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Abstract

Risk-Adjusted Information Content in Option Prices

By Durga Prasad Panda

Dissertation Director:
Dr. Ren-Raw Chen

There are many measures to price an option. This dissertation investigates a risk-
adjusted measure to price the option with an alternative numeraire that retains the
expected return of the underlying in the pricing equation. This model is consistent with
the Black-Scholes model when their assumptions are imposed and is consistent with the
standard capital asset pricing model. Unlike many asset pricing models that rely on
historical data, we provide a forward-looking approach for extracting the ex ante return

distribution parameters of the underlying from option prices.

Using this framework and observing the market prices of options, we jointly
extract implied return and implied volatility of the underlying assets for different days-
to-maturity using a grid search method of global optima. Our approach does not use a
preference structure or information about the market such as the market risk premium to
estimate the expected return of the underlying asset. We find that when there are not
many near-the-money traded options available our approach provides a better solution



to forecast future volatility than the Black-Scholes implied volatility. Further, our
results show that option prices reflect a higher expectation of stock return in the short-
term, but a lower expectation of stock return in the long-term that is robust to many

alternative tests.

We further find that ex ante expected returns have a positive and significant
cross-sectional relation with ex ante betas even in the presence of firm size, book-to-
market, and momentum. The cross-sectional regression estimate of ex ante market risk
premium has a statistical significance as well as an economic significance in that it
contains significant forward-looking information on future macroeconomic conditions.
Furthermore, in an ex ante world, firm size is still negatively significant, but book-to-

market is also negatively significant, which is the opposite of the ex post results.

Our risk-adjusted approach provides a framework for extraction of ex ante
information from option prices with alternative assumptions of stochastic processes. In
this vein, we provide a risk-adjusted stochastic volatility pricing model and discuss its

estimation process.
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Chapter-1

Introduction

The long history of the theory of option pricing began when the French mathematician
Louis Bachelier in 1900 deduced a formula based on stock price that follows a zero drift
Brownian motion. Many year after Bachelier, the celebrated Black and Scholes (1973)
paper provided a pricing model for European options assuming a positive drift
Brownian for the stock price that is closer (than zero drift) to the historical price
movement of stocks. In this setting, they show that the option can be priced by forming
a continuous hedging portfolio of the stock, and the option so that at any instant of time
the portfolio thus formed is riskless; which intuitively implies, in this approach, the drift
factor and the Weiner component cancel out from the pricing equation. Thus, Black-
Scholes pricing formula does not depend on risk preference of the representative
investor. Although the pricing formula can be obtained with a specific utility framework
as shown in Rubenstein (1976), it is not necessary to go through a utility route to
achieve this option pricing formula. In addition, one of the main objectives of the
Black-Scholes option pricing formula is to obtain a valuation method that will be a
function of parameters, which are mostly known at the time of pricing. From this
perspective, we see the option can be priced by knowing the interest rate, stock price,

strike price, time-to-maturity, and the stock return volatility. All these parameters



except the stock return volatility is known with certainty at the time of pricing a

European option.

In fact the Black-Scholes model uses the so called traditional risk-neutral
measure to price the option in which the money market account is the numeraire.? It
turns out that by using this measure we can price the option with least number of
unknowns. Even though the traditional risk-neutral model provides a parsimonious
measure for pricing the option, it is not the only measure that can price the option. For
example, we can use the zero coupon bond price as another numeraire and formulate
another option pricing equation. Therefore, there are many measures to price the same
option. However other measures may contain more unknowns; therefore may not be the
measures of choice when it comes to pricing. Nonetheless, irrespective of the measures

we use, the price of the option should be the same.

Our objective in this research is not to price the option. Therefore we are not
looking for a measure that is parsimonious; rather we are looking for a measure that
contains the parameters we seek to estimate, such as the expected return of the stock. In
this vein, we pursue a discrete time physical measure approach in which every asset
grows by their corresponding risk-adjusted growth rate. Therefore, our approach retains
the expected growth rate of the stock. Unlike the Black-Scholes model, the advantage of
our risk-adjusted model is that it does not require a continuous rebalancing assumption.

However the disadvantage of our model is that it has many unknowns, whereas the

! A European option is an option that can be exercised at the time of maturity as opposed to an American
option that can be exercised at any time until maturity.

2 Black-Scholes assume the short-term interest rate is known and constant.



Black-Scholes equation has only one unknown namely the volatility of the stock return.
In fact our approach can be thought of as a generic model of which Black-Scholes is a
special case. For example when investment horizon is infinitesimal or continuous
rebalancing is assumed, our model will collapse to the Black-Schoels model.?
Therefore, with the assumptions of Black-Scholes, our approach is consistent with their
model. Furthermore, using a discrete time approach we make our model consistent with
the standard capital asset pricing model (CAPM). This means that the expected return
we extract from this model could be used to test this version of the CAPM. In fact we
can think of our research as a framework, where with different assumptions of
stochastic processes along with risk-adjusted numeraire we could extract additional
information from option prices. For example, we could have a risk-adjusted pricing
equation with stochastic volatility that extracts additional ex ante information from

option prices.

In this dissertation, we derive the risk-adjusted pricing formula and work on the

following branches of research:

1) Extraction of risk-adjusted expected return and volatility from market observed

option prices and robustness test of the term structure of expected return.

2) Comparison of information content of risk-adjusted implied volatility and risk-

neutral implied volatility to forecast future volatility.

3) Study of cost of equity using the risk-adjusted expected return.

® Therefore, if market prices of options truly reflect these Black-Scholes assumptions then we will not be
able to extract the expected stock return from these prices.



4) Use of risk-adjusted expected return to test the standard CAPM and the investigation

of its relationship with macroeconomic variables.

Findings of this Dissertation

Using the risk-adjusted model on OptionMetrics month-end data for the period of
January 1996-April 2004 we jointly estimate the ex ante expected stock return and
volatility based on a grid search method to look for the global optima. We estimate
these parameters separately for S&P500 index options and all stock options. Our
approach estimates different implied expected return for different time horizon based on

days-to-maturity of the option.

There are three advantages of our approach of estimation of implied expected
return. First, the expected return of a stock can be computed without using any
information of the market portfolio such as the market risk premium. This implies we
do not have to define what the ‘market’ consists of, and we do not have to estimate the
risk premium of the market, which is required in traditional asset pricing models to
estimate the expected return. Second, our approach extracts implied stock return based
on forward looking options data unlike the Fama and French model, and the CAPM that
rely on historical information. Third, we do not use a preference structure to arrive at

our results.*

* As we know, although Black-Scholes does not use a preference structure, it is consistent with CPRA
utility function as shown by Rubenstein (1976). Similarly, even though we do not use a preference
structure, our approach is consistent with the quadratic utility structure.



Using S&P 500 Index options, we discover the following four results. First, our
result shows that investors have higher expectations of stock returns in the short-term,
but lower expectations in the long-term. This term structure finding is robust to many
alternative tests. Second, the term structure of volatility using our model is much flatter
than the term structure using the Black-Scholes model. Third, the empirical
investigation shows that a combination of our implied expected return and implied
volatility with Black-Scholes implied standard deviation provides a better model, than
Black-Scholes implied standard deviation alone to forecast future volatility of stocks for
any combination of moneyness and maturity. Finally, the implied volatility of our
model can predict much better future realized volatility than the implied volatility of the
Black-Scholes model, more so for short maturities of 90-days or less. In general, our
risk-adjusted approach provides a better measure (than Black-Scholes implied
volatility) that captures moneyness biases even without adjusting for stochastic
volatility. Therefore, if we are concerned about the smile while forecasting future
volatility using all options data for a stock, then our approach provides a better solution
so that we do not need any adjustment for moneyness bias. This implies, when there are
not many near-the-money traded options available, our approach provides a better

alternative to forecast future volatility.

Using all stock options data we estimate the ex ante expected return for
individual stocks. We use this expected return to compute the cost of equity for
different industry groups. Unlike the CAPM and Fama and French costs of equity
estimates, our approach doesn’t need the unobservable market risk premium. We find

the option implied expected returns are more stable over time than the Fama and French



estimates. In fact Fama and French cost of equity estimates in some cases become
negative, which is not the case using our model. Furthermore, our result shows even
using all stock options the downward sloping term structure of expected return is

maintained.

We also examine the cross-sectional relations between ex ante expected returns
from our risk-adjusted model and ex ante betas. We find that ex ante expected returns
have a positive and significant cross-sectional relation with ex ante betas in all
investment horizons considered. This significant relation is maintained regardless of the
inclusion of firm size, book-to-market, and momentum. The cross-sectional regression
estimate of ex ante market risk premium has a statistical significance as well as an
economic significance in that it contains significant forward-looking information on
future macroeconomic conditions. Further, we find that ex ante betas have significant
explanatory power for realized ex post returns. A significant relation between ex ante
forward returns and forward betas is also found. Other interesting findings are that, in
an ex ante world, firm size is still negatively significant, but book-to-market is also
negatively significant, which is the opposite of the ex post results; also, investors’ ex

ante expectation on returns is not predicated on past stock performance.



Chapter-2

Related Literature

The area of this dissertation touches a broad spectrum of research from derivatives to
asset pricing. However, in this chapter we discuss the literature that is immediately
related to the risk-adjusted option pricing model and its empirical findings. Broadly
speaking there are three areas of research that branch out of Black-Scholes (1973)
option pricing model. First area of research is the study of option properties and market
efficiency. Second group of research is on extending the Black-Scholes model to
include additional features such as stochastic volatility, and jumps. Third area of
research is on extraction of information using observed market prices of options. In the
following paragraphs we discuss the first two areas in brief and the third area in detail,
since our findings are related more to the third area of research. We also discuss related
literature that extract ex ante expected return from other sources. For completeness, the
last section of this chapter reviews some of the option pricing models using various

utility structures.

The first group of research is the extensive study of Black-Scholes model to
examine the properties of American and European option prices. For example, Merton
(1973) shows the pricing relationship of different contingent claims on any stock based
on the weak assumption that investors prefer more to less. Even though this assumption
may not give the option price in exact form, it helps in formulating tight bounds and
relationships across various options of that stock without any distributional

assumptions. Since Merton’s paper, many researchers have expanded the literature to



understand the pricing relationship of different contingent claims and related market

efficiency’.

The second group of research is based on expanding the model of Black-Scholes
to more generalized equations. For example, Merton (1976a) extends the option pricing
model to have both continuous time Wiener and noncontinuous jumps in the stock price
dynamics. With this setting, Merton shows that if investors use Black-Scholes formula
when the true process contains jumps, that will introduce significant error in the option
pricing. In this line of research papers by Cox and Ross (1976a and 1976b), Cox, Ross
and Rubenstein (1979), Scott (1987), Hull and White (1987), Wiggins (1987), Stein
and Stein (1991), and Heston (1993a and 1993b) provide extensions to the Black-
Scholes model to have jumps and stochastic volatilities so that the models are close to
the reality of observed option prices. We discuss the stochastic volatility models in

more detail in chapter 6.

The third line of research is to view the option pricing models not as a pricing
mechanism but as a method to extract the properties of the underlying asset return by
using observed option prices in the market. Our current work on estimation of implied
expected return, beta, and volatility is aligned with this line of research. The existing
research in this line can be divided into three sub-groups. We discuss these in details in

the following paragraphs.

! Following is a partial list of papers in this area of research:
Ross (1976), Jarrow (1980), Whaley (1986), and Hentschel (2003).



2.1 Implied Volatility from Option Prices

The first sub-group of research is based on extracting implied volatility from option
prices and examining its properties for different values of option maturity and
moneyness. We briefly discuss some of these papers in this section. For example the
papers that find Black-Scholes implied volatility (ISD) is a better measure for
forecasting volatility are given by Latane and Rendleman (1976) (LR), and Chiras and
Manaster (1978) (CM). The paper by Latane and Rendleman (1976) (LR) computes the
implied standard deviation using the Black-Scholes (B-S) model. To adjust for
sensitivity of option prices to implied volatility they compute the weighted average
implied standard deviation (WISD) in which the implied standard deviation on all
options on a given underlying stock are weighted by the partial derivatives of price of
option in B-S equation with respect to each implied standard deviation. Then they
compare the two methods to compute volatility, namely, the historical method, and the
WISD method. They use continuous hedging of a portfolio of stock and its option for
over-priced and under-priced options. The pricing and hedging are based on different
combinations of computing volatilities by historical method and WISD. They argue
with an approximate continuous hedging the portfolio should earn close to risk-free rate
with lowest standard deviation. In their experiment they show that the portfolio return
where historical volatility is used in the hedge weight computation has the highest
standard deviation thus are far from being risk-less compared to the portfolio return

where WISD is used. They also show that the mean return of the portfolio formed on

2 In this sub-group of research the papers are by Latane and Rendleman (1976) (LR), Chiras and Manaster
(1978) (CM), Beckers (1981), Day and Lewis (1992), Canina and Figlewski (1993) (CF), Christensen and
Prabhala (1998), Lamoureux and Lastrapes (1993), Blair, Poon and Taylor (2001). Granger and Poon
(2005) provides a comparison of different methods of forecasting volatility.
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the basis of WISD is significant, and is in the expected direction and thus it is a better
estimate of market volatility. Chiras and Manaster (1978) (CM) argue that the weighted
average in LR is not truly a weighted average since the sum of weights is less than one.
They compute the weighted average of ISD by price elasticity of the option with respect
to its implied standard deviation, which they argue is a better method to compute the
WISD. With empirical experimentation, they show that WISD does a better job than the
historical volatility in predicting the realized volatility. Papers that do not support the
hypothesis that the information content of implied volatility is superior are given by
Day and Lewis (1992), and Canina and Figulewski (1993). Day and Lewis (1992) argue
that the implied volatility is biased and inefficient since in their research, past volatility
contained predictive information beyond the information content of implied volatility.
One of the most interesting researches not supporting the 1SD is given by Canina and
Figulewski (1993) (CF). Using binomial model of option pricing that adjusts for
dividends they argue implied volatility is not as better a predictor of realized volatility
as the prior research suggested. Most importantly, Canina and Figulewski show that the
implied volatility is not same for different maturity options, thus we cannot combine
them to compute a WISD, since implied volatilities for different maturities may be
influenced by systematic factors rather than the noise in the data. To take into account
the possible systematic effects of time to maturity and moneyness they formed different
groups based on these two factors and analyze each group separately. They show
neither the implied volatility nor the realized volatility is an appropriate volatility
forecast. Thus, they suggest, a better way might be to incorporate all sources of

information rather than use only implied volatility to forecast realized volatility.
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However, there are no papers, which show how we can combine different information
to have a better volatility forecast. CF finding questions the B-S model in the following
way. As shown in previous literature B-S can be thought of as a pricing model that
prices the future volatility, However CF findings of no significant relationship between
option’s prices through implied volatility with the realized volatility refutes this belief
within the rational expectations setting. In subsequent research, Christensen and
Prabhala (1998) (CP) show that implied volatility is a better forecast of future volatility
than previously reported. Christensen and Prabhala use monthly observations to avoid
data overlaps and adjust for regime shift around the market crash of October 1987 that
was not taken into account in Canina and Figulewski. Christensen and Prabhala also
show past volatility has no incremental explanatory power over implied volatility in
their test which is in contrast to Canina and Figulewski findings. They argue that the
reason for this could be in extreme overlap in CF data that might have caused biased
estimates as opposed to the nonoverlapping data in their experiment. Findings in
Christensen and Prabhala research supports the idea that B-S model can be better used
as a volatility forecaster than previously thought. Recent survey by Granger and
Poon(2005) categorizes the future volatility forecast into four methods namely:
historical volatility method, ARCH and GARCH models, stochastic volatility models,
and implied volatility method. They rank these methods based on past literature. Their
overall ranking suggests that B-S implied volatility provides the best forecast, followed
by historical volatility and GARCH roughly with equal performance. Despite the added
flexibility and complexity of stochastic volatility models, they find no clear evidence

that it provides a superior volatility forecast. Our research is closer to the B-S
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framework. However, we use a risk-adjusted discrete time pricing method that retains
not only the implied volatility but also the implied return in the equation. Using near-
the-money options and computing different implied volatilities and returns for different
days-to-maturity we avoid the systematic effects of moneyness and maturity described

in Canina and Figulewski literature.

2.2 Implied Beta from Option Prices

The second sub-group of research is in the area of extracting implied beta from option
prices. Papers in this area include Siegel (1995), and Christoffersen, Jacob and
Vainberg (2006). Segiel (1995) proposes a new ‘exchange option’, the price of which is
based on number of units of a specific stock, that can be exchanged for one unit of an
index. Thus, he argues the price of this exchange option can reveal the implied beta of
the stock. More recently, Christoffersen, Jacob and Vainberg (2006) show that implied
beta can be extracted from option prices without using this new derivative. The beta in
their model is computed using forward-looking variance and skewness. Using methods
from previous literature, they retrieve the underlying distributions for index options and
stock options from cross-section of option prices. Then they use traditional one-factor
model and express the forward-looking beta as a function of the skewness and variance
of the underlying distribution. They show these forward-looking betas perform well
compared to historical betas in many cases. However, the main limitation in their
approach could be the extraction of market betas from skewness. As shown in past

literature market beta obtains when the stock returns are multivariate normal or
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preference is quadratic. The use of skewness to compute beta is at odds with
multivariate normal assumption of the CAPM. On the other hand, our method to
compute beta uses a time series estimate based on ex ante information set of market and

stock expected returns.

2.3 Implied Expected Stock Return from Different Sources

2.3.1 Implied Expected Stock Return from Option Prices

The third sub-group of research is based on extraction of implied expected stock return
(or implied return) from option prices. Option pricing models of Sprenekle (1961),
Ayres (1963), and Boness (1964) had implicitly or explicitly assumed that the investors
buy and hold the options until maturity to extract the option implied returns, which then
could be linked to the stock implied return. However, none of these models provides an
adequate theoretical structure to determine the implied return values. The Black-Scholes
(1973), models the option price by taking advantage of the interesting feature that a
certain portfolio of the stock and the option can cancel out the unknowns namely the
implied stock return and the implied option return in continuous time. Thus if our
objective is to value the option then we remain in this risk-neutral framework so that
implied returns are not required in the pricing formula. However if our objective is to
extract implied return given the market price of options we form the corresponding risk-
adjusted valuation model that will retain the expected returns in the pricing models.
Comparison between risk-neutral and risk-adjusted model of option pricing was given

by Galai (1978), in which the author shows that if we use the risk-adjusted model then
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it will retain the stock implied return in the pricing equation. Our approach parallels this
approach. However, there are at least three differences between our approach and his
approach. First, he compares the properties of implied option return derived from risk-
adjusted model with the risk-neutral model, whereas we derive a relationship between
the implied stock return and option return in discrete time and then link that with the
risk-adjusted model. Second, we derive a discrete time version of equations for
covariance of option return and stock return, and variance of stock return. Finally, we
compute the implied stock return and volatility from observed market price of options
whereas his paper takes a range of implied stock returns as given and then uses the

equation to compute a range of implied option returns.

Another paper that studies the properties of the risk-neutral valuation is given by
Heston (1993b). In this research, the author suggests a generic framework under which
the prior option pricing models do not depend on risk aversion parameters. For
example, in diffusion models (Black and Scholes (1973)) option prices are independent
of the stock drift; in Poisson models (Cox and Ross (1976a)) option prices are
independent of the Poisson intensity, and in binomial models (Cox, Ross, and
Rubinstein (1979)), option prices are independent of the jump probabilities. To derive
these models we need the assumption about market completeness so that continuous
time hedging is possible. Another alternative is to have a certain preference structure so
that option pricing will not depend on risk aversion parameter even if we do not have
continuous hedging. By this approach, Heston generalizes Rubinstein (1976) preference

structure and by combining that with log-normal spot asset prices, he obtains the B-S
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pricing formula free of risk aversion parameters. Heston also shows a log-gamma
formula, which depends on, mean return parameter but is independent of volatility, the
scale parameter. If this distribution holds then option prices will be insensitive to sigma
which contrasts with many findings that implied volatility has useful information to
explain realized volatility. In contrast to these papers we follow a discrete time risk-
adjusted approach with geometric Brownian price process, so that the implied return

and implied volatility parameters are retained in our pricing equation.

Another paper related to implied stock return is given by McNulty et al. (2002).
They use a heuristic approach to compute the ‘real cost of equity capital’. Their findings
of higher implied return in the short-term and lower implied return in the long-term
matches with our finding; however, their approach lacks the theoretical support.
Another recent paper, which computes the stock implied return from option prices, is by
Camara, Chung, and Wang (2007). There are two aspects of their approach. First, they
assume a specific utility structure such that the marginal utility of wealth of the
representative investor is:

U'W,)=W,"+2
where « and g are risk preference parameters. Based on this utility structure they show
their option pricing equation contains implied stock return as one of the parameters to
be estimated.? Second, their approach requires an intermediate parameter that needs to
be computed using options of all companies, before they compute the implied return of

any individual firm. In contrast to the above papers, we follow a discrete time approach

% Unlike the Camara, Chung, and Wang (2007) paper, our approach is consistent with the standard CAPM
and thus consistent with a specific utility structure of hyperbolic absolute risk aversion (HARA)
preference family namely the quadratic utility structure.
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that has the advantage of being consistent with single period standard CAPM. Using
our approach, the expected return of a stock can be computed without using any
information of option of all companies or of the market portfolio such as the market risk
premium. This implies we do not have to define what the ‘market’ consists of, and we
do not have to estimate the risk premium of the market, which is required in traditional

asset pricing models to estimate the expected return.

2.3.2 Other Sources of Expected Stock Return

Recent research explores different sources to extract ex ante stock return. In this section
we will briefly discuss some of those studies. Campello, Chen, and Zhang (2008) use
corporate bond yields to estimate expected equity returns. They argue that, since
forward-looking bond yields are reflected in bond prices, this provides a natural
selection of data source for ex ante information. However, their approach is not entirely
based on ex ante information. For example, they use existing default information to
gauge expected default losses that is required to back out the systematic component of
yield spread. Further, to estimate the extent of empirical relationship between the bond
yield and stock expected return using the elasticity of equity value with respect to the
bond value, they again use historical data. Therefore, the ‘links’ the process of
extraction of expected stock return goes through relies on ex post information at many
intermediate steps. Fama and French (2002), also use the historical average dividend
growth as the expected rate of capital gain and measure the equity premium as the sum

of the expected rate of capital gain and the average dividend yield. However, use of ex
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post return in any form for test of ex ante models is a questionable assumption.* In fact

as Sharpe (1978) pointed out:

"All the econometric sophistication in the world will not completely solve the
basic problem associated with the use of ex post data to test theories dealing
with ex ante prediction, however. The Capital Asset Pricing Model deals with
predictions concerning a future period [...]. It does not assume that the
predictions or the implied relationships among them are stable over time. Nor
does it assume that actual results will accord with such predictions, either
period-by-period or, in any simple sense, 'on average'." (p. 920)

Unlike these approaches our model relies on option prices which is a direct

source of ex ante expected return for the underlying stock.

Another group of literature relies on accounting information to estimate the
expected returns. Using Value Line forecasts of dividends and target prices, Botosan
and Plumlee (2005) obtain estimates of firm cost of capital and ask whether these
estimates are correlated with firm characteristics. They find a positive relation between
market beta and cost of equity. However, they generally find no association between
market capitalization and Value Line estimates of the cost of equity. In a similar vein
Brav, Lehavy, and Michaely (2005) use the Value Line forecasts and First Call
analyst’s expectations, and argue that researchers and practitioners use this database of
earning and growth forecast as a proxy for expectation of these variables. Thus they

argue, this source of information is superior to using the realized return for asset pricing

4 Pastor, Sinha, and Swaminathan (2008) use simulations to show that, except for very long time
windows, realized returns do not converge to expected returns and often yield wrong inferences.
Moreover using realized returns as a proxy for expected returns, the evidence is mixed. Early tests, such
as Fama and MacBeth (1973) find that firms' betas are positively related to their realized returns. Using
later data and monthly return intervals, Fama and French (1992, 1993) and others do not find a significant
relation. However, when annual return intervals are used (Kothari, Shanken. and Sloan, 1995) find that
beta is significantly related to average realized returns.
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tests. Using these data sources they find that market beta is positively associated with
expected returns. Furthermore, using Value Line expectations, they do not find evidence
that high book-to-market stocks have higher expected returns than low book-to-market
stocks. When they use the analysts expected returns from First Call, they find that the
coefficient on book-to-market is negative and significant. These results challenge the
notion that the market perceives high book-to-market stocks as riskier and therefore
they command higher expected returns. In fact Brav, Lehavy, and Michaely (2005)
finding is consistent with our finding that there is no evidence of high book-to-market
stock being riskier than low book-to-market stocks. > However, their approach has
strong assumptions regarding the future evolution of accounting variables. For example
they assume that dividends will continue to grow at the same historical rate, in the
following four years. Furthermore, their paper and Botosan and Plumlee (2005) use
indirect measures for expected stock returns such as the analyst’s price targets by Value

Line and expected returns from First Call.

To overcome the shortcomings of the above mentioned measures, we use option
prices to extract information regarding ex ante expected returns and market beta of the
underlying asset. Since option prices reflect investor expectations for future stock price

movements, option data are an excellent information source for ex ante parameters.

® This finding is consistent with Shefrin and Statman (2003), who use an ordinal ranking of
recommendations as their proxy for expected returns and relate them to firm characteristics such as book-
to-market and market capitalization. They find that stocks with buy recommendations are more

likely to be low book-to-market stocks. They interpret this finding as an indication of higher

expected return for those types of stocks, which is consistent with our findings.

Furthermore, Lakonishok, Shleifer, and Vishny (1994) find that there is no eveidence of high book-to-
market being fundamentally risker. To be fundamentally riskier, high book-to-market (value) stocks
must underperform low book-to-market (glamour) stocks with some frequency, and particularly in

the states of the world when the marginal utility of wealth is high. They find little, if any, support for the
view that value strategies are fundamentally riskier.
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Unlike the information content in bond prices which provides an indirect relationship
with model assumptions, our approach is a direct source of ex ante expected stock
return. Our risk-adjusted approach jointly extracts implied mean return and implied
volatility of the underlying asset from forward-looking option prices. We use this

implied mean return as a proxy for ex ante expected return.

2.4 Brief Review of Utility Based Option Pricing

Rubinstein (1976) and Brennan (1979) use specific utility structures to price the options
in discrete time. Rubinstein (1976) obtains the Black-Scholes model with constant
proportional risk aversion (CPRA) preferences. He also assumes that aggregate
consumption and the underlying asset are bivariate lognormally distributed. Brennan
(1979) derives a risk-neutral valuation relation assuming a representative agent who has
a negative exponential utility function, and a bivariate normal distribution for aggregate
wealth and the underlying asset.® Using Rubinstein (1976) approach with a general
pricing distribution and discrete trading, Perrakis and Ryan (1984) show the upper and
lower bound for call options based on a utility structure such that the normalized
conditional expected marginal utility for consumption is non-increasing in the price
change of the stock. Bates (1991) show that the high price for ‘crash insurance’ during
1987 cannot be explained by standard option pricing models with positively skewed

distributions, such as Black-Scholes, constant elasticity of variance, or GARCH; instead a

® Brennan (1976) and Rubinstein (1976) have the following additional common assumptions: (i) the
single-price law of markets, (ii) non-satiation, (iii) perfect, competitive, and Pareto-efficient financial
markets, (iv) rational time-additive tastes, and (v) weak aggregation, or the existence of an average
investor.



20

jump diffusion process with time-separable power utility function explains this crash,

when the jump risk is systematic and nondiversifiable.

Levy (1985) shows upper and lower bound for call options with less restrictive
assumption on the utility structure using a discrete time model. Levy argues, on the one
hand, Brennan (1979), assuming some specific stock value distributions and investor
utility functions, derives a relative pricing relationship between stock and the option. On
the other hand, Merton (1973), imposing no restrictions on the stock price behavior and
the investors' characteristics, obtained upper and lower bounds on the option value
relative to the stock value. Knowing these two extreme cases the upper and lower
bounds can be further improved by assuming simply a concave utility function. Levy
shows that the bounds are much tighter than Merton bounds with this simple

assumption.

Camara (2003) generalizes Brennan-Rubinstein approach to show a new range
of preferences and distributions of wealth pairs under which the Black-Scholes model
holds. The author shows Black-Scholes model might be obtained, when the underlying
asset has a lognormal distribution, with any of the following risk preferences and wealth
distribution pairs: (i) The utility function is an extended power displaying DARA and
aggregate wealth has a displaced lognormal distribution. (ii) The utility function is a

negative exponential displaying CARA and aggregate wealth has a normal distribution.
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(i) The utility function is a cubic one displaying IARA and aggregate wealth has a

negatively skew lognormal distribution.

Vanden (2006) analyzes asset pricing with nonnegative wealth constraints. In
the presence of these constraints, using exponential, power, and quadratic utility
functions, Vanden shows that options on the market portfolio are nonredundant
securities and the economy's pricing kernel depends on both the market's return and the
option's returns. This leads to a pricing model in which the expected excess return on
any risky asset is linearly related to the expected excess return on the market portfolio
and to the expected excess returns on the nonredundant options. The empirical results
indicate that the inclusion of the option returns can improve the CAPM and this

improvement is significant for nonsmall stocks.
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Chapter -3

Risk-Adjusted Information from Option Prices’

As option’s payoff depends upon future stock price, option prices contain important
information of their underlying stocks. For a bullish stock, the price of the call goes up
and the put goes down. However, using the Black-Scholes model, we can only retrieve
the volatility information, as risk preference disappears from the pricing model. In this
paper, we price options with the physical measure where we can jointly estimate the
expected return () and implied volatility of the underlying stock from market prices of

options.

Pricing measures are not unique. Yet the law of one price (or known as no
arbitrage) guarantees all pricing measures lead to a unique option price. As a result,
there exists a pricing measure where  is present and the same option price is obtained.
In this paper, we choose the physical measure to price options so that we can jointly
estimate the expected return and implied volatility of the underlying stock. The use of
the physical measure in pricing assets has been the standard methodology in
microeconomic theories. In fact, the earlier literature (such as Sprenkle (1961) and
Samuelson (1965)) in option pricing used the physical measure to price options. Our

contribution is to extend those models and further derive the closed form solution to the

! This chapter is a superset of a joint paper with my dissertation committee members Dr. Ren-Raw Chen
(advisor), and Dr. Dongcheol Kim. We wish to thank Dr. Kose John, Dr. C.F. Lee, Dr. Oded Palmon, and
the 2009 Financial Management Association Meetings participants for their helpful comments and
suggestions. We thank the Whitcomb Financial Center for data assistance.
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expected return of the option as a function of the expected return of the stock.

Black and Scholes (1973) show that if the market is complete,? then the
expected return of the stock should disappear from the valuation of the option as
dynamic hedging (or known as continuous rebalancing, price by no arbitrage, or risk
neutral pricing) should effectively remove the dependence of the option price on the
stock return. This is true, however, only if the market is truly complete in reality. In
other words, if the reality were exactly described by the Black-Scholes model, it is
impossible to theoretically solve for both the expected return and implied volatility of
the stock . However, it has been empirically shown that the Black-Scholes model
cannot explain all option prices (known as the volatility smile and volatility term
structure). As a result, we can solve for these two parameters simultaneously under our

model.

Except for the expected return parameter, the physical pricing measure adopted
by our model assumes the same assumptions of the Black-Scholes model. In particular,
we assume the same stock price process as the Black-Scholes model does. This design
is to assure that we have a closed form solution to our model. In theory, we could relax
as many assumptions by the Black-Scholes model as possible and build a model that
can explain every traded option price in the market place. However, in doing so, we
shall lose the closed form solution and furthermore once we have as many parameters as
the number of the traded options, the model can no longer “price” any option as all
option prices are used to calculate parameters. As a result, we need to seek balance

between over-parameterization (having same number of parameters as option prices),

% This is complete market in the dynamic sense, as later described carefully by Duffie and Huang (1985).
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under-parameterization (such as the Black-Scholes model), and computation feasibility
(maintaining closed form solution). As we shall show in our empirical study, with two
parameters (expected return and implied volatility), we find that we can predict realized

volatility much better than the Black-Scholes model.

Option pricing models of Sprenkle (1961), Ayres (1963), Boness (1964), and
Samuelson (1965) employed the physical measure and implicitly or explicitly assumed
some form of risk-adjusted model such that the investors buy and hold the options until
maturity to extract the option implied return, which then could be linked to the stock
return. However, none of these models provides an adequate theoretical structure to
determine the implied return values.® Under the risk neutral pricing measure, Heston
(1993Db) shows that, under a log-gamma dynamic assumption for the stock price, the
expected stock return will show up in the pricing formula and yet the volatility
disappears. Hence, his model is not capable of jointly determining both the expected
return and volatility of the stock price. Nonetheless, Heston’s paper shows the
possibility of retaining the expected return parameter in the model with suitable

adjustments to the pricing equation.

Using the S&P 500 index call options, we estimate expected stock return and
implied volatility with our model. We use options with various strikes at a given day
and compute expected return and volatility for each time to maturity. As a result, we
obtain jointly the term structure of expected return and the term structure of implied
volatility of the stock. We find a downward sloping term structure of expected return

that is consistent with existing studies to be reviewed in details later in the empirical

® Galai (1978) later showed that the Boness model and the Black-Scholes model are consistent.
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section. We find that implied volatility carries more information in predicting realized

volatility of the stock than the term structure of Black-Scholes implied volatility.

The reminder of this chapter is organized as follows. Section 3.1 presents the
risk-adjusted discrete time model that retains the stock expected return in the option
pricing equation. Section 3.2 presents the data and estimation methodology. Section
3.3 discusses the empirical results of our estimation. Section 3.4 provides the

concluding remarks.

3.1 The Model

It is well known that the Black-Scholes model can be used to compute implied volatility
and not implied expected return of the underlying stock due to the fact that no-arbitrage
argument renders a preference-free model and hence contains no such parameter. In
this sub-section, we demonstrate that such parameter can be re-discovered via an
“equilibrium” pricing approach similar to Samuelson (1965) and Sprenkle (1961). Let

the stock price follow the usual log normal process under the physical measure:
1) g = pdt + ocdW

where the annualized instantaneous expected return is p and the volatility is . The
classical economic valuation theory states that any price today must be a properly

discounted future payoff:

(2) Ct = Et [M:;TCT]
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where M, is the pricing kernel, also known as the marginal rate of substitution,

between time ¢ and time 7.

Continuous rebalancing, which constitutes a dynamically complete market,
guarantees the existence of the risk neutral pricing measure where the risk premium is
removed from the expectation and hence the discount rate is the risk-free rate as
follows:”

Ct = Et[Mt,TCT}
©) = E\[M,7]EP[Cr]

e "TDEQ[Cy] if interest rate is constant

Pt,TEtF @) [Cr]  if interest rate follows a random process

where @ represents the risk neutral measure and F(T) represents the 7 -maturity
forward measure and, 7, is the risk free zero coupon bond price of $1 paid at time 7.

Or alternatively, one can find a more familiar pricing measure where the expected

payoff is discounted at a properly risk-adjusted discount rate as follows:

where C represents the measure where the option price serves as a numeraire, and k is
the annualized expected instantaneous return on this option in the physical world. We
then assume that the C-measure expectation of the pricing kernel takes a form of

continuous discounting. Now, we can derive our option pricing formula as:

* See Duffie and Huang (1985) for this result.
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C, = e M=V E, [max{S; — K,0}]

(5) = 0| [ 5 Sr0(5)asy — K [T 6(Sras |
= OIS N () — e VKN (hy)

where ¢ and T are the current time and maturity time of the option, and K is the strike

price of the option and

InS —InK + u+1/202 (T —t)

b =
oNT —t
hQ:hlfa«/Tft

To derive a pricing formula that contains 1., we need the following propositions.

These propositions describe how implied return and volatility can be simultaneously

estimated from option prices.

Proposition 1. Assume stock price S follows a geometric Brownian motion with an
annualized expected instantaneous return of x and volatility of o. Let a call option on
the stock at any point in time ¢ is given by C(S,t) that matures at time 7. Letk is the
annualized expected instantaneous return on this option. Then for a small interval of

time At¢, the relationship between x and k can be given by:
(6) k=r+4+p(u—r)
where

@) 5= cov(1o,7g)

var(rg)

and , = AS /S and r, = AC / C are two random variables representing the stock
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return and call option return respectively during the period A¢. And, r is the annualized
constant risk-free rate for the period of the option. Proposition 1 can be proved without

assuming the CAPM.
Proof. See Appendix 3.A.1.1.°

Equation (6) holds for a small interval of time At. We assume the distributions
of stock return, », and option return, r,, are stationary over the period of the option. This
implies the annualized instantaneous expected return and variance over a small interval
of time and the annualized instantaneous expected return and variance over the discrete
time (from time ¢ and time 7') will be same. This also implies 3 is constant over this
period, which means the linear relationship between &£ and . as in equation (6) is valid
over the life of the option from current time ¢ to maturity time 7 .° Since our approach
will be pricing the option in a discrete setting, we approximate the 3 over the discrete

time from ¢ to T as:

l l
COV[ S ] S cov CT,S

(7a) bur = o var(S..)
l T

and with the assumption of stationarity as above, equation (6) holds for the life of the

option as:

(6a) ko =rp+BrxWr—17p)

> Appendix 3.A.2.1 provides a similar derivation for put options.

® This can be easily seen by integrating both side of equation (6) from tto T.
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Equation (6) with equation (7), in continuous time, and equation (6a) with
equation (7a) in discrete time can also be proved using the CAPM. However, for these
two equations to hold it is not necessary that the CAPM should hold. The assumptions
of the CAPM are much stronger so that all return distributions are stationary, however
here we need only the stationarity of the stock and the option return to obtain these two
equations. Hence stationarity assumption of r, and r, is a weaker assumption than
what is needed for CAPM. Further Galai (1978) shows many similarities between the

continuous time and discrete time properties of », that support our assumption of

stationarity of distribution.

Equation (5) is obtained based on the assumption that the expected return of the

option &, expected return of the stock ;. and volatility + are constants. We
approximate s by g, based on the discrete time period of the option fromtto T as

explained above. Furthermore, we assume that the stock price follows a geometric

Brownian motion. In discrete time, equation (5) can be written as:
(53.) Ot,T,K — e(ut‘Tfkt,T)(Tft)StN(hl) . eikt‘T(Tit)KN(hQ)

where ¢t and T are the current time and maturity time of the option, and K is the strike

price of the option and

InS, —InK + p,, + %U;T (T —¢)

h =
1 O't7T\/T—t
}12 :hlfUth\/Tft

Combining equations (7a) and (5a), we arrive at the following proposition.
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Proposition 2: The ., based on the life of the option can be written as:

Stl at‘T(T—t)N(hg) _g(e—m‘T(T_t) N(h)—N(h) — N(h,)
ﬁ o t
8 LT K > e
(8) Ct [eahT(T ) 1]

where

IS, —nK + p,, +1%07, (T —1)

h.
s o, NT — 1t

Proof: See Appendix 3.A.1.2.”

It should be noted that we do not use the distributional properties of the market

returnr, to obtain (8). Using (8), (5a), and (6a) we can solve for the call price C,

Tk
explicitly in terms of the known values: stock price (.S, ), strike price (K ), risk free rate
(), time-to-maturity (7 —t), and two important unknown parameters: expected stock
return z47 and volatility o;1.% If we observe the values of two or more call options,

with same time-to-maturity with different strike prices, we can then simultaneously

" Appendix 3.A.2.2 provides the corresponding derivation for put options.

® 11 and oy7 represent expected stock return () and implied volatility of the stock (o) respectively for a
specific time period, where t is the date of observation of option prices, and T is the maturity date of the
options.



31

solve for s 1 and ot 1.°

It should be noted that unlike the Black-Scholes model, the advantage of the
risk-adjusted (physical measure) pricing equation is that it does not require a continuous
rebalancing assumption. However the disadvantage of the physical measure approach is
that it has many unknowns, whereas the Black-Scholes equation has only one unknown
namely the volatility of the stock return. It can be easily shown that with the assumption
of continuous rebalancing (or instantaneous holding period) the risk-adjusted model
will collapse to the Black-Scholes model so that the pricing equation will not contain
the expected stock return. Therefore, our model is consistent with Black-Scholes model
when their assumptions hold. Furthermore our model is applicable in discrete time and

is consistent with the standard CAPM.

3.2 Data and Estimation Methodology Using S&P 500 Index Options
3.2.1 Data

To extract implied expected return from option prices we use the end-of-day
OptionMetrics data of options on S&P 500 (SPX) for the last business day of every
month during January 1996 — April 2006. This data file contains the end-of-day stock
CUSIP, strike price, offer, bid, volume, open interest, days-to-maturity, and Black-
Scholes implied volatility for each option. From this dataset, we exclude all put options

and options with zero trading volume. We also exclude single option records for a

® With prices for options with more than two strike prices, we can find values for 41 and o7 that
produce option prices closest to the observed prices in the least squares sense. A similar least-squares
methodology was used by Melick and Thomas (1997).
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particular trade date and days-to-maturity.*®

We obtain daily levels of the index and returns from CRSP. We need the returns
for realized volatility computation. To match the CRSP records with option records, we
use the trade date and CUSIP of the index. In our data all S&P500 records have a
common CUSIP. Merging CRSP and option data by trade date and CUSIP can be used

for any stock option in general.

For the interest rates, we use the St. Louis Fed’s 3-months, 6-months, 1-year, 2-
year, 3-year, and 5-year Treasury Constant Maturity Rates. Assuming a step-function of
interest rates, we match the days-to-maturity in the option record with its corresponding
constant maturity rate. For example if the days-to-maturity of the option is less than or
equal to 3-months we use 3-months rates, and if the days-to-maturity is between 3-

months and 6-months, we use the 6-months rate and so on.

In this paper, the results are based on the last business day observations for each
calendar month. This results in 124 months, 791 different trade date and maturities
combinations (on average 6.38 maturities per month), and a total of 7865 options (9.94
different moneyness levels per trade date and maturity combination). Taking any other
day of the month produces similar results. For example, we verified our results by
taking first working day, second Thursday, and third Friday of every month. The results

are similar. Table I shows the summary statistics of all moneyness S&P500 index call

1% \We need at least two option records for a specific trade date and days-to-maturity to compute z; 1 and
Ot 1



33

option input data that are used to compute 247 and oy 1.
3.2.2 Estimation of Implied Expected Stock Return and Implied Volatility

We jointly estimate the implied expected stock return (x4 1) and implied volatility (ot )
using the risk-adjusted option pricing model described in previous section. For a given
trade date for S&P500 index, we have many call options with same days-to-maturity.
We use all these options records to compute implied stock return and implied volatility
by a method of grid search to look for the global optima that minimizes the square error.
A square error is defined as the square of the difference between the market observed
option price and right hand side of the equation used to compute the option price based
on the observed values."? Since we are searching for the entire spectrum for the global
optima we need to specify search intervals without which we would not be able to
implement the search.™® We use the implied expected return (x4 1) search range from
0.0% to 200.00%, and implied volatility (ot ) search range from 0.0% to 100.00% for
the grid search. To compute implied expected returns we need two or more records with
same key value of trade date, CUSIP, and days-to-maturity. Thus, all the single records

for a key value cannot be used to compute implied return and are discarded. By this

! The option data also contain Black-Scholes implied volatilities adjusted for stock dividends. Using this
information along with the interest rates, we can reverse compute the corresponding European option
price. If the European option price thus computed is higher than the bid and ask midpoint price, then we
take the bid and ask midpoint price, else we take the European price as the option price to compute st
and o7 .S&P 500 options are European style and the prices should reflect as such. However, minor
differences exist between the reported closing prices and the prices reversely computed from end of day
implied volatilities.

'2 The observed values used on the right hand side of the equation are stock price, strike price, option
price, days to maturity, and interest rate.

3 Theoretically an interval of -oo to +o is the full search interval for both 1 and o;7. However, we
would not be able to practically implement such a search for global optima given limited processing
power of resources. Therefore, we choose the upper and lower bound based on the most feasible interval
possible from prior experience.
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method, we extract the market implied return and market volatility for different days-to-
maturity based on S&P500 index option prices, and corresponding S&P500 index

levels.

3.3 Results

Using the S&P 500 monthly index option prices from January 1996 till April 2006, we
estimate expected stock return (4 1) and volatility (ot 1) with our model. We use options
with various strikes at a given day and compute st and ;v for each time to maturity.

As a result, we obtain jointly the term structure of 41 and the term structure of o 7.
Using the S&P 500 index call options of all moneyness,** we find the following:

e Adownward sloping term structure of s 7 that is consistent with existing studies

to be reviewed in details later in section 3.3.1,
e Much flatter term structure for o 1 than the Black-Scholes model,

e o7 carries more information in predicting realized volatility than the Black-

Scholes implied volatility (i.e., average implied standard deviation, or /%)

based on near term options maturing in 90-days or less.*

 We also perform combined call and put option testing. The results are presented in robustness test
section.

1> Average implied standard deviation is the arithmetic average of Black-Scholes implied standard
deviation of all options with different strike prices that are used to estimate z 1 and o 1.
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e Acombination of our implied expected return (x4 1) and implied volatility (ot )

with 7% provides a better model, than using /% alone to forecast future

volatility for any maturity and moneyness combination.

3.3.1 The Term Structure of st

Table Il shows the descriptive statistics of implied expected return (x4 1) and implied
volatility (ot1) using all moneyness S&P 500 index call options. To analyze the results
we classify the data into different days-to-maturity groups. Thus the options whose
days-to-maturity is less than or equal to 90 days are classified into ‘<=90’ group. The
options whose days-to-maturity is greater than 90 days are classfied into “>90’ group.
Figure I shows g4 1 and ot 1 graphs for S&P500 index call options of all moneyness. In
these table and graph, we see a term structure of z4 1. For example in Table II for ‘<=90’

days-to-maturity s« is 19.5%, whereas for <>90° days to-maturity it is 9.41.°

The term structure of s 1 implies the expected return is impacted by the time
horizon of investment. McNulty et al. (2002) study the ‘real cost of equity capital’
using option prices. They find high expected returns in the short term and low expected
returns in the long term, which is consistent with our finding. They argue that the
marginal risk of an investment (the additional risk the company takes on per unit time)

declines as a function of square root of time. The falling marginal risk should be

18 We also see the term structure when we group the data into 30, 60, 90, and so on days-to-maturity
groups.
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reflected in the annual discount rate.'” Our term structure of z47 is consistent with this
explanation. However, unlike our approach, their approach is heuristic and lacks the
theoretical foundation. Recently, Camara et al. (2007) compute the cost of equity from
option prices using a specific utility function and arrive at the same downward sloping
term structure of expected stock returns as did by McNulty et al. Their approach
requires an intermediate parameter that needs to be computed using options of all firms
before they compute the implied expected return of any individual firm. In contrast to

their approach, we do not assume any explicit utility function.*®

The data points for the term structure graphs (Figure 1) are generated by non-
parametric spline interpolation using the neighborhood data points. Our approach can
be used to estimate the cost of equity for any time horizon of investment.*® One of the
advantages of our approach is that the expected return of a stock can be computed
without using any information of the market portfolio such as the market risk premium.
This implies one does not have to define what the ‘market’ consists of, and one does not
have to estimate the risk premium of the market, which is required in traditional asset

pricing models, to estimate the expected return.

To validate the robustness of our finding, we examine the influence of market
friction proxies such as the option open interest, volume, and bid-ask spread on the term

structure of implied expected return. We control for time to expiration bias, moneyness

7 This is explained in McNulty et al. (2002).

'8 Note that our model is consistent with the Black-Scholes and assumes normality of stock returns. As a
result, our model is implicitly consistent with the quadratic utility function.

19 Our approach can be used to estimate cost of equity for different industry portfolios. We do similar
experiments and show the term structure of expected return persists for these industry portfolios.
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bias, and volatility bias in this regression.?® Our results show, the market friction proxies
do not explain this term structure. We also find the term structure of expected return
remains for deep-in and deep-out of the money call options. Furthermore, this term
structure also persists for combined call and put options (discussed in robustness

section).

3.3.2 Comparison of Term Structure of ot and Black-Scholes Volatility

Our model also demonstrates a flatter (less variation) term structure of oy 1.** From
Figure I, we can eyeball the two volatility term structures from o 1 of our model and
/% of the Black-Scholes model that the term structure of oi1 Is much flatter than the

term structure of /% . While it is not easy to compare the two term structures

statistically, we can compute the relative variation of the two term structures from Table
I. For all maturities, the mean and variation (standard deviation) of o1 are 0.2139 and

BS

0.0705 respectively; and of 7.7 are 0.1968 and 0.0785 respectively. Hence, the relative

variation, defined as standard deviation divided by the mean, is 0.3296 for our model
and 0.3989 for the Black-Scholes model.?? This demonstrates that the oi1 of our model

presents a “flatter” term structure than the 77 of the Black-Scholes model.

2 papers by Chiras and Manaster (1978), Macbeth and Merville (1980), Rubenstein (1985), and Canina
and Figlewski (1993) find these biases. Longstaff (1995) has similar controls for these biases.

2! By term structure of o; 1, we mean the value of o; 1 for different days to maturity of T, for same
observation date, t.

. - - =BS
22 Table 111 provides a detail comparison of c;7and 7, .
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When we divide the sample into short term (<=90 days) and long term (>90
days), we find that our model performs better than the Black-Scholes model for the
short term options — 0.3481 versus 0.4310; yet worse for the long term options — 0.3143

versus 0.2992. This demonstrates that the term structure of the Black-Scholes 77

dissipate off, for higher days to maturity options.

To have a detail comparison of the characteristics of ot of our model and the

implied volatility (i.e. implied standard deviation, or /% ) of the Black-Scholes model,

we estimate various attributes of comparison as shown in Table Ill. ot is jointly
estimated with g 1 using multiple option records as described in section 3.2.1 and 3.2.2.
To compute the values in this table, first, we estimate the mean and standard deviation

of ot and Black-Scholes implied volatility (/7 ) for each year and days-to-maturity

based on our entire dataset. Then we compute the difference of these means and

standard deviations of o1 and /% for each year and days-to-maturity.”® Panel A of

Table 111 provides the summary statistics of the difference of the means for different
days-to-maturity groups. Panel B provides the summary statistics of the difference of
the standard deviations for different days-to-maturity groups. As we see in Panel A, the
t-statistics is significant for all maturity groups. Similarly in Panel B the t-statistics is
significant for both ‘<=90’ days-to-maturity and ‘all maturities’ groups and they are

negative. This shows the standard deviation is lower for sigma than /% . Panel C shows

the summary statistics of the difference of coefficient of variation (CV) of air and /7

2 Difference of the means is computed as the mean of oyt minus the mean of EETS . Similarly we

compute difference of standard deviation and difference of coefficient of variation.
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for different days-to-maturity groups. Here we see the CV of oi7 and /% are

statistically different. Similar to Table 1l we see CV of o are lower compared to CV

of /% and thus oy is ‘flatter’ than /% . Overall, Table 111 shows that ot 1 has lower
standard deviation, lower CV, and higher mean compared to /7% . This implies that it

of our risk-adjusted model might have additional information beyond /% that might be

valuable to estimate the characteristics of the underlying stock.

3.3.3 Volatility Forecast

In this section we analyze whether the 41 and ot 1 pair of our model carries more

758

information than of the Black-Scholes model to forecast realized volatility. We find

that ot alone can predict the future realized volatility significantly better than the

Black-Scholes /% when we use options of all moneyness. More interestingly, we find
that when g4 1, ot 1 and /% are all used in the prediction, the result is significantly
better than either ot 1 or /% alone. These results are stronger for near term options.
First, when we use all moneyness, ot 1 and its second order term does better than el

and its second order term for both the days-to-maturity groups namely ‘<=90’ and
>90’, based on adjusted R-square. Second, for near term options, the coefficients of

oi1, and the second-order term are significant even in the presence of 7% .

Furthermore, a likelihood ratio test rejects the null hypothesis that the restricted model
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with 7% and its second-order term is better than the unrestricted model with all the

three variables and their second-order terms for all near and far maturity groups, and for

any moneyness level. %

A vast body of literature exists on the volatility forecasting front, that
investigates the forecasting capability of implied volatility from option prices.? In a
recent comparison study, Granger and Poon (2005) finds that the Black-Scholes (1973)
implied volatility provides a more accurate forecast of realized volatilities. In their
paper, they show the outcomes of 66 previous studies in this area that uses different
methods to forecast the realized volatility. These methods are historical volatility,
ARCH, GARCH, Black-Scholes (1973) implied volatility, and stochastic volatility
(SV).?® Based on their ranking they suggest that Black-Scholes (1973) implied
volatility provides the best forecast of future volatility. Despite the added flexibility of
SV models, authors find no clear evidence that they provide superior volatility
forecasts. Furthermore, they find Black-Scholes (1973) implied volatility dominates
over time-series models because the market option prices fully incorporate current
information and future volatility expectations. Therefore, we choose Black-Scholes

implied volatility (7/7 ) as the benchmark, and compare the information content of our

# As we show in Table V, we take all moneyness or near-the-money options; we take ‘<=90’ days and
>90’ days-to-maturity groups. In all these cases we reject the restricted model that uses only Black-
Scholes implied volatility and its second order term to predict the realized volatility.

% papers are by Latane and Rendleman (1976) (LR), Chiras and Manaster (1978) (CM), Beckers (1981),
Day and Lewis (1992), Canina and Figlewski (1993) (CF), Christensen and Prabhala (1998), Lamoureux
and Lastrapes (1993), Blair et al. (2001). Granger and Poon (2005) provides a comparison of different
methods of forecasting volatility.

%8 Option pricing models by Merton (1976a), Cox and Ross (1976a), Hull and White (1987), Scott (1987),
and Heston (1993a) extend basic Black-Scholes (1973) model to incorporate stochastic volatility and
jumps.
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implied expected return (1) and implied volatility (o) with the 7% . To understand
the forecastability of realized volatility using zr and oir and /% we plot these time

series values in Figure II and Figure III for ‘<=90’ days-to-maturity and “>90’ days-to-

maturity groups respectively for S&P500 index options using all moneyness.

3.3.3.1 Information Content of the Nested Model

The comparison of information content of /% over a model of s and o and /7 can

be evaluated using the following regressions:

RE _ —BS —Bs?
(R1) o7 =y +0,,0,7 +03,0, 7 +@ ¢

RE _ 2
(R2) Oi1 =0y T 0y 07 + U0 + Wy 1

RE _ —BS —Bs? 2 2
(R3) oy =0y + 0407 + 0,017 +0alhr + Oy fliy + 05Oy 7 + 0Oy 7 + Wy 1

Past literature typically uses equation (R1) without the second-order term. In

our investigation we include the second-order terms?’ to capture the higher order effects

to explain the annualized ‘realized’ volatility (o, ), where t is the date of observation

of option prices for a given stock, and T is the maturity date. To compute the /% , we

use the dividend adjusted Black-Scholes implied volatilities given in the OptionMetrics

27 We test the validity of the restricted model without the square term. Based on the likelihood ratio test
our results in most cases reject the restricted model. Therefore, we take the variables (s, o1, Or Black-
Scholes implied standard deviation) with the square terms.
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data file. /7 is the average of these implied volatilities of all options that are used to

estimate the 7 and o;7 pair.”® To compute af}E , first, we compute daily ‘realized’

volatility based on ex post daily returns of the underlying asset for the remaining life of

the option and then multiply by +/252 :

252 & _
GtF,z'II'E =\/;—Z(ui —U; )2

i=1

where 7 is the remaining life (in working days) of the option; u, =In(1+r,); r; isthe

daily return of the underlying asset for day i in CRSP database; U

is the mean of the u.

series.  Table I shows the summary statistics of ‘realized’ volatilities (o) of

S&P500 index options for different day-to-maturity groups of options.

Andersen et al. (2001) show that the conventional squared returns produce
inaccurate forecast if daily returns are used. The inaccuracy is a result of noise in these
returns. They further show that impact of noise component is reduced if high-frequency
returns are used (e.g., 5-minute returns). However, a relatively recent study by Ait-
Sahalia, Mykland, and Zhang (2005) demonstrate that more data does not necessarily
lead to a better estimate of realized volatility in the presence of market microstructure
noise. They show that the optimal sampling frequency is jointly determined by the
magnitude of market microstructure noise and the horizon of realized volatility. For a

given level of noise, the realized volatility for a longer horizon (e.g., one month or

% 141, oy represent zand o respectively for a specific time period, where t is the date of observation of
option prices, and T is the maturity date of the options.

% Hull (2002) uses a similar procedure to compute realized volatilities.
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more) should be estimated with less frequent sampling than the realized volatility for a
shorter horizon (e.g., one day). Since our experiments are mostly for more than one
month time horizon, the optimum data frequency should neither be 5-minutes nor be the
daily returns. In the absence of high-frequency data, to the extent the optimum
frequency is closer the daily return our measure based on this frequency should closely

represent the realized returns.*

Using the above regression models, (R1) ~ (R3), we can test three hypotheses.
First, we can test if oy 1 predicts better than @/% . Second, we can verify if the

coefficients of 11 and o1 are significant even in the presence of /% . Third, we can

test the hypothesis Ho: o, =a,, =a, =a,, =0. If we reject this null hypothesis then

we can argue that z4 1 and ot 1 have significant contribution in forecasting the future

volatility using the model as given in equation (R3).

The regression results are shown in Table IV. We have separate regressions for
different maturity groups. As before, if days-to-maturity is less than or equal to 90 days
then the observations are in ‘<=90’ days-to-maturity group. If days-to-maturity is
greater than 90 days then the observations are in “>90’ days-to-maturity group. We
estimate these regressions using the generalized method of moments. Using OLS may

not be appropriate for our data in the presence of nonspherical disturbances.

Panel A of Table IV shows the regression results using all moneyness of

%0 Therefore we use ‘realized’ volatility, ‘ex post’ volatility, and ‘historical’ volatility interchangeably.
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S&P500 index call options.®* As shown in this panel the coefficients of 7/% , oi7 and o7,

are significant using models (R1) and (R2) respectively. However, the adjusted R-

square is higher for the equation containing o; and oﬁT for every maturity group. This

shows, when we take all options o1 provides a better forecast of realized volatility of
the stock than the @/% . To investigate the performance of o1 further we have similar
regressions in Panel B and Panel C of Table IV. As we see in Panel B, for stock

price/strike price between 0.95 and 1.05 the adjusted R-squares are not higher for the

equations containing s, . and o.; . However, the adjusted R-squares are higher for the

equations containing o, ; and o7, using far-the-money options.* This shows o, ;

provides a better representation of ex ante volatility than @/% using the information in
far-from-the-money options. Even though /% does better when we take only near-the-

money options, it is unable to provide a single implied volatility that we can use for

options of all moneyness. On the other hand o, provides a better measure of ex ante

volatility that can be used for options of all moneyness.

How does equation (R1) compare with equation (R3) in explaining the realized
volatility? To address this question first we see for all panels using near-the-money, all
moneyness, and far-the-money options, the adjusted R-square is higher for the
unrestricted regression (R3) as shown in Table IV. For example, in Panel A for ‘<=90’

days-to-maturity group the adjusted R-square for the unrestricted model (R3) is 46.29%

* In all our samples, we do not include options that have zero trading volume.

%2 Options are defined to be far-the-money if the stock price divided by strike price is either higher than
1.05 or lower than 0.95.



45

and for the restricted model (R1) it is 41.87%. This shows that equation (R3) provides a
better model such that it has a higher adjusted R-square for near-the-money, far-the-

money, and options of all moneyness. Second, for all maturities the coefficients of o, ;

and csfyT are significant for all Panels of Table 1V in the unrestricted equation (R3).

However that is not the case with?;% . For example in Panel A and Panel C the

coefficients of @/% are not significant.

Finally, we use the likelihood ratio to test the hypothesis Hy:
o, =0, =0, =0, =0. The likelihood ratios are significant in our experiment for all
panels of Table IV. Therefore, we reject the restricted model as given in equation (R1)
for all maturity groups shown in this table. This result indicates that the inclusion of s 1
and ot 1, and their second-order terms provides a better model than simply using Black-
Scholes implied volatility to forecast the realized volatility for all near and far maturity

groups, and for any moneyness level.

3.3.3.2 Information Content of Non-Nested Models

In this subsection we compare the non-nested models that have only the risk-adjusted

variables (47 and oy7, and the square terms) or the /% variable (and its square term)

to forecast realized volatility. We use two different variations of J-test that are popularly

used in the literature.

The non-nested models that we use to forecast realized volatility can be given by
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the following regressions:
RE —BS —Bs?

(R4) Oi1 =0+ 0,01 TQ,0 1 + Wy
RE 2

(R5) Oi1 =0 T 0507 +Up0ir + Wy ¢

RE _ 2 2
(R6) 0y7 =03y + 04510, 1 + 050, 7 + 0yl 1 + gy flir + Oy

To compare (R5) or (R6) with (R4) we take the fitted values of o, from these

equations and use the following J-test regressions:
RE 2 RE
(R7) oy = dloy, + 01 + 0 1 |+ (1=@)[o 7 —@, 1 ]+€
RE 2 2 RE
(R8) o1 =dilogy + 0501 + 05007 +0gth 1 + Qg piir 1+ (1= )07 —0y, 1 ]+8€ 4

_ __Rre2
(R9) O'tF,{TE =@,[a, + allo-t‘,a'? + alZGtE,g'? 1+(1-4, )[O'STE Wy 1 1+ €t

Using (R7) and (R9) we can test whether the Black-Scholes implied standard
deviation offers any incremental information over risk-adjusted implied volatility. If the

Black-Scholes model does not have any incremental information, then ¢, should be close

to 1 and significant, and ¢, should be insignificant.**To find whether ¢,is in fact 1, we

% Qur discussions compare (R5) with (R4). However, we can also compare (R6) with (R4) to find if
Black-Scholes implied standard deviation offers any incremental information over risk-adjusted ot and
1. In that case we use (R8) instead of (R7) and (R9) is given by:
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test the null hypothesis of Hg : ¢,=1. Since our null hypothesis is the result intended, in
this test, to minimize the Type 11 error p-value should be higher.** The left side of Table
V shows the results of this comparison. As we see from left side of Panel A using all

moneyness, ¢, is insignificant for ‘<=90’ days-to-maturity group. Also, ¢, is significant
and we fail to reject the null hypothesis that ¢, =1 for this maturity group. This show

that for ‘<=90" days-to-maturity group Black-Scholes implied standard deviation
provide no incremental information over our implied volatility. However for >90’ days-
to-maturity group we cannot say that the Black-Scholes implied standard deviation
provide no incremental information over the risk-adjusted ot 1. Results are similar when
we take both 41 and oi v to compare with the Black-Scholes implied standard
deviation. Even for the near-the-money options (Panel B) for ‘<=90’ days-to-maturity
group, ¢, is insignificant, and we fail to reject the null hypothesis that ¢,=1. This
indicates that even when we do not have a volatility smile the risk-adjusted

ovr performs marginally better than /% . Furthermore, as we see from Panel C, of

Table V, consistent with the prior literature, when we have many far-from-the-money

options, 77 does not provide any incremental information. These results suggest, to

forecast volatility for shorter maturity of 90-days or less, the risk-adjusted ot provides

a better alternative over the /7% for any moneyness level. Furthermore, if we have many

far-from-the-money options, then ot 1 is a better choice irrespective of days-to-maturity.

_ __Rpe?2
(R9) O-t',?f =@, [alo + allo-t?? + alzo-t,BTS 1+(1- ¢z)[O'tF,{TE — Wy 1 1+ €1
We show the results for both (R5), (R4) comparison, and (R6), (R4) comparison in Table VI.

% We take 5% significance level as the cutoff point, approximately in the middle of 10% and 1%.
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We also test another variation® of the above J-test using the following

regressions:

RE 2 RE
(R10) o7 = (1—v,)[ap + @07 + 20; 1 [+ Wol00r — @y ]+ 61
RE 2 2 RE
(R11) o7y = (=,)[0g + 0510, 7 + 05,007 +0gg 7 + gt 7 1+ Wo[ 01 — @y 1]+ 84

_ __Rpe?2
(R12) O-tF,{'IF'E =1yl + allo-tl,g'? + alZO-tl,a'? 1+ V/l[o't',?TE — 0y 7]+ e

For Black-Scholes implied volatility not to have any incremental contribution to

forecast realized volatility, y,should be insignificant in (R10) and v, should be

significant and closer to 1 in (R12).%® Similar to the prior J-test, we test the null
hypothesis that Hy : w, =1. The results are given on the right side of Table V. The results
using this alternative J-test are mostly similar to the prior J-test. Consistent with the
prior J-test, when we take any moneyness for near term options (90-days or less), our
results show Black-Scholes implied standard deviation does not contain incremental
information beyond the risk-adjusted ot (or 41 and ot ). However, for far term
options (more than 90-days), we cannot argue that ot 1 (or 41 and o) alone is
sufficient to forecast realized volatility. Nonetheless, in this case we can still use the

unrestricted regression using all the three variables which provide a better model for all

% Davidson and MacKinnon (1981).

% If we use risk-adjusted o and z4 . instead of just o; 7, then we use (R11) instead of (R10) and (R12)
will be given by:

RE —BS _Bs? RE
(R12) Oy7 = A=y, + QO 1 + @07 1+ l//l[o-t,T Wy 7 1+ €1
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near and far maturity groups, and for any moneyness level as we find in Table IV. In

general, our risk-adjusted approach provides a better measure (than /%) that captures

moneyness biases even without adjusting for stochastic volatility. Our results are
stronger in forecasting the short term volatility for 90-days or less. Therefore, if we are
concerned about the smile while forecasting realized volatility using all options data,

then our approach provides a better solution than ;% so that we do not need any

adjustment for moneyness bias.

3.3.4 Measurement Error and Robustness Checks

Option spread and option volume could be one possible reason for the term structure of
1.1.3" As we see in Table I, spread and option volume are lower for higher days-to-
maturity.®® This experiment is also motivated by the findings of Longstaff (1995).
Using S&P100 index options and Black-Scholes (1973) risk-neutral valuation Longstaff
shows that the implied cost of the index is significantly higher in the option market than
in the stock market. The author also shows the percentage pricing difference between
the implied and actual index is directly related to the measures of transaction costs and
liquidity such as the option spread, volume, and open interest. To examine the possible
influence of these market friction proxies on the term structure of s 1, we regress 41 on

transaction cost proxy that is given by the average spread, and liquidity measures that

%7 Term structure of s is the value of s 1 for different option maturity date of T, for a given option
pricing date of t.

% When we take finer groups, such as 30, 60, 90 days-to-maturity groups we clearly see the average
volume and spread decrease with days-to-maturity.
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are given by average volume and total open interest. We also control for other finding
of pricing biases of Black-Scholes model. These findings include Chiras and Manaster
(1978), Macbeth and Merville (1980), Rubenstein (1985), and Canina and Figlewski
(1993). These studies find three types of pricing bias in Black-Scholes model namely a
time to expiration bias, a moneyness bias, and a volatility bias. To control for these
biases we include the time to expiration, moneyness (stock price/strike price), and
current and first two lagged values of absolute daily returns. To control for volatility
bias, we use current and first two lagged values of absolute daily returns instead of
implied volatility ot 1 since this parameter is jointly estimated with z4 1, which can
induce spurious correlation. Further, we use number of calls to compute 41 and oi 1 as
a measure of trading activity, current and lagged daily returns as a measure of path-
dependent effects (Leland (1985)). The results are shown in Table VI. The regression
results provide mixed evidence that term structure of z4 7 is related to the market friction
proxies namely spread, volume, and open interest. For example, for “>90° days-to-
maturity group the coefficient of average spread and total open interest are 0.0989 and -
1.04E-07 respectively and are significant, whereas average volume is not significant.
Similarly, for ‘<=90” days-to-maturity group only total open interest is significant.
Interestingly coefficient of total open interest is negative and significant for all maturity
groups. However, in the data, total open interest does not increase (as the days to
maturity increases) to support the declining term structure of ,Ut,T-39 As we see average
spread is not significant for ‘<=90’ days to maturity groups, that means spread cannot

explain the sharp term structure of s« 1 especially for the lower days-to-maturity group

% Open interest is mostly lower for higher days to maturity.
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as seen in Figure I,. Therefore, our evidence shows that friction proxies are not the

cause of the term structure of z4.%

Our modified risk-adjusted approach can be questionable in a framework with
stochastic volatility and jumps, which means we may not be using the exact model of
option pricing. Many of the past literature for example Merton (1976a), Cox and Ross
(1976a), Hull and White (1987), Scott (1987), and Heston (1993a) extend basic Black-
Scholes (B-S) model to incorporate jumps and stochastic volatility. However, the risk-
adjusted formulas we use do not have these adjustments and assumes a lognormal
diffusion process. This can create errors-in-variable problem in implied return and
implied volatility computation. To minimize the effect of errors-in-variable bias, we
alternatively take options, which are only near-the-money (stock price divided by strike
price is between 0.95 and 1.05).*" We still see a strong term structure of 4 1 in this case.
Moreover, we do not take options that do not have any trading in a given day. We also
separately estimate st and ot 1 for deep-in-the-money call options where stock price
divided by strike price is greater than 1.20, and deep-out-of-the-money call options
where stock price divided by strike price is less than 0.90. In both cases, we still get the
term structure of 4. Measurement error may be systematically affected by time-to-
maturity (Canina and Figlewski (1993)). To mitigate these errors, options with same
days-to-maturity are used to compute implied expected return and implied volatility. It

may also be possible to have systematic bias in our computation due to other factors

“0 Table IV is based on all moneyness of S&P500 index options. When we take only near-the-money
(stock price divided by strike price is between 0.95 and 1.05) the evidence of friction proxies on g4t are
much weaker; however, we still see a very strong term structure of g4 even in this case.

* The term structure of 241 using near-the-money is also downward sloping.
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such as the market friction (Longstaff (1995)) proxies. To examine this possibility, we
regress 4t on these proxies to show in the previous paragraph that they do not explain

the term structure of z4 1.

Furthermore, our procedure might have problems of computing European option
prices from OptionMetrics implied volatility and using that to compute our implied
return and implied volatility. As a part of our robustness check, we show even if we use
different methods to compute option prices, the term structure of implied expected
return remains in our result. For example, in our main result we compute the European
price using the OptionMetrics implied volatility adjusted for dividends. If this price is
higher than the bid-ask midpoint then we take the bid-ask midpoint, else we take the
European price as the option price for s 1 and o 1 estimation. In our robustness check,
we compute 1 and o 1 first by taking the European price, and then by taking the bid-
ask midpoint price as the option price and we get clear term structures of implied

expected return in both cases.

As we discussed before, the term structure of implied expected return (z47) is
robust to various tests using call options. However it would be interesting to find out if
the term structure persists using both call and put options. For this experiment, we take
a set of ‘balanced’ call and put options. Balanced options means we take only the
options that have both call and put with same strike price. If any call (put) does not
have a corresponding put (call) with same strike price we do not take that option. Since
for a bullish stock, the price of the call goes up; that might be the cause of the term

structure of 41 using only call options. Similarly, taking just the put options might
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reflect only specific set of investor needs. ** From this argument it is clear that if we
take all the calls and puts for a given maturity we might have either more number of
calls or more number of puts, and thus our inference might be dominated by a specific
type of option. Therefore, to make sure we have same number of calls and puts, we take
a ‘balanced’ options approach to estimate the implied expected return (s 1) jointly with
implied volatility (ot 7). The input data summary statistics for these observations are in
Table VIl and the st and oi 1 results are in Table VIII. As we see in Table VII the total
number of observations used is 6242. This compares with 7865 number of observations
in Table I where we use only call options. Number of options in the balanced dataset
will be lower if we do not have a corresponding put option with the same strike price.
Alternatively if for some maturities we had rejected the call options because we did not
have at least two options, those records might not get rejected when we take both call
and put options, thus increasing the number of observations. Therefore, taking a
balanced set does not imply that the total number of observation will increase or
decrease compared to taking only the call options. As we see from Table VIII, s for
less than 90 days group is 15.53% whereas for more than 90 days group is 9.83%.*
This compares with corresponding 1 value of 19.50% and 9.41% when we take only
call options. Figure IV also shows a similar term structure. This graph is sharp near zero
days to maturity (only for the recent year) due to the extrapolation effect of the spline
algorithm. Nonetheless our experiment shows that the term structure of g4 1 still persists

when we use balanced call and put options.

“2 Buying a put does not have the same payoff as writing a call. So the investor needs to choose a suitable
option (call or put) and suitable side (buy or sell) of the trade for the investment need.

*% We also see this term structure when we break into smaller interval groups of days-to-maturity.
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3.4 Possible Explanations of the Term Structure of Expected Return

As we show in this chapter: 1) there is a term structure of stock expected return in
option prices; 2) this term structure is robust to near-the-money, far-the-money, and all
moneyness. It is also robust to all stock options (shown in chapter 4) and S&P500 index
options. Further, it is robust to the bid and ask midpoint price and European option
price. Therefore the next phase of natural exploration is why the term structure is there
in the option price. Following are few possible explanations for this term structure for

future investigation.

First, the term structure of expected return could be model dependent. This
means the geometric Brownian with constant volatility assumption might be little
restrictive to describe the evolution of the price process that might be resulting this term
structure. Therefore as a future extension of our research we suggest a stochastic
volatility risk adjusted model in chapter 6. Nonetheless, even in the presence of this
term structure, we show in chapter 5 that ex ante expected return has the properties so
that it satisfies the tradition CAPM and has information about future macroeconomic
factors. Using stochastic volatility should possibly further improve the information
content of this ex ante expected return. The second possible story could be the urgency
to rebalance and cost of liquidity. Imagine two options on the same stock: one that
matures in one month and the second that matures in six months. In the absence of any

transaction cost, the more we rebalance the more we are close to the Black-Scholes
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price with lower standard error.* . Let us assume we need to rebalance around n times
during the life of the option to have a specific level of standard error.*> So the liquidity
cost (in terms of immediacy of availability) of obtaining n opportunities in a short
period of one month is higher than in a long period of six months. Including this cost in
the option price lowers the price of the option and raises the expected return of the
option (and thus raises the expected return of the stock) in the short term. The above
discussion is based on a flat volatility term structure. In the presence of a downward
sloping term structure of volatility, this reasoning even becomes stronger. Third
possibility is related to a possible extension of Leland (1985). Leland’s paper has
developed a technique for replicating option returns in the presence of transactions costs. The
strategy depends upon the level of transactions costs and the time period between portfolio
revisions, in addition to the standard variables of option pricing. However, our finding might
imply a correlation between the transaction cost and the time period between revisions.

Therefore, Leland’s transaction cost option pricing could possibly be extended to address this

term structure of expected return.

3.5 Conclusion

This dissertation uses a risk-adjusted method for joint estimation of implied expected
stock return and volatility from market observed option prices. We find that investors in

option markets have a higher expectation of stock return in the short-term, but a lower

* This can be seen using MonteCarlo simulation.

**We assume n is a function of asset characteristics, more specifically the volatility of the stock. So if
volatility term structure is flat then we will need same number of rebalancing, n for short- and long-term
options for a given standard error. Also, keeping all parameters same, if we change the volatility to obtain
the price of the option, using MonteCarlo simulation, we can easily see, that the standard error of option
price is higher when we the volatility is higher.
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expectation of stock return in the long-term. This term structure of expected stock
return also remains for deep-in and deep-out of the money call options. We also find
that the market friction proxies such as volume, open interest and bid-ask spread do not
explain this term structure. It also persists for combined call and put options. This term
structure finding supports McNulty et al. (2002) explanation where the authors argue
that shorter horizon investments should be discounted at a higher rate. However, they
use a heuristic approach without a theoretical setting to arrive at these results. On the
other hand, our research provides the necessary theoretical support for this finding.
Using all moneyness options, we further find that the term structure of our volatility is
‘flatter’ than the term structure of Black-Scholes implied standard deviation. We also
find that the implied volatility (oi 1) provides a better model than Black-Scholes implied

standard deviation (/7 ) to forecast realized volatility for maturities of 90-days or less

for any moneyness level. In general, our risk-adjusted approach provides a better

measure (than /7 ) that captures moneyness biases even without adjusting for

stochastic volatility. Therefore, if we are concerned about the smile while forecasting
realized volatility using all options data, then our approach provides a better solution

than /% so that we do not need any adjustment for moneyness bias. In addition, we find

that a combination of our implied expected return (s 1) and implied volatility (ot 1) with

/% provides a better model, than using @7 alone to forecast future volatility for all

near and far maturity groups, and for any moneyness level.

These findings may provide a starting point for further research. For example,

our approach may be used to estimate the cost of equity for different industry portfolios.



S7

Especially estimates of expected return for one-year or more will have lower standard
error, which is a necessary condition for this to be useful as an estimate of cost of
equity. Using this approach, we can compute the expected return of any individual
stock without using any information of the market portfolio such as the market risk
premium. Moreover, our results can be deduced without assuming a utility structure for
the representative agent. Furthering the research, we plan to investigate whether the
term structure persists using other approaches. Nonetheless, better forecasting
capability of future volatility using our sigma and expected return might suggest

additional investigation of information content in these findings.
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3.A Appendix

3.A.1 Risk-Adjusted Formulas for Call Options

3.A.1.1 Proof of Proposition 1:

We prove the proposition without assuming the CAPM. Let the price change for the
stock and option during a small interval of time At are AS and AC respectively.
Without loss of generality, we assume t as the current time. Let the current stock and

option prices are S, and C, respectively. This implies:

as

s, 7

AC

— =
(A1) c,

Elrg] = pAt

E[T’C} = kAt

When At is a small interval of time, then At tendstodt, AS tendstodsS , and

AC tendstodC' .

Since stock price S follows a geometric Brownian, the change in the price of the

stock AS during the small interval of time At is:

(A2) dS = pS,dt + oS,dW

where dW is the Wiener differential. Then, following Ito’s Lemma, option price

change is given by:
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_ac 19°C 4.  OC
dC%ds+[§WU St +¥ dt
(A3)
oC

oC
= %ds + [’f’Ct - 8—STSt]dt

where the second line of (A3) is derived from the Black-Scholes PDE (partial
differential equation). From (A3), we can then compute the covariance between the

option return and the stock return as follows:

cov E,ﬁ] L cov[dC,dS]|
Ct St t~t
(A4) _— %var[déﬂ
c,S, 98
S, 9Cc  |ds
= —var|—
c, oS S,
Then it follows that:
dc ds
s, o0 _ V¢ 1
AS) o a9 [ iq]
(AS) ¢os  las
St

Finally, taking the expectation of (A3), we obtain:

(AB)  kdt = Budt + r(1 — B)dt

Q.E.D.

Further, we note that, if we take covariance of both sides of (A3) with respect to

the market return r,, , then we will obtain the following:

(A7) k=r+8(u-r)



where

_ Be

5 =%

~ cov(rg,nyr)
Bo = ——r—~—
var(ry)

cov(rg, )
By = — A
var(ry)

This implies:
_ cov(re,s)
(A8) var(rg)
_cov(rg,r)
~ cov(r, )

3.A.1.2. Proof of Proposition 2:

60

For readability we drop the subscript t, T for z, o, and k during this proof. From (5a), we

can compute the expected value of the call payoff using the risk-adjusted measure as:

E[CT] = ekal”Ct
(A9)

= S, ON(h,) — KN(h,)

From the known result of the moment generating function of a Gaussian

variable, we have:
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2

var S, :E[S;}f E[ST]
(A10) — GRelntel )T _ G22I

_ St‘zem:(wn e

and

BIS,C,] = [ 8, max{S, — K,0}(S, )ds,

(A11) = [ Si6(5,)dS, —K [ S:0(S,)dS,
= 82 ION(h) — KS,e"" N (k)

where

S~ K+ p+30* (T—1)

B —
3 oNT —t

Hence, the covariance term in (7a) can be computed as:

cov 8;,C; = E[S;C,|— E[S;|E[C}]

(A12) = 2N () — KS, "IN (h) — ST [S,e"TON(hy) — KN ()
= 7T | TON ) - T Nl - Nl - N(’“)‘
t

Finally, combining equations (7a), (A10), and (A12) we have:

602(T~t)N(h3) o g —pu(T—t) N(hl) — N(hz) — N(h,)‘

S, e
C eaz(Tft) -1
t

(Al3) 5=

With the subscripts t,T attached to the parameters, equation (A13) can be written

as equation (8) of Proposition (2).:

Q.E.D.
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3.A.2 Risk-Adjusted Formulas for Put Options
3.A.2.1 Proposition 1 for put options:

Assume stock price S follows a geometric Brownian motion with an annualized

expected instantaneous return of , and volatility of o. Let a put option on the stock at
any point in time ¢ is given by P(S,t) that matures at time 7. Let & is the annualized

expected instantaneous return on this option. Then for a small interval of time A, the

relationship between , and & can be given by:
(Ald) k=r+pB(u—r)

where

(A15) 5= cov(rp,7y)

var(rg)

and r, = AS /S and rp = AP/ P are two random variables representing the stock

return and put option return respectively during the period At. And, r is the annualized

constant risk-free rate for the period of the option.
Proof: The proof is similar to proposition 1.

As in proposition 1, we have:
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AS
5
AP

(Al6) 5 =
Elrg] = pAt
E[T’p] = ]{/’At

When At is a small interval of time, then At approaches d¢, AS approaches

dS ,and AP approaches dP.

Since stock price S follows a geometric Brownian, the change in the price of the

stock AS during the small interval of time A¢ is:
(A17) dS = pS,dt + oS, dW

where dW is the Wiener differential. Then, following Ito’s Lemma, option price

change is given by:

AP = Z-dS + | 22— 0282 + —

oP 19°P , or| .,
28 2952 ot

(AL8) oP oP

where the second line of (A18) is derived from the Black-Scholes PDE (partial
differential equation). From (A18), we can then compute the covariance between the

option return and the stock return as follows:

dP dS 1
Cov ?T,S—f] = mCOV[dP,dS]
1 oP
_s0p

dS‘

—PtaSVaI' S—t



Then it follows that:

dP dS

sor ||

(A20) P oS ﬁ}
5

var

=

Finally, taking the expectation of (A18), we obtain:

(A21) kdt = Budt + r(1 — B)dt

Q.E.D.

Without the subscripts of t, T we write S over the life of the put options as:

R )St ] _ iCOV PT,ST
wl | R vlEn)
S

(A22) 5=

The put option risk-adjusted pricing equation is:

P, = ¢ "V, [max{K — Sy,0}]

(A23) = M0 K [ olsr)asy - [ Sro(sris
— ¢ HTORN(—hy) — DT, N(—1y)

64

where ¢ and T are the current time and maturity time of the option, and K is the strike

price of the option and

hilnSfan+ w+ Yoo (T —t)
b oNT —1
hy =h —oNT —1
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3.A.2.2 Proposition 2 for put options:
The f, based on the life of the put option can be written as:

—| e TN (—hy) — SEEAAL(T_t){N(—hl) — N(=hy)} = N(=n)

_ St t
(A24) 5= o

Proof:
The expected value of the put payoff using the risk-adjusted measure is:
(A25) E[P,] = KN(~h)—e"" "S,N(~h,)

From the known result of the moment generating function of a Gaussian

variable, we have:

2

var S, = E[S;]— E[S,]
(A26) = 5;26(2/‘+(’2)(T*1) _ SfGZ/I(T—t)

_ Sfezu(rft) eaz(T—l,) -1

and

BIS, Py = [ S, max{K — 5,,0}6(S,)dS;

K K
(A27) - Kf(] ST¢(ST)dST - L/:] S;¢(ST)dST
= K8, ON () = S7e T ON ()

where

, mS K+ p+30* (T—1)
5 oNT —t




Hence, the covariance term in (A22) can be computed as:

(A28)

cov STaPT = E[STPT] - E[ST]E[PT]
= [KS,e"TN(—h,) — S+ T N(—p,)] — S,e" T [KN(—h,) — S,e" TN (—h )]

= KS,e"" VIN(~hy) = N(=h,)] = 57 [e” T N(=h,) = N(~h,)]

— Sfe‘lu(T*t)

€N~ N(-hy)} = e ON )+ N >]

t

Finally, combining equations (A22), (A26), and (A28) we have:

—| e TN (—hy) — ?e‘”‘”{N(—m) — N(hp)} = N(~h)

S, ,
(A29) 5~ :

6(72(T7t) -1

Q.E.D.
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Table I: Input Data Summary Statistics of S&P500 Index Options
This table presents the summary statistics of all moneyness month-end S&P 500 index call options
having positive trading volume based on the month-end observations for the period of January 1996-
April 2006. Days-to-maturity groups are formed based on option days-to-maturity. For example, if
days to maturity is less than or equal to 90 days then the observation is in '<=90' days-to-maturity
group. If days to maturity is greater than 90 days it is in "> 90' days-to-maturity group. Moneyness we
define as the stock price divided by the strike price. For S&P500, stock price is the level of the index.
Avg. volume is the average of volume of call options used for a z47 and o+ pair estimate. Avg.
spread is the average of spread of call options used for a g4t and ot pair estimate. Spread is defined
as (offer - bid)/call price. Call price is the midpoint of bid and offer or the European option price
whichever is lower. European option price is computed from Black-Scholes implied volatility in the
data. Number of calls used is the number of option records that are used to compute a g4 and

oyt pair.

Days-to-maturity groups <=90 Days > 90 Days All Maturities
Number of observations 5602 2263 7865
Days-to-maturity Mean 48.9749 321.2702 198.0316
Avg. moneyness Mean 0.9818 0.953 0.966
Std. Dev. 0.0298 0.0709 0.0579
Min 0.8757 0.6242 0.6242
Max 1.1446 1.3697 1.3697
Median 0.9832 0.954 0.9714
Number of calls used Mean 15.648 5.2263 9.9431
Std. Dev. 7.9866 3.1247 7.8171
Min 2 2 2
Max 42 26 42
Median 15 4 7
Avg. spread Mean 0.1365 0.035 0.0809
Std. Dev. 0.1347 0.0418 0.1082
Min 0.0065 0.0008 0.0008
Max 1.0806 0.3773 1.0806
Median 0.1016 0.0229 0.0427
Avg. volume Mean 603.0293 350.6503 464.8749
Std. Dev. 526.9405 660.0032 616.0207
Min 35 1 1
Max 4385.5 8186.75 8186.75
Median 472.8111 191.0833 301
Total open interest Mean 143911.3017 44156.9307 89304.9267
Std. Dev. 180980.9924 50192.6798 136556.5071
Min 0 0 0
Max 1336404 280941 1336404
Median 88911.5 23619 41591
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Table Il: Implied and Realized Summary Statistics Using S&P500 Index Options

The sample consists of all moneyness month-end S&P 500 index call options based on the month-end
observations for the period of January 1996-April 2006. Days to maturity groups are formed based on
option days-to-maturities. For example, if days to maturity is less than or equal to 90 days then the
observation is in '<=90' days-to-maturity group. If days to maturity is greater than 90 days it is in "> 90'
days-to-maturity group. We use all the call options on the same CUSIP, days-to-maturity, and trade
date to compute the implied expected return and implied volatility by a grid search method that
minimizes the square of difference between the observed and computed option price. Realized
volatility is computed based on actual return of the index from trade date to maturity date of the option.
Implied standard deviation (EETS) is the Black-Scholes implied volatility. Results are shown in

decimals.

Days-to-maturity groups <= 90 Days > 90 Days All Maturities
Implied expected return g4t

Mean 0.195 0.0941 0.1397
Std. Dev. 0.0876 0.0379 0.0823
Min 0.0745 0 0
Max 0.5887 0.2428 0.5887
Median 0.173 0.0897 0.1216
Implied volatility ot

Mean 0.2146 0.2132 0.2139
Std. Dev. 0.0747 0.0670 0.0705
Min 0.0788 0.1017 0.0788
Max 0.464 0.4611 0.464
Median 0.2068 0.2073 0.2071
Implied standard deviation (/%)

Mean 0.1979 0.1942 0.1968
Std. Dev. 0.0853 0.0581 0.0785
Min 0.0738 0.0898 0.0738
Max 1.7805 1.1215 1.7805
Median 0.1854 0.1889 0.1865
Realized volatility

Mean 0.1678 0.1712 0.1697
Std. Dev. 0.0697 0.0544 0.0618
Min 0.0632 0.0882 0.0632
Max 0.4324 0.3255 0.4324

Median 0.1553 0.181 0.166
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Table I11: Comparison of Sigma and Black-Scholes Implied Volatility

This table presents the summary statistics of comparison of our sigma (ot 1) estimates and Black-
Scholes implied volatility (22) for different days-to-maturity groups based on all moneyness S&P500
Index call options for the period of January 1996-April 2006. Days to maturity groups are formed
based on option days-to-maturities. For example, if days to maturity is less than or equal to 90 days
then the observation is in '<=90' days-to-maturity group. If days to maturity is greater than 90 days it is
in "> 90" days-to-maturity group. For this table, first, we compute mean and standard deviation of

sigma and 2 for each year and days-to-maturity. Panel A presents the test of difference between
mean level of sigma and 2 for different maturity groups. Panel B presents the test of difference

between standard deviation level of sigma and 3 for different maturity groups. For Panel C, we
compute the coefficient of variation (CV) of sigma and 72 as corresponding standard deviation
divided by the mean for each year and days-to-maturity. Then we take the difference of CV of sigma
and 727 for each year and days-to-maturity. The t-statistics shows whether these differences are

significant for different days-to-maturity groups. ** and * represent the p-values of less than 0.01, and
between 0.01 and 0.05 respectively.

Days-to-maturity groups <=90 Days > 90 Days All Maturities
Panel A: Test of difference between level of Sigma and 72
Difference:
Mean 0.0192 0.0201 0.0153
Standard Deviation 0.0232 0.0274 0.0176
t-statistics 10.9284** 13.3524** 2.88**
Panel B: Test of difference between standard deviation of Sigma and 723
Difference:
Mean -0.0071 -0.0004 -0.0203
Standard Deviation 0.0313 0.0207 0.0115
t-statistics -2.2813* -0.1710 -5.8584**
Panel C: Test of difference between coefficient of variation of Sigma and 72
Difference:
Mean -0.0565 -0.0200 -0.1232
Standard Deviation 0.1371 0.0870 0.0600

t-statistics -4,1222%* -2.0475* -6.8079**
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Table VI: Results from Regressing Level of Mu on the Indicated Variables

This table presents results from regression of s levels for different days-to-maturity groups using
S&P500 index all moneyness call option data. We use generalized method of moments for this
estimation. Days to maturity groups are formed based on option days-to-maturities. For example, if
days to maturity is less than or equal to 90 days then the observation is in '<=90" days-to-maturity
group. If days to maturity is greater than 90 days it is in > 90" days-to-maturity group. The values in
parenthesis are the t-statistics. AvgMoneyness is average of the stock price divided by the strike price
of options used to compute g4 1. For S&P500, stock price is the level of the index. AbsRet, LAbsRet,
L2AbsRet are the current and first two lagged daily absolute returns of the S&P 500 index.
AvgSpread is average of (offer-bid)/call price of all option records used to compute £ 1. TotalOpnint
is the total option interest of the options used to compute 4. AvgVolume is the average volume, and
RecCount is the number of records used to compute s 1. Ret, LRet, L2Ret are the current and first
two lagged daily returns of the S&P 500 index. ** and * represent the p-values of less than 0.01, and
between 0.01 and 0.05 respectively.

Days-to-maturity
groups

<=90 Days

> 90 Days

All Maturities

Intercept
AvgMoneyness
DaysToMaturity

AbsRet
LAbsRet
L2AbsRet
AvgSpread
TotalOpnint
AvgVolume
RecCount
Ret

LRet

L2Ret

Adj-R2

-0.3439(-1.95)
0.6083**(3.42)
-0.002**(-8.16)

2.6419%*(4.64)
2.3448**(4.25)
1.3331**(2.65)
-0.0264(-0.65)
-1.14E-07**(-3.91)
-1.00E-05(-1.74)
0.0011(0.94)
-0.1874(-0.46)
-0.219(-0.62)

-0.0687(-0.2)

0.5142

-0.0548%(-2.31)
0.1732*%(7.49)
-1.10E-04**(-9.55)

1.2907**(5.76)
1.1145%%(4.64)
-0.3074(-1.57)
0.0989*(2.54)
-1.04E-07**(-2.71)
1.25E-06(0.47)
1.85E-04(0.25)
-0.0695(-0.4)
-0.0729(-0.48)

0.0872(0.63)

0.4554

-0.1674**(-5.56)
0.2641*%(8.64)
-1.10E-04**(-9.11)

1.3217%%(3.69)
1.1902**(3.58)
0.122(0.37)
0.1085**(2.73)
-2.10E-07**(-6.34)
3.00E-06(1.02)
0.0061**(7.25)
0.0063(0.03)
-0.0236(-0.11)

-0.0751(-0.35)

0.5843




Table VII: Input Data Summary Statistics of S&P500 Index Balanced Call
and Put Options

This table presents the summary statistics of all moneyness month-end S&P 500 index call and
put balanced options having positive trading volume based on the month-end observations for the
period of January 1996- April 2006. Balanced options means we take only the options that have
both call and put with same strike price. If any call (put) does not have a corresponding put (call)
with same strike price we do not take that option. Days-to-maturity groups are formed based on
option days-to-maturity. For example, if days to maturity is less than or equal to 90 days then the
observation is in '<=90" days-to-maturity group. If days to maturity is greater than 90 days it is in
"> 90' days-to-maturity group. Moneyness we define as the stock price divided by the strike price.
For S&P500, stock price is the level of the index. Avg. volume is the average of volume of
options used for a 41 and oy pair estimate. Avg. spread is the average of spread of options used
for a 41 and o; 7 pair estimate. Spread is defined as (offer - bid)/option price. Option price is the
midpoint of bid and offer or the European option price whichever is lower. European option price
is computed from Black-Scholes implied volatility in the data. Number of options used is the
number of option records that are used to compute a 4 and oy 1 pair.
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Days-to-maturity groups <=90 Days >90 Days All Maturities
Number of observations 4206 2036 6242
Days-to-maturity Mean 56.5615 316.1805 213.7511
Avg. moneyness Mean 1.0102 1.0036 1.0062
Std. Dev. 0.031 0.0685 0.0568
Min 0.9087 0.8142 0.8142
Max 1.1554 1.8598 1.8598
Median 1.008 0.9972 1.0031
Number of options used Mean 16.1769 5.1028 9.4719
Std. Dev. 10.37 3.7946 8.9653
Min 2 2 2
Max 48 30 48
Median 16 4 6
Avg. spread Mean 0.0366 0.0182 0.0254
Std. Dev. 0.0284 0.0159 0.0235
Min 0.003 0.0015 0.0015
Max 0.2632 0.129 0.2632
Median 0.0325 0.0128 0.0181
Avg. volume Mean 688.7162 349.5335 483.3537
Std. Dev. 733.9706 607.5059 680.2962
Min 15 1 1
Max 7839 8311 8311
Median 533.35 180 300.9167
Total open interest Mean 152587.6346 51103.0727 91142.5053
Std. Dev. 213038.8693 69700.8886 152535.4084
Min 0 0 0
Max 1660937 511561 1660937
Median 77180 23191 34169




Table VIII: Implied and Realized Summary Statistics Using S&P500
Balanced Call and Put Options

This table presents the implied (using risk-adjusted model) and realized summary statistics using
moneyness month-end S&P 500 index call and put balanced options having positive trading
volume based on the month-end observations for the period of January 1996- April 2006. Balanced
options means we take only the options that have both call and put with same strike price. If any
call (put) does not have a corresponding put (call) with same strike price we do not take that option.
Days to maturity groups are formed based on option days-to-maturities. For example, if days to
maturity is less than or equal to 90 days then the observation is in '<=90' days-to-maturity group. If
days to maturity is greater than 90 days it is in "> 90" days-to-maturity group. We use all the
options on the same CUSIP, days-to-maturity, and trade date to compute the implied expected
return and implied volatility by a grid search method of global optima that minimizes the square of
the difference between the observed and computed option prices. Realized volatility is computed
based on actual return of the index from trade date to maturity date of the option. Implied standard
deviation (EfTS) is the Black-Scholes implied volatility. Results are shown in decimals.
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Days-to-maturity groups <= 90 Days > 90 Days All Maturities
Implied expected return g4t

Mean 0.1553 0.0983 0.1208
Std. Dev. 0.1012 0.0331 0.074
Min -0.2589 -0.0639 -0.2589
Max 0.8189 0.2169 0.8189
Median 0.1584 0.0961 0.1109
Implied volatility o; 1

Mean 0.2129 0.2168 0.2153
Std. Dev. 0.0565 0.0501 0.0527
Min 0.0992 0.1191 0.0992
Max 0.4028 0.4796 0.4796
Median 0.2143 0.2157 0.2153
Implied standard deviation (/%)

Mean 0.2171 0.2054 0.2133
Std. Dev. 0.08 0.0627 0.075
Min 0.0876 0.0948 0.0876
Max 1.3255 1.1215 1.3255
Median 0.2087 0.2005 0.2063
Realized volatility

Mean 0.1722 0.1694 0.1705
Std. Dev. 0.0679 0.0541 0.0599
Min 0.0632 0.0871 0.0632
Max 0.4119 0.3255 0.4119
Median 0.1601 0.1767 0.169
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Chapter-4

Cost of Equity Estimate Using Risk Adjusted Expected Return

Estimation of forward-looking expected stock return is an important part of financial
research for at least two reasons. First, it helps determine the cost of capital of an
investment of a firm. Second, it is useful for portfolio allocation and balancing. The
commonly used methods of estimating the cost of equity (and expected returns) are
based on a relationship between one or more factor expected returns and the asset
expected return. In particular, the capital asset pricing model (CAPM) of Sharpe (1964),
Lintner (1965) and Mossin (1966); the three-factor model of Fama and French (1993);
the momentum factor of Jegadeesh and Titman (1993), and the macroeconomic factor
model of Chen, Roll, and Ross (1986) provide different fundamental factors that can
explain the expected return of assets. The common feature of these models is that they
use historical data to estimate the expected returns of the assets into the future.
However, as we discussed in chapter 2, use of historical returns may not be a good
substitute for ex ante expected returns. Unless return distributions are stationary and
precise over time, the cost of equity estimated by these methods may not perform well
as the discount rate of the future cash flows of an investment project. Moreover, these
models do not explain any relationship between the time horizon of investment and the

expected return.

Recent research has used forward-looking options data to estimate the cost of

equity. McNulty et al. (2002) uses a heuristic approach to compute the ‘real cost of
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equity capital’ from option prices. Their finding of higher implied expected return in
short term and lower implied expected return in long term matches with our finding,
however their approach lacks the theoretical support. Another recent paper, which
computes the stock implied expected return from option prices, is by Camara, Chung,
and Wang (2007). Interestingly, even though they assume a different utility structure
they find a downward sloping term structure of expected return similar to our finding.
In contrast to the above papers, we follow a discrete time approach that has the
advantage of being consistent with single period standard CAPM. Using our approach,
the expected return of a stock can be computed without using any information of option
of all companies like the Camara, Chung, and Wang (2007), or of the market portfolio
such as the market risk premium. This implies we do not have to define what the
‘market’ consists of, and we do not have to estimate the risk premium of the market,

which is required in traditional asset pricing models to estimate the expected return.

This chapter is organized as follows. Section 4.1 provides the descriptive
statistics using all stock options, Section 4.2 discusses estimates of cost of equity, and

Section 4.3 provides the concluding remarks.

4.1 Descriptive Statistics Using All Stock Options

In the previous chapter we showed the results of expected return using S&P500 index

data. In this chapter we show similar results using all stock options and then examine

! Our approach is consistent with the standard CAPM and thus consistent with a specific utility structure
of hyperbolic absolute risk aversion (HARA) preference family namely the quadratic utility structure.
Camara, Chung, and Wang (2007) assume a specific utility structure (see chapter 2).
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the cost of equity for different industry groups. We jointly estimate expected stock
return and implied volatility using the risk-adjusted model as explained in the previous
chapters. Before we analyze the cost of equity for different industry groups we show in
Table | the descriptive statistics of the input data used for our estimation of option

implied expected stock return ( ) and implied volatility (o ) using all stock options. To

analyze the results we group the data into different days-to-maturities. Thus the options
whose days to maturity is less than or equal to 30 days are grouped in 30-days-to-
maturuty group. The options whose days-to-maturity is greater than 30 days but less
then or equal to 60-days are grouped in 60 days-to-maturity groups and so on. As we
see from Table I, the number of observations is higher for lower days to maturity than
for higher days to maturity. For example, for 30 days-to-maturity, the number of
observations is 11565, and for 720 days to maturity, it is 730 observations. Since we
take only near-the-money options, the average moneyness mean is around 0.99. In most
cases we have around two option records to compute a ¢ and o pair. The spread in our
data is defined as (offer-bid)/call price. Interestingly even though all our options are
near the money we see the average spread is mostly higher for lower days-to-maturity.
Since closer to maturity options are most actively traded, it is not surprising to see the
average volume to be higher for lower days-to-maturity. Table Il shows the descriptive

statistics of 1 and o estimated using all stock options. This table and Figure | show

the term structure of x for all stock options which is similar to the results we got using
the S&P500 index options. Mcnulty et al. (2001), and Camara Chung and Wang (2008)

find similar term structure of expected returns using options data.
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4.2 Estimates of Cost of Equity

The option implied expected stock return ( z ) can be used as an estimate of cost of

equity (COE) of projects. The traditional approach is to use the capital asset pricing
model (CAPM) to estimate the COE. The most popular market-based alternative to the
CAPM is the Fama and French (1993 and 1996) three-factor model, which is shown to
be better than the CAPM in explaining expected returns of stocks. Therefore, in this
study we compare the Fama and French approach with our option implied method of
estimation of the cost of equity for one-year into the future for different industry
portfolios grouped by standard industry classification (SIC) codes. We obtain the
industry group to SIC code mapping from Kenneth French website. For this
comparison, we take six industry groups namely, Consumer Products and Services,
Manufacturing, Information Technology, Healthcare, Utilities and Finance. To have a
smooth estimate of cost of equity by the Fama and French model, we take previous
three-years of historical data. Using this historical data, first we estimate the loadings of
the three factors. We use the historical average of the factors with these loading to
estimate the cost of equity. Then by rolling over the sample period month by month, we
obtain the time series of cost of equity estimates for the entire period of January 1996-
April 2006. The option implied cost of equity that we use to compare with the Fama and
French is based on options with 360 days-to-maturity group. We take equally-weighted
average to compute the cost of equity for different industry groups, although the

comparison properties are similar when we use the value-weighted average. The results

2 A similar method was used in Fama and French (1997) to estimate the cost of equity.
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of the comparison are given in Table I1l. As we see, the mean of option implied
expected return for Consumer Products and Services is about same for our method, and
Fama andFrench method. Whereas for Manufacturing, Utilities and Finance our
approach produces lower, and for Information Technology and Healthcare our approach
produces slightly higher cost of equity than the Fama and French approach. It should be
noted that the option implied cost of equity shown in Table 111 is based on the options in
360 days-to-maturity group. As we see from Table I, the average days-to-maturity for
this group is 239 days. An alternative comparison could have the interpolated option
implied expected returns for one-year (365 days). Since we know the estimates of
option implied cost of equity decrease with days-to-maturity, an interpolation to one-
year will provide lower of cost of equity with lower standard deviation, than the values

shown in this table.

As we see from Table 111, the standard deviations of cost of equity by our option
implied method are lower compared to the Fama and French method for all industry
groups. For example, the standard deviation of Fama and French cost of equity
estimates varies from 5.48% to 19.59% across different industry groups. Whereas the
standard deviation of our option implied cost of equity varies from 3.15% to 4.39%.
Moreover, the cost of equity estimate of all industries by Fama and French method
varies from -44.64% to 53.78%, whereas by our option implied method it varies from
0.89% to 26.99%. More specifically, the standard deviation by option implied method
for Consumer Products and Services is 3.54%, whereas it is 10.23% by the Fama and
French method. It clearly shows that our option implied estimates are less volatile

compared to the Fama and French estimates. Moreover, the Fama and French method
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may produce negative estimates of cost of equity for some industry groups, or for some
time periods, which cannot be used as a discount rate for the projects. For example at
some point in time Consumer Products and Services industry cost of equity was -
10.07%. Clearly the Fama and French cost of equity estimates are very volatile and in
some cases it produces negative cost of equity. This finding is consistent with the Fama
and French (1997) argument that CAPM or three-factor model produces imprecise
estimate of cost of equity due to the uncertainty about the true factor risk premiums, and
the imprecise estimate of the factor loadings. Figure Il depicts the time series process
of cost of equity by our option implied, and by the Fama and French method. This
supports the previous observation that cost of equity estimate by our option implied

method is stable over time, compared to the Fama and French method.

4.3 Conclusion

In this chapter we extended our results to all stock options. The finding of term structure
of x using all stock options is similar to the results using S&P500 index options. The
estimated from our risk-adjusted model can be used to estimate the cost of equity for
different industry groups. The cost of equity estimate by our approach has at least two
advantages. First, our approach uses observed option and stock prices to extract
expected returns, whereas the traditional models such as the CAPM and the Fama and
French model need the unobservable market risk premium. Second, unlike the CAPM
or the Fama and French, our approach does not use historical information to compute

the forward-looking expected return. There are two empirical findings in this chapter.
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First, the option implied expected returns are more stable over time than the Fama and
French estimates. In fact the Fama and French cost of equity estimates in some case
become negative, which is not the case using our model. Second, our result shows even

using all stock options the downward sloping term structure of 4 is maintained.



Tables

Table I: Input Data Summary Statistics of All Options
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The sample consists of all month-end near-the-money U.S. exchange traded call options for the period
of January 1996- April 2006. Days to maturity groups are formed based on option days to maturity. For

example, if days to maturity is less than or equal to 30 days then the observation is in 30 days to

maturity group. If days to maturity is greater than 30 but less than or equal to 60 then the observation is
in 60 days to maturity group and so on. Moneyness we define as the stock price divided by the strike
price. Volume is the call option volume. Spread is defined as (offer - bid)/call price. Call price is the mid

point of bid and offer or the European option price whichever is lower. European option price is

computed from Black-Scholes implied volatility in the data. Number of calls used is the number of
option records that have same days to maturity on the same CUSIP with different strike prices on the

same trade date.

Days-to-maturity groups 30 60 90 120 180 360 540 720
Number of observations 11565 8881 3240 2763 4373 3371 642 730
Days-to-maturity Mean 19.48249 49.99257 80.2608 110.8064 155.5751 239.0389 449.9486 708.0863
Avg. moneyness Mean 0.998656 0.997899 0.997736 0.998565 0.997883 0.998086 0.997091  0.998257
Std. Dev. 0.010261 0.010452 0.010799 0.010609 0.0107 0.01087 0.010648  0.010765
Min 0.960968 0.954817 0.958715 0.959115 0.959948 0.962419 0.965038  0.962616
Max 1.038239 1.036293 1.034318 1.038687 1.034853 1.044099 1.030084  1.032731
Median 0.998601 0.997899 0.997665 0.998693 0.997958 0.99825 0.997163  0.998202
Number of calls used Mean  2.364462 2.312577 2.357099 2.211726 2.1866 2.179769 2.160436 2.156164
Std. Dev. 1.638055 1.274061 1.154322 0.754696 0.662989 0.599965 0.570293  0.465839
Min 2 2 2 2 2 2 2 2
Max 24 21 14 13 11 10 7 6
Median 2 2 2 2 2 2 2 2
Avg. spread Mean 0.135416 0.080799 0.068048 0.059072 0.052442 0.044398 0.03364  0.033451
Std. Dev. 0.129671 0.067326 0.060767 0.046554 0.047561 0.030124 0.031041  0.024066
Min -0.46121 -0.36306 -0.20916 -0.15284 -1.33368 -0.10263 -0.52822  -0.03165
Max 1.625 1.227679 1.714286 1.153846 1.645161 0.62079 0.209304  0.253661
Median 0.102403 0.068027 0.058277 0.052668 0.04739 0.04028 0.032072 0.029731
Avg. volume Mean 547.0359 266.7459 206.621 157.6575 131.0213 139.379 121.7841 104.5247
Std. Dev. 1786.683 814.9684 519.0864 433.2877 459.6463 708.1293 369.9922  453.1043
Min 1 1 1 1 1 1 1 1
Max 53213 25245 10729.25 8100 13579.5 27849 6054 10015.33
Median 122 61.66667 48.5 38.5 31.33333 27 30.5 21
Total open interest Mean 12396.11 7452.418 11179.92 9480.218 7398.776 8462.374 16587.81 8422.127
Std. Dev. 42459 27743.11 29327.43 24452.97 20893.22 25813.37 37569.38 24622.19
Min 0 0 0 0 0 0 0 0
Max 984687 1003966 541457 499967 514526 445689 321969 293838
Median 3161 1344  3406.5 2698 2053 1314 47155 1667
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Table Il: Implied and Realized Summary Statistics Using All Options

The sample consists of all month-end near-the-money U.S. exchange traded call options for the period of
January 1996- April 2006. Days-to-maturity groups are formed based on option days-to-maturity. For
example, if days-to-maturity is less than or equal to 30 days then the observation is in 30 days-to-maturity
group. If days-to-maturity is greater than 30 but less than or equal to 60 then the observation is in 60
days-to-maturity group and so on. We use all the call options on the same CUSIP, days-to-maturity, and
trade date to compute the implied stock expected return () and implied volatility (o) by a grid search
method that minimizes the square of difference between the observed and computed option price. The
grid search for g, is in the interval of 0.00%-200.00%, and for it is in the interval of 0.00%-100.00%.
Realized volatility is computed based on actual return of the stock from trade date to maturity date of the

option. Results are shown in decimals.

Days-to-maturity groups 30 60 90 120 180 360 540 720
Implied expected return Mean  0.430065 0.274133  0.21481 0.1879030.1593340.1299490.107797 0.092186
Std. Dev. 0.230455 0.131472 0.099885 0.0858660.075132 0.05942 0.04770.040843
Min 0 0 0 0 0 0 0 0
Max 2 0.820043 0.582205 0.4835881.504852 0.374305 0.240838 0.219323
Median 0.3818 0.255299 0.201111 0.180111 0.151970.1256330.107531 0.09107
Implied volatility Mean 0.443168 0.432945 0.411373 0.4160790.4136230.390927 0.393844 0.41534
Std. Dev. 0.236102 0.225957 0.216578 0.2143370.2164880.2060930.1897180.199014
Min 0.04648 0.031193 0.047858 0.0327570.0376920.0388890.0581110.081111
Max 1 1 1 1 1 1 1 1
Median 0.371658 0.372446  0.35557 0.36157 0.359870.3429890.361167 0.38752
Realized volatility Mean 0.410876 0.402699 0.384182 0.3971610.402098 0.383391 0.400312 0.434903
Std. Dev. 0.329419 0.299004 0.286341 0.2853330.2864190.2694530.268378 0.28585
Min 0.020839 0.031882 0.025105 0.0259990.0127130.0169920.077382 0.03674
Max 3.957029 3.281549  2.15659  2.0712442.5470942.5227182.414214 2.90283
Median 0.309298 0.310205 0.301039 0.3115240.3186250.310317 0.337483 0.374236
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Table I11: Summary Statistics of Cost of Equity Estimates by Different Methods

This table presents the equally-weighted cost of equity by our option implied method and the Fama and
French method for various standard industry classification (SIC) code industry groups based on option
data for the period of January 1996- April 2006. By the Fama and French method, first we estimate
factor loadings based on previous three-year of historical data and then we use average of historical
factor values along with these factor loadings to get the cost of equity estimate for each point in time.
Option implied expected returns for different industries are estimated using the options in 360 days-to-
maturity group. Results are shown in decimals.

Panel A: Option implied expected return

Consumer
Products and Information
Industry Group Services Manufacturing  Technology Healthcare Utilities  Finance
Mean 0.1312 0.1179 0.1602 0.1387 0.0776 0.1283
Median 0.1263 0.1151 0.1590 0.1367 0.0644  0.1159
Std. Dev. 0.0354 0.0315 0.0344 0.0413 0.0367  0.0439
Minimum 0.0653 0.0489 0.0760 0.0097 0.0241  0.0089
Maximum 0.2224 0.2357 0.2699 0.2616 0.1752  0.2663
Panel B: Fama and French expected return
Consumer
Products and Information
Industry Group Services Manufacturing ~ Technology Healthcare Utilities  Finance
Mean 0.1322 0.1444 0.1002 0.1035 0.1416 0.1538
Median 0.1273 0.1442 0.1599 0.0901 0.1547  0.1683
Std. Dev. 0.1023 0.1062 0.1959 0.1043 0.0548  0.1484
Minimum -0.1007 -0.0702 -0.4464 -0.1010 0.0206  -0.1219
Maximum 0.3805 0.3939 0.5378 0.3663 0.2110  0.4119
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Chapter-5

On the Ex-Ante Cross-Sectional Relation Between Risk and Return Using Option-

Implied Information®

One of the most fundamental issues in finance is what is the appropriate amount of
return expected (or required) by investors when they bear risk. The first and most
prominent model among others to address this issue is the Capital Asset Pricing Model
(CAPM) by Sharpe (1964), Lintner (1965), and Black (1972). This model posits a
linearly positive relationship between systematic risk (or market beta) and expected
return on a risky asset. Indeed, the CAPM applies to all areas: computation of the cost
of capital, measurement of investment performance, determination of fair returns for
regulated industry, etc. Numerous investment institutions, such as Value Line, Standard
& Poor’s, and Merrill Lynch, use beta as the appropriate risk index and report beta to
their customers. Due to the importance of the model, many researchers have been
testing its validity since it was introduced. Empirical testing of the validity of the

CAPM is the most heavily investigated area in finance.?

! This chapter is based on a joint paper with my dissertation committee members Dr. Ren-Raw Chen
(advisor), and Dr. Dongcheol Kim.

2 There are many obstacles to the test of traditional CAPM. First, the model needs the ex ante expected
return and beta. Second, there should be time horizon matching of this information for the CAPM test;
alternatively researchers assume that the beta and risk premium are stationary. Finally, Roll’s critique
(1977) applies for this test. As Roll points out “the only legitimate test of the CAPM is whether or not the
market portfolio is mean-variance efficient” and “If performance is measured relative to an index that is
ex post efficient, then from the mathematics of the efficient set no security will have abnormal
performance when measured as a departure from the security market line.” This means that the efficiency
of the market portfolio and the validity of the CAPM are joint hypothesis that are almost impossible to
test because of the difficulty of measuring the true market portfolio.
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Contrary to the prediction of the CAPM, however, most empirical results have
found that idiosyncratic risk factors have significant explanatory power for stock
returns, while market beta has little power. For example, Fama and French (1992)
reports that firm size and book-to-market explain well the cross-section of average stock
returns, while market beta has no explanatory power. This challenges the validity of the
CAPM, one of the most important models in finance. In this chapter we examine the
test of the CAPM using the ex ante expected return that we extract from risk-adjusted

option prices.

This chapter is organized as follows. Section 5.1 discusses various sources of ex
ante information and the findings, Section 5.2 describes the risk-adjusted option pricing
model for implied return and volatility, Section 5.3 describes the data, and Section 5.4
explains the computational details for the implied variables. Section 5.5 presents

empirical results, and Section 5.6 sets forth our conclusion.

5.1 Sources of Ex-Ante Expected Return

The CAPM determines the equilibrium risk—return relationship on an ex ante
basis. Thus, empirical test of the CAPM should be performed on an ex ante basis. It is
difficult, however, to empirically test the CAPM on an ex ante basis, since the future
expected return and beta are unavailable at the beginning of the investment period.
Because of this empirical difficulty, most previous tests have been done on an ex post
historical basis, implicitly assuming that historical realized average returns are good

estimates of future expected returns. However, there is ample evidence that average
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realized return does not converge to expected return in finite samples. One of the
features, which work against the convergence of average realized return to expected
return, is the time-variation of expected returns and market risk premium (i.e.,
nonstationarity). Unless return distributions are stable and precise over time, the
expected returns estimated by these methods may not perform well as a true
representation of ex ante market expectations.® In his presidential address, Elton (1999)
notes that “there are periods longer than 10 years during which stock market realized
returns are on average less than the risk-free rate (1973 to 1984). There are periods
longer than 50 years in which risky long-term bonds on average underperform the risk-
free rate (1927 to 1981).” In these circumstances, the use of realized returns for
expected returns and market betas could lead to biased estimation and to rejection of the
CAPM. Despite the problems caused by the use of realized returns, most results in the

empirical asset pricing literature are obtained from such returns.

Elton (1999) also notes that “developing better measures of expected return and
alternative ways of testing asset pricing theories that do not require realized returns
have a much higher payoff than any additional development of statistical tests that
continue to rely on realized returns as a proxy for expected returns.” In this vein, several
studies construct alterative proxies for expected returns. Gebhardt, Lee, and
Swaminathan (2001), Fama and French (2002), Botosan and Plumlee (2005), and
Easton and Monahan (2005) use valuation models to estimate expected returns. Brav,

Lehavy, and Michaely (2005) construct estimates of expected returns using financial

% Fama and French (1997) and Pastor and Stambaugh (1999) find that both the CAPM and the Fama and
French three-factor model are imprecise owing to the uncertainty about true factor risk premiums and
imprecise estimates of the factor loadings that are based on historical returns.
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analysts’ target prices from Value Line, and Campello, Chen, and Zhang (2008) use
corporate bond yields to estimate expected equity returns.* In particular, Brav, Lehavy,
and Michaely (2005) and Campello, Chen, and Zhang (2008) conduct cross-sectional
tests for the relation between market beta and expected return by using their own

measures of expected returns, and find that market beta is significantly priced.

However, the measures of expected returns used in the previous studies have
several problems. The most frequently used approach to obtain estimates of expected
returns is to use valuation models and calculate internal rates of return for the estimates.
Most valuation models use unrealistic assumptions for the future evolution of
accounting variables, such as constant dividend growth. Furthermore, most models use
indirect measures for expected stock returns. For example, the Brav, Lehavy, and
Michaely (2005) approach of using analyst target prices from Value Line adopts similar
assumptions. Another popular measure of investors’ expected return is bond yields,
which are used in Campello, Chen, and Zhang (2008). Bond yields are forward-looking
expected returns over the life of the bonds, under the conditions that the bonds do not
default, the yields do not change in the next periods, and coupon payments are
reinvested at the same rate as the yield until maturity. However, although bond yields
reflect the expected risk premium for default risk, which is the financial side of
systematic risk, bond yields may not reflect the expected risk premium caused by an
uncertain business environment, which is the business side of systematic risk. It would

be difficult to say, therefore, that bond yields fully reflect the expected risk premium of

* Levy (1997) conducts a classroom experiment to estimate ex ante parameters.
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all systematic risks of a firm. Another problem inherent in using bond yields as a proxy

for ex ante expected return is that many firms’ bond trade prices are unavailable.

To overcome the shortcomings of the above-mentioned measures, we use
option prices to extract information regarding ex ante expected returns and market beta
of the underlying asset. Since option prices reflect investor expectations for future stock
price movements, option data are an excellent information source for ex ante
parameters. Option data have many advantages over other information sources for
expected returns used in the previous studies. Option data are observed market prices,
are not obtained from any specified model, and expected returns implied from option
prices might reflect investor expectations for all systematic risk of the underlying asset.
We extract implied mean return and implied volatility of the underlying asset from
forward-looking option prices using a risk-adjusted approach. We use this implied mean

return as a proxy for ex ante expected return.

5.1.1 The Risk-Adjusted Approach

The approach we follow is a risk-adjusted option pricing model that prices an option in
discrete time and that retains the expected return of the underlying asset in the pricing
equation. The Black-Scholes (1973) risk-neutral model prices options by taking
advantage of the interesting feature that a particular portfolio of the stock and the option

can cancel out the unknowns—namely the expected mean returns of the option and its
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underlying stock in continuous time.> However, if our objective is to extract expected
return given the market price of options, we should form the corresponding risk-

adjusted valuation model that will retain the expected returns in the pricing model.

Option pricing models that embed mean stock returns are not new. The early
option pricing models of Sprenkle (1961), Ayres (1963), and Boness (1964) have
implicitly or explicitly assumed some form of risk-adjusted framework such that
investors who employ a buy and hold strategy could be linked to expected stock returns.
However, none of these models provides an adequate theoretical structure that relates
option returns and stock returns, hence they lack the ability to extract stock returns from
option prices. Our risk-adjusted model, however, provides the pricing equations

necessary to jointly estimate the expected returns of both the stock and the option.

The main purpose of this study is to examine the CAPM relation on an ex ante
basis. While more complex versions of the CAPM may include quite a number of
parameters, in the standard CAPM that we study in this paper, two ex ante parameters
are needed in this test: expected return and market beta. In order to obtain these two
parameters on an ex ante basis, we must derive a risk-adjusted option pricing model that
contains these two parameters and at the same time the model is consistent with the

standard CAPM.

> Black and Scholes (1973) show that if the market is complete, the expected return of the stock should
disappear from the valuation of the option as dynamic hedging (known as continuous rebalancing, price
by no arbitrage, or risk neutral pricing) effectively removes the dependence of the option price on the
stock return. This is true, however, only if the market is truly complete in reality. In other words, if the
reality is exactly described by the Black-Scholes model, it is impossible to theoretically solve for both
expected return and volatility. However, it has been empirically shown that the Black-Scholes model
cannot explain all option prices (known as the volatility smile and volatility term structure).
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Our model to obtain the expected return and market beta follows a two-step
process. First, at the end of each month (i.e., at the last trading day of each month), we
observe the prices of a stock option with a particular maturity and compute implied
returns of the underlying stock from the observed option prices based on the risk-
adjusted option model. We regard these option-implied returns (or simply, implied
returns) as ex ante expected returns. At the same time, we also observe the prices of a
market index option such as Standard & Poor’s 500 index option whose maturity is
matched with that of the stock option. Then we compute implied market returns from
the observed market index options based on the risk-adjusted option model. Thus, each

implied return of a stock has its counterpart implied market return.

Second, there is no explicit way to directly extract expected market betas. The
literature is limited in the area of extraction of implied betas from option prices. To our
knowledge, there are only two papers in this area. Siegel (1995) proposes a new
“exchange option,” the price of which is based on the number of units of a specific
stock that can be exchanged for one unit of an index. Thus, he argues that the price of
this exchange option can reveal the implied beta of the stock. However, such exchange
options do not exist in current capital markets. More recently, Christoffersen, Jacob, and
Vainberg (2006) show that implied beta can be extracted from option prices without
using this new derivative. The beta in their model is computed using forward-looking
variances and the skewnesses of the stock and the market. However, the main limitation
in their approach is the internal conflict between the assumption of the CAPM where
returns of the stocks follow a multivariate normal distribution, and the existence of

skewness in stock returns. Furthermore, their approach does not generate the unique
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implied beta in that an implied beta can be obtained by using kurtosis (or any moment),
which can differ from the one obtained by using skewness. Because of these problems,
we simply estimate expected market betas by regressing option-implied returns of the
underlying stock on option-implied returns of the market index, the Standard & Poor’s

500 Index.

Option-implied monthly returns for a total of 4,078 stocks are obtained over the
period January 1996 through April 2006. One feature of our implied returns is that it
portrays how investor expectations differ for different investment horizons. We find that
there is apparently a downward sloping term structure of implied returns. That is, the
longer the investment horizon, the smaller the expected return. The term structures of

implied volatility and implied market beta are also downward sloping.®

In month-by-month, cross-sectional regressions of ex ante implied returns on
implied market betas, which is an ex ante version of the CAPM test, we find that there
is a significantly positive relation between these two ex ante variables. Even though
firm characteristics such as firm size, book-to-market, and momentum are included in
the model, this positively significant relation is strongly maintained. We also examine
whether implied market betas have explanatory power for ex post realized stock returns
and find that implied market betas are significantly priced. Since there is apparently a
non-constant term structure of expected returns, we repeat the cross-sectional asset
pricing tests for each maturity group. In all maturity groups, we find results similar to

those obtained from using the whole sample.

® The downward sloping term structure of volatilities is well documented in the literature. See Hull
(2002).
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Since we have implied returns with various investment horizons at a given
time, it is possible to compute forward-implied returns and betas and to examine cross-
sectional relations between these two forward variables. We find that forward-implied

returns also have a positive and significant relation with forward market betas.

Another way to test whether our CSR estimate of ex ante market risk premium
has economic significance is to examine whether the ex ante market risk premia
estimate contains forward-looking information on macroeconomic conditions. We find
that the ex ante market risk premium has a significant positive relation with the future
default premium. And, it has a significant negative relation with future dividend yield
and a generally negative relation with the future growth of real economic activity as
measured by consumption, GDP, and labor income. These results indicate that as more
cash flows (from more dividends and expanding real economic activity) are expected in
the future, the stock price level increases and then the subsequent ex ante expected
return is lowered. In sum, the ex ante market risk premium contains significant forward-
looking information on future macroeconomic conditions. When the implied market
returns (from S&P 500 Index options) are used instead of the ex ante market risk
premium estimate, we obtain stronger but similar results. However, when the CRSP
value-weighted market returns are used in the regression, we find that the realized
market returns have no significant forward-looking information on future

macroeconomic conditions.
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5.2 A Model for the Forward-Looking Implied Return and Volatility

As mentioned in the previous section, in order to test the CAPM on a true ex ante basis,
we need an option pricing model that contains expected return and market beta and at
the same time is consistent with the CAPM to be tested. While the seminal Black-
Scholes model is consistent with the standard CAPM [see page 645 in Black-Scholes
(1973)], it is well-known that the Black-Scholes model contains only the volatility of
the stock.” As a result, we must derive an option pricing model that contains the
parameters desired and is also consistent with the Black-Scholes model and the standard

CAPM.

Black and Scholes (1973) first showed that if continuous rebalancing is
possible then the expected return will be replaced by the risk-free rate as continuous
rebalancing effectively removes any risk in option prices (known as no arbitrage
trading). Furthermore, they demonstrated that their model is consistent with the CAPM
over the infinitesimal time period. In this paper, we derive the option pricing model
under the standard CAPM where there is no rebalancing before maturity and the return
period is not infinitesimal. Note that if either assumption holds (i.e., continuous
rebalancing is permitted, or the return period is infinitesimal), our option pricing model
reduces to the Black-Scholes model. We shall note that our option pricing model is
consistent with the standard CAPM only. If one tests other versions of the CAPM, then
different option pricing models must be derived. For example, if one tests the CAPM
under random volatility, then one must extend the Heston model (1993) to derive an

option pricing model with the expected return.

"Volatility is the only unknown in the Black-Scholes equation.
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We derived risk-adjusted pricing equations in chapter 3. For ease of exposition
we will restate the propositions in this chapter. However, for detail derivations, readers
are requested to look in appendix of chapter 3. We show several propositions required
to compute the implied return and implied volatility. Our objective is not to price
options as the Black-Scholes model does, but to have a closed-form solution in which
the expected risk-adjusted return is retained. Using this framework, we jointly estimate
implied return and implied volatility through the market prices of options. Proposition
1, below, describes how the implied mean return and volatility can be simultaneously

estimated from option prices.
Proposition 1:

Assume stock price S follows a geometric Brownian motion with an expected
instantaneous return of u, and volatility of . Let a call option on the stock at any point
in time t be given by C(S,t) that matures at time T. Let u. be the expected
instantaneous return on this option. Then for a small interval of time, 4t, the relationship
between the expected returns on the underlying stock and the option, ug and u,., can be

given by:®

(l) He = T¢ + ﬂcs(.us - Tf)
where

Cov (r¢,1s)
Var (r5)

(2) B =

® The notations used for the variables are optimized for presenting the story in this chapter independent of
other chapters. However, the notations could be different from other chapters. Therefore we explain each
notation as and when they are introduced.
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and r, = AS/S and r, = AC/C are two random variables representing the stock return
and call option return, respectively, over the period 4t. And, 77 is the instantaneous risk-
free rate of return for the period At. Note that Proposition 1 can be proved without
assuming the CAPM. Also, note that all returns and volatility are annualized, otherwise

mentioned.
Proof: See chapter 3 appendix 3.A.1.1.°

If the CAPM holds, then the expected returns on the underlying stock and call

option are expressed, respectively, as:

3 Us = T5 + ,Bs(.um - rf) and

e Tr + Bc (:um - rf))

where u,, is the instantaneous expected return on the market portfolio, and B, and .

are the market betas of the underlying stock and the call option, respectively, which are

defined as:
_ Cov(rgrm)

'BS ~ Var (rm) and
_ Cov(re,rm)

’BC ~ Var rm)

Thus, it can be seen that

(22)  Bes = 5=

® Chapter 3 Appendix 3.A.2.1 provides a similar derivation for put options.
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Equation (1) holds for a small interval of time At. We assume the distributions
of stock and option returns, r, and r,, are both Gaussian and stationary over the life of
the option. This implies that S, is constant over this period. Since our approach is to
price the option in a discrete setting, we approximate ., over the discrete time from t to

T as:

« _ Cov(Cr/C:, St/St)
(Zb) BCS - Var (S7/S)

(ﬁ) Cov (CT, ST)
C; Var (Sp)

The linear relation between u, and u,. in discrete time is the same as in
continuous time when 7, and . are stationary over the life of the option. Since we use
the risk-adjusted model for pricing the option where the expectation of the pricing
kernel is based on the entire life of the option, B as given in equation (2b) is more

appropriate for our equations.

Equation (1) in continuous time and equation (2b) in discrete time can also be
proved using the CAPM. For these two equations to hold, however, it is not necessary
that the CAPM should hold. The assumptions of the CAPM are much stronger, so that
all return distributions are stationary. However, here we need only the stationarity and
Gaussian distribution assumption of the stock and option returns to obtain these two
equations. Hence, the stationarity assumption of r, and 7, is weaker than what is needed
for the CAPM. Furthermore, Galai (1978) demonstrates many similarities between the

continuous time and discrete time properties of 7. that support our stationarity
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assumption for the return distribution.’® We also note that the right hand side of

equation (2b) is a close approximation of ., under the stationarity of r, and ;. .

Proposition 2:

Under the physical measure, the risk-adjusted price of the call option over the discrete

time period from t to T is given by:
@) ¢, = e )BT g N(h) — e T K N(h,),

where K is the strike price of the option, N(*) is the standard normal probability density

function, and
HUe =TF + Bcs(#s - rf)

InS, —InK+ (us +02/2)(T —t)
oNT —t

h2= hl_ O T—t.

Proof: See chapter 3 section 2.

Equation (4) is obtained based on the assumption that the expected return of the
option, u., the expected return of the stock, ug, and the volatility of stock price, o, are

constants. We approximate ., by Bz, based on the discrete time period of the option

19 Note that our assumption of stationarity of r, and . is applicable only to the options with the same
days-to-maturity. This means that the distributional properties of r, and . are allowed to differ for
different days-to-maturity.
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from t to T as explained above. Furthermore, we assume that the stock price follows a

geometric Brownian motion.

Proposition 3:

The ratio of the market beta of the stock to the option, S, over the life of the option

can be written as:

S [e 70 N(hs) = (55) e TN n) = N()} = NGy

) B = ] ,

where

o InS; —InK+ (us +302)(T —1t)
ST oNT —t '

Proof: See chapter 3 appendix 3.A.1.2.1

Substituting equations (1), (2b), and (5) into (4), we arrive at an option pricing
model as a function of the known variables S, (current stock price), C, (current call
option price), K (strike price), 7y (risk-free interest rate), and T-t (time to maturity),
along with two unknown variables, u, and a,. If we observe two or more call option
prices with the same days-to-maturity but different strike prices, we can simultaneously

solve the option pricing model for u, and o, for each individual stock and days-to-

1 Appendix 3.A.2.2 provides the corresponding derivation for put options.
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maturity.*? Through this approach, for each stock, we obtain different u, and g, pairs
for different days-to-maturity. Similarly, we can estimate the market expected return

(u,,) and market volatility (o,,) using S&P 500 Index call options.

Note that the implied return here indicates investors’ forward-looking ex ante
expected return of the stock over the period from the current time, t, to the maturity
date, T. We therefore obtain different implied returns and volatilities for different
maturities at a given trade date, t. This is consistent with investor expectations of return

and volatility, which could differ according to their investment horizon.

5.3 Data

In order to extract forward-looking information on implied return and volatility from
option trading prices, we obtain daily close transaction data of the options of individual
stocks listed on NYSE, NASDAQ, and AMEX from OptionMetrics for the last trading
day of each month for the period from January 1996 to April 2006. This data file
contains CUSIP, trade date, strike price, offer price, bid price, trading volume, option
open interest, Black-Scholes implied volatility, and maturity date for each option. This

data set also contains the daily closing data of S&P 500 Index options.

For the corresponding stocks whose option data are available, we obtain daily
stock prices and returns from the CRSP. To match the stock price with option records,

we use the CUSIP and trade date of the stock. A total of 4,078 stocks are found to have

12 With prices for options with more than two strike prices, we can find values for u, and o, that produce
option prices closest to the observed prices in the least squares sense. A similar least-squares
methodology is used by Melick and Thomas (1997).
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both option and stock price data. We also obtain information of firm characteristics,

such as firm size and book-to-market, from CRSP and Compustat.

For the risk-free interest rates, we use the St. Louis Fed’s 3-month, 6-months,
1-year, 2-year, 3-year, and 5-year Treasury Constant Maturity Rates. Assuming a step-
function of interest rates, we match the days-to-maturity in the option record with its
corresponding constant maturity rate. For example, if the days-to-maturity of the option
is less than or equal to 3 months, we use 3-month rates, and if the days-to-maturity is

between 3 months and 6 months, we use the 6-month rate, and so on.

5.4 Computation of the Implied Return, Volatility, and Market Beta

We jointly estimate implied mean return (or implied return) and implied volatility of the
underlying stock, u, and o, by using the risk-adjusted option pricing model through
equations (4) and (5). At a given trade date (i.e., the last trading day of each month), we
obtain the market prices of only near-the-money call options with same maturity date
but different strike prices. We define the near-the-money option as any option whose
ratio of stock price to strike price (S,/K) falls between 0.9 and 1.3. By using all these
options, we compute the implied return and implied volatility via a method of grid
search to look for global optima that minimizes the error square. The error is defined as
the difference between the observed option price and the right hand side of equation (4)
using market observed values along with implied return and implied volatility. For the
grid search, we set the implied return search range from 0 to 175.00 percent, and the

implied standard deviation search range from 0 to 100 percent. The reason we take only
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near-the-money options is to minimize the effect of measurement error in estimating
implied returns and volatilities, since measurement error could be caused by failing to
adjust for jumps and the stochastic behavior of volatilities, such as the volatility smile,
which are observed in deep-out-of-money options.™® Options with zero trading volume
are excluded. Put options are not used only because our models are designed for call

options.

We use the closing bid/ask mid-point as the closing American option price. The
option dataset also has the Black-Scholes implied volatility adjusted for any stock
dividends during the life of the option. Using this information along with interest rates,
we reverse to compute the corresponding European option price. If the computed
European option price is higher than the American option price, we take the American
option price as the option price. Otherwise, we take the European price as the option
price. Our results are based on the last trading day observations of option prices of each
calendar month. Taking any other day of the month produces similar results. For
example, we verify our results by taking the first working day, second Thursday, and

third Friday of each month. The results are qualitatively similar.

Since one pair of the estimated implied return and volatility is obtained for each
maturity and there are several different maturity dates at a given trade date, we obtain
several sets of implied return and volatility pairs at a given trade date. That is, we obtain

term structures of implied returns and implied volatilities of a stock at a given date.

3 According to Canina and Figlewski (1993), measurement errors may also be systematically affected by
time-to-maturity, even though there are no jumps and stochastic behavior of volatilities. To mitigate these
errors, options with the same maturity are used to compute implied return and implied volatility.
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Similarly, at a given trade date, we also obtain similar term structures for S&P 500

Index options.

If there are no such market index options available at a given trade date, we
interpolate the value of market implied return and volatility using other days-to-
maturity information of the market index options. For example, suppose that for a
particular trade date, we have three different implied market returns corresponding to
three different days-to-maturities: 90 days, 120 days, and 150 days. For the implied
return of an underlying stock whose option has 140 days to maturity, the corresponding
market implied return will be obtained from a linear interpolation using the market
implied returns of 120 days and 150 days. If days-to-maturity of stock implied return is
more than 150 days, the corresponding market implied return will be the market implied
return of 150 days. Therefore, there is one-to-one correspondence between the implied
return of an underlying stock and the market implied return. Hence, we obtain the

matched implied market returns and implied stock returns.

Since options whose payoffs are determined by the correlation between the
underlying stock and the market portfolio do not exist, it would be difficult to directly
extract information regarding implied market betas like the implied mean return.
Therefore, we estimate implied market betas of an underlying stock by regressing

implied returns of the stock on implied market returns.
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5.5 Empirical Results
5.5.1 Basic Statistics of the Implied Variables

Table 1 presents the basic statistics of the three key implied variables of all pooled
sample obtained from all 4,078 firms’ individual stock call options over the period from

January 1996 to April 2006: implied return, y;, implied volatility, o;, and implied beta

estimate, ™. Note that for the implied variables of individual stock options, now we
use subscript i instead of s. These implied variables are computed from the option prices
observed at the last trading day of each month. The total number of firm-month
observations is 179,048. Days to maturity of the sample ranges from 3 days to 1,027
days. y; and g; are implied instantaneous return (or continuously compounded return;
CCR) and volatility, respectively. As seen in Table 1, the number of firm-year
observations is much greater for short-term options than for long-term options. ** This is
because the near-the-money options of most of the stocks are actively traded on short

maturities.

Table 1 shows that implied return decreases with maturity; that is, the term
structure of implied returns is apparently downward sloped. Specifically, when days to
maturity are less than or equal to 30 days (0 < T < 30), between 30 and 60 days (30 <
T < 60), between 60 and 120 days (60 < T < 120), between 120 and 210 days (120 <T
< 210), and longer than 210 days (T > 210), the averages of implied returns are 0.538,

0.336 0.243, 0.178, and 0.122, respectively. The average of the whole implied returns is

14 Among these, the numbers of firm-month observations whose days to maturity are between 0 and 30
days, between 30 and 60 days, between 60 and 120 days, between 120 and 210 days, and longer than 210
days are 47863, 41838, 31188, 34171, and 23988, respectively.
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0.315. This indicates that investors have high expectation in a short-term horizon, while
they are more subdued and hold more reasonable expectation in a long-term horizon. In
previous chapters we show that this downward term structure is robust to market
friction proxies such as option volume, open interest, and bid-ask spread. Furthermore,
this term structure is found for both European and American option prices.’> Our
findings on this term structure indicate that expected returns are affected by investment
time horizon. These findings are consistent with McNulty et al. (2002). They argue that
shorter-horizon investments should be discounted at a higher rate and that the marginal
risk of an investment declines as a function of the square root of time. This falling
marginal risk should be reflected in the annual discount rate for longer-horizon
investments. A recent paper by Camara et al. (2007) also shows the similar result that
short-term expected returns are higher than long-term expected returns when using

market-observed option prices.*

Implied volatility also shows a downward sloping term structure. That is,

implied volatility is higher for a shorter maturity than for a longer maturity. However,

5 This downward sloping term structure of the implied returns is also found in deep-in-the-money call
options. We separately estimate implied returns and volatilities by using deep-in-the-money call options
where stock price divided by strike price is greater than 1.20 and deep-out-of-the-money call options
where stock price divided by strike price is less than 0.90. In both cases, we obtain a similar downward
term structure of implied returns (not reported).

16 However, there are at least two differences between our approach and theirs. First, they assume a
specific utility structure for the representative agent such that the marginal utility of wealth of the
representative investor is:

U'W) =W+

where aand g are risk aversion parameters.

Based on this utility structure, they show that their option pricing equation contains implied stock return
as one of the parameters to be estimated. Our approach instead uses a risk-adjusted version of option
pricing with no explicit assumption about the utility structure. Second, their approach requires an
intermediate parameter that needs to be computed using options of all companies, before computing the
implied return of any individual firm. On the other hand, our model does not need information about
other companies to compute the expected return and volatility. Our model jointly computes implied
volatility using all stock options and S&P 500 Index options.
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the decreasing rate of the slope over days-to-maturity is smaller than the case of implied
returns. The averages of the implied standard deviations are 0.515, 0.497, 0.474, 0.456,

and 0.423 over the above-mentioned five intervals of maturity, respectively.

Since we observe a downward sloping term structure of implied returns and
volatilities, the risk-return structure differs across maturities (or investment horizon). It
IS appropriate, therefore, that implied returns be matched with implied market betas in
the tests, which are both in the same maturity group. As mentioned above, we classify
the whole sample into five maturity groups: 0 < T < 30, 30 <T <60, 60 < T < 120,
120 < T <210, and T > 210. In each maturity group, implied betas are estimated by
regressing implied returns of an underlying stock on implied market returns over the
whole period contained in the maturity group. For any stock, therefore, there can be up
to five implied betas according to the availability of implied returns. Since the CAPM is

a one-period model, holding period return (HPR) should be used in the tests. Thus,

implied HPRs are used in estimating implied market betas, B\, instead of CCRs.
Implied HPR is computed as e* — 1, where u is implied CCR. The implied beta also
shows a similar downward pattern across maturities. The averages of the implied beta
over the five maturity groups are 1.146, 0.959, 0.542, 0.530, and 0.467, respectively.
The longer is the investment horizon, the smaller is the beta. These results are

somewhat consistent with Levhari and Levy (1977), who show theoretically that market

beta is a function of investment horizon.

Table 1 also reports the correlation coefficients between the implied variables

and their historical counterparts. Using the whole pooled sample, the correlation
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coefficient (p“f) between the implied return (p) and its historical counterpart

(annualized CCR of the underlying stock over the option life, (r)) is 0.100. There is no
particular pattern in this correlation coefficient across the five maturity groups. The

correlation coefficient (p_.) between the implied volatility (c) and its historical

counterpart (annualized sample standard deviation over the option life is 0.695, and the

correlation coefficient (pﬁ,ﬁ) between the implied beta () and its historical market beta

(Scholes-William’s (1977) beta estimate using daily returns over the option life) is

0.114. The correlation coefficients, p;s and pggs, tend to increase with length to

maturity, which indicates that implied volatility and beta could be more informative in

predicting their historical counterparts.

Table 2 presents the basic statistics of the implied variables of the market index
option, S&P 500 Index call option. The number of firm-month observations of the
market-implied variables is exactly matched with the number of observations of
individual stock options. The term structure of the implied market returns is also
apparently downward across investment horizons, although its slope is less steep than
the case of implied returns for individual stocks. The averages of the implied market
return and standard deviation are 0.169 and 0.202, respectively, using the whole pooled
sample. These are much smaller in magnitude than those of individual stock options.

The term structure of the volatility of S&P 500 Index option is almost flat.
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5.5.2 Cross-Sectional Regression Tests Using Ex-Ante Implied Returns and

Implied Betas

As mentioned above, the forward-looking implied variables obtained from option prices
can be used as investors’ ex ante expectation on the risk and return. In this sense,
implied return and implied beta are the most plausible proxies for ex ante return and
risk. By using the computed implied returns and betas, we examine the ex ante risk—
return relationship by using the classical Fama and MacBeth methodology. In order to

do this, we estimate the following cross-section regression (CSR) model at month t,
(6) Woper ~ Tler] = Yoe + ylt[?i'f] P+ I (Control variables) + &,

where p, ] is the implied annualized HPR on underlying stock i over the option life

[t

([t, T]) from the last trading day of month t to maturity T, and ¢, 7; is the Treasury bill

annualized holding period yield over the period [t,T]. In fact, M e is the expected

[e,T
return over the period from the first trading day of month t+1 to the maturity, T. ,E’ii,fnp is
the OLS implied beta estimate of stock i obtained from regressing implied HPRs of
stock i on implied market HPRs over the whole period in each maturity group. The
control variables used in the CSR tests are firm characteristics such as firm size, book-
to-market, and momentum (past six-month returns), which are the variables for the

widely known market anomalies that the CAPM fails to explain.

Table 3 shows the CSR estimation results of equation (6) over the period from
January 1996 to April 2006. The upper panel presents time series averages of the

gammas (or the risk premium estimates) with implied market beta alone in the model,
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and the bottom panel presents those of the full model including the control variables.
The estimates of the risk premium () are positively significant regardless of the
inclusion of the control variables. When the implied market beta is alone in the model,
the risk premium estimate is 11.30 percent per year (with t-statistic of 13.67), using the
whole sample. Its significance is also maintained in each maturity group, although it is
weakened. That is, the risk premium estimates are 6.12 percent (t=7.43), 2.45 percent
(t=5.09), 0.75 percent (t=1.89), 0.57 percent (t=1.73), and 1.06 percent (t=4.18),
respectively, in the five maturity groups. However, the intercept estimates are strongly
positive in all cases, which means that the implied ex ante returns may not be fully
explained by the implied market beta. The large positive intercept estimates may be

from a large value of the implied mean returns.

Even when the control variables (firm size, book-to-market, and momentum)
are added to the model, the estimates of the risk premium are even more positively
significant; using the whole sample, it is 12.31 percent (t=14.80). The risk premium
estimates in the five maturity groups are 5.10 percent (t=5.95), 3.53 percent (t=7.32),
1.93 percent (t=4.83), 1.98 percent (t=5.68), and 2.03 percent (t=6.72), respectively.
The above results indicate that the implied market beta has a significant explanatory

power for ex ante expected returns in all maturity groups.

Table 3 also presents the estimation results on the control variables. The CSR
coefficient estimates on the firm size variable (log(ME)) are all negative and
statistically strongly significant. That is, investors have high (low) ex ante expected
returns on small (large) firms. The CSR coefficient estimates on the book-to-market

variable (log(BM)) are all negative and statistically significant, which implies that
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investors have high ex ante expected returns on low book-to-market stocks, while they
have low ex ante expected returns on high book-to-market stocks. These results are
consistent with the Lakonishok, Shleifer, and Vishny (1994) explanation that low book-
to-market stocks are in fact growth stocks whose ex ante expected return tends to be
high. The opposite holds for high book-to-market value stocks. The CSR coefficient
estimate on the momentum variable (annualized past six-month return) is overall
insignificant, which implies that investors may not have an a priori, ex ante expectation
based on past intermediate-term stock performance. These ex ante results on momentum
are interesting because they contrast with the ex post results in which the presence of

momentum is significant.’

5.5.3 Cross-Sectional Regression Tests Using Ex-Ante Implied Betas and Realized

Returns

In order to examine whether implied betas explain the cross-section of realized ex post
returns, we also cross-sectionally regress realized ex post returns on the implied betas

and the control variables. The CSR model to be estimated at month t is given by:

) Riftt+m) = Tf [t.t+H] = Yor T Vltﬁ;;np + I (Control variables) + &,
where R; ¢ .4 IS the ex post HPR of an underlying stock i over the period H (i.e., from

one day after the last trading day of month t to H days after the last trading day of

month t), and 75,7 is the Treasury bill annualized holding period yield over the

" The above results on the control variables are also similar when each of the control variables is alone in
the CSR model.
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corresponding measurement period R; . 1. We consider two different holding periods,
H. The first holding period is up to maturity (H=T), which means that investors invest
in each stock at the last trading day of every month according to the value of the
implied betas and hold the stock until the option maturity date. The second holding
period is one month (H=one month), which means that investors invest in each stock at
the last trading day of each month according to the value of the implied betas and hold
each stock for one month. Thus, the investment period overlaps in the first scheme,

while it does not overlap in the second scheme.

Table 4 presents the time series averages of the CSR coefficients () of equation
(7) when the holding period is up to the maturity (in Panel A; R; . is annualized retutn)
and up to one month (in Panel B; R;. is monthly return), respectively. Panel A shows
that implied market betas have cross-sectionally significant explanatory power for
average realized returns over the option life. That is, the coefficient estimate (¥,) on the
implied betas is 9.49 percent per year, with t-statistic of 8.44, using the whole sample. It
is also positive and statistically significant in all maturity groups except for the shortest
maturity group. That is, it is 1.61 percent (t=1.27), 5.75 percent (t=3.68), 6.35 percent
(t=3.71), 6.50 percent (t=3.89), and 10.67 percent (t=4.36), respectively, for the five
maturity groups. Even when the three control variables are added to the model, the risk
premium estimates are more strongly significant. They are 12.11 percent (t=9.72) for
the whole sample, 3.06 percent (t=2.22), 7.43 percent (t=4.89), 6.95 percent (t=3.60),
13.21 percent (t=6.74), and 15.04 percent (t=6.46), respectively, for the five maturity

groups.
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Panel B of Table 4 also presents the time series average of the gammas when
the holding period is one month. The results indicate that implied market betas also
have a significant explanatory power for the cross-section of average realized returns
over the next 1-month period. That is, the coefficient estimate (7,) on the implied betas
is 0.21 percent per month, with t-statistic of 2.74, using the whole sample. It is also
positive and statistically significant in all maturity groups except for the shortest
maturity group; -0.02 percent (t=-0.43), 0.25 percent (t=2.01), 0.32 percent (t=2.15),
0.65 percent (t=2.17), and 0.99 percent (t=1.91), respectively, for the five maturity
groups. Even when the control variables are added to the model, the risk premium
estimates are more strongly significant. The intercept estimates are insignificant in all

cases.

Table 4 also presents the CSR estimation results of ex post realized returns on
the control variables. The CSR coefficient estimates on the firm size variable are also
negative and statistically significant, as ex ante expected returns are used. It could be
argued, therefore, that investors’ ex ante expected return based on firm size tends to be
realized as expected. However, investors’ ex ante expectation based on book-to-market
and momentum tends to be realized differently from their expectation. That is, the CSR
coefficient estimates on the book-to-market variable are overall positive and marginally
significant, which is opposite when ex ante expected returns are used. The CSR
coefficient estimates on the momentum variable are positive and significant, which
means that momentum does not exist a priori but appears significant a posteriori. Note
that even when each of the control variables is alone in the model, the estimated

coefficients on the control variable are similar.
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5.5.4 Forward Relationships Between Ex-Ante Implied Betas and Implied Ex-Ante

Returns

Since implied returns and volatilities observed at any given time have a variety of
maturities (from short to long), it is possible to compute forward-implied returns and
volatilities for an underlying stock. That is, the forward-implied return, observed at time

t, on an underlying stock over the forward period [T;, T,] is computed as:

f et (=)= pye 4 (T1—t)
8 Heimm) = T=T0) )

where uy, 7,1 and py. r,) are the implied (annualized) returns on the underlying stock over

the option lives [t,T;] and [t, T, ], respectively. These implied returns are observed at
time t (i.e., at the last trading day of each month), and T; and T, are the shorter and
longer maturities of the option, respectively. Note that implied returns in equation (8)
are CCRs, but their HPRs are used in estimating forward-implied betas and in the
CAPM tests. Similarly, the forward-implied standard deviation over the forward period

[T, T,] is computed as:

foo ol D=0y M)
tr[TerZ] - (Tz _Tl) !

9) o

where oy, 1,1 and oy, r,) are the implied standard deviations of the underlying stock over
the option lives [t,T;] and [t, T,], respectively. When there are more than two options

with different maturities at a given time, say, T;, T,, and T3, we compute the forward-
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implied variables over nonoverlapped forward periods, such as over the periods [Ty, T, ]

and [T, Ts], not [Ty, Ts].

Table 5 presents the basic statistics of the forward-implied returns, standard
deviation, and betas. Note that forward-implied betas are estimated by regressing the
forward-implied HPRs of an underlying stock on the forward-implied market HPRs in
each forward period length group over the whole sample period. Forward period length
groups are classified as four groups: 0 < [Ty, T,] <30, 30 < [Ty, T,] <90, 90 < [T}, T,] <
120, and [Ty, T,] > 120 days. As shown in Table 5, the forward-implied return also
decreases with the length of the forward period; that is, the term structure of forward-
implied returns is downward shaped, although its slope is slower than that of the
implied returns. The forward-implied volatility and forward-implied beta estimates also

show a modestly downward term structure across the length of the forward period.

It would be interesting to examine whether there is a positive forward relation
between ex ante expected returns and betas. To do this, we estimate the following CSR

model at month t,
(10) #lft,[TLTZ] ~ e 1] T y({t + ylftﬁij;'lmp + it

where M{;.[TLTz] is the implied forward annualized HPR on underlying stock i over the

forward period [Ty, T2], 7¢[r,1,) 1S the Treasury bill annualized holding period yield

over the same forward period, and ﬁi’;'im” is the forward-implied estimate of stock i

obtained from regressing forward-implied HPRs of stock i on forward-implied market
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HPR returns over the whole sample period; both forward returns are contained in each

forward period length group.

Table 6 reports the time series averages of the gamma estimates of equation

(10), which are the forward risk premium estimates (]{t and 7{,); these are positively
significant in all cases. Using the whole forward sample, the forward market risk
premium estimate is 1.88 percent per year (with t-statistic of 5.42). This positive
significance holds regardless of the length of the forward period. That is, the forward
market risk premium estimates are 1.12 percent (t=2.41), 0.75 percent (t=1.87), 1.05
percent (t=2.70), and 1.58 percent (t=4.16), respectively, for the four forward period

length groups.

5.5.5 Do the Ex-Ante Market Risk Premia Estimates Contain the Forward-

Looking Information of Macroeconomic Conditions?

Investors’ ex ante returns reflect their forward-looking expectation for individual stocks
and the market as a whole. Therefore, another way to test whether our CSR estimate of
ex ante market risk premium (presented in Table 3) has an economic significance is to
examine whether the ex ante market risk premium estimates contain forward-looking
information on macroeconomic conditions. To do so, we regress the ex ante market risk
premia estimate on the future macroeconomic variables. That is, we estimate the

following time-series regression model:
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(11) V1t = bo + by TByyq 41 + b2 TERM g 1) + b3DEF 1 14 + byDIVeyq ey +

bsCONSUME 1 ¢4 + b6GDPriq 14, + D7LABOR 41 ¢4, + &,

where 7, is the estimate of ex ante market risk premium (i.e., the CSR coefficient
estimates) at month t, TB, 1 .4, is the three-month Treasury bill yield from month t+1
through month t+L (L is the number of months of the forward-looking period), TERM
is the term spread defined as the difference between the yield on 10-year government
bonds and the yield on the three-month Treasury bill, DEF is the default spread defined
as the difference between the yield on Moody’s BAA rated bonds and the yield on
Moody’s AAA rated bonds, DIV is the dividend yield on the value-weighted market
index, CONSUME is the growth rate of personal consumption expenditures, GDP is the
growth rate of GDP, and LABOR is the growth rate of personal labor income.'® The
value of each macroeconomic variable is its geometric average (i.e., compounded value)
over L forward-looking months from t+1 to t+L. ** The sample period is from January

1996 to April 2006.

Table 7 presents the regression estimation results of the ex ante market risk
premium estimated using each maturity group on the future macroeconomic variables
with L = 1 month (Panel A), L = 2 months (Panel B), L =4 months (Panel C),and L =6
months (Panel D), respectively. The results apparently show that the ex ante market risk

premium reflects the forward-looking information on future macroeconomic conditions.

'8 The dividend yield (DIV) is obtained by using the CRSP value-weighted market returns with and
without dividends through the method in Fama and French (1988).

¥ The minimum number of forward-looking months is one month. Over the last L months from the last
sample period, therefore, we calculate the geometric average value of the macroeconomic variables by
using the remaining observations up to the last month of the sample period.
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The association between the ex ante market risk premium and the future
macroeconomic Vvariables becomes stronger with the length of the forward-looking
period (L) and with the maturity of implied mean returns used in estimating the ex ante
market risk premium. Specifically, the adjusted R-squares of equation (11) using all
maturities are 0.329, 0.357, 0.432, and 0.454 for L = 1 month, 2 months, 4 months, and
6 months, respectively. For a particular length of the forward-looking period, say L = 4
months, (in Panel C), the adjusted R-squares are 0.201, 0.295, 0.247, 0.401, and 0.427
for the maturities of 0 <7 < 30,30 <T <60, 60 <T <120, 120<T <210, and T >

210 days, respectively. These R-squares are quite high.

The ex ante market risk premium also has a significant forward-looking relation
with individual macroeconomic variables. In all regressions (all 24 regressions), it has a
strongly significant positive relation with future default premium (DEF). This indicates
that investors’ ex ante risk premium is proactively increased as the default premium will
be increased in the future (at least one month through six months later). In turn, option-
implied returns contain important information about future defaults. The ex ante market
risk premium also has a clear relation with future dividend yield (DIV). It has a strongly
significant negative relation with DIV in most regressions. This indicates that as
dividend yield increases in the future, the stock price level increases and the subsequent
expected return (i.e., ex ante market risk premium) is lowered. The negative magnitude

of the regression coefficients tends to decrease with the length of maturity.

The ex ante market risk premium has generally negative relations with the
future growth of real economic activity as measured by consumption, GDP, and labor

income (CONSUME, GDP, and LABOR), although the estimated coefficients are not as
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statistically significant as those on DEF and DIV. This indicates that as real economic
activity is expected to be in expansion, the stock price level increases and then the ex
ante market risk premium declines. The ex ante market risk premium is insignificantly
related to future short-term interest rates (TB). This may be because the riskless rate of
return is already adjusted in the market risk premium; however, it generally has a
significant positive relation with future term structure (TERM). Since the coefficient on
TERM can also be the coefficient on long-term interest rates (10-year Treasury bond
yield), these results indicate that the ex ante market risk premium is positively

associated with future long-term interest rates.

In sum, the CSR estimates of the ex ante market risk premium are significantly
associated with forward-looking economic conditions and are rationally consistent with
our perception. These results support that the CSR estimates have economic

significance as well as statistical significance.

Table 8 presents the estimation results of the time-series regression model of
equation (11) by using the implied market returns (extracted from S&P 500 Index
options) as the dependent variable, rather than the CSR estimates of the ex ante market
risk premium. The results are stronger than but overall similar to those using the ex ante
market risk premium estimates (Table 7), except for the results for future short-term
interest rates (TB). The coefficient estimates on TB are mostly positively significant,
which means that the ex ante market return increases with future short interest rates. In
sum, implied market returns contain significant information on future macroeconomic
conditions. In order to compare these ex ante results with ex post results, we regress the

CRSP value-weighted market returns on the forward-looking economic variables. The
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results are reported in Table 9. Most of the estimated coefficients are insignificant. The
R-squares are quite low, compared with the R-squares from the regressions using the ex
ante values. It is difficult to say that the realized market returns contain information on

future macroeconomic conditions.

5.6 Conclusion

This chapter examines the CAPM relation on an ex ante basis. That is, we investigate
the cross-sectional relation between ex ante expected returns and ex ante betas. As a
proxy for ex ante expected returns, we use implied mean returns obtained from the risk-
adjusted option pricing model that we suggest in this paper. Ex ante betas are estimated

by regressing implied returns of an underlying stock on implied market returns.

We find that the ex ante cross-sectional relation between ex ante expected
returns and betas is positive and statistically strongly significant. This significant
relation is maintained regardless of the inclusion of the well known firm characteristics
such as firm size, book-to-market, and momentum. Since there is an apparent
downward term structure of implied mean returns and betas across investment horizons,
we examine the ex ante relation in each maturity group and find there is still a strongly
significant ex ante cross-sectional relation. We also find a significant positive forward

relation between these two ex ante variables.

In order to examine whether ex ante betas have explanatory power for realized

ex post returns, we estimate cross-sectional regressions of realized returns on ex ante
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betas and find that ex ante betas have a positive and statistically significant relation with
ex post realized returns, regardless of the inclusion of the firm characteristics mentioned

above. That is, ex ante betas are significantly priced in realized returns.

We also find an interesting difference between ex ante and ex post market
anomalies such as firm size, book-to-market and momentum. Investors’ ex ante
expected return based on firm size tends to be realized as expected. However, investors’
ex ante expectation based on book-to-market and momentum tends to be realized
differently from their expectation. That is, investors’ ex ante expected returns are
negatively associated with book-to-market, but their realized returns are positively
related with book-to-market. Investors’ ex ante expected returns are not associated with
past stock returns, but their realized returns are positively related with past stock

returns.

In order to test whether our CSR estimate of ex ante market risk premium contains
forward-looking information on future macroeconomic conditions, we regress the ex
ante market risk premia estimate on the future macroeconomic variables. We find that
the ex ante market risk premium has a significant positive relation with future default
premium. Further, it has a significant negative relation with future dividend yield and
also has generally negative relations with the future growth of real economic activity as
measured by consumption, GDP, and labor income. These results indicate that as more
cash flows (from increasing dividends and expanding real economic activity) are
expected in the future, the stock price level increases and then the subsequent ex ante
expected return is lowered. In sum, the ex ante market risk premium contains significant

forward-looking information on future macroeconomic conditions. When the implied
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market returns (from S&P 500 Index options) are used instead of the ex ante market risk
premium estimate, we obtain stronger but similar results. However, when the CRSP
value-weighted market returns are used in the regression, we find that realized market
returns contain no significant forward-looking information on future macroeconomic

conditions.
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Table 3: Time-Series Averages of Cross-Sectional Regressions of Ex Ante
Implied Returns on Implied Beta Estimates

This table presents the time-series averages (in percent, x100) of the Fama-MacBeth month-by-
month cross-sectional regression coefficients:

i) ~ TRLeT = Yor T+ yltﬁi';np + I; (Control variables) + &,
where p, (7] is the implied annualized holding period mean return on underlying stock i over the
option life, measured at the end of each month (t). 777 is the Treasury bill annualized holding

period yield measured at the end of each month (t). ,L?l.‘tmp is the OLS implied beta estimate of stock i
obtained from regressing the implied mean returns of stock i on the implied market mean returns in
each maturity group over the whole sample period. Maturity groups are classified as 5 groups:
0<T<30,30<T<60,60<T<120,120<T <210, and T > 210 days. Control variables are as
follows: ME is the market value of common equity measured one month before the option trading
day, BM is the book-to-market ratio and the earnings—price ratio, which is most recently available six
months before the option trading day, and “Momentum” is the stock return over the past six months
before the option trading day. Numbers in parentheses indicate t-statistics. The sample period is from
January 1996 to April 2006.

Control Variables

'(\i/lnafju;;g Intercept s I
og (ME) log(BM) Momentum

All maturities 29.95 (62.25) 11.30 (13.67)

0<T<30 68.78 (55.78) 6.12 (7.43)
30 <T<60 35.83 (84.65) 2.45 (5.09)
60 <T<120 24.23 (79.30) 0.75 (1.89)
120<T<210 16.21 (74.61) 0.57 (1.73)
T>210 8.84 (59.41) 1.06 (4.18)
All maturities 4470 (60.19)  12.31 (14.80) -8.84 (-44.65) -3.44 (-13.84)  -0.87 (-1.44)

0<T<30 85.96 (53.51) 5.10(5.95)  -12.92(-33.03) -5.95(-12.02)  -3.25 (-2.53)
30<T<60 41.68 (71.56) 3.53(7.32) -5.68 (-34.41)  -3.46 (-14.73)  -3.46 (-1.19)
60 <T<120 26.71 (67.73) 1.93 (4.83) -3.21(-29.26) -2.61(-13.87)  0.52(1.17)
120<T<210 17.24 (58.94) 1.98 (5.68) -1.84 (-25.87)  -1.66 (-15.59) 0.08 (0.30)
T>210 10.31 (38.08) 2.03 (6.72) -1.08 (-16.56)  -0.96 (-12.35)  0.37 (2.43)
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Table 4: Time-Series Averages of Cross-Sectional Regressions of Ex-Post
Returns on the Implied Beta Estimates

This table shows the time-series averages (in percent, x100) of the Fama-MacBeth month-by-month
cross-sectional regression coefficients:
Rifterm = Tfee+n] = Yor T Vlt[?il;np + I (Control variables) + &,

where R; [, . IS the ex post annualized holding period return of underlying stock i over the period
H. The period H is the option life from the following day of the end of each month (t) to its maturity
date (T) (in Panel A) or is one month from the day following the end of each month (t) to the end of
the next month (in Panel B). The option trading day is the last day of each month. Thus, the realized
ex post return is measured from the first day of the month following the option trade month to the
option maturity. 7 7 is the Treasury bill annualized holding period yield over the same
measurement period of R; [ r;, and Biif’p is the OLS implied beta estimate of stock i obtained from
regressing implied mean returns of stock i on implied market mean returns in each maturity group.
Maturity groups are classified as follows: 0 < T < 30, 30 < T <60, 60 < T <120, 120 < T <210,
and T > 210 days. Control variables are as follows: ME is the market value of common equity
measured one month before the option trading day, BM is the book-to-market ratio and the earnings-
price ratio, which is most recently available six months before the option trading day, and
“Momentum” is the stock return over the past six months prior to the option trading day, Numbers in
parentheses indicate t-statistics. The sample period is from January 1996 to April 2006.

Control Variables

I(\i/lnagu;)llg Intercept ﬁiltmp log (ME) log(BM) Momentum
Panel A: Y-variable = Realized returns over the option life (H=T)
All maturities 31.64 (10.52) 9.49 (8.44)
0<T<30 61.98 (10.53) 1.61 (1.27)
30 <T<60 44.11 (8.94) 5.75 (3.68)
60<T<120 25.03 ( 8.66) 6.35 (3.71)
120 < T <210 18.37 ( 6.00) 6.50 (3.89)
T>210 6.98 (3.11) 10.67 (4.36)
All maturities 46.74 (10.60)  12.11(9.72)  -5.80 (-6.92) 2.47(1.93)  7.29(2.81)
0<T<30 63.49 (9.77) 3.06 (2.22)  1.41(1.09) 438(1.92)  6.15(1.41)
30<T<60 54.94 ( 8.06) 7.43(4.89) -6.07 (-4.95) -0.50 (-0.23) 3.13 (0.68)
60<T<120 44.64 (8.22) 6.95(3.60) -7.09 (-7.60) 0.08 (0.00) 11.54(3.21)
120 < T <210 28.76 (6.42) 13.21(6.74)  -5.41 (-6.61) 1.35(1.00)  10.90 (5.03)
T>210 22.86 (6.74) 15.04 (6.46)  -4.58 (-5.46) 1.27(1.26)  7.60 (4.87)
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Panel B: Y-variable = Realized returns over the next one month (H = 1 month)

All maturities 0.66 (1.26) 0.21 (2.74)
0<T<30 0.56 (1.03)  -0.02 (-0.43)
30<T<60 0.61 (1.12) 0.25 (2.01)
60 <T<120 0.52 (1.06) 0.32 (2.15)
120 < T <210 0.40 (0.68) 0.65 (2.17)
T>210 0.39 (0.62) 0.99 (1.91)
All maturities 0.79 (1.17) 0.26 (3.07) -0.04 (-0.32) 0.24 (1.25)  0.90 (2.19)
0<T<30 0.75 (1.15) 0.07 (1.47)  0.07 (0.53) 0.36 (1.99)  0.77 (1.87)
30<T<60 0.61 (0.92) 0.35(2.87) -0.04 (-0.27) 0.21 (1.10) 0.66 (1.61)
60<T<120 0.68 (1.13) 0.46 (2.28) -0.13 (-0.91) 0.04 (0.17) 0.92 (2.14)
120<T<210 0.63 (0.87) 0.97 (3.27) -0.17 (-1.09) 0.22 (1.04) 1.10 (2.48)
T>210 1.52 (1.70) 1.41(2.30) -0.32(-1.74) 0.18 (0.75) 0.98 (2.01)
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Table 6: Forward Relationship: Time-Series Averages of Cross-Sectional
Regressions of Implied Forward Returns on Implied Forward Beta Estimates

This table shows the time-series averages (in percent, x100) of the Fama-MacBeth month-by-month
cross-sectional regression coefficients:
f —f fpfi
it [ry) ~ Trerrs] = Yor T YieBit T+ g,

where 'u'lft'[TllTZ] is the forward-implied annualized holding period return (HPR) on an underlying stock i
over the forward period [Ty, T»] which is from the day following the first option maturity (7;) to the
maturity of the second option (T5), and 77, r, r,) is the Treasury bill annualized holding period yield over
the forward.period. Both ‘u'lftr[TerZ] and 7y r, r,) are measured at time t (i.e., the last trading day of each
month). [?i’;’"”” is the forward-implied beta estimate of stock i obtained from regressing the forward-
implied HPRs of stock i on the forward-implied market HPRs in each forward period length group over

the whole sample period. Forward period length groups are classified as follows: 0 < T <30,30<T <
90, 90 < T <120, and T > 120 days.

Forward periods Intercept gl
(in days) 7 7/,

All forward periods 16.66 (91.83) 1.88 (5.42)
0< [Ty, T,] <30 24.61 (52.78) 1.23 (2.41)
30 < [Ty, T,]1 <90 18.99 (45.99) 0.75 (1.87)
90 < [Ty, T,]< 120 11.58 (81.62) 1.05 (2.70)

[Ty, T,]>120 8.44 (49.63) 1.58 (4.16)
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Chapter- 6

Future Extension of the Risk-Adjusted Model: A Stochastic Volatility Approach

In the previous chapters we provided a framework for discrete time risk-adjusted option
pricing model that is consistent with the capital asset pricing model (CAPM) of Sharpe
(1964), Lintner (1965), and and Black (1972). Similar to the standard CAPM
equilibrium model, this option pricing can be regarded as a single period model where
the investor buys and holds till maturity that does not need rebalancing. Also, we argued
that the risk-adjusted model is consistent with the Black and Scholes (1973) continuous
time model. In this setting our risk-adjusted model can be thought of as the
generalization of the Black and Scholes model of no-arbitrage. In the presence of
continuous rebalancing or with instantaneous holding, our model will collapse to the
Black-Scholes model. However, if continuous rebalancing or instantaneous holding is
not imposed then our model can still be used. Therefore our model is consistent with the
standard CAPM and does not conflict with Black-Scholes pricing model when their
assumptions hold. Since our model is consistent with the standard CAPM, the expected
return from our model can be used to have an ex ante test of the standard CAPM.
Extending this idea, if we want to test the asset pricing model under random volatility,
first we would need to extract expected return from an option pricing equation that is
consistent with random volatility. In fact, this concept can be extended for testing
numerous other asset pricing models by extracting the information from a

corresponding option pricing model with similar assumptions. More specifically in this
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chapter we suggest a risk adjusted option pricing model with stochastic volatility to
extract the ex ante expected stock returns. The parameter estimates from this model
along with the risk-adjusted characteristic function can then be used to understand the
higher moments of the stock return distribution, and to test a single period asset pricing

model with random volatility.

This chapter is organized as follows. Section 6.1 provides the motivation for
stochastic volatility, Section 6.2 describes different stochastic volatility processes,
Section 6.3 discusses stochastic volatility option pricing models, Section 6.4 derives the
risk-adjusted stochastic volatility option pricing model, Section 6.5 provides estimation

methodology, and Section 6.6 provides the conclusion.

6.1 Motivation for Stochastic Volatility

Unlike the Black-Scholes model, our risk-adjusted model of previous chapters is a
discrete time model. On the other hand, similar to Black-Scholes model our model
assumes a geometric Brownian price process with constant volatility." Even though the
models with constant volatility are simple and elegant they do not capture all the
important distributional characteristics of stock returns. In this section we briefly
discuss few empirical studies that imply stock price process does not follow the
constant volatility assumptions in real life and hence we need a stochastic volatility

model.

! The volatility of the stock price process is usually quoted as the standard deviation of continuously
compounded return per year (see Hull 2002). Therefore study of stochastic volatility is the study of how
the standard deviation of return distribution changes over time.
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Early papers by Mandelbrot (1963), Fama (1965), and Blattberg and Gonedes

(1974) found the stationary (log)normal distribution to be an inadequate descriptor of
stock returns, and have fitted various alternate stationary distributions to the data. These
papers find that the probability that extreme events will occur is greater than the
corresponding probability calculated under the normal distribution. In other words, the
empirical distribution of returns exhibits excess kurtosis. Therefore a leptokurtic
distribution describes the return distribution better than a normal distribution.
Subsequent studies by Black (1976) and Christie (1982) have uncovered an inverse
correlation between stock returns and changes in volatility, at least partly attributable to
financial leverage effects. Black (1976), Poterba and Summers (1986), and Beckers
(1983) provide evidence that shocks to volatility persist but tend to decay over time.
Mandelbrot (1963) and Fama (1965) also report evidence that periods of high (low)
volatility are followed by periods of high (low) volatility. Mandelbrot (1963) has called
this phenomenon "the clustering effect” of volatility. Volatility clustering suggests
heteroscedasticity in volatility that is autocorrelated. Based on these findings, papers by
Engle (1982), Bollerslev (1986), Bollerslev, Chou, and Kroner (1992), and Taylor
(1994) have introduced models to capture volatility clustering in form of ARCH,
GARCH, and SV models in time-series data. Furthermore, studies by Scott (1987),
Poterba and Summers (1986), Stein (1989), and Harvey and Whaley (1992) have found
that volatility oscillates around a constant value. This phenomenon is termed as "mean

reversion,” indicating that volatility tends to revert to a long-run mean.

Another interesting finding using the Black-Scholes model is the volatility smile

and volatility skew. For a given day, for a specific maturity deep in-the-money and
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deep out of the money options might have higher volatility than near-the-money
options. This U-shaped pattern is the volatility smile mostly observed in foreign
currency options. It has been argued (Hull 2002) that volatility smile in currency
options are a result of stochastic volatility or jump in the price process. Also, it is found
that volatility decreases gradually with strike prices (called volatility skew), most
frequently found in equity options. Volatility skewness in implied distributions has
heavier left tail and a less heavy right tail than the lognormal distribution. If the
assumption of the price process with constant volatility would have been valid in real
life then we would not have observed the volatility smile or volatility skew. Early paper
by Rubinstein (1985) and Taylor and Xu (1994) provide evidence of volatility smile and
volatility skew in the observed options data. As shown in Heston (1993a) stochastic
volatility model, if volatility is uncorrelated with the price process, then increasing the
volatility of volatility increases the kurtosis of stock returns, not the skewness. In this
case, random volatility is associated with increases in the prices of far-from-the-money
options relative to near-the-money options. In contrast, the correlation of volatility with
the price process produces skewness. And positive skewness is associated with
increases in the prices of out-of-the-money options relative to in-the-money options.
Therefore, it is essential to choose properly the correlation of volatility with spot returns
as well as the volatility of volatility to model the stochastic volatility. Papers by
Rubinstein(1985), Stein (1989), Xu and Taylor (1994), and Canina and Figulewski
(1993) provide evidence of term structure of implied volatility. Volatility tends to be

increasing function of maturity when short-dated volatilities are historically low.
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Similarly volatility tends to be a decreasing function of maturity when short-dated

volatility is historically high. This is consistent with mean reversion in volatility.

6.2 Different Stochastic Volatility Processes

We start with a generic process for the volatility and discuss how specific
characterization of this process could provide various effects that are observed in real

life. Let the volatility process be given by:

(1)  dv =a(V,t)dt+b(V,t)dw

where V is the instantaneous volatility at time t, and W is a standard Weiner process at
time t. The drift term in a, and the volatility of volatility term in b could be in general
functions of both V and t. The specific models of volatility processes that could be
explained by the above equation are: (1) the geometric Brownian process; (2) the mean

reverting Gaussian process; and (3) the mean reverting square-root process.

The Geometric Brownian motion Process

This process is similar to the price process in Black-Sholes (1973) model. Under this

process the evolution of volatility is given by:

2 dVv = aVdt + pVdW
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where « is the constant drift term or the expected growth rate of the volatility, and y is
the volatility of the volatility process per unit time. Solving equation (2) for v (the
volatility at any time T in the future) yields:

(a—%;/Z]Tﬂ/W

3)  ENGl=Vge™

2
var[\/-l-]:VOZeZO’T {e7 T—lj

where Vjis the initial volatility, and vy is the volatility at time T . The properties of the

process show that the volatility is unbounded and does not conform to the observed

pattern in real life namely the mean-reversion.
The Mean-Reverting Gaussian Process

The mean-reverting Gaussian process also known as the Ornstein-Uhlenbeck process is
a continuous time version of the AR1 process. Nelson (1990) has shown that this
process is the diffusion limit of the GARCH (1,1) process. The mean-reverting

Gaussian process is modeled as:

(4)  dv=a(B-V)dti+ydw,

where £ is the long-run mean, « is the speed of mean reversion. The above process

implies:
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Vo = f+(Vo-p)e %7 T easaw
' 0-B)e +y(f)e s
(5) E[VT] =p +(V0_ﬂ)e_aT

var[Vy ] = 72/2 (1—e_20‘T )

Equation (4) and (5) show a small value of « indicates strong autocorrelation in
volatility, whereas a greater value of « implies a faster convergence to the long-run
mean. In this model the mean and variance of the volatility are bounded from above.
Scott (1987), Hull and White (1987) and Wiggins (1987) use the mean-reverting
Gaussian process to price the options. Using this model Stein and Stein (1991) derive an
exact closed-form solution for the stock price process and show with suitable value to
the parameters this process can explain the ‘fat-tail” pattern that is observed in stock

returns. However, the limitation of this process is that, v is normally distributed which

means volatility can take negative values.
The Mean-Reverting Square-Root Process

This process has the feature of mean-reversion and it does not allow negative values.

The evolution of variance, V under this process is given by:
(6)  dv=a(B-V)dt+yNdw

The above process implies:



151

—-aTl —-aTl T —aS
Vp = B+(Vo-Ble ™ +ye (j)e JVsdw
() ENpl=Vge @ + ,b’(l—e_aT ),

var[Vy 1=V, [7’&2] (e—aT _e2aT ) + {yaz] (1—e_0‘T )2

In this process, volatility is no longer normally distributed. Cox, Ingersoll, and
Ross (1985b) have shown that the probability density function follows a noncentral chi-
square distribution using this process. Heston (1993a) and Hull and White (1987) use
this assumption for variance process in deriving and analyzing option pricing models,
given the close resemblance of real life data with this process. Our risk-adjusted
stochastic volatility model in this chapter also assumes this variance process to price the

option.

6.3 Stochastic Volatility Option Pricing Models

The earlier papers before Heston (1993a) used the equilibrium argument to price the
options with stochastic volatility. For example Hull and White (1987), Scott (1987), and
Wiggins (1987) use the Garman (1976) differential equation for the security process,
Cox, Ingersoll, and Ross (1985a) intertemporal capital asset pricing model or the
Merton (1973) equilibrium model. These option pricing models imply that the solution
of the differential equation is independent of the risk preference only if (a) the volatility
is a traded asset or (b) the volatility is uncorrelated with aggregate consumption. Hull
and White (1987) assume that the volatility is uncorrelated with the aggregate

consumption which means that volatility has a zero systematic risk. However it is
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difficult to see how this assumption could be realistic, in general given the empirical
evidence of stock return and volatility correlations. They also state that constant
correlation between rate of change in volatility and aggregate consumption can be used
but do not discuss the preference restrictions that are required. To simplify the model
Scott (1987) also had similar assumptions. Wiggings (1987) show that the logarithmic
utility assumption is consistent with options on the market portfolio so that the price of
risk of the hedge portfolio is zero. Thus the author argues the logarithmic utility
assumption could be used to price the option on a market portfolio. These prior models
provide the motivation for addressing the stochastic volatility issue; nonetheless they
did not provide a close form general solution. Jarrow and Eisenberg (1994) and Stein
and Stein (1991) assume the volatility is uncorrelated with the spot asset, thus it could
not capture the important skewness effect in the option prices that arise from such
correlation. Using a square-root process for variance, Heston (1993a) provided a closed-
form solution where the risk preference is accommodated through the market price of
volatility risk as we will explain in the following sections. Heston’s model can explain
the skewness and kurtosis of the return distribution with suitable adjustment of the
volatility process parameters. We also assume a square-root process and follow the
Fourier inversion approach to obtain a close form solution similar to Heston (1993a) for
the risk-adjusted model. In our approach the option is held till maturity without

rebalancing so as to extract the expected stock return along with other parameters.
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6.4 The Risk-Adjusted Stochastic Volatility Option Pricing Model

We assume the stock price process follows a geometric Brownian and the variance

process follows a mean-reverting square root process at time t,

(8a)  dS = uSdt +NVSdwy
(8b) AV = a(B — V)it + VW,

where u is the expected growth rate of the stock in risk-adjusted world, S is the stock
price, V is the variance, « is the speed of mean reversion, and £ is the long-run mean

variance, dWjdW, = pdt , y is the volatility of volatility, and Wy and W, are the two

Weiner processes. The mean-reverting square-root variance process has the nice feature
that volatility will be positive and will revert to mean level when it moves above or
below this level. The speed of reversion will depend on a. As « increases, the level of
volatility stays close to the long-run mean level. In the Black-Scholes model we had a
single uncertainty so that the stock with one call option can form the riskless portfolio
and the partial differential equation (PDE) does not contain the Weiner process; here we
need two call options and the stock to form the PDE that will not contain any of the

above two Weiner process. If C(S,V,t) is the call price, then with Ito’s Lemma we have:

dC = Cydt + CgdS + %CSS as % + Cyav + %CW av 2+ Cgy (dS)(@v)
= Cydt + Cg [ psdt + VS | + %CSS VS2dt + Cy (B — V)it + 4VaWy |
(9) + %OVV VA2dt + Cgy (pySVit)
- \Ot + uSCyq + %VSQCSS +a(B V)0 + %w?cw + pySVCgqy ‘dt
+VSCqdW; + VCydW,y
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In the following equations, we form a portfolio X that contains two options (C*
and C**) and the stock, and set the terms having dW; and dW, separately to zero to get
two equations that we use to compute the portfolio weights h; and hs.

X =C*+mS +hyC**
dX = dC * +hdS + hydC * *

(10)

Solving for h; and h;, as explained above, we get:

hl = _CS + C** CS
(11) « 7
Cy
hy = ——x
Cy

Since the portfolio is riskless we have:

(12) dX = dC * +hdS + hydC * *
=rXdt
Substituting the values of h; and h, from equation (11) and the value of X from
equation (10) in equation (12) and equalizing the terms containing the same options (C*
or C**) on left and right hand side we get the following PDE (after the adjustment of

market price of volatility risk):
(13) TSCS + %VSQCSS + a(B-=V)=XV CV + %V72CVV + ,O’YSVCSV + Ct —rC =0

The corresponding volatility process after the adjustment for market price of risk for the

risk-neutral valuation is given by:
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(14) v =[a(B V) = \V]dt + VW,

where A is the market price of volatility risk.

To process the PDE in risk-neutral world we adjust the volatility process for
market price of risk as shown in equation (14). In the Black-Scholes one-dimensional
PDE where the uncertainty comes from the single traded asset (the stock process), the
market price of risk is such that the stock and the option growth rate can be set to the
risk-free rate to value the option in traditional risk-neutral world. However when call
option price is a function of additional uncertainties, the growth rate of these processes
may not be the risk-free growth rate (using change of measure). This implies in general
the stochastic volatility option pricing equation will be dependent on the risk preference
parameter (via A). Alternatively the PDE will be independent of risk preference if (a)
the volatility is a traded asset or (b) the volatility is uncorrelated with aggregate
consumption. For example if the underlying asset is a hypothetical market portfolio or
aggregate wealth, then volatility risk will be orthogonal (to market risk) in which case
the price of volatility risk will be zero for this portfolio. However, in general the price
of volatility risk of an individual stock will not be zero and a risk-neutral PDE will have
an adjustment for market price of risk in equation (13). In general when there are
multiple processes, Cox, Ingersoll, Ross (1985a) provide the necessary framework to
show the link between the option expected return and the stock expected return in
equilibrium. From their paper using equation (13) and (22) with change of notation to
our paper and assuming constant relative risk aversion (CRRA), the relationship

between the option return and the stock return can be given as:
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+ 0y

.y
kC = rC + Cg H 95 ]var(S) +
Jg
=rC + Cg[(p —r)S|+ Cy AV

—J
SC ] cov(cov(S,V)
s

25 ](cov(s, 0))

(15)
where J is the indirect utility function, k is the expected growth rate of the option in risk

adjusted world (same as expected return of the option), and

P
SC = 5sac

Furthermore, with the assumption of CRRA we have:

Jss _ ¢
(17 Jg &
A= ¢vp

where ¢is a constant of the CRRA that measures the degree of risk aversion of the
representative agent, and A is the market price of risk for volatility process. For
example, ¢=0 implies a logarithmic utility function which makes the market price of
risk zero. A value of ¢ > 0 will imply a lower relative risk aversion than a log utility
function, and a value of ¢ < 0 will imply the opposite. Therefore A depends on the
utility structure of the representative agent and it is an empirical issue to estimate the
constants ¢, p, and o that are required to estimate A. In our risk-adjusted approach the
PDE does not need a market price of risk adjustment. By analogy of risk-adjusted

model with risk-neutral model in constant volatility, the risk-adjusted PDE in stochastic

volatility can be written as:
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1 1
(182) uSCg + 51/52055 +a( - V)Cy + 5vﬁcw +pySVCgy +Cp —kC =0

Since the above model is a risk-adjusted model we don’t have the market price

of risk (4) term in the equation. The risk-adjusted volatility process is given by:

(18b) aV = [a(8 — V)]dt + WVdW,

To solve the above equation we follow the Fourier inversion approach of Chen

(2009). The risk adjusted option pricing model is given by:

¢ = ¢ M=) Bmax{S(T) — K,0}]
K1)
= M Dggm, — R TNk,

- Se_(k_'“)(T_t)Hl _ e_k(T_t)KHQ

<

= e

(19)

where (via Fourier inversion)

67iu1nK (u
m— L4 lfé’ORe J

du; 7 =1or 2
J 2 7 J

iu

U = seMT=m, — ki,

fiw) is the characteristic function, and C is the call price at time t. We guess the form

of the solution in second and third line of equation (19).

Before we solve the PDE of equation (18) we do the following transformation:
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(20) z=InsS

Using the above transformation the original PDE of equation (18a) can be transformed

to:
(22) “_EV C, +5V0m + (B —V)Cy +§v7 Cyy +pWVCuy +Cp —kC =0

From equation (19) using the partial first and second order derivatives of C with respect

to z, V, and t in equation (22) we have:

v 2y

v
(23) !//,—5 Ua:"‘EUxx +[Oéﬁ—aV]UV +’YTUVV +p,VUy, +Up =0

Furthermore, U of equation (19) can be written as:
4) v =T, g,

Before we transform the PDE of equation (23) to ordinary differential equations we

compute the partials of U with respect to =, V, and t using equation (24):

U, = ex+u(T—t)H1 n e$+'“(T_t)Hlx — KTy,

Ugg = ex—HL(T_t)Hl + 26m+M(T_t)H1x + em—’_M(T_t)Hl:m: — Kllgg,
vy = 0y, — 1y

Upy =Ty, - Ky

Upy = " TPy 4 00, gy,

vy = S HHTD g 4+ T 0, KL,

(25)

Using equation (25), PDE of equation (23) is written as two partial differential

equations corresponding to the partials of 1I; and 11, as follows:
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2

|4 vV |4

5 Mae + - Thyy + pWVilgy +laf = (o = )V + IN + 5 (Mg + My =0
(26) 1% A% Vv

EHQSL‘QT + THQVV + p’YVH2IV + [aﬁ - Oﬂ)]HzV + {M - 5 H2$ + HQt =0

The following characteristic function satisfies the above partial differential equations:

C '(T—t)—O—Dj(T—t)V—i-iux

@7)  fj=e ,J=1,2.

C; and D;j are functions of the parameters «, £, 7, A, and p, and the time to maturity.

Using an approach similar to Chen (2009) we can solve the above PDEs, and write the

solutions to Dj and C; as follows:

[d1+pfy(1+zu)—a)]e—dl(T—t) B
28) b 4 d—py(1+iu)+a) _p(d+iu) -«
1 V2 | [ +p(I+iu)—a)) —d (T—1) ) d
dy—py(I+iu)ta) | "
and
e C
@) o, %l
2| bEmia) T
[dz—pviu—i—a]e +
where

dp = \/[p’y(l + u) — a]2 - 72 iu — u?

do = \/[,myiufa]2 +’y2 i+ u? ;
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0, = 72*23[7@ ~ oyt i) £ (@ — (@ + )2+ 202 — i) (T —¢)

—(a=py(tin) +y(a—pr(tin) 24922 i) —f(a—py(iu) R+ 2 02 —iu)(T—t)

_2a8 (a=p(Utiu)+y (o —py(Ltin) 4922 —in)
72 |1+ *(afp’y’(l‘l*iu))“r\/((Y*,U’Y(l‘FZ"M))2+72(U27iu)

(a—py(1tiu)) -+ (a—py(1+iu) 2 +42(u2 —iu)

In|1+

and

(31)

Cy = Jig[m #\aZ + 202 + i) |(T - )

Y
— 2 1 ~2(42 1 - _ 2. 9,9 ..
_% i1+ a+y af+v2(u? +iu) e_,/a2+72(u2+w)(T_t)] |14 ot o +v2(u? +iu)
¥ -y a2 +42(u +iu) a-+y a2 +~2(u2 +iu)

As we note unlike the risk-neutral approach in this risk-adjusted model C; and D;
do not contain A, the market price of volatility risk. Instead, A is in the expected growth
rate of the option price using the ICAPM equation (15). Therefore, using equation (15)

equation (19) can be written as:

C = e_k(T_t) [Se'u(T_t)Hl — KH2}

(32)
C

oS c
g () AV )(Tt)
setT =D, — k1,

= €

where II; and II, can be solved using the values of C; and D; from equation (28)

through (31).
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6.5 Methods of Estimation

Unlike the risk-adjusted constant volatility model there are many unknown parameters
in additions to the ex ante expected stock return (), in this model. More specifically the
unknown parameters in equation (32) are u, &, 3, 7, A, and p. In one extreme, when all
the parameters are considered ex ante, we need six or more near the money call options
with same maturity for our estimation. Similar to the risk-adjusted constant volatility,
we use a grid search for global optima to estimate these parameters. The limitation of
this method is that for many stocks we may not have six options that are actively traded
for a given day with same maturity. Therefore, this method will discard many options
for most of the stocks. An alternative method to estimate these parameters is to have a
three step approach. In the first step we estimate «, fand y using the physical world
historical volatilities along with the econometric model corresponding to equation
(18b). In the second step we compute the risk-neutral probability density for the stock
price. To obtain the risk-neutral probability density, we use the Black-Scholes implied
volatility smile. From the smile curve, we extract a set of call price and the
corresponding strike prices. Then we use the following Breeden and Litzenberger
(1978) result to extract the risk-neutral density:

2
(34) %e‘r(T‘” — KT S,0)

where p(K,T | S,t)is the conditional risk-neutral probability of an underlying price to

reach the level K at time T given the price at time t is S. From this risk-neutral density

we can compute the volatilities in risk-neutral world for any time t. By this approach we
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obtain a time-series of risk-neutral volatilities. Using these risk-neutral volatilities with
the estimates of «, fand y from the previous step, along with the econometric model
corresponding to equation (18b) we can estimate A. We use the maximum likelihood
estimator for the above two steps. In the last step we use the above estimated «, S, 7,
and A along with equation (33) to compute p and g Using this approach we need only
two traded options to estimate o and x When the parameters are stationary the second
approach is a better approach that does not need many option records. A third method
could be to identify the specific parameters that can be considered stationary. This
would be a separate interesting empirical study. Once the stationary parameters are
identified, these parameters can be estimated using the econometric models as in the
previous method. Then the remaining parameters can be estimated along with z using

equation (33).

6.6 Conclusion

In this chapter we used a mean-reverting square root volatility process in addition to the
geometric Brownian price process, to estimate risk-adjusted expected return. Similar to
the prior chapters, using this expected return, we can examine whether the term
structure of expected return remains with stochastic volatility approach. We can also
use the information content of risk-adjusted stochastic volatility to forecast ex post
volatilities. Similar to the ex ante test of standard CAPM we can derive a single period
CAPM with stochastic volatility and then pursue an ex ante test of this version of

CAPM using the expected return estimates. Our approach provides a starting point for
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estimation of risk-adjusted expected return and volatility from option prices using
different assumption of stochastic processes. These risk-adjusted parameters can be
used to understand the ex ante underlying return distribution and to examine different
versions of capital asset pricing models that are consistent with these risk-adjusted

model assumptions.
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