175.29 29061.79 28141.68 9037.34 21611.97 27551.08 1594987.50 184533.72 60630.58 60673.97 60555.63
b20s 2334.49 4219.89 4162.06 4553.86 4101.91 1854.45 3766.20 4059.39 852636.19 31579.03 10522.05 10611.05 10432.53
b21s 2466.83 4554.80 4433.39 4843.18 4381.68 1985.36 3998.77 4451.83 905250.38 33519.42 11159.19 11283.12 11105.19
b22s 5063.65 7527.86 7685.72 10248.28 9605.13 3531.82 8102.33 7334.80 638325.44 56589.78 18698.81 18894.84 18482.93

Avg. 1443.43 2557.29 2467.04 2731.67 2562.15 936.57 2093.65 2406.94 237610.74 17153.45 5662.21 5739.29 5637.57

(b14s 4556.34 8068.69 7782.88 8586.38 8084.19 2940.11 6599.13 7593.50 742174.00 53963.08 17811.57 18055.50 17734.51
-b22s)

Variability: 2940.11 + 739233.89

101

Figure 5.18: Run Time comparison: Entropy vs. Spectral

102

Figure 5.19: Run Time comparison: Entropy Modes

103

5.2.9 Calculation of Unbiasing factor

In the algorithm chapter, the calculation of the unbiasing factor to remove the

statistical bias caused by pseudo-random vector simulation was discussed and is

represented by Equation 4.6 and the unbiased probabilities, pu(1), were calculated

using Equation 4.8. The equation for bias was derived after generating the above

results for the full scan circuits. The values of θ chosen for the above experiments

for various circuits are shown in Table 5.9. These values of θ were chosen empir-

ically such that high performance is obtained from the algorithm. By choosing

β = 22 in Equation 4.7, we get approximately the same values for θ as in Table

5.9.

Table 5.9: Unbiasing Factor for ITC ’99 Circuits
Ckt. θ
b01 0.01024
b02 0.00683
b03 0.00683
b04s 0.02
b05s 0.02
b06 0.02
b07s 0.02
b08 0.02
b09 0.02
b10 0.02
b11s 0.02
b12 0.01024
b13s 0.02
b14s 0.04
b15s 0.01024
b17s 0.01024
b20s 0.04
b21s 0.04
b22s 0.04

For calculating β and bias for new circuits, run the algorithm by choosing a

θ and calculate β from the value of chosen θ. Then for future experiments with

the same circuit, vary the calculated β to get better results.

104

5.2.10 Reasons for Algorithm Performance

Observing the results from the tables and figures, it is evident that the proposed

algorithm performs well to reduce the test volume and test application time.

• Entropy is a superior testability measure that considers the amount of infor-

mation flow in a circuit. By increasing the information flow, the testability

of the circuit is increased and the results prove this point.

• Using the integer linear program solver enables the tool to select the best

candidate from a random selection of candidates when there are more than

one candidate with the same testability measure.

• We remove the bias caused by vector sampling, so that entropy becomes

a more accurate measure, and the quality of test points chosen becomes

better. This also reduces the number of pseudo-random vectors needed for

simulation.

5.2.11 Summary of Full Scan with Test Point Results

Various results for different modes of operation of the algorithm were discussed.

Analyzing from the tables and figures provided, the following observations can be

drawn:

• For achieving the highest FC, the algorithm should be run in the Biased

Entropy mode.

• For achieving the highest FE, the algorithm should be run in the Overlapped

Spectra Mode 1.

• For achieving the shortest vector length, highest TV reduction and highest

TAT reduction, the algorithm should be run in the Accumulated Entropy

mode.

• For achieving the highest ATPG time reduction, the algorithm should be

run in ILP mode using Unbiased Entropy as the testability measure.

105

• The algorithm runs fastest when run in Multi-TP mode.

The observations are based on ITC ’99 circuits, and the best result could be

achieved by a different mode for other circuits. So it would be advisable to run

the algorithm in all modes the first time on a new circuit and choose the best

mode for further analysis.

5.3 Partial Scan with Test Point Insertion Results

The various options in the tool are described in Appendix A. The characteristics

of the ISCAS ’89 benchmark circuits are shown in Table 5.10. It is assumed

that the scan and test point chains are stitched into one single scan chain and

for calculating TAT from Equation 5.5, N = 1 will be used. Each circuit was

warmed up with a fixed number of warmup vectors and the testability measures

were updated with a fixed number of update vectors. The PS penalty column in

the table indicates the penalty of inserting a scan flip-flop in the ILP cost function

and TP penalty column indicates the penalty for a TP.

5.3.1 Experimental Conditions

Experiments were run using the integer linear program on all of the ISCAS ’89

benchmarks, with the exception of s208 and s510, to generate the partial scan re-

sults. The circuit s208 is too small to show significant variation with and without

DFT hardware and the circuit s510 is uninitializable with logic simulation. A C

language program implemented the algorithm, and generated the constraints for

the integer linear program. The integer linear programming algorithm was run

using AMPL on an IBM PC, but the C program ran on a Sun workstation. Our

partial scan with test point insertion results were generated using the sequential

ATPG called GATEST [53] to keep our results consistent with the results re-

ported by Khan et al. [35, 36, 37] and Xiang and Patel [70]. The parameters used

for test generation using GATEST are listed in Table 5.11. The parameters that

106

Table 5.10: Characteristics and parameters of ISCAS ’89 Benchmark Circuits
Ckt. PIs FFs Gates Warmup Update PS TP

Vectors Vectors Penalty Penalty
s298 3 14 119 51200 512 0.99 0.99
s344 9 15 160 51200 512 0.99 0.99
s349 9 15 161 51200 512 0.99 0.99
s382 3 21 158 51200 512 0.99 0.99
s386 7 6 159 51200 512 0.99 0.99
s400 4 21 162 51200 512 0.99 0.99
s444 3 21 181 51200 512 0.99 0.99
s526 3 21 193 51200 512 0.99 0.99
s641 35 19 379 51200 512 0.99 0.99
s713 35 21 393 51200 512 0.99 0.99
s820 18 5 289 51200 512 0.99 0.99
s953 16 29 395 51200 512 0.99 0.99
s1423 17 74 657 51200 512 0.99 0.99
s1488 8 6 653 51200 512 0.99 0.99
s1494 8 6 347 51200 512 0.99 0.99
s5378 35 179 2779 51200 512 0.99 0.99
s9234 19 228 5597 51200 512 0.99 0.99
s13207 31 669 7951 51200 512 0.99 0.99
s15850 77 534 9772 51200 512 0.99 0.99
s35932 35 1728 16065 51200 512 0.99 0.99
s38417 28 1636 22179 51200 512 0.99 0.99
s38584 12 1452 19253 51200 512 0.99 0.99

Table 5.11: GATEST parameters
Option Description Value Circuits

-v Maximum number of vectors 200 s298, s444
in a test sequence default others

-g Number of generations used 8 s298, s444
in genetic algorithm 32 others

107

are not shown in the table use default values. The vectors generated by GATEST

are compacted using a reverse order restoration (ROR) compactor [22].

5.3.2 Fault Coverage and Overhead Results

The results shown in Table 5.12 were generated with options pensff and pentp

set to 0.99. The sixth column SFF under SPARTAN indicates the number of

scan flip-flops inserted for all the three ideas of PS only, PS + TP1 and PS +

TP2. The authors of mpscan, Xiang and Patel, did not provide the results for

the circuit s38584 and hence, they are left blank in the corresponding columns

of the table. The values shown in bold are the best result for that particular

circuit. From Table 5.12 we can infer that the proposed algorithm has a better FC

than SPARTAN and mpscan. The proposed idea has a slightly higher hardware

overhead than the partial scan idea of Khan et al. [35, 36, 37], but very high

overhead compared to mpscan [70]. The higher overhead is incurred to achieve a

higher FC and better test vector length, TV and TAT as will be explained in the

next section. When compared to the best average FC reported by Khan et al.,

which is their PS + TP2 idea, the proposed entropy algorithm achieves higher

FC with two-thirds of the incurred overhead. Figures 5.20 and 5.21 compare the

FC and hardware overhead results for the seven biggest circuits in the ISCAS ’89

circuits, respectively.

108

Table 5.12: Partial-Scan Scanned Flip-Flop Count, Test Point Count, Fault Coverage, and Hardware Overhead for ISCAS ’89
Circuits

Ckt. ILP+Entropy SPARTAN [35, 36, 37] mpscan
Partial-Scan SFF PS Only PS + TP1 PS + TP2 [70]

SFF TP FC O FC O TP FC O TP FC O SFF FC O

s298 7 0 99.35 23.08 11 99.67 36.26 5 99.68 48.80 4 99.68 46.29 2 98.70 6.59

s344 5 10 99.45 33.24 7 99.71 18.46 1 99.71 20.47 3 99.71 24.48 3 99.40 7.91

s349 5 10 98.92 33.10 8 99.14 21.01 27 99.75 74.92 4 99.16 28.99 3 98.90 7.88

s382 10 9 99.52 40.02 17 99 40.40 1 99 42.20 16 99.54 69.31 6 99.00 14.26

s386 6 8 100.00 38.98 4 99.48 12.90 25 100.00 74.23 10 100.00 37.43 4 100.00 12.90

s400 10 7 99.1 35.84 16 94.6 37.43 1 94.63 39.21 16 95.42 65.89 4 95.80 9.36

s444 11 10 99.19 40.52 18 96.84 39.20 1 95.38 40.86 19 98.05 70.67 6 96.20 13.07

s526 12 4 99.28 31.39 19 99.64 39.65 1 99.82 41.24 3 99.82 44.41 10 99.30 20.87

s641 14 17 100.00 34.78 9 99.14 11.63 40 99.64 50.92 6 99.58 17.52 1 99.40 1.29

s713 11 11 94.36 23.83 9 92.94 11.08 39 95.14 47.58 6 93.09 16.69 1 92.90 1.23

s820 5 1 100.00 11.10 2 99.69 3.85 187 100.00 277.8 48 100.00 74.16 2 100.00 3.85

s953 5 18 100.00 21.34 23 100.00 26.26 3 100.00 28.87 3 100.00 28.87 3 100.00 3.43

s1423 41 5 97.97 27.15 63 98.75 38.18 19 98.78 46.94 3 98.75 39.56 41 98.10 24.85

s1488 5 5 100.00 7.77 5 100.00 4.41 389 100.00 265.4 58 100.00 43.33 2 100.00 1.77

s1494 6 9 99.21 20.61 4 99.2 6.42 399 100.00 493.2 26 99.42 38.14 2 99.10 3.21

s5378 63 61 99.01 18.31 114 98.81 19.08 2 98.87 19.34 44 98.78 24.68 50 97.20 8.37

s9234 124 148 98.08 21.43 199 93.32 18.03 7 93.27 18.51 102 94.81 25.06 97 93.00 8.79

s13207 196 179 90.54 18.18 496 97.77 27.15 21 98.02 28.02 20 97.82 27.98 58 85.60 3.18

s15850 198 113 94.65 13.99 407 93.08 20.06 30 92.74 21.18 7 93.33 20.32 180 94.80 8.87

s35932 565 0 89.76 14.22 477 89.8 12.00 27 89.92 12.52 18 89.83 12.35 150 89.80 3.78

s38417 499 331 97.48 15.25 1249 98.44 25.37 27 98.48 25.79 201 98.82 28.47 400 94.50 8.12

s38584 372 155 94.83 11.40 924 94.54 21.50 24 94.38 21.92 87 94.25 23.04 - - -

Avg. 98.6 50.5 97.76 24.34 185.5 97.43 22.29 58 97.60 79.08 32 97.72 36.71 48.81 96.75 8.27

109

Figure 5.20: Fault Coverage comparison

110

Figure 5.21: Hardware Overhead comparison

111

5.3.3 Test length, Test Volume and Test Application Time

Results

Table 5.13 gives the results for Test Vector Length, Test Volume and Test Ap-

plication Time. The authors of mpscan, Xiang and Patel, did not provide the

results for the circuit s38584 and hence, they are left blank in the corresponding

columns of the table. The values shown in bold are the best result for that partic-

ular circuit. Even though the average vector length for the proposed algorithm is

higher than that of the SPARTAN PS+TP1 and PS+TP2 ideas, since we insert

less DFT hardware than SPARTAN, we get TV reductions of 19.56% and 33.42%

and TAT reductions of 21.63% and 31.23%, over the SPARTAN PS+TP1 and

PS+TP2 ideas, respectively. As explained in previous section, more test hard-

ware is inserted by the proposed algorithm than by mpscan, so that a better V,

TV and TAT are obtained for the circuits. It can be observed from the table

that we get 32.62% TV reduction and 25.39% TAT reduction over the mpscan

algorithm. Figures 5.22, 5.23 and 5.24 compare the V, TV and TAT results for

the seven biggest circuits in the ISCAS ’89 circuits, respectively.

112

Table 5.13: Partial-Scan Test Vector Count, Test Volume and Test Application Time for ISCAS ’89 Circuits
Ckt. ILP+Entropy SPARTAN [35, 36, 37] mpscan

Partial-Scan PS Only PS+TP1 PS+TP2 [70]
V TV TAT V TV TAT V TV TAT V TV TAT V TV TAT

s298 39 429 330 37 555 470 36 720 648 41 779 690 160 960 488
s344 43 1075 722 65 1105 538 63 1134 587 50 1000 574 141 1833 574

s349 33 825 562 50 900 470 22 990 866 33 726 457 161 2093 654
s382 54 1242 1122 215 4515 3908 164 3608 3156 93 3441 3232 168 1680 1192
s386 63 1386 977 119 1428 607 89 3293 2732 94 2068 1442 205 2460 1037
s400 35 770 668 236 4956 4048 252 5544 4574 79 2923 2675 394 3546 1982
s444 44 1100 1014 158 3476 3042 116 2668 2362 91 3731 3536 193 1930 1367
s526 67 1340 1175 131 3013 2662 112 2688 2396 105 2730 2463 273 3822 3027
s641 25 1675 866 107 4815 1092 108 9180 5502 115 5865 1874 286 10582 578

s713 52 3016 1244 125 5625 1272 105 8820 5245 130 6630 2114 310 11470 626

s820 112 2800 800 349 7329 1055 93 19344 18052 171 11799 8825 602 12642 1814
s953 146 5840 3554 98 3920 2402 90 3870 2486 90 3870 2486 339 6780 1366

s1423 111 7104 5313 131 10611 8514 68 6800 5812 95 7980 6501 397 23423 16760
s1488 124 2356 1388 136 1904 830 56 22568 22912 131 9432 8514 639 7029 1925
s1494 110 2640 1794 179 2327 907 66 27192 27474 191 7449 5985 622 6842 1874
s5378 485 77600 60877 535 80250 61757 556 84512 65288 517 100298 82523 1023 87978 52277

s9234 427 124684 117119 958 209802 192002 717 162042 148835 860 276060 260326 3114 364338 305370
s13207 1478 601546 556482 879 464112 437859 875 480375 454288 1044 572112 540784 9805 882450 578615
s15850 1585 616565 495146 3906 1894410 1594466 661 340415 290396 832 409344 346112 4527 1167966 819751
s35932 218 131018 124522 261 133893 125716 166 89640 84842 150 79650 75394 252 46872 38356

s38417 2694 2314146 2240378 3113 3978414 3893752 3066 4001130 3917838 3433 5077407 4984187 11573 4964817 4641577
s38584 2729 1473660 1441970 1491 1397067 1381027 1460 1403060 1387440 1449 1483776 1468414 - - -

Avg. 485 244219 229910 603 373383 350836 406 303617 293351 445 366775 354959 1675 362453 308152

113

Figure 5.22: Test Vector Length comparison

114

Figure 5.23: Test Volume comparison

115

Figure 5.24: Test Application Time comparison

116

5.3.4 Reasons for Algorithm Performance

The ideas in the proposed entropy algorithm that make it perform better than

the SPARTAN and mpscan algorithms are:

• By simultaneously selecting scan flop and test point candidates, the tool can

evaluate the advantages of inserting a test point versus scanning a flip-flop

at each step and make a superior decision. This way a circuit with better

testability can be obtained by inserting less DFT hardware.

• Using the integer linear program solver enables the tool to select the best

candidate from a random selection of candidates when there are more than

one candidate with the same testability measure.

• We remove the bias caused by vector sampling, so that entropy becomes

a more accurate measure, and the quality of scan flip-flops and test points

chosen becomes better.

5.3.5 Summary of Partial Scan with Test Point Results

The proposed algorithm has a better FC than SPARTAN and mpscan. The

proposed idea has a slightly higher hardware overhead than the partial scan idea

of Khan et al., but very high overhead compared to mpscan. When compared to

the best average FC reported by Khan et al., which is their PS + TP2 idea, the

proposed entropy algorithm achieves higher FC with two-thirds of the incurred

overhead. Even though the average vector length for the proposed algorithm is

higher than that of the SPARTAN PS+TP1 and PS+TP2 ideas, since we insert

less DFT hardware than SPARTAN, we get TV reductions of 19.56% and 33.42%

and TAT reductions of 21.63% and 31.23%, over the SPARTAN PS+TP1 and

PS+TP2 ideas, respectively. More test hardware is inserted by the proposed

algorithm than by mpscan, so that a better V, TV and TAT are obtained for the

circuits. We achieve 32.62% TV reduction and 25.39% TAT reduction over the

mpscan algorithm.

117

Chapter 6

Implementation

The algorithm explained in the previous chapter has been implemented in the C

language and uses the Rutgers application programming interface (API) for netlist

parsing and modification. The algorithm reads in the netlist represented in the

rutmod netlist language and writes out a rutmod file of the circuit containing

DFT hardware that can be directly used for ATPG. When the circuit operates

in ILP mode, the data file has to be created, sent to the AMPL software and the

output file has to be read back. The following sections describe how these steps

are implemented.

6.1 Writing out the Data file

A data file has to be written, which can be used by AMPL to select a test-point

candidate or scan-flop candidate based on the testability measure. The data file

has to be syntactically correct so that AMPL can parse it without any error. The

syntax for the data file is provided by Gay et al. [24]. A sample data file can be

found in Appendix A. The following are the parameters used in the data file:

• gate: Set of all the logic gates present in the circuit

• flop: Set of all the flip-flops present in the circuit

• cycles: Each SCC in the circuit is represented by a cycle number. Para-

meter cycles represents the set of all cycle numbers of the SCCs present in

the circuit, with size greater than 1, that is, there are more than 1 flip-flops

in that SCC.

118

• L: Parameter representing the total number of logic gates present in the

circuit

• F: Parameter representing the total number of flip-flops present in the cir-

cuit

• nCycles: Parameter representing the total number of SCCs present in the

circuit

• E: Parameter representing the testability measure of each gate

• SCC: Parameter representing the set of flip-flops present in each SCC

• k: Parameter representing the DFT weight. It governs the amount of DFT

hardware being inserted into the circuit

The data file, “circuit.dat”, will be generated with the above parameters.

Whenever testability measures are recalculated, a new data file has to be gener-

ated.

6.2 Transferring Data and Output Files

After the data file is written out, it is sent to the AMPL software. The AMPL

software is installed on a PC while the code to generate the data file runs on a

Unix Workstation. Hence, we need to send the data file from the workstation to

the PC and the output file of AMPL from the PC to the workstation.

6.3 Secure Shell

Secure Shell or SSH is a network protocol that allows data to be exchanged

using a secure channel between two networked devices. SSH uses public-key

cryptography to authenticate the remote computer and allow the remote computer

to authenticate the user, if necessary. The following are some uses of SSH:

119

• For login to a shell on a remote host

• For executing a single command on a remote host

• For copying files from a local server to a remote host.

Another advantage of SSH is that is provides key-based authentication, which

is very helpful for automated file transfer between a server and a remote host,

as in this case. The data and output files have to be sent back and forth every

time a new candidate is selected and testability measures are recalculated. It is

not feasible for an administrator to enter a username and password for every file

transfer. Hence, we choose SSH to automate the file transfer.

6.4 Reading the Output File

The output file from the AMPL solver consists of five candidates. This file is

parsed to obtain the candidates and one best candidate is chosen depending upon

the testability measure being used. A typical output file is shown below, where Y

represents the gate being a flip-flop and X represents the gate being a logic gate.

: Y X :=

16 1 .

59 . 1

64 . 1

92 . 1

102 . 1

;

6.5 Summary

This chapter explains how the algorithm is implemented and how the ILP mode

is handled in the software. The data file required by the AMPL solver is created

and sent to AMPL using the secure shell. The secure shell is also used for firing

120

the AMPL solver to solve the model file using the data file. The output file

from AMPL is copied back to the host where the algorithm is being run. The

candidates from the output file are read and the best one is selected from among

them depending on the testability measure used. Secure shell is chosen because it

provides key-based authentication that is very helpful for automated file transfer.

121

Chapter 7

Conclusions and Future Work

In Chapter 3, we discussed the integer linear programming approach and the

formulation used by the algorithm to select the test point candidates. Chapter 4

explained the algorithm in detail including the various testability measures used

and provided a flow chart of the entire procedure. Chapter 5 discussed in detail

the various results obtained for various runs of the algorithm. Chapter 6 explained

the implementation of the algorithm. In this chapter we will conclude with the

importance of this work and look ahead to the future work.

7.1 Conclusions

This work has provided these original ideas:

• The first use of a combined algorithm to make the trade-off between insert-

ing a scan flip-flop and inserting a test point. Prior algorithms did these

operations in separate passes, with the result that they inserted unnecessary

test points and unnecessarily scanned flip-flops.

• The first use of entropy measures exclusively for test point and scan flip-flop

insertion. The prior methods relied on a combination of entropy measures

and spectral analysis.

• A novel way of calculating the statistical sample bias arising due to input

vector sampling and a method to remove the bias. Our bias removal im-

proves the algorithm performance greatly when compared to using biased

entropy as the testability measure. Shorter vector sequences can be used,

which greatly accelerates logic simulation.

122

• The second use of integer linear programming to select places in a circuit for

scanning flip-flops and the first use of it for inserting test points. Because

an integer linear program can find the optimal solution to a problem with

many millions of variables, this approach scales up to the size of circuits in

practical use today.

• Entropy derivative measures such as entropy gain and entropy differential

that account for both difficult-to-control and difficult-to-observe gates.

• A high speed bit-wise computation to multiply the 32×32 Hadamard matrix

with the output of each gate to calculate its spectral co-efficients. The

matrix multiplication is replaced with a bit-wise XNORing operation.

The algorithm can insert test points into a full-scan circuit or it can insert test

points and scan flip-flops into a partial scan circuit depending upon the need of

the user.

Full-scan with Test Points

On full-scan circuits, our method achieves a dramatic 40.05% TV reduction and

54.24% TAT reduction while acheiving 99.60% FC and 100% FE with 10% hard-

ware overhead on the ITC ’99 benchmark circuits. Our method also reduces the

time spent on TetraMAX ATPG by 90.24%. The following summarizes the best

mode for operating the algorithm to acheive the best result for each characteristic

of the circuit:

• For achieving the highest FC, the algorithm should be run in the Biased

Entropy mode.

• For achieving the highest FE, the algorithm should be run in the Overlapped

Spectra Mode 1.

• For achieving the shortest vector length, highest TV reduction and highest

TAT reduction, the algorithm should be run in the Accumulated Entropy

mode.

123

• For achieving the highest ATPG time reduction, the algorithm should be

run in ILP mode using Unbiased Entropy as the testability measure.

• The algorithm runs fastest when run in Multi TP mode.

Partial scan with Test Points

On partial scan circuits, our method achieves TV reductions of 19.56% and 33.42%

and TAT reductions of 21.63% and 31.23%, over the previous best SPARTAN

PS+TP1 and PS+TP2 partial scan ideas [35, 36, 37], respectively, on ISCAS ’89

benchmark circuits. We also get 32.62% TV reduction and 25.39% TAT reduction

over the mpscan algorithm [70]. Our method acheives the highest FC among the

above-mentioned methods and inserts less DFT hardware than SPARTAN but

more than the mpscan algorithm.

7.2 Future Work

Several ideas can easily be applied to this method to improve it further. The

designer can add a weight to each circuit line, which removes it from consideration

for test hardware when the weight exceeds certain limit. The greater the number,

the less likely the DFT algorithm is to insert DFT hardware on that line. This

drives the DFT hardware off critical paths, and forces the algorithm to position

DFT hardware on non-critical delay paths. This idea has been implemented in

the industrial version of the same algorithm as a product of the company Spectral

Design and Test, Inc.

Another improvement to the algorithm could be to add a fault simulator that adds

faults at each line and the algorithm can be made to select candidates based on

the number of faults that will be detected without needing to change the inputs

at PIs and thus reducing the TV and vector length.

To make the algorithm faster, the SCC forming routine can be replaced with a

faster algorithm such as Tarjan’s Algorithm [63], which uses only one DFS to visit

the nodes rather than using two DFS’s. This idea has been implemented in the

124

industrial version of the same algorithm as a product of the company Spectral

Design and Test, Inc.

The algorithm could insert control-to-0, control-to-1 and observe-only test points

into the circuit based on the probability values for each candidate. This can

reduce the hardware overhead incurred by test point insertion. This idea has

been implemented in the industrial version of the same algorithm as a product of

the company Spectral Design and Test, Inc.

The TPI algorithm could drive the control-to-0 and control-to-1 test points using

gates with high probability of logic 0 or logic 1, respectively. These test points

then need not be stitched into a scan-chain or they need not be driven from a

primary input.

125

References

[1] M. Abramovici, J. J. Kulikowski, and R. R. Roy. The Best Flip-Flops to
Scan. In Proc. of the Int’l. Test Conf., pages 166–173, 1991.

[2] V. D. Agrawal, K. T. Cheng, D. D. Johnson, and T. Lin. Designing Circuits
with Partial Scan. IEEE Design and Test of Computers, 5(1):8-15, March
1988.

[3] V.D. Agrawal. An Information Theoretic Approach to Digital Fault Testing.
IEEE Transactions on Computers, C-30, no. 8:582–587, August 1981.

[4] P. Ashar and S. Malik. Implicit Computation of Minimum-Cost Feed-
back Vertex Sets for Partial Scan and other Applications. In Proc. of the
ACM/IEEE Design Automation Conf., pages 77–80, 1994.

[5] G. Bell. Bell’s Law for the Birth and Death of Computer Classes. Commun.
of the ACM, 51(1):86–94, 2008.

[6] S. Bhawmik, C. J. Lin, K. T. Cheng, and V. D. Agrawal. Pascant: A Partial
Scan and Test generation System. Proc. of the Custom Integrated Circuits
Conf., pages 17.3.1–17.3.4, 1992.

[7] V. Boppana and W. K. Fuchs. Partial Scan Design Based on State Transition
Modeling. In Proc. of the Int’l. Test Conf., pages 538–547, 1996.

[8] S. Boubezari, E. Cerny, B. Kaminska, and B. Nadeau-Dostie. Testability
Analysis and Test Point Insertion in RTL VHDL Specifications for Scan-
Based BIST. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 18(9):1327–1340, Sept. 1999.

[9] F. Brglez, D. Bryan, and K. Kozminski. Combinational Profiles of Sequen-
tial Benchmark Circuits. In Proc. of the IEEE International Symposium on
Circuits and Systems, pages 1929–1934, vol. 3, May 1989.

[10] M. L. Bushnell and V. D. Agrawal. Essentials of Electronic Testing for Digi-
tal, Memory, and Mixed-Signal VLSI Circuits. Kluwer Academic Publishers,
Boston, 2000.

[11] S. Chakradhar, V. D. Agrawal, and S. Rothweiler. A Transitive Closure
Algorithm for Test Generation. IEEE Trans. on Computer-Aided Design,
12(7):1015–1028, July 1993.

126

[12] S. Chakradhar, A. Balakrishnan, and V. D. Agrawal. An Exact Algorithm
for Selecting Partial Scan Flip-Flops. In Proc. of the 31st ACM/IEEE Design
Automation Conference, pages 81–86, 1994.

[13] K. T. Cheng. Single-Clock Partial Scan. IEEE Design and Test of Comput-
ers, 12(2):24–31, 1995.

[14] K. T. Cheng and V. D. Agrawal. A Partial Scan Method for Sequential
Circuits with Feedback. IEEE Trans. on Computers, 39(4):544–548, April
1990.

[15] K. T. Cheng and C. J. Lin. Timing-Driven Test Point Insertion for Full-
Scan and Partial-Scan BIST. In Proc. of the Int’l. Test Conference, pages
506–514, Oct. 1995.

[16] V. Chickermane and J. Patel. An Optimization Based Approach to the
Partial Scan Problem. In Proc. of the Int’l. Test Conf., pages 377–386, Oct.
1990.

[17] V. Chickermane and J. H. Patel. A Fault Oriented Partial Scan Design
Approach. In Proc. of the Int’l. Conf. on Computer-Aided Design, pages
400–403, Nov. 1991.

[18] V. Chickermane, E. M. Rudnick, P. Banerjee, and J. H. Patel. Non-Scan
Design-for-Testability Techniques for Sequential Circuits. In Proc. of the
Design Automation Conference, pages 236–241, 1993.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. Boston: McGraw-Hill Book Company, 2006.

[20] F. Corno, P. Prinetto, M. Sonza Reorda, and M. Violante. Exploiting Sym-
bolic Techniques for Partial Scan Flip-Flop Selection. In Proc. of the IEEE
Design, Automation, and Test in Europe Conf., pages 670–677, 1998.

[21] S. Davidson. ITC ’99 Benchmark Circuits - Preliminary Results. In Proc. of
the International Test Conference, pages 1125–1125, 1999.

[22] S. K. Devanathan, O. I. Khan, and M. L. Bushnell. PROR Compaction
Scheme for Larger Circuits and Long Vector Sequences. Unpublished. 2007.

[23] J.A. Dussault. A Testabilty Measure. In Proc. of IEEE 1978 Semiconductor
Test Conf., pages 113–116, October 1978.

[24] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language
for Mathematical Programming. Boston, Massachusetts: Boyd and Fraser
Publishing Company, 1993.

[25] P. Goel. An Implicit Enumeration Algorithm to Generate Tests for Combi-
national Logic Circuits. IEEE Transactions on Computers, 30(3):215–222,
March 1981.

127

[26] L. H. Goldstein and E. L. Thigpen. SCOAP: Sandia Controllabil-
ity/Observability Analysis Program. In Proc. of the Design Automation
Conference, pages 190–196, June 1980.

[27] R. Gupta, R. Gupta, and M. A. Breuer. The BALLAST Methodology for
Structured Partial Scan Design. IEEE Trans. on Computers, 39(4):538–544,
April 1990.

[28] K. Heragu, V. D. Agrawal, and M. L. Bushnell. Fault Coverage Estimation
by Test Vector Sampling. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 14(5):590–596, May 1995.

[29] M. S. Hsiao, G. S. Saund, E. M. Rudnick, and J. H. Patel. Partial Scan
Selection Based on Dynamic Reachability and Observability Information. In
Proc. of the Int’l. Conf. on VLSI Design, pages 174–180, 1998.

[30] V. Iyengar and D. Brand. Synthesis of Pseudo-Random Pattern Testable
Designs. In Proc. of the Int’l. Test Conf., pages 508–601, Aug. 1989.

[31] S. K. Jain and V. D. Agrawal. Statistical Fault Analysis. IEEE Design and
Test of Computers, 2(1):38–44, Feb. 1985.

[32] N. Jiang, R. M. Chou, and K. K. Saluja. Synthesizing Finite State Machines
for Minimum Length Synchronizing Sequences Using Partial Scan. In Proc.
of the IEEE Int’l. Fault-Tolerant Computing Symp., pages 41–49, 1995.

[33] P. Kalla and M. J. Ciesielski. A Comprehensive Approach to the Partial
Scan Problem Using Implicit State Enumeration. In Proc. of the IEEE Int’l.
Test Conf., pages 651–657, 1998.

[34] P. Kalla and M. J. Ciesielski. A Comprehensive Approach to the Partial
Scan Problem Using Implicit State Enumeration. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 21(7):810–826, 2002.

[35] O. Khan, M. L. Bushnell, S. Devanathan, and V. D. Agrawal. SPARTAN:
A Spectral and Information Theoretic Approach to Partial Scan. In Proc. of
the 16th IEEE North Atlantic Test Workshop (NATW), pages 19–25, May
2007.

[36] O. Khan, M. L. Bushnell, S. Devanathan, and V. D. Agrawal. SPARTAN:
A Spectral and Information Theoretic Approach to Partial Scan. In Proc. of
the Int’l. Test Conf. (ITC), pages 21.1.1–21.1.10, Oct. 2007.

[37] O. I. Khan. Spartan: A Spectral and Entropy-based Partial-scan and Test
Point Insertion Algorithm, 2007. Ph.D. Diss., Electrical and Computer En-
gineering Dept., Rutgers University.

[38] K. Kim and C. Kime. Partial Scan by Use of Empirical Testability. In Proc.
of the IEEE Int’l. Conf. on Computer-Aided Design, pages 314–317, 1990.

128

[39] B. Krishnamurthy. A Dynamic Programming Approach to the Test Point
Insertion Problem. In Proc. of the 24th ACM/IEEE Design Automation
Conf., pages 695–705, June, 1987.

[40] A. Kunzmann and H. J. Wunderlich. An Analytical Approach to the Partial
Scan Design Problem. J. of Electronic Testing: Theory and Applications,
1(22):163–174, 1990.

[41] D. Lee and S. Reddy. On Determining Scan Flip-Flops in Partial-Scan De-
signs. In Proc. of the Int’l. Conf. on Computer Aided Design, pages 163–174,
1990.

[42] H. C. Liang and C. L. Lee. Effective Methodology for Mixed Scan and Reset
Design Based on Test Generation and Structure of Sequential Circuits. In
Proc. of the 8th IEEE Asian Test Symp., pages 173–178, 1999.

[43] X. Lin, I. Pomeranz, and S. M. Reddy. Full Scan Fault Coverage with Partial
Scan. In Proc. of the IEEE Design Automation and Test in Europe (DATE)
Conf., pages 468–472, 1999.

[44] R. Mester and U. Franke. Spectral Entropy-Activity Classification in Adap-
tive Transform Coding. IEEE J. of Selected Areas in Communications, 20,
no. 5:913–917, June 1992.

[45] G. E. Moore. Cramming More Components onto Integrated Circuits,
Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114.
Solid-State Circuits Newsletter, IEEE, 20(3):33–35, Sept. 2006.

[46] F. Muradali and J. Rajski. A Self-Driven Test Structure for Pseudorandom
Testing of Non-Scan Sequential Circuits. In Proc. of the VLSI Test Sympo-
sium, pages 17–25, 1996.

[47] S. Narayanan, R. Gupta, and M. A. Breuer. Optimal Configuring of Multiple
Scan Chains. IEEE Trans. on Computers, 42(9):1121-1131, Sept. 1991.

[48] T. Niermann and J. Patel. HITEC: A Test Generation Package for Sequential
Circuits. In Proc. of the European Conf. on Design Automation (EDAC),
pages 214–218, Feb. 1991.

[49] P. S. Parikh and M. Abramovici. Testability-Based Partial Scan Analysis. J.
of Electronic Testing: Theory and Applications, 7(11):47–60, August 1995.

[50] I. Park, D. S. Ha, and G. Sim. A New Method for Partial Scan Design
Based on Propagation and Justification Requirements of Faults. In Proc. of
the Int’l. Test Conf., pages 413–422, Oct. 1995.

[51] S. Park. A Partial Scan Design Unifying Structural Analysis and Testabili-
ties. Int’l. J. on Electronics, 88(12):1237–1245, Dec. 2001.

129

[52] K. P. Parker and E. J. McCluskey. Probabilistic Treatment of General Com-
binational Networks. IEEE Trans. on Computers, 24(6):668–670, June 1975.

[53] E. M. Rudnick, J. H. Patel, G. S. Greenstein, and T. M. Niermann. A
Genetic Algorithm Framework for Test Generation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 16(9):1034–1044,
Sep 1997.

[54] G. S. Saund, M. S. Hsiao, and J. H. Patel. Partial Scan beyond Cycle
Cutting. In Proc. of the IEEE Int’l. Symp. on Fault-Tolerant Computing,
pages 320–328, 1997.

[55] B. Seiss, P. Trouborst, and M. Schulz. Test Point Insertion for Scan-Based
BIST. In Proc. of the European Test Conf., pages 253–262, April 1991.

[56] S. C. Seth and V. D. Agrawal. A New Model for Computation of Probabilis-
tic Testability in Combinational Circuits. Integration, the VLSI Journal,
7(1):49–75, April 1989.

[57] R. Sethuram, S. Wang, S. T. Chakradhar, and M. L. Bushnell. Zero Cost
Test Point Insertion Technique for Structured ASICs. In Proc. of the Int’l.
Conf. on VLSI Design, pages 357–363, Jan. 2007.

[58] R. Sethuram, S. Wang, S. T. Chakradhar, and M. L. Bushnell. Zero Cost
Test Point Insertion Technique to Reduce Test Volume and Test Generation
Time for Structured ASICs. In Proc. of the Asian Test Symp., pages 339–348,
Nov. 2006.

[59] C. E. Shannon. A Mathematical Theory of Communication. Bell System
Technical Journal, 27(2):379–423 and 623–656, July and October 1948.

[60] S. Sharma and M. Hsiao. Combination of Structural and State Analysis for
Partial Scan. In Proc. of the Int’l. Conf. on VLSI Design, pages 134–139,
Jan. 2001.

[61] S. E. Tai and D. Bhattacharya. A Three Stage Partial Scan Design Method
to Ease ATPG. J. of Electronic Testing: Theory and Applications (JETTA),
7(11):95–104, Nov. 1995.

[62] N. Tamarapalli and J. Rajski. Constructive Multi-Phase Test Point Insertion
for Scan-Based BIST. In Proc. of the Int’l. Test Conference, pages 649–658,
Oct. 1996.

[63] R. E. Tarjan. Data Structures and Network Algorithms. Society for Indus-
trial and Applied Mathematics, Philadelphia, 1983.

[64] K. Thearling and J. Abraham. An Easily Computed Functional Level Testa-
bility Measure. In Proc. of the Int’l. Test Conf., pages 381–390, Oct. 1989.

130

[65] N. Touba and E. J. McCluskey. Test Point Insertion Based on Path Tracing.
In Proc. of the VLSI Test Symp., pages 2–8, April, 1996.

[66] E. Trischler. Incomplete Scan Path with an Automatic Test Generation
Methodology. In Proc. of the Int’l. Test Conf., pages 153–162, Oct. 1980.

[67] H. C. Tsai, K. T. Cheng, C. J. Lin, and S. Bhawmik. An Efficient Test Point
Selection for Scan-Based BIST. IEEE Trans. on VLSI Systems, 6(4):667–
676, Dec. 1998.

[68] H. J. Wunderlich and S. Hellebrand. The Pseudo-Exhaustive Test of Sequen-
tial Circuits. In Proc. of the Int’l. Test Conf., pages 19–27, Oct. 1989.

[69] D. Xiang and J. H. Patel. A Global Partial Scan Design Algorithm Using
Circuit State Information. In Proc. of the IEEE Int’l. Test Conf., pages
548–557, October 1996.

[70] D. Xiang and J. H. Patel. Partial-Scan Design Based on Circuit State Infor-
mation and Functional Analysis. IEEE Trans. on Computers, 53(3):276-287,
March 2004.

[71] D. Xiang, S. Venkataraman, W. K. Fuchs, and J.H. Patel. Partial Scan
Design Based on Circuit State Information. In Proc. of the ACM/IEEE
Design Automation Conf., pages 807–812, June 1996.

[72] D. Xiang, Y. Xu, and H. Fujiwara. Non-Scan Design for Testability for
Synchronous Sequential Circuits Based on Conflict Resolution. In Proc. of
the Int’l. Conf. on Computer Aided Design, pages 400–403, November 1991.

[73] W. Yang and J. D. Gibson. Coefficient Rate and Significance Maps in Trans-
form Coding. In Record of the Thirty-First Asilomar Conf. on Signals, Sys-
tems and Computers, volume 2, pages 1373–1377, November 1997.

[74] W. Yang and J. D. Gibson. Spectral Entropy, Equivalent Bandwidth and
Minimum Coefficient Rate. In Proc. of the Int’l. Symp. on Information The-
ory, page 181, June-July 1997.

131

Appendix A

Entropy User Guide

The algorithm is invoked by the following command line:

entropy [–a input file name] [–d file name] [–c file name] [–l file name]

[–v] [–s value] [–t value] [–p value] [–w value] [–u value] [–f] [–r file name]

[–q value] [-k beta] [–h] [–g] [–z value] [–i mode] [–b file name] [–o file name]

[–x value] [–y value]

The options in the tool are explained below:

Option Definition

–a Name of the input file name

–d Name of the netlist file name for ATPG, with the DFT

hardware inserted.

–c Name of the constraints file name

–l Name of the library file name

–v Tells the parser that the input is in verilog format

–s Floating point value indicates the percentage of flip-flops

to be scanned. The range is from 0.0 to 1.0 with a default

value of 0.5.

–t Integer value indicates the number of test points that can

be inserted. value should not be greater than total the

number of logic gates in the netlist and the default value

is 50.

132

Option Definition

–p Floating point value indicates the percentage of total

DFT sites that can be test points. The range is from 0.0

to 1.0 with a default value of 0.5.

–w Integer value indicates the number of vectors that will be

used to initialize the circuit by logic simulation. The

default value is 51200.

–u Integer value indicates the number of vectors that will be

used to update the entropies of the circuit by logic

simulation. The default value is 512.

–f If present, causes all the flip-flops to be scanned and the

tool to run in full-scan mode. Otherwise, the tool runs in

partial-scan mode.

–r Name of the results file name. By default, the results

are printed on stdout.

–q Interger value to unbias the probability values from

pseudo-random vector logic simulation. Unbiasing greatly

improves the performance of the tool by reducing the

number of test vectors.

–k Interger beta to calculate the unbias for the probability

values from pseudo-random vector logic simulation.

–h If present, uses entropy gain as the testability measure.

–g If present, operates in gradient descent mode, otherwise,

operates in LP mode.

–z Floating point value indicates the entropy threshold value,

if all the gates in the circuit have higher entropy than this

value, then the tool terminates. The range is from 0.0 to

1.0 and default is 1.0.

–i mode indicates the spectral mode of operation.

133

Option Definition

–b LP data file name that should be sent to the AMPL.

–o LP output file name that should be copied from the

AMPL.

–x Floating point value indicates the penalty of inserting a

test point in the LP cost function. The range is from 0.0 to

1.0 and the default is 0.95.

–y Floating point value indicates the penalty of scanning a

flip-flop in the LP cost function. The range is from 0.0 to

1.0 and the default is 0.95.

