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In this dissertation, two distinct but relevant systems are chosen as representatives 

of interesting solid-fluid systems. Molecular dynamics (MD) and Monte Carlo techniques 

are applied to investigate the rheological, mechanical and transport properties of these 

systems.  

Firstly, polyethylene melt embedded with silica nanoparticles is examined to be of 

our interest. Since it is computationally impractical to model a complex system with a 

molecular description, a multiscale modeling approach, which combines both atomistic 

and mesoscale simulations, is employed to efficiently represent and study the polymer 

nanoparticle systems. Based on a coarse-grained force field for polyethylene, a novel 

method is developed for determining the solid-fluid interaction at the spherical interface. 

Our coarse grained model is designed to mimic 4 nm silica nanoparticles in polyethylene 

melt at 423K. A series of MD simulations are performed to investigate the factors that 

control the homogeneity of nanofillers inside polymer matrix, also in the presence of 

 ii



nonionic surfactants (short chain alcohols). The effects of nanoparticle filling fraction, 

polymer chain length, and relative sizes between nanoparticles and polymer chains on the 

particle dispersion are explored. In addition, a fundamental relationship is pursued 

between the microstructure and macroscopic properties (transport and rheological) of 

polymer nanoparticle composites.  

In this work another method for determining the solid-fluid interaction parameter 

is presented: the experimental adsorption isotherms are used to validate the potential 

parameters. The rapid expansion of silica nanoparticle agglomerates in supercritical 

carbon dioxide (RESS process) is chosen to be the system of interest. The simulations 

show that the effective attraction between two identical nanoparticles is most prominent 

for densely hydroxylated particle surfaces that interact strongly with CO2 via hydrogen 

bonds, while it is significantly weaker for dehydroxylated particles. We also explore the 

shearing forces necessary to break an agglomerate in supercritical fluid. The agglomerate 

experiences deformation followed by elongation, and finally break-up. The calculated 

diffusion coefficient of CO2 is expected to be smaller than the experimental value, 

because the nanoparticle agglomerate hinders fluid movement. In the direction of 

shearing forces, the diffusion of CO2 shows a steep increase after the breakup, confirming 

the rupture of the agglomerate.  
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Chapter 1 

INTRODUCTION 

 

This chapter is divided in two subsections. The first one explains the motivation 

for this thesis; the second subsection describes the specific research goals along with the 

organization of this thesis.  

 

1.1  Motivation 

Solid-fluid interaction problems are numerous in manufacturing processes, 

mechanical device performance, and biological systems. While at the nanometer scale, 

both the molecular structure of solid and fluid and the interactions between them at the 

atomistic length scales play a key role. They control a large number of phenomena, such 

as, wetting and drying of the solid wall, adhesion and stickiness between mechanical 

components, and capillarity effects in narrow slits. Due to the fundamental importance 

for many technological processes, interfacial properties at the solid-fluid interface have 

been studied extensively both experimentally and theoretically. Depending on the 

systems to be investigated, performing an experimental study of the interfacial properties 

can be sometimes difficult and challenging. In the last decade, computer simulations have 

complemented our understanding of the properties of pure homogeneous fluids and 

mixtures as well as their interfacial behavior with other fluids or solid surfaces. The 

interaction between solid and fluid phases is an essential determinant for computer 

simulations. In this thesis, two different solid-fluid interfaces were chosen to be studied: 

i) polymer-nanoparticle composites (Section 1.1.1) and ii) silica nanoaggregates in 

 



 2

supercritical CO2 (Section 1.1.2). In what follows a background review is given for the 

two systems.  

 

1.1.1 Polymer Nanoparticle Composites (PNC)  

The first case of interest is polymer nanoparticle composites, where nanoparticles 

are considered as the solid phase and the polymer melt as the fluid phase.  

Particles have long been added to polymers to improve their physical properties, 

such as strength, toughness and thermal behavior. Traditional polymer composites filled 

with micrometer-size fillers often show improvements in their mechanical properties in 

the form of an increase in modulus, yield strength, dielectric strength, and glass transition 

temperature [1, 2]. However, these gains are usually accompanied by losses in ductility 

and toughness, caused by the large ratio of filler to polymer typical of these materials or 

by the lack of homogeneity in dispersity inside the polymer matrix. Recently, 

nanoparticles have begun to replace larger particles in composite materials because they 

can impart different properties such as optical transparency, yet at the same time, they 

provide property enhancements at lower loadings [3, 4]. Furthermore, these 

nanostructured polymer composites display improved strength, fire-retardancy, and 

barrier properties over simple polymers or conventional copolymer composites [5].  

For example, polymer nanocomposites exhibit even more enhanced mechanical 

properties at very low filler level (usually less than five percent by weight). Sumita et al. 

found dramatic improvements in the yield stress (30%) and Young modulus (170%) in 

nanofilled polypropylene compared to micrometer-filled polypropylene [6]. The 

mechanical analysis via stress-strain testing showed a substantial increase in the Young’s 
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modulus, while values for strain at break and yield stress remain nearly at the same level 

of the pure matrix materials. These composites also showed no decrease in the strain-to-

failure when filled with silica ranging from 7 to 40 nm in diameter.  

In addition, polymer nanoparticle composites are used for the manufacturing of 

capacitors with high energy storage [7, 8]. A capacitor is an energy storage device. The 

amount of energy that a capacitor can hold depends on the insulating material between 

the metal surfaces, called a dielectric. A way of increasing the dielectric strength is to add 

ceramic nanoparticles, with high volume fraction for a significant improvement. Several 

systems have been used for the manufacturing of these types of capacitors, such as silica, 

titania, strontium titanate and barium titanate dispersed in perfluoropolyether, 

polydimethyl siloxane, and polyethylene [9]. They found that silica in polyethylene gives 

the highest dielectric strength when uniform dispersion of the nanoparticles was able to 

be achieved. This system is one of the most promising ones, however it is not completely 

understood. Having a good dispersion is of extreme importance to fully utilize the 

potential of dielectric materials. However it is not clear for what filling fraction it is 

possible to achieve a uniform dispersion of the nanoparticles inside the polymer matrix. 

This is, in fact, one of the motivations for our research. In chapters 3 and 5 we perform 

studies of the stability of silica nanoparticles in a polyethylene matrix and their 

corresponding rheological properties.  

Generally speaking, in material science, the relationship between macroscopic 

properties and microscopic structures is crucial for scientists to improve known and 

design new materials. This is particularly important for the case of synthetic polymers, 

where material properties depend strongly on both the molecular structure and the 
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organization of macromolecules in the solid state: their phase structure, morphology, 

molecular order, molecular dynamics, etc. Different approaches have been developed to 

study these aspects respectively. Experimentally, the microstructure and order of 

materials are frequently studied using X-ray scattering, neutron scattering and various 

kinds of microscopy methods. Information about dynamics is mainly obtained from 

relaxation experiments. Computationally, molecular simulation techniques provide 

atomistic level and direct numerical experiments, and give insight on material behaviors 

under different physical conditions. They can potentially address the issues at solid–fluid 

interfaces and shed light on the interactions arising in the nanoscale-regime. In addition, 

large-scale simulations, which involve coarse-graining, significantly enhance the prospect 

of probing important mechanisms at molecular-level, which are the basis of macroscopic 

phenomena and interfacial behavior.  

Even though significant progress has been made in developing polymer 

nanocomposites with varying polymer matrices and inorganic nanoparticles, the 

fundamental mechanisms that control the behavior of polymeric materials at the 

polymer/nanoparticle interface and their impact on macroscopic mechanical and 

constitutive properties are largely unexplored. This thesis is focused on the understanding 

of rheological, mechanical and transport properties of PNC at the molecular level using 

molecular simulations. Manipulating the filler microstructure can be a powerful design 

tool for controlling and optimizing macroscopic properties. If this proves to be correct, it 

will open new avenues for the systematic optimization of the properties that make 

composites more valuable for a myriad of applications. However, for this to be possible, 

essential questions that as of now still remain unanswered need to be addressed: How can 
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we characterize the effects of molecular interactions on the micro-structure of the filler 

phase? Can we develop effective methods for exploring the parametric space and 

optimizing the macroscopic properties? Can macroscopic materials properties be 

predicted from nanostructural data and molecular simulations? Other questions are also to 

be addressed: How does shear flow affect the spatial distribution of nanoparticles? How 

is the rheology of the polymers affected by the inclusion of nanoparticles? In this work 

we will answer these open questions.  

 

1.1.2 Silica Nanoparticles in Supercritical Fluids  

In this thesis, another solid-fluid system has been considered: silica nanoparticle 

agglomerates in supercritical carbon dioxide.  

Currently, most popular methods of nanoparticle deagglomeration essentially rely 

on shearing of nanoparticle suspensions in organic solvents [10], often facilitated by 

surfactants/dispersants [11]. Another promising deagglomeration technique is the rapid 

expansion of supercritical solutions (RESS). In the first stage of the RESS procedure, an 

agglomerate of primary particles is saturated with supercritical fluid. The gas penetrates 

inside the pores of the agglomerates and after rapid depressurization the agglomerate is 

broken down by the extreme pressure gradients and fluid velocities. RESS is an 

environmentally benign technique that allows reducing the use of volatile organic 

solvents and is well established for the synthesis of micron- and sub-micron size particles 

[12].  

However, the interaction forces between nanoparticles in the RESS technique are 

not completely understood, especially when the particles are at the nanoscale. Most of the 
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published work has been focused on the solvation forces between nanoparticles in vapors 

and liquids, but not in supercritical fluids. In vapors, the adsorption field of the two 

bodies typically leads to the formation of a liquid-like junction between them [13, 14]. 

Solvation forces can be interpreted in terms of the surface tension of the formed 

meniscus, and essentially the forces vanish when the liquid junction breaks up. The other 

group of simulation studies deals with solvation forces between planar surfaces and 

particles in liquids and polymers. Neither of these groups deals with dense supercritical 

fluids, where meniscus formation is not really possible (unlike vapors), but strong density 

variations are (unlike liquids).  

To the best of our knowledge, there have been no reported simulation studies of 

breakup forces for nanoscale silica agglomerates in the presence of supercritical CO2. 

The ultimate goal of this work is to shed light on the interaction forces between silica 

nanoparticles in supercritical CO2, which determine the dominant mechanisms for 

deagglomeration when the fluid expands rapidly. We considered different types of 

aggregates (with different topologies and strengths) and studied how the agglomerate 

structure affects their final strength when exposing them to shear forces.  

 

1.2  Objectives and Organization 

Given the above mentioned open questions about any solid-fluid system, the aim 

of this thesis is to take us to the root of these issues: the solid-fluid interfacial structures 

and the basic interactions between structural units that determine the kinetics of 

nanoparticles in their embedding medium and assembly formation, and subsequently the 
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resulting structures and functionalities of the nanophases and devices. The specific aims 

are the following:  

Specific Aim 1: To construct a coarse-grained model for polymer nanoparticle 

composites and validate the solid-fluid interaction by fitting surface tension experimental 

data. This work, along with the details of simulation techniques used, will be given in 

Chapter 2.  

Specific Aim 2: To investigate how the microstructure of PNC (degree of 

agglomeration and morphology) is affected by changes in molecular weight, chain 

conformation, temperature and orientation of the polymers, and concentration of non-

ionic surfactants. The results of this study are given in Chapter 3.  

Specific Aim 3: To investigate the interaction forces between silica nanoparticles 

in supercritical carbon dioxide and the effect of agglomerate structure (with different 

topologies) on their final strength under shearing conditions. Another method for 

validating solid-fluid interaction is via the adsorption isotherms, and it was used here to 

determine silica and supercritical carbon dioxide. The results of this study are given in 

Chapter 4.  

Specific Aim 4: To determine how microstructure of the filler nano-phase affects 

the macroscopic mechanical and constitutive properties of PNC. The results of this study 

are given in Chapter 5.  

Finally Chapter 6 summarizes significant results and conclusions, and provides 

recommendations for future work. All references are listed at the end.  

The results from this proposed work will allow construction of the relationships 

between microstructure and macroscopic properties in nanofilled polymer composites. 
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Such relationships can be used to optimize properties of existing materials, and to design 

new filler reinforced materials for novel applications. In addition, fulfillment of the stated 

objectives will expand knowledge of the science of nanoparticle-polymer interactions as 

well as provide technical information and design strategies for the new generation of 

polymer nanocomposites.  
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CHAPTER 2 

COARSE GRAINED MODEL FOR POLYMER NANOPARTICLE 

COMPOSITES 

 

In this chapter, we focus on Specific Aim 1, where a multiscale simulation 

scheme is carried out for the system of silica nanoparticle aggregates in a polyethylene 

melt. We develop a coarse-grained model for polyethylene, for which the parameters of 

the solid-fluid interaction are determined from the results of a separate atomistic model. 

This procedure is divided into three steps: (i) thermodynamic derivation for the surface 

tension calculation, (ii) atomistic simulation for the surface energy calculation, and (iii) 

surface tension calculation using the coarse-grained model and subsequent comparison 

with the value obtained from the thermodynamic derivation performed in step (i).  

In what follows, Section 2.1 gives the literature search on simulations of polymer 

models and introduces the one we used in this work. Section 2.2 explains the theoretical 

formalism for the derivation of the surface tension. Section 2.3 presents the results on the 

surface energy obtained with atomistic simulations. Finally, Section 2.4 shows the results 

of surface tension obtained with the coarse grained model and subsequent comparison 

with the thermodynamic model.  

 

2.1  Introduction 

Polymeric materials have a large range of physical properties [15, 16], which, 

together with the relative economy of their production, makes them extremely useful. 

These chain molecules are characterized by the repetition of chemically equal or similar 
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units (monomers). The simplest polymers are therefore chains of equally repeated units 

(homopolymers). One of the major challenges in polymer science is the large range of 

time and length scales spanning from interatomic bond distances (a few Å) to 

macroscopic scales. This challenge makes it even more demanding to understand 

polymers from a theoretical point of view. It is essential to combine different theoretical 

approaches developed independently in various fields of physics and theoretical 

chemistry, but they are not easily interlinked. Perturbation theories depend on the 

dominance of one interaction or length scale over all the others, only treated as 

perturbations. These theories are often not applicable to polymers due to the complex 

interrelation of length and time scales. This is difficult to incorporate into a theory as the 

resulting topology conservation imposes constraints on the equations of motion.  

Computer simulations can contribute substantially to the understanding of 

polymer dynamics, where the different scales pose a severe problem. In fact, to deal with 

all the length and time scales is the hardest task in molecular simulations, because the 

time step of the simulations is set by the fastest motion, and in order to keep the correct 

dynamics, one has to carefully integrate out these fast degrees of freedom over all scales. 

The big advantage of simulations is the free access to all information about the system at 

all times. However, since simulations are only models of reality, they need to be 

validated against experiments or analytic theory, and the model is refined if necessary.  

Our case study is silica nanoparticles embedded in a polyethylene melt. Because 

of its attractive properties, polyethylene (PE) is the world’s largest volume thermoplastic 

and finds wide use in packaging, consumer goods, pipes, cable insulation, etc. The melt 

state of polyethylene is very interesting from the point of view of its dynamics depending 

 



 11

on the degree of polymerization, i.e. the chain length. The properties change drastically 

from liquid-like to rubbery behavior as the chain length increases. Moreover, they are 

viscoelastic. They behave liquid-like if slow deformations are applied. In the high-

frequency range they respond elastically to deformations like a solid. Besides, the melt 

state is crucial to polymer processing as most polymers in industrial applications are 

processed in their melt state, e.g. by injection molding. Thus, the technological relevance 

of a better understanding of polymer melts is rather obvious.  

 

2.2  Polyethylene Molecular Models 

Increasingly computer simulations have been used to calculate thermodynamic 

properties of polymeric liquids from a molecular basis. In these simulations a suitable 

choice of molecular potential needs to be made and some compromise must be made 

between atomic detail and computational efficiency. In what follows, one united atom 

model and four coarse-grained models are described. The united atom model (Section 

2.2.1) was used for the calculation and adjustment of the temperature of the coarse 

grained PNC system. The last coarse-grained model (Section 2.2.2 vi) was used for the 

study of the stability and rheology properties of the PNC system.  

 

2.2.1 Siepmann-Karaboni-Smit (SKS) United Atom Model  

The methyl (-CH3) and methylene (-CH2-) groups are treated as spherical 

interaction sites with interaction centers located at the centers of the carbon atoms. The 

interaction between sites on different molecules and between sites separated by more than 

3 bonds on the same molecule is described by Lennard-Jones (LJ) potential: 
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Utilizing this united atom potential model and the reversible reference system 

propagator algorithm multi time step dynamics, Moore et al. have performed both 

equilibrium and non-equilibrium molecular dynamics simulations of a mono-disperse 

C100H202 polyethylene melt at 448 K and 0.75 g/cm3 [17]. At equilibrium, rotational 

relaxation time and self-diffusion coefficient are calculated. Under steady state shearing, 

shear-enhanced diffusion and rheological properties are measured.  

Using the same model and non-equilibrium molecular dynamics simulations of 

planar elongational flow, Baig et al. have investigated various structural and rheological 

properties of three polyethylene liquids, C50H102, C78H158, and C128H258 at different 

densities but the same temperature (T = 450K) [18]. Many physical properties for these 

rather long chains appeared to be qualitatively similar to those for shorter chains in the 

previous work of this group [19]. The intermolecular LJ, intramolecular LJ, and bond-

stretching modes make positive contributions to the first and second elongational 

viscosity, while the bond-torsional and bond-bending modes appear to make negative 

contributions. Daoulas et al. have also considered a thin film of united atom polyethylene 
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melt confined between a semi-infinite graphite phase on the one side and vacuum on the 

other, and studied the interface between polymer melt and crystalline solid substrate [20]. 

The simulations are carried out in the NPT statistical ensemble with an efficient Monte 

Carlo algorithm based on variable connectivity moves. The local mass densities, the 

structural and conformational features of polyethylene at the two interfaces are analyzed.  

 

2.2.2 Coarse-Grained Models  

In general, the coarse-graining procedure consists of defining effective 

interactions governing the behavior of particles on a larger length scale than the all-atom 

or united atom model. There is not a simple definition of a coarse grained model, because 

the type of model strongly depends on the size of the system to be studied. In general, 

when defining a coarse grained model, one needs to make a compromise between the size 

of the system and the information and accuracy to be lost in the model, particularly when 

defining the “beads” or “particles”. The coarse-grained interactions are generally adjusted 

by matching static properties of the material in consideration. Several coarse-grained 

models have been utilized to investigate different properties of polyethylene. (Note: the 

reader may jump directly to section (iv) without loss of continuity.)  

i) Depa and Maranas use the distribution functions from the united atom 

simulation to parameterize the coarse-grained force field [21, 22]. Each coarse-grained 

bead represents four united atoms. Coarse-grained stretching and bending potentials are 

calculated by Boltzmann inverting the distributions obtained from the united atom 

simulation. They set the desired distribution of coarse-grained bond lengths from the 

positions of united atoms separated by one coarse-grained bond, and the distribution of 
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coarse-grained bond angles from the positions of united atoms separated by two coarse-

grained bonds. The distribution for united atoms separated by three coarse-grained bonds 

is featureless, therefore a coarse-grained torsional potential is not used. Because the 

coarse-grained bond-stretching distribution is double peaked and the coarse-grained bond 

angle distribution is asymmetric, at least two Gaussian functions are used to describe 

them. The molecular dynamics simulations are performed in the NVT ensemble at 423 K 

using a Berendsen thermostat and a time step of 5 fs, and the dynamic properties of 

unentangled polyethylene are studied. When scaled by a constant factor the results are in 

excellent agreement with their underlying atomistic counterparts [21]. In the later studies 

of Depa and Maranas, the diffusion coefficients are compared to experimental values and 

united atom simulations [22]. They also assign the entanglement length using various 

methods, and compare tube diameters extracted using a primitive path analysis to 

experimental values. These results show that the coarse-grained model accurately 

reproduces dynamic properties over a range of chain lengths, including systems that are 

entangled. Even though their model is validated and works well, it only works for 

systems of 10 nm and smaller. Out goal is to target larger systems of at least 50nm.  

ii) Vettorel and Meyer derived a coarse-grained model of polyethylene in the melt 

state with the aim to study polymer crystallization [23]. The model requires relatively low 

level of coarse-graining, and only two CH2 groups are mapped onto one bead. The 

coarse-grained beads are connected with harmonic springs, and optimized angular 

potential, and an optional torsional potential. The coarse-grained potentials are derived 

from detailed all-atom simulations, and an optimized form of the force field is then 

derived to achieve good accuracy in reproducing the static properties of the chains. The 

 



 15

electrostatic effects accounted for by an explicit potential in the all-atom model are 

neglected, because they are absorbed in the effective non-bonded interaction. Even 

though this model allows a qualitatively reproduction of the structural features of 

polyethylene at low temperature, it only considers 2 CH2 groups in a single bead, which 

restricts the fluid size.  

iii) Xu et al. have developed a coarse-grained Monte Carlo method to investigate 

thin films of short polyethylene chains during the crystallization [24]. This method does 

not allow for the calculation of dynamic properties such as diffusion coefficient and 

viscosity, therefore we were unable to implement it in our work. To summarize, these 

coarse-grained models can be broadly divided into two classes. The first class consists of 

generic models such as the 2nnd diamond lattice model that does not retain a connection 

to the underlying atomistic description (e.g. the model of Xu et al.). The second class of 

models maintains chemical identity by using information from atomistic level simulations 

to obtain the coarse-grained force field (e.g. the other 2 models above).  

iv) We have implemented the model proposed by Guerrault et al. [25]. In the 

coarse-grained model each CG bead consists of eight methylene groups of a linear 

polyethylene chain. The bonded and non-bonded interactions between them have been 

developed from the potential of mean force for PE. They first obtained the microscopic 

structure of PE using MC NPT simulations. Then the intramolecular coarse-grained force 

fields were defined to reproduce the atomistic pair correlation functions, accurately 

representing the static properties and reproducing as closely as possible the structural and 

thermodynamic properties of the original atomistic model. We applied their potentials in 
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our work, but modified their functional form. Our considered bonded and non-bonded 

potentials are:  

Non-bonded ( ) ( ) ( )2
22

2
11 expexp rbarbarwnb −+−=λ     (2.1) 

Bonded         (2.2) ( ) ( 4
eqeq

b rrkrw −=λ )

Here r is the distance between two beads ji rrr rr
−= . The potentials of mean 

force are shown in Figure 2.1. The parameters of the potentials are given in Table 2.1.  
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Figure 2.1 Bonded and non-bonded potentials of mean force. The bonded and non-

bonded interactions for this system have been developed from the potential of mean force 

for PE by Guerrault et al. This GC model accurately reproduces the structural and 

thermodynamic properties of the original atomistic model.  
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2.3  Calculation of the Coarse Grained Temperature 

When atoms are grouped into larger beads, their dynamics change, and as a 

consequence, their temperature (proportional to the kinetic energy via the Equipartition 

Theorem) also changes with respect to the temperature they would have if they were 

atoms (i.e. not grouped into beads as in a coarse grained model), so it needs to be 

adjusted.  

The instantaneous temperature is proportional to the kinetic energy 

N

vm
Tk

N

i
ii

B 3
1

2∑
== . To account for this change in temperature we considered a separate 

molecular dynamics simulation of polyethylene using the united atom model explained in 

Section 2.2.1.  

The idea of this calculation is to obtain the temperature for a system using the 

united atom model, for which the interaction potentials are well validated in the literature, 

and then extrapolate the temperature that the system would have if it was modified to be a 

coarse grained model (i.e. grouping the united atoms into larger beads). In this system, 

polyethylene is modeled as a chain of 80 united atoms [17] (denoted by C80). The 

polymer system containing 100 chains is simulated at a temperature of T = 423K, which 

is coincident with the temperature used in experiments. After compressing the system to 

reach a density equal to 0.75 g/cm3, the system is equilibrated for 200ps in an NPT 

ensemble. The system is first run for 100ps for equilibration and then, 200ps for data 

collection.  

To derive the “coarse grained temperature” from the united atom model we have 

to remember that in the coarse grain model we combine 8 united -CH2- groups into 1 
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coarse grain bead.  Hence, the coarse grained temperature of the system is obtained by 

calculating the kinetic energy corresponding to the average velocity of 8 united atoms 

and then fitted to a Gaussian function (Figure 2.2). The mean value for  is 5.0E-5 Å/fs, 

giving a coarse grained temperature T = 280.77K. Figure 2.2 shows the fitting of these 

curves. Here we can see that the coarse-grained temperature that correctly describes the 

experimental system (at 423K) is lower (280.77K) due to the fact that the atoms are 

grouped into beads and move slower.  

2V
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Figure 2.2 Velocity profile after equilibration. The distributions of the averaged 

velocities of 8 neighboring methylene groups were calculated. Then the temperature was 

obtained by fitting the velocity distribution with Maxwellian curve.  

 

 



 19

2.4  Determine the Solid-Fluid Interaction Parameters 

When conducting molecular simulations, it is also necessary to have reliable 

descriptions of solid-fluid interactions for obtaining accurate thermodynamic and 

structural properties. Solid-fluid interactions between spherical silica nanoparticle and 

polyethylene for a coarse grained potential are not available in the literature.  

Typically the interactions between different types are fitted either to the 

experimental thermodynamic properties (such as solubilities, activity coefficients, or 

surface tension) or to structural parameters (such as simulated RDFs). Since nanoparticle 

aggregation is to a large extent governed by the surface forces, fitting the unlike 

parameters to the surface tension is the most logical choice. The situation, however, 

differs dramatically from that in liquids, because aggregating nanoparticles never merge 

into a single solid body (unlike, for example, the aggregation of liquid droplets in an 

emulsion). That is why experimental values for PE-quartz interface reported in the 

literature do not suite our purpose either: they measure the free energy of a different 

process and indeed are extremely high for the scale we deal with in soft particle 

simulations. Instead, we came up with a thermodynamic scheme that allows us to derive 

the surface tension from the available experimental and simulated data.  

As already mentioned in Section 2.2, the potentials describing these interactions 

are listed in Equation 2.1. The solid-fluid interaction is characterized by the surface 

tension. In what follows, we explain the theoretical formalism to obtain the repulsion 

coefficients a and b. For this, the idea is first to obtain the surface tension of the PE-Silica 

interfacial system and then perform coarse grained simulations to extrapolate the 

repulsion coefficients. We will first explain how to obtain the surface tension and then 
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how to extrapolate the value of the repulsion coefficients for the potential of Equation 

2.1.  

 

2.4.1 Surface Tension at Spherical Interface: A Thermodynamic Derivation  

The surface or interfacial tension of a fluid interface can be viewed in two 

different ways. From a thermodynamic point of view it is the additional free energy per 

unit area caused by the presence of the interface. The energy per molecule is greater in 

the interfacial region than in the bulk liquid. From the mechanical point of view, the 

tension is a force per unit length parallel to the interface, i.e. perpendicular to the local 

density or concentration gradient. Regardless how interfacial tension is developed, 

thermodynamic (energy) or mechanical (force), its main effect is that a system acts to 

minimize its interfacial area.  

The determination of the interfacial tension of planar interfaces between fluid 

phases is relatively straightforward within classical statistical mechanics. In the case of 

molecular simulations the mechanical route of Irving and Kirkwood, which requires the 

knowledge of the tangential and normal components of the pressure, is commonly 

employed. The situation is less obvious in the case of curved interfaces: according to the 

Laplace relation there is a pressure difference on either side of a curved interface which 

causes some level of difficulty on the evaluation of the tension via a mechanical route; in 

the case of small drops of liquid, one cannot strictly talk of a uniform value of the density 

(and local pressure) since the density profile can be oscillatory. In addition, an evaluation 

of the tension from the thermodynamic relation of Tolman (to first order in the curvature) 

is only formally valid for large drops. These complications lead to problems in the 
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determination of the interfacial tension of spherical drops in computer simulations. Here 

we have proposed a different method for calculating the surface tension of polyethylene 

on silica surface, based on fundamental thermodynamics concepts. The schematic is 

shown in Figure 2.3. Initially a slab of silica solid and a slab of polyethylene are placed 

next to each other. Then an interface is created following 3 stages: (i) we cut out one 

spherical space out of both slab, (ii) we move the spheres to the vacuum, and (iii) we 

replace them with the spheres of different species. As a result, two spherical interfaces 

have been created.  
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Figure 2.3 Scheme for creating a spherical solid-polymer interface.  
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For particulate matter, the surface tension can be presented as the difference of the 

free energy of adhesion and the free energy of cohesion divided by the surface area of the 

interface created. Assuming the canonical (NVT) conditions, the difference between the 

cohesion and adhesion free energies can be expressed as:  

spsvpspvsvsspvppsilicape UUUUFA −−−−−
∗ Δ+Δ+Δ+Δ=Δ=Δγ  

( )spsvpspvsvsspvpp SSSST −−−− Δ+Δ+Δ+Δ−     (2.3) 

where  is the total change in Helmholtz free energy, FΔ psγ  is the surface tension 

between the “particulate” silica and PE, svssU −Δ  is the change of internal cohesion energy 

between the two silica surfaces (that is, the energy required for surface separation). 

 is the entropy of the same process, svssS −Δ pspvU −Δ  is the energy of adhesion between PE 

and silica (that is, the energy required to bring together silica and polymer surfaces 

separated by vacuum) and so on.  

We assume that the only entropy change is related to the limitation of polymer 

conformation due to the creation of the surface in polymer. The silica surfaces do not 

really deform; they stay intact and therefore their separation does not produce substantial 

entropy change. In this case, pvppspsvpspvsvss SSSS −−−− Δ<<Δ+Δ+Δ . And Eq (2.3) reduced 

to  

spsvpspvsvsspvpppvpp UUUSTUF −−−−− Δ+Δ+Δ+Δ−Δ≈Δ      (2.4) 

Now, if we take into account that ASTU ppvpppvpp γ=Δ−Δ −− , where pγ is the 

surface tension of the polymer (with vacuum). Finally we obtain the surface tension for 

the polymer-solid system :  ∗
psγ

( )( ) ( )( )pssvssppssvpspvsvsspps UUAUUUA Δ×−Δ+=Δ+Δ+Δ+= −−−−
∗ 211 γγγ   (2.5) 
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Therefore, ( )      (2.6) pssvsspps UU
A

Δ×−Δ+= −
∗ 21γγ

Where  is the energy related to the separation of two silica surfaces, and svssU −Δ psUΔ  is 

the energy of separation of polymer and silica. For pγ  we use the experimental value of 

polymer-vacuum surface tension, pγ  = 0.027J/m2. Notice that we do not have the values 

of  and . To obtain these two energies we perform separate atomistic 

simulations, which are explained in details in the following (Section 2.4.2).  

svss−UΔ psUΔ

 

svssU −Δ  and psU2.4.2 Atomistic Simulations for Calculating Δ   

To obtain the internal energy terms, we performed classical MD simulations in 

Materials Studio package from Accelrys. In order to have two slabs of silica surfaces, we 

first need to get a cleavage of the silica glass and minimize the energy, then to place them 

in contact. Starting from an ideal quartz structure, the system is melt in a constant-

pressure MD simulation at 1000K. Then the surface is quenched to the normal 

temperature of 423K and simulation continued for 1ns for silica to form an amorphous 

glass. After this, we minimize the resulting structure and cleave the surface of 

21.4Å×21.4Å in the resulting sample. When cleaving the surface, some of the chemical 

bonds can be broken. The broken bonds are replaced with S-OH bonds; in total 8 

hydroxyls were introduced resulting in a hydroxyl surface density of 15 mmol/m2. The 

depth of the surface is set to be larger than the non-bond cut-off distances in the force 

field settings (13.16 Å).  

Only the top few layers of atoms in the surface should interact with the polymer 

or another surface and the rest of the atoms can be considered to be part of the bulk and 
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therefore have little effect. By this means the bulk atoms are constrained at fixed 

positions so that they are not minimized. Then using the energy minimizer in Discover 

tools the surface is again relaxed in a 1ns MD simulation.  

Afterwards, two initial configurations with different separations between the two 

slabs of solid are constructed. In one case (Figure 2.4 a), the solid surfaces are located at 

very close (or zero) distance. In the other case (Figure 2.4 b), they are separated by a 

large vacuum (20Å wide). Another vacuum layer is also added above the second surface 

so that only one side of the surfaces would interact with each other (otherwise due to the 

periodic boundary conditions both sides would be considered). Using Discover tools a 

molecular dynamics simulation of 300ps was conducted to equilibrate both the systems at 

T = 423K. Using Discover tools the system energy was calculated after equilibration. The 

total energies of the systems fluctuated around stable values after 100ps. The surface 

energy  is obtained using the difference between two close solid surfaces and two 

separated solid surfaces. This is the energy required for creating a surface from the bulk, 

and will be implemented into the surface tension calculation.  

svssU −Δ
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(a) 

 

(b) 

 

 

Figure 2.4 Simulation setup for calculation of the interfacial energy ( ) of two 

silica surfaces at close distance (a) and separated (b).  

svssU −Δ
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A similar procedure was followed for silica and polymer surfaces. We created a 

polymer slab by simulation of polyethylene in 21.4Å×21.4Å×10Å box at overall density 

of 0.75 g/cm3. In two separate NVT MD simulations, we obtained the average energies of 

the silica slab and PE film. The silica and polymer surfaces were first separated, and then 

brought into contact and relaxed in a 1ns MD simulation (Figure 2.5). The surface energy 

 was obtained using the difference between two close surfaces of silica and polymer 

and two separated surfaces, and implemented into the surface tension calculation 

(Equation 2.6).  

psUΔ
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(a) 

 

(b) 

 

 

Figure 2.5 Simulation setup for calculation of the interfacial energy ( ) of 

polyethylene chains on top of a silica surface (a) and PE-silica separated (b).  

psUΔ
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2.4.3 Surface Tension Simulations and Fitting the Repulsive Parameters  

From the atomistic MD simulations, we obtained the surface energy values, 

 and , which were then substituted into Equation 2.6. In the same equation, 

we also considered the experimental value 

svssU −Δ psUΔ

pγ =0.027J/m2, which results in the surface 

tension of 0.0156 J/m2. So far we have obtained the value for the surface tension at a 

spherical interface. This, however, is not enough to complete the coarse grain potential 

(Equation 2.1), because we still do not have the repulsion parameters for the solid-fluid 

interaction.  

To obtain the repulsion parameters, we considered a calibration curve, i.e. the 

dependence of the surface tension of our coarse-grained system as a function of repulsive 

mismatch coefficients  and . For this purpose, we simulated a slab consisting of our 

model coarse-grained silica in the coarse-grained PE in a box of the dimension 

10σ×10σ×20σ (Figure 2.6), and performed a series separate simulations of a flat 

interface between the silica and polymer, using the coarse grained model. The surface 

tension was obtained from a mechanical formula: 

1a 2a

∑ ∑+β ∑−
p p pN

i

N

i

N

j
ijiii Fuum

V βααβγ 1
>i

ijr α= .  
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Figure 2.6 Phase separation between two different species. Red particles represent 

polymer beads, blue for nanoparticle beads.  
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The calibration plot (Figure 2.7) shows a linear relationship between surface 

tension and the repulsive coefficients. A repulsive coefficient of 2 means that the 

repulsion between a silica bead and a polymer bead is 2 times stronger then that for a 

couple of beads of the same component. Using the calculated surface tension, which is 

obtained from Equation 2.5 (giving the value 0.0156 J/m2), on the calibration line, we 

extrapolated the repulsive coefficient, which is approximately equal to 2.3. This 

coefficient will later be used in the coarse-grained potential (Equation 2.1) as the solid-

fluid interaction.  
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Figure 2.7 The calculated silica-polymer surface tension as a function of the relative 

strength of the repulsive potential.  
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2.5  Summary 

In this chapter, we develop a coarse-grained model for silica nanoparticles in a 

polyethylene matrix at 423K, using a novel approach, which uses experimental data, 

thermodynamic theory and atomistic simulations. We employ a hybrid approach for 

coarse-graining, by fitting our model to structural and kinetic properties of the 

polyethylene melt and to the surface tension of polyethylene-silica interface.  
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Chapter 3 

DISPERSION OF NANOPARTICLES IN A POLYMER MATRIX 

 

In the previous chapter we have obtained the solid-fluid interaction parameters for 

our coarse-grained model, which can be used for studying the dispersion of silica 

nanoparticles in a polyethylene matrix. In this chapter, we focus on Specific Aim 2 and 

investigate the factors that determine the distribution of nanoparticles in a polymer melt, 

such as the molecular weight, chain conformation and orientation of the polymers, the 

interparticle forces, and the concentration of nonionic surfactants. The case study system 

consists of silica nanoparticles embedded in a polyethylene matrix, with oleyl alcohol as 

surfactant. The motivation for this choice is explained in Chapter 1 (Section 1.1.1).  

In what follows, Section 3.1 introduces the model we used for silica 

nanoparticles. Section 3.2 explains two methods for quantifying the state of nanoparticle 

dispersion and the results. Section 3.3 presents the results on the effect of polymer chain 

length and the relative size of polymer to nanoparticle. Section 3.4 shows the results on 

the interparticle forces. Finally Section 3.5 first introduces the model surfactant, and then 

presents the results.  

 

3.1  Nanoparticle Model and Simulation Setup 

Model nanoparticles were constructed by soft quasiparticles, which are arranged 

in a body-centered-cubic (BCC) lattice (Figure 3.1). The quasiparticles were of the same 

size as the polymer beads. They were kept in a BCC structure using harmonic springs 

with 38 kJ/mol stiffness. The bond equilibrium length was chosen so that each 
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nanoparticle was composed of 108 beads and was approximately 4 nm in diameter in all 

our simulations. The bond lengths (0.63 nm and 0.445 nm) were chosen to maintain the 

same density of beads inside the nanoparticle as the density of beads in the polymer: 4.0 

nm-3. All atoms in the system interact via the derived coarse-grained potential (Equation 

2.1). The interaction between nanoparticle beads is the same as that between the polymer 

beads, while the interaction between solid and fluid is 2.3 times more repulsive than the 

interaction between the same species. The repulsive strength parameters between 

different species in the coarse-grained model are listed in Table 3.1.  

 

 

Figure 3.1 Schematic of the nanoparticle model.  
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In the initial configuration, all beads were given random positions in the 

simulation box of 30×30×30 nm3. The MD simulations were carried out in NVT 

ensemble with Verlet integration scheme [26] and timestep of 0.01 ps. The total 

simulation length ranged from 100 ns to 300 ns. Simulations of different numbers of 

nanoparticles in a polymer matrix were conducted systematically. They are based on 

standard molecular dynamics techniques in an NVT ensemble (constant number of 

particles, volume, and temperature).  

 

3.2  Nanoparticle Dispersion 

The state of nanoparticle dispersion is critical for the material reinforcement. 

Clustering of the nanoparticles reduces the intermixing of polymer and nanoparticles, 

thus reducing the interfacial area. The nanoparticle homogeneity is affected by a number 

of factors, including particle loading, interparticle interactions, and some polymer 

properties. Before we can explore the relative importance of these control parameters, we 

must have a reliable metrics to determine the state of dispersion. The spatial dispersion of 

nanofillers can be determined by means of the radial distribution function , which is 

an explicit measure of structure and in our case is taken from center to center of 

nanoparticles.  

( )rg

We have examined the polymer nanoparticle systems with a range of nanoparticle 

filling fractions. In these simulations, the polymer has a fixed chain length (N = 8). At 

lower filling fractions (1.6 wt% and 2.4 wt%) smaller clusters of 4 nanoparticles have 

been found. At higher filling fractions (greater than 3.2 wt%) larger clusters of 6 or 8 

nanoparticles have formed. In all the cases considered, there exist a small number of 
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nanoparticles, which remain separated. In order to determine the state of nanoparticle 

dispersion we calculated  based on the distances between the centers of mass of the 

nanoparticles (Figure 3.2). There is a strong tendency for the nanoparticles to aggregate 

as illustrated by the sharp peak in the nanoparticle-nanoparticle radial distribution 

function. For a smaller filling fraction, the lower first peak in the radial distribution and 

the flat distribution at large distance indicate the dispersion of nanoparticles. As we 

increase the filling fraction, the nanoparticle density is less spatially homogeneous, 

yielding a second peak at large distance. The coexistence of the first and secondary peaks 

indicates larger degree of agglomeration.  

( )rg

The state of dispersion of nanoparticles can also be elucidated by the approach 

proposed by Starr et al. [27]. Potential energy (Figure 3.3a) and specific heat (Figure 

3.3b) as a function of filling fraction are calculated. The potential energy per nanoparticle 

bead NUu nnnn =  is strongly sensitive to the change in local packing, because it depends 

on the number of particle-particle contacts. The potential energy increases with 

increasing filling fraction, as relatively more contacts are made. The specific heat per 

particle of the nanoparticles is considered as the potential energy fluctuations 

nnnnnn uuu −≡δ , and is thermodynamically quantified by 2

2

T

uN
c nnnn

V

δ
= . At the largest 

and smallest filling fractions, the systems are very stable, thus there are little fluctuations 

in the potential energy. But for the intermediate states, particles easily aggregate into 

clusters, and can separate after a short period of time, resulting in large fluctuations in the 

potential energy, and hence a large value of . As the filling fraction increases, the  

reached a high peak at 2.7 wt% when there are possibilities for the nanoparticles to form 

Vc Vc
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smaller clusters of 2~3 entities. Later as more nanoparticles are included in the system, 

the formation of larger clusters takes place, giving a lower peak on the  curve. The 

system is less stable when the smaller clusters are formed (higher peak on the curve), and 

becomes more stable when the larger clusters are formed (lower peak on the  curve).  

Vc

Vc
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Figure 3.2 Radial distribution function of nanoparticle center of mass at different 

nanoparticle filling fractions.  
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3.3  Effect of Polymer Chain Length 

The difference in the dispersion efficiency should mainly come from the 

polymer–nanoparticle interaction, which is a function of polymer chain length and 

polymer molecular structure. In this work we have also considered the effect of polymer 

chain length on the dispersion of nanoparticles. The polymer chain length is varied from 

N = 4 to 16. Figures 3.3 (a) and (b) respectively show the potential energy and specific 

heat as a function of nanoparticle filling fraction for three different polymer chain 

lengths. Longer chains tend to hinder the movement of nanoparticles and prevent them 

from agglomeration. This is also observed from the trajectories.  
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Figure 3.3 Potential energy (a) and specific heat (b) as a function of nanoparticle filling 

fraction for different polymer chain lengths.  
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In addition, the relative size of the nanoparticle and polymer is a crucial factor 

that causes phase separation and nanoparticle agglomeration [28, 29]. An important 

feature of molecular simulations is the accessibility of the molecular details of a system, 

which allows the direct calculation of microscopic properties, which in experiment would 

require sophisticated optical or scattering techniques. In this section we investigate the 

alignment and extension of molecules, as well as their rotation. The polymer radius of 

gyration is defined as the root mean square distance between monomers, i.e. 

(∑ −=
ji

jig rr
N

R
,

2
2

2

2
1 ) , which describes the dimension of a polymer chain. First, we 

simulated the pure system only containing polymer chains, and obtained the initial radius 

of gyration radius ( ) for different chain lengths. After adding nanoparticles in the 

system, chain stretching has been observed in some Monte Carlo simulations [30]. In our 

system the nanoparticle radius is about 2 nm, and the polymer  value ranges between 

2.3 and 9.4 nm. Figure 3.4 shows the polymer radius of gyration ( ) relative to that 

without nanoparticles ( ) for three different polymer chain lengths as a function of 

nanoparticle filling fraction. For nanoparticle size is similar to the polymer radius of 

gyration, the particles experience fast diffusion, and they move through the polymer 

melts without necessarily waiting for chains to relax their conformations, so that the 

chains keep to their initial dimension. However we observed chain expansion in all other 

cases of longer polymer chains. The nanoparticles stretch the polymer chains, and in turn 

they show more dispersion with larger . This is due to more adsorbed amount of 

polymer on the nanoparticles when the chain is longer.  
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Figure 3.4 The polymer radius of gyration ( ) relative to that without nanoparticles 

( ) for three different polymer chain lengths as a function of nanoparticle filling 

fraction. Error bars represent standard deviation from three separate 5 ns simulations at 

each chain length.  
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3.4  Polymer Mediated Nanoparticle-Nanoparticle Forces 

When particles are immersed in fluid and two surfaces approach closer than a few 

nanometers, they experience the fluid-mediated interactions, resulting from the 

confinement of fluid between surfaces. These interactions are generally called ‘solvation 

forces’, which is the key quantity governing the behavior of nanoparticle agglomerates.  

In this work we have included two nanoparticles, whose positions were fixed in 

the simulation box, but the distance between them was varied. The solvation force was 

calculated as ∑∑
==

=
M

j
ijj

N

i
s flF

11

, where N is the number of fluid molecules, and M is the 

number of silica pseudoatoms in one nanoparticle. Here, fij is the force between fluid 

molecule i and pseudoatom j, lj is a coefficient that equals 1 if the pseudoatom j belongs 

to the first nanoparticle and lj = -1 if j belongs to the second nanoparticle. Each MD 

simulation lasted for 150ns. The solvation force was averaged over the last 100ns of 

simulation run. Figure 3.5 compares the solvation force as a function of nanoparticle 

center-to-center distance for two different polymer chain lengths. The oscillatory feature 

of the solvation force shows the dramatic consequences of oscillatory collective polymer 

density fluctuations on the solvation force. The attractive minimum occurs at 

approximately 5.6 nm, and then there is a repulsive maximum at about 7 nm for both 

chain lengths, after which the force seems to decrease slightly and approach to zero at 

larger separations. When two nanoparticles covered with chain molecules approach each 

other, the chains extend out and overlap with each other. At this point, the polymer chains 

are being compressed between the surfaces, leading to an unfavorable entropy change. 

Thus the nanoparticles experience a repulsive force. In the case of longer polymer chains 
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the forces shift up towards the repulsive region, and the repulsive maximum is higher, 

due to greater amount of polymer adsorption.  
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Figure 3.5 Solvation forces as a function of nanoparticle separation (two polymer chain 

lengths).  
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3.5  Effect of Nonionic Surfactants 

We have also considered the effect of nonionic surfactants on the nanoparticle 

homogeneity. Typically, surfactant molecules consist of two chemically bounded 

components, one of which is soluble in the dispersion medium, while the other is 

generally insoluble. In an aqueous medium, the former is known as the hydrophilic group 

and the latter the hydrophobic group. The hydrophilic group, otherwise known as the 

“anchor” group, attaches itself to the colloidal particles. The hydrophobic group 

possesses a high affinity for the polymer, is projected away from the particle surface into 

the dispersion medium and is responsible for the stability of the suspension. The most 

common type of surfactant that is used to impart stability to a suspension comprises a 

polyoxyethylene oxide group -(OCH2CH2)yOH, which is hydrophilic, linked to an alkyl 

CxH2x+1 chain.  

In what follows, Section 3.5.1 introduces the nonionic surfactant used in the 

system and its molecular model. Section 3.5.2 determines the critical micelle 

concentration of surfactant in polymer melt. And section 3.5.3 examines the adsorption of 

surfactants at the solid-liquid interface.  

 

3.5.1 Surfactant Model Description  

As mentioned earlier, we considered oleyl alcohol (C18H36O) as our dispersant. 

This molecule has the common components of the surfactants used in several industrial 

products such as shampoo, washing powder, etc. The chemical structure of the oleyl 

alcohol surfactant molecule is shown in Figure 3.6(a). This molecule has the common 

components of the surfactants used in several industrial products such as shampoo, 
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washing powder, etc. It consists of a weakly polar head, as the hydroxyl group, and a 

nonpolar hydrocarbon chain, and is modeled using coarse-grained beads. The schematic 

is shown in Figure 3.6(b). In the surfactant model, consecutive beads along each 

surfactant backbone are permanently bonded together via a harmonic spring. The CG 

beads in the surfactant tail should “like” the CG polymer beads, and the head bead 

“dislike” them. Lengths of the surfactants are expressed in total number of beads 

connected together in the molecule. Nonbonded interactions between different species are 

listed in Table 3.1. The hydrophobic interactions between the polymer and surfactant tails 

are strong, while the interaction between the polymer and surfactant headgroups on the 

micelle surface is weak.  

 

Table 3.1 Repulsion parameters of different species.  

 

 Polymer and surfactant 
hydrophobic bead 

(Type 1) 

Nanoparticle bead 
(Type 2) 

Surfactant hydrophilic bead 
(Type 3) 

Type 1 1.0 2.3 2.5 
Type 2  1.0 1.5 
Type 3   1.0 
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We have previously characterized surfactant-laden systems with appropriate 

hydrophilic and hydrophobic particle-particle interactions. We will use those parametric 

values, which have already been validated with experiments [33]. Ultimately we seek to 

elucidate the dispersion properties of nanoparticles in a polymer matrix in the presence of 

non-ionic surfactant molecules.  

 

(a)  

 

(b)  

 

Figure 3.6 Chemical structure of oleyl alcohol (a) and schematic model of surfactant 

molecule (b).  
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3.5.2 Critical Micelle Concentration  

In order to understand the aggregation of nonionic surfactants, it is crucial to 

know their physical properties (e.g. detergency, solubility, micelle formation and 

solubilization of substance) in the nonaqueous solutions. Micelle formation or 

micellization is an important parameter due to a number of important interfacial 

phenomena, such as detergency and solubilization. The concentration of surfactant at 

which micellization begins is called the critical micelle concentration (CMC). At 

concentrations below CMC, surfactants tend to adsorb as a monolayer at the water-air 

interface. At concentrations above CMC, they build spherical, rodlike, or disclike 

micelles. This parameter can be determined by many different techniques. The most 

popular techniques include surface tension, turbidity, self diffusion, conductivity, osmotic 

pressure and solubilization. All of these methods involve plotting a measure as a function 

of the logarithm of surfactant concentration. The breakpoint in the plot represents the 

CMC. The CMC is affected by several factors like as hydrophobic group, hydrophilic 

group, temperature, connection of the group in the structure and addition of salts and 

organic solvents [34, 35].  

For an ideal system the surface tension (σ ) reduces linearly with surfactant 

concentration (φ ) until it plateaus at the critical value CMC for micelle formation; when 

the surfactant concentration is greater than CMC, the new surfactant does not enter the 

already saturated interface and instead enters into an association with other surfactant 

molecules in the bulk in a micellar arrangement in which hydrophilic heads come 

together trying to escape from the polymer.  
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In this work, the surface tension method was employed in the polymer + nonionic 

surfactant systems for determining the CMC. The bulk phase, containing the model 

surfactant and polymer, has been simulated through the NVT MD simulation. The 

concentration of surfactant is systematically varied, and the surface tension is measured 

by the mechanical formula: ∑ ∑∑
>

+−=
p p pN

i

N

i

N

ij
ijijiii Fruum

V βαβααβγ 1 . With increasing 

surfactant concentration, the surface tension first takes a constant value, and then it 

reduces linearly with surfactant concentration, until finally the curve levels off (Figure 

3.7).  
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Figure 3.7 Surface tension σ  versus bulk concentration ϕ  of surfactant-polymer system. 

ϕ _CMC is the critical micelle concentration, and σ _CMC is the maximally reduced 

surface tension.  
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Our coarse-grain model successfully shows the formation of spherical aggregates 

of nonionic surfactant in polyethylene. A typical configuration snapshot of the bulk-phase 

simulation was shown in Figure 3.8, where the micelle structure is formed in the bulk 

phase. Visual inspection of the final snapshot at 20ns indicates that there is no obvious 

disparity in the final micelle structures, which may give evidence that the bulk phase 

micelle is stable. The polymer is adsorbed onto the micelle surface and in between the 

surfactant head groups, due to the strong hydrophobic interaction between the ethylene 

units and alkyl tails.  
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Figure 3.8 Simulation snapshot of surfactants forming micelles in polymer melt. 

Polymers are not shown for clarity.  
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3.5.3 Effect of Surfactant Concentration  

The number of surfactant molecules in the PNC system is systematically varied to 

consider the effect of surfactant concentration on nanoparticle dispersion. This effect is 

later quantified by means of the potential energy and the specific heat. We have 

considered 3 different values for the concentration of surfactants: 1.6wt%, 3.2wt% and 

6.4wt%.  

Figure 3.9 shows the potential energy as a function of filling fraction for different 

values of surfactant concentration. We see that the potential energy decreases with an 

increase in the surfactant concentration. Smaller values of the potential energy indicate 

weaker attraction (Figure 3.9). There is no significant difference between the two cases of 

higher concentration, which suggests that an optimum surfactant concentration was 

obtained. In the presence of surfactants, the transition boundary is shifted to a larger 

value of the filling fraction, showing that it is easier for the system to maintain a 

dispersed state even when there are more nanoparticles embedded in the polymer matrix. 

The range of dispersed state expands. The approximate boundary between clustered and 

dispersed states is shifted accordingly in the presence of surfactants. Surfactant molecules 

act as a separator to avoid nanoparticle clustering, especially when surfactants are in 

excess. The addition of oleyl alcohol reduces the effective attraction between the 

nanoparticles, further weakening the agglomeration, which was monitored via particle-

particle contribution to the potential energy and the specific heat. Our results show that, 

for a surfactant concentration of greater or equal than 6.4 wt%, the particles remain in a 

homogeneously dispersed state, which is consistent with experimental findings.  
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Figure 3.9 Potential energy (a) and specific heat (b) as a function of nanoparticle filling 

fraction for different surfactant concentrations.  
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3.6  Summary 

In this chapter, we use the coarse-grained model developed in the previous 

chapter to study the dispersion of silica nanoparticles in a polyethylene matrix at 423K. 

The RDF and specific heat calculations indicate that for filling fractions smaller than 3 

wt% the system is in a dispersed state and for filling fractions of approximately 3 wt% 

and larger the nanoparticles show agglomeration. We show that a thermodynamically 

stable dispersion of nanoparticles into a polymer melt is enhanced for systems where the 

radius of gyration of the linear polymer is greater than the radius of the nanoparticle. 

Dispersed nanoparticles swell the polymer chains, and as a consequence, that the polymer 

radius of gyration grows with the nanoparticle filling fraction. Polymer-mediated forces 

are also more repulsive in the case of longer chains than in the case of shorter ones.  
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CHAPTER 4 

NANOPARTICLE DEAGGLOMERATION IN SUPERCRITICAL CARBON 

DIOXIDE 

 

In this chapter we report molecular simulation studies on the interaction forces 

between silica nanoparticles in supercritical carbon dioxide at 318K. The simulation 

technique is similar to the one in the previous chapters, and the system consists of, again, 

silica nanoparticles but a different fluid – supercritical carbon dioxide. Our goal here is to 

find a better understanding of the interparticle solvation forces during rapid expansion of 

supercritical solutions (RESS). The parameters for interatomic potentials of fluid-fluid 

and solid-fluid interactions are obtained by fitting our simulations to (i) experimental 

bulk CO2 phase diagram at a given temperature and pressure and (ii) CO2 sorption 

isotherms on silica at normal boiling and critical temperatures.  

In what follows, Section 4.1 gives the introduction on the RESS process and a 

literature search on the studies about interparticle forces. Section 4.2 introduces the 

molecular models for both CO2 and silica nanoparticle, and the method for establishing 

fluid-fluid and solid-fluid force field parameters from thorough comparison between MC 

and experimental adsorption data for CO2 on nonporous silicas. The simulation details 

are also explained. Section 4.3 presents the solvation forces that are direct calculated 

between two small (2.2nm) nanoparticles at both subcritical and supercritical conditions. 

In Section 4.4, we investigate the deagglomeration of nanoparticles under shear flow 

using non-equilibrium MD.  
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4.1  Introduction 

Nanoparticles are widely employed to obtain materials with unique mechanical, 

optical, electrical and magnetic properties that arise from small size and high surface 

area, and chemical activity. However, because of these same properties, nanoparticles 

easily aggregate, becoming unusable for the synthesis of nanoparticle-based composites 

or critically altering the properties of already existing materials. Currently, most popular 

methods of nanoparticle deagglomeration essentially rely on shearing of nanoparticle 

suspensions in organic solvents [10, 36], and often facilitated by surfactants/dispersants 

[11, 37]. Another promising deagglomeration technique is the rapid expansion of 

supercritical solutions (RESS). A schematic diagram of the RESS procedure is shown in 

Figure 4.1. In the first stage, the agglomerates of primary particles are saturated with 

supercritical fluid; the gas penetrates inside the pores of the agglomerates. Then after 

rapid depressurization, the agglomerate is broken down by the extreme pressure gradients 

and fluid velocities. RESS is an environmentally benign technique that allows reducing 

the use of volatile organic solvents and is well established for the synthesis of micron- 

and sub-micron size particles [3]. However, the interaction forces between nanoparticles 

in the RESS technique are not completely understood, especially when the particles are at 

the nanoscale.  
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Figure 4.1 Schematic of RESS process. (1) CO2 cylinder (2) Pump (3) Reactor (4) 

Heating jacket (5) Stirring system (6) Thermocouple (7) Receiving tank (8) Spray nozzle 

(9) Release valve (10) Filter  
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The total force between particles in nanoparticle suspensions can be obtained as a 

sum of direct forces (forces between identical nanoparticles which are identically/evenly 

located in vacuum) and solvation forces (forces originated from the interactions between 

nanoparticles and the solvent). Atomic force microscopy (AFM) and surface force 

apparatus (SFA) are powerful techniques for experimental measurements of the solvation 

forces [38]; but the application to nanoparticles is technically complicated. Molecular 

simulations, such as Monte Carlo (MC) and molecular dynamics (MD), can be useful for 

resolving the forces between nanoparticles. So far most simulation studies of colloidal 

nanoparticles in the literature are aimed at understanding the hydration forces between 

nonpolar solutes in water [39]. MC and MD simulation methods have also been used 

previously to explore the solvation forces in slit-like pore fillers with hard spheres, 

Lennard-Jones (LJ) fluids, water, alkanes [40, 41] and polymers at “gas like” and “liquid 

like” polymer densities [42]. A few recent papers report MD modeling of two 

nanoparticles in Lennard-Jones (LJ) and soft-sphere fluids. Shinto et al. have varied the 

solid-fluid interactions to study the van der Waals and solvation forces between liophobic 

and liophilic nanoparticles [43, 44]. Qin and Fichthorn also performed similar studies in 

which they represented the nanoparticles as rigidly fixed clusters of LJ atoms and 

determined the effect of particle size, shape, and roughness on the solvation forces [45, 

46]. The force profiles between two nanoparticles obtained in all these studies are similar 

in form to those predicted for fluids confined between flat and infinite surfaces (attractive 

for lyophobic and oscillatory for lyophilic nanoparticles) [47-49]. Bedrov et al. simulated 

solvation forces between fullerenes and carbon nanotubes in water and found deviations 

from standard hydrophobic behavior [50]. Other simulation studies have considered the 
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capillary forces between rough surfaces with the inclusion of the formation of liquid 

bridges [51, 52].  

In summary, most of the published work has been focused on the solvation forces 

between nanoparticles in vapors and liquids, but not in supercritical fluids. In vapors, the 

adsorption field of the two bodies typically leads to the formation of a liquid-like junction 

between them [13, 14]. In these cases, solvation forces can be interpreted in terms of the 

surface tension of the formed meniscus, and essentially the forces vanish when the liquid 

junction breaks up. The other group of simulation studies deals with solvation forces 

between planar surfaces and particles in liquids and polymers. Neither of these groups 

considers the dense supercritical fluids, where meniscus formation is not really possible 

(unlike vapors), but strong density variations are (unlike liquids).  

In this work, we calculate the solvation forces between two silica nanoparticles in 

CO2 at supercritical temperature T = 318K and near-critical pressure of p = 69atm (the 

critical point of CO2 are Tc = 304.1K and pc = 72.8atm [53]). We analyze the available 

experimental data on CO2 interaction with silica surfaces and choose carefully the models 

and parameters for fluid-fluid and solid-fluid interactions. The system is similar to the 

one considered in Ref. [12], but our nanoparticles are smaller (2.2nm) because of 

computational expenses. For larger nanoparticles, like those studied in Ref. [12] is also 

considered using an indirect approach.  

 

4.2  Molecular Models and Simulation Details 

4.2.1 CO2 Models  
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We followed a well-established approach for choosing intermolecular potentials 

[54]: the fluid force field is chosen to reproduce the bulk phase diagram at similar 

conditions, while the solid-fluid interactions are fitted to the experimental sorption 

isotherms on non-porous or mesoporous surfaces. Several molecular models reproduce 

the experimental conditions of vapor-liquid equilibrium of bulk CO2 [55, 56]. In this 

work, we used a model proposed by Möller and Fischer [57] (from now on referred to as 

the dumbbell model), which combines two LJ pseudo atoms connected by a rigid bond 

with a point quadrupole located in the center. The parameters are listed in Table 4.1. This 

model described accurately the liquid-vapor equilibrium properties and the saturation 

pressures of bulk CO2 at subcritical temperatures [58, 59]. We performed a series of 

gauge cell MC [60, 61] and constant-pressure (NPT) MD simulations of bulk CO2 at T = 

323.15K and p < 105atm with the dumbbell model and verified that the model reproduces 

reasonably well the bulk PVT data (see Figure 4.2) [62]. We also employed a simpler LJ 

model for bulk CO2. Carbon dioxide cannot be considered as a LJ fluid mostly because 

the LJ potential cannot account for the anisotropic quadrupole-quadrupole interactions. 

However, it is possible to account for the electrostatic interactions effectively via 

Boltzmann averaging [63] and use temperature-dependent LJ energy parameters ffε  [64]. 

Here, we obtained the LJ parameters ( ffσ and ffε ) for CO2 by fitting the Johnson’s 

equation of state [65] for LJ fluid to the experimental bulk isotherm at 323.15K [62]. The 

simple LJ model gives excellent agreement with the experimental isotherm up to very 

high pressures (see Figure 4.2).  
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Table 4.1 CO2 models and interaction parameters.  

 

fluid CO2 N2 

fluid model Dumbbell LJ LJ 

εff/k, K 125.3 286.2 101.5 

σff, Å 3.035 3.68 3.6154 

Q*2 3.0255 --- --- 

l, Å 2.121 --- --- 

rc, Å 15.175 9.2 18.077 

solid model 

hydroxylation 

Spherical Shell FCC Sph. Shell FCC 

high medium dehydroxyl high high --- --- 

ρεsf/k, Knm-2 2515 2353 1931 3112 --- 799 --- 

σsf, Å 3.217 3.217 3.217 3.43 3.43 3.494 3.17 

εsf/k, K --- --- --- --- 269 52.22 147 

Δ, Å --- --- --- --- 2.55 --- 2.55 
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Figure 4.2 CO2 bulk isotherm at T = 323.15K. Experimental data from Ref. (Span and 

Wagner 1996). The data for LJ model obtained using LJ equation of state (Johnson, 

Zollweg et al. 1993). The isotherm for the dumbbell model was obtained using constant-

pressure MD simulations.  
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4.2.2 Solid-Fluid Interactions  

In our work the interactions between CO2 molecules and silica are quantified in 

terms of CO2 sorption isotherms on the nonporous or mesoporous silica surfaces. A 

detailed review on different types of silica surfaces can be found in Ref. [66]. Published 

experimental data about the adsorption of CO2 on silica surfaces include: (i) isotherms at 

normal boiling point T > 195K and p < 1atm [67-69] and (ii) isotherms at elevated 

temperatures T  273K and at atmospheric and higher pressures [70-72]. These 

isotherms reveal that sorption of CO2 gas strongly depends on the degree of silica surface 

hydroxylation (that is, the surface density of accessible hydroxyl groups) due to hydrogen 

bond formation between the surface hydroxyls and CO2 oxygen atoms. The 

hydroxylation depends on the process conditions of synthesis, thermal treatment, and 

subsequent modification via grafting or presorption. In strongly hydroxylized silicas, the 

concentration of hydroxyl groups reaches 4.6 nm-2 [66, 73]. Katoh et al. [70] 

systematically studied the effect of silica hydroxylation on CO2 sorption on the folded 

sheets mesoporous (FSM) silicas, varying the number of hydroxyl groups from 0.7 to 3.5 

nm-2 (from 3.3 to 6.4 nm-2 according to Ref. [74]). Detailed comparison of the CO2 

isotherms on silicas from different sources [67, 69-72, 75] is given in Figure 4.3 (a) and 

(b). A few more isotherms at both cryogenic and critical temperatures are also given in 

Figures 4.4 (a) and (b).  

≥

At normal boiling temperature of 195K, CO2 exhibits a sub-monolayer region 

(Figure 4.3 a), followed by a distinct monolayer formation and then by capillary 

condensation in meso- and macro- pores [67, 68]. However, a distinct transition 

attributed to monolayer formation, which is well established on crystalline samples such 
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as graphite [76], is not seen on amorphous silicas, also because of their surface 

heterogeneity. At all hydroxylation levels, the CO2 isotherm at near-critical temperature 

(303K) shows sub-monolayer sorption region (Figure 4.3b). The isotherms on weakly 

hydroxylated samples (FSM-14 and FSM-16) are practically linear, suggesting that the 

sorption does not go beyond the Henry region, where the sorbent concentration on the 

surface is proportional to that in the equilibrium bulk. On strongly hydroxylated silicas 

(FSM-10 and FSM-12), the isotherms show pronounced non-linearity, which may 

originate from surface heterogeneities, which are most likely due to the distribution of 

hydroxyl groups.  
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Figure 4.3 (a) Experimental isotherms of CO2 on amorphous silica and graphite surfaces 

at the normal boiling temperature (195K), data taken from Refs. (Beebe, Kiselev et al. 

1964; Morishige, Fujii et al. 1997; Sonwane, Bhatia et al. 1998; Bakaev, Steele et al. 

1999).  
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Figure 4.3 (b) Experimental isotherms of CO2 on MCM-41 at T = 298K (He and Seaton 

2006) and on different FSM crystals at T = 303K.  
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A comparative analysis of the isotherms obtained by different authors on different 

samples shows substantial differences in monolayer density. In particular Sonwane et al. 

[68] measured CO2 sorption in MCM-41 mesoporous molecular sieves. Although 

qualitatively the isotherms are very similar, the CO2 amount per unit area adsorbed at 

same pressures differs significantly (the isotherms scale almost exactly by a factor of 1.33 

in the entire pressure range below capillary condensation). This difference cannot be 

explainable by the fact that there might exist an inconsistency in the definition of the 

surface area or in evaluation procedures; at least. Pore size and volume measurements are 

consistent with the surface areas obtained in both works. The CO2 sorption isotherm on 

glass fibers reported by Bakaeva et al. [77] has very close values to the isotherm of 

Sonwane et al. [68] (Figure 4.3b). In this case, we decided to use the average of the three 

isotherms as a reference. The monolayer density of isotherm from Ref. [68] is close to 

that on graphitized carbon blacks (Figure 4.3a).  

 

4.2.3 Models for Silica Nanoparticles  

In this work, we employ two different models for silica nanoparticles. The first 

model, used in the grand canonical Monte Carlo (GCMC) simulations, consists of a 

spherical shell of implicit LJ centers, which are uniformly distributed over the 

nanoparticle surface (Figure 4.5a). For a LJ fluid located at a distance h from the center 

of a particle of radius R, the integration of the LJ potential gives the following expression 

for the fluid-particle interaction energy:  
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where sρ  is the surface density of the LJ atoms distributed over the nanoparticle surface, 

sfε  and sfσ  are the LJ parameters for the solid-fluid interactions (both LJ centers of the 

dumbbell model interact with the silica surface). This potential reduces to the 10-4 form 

of Steele (Steele 1974) potential at ∞→R , i.e. for a planar surface.  

 

(a)  

(b)  

 

Figure 4.4 Schematic of silica nanoparticle model: (a) spherical layer of implicit LJ (b) 

units spherical cluster of LJ units arranged in an FCC structure.  
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In order to examine how the solid-fluid interactions affect interparticle solvation 

forces, we used three different values of sfε  for the dumbbell model, which accounts for 

the hydroxylation factor. We evaluated sfρε  and sfσ  by fitting the simulated isotherms 

at a uniform flat surface to the experimental isotherms data at two temperatures: T = 

195K and T = 303K [54, 64, 76]. The low-temperature isotherms are shown in Figure 4.5 

(a). Here, the GCMC isotherm shows a visible transition corresponding to the formation 

of an adsorbed monolayer, which is smeared out in experiments because of surface 

inhomogeneities. However, the overall agreement between simulated and the reference 

isotherm is very reasonable, and the monolayer capacity agrees well and is close to that 

of the graphite surfaces [64, 76, 78]. Figure 4.5 (b) displays GCMC [79] isotherms at T = 

303K. In this case, the solid-fluid potentials were uniform, i.e. the silica surfaces do not 

have inhomogeneities (the role of inhomogeneities will be considered later). However, 

the first set of parameters ( ksfρε  = 2515Knm-2) reproduced reasonably well the 

experimental isotherm on a strongly hydroxylated FSM-10 silica surface (3.5 hydroxyl 

groups per nm2, Figure 4.4b). Lower sfε  were used to model CO2 sorption on silicas with 

medium level of hydroxylation, here represented by FSM-12 silica, and the 

dehydroxylated surface.  
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Figure 4.5 (a) The experimental and simulated isotherms at flat surfaces at the normal 

boiling temperature of 195.5K.  
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Figure 4.5 (b) CO2 sorption isotherms at mesoporous amorphous silicas of strong (FSM-

10) and weak (FSM-12) hydroxylation and GCMC isotherms at T = 303K. The letters in 

brackets denote the fluid model used (d – dumbbell and LJ – Lennard-Jones).  
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The procedure for deriving the parameters was repeated with the LJ model of CO2 

molecule. Here, we only targeted the strongly hydroxylated surfaces. We fitted the 

parameters of 10-4 potential for the LJ model of CO2 to the experimental isotherm on 

FSM-10 [70] at 303K, which is shown in Figure 4.5b. We did not calculate the low-

temperature isotherm, since the LJ model of CO2 does not give reliable results for CO2 

monolayer adsorption [54, 64]. The resulting potential for the interaction between silica 

nanoparticles and CO2 molecules is shown in Figure 4.6 together with the corresponding 

10-4 potential. From this figure we can observe that the minimum of the sorption 

potential for the flat surface is much deeper than the curved surface. The reason is simply 

that more adsorption sites are available on a flat surface than on a curved surface, which 

contributes to the stronger attraction.  
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Figure 4.6 Potential of a CO2 molecule modeled by a LJ model in the vicinity of a 

spherical nanoparticle.  
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The second model for silica nanoparticle has the same size of 2.2nm. It is 

composed of 276 silica LJ pseudoatoms arranged in a face cubic center (FCC) lattice 

(Figure 4.4b). The solid-fluid interaction energies were calculated via direct summation 

of the LJ between fluid molecule and silica pseudoatoms. When the solid particle 

becomes infinitely large, the interaction energy can be approximated using the 10-4-3 

potential of Steele (Steele 1974):  
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where ρs is the volume density of the LJ pseudoatoms in the lattice, Δ is the distance 

between the layers in the lattice, εsf and σsf are the LJ parameters for the solid-fluid 

interactions, z is the distance between the fluid molecule and the plane that contains the 

centers of the pseudoatoms of the surface layer of the FCC lattice (z is similar to R-h in 

Eq. 4.1). For our FCC model, ρs=0.03Å-3, 55.2=Δ Å. The solid-fluid parameters σsf and 

εsf were found by fitting the GCMC isotherms at a flat surface with the referenced 

experimental isotherms (Figure 4.5a). These parameters are listed in (Table 4.1). Both the 

spherical shell model and the model composed of silica pseudoatoms have their 

advantages and problems. The spherical shell model is more efficient computationally but 

is essentially a hollow particle and has a uniform surface. The FCC model has no such 

shortcomings, but its structure is artificially regular and the LJ potential is truncated at 

the cutoff distance of 2.5σff (same as the fluid-fluid potential), which is also unrealistic.  

For comparison, we also measured the solvation forces in a LJ fluid that mimic 

nitrogen at its normal boiling point 77.4K. We used a spherical shell model with fluid-

fluid parameters were taken from Ref. [54]; and the solid-fluid parameters were taken 
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from Ref. [80, 81]. All the parameters are listed in Table 4.1. A similar spherical shell 

model was used for the surface of a silica pore and good agreement with experimental 

sorption isotherms was achieved.  

 

4.2.4 Simulations of Bulk Fluid  

Simulations of bulk CO2 were involved in the verification of the fluid-fluid 

parameters. Utilizing the dumbbell model of CO2, we conducted a series of gauge cell 

MC and constant-pressure MD simulations of bulk fluid at T = 323.15K. The MD 

computations were performed using a parallel MD code, MDynaMix version 4.4 [82]. 

Constant number of particles, pressure and temperature (NPT) ensembles were employed 

to study the dependence of the density on pressure. The equilibration time was about 

300ps, and then statistics were collected over 500ps.  

 

4.2.5 Gauge Cell Method  

The relation between density and chemical potential that is necessary for GCMC 

simulations of solvation forces was performed using the mean density gauge cell method 

as implemented in SORSIM1.0 program [83]. The equilibration was performed over the 

first 20,000 steps per molecule and the average properties were collected over additional 

20,000 steps per fluid molecule. The same procedure was applied for the fitting of the 

solid-fluid parameters. The latter were performed in a 20 ffσ  slit pore with lateral 

dimensions of 12×12 .  2
ffσ

 

4.2.6 Simulations of Silica Nanoparticles with CO2 Fluid  

 



 76

In order to calculate the solvation forces between the nanoparticles, two 

nanoparticles were placed in an orthorhombic box of 30×30×30  (minimum) to 

40×40×50  (maximum). Typical simulation included 2,000 to 6,000 CO2 molecules. 

The constant number of particles (N), volume (V) and temperature (T) MD technique was 

applied with the FCC nanoparticle model. The distance between the centers of 

nanoparticles was fixed, but the positions of individual silica pseudoatoms in the 

simulations performed with FCC nanoparticle model were allowed to fluctuate.  

3
ffσ

3
ffσ

A strict approach for measuring the nanoparticle interactions in supercritical 

solvent should focus on finding an effective Hamiltonian dependent only on the 

concentration and coordinates of nanoparticles and the fugacity of the solvent but not on 

the coordinates of the solvent molecules. Monte Carlo simulations of an ensemble of 

nanoparticles with this Hamiltonian would sample configurations identical to those 

sampled in a full atomistic simulation of the corresponding system with explicit solvent. 

This mapping of a partition function of a simplified system onto that of full atomistic 

system was applied to asymmetric mixtures of hard spheres [41] and simple Lennard-

Jones mixtures [84]. However, its application to more complex systems as the one 

considered here is very complicated. Here, we employ simplistic mechanical approach by 

defining the solvation force as the average effective force acting to increase nanoparticle 

separation. Because the direct interaction between the nanoparticles are not included into 

the solvation force, it may be calculated simply as ∑∑
==

=
M

j
ijj

N

i
s flF

11

, where N is the 

number of fluid molecules, and M is the number of silica pseudoatoms in one 

nanoparticle (M = 1 for the spherical shell model), and the angular brackets denote the 
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averaging over ensemble. Here,  is the force between fluid molecule i and pseudoatom 

j,  is a coefficient that equals 1 if the pseudoatom j belongs to the first nanoparticle and 

 = -1 if j belongs to the second nanoparticle. Each MD simulation lasted for 1.5ns. The 

solvation force was averaged over the last 1ns of simulation run. The simulation setup 

was similar for obtaining the force in the GCMC simulations. The total number of 

attempted steps was 30,000 per molecule. In all GCMC simulations we used the original 

algorithm of Norman and Filinov [79]; one insertion and one removal were attempted per 

one displacement/rotation.  

ijf

jl

jl

 

4.3  Solvation Forces Between Nanoparticles 

4.3.1 Under Subcritical Conditions  

First we placed two nanoparticles in a subcritical vapor of LJ fluid at kT/ε = 

0.762, modeling nitrogen at 77.4K. The parameters for the solid-fluid interaction have 

been obtained and validated in the previous studies. The pressure was kept at a constant 

value, p = 0.38p0 . Under these conditions the fluid forms a monolayer on the surface of 

each individual particle, and the particles are surrounded by low density nitrogen vapor. 

When two particles are in contact, the monolayer covers both particles, and a liquid-like 

neck starts to form around the point of contact. When the separation increases, the liquid 

junction breaks and the particles become completely separated (Figure 4.7).  
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(a)  

(b)  

 

Figure 4.7 Simulation snapshots of two nanoparticles in subcritical liquid nitrogen 

separated (a) and at contact (b) obtained from MD simulations using FCC nanoparticle 

model. Fluid adsorbs at the particles, surrounded by rare gas. A liquid junction is formed 

between the particles when they are close enough and breaks when the distance increases.  
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The solvation force is strongly repulsive because of the layering near the points of 

contact, which has been well documented in slit pores and corners [47, 48]. As the 

distance increases, a distinct liquid junction is formed. This can be expressed in terms of 

the excess number of fluid molecules, which is defined by equation bulkex ρVNN −=Δ , 

i.e. the average number of the fluid molecules in the simulation cell minus the average 

number of molecules in the same volume of the equilibrium bulk fluid (Figure 4.8a). We 

see that increases with the increasing of interparticle distance, because of the 

gradual elongation of the junction; the oscillations of the dependence of  on d 

demonstrate that fluid layering in the junction is visible even with particles as small as 

approximately six molecular diameters. The junction gradually breaks at d = 1.0 to 

1.5nm. The continuous nature of the snap-off indicates an absence of a substantial 

potential barrier associated with the junction breakup.  

exNΔ

exNΔ
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Figure 4.8 (a) Excess number of fluid particles as a function of nanoparticle separation 

under subcritical conditions, T = 77.4K, p = 0.38p0. The fluid is modeled as LJ particles 

with parameters listed in Table 4.1.  
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The interparticle force in Figure 4.8 (b) becomes attractive as soon as the distance 

exceeds the diameter of a single molecule. Interestingly, this happens at smaller 

separations when the FCC model is used. It is possibly due to that the particles reorient 

and form a commensurate configuration. In both GCMC and MD simulations, the force 

shows two minima at approximately 0.5 and 1.0nm. This non-monotonic behavior is 

reproducible with the spherical shell and the FCC models. The second minimum roughly 

corresponds to the maximum of exNΔ ; this is where the junction starts to break up. As the 

distance increases,  becomes constant (corresponding to two monolayers on the 

surfaces of two distant nanoparticles) and the solvation force approaches zero at d0 = 

1.5nm.  

exNΔ
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Figure 4.8 (b) Properties under subcritical conditions, T = 77.4K, p = 0.38p0. Solvation 

force as a function of nanoparticle separation. The solid line and dark points represent the 

simulation results obtained from spherical shell nanoparticle model, using GCMC 

method. The dotted line and blank circles represent the simulation results from FCC 

arranged LJ pseudoatom nanoparticle model, using MD method.  
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Thermodynamically the solvation force is related to the excess number of 

particles . In the grand canonical ensemble, the solvation force fs is equal to the 

derivative of the grand potential with respect to the distance:  
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where Ω is the grand potential, which can be obtained from the total isotherm N(μ): 
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Here, Ωbulk is the grand potential of the bulk fluid in the same volume, which is 

independent of the interparticle separation d, and μ * is a given value of the chemical 

potential. Therefore:  
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This equation could have been used for the calculation of the solvation force, if we knew 

the entire sorption isotherm from μ = -∞ (pbulk = 0) to our pressure of 69atm for any 

interparticle distance d. In this work we did not calculate the entire sorption isotherms; 

however, the comparison of the solvation force fs and ∂ΔNex

∂d
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  may give us a useful 

insight on the behavior of fs at lower pressures.  
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Table 4.2 Simulation results under subcritical and supercritical conditions.  

 

fluid CO2 N2 

fluid model Dumbbell LJ LJ 

solid model 

hydroxylation 

Spherical Shell FCC Sph. Shell FCC 

high medium dehydroxyl high high --- --- 

Conditions 

T, K 318 77.4 77.4 

p, atm 69 0.38p0 0.38p0 

Results 

dmin, Å  6.7  6.7  6.7  7.1  6.2 --- --- 

fmin, 10-10N -3.6 -2.2 -0.8 -3.7 -1.8 --- --- 

d0, Å 27.7 27.6 19.7 18.3 29.6 --- --- 
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In Figure 4.8 (a), we plotted the excess number of particles as a function of 

particle separation d at pbulk = 69 atm. As seen in Eq. (4.5), we would expect that the 

more positive the slope of ∂ΔNex

∂d
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , the more negative the value of the solvation force. 

From Figure 4.8a we can see that ΔN has a maximum at about 0.9nm, which means that 

∂ΔNex

∂d
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  = 0 at this distance; while fs is negative in the entire range of interparticle 

distances d > 0.4nm. The discrepancy between the values of the distances d 

corresponding to zero solvation force and maximum of ΔNex makes us suggest that at low 

bulk pressures the maximum of ΔNex occurs at very small separations (d < 0.4nm), i.e. in 

the systems which can accommodate only one layer of molecules between the 

nanoparticles. A summary of results is listed in Table 4.2.  

 

4.3.2 Under Supercritical Conditions  

Next, we consider particle interactions at supercritical temperature. The density of 

the fluid at pbulk = 69atm is about 0.16g/cm3, which is much larger than the normal vapor 

densities but still substantially lower than the densities of liquid-like CO2. In Figure 4.2 it 

shows that at 323K CO2 is not far from the critical point and still has a visible gradual 

transition from “vapor-like” to “liquid-like” about pbulk = 130atm. According to the 

Johnson equation, for the LJ model the difference in chemical potentials between pbulk = 

69atm (our conditions) and p = 130atm (effective “transition point” where the 

compressibility reaches a maximum) is -2.3 kJ/mol, which is far exceeded by the depth of 

the adsorption field. Therefore, we could expect relatively long-range density fluctuations 

in the fluid surrounding the nanoparticles and therefore the solvation force acting at 

 



 86

longer distances (in comparison with the subcritical system). A summary of results is 

listed in Table 4.2.  

Figure 4.9 (a) shows exNΔ  for all nanoparticle and fluid models considered at T = 

318K. Qualitatively, the supercritical systems show behaviors similar to those in the 

subcritical systems:  exhibits a maximum that gradually levels off at large particle 

separations. The isotherm (h) depends strongly on the strength of the adsorption 

field, which accounts for the hydroxylation level. For dehydroxylated particles, the value 

for  obtained with the dumbbell model is nearly independent on the interparticle 

distance. Only at d < 0.5nm, 

exNΔ

exNΔ

N

exNΔ

exΔ  shows visible growth due to the increase of the 

available surface area because of particle separation. Then exNΔ (d) levels off, showing 

an almost constant value with a hardly visible maximum at 0.9nm. Correspondingly, the 

solvation force shows a minimum at 0.7-0.8nm and then approaches to zero, vanishing at 

a distance of approximately 2.0nm.  

As the hydroxylation increases and the sorption field strengthens, the non-

monotonous behavior of  becomes more pronounced, and the solvation force 

becomes more negative and long-ranged. This can be interpreted in terms of the 

formation of a liquid-like “junction”. Although no distinct menisci could be identified in 

a supercritical fluid of this density, we could observe a visible densification of the fluid 

within the range considered. The maximum attraction force reaches a value of 3.6

exNΔ

×10-

10N, and the attraction vanishes at, d0 = 3.5nm, twice as much as the distance between 

two dehydroxylated particles.  
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Figure 4.9 (a) Excess number of fluid particles as a function of nanoparticle separation 

under supercritical conditions, T = 318K, p = 130atm, using different fluid and solid 

models. LJ and dumbbell models are referred to the fluid model.  
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Figure 4.9 (b) Solvation force as a function of nanoparticle separation under supercritical 

conditions, T = 318K, p = 130atm, using different fluid and solid models. LJ and 

dumbbell models are referred to the fluid model.  
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Figure 4.9 (a) and (b) also show the dependence of the excess number of particles 

 and the solvation forces on the molecular model. The results for the dumbbell 

model at the highest level of hydroxylation and the LJ models were expected to agree 

well, since they represent the same target system. Our results, however, do not show that 

level of agreement, and even when the same nanoparticle model is used, differs 

significantly. This difference can hardly be related to just the difference in monolayer 

capacity for the dumbbell and spherical models (indeed, the dumbbell model shows 

greater monolayer capacity [64]). Rather, we tend to believe that this discrepancy is due 

to the difference in fluid compressibility between the two models. The density change 

caused by the adsorption field is roughly equivalent to the shift in chemical potential. 

Larger compressibility dN/dμ leads to a larger density shift (outside the first monolayer, 

which is already liquid-like). From our GCMC simulations of bulk CO2 it appears that 

the dumbbell model slightly overestimates the critical point. As a result, it underestimates 

the compressibility of CO2 in the range 68 < pbulk <100atm. This leads to lower 

exNΔ

exNΔ

N exΔ  and 

shorter range for the attractive solvation force, which vanishes earlier for the dumbbell 

model than for the LJ model. However, the location and the depth of the first minimum of 

the solvation force agree well between the two fluid models. The difference in 

compressibility did not have any substantial effect on the reference isotherm at critical 

temperature (See Figure 4.3b) since a lower pressure was considered in Section II; the 

compressibility was well reproduced. Thus, we believe that the results obtained with the 

LJ model are more reliable since the LJ model describes more accurately the bulk 

equation of state at the given temperature and pressure range, despite the model 

simplicity.  
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Moreover, the comparison between the FCC and spherical shell models sheds 

light on the influence of the cutoff of the solid-fluid potential. The short-range cutoff 

undoubtedly reduced the attractive force, which vanished at distances as short as 18nm, 

compared to 25nm, showed by the spherical shell model.  

The sorption of CO2 at the particle surface and the resulting interparticle force can 

be expressed in terms of the formation and breakup of a fluid “junction” between the 

particles as the interparticle distance increases. That is, in general the situation is similar 

to that in a subcritical system. Therefore, the resulting solvation force is mostly negative 

(attractive) and its dependence on the interparticle distance shows a minimum. The 

important differences become evident by the long-range nature of density shift in the 

fluid created by the sorption field of the particles: the interparticle force becomes 

effectively long range and strongly depends on the strength of particle-fluid interaction, 

which increases with the level of hydroxylation. The attraction is strongest for the 

densely hydroxylated particles. Thus, we expect the RESS technique to be more efficient 

for solid materials and gases with weaker solid-fluid interactions. The thermodynamic 

comparison of the excess sorption isotherm and solvation force shows that the attraction 

extends to larger distances as the fluid pressure increases.  

In this work, we examined the forces between a pair of nanoparticles. It is worth 

mentioning that the forces in an ensemble of nanoparticles in a molecular solvent cannot 

be successfully represented by pairwise potentials between the nanoparticles. That is, the 

forces in a cluster of three particles located in a close proximity of each other is not equal 

to the sum of forces between the pairs of the same particles considered separately, i.e. 

without the third one in close proximity. We suspect that not only three-particle, but even 
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four-particle effective interactions may become important in nanoparticle assemblies, and 

therefore our estimates would not be valid, for example, for deaggregation of a dense 

nanoparticle agglomerate. However, in relatively loose agglomerates with the estimated 

fractal dimension of 2.57 as considered in ref [85], three- and four- way contacts become 

relatively rare, and the deagglomeration is still controlled by the forces between 

individual nanoparticles considered in the present work.  

 

4.4  Deagglomeration of Nanoparticles 

Here we focus on exploring the shearing forces necessary to break silica 

agglomerates in supercritical carbon dioxide. This is very costly computationally, so we 

considered small agglomerates of the order of 8-10 nm under the effect of shearing 

forces. In general, agglomerate breakup may occur by two modes: collisional mechanical 

breakup and turbulent fluid mechanical breakup. In this present work, our goal is to 

develop a fundamental understanding of the second one, using a fluid shearing flow for 

the breakage of nanoparticle agglomerate. The research tasks include characterization of 

the degree of deagglomeration as a result of applying shearing forces of different 

magnitude along with the development of a fundamental understanding of the strength 

and breakup of the agglomerates of nanoparticles through molecular dynamics modeling.  

 

4.4.1 Simulation Setup and Visualization  

In this part of work, we use the LJ model for CO2 and the FCC model for silica 

nanoparticle. In a box of 55×40×40σ ff
3 , 27 nanoparticles aggregate and form a cluster 

after 10ps of equilibration, having a diameter of approximately 10 nm. We choose a 
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longer dimension in the x-direction, in which the shearing forces are applied. Typical 

simulation includes 30,104 CO2 molecules, giving a density of 0.6 g/cm3. The constant 

number of particles (N), volume (V) and temperature (T) MD technique is applied. The 

LJ potential was truncated at the cutoff distance of 2.5 ffσ  (same as the fluid-fluid 

potential). The temperature of the system is adjusted to its value of 318 K (this 

temperature is slightly above the critical point 304K). External forces of opposite 

directions are applied onto the top and bottom of agglomerate to create the shearing 

motion (Figure 4.10).  

 

 

 

Figure 4.10 External forces of opposite directions are applied onto the top and bottom of 

agglomerate.  
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First we examined the strength of the external forces. Two values were 

considered: 4.28×10-8 N (strong), and 1.07×10-8 N (weak). They are in the same order of 

magnitude, for both cases, the agglomerate breakup after applying the shearing forces. 

Simulation snapshots of the silica nano-agglomerate and after applying forces broken 

pieces are shown in Figure 4.11. We can clearly see that at the beginning, the 

nanoparticles do not deform and they remain spherical throughout. When applying the 

forces, the nanoparticles start to merge, forming an agglomerate. Then the agglomerate 

breaks into two pieces, with the upper and lower parts moving in the opposite directions. 

When the system is under strong shearing forces, the agglomerate starts to break apart 

after 0.1 ns. For the case of applying relative weak shearing forces, the agglomerate also 

experience the same process of deformation followed by elongation, and finally breaks-

up, but it happens at a later time.  
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(a)  (b)  

(c)  (d)  

(e)  (f)  
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Figure 4.11 Simulation snapshots of the agglomerate deformation and breakage under 

the stronger forces: (a) t=0 (b) t=0.08ns (c) t=0.10ns (d) t=0.11ns (e) t=0.12ns (f) 

t=0.15ns.  
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4.4.2 Quantify the Breakage  

Besides visualization, the agglomerate breakage can also be quantitatively 

measured by a histogram, which is obtained by counting the total numbers of silica units 

along the axis. At the breakup point, the density profile shows a big discontinuity in the 

x-direction (Figure 4.12). A group at Princeton also studied this process theoretically, and 

obtained that the flow of the supercritical fluid inside the nozzle in the RESS device 

generates shear forces of the same order. We could quantitatively confirm that 

deagglomeration occurs under the influence of those values of the shear force.  
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Figure 4.12 Histogram of agglomerate as a function of distance at the breakup point.  
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In order to understand the effect of agglomerate size, we performed similar 

simulations of smaller agglomerate under shearing forces. In this case, the agglomerate is 

composed of 18 nanoparticles, giving a diameter of approximately 7 nm. While applying 

the shearing forces of the same order of magnitude as previously for the large 

agglomerate, the small agglomerate experiences elongation, but no breakage. Then the 

shearing forces are increased to one order of magnitude larger, and the agglomerate was 

ruptured (Figure 4.13). This can be confirmed by the Rumpf theory, stating that the 

maximum tensile strength is inversely proportional to the diameter of the granular 

particle. We expect to develop a force model balance in the nanometer scale, and to 

correlate the agglomerate size with the shearing force needed to break the agglomerate.  

 

 



 98

 

 

Figure 4.13 Final simulation snapshot of the small agglomerate breakage.  
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4.4.3 Diffusion of the Fluid  

The mean square displacement (MSD) of atoms in a simulation can be easily 

computed by its definition: ( ) ( ) 20rtrMSD rr
−=           (4.6) 

where  denotes here temporal averaging over all the atoms (or all the atoms in a given 

subclass) and rr  is the molecular position. Care must be taken to avoid considering the 

“jumps” of particles to refold them into the box when using periodic boundary 

conditions. The MSD contains information on the atomic diffusivity. Figure 4.14 shows 

the mean square displacement of fluid particles as a function of time. As we can see, the 

fluid diffusion increases extremely after agglomerate breakage, especially in the x-

direction, where the shear is applied.  
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Figure 4.14 The x, y, and z components of fluid mean square displacement as a function 

of time.  
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For our system, MSD grows linearly with time. In this case it is useful to 

characterize the system behavior in terms of the slope, which is the diffusion coefficient 

D from Einstein relation:  

( ) ( ) 20
6
1lim rtr
t

D
t

rr
−=

∞→
             (4.7) 

The diffusion coefficient can be calculated from the slope of the curve: 

( )
t
tr

d
D

∂
∂

×=
2

2
1 . In both y and z directions, the MSD increases monotonically with time, 

giving a constant diffusion coefficient:  

( ) scm
s

cm
ns

D 25
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1058.9
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32
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1 −
−

−

×=
×

××
×

=×
×

=
σ  

It is reported in many experimental and computational studies [86] that the self 

diffusion coefficient of CO2 is in the magnitude of 10-4 cm2/s, ranging from 1.2 to 

1.4×10-4 cm2/s. Our calculated value of CO2 self diffusion coefficient is expected to be 

smaller than the experimental value, because the nanoparticle agglomerate hinders the 

fluid movement. When the agglomerate starts to elongate, the fluid diffusion is 

accelerated almost 2 times faster. We also expect to see a more free fluid motion when 

the agglomerate is completely stretched apart, and the slope of the curve can be good 

indicator for the breakage of the agglomerate.  

 

4.5  Summary 

In this chapter we report molecular simulation studies on the interaction forces 

between silica nanoparticles in supercritical carbon dioxide at 318K. We have explored 

the interactions of silica nanoparticles in supercritical CO2. Through a comprehensive 
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analysis of the available experimental data on CO2 sorption at siliceous surfaces we 

examined the solid-fluid interactions and fitted the parameters of solid-fluid potentials. 

We have applied external shearing forces at the top and bottom of the agglomerate. The 

agglomerate experiences a process of deformation followed by elongation, and break-up. 

The particle distribution histogram shows a discontinuity at the break point. For smaller 

agglomerates, larger shearing forces have to be applied. Our calculated value of CO2 self 

diffusion coefficient is expected to be smaller than the experimental value, because the 

nanoparticle agglomerate hinders the fluid movement. In the direction of the shearing 

forces, the diffusion of CO2 shows a steep increase as the agglomerate breaks, confirming 

the rupture of the agglomerate. It can be suggested that simulating the behavior of one 

single agglomerate can be quite representative of the whole deagglomeration process as 

long as the interactions between primary agglomerates are not overwhelming.  
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Chapter 5 

RHEOLOGICAL PROPERTIES OF POLYMER NANOPARTICLE 

COMPOSITES 

 

Chapter 2 explains the molecular model built for the system of silica nanoparticles 

embedded in polyethylene melt, and Chapter 3 investigates the dispersion of 

nanoparticles in a polymer matrix. In this chapter, we focus on studying the rheological 

properties of polymer nanoparticle composites.  

In what follows, Section 5.1 introduces and reviews the simulations of simple 

shear (or Couette) flow. Instead of applying the Lees-Edwards boundary conditions, we 

employ a different method for generating shear. In Section 5.2, we validate our coarse-

grained model for polyethylene and compare the calculated structural and dynamic 

properties with current experimental data and theories. Section 5.3 focuses on studying 

the mechanisms governing the linear viscoelastic behavior of the composites, with 

spherical nanofillers dispersed in polymer melt matrices.  

 

5.1  Introduction to Simple Shear Flow 

Simple shear is defined as an idealized treatment of a fluid between two large 

parallel plates (to permit ignoring edge effects) of area A, separated by a distance h. If 

one plate moves relative to the other with a constant velocity V, requiring a force F acting 

in the direction of movement, and the density, pressure, and viscosity throughout the fluid 

are constant, the Newtonian equation can be coupled with the equations of motion and 

continuity to show that the velocity gradient in the fluid is constant. This idealized case 
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(simple shear) is usually used to define shear viscosity. Thus simple shear flow may be 

expressed as  and zGvx ⋅= 0== zy vv  where the flow in the x-direction changes in 

magnitude along the z-direction, and G is a scaling parameter. Simple shear flow often 

occurs in many industrial processes, and regularly serves as the characteristic flow by 

which the interaction coefficient is based upon [87].  

A Newtonian fluid is one in which the viscosity is independent of the shear rate. 

In other words a plot of shear stress versus shear strain rate is linear with slope η . In 

Newtonian fluids all the energy goes into molecules sliding. In non-Newtonian fluids, the 

shear stress/strain rate relation is not linear. Typically the viscosity drops at high shear 

rates — a phenomenon known as shear thinning. A schematic plot of shear force vs. 

shear rate for typical Newtonian and non-Newtonian fluids is given in Figure 5.1.  

 

 

Figure 5.1 Schematic plots of shear force vs. shear rate for Newtonian and non-

Newtonian fluids.  
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 In molecular dynamics, the standard way to model shear flow is by applying the 

Lees-Edwards boundary condition [26]. Here in this work, we shear the liquid by moving 

the solid wall past the liquid. The positions and velocities of the fluid particles are 

updated using the Verlet or a similar algorithm. The walls are assumed to be made up of 

“virtual” particles, and the positions and velocities of them are not updated using the 

Verlet algorithm. The interactions between the fluid particles and wall particles are 

determined by Equation 2.2 but are more repulsive than the fluid-fluid interaction. In our 

simulations, the upper wall is given a velocity in the x-direction and the lower one is 

given a velocity of the same magnitude, but in the opposite direction. The periodic 

boundary conditions are enforced in other directions. These movements of the imaginary 

walls create the drag forces that act on the fluid particles, and a velocity gradient in the 

fluid between the plates, which can be used to obtain the shear rate.  

Figure 5.2 presents the flow velocity profiles from the center point to one side of 

the walls at different wall moving speeds, showing the velocity of fluid in x-direction as a 

function of z. The velocity increases linearly with increasing the z-distance from the 

center. The shear rate can be given by the velocity gradient dzdv x  of the linear part in 

Figure 5.2. The calculated results are listed in Table 5.1. The velocity gradient increases 

with the increasing wall moving speeds. From now on, we refer these cases in terms of 

shear rate, instead of wall velocity.  
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Figure 5.2 Velocity profiles of different cases. The shear rates are in the unit of 1014 s-1.  

 

 

Table 5.1 Calculated shear rates of different cases. The wall velocities and shear rates are 

in units of 105 m/s and 1014 s-1 respectively.  

 

Case # I II III IV 
Wall velocity 0tσ  0.2 0.5 1.0 1.7 
Shear rate dzdv x=γ  0.0098 0.0244 0.0484 0.083 
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5.2  Polyethylene Under Shear 

Several interesting phenomena exhibited in polymeric liquids in flows are 

typically due to the non-Newtonian nature of the macromolecular fluid. For example, the 

viscosity of polymer solutions and melts in shear flows undergo a decrease with increase 

in shear rate. This shear-thinning behavior is observed in most polymer solutions that 

have a shear rate dependent viscosity, although there are a few polymer solutions that are 

dilatant (i.e. that exhibits shear-thickening). The normal stresses are also non-zero and 

shear rate dependent. There are many experimental investigations of shear thinning [88, 

89]. Recent work by Micic and Bhattacharya on the rheology of various polyethylene and 

their blends used a Rosand Precision Twin Bore Instrumented Rheometer to measure the 

shear viscosity [90].  

Several simulation methods can be used to study polymer melts and solutions 

under shear. Examples of the use of equilibrium molecular dynamics simulations for 

polymeric liquids include the work of Paul et al. [91, 92] and Harmandaris et al. [93, 94]. 

In both of these works, dynamical properties of chain molecules are compared to the 

predictions of the Rouse model. Moreover Paul et al. [92] found quantitative agreement 

between simulation and experiment for the dynamic structure factor of C100 after 

correcting for a 20% difference in the self-diffusion coefficient. Shear thinning of chain 

molecules in molecular simulations was observed for the first time by Morriss et al. 

(1991). Kremer and Grest [95] have performed simulations at equilibrium with a 

Brownian dynamics algorithm with many aspects similar to deterministic equilibrium 

MD. Using a non-equilibrium molecular dynamics algorithm developed by Edberg et al. 

(1986) they simulated planar Couette flow of decane and eicosane. At a single strain rate 
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expected to fall within the Newtonian regime, Mondello and coworkers [96] used NEMD 

to calculate the viscosity of C66H134 and found excellent agreement with predictions of 

the Newtonian viscosity based on a combination of equilibrium properties and the Rouse 

model.  

In this work, the rheological properties of polyethylene are first studied in order to 

validate the coarse-grained model. Several static and dynamic properties are carried out, 

such as the end-to-end distance and the shear viscosity of the linear polymer melts. Rouse 

scaling behavior is reproduced for monodispersed polymeric systems with different chain 

lengths. Equilibrium molecular dynamics is used in these cases where information about 

the time dependent dynamics, rather than just the configuration, is desired.  

The simulation data under planar Couette flow (PCF) were obtained by 

performing constant particle number, volume, and temperature (NVT) simulations using 

the Verlet algorithm incorporating the Nosé-Hoover thermostat. The coarse-grained 

model was used to describe polyethylene. This model does an excellent job of describing 

the thermophysical properties of liquid and gaseous n-alkanes under quiescent conditions. 

Chain lengths investigated vary from 8 to 20-beads per chain. The simulations are 

performed in a parallelepiped box with periodic boundary conditions applied in the x and 

y directions; in the z direction the fluid is confined by two imaginary walls. The reduced 

cell dimensions are , and cz rL 16= cyx rLL 30== . The total number of particles in the 

box is fixed at 57600, which gives an overall reduced density, . The total 

density is not affected by the chain length.  

0.43 =crρ
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5.2.1 Density Profile and Bond Length Distribution  

The number density of polymer beads is plotted from the center point of 

simulation box, along the z-direction for different shear rates (Figure 5.3). All the profiles 

nearly overlap with each other. At distances far away from the boundary, a constant 

density profile confirms that the fluid is spatially homogeneous. Small fluctuations 

happen at the vicinity of the boundary, indicating the layered structure of the fluid 

particles at that point. This is an edge effect due to packing of the particles at the 

boundary.  
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Figure 5.3 Number density profiles for polymer chain of L=8 at different shear rates (in 

units of 1014 s-1).  
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For polymers in equilibrium, Equation 2.2 gives an approximately symmetric 

bond length distribution with a maximum at approximately 0.95rc. In Figure 5.4 the 

coarse-grained bond length distribution for polymer chains with no shearing is illustrated 

by the solid line. The same graph also depicts the bond length distributions of polymer 

chains under different shear rates. All the histograms are normalized. In the presence of a 

shear field, the intramolecular and intermolecular configurations change from the 

equilibrium state in order to minimize the free energy in the presence of the external 

field. After 2ns, we observe a bimodal distribution of bond length, with two maximum, 

one at 0.95nm and the other at 1.35nm, indicating that some chains are being stretched. 

This can be explained by the strong repulsive force from the walls to polymer chains. 

Regardless of the value of the velocity at which the walls are moving, we observe that the 

distribution of bond lengths is similar after 2ns. The final distribution shows a given 

percent of “elongated” bond lengths at 1.35nm and also a percent of “equilibrium” 

lengths at 0.95nm, i.e. some of the polymer bonds remain at their equilibrium length. 

There is no significant difference between different shear rates.  
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Figure 5.4 Polymer bond length distributions under zero and different shear rates (in 

units of 1014 s-1).  
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5.2.2 Chain Dimension and Diffusivity  

Several equilibrium properties are of interest as well, including the average chain 

dimension and the self-diffusion coefficient. They are important because they help us 

gauge the agreement between properties predicted by the potential model and 

corresponding properties measured by experiment.  

In order to examine the variation of chain dimensions under shear, we calculate 

the mean squared radius of gyration. In polymer physics, the radius of gyration is used to 

describe the dimensions of a polymer chain. For a particular molecule at a given time it is 

defined as: (∑
=

−=
L

k
meankg rr

L
R

1

22 1 ) , where  is the mean position of the monomers. 

The radius of gyration is also proportional to the root mean square distance between the 

monomers:

meanr

(∑ −=
ji

jig rr
L

R
,

2
2

2

2
1 ) . Here  and  are the location of two consecutive CG 

beads. L is the polymer chain length. And the end-to-end distance is defined as 

ir jr

( )2
1

2
eee rrR −= , where and  are the positions of the first and last beads.  1r er

Based on averages accumulated during the course of simulation, we measured for 

our system the values of  and . Table 5.2 summarizes the results for polymer chain 

(L=8) at zero and different wall velocities. The ratio is close to Gaussian-chain behavior 

having the relation 

2
gR 2

eeR

62
gR2 =eeR . This behavior has been observed previously for a C100 

melt [91] as well as melts of shorter alkanes [96-98]. Based on these results we conclude 

that the coarse-grained representation of the system preserves static properties. In a shear 

flow, polymer chains near the surface are forced to migrate in the shear direction, and are 
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stretched. The ratio increases with the increasing of wall velocity, because of the chain 

extension.  

 

Table 5.2 Comparison of chain dimensions: radius of gyration ( ) and end-to-end 

distance ( ) at zero and different shear rates (in units of 1014 s-1).  

2
gR

2
eeR

 

 γ&  = 0.0 γ&  = 0.0098 γ&  = 0.0244 γ&  = 0.0484 γ&  = 0.08 
2
gR  (Å2)  10.9 11.0 11.0 11.2 11.4 
2
eeR  (Å2)  65.7 67.9 68.1 69.8 72.6 

Ratio 6.03 6.17 6.19 6.23 6.37 
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The end-to-end distance of polymer chains is an important structural property of 

polymer materials. Figure 5.5 gives the end-to-end distance as a function of shear rate for 

three different polymer chain lengths. They all increase with increasing shear rate, which 

illustrates that the polymer chains stretch to a certain extent under shear flow. The stretch 

ability also increases with increasing chain length.  
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Figure 5.5 End-to-end distances as a function of shear rate for different polymer chain 

lengths.  
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Molecular simulation calculations of self-diffusion coefficients under equilibrium 

conditions are usually performed either in terms of mean squared displacements (MSD) 

and the Einstein relation or velocity autocorrelation functions and the Green–Kubo 

relation. When the former method is employed for chain systems, the self-diffusion 

coefficient is calculated in terms of the limiting slope of the mean squared displacement 

(MSD) of the chain centers of mass as a function of time based on the Einstein relation 

. Now we first define the MSD of the center-of-mass ( ) tDtMSD 6= cmR  of a chain: 

( ) ( ) ( )[ ]20cmcm RtRtMSD −= . Figure 5.6 gives the total and the three components of 

MSD of polymer chain center of mass. The diffusion in the direction perpendicular to the 

surface is small and liquid-like, as one would expect for a confined fluid between walls. 

The diffusion along the shearing direction is significantly greater for the polymer. A real 

chain however will be severely hindered by the interactions with surrounding chains, 

leading to subdiffusive behavior.  
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Figure 5.6 Components of the mean square displacement of polymer chain center of 

mass as a function of time for polymer chains of L = 8.  
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5.2.3 Shear Stress and Viscosity  

In the literature several viscometric functions are commonly used to characterize 

the rheology of fluids, such as shear stress, viscosity and first normal stress. For a 

homogeneous equilibrium atomic system the stress tensor is calculated using the Irving-

Kirkwood (IK) method: ∑ ∑∑
>

+−=
p p pN

i

N

i

N

ij
ijxijzixizizx Frvvm

V
1τ , where V is the volume of 

the system,  is the minimum image vector between atoms i  and ijr j , and  is the force 

between the same two atoms, where  is the particle mass, Np the number of particle, 

ijF

im

uiα  and  the peculiar velocity components of particle i, for example, uiβ ( )xvvu ii
r

−=α α , 

with ( )xrv  being the stream velocity at position xr , and ...  denotes the ensemble 

average.  is the β–component of the force exerted on particle i  by particle βijF j . The 

first sum in the right-hand side of the above equation denotes the contribution to the 

stress from the momentum transfer of particles. The second sum represents the 

contribution from the interparticle forces. In the simulations, the expression given for the 

stress tensor is averaged over 1000 time steps.  

In order to test the accuracy of the coding of the IK equation, we performed an 

additional calculation of the shear stress, which is directly defined by AF . F is the 

summation of x component of the drag force, which is applied to the fluid particles 

during the simulations. A is the area where the shear is applied. Table 5.3 shows the 

comparison of the two different methods and it can be seen that there is excellent 

agreement between them. Thus, we confirmed that the values obtained from the Irving-

Kirkwood equation do indeed correspond to the shear force.  
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Table 5.3 Shear stresses computed from Equations ∑ ∑∑
>

+−=
p p pN

i

N

i

N

ij
ijxijzixizizx Frvvm

V
1τ  

(IK method) and AF=τ  for polymer chains of L=8.  

 

γ ×10-12, s-1  0.98 2.44 4.84 8.0 

IK, τ ×10-12, Pa  1.53 2.14 2.70 3.25 
F/A, τ ×10-12, Pa  1.57 2.17 2.75 3.28 
 

There are two different approaches to calculate the viscosity by molecular 

dynamics simulations: either by the time correlation function theory employing the 

Green-Kubo integral formulas or Einstein relations in equilibrium simulations, or by 

nonequilibrium molecular dynamics. The shear-rate dependent viscosity is determined 

from the constitutive relation: 
γ

τ
η

&
zx= . The viscosity of the liquid is the ratio of the 

applied shear stress to the resulting strain rate (or equivalently, the ratio of the shear 

stress required to move the solution at a fixed strain rate to that strain rate). 
dz
dvx=γ , 

where vx is velocity in the x direction. The relations between viscosity (η ), shear stress 

(τ ), and shear rate (γ ) are γητ ⋅= .  

In Figure 5.7 shear viscosity is plotted versus shear rate for different polymer 

chain lengths. The shear viscosity exhibits expected shear thinning with increased strain 

rate over the entire range. The average power law exponents are calculated as −0.65 for 

shorter chains and −0.4 for longer chains. For polymeric liquids, power law exponents are 

generally reported in the range −0.4 to −0.9 [99]. The lower Newtonian regime was not 

reached because the examined shear rates were still not low enough. The error bar, 
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estimated from the scatter during the course of the simulation, is likely to be an 

underestimate of the true uncertainty in the simulation for such a relatively short run and 

at low strain rate.  
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Figure 5.7 Shear viscosity vs. shear rate for different polymer chain lengths.  
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5.2.4 First and Second Normal Stress Difference  

Far from equilibrium and in particular for polymeric liquids under PCF the 

diagonal components of the stress tensor become unequal, leading to normal stresses. In 

these situations the first and second normal stress coefficients are reintroduced here: 

21 γ
τ
&
xx=Ψ  and 22 γ

τ
&

yy=Ψ . These functions measure the difference between stresses normal 

to the faces of a cubic volume of fluid. Data for the steady state first (Ψ1) and second 

(Ψ2) normal stress coefficients under planar Couette flow are presented in Figure 5.8. It 

had been suggested in the Weissenberg Hypothesis [100] that the second normal stress in 

fluids is zero, however it is now known that the Ψ2 is about 10% of the value of Ψ1. 

From the simulation data it is seen that both functions decrease in value as the strain rate 

is increased. In general these functions show an increase with molecular length, which is 

comparable with viscosity. However in comparison with the shear viscosity, the range of 

Ψ1 is about an order of magnitude greater, particularly for longer molecules.  
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Figure 5.8 First and second normal stress coefficients vs. shear rate for polymer chains of 

L=8.  
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There have been several publications where comparison has been made between 

molecular dynamics simulations, the Rouse model and the model of Doi and Edwards. 

Some of these have aimed to observe reptative diffusion; some have calculated the 

correlation functions for the Rouse modes while others have simply looked for the onset 

of the reptative regime in both rheological properties and the self-diffusion of molecules 

in the melt.  

 

5.3  Rheological Properties of PNC 

From processing points of view, it is very important to explore the rheological 

properties of polymer nanocomposites and also relate their rheological properties to the 

nature and microsctructure of the materials. The flow of low molecular weight polymer 

melts and solutions have been relatively well understood, but our understanding of the 

viscoelastic properties of polymer nanocomposites and influence of polymer-particle 

interactions on the viscoelastic properties of the matrix is quite immature. In spite of a 

large body of results coming mainly from experiments, the understanding of behavior of 

polymer composites under shear flow and the possibilities of a theoretical description are 

still limited, especially on the molecular level. Providing an insight into the flow induced 

phenomena on the molecular level such as coil deformation and chain orientation is of 

great importance. Therefore computer simulations can be very helpful.  

A huge amount of studies have dealt with the improvement of the thermoelasticity 

of plastic films and the most studied approach is the modification of the plastic material 

by including fillers and specifically nanofillers [101]. The inclusion of nanoparticles in 

polymer matrices leads to undesired variations in other properties and in particular to a 
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strong increase in melt viscosity, which limits the maximum amount of inorganic 

nanofiller to less than 10 wt.% [102]. The improvement of the thermal and mechanical 

properties observed for nanocomposites with respect to unfilled matrices has been 

generally attributed to two distinct phenomena. Filler particles can influence the 

viscoelastic properties of the system by a variety of different mechanisms. On one hand, 

the particle induced effects on the dynamics of polymer segments modify the relaxation 

spectrum of the polymers. Second, particle aggregation effects lead to slow relaxations 

and substantial enhancements in elasticity. In this section, we include nanoparticles in 

polymer matrix and study the shear-induced properties.  

 

5.3.1 Shear Viscosity and Einstein Equation  

Figure 5.9 shows the relative viscosity ( 0ηηη =r ) plotted vs. shear rate for 

different nanoparticle filling fractions. Over the range of shear rates studied, the shear 

viscosity is strongly dependent on the shear rate. These trends are quantified by fitting the 

power-law regions in the data with the following relationship: . The values of 

the parameters A and B are listed in Table 5.4 and show that the magnitudes of the 

viscosity exponents |B| are greater in the more filler concentrated systems, indicating that 

increased loadings of the particles leads to an enhanced shear thinning of the composite. 

For the systems of polymer suspension, the addition of particles leads to an increase in 

the overall viscosity. This monotonic increase of viscosity with filler concentration is also 

commonly observed in experimental systems.  

BA γη ⋅=
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Figure 5.9 Shear rate dependent relative viscosity for different nanoparticle filling 

fractions, and no fillers. The dotted lines interpolate between the data points as a guide 

for the eye only.  
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Table 5.4 Description of shear viscosity curves: Parameters A and B obtained from the 

power-law fit to the data in Figure 5.9.  

 

Nanoparticle 
filling fraction 0.75 % 1.5 % 2.25 % 3.0 % 

A 0.0129 0.017 0.0188 0.0215 
B -0.71 -0.79 -0.89 -0.91 
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The results of our simulations are compared with an experimental analysis of a 

real polymer filled with spherical nanoparticles. The experimental system contains much 

longer polymers, as well as filler particles, which are as much as 5 times larger than those 

simulated. Despite these considerable differences of scale, this study aims to illustrate a 

general qualitative agreement between the forms of the shear viscosity versus strain rate 

curves observed via experiment and simulation.  

Einstein predicted that the viscosity of a dilute suspension of rigid spheres has a 

linear relation with particle volume fraction φ , written as Equation φ
η
η 5.21

0

+=  where 

η  and 0η  are the viscosities of the suspension and the suspending medium, respectively. 

The Einstein relation is justified only for a very dilute suspension system with negligible 

interparticle interaction and with an identical continuous medium. Given the interparticle 

interaction, the viscosity of the suspension increases significantly over that predicted by 

the Einstein equation.  

As expected for systems so different, there is significant quantitative deviation of 

the simulation results from the experimental data, which is most clearly apparent in the 

zero shear viscosity results. The zero-shear viscosities of each of the systems are 

calculated by extrapolating the shear viscosity to γ& =0, and scaled by the zero-shear 

viscosity of the polymer melt 0pη , for each system.  

Figure 5.10 shows the zero shear viscosities 0ηη  plotted against nanoparticle 

filling fraction φ , for the simulated systems of various polymer chain lengths. As 

expected for simple fluid suspensions [103], it is observed that, for all the polymer 

matrices, the shear viscosity consistently increases with filler concentration. The 
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monotonic increase of viscosity with filler concentration is a commonly observed trend in 

experimental systems. In addition to Kao and Bhattacharya’s PP-CaCO3 studies [104], 

this behavior has been observed in a range of polymer-clay systems [105-108] and seems 

to be an important general feature of composites of molten polymers with micron-scale 

fillers. The trends in the steady-state shear viscosities of the simulated polymer-filler 

system agree with those seen in the experimental results; shear viscosities, zero-shear 

viscosities, and the rate of shear thinning are all seen to increase with filler content in 

both the experimental and simulated systems.  
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Figure 5.10 Zero-shear viscosity 0ηη  as a function of nanoparticle filling fraction for 

different polymer chain lengths.  
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Previous research on polymers filled with spherical microparticles [109] has 

shown that, rather than following predictions depending exclusively on filling fraction, 

the viscosity of the composite can be sensitive to the size of the filler particles 

themselves. Smaller-sized spherical filler particles present to the polymer a larger surface 

area for each filling fraction than larger particles. High aspect ratio fillers such as clay 

platelets show increased viscosities at lower concentrations [106-108] due to their higher 

surface area. Similarly, decreasing the size of spherical filler particles while keeping the 

filler volume fraction constant is also expected to increase the viscosity of the composite 

[109], in some cases resulting in a yield stress. It is reasonable to conclude that this 

occurs mainly due to the increased polymer adsorbtion on the filler particles due to the 

increased available surface area, and is thus associated with strong thermodynamic non-

ideality of the composite system.  

 

5.3.2 Nanoparticle Motion Under Shear  

The dynamics and rheology of colloid suspensions have been well-understood in 

a continuum fluid-mechanical framework dating back to Stokes and Einstein [103]. These 

theories predict that the diffusivity of particles decreases with an increase in the viscosity 

of the fluid, and that the addition of particles increases the overall viscosity of the 

suspension. To address the equilibrium dynamical characteristics of the suspension, we 

compute the mean-squared displacements (MSD) of the nanoparticle center of mass 

2
Cr , corresponding to the simplest of the time dependent correlation functions for our 

system. We compute 2
Cr  as ( ) ( ) ( )[ ]22 0iiC rtrtr −= , where ...  denotes the averages 

over different nanoparticles as well as different blocks of time interval t.  
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Displayed in Figure 5.11 (a) is our simulation results for the time dependent MSD 

2
Cr  of nanoparticles center of mass for different volume fractions φ in polymer matrix 

(chains of L = 8). From the slope of these lines, the self-diffusion coefficient 

trD 62=  is obtained (Figure 5.11 b) and is averaged over the number of nanoparticles 

in the system. Upon increase in the volume fraction, we observe the diffusion decrease. 

The diffusion constant D as a function of packing fraction of the particles have been 

widely studied since they provide a useful test of theoretical modeling and more 

specifically the role of long range, hydrodynamic interactions [110].  
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Figure 5.11 Mean square displacement (a) and diffusion coefficient (b) of nanoparticles 

in polymer melt.  
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5.4  Summary 

In this chapter, we study the rheological properties of silica nanoparticle in 

polyethylene melt. A few of the rheological properties are compared with theory and 

experimental studies for validating our coarse-grained model. The steady-state shear 

viscosities of a model polymer nanocomposite are studied and can be usefully compared 

with experimental results for real polymer composites. The difference in scale between 

the simulated systems and the composites examined experimentally precludes 

quantitative comparisons of the results, but several qualitative similarities in shear 

rheology are evident. It is shown that the shear viscosities of nanoparticle-filled systems 

exceed those of the pure polymer, with increased viscosities resulting from increasing the 

filler content in the composite. They also both exhibit a trend towards stronger shear-

thinning behavior as the proportions of the filler are increased.  

 

 



 131

Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

In this chapter, we first present a summary of conclusions from the research work 

detailed in this dissertation, followed by some recommendations for future work for 

understanding the phase behavior, structural characteristics and rheological properties of 

polymer-particle systems.  

 

6.1  Summary of Research 

This thesis reports molecular dynamics simulations of two different solid-fluid 

systems: i) silica nanoparticles embedded in a polyethylene melt ii) silica nanoaggregates 

in supercritical CO2. Both of them contain silica nanoparticles, but are modeled at 

different levels, atomistic and coarse-graining. The coarse-graining process includes 

experimental data, thermodynamic theory, and atomistic simulations, and is described in 

the first part of this thesis. The application of this approach to the case of polyethylene 

chains in presence of silica nanoparticles leads to the prediction of the interaction 

parameters between solid silica particles and polyethylene melt.  

Once the coarse-grained model is fully characterized, we studied the dispersion of 

silica nanoparticles in polyethylene matrix. The RDF and specific heat calculations 

indicate that for filling fractions smaller than 3 wt% the system is in a dispersed state and 

for filling fractions of c.a. 3 wt% and larger the nanoparticles show agglomeration. We 

show that thermodynamically stable dispersion of nanoparticles into a polymer melt is 

enhanced for systems where the polymer radius of gyration is greater than the radius of 
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the nanoparticle. Dispersed nanoparticles swell the polymer chains, and this results on the 

polymer radius of gyration increasing with nanoparticle filling fraction. The polymer-

mediated forces are also more repulsive in the case of longer chains than in the case of 

shorter ones.  

This thesis also reports on the rheology of both pure and nanoparticle-filled 

polymers. The steady-state shear viscosities and diffusion of our model polymer 

nanocomposite are calculated and compared with theory and experimental studies for 

validating our coarse-grained model. Our results show good agreement with experimental 

data. As the shear rate is increased, both systems exhibit a trend towards stronger shear-

thinning behavior. In addition, the shear viscosities of nanoparticle-filled systems are 

greater than those of the pure polymer, which results from the increased filler content in 

the polymer.  

We also perform molecular simulations for a second solid-fluid system: silica 

nanoparticle agglomerates in supercritical CO2. The interaction parameters are 

determined by fitting the experimental adsorption isotherms. The calculated solvation 

force is mostly negative (attractive) and its dependence on the interparticle distance 

shows a minimum, which indicates maximum attraction at a pressure above the critical 

point. In a posterior study, we focus on the rupture of nanoagglomerate that is exposed to 

shear forces. Larger agglomerates of D~15nm were broken with F ~ 1.07×10-8N. Smaller 

agglomerates with D~7.5nm were broken with F ~ 1.0×10-7N. Our calculated value of 

CO2 self diffusion coefficient appears to be one order of magnitude smaller than the 

experimental data.  
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6.2  Recommendations for Future Work 

Based upon the experience and the knowledge gained, further research needs to 

be done in the following areas:  

 

6.2.1 Longer Polymer Chains and Branched Chains  

One of the main limitations of the systems with and without nanoparticles is the 

polymer chain length. Short chains make it difficult to work with the parameters that are 

closer to those investigated experimentally. Further work in this field should focus on 

simulating much longer chains. By extending the polymer/nanoparticle composite 

research to longer chains, we will be able to study the effect of varying the nanoparticle 

size relative to the polymer chain dimension e.g. the athermal end-to-end distance. This 

will allow us to determine the importance of relative sizes on determining the structural 

properties of the composites.  

In this research, our focus was limited to the effect of homopolymers on the 

interactions, phase behavior and structural features of particulate suspensions. However, 

a substantial number of the practical situations comprise of nanoparticles in presence of 

copolymers or blends of different homopolymers. Such mixtures are being actively 

investigated for their potential to yield complex, highly ordered composites for next 

generation catalysts, selective membranes, and photonic band gap materials. The specific 

morphology and hence the applicability of these materials critically depends on the 

polymer architecture and on parameters such as the size and volume fraction of the 

particles, size asymmetry between different polymeric components/blocks and their 

relative affinities for the particle surfaces etc.  
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In addition, the introduction of branched chains, and the simulation of 

polydisperse melts will indicate to rheologists what is occurring at the molecular level. 

Techniques to allow mapping between simulated and real molecules need to be 

established, allowing the work to be fully utilized by industry.  

 

6.2.2 Modified Surface and Shape of Nanoparticles  

The surface of particles has an influence on the properties of the adsorbed 

mixture: its adhesion to freshly cleaved mica is stronger than to the hydrophobized mica, 

and the adsorption to the hydrophobized mica surface is in turn stronger than the 

adsorption to the hydrophobized silica [111, 112]. A possible explanation could be the 

role of the electrostatic attraction and the thickness of the hydrophobizing layer [113]. 

Future work should examine the effect of surface hydrophobicity on the dispersion of 

nanoparticle in polymer matrix.  

Another relevant issue is that the spatial distribution of the particle center of mass 

will depend on, not only the volume fraction, but also the particle size distribution and 

particle shape (sphere, rod, plate). Hence for extended spheroids (rods and plates), 

excluded volume interactions between particles will lead to local orientation correlations, 

as well as possible fractal association leading to percolation behavior and interpenetrating 

polymer–nanoparticle rich regions [114, 115]. All of these factors will have substantial 

impact on phase transitions and related morphologies, including polymer crystallization, 

polymer blend phase separation, and block copolymer mesophase organization. It will be 

extremely beneficial to compare the nanoparticle shape to phase transition.  
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6.2.3 Surfactant Structure and Mixtures  

Surfactant micellization phenomena are very sensitive to the specific chemical 

structure. From data assembled in [116], it can be seen that an increase in the length of 

alkane chains of nonionic surfactant is accompanied by a pronounced decrease in the 

CMC. In addition, it is known experimentally that the CMC of a surfactant generally 

increases as the degree of branching in the surfactant tail increases [117]. When 

developing a coarse-grained model for surfactant molecule with branches, we must 

consider that such structural details are not removed or obscured.  

In addition, mixtures of two or more types of surfactants can be considered within 

the polymer matrix. This has not been done yet in the literature and deserves more 

attention. If two nonionic surfactants are mixed, they will form mixed micelles in the 

bulk, and also on the surface they will form mixed aggregates [118]. The composition of 

adsorbed layer probably depends on both species. By carefully choosing different 

surfactant architectures and bulk concentrations, it may be possible to make mixtures that 

can disperse nanoparticles in a more effective fashion.  
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