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Jimmy de la Torre

        Value-added models (VAMs) are becoming increasingly popular within

accountability-based educational policies as they purport to separate out the effects of

teacher and schools from student background variables. Given the fact that evaluations

based on the inappropriate use of VAMs would significantly impact students, teachers

and schools in a high-stake environment, the literature has advocated empirical

evaluations of VAM measures before they become formal components of accountability

systems. The VAM label is attached to a number of models, which range from simple to

highly sophisticated models. However, in practice, educators and policymakers are often

being misled into believing that these approaches give nearly identical results, and

making decisions without understanding the strengths and limitations of these models.

In addition, the empirical evaluations to date have shown that the VAM measures of

teacher effects are sensitive to the form of the statistical model and to whether and how

student background variables are controlled.

        This study proposes a multivariate joint general VAM to investigate the issues
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raised by the applications of all the currently prominent VAMs, which can be seen as

restricted cases of this general model. The general model provides a framework for

comparing the restricted models and for evaluating the sensitivity of VAM measures

(e.g., teacher and school effects) to the model choice. Markov chain Monte Carlo

algorithm is used in a Bayesian context to implement both the general and the restricted

models.

        A simulation study was conducted to investigate the feasibility and robustness of

the general model when the data were generated under varying assumptions. For each

condition, three consecutive years of testing scores were generated for 400 students

grouped into 16 classes. Real data consisting of three years of longitudinally linked

student-level data from a large statewide achievement testing program were also

analyzed. The results show that the proposed general model is more robust than other

models to different assumptions and the inclusion of the background variable has

significant impact on some models when the school/class has an unbalanced mix of

advantaged and disadvantaged students.
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CHAPTER 1

INTRODUCTION

Background

Written with the intention  and spirit  of ensuring  all children  are reached by

America’s public schools, No Child Left Behind  (NCLB)  is the federal government’s

mandate that all students  are considered  proficient by 2014 in reading/language arts

and mathematics. The law outlines and requires a scientific and systematic approach to

achieving reform and improvement in all areas of school life. To garner  compliance,

each school receiving Title  1 funding must  develop and adopt assessments  and

procedures  to evaluate  the annual  performance  of schools at the state  wide level on a

variety  of indicators,  the most important of which is academic  (Henderson-Montero,

2003). Harsh sanctions are imposed for failure to make steady, demonstrable progress

toward improving student achievement (Wanker, 2005).

At the heart of NCLB is the development, at the state level, of content standards

linked to assessments for reading/language arts and mathematics. There are 40 key

requirements of No Child Left Behind, the most highly publicized and debated is

Adequate Yearly Progress (AYP), which required states to start testing students in

grades 3 through 8 in mathematics and reading/language arts by the 2005-2006 school

year, and reach 100% proficiency by 2013-2014 (Wanker, 2005).

        But though  NCLB has been promoted,  in part,  as a way of equalizing better-off,

predominately white schools with low-income, largely minority  ones, it provides no

methods  for improving  schools that are lagging.  Nor does it identify the teachers who

are most effective-who deserve recognition and whose skills should be emulated.  A

major criticism of NCLB is that it mandates student achievement without offering
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methods for obtaining it (Carey, 2004). Due for reauthorization, many experts are

recommending the addition of value-added assessment (VAA) to the new legislation as

a way to track  growth of each student since one of the greatest criticisms  of AYP is

that it aims for a goal with no commitment to growth  (Barton, 2004). The proponents of

value-added modeling call its results fairer and more accurate than those produced by

AYP, which is currently based entirely on standardized test scores.

Value-Added Modeling

Value-added modeling (VAM), also known as VAA, is a method of measuring

student academic progress over time even after the proficient level has been reached.

“Value-added assessment system” does not refer to one particular test format.  Rather,

value-added refers to any one of several models that are used to interpret test scores in a

way that evaluates the growth or progress in a student’s academic achievement over

time, usually over several academic years (Rubin, Stuart, & Zanutto, 2004).

History of VAM

Developed by Tennessee statistician Dr. William Sanders, value-added was first

used in the field of agriculture genetics.  Learning  of the controversies  in public

education  in the early 1980’s, Sanders  and his group felt they  could actually  apply

their  knowledge to education and showed that growth  modeling was a great

improvement over a single cut-score on a standardized test.  Appealing directly  to the

governor  of Tennessee,  Sanders was awarded  rights to assessment results  of students

in Knox County Schools and was able to simultaneously measure  teaching  and student

effects using previous test  results.

        Relying on pilot studies  that Sanders  and his colleagues conducted  on the value-

added  model during the 1980s, the Tennessee  legislature  embraced  the model as its
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methodology of choice for measuring  the performance  of students, teachers,  schools,

and school systems. The legislation defines the Tennessee Value-Added Assessment

System (TVAAS) as a “statistical system for educational outcome assessment which

uses measures of student learning to enable the estimation of teacher, school, and school

district statistical distributions.”  (Kupermintz, 2003) TVAAS becomes the centerpiece

of an ambitious educational reform effort implemented by the Tennessee Education

Improvement Act of 1992. Since then TVAAS has been credited with leading to the

implementation of value-added assessment systems in states, districts, and nationwide

(Carey, 2004; Hershberg, Simon, & Lea-Kruger, 2004; Kupermintz, 2003).

Recently,  more than  a dozen states,  including Colorado,  California,  Florida,

Ohio, New York, Pennsylvania and Michigan are studying,  and in some cases, applying

value-added  modeling.  The U.S. Department of Education has accepted applications

from up to ten states to meet their part of their AYP with value-added modeling.

Beginning in the fall of 2006, the AYP in those states’ schools is calculated by using

both the new progress method and the usual standardized tests.

VAM versus Simple Growth Scores

        The concept of an assessment that measures a student’s achievement growth over

several years, commonly known as longitudinal assessment, has long existed in

education (Goldschmidt, Choi, & Martinez, 2003). However, value-added assessment

represents an approach to evaluating student achievement growth that is distinct from

traditional growth models.  Currently, schools that miss AYP, those missing by a small

amount along with those missing by a large amount, are both labeled as “failing”

regardless of any demonstrable progress.  Growth models help move beyond the current

“blame game” and instead highlight areas in need of improvement regardless of whether
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or not the school is already strong (Gooden & Nowlin, 2006). VAM can be considered

as a special growth model because it measures the individual progress of schools and

students. A growth score is typically calculated as the difference between a student’s

scores for the current year and the previous year.  VAM is more statistically complex

because it is intended to separate out the non-educational factors, such as student’s

demographics and socio-economic status (SES). Once these factors are isolated, their

impact is removed from the measure of the student’s achievement growth.  Then, the

student’s true achievement growth can be attributed to the educational practice of the

district, school and teacher (Drury & Doran, 2004; Hershberg et al., 2004; McCaffrey et

al., 2003). Therefore, from the VAM’s perspective of view, schools would give credit

for increasing student achievement, even when their AYP is missed.

More Applications of VAM

VAM holds great promise because it claims to separate out the school effect, the

teacher effect, and the student’s own effect that together contribute to student progress.

It is the highly interactive relations between these effects that make VAM so attractive.

Researchers also believe growth information can be instructional in improving practice.

Value-added measures can provide valuable information about the effects of curriculum,

instructional techniques and other instructional practices.  Using the data, teachers and

administrators can determine areas of success and improvement and work to best meet

the needs of their students. In addition, administrators can analyze the data and target

professional development for staff, or use it as the basis for school improvement plans

(Hershberg, Simon, & Lea-Kruger, 2004). The same data from VAM can also provide

principals with valuable information for assigning students to specific teachers.  From

the data  results,  teachers,  grade levels, groups of students  (learning  disabled  or gifted)
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can be identified and then  a precise match between the teachers’ individual  strengths

and the students’  needs can be achieved (Hershberg  et al., 2004). Certain value-added

measures can also be used to evaluate teacher preparation programs in public

universities.  Berry and Fuller (2006) have researched a Value-Added Teacher

Preparation Program Assessment Model that has the capacity to connect growth in

student learning to public university teacher preparation programs.

Statement of the Problem

The “value-added modeling” label is attached to a number of models, which range

from being roughly simplistic to very sophisticated. Differences among these models

stem from the efforts by statisticians to resolve various technical problems.  None of the

models can solve all the technical problems and no single approach has been proved

superior to any other.  At this point, even the experts on these models have no

agreement on the appropriateness of each model.  However, in practice, educators and

policy makers are often being misled into believing that these approaches give nearly

identical results and making decisions without understanding their strengths and

limitations. Evaluations based on the inappropriate use of VAM would significantly

impact students, teachers and schools in a high-stake environment.  Thus, the literature

has advocated  empirical evaluations  of VAM measures  before they  become formal

components  of accountability systems  or are used to inform high stakes decisions

about  teachers  and students (Braun, 2005; McCaffrey, Lockwood, Koretz,  Louis, &

Hamilton,  2004).  The empirical evaluations  to date have considered  the sensitivity  of

VAM measures  of teacher  effects to the form of the statistical model (McCaffrey,

Lockwood, Mariano,  & Setodji, 2005; Rowan, Correnti,  & Miller, 2002) and to

whether  and how student background  variables are controlled  (Ballou,  Sanders,  &

Wright,  2004; McCaffrey, Lockwood, Koretz,  Louis, & Hamilton,  2004).  Lockwood
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et al.  (2007) considered the sensitivity of estimated VAM teacher measures to two

different subscales of a single mathematics achievement assessment.

Although  the studies  above have yielded results  that are meaningful  in practice,

the different approaches  provide partial and fragmented  answers only to the problem

of interest, and are inevitably  affected by the limitations of the methods  involved.

Moreover, the test data used in each study are different, making it difficult to attribute

the results to either the methods or the data examined.  Therefore, it might be

inappropriate to consolidate their findings to be a systematic whole. This dissertation

aims to provide more systematic and thorough investigation on the sensitivity of the

VAM results to different methods through a general model approach.

McCaffrey et al. were concerned with creating a system for classifying VAM

models as a means of specifying the conditions under which one or another would be a

valid methodology.  They were concerned with creating a system for classifying VAM

models as a means of specifying the conditions under which one or another would be a

valid methodology.  Their approach was also to specify a general model, and then show

how different models suggested by themselves or others would be special cases of this

general model.

As the most complex special case of the McCaffrey et al. general model, the

variable persistence model (Lockwood et al., 2004) poses computational challenges that

render likelihood methods practically infeasible for all but small data sets.  To address

this problem, Lockwood et al. propose a Bayesian formulation of the variable

persistence model that scales well to the extremely large and complex data sets that

challenge alternative approaches to parameter estimation. Another contribution of their

study is that their formulation includes an extension to jointly modeling outcomes from
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multiple tested academic subjects (e.g., mathematics and reading) in each year, which

has been proven to provide higher quality parameter estimates.

        Inspired by both McCaffrey et al.’s study and Lockwood et al.’s study, this work

proposes a multivariate joint general VAM model to investigate the issues raised by the

application of all the currently prominent VAM models, which can be seen as restricted

cases of this general model.  The general model provides a framework for comparing the

restricted models and for evaluating the sensitivity of VAM measures (e.g. teacher

effect, school effect) to the model choice. The general model is estimated under the

Bayesian framework.  Although the less complex restricted models other than the

variable persistence model could have been estimated using maximum likelihood

method, all the restricted models are estimated using MCMC algorithm under Bayesian

framework for comparability purposes.  That is, by using same estimation method we

can attribute the differences we observed on the differences in model specifications

rather than the difference in the estimation methods.
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CHAPTER 2
LITERATURE REVIEW

This chapter is organized as follows: Section I provides an overview of the

theoretical ground of VAM. Section II identifies the most important problems existing

in the VAM application.  Section III presents a thorough review of several principle

existing VAM models, comparing their underlying assumptions, model specifications,

strengths, weaknesses and potential problems in their use.  Finally, section IV explores

the possibility of more general VAM approaches to evaluate the school/teacher effect by

summarizing the major factors that influence the features of different VAM methods

and several empirical studies in this direction are discussed.

An Overview of the Theoretical Ground of VAM

The question of how to evaluate school and teacher effectiveness is fundamental

to educational policy and practice.  Our common practice is to compare schools or

teachers by comparing unadjusted mean levels of achievements or the percent of

students in a school or class who are classified as proficient.  As Ballou, Sanders, and

Wright (2004) note, it is unfair to hold schools accountable for mean achievement levels

when students enter those schools with large variances in achievement.  Moreover,

changes in mean achievement at the school level may have little relation to instructional

effectiveness if the mobility of students across schools is remarkable.

There is a common agreement in the VAM literature is that the contributions of

school and teacher to student learning be estimated. The literature advocates that we

should compare schools or teachers by comparing their “value added” to student

learning gains rather than by comparing the mean level achievement.  The value-added

philosophy is to hold schools and teachers accountable for the learning gains of students

they serve. The philosophy seems simple, but the underlying technique details are
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j

numerous.  The foremost question that should be clarified is:  “What are VAMs trying

to estimate?” Raudenbush (2004) endeavored to answer this question from a potential

outcomes view.

The student’s  potential outcomes  would be a function  of pre-assigned  student

characteristics, S , random  error, e  , and two aspects of schools: school context, C ,

which contains  the social environment of the school and the social composition  of the

school, and school practice, P . What is the interested by the policymakers and district

officials is the component P  , over which the school leaders and teachers  have direct

influence.  Although school administration and teacher instruction have no or little

direct influence on C , C and P  are highly correlated  factors.

According to Raudenbush and Willms (1995), the first or Type A effect is the

difference between a child’s potential outcome in school j  and that child’s potential

outcomes in school 'j   . Type A effect is expected to be estimated from the experiment

in which the students having a common S  are randomly assigned to school j or 'j  .

With the assumption of randomization, the expected estimate of the difference between

two schools would depend only on C , P  , 'C , 'P  . In contrast, the Type B effect is the

difference between student i ’s potential outcome  in school j  when school practice jP

is in operation  and when school practice jP   is in operation.  As Raudenbush and

Willms point out, it does not seem to be possible to separate teacher and school effects

using currently available accountability data.  Therefore, “VAM are best aimed at

assessing the Type A effect defined as combined effects of context and practice at the

classroom and school levels. A useful way to do so is to view each student as possessing

a smooth trajectory that would describe that students’ growth if that student encountered
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average teachers and schools.  The Type A effect in any year is then defined as a

deflection from this expected curve” (Raudenbush & Willms, 1995, p. 124).

        The figure shown in Raudenbush (2004) displayed the fundamental idea of VAM

from a potential outcomes view. There is a hypothetical student’s expected trajectory

from time point t  to t +2 given “average” schools and teachers. If instead, this student

has an above (or below) average observed score )(
1
j

tY  . The difference between the

observed and expected score )0(
1

)(
1   t
j

t YY  is associated with the attendance in school j  .

Therefore, the student’s gains over years can be partitioned into two parts:  the part

attributed to student’s own expected gain and the part attributed to the school or teacher

effect.

Major Issues Arising from the Use of VAM

As mentioned in the previous section, there are a number of different models in

use in different accountability systems.  Differences in the models stem from efforts by

researchers to resolve the various technical problems that have arisen in this field.

Before reviewing and assessing some of these models, this section will first identify the

most important problems raised by the use of VAM to estimate school or teacher effect.

The first, and perhaps most significant problem, is that the students are not

randomly assigned to schools or teachers.  The characteristics of students and

communities are correlated with classrooms and schools. That is, for example, the most

effective teachers tend to be able to select their assignments (Goldhaber, 2004;

Hibpshman, 2004b), and as a result are more likely to have highly motivated students. It

is difficult to determine whether the higher average levels of achievement of their

students is due to teacher’s instruction, or to the highly motivated students they teach.

        The second problem has to do with the uncertainty about which variables are
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important to the models. Educators, researchers and policymakers have long been

recognized that schooling is only one of many factors that affect student learning.  The

numerous family background characteristics and social environment factors are also

strong predictors of student achievement.  Shkolnick et al.  (2002) showed that

background characteristics predict gains for some population.  However, their

relationship with growth or gains measured by VAM has not been explicitly defined.

McCaffrey et al. (RAND; 2003) stated that these characteristics variables  could be

confounded  with the teacher effects and therefore  bias estimates  of teacher  effects, and

the question  of whether  it is necessary to include these variables  in the model has been

an important point of debate  in the VAM literature.

        The third problem is that of the complexity of the models. Researchers are interested

in determining how much difference there is in the effect scores produced by the simpler

and more complex models. Some researchers note that considerations that may have

importance in theory may make little difference in a practical sense, and if a simpler

model produces results comparable to more complex models, it may be preferable

because of its intuitive appeal.  On the other hand, some researchers believe the benefits

of using a complex model because they believe the important issues, which can affect the

evaluation of school or teacher effectiveness, need to be addressed by more advanced

models. For example, the key feature of longitudinal achievement data for modeling

teacher contributions to student achievement is the sequential regrouping of students into

different classrooms with different teachers.  The results in data where students who are

nested under a common teacher for one measurement are not nested together for another

measurement. Moreover, scores for students who share a common teacher at one point in

time might continue to be positively correlated at subsequent test administrations. The
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resulting model structures necessary to accommodate these complexities are known as

“multiple-membership” models (Browne, Draper, Goldstein, & Rasbash, 2002; Rasbash

& Browne, 2002) because individual  scores depend on the effects from multiple

“members”  of the grouping units  (e.g., past  and current teachers).

        The various models will be reviewed in the following section are designed in

response to one or more of these problems.  However, none of the models solves all of

these problems.

Review of the Principal Existing VAM Models

Several major existing models are reviewed in this section.  They are gain

score (GS), covariant adjustment (CA), layered (LA), cross-classified (CC), and

persistence (PS) model.  The GS and CA model are considered more generic and

more widely used than the other models. The GS and CA model have been referred

to as “single wave” or “univariate” models, as they only use two points in time.  The

CC, LA and PS models all utilize more than two points in time and they have been

referred to as “multiple  wave” or “multivariate” approaches.

CA Model

        In the CA model (Rowan, Correnti, & Miller, 2002; Diggle, Liang, & Zeger,

1996; Meyer, 1997), prior scores are used as the covariant in the model, with the

current score as a function of prior year score and is linked to only the current

teacher. Student i ’s score at the g th grade is modeled as follows:

iggigigigiggig yzxy   1
' (1)

where the g denotes the grade g teacher effect of the current teacher, which is

measured by the deviation in class-level mean from the overall system mean. The
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ix and igz are time invariant and time varying covariates for student i . The time

invariant variables include student-level covariates such as gender and ethnicity.

The time varying variables may include family income and testing circumstances.

The teacher effect g is considered either fixed or random normal with mean zero

and variance, 2

g
 . g and '

ig are vectors that contain the coefficients associated with

the student’s background variables. The ig are . . .i i d ),0( 2
gN  residual error terms.

The residuals across years are assumed to be independent of each other. That is,

0),( ' igigCorr  for 'g g . This assumption avoids the biased estimates of fixed

effects by the standard mixed model estimation due to the correlation between the

covariates and the residual error term.

        Assuming the current teacher effect is the random effect, the expectation and

variance conditional on the observed covariates and previous year’s score, 1igy  , are

1
')(  igigigiggig yzxyE  and 22)( ggigyVar    .

The advantages of this approach are that 1) it is simple to understand and easy

to use; 2) it can model the effects of previous year’s experiences; and 3) previous

year’s teacher effects are estimated, not assumed.  The disadvantages of this

approach  are that 1) it ignores student performance  information  from prior years; 2)

students  transfer  or retain  in grade are excluded;  3) there  is no statistical

adjustment for student ability;  and 4) it does not take measurement error into

account.

GS Model

The GS model is a special case of the CA model, which specifies gain score

between two adjacent years as a function of the covariates and the current year

teacher/school effect (Rowan et al., 2002; Shkolnik, Hikawa, Suttorp, Lockwood,
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Stecher, & Bohrnstedt, 2002). Let 1 igigig yyd , the model for grade g gains is

iggigigiggig zxd   ' ( 2 )

The coefficient g  denotes the mean gain in grade g . The random teacher effect and

residual error terms follow the same assumptions as the CA model. Setting 1  and

moving 1igy from the right side to the left side of Equation (1), the CA model becomes

the GS model. The GS model has all the disadvantages of the CA model, but it is simple

and easy to understand.

CC Model

Raudenbush and Bryk(2002) develop the CC model that explicitly specifies the

cross-grade correlations and the effects of the multiple years of teachers on student

scores. Moreover, they consider random linear growth trajectories for students. The CC

model for student i score in grades g  is

ig

g

gigiiig ggy   
0

(3)

For example, the student i ’ s scores in grades 0 to 3 are

0000 iiiiy  

111001 iiiiiiy  

22211002 22 iiiiiiiy  

3332211003 33 iiiiiiiiy  

The trend of the overall mean for each grade is denoted by g   . The  s are

assumed to be . . .i i d  normally distributed random variables with mean zero and variance
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2
 . The teacher effects  s are assumed to be independently, normally distributed with

a constant variance across years. The ij measures the proportion of grade 0 education

provided to student i by teacher j . Each student’s growth over grades is modeled with

a linear trend iiig ggy   and the random intercepts and slopes are assumed

normally distributed with mean zero and variance 2
00 and 2

11 , and covariance 01 .

        The CC model fitted by Rowan et al. (2002) included time-varying covariates for

participation in educational programs, (e.g., special education) and age. Their model

also included time-invariant covariates for student ethnicity, family structure and

socioeconomic status. The random effect included in their model was school effect

rather than teacher effect. In this model, the score for the i th student in school j  at time

t , ijty  , is given by ijtijtijijtijijijijt xtttty   )()(1
2 ...

where i  and i   are the random intercept and slope for the school; ij  and ij  are the

random intercept and slope for the student; ijtx  denotes a vector of student

characteristics, some of which might vary over time; 1( )ij  and ( )t ij  are the effects for

the student’s teachers at testing times 1 to t ; and ijt  is a residual error term. Thus,

scores are models by a common quadratic function of time 2t t     plus school-

specific and student-specific random linear time trends. The model assumes no

variability in the nonlinear component of the model, implicitly, any variation in   is

captured in the residual error term. A teacher effect, )(ijt , is added for each year and

these effects remain in the model undiminished at the future tests, which is why the
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model for the score at time t   includes terms for all previous teachers. Rowan et al.

acknowledge that the )(ijt  are residual classroom effects, although they are referred to

as teacher effects.

LA Model

      LA model, also called TVAAS, was developed by Sanders, Saxton and Horn (1997)

to account for the complicated linkage of students to teachers or schools over time, and

the correlation of future scores for students who shared a common past teacher or in a

same school, which was referred to as cross-classified or multiple member ship. It is

called the layered model because the model for later years adds layers to the model for

earlier years. The model for student i  score in grade g  is

ig

g

giggigy   
0

(4)

Therefore, the student i  scores in grade 0 to 3 is

00000 iiiy  

1110011 iiiiy  

222110022 iiiiiy  

33322110033 iiiiiiy  

The ig s are assumed normally distributed and independent across students. Within a

student the variance-covariance matrix of the  s is unrestricted allowing for different

variance at each time point and possibly nonzero and nonconstant correlation of scores

from different grades or years. The variance-covariance parameters are assumed

constant across all students. The LA model allows the variance of school or teacher
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effects to vary across grades and the correlation between scores from the same student

across subjects (and grades). It also assumes that schools or teachers have separate and

independent effects for each subject and these effects persist undiminished into all

future test outcomes.

        The CC model also accommodates the complex “multiple-membership” between

students and teachers or schools, but differs from the LA model in several ways. For one,

the CC model uses random growth curves to model to correlation among scores within a

student, whereas the layered model accounts for this correlation with an unspecified

covariance matrix. These two models share the common assumption that the random

teacher or school effect persists undiminished for students’ future performance.

PS Model

        The PS model (McCaffrey et al., 2004) defines the persistence of the past teacher

or school effects on the current achievement. In this regard, the LA and CC models can

also be considered as special cases of the PS model in that the persistence is assumed to

be a fixed value. This kind of PS model is referred to as “complete persistence model”.

They explicitly parameterize and estimate the strength of past teacher or school effects

on the current scores rather than assuming them to be known. This kind of PS model is

called “variable persistence model”. This specification makes the PS model more

complex and computationally challenging. Moreover, Lockwood et al. generalize the

McCaffrey et al.’s PS model to multiple subjects per year and provides a multivariate

formulation for it. A special case of this model that includes teacher effects but not

school effects is the following:
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        Let iy  denote the vector of test scores for student i . iy  is of length ST , the

number of subjects ( S ) times the number of years (T ). iX denotes the ( ST p ) design

matrix of both time-invariant and time-varying student background variables for the p -

dimensional vector of regression coefficients ),...,,,...,( ''
1111 STST μ . The teacher

effects are organized by subject and year as ),...,,...,...,,,...,( ''
1

'
2

'
21

'
1

'
11 STSTT θθθθθθ  of

length n , where '
STθ  provides the teacher effects for subject s  in year t . The matrix

iΦ  specifies the linkage of students to teachers by subject. iΦ is ( ST n ) with only 0

or 1 entries and row sums equal to 1, with the nonzero element in each row

corresponding to student i ’s teacher for a given year and subject. Hence, the

contribution of teacher effects to the outcomes for student i  is then given by A iΦ '
STθ ,

where A  is a ( ST ST ) block diagonal matrix consisting of S  distinct (T T ) lower

triangular blocks corresponding to subjects. The ( *,t t ) element of the block for subject

s  is *,s tt
  for *t t  and 0 otherwise, where *,s tt

  denotes the teacher effect persistence

parameters for subject s . When all *,s tt
  are equal to 1, the model becomes the

complete PS model.

        Therefore, the distribution for a single student’s score vector, iy  , conditional on

the model parameters, teacher effects, and all covariates and linkage information is

)(~ Σθ,AΦμxΣα,θ,μ,y ii STi N (5)

where STN  denotes the ST  dimensional multivariate normal distribution and Σ  is a

( ST ST ) unstructured positive definite covariance matrix. Outcomes for different
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students are assumed to be conditionally independent given all of these parameters. The

components of '
STθ  are . . .i i d 2

,(0, )stN  . Finally, the teacher effects are assumed to be

independent across subjects and years.

The McCaffrey et al. and Lockwood et al. exploit the availability of tests in

multiple subjects to improve the precision of estimation of teacher effects on any

specific subject.  As Ballou et al. indicated out, this multivariate outcome approach not

only reduces confounding of teacher assignment with student background, also increases

the robustness of results to non-ignorable missing values.  However, the complexity of

the models poses computational challenges that render likelihood methods practically

infeasible for all but small data sets.  Lockwood et al. propose a Bayesian formulation of

the variable PS model that scales well to the extremely large and complex data sets that

challenge alternative approaches to parameter estimation.

Relationships among the Existing Principal VAM

McCaffrey et al.  summarize  five features  of these models:  parameterization of

the overall time trend,  inclusion of covariates,  the distribution of residual  error terms,

the persistence  of teacher  effects on future  outcomes,  and translations between

modeling scores and gains.  According to these features, relationship among models is

summarized as: the GS and CC model without covariates are special cases of the LA

model with restrictions to the overall time trend and/or the distribution of residual errors.

The LA model is a special case of the PS model with restrictions on the  s and without

covariates.  The CA and GS model with covariates are special cases of the PS model

with restrictions on the distribution of residual errors and the  s.
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Findings on the Major Issues from the Recent Studies

Modeling the School or Teacher Effects as Fixed or Random

VAM can specify school or teacher effects as either fixed or random effects. If the

effects are treated as fixed, then the observed schools or teachers are assumed to be the

only units of interest.  Random effects assume that the units is a sample from a larger

population. In VAM application, to model school or teacher effects as fixed or random

is the primary design choice. Tekwe et al.  (2004) addressed this issue by comparing

models with different specifications using simulated data.  The first model is fixed-

effects models (FEM), where school effects (i.e., the improvement in student

achievement due to teacher or school efforts) are taken to be fixed rather than random.

This is the simplest of all models, requiring little computational complexity and not

much mathematical knowledge. This model thus has intuitive appeal to policymakers,

since the interpretation of the results is much easier to comprehend. An extension of this

model, the simple fixed effects model, or SFEM, is an intuitively simple model that

incorporates no student background factors, does not consider the complex linkage

between students, teachers and schools, and by the nature of the statistics used, does not

produce shrunken estimates. This model estimates school effects by comparing school

effects only to the effect sizes of the districts to which they belong.  Another type of

VAM is hierarchical linear models (HLM), which assume that school effects are random.

These models produce shrunken effects towards the mean, and there are two of them.

First is the simple unadjusted change score HLM (UHLM) with random intercept. This

model does not account for compositional or student-level covariates. Second is the

demographic  and intake score adjusted  HLM (AHLM), where outcome  is defined by a

change score, and contains  student and school-level covariates.
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The results  of the simulation  study  showed very strong  correlations  (higher

than 0.9) between results  provided  by SFEM,  LMEM, and UHLM, but  much more

modest correlation between the results  of AHLM and all other  models. Tekwe et al.

concluded  on the basis of these results  that the SFEM performed  about  as well as the

other  two models that did not incorporate compositional  or student-level  covariates,

and could be expected to produce similar results  at a much lower computational cost.  It

was noted that these results were based on only two years of student achievement data

and that the incorporation of more years of data might affect the relationships among

effects generated by the three models. The difference between AHLM and all other

models was notable, and indicate that when compositional and student-level covariates

are included in the analysis, the estimates change.  Although AHLM takes into more

factors that do indeed affect student learning, it is arguable that the AHLM produces

more precise estimates than do other models.  Tekwe et al. finally noted that

considerations that may have importance in theory may make little difference in a

practical sense, and if a simpler model produces results comparable to more complex

models, it may be preferable because of its intuitive appeal.

        Ballou et al.  criticized  Tekwe et al.’ s finding by stating  that Tekwe et al.’ s

interest is confined to estimating school effects with large samples of students and data

with two time points.  As the sample size becomes large, the fixed effects and random

effects estimates converge.  When teacher effects are of interest, large sample size is not

realistic. And fixed effects models are suboptimal when multiple time points and

multiple cohorts are available.  Therefore, Ballou et al. recommend random effects as a

general approach, although fixed effect estimates have good properties in some

circumstances.
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McCaffrey and colleagues (RAND; 2003) were also interested in discussing the

advantages and disadvantages of specifying school or teacher effects as fixed or random.

They stated that one advantage of estimating teacher effects with a random effects

model is that shrinking reduces the variance of an estimate of an individual teacher

effect compared to the fixed effect estimate. The downside of a random-effects model is

that the shrinking effect forces the estimated teacher effects to deviate from the true

effects if the teacher’s class is small.  Although the fixed effects do not shrink estimates

toward the mean, they will not necessarily move teachers toward the middle of the

distribution if the class is small.  Thus, the fixed effect estimates for teachers with small

classes will be more likely to be in the extremes of the distribution. In sum, specifying

school or teacher effects as fixed or random provide similar conclusions about the

variability of teachers but yield different estimates of individual teacher effects.

  Inclusion of the Covariates

McCaffrey et al. (RAND; 2003) stated that the importance of modeling

background variables depends in a relatively complicated fashion on the interaction of

several factors. These factors are the distribution across classes and schools of students

with different characteristics, the relationship between the characteristics and outcomes,

the relationship between the characteristics and true teacher effects, and the type of

model used. Therefore,  the importance  of modeling student background  characteristics

when using VAM to estimate  teacher  effects remains  an empirical  question  that must

be addressed  by each analyst  in the context  of these specific factors  (See McCaffrey

et al.  RAND 2003 for details).  In this section, several empirical studies focusing on the

impact of inclusion of covariates will be reviewed.

Ballou et al. (2004) evaluated  the TVAAS model and noted  that studies  of the
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inclusion of contextual factors  in HLM models almost  always show that the results  are

sensitive to such effects They  also noted  that the TVAAS can include context  factors

if desired.  Inclusion of these factors tends to bias measures of school and teacher effects

towards zero.

Using data from the vast database accumulated by TVAAS, Ballou et al.

conducted  a simulation  study  to determine  how much teacher  effect sizes reported

by the TVAAS would change if student and school compositional  effects were entered

into the model.  The simulation study used student eligibility for free and reduced price

lunch, race other than white, gender, the two-way interactions between these, and

percent free and reduced price lunch by classroom as covariates.  Thus, there were three

student-level covariates and one school composition variable used in the study. The

conclusion of this study was that student-level covariates showed only a moderate

influence on teacher effectiveness scores. The scores produced by the two models were

2.7 times more likely to agree than to disagree in reading, 3.5 times more likely in

language arts, and 8.5 times more likely in mathematics.

        With respect to the school composition variable (free and reduced lunch),  Ballou

et al. found that there  was a significant effect on the magnitude of teacher  effectiveness

scores, but  they noted  that the direction  and magnitude of the regression coefficients

showed that the relationship between the percent free and reduced  variable  and teacher

effectiveness was unstable, and therefore not much confidence could be placed in the

results.  Having concluded that student-level covariates had little effect on teacher

performance cores, Ballou et al. offered four possible explanations for the result of the

simulation study.  First, if the great majority of teachers have roughly the same mix of

poor and non-poor students, white and non-white, then adjusting for demographics will



24

not change estimated teacher effects. However, the reality is that the mix of poor and

nonwhite children does indeed vary widely from one classroom to another. Second, the

impact of student variables is not large enough to make an appreciable difference to

estimated teacher effects. But if we compare the result from the TVAAS with that from

the fixed effect model, this explanation might be doubted. Because the results from the

models are significantly different. Third, the high correlation between adjusted and

unadjusted effects is caused by shrinkage.  Finally, student factors add little information

beyond that contained in the covariance of test scores. That is, other test scores contain

much of the same information.

McCaffrey et al. also systematically investigated the influences of covariates on

the GS, CA, CC and LA models. As presented in the previous section, the GS and CA

model could include student and compositional variables, although the models produce

biased estimates when the covariate and residual error terms are correlated.  The CC and

LA model usually include no or only limited information on student characteristics

because some analysts have suggested that the inclusion of intra-student correlation

essentially removes the effects of omitted covariates. However, McCaffrey et al. found

that the impact of omitted covariates on estimated teacher effects depends on both  the

distribution of the omitted covariates  and the assignment of students to teachers.

McCaffrey et al. noted that omitted variables that are randomly distributed should have

little effect on the results of any of the models.  But when omitted variables cluster by

class, or when they differ by stratum, none of these models is capable of disentangling

teacher effects from the effects of student-level covariates. The CC and LA model are

most sensitive to the effect of omitted variables.
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Teacher Effects Are Cumulative and Long Lasting

        The papers reviewed in this section focusing on investigating the persistence of

those teacher effects on students’ future achievement. Sanders and Rivers (1996) used

data from two school systems in Tennessee to study the cumulative effects of third,

fourth, and fifth grade teachers on fifth grade math achievement.  Rivers (1999)

replicated this study using slightly different methods to measure the cumulative effects

of fifth, sixth, seventh, and eighth grade teachers on ninth grade achievement.  Mendro

et. al (1998) replicated  the Sanders  and Rivers’s study using data  from Dallas public

schools, and Kain (1998) provided  a separate  independent reanalysis  of the Dallas data.

Sanders and Rivers (1996) purported to show that teacher effects accumulate and

persist over time.  They reported  that for math  tests,  students  taught by the least

effective teachers  for three consecutive  years would score 52 to 54 percentile  points

below similar students  taught by the most effective teachers  for three  consecutive

years.  In the paper, Sanders and Rivers use a two-stage approach.  First, they estimate

teacher effectiveness using the CA model.  Separate models are fit to math scores for the

3rd, 4th, 5th grade students. The correlation among the residual errors from the same

student is ignored. These models provide shrinkage estimates of the teacher effect  s

for each grade. Then, teachers within each grade are ranked and assigned to scale 1 to 5

based on the estimated teacher effect quintiles. In the second stage, student scores from

grade 5 are modeled as an additive linear function of teacher effectiveness (where the

quintile assignments are treated as categorical variables) for grades 3 through 5, the

second grade score, and residual error. This model is the ANCOVA model

5254355 iiiiii YqqqY   (6)
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Where giq  is a five-level categorical variable representing the quintile of the grade g

teacher for student i . The estimated differences between outcome Y s are compared to

indicate the teacher effectiveness. However, the authors’ ad hoc method has been

criticized for using the same students in both stages of the analysis (Kupermintz, 2002).

        Rivers (1999) replicated the Sanders and Rivers’ design with several important

modifications to address some of the criticisms of SR and still found persistent teacher

effects. Rivers used the teacher effect estimates from the LA model rather than using

Sander and Rivers’ simple CA model. As discussed in the previous section, the LA

model can simultaneously model scores from several subjects and several years. The

model allows for correlation among scores from the same student, although it includes

no student or school level covariates. Another feature one should note is that the LA

model used by Rivers includes a separate parameter for the mean of every school system

or district; so estimated teacher effects are relative to the other teachers in the district.

The second difference between Rivers and Sanders and Rivers is that Rivers used two

cohorts of students rather than one to estimate the persistence of teacher effects. The

first cohort provided estimates of teacher effectiveness from the LA model.  The second

cohort was used to conduct Sanders and Rivers’ second stage analysis.  Rivers modeled

ninth  grade test  scores as a function of fourth  grade test  scores and the students’

fourth  to eighth  grade teachers’ stage 1 effectiveness ratings  based on the prior cohort.

Thus, estimates of teacher effectiveness and the impact of varying effectiveness were

estimated from two distinct cohorts of students. The final major difference between

Rivers and Sanders  and Rivers is that Rivers models outcomes  on a different test  than

the test  used for estimating effectiveness, and the outcome  is measured  at the end of

ninth  grade while teacher  effects are measured  for sixth,  seventh,  and eighth  grades.



27

Rivers found that teacher effects from all four grades are statistically significantly

related to scores in the fall of ninth grade.  The effect of fifth and sixth grade teachers

decreases when the students’ fourth grade scores increase.  That is, fifth and sixth grade

teachers were estimated to matter more for students with lower baseline scores. The

impact of fifth grade teachers  on ninth  grade tests  is about  two times greater  for

students  at the mean of the lowest quartile  of fourth  grade scores than  the impact  for

students  at the mean of the highest quartile.  The impact of sixth grade teachers is about

2.5 times greater for students in the lowest quartile compared with the highest quartile

on the fourth grade test.  Rivers also found that for students  scoring low at fourth  grade,

fifth and sixth  grade teachers  have the strongest  relationship with ninth grade scores,

while for other students, eighth  grade teacher  effects have the strongest  relationship

with ninth  grade scores.  However, River’s study also has its limitations. It excluded the

students who transfer across schools or retain in grade.  Thus, Rivers’ result that teacher

effect persists into the future   tests can only apply to students who remain in the same

school systems for six years.

       The Sanders and Rivers study was also replicated by Mendro, Jordan, Gomez,

Anderson, and Bembry (1998) using data from students in the Dallas Independent

School District.  Mendro et al. consistently found large persistent teacher effects across

multiple cohorts and on both reading and math scores. They corroborated the results of

Sanders and Rivers and Rivers, even with a very different approach.  Mendro fit models

analogous to those of Sanders and Rivers. The models include previous year’s scores as

a covariate, and teacher ratings as a categorical variable.  Teacher ratings are from the

estimated teacher effects using the Dallas Value Added Accountability System

(DVAAS). DVAAS uses a three-stage approach to estimate teacher effects. In stage 1,
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the fairness variables (e.g., gender and ethnicity) are removed from the from current-

year and past-year scores. Stage 2 of the DVAAS estimation procedure models the first

stage residual for the current-year score as a function of first-stage residuals for prior-

year scores, prior-year attendance, and school-level variables.  Stage 3 estimates teacher

effects as the classroom averages of the stage 2 residuals.  The procedure produces

separate estimates for teacher effects on the math and reading scores. Details on the

Dallas teacher effects are presented in Webster and Mendro (1997).  The authors also

found that students’ loss due to an ineffective teacher in one year cannot be

compensated by the additional years of schooling.  Teacher in one year do not make up

for this loss even after additional years of schooling.  They demonstrated this effect by

showing outcomes for pairs of groups of students who have similar average outcomes

on the pretest, but one group in each pair had ineffective teachers in the first year.  The

results showed that the group with an ineffective teacher in the first year always scores

lower on the final test, regardless of the effectiveness of the teachers in the ensuing year.

In sum, the empirical  studies  conducted  by Sanders and Rivers, Rivers, Mendro  and

other  researchers provided  consist findings that the persistence  of the teacher  effect

exists, although the size of the effects vary across studies.
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CHAPTER 3

GENERAL VAM

This chapter will first propose the multivariate general VAM in a matrix

formulation. The parameter estimation of the general VAM will be implemented under

the Bayesian framework.  The second section will specify the Bayesian method and

MCMC procedure conducted to estimate all the model parameters. The third section will

show how each reduced model will be derived from the general model.

The Matrix Formulation of the General VAM

The matrix formation of the proposed general VAM is

ΔΠΘΠπΦΛΠΨy  iiiiiii  321 (7)

where the operation   is entrywise production. Such, given two vectors ),,( 1 naa 

a ,

and ),,( 1 nbb 

b ,

),,( 11 nnbaba 

ba (8)

Each variable in this formation is defined as follows.

 iy contains ith student’s scores. It is a vector of length ST , the number of

subjects ( S ) times the number of years (T ).  The elements in vector iY  are first arranged

by subjects, then by time.

 Λ contains all fixed effects, which need to be estimated. The fixed effect

parameters FSTΛ  can be decomposed into two parts, one part
1FST Λ  is for time

variant factors (e.g., mean score), and the other part
2FSTΛ  is for time invariant factors
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(e.g., gender, ethnicity), and 21 FFF  .  Suppose mean score is used as time variant

fixed effect, and gender is used as time invariant fixed effect, we have

)',,,,,,,,,,( 21111211 SSTSST GmmmGmmm Λ (9)

 Ψ is a FST   matrix that contains the coefficients that represent the

relationship between the current and previous years’ scores.  They need to be estimated

according to Λ .

 1iΠ is an incidence matrix  designed according to Λ for the ith student.

 Θ is a random effect matrix contains ST vectors  of length R . TNTNR 21  ,

where 1N  is the number of schools; 2N is the number of teachers. The first 1N  elements

in each vector represent 1N  school effects, which are followed by 2N  teacher effects.

The ST vectors are organized first by subjects, then by time.  If the model only involves

the 1N  school effects in three contiguous years for two subjects, the notation will be
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where stΘ  is the school effect vector of the tth year for the sth  subject,  which contains

1N schools effects. ),(~
1

2
Nststst N IμΘ  . In general, we assume stμ = 0 and the vector

that contains all st ’s needs to be estimated. The similar distribution is assumed for the

teacher effect.

2iΠ  is an incidence matrix of dimension RST   that indicates  the linkage

between student i and schools/teachers.

iπ  is also an incidence matrix of dimension RST   that is previously assigned

according to 2iΠ for student i.  It presents how long the student has been associated with

a specific teacher or school.
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Φ  is a STST  block diagonal  matrix  contains  the persistence  parameters

measuring how much the previous school or teacher  effect contribute to the current year

score. Φ consists of S  distinct ( TT  ) lower triangular blocks corresponding to subjects.

The ),( *tt  element of the block for subject s is *,tts
 , for tt * and 0 otherwise, where

*,tts
  denotes the school or teacher effect persistence parameters for subject s.

),( 21 iii  ε  presents random effects for the i th student. For example, we can

assume ),(~ 111 vmNi , ),(~ 222 vmNi , and they present mean and slope of student

growth curve, respectively. i ’s are independent across students.

3iΠ  is also an incidence matrix.

i contains the coefficients that need to be estimated according to c.

Δ  is the random error, which follows multivariate norm distribution ),0( MVN

and independent of teacher  or school effects. Σ is a STST  unstructured positive

definite covariance matrix. If the residuals across years and subjects are independent,

only diagonal elements need to be estimated. Normally, residuals across years and

subjects are not independent. Student-specific effects on scores and the relationship

between the scores across years and subject within one student can be reflected in the

covariance matrix.

Bayesian Method for the General Value-Added Model

The conditional distribution for student i’s score vector is

~),,,,,,,,,,| 2121 ΣεγτΨΘΛy vvmmiii ),( 321 ΣεΠΘΠΦΛΠΨ iiiiiiN  

(10)
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where the likelihood function  is given by the production of equation (10) across all

examinees. The prior distributions used in this study are

),(~  VμΛ FN (11)

),0(~
11

2
NstNst N IΘ  (12)

),(~ baUst (13)

),(~
2

)1( φφ Vμφ TSTN (14)

),(~1


 DdΣ W (15)

Here W denotes the Wishart distribution, and ),( baU denotes the uniform distribution on

the interval (a, b).

The joint posterior distribution for all the parameters given the fixed

hyperparameters is

)|,,,,,,,,,,( 2121 yΣεγτΨΘΛ vvmmP ii )()()()()( 2121 ΣPvPvPmPmP

),,,|()()()()()( 2121 vvmmPPPPPP ii εγτΨτ|ΘΛ

),,,,,,,,,,|( 2121 ΣεγτΨΘΛy vvmmL ii  (16)

MCMC simulation can be used to draw samples iteratively from the full conditional

distributions of the parameters given the data and the rest of the parameters. Below is an

outline of how parameters can be sampled from their full conditional distributions.

1. Updating Σ : First we obtain  the residual ie  for each student. Then the full

conditional distribution for Σ is Wishart distribution with degree of freedom Nd  and

parameter   
N

i iiee
1

'D .
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2. Updating st : the full conditional  distribution of st  depends only on the

current value of stΘ , the length of the vector 1N  and the hyperparameters ν and δ of the

uniform distribution.  A new value for the parameter will be sampled using the

Metropolis-Hastings within Gibbs algorithm (Casella & George, 1995) because the full

conditional distribution is not available in closed form. We update the transformed value













st

st
stst

v
f




 log)( (17)

So

)1/()()(1 stst evef stst
   (18)

and the prior distribution for st  is

)1/(),|( stst eevP st
  (19)

The Metropolis-Hastings algorithm is implemented as follows

i) Draw initial value )0(
st  from prior distribution.

ii) At iteration m, draw candidate (*)
st   from the proposal normal distribution with

mean )1( m
st  and known variance.

Accept each )(m
st = (*)

st  with probability












 





)),|,()))((,0|(

),|,())((,0|(
,1min),(

)1(
1

2)1(1)(
1

(*)
1

2(*)1)(
1(*))1(





vPfP

vPfP
P

m
stN

m
st

m
stN

stNst
m

stN
st

m
st I

I
      (20)

Otherwise )(m
st = )1( m

st .
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3. Updating Λ : First  we obtain  the partial residual *
ie , which is the difference

between the observed score and all the random effects part for each student. Then regress

the vector *e of these residuals on Ψ × 1iΠ for all students, with known error covariance

)( ΣIV  N .  Therefore, we draw  from the full conditional distribution for

),( BBbMVN , where

11T1 V)Π(ΨV)Π(ΨB   11 ii (21)

and

ΛμΛ
*1T VEV)Π(Ψb  

1i (22)

4. Updating Θ : We update Θ  one element at a time. We obtain partial residual

*
ie for each student linked to the teacher of interest by subtracting the fixed effects

structure and the part of the teacher structure that does not depend on the teacher effect

being updated. Then regress these *
ie on the single teacher effect stθ , where the design

matrix consisting of zeros, ones, and the appropriate components of Φ (here we use D

to denote the current design matrix), and where the error covariance matrix is V. The full

conditional distribution for stθ  is ),( ΘΘΘ BbBN , where

1
Φ

1T
Φ

1
Θ VDVDB   (23)

*1T
ΦΘ EVDb  (24)

5. Updating Φ: Analogous to the previous step, here the stθ s serve as regressors

with parameter Φ. We obtain partial residual *
ie for each student by subtracting the fixed

effects structure and the effects of all current year teachers for each score. Now the



36

design matrix consists of zeros and appropriately placed values of stθ . The error

covariance matrix is also V. So the full conditional distribution for α is )( ΘΘΘ B,bBMVN .

Where

1
θ

1T
θ

1
Φ VDVDB   (25)

ΦΦ
*1T

θΦ μVEVDb   (26)

6. Updating the student’s own random effects is analogous to the steps that update

the school/teacher random effects.

Existing Major Value-Added Models

Now, suppose, 1) we only have scores for one subject S = 1; 2) there  is only one

teacher  in each year tN  = 1, then  the teacher effect T
T ),,,( 21 θθθΘ  ; 3) and the

mean score for T  years and gender are the fixed effects, then we will derive the CA, GS,

PS and LA and CC model.

CA Model

T
Tmmm ),,,( 11 Λ (27)
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2iΠ = 1iΠ (30)
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ΨΦ  (31)

3iΠ  = 0, and Σ is T × T matrix that only diagonally element to be estimated, correlations

are all 0.  The covariant adjustment model for the t years can be derived as:

1111 emy   (32)

ttttt eymy    1 (33)

GS Model

The GS model can be obtained if b in the CA models is specified to be 1.

Therefore, the the GS model can be viewed as a special case of the CA model.

PS Model

T
T Gmmm ),,,,( 11 Λ (34)
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2i  is the same as Equation (35).  Suppose

TTTT 
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LA Model

For the PS model above, if we further assume all the ij = 1, for i > j in Equation

(37), then we will obtain LA model. Therefore, the LA model can be seen as a special

type of the PS model.

CC Model

The CC model is the only model that explicitly models individual growth curves.

In this model, student’s growth are student-specific, and of random effects. The teacher’s

effects are the same as the LA model.  For student-specific random effects, we have

),( 21 iii ε (38)
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In Raudenbush and Bryk, they used fixed coefficient for i  , and Tttrt ,,1,  .

Table 3.1 summarizes the similarity and differences among the general and

reduced VAM.
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Table 3.1.  Comparison among the General and Reduced VAM

General
VAM

Gain
Score

Covariate
Adjustment

Cross-
Classified Layered Persistence

Covariates Yes Yes Yes No No Yes

Student
random
growth

Yes No No
Yes

(linear trend)
No No

Prior year
teacher effect

Yes Yes No Yes Yes Yes

Teacher effect
persistence

Diminished Undiminished No No Undiminished Diminished

Residual error No restriction

Independent
across years

within
a student

Independent
across years

within a
student

Constant
correlation

within student
across years

Allows
correlation
across years

within student;
Constant
across all
students

No restriction
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CHAPTER 4

SIMULATION STUDY

Design

 A simulation study is conducted to investigate the feasibility and robustness of the

general model when the data are generated under varying assumptions. Six data sets are

generated using the general model and the five reduced models (the GS, CA, CC, LA and

PS model). Data (test scores) generated using the general model are fitted using the

general model and all the reduced models. This allows comparison of the different fitted

models when the data do not follow the assumptions of the reduced models. Data

generated using a reduced model are fitted using both the same reduced model and the

general model. This allows comparison of the model fit of the general model and specific

reduced model when the reduced model assumptions hold. Table 4.1 summarizes this

design and shows that 16 conditions result from the combination of the data generation

and estimation methods.

        For each model, three consecutive years of testing scores are generated for 1200

students grouped into 48 classes of 25 students each. The classes are grouped into 3

schools each with 16 classes. Systematic heterogeneity is introduced into the school

means through the students. School A contains 80% students who are eligible for free and

reduced lunch (FRL), school B contains 50% students who are eligible for FRL, and

school C contains 20% FRL students. School C is considered a balanced mix. Within

each school, the students are randomly assigned to two classes. The students without FRL

are assumed to be advantaged students and those with FRL are disadvantaged students.

The advantaged students have higher mean scores at the starting year and higher mean

gain scores each year than the disadvantaged students.
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Within each school, teachers with different effectiveness are assigned into 16

classes across three years. In this simulation study, the teachers who contribute positively

to students' growth will be considered as the effective teachers and the teachers who

contribute negatively are considered as the non-effective teachers. Various combinations

of effective and non-effective teachers across three years yield four types of classes:

Class NNN, Class NNE, Class EEN and Class EEE. For example, for Class NNE, non-

effective teachers are assigned for the first two years and an effective teacher is assigned

for the third year. For each type of combination, there are 4 classes. Table 4.2

summarizes the teacher arrangement for each class across three years.

Models for Generating Scores

        According to formula (10), given the values of all the required parameters, student

i 's score vector can be assumed to have a multivariate normal distribution. The covariate

variable considered in the simulation study is the students' SES; the random effect

considered are teacher effect for all the models and students' own random effect for the

general and CC model. Although schools are heterogeneous, the school effect is not

examined here. The heterogeneity among schools is introduced only for the purpose of

investigating the relationship between school composition and the inclusion of the

covariates. The parameter values used to generate student scores are listed as follows.

        1) The first year's mean scores are 220 and 200 for the advantaged and

disadvantaged students, respectively; the average gain score for each year is 20 and 10

for the advantaged and disadvantaged students, respectively.

        2) The marginal variance (the total variance of teacher effect, student random effect

and residual error) is fixed at 1000 for all the conditions.
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         3) The teacher effect follows ),0( 2N . The value of   is fixed at 10. The

difference between the average teacher effects for the effective and non-effective teacher

groups is one unit of the standard deviation. Then the teacher effects for the effective

teachers are generated from )10,5( 2N  and the teacher effects for the non-effective

teachers are generated from )10,5( 2N

        4) For the general and CC model, the random student effect follows ),0( 2vN . The

value of v  is chosen to be 5.

        5) The teacher effect persistence parameters 21 , 31  and 32  are 0.2, 0.3 and 0.3 for

the general and PS model; they are 1 for the GS and LA model.

        6) For student i , the variance-covariance for the residual error is a 3 by 3 matrix. A

random matrix is created for the general and the PS model. The correlation of scores

across years within student i   is 0 for the GS and CA model, and is 0.7 for the CC and

LA model.
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Table 4.1 Models Used for Generating and Fitting Simulation Data

Data Fitted
General GS CA CC LA PS

General √ √ √ √ √ √
GS √ √
CA √ √
CC √ √
LA √ √

Data
Generated

PS √ √

Table 4.2 Teacher Arrangement for Each Class

School
% of

advantaged
students

Class Year 1 Year 2 Year 3

NNN N N N
NNE N N E
EEN E E N

A 80%

EEE E E E
NNN N N N
NNE N N E
EEN E E N

B 50%

EEE E E E
NNN N N N
NNE N N E
EEN E E N

C 20%

EEE E E E
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Analysis and Comparison of Model Estimation

For each model that will be analyzed, the MCMC algorithm shown in Chapter 3 is

implemented to generate a sequence or chain of parameters sampled from the posterior

distribution of that model. Constraints are put on specific parameters when the MCMC

algorithm is implemented for estimating the reduced model. For example, the persistence

parameter ij  is fixed to be 1 at each step when the data are estimated by the LA model.

The convergence of the chains is diagnosed using the Gelman-Rubin diagnostic (Gelman

& Rubin, 1992).

        Model comparison is required for a diversity of activities, including variable

selection in regression, determination of the number of components in a mixture model or

the choice of parametric family. As with frequentist analogues, Bayesian model

comparison will not inform about which model is “true”, but rather about the preference

for a model given the data and other information. In the Bayesian arena, common

methods for model comparison are based on the following: separate estimation including

posterior predictive distributions, Bayes factors and approximations such as the Bayesian

information criterion (BIC) and deviance information criterion (DIC); comparative

estimation including distance measures such as entropy distance or Kullback-Leibler

divergence; and simultaneous estimation, including reversible jump MCMC and birth and

death processes (Alston, Kuhnert, Low Choy, McVinish & Mengersen, 2005).

        Researchers have shown that, as an approximation to the Bayesian factor, the DIC is

a popular method for model comparison, especially for models that involve many random

effects, large numbers of unknowns or improper priors. DIC penalizes against higher

dimensional models (Spiegelhalter et al, 1999): with deviance denoted by D ,



45

DpDyEDyDEyDEDIC  )(])[()]([])([ *  (41)

where

)(log2)](log2[)(* ypypED    (42)

and Dp  denotes the effective number of parameters. It can thus be seen that the DIC

comprises of terms that are a function of the data alone (e.g., )(log2 yp ) and a measure

of the complexity of the model (e.g., )](log2[  ypE  ). In this study, DIC is used for

the model comparison in terms of the overall goodness of fit. Within the same simulated

data, the overall goodness of fit is compared among the models being used. Each year's

estimated mean scores are compared to true mean scores. The bias of the estimated mean

score is examined under all the conditions. Covariate variable is included in the general,

GS and CA model. Specifically, a binary variable is used to indicate the student's SES

(advantaged or disadvantaged). The impact of inclusion of the covariate variable is

discussed.

Several measures are considered for the estimated teacher effects, for example, the

estimates of individual teacher effects and the overall contributions of teacher to

variability in student outcomes. Both measures are compared to their true values and the

estimation accuracy is compared among different conditions, specifically, the impact of

the inclusion of covariates on the estimation accuracy will be discussed. Teacher effect

persistence parameters estimation accuracy is also checked.

Results

        For each of the 16 conditions, four chains started at random are run. All the chains

have the same number of burn-in, 5,000, but have different chain lengths. The chain
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lengths are determined to ensure that all the parameters have converged. The resulting

total number of iterations range from 15,000 to 25,000. The initial estimates for all the

parameters are obtained based on the draws after the burn-in of each chain. The final

estimates are obtained by averaging the estimates across the four chains. In addition, the

posterior variance of the estimates is computed using the sample variance of the iterations

after subtracting the burn-in.

Overall Model Fit

Tables 4.3-4.5 summarize the DIC value provided by all the models using different

generated data for School A, B and C, respectively. The row label indicates the model by

which the data were generated; the column label indicates the model by which the

generated data were estimated. For each dataset, the estimating model is called “correct’

model when it corresponds to the generating model. Comparing these three tables, same

pattern can be found, although the DIC values in the same cell across different tables are

slightly different. Therefore, the following discussion is based on the results from by

School A (Table 4.3).

The most salient result from Table 4.3 is that, for each data, the correct models

consistently provide better model fit, which is indicated by the smaller DIC values. To be

more specific, when the data were generated by the general model, the correct model

provides smaller DIC than any other models. Among the other models, the PS model

obtains the closest DIC to the general model DIC (Difference is 51.). This is because the

PS model is most similar to the general model. DIC values provided by the CC and LA

model are close to each other (12278 vs. 12264) and larger than those provided by other

models. When the data were generated by the reduced model, the correct model provides
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smaller DIC than the general model does. However, the difference of DIC values

between the correct model and the general model is quite small. As the PS model differs

from the general model only by one parameter (the student random effect), the DIC value

from the general model is just higher by 1. Even the largest difference, which occurs in

the GS model case, is only 26.

Table 4.3 DIC Obtained from All the Models Using Different Generated Data
 (School A)

Fitted Model

General GS CA CC LA PS

General 11475 12207 12223 11533 11539 11526

GS 11516 11490

CA 11474 11465

CC 11688 11680

LA 11685 11682

Generating
Model

PS 11481 11480

Table 4.4 DIC Obtained from All the Models Using Different Generated Data
 (School B)

Fitted Model

General GS CA CC LA PS

General 11471 12264 12278 11535 11541 11522

GS 11525 11491

CA 11476 11463

CC 11759 11748

LA 11781 11770

Generating
Model

PS 11488 11484
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Table 4.5 DIC Obtained from All the Models Using Different Generated Data
 (School C)

Fitted Model

General GS CA CC LA PS

General 11472 12299 12313 11534 11540 11524

GS 11517 11491

CA 11484 11465

CC 11705 11695

LA 11706 11696

 Generating
Model

PS 11481 11481

        To summarize the findings, for the School A data, the comparison of the DIC values

show that the general model provides the best model fit for the general-model-generated

data; the PS model provides the closest result, which is just slightly worse. The CC and

LA model perform much worse. For the reduced-model-generated data, compared to the

general model, the reduced models provide better model fit. However, the performance of

the general model is not much worse than that of the correct models. This conclusion can

be generalized to School B and C which indicates that, in terms of the overall model fit,

the school composition has no impact on the performance of the general model and the

relationship between the general and reduced models. For example, for School B, which

represents a mix balance of advantaged and disadvantaged students, the DIC values also

support that the general model performs the best for the general-model-generated data

and performs slightly worse than the correct models for the reduced-model-generated

data.
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Fixed Effect Estimation

        Only one measure of the fixed effect estimation is presented here – the absolute bias

of the estimated fixed effect. Choosing to present the absolute bias instead of the bias is

just for the purpose of conveniently comparing the magnitude of the bias. For the CC and

LA model, the estimated fixed effect only includes estimated mean score for each year.

For all the other models, the estimated fixed effect also includes the estimated SES effect.

For example, the estimated fixed effect for the general model is Xm ̂ˆ  . X , the average

of the SES variable, is 0.2 for School A, 0.5 for School B and 0.2 for School C. It should

be noted that previous year’s mean score is also included for the GS and CA model. The

absolute bias of the estimated fixed effect is the absolute value of the difference between

the estimated fixed effect and the true mean score. Table 4.6 presents the true mean score

for each year generated using different models. The purpose of this table is just to show a

general picture of the generated scores used in this simulation study. It shows that, from

year 1 to year 3, the mean score grows from around 215 to around 251 for School A,

around 209 to around 240 for School B and around 203 to around 227 for School C. The

higher percentage of advantage students leads to higher mean score and higher gains.

        Tables 4.7-4.9 present the absolute bias of the estimated fixed effect for School A, B

and C, respectively. All the absolute biases shown in these three tables are smaller than

0.50, which indicates that all the models can provide accurate fixed effect estimates for

any of the data generated using different models. Moreover, to investigate the stability of

the fixed effect estimates, the posterior standard deviations of the estimates were

computed. The small posterior standard deviations (around 5 for all the estimates) show

that all the models can provide precise fixed effect estimates.
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         Although the absolute biases vary across conditions, no significant differences can

be found (Z<1.96). In other words, none of the differences between the estimated

absolute biases is large enough to draw the conclusion that one model gives more

accurate estimates than another. And the differences can only be accounted for by the

random errors.

Table 4.6 The True Mean Scores Generated under Various Conditions for Three Years

Year 1 Year 2 Year 3 Average

General 215.4 231.7 251.3 232.8

GS 215.5 232.0 251.5 233.0

CA 215.5 231.9 251.4 233.0

CC 217.3 233.7 253.3 234.8

LA 217.4 233.9 253.4 234.9

School A

PS 215.6 231.8 251.4 232.9

General 209.8 223.3 240.1 224.4

GS 209.9 223.6 240.3 224.6

CA 209.9 223.5 240.2 224.6

CC 211.7 225.3 242.1 226.4

LA 211.8 225.5 242.2 226.5

School B

PS 209.9 223.40 240.2 224.5

General 203.4 213.7 227.3 214.8

GS 203.5 214.0 227.5 215.0

CA 203.5 213.9 227.4 215.0

CC 205.3 215.7 229.3 216.8

LA 205.4 215.9 229.4 216.9

School C

PS 203.6 213.8 227.4 214.9
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Table 4.7 Absolute Bias of the Estimated Fixed Effect for Each Year
 from Different Models (School A)

Estimates SDs

Generated Fitted Year 1 Year 2 Year 3 Year 1 Year2 Year 3

General 0.35 0.36 0.25 4.91 5.12 5.01

GS 0.31 0.19 0.15 5.32 5.44 5.41

CA 0.08 0.08 0.32 5.41 5.39 5.52

CC 0.06 0.18 0.11 5.21 5.30 5.19

LA 0.18 0.12 0.24 5.23 5.19 5.27

General

PS 0.11 0.10 0.03 4.81 5.15 5.10

General 0.23 0.34 0.25 5.43 5.29 5.33
GS

GS 0.23 0.44 0.33 5.19 5.24 5.25

General 0.04 0.25 0.06 5.39 5.44 5.28
CA

CA 0.18 0.05 0.17 5.14 5.15 5.29

General 0.07 0.24 0.21 5.31 5.29 5.24
CC

CC 0.18 0.34 0.37 5.09 5.12 4.87

General 0.07 0.04 0.01 5.28 5.19 5.24
LA

LA 0.02 0.28 0.49 5.15 5.10 4.88

General 0.02 0.13 0.06 5.16 5.20 4.89
PS

PS 0.02 0.20 0.19 5.14 5.20 4.90

         In summary, both the general and reduced VAMs can provide accurate and precise

fixed effect estimates whether or not the model assumptions fit the data structure or not.

Choosing different models to estimate the same generated data does not yield

significantly different estimates. In other words, the fixed effect estimation is not

sensitive to the model choice. Meanwhile, there are also no significant differences in the

results across three And no significant differences in estimates can be observed when

various models are used to fit the same data. Therefore, the fixed effect estimation is not

affected by different school compositions. For both School B and School C, the general
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and reduced model can provide accurate and precise fixed effect estimates for all the

generating and fitting model combinations.

Table 4.8 Absolute Bias of the Estimated Fixed Effect for Each Year
from Different Models (School B)

Estimates SDs

Generated Fitted Year 1 Year 2 Year 3 Year 1 Year2 Year 3

General 0.25 0.19 0.14 4.89 5.14 5.11

GS 0.22 0.19 0.18 5.34 5.42 5.39

CA 0.07 0.06 0.18 5.40 5.44 5.48

CC 0.04 0.13 0.16 5.22 5.34 5.20

LA 0.19 0.14 0.20 5.19 5.27 5.23

General

PS 0.13 0.22 0.11 4.88 5.09 5.14

General 0.13 0.24 0.30 5.41 5.31 5.34
GS

GS 0.19 0.42 0.46 5.16 5.23 5.24

General 0.17 0.24 0.06 5.38 5.39 5.38
CA

CA 0.16 0.04 0.09 5.20 5.18 5.22

General 0.05 0.14 0.16 5.32 5.33 5.29
CC

CC 0.23 0.34 0.37 5.14 5.15 4.88

General 0.10 0.15 0.15 5.25 5.22 5.22
LA

LA 0.05 0.20 0.35 5.18 5.09 4.92

General 0.10 0.10 0.15 5.17 5.22 4.87
PS

PS 0.12 0.42 0.16 5.09 5.15 4.93
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Table 4.9 Absolute Bias of the Estimated Fixed Effect for Each Year
from Different Models (School C)

Estimates SDs

Generated Fitted Year 1 Year 2 Year 3 Year 1 Year2 Year 3

General 0.14 0.02 0.03 4.93 5.13 5.10

GS 0.12 0.18 0.21 5.40 5.32 5.44

CA 0.06 0.04 0.04 5.40 5.42 5.42

CC 0.01 0.08 0.2 5.12 5.17 5.29

LA 0.19 0.15 0.16 5.32 5.29 5.37

General

PS 0.14 0.31 0.19 4.89 5.10 5.20

General 0.03 0.13 0.35 5.40 5.39 5.30
GS

GS 0.14 0.16 0.28 5.25 5.19 5.21

General 0.29 0.22 0.05 5.35 5.40 5.31
CA

CA 0.13 0.02 0.01 5.18 5.17 5.28

General 0.03 0.04 0.11 5.28 5.33 5.25
CC

CC 0.28 0.34 0.37 5.11 5.22 4.84

General 0.13 0.26 0.29 5.26 5.21 5.18
LA

LA 0.08 0.12 0.18 5.12 5.14 4.89

General 0.17 0.07 0.24 5.17 5.21 4.91
PS

PS 0.21 0.34 0.12 5.12 5.16 4.96

Teacher Effects Estimation

Before evaluating the teacher effects estimation, a brief description of the generated

teacher effects across three years is first presented here. For year 1, the generated teacher

effects range from -18.5 to 15.6 with a mean of 0.4 and standard deviation of 10.1; for

year 2, they range from -16.1 to 13.5 with a mean of -0.6 and standard deviation of 9.7;

and for year 3, they range from -19.0 to 13.9 with a mean of 0.38 and standard deviation

of 10.2. To investigate the feasibility of the general model and to compare the general

and the reduced models with respect to the teacher effects estimation, two measures of

estimated teacher effects were computed for different combinations of data and models.
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First, the correlation between the true teacher effects  ’s and the estimated teacher

effects ̂ ’s was computed. The major purpose of estimating teacher effects using VAMs

in the educational practice is to rank-order the involved teachers. Therefore, a model can

provide accurate estimates in practice if the estimated teacher effects using this model

have high correlation with the true teacher effects. Second, the absolute bias of the

estimated teacher effects ˆ( )Bias   was computed. Besides these two measures, the

correlation between estimated teacher effects obtained from various models was also

computed to investigate the interrelationship among the general and reduced models

regarding the random effect estimation.

The Correlation between the True and Estimated Teacher Effects

        Tables 4.10-4.12 show the correlation between the true and estimated teacher effects

for all the data and model combinations across three years for three schools. In this study,

the correlations reported are the spearman’s rank correlation coefficients because the rank

order, instead of the absolute value, of the teacher effects is of primary interest in

decision making practice. The range of the correlations is from 0.81 to 0.94. The lowest

correlation 0.81 is observed when the CA model was used to estimate the School C’s

general-model-generated data in year 3. The highest correlation 0.94 is always found

when the general model was used to estimate the general-model-generated data, for

example, the School A’s data in year 2 and year 3, School B’s data in year 3 and School

C’s data in year 1. Therefore, the correlation measure supports that, in general, all the

models can provide acceptable teacher effect estimates under various assumptions. In

order to further examine the different model performances, the following analysis focuses

on the pattern observed within each school.
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Table 4.10 Correlation Between estimated and true teacher effects for Each Year
from Different Models (School A)

Generated Fitted Year 1 Year 2 Year 3

General 0.93 0.94 0.94

GS 0.82 0.83 0.84

CA 0.82 0.83 0.83

CC 0.85 0.84 0.84

LA 0.84 0.85 0.85

General

PS 0.92 0.91 0.91

General 0.86 0.86 0.87
GS

GS 0.89 0.91 0.91

General 0.86 0.85 0.85
CA

CA 0.92 0.91 0.89

General 0.85 0.86 0.86
CC

CC 0.86 0.86 0.87

General 0.86 0.84 0.87
LA

LA 0.87 0.86 0.89

General 0.91 0.91 0.92
PS

PS 0.90 0.92 0.92

        For School A, when the data were generated using the general model, as expected,

the general model itself gives the highest correlation. Meanwhile, the correlation obtained

by the PS model is only lower by 0.01or 0.02. Again, this supports our assumption that

the PS model has the closest results to the general model because it has the most similar

model specification as the general one. The CC and LA model have the relatively close

results - the correlation is about
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Table 4.11 Correlation Between estimated and true teacher effects for Each Year
from Different Models (School B)

Generated Fitted Year 1 Year 2 Year 3

General 0.92 0.93 0.94

GS 0.84 0.85 0.86

CA 0.86 0.85 0.84

CC 0.92 0.90 0.90

LA 0.91 0.91 0.92

General

PS 0.91 0.92 0.93

General 0.88 0.89 0.88
GS

GS 0.88 0.90 0.90

General 0.91 0.89 0.88
CA

CA 0.91 0.90 0.89

General 0.89 0.88 0.88
CC

CC 0.90 0.91 0.90

General 0.88 0.89 0.88
LA

LA 0.90 0.91 0.89

General 0.90 0.92 0.91
PS

PS 0.91 0.92 0.93

0.84 or 0.85. And the GS and CA model have the relatively close, but the lowest,

correlation. When the data were generated using the reduced models, the reduced models

themselves perform very well - even the lowest correlation is 0.86, which is observed

when the correct models were used to estimate the CC-model-generated data and LA-

model-generated data. However, the general model does not perform equally well under

various conditions. When the data were generated using the CC, LA and PS model, the

general model results are as good as those obtained from the correct models. While when

the data were generated using the GS and CA model, the correlation of the general model

is much lower than that of the correct one, for example, the differences between the



57

Table 4.12 Correlation Between estimated and true teacher effects for Each Year
from Different Models (School C)

Generated Fitted Year 1 Year 2 Year 3

General 0.94 0.93 0.93

GS 0.84 0.85 0.85

CA 0.83 0.82 0.81

CC 0.82 0.83 0.82

LA 0.85 0.84 0.84

General

PS 0.92 0.92 0.90

General 0.86 0.86 0.88
GS

GS 0.90 0.92 0.92

General 0.86 0.85 0.86
CA

CA 0.92 0.91 0.91

General 0.84 0.86 0.87
CC

CC 0.86 0.86 0.88

General 0.86 0.85 0.88
LA

LA 0.87 0.88 0.89

General 0.91 0.90 0.91
PS

PS 0.91 0.91 0.92

correlations obtained using the general model and the correct model when the data were

generated using the CC model are 0.06 for the year 1 and year 2 data. Based on the above

analysis, a conclusion can be drawn that the estimation for the general-model-generated

data and the estimation for the reduced-model-generated data show the same pattern.

That is, with respect to the teacher effect estimates, the general and the PS model have

the close results; the CC and LA model have the similar results; and results obtained by
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the GS and CA model are close to each other, but have the most differences with the

general model.

The results for the School C data show the same pattern with those for the School

A data, although they are slightly different in magnitude. That is, when the data were

generated using the general model, the general model provides the highest correlations

between the true and estimated teacher effects for all three years; the CC and LA model

provide the similar and worse results; the GS and CA model results are similar and worse

than the CC and LA model results. When the data were generated using the reduced

models, the correct models provide better estimates; the general model provides slightly

worse results for the GS and CA model and much worse results for the CC and LA model.

However, the School B data tell a different story. Two types of improvements can

be observed when switching from the School A or C data to the School B data. First, for

the general-model-generated data, not only the PS model estimates, but also the CC and

LA model estimates are as good as the general model estimates - the CC and LA model

correlations are all greater than 0.90. While the GS and CA model results, which are

around 0.85, are still worse than the general model one. Second, when the data were

generated using the CC and LA model, higher correlation can be obtained from using

both the general and the correct model. Specifically, switching from the School A or C

data to the School B data, the correlations increase from around 0.85 to around 0.90 for

the CC-model-generated and the LA-model-generated data by using both the general and

the correct model. These two types of improvements indicate that the CC and LA model

are sensitive to the school composition. To be specific, the CC and LA model perform

noticeably better for the school that has roughly the same mix of advantaged and
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disadvantaged students (as School B) than for those have unbalanced mix (as School A or

C). The performance of the general model for estimating the CC-model-generated or LA-

model-generated data also improves when switching from the balanced mixed school to

unbalanced mixed school.

The Mean Absolute Bias of the Estimated Teacher Effects

Table 4.13 Mean Absolute Bias of the Estimated Teacher Effects for Each Year
from Different Models (School A)

Estimates SDs

Generated Fitted Year 1 Year 2 Year 3 Year 1 Year2 Year 3

General 4.40 3.02 3.91 5.91 6.16 6.03

GS 3.28 7.73 6.47 6.60 6.75 6.61

CA 3.19 7.91 6.53 6.68 6.59 6.64

CC 3.01 7.76 6.43 6.37 6.48 6.55

LA 4.91 3.11 5.33 6.30 6.45 6.44

General

PS 4.71 3.24 3.94 5.79 6.20 6.14

General 5.00 4.11 4.97 6.54 6.37 6.42
GS

GS 5.03 3.98 4.96 6.25 6.31 6.32

General 5.10 4.08 4.91 6.49 6.55 6.36
CA

CA 5.23 4.05 4.85 6.19 6.20 6.37

General 3.52 3.92 4.16 6.39 6.37 6.31
CC

CC 3.52 4.13 4.33 6.13 6.16 5.86

General 4.85 3.38 4.04 6.36 6.25 6.31
LA

LA 4.88 3.37 3.89 6.20 6.14 5.88

General 4.45 2.99 3.96 6.21 6.26 5.89
PS

PS 4.53 3.02 3.99 6.19 6.26 5.90

Tables 4.13-4.15 show the mean absolute bias and the posterior standard deviation

of the estimated teacher effects for each year from different models for School A, B and

C, respectively. There are 16 teachers being evaluated within each school for each year.
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The mean absolute bias presented in the tables is calculated as  


16

1
ˆ

16

1
n nn  .

Generally speaking teacher effects are not estimated with great accuracy – the mean

absolute bias in these three tables ranges from 2.91 to 7.95. Recent literatures (e.g.,

McCaffrey et al; RAND 2003) show that there exist several sources of error in estimated

teacher effects. It is very difficult to make any meaningful inference based on the

magnitude of the teacher effects using the current methodologies so that the magnitude of

the estimated individual teacher effect is not of primary interest in the practical

Table 4.14 Mean Absolute Bias of the Estimated Teacher Effects for Each Year
from Different Models (School B)

Estimates SDs

Generated Fitted Year 1 Year 2 Year 3 Year 1 Year2 Year 3

General 4.46 3.00 3.87 5.91 6.34 6.17

GS 3.06 7.74 6.45 6.61 6.92 6.58

CA 4.86 3.08 5.29 6.85 6.59 6.57

CC 3.28 7.95 6.60 6.41 6.63 6.70

LA 3.28 7.94 6.54 6.25 6.37 6.47

General

PS 4.41 2.95 3.89 5.97 6.22 6.24

General 5.03 4.05 4.99 6.59 6.34 6.36
GS

GS 5.15 4.03 5.06 6.34 6.46 6.49

General 5.14 4.08 4.90 6.46 6.55 6.28
CA

CA 5.27 4.01 5.06 6.26 6.40 6.50

General 3.63 3.90 4.15 6.48 6.32 6.27
CC

CC 3.55 3.93 4.35 6.27 6.15 5.85

General 4.89 3.39 3.94 6.56 6.24 6.46
LA

LA 4.88 3.41 3.94 6.14 6.15 5.92

General 4.48 2.93 3.98 6.23 6.43 6.08
PS

PS 4.51 2.95 3.97 6.31 6.27 5.83
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accountability system. Therefore, in this simulation study, how accurate and precise the

individual teacher effect can be estimated is also not of interest. The mean absolute bias

in those three tables is mainly used to investigate the differences and similarities among

the models.

Table 4.15 Mean Absolute Bias of the Estimated Teacher Effects for Each Year
from Different Models (School C)

Estimates SDs

Generated Fitted Year 1 Year 2 Year 3 Year 1 Year2 Year 3

General 4.46 3.03 3.88 5.99 6.36 6.03

GS 3.19 7.84 6.61 6.67 6.88 6.74

CA 3.26 7.63 6.56 6.68 6.62 6.59

CC 3.12 7.55 6.46 6.48 6.44 6.50

LA 4.92 3.01 5.31 6.29 6.65 6.62

General

PS 4.42 3.02 3.86 5.76 6.27 6.33

General 5.00 4.07 5.07 6.69 6.57 6.54
GS

GS 5.23 4.03 5.18 6.43 6.23 6.34

General 5.09 4.08 4.92 6.53 6.72 6.41
CA

CA 5.42 4.05 5.15 6.32 6.24 6.29

General 3.59 4.03 4.32 6.47 6.49 6.32
CC

CC 3.58 3.89 4.31 6.25 6.25 5.95

General 4.86 3.39 3.96 6.35 6.34 6.41
LA

LA 4.88 3.41 3.96 6.33 6.07 5.84

General 4.45 3.01 4.00 6.21 6.28 5.98
PS

PS 4.47 2.91 3.97 6.22 6.35 5.86

  Comparing the results across three years, it is apparent that the relatively larger

biases (> 7.00) or smaller biases (<3.00) tend to be observed from the year 2 results and

the ranges of the biases from the year 1 and 3 results are relatively smaller. Specifically,

the bias ranges from 3.01 to 5.42 for the year 1 data and from 3.86 to 6.61 for the year 2
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data. The reason for this pattern might be that the range of the generated teacher effects

for year 2 is smaller than those for year 1 and year 3.

 Focusing on the three years results within each school, the following pattern can be

found for School A data. When the data were generated using the general model, the

general model has the lowest bias of 3.78 and the PS model has the second lowest bias of

3.96. While the GS, CA and CC model produce relative larger bias. When the data were

generated using the reduced models, the correct model and the general model produce

very close results (In some extreme cases, for example, when the data were generated

using the LA model, the general model provides even smaller biases. However the

improvement of the general model is very small, which might be attributed to the

estimate errors since the teacher effect estimates themselves are of great accuracy).

Therefore, the bias measure also supports our assumption that the general model

performs best when it is the true model and it also provides the similar quality results as

the reduced model even when the reduced model is the true model. In contrast to the

correlation measure, this pattern is also true for the School B and School C data, and no

evident impact can be found of the school composition on the model performance.

The Correlation between the Estimated Teacher Effects from Different Models

To further investigate the interrelationship and to compare the differences and

similarities among all the models, the correlation between the estimated teacher effects

from different models were also computed. Because the general model and the reduced

model provide very close estimates (The correlation is consistently greater than 0.95.)

when the correct model is the reduced model, we plot the estimated teacher effects

obtained from the general model and  the reduced model to see how these estimated
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teacher effects are distributed. Figures 4.1-4.5 present the correlations obtained from

using the five reduced-model-generated data, respectively. Each figure contains 9 panels.

Within each panel the points represent the individual estimated teacher effect. Rows of

panels correspond to three schools and columns of panels correspond to three years. It is

apparent that all the points are almost on a straight line, which indicates highly correlated

relationship between the estimated teacher effects from the reduced model and those from

the general model. However, the distribution of the points within each panel varies from

model to model, and it also varies from year to year within each model. For example,

comparing the year 2 panels in Figure 4.1 and 4.2, it is easy to find that the points tend to

be more separated along the scales (from -30 to 30) using the GS-model-generated data

than using the CA-model-generated data. Furthermore, comparing the year 1, year 2 and

year 3 panels in Figure 4.1, we can find that these three plots are also different in how the

estimated teacher effects spread along the scales. Year 1 data show three outliers - two of

them have much lower teacher effects and one of them has much higher teacher effect

than most of the teachers. Year 3 data show only one outlier that is far left behind all the

other teachers. The same pattern can be observed from Figure 4.1 to 4.5, which indicates

that, with respect to identifying the outliers, all the models present similar results

regardless of the true underlying data structure.
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Year 1 Year 2 Year 3

A

B

C

Figure 4.1 Correlation between the Estimated Teacher Effects from the General and the GS Model (GS Data)
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Year 1 Year 2 Year 3

A

B

C

Figure 4.2 Correlation between the Estimated Teacher Effects from the General and the CA Model  (CA Data)
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Year 1 Year 2 Year 3

A

B

C

Figure 4.3 Correlation between the Estimated Teacher Effects from the General and the CC Model (CC Data)
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Year 1 Year 2 Year3

A

B

C

Figure 4.4 Correlation between the Estimated Teacher Effects from the General and the LA Model (LA Data)
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Year 1 Year 2 Year 3

A

B

C

Figure 4.5 Correlation between the Estimated Teacher Effects from the General and the PS Model (PS Data)
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        We use Tables 4.16-4.18 to report the pair-wise correlation between the estimated

teacher effects when the data were generated using the general model. The correlation

ranges from 0.71 to 0.97 across three schools for three years. Within each school, data

across three years provide very similar results. For School A data, the general-PS pair

gives the highest correlation. On average, the general model has the highest correlation

with the other models. This again proves the feasibility and advantage of the general

model. The GS and CA model have a relatively high correlation with each other (greater

than 0.90), whereas they have much lower correlations with the CC model and the LA

Table 4.16 Pair-Wise Correlation between the Estimated Teacher Effects
from Different Models Using the General-Model-Generated data (School A)

General GS CA CC LA PS

General 1.00 0.77 0.79 0.93 0.94 0.96

GS 1.00 0.93 0.72 0.73 0.80

CA 1.00 0.72 0.74 0.80

CC 1.00 0.93 0.83

LA 1.00 0.84

Year 1

PS 1.00

General 1.00 0.77 0.78 0.92 0.91 0.94

GS 1.00 0.89 0.73 0.72 0.80

CA 1.00 0.72 0.72 0.80

CC 1.00 0.91 0.83

LA 1.00 0.83

Year 2

PS 1.00

General 1.00 0.82 0.82 0.92 0.94 0.95

GS 1.00 0.91 0.72 0.72 0.82

CA 1.00 0.71 0.72 0.82

CC 1.00 0.93 0.84

LA 1.00 0.85

Year 3

PS 1.00
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model (smaller than 0.75). School C data present the similar results with School A data.

However, School B data present differences in the correlation of the PS-CC pair and the

correlation of the PS-LA pair. Switching to the School B data, the PS-CC and PS-LA

correlations increase from around 0.83 to around 0.94. This significant change indicates

that the differences that exist between the PS and CC or LA model can be reduced if the

data are from a balanced mixed school. It is natural to relate this phenomenon with the

control of the

Table 4.17 Pair-Wise Correlation between the Estimated Teacher Effects
from Different Models Using the General-Model-Generated data (School B)

General GS CA CC LA PS

General 1.00 0.82 0.80 0.93 0.95 0.97

GS 1.00 0.94 0.73 0.72 0.82

CA 1.00 0.73 0.75 0.83

CC 1.00 0.89 0.94

LA 1.00 0.93

Year 1

PS 1.00

General 1.00 0.83 0.81 0.92 0.94 0.96

GS 1.00 0.93 0.74 0.73 0.81

CA 1.00 0.74 0.72 0.83

CC 1.00 0.90 0.94

LA 1.00 0.94

Year 2

PS 1.00

General 1.00 0.80 0.81 0.93 0.95 0.97

GS 1.00 0.93 0.70 0.73 0.83

CA 1.00 0.72 0.74 0.83

CC 1.00 0.90 0.94

LA 1.00 0.94

Year 3

PS 1.00
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covariates because the major difference between the PS and the CC or LA model is that

the PS model includes covariates but the CC and LA model don’t. Therefore, one

possible explanation is that the inclusion of the covariates does not make much difference

if the characteristics described by the covariates distribute homogenously in the sample.

Table 4.18 Pair-Wise Correlation between the Estimated Teacher Effects
from Different Models Using the General-Model-Generated data (School C)

General GS CA CC LA PS

General 1.00 0.82 0.83 0.94 0.95 0.97

GS 1.00 0.92 0.75 0.73 0.82

CA 1.00 0.75 0.75 0.82

CC 1.00 0.93 0.83

LA 1.00 0.84

Year 1

PS 1.00

General 1.00 0.81 0.82 0.90 0.90 0.96

GS 1.00 0.91 0.74 0.74 0.82

CA 1.00 0.75 0.73 0.83

CC 1.00 0.92 0.84

LA 1.00 0.84

Year 2

PS 1.00

General 1.00 0.82 0.83 0.91 0.92 0.97

GS 1.00 0.92 0.74 0.73 0.84

CA 1.00 0.73 0.74 0.83

CC 1.00 0.92 0.83

LA 1.00 0.83

Year 3

PS 1.00

Teacher Variance Components Estimation

        The MCMC algorithm designed for the general model also allows to simultaneously

estimating the teacher variance component, which is the variance of the teacher effects

within one year. For the convenience of comparing with the true standard deviation of the
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teacher effects distribution, Tables 4.19 to 4.21 present the square root of the estimated

teacher variance components and the posterior standard deviation of the estimates across

three years for School A, B and C, respectively. All of the estimates are consistently

greater than the true value 10. There might be many reasons why the teacher variance

component estimates are larger than it would be. One of them is that the number of

students linked to each teacher is small, which would introduce larger measurement

errors. All of the posterior standard deviations for these estimates are between 2 and 3,

which indicate that the precision of the estimation is acceptable.

Table 4.19 The Estimated Teacher Variance Components for Each Year
from Different Models (School A)

Estimates SDs

Generated Fitted Year 1 Year 2 Year 3 Year 1 Year2 Year 3

General 10.8 10.6 11.3 2.1 2.0 2.3

GS 12.5 11.8 13.0 2.4 2.5 2.6

CA 12.6 11.6 12.9 2.5 2.6 2.7

CC 11.2 11.0 12.1 2.3 2.5 2.4

LA 11.4 10.9 11.7 2.5 2.3 2.6

General

PS 11.0 10.9 11.2 2.2 2.1 2.2

General 12.2 11.7 12.8 2.2 2.3 2.4
GS

GS 12.2 11.5 12.7 2.2 2.1 2.2

General 12.3 11.2 12.7 2.3 2.4 2.2
CA

CA 12.2 11.2 12.5 2.1 2.2 2.2

General 11.3 11.1 11.3 2.3 2.3 2.4
CC

CC 11.1 11.1 11.2 2.2 2.3 2.1

General 11.4 11.1 11.5 2.4 2.5 2.4
LA

LA 11.4 11.3 11.4 2.3 2.4 2.4

General 11.3 11.3 11.5 2.3 2.5 2.2
PS

PS 11.3 10.9 11.2 2.1 2.3 2.1
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Table 4.20 The Estimated Teacher Variance Components for Each Year
from Different Models (School B)

Estimates SDs

Generated Fitted Year 1 Year 2 Year 3 Year 1 Year2 Year 3

General 11.1 10.7 11.4 2.2 2.1 2.2

GS 12.1 12.0 12.8 2.3 2.5 2.5

CA 12.6 11.7 13.0 2.6 2.6 2.5

CC 11.4 11.2 12.0 2.3 2.5 2.5

LA 11.0 11.0 11.5 2.4 2.5 2.5

General

PS 11.2 10.8 11.3 2.1 2.2 2.3

General 12.1 11.8 12.7 2.3 2.2 2.3
GS

GS 12.1 11.7 12.6 2.1 2.3 2.3

General 12.4 11.3 12.9 2.2 2.4 2.2
CA

CA 12.2 11.2 12.7 2.3 2.3 2.2

General 11.4 11.1 11.5 2.4 2.4 2.3
CC

CC 11.0 11.1 11.1 2.2 2.2 2.1

General 11.5 11.5 11.5 2.5 2.4 2.4
LA

LA 11.3 11.4 11.3 2.4 2.2 2.4

General 11.3 11.2 11.4 2.4 2.4 2.2
PS

PS 11.2 11.0 11.2 2.2 2.2 2.1

Comparing across three tables, no significant difference can be observed among the

results for the three schools, and there are several similar patterns can be found in all the

three tables. First, the estimates for the year 2 data are consistently lower than those for

the year 1 and year 3. This pattern can also be observed from the Figures 4.1-4.5, in

which the point distribution shown by the year 2 data has lower level of dispersion than

those shown by the year 1 and 3 data. Again, one possible explanation for this is that the

generated teacher effects for year 2 have smaller range and smaller variance. Second, for

the general-model-generated data, the general and PS model provide similar results and

they are closest to the true value 10; the CC and LA model results are slightly more
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biased; and the GS and CA model results are much more biased. When the data were

generated using the reduced model, the general model result is just slightly larger than the

result yielded by the correct model. Generally speaking, the estimated teacher variance

components from all of the models for different data are acceptable - the largest bias is

3.2.

Table 4.21 The Estimated Teacher Variance Components for Each Year
from Different Models (School C)

Estimates SDs

Generated Fitted Year 1 Year 2 Year 3 Year 1 Year2 Year 3

General 11.0 10.7 11.3 2.2 2.2 2.3

GS 12.4 11.8 13.2 2.5 2.6 2.6

CA 12.5 11.8 12.9 2.4 2.7 2.7

CC 11.3 11.1 12.0 2.4 2.6 2.4

LA 11.3 11.0 11.6 2.4 2.4 2.6

General

PS 11.2 10.9 11.4 2.2 2.3 2.2

General 12.2 11.7 12.6 2.4 2.5 2.4
GS

GS 12.0 11.6 12.5 2.2 2.2 2.2

General 12.4 11.2 12.7 2.3 2.4 2.3
CA

CA 12.3 11.3 12.6 2.2 2.3 2.4

General 11.2 11.1 11.4 2.3 2.4 2.4
CC

CC 11.1 11.2 11.2 2.3 2.4 2.1

General 11.5 11.2 11.6 2.5 2.5 2.4
LA

LA 11.4 11.4 11.5 2.4 2.4 2.2

General 11.4 11.2 11.6 2.3 2.5 2.2
PS

PS 11.3 10.8 11.3 2.2 2.3 2.0

Teacher Effect Persistence Estimation

Table 4.22 shows the estimated teacher effect persistence parameters obtained from

the only two models that assume the persistence of previous years’ teacher effect is

diminished--the general and the PS model. Comparing with the true value for generating
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21 , 31  and 32  (0.2, 03 and 0.3, respectively), one can find that both the models can

provide relatively accurate estimates; and all the posterior standard deviations are

between 2 and 3. Moreover, it is apparent that the biases of the estimates are consistently

positive. Especially, when generating and fitting model combination is given, biases for

21 tends to be even larger than those for 31  and 32 . To some extent, this result supports

McCaffrey’s criticism of other researchers’ exaggerate claims on the persistence effect.

However, at this point, there is no clear explanation or interpretation for why the

persistence parameter would be overestimated. Also, there is no evident impact can be

observed from using different schools’ data.

Table 4.22 The Estimated Teacher Effect Persistence Parameters
from the General and PS model

Estimates SDs

School Generated Fitted 21 (0.2) 31 (0.3) 32 (0.3) 21 31 32

General 0.26 0.32 0.32 0.03 0.05 0.05
General

PS 0.31 0.34 0.35 0.06 0.06 0.06

General 0.26 0.34 0.35 0.04 0.05 0.03
A

PS
PS     0.25 0.33 0.32 0.04 0.04 0.04

General 0.26 0.34 0.35 0.02 0.04 0.05
General

PS     0.32 0.35 0.36 0.05 0.05 0.06

General 0.26 0.34 0.35 0.03 0.04 0.05
B

PS
PS     0.25 0.33 0.32 0.03 0.05 0.04

General 0.26 0.34 0.33 0.03 0.04 0.05
General

PS 0.30 0.34 0.35 0.05 0.05 0.06

General 0.27 0.35 0.37 0.04 0.05 0.05
C

PS
PS 0.26 0.33 0.32 0.05 0.05 0.04

Random Student Effects Estimation

Table 4.23 shows the only measure for students’ own random effect - the estimated

student effect component and their posterior standard deviations. Also, only the results
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for the two models that take into account the students’ own random effect are presented.

All the estimates are consistently smaller than the true value 5. However, when the

correct model is used to fit the data, the bias of the estimate is only around 1. For

example, when the general model is chosen to estimate to general-model-generated data,

the biases of the estimates for School A data are 0.9, 0.8 and 0.7 for three years. No

apparent trend for the estimates over three years can be found. The impact of school

composition on the estimation is also not clear for this simulation.

Table 4.23 The Estimated Student Effect Component
from the General and CC model

Estimates SDs

School Generated Fitted Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

General 4.1 4.2 4.3 2.1 1.9 1.9
General

CC 3.4 3.6 4.0 2.3 2.2 2.0

General 3.8 3.9 4.1 2.3 2.4 2.4
A

CC
CC 4.2 4.1 4.3 2.1 2.3 2.3

General 4.2 4.0 4.2 2.2 2.0 1.9
General

CC 3.6 3.5 4.0 2.2 2.2 2.1

General 3.9 3.8 4.2 2.4 2.4 2.3
B

CC
CC 4.2 3.9 4.3 2.1 2.4 2.2

General 4.2 3.9 4.4 2.1 2.1 2.0
General

CC 3.7 3.6 3.9 2.4 2.2 2.1

General 3.9 4.1 3.8 2.4 2.3 2.4
C

CC
CC 4.1 4.2 3.9 2.2 2.2 2.3

Estimation of the Teachers’ Contribution to Total Variance

        The estimated teachers’ contribution to total variance is the percentage of the

estimated teacher variance component in the estimated total variance. The estimated total

variance is the sum of the estimated teacher variance component, estimated student
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variance component and estimated residual error. Results obtained using School A, B and

C data only have slight differences in magnitude. School composition does not have

significant impact on the teachers’ contribution to the total variance estimation. However,

it is easy to find that the estimated teachers’ contribution is lower for the year 2 data than

Table 4.24 The Estimated Teachers’ Contribution to Total Variance for Each Year
from Different Models (%) (School A)

Generated Fitted Year 1 Year 2 Year 3

General 9.5 9.3 9.6

GS 12.1 11.5 12.0

CA 11.9 11.3 11.8

CC 10.9 10.9 11.2

LA 11.2 10.8 11.4

General

PS 9.3 9.3 9.4

General 8.8 8.7 8.9
GS

GS 11.8 11.7 11.8

General 8.9 8.8 8.8
CA

CA 11.5 11.0 11.2

General 9.2 9.0 9.1
CC

CC 10.4 10.5 10.5

General 9.2 9.0 9.2
LA

LA 10.6 10.5 10.6

General 9.2 9.2 9.3
PS

PS 9.3 9.3 9.4

for the year 1 and 3 data under every condition. This is consistent with the teacher effect

estimation and teacher variance component estimation. The estimates range from 8.6 to

12.2. When the data are fitted by the general or the PS model, regardless of the

generating model, the estimates are lower than the true value 10. On the other hand, when

fitting the data using other models, regardless of the generating models, the estimates are
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greater than 10. Therefore, we can conclude that the general and PS model tend to

underestimate the teachers’ contribution to the total variance, whereas the other models

tend to overestimate that.

Table 4.25 The Estimated Teachers’ Contribution to Total Variance for Each Year
from Different Models (%) (School B)

Generated Fitted Year 1 Year 2 Year 3

General 9.5 9.2 9.6

GS 12.1 11.5 12.1

CA 11.8 11.4 11.9

CC 11.0 10.9 11.1

LA 11.3 10.8 11.3

General

PS 9.5 9.4 9.5

General 8.7 8.6 8.9
GS

GS 11.9 11.7 11.8

General 8.9 8.7 8.8
CA

CA 11.5 11.1 11.2

General 9.2 9.0 9.1
CC

CC 10.4 10.5 10.7

General 9.3 9.2 9.3
LA

LA 10.6 10.5 10.7

General 9.2 9.0 9.1
PS

PS 9.3 9.1 9.2
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Table 4.26 The Estimated Teachers’ Contribution to Total Variance for Each Year
from Different Models (%) (School C)

Generated Fitted Year 1 Year 2 Year 3

General 9.4 9.4 9.5

GS 12.2 11.3 11.9

CA 11.8 11.3 11.9

CC 11.0 10.9 11.3

LA 11.2 10.7 11.5

General

PS 9.5 9.3 9.5

General 8.7 8.6 8.7
GS

GS 11.8 11.7 11.9

General 8.8 8.8 8.9
CA

CA 11.3 11.0 11.3

General 9.1 9.0 9.0
CC

CC 10.5 10.4 10.5

General 9.2 9.1 9.3
LA

LA 10.6 10.5 10.7

General 9.2 9.1 9.1
PS

PS 9.2 9.1 9.2
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CHAPTER 5

REAL DATA AND ANALYSIS

Data

        The data used for this study consist of 3 years of longitudinally linked student-level

data from one cohort of 1,836 students from a large statewide achievement testing

program. In addition to the scaled scores for Mathematics, the variable of interest in this

study is free or reduced price lunch eligibility (FRL). The data contain no missing school-

student linkage and no incomplete consecutive scores. To explore the impact of the data

structure on model fit, the selected students are purposively divided into three samples

according to the SES structure of the schools they attended. The three samples have 10,

12, 12 schools, respectively. In the first sample (Data 1), the chosen schools have similar

proportions of FRL students. The FRL rates for Data 1 range from 11% to 23%.The

second sample (Data 2) also contains schools with similar proportions of FRL, and the

rates range from 61% to 75%. Compared to the first two samples, the third sample (Data

3) is highly heterogeneous with FRL rates ranging from 8% to 75%. The selected

students may transfer schools, but they have to stay in the same sample for the duration

of the study. Both the general and the five reduced models (the GS, CA, CC, LA and PS

models) were used to fit the data, and all the model estimation and comparison were

independently conducted for each of the three samples.

Table 5.1 summarizes the FRL rates and mean scores for both FRL students and

non-FRL students school by school. For Data 1, the mean scores range from 471 to 492

for FRL students and range from 503 to 520 for non-FRL students; for Data 2, the mean

scores range from 462 to 488 for FRL students and range from 503 to 518 for non-FRL
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students; and for Data 3, the mean scores range from 469 to 491 for FRL students and

range from 501 to 519 for non-FRL students. On average, the mean score for FRL

students are around 30 less than the mean score for non-FRL students across all the

schools of interest. This is true for all the three samples. From the descriptive analysis of

the three samples, one can see that, the simulated data were purposively generated

according to the real data structure, although they cannot be exactly the same. The

similarities and differences between the simulated and real data are summarized as

follows: First, both the simulated and real data show that student scores increase across

years and the non-FRL students have higher scores and faster gains. The mean score is

Table 5.1 FRL Rate and Mean Score for FRL and non-FRL Students
from Different Schools

Data1 Data 2 Data 3
FRL Mean Score FRL Mean Score FRL Mean Score

Schoo
l (%) FRL

non-
FRL

(%) FRL
non-
FRL

(%) FRL
non-
FRL

1 11 477.1 520.3 65 471.4 503.2 8 476.1 511.2

2 12 490.3 514.5 67 475.5 508.8 11 469.7 508.9

3 14 492.5 510.0 67 485.3 506.6 23 471.6 515.2

4 14 471.0 521.5 68 479.7 502.4 37 469.4 510.5

5 16 480.9 515.6 69 488.0 505.7 39 475.2 519.4

6 17 482.5 517.9 69 487.1 514.4 44 491.3 518.9

7 20 475.8 510.3 69 477.3 518.3 45 484.7 514.3

8 21 477.2 513.1 73 473.9 510.0 52 473.9 509.8

9 21 489.3 506.9 74 469.5 511.9 57 479.4 513.7

10 23 487.8 503.1 74 477.4 509.4 60 480.5 515.4

11 75 473.8 513.7 65 483.9 505.3

12 78 462.3 518.6 75 490.2 501.9
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around 220 for the simulated data and is around 500 for the real data. Second, for both

data, three different samples are created to represent different teacher or school

compositions. However, for the simulated data, all the classrooms within each sample

have the same proportion of the non-FRL student, whereas in the real data, different

schools have different proportions of the non-FRL students, especially, the third sample

is highly heterogeneous. Third, the simulated data have 400 students’ scores and 16

teachers of interest for each year, whereas the real data have 1836 students’ scores and

about 12 schools for each year.

Analysis and Comparison of Model Estimation

In the real data analysis, DIC is used for the model comparison in terms of the

overall goodness of fit. Within the same data, the overall goodness of fit will be

compared among general and all the reduced models. For the fixed-effect variables, such

as mean scores and SES variable, the posterior mean and standard deviation obtained

from the MCMC algorithm are reported as the estimated coefficients for each year and

each subject and their posterior standard deviations.

For the estimated school effects, several measures are considered: estimates of

individual school effects and the overall contributions of school to variability in student

outcomes. The MCMC algorithm provides the estimate of each individual school’s effect

for all the models of interest. The spearman’s rank correlation between the estimated

school effects for each year from different models are computed to show their

relationships. The variance components for school effects and their ratios to the overall

variability in outcomes, which describe the schools' contribution to total variance, can
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also be obtained directly from the MCMC algorithm. The school's contribution for each

year and each subject obtained from different models are compared.

For the school persistence parameter, the analysis is based on the posterior mean and

standard deviation. The assumption that the school effect persists into the students' future

performance are examined according to the value of the estimated school persistence

parameter. Whether the persistence is diminished or undiminished can also be found

through the value of the persistence parameter and the overall model fit.

Results

Overall Model Fit

Table 5.1 summarizes the DIC value provided by all the models using three different

data, respectively. It should be noted that the DIC values provided from different data are

not comparable. Data 1 result shows that the general model yields the best overall model

fit, which is indicated by the smallest DIC value. The PS model provides the second best

overall model fit. The general and PS model are more complex than the other models, so

this result suggests that the structure of Data 1 requires a complex model to obtain a good

fit. The GS and CA model results are very close to each other and have the two largest

DIC values. Data 2 yield relatively similar pattern to the Data 1 results. That is, for Data

2, the best model fit is also provided by the general model, which is followed by the PS

model. And the GS and CA model perform the worst compared to the other models, but

they two give the close results. There are also differences existing between Data 1 and

Data 2 results. For Data 1, the CA model performs better than the GS model, and the LA

model performs better than the CC model. However, for Data 2, the relationship between

the CA and GS models or between the LA and CC models changes - the GS model
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performs better than the CA model, and the CC model performs better than the LA model.

The pattern shown by the Data 3 results is different from that shown by the Data 1 and 2.

Although the general and PS model are still the best ones, the other four models give

relatively close DIC values. That is, for Data 3, the disadvantage of using the GS and CA

model is not that apparent compared to the Data 1 and 2.

Table 5.2 DIC Obtained from All the Models Using the Real Data

Models

General GS CA CC LA PS

Data 1 7977 8313 8298 8204 8107 8011

Data 2 7662 7842 7877 7738 7766 7695

Data 3 7842 8109 8224 8211 8143 7992

Fixed Effect Estimation

        For the real data study, the fixed effect includes the overall mean for all the models,

and one student level covariate – SES for all the models except the CC and LA model.

Table 5.2 shows the overall mean estimates and their posterior standard deviations for

each year from all the models. All the posterior standard deviations are around 5, which

indicates that the precision of the overall mean estimates. It should be noted that the

overall mean for the GS and CA model is actually the average growth from Year 1 to

Year 2 and from Year 2 to Year 3. Comparing across the three data, we can find that

when the same model being used the Data 1 has the highest overall mean estimate

whereas the Data 2 has the lowest one. This is in accordance with our expectation since

the Data 1 only has a small portion of disadvantaged students whereas the Data 2 has a

large portion. Comparing across three years, we can find that the overall mean estimates

increase over years. However, the three data show different rates of growth. The gain
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from year 1 to year 2 is approximately 33 for Data 1, 20 for Data 2 and 27 for Data 3.

The gain from year 2 to year 3 is approximately 28 for Data 1, 15 for Data 2 and 26 for

Data 3. This result supports the assumption that the advantaged students not only have

higher mean scores, but also have higher gains over years. When using the same data, no

significant difference can be observed for the overall mean estimates from different

models.

Table 5.3 Estimated Overall Mean for Each Year
from Different Models Using the Real Data

Estimates SDs
Data Fitted Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

General 478.8 511.2 539.5 4.7 5.1 5.1

GS -- 33.9 28.1 -- 5.5 5.6

CA -- 34.5 27.9 -- 5.4 5.8

CC 474.0 506.1 535.4 4.9 5.3 5.5

LA 473.5 507.2 533.9 5.1 5.4 5.7

Data 1

PS 480.2 513.0 541.2 4.7 5.2 5.3

General 464.3 486.4 500.2 4.8 5.3 5.2

GS -- 11.5 15.4 -- 5.6 5.5

CA -- 10.1 14.3 -- 5.3 5.6

CC 460.0 481.2 493.7 5.1 5.5 5.6

LA 458.8 479.6 491.9 5.2 5.6 5.5

Data 2

PS 462.6 482.8 498.9 4.9 5.1 5.4

General 477.5    507.6   532.7 4.5 5.0 5.1

GS -- 28.2 26.9 -- 5.3 5.3

CA -- 27.3 26.1 -- 5.5 5.8

CC 468.9 495.8   518.4 4.6 5.6 5.4

LA 467.0 496.2   519.9 5.0 5.2 5.5

Data 3

PS 476.2 506.3   531.9 4.9 5.3 5.1
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Table 5.4 Estimated Coefficients for SES for Each Year
from Different Models Using the Real Data

Estimates SDs
Data Fitted Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

General 29.9 28.7 33.4 4.6 4.4 4.3

GS -- 30.1 31.9 -- 5.3 5.2

CA -- 31.2 34.6 -- 6.4 5.2

CC -- -- -- -- -- --

LA -- -- -- -- -- --

Data 1

PS 29.4 27.9     33.9 5.3 5.4 6.3

General 21.5 20.2 25.9 4.2 4.7 5.2

GS -- 22.4 24.3 -- 5.8 5.2

CA -- 21.0 26.2 -- 6.1 6.4

CC -- -- -- -- -- --

LA -- -- -- -- -- --

Data 2

PS 22.3 19.1     25.1 4.3 5.2 5.2

General 23.7 23.4 26.8 4.4 5.8 5.1

GS -- 22.1 24.4 -- 5.5 5.4

CA -- 23.9 27.6 -- 6.1 5.4

CC -- -- -- -- -- --

LA -- -- -- -- -- --

Data 3

PS 23.0 22.2     26.4 5.6 5.2 5.6

        The estimated coefficients for the SES variable for each year from different models

are shown in Table 5.3. Although he impact of the SES variable changes over years and

also changes across different data, all the coefficients are positive and statistically

significant. Therefore, we can conclude that the advantaged students perform better than

the disadvantaged students.
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The Correlation between the Estimated Teacher Effects from Different Models

        The accuracy of the school effects estimates cannot be evaluated for the real data.

Therefore, in this section, the investigation focuses on the interrelationship among the

school effects estimates from different models. Tables 5.4-5.6 report the pair-wise

correlation between the estimated school effects from all the models for three data,

respectively. The correlation ranges from 0.70 to 0.95 across three data for three years.

Within each data, three years results are relatively close except for the correlation

between the general and the CC model. For the general-CC pair, the correlation is much

lower in Year 1 than in Year 2 and 3. This is true for all three data. The reason for this

pattern remains unclear at this moment. For Data 1, the general and PS model give the

highest correlation. On average, the general model has the highest correlation with the

other models. This again proves that the general model is more reliable when the correct

model is unknown. The GS and CA model have a relatively high correlation with each

other (around 0.90), whereas they have much lower correlations with the CC model and

the LA model (around 0.70).  Data 1 presents the similar results with Data 2. However,

Data 3 presents differences in the correlation of the PS-CC pair and the correlation of the

PS-LA pair. Switching from Data 1 to Data 3, the PS-CC and PS-LA correlations

increase to 0.88. This pattern shown by the real data is consistent with the pattern shown

by the simulated data, although the latter is more apparent than the former. The simulated

data result is more apparent might be because the data were generated using the general

model, but for the real data the true underlying data structure is unknown. Therefore,

again, it is natural to believe that the impact of the inclusion of the covariates depends on

how the characteristics described by the covariates distribute among the sample.
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  Table 5.5 Pair-Wise Correlation between the Estimated School Effects
from Different Models Using the Real Data (Data 1)

General GS CA CC LA PS

General 1.00 -- -- 0.87 0.92 0.94

GS -- -- -- -- --

CA -- -- -- --

CC 1.00 0.92 0.80

LA 1.00 0.82

Year 1

PS 1.00

General 1.00 0.78 0.78 0.91 0.91 0.94

GS 1.00 0.86 0.72 0.72 0.78

CA 1.00 0.71 0.73 0.80

CC 1.00 0.92 0.82

LA 1.00 0.83

Year 2

PS 1.00

General 1.00 0.82 0.79 0.92 0.91 0.94

GS 1.00 0.93 0.71 0.71 0.82

CA 1.00 0.72 0.74 0.82

CC 1.00 0.91 0.83

LA 1.00 0.82

Year 3

PS 1.00
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Table 5.6 Pair-Wise Correlation between the Estimated School Effects
from Different Models Using the Real Data (Data 2)

General GS CA CC LA PS

General 1.00 -- -- 0.87 0.91 0.94

GS -- -- -- -- --

CA -- -- -- --

CC 1.00 0.90 0.78

LA 1.00 0.83

Year 1

PS 1.00

General 1.00 0.76 0.77 0.92 0.91 0.94

GS 1.00 0.84 0.71 0.72 0.82

CA 1.00 0.72 0.71 0.82

CC 1.00 0.93 0.83

LA 1.00 0.84

Year 2

PS 1.00

General 1.00 0.82 0.81 0.91 0.90 0.94

GS 1.00 0.92 0.72 0.70 0.84

CA 1.00 0.72 0.72 0.84

CC 1.00 0.91 0.84

LA 1.00 0.82

Year 3

PS 1.00
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Table 5.7 Pair-Wise Correlation between the Estimated School Effects
from Different Models Using the Real Data (Data 3)

General GS CA CC LA PS

General 1.00 -- -- 0.83 0.91 0.95

GS -- -- -- -- --

CA -- -- -- --

CC 1.00 0.91 0.90

LA 1.00 0.90

Year 1

PS 1.00

General 1.00 0.75 0.81 0.90 0.91 0.93

GS 1.00 0.92 0.71 0.72 0.83

CA 1.00 0.72 0.71 0.84

CC 1.00 0.93 0.89

LA 1.00 0.89

Year 2

PS 1.00

General 1.00 0.78 0.82 0.91 0.90 0.95

GS 1.00 0.89 0.70 0.72 0.83

CA 1.00 0.72 0.73 0.81

CC 1.00 0.90 0.88

LA 1.00 0.88

Year 3

PS 1.00

School Variance Components Estimation

        The school variance components estimate is another measure of the school effect

estimation. As mentioned above, it is impossible to evaluate the accuracy of the estimates

for the real data. Therefore, only the similarities and differences among all models from

three data will be discussed. The school variance components estimates obtain from

different data vary. They range from 6.5 to 15.2 for Data 1, from 9.9 to 18.9 for Data 2,

and from 11.8 to 16.9 for Data 3. Moreover, comparing across three data, the estimated

school variance components show different trends over three years. For Data 1, the
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estimates decrease from Year 1 to Year 2, whereas they increase from Year 2 to Year 3.

For Data 2, the estimates decrease from Year 1 to Year 3. However, for Data 3, the

estimates from different models show different trends and the pattern of the trends is not

quite clear. Next, we will examine the interrelationship among all the

Table 5.8 The Estimated School Variance Components for Each Year
from Different Models Using the Real Data

Estimates SDs
Data Fitted Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

General 14.1 9.4 13.5 2.0 1.9 1.9

GS -- 12.1 14.5 -- 2.1 2.5

CA -- 13.0 15.2 -- 2.4 2.3

CC 10.3 6.9 11.4 -- -- --

LA 9.3 6.5 10.8 -- -- --

Data 1

PS 14.4 10.8 12.9 2.3 2.2 2.1

General 13.9 13.2 11.6 2.1 2.1 2.2

GS -- 18.9 15.7 -- 2.2 2.4

CA -- 17.4 16.0 -- 2.3 2.5

CC 11.4 10.2       9.9 -- -- --

LA 12.8 11.6 10.4 -- -- --

Data 2

PS 14.4 13.1 10.9 2.2 2.2 2.2

General 14.1 15.0 16.2 2.2 2.3 2.2

GS -- 14.3 15.1 -- 2.4 2.4

CA -- 14.1     15.4 -- 2.5 2.3

CC 12.3 12.6 11.8 -- -- --

LA 12.0 11.9 13.0 -- -- --

Data 3

PS 14.0 14.1 16.9 2.4 2.2 2.2

models within the same data. For Data 1, the estimates obtained from the general and the

PS model are very close, those obtained from the GS and the CA model are close to each

other and higher than the general model estimates, and those obtained from the CC and

LA model are close to each other and lower than the general model estimates. The
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interrelationships among all the models remain the same for Data 2. For Data 3, compare

to the Data 1 and 2, the estimates obtained from the GS and the CA model are closer to

the general model estimates with other patterns remaining the same. The changes occur to

the GS and CA model for analyzing Data 3 allow us to relate the impact of explicitly

modeling the intra-student correlation on the school variance components estimation to

the structure of the data. We infer that ignoring the intra-student correlation (as the GS

and CA model do) does not strongly affect the school variance components estimation

when the students are heterogeneously grouped.

School Effect Persistence Estimation

All of the estimated school effect persistence parameters shown in Table 5.8 are

larger than 0 and smaller than 0.5. This range is consistent with those reported in other

studies using different empirical data. And this means that the previous years’ teacher

effects persist into the students’ future achievement, although the persistence diminished

over years. The general and PS model estimates are different but very close to each other.

Over three years, the trends of the estimates show differences across three data. For Data

Table 5.9 The Estimated School Effect Persistence Parameters
from Different Models Using the Real Data

Estimates SDs
Data Fitted 21 31 32 21 31 32

General 0.21 0.15 0.32 0.04 0.04 0.03
Data 1

PS 0.25 0.20 0.26 0.04 0.05 0.04

General 0.33 0.34 0.17 0.04 0.03 0.05
Data 2

PS 0.32 0.31 0.20 0.05 0.04 0.06

General 0.16 0.25 0.28 0.05 0.04 0.04
Data 3

PS     0.21 0.24 0.32 0.06 0.04 0.05



93

1, the lowest estimates obtained in 31  , whereas for Data 2 and 3, 32  has the lowest

estimates.

Random Student Effects Estimation

The estimated student own random effect components from the general and CC

model are presented in Table 5.9. All the student effect estimates are significantly larger

than 0, which supports our assumption on the existence of the student’s own random

effect. The estimates show the widest range in Data 1, which is from 4.2 to 7.5. The

estimates obtained from the general and the CC model do not have significant differences

except under three conditions-- the Year 1 result in Data 1 and Data 3 and Year 3 result in

Data 2. Furthermore, no apparent pattern can be observed in terms of the changes of the

estimates over years. For example, for Data 1, the general model estimates decrease from

Year 1 to Year 3, but the CC model estimates increase. However, this pattern cannot be

observed for Data 2 or Data 3.

Table 5.10 The Estimated Student Effect Component for Each Year
from Different Models Using the Real Data

Estimates SDs
Data Fitted Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

General 7.5 5.1 4.2 2.5 2.7 2.8
Data 1

CC 4.3 4.9 5.1 2.8 3.1 2.9

General 5.2 5.9 4.4 2.6 2.9 2.5
Data 2

CC 5.9 5.4 6.1 2.9 3.0 2.8

General 6.3 5.0 5.9 2.4 2.6 2.7
Data 3

CC 4.1 6.2 5.1 2.8 2.7 3.0
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Estimation of the Schools’ Contribution to Total Variance

Table 5.10 shows the schools’ contribution to total variance using three different

data. We can observe that the variability of the estimates is higher than that of the school

variance components estimates shown in Table 5.7. The estimates range from 3.5 to 21.4

for Data 1, from 8.1 to 21.0 for Data 2, from 10.1 to 20.7 for Data 3. Moreover,

comparing across three data, the estimates show different trends over three years. For

Table 5.11 The Estimated Schools’ Contribution to total variance for Each Year
from Different Models Using the Real Data (%)

Data Fitted Year 1 Year 2 Year 3

General 16.3 6.6 13.2

GS -- 10.8 15.6

CA -- 11.6 15.8

CC 9.0 3.8 9.7

LA 7.5 3.5 8.9

Data 1

PS 17.2 8.9 12.3

General 14.3 14.2 9.6

GS -- 21.7 8.8

CA -- 15.1 12.0

CC 11.7 8.7 8.1

LA 12.4 11.0 8.9

Data 2

PS 16.5 12.3 8.3

General 16.3 16.7 19.1

GS -- 18.8 17.2

CA -- 18.1 20.5

CC 12.4 11.8 10.1

LA 11.8 10.5 12.3

Data 3

PS 16.1 14.8 20.7

Data 1, the estimates decrease from Year 1 to Year 2, whereas they increase from Year 2

to Year 3. For Data 2, the estimates decrease from Year 1 to Year 3. However, for Data 3,

the estimates from different models show different trends. This is the same pattern as
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shown by the school variance components. In addition, the interrelationships among all

the models observed from the schools’ total contribution estimates are also the same with

that observed from the school variance components estimates. That is, for Data 1 and 2,

the estimates obtained from the general and the PS model are very close, those obtained

from the GS and the CA model are close to each other and higher than the general model

estimates, and those obtained from the CC and LA model are close to each other and

lower than the general model estimates. For Data 3, compare to Data 1 and 2, the

estimates obtained from the GS and the CA model are closer to the general model

estimates.
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CHAPTER 6

DISCUSSION AND CONCLUSION

Under NCLB, there is pressure to provide evidence to support the adequacy of

teachers and schools in regards to student learning. VAM is being used as a tool to help

illuminate which variables are in fact contributing to student learning, by isolating related

factors, such as teacher and school effects. Although many researchers that have used

VAM have shown promising results, additional research is needed in this area given the

fact that mistakes in model misclassifications may have significant impact on teachers

and schools, more research is needed. This study reviews several VAM approaches that

are currently being implemented or reviewed for accountability purposes. Similar to

McCaffrey et al. (2004), we intend to investigate the validity and reliability of several

VAMs, by providing a general VAM framework and applying both the general and

reduced models to the simulated and real data and then comparing the differences and

similarities, given each model’s basic assumptions. Compared to the general model

proposed by McCaffrey et al., the general model proposed in this study is definitely more

complex, in both formulation and estimation, in its attempt to explicitly parameterize and

estimate the teacher effect persistence that has been proved to be necessary in describing

the empirical data. In addition to proposing a new general model, an accompanying

MCMC code for parameter estimation is also developed for this work.

The simulation study shows that the MCMC algorithm developed under a Bayesian

framework functions very well for estimating the parameters involved in both the general

and the reduced models. The fixed effect parameters can be accurately estimated using all

the different models for generated data with different structures even when the model
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specification does not match the underlying assumption of the data structure. The random

effects investigated in the simulation study includes teacher effect and students’ own

random effect. The estimated teacher effects are acceptable, although their accuracy and

precision are not ideal. As other studies have pointed out that VAMs are not capable of

providing teacher effect estimation with any precision, the simulation study shows that

the teacher effect estimates have relatively large biases. However, this does not affect the

usage of the teacher effect estimates for accountability purposes. In practice, the

magnitude of the teacher effect is not of the most importance. On the contrary, the rank-

ordering teachers or identifying teachers at the extremes of the performance distribution

is the objective of applying VAMs. The estimated teacher effects from both the general

and the reduced models have high correlation with the generated true teacher effects.

Meanwhile, the students’ own random effects can be accurately estimated by the general

and the CC model. Beyond the fixed and random effects, all the models can recover the

teachers’ contribution to total variance, which also depends on the quality of the residual

error term estimation.

        In addition to the feasibility of the general model, the relationship between the

general model and the reduced model, and the relationship among all the reduced models

are also investigated through the simulation study. The following summaries are based on

the DIC values and the evaluation of the quality of the different estimates. First, the

general model has the best performance in terms of the overall model fit when the data

are generated using the general model. Even when the data are generated using the

reduced models, the performance of the general model is just slightly worse than those of

the correct models. Second, compared with all the other reduced models, the PS model
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provides the closest results to those provided by the general model. This is in accordance

with our expectation because the general model and the PS model have exactly the same

underlying assumptions on the teacher effects, teacher effect persistence and residual

error and the only difference between the general model and the PS model is the

inclusion of the student’s own random effect. Although the real data results support the

existence of the student’s own random effect, its magnitude and its contribution to the

total variation of student’s score are relatively small compared to that of the fixed effect

and other random effects. This might be the reason why the advantage of the use of the

general model is quite mild over the use of the PS model. In the future, a simulation study

with stronger student’s random effect and more empirical studies are needed to

investigate the similarity and difference between the general and the PS model. The Third,

the GS and CC model tend to provide relatively similar results to each other under

various conditions and they have the most apparent differences with the general model,

which is supported by the largest distances existing between their estimates and the

general model estimates. One possible explanation for the similarity between the GS and

CC model is that both of them include the student’s previous year score into the fixed

effect part and assume no intra-student correlation. Forth, the CA and LA model often

provide similar results under some conditions. This might be because both of them do not

incorporate any covariates and assume constant correlation across years within the same

student.

        The impact of the school composition on the model performance and on the

interrelationship among models can also be observed from the simulation results. School

A and B, which have unbalanced mix of the advantaged and disadvantaged students,
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show the same picture of the model performance pattern in terms of the overall model fit

and quality of the estimates. However, School C data, which has balanced mix of the

advantaged and disadvantaged students, sometimes tells a different story. For example,

the performances of the CC and LA model are noticeably better for analyzing the School

C data than for the School A or B data when all of the data are generated using the

general model. The performance of the general for estimating the data generated using

the CC or LA model also improves. These improvements can be supported by higher

correlation measured between the estimated and the true teacher effects. In addition, the

correlation between the teacher effects estimates obtained from the different models

shows that the PS-CC correlation and PS-LA correlation apparently increase when

switching from the School A or B data to the School C data. This result allows us to infer

that the impact of the covariates on the teacher effect estimation is associated with the

school composition because the most salient feature of the CC and LA model is that both

of them exclude the covariates. As mentioned in Chapter 2, there have been hot debates

on controlling for student background in value-added assessments of teachers. Some

researchers, given what they know about the relationship of demographic characteristics

of persons to their educational attainment, believe it is unreasonable to think that

covariates would have no relationship at all to outcomes. However, according to our

simulation results, this is true under certain conditions.

        The real data study shows that, to the extent that it can be verified, the analysis of

actual students’ outcomes from a large scale statewide testing provides very similar

results to those obtained in the simulation study. Hence, the real data, which are of very

complex structure, requires a complex model similar to the proposed general model to be
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analyzed and interpreted appropriately. Some differences from the simulation results are

encountered in real data analysis. One possible explanation is that the measurement errors

associated with the observed variables are inevitable in practice. It should also be noted

that the school effects investigated in the real data analysis are not necessarily causal

effects of schools. Rather, they account for unexplained heterogeneity at the school level.

All the discussed models indicate that school effects account for a significant proportion

of the variability in students’ growth in achievement scores, although the proportions

among different models vary in magnitude. The magnitude of school effects should be

interpreted with great caution.

The teacher effect persistence (school effect persistence in the real data analysis) is

another issue that has received great attention. However, there is still no universal

agreement on to what degree the teacher effect persists into the future among researchers.

Sanders and his colleague believe the high rates of persistence of teacher effects over

several years. McCaffrey et al. (2004) criticized their claims and provided more modest

persistence effect estimates using models with less stringent assumptions. One of the

most important findings of our real data analysis is that the persistence parameters imply

long-term persistence of past years teachers’ effects or schools’ effects decay in the

strength over time. Thus, the general model and PS model assumption on the persistence

parameter fits better for the data than the GS and LA model, which assume that teachers’

(or schools’) effects from the past years persist undiminished into the future. All

estimates are positive but substantially smaller than one. This finding is consistent with

the empirical result presented in McCaffrey et al. (2004) obtained with different data.

This finding can also shed light on the practical meaning of teacher (or school) effects - it
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suggests that the effects of poor teaching should be more remediable than it has been

claimed.

A common concern and drawback discussed about the use of more complex model

like our general model is the computational challenge. However, as proposed, the MCMC

algorithm in a Bayesian framework can successfully estimate all the involved parameters.

The most important property of the MCMC algorithm is that sampling the joint posterior

distribution all the parameters can be realized by repeatedly sampling from the

conditional posterior distributions of one parameter as related group of parameters given

the data and current values of all other parameters. This makes it well suited to dealing

with models with complex relational structures. For example, the estimation of the

persistence parameters can be treated as the estimation of the unknown regression

coefficients on known predictors conditional on the random effects. According to

Lockwood et al. (2007), conditioning on random effects reduces the complex covariance

matrices to simple, computationally tractable block diagonal forms. Moreover, using a

program written in Ox (Doornik, 2002) to implement the general model and analyze 16

teachers’ effect and 400 students’ scores takes a 2 GHz machine only fifteen minutes to

run 10000 iterations. And more importantly, MCMC remains open and viable because its

flexibility and ease of implementation allow us to develop more complex problems in

future research.

There are a few important limitations to both the simulation and real data study.

First, the simulation data is designed to have no incomplete student scores and no missing

teacher-student linkage. In addition, the real data is also intentionally selected without

any missing records from a large-scale statewide testing data. However, in practice, the
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missing data problem is inevitable. For example, in the entire data set, from which the

real data analyzed in the work have been obtained, actually, only 15% of the students

have complete testing scores over the 3 years. In addition to modeling student data, the

missing teacher-student linkage is another serious problem. Students and teachers transfer

during the years of testing. For the incomplete student scores, the Bayesian augmentation

method allows us to estimate the missing value as the unknown parameter. But dealing

with the missing teacher-student linkage can only be determined by positing a missing

mechanism. Lockwood et al. (2007) implemented three procedures for treating the

missing link information for three different missing pattern assumptions, respectively.

They also analyzed an empirical testing data to investigate the sensitivity of the value-

added measures to the missing pattern assumptions using the PS model. In the future

study, we can extend their investigation to all the VAMs including our general model and

use well-designed simulation study to examine the different missing patterns.

Second, in the simulation study, the assignment of students to teachers is random

conditional on the student SES variable. The same assumption is made for the real data

analysis. However, in reality, there is little reason to think that this is an adequate

characterization of classroom assignments. For example, the principles or parents have a

great deal of information beyond the prior test score that can affect the classroom

assignments. Rothstein (2009) quantified the biases in estimates of teacher effect from

several value-added models under varying assumptions about the assignment process and

pointed out that even the best feasible value-added models may be substantially biased

with the magnitude of the bias depending on the amount of information used in the

assignment process. Therefore, a further investigation on the performance of the
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proposed general model, especially, the teacher effect estimation given more complex

assignment assumptions should be conducted.

        Third, the only covariate involved in both the simulation and real data study is the

SES variable. This is because the SES variable is the most debatable covariate, which is

believed to be confounded with the teacher or school effect. However, researchers have

shown that gender, ethnicity and some other indicators are also important predictors of

students’ future performance. Future work should include studies that compare the

models when more covariates are included.

        Fourth, in the simulation study, due to the time and resource limitation, only one

dataset were generated for each condition. Future study should generate at least 100

dataset for each condition to make the findings more reliable.



104

REFERENCES

Ballou, D. (2002). Sizing up test scores. Education Next, 2(2), 10-15.

Ballou, D., Sanders, W., & Wright, P. (2004). Controlling for students background in
value added assessment of teachers. Journal of Educational and Behavioral Statistics,
29(1), 37-66.

Barton, P.E. (2004). Why does the gap persist? Educational Leadership, 62, 8-13.

Braun, H. I. (2005). Using student progress to evaluate teachers: A primer on value-
added models. Princeton, NJ: Educational Testing Service. Retrieved May 9, 2008,
from http://www.ets.org/Media/Research/pdf/PICVAM.pdf

Browne, W. J., Draper, D., Goldstein, H., & Rasbash, J. (2002). Bayesian and likelihood
methods for fitting multilevel models with complex level-1 variation. Computational
Statistics and Data Analysis, 39: 203-225

Bryk, A., Raudenbush, S., & Congdon, R. (1996). HLM: Hierarchical linear and
nonlinear modeling with the HLM/2L and HLM/3L programs. Chicago: Scientific
Software International, Inc.

Carey, K. (2004). The real value of teachers: Using new information about teacher
effectiveness to close the achievement gap. Thinking K-16, 8(1), 1-42.

Diggle, P. J., Liang, K.-Y., & Zeger, S. L. (1996). Analysis of longitudinal data. New
York: Oxford University Press.

Doran, H. C., & Lockwood, J. R. (2006). Fitting Value-Added models in R. Journal of
Educational and Behavioral Statistics, 31(2), 205-230.

Drury, D. & Doran, H. (2003). The Value of Value-Added Analysis. NSBA Policy
Research Brief. 3(1), 25-42

Gelman, A., & Rubin, D. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, 7, 457-472.

Goldhaber, D. and Anthony, E. (2004). Can Teacher Quality Be Effectively
Assessed?2004, University of Washington

Goldschmidt, P. K. Choi, F. Martinez (2003). Using Hierarchical Growth Models to
Monitor School Performance Over Time: Comparing NCE to Scale Score Results,
National Center for Research on Evaluation, Standards, and Student Testing
(CRESST), U.S. Department of Education, Office of Educational Research and
Improvement

http://www.ets.org/Media/Research/pdf/PICVAM.pdf


105

Gooden, M. A., & Nowlin, T. Y. (2006), The Achievement Gap and the No Child Left
Behind Act: Is there a Connection. Advances in Education and Administration, 9,
231-247

Hershberg, T., Simon, VA, & Lea-Kruger, B. (2004). The revelations of value-added.
School Administrator, 61(11), 10-12

Hibpshman, T.L. (2004a). Review of Evaluating Value-Added models for Teacher
Accountability. Kentucky Education Professional Standards Board.

Kupermintz, H. (2003). Teacher effects and teacher effectiveness: A validity
investigation of the Tennessee value added assessment system. Educational
evaluation and policy analysis, 25(3), 287-298.

Lindley, D. V., & Smith, A. F. M. (1972). Bayes estimates for the linear model (with
discussion). Journal of the Royal Statistical Society, Series B: Statistical
Methodology, 34, 1-41.

Lockwood J.R., Schervish M.J., Gurian P.L., & Small M.J. (2004), Analysis of
contaminant co-occurrence in community water systems, Journal of the American
Statistical Association, 99(465), 26-45

Lockwood, L.R., McCaffrey, D. F., Hamilton, L. S., Stecher, B., Le, V., & Martinez, J.
F.(2007). The sensitivity of Value-Added teacher effect estimates to different
mathematics achievement measures. Journal of Educational Measurement, 44, 47-67.

McCaffrey, D. F., Lockwood, J. R., Koretz, D. M., & Hamilton, L. S. (2003). Evaluating
value-added models for teacher accountability, MG-158-EDU. Santa Monica, CA:
RAND.

McCaffrey, D. F., Lockwood, J., Koretz, D., Louis, T., & Hamilton, L. (2004). Models
for value-added modeling of teacher effects. Journal of Educational and Behavioral
Statistics, 29(1), 67-101.

McCaffrey, D. F., Lockwood, J. R., Mariano, L. T., and Setodji, C. (2005). Challenges
for value added assessment of teacher effects. In R. Lissitz (Ed.), Value added models
in education: Theory and practice (pp. 272–297). Maple Grove, MN: JAM Press.

Meyer, R. (1997). Value-added indicators of school performance, Economics of
Education Review, 16, 183-301.

Rasbash J. & Browne W. J. (2002). Non-Hierarchical Multilevel Models. To appear in
De Leeuw, J. and Kreft, I.G.G. (Eds.), Handbook of Quantitative Multilevel Analysis.

Raudenbush, S., & Bryk, A. (1986). A hierarchical model for studying school effects.
Sociology of Education, 59, 1-17.



106

Raudenbush, S., & Bryk, A. (2002). Hierarchical linear models: Applications and data
analysis methods (2nd ed.). Newbury Park, CA: Sage.

Raudenbush, S.W.  (2004). What are value-added models estimating and what does this
imply for statistical practice? Journal of Educational and Behavioral Statistics, 29(1),
121-129.

Raudenbush, S.W., & Willms, J.D. (1995). The estimation of school effects. Journal of
Educational andBehavioral Statistics, 20(4), 307-335.

Rothestein, J. (2009). Student sorting and bias in value-added estimation: selection on
observables and unobservables. Education Finance and Policy, 4(4), 537-571.

Rubin, D. B., Stuart, E. A., & Zanutto, E. L. (2004). A potential outcomes view of value
added assessment in education. Journal of educational and behavioral statistics, 29(1),
103-116.

Rubin, D. B., & Thomas, N. (2000). Combining propensity score matching with
additional adjustments for prognostic covariates. Journal of the American Statistical
Association, 95, 573-585.

Rubin, D. B. (2004). Teaching statistical inference for causal effects in experiments and
observational studies. Journal of Educational and Behavioral Statistics, 29(1), 103-
116.

Rowan, B., Correnti, R., & Miller, R. J. (2002). What large-scale, survey research tells us
about teacher effects on student achievement: Insights from the prospects study of
elementary schools. Teachers College Record, 104 (8), 1525-1567.

Sanders, W. L., & Horn, S. P. (1994). The Tennessee Value-Added Assessment System
(TVAAS): Mixed model methodology in educational assessment. Journal of
Personnel Evaluation in Education, 8, 299-311.

Sanders, W. L., Saxton, A., & Horn, S. (1997). The Tennessee value-added assessment
system: A quantitative, outcomes-based approach to educational assessment. In J.
Millman (Ed.), Grading teachers, grading schools: Is student achievement a valid
evaluation measure? Thousand Oaks, CA: Corwin Press.

Shkolnik, J., Hikawa, H., Suttorp, M., Lockwood, J., Stecher, B., & Bohrnstedt, G.
(2002). Appendix D: The relationship between teacher characteristics and student
achievement in reduced-size classes: A study of 6 California districts. In G. W.
Bohrnstedt, B. M. Stecher (Eds.), What we have learned about class size reduction in
California Technical Appendix. Palo Alto, CA: American Institutes for Research.

Tekwe, C. D., Carter, R. L., Ma, C.-X., Algina, J., Lucas, M., Roth, J., et al. (2004). An
empirical comparison of statistical models for value-added assessment of school
performance. Journal of Educational and Behavioral Statistics, 29(1), 11-36.



107

Wanker, W.P., & Christie, K. (2005). State Implementation of the No Child Left Behind
Act. Peabody Journal of Education, 80 (2), 57-72.



108

Curriculum Vita

Yuan Hong

EDUCATION

Ph.D., Education: Educational Statistics, Measurement and Evaluation
Rutgers University, New Brunswick, NJ, expected January 2010
M.S., Statistics
Renmin University of China, Beijing, P.R. China, June 2005
B.A., Statistics
Renmin University of China, Beijing, P.R. China, June 2002

EXPERIENCE

2007~2009 Principle Investigator, evaluating school and teacher effect using
 general value-added modeling framework,
project funded by CTB/McGraw-Hill

2009 Guest Lecture, Regression Analysis, Rutgers University
 2007~2008 Principle Investigator, examining the differential impact of test format

           on group performance,
project funded by the College Board

2008 Guest Lecture, Regression Analysis, Rutgers University
 2007 Research Intern, CTB/McGraw-Hill

 PUBLICATION

de la Torre, J., & Hong, Y. (In press). Parameter estimation with small sample
size: A higher-order IRT approach. Applied Psychological Measurement.

de la Torre, J., Hong, Y., & Deng, W. (In press). Factors affecting the item
parameter estimation and classification accuracy of the DINA model.
Journal of Educational Measurement.


