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Value-added models (VAMS) are becoming increasingly popular within
accountability-based educational policies as they purport to separate out the effects of
teacher and schools from student background variables. Given the fact that evaluations
based on the inappropriate use of VAMs would significantly impact students, teachers
and schools in a high-stake environment, the literature has advocated empirical
evaluations of VAM measures before they become forma components of accountability
systems. The VAM labdl is attached to a number of models, which range from simple to
highly sophisticated models. However, in practice, educators and policymakers are often
being misled into believing that these approaches give nearly identical results, and
making decisions without understanding the strengths and limitations of these models.
In addition, the empirical evaluationsto date have shown that the VAM measures of
teacher effects are sensitive to the form of the statistical model and to whether and how

student background variables are controlled.

This study proposes a multivariate joint general VAM to investigate the issues



raised by the applications of al the currently prominent VAMSs, which can be seen as
restricted cases of this general model. The general model provides a framework for
comparing the restricted models and for evaluating the sensitivity of VAM measures
(e.g., teacher and school effects) to the model choice. Markov chain Monte Carlo
agorithm is used in a Bayesian context to implement both the general and the restricted
models.

A simulation study was conducted to investigate the feasibility and robustness of
the general model when the data were generated under varying assumptions. For each
condition, three consecutive years of testing scores were generated for 400 students
grouped into 16 classes. Real data consisting of three years of longitudinally linked
student-level data from alarge statewide achievement testing program were also
analyzed. The results show that the proposed general model is more robust than other
models to different assumptions and the inclusion of the background variable has
significant impact on some models when the school/class has an unbalanced mix of

advantaged and disadvantaged students.
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CHAPTER 1

INTRODUCTION
Background

Written with the intention and spirit of ensuring all children are reached by
America’s public schools, No Child Left Behind (NCLB) is the federal government’s
mandate that all students are considered proficient by 2014 in reading/language arts
and mathematics. The law outlines and requires a scientific and systematic approach to
achieving reform and improvement in all areas of school life. To garner compliance,
each school receiving Title 1 funding must devel op and adopt assessments and
procedures to evaluate the annual performance of schools at the state widelevel ona
variety of indicators, the most important of which is academic (Henderson-Montero,
2003). Harsh sanctions are imposed for failure to make steady, demonstrable progress
toward improving student achievement (Wanker, 2005).

At the heart of NCLB is the development, at the state level, of content standards
linked to assessments for reading/language arts and mathematics. There are 40 key
requirements of No Child Left Behind, the most highly publicized and debated is
Adequate Y early Progress (AY P), which required states to start testing studentsin
grades 3 through 8 in mathematics and reading/language arts by the 2005-2006 school
year, and reach 100% proficiency by 2013-2014 (Wanker, 2005).

But though NCLB has been promoted, in part, asaway of equalizing better-off,
predominately white schools with low-income, largely minority ones, it provides no
methods for improving schoolsthat are lagging. Nor doesit identify the teachers who
are most effective-who deserve recognition and whose skills should be emulated. A

major criticism of NCLB isthat it mandates student achievement without offering



methods for obtaining it (Carey, 2004). Due for reauthorization, many experts are
recommending the addition of value-added assessment (VAA) to the new legislation as
away to track growth of each student since one of the greatest criticisms of AYPis
that it aims for a goal with no commitment to growth (Barton, 2004). The proponents of
value-added modeling call its results fairer and more accurate than those produced by
AY P, which is currently based entirely on standardized test scores.
Value-Added Modeling

Value-added modeling (VAM), aso known as VAA, is amethod of measuring
student academic progress over time even after the proficient level has been reached.
“Value-added assessment system” does not refer to one particular test format. Rather,
value-added refers to any one of several models that are used to interpret test scoresin a
way that evaluates the growth or progress in a student’s academic achievement over
time, usually over several academic years (Rubin, Stuart, & Zanutto, 2004).
History of VAM

Developed by Tennessee statistician Dr. William Sanders, value-added was first
used in the field of agriculture genetics. Learning of the controversies in public
education in the early 1980’s, Sanders and his group felt they could actually apply
their knowledge to education and showed that growth modeling was a great
improvement over a single cut-score on a standardized test. Appealing directly to the
governor of Tennessee, Sanderswas awarded rights to assessment results of students
in Knox County Schools and was able to simultaneously measure teaching and student
effects using previous test results.

Relying on pilot studies that Sanders and his colleagues conducted on the value-

added model during the 1980s, the Tennessee legislature embraced the mode asits



methodology of choice for measuring the performance of students, teachers, schools,
and school systems. The legislation defines the Tennessee Vaue-Added Assessment
System (TVAAS) as a “statistical system for educational outcome assessment which
uses measures of student learning to enable the estimation of teacher, school, and school
district statistical distributions.” (Kupermintz, 2003) TVAAS becomes the centerpiece
of an ambitious educational reform effort implemented by the Tennessee Education
Improvement Act of 1992. Since then TVAAS has been credited with leading to the
implementation of value-added assessment systems in states, districts, and nationwide
(Carey, 2004; Hershberg, Simon, & Lea-Kruger, 2004; Kupermintz, 2003).
Recently, morethan adozen states, including Colorado, California, Florida,

Ohio, New Y ork, Pennsylvania and Michigan are studying, and in some cases, applying
value-added modeling. The U.S. Department of Education has accepted applications
from up to ten states to meet their part of their AY P with value-added modeling.
Beginning in the fall of 2006, the AYP in those states’ schools is calculated by using
both the new progress method and the usual standardized tests.
VAM versus Smple Growth Scores

The concept of an assessment that measures a student’s achievement growth over
several years, commonly known as longitudinal assessment, has long existed in
education (Goldschmidt, Choi, & Martinez, 2003). However, value-added assessment
represents an approach to evaluating student achievement growth that is distinct from
traditional growth models. Currently, schools that miss AY P, those missing by a small
amount along with those missing by a large amount, are both labeled as “failing”
regardless of any demonstrable progress. Growth models help move beyond the current

“blame game” and instead highlight areas in need of improvement regardless of whether



or not the school is aready strong (Gooden & Nowlin, 2006). VAM can be considered
as aspecia growth model because it measures the individual progress of schools and
students. A growth score is typically calculated as the difference between a student’s
scores for the current year and the previous year. VAM is more statistically complex
because it isintended to separate out the non-educational factors, such as student’s
demographics and socio-economic status (SES). Once these factors are isolated, their
impact is removed from the measure of the student’s achievement growth. Then, the
student’s true achievement growth can be attributed to the educational practice of the
district, school and teacher (Drury & Doran, 2004; Hershberg et a., 2004; McCaffrey et
al., 2003). Therefore, from the VAM’s perspective of view, schools would give credit
for increasing student achievement, even when their AY P is missed.
More Applications of VAM

VAM holds great promise because it claims to separate out the school effect, the
teacher effect, and the student’s own effect that together contribute to student progress.
It isthe highly interactive relations between these effects that make VAM so attractive.
Researchers also believe growth information can be instructional in improving practice.
V alue-added measures can provide valuable information about the effects of curriculum,
instructional techniques and other instructional practices. Using the data, teachers and
administrators can determine areas of success and improvement and work to best meet
the needs of their students. In addition, administrators can analyze the data and target
professional development for staff, or use it as the basis for school improvement plans
(Hershberg, Simon, & Lea-Kruger, 2004). The same datafrom VAM can aso provide
principals with valuable information for assigning students to specific teachers. From

the data results, teachers, gradelevels, groups of students (learning disabled or gifted)



can be identified and then a precise match between the teachers’ individual strengths
and the students’ needs can be achieved (Hershberg et al., 2004). Certain value-added
measures can also be used to evaluate teacher preparation programsin public
universities. Berry and Fuller (2006) have researched aValue-Added Teacher
Preparation Program Assessment Model that has the capacity to connect growth in

student learning to public university teacher preparation programs.

Statement of the Problem

The “value-added modeling” label is attached to a number of models, which range
from being roughly simplistic to very sophisticated. Differences among these models
stem from the efforts by statisticians to resolve various technical problems. None of the
models can solve all the technical problems and no single approach has been proved
superior to any other. At this point, even the experts on these models have no
agreement on the appropriateness of each model. However, in practice, educators and
policy makers are often being misled into believing that these approaches give nearly
identical results and making decisions without understanding their strengths and
limitations. Evaluations based on the inappropriate use of VAM would significantly
impact students, teachers and schools in a high-stake environment. Thus, the literature
has advocated empirical evaluations of VAM measures beforethey become formal
components of accountability systems or are used to inform high stakes decisions
about teachers and students (Braun, 2005; McCaffrey, Lockwood, Koretz, Louis, &
Hamilton, 2004). The empirical evaluations to date have considered the sensitivity of
VAM measures of teacher effectsto the form of the statistical model (McCaffrey,
Lockwood, Mariano, & Setodji, 2005; Rowan, Correnti, & Miller, 2002) and to
whether and how student background variables are controlled (Ballou, Sanders, &

Wright, 2004; McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 2004). Lockwood



et a. (2007) considered the sensitivity of estimated VAM teacher measures to two
different subscales of a single mathematics achievement assessment.

Although the studies above have yielded results that are meaningful in practice,
the different approaches provide partial and fragmented answers only to the problem
of interest, and are inevitably affected by the limitations of the methods involved.
Moreover, the test data used in each study are different, making it difficult to attribute
the results to either the methods or the data examined. Therefore, it might be
Inappropriate to consolidate their findings to be a systematic whole. This dissertation
aims to provide more systematic and thorough investigation on the sensitivity of the
VAM results to different methods through a general model approach.

McCaffrey et a. were concerned with creating a system for classifying VAM
models as a means of specifying the conditions under which one or another would be a
valid methodology. They were concerned with creating a system for classifying VAM
models as a means of specifying the conditions under which one or another would be a
valid methodology. Their approach was aso to specify a general model, and then show
how different models suggested by themselves or others would be special cases of this
general model.

Asthe most complex specia case of the McCaffrey et a. general model, the
variable persistence model (Lockwood et al., 2004) poses computational challenges that
render likelihood methods practically infeasible for all but small data sets. To address
this problem, Lockwood et al. propose a Bayesian formulation of the variable
persistence model that scales well to the extremely large and complex data sets that
challenge aternative approaches to parameter estimation. Another contribution of their

study is that their formulation includes an extension to jointly modeling outcomes from



multiple tested academic subjects (e.g., mathematics and reading) in each year, which
has been proven to provide higher quality parameter estimates.

Inspired by both McCaffrey et al.’s study and Lockwood et al.’s study, this work
proposes a multivariate joint general VAM model to investigate the issues raised by the
application of al the currently prominent VAM models, which can be seen as restricted
cases of this general model. The general model provides a framework for comparing the
restricted models and for evaluating the sensitivity of VAM measures (e.g. teacher
effect, school effect) to the model choice. The general model is estimated under the
Bayesian framework. Although the less complex restricted models other than the
variable persistence model could have been estimated using maximum likelihood
method, al the restricted models are estimated using MCM C agorithm under Bayesian
framework for comparability purposes. That is, by using same estimation method we
can attribute the differences we observed on the differences in model specifications

rather than the difference in the estimation methods.



CHAPTER 2
LITERATURE REVIEW

This chapter is organized as follows: Section | provides an overview of the
theoretical ground of VAM. Section Il identifies the most important problems existing
inthe VAM application. Section |11 presents athorough review of several principle
existing VAM models, comparing their underlying assumptions, model specifications,
strengths, weaknesses and potential problemsin their use. Finally, section IV explores
the possibility of more general VAM approaches to evaluate the school/teacher effect by
summarizing the major factors that influence the features of different VAM methods
and several empirical studiesin thisdirection are discussed.

An Overview of the Theoretical Ground of VAM

The question of how to evaluate school and teacher effectivenessis fundamental
to educational policy and practice. Our common practice is to compare schools or
teachers by comparing unadjusted mean levels of achievements or the percent of
students in a school or class who are classified as proficient. AsBallou, Sanders, and
Wright (2004) note, it is unfair to hold schools accountable for mean achievement levels
when students enter those schools with large variances in achievement. Moreover,
changes in mean achievement at the school level may have little relation to instructional
effectivenessif the mobility of students across schoolsis remarkable.

There isacommon agreement in the VAM literature is that the contributions of
school and teacher to student learning be estimated. The literature advocates that we
should compare schools or teachers by comparing their “value added” to student
learning gains rather than by comparing the mean level achievement. The value-added
philosophy isto hold schools and teachers accountable for the learning gains of students

they serve. The philosophy seems simple, but the underlying technique details are



numerous. The foremost question that should be clarified is: “What are VAMs trying
to estimate?” Raudenbush (2004) endeavored to answer this question from a potential
outcomes view.

The student’s potential outcomes would be a function of pre-assigned student
characteristics, S, random error, e , and two aspects of schools. school context, C,
which contains the social environment of the school and the social composition of the
school, and school practice, P. What is the interested by the policymakers and district
officialsis the component P , over which the school leaders and teachers have direct
influence. Although school administration and teacher instruction have no or little
direct influenceon C, Cand P arehighly correlated factors.

According to Raudenbush and Willms (1995), the first or Type A effect isthe

difference between a child’s potential outcome in school j and that child’s potential
outcomesinschool j . TypeA effect is expected to be estimated from the experiment

in which the students having acommon S are randomly assigned td school jor j .
With the assumption of randomization, the expected estimate of the difference between
two schools would depend onlyon C, P, C', P . In contrast, the Type B effect isthe

difference between student i ’s potential outcome in school j when school practice P,
isin operation and when school practice P, isin operation. As Raudenbush and

Willms point out, it does not seem to be possible to separate teacher and school effects
using currently available accountability data. Therefore, “VVAM are best aimed at
assessing the Type A effect defined as combined effects of context and practice at the
classroom and school levels. A useful way to do so is to view each student as possessing

a smooth trajectory that would describe that students’ growth if that student encountered
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average teachers and schools. The Type A effect in any year isthen defined as a

deflection from this expected curve” (Raudenbush & Willms, 1995, p. 124).

The figure shown in Raudenbush (2004) displayed the fundamental idea of VAM
from a potential outcomes view. There is a hypothetical student’s expected trajectory

from time point t to t+2 given “average” schools and teachers. If instead, this student

has an above (or below) average observed score Y,!) . The difference between the

observed and expected score Y, — Y is associated with the attendance in school j .

Therefore, the student’s gains over years can be partitioned into two parts: the part
attributed to student’s own expected gain and the part attributed to the school or teacher
effect.
Major Issues Arising from the Use of VAM

As mentioned in the previous section, there are a number of different modelsin
use in different accountability systems. Differencesin the models stem from efforts by
researchers to resolve the various technical problems that have arisen in thisfield.
Before reviewing and assessing some of these models, this section will first identify the
most important problems raised by the use of VAM to estimate school or teacher effect.

Thefirst, and perhaps most significant problem, isthat the students are not
randomly assigned to schools or teachers. The characteristics of students and
communities are correlated with classrooms and schools. That is, for example, the most
effective teachers tend to be able to select their assignments (Gol dhaber, 2004;
Hibpshman, 2004b), and as aresult are more likely to have highly motivated students. It
is difficult to determine whether the higher average levels of achievement of their
studentsis due to teacher’s instruction, or to the highly motivated students they teach.

The second problem has to do with the uncertainty about which variables are
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important to the models. Educators, researchers and policymakers have long been
recognized that schooling is only one of many factors that affect student learning. The
numerous family background characteristics and social environment factors are al'so
strong predictors of student achievement. Shkolnick et al. (2002) showed that
background characteristics predict gains for some population. However, their
relationship with growth or gains measured by VAM has not been explicitly defined.
McCaffrey et a. (RAND; 2003) stated that these characteristics variables could be
confounded with the teacher effects and therefore bias estimates of teacher effects, and
the question of whether it is necessary to include these variables in the model has been
an important point of debate inthe VAM literature.

The third problem isthat of the complexity of the models. Researchers are interested
in determining how much difference thereisin the effect scores produced by the simpler
and more complex models. Some researchers note that considerations that may have
importance in theory may make little difference in a practical sense, and if asimpler
model produces results comparable to more complex models, it may be preferable
because of itsintuitive appeal. On the other hand, some researchers believe the benefits
of using a complex model because they believe the important issues, which can affect the
evaluation of school or teacher effectiveness, need to be addressed by more advanced
models. For example, the key feature of longitudinal achievement datafor modeling
teacher contributions to student achievement is the sequentia regrouping of studentsinto
different classrooms with different teachers. The results in data where students who are
nested under a common teacher for one measurement are not nested together for another
measurement. Moreover, scores for students who share a common teacher at one point in

time might continue to be positively correlated at subsequent test administrations. The
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resulting model structures necessary to accommodate these compl exities are known as
“multiple-membership” models (Browne, Draper, Goldstein, & Rasbash, 2002; Rasbash
& Browne, 2002) because individual scores depend on the effects from multiple
“members” of the grouping units (e.g., past and current teachers).

The various models will be reviewed in the following section are designed in
response to one or more of these problems. However, none of the models solves all of
these problems.

Review of the Principal Existing VAM Models

Several major existing models are reviewed in this section. They are gain
score (GS), covariant adjustment (CA), layered (LA), cross-classified (CC), and
persistence (PS) model. The GS and CA model are considered more generic and
more widely used than the other models. The GS and CA model have been referred
to as “single wave” or “univariate” models, as they only use two points in time. The
CC, LA and PS models all utilize more than two points in time and they have been
referred to as “multiple wave” or “multivariate” approaches.

CA Modd

In the CA model (Rowan, Correnti, & Miller, 2002; Diggle, Liang, & Zeger,
1996; Meyer, 1997), prior scores are used as the covariant in the model, with the
current score as a function of prior year score and is linked to only the current

teacher. Student i’s scoreat the gth grade is modeled as follows:

yig ::ug+ﬂgxi +7/ilgzig +7}yig—1+eg+€ig (1)
where the 6, denotes the grade g teacher effect of the current teacher, which is

measured by the deviation in class-level mean from the overal system mean. The



13

X, and z, aretime invariant and time varying covariates for student i . The time

invariant variables include student-level covariates such as gender and ethnicity.
The time varying variables may include family income and testing circumstances.

The teacher effect 0, is considered either fixed or random normal with mean zero
and variance, cng . B, and y,, arevectorsthat contain the coefficients associated with

the student’s background variables. The ¢, areiid. N(O, afg) residual error terms.

The residuals across years are assumed to be independent of each other. That is,

Corr (& gi'g) =0 for g= g'. This assumption avoids the biased estimates of fixed

ig?
effects by the standard mixed model estimation due to the correlation between the
covariates and the residual error term.

Assuming the current teacher effect is the random effect, the expectation and
variance conditional on the observed covariates and previous year’s score, y,, , , are
E(Yig) =ty + By% + ]/i‘gzig + WY and Var(y, ) = 0929 + Ufg .

The advantages of this approach are that 1) it is simple to understand and easy
to use; 2) it can model the effects of previous year’s experiences; and 3) previous
year’s teacher effects are estimated, not assumed. The disadvantages of this
approach arethat 1) it ignores student performance information from prior years; 2)
students transfer or retain in grade are excluded; 3) there isno statistical
adjustment for student ability; and 4) it does not take measurement error into
account.

GS Moded

The GS model is a specia case of the CA model, which specifies gain score
between two adjacent years as a function of the covariates and the current year

teacher/school effect (Rowan et a., 2002; Shkolnik, Hikawa, Suttorp, Lockwood,
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Stecher, & Bohrnstedt, 2002). Let d,, =y, — V,,_,, the model for grade g gains is

dy =36, + By% +y;gzig+eg+gig (2)

The coefficient 5, denotesthe mean gainingrade g. The random teacher effect and
residual error terms follow the same assumptions as the CA model. Setting y =1 and
moving y,,_, from theright side to the left side of Equation (1), the CA model becomes

the GS model. The GS model has all the disadvantages of the CA model, but it issimple
and easy to understand.
CC Model

Raudenbush and Bryk(2002) develop the CC model that explicitly specifies the
cross-grade correlations and the effects of the multiple years of teachers on student
scores. Moreover, they consider random linear growth trgjectories for students. The CC

model for student i scoreingrades g is

9
yig :ﬂ+g]/+ﬂi +g7/i +zl//igeg +gig (3)
0

For example, the student i ” s scoresin grades0to 3 are
Yo =M+ 1 +W 00, + &
Vao=pm+y+u+y +¥ 0, +v,b, + &,
Yio = U+ 2y + 1 + 2y W00 + 0, + .0, + &,
Vs =1+ 3y +p + 3y, 00, v 0, + v ,0, + 0, + &5
The trend of the overall mean for each grade isdenoted by 1+ gy . The esare

assumed to be i.i.d. normally distributed random variables with mean zero and variance
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o’ . Theteacher effects @'s are assumed to be independently, normally distributed with
aconstant variance across years. The y, measures the proportion of grade O education

provided to student i by teacher j.Each student’s growth over gradesis modeled with

alinear trend y,, = u+ gy + g, + gy, and the random intercepts and slopes are assumed

normally distributed with mean zero and variance ¢, and 2, and covariance z, .

The CC model fitted by Rowan et a. (2002) included time-varying covariates for
participation in educational programs, (e.g., specia education) and age. Their model
also included time-invariant covariates for student ethnicity, family structure and
socioeconomic status. The random effect included in their model was school effect

rather than teacher effect. In this model, the score for the i th student in school | at time

t, Yy .isgivenby y, =a+ B+ & +a, + ft+ay + Bt + Xy + Oy + -t Oy +

where aj and f; arethe random intercept and slope for the school; «; and g, arethe

random intercept and slope for the student; x.. denotes a vector of student

ijt
characteristics, some of which might vary over time; 6,;, and 6, ;, arethe effects for

the student’s teachers at testing times1to t; and ¢, isaresidual error term. Thus,

ijt

scores are model's by a common quadratic function of time o + £t + 5t plus school-

specific and student-specific random linear time trends. The model assumes no

variability in the nonlinear component of the model, implicitly, any variationin ¢ is
captured in the residual error term. A teacher effect, 6, ;,, is added for each year and

these effects remain in the model undiminished at the future tests, which is why the
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model for the score at time t includestermsfor all previous teachers. Rowan et al.
acknowledge that the 6, ;, are residual classroom effects, although they are referred to
as teacher effects.
LA Model

LA model, also called TVAAS, was devel oped by Sanders, Saxton and Horn (1997)
to account for the complicated linkage of students to teachers or schools over time, and
the correlation of future scores for students who shared a common past teacher or in a
same school, which was referred to as cross-classified or multiple member ship. Itis
called the layered model because the model for later years adds layers to the model for

earlier years. The model for student i scoreingrade g is
g
yig = /Jg + zl//iggg + gig (4)
0

Therefore, the student i scoresingradeOto 3is
Yio = Mo +Vi00y + Eig
Vi =M +W,00, + W0, + &
Yo =My W00, + Wi 0, + .0, + &,
Vis = My + W00 + W0, +W,,0, +Wi30; + &5

The &, s are assumed normally distributed and independent across students. Within a
student the variance-covariance matrix of the ¢ sis unrestricted allowing for different
variance at each time point and possibly nonzero and nonconstant correlation of scores

from different grades or years. The variance-covariance parameters are assumed

constant across all students. The LA model allows the variance of school or teacher
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effectsto vary across grades and the correlation between scores from the same student
across subjects (and grades). It also assumes that schools or teachers have separate and
independent effects for each subject and these effects persist undiminished into all
future test outcomes.

The CC model also accommodates the complex “multiple-membership” between
students and teachers or schools, but differs from the LA model in several ways. For one,
the CC model uses random growth curves to model to correlation among scores within a
student, whereas the layered model accounts for this correlation with an unspecified
covariance matrix. These two models share the common assumption that the random
teacher or school effect persists undiminished for students’ future performance.
PSModel

The PS model (McCaffrey et a., 2004) defines the persistence of the past teacher
or school effects on the current achievement. In thisregard, the LA and CC models can
also be considered as special cases of the PS model in that the persistence is assumed to
be a fixed value. This kind of PS model is referred to as “complete persistence model”.
They explicitly parameterize and estimate the strength of past teacher or school effects
on the current scores rather than assuming them to be known. Thiskind of PS model is
called “variable persistence model”. This specification makes the PS model more
complex and computationally challenging. Moreover, Lockwood et a. generalize the
McCaffrey et al.’s PS model to multiple subjects per year and provides a multivariate
formulation for it. A special case of this model that includes teacher effects but not

school effectsis the following:
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Let y, denote the vector of test scoresfor student i. y, isof length ST, the
number of subjects ( S) times the number of years (T ). X, denotesthe (ST x p) design
matrix of both time-invariant and time-varying student background variables for the p -
dimensional vector of regression coefficients P = (.o tsr » Buyrees B ) - The teacher
effects are organized by subject and year as (0,;,...,0,7,0,5,,...,0,57,..8 ..., 0 ) Of
length n, , where 6, provides the teacher effects for subject s in year t. The matrix
@, specifiesthe linkage of students to teachers by subject. @, is(ST xn,) withonly O

or 1 entries and row sums equal to 1, with the nonzero element in each row

corresponding to student i ’s teacher for a given year and subject. Hence, the
contribution of teacher effects to the outcomes for student i isthen givenby A @, 8, ,
where A isa( ST x ST ) block diagona matrix consisting of S distinct (T xT ) lower

triangular blocks corresponding to subjects. The (t,t") element of the block for subject

sisa_. fort> t" and O otherwise, where a_.. denotesthe teacher effect persistence
parameters for subject s. Whenall ¢_,. areequal to 1, the model becomesthe

complete PS model.
Therefore, the distribution for a single student’s score vector, y; , conditional on
the model parameters, teacher effects, and all covariates and linkage information is
YilM,6,0,Z ~ Ng (X, U+ AD,6, %) (5)
where Ng; denotesthe ST dimensional multivariate normal distribution and % isa

(ST x ST ) unstructured positive definite covariance matrix. Outcomes for different
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students are assumed to be conditionally independent given all of these parameters. The

components of 8¢ are iid. N(O, T;,st) . Finally, the teacher effects are assumed to be

Independent across subjects and years.

The McCaffrey et al. and Lockwood et al. exploit the availability of testsin
multiple subjects to improve the precision of estimation of teacher effects on any
specific subject. AsBallou et a. indicated out, this multivariate outcome approach not
only reduces confounding of teacher assignment with student background, also increases
the robustness of results to non-ignorable missing values. However, the complexity of
the model s poses computational challenges that render likelihood methods practically
infeasible for all but small data sets. Lockwood et a. propose a Bayesian formulation of
the variable PS model that scales well to the extremely large and complex data sets that
challenge aternative approaches to parameter estimation.

Relationships among the Existing Principal VAM

McCaffrey et a. summarize fivefeatures of these models: parameterization of
the overall timetrend, inclusion of covariates, the distribution of residual error terms,
the persistence of teacher effectson future outcomes, and translations between
modeling scores and gains. According to these features, relationship among modelsis
summarized as: the GS and CC model without covariates are specia cases of the LA
model with restrictions to the overall time trend and/or the distribution of residual errors.
The LA model isaspecial case of the PS model with restrictions on the « s and without

covariates. The CA and GS model with covariates are special cases of the PS model

with restrictions on the distribution of residual errors and the « s.
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Findingson the Major Issuesfrom the Recent Studies

Modeling the School or Teacher Effects as Fixed or Random

VAM can specify school or teacher effects as either fixed or random effects. If the
effects are treated as fixed, then the observed schools or teachers are assumed to be the
only units of interest. Random effects assume that the unitsis a sample from alarger
population. In VAM application, to model school or teacher effects as fixed or random
Is the primary design choice. Tekwe et al. (2004) addressed this issue by comparing
models with different specifications using ssmulated data. The first model is fixed-
effects models (FEM), where school effects (i.e., the improvement in student
achievement due to teacher or school efforts) are taken to be fixed rather than random.
Thisisthe ssimplest of all models, requiring little computational complexity and not
much mathematical knowledge. This model thus has intuitive appeal to policymakers,
since the interpretation of the resultsis much easier to comprehend. An extension of this
model, the ssimple fixed effects model, or SFEM, is an intuitively ssmple model that
incorporates no student background factors, does not consider the complex linkage
between students, teachers and schools, and by the nature of the statistics used, does not
produce shrunken estimates. This model estimates school effects by comparing school
effects only to the effect sizes of the districts to which they belong. Another type of
VAM is hierarchical linear models (HLM), which assume that school effects are random.
These models produce shrunken effects towards the mean, and there are two of them.
First is the simple unadjusted change score HLM (UHLM) with random intercept. This
model does not account for compositional or student-level covariates. Second is the
demographic and intake score adjusted HLM (AHLM), where outcome is defined by a

change score, and contains student and school-level covariates.



21

Theresults of thesimulation study showed very strong correlations (higher
than 0.9) between results provided by SFEM, LMEM, and UHLM, but much more
modest correlation between the results of AHLM and all other models. Tekwe et al.
concluded on the basis of these results that the SFEM performed about aswell asthe
other two models that did not incorporate compositional or student-level covariates,
and could be expected to produce similar results at a much lower computational cost. It
was noted that these results were based on only two years of student achievement data
and that the incorporation of more years of data might affect the relationships among
effects generated by the three models. The difference between AHLM and all other
models was notable, and indicate that when compositional and student-level covariates
areincluded in the analysis, the estimates change. Although AHLM takes into more
factors that do indeed affect student learning, it is arguable that the AHLM produces
more precise estimates than do other models. Tekwe et al. finally noted that
considerations that may have importance in theory may make little differencein a
practical sense, and if asimpler model produces results comparable to more compl ex
models, it may be preferable because of itsintuitive appeal .

Ballou et al. criticized Tekwe et al.” s finding by stating that Tekwe etal.” s
interest is confined to estimating school effects with large samples of students and data
with two time points. Asthe sample size becomes large, the fixed effects and random
effects estimates converge. When teacher effects are of interest, large sample sizeis not
realistic. And fixed effects models are suboptimal when multiple time points and
multiple cohorts are available. Therefore, Ballou et al. recommend random effectsas a
genera approach, although fixed effect estimates have good propertiesin some

circumstances.
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McCaffrey and colleagues (RAND; 2003) were also interested in discussing the
advantages and disadvantages of specifying school or teacher effects as fixed or random.
They stated that one advantage of estimating teacher effects with arandom effects
model is that shrinking reduces the variance of an estimate of an individual teacher
effect compared to the fixed effect estimate. The downside of arandom-effects model is
that the shrinking effect forces the estimated teacher effectsto deviate from the true
effects if the teacher’s class is small. Although the fixed effects do not shrink estimates
toward the mean, they will not necessarily move teachers toward the middle of the
distribution if the classis small. Thus, the fixed effect estimates for teachers with small
classes will be more likely to be in the extremes of the distribution. In sum, specifying
school or teacher effects as fixed or random provide similar conclusions about the
variability of teachers but yield different estimates of individual teacher effects.

Inclusion of the Covariates

McCaffrey et al. (RAND; 2003) stated that the importance of modeling
background variables dependsin arelatively complicated fashion on the interaction of
several factors. These factors are the distribution across classes and schools of students
with different characteristics, the relationship between the characteristics and outcomes,
the relationship between the characteristics and true teacher effects, and the type of
model used. Therefore, the importance of modeling student background characteristics
when using VAM to estimate teacher effectsremains an empirical question that must
be addressed by each analyst inthe context of these specific factors (See McCaffrey
et a. RAND 2003 for details). In thissection, several empirical studies focusing on the
impact of inclusion of covariates will be reviewed.

Ballou et al. (2004) evaluated the TVAAS model and noted that studies of the
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inclusion of contextual factors in HLM models amost always show that the results are
sensitive to such effects They also noted that the TVAAS can include context factors
if desired. Inclusion of these factors tends to bias measures of school and teacher effects
towards zero.

Using data from the vast database accumulated by TVAAS, Ballou et al.
conducted asimulation study to determine how much teacher effect sizes reported
by the TVAAS would change if student and school compositional effects were entered
into the model. The simulation study used student eligibility for free and reduced price
lunch, race other than white, gender, the two-way interactions between these, and
percent free and reduced price lunch by classroom as covariates. Thus, there were three
student-level covariates and one school composition variable used in the study. The
conclusion of this study was that student-level covariates showed only a moderate
influence on teacher effectiveness scores. The scores produced by the two models were
2.7 times more likely to agree than to disagree in reading, 3.5 times more likely in
language arts, and 8.5 times more likely in mathematics.

With respect to the school composition variable (free and reduced lunch), Ballou
et a. found that there was a significant effect on the magnitude of teacher effectiveness
scores, but they noted that the direction and magnitude of the regression coefficients
showed that the relationship between the percent free and reduced variable and teacher
effectiveness was unstable, and therefore not much confidence could be placed in the
results. Having concluded that student-level covariates had little effect on teacher
performance cores, Ballou et al. offered four possible explanations for the result of the
simulation study. First, if the great majority of teachers have roughly the same mix of

poor and non-poor students, white and non-white, then adjusting for demographics will
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not change estimated teacher effects. However, the redlity is that the mix of poor and
nonwhite children does indeed vary widely from one classroom to another. Second, the
impact of student variablesis not large enough to make an appreciable differenceto
estimated teacher effects. But if we compare the result from the TVAAS with that from
the fixed effect model, this explanation might be doubted. Because the results from the
models are significantly different. Third, the high correlation between adjusted and
unadjusted effectsis caused by shrinkage. Finaly, student factors add little information
beyond that contained in the covariance of test scores. That is, other test scores contain
much of the same information.

McCaffrey et al. also systematically investigated the influences of covariates on
the GS, CA, CC and LA models. As presented in the previous section, the GS and CA
model could include student and compositional variables, although the models produce
biased estimates when the covariate and residual error terms are correlated. The CC and
LA mode usually include no or only limited information on student characteristics
because some analysts have suggested that the inclusion of intra-student correlation
essentially removes the effects of omitted covariates. However, McCaffrey et a. found
that the impact of omitted covariates on estimated teacher effects depends on both the
distribution of the omitted covariates and the assignment of students to teachers.
McCaffrey et a. noted that omitted variables that are randomly distributed should have
little effect on the results of any of the models. But when omitted variables cluster by
class, or when they differ by stratum, none of these modelsis capable of disentangling
teacher effects from the effects of student-level covariates. The CC and LA model are

most sensitive to the effect of omitted variables.
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Teacher Effects Are Cumulative and Long Lasting
The papers reviewed in this section focusing on investigating the persistence of

those teacher effects on students’ future achievement. Sanders and Rivers (1996) used
datafrom two school systemsin Tennessee to study the cumulative effects of third,
fourth, and fifth grade teachers on fifth grade math achievement. Rivers (1999)
replicated this study using slightly different methods to measure the cumulative effects
of fifth, sixth, seventh, and eighth grade teachers on ninth grade achievement. Mendro
et. al (1998) replicated the Sanders and Rivers’s study using data from Dallas public
schools, and Kain (1998) provided aseparate independent reanalysis of the Dallas data.

Sanders and Rivers (1996) purported to show that teacher effects accumulate and
persist over time. They reported that for math tests, students taught by the least
effective teachers for three consecutive years would score 52 to 54 percentile points
below similar students taught by the most effective teachers for three consecutive
years. Inthe paper, Sanders and Rivers use atwo-stage approach. First, they estimate
teacher effectiveness using the CA model. Separate models are fit to math scores for the
3rd, 4th, 5th grade students. The correlation among the residual errors from the same
student isignored. These models provide shrinkage estimates of the teacher effect 8s
for each grade. Then, teachers within each grade are ranked and assigned to scale 1 to 5
based on the estimated teacher effect quintiles. In the second stage, student scores from
grade 5 are model ed as an additive linear function of teacher effectiveness (where the
quintile assignments are treated as categorical variables) for grades 3 through 5, the

second grade score, and residual error. This model isthe ANCOVA model

Yis = s+ 05 + 0y + 05 + SY, + 65 (6)
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Where q; isafive-level categorical variable representing the quintile of the grade g

teacher for student i . The estimated differences between outcome Y s are compared to
indicate the teacher effectiveness. However, the authors’ ad hoc method has been
criticized for using the same students in both stages of the analysis (Kupermintz, 2002).
Rivers (1999) replicated the Sanders and Rivers’ design with several important
modifications to address some of the criticisms of SR and still found persistent teacher
effects. Rivers used the teacher effect estimates from the LA model rather than using
Sander and Rivers’ simple CA model. As discussed in the previous section, the LA
model can simultaneously model scores from several subjects and several years. The
model alows for correlation among scores from the same student, although it includes
no student or school level covariates. Another feature one should note isthat the LA
model used by Riversincludes a separate parameter for the mean of every school system
or district; so estimated teacher effects are relative to the other teachersin the district.
The second difference between Rivers and Sanders and Riversisthat Rivers used two
cohorts of students rather than one to estimate the persistence of teacher effects. The
first cohort provided estimates of teacher effectiveness from the LA model. The second
cohort was used to conduct Sanders and Rivers’ second stage analysis. Rivers modeled
ninth grade test scores as a function of fourth grade test scores and the students’
fourth to eighth grade teachers’ stage 1 effectiveness ratings based on the prior cohort.
Thus, estimates of teacher effectiveness and the impact of varying effectiveness were
estimated from two distinct cohorts of students. The final major difference between
Rivers and Sanders and Riversisthat Rivers models outcomes on adifferent test than
the test used for estimating effectiveness, and the outcome is measured at the end of

ninth grade while teacher effects are measured for sixth, seventh, and eighth grades.
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Rivers found that teacher effects from all four grades are statistically significantly
related to scoresin the fall of ninth grade. The effect of fifth and sixth grade teachers
decreases when the students’ fourth grade scores increase. That is, fifth and sixth grade
teachers were estimated to matter more for students with lower baseline scores. The
impact of fifth grade teachers on ninth gradetests isabout two times greater for
students at the mean of the lowest quartile of fourth grade scoresthan the impact for
students at the mean of the highest quartile. The impact of sixth grade teachers is about
2.5 times greater for students in the lowest quartile compared with the highest quartile
on the fourth grade test. Rivers also found that for students scoring low at fourth grade,
fifth and sixth grade teachers have the strongest relationship with ninth grade scores,
while for other students, eighth grade teacher effects have the strongest relationship
with ninth grade scores. However, River’s study also has its limitations. It excluded the
students who transfer across schools or retain in grade. Thus, Rivers’ result that teacher
effect persistsinto the future tests can only apply to students who remain in the same
school systemsfor six years.

The Sanders and Rivers study was a'so replicated by Mendro, Jordan, Gomez,
Anderson, and Bembry (1998) using data from students in the Dallas Independent
School District. Mendro et a. consistently found large persistent teacher effects across
multiple cohorts and on both reading and math scores. They corroborated the results of
Sanders and Rivers and Rivers, even with avery different approach. Mendro fit models
analogous to those of Sanders and Rivers. The models include previous year’s scores as
acovariate, and teacher ratings as a categorical variable. Teacher ratings are from the
estimated teacher effects using the Dallas Value Added Accountability System

(DVAAS). DVAAS uses athree-stage approach to estimate teacher effects. In stage 1,
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the fairness variables (e.g., gender and ethnicity) are removed from the from current-
year and past-year scores. Stage 2 of the DVAAS estimation procedure models the first
stage residual for the current-year score as a function of first-stage residuals for prior-
year scores, prior-year attendance, and school-level variables. Stage 3 estimates teacher
effects as the classroom averages of the stage 2 residuals. The procedure produces
separate estimates for teacher effects on the math and reading scores. Details on the
Dallas teacher effects are presented in Webster and Mendro (1997). The authors also
found that students’ loss due to an ineffective teacher in one year cannot be
compensated by the additional years of schooling. Teacher in one year do not make up
for thisloss even after additional years of schooling. They demonstrated this effect by
showing outcomes for pairs of groups of students who have similar average outcomes
on the pretest, but one group in each pair had ineffective teachersin thefirst year. The
results showed that the group with an ineffective teacher in the first year always scores
lower on the final test, regardless of the effectiveness of the teachersin the ensuing year.
In sum, the empirical studies conducted by Sanders and Rivers, Rivers, Mendro and
other researchers provided consist findings that the persistence of the teacher effect

exists, although the size of the effects vary across studies.
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CHAPTER 3
GENERAL VAM

This chapter will first propose the multivariate genera VAM in a matrix
formulation. The parameter estimation of the general VAM will be implemented under
the Bayesian framework. The second section will specify the Bayesian method and
MCMC procedure conducted to estimate all the model parameters. The third section will
show how each reduced model will be derived from the general model.

TheMatrix Formulation of the General VAM
The matrix formation of the proposed general VAM is
Y, =WelNA+®em ol,0+y eMe +A (7)

where the operation e is entrywise production. Such, given two vectors a=(a,,---,a,),

and b=(b,,,b,),

aeb=(ab, ,ah,) ®

Each variable in this formation is defined as follows.

e y, contains ith student’s scores. It is a vector of length ST, the number of
subjects (S) times the number of years (T ). The elementsin vector Y, are first arranged
by subjects, then by time.

e A\ contains all fixed effects, which need to be estimated. The fixed effect

parameters A can be decomposed into two parts, one part ST x A, is for time

variant factors (e.g., mean score), and the other part A is for time invariant factors
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(e.g., gender, ethnicity), and F = F, + F,. Suppose mean score is used as time variant
fixed effect, and gender is used astime invariant fixed effect, we have
A= (Mg, My, My, Gy, My, Mgy, -, Mg, Gg ) 9)

e Wis a STxF matrix that contains the coefficients that represent the
relationship between the current and previous years’ scores. They need to be estimated
accordingto A.

e [1,, isanincidence matrix designed accordingto A for theith student.

e O isarandom effect matrix contains ST vectors of length R. R=N,T +N,T,
where N, is the number of schools; N,is the number of teachers. The first N, elements
in each vector represent N, school effects, which are followed by N, teacher effects.
The ST vectors are organized first by subjects, then by time. If the model only involves

the N, school effectsin three contiguous years for two subjects, the notation will be
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02
where O is the school effect vector of the tth year for the sth subject, which contains

N, schools effects. @, ~ N(ug, 75l n,) - IN general, we assume pg = 0 and the vector

that contains all 7 ’s needs to be estimated. The similar distribution is assumed for the

teacher effect.

e [1,, isanincidence matrix of dimension ST x R that indicates the linkage

between student i and school s/teachers.

e 11, is also an incidence matrix of dimension ST x R that is previously assigned
according to I, for student i. It presents how long the student has been associated with

a specific teacher or school.
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e® is a ST x ST block diagonal matrix contains the persistence parameters
measuring how much the previous school or teacher effect contribute to the current year
score. @ consistsof S distinct (T xT ) lower triangular blocks corresponding to subjects.

The (t,t") element of the block for subject sis ¢_.., for t” <t and O otherwise, where

sitt” !

(/55’“* denotes the school or teacher effect persistence parameters for subject s.

ot =(&,,8,) presents random effects for the i th student. For example, we can
assume ¢;; ~ N(m,,v,), &, ~N(m,,v,), and they present mean and slope of student
growth curve, respectively. ¢ ’s are independent across students.

e [1,, isalso an incidence matrix.

e y. contains the coefficients that need to be estimated according to c.

¢ A isthe random error, which follows multivariate norm distribution MVN(0,X)

and independent of teacher or school effects. ¥ is a ST x ST unstructured positive
definite covariance matrix. If the residuals across years and subjects are independent,
only diagonal elements need to be estimated. Normally, residuals across years and
subjects are not independent. Student-specific effects on scores and the relationship
between the scores across years and subject within one student can be reflected in the
covariance matrix.
Bayesian Method for the General Value-Added Model
The conditional distribution for student i’s score vector is
y. INO,¥Y, T,y,,6,m,m,v,V,,Z)~ N(Wel NA+DPerx o1 ,0+y, o€, %)

(10)
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where the likelihood function is given by the production of equation (10) across all

examinees. The prior distributions used in this study are

A~Nc(p,,V,) (11)
Oy ~ NNl(O’TSZtI Nl) (12)
74 ~U(a,b) (13)
¢~ NM(UWV(;;) (14)
> ~W(d,,D;) (15)

Here W denotes the Wishart distribution, and U (a, b) denotes the uniform distribution on
theinterva (a, b).
The joint posterior distribution for al the parameters given the fixed

hyperparametersis
P(A©,W,T,y;.&,m,m,, Vi, V,, 2 |y) ¢ P(M)P(m,)P(v;) P(v,) P(Z)

P(AN)P© [ T)P(W)P(T)P(y,)P(g; [ m,my,vy,v;)

Ly IN,O,W,T,y,,&,m,m,,V,,V,,%) (16)
MCMC simulation can be used to draw samples iteratively from the full conditiona
distributions of the parameters given the data and the rest of the parameters. Below is an
outline of how parameters can be sampled from their full conditional distributions.

1. Updating X : First we obtain the residual e, for each student. Then the full

conditiona distribution for X is Wishart distribution with degree of freedom d. + N and

parameter D_ +ZiN ee'.

-1



34

2. Updating 74 : the full conditional distribution of r, depends only on the
current value of O, the length of the vector N, and the hyperparameters v and d of the

uniform distribution. A new value for the parameter will be sampled using the
Metropolis-Hastings within Gibbs algorithm (Casella & George, 1995) because the full

conditional distribution is not available in closed form. We update the transformed value

Ne = f(rq) = |0g(;s¢ ‘V] (17)

ry = 1 (g) = (&7 +V) I(1+€™) (18)

and the prior distribution for 7 is
P(ng |Vv,0) =€™ [(1+€e™) (29
The Metropolis-Hastings agorithm isimplemented as follows

i) Draw initial value {” from prior distribution.
ii) At iteration m, draw candidate 7’ from the proposal normal distribution with
mean 7{™” and known variance.

Accept each 1" =1’ with probability

(m) “10.,()\2 *)
P(U;m_l)yﬂg)) _ min(L Pui(@5" 10,(f “(ng’)" x1 )P4’ |V, ) J (20)

Pua (6057 10,(F (™))% x 1 ) P(ng™ 1V, 6))

Otherwise n{"=n{"".
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3. Updating A: First we obtain the partial residua €, , which isthe difference
between the observed score and all the random effects part for each student. Then regress
the vector € of these residualson W x I ; for all students, with known error covariance
V =(,®Z%). Therefore, wedraw A from the full conditional distribution for
MVN(Bb,B) , where

B'=WxN,)'V'(WxMN,)+V™ (21)
and
b=(WxM,)"V'E +V,, (22)

4. Updating © : We update © one element at a time. We obtain partial residual
e for each student linked to the teacher of interest by subtracting the fixed effects
structure and the part of the teacher structure that does not depend on the teacher effect
being updated. Then regress these e on the single teacher effect 6, where the design
matrix consisting of zeros, ones, and the appropriate components of @ (here we use D,
to denote the current design matrix), and where the error covariance matrix is V. The full
conditional distribution for 8, is N(Byby,B), where

Bd=DIV™'D, +V™ (23)
by, =DiV'E’ (24)

5. Updating @: Anaogous to the previous step, here the 8 s serve as regressors

with parameter ®. We obtain partial residual e for each student by subtracting the fixed

effects structure and the effects of all current year teachers for each score. Now the
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design matrix consists of zeros and appropriately placed values of 6, . The error

covariance matrix is also V. So the full conditional distribution for ais MVN(Bgbg,Bg).
Where
Bl=D{V'D,+V™ (25)
by =DiVE +V U, (26)
6. Updating the student’s own random effects is analogous to the steps that update
the school/teacher random effects.

Existing Major Value-Added Models

Now, suppose, 1) we only have scores for one subject S= 1; 2) there is only one
teacher in each year N, = 1, then the teacher effect © = (8,,0,,---,8;)"; 3) and the

mean score for T years and gender are the fixed effects, then we will derive the CA, GS,

PS and LA and CC model.

CA Model
A= (m,my,-eme)T (27)
100 - 0
r|i1=:1 1o 0 (28)

v 1 0 - 0
W=|ly?> w 1 - 0 (29)
l//T l//Tfl 1 . 1 T

M, =M, (30)
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d=y (31)
M, =0and X isT x T matrix that only diagonally element to be estimated, correlations
areall 0. The covariant adjustment model for the t years can be derived as:
Yo =M +6, +6 (32
Yo=M+wy,,+6, +¢ (33)
GSModel
The GS model can be obtained if b in the CA models is specified to be 1.

Therefore, the the GS model can be viewed as a specia case of the CA model.

PSModel

A=(m,m,---,m,G)’ (34)
1 00 --- 01
ﬂu:? oot (35)

000 O0O01

TxT+1

100 -« 0 y,

w:?]'o'”o Ve (36)
I1,, isthe same as Equation (35). Suppose
1 0 - 0
¢:¢? ! 0 (37)

¢Tl ¢T2 1TxT
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LA Model

For the PS model above, if we further assume dl the ¢, = 1, for i > j in Equation

(37), then we will obtain LA model. Therefore, the LA model can be seen as a special
type of the PS model.
CC Model

The CC mode is the only model that explicitly models individual growth curves.
In this model, student’s growth are student-specific, and of random effects. The teacher’s

effects are the same asthe LA model. For student-specific random effects, we have

& =(&1,2) (38)
11

Mis = : (39)
1 1 Tx2
(N
1

yio=|. ° (40)
1 rT Tx2

In Raudenbush and Bryk, they used fixed coefficient for , ,and r, =t,t=1,---,T.

Table 3.1 summarizes the similarity and differences among the general and

reduced VAM.



Table 3.1. Comparison among the General and Reduced VAM

General Gain Covariate
VAM Score Adjustment Layered Persistence
Covariates Yes Yes Yes No Yes
Student
random Yes No No i No No
(linear trend)
growth
Prior year Yes Yes No Yes Yes
teacher effect
T ff N N N N
each.ere edt Diminished Undiminished No Undiminished Diminished
persistence
Allows
Independent  Independent correlation
across years
) . across years across years o .
Residual error  No restriction L L. L within student;  No restriction
within within a within student
Congtant
astudent student across years
across all
students

6€
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CHAPTER 4
SIMULATION STUDY
Design

A simulation study is conducted to investigate the feasibility and robustness of the
general model when the data are generated under varying assumptions. Six data sets are
generated using the general model and the five reduced models (the GS, CA, CC, LA and
PS model). Data (test scores) generated using the general model are fitted using the
general model and all the reduced models. This allows comparison of the different fitted
models when the data do not follow the assumptions of the reduced models. Data
generated using areduced model are fitted using both the same reduced model and the
general model. This allows comparison of the model fit of the general model and specific
reduced model when the reduced model assumptions hold. Table 4.1 summarizesthis
design and shows that 16 conditions result from the combination of the data generation
and estimation methods.

For each model, three consecutive years of testing scores are generated for 1200
students grouped into 48 classes of 25 students each. The classes are grouped into 3
schools each with 16 classes. Systematic heterogeneity is introduced into the school
means through the students. School A contains 80% students who are eligible for free and
reduced lunch (FRL), school B contains 50% students who are eligible for FRL, and
school C contains 20% FRL students. School C is considered a balanced mix. Within
each school, the students are randomly assigned to two classes. The students without FRL
are assumed to be advantaged students and those with FRL are disadvantaged students.
The advantaged students have higher mean scores at the starting year and higher mean

gain scores each year than the disadvantaged students.
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Within each school, teachers with different effectiveness are assigned into 16
classes across three years. In this simulation study, the teachers who contribute positively
to students growth will be considered as the effective teachers and the teachers who
contribute negatively are considered as the non-effective teachers. Various combinations
of effective and non-effective teachers across three years yield four types of classes.
ClassNNN, Class NNE, Class EEN and Class EEE. For example, for Class NNE, non-
effective teachers are assigned for the first two years and an effective teacher is assigned
for the third year. For each type of combination, there are 4 classes. Table 4.2
summarizes the teacher arrangement for each class across three years.

Modelsfor Generating Scores

According to formula (10), given the values of al the required parameters, student
i 's score vector can be assumed to have a multivariate normal distribution. The covariate
variable considered in the ssmulation study is the students' SES; the random effect
considered are teacher effect for all the models and students’ own random effect for the
general and CC model. Although schools are heterogeneous, the school effect is not
examined here. The heterogeneity among schoolsis introduced only for the purpose of
investigating the relationship between school composition and the inclusion of the
covariates. The parameter values used to generate student scores are listed as follows.

1) Thefirst year's mean scores are 220 and 200 for the advantaged and
disadvantaged students, respectively; the average gain score for each year is 20 and 10
for the advantaged and disadvantaged students, respectively.

2) The margina variance (the total variance of teacher effect, student random effect

and residual error) isfixed at 1000 for all the conditions.



42

3) The teacher effect follows N(0,72). Thevalueof 7 isfixed at 10. The

difference between the average teacher effects for the effective and non-effective teacher

groups is one unit of the standard deviation. Then the teacher effects for the effective

teachers are generated from N(5,10%) and the teacher effects for the non-effective
teachers are generated from N(-5,107)

4) For the general and CC model, the random student effect follows N(0,v?) . The
value of v ischosen to beb.

5) The teacher effect persistence parametersg,,, ¢,, and ¢,, are 0.2, 0.3 and 0.3 for

the general and PS model; they are 1 for the GS and LA mode!.

6) For student i, the variance-covariance for the residual error isa 3 by 3 matrix. A
random matrix is created for the general and the PS model. The correl ation of scores
across years within student i is0 for the GS and CA model, and is 0.7 for the CC and

LA model.



Table 4.1 Models Used for Generating and Fitting Simulation Data
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Data Fitted
General GS CA CcC LA PS
Genera v v v v v v
GS v v
Data CA v v
Generated CC v v
LA Vv v
PS v v
Table 4.2 Teacher Arrangement for Each Class
% of
School advantaged Class Yearl Year2 Year3
students
NNN N N N
NNE N N E
0,
A 80% EEN E E N
EEE E E E
NNN N N N
NNE N N E
B 04
S0% EEN E E N
EEE E E E
NNN N N N
NNE N N E
0,
= 20% EEN E E N
EEE E E E




Analysisand Comparison of M odel Estimation
For each model that will be analyzed, the MCMC algorithm shown in Chapter 3is
implemented to generate a sequence or chain of parameters sampled from the posterior
distribution of that model. Constraints are put on specific parameters when the MCMC
algorithm isimplemented for estimating the reduced model. For example, the persistence

parameter ¢, isfixed to be 1 at each step when the data are estimated by the LA model.

The convergence of the chainsis diagnosed using the Gelman-Rubin diagnostic (Gelman
& Rubin, 1992).

Model comparison is required for adiversity of activities, including variable
selection in regression, determination of the number of components in a mixture model or
the choice of parametric family. Aswith frequentist analogues, Bayesian model
comparison will not inform about which model is “true”, but rather about the preference
for amodel given the data and other information. In the Bayesian arena, common
methods for model comparison are based on the following: separate estimation including
posterior predictive distributions, Bayes factors and approximations such as the Bayesian
information criterion (BIC) and deviance information criterion (DIC); comparative
estimation including distance measures such as entropy distance or Kullback-Leibler
divergence; and simultaneous estimation, including reversible jump MCMC and birth and
death processes (Alston, Kuhnert, Low Choy, McVinish & Mengersen, 2005).

Researchers have shown that, as an approximation to the Bayesian factor, the DIC is
apopular method for model comparison, especially for models that involve many random
effects, large numbers of unknowns or improper priors. DIC penalizes against higher

dimensional models (Spiegelhalter et al, 1999): with deviance denoted by D,
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DIC = E[D(0)|y] + E[D(6]y)] - D(E[6]y]) = D" (6) + p, (41)
where
D" (6) = E,[-2log p(y|#)] + 2log p(y) (42)

and p, denotes the effective number of parameters. It can thus be seen that the DIC

comprises of termsthat are afunction of the data alone (e.g., 2log p(y)) and ameasure
of the complexity of the model (e.g., E,[-2log p(y|6?)] ). Inthis study, DIC is used for

the model comparison in terms of the overall goodness of fit. Within the same simulated
data, the overall goodness of fit is compared among the models being used. Each year's
estimated mean scores are compared to true mean scores. The bias of the estimated mean
score is examined under al the conditions. Covariate variable isincluded in the general,
GS and CA model. Specifically, abinary variable is used to indicate the student's SES
(advantaged or disadvantaged). The impact of inclusion of the covariate variableis
discussed.

Several measures are considered for the estimated teacher effects, for example, the
estimates of individual teacher effects and the overall contributions of teacher to
variability in student outcomes. Both measures are compared to their true values and the
estimation accuracy is compared among different conditions, specifically, the impact of
theinclusion of covariates on the estimation accuracy will be discussed. Teacher effect
persistence parameters estimation accuracy is also checked.

Results
For each of the 16 conditions, four chains started at random are run. All the chains

have the same number of burn-in, 5,000, but have different chain lengths. The chain
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lengths are determined to ensure that all the parameters have converged. The resulting
total number of iterations range from 15,000 to 25,000. The initial estimatesfor al the
parameters are obtained based on the draws after the burn-in of each chain. The final
estimates are obtained by averaging the estimates across the four chains. In addition, the
posterior variance of the estimates is computed using the sample variance of the iterations
after subtracting the burn-in.

Overall Model Fit

Tables 4.3-4.5 summarize the DIC vaue provided by all the models using different
generated data for School A, B and C, respectively. The row label indicates the model by
which the data were generated; the column label indicates the model by which the
generated data were estimated. For each dataset, the estimating model is called “correct’
model when it corresponds to the generating model. Comparing these three tables, same
pattern can be found, although the DIC valuesin the same cell across different tables are
dightly different. Therefore, the following discussion is based on the results from by
School A (Table 4.3).

The most salient result from Table 4.3 isthat, for each data, the correct models
consistently provide better model fit, which isindicated by the smaller DIC values. To be
more specific, when the data were generated by the general model, the correct model
provides smaller DIC than any other models. Among the other models, the PS model
obtains the closest DIC to the general model DIC (Differenceis51.). Thisis because the
PS model is most similar to the general model. DIC values provided by the CC and LA
model are close to each other (12278 vs. 12264) and larger than those provided by other

models. When the data were generated by the reduced model, the correct model provides
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smaller DIC than the general model does. However, the difference of DIC values
between the correct model and the general model is quite small. Asthe PS model differs
from the general model only by one parameter (the student random effect), the DIC value
from the general model isjust higher by 1. Even the largest difference, which occursin
the GS model case, isonly 26.

Table 4.3 DIC Obtained from All the Models Using Different Generated Data
(School A)

Fitted Model
General GS CA cC LA PS
General 11475 12207 12223 11533 11539 11526
GS 11516 11490

Generating CA 11474 11465
Model cC 11688 11680
LA 11685 11682
PS 11481 11480

Table 4.4 DIC Obtained from All the Models Using Different Generated Data
(School B)

Fitted Model
General GS CA CC LA PS
General 11471 12264 12278 11535 11541 11522
GS 11525 11491

Generating CA 11476 11463
Model cC 11759 11748
LA 11781 11770

PS 11488 11484
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Table 4.5 DIC Obtained from All the Models Using Different Generated Data
(School C)

Fitted Model
Genera GS CA CcC LA PS
General 11472 12299 12313 11534 11540 11524
GS 11517 11491

Generating CA 11484 11465
Model cC 11705 11695
LA 11706 11696
PS 11481 11481

To summarize the findings, for the School A data, the comparison of the DIC values
show that the general model provides the best model fit for the general-model-generated
data; the PS model provides the closest result, which isjust slightly worse. The CC and
LA mode perform much worse. For the reduced-model-generated data, compared to the
general model, the reduced models provide better model fit. However, the performance of
the general model is not much worse than that of the correct models. This conclusion can
be generalized to School B and C which indicates that, in terms of the overall model fit,
the school composition has no impact on the performance of the general model and the
relationship between the general and reduced models. For example, for School B, which
represents amix balance of advantaged and disadvantaged students, the DIC values also
support that the general model performs the best for the general-model -generated data
and performs slightly worse than the correct models for the reduced-model-generated

data.
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Fixed Effect Estimation

Only one measure of the fixed effect estimation is presented here — the absolute bias
of the estimated fixed effect. Choosing to present the absolute bias instead of the biasis
just for the purpose of conveniently comparing the magnitude of the bias. For the CC and
LA model, the estimated fixed effect only includes estimated mean score for each year.

For all the other models, the estimated fixed effect also includes the estimated SES effect.
For example, the estimated fixed effect for the general model is m+yX . X, the average

of the SES variable, is 0.2 for School A, 0.5 for School B and 0.2 for School C. It should
be noted that previous year’s mean score is also included for the GS and CA model. The
absolute bias of the estimated fixed effect is the absolute value of the difference between
the estimated fixed effect and the true mean score. Table 4.6 presents the true mean score
for each year generated using different models. The purpose of thistableis just to show a
genera picture of the generated scores used in this simulation study. It shows that, from
year 1 to year 3, the mean score grows from around 215 to around 251 for School A,
around 209 to around 240 for School B and around 203 to around 227 for School C. The
higher percentage of advantage students leads to higher mean score and higher gains.
Tables 4.7-4.9 present the absolute bias of the estimated fixed effect for School A, B
and C, respectively. All the absolute biases shown in these three tables are smaller than
0.50, which indicates that al the models can provide accurate fixed effect estimates for
any of the data generated using different models. Moreover, to investigate the stability of
the fixed effect estimates, the posterior standard deviations of the estimates were
computed. The small posterior standard deviations (around 5 for all the estimates) show

that all the models can provide precise fixed effect estimates.
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Although the absol ute biases vary across conditions, no significant differences can

be found (Z<1.96). In other words, none of the differences between the estimated
absolute biasesis large enough to draw the conclusion that one model gives more

accurate estimates than another. And the differences can only be accounted for by the

random errors.

Table 4.6 The True Mean Scores Generated under Various Conditions for Three Y ears

Yearl Year2 Year3 Average

General 2154  231.7 251.3 2328

GS 2155 2320 2515 2330

School A CA 2155 2319 2514 2330
CC 217.3 2337 2533 2348

LA 2174 2339 2534 2349

PS 2156 231.8 2514 2329

General 209.8 2233 2401 2244

GS 2009 2236 2403 2246

School B CA 2099 2235 2402 2246
CcC 2117 2253 2421 2264

LA 2118 2255 2422 2265

PS 2099 22340 240.2 224.5

General 2034 2137 2273 2148

GS 2035 2140 2275 2150

School C CA 2035 2139 2274 2150
CC 2053 2157 2293  216.8

LA 2054 2159 2294 2169

PS 203.6 2138 2274 2149




Table 4.7 Absolute Bias of the Estimated Fixed Effect for Each Y ear
from Different Models (School A)

Estimates SDs

Generated Fitted Yearl Year2 Year3 Yearl Yea2 Year3
General 035 036 025 491 512 501

GS 0.31 0.19 0.15 5.32 544 541

Generdl CA 008 008 032 541 539 552
CC 006 018 011 521 530 519

LA 018 012 024 523 519 527

PS 0.11 0.10 0.03 4.81 515 5.10

GS General 023 034 025 543 529 533
GS 023 044 033 519 524 525

CA General 004 025 006 539 544 528
CA 018 005 017 514 515 529

cc Genera 007 024 021 531 529 524
CC 018 034 037 509 512 487

LA General 007 004 001 528 519 524
LA 002 028 049 515 510 4.88

PS General 002 013 006 516 520 4.89
PS 002 020 019 514 520 490
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In summary, both the general and reduced VAMSs can provide accurate and precise

fixed effect estimates whether or not the model assumptionsfit the data structure or not.

Choosing different models to estimate the same generated data does not yield

significantly different estimates. In other words, the fixed effect estimation is not

sensitive to the model choice. Meanwhile, there are also no significant differencesin the

results across three And no significant differences in estimates can be observed when

various models are used to fit the same data. Therefore, the fixed effect estimation is not

affected by different school compositions. For both School B and School C, the general



and reduced model can provide accurate and precise fixed effect estimates for al the
generating and fitting model combinations.

Table 4.8 Absolute Bias of the Estimated Fixed Effect for Each Y ear
from Different Models (School B)

Estimates SDs
Generated Fitted Yearl Year2 Yeax3 Yearl Yea2 Year 3
Genera 0.25 0.19 0.14 4.89 514 511

GS 022 019 018 534 542 539
CA 007 006 018 540 544 548

Genera
CcC 0.04 013 0.16 522 534 520
LA 0.19 014 0.20 519 527 523
PS 0.13 0.22 011 483 509 514
GS Genera  0.13 024 0.30 541 531 534
GS 0.19 0.42 0.46 516 523 524
CA Genera  0.17 024  0.06 538 539 538
CA 0.16 0.04 0.09 520 518 522
cc Genera 005 014 016 532 533 529
CcC 0.23 034  0.37 514 515 488
LA Genera 010 0.15 0.15 525 522 522
LA 005 0.20 0.35 518 509 492
PS Genera 010 0.10 0.15 517 522 487

PS 012 042 016 509 515 493




Table 4.9 Absolute Bias of the Estimated Fixed Effect for Each Y ear
from Different Models (School C)

Estimates SDs

Generated Fitted Yearl Year2 Year3 Yearl Yea2 Year3
General 014 002 003 493 513 510
GS 0.12 0.18 0.21 5.40 5.32 544
General CA 006 004 004 540 542 542
CcC 001 0.08 0.2 512 517 529
LA 019 015 016 532 529 537
PS 014 031 019 489 510 5.20
GS Genera 003 013 035 540 539 530
GS 014 016 028 525 519 521
CA General 029 022 005 53 540 531
CA 013 002 001 518 517 5.28
cC Genera 003 004 011 528 533 525
CcC 028 034 037 511 522 484
LA Genera 013 026 029 526 521 518
LA 008 012 018 512 514 489
PS Generd 0.17 0.07 0.24 517 521 491
PS 021 034 012 512 516 4.96

Teacher Effects Estimation
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Before evaluating the teacher effects estimation, a brief description of the generated

teacher effects across three yearsisfirst presented here. For year 1, the generated teacher

effects range from -18.5 to 15.6 with amean of 0.4 and standard deviation of 10.1; for

year 2, they range from -16.1 to 13.5 with amean of -0.6 and standard deviation of 9.7;

and for year 3, they range from -19.0 to 13.9 with amean of 0.38 and standard deviation

of 10.2. To investigate the feasibility of the general model and to compare the general
and the reduced models with respect to the teacher effects estimation, two measures of

estimated teacher effects were computed for different combinations of data and models.



First, the correlation between the true teacher effects @’s and the estimated teacher

effects s was computed. The major purpose of estimating teacher effects using VAMs
in the educational practice isto rank-order the involved teachers. Therefore, amodel can
provide accurate estimates in practice if the estimated teacher effects using this model

have high correlation with the true teacher effects. Second, the absolute bias of the
estimated teacher effects Bi as(é) was computed. Besides these two measures, the
correlation between estimated teacher effects obtained from various models was also
computed to investigate the interrel ationship among the general and reduced models
regarding the random effect estimation.

The Correlation between the True and Estimated Teacher Effects

Tables 4.10-4.12 show the correlation between the true and estimated teacher effects
for al the data and model combinations across three years for three schools. In this study,
the correlations reported are the spearman’s rank correlation coefficients because the rank
order, instead of the absolute value, of the teacher effectsisof primary interest in
decision making practice. The range of the correlationsis from 0.81 to 0.94. The lowest
correlation 0.81 is observed when the CA model was used to estimate the School C’s
general-model-generated datain year 3. The highest correlation 0.94 is aways found
when the general model was used to estimate the general-model -generated data, for
example, the School A’s data in year 2 and year 3, School B’s data in year 3 and School
C’s data in year 1. Therefore, the correlation measure supports that, in general, all the
models can provide acceptable teacher effect estimates under various assumptions. In
order to further examine the different model performances, the following analysis focuses

on the pattern observed within each school.
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Table 4.10 Correlation Between estimated and true teacher effects for Each Y ear
from Different Models (School A)

Generated Fitted Year 1 Year 2 Year 3

Generd 0.93 0.94 0.94
GS 0.82 0.83 0.84

General CA 0.82 0.83 0.83
CC 0.85 0.84 0.84

LA 0.84 0.85 0.85

PS 0.92 0.91 0.91

GS General 0.86 0.86 0.87
GS 0.89 0.91 0.91

CA General 0.86 0.85 0.85
CA 0.92 0.91 0.89

cC General 0.85 0.86 0.86
CC 0.86 0.86 0.87

LA General 0.86 0.84 0.87
LA 0.87 0.86 0.89

PS Generd 0.91 0.91 0.92
PS 0.90 0.92 0.92

For School A, when the data were generated using the general model, as expected,
the general model itself gives the highest correlation. Meanwhile, the correlation obtained
by the PS model isonly lower by 0.01or 0.02. Again, this supports our assumption that
the PS model has the closest results to the general model because it has the most similar
model specification as the general one. The CC and LA model have the relatively close

results - the correation is about
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Table 4.11 Correlation Between estimated and true teacher effects for Each Y ear
from Different Models (School B)

Generated Fitted Year 1 Year 2 Year 3

General 0.92 0.93 0.94
GS 0.84 0.85 0.86

General CA 0.86 0.85 0.84
CC 0.92 0.90 0.90

LA 0.91 0.91 0.92

PS 0.91 0.92 0.93

GS General 0.88 0.89 0.88
GS 0.88 0.90 0.90

CA General 0.91 0.89 0.88
CA 0.91 0.90 0.89

cc General 0.89 0.88 0.88
CC 0.90 0.91 0.90

LA General 0.88 0.89 0.88
LA 0.90 091 0.89

PS General 0.90 0.92 0.91
PS 0.91 0.92 0.93

0.84 or 0.85. And the GS and CA model have the relatively close, but the lowest,
correlation. When the data were generated using the reduced models, the reduced models
themselves perform very well - even the lowest correlation is 0.86, which is observed
when the correct models were used to estimate the CC-model-generated data and LA-
model-generated data. However, the general model does not perform equally well under
various conditions. When the data were generated using the CC, LA and PS model, the
general model results are as good as those obtained from the correct models. While when
the data were generated using the GS and CA model, the correlation of the general model

Is much lower than that of the correct one, for example, the differences between the
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Table 4.12 Corrdl ation Between estimated and true teacher effects for Each Y ear
from Different Models (School C)

Generated Fitted Year 1 Year 2 Year 3

General 0.94 0.93 0.93
GS 0.84 0.85 0.85

General CA 0.83 0.82 0.81
CC 0.82 0.83 0.82

LA 0.85 0.84 0.84

PS 0.92 0.92 0.90

GS General 0.86 0.86 0.88
GS 0.90 0.92 0.92

CA General 0.86 0.85 0.86
CA 0.92 0.91 0.91

cc General 0.84 0.86 0.87
CC 0.86 0.86 0.88

LA General 0.86 0.85 0.88
LA 0.87 0.88 0.89

PS General 0.91 0.90 0.91
PS 0.91 0.91 0.92

correlations obtained using the general model and the correct model when the data were
generated using the CC model are 0.06 for the year 1 and year 2 data. Based on the above
analysis, aconclusion can be drawn that the estimation for the general-model-generated
data and the estimation for the reduced-model -generated data show the same pattern.
That is, with respect to the teacher effect estimates, the general and the PS model have

the close results; the CC and LA model have the similar results; and results obtained by
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the GS and CA model are close to each other, but have the most differences with the
general model.

The results for the School C data show the same pattern with those for the School
A data, athough they are slightly different in magnitude. That is, when the data were
generated using the general model, the general model provides the highest correlations
between the true and estimated teacher effects for all three years; the CC and LA model
provide the similar and worse results; the GS and CA model results are similar and worse
than the CC and LA mode results. When the data were generated using the reduced
models, the correct models provide better estimates, the general model provides slightly
worse results for the GS and CA model and much worse results for the CC and LA model.

However, the School B datatell adifferent story. Two types of improvements can
be observed when switching from the School A or C datato the School B data. First, for
the general-model-generated data, not only the PS model estimates, but also the CC and
LA model estimates are as good as the general model estimates - the CC and LA model
correlations are all greater than 0.90. While the GS and CA model results, which are
around 0.85, are still worse than the general model one. Second, when the data were
generated using the CC and LA model, higher correlation can be obtained from using
both the general and the correct model. Specifically, switching from the School A or C
data to the School B data, the correlations increase from around 0.85 to around 0.90 for
the CC-model-generated and the LA-model-generated data by using both the general and
the correct model. These two types of improvements indicate that the CC and LA model
are sensitive to the school composition. To be specific, the CC and LA model perform

noticeably better for the school that has roughly the same mix of advantaged and
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disadvantaged students (as School B) than for those have unbalanced mix (as School A or

C). The performance of the general model for estimating the CC-model-generated or LA-

model-generated data also improves when switching from the balanced mixed school to

unbalanced mixed school.

The Mean Absolute Bias of the Estimated Teacher Effects

Table 4.13 Mean Absolute Bias of the Estimated Teacher Effects for Each Y ear

from Different Models (School A)

Generated Fitted Yearl Yea2 Year3 Yearl Yea2 Year3

Estimates

SDs

General 440 302 391 591 616 6.03

GS 328 7./3 647 660 675 6.61

General CA 3199 791 653 668 659 6.64
CC 301 776 643 637 648 6.55

LA 491 311 533 630 645 644

PS 471 324 394 579 620 614

GS General 500 411 497 654 637 642
GS 503 398 49 625 631 632

CA General 510 408 491 649 655 6.36
CA 523 405 485 619 620 6.37

cc General 352 392 416 639 637 631
CC 352 413 433 613 616 586

LA General 485 338 404 636 625 631
LA 488 337 389 620 614 588

PS General 445 299 396 621 626 589
PS 453 302 399 619 626 590

Tables 4.13-4.15 show the mean absolute bias and the posterior standard deviation

of the estimated teacher effects for each year from different models for School A, B and

C, respectively. There are 16 teachers being evaluated within each school for each year.



The mean absolute bias presented in the tablesis calcul ated as %Zfl

Generally speaking teacher effects are not estimated with great accuracy — the mean

absolute bias in these three tables ranges from 2.91 to 7.95. Recent literatures (e.g.,

én _en
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McCaffrey et a; RAND 2003) show that there exist several sources of error in estimated

teacher effects. It is very difficult to make any meaningful inference based on the

magnitude of the teacher effects using the current methodol ogies so that the magnitude of

the estimated individual teacher effect isnot of primary interest in the practical

Table 4.14 Mean Absolute Bias of the Estimated Teacher Effects for Each Y ear

from Different Models (School B)

Estimates SDs

Generated Fitted Yearl Year2 Year3 Yearl Yea2 Year3
General 4.46 3.00 3.87 591 634 6.17
GS 3.06 7.74 6.45 661 692 6.58
General CA 486  3.08 5.29 685 659 657
CcC 3.28 7.95 6.60 641 663 6.70
LA 3.28 7.94 654 625 637 647
PS 4.41 2.95 3.89 597 622 6.24
GS Genera 5.03 405 499 659 634 6.36
GS 515 4.03 5.06 6.34 646 6.49
CA Genera 514 408 490 646 655 6.28
CA 527 401 5.06 6.26 640 6.50
cC General  3.63 390 415 648 632 6.27
CcC 355 393 435 6.27 615 585
LA General  4.89 3.39 394 656 624 646
LA 4.88 341 394 614 615 592
PS General 4.48 2.93 3.98 6.23 643 6.08
PS 451 2.95 3.97 631 6.27 583
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accountability system. Therefore, in this simulation study, how accurate and precise the

individual teacher effect can be estimated is also not of interest. The mean absolute bias

in those three tables is mainly used to investigate the differences and similarities among

the modeé!s.

Table 4.15 Mean Absolute Bias of the Estimated Teacher Effects for Each Y ear

from Different Models (School C)

Estimates SDs

Generated Fitted Yearl Year2 Year3 Yearl Yea2 Year3
General 446 303 38 599 636 6.03
GS 319 784 661 667 688 6.74
General CA 326 763 656 668 662 6.59
CcC 312 755 646 648 644 6.50
LA 492 301 531 629 665 6.62
PS 442 302 38 576 627 6.33
GS General 500 407 507 669 657 654
GS 523 403 518 643 623 6.34
CA General 509 408 492 653 672 641
CA 542 405 515 632 624 6.29
cC General 359 403 432 647 649 6.32
CC 358 38 431 625 625 595
LA General 486 339 39 635 634 641
LA 488 341 396 633 607 584
PS General 445 301 400 621 628 598
PS 447 291 397 622 635 586

Comparing the results across three years, it is apparent that the relatively larger

biases (> 7.00) or smaller biases (<3.00) tend to be observed from the year 2 results and

the ranges of the biases from the year 1 and 3 results are relatively smaller. Specifically,

the bias ranges from 3.01 to 5.42 for the year 1 data and from 3.86 to 6.61 for the year 2
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data. The reason for this pattern might be that the range of the generated teacher effects
for year 2 is smaller than those for year 1 and year 3.

Focusing on the three years results within each school, the following pattern can be
found for School A data. When the data were generated using the genera model, the
general model has the lowest bias of 3.78 and the PS model has the second lowest bias of
3.96. While the GS, CA and CC model produce relative larger bias. When the data were
generated using the reduced models, the correct model and the general model produce
very close results (In some extreme cases, for example, when the data were generated
using the LA model, the general model provides even smaller biases. However the
improvement of the general model isvery small, which might be attributed to the
estimate errors since the teacher effect estimates themselves are of great accuracy).
Therefore, the bias measure al so supports our assumption that the general model
performs best when it is the true model and it also provides the similar quality results as
the reduced model even when the reduced mode! is the true model. In contrast to the
correlation measure, this pattern is also true for the School B and School C data, and no
evident impact can be found of the school composition on the model performance.

The Correlation between the Estimated Teacher Effects from Different Models

To further investigate the interrel ationship and to compare the differences and
similarities among al the models, the correlation between the estimated teacher effects
from different models were a'so computed. Because the general model and the reduced
model provide very close estimates (The correlation is consistently greater than 0.95.)
when the correct modd is the reduced model, we plot the estimated teacher effects

obtained from the general model and the reduced model to see how these estimated
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teacher effects are distributed. Figures 4.1-4.5 present the correlations obtained from
using the five reduced-model -generated data, respectively. Each figure contains 9 panels.
Within each panel the points represent the individual estimated teacher effect. Rows of
panels correspond to three schools and columns of panels correspond to three years. Itis
apparent that al the points are ailmost on a straight line, which indicates highly correlated
rel ationship between the estimated teacher effects from the reduced model and those from
the general model. However, the distribution of the points within each panel varies from
model to model, and it also varies from year to year within each model. For example,
comparing the year 2 panelsin Figure4.1 and 4.2, it is easy to find that the points tend to
be more separated along the scales (from -30 to 30) using the GS-model-generated data
than using the CA-model -generated data. Furthermore, comparing the year 1, year 2 and
year 3 panelsin Figure 4.1, we can find that these three plots are also different in how the
estimated teacher effects spread along the scales. Y ear 1 data show three outliers - two of
them have much lower teacher effects and one of them has much higher teacher effect
than most of the teachers. Y ear 3 data show only one outlier that isfar left behind all the
other teachers. The same pattern can be observed from Figure 4.1 to 4.5, which indicates
that, with respect to identifying the outliers, al the models present similar results

regardless of the true underlying data structure.
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Figure 4.1 Correlation between the Estimated Teacher Effects from the General and the GS Model (GS Data)
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Figure 4.4 Correlation between the Estimated Teacher Effects from the General and the LA Model (LA Data)
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Figure 4.5 Correlation between the Estimated Teacher Effects from the General and the PS Model (PS Data)
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We use Tables 4.16-4.18 to report the pair-wise correlation between the estimated
teacher effects when the data were generated using the general model. The correlation
ranges from 0.71 to 0.97 across three schools for three years. Within each school, data
across three years provide very similar results. For School A data, the general-PS pair
gives the highest correlation. On average, the general model has the highest correlation

with the other models. This again proves the feasibility and advantage of the general
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model. The GS and CA model have arelatively high correlation with each other (greater

than 0.90), whereas they have much lower correlations with the CC model and the LA

Table 4.16 Pair-Wise Correlation between the Estimated Teacher Effects

from Different Models Using the General-M odel-Generated data (School A)

General GS CA CC LA PS

General 1.00 0.77 0.79 0.93 0.94 0.96

GS 1.00 0.93 0.72 0.73 0.80

Year 1 CA 1.00 0.72 0.74 0.80
CcC 1.00 0.93 0.83

LA 1.00 0.84

PS 1.00

General  1.00 0.77 0.78 0.92 0.91 0.94

GS 1.00 0.89 0.73 0.72 0.80

Year 2 CA 1.00 0.72 0.72 0.80
CC 1.00 0.91 0.83

LA 1.00 0.83

PS 1.00

General 1.00 0.82 0.82 0.92 0.94 0.95

GS 1.00 091 0.72 0.72 0.82

Year 3 CA 1.00 0.71 0.72 0.82
CcC 1.00 0.93 0.84

LA 1.00 0.85

PS 1.00
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model (smaller than 0.75). School C data present the similar results with School A data.

However, School B data present differencesin the correlation of the PS-CC pair and the

correlation of the PS-LA pair. Switching to the School B data, the PS-CC and PS-LA

correlations increase from around 0.83 to around 0.94. This significant change indicates

that the differences that exist between the PS and CC or LA model can be reduced if the

data are from a balanced mixed schooal. It is natural to relate this phenomenon with the

control of the

Table 4.17 Pair-Wise Correlation between the Estimated Teacher Effects

from Different Models Using the General-M odel-Generated data (School B)

General GS CA CC LA PS

General 1.00 0.82 0.80 0.93 0.95 0.97

GS 1.00 0.94 0.73 0.72 0.82

Year 1 CA 1.00 0.73 0.75 0.83
CcC 1.00 0.89 0.94

LA 1.00 0.93

PS 1.00

General 1.00 0.83 0.81 0.92 0.94 0.96

GS 1.00 0.93 0.74 0.73 0.81

Year 2 CA 1.00 0.74 0.72 0.83
CC 1.00 0.90 0.94

LA 1.00 0.94

PS 1.00

General  1.00 0.80 0.81 0.93 0.95 0.97

GS 1.00 0.93 0.70 0.73 0.83

Year 3 CA 1.00 0.72 0.74 0.83
CcC 1.00 0.90 0.94

LA 1.00 0.94

PS 1.00
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covariates because the major difference between the PS and the CC or LA model isthat
the PS model includes covariates but the CC and LA model don’t. Therefore, one
possible explanation is that the inclusion of the covariates does not make much difference
If the characteristics described by the covariates distribute homogenously in the sample.

Table 4.18 Pair-Wise Correlation between the Estimated Teacher Effects
from Different Models Using the General-M odel-Generated data (School C)

General GS CA CC LA PS

General  1.00 0.82 0.83 0.94 0.95 0.97

GS 1.00 0.92 0.75 0.73 0.82

Year 1 CA 1.00 0.75 0.75 0.82
CC 1.00 0.93 0.83

LA 1.00 0.84

PS 1.00

General  1.00 0.81 0.82 0.90 0.90 0.96

GS 1.00 0.91 0.74 0.74 0.82

Year 2 CA 1.00 0.75 0.73 0.83
CcC 1.00 0.92 0.84

LA 1.00 0.84

PS 1.00

General  1.00 0.82 0.83 091 0.92 0.97

GS 1.00 0.92 0.74 0.73 0.84

Year 3 CA 1.00 0.73 0.74 0.83
CcC 1.00 0.92 0.83

LA 1.00 0.83

PS 1.00

Teacher Variance Components Estimation
The MCMC agorithm designed for the general model also allows to simultaneously
estimating the teacher variance component, which is the variance of the teacher effects

within one year. For the convenience of comparing with the true standard deviation of the



teacher effects distribution, Tables 4.19 to 4.21 present the square root of the estimated

72

teacher variance components and the posterior standard deviation of the estimates across

three years for School A, B and C, respectively. All of the estimates are consistently
greater than the true value 10. There might be many reasons why the teacher variance
component estimates are larger than it would be. One of them is that the number of
students linked to each teacher is small, which would introduce larger measurement
errors. All of the posterior standard deviations for these estimates are between 2 and 3,
which indicate that the precision of the estimation is acceptable.

Table 4.19 The Estimated Teacher Variance Components for Each Y ear

from Different Models (School A)

Estimates SDs

Generated Fitted Yearl Year2 Year3 Yeal Yea2 Year3
General 108 10.6 11.3 2.1 2.0 2.3
GS 125 11.8 13.0 2.4 25 2.6
General CA 12.6 11.6 12.9 25 2.6 2.7
CcC 11.2 11.0 121 2.3 25 2.4
LA 114 10.9 11.7 25 2.3 2.6
PS 11.0 10.9 11.2 2.2 2.1 2.2
GS Genera 122 11.7 12.8 2.2 2.3 2.4
GS 12.2 115 12.7 2.2 2.1 2.2
CA Genera 12.3 11.2 12.7 2.3 2.4 2.2
CA 12.2 11.2 125 2.1 2.2 2.2
cc General 11.3 111 11.3 2.3 2.3 2.4
CcC 111 11.1 11.2 2.2 2.3 2.1
LA Genera 114 111 115 2.4 25 2.4
LA 114 11.3 114 2.3 2.4 2.4
PS Genera 113 11.3 115 2.3 25 2.2
PS 11.3 10.9 11.2 2.1 2.3 2.1




Table 4.20 The Estimated Teacher V ariance Components for Each Y ear

from Different Models (School B)

Estimates SDs

Generated Fitted Yearl Year2 Year3 Yearl Yea2 Year3
General 111 10.7 114 2.2 2.1 2.2
GS 121 12.0 12.8 2.3 25 25
General CA 12.6 11.7 13.0 2.6 2.6 25
CcC 114 11.2 12.0 2.3 25 25
LA 11.0 11.0 115 2.4 25 25
PS 11.2 10.8 11.3 2.1 2.2 2.3
GS Genera 121 11.8 12.7 2.3 2.2 2.3
GS 12.1 11.7 12.6 2.1 2.3 2.3
CA General 124 11.3 12.9 2.2 2.4 2.2
CA 12.2 11.2 12.7 2.3 2.3 2.2
cC Genera 114 111 115 2.4 2.4 2.3
CcC 11.0 111 111 2.2 2.2 2.1
LA Genera 115 115 115 2.5 2.4 2.4
LA 11.3 114 11.3 2.4 2.2 2.4
PS Generad 11.3 11.2 114 2.4 2.4 2.2
PS 11.2 11.0 11.2 2.2 2.2 2.1

Comparing across three tables, no significant difference can be observed among the
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results for the three schools, and there are several similar patterns can be found in all the

three tables. First, the estimates for the year 2 data are consistently lower than those for
the year 1 and year 3. This pattern can also be observed from the Figures 4.1-4.5, in

which the point distribution shown by the year 2 data has lower level of dispersion than

those shown by the year 1 and 3 data. Again, one possible explanation for thisis that the

generated teacher effects for year 2 have smaller range and smaller variance. Second, for

the general-model-generated data, the general and PS model provide similar results and

they are closest to the true value 10; the CC and LA model results are slightly more



biased; and the GS and CA model results are much more biased. When the data were
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generated using the reduced model, the general model result isjust slightly larger than the

result yielded by the correct model. Generally speaking, the estimated teacher variance

components from all of the models for different data are acceptable - the largest biasis

3.2.

Table 4.21 The Estimated Teacher V ariance Components for Each Y ear

from Different Models (School C)

Generated Fitted Yearl Yea2 Year3 Yearl Yea2 Year3

Estimates

SDs

General 11.0 10.7 11.3 2.2 2.2 2.3

GS 124 11.8 132 2.5 2.6 2.6

General CA 125 11.8 12.9 2.4 2.7 2.7
CC 11.3 111 12.0 24 2.6 24

LA 11.3 11.0 11.6 24 24 2.6

PS 11.2 10.9 114 2.2 2.3 2.2

GS General 12.2 11.7 12.6 2.4 2.5 24
GS 12.0 116 12.5 2.2 2.2 2.2

CA General 124 11.2 12.7 2.3 24 2.3
CA 12.3 11.3 12.6 2.2 2.3 2.4

cc General  11.2 111 114 2.3 24 24
CC 111 11.2 11.2 2.3 2.4 2.1

LA General 115 11.2 116 2.5 2.5 24
LA 114 114 115 2.4 2.4 2.2

PS General 114 11.2 11.6 2.3 2.5 2.2
PS 11.3 10.8 11.3 2.2 2.3 2.0

Teacher Effect Persistence Estimation

Table 4.22 shows the estimated teacher effect persistence parameters obtained from

the only two models that assume the persistence of previous years’ teacher effect is

diminished--the general and the PS model. Comparing with the true value for generating



75

®,,, ¢y, and ¢,, (0.2, 03 and 0.3, respectively), one can find that both the models can

provide relatively accurate estimates; and all the posterior standard deviations are
between 2 and 3. Moreover, it is apparent that the biases of the estimates are consistently
positive. Especially, when generating and fitting model combination is given, biases for

¢,, tends to be even larger than those for ¢,, and ¢,,. To some extent, this result supports

McCaffrey’s criticism of other researchers’ exaggerate claims on the persistence effect.
However, at this point, there is no clear explanation or interpretation for why the
persistence parameter would be overestimated. Also, thereis no evident impact can be
observed from using different schools’ data.

Table 4.22 The Estimated Teacher Effect Persistence Parameters
from the Genera and PS modél

Estimates SDs
School Generated Fitted ¢,,(0.2) ¢,,(0.3) ¢,(03) ¢, ¢, &5
Generd 0.26 0.32 0.32 0.03 0.05 0.05

General
A PS 0.31 0.34 0.35 0.06 0.06 0.06
PS Generd 0.26 0.34 0.35 0.04 0.05 0.03
PS 0.25 0.33 0.32 004 0.04 004
Genera 0.26 0.34 0.35 0.02 0.04 0.05
General
B PS 0.32 0.35 0.36 0.05 0.05 0.06
PS Generd 0.26 0.34 0.35 0.03 0.04 0.05
PS 0.25 0.33 0.32 0.03 0.05 004
Genera 0.26 0.34 0.33 0.03 0.04 0.05
General
C PS 0.30 0.34 0.35 0.05 0.05 0.06
PS Genera 0.27 0.35 0.37 0.04 0.05 0.05

PS 0.26 0.33 032 0.05 005 0.04

Random Student Effects Estimation
Table 4.23 shows the only measure for students’ own random effect - the estimated

student effect component and their posterior standard deviations. Also, only the results
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for the two models that take into account the students” own random effect are presented.
All the estimates are consistently smaller than the true value 5. However, when the
correct model is used to fit the data, the bias of the estimateis only around 1. For
example, when the general model is chosen to estimate to general-model-generated data,
the biases of the estimates for School A dataare 0.9, 0.8 and 0.7 for three years. No
apparent trend for the estimates over three years can be found. The impact of school
composition on the estimation is also not clear for this simulation.

Table 4.23 The Estimated Student Effect Component
from the General and CC model

Estimates SDs
School Generated Fitted Yearl Year2 Year3 Yearl Year2 Year3

General 4.1 4.2 4.3 21 19 1.9

General
A CcC 34 3.6 4.0 2.3 2.2 2.0
cC General 3.8 39 4.1 2.3 2.4 24
CC 4.2 4.1 4.3 2.1 23 2.3
General 4.2 4.0 4.2 22 2.0 1.9
General
B CC 3.6 35 4.0 2.2 2.2 21
cC General 39 3.8 4.2 24 2.4 2.3
CcC 4.2 39 4.3 2.1 24 2.2
General 4.2 39 4.4 2.1 21 2.0
General
C CC 3.7 3.6 3.9 24 2.2 21
cC General 39 4.1 3.8 24 2.3 24

CC 4.1 4.2 3.9 2.2 2.2 2.3

Estimation of the Teachers’ Contribution to Total Variance
The estimated teachers’ contribution to total variance is the percentage of the
estimated teacher variance component in the estimated total variance. The estimated total

variance is the sum of the estimated teacher variance component, estimated student
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variance component and estimated residual error. Results obtained using School A, B and
C data only have slight differences in magnitude. School composition does not have
significant impact on the teachers’ contribution to the total variance estimation. However,
it is easy to find that the estimated teachers’ contribution is lower for the year 2 data than

Table 4.24 The Estimated Teachers’ Contribution to Total VVariance for Each Year
from Different Models (%) (School A)

Generated Fitted Year 1 Year 2 Year 3

Generd 9.5 9.3 9.6

GS 12.1 115 12.0

General CA 11.9 11.3 11.8
CC 10.9 10.9 11.2

LA 11.2 10.8 11.4

PS 9.3 9.3 94

GS General 8.8 8.7 8.9
GS 11.8 11.7 11.8

CA Generd 8.9 8.8 8.8
CA 115 11.0 11.2

cc General 9.2 9.0 9.1
CC 104 10.5 10.5

LA General 9.2 9.0 9.2
LA 10.6 10.5 10.6

PS General 9.2 9.2 9.3
PS 9.3 9.3 94

for the year 1 and 3 data under every condition. Thisis consistent with the teacher effect
estimation and teacher variance component estimation. The estimates range from 8.6 to
12.2. When the data are fitted by the general or the PS model, regardless of the
generating model, the estimates are lower than the true value 10. On the other hand, when

fitting the data using other models, regardless of the generating models, the estimates are
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greater than 10. Therefore, we can conclude that the general and PS model tend to
underestimate the teachers’ contribution to the total variance, whereas the other models
tend to overestimate that.

Table 4.25 The Estimated Teachers’ Contribution to Total Variance for Each Year
from Different Models (%) (School B)

Generated Fitted Year 1 Year 2 Year 3

Generd 9.5 9.2 9.6

GS 12.1 115 121

Generdl CA 11.8 114 11.9
CC 11.0 10.9 111

LA 11.3 10.8 11.3

PS 9.5 9.4 9.5

GS Generd 8.7 8.6 89
GS 11.9 11.7 11.8

CA Generd 8.9 87 8.8
CA 115 111 11.2

cc Generd 9.2 9.0 9.1
CC 104 10.5 10.7

LA General 93 9.2 9.3
LA 10.6 10.5 10.7

PS Generd 9.2 9.0 9.1

PS 9.3 9.1 9.2




Table 4.26 The Estimated Teachers’ Contribution to Total Variance for Each Year

from Different Models (%) (School C)

Generated Fitted Year 1 Year 2 Year 3
General 94 94 95
GS 12.2 11.3 11.9
General CA 11.8 11.3 11.9
CC 11.0 10.9 11.3
LA 11.2 10.7 115
PS 95 9.3 95
GS Generd 8.7 8.6 8.7
GS 11.8 11.7 11.9
CA General 8.8 8.8 89
CA 11.3 11.0 11.3
cC General 9.1 9.0 9.0
CC 105 10.4 105
LA General 9.2 9.1 93
LA 10.6 10.5 10.7
PS General 9.2 9.1 9.1
PS 9.2 9.1 9.2
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CHAPTER 5
REAL DATA AND ANALYSIS
Data

The data used for this study consist of 3 years of longitudinally linked student-level
datafrom one cohort of 1,836 students from alarge statewide achievement testing
program. In addition to the scaled scores for Mathematics, the variable of interest in this
study isfree or reduced price lunch eligibility (FRL). The data contain no missing school-
student linkage and no incomplete consecutive scores. To explore the impact of the data
structure on model fit, the selected students are purposively divided into three samples
according to the SES structure of the schools they attended. The three samples have 10,
12, 12 schools, respectively. In the first sasmple (Data 1), the chosen schools have similar
proportions of FRL students. The FRL rates for Data 1 range from 11% to 23%.The
second sample (Data 2) also contains schools with similar proportions of FRL, and the
rates range from 61% to 75%. Compared to the first two samples, the third sample (Data
3) is highly heterogeneous with FRL rates ranging from 8% to 75%. The selected
students may transfer schools, but they have to stay in the same sample for the duration
of the study. Both the general and the five reduced models (the GS, CA, CC, LA and PS
models) were used to fit the data, and all the model estimation and comparison were
independently conducted for each of the three samples.

Table 5.1 summarizes the FRL rates and mean scores for both FRL students and
non-FRL students school by school. For Data 1, the mean scores range from 471 to 492
for FRL students and range from 503 to 520 for non-FRL students; for Data 2, the mean

scores range from 462 to 488 for FRL students and range from 503 to 518 for non-FRL
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students; and for Data 3, the mean scores range from 469 to 491 for FRL students and
range from 501 to 519 for non-FRL students. On average, the mean score for FRL
students are around 30 |ess than the mean score for non-FRL students across al the
schools of interest. Thisistrue for all the three samples. From the descriptive analysis of
the three samples, one can see that, the simulated data were purposively generated
according to the real data structure, although they cannot be exactly the same. The
similarities and differences between the simulated and real data are summarized as
follows: First, both the simulated and real data show that student scores increase across
years and the non-FRL students have higher scores and faster gains. The mean scoreis

Table 5.1 FRL Rate and Mean Score for FRL and non-FRL Students
from Different Schools

Datal Data 2 Data 3

Schoo FRL Mean Score FRL Mean Score FRL Mean Score
| (%) FRL E‘;{”L' (%)  FRL E%”L' (%)  FRL E%”L'
1 11 4771 5203 65 4714 5032 8 4761 5112
2 12 4903 5145 67 4755 5088 11  469.7 508.9
3 14 4925 5100 67 4853 5066 23 4716 5152
4 14 4710 5215 68 4797 5024 37 4694 5105
5 16 4809 5156 69 4880 5057 39 4752 5194
6 17 4825 5179 69 4871 5144 44 4913 5189
7 20 4758 5103 69 4773 5183 45 4847 5143
8 21 4772 5131 73 4739 5100 52 4739 5008
9 21 4893 5069 74 4695 5119 57 4794 5137
10 23 4878 5031 74 4774 5004 60 4805 5154
11 75 4738 5137 65 4839 5053

78  462.3 518.6 75 490.2 501.9

[EEN
N




82

around 220 for the simulated data and is around 500 for the real data. Second, for both
data, three different samples are created to represent different teacher or school
compositions. However, for the simulated data, all the classrooms within each sample
have the same proportion of the non-FRL student, whereas in the real data, different
schools have different proportions of the non-FRL students, especiadly, the third sample
is highly heterogeneous. Third, the simulated data have 400 students’ scores and 16
teachers of interest for each year, whereas the real data have 1836 students’ scores and
about 12 schools for each year.

Analysisand Comparison of M odel Estimation

In the real dataanalysis, DIC is used for the model comparison in terms of the
overall goodness of fit. Within the same data, the overall goodness of fit will be
compared among general and all the reduced models. For the fixed-effect variables, such
as mean scores and SES variable, the posterior mean and standard deviation obtained
from the MCMC algorithm are reported as the estimated coefficients for each year and
each subject and their posterior standard deviations.

For the estimated school effects, several measures are considered: estimates of
individual school effects and the overall contributions of school to variability in student
outcomes. The MCMC agorithm provides the estimate of each individual school’s effect
for al the models of interest. The spearman’s rank correlation between the estimated
school effects for each year from different models are computed to show their
relationships. The variance components for school effects and their ratios to the overall

variability in outcomes, which describe the schools' contribution to total variance, can
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also be obtained directly from the MCMC algorithm. The school's contribution for each
year and each subject obtained from different models are compared.

For the school persistence parameter, the analysisis based on the posterior mean and
standard deviation. The assumption that the school effect persists into the students' future
performance are examined according to the value of the estimated school persistence
parameter. Whether the persistence is diminished or undiminished can also be found
through the value of the persistence parameter and the overall model fit.

Results
Overall Model Fit

Table 5.1 summarizes the DIC value provided by all the models using three different
data, respectively. It should be noted that the DIC values provided from different data are
not comparable. Data 1 result shows that the general model yields the best overall model
fit, which isindicated by the smallest DIC value. The PS model provides the second best
overall model fit. The general and PS model are more complex than the other models, so
this result suggests that the structure of Data 1 requires a complex model to obtain a good
fit. The GS and CA model results are very close to each other and have the two largest
DIC values. Data 2 yield relatively similar pattern to the Data 1 results. That is, for Data
2, the best model fit is also provided by the general model, which is followed by the PS
model. And the GS and CA model perform the worst compared to the other models, but
they two give the close results. There are also differences existing between Data 1 and
Data 2 results. For Data 1, the CA model performs better than the GS model, and the LA
model performs better than the CC model. However, for Data 2, the relationship between

the CA and GS models or between the LA and CC models changes - the GS model
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performs better than the CA model, and the CC model performs better than the LA model.
The pattern shown by the Data 3 results is different from that shown by the Data 1 and 2.
Although the general and PS model are still the best ones, the other four models give
relatively close DIC values. That is, for Data 3, the disadvantage of using the GS and CA
model is not that apparent compared to the Data 1 and 2.

Table 5.2 DIC Obtained from All the Models Using the Real Data

Models
Genera GS CA CcC LA PS
Datal 7977 8313 8298 8204 8107 8011
Data2 7662 7842 7877 7738 7766 7695
Data3 7842 8109 8224 8211 8143 7992

Fixed Effect Estimation

For the real data study, the fixed effect includes the overall mean for all the models,
and one student level covariate — SES for all the models except the CC and LA model.
Table 5.2 shows the overall mean estimates and their posterior standard deviations for
each year from all the models. All the posterior standard deviations are around 5, which
indicates that the precision of the overall mean estimates. It should be noted that the
overall mean for the GS and CA model is actually the average growth from Year 1 to
Year 2 and from Year 2to Year 3. Comparing across the three data, we can find that
when the same model being used the Data 1 has the highest overall mean estimate
whereas the Data 2 has the lowest one. Thisisin accordance with our expectation since
the Data 1 only has a small portion of disadvantaged students whereas the Data 2 has a
large portion. Comparing across three years, we can find that the overall mean estimates

increase over years. However, the three data show different rates of growth. The gain



from year 1 to year 2 is approximately 33 for Data 1, 20 for Data 2 and 27 for Data 3.
The gain from year 2 to year 3 is approximately 28 for Data 1, 15 for Data 2 and 26 for

Data 3. Thisresult supports the assumption that the advantaged students not only have
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higher mean scores, but also have higher gains over years. When using the same data, no

significant difference can be observed for the overall mean estimates from different

models.

Table 5.3 Estimated Overall Mean for Each Y ear
from Different Models Using the Real Data
Estimates SDs
Data Fitted Yearl Year2 Year3 Yearl Year2 Year 3

General 4788 5112 5395 47 51 51
GS - 33.9 28.1 -- 55 5.6
Datal CA - 34.5 27.9 -- 5.4 5.8
CcC 4740 5061 5354 49 5.3 55
LA 4735 507.2 533.9 51 5.4 5.7
PS 480.2 5130 5412 47 52 5.3
Genera 464.3 486.4 500.2 4.8 5.3 52
GS - 115 154 - 5.6 55
Data 2 CA - 10.1 14.3 -- 5.3 5.6
CcC 460.0 4812 4937 51 55 5.6
LA 458.8 479.6 491.9 5.2 5.6 55
PS 462.6 4828 4989 49 5.1 54
Genera 477.5 5076 5327 45 5.0 51
GS - 28.2 26.9 -- 5.3 5.3
Data 3 CA - 27.3 26.1 - 55 5.8
CcC 468.9 4958 5184 46 5.6 5.4
LA 467.0 4962 5199 50 5.2 55
PS 476.2 5063 5319 49 5.3 51
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Table 5.4 Estimated Coefficients for SES for Each Y ear
from Different Models Using the Real Data

Estimates SDs
Data Fitted VYearl Year2 Yexr3 Yearl Year2 Year3

General 299 287 334 4.6 4.4 4.3

GS ~= 30.1 31.9 ~- 5.3 5.2

Datal CA -- 31.2 34.6 -- 6.4 5.2
CC -- -- -- -- -- --

LA -- -- -- -- -- --

PS 294 279 339 53 5.4 6.3

General 215 20.2 25.9 4.2 4.7 5.2

GS -- 224 24.3 - 5.8 5.2

Data2 CA -- 21.0 26.2 - 6.1 6.4
CC -- -- -- -- -- --

LA -- -- -- -- -- --

PS 22.3 191 251 43 5.2 5.2

General 237 234 26.8 4.4 5.8 51

GS -- 221 244 - 5.5 5.4

Data3 CA -- 23.9 27.6 -- 6.1 5.4
CcC -- -- -- -- -- --

LA -- -- -- -- -- --

PS 230 222 264 56 5.2 5.6

The estimated coefficients for the SES variable for each year from different models
are shown in Table 5.3. Although he impact of the SES variable changes over years and
also changes across different data, all the coefficients are positive and statistically
significant. Therefore, we can conclude that the advantaged students perform better than

the disadvantaged students.
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The Correlation between the Estimated Teacher Effects from Different Models

The accuracy of the school effects estimates cannot be evaluated for the real data.
Therefore, in this section, the investigation focuses on the interrel ationship among the
school effects estimates from different models. Tables 5.4-5.6 report the pair-wise
correlation between the estimated school effects from all the models for three data,
respectively. The correlation ranges from 0.70 to 0.95 across three data for three years.
Within each data, three years results are relatively close except for the correlation
between the general and the CC model. For the general-CC pair, the correlation is much
lower in Year 1 thanin Year 2 and 3. Thisistruefor all three data. The reason for this
pattern remains unclear at this moment. For Data 1, the general and PS model give the
highest correlation. On average, the genera model has the highest correlation with the
other models. This again proves that the general model is more reliable when the correct
model is unknown. The GS and CA model have arelatively high correlation with each
other (around 0.90), whereas they have much lower correlations with the CC model and
the LA model (around 0.70). Data 1 presents the similar results with Data 2. However,
Data 3 presents differences in the correlation of the PS-CC pair and the correlation of the
PS-LA pair. Switching from Data 1 to Data 3, the PS-CC and PS-LA correlations
increase to 0.88. This pattern shown by the real datais consistent with the pattern shown
by the ssimulated data, although the latter is more apparent than the former. The simulated
dataresult is more apparent might be because the data were generated using the general
model, but for the real data the true underlying data structure is unknown. Therefore,
again, it is natural to believe that the impact of the inclusion of the covariates depends on

how the characteristics described by the covariates distribute among the sample.



Table 5.5 Pair-Wise Correlation between the Estimated School Effects
from Different Models Using the Real Data (Data 1)

General GS CA CC LA PS
General  1.00 -- -- 0.87 0.92 0.94
GS -- -- -- -- --
Year 1 CA a a a a
CcC 1.00 0.92 0.80
LA 1.00 0.82
PS 1.00
General 1.00 0.78 0.78 091 091 0.94
GS 1.00 0.86 0.72 0.72 0.78
Year 2 CA 1.00 0.71 0.73 0.80
CC 1.00 0.92 0.82
LA 1.00 0.83
PS 1.00
General  1.00 0.82 0.79 0.92 0.91 0.94
GS 1.00 0.93 0.71 0.71 0.82
Year 3 CA 1.00 0.72 0.74 0.82
CC 1.00 0.91 0.83
LA 1.00 0.82
PS 1.00
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Table 5.6 Pair-Wise Correlation between the Estimated School Effects
from Different Models Using the Real Data (Data 2)

General GS CA CC LA PS
General  1.00 - - 0.87 0.91 0.94
GS -- -- -- -- --
Year 1 CA N N N -
CcC 1.00 0.90 0.78
LA 1.00 0.83
PS 1.00
General 1.00 0.76 0.77 0.92 0.91 0.94
GS 1.00 0.84 0.71 0.72 0.82
Year 2 CA 1.00 0.72 0.71 0.82
CcC 1.00 0.93 0.83
LA 1.00 0.84
PS 1.00
General  1.00 0.82 0.81 0.91 0.90 0.94
GS 1.00 0.92 0.72 0.70 0.84
Year 3 CA 1.00 0.72 0.72 0.84
CC 1.00 0.91 0.84
LA 1.00 0.82
PS 1.00
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Table 5.7 Pair-Wise Correlation between the Estimated School Effects
from Different Models Using the Real Data (Data 3)

General GS CA CC LA PS
General  1.00 - - 0.83 0.91 0.95
GS -- -- -- -- --
Year 1 CA N N N -
CcC 1.00 0.91 0.90
LA 1.00 0.90
PS 1.00
General 1.00 0.75 0.81 0.90 0.91 0.93
GS 1.00 0.92 0.71 0.72 0.83
Year 2 CA 1.00 0.72 0.71 0.84
CcC 1.00 0.93 0.89
LA 1.00 0.89
PS 1.00
General  1.00 0.78 0.82 0.91 0.90 0.95
GS 1.00 0.89 0.70 0.72 0.83
Year 3 CA 1.00 0.72 0.73 0.81
CC 1.00 0.90 0.88
LA 1.00 0.88
PS 1.00

School Variance Components Estimation

The school variance components estimate is another measure of the school effect
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estimation. As mentioned above, it isimpossible to evaluate the accuracy of the estimates

for the real data. Therefore, only the similarities and differences among all models from

three data will be discussed. The school variance components estimates obtain from
different datavary. They range from 6.5 to 15.2 for Data 1, from 9.9 to 18.9 for Data 2,
and from 11.8 to 16.9 for Data 3. Moreover, comparing across three data, the estimated

school variance components show different trends over three years. For Data 1, the
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estimates decrease from Year 1 to Year 2, whereas they increase from Year 2to Year 3.
For Data 2, the estimates decrease from Year 1 to Year 3. However, for Data 3, the
estimates from different models show different trends and the pattern of the trendsis not
quite clear. Next, we will examine the interrelationship among all the

Table 5.8 The Estimated School Variance Components for Each Y ear
from Different Models Using the Real Data

Estimates SDs
Data Fitted Yearl Year2 Year3 Yearl Yeaxr2 Yea3

Genera 141 94 135 2.0 19 19

GS -- 121 145 - 21 25

Data 1 CA -- 13.0 15.2 - 24 2.3
CcC 10.3 6.9 114 - - --
LA 9.3 6.5 10.8 - -- --

PS 14.4 10.8 12.9 2.3 2.2 2.1

Genera 139 13.2 11.6 21 21 2.2

GS -- 18.9 15.7 - 2.2 2.4

Data 2 CA -- 174 16.0 - 2.3 25
CcC 114 10.2 9.9 -- - --

LA 12.8 11.6 104 -- - --

PS 14.4 13.1 10.9 2.2 2.2 2.2

Genera 141 15.0 16.2 2.2 2.3 2.2

GS -- 14.3 15.1 -- 24 2.4

Data3 CA -- 14.1 154 -- 25 2.3
CcC 12.3 12.6 11.8 - - --

LA 12.0 11.9 13.0 -- -- --

PS 14.0 14.1 16.9 2.4 2.2 2.2

models within the same data. For Data 1, the estimates obtained from the general and the
PS model are very close, those obtained from the GS and the CA model are close to each
other and higher than the general model estimates, and those obtained from the CC and

LA mode are close to each other and lower than the general model estimates. The
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interrel ationships among al the models remain the same for Data 2. For Data 3, compare
to the Data 1 and 2, the estimates obtained from the GS and the CA model are closer to
the general model estimates with other patterns remaining the same. The changes occur to
the GS and CA model for analyzing Data 3 allow usto relate the impact of explicitly
modeling the intra-student correlation on the school variance components estimation to
the structure of the data. We infer that ignoring the intra-student correlation (as the GS
and CA model do) does not strongly affect the school variance components estimation
when the students are heterogeneously grouped.
School Effect Persistence Estimation

All of the estimated school effect persistence parameters shown in Table 5.8 are
larger than 0 and smaller than 0.5. Thisrange is consistent with those reported in other
studies using different empirical data. And this means that the previous years’ teacher
effects persist into the students’ future achievement, although the persistence diminished
over years. The general and PS model estimates are different but very close to each other.
Over three years, the trends of the estimates show differences across three data. For Data

Table 5.9 The Estimated School Effect Persistence Parameters
from Different Models Using the Real Data

Estimates SDs

Data Fitted P P bn Py Pn Oy
Genera 021 0.15 032 0.04 0.04 0.03

Datal
PS 025 020 026 0.04 0.05 0.04
Data 2 Generd 033 034 017 0.04 0.03 0.05
PS 0.32 031 020 0.05 0.04 0.06
Genera 0.16 025 028 0.05 0.04 0.04

Data 3

PS 021 024 032 006 0.04 0.05
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1, the lowest estimates obtained in ¢,, , whereas for Data2 and 3, ¢,, hasthe lowest

estimates.
Random Student Effects Estimation

The estimated student own random effect components from the general and CC
model are presented in Table 5.9. All the student effect estimates are significantly larger
than 0, which supports our assumption on the existence of the student’s own random
effect. The estimates show the widest range in Data 1, which isfrom 4.2t0 7.5. The
estimates obtained from the genera and the CC model do not have significant differences
except under three conditions-- the Year 1 result in Data 1 and Data 3 and Y ear 3 result in
Data 2. Furthermore, no apparent pattern can be observed in terms of the changes of the
estimates over years. For example, for Data 1, the general model estimates decrease from
Year 1to Year 3, but the CC model estimates increase. However, this pattern cannot be
observed for Data 2 or Data 3.

Table 5.10 The Estimated Student Effect Component for Each Y ear
from Different Models Using the Real Data

Estimates SDs
Data Fitted VYearl Year2 Year3 Yearl Yeaxr2 Yea3

General 75 5.1 4.2 2.5 2.7 2.8

Datal
CC 4.3 4.9 5.1 2.8 31 2.9
Data 2 General 5.2 5.9 4.4 2.6 2.9 2.5
CC 5.9 5.4 6.1 2.9 3.0 2.8
Data 3 General 6.3 5.0 59 2.4 2.6 2.7

CC 4.1 6.2 5.1 2.8 2.7 3.0
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Estimation of the Schools” Contribution to Total Variance

Table 5.10 shows the schools’ contribution to total variance using three different
data. We can observe that the variability of the estimates is higher than that of the school
variance components estimates shown in Table 5.7. The estimates range from 3.5t0 21.4
for Data 1, from 8.1 to 21.0 for Data 2, from 10.1 to 20.7 for Data 3. Moreover,
comparing across three data, the estimates show different trends over three years. For

Table 5.11 The Estimated Schools’ Contribution to total variance for Each Y ear
from Different Models Using the Real Data (%)

Data Fitted Year 1 Year 2 Year 3

Generd 16.3 6.6 13.2

GS -- 10.8 15.6

Data 1 CA -- 11.6 15.8
CC 9.0 3.8 9.7

LA 75 35 8.9

PS 17.2 8.9 12.3

Genera 14.3 14.2 9.6

GS - 21.7 8.8

Data? CA -- 15.1 12.0
CC 11.7 8.7 8.1

LA 124 11.0 8.9

PS 16.5 12.3 8.3

Generd 16.3 16.7 191

GS - 18.8 17.2

Data3 CA -- 18.1 20.5
CC 124 11.8 10.1

LA 11.8 10.5 12.3

PS 16.1 14.8 20.7

Data 1, the estimates decrease from Year 1 to Y ear 2, whereas they increase from Year 2
to Year 3. For Data 2, the estimates decrease from Year 1 to Y ear 3. However, for Data 3,

the estimates from different models show different trends. Thisis the same pattern as
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shown by the school variance components. In addition, the interrel ationships among all
the models observed from the schools’ total contribution estimates are also the same with
that observed from the school variance components estimates. That is, for Data 1 and 2,
the estimates obtained from the general and the PS model are very close, those obtained
from the GS and the CA model are close to each other and higher than the general model
estimates, and those obtained from the CC and LA model are close to each other and
lower than the general model estimates. For Data 3, compareto Data 1 and 2, the
estimates obtained from the GS and the CA model are closer to the general model

estimates.
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CHAPTER 6
DISCUSSION AND CONCLUSION

Under NCLB, there is pressure to provide evidence to support the adequacy of
teachers and schools in regards to student learning. VAM is being used as atool to help
illuminate which variables are in fact contributing to student learning, by isolating related
factors, such asteacher and school effects. Although many researchers that have used
VAM have shown promising results, additional research is needed in this area given the
fact that mistakes in model misclassifications may have significant impact on teachers
and schools, more research is needed. This study reviews several VAM approaches that
are currently being implemented or reviewed for accountability purposes. Similar to
McCaffrey et a. (2004), we intend to investigate the validity and reliability of several
VAMSs, by providing ageneral VAM framework and applying both the general and
reduced models to the simulated and real data and then comparing the differences and
similarities, given each model’s basic assumptions. Compared to the general model
proposed by McCaffrey et al., the genera model proposed in this study is definitely more
complex, in both formulation and estimation, in its attempt to explicitly parameterize and
estimate the teacher effect persistence that has been proved to be necessary in describing
the empirical data. In addition to proposing a new general model, an accompanying
MCMC code for parameter estimation is also developed for this work.

The simulation study shows that the MCMC a gorithm devel oped under a Bayesian
framework functions very well for estimating the parameters involved in both the general
and the reduced models. The fixed effect parameters can be accurately estimated using all

the different models for generated data with different structures even when the model
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specification does not match the underlying assumption of the data structure. The random
effects investigated in the simulation study includes teacher effect and students’ own
random effect. The estimated teacher effects are acceptable, athough their accuracy and
precision are not ideal. As other studies have pointed out that VAMs are not capable of
providing teacher effect estimation with any precision, the simulation study shows that
the teacher effect estimates have relatively large biases. However, this does not affect the
usage of the teacher effect estimates for accountability purposes. In practice, the
magnitude of the teacher effect is not of the most importance. On the contrary, the rank-
ordering teachers or identifying teachers at the extremes of the performance distribution
Is the objective of applying VAMs. The estimated teacher effects from both the general
and the reduced models have high correlation with the generated true teacher effects.
Meanwhile, the students’ own random effects can be accurately estimated by the genera
and the CC model. Beyond the fixed and random effects, all the models can recover the
teachers’ contribution to total variance, which aso depends on the quality of the residual
error term estimation.

In addition to the feasibility of the general model, the relationship between the
general model and the reduced model, and the relationship among all the reduced models
are also investigated through the simulation study. The following summaries are based on
the DIC vaues and the evaluation of the quality of the different estimates. First, the
general model has the best performance in terms of the overall model fit when the data
are generated using the general model. Even when the data are generated using the
reduced models, the performance of the general model isjust dlightly worse than those of

the correct models. Second, compared with all the other reduced models, the PS model
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provides the closest results to those provided by the general model. Thisisin accordance
with our expectation because the general model and the PS model have exactly the same
underlying assumptions on the teacher effects, teacher effect persistence and residual
error and the only difference between the general model and the PS model is the
inclusion of the student’s own random effect. Although the real data results support the
existence of the student’s own random effect, its magnitude and its contribution to the
total variation of student’s score are relatively small compared to that of the fixed effect
and other random effects. This might be the reason why the advantage of the use of the
general model is quite mild over the use of the PS model. In the future, a simulation study
with stronger student’s random effect and more empirical studies are needed to
investigate the similarity and difference between the general and the PS model. The Third,
the GS and CC mode tend to provide relatively similar results to each other under
various conditions and they have the most apparent differences with the general model,
which is supported by the largest distances existing between their estimates and the
general model estimates. One possible explanation for the similarity between the GS and
CC model is that both of them include the student’s previous year score into the fixed
effect part and assume no intra-student correlation. Forth, the CA and LA model often
provide similar results under some conditions. This might be because both of them do not
incorporate any covariates and assume constant correlation across years within the same
student.

The impact of the school composition on the model performance and on the
interrel ationship among models can a so be observed from the simulation results. School

A and B, which have unbalanced mix of the advantaged and disadvantaged students,
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show the same picture of the model performance pattern in terms of the overall model fit
and quality of the estimates. However, School C data, which has balanced mix of the
advantaged and disadvantaged students, sometimes tells a different story. For example,
the performances of the CC and LA model are noticeably better for analyzing the School
C datathan for the School A or B datawhen all of the data are generated using the
general model. The performance of the general for estimating the data generated using
the CC or LA model aso improves. These improvements can be supported by higher
correlation measured between the estimated and the true teacher effects. In addition, the
correlation between the teacher effects estimates obtained from the different models
shows that the PS-CC correlation and PS-LA correlation apparently increase when
switching from the School A or B datato the School C data. Thisresult allows usto infer
that the impact of the covariates on the teacher effect estimation is associated with the
school composition because the most salient feature of the CC and LA model is that both
of them exclude the covariates. As mentioned in Chapter 2, there have been hot debates
on controlling for student background in value-added assessments of teachers. Some
researchers, given what they know about the relationship of demographic characteristics
of personsto their educational attainment, believe it is unreasonable to think that
covariates would have no relationship at al to outcomes. However, according to our
simulation results, thisis true under certain conditions.

Thereal data study shows that, to the extent that it can be verified, the analysis of
actual students’ outcomes from a large scale statewide testing provides very similar
results to those obtained in the simulation study. Hence, the real data, which are of very

complex structure, requires a complex model similar to the proposed general model to be
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analyzed and interpreted appropriately. Some differences from the simulation results are
encountered in real dataanalysis. One possible explanation is that the measurement errors
associated with the observed variables are inevitable in practice. It should also be noted
that the school effects investigated in the real data analysis are not necessarily causal
effects of schools. Rather, they account for unexplained heterogeneity at the school level.
All the discussed models indicate that school effects account for a significant proportion
of the variability in students’ growth in achievement scores, although the proportions
among different models vary in magnitude. The magnitude of school effects should be
interpreted with great caution.

The teacher effect persistence (school effect persistence in the rea dataanalysis) is
another issue that has received great attention. However, thereis still no universa
agreement on to what degree the teacher effect persists into the future among researchers.
Sanders and his colleague believe the high rates of persistence of teacher effects over
several years. McCaffrey et al. (2004) criticized their claims and provided more modest
persistence effect estimates using models with |ess stringent assumptions. One of the
most important findings of our real data analysisis that the persistence parametersimply
long-term persistence of past years teachers’ effects or schools’ effects decay in the
strength over time. Thus, the general model and PS model assumption on the persistence
parameter fits better for the data than the GS and LA model, which assume that teachers’
(or schools’) effects from the past years persist undiminished into the future. All
estimates are positive but substantially smaller than one. Thisfinding is consistent with
the empirical result presented in McCaffrey et al. (2004) obtained with different data.

Thisfinding can also shed light on the practical meaning of teacher (or school) effects - it
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suggests that the effects of poor teaching should be more remediable than it has been
claimed.

A common concern and drawback discussed about the use of more complex model
like our general model is the computational challenge. However, as proposed, the MCMC
algorithm in a Bayesian framework can successfully estimate all the involved parameters.
The most important property of the MCM C agorithm is that sampling the joint posterior
distribution all the parameters can be realized by repeatedly sampling from the
conditional posterior distributions of one parameter as related group of parameters given
the data and current values of all other parameters. This makesit well suited to dealing
with models with complex relationa structures. For example, the estimation of the
persistence parameters can be treated as the estimation of the unknown regression
coefficients on known predictors conditional on the random effects. According to
Lockwood et al. (2007), conditioning on random effects reduces the complex covariance
matrices to simple, computationally tractable block diagonal forms. Moreover, using a
program written in Ox (Doornik, 2002) to implement the general model and analyze 16
teachers’ effect and 400 students’ scores takes a2 GHz machine only fifteen minutes to
run 10000 iterations. And more importantly, MCMC remains open and viable because its
flexibility and ease of implementation allow us to develop more complex problemsin
future research.

There are afew important limitations to both the simulation and real data study.
First, the simulation data is designed to have no incomplete student scores and no missing
teacher-student linkage. In addition, the real datais also intentionally selected without

any missing records from a large-scal e statewide testing data. However, in practice, the
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missing data problem isinevitable. For example, in the entire data set, from which the
real data analyzed in the work have been obtained, actually, only 15% of the students
have complete testing scores over the 3 years. In addition to modeling student data, the
missing teacher-student linkage is another serious problem. Students and teachers transfer
during the years of testing. For the incompl ete student scores, the Bayesian augmentation
method allows us to estimate the missing value as the unknown parameter. But dealing
with the missing teacher-student linkage can only be determined by positing a missing
mechanism. Lockwood et al. (2007) implemented three procedures for treating the
missing link information for three different missing pattern assumptions, respectively.
They also analyzed an empirical testing data to investigate the sensitivity of the value-
added measures to the missing pattern assumptions using the PS model. In the future
study, we can extend their investigation to all the VAMs including our general model and
use well-designed simulation study to examine the different missing patterns.

Second, in the simulation study, the assignment of students to teachers is random
conditional on the student SES variable. The same assumption is made for the real data
analysis. However, in redlity, thereislittle reason to think that this is an adequate
characterization of classroom assignments. For example, the principles or parents have a
great deal of information beyond the prior test score that can affect the classroom
assignments. Rothstein (2009) quantified the biases in estimates of teacher effect from
several value-added models under varying assumptions about the assignment process and
pointed out that even the best feasible value-added models may be substantially biased
with the magnitude of the bias depending on the amount of information used in the

assignment process. Therefore, afurther investigation on the performance of the
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proposed general model, especially, the teacher effect estimation given more complex
assignment assumptions should be conducted.

Third, the only covariate involved in both the simulation and real data study is the
SES variable. Thisis because the SES variable is the most debatable covariate, which is
believed to be confounded with the teacher or school effect. However, researchers have
shown that gender, ethnicity and some other indicators are also important predictors of
students’ future performance. Future work should include studies that compare the
models when more covariates are included.

Fourth, in the simulation study, due to the time and resource limitation, only one
dataset were generated for each condition. Future study should generate at least 100

dataset for each condition to make the findings more reliable.
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