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There are many measures to price an option. This dissertation investigates a risk-

adjusted measure to price the option with an alternative numeraire that retains the 

expected return of the underlying in the pricing equation. This model is consistent with 

the Black-Scholes model when their assumptions are imposed and is consistent with the 

standard capital asset pricing model. Unlike many asset pricing models that rely on 

historical data, we provide a forward-looking approach for extracting the ex ante return 

distribution parameters of the underlying from option prices.  

Using this framework and observing the market prices of options, we jointly 

extract implied return and implied volatility of the underlying assets for different days-

to-maturity using a grid search method of global optima. Our approach does not use a 

preference structure or information about the market such as the market risk premium to 

estimate the expected return of the underlying asset. We find that when there are not 

many near-the-money traded options available our approach provides a better solution 
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to forecast future volatility than the Black-Scholes implied volatility. Further, our 

results show that option prices reflect a higher expectation of stock return in the short-

term, but a lower expectation of stock return in the long-term that is robust to many 

alternative tests.  

We further find that ex ante expected returns have a positive and significant 

cross-sectional relation with ex ante betas even in the presence of firm size, book-to-

market, and momentum. The cross-sectional regression estimate of ex ante market risk 

premium has a statistical significance as well as an economic significance in that it 

contains significant forward-looking information on future macroeconomic conditions. 

Furthermore, in an ex ante world, firm size is still negatively significant, but book-to-

market is also negatively significant, which is the opposite of the ex post results.  

Our risk-adjusted approach provides a framework for extraction of ex ante 

information from option prices with alternative assumptions of stochastic processes. In 

this vein, we provide a risk-adjusted stochastic volatility pricing model and discuss its 

estimation process.  
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Chapter-1 

Introduction 

The long history of the theory of option pricing began when the French mathematician 

Louis Bachelier in 1900 deduced a formula based on stock price that follows a zero drift 

Brownian motion. Many year after Bachelier, the celebrated Black and Scholes (1973) 

paper provided a pricing model for European options assuming a positive drift 

Brownian for the stock price that is closer (than zero drift) to the historical price 

movement of stocks. In this setting, they show that the option can be priced by forming 

a continuous hedging portfolio of the stock, and the option so that at any instant of time 

the portfolio thus formed is riskless; which intuitively implies, in this approach, the drift 

factor and the Weiner component cancel out from the pricing equation. Thus, Black-

Scholes pricing formula does not depend on risk preference of the representative 

investor. Although the pricing formula can be obtained with a specific utility framework 

as shown in Rubenstein (1976), it is not necessary to go through a utility route to 

achieve this option pricing formula. In addition, one of the main objectives of the 

Black-Scholes option pricing formula is to obtain a valuation method that will be a 

function of parameters, which are mostly known at the time of pricing. From this 

perspective, we see the option can be priced by knowing the interest rate, stock price, 

strike price, time-to-maturity, and the stock return volatility. All these parameters 
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except the stock return volatility is known with certainty at the time of pricing a 

European option.
1
  

In fact the Black-Scholes model uses the so called traditional risk-neutral 

measure to price the option in which the money market account is the numeraire.
2
 It 

turns out that by using this measure we can price the option with least number of 

unknowns. Even though the traditional risk-neutral model provides a parsimonious 

measure for pricing the option, it is not the only measure that can price the option. For 

example, we can use the zero coupon bond price as another numeraire and formulate 

another option pricing equation. Therefore, there are many measures to price the same 

option. However other measures may contain more unknowns; therefore may not be the 

measures of choice when it comes to pricing. Nonetheless, irrespective of the measures 

we use, the price of the option should be the same.  

Our objective in this research is not to price the option. Therefore we are not 

looking for a measure that is parsimonious; rather we are looking for a measure that 

contains the parameters we seek to estimate, such as the expected return of the stock. In 

this vein, we pursue a discrete time physical measure approach in which every asset 

grows by their corresponding risk-adjusted growth rate. Therefore, our approach retains 

the expected growth rate of the stock. Unlike the Black-Scholes model, the advantage of 

our risk-adjusted model is that it does not require a continuous rebalancing assumption. 

However the disadvantage of our model is that it has many unknowns, whereas the 

                                                 
1
 A European option is an option that can be exercised at the time of maturity as opposed to an American 

option that can be exercised at any time until maturity. 

 
2
 Black-Scholes assume the short-term interest rate is known and constant. 
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Black-Scholes equation has only one unknown namely the volatility of the stock return. 

In fact our approach can be thought of as a generic model of which Black-Scholes is a 

special case. For example when investment horizon is infinitesimal or continuous 

rebalancing is assumed, our model will collapse to the Black-Schoels model.
3
 

Therefore, with the assumptions of Black-Scholes, our approach is consistent with their 

model. Furthermore, using a discrete time approach we make our model consistent with 

the standard capital asset pricing model (CAPM). This means that the expected return 

we extract from this model could be used to test this version of the CAPM. In fact we 

can think of our research as a framework, where with different assumptions of 

stochastic processes along with risk-adjusted numeraire we could extract additional 

information from option prices. For example, we could have a risk-adjusted pricing 

equation with stochastic volatility that extracts additional ex ante information from 

option prices. 

In this dissertation, we derive the risk-adjusted pricing formula and work on the 

following branches of research: 

1) Extraction of risk-adjusted expected return and volatility from market observed 

option prices and robustness test of the term structure of expected return. 

2) Comparison of information content of risk-adjusted implied volatility and risk-

neutral implied volatility to forecast future volatility. 

3) Study of cost of equity using the risk-adjusted expected return. 

                                                 
3
 Therefore, if market prices of options truly reflect these Black-Scholes assumptions then we will not be 

able to extract the expected stock return from these prices. 
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4) Use of risk-adjusted expected return to test the standard CAPM and the investigation 

of its relationship with macroeconomic variables. 

 

Findings of this Dissertation 

Using the risk-adjusted model on OptionMetrics month-end data for the period of 

January 1996-April 2004 we jointly estimate the ex ante expected stock return and 

volatility based on a grid search method to look for the global optima. We estimate 

these parameters separately for S&P500 index options and all stock options. Our 

approach estimates different implied expected return for different time horizon based on 

days-to-maturity of the option. 

There are three advantages of our approach of estimation of implied expected 

return. First, the expected return of a stock can be computed without using any 

information of the market portfolio such as the market risk premium. This implies we 

do not have to define what the ‗market‘ consists of, and we do not have to estimate the 

risk premium of the market, which is required in traditional asset pricing models to 

estimate the expected return. Second, our approach extracts implied stock return based 

on forward looking options data unlike the Fama and French model, and the CAPM that 

rely on historical information. Third, we do not use a preference structure to arrive at 

our results.
4
 

                                                 
4
 As we know, although Black-Scholes does not use a preference structure, it is consistent with CPRA 

utility function as shown by Rubenstein (1976). Similarly, even though we do not use a preference 

structure, our approach is consistent with the quadratic utility structure. 
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Using S&P 500 Index options, we discover the following four results.  First, our 

result shows that investors have higher expectations of stock returns in the short-term, 

but lower expectations in the long-term. This term structure finding is robust to many 

alternative tests. Second, the term structure of volatility using our model is much flatter 

than the term structure using the Black-Scholes model.  Third, the empirical 

investigation shows that a combination of our implied expected return and implied 

volatility with Black-Scholes implied standard deviation provides a better model, than 

Black-Scholes implied standard deviation alone to forecast future volatility of stocks for 

any combination of moneyness and maturity. Finally, the implied volatility of our 

model can predict much better future realized volatility than the implied volatility of the 

Black-Scholes model, more so for short maturities of 90-days or less. In general, our 

risk-adjusted approach provides a better measure (than Black-Scholes implied 

volatility) that captures moneyness biases even without adjusting for stochastic 

volatility. Therefore, if we are concerned about the smile while forecasting future 

volatility using all options data for a stock, then our approach provides a better solution 

so that we do not need any adjustment for moneyness bias. This implies, when there are 

not many near-the-money traded options available, our approach provides a better 

alternative to forecast future volatility. 

Using all stock options data we estimate the ex ante expected return for 

individual stocks. We use this expected return to compute the cost of equity for 

different industry groups. Unlike the CAPM and Fama and French costs of equity 

estimates, our approach doesn‘t need the unobservable market risk premium. We find 

the option implied expected returns are more stable over time than the Fama and French 
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estimates. In fact Fama and French cost of equity estimates in some cases become 

negative, which is not the case using our model. Furthermore, our result shows even 

using all stock options the downward sloping term structure of expected return is 

maintained.  

We also examine the cross-sectional relations between ex ante expected returns 

from our risk-adjusted model and ex ante betas. We find that ex ante expected returns 

have a positive and significant cross-sectional relation with ex ante betas in all 

investment horizons considered. This significant relation is maintained regardless of the 

inclusion of firm size, book-to-market, and momentum. The cross-sectional regression 

estimate of ex ante market risk premium has a statistical significance as well as an 

economic significance in that it contains significant forward-looking information on 

future macroeconomic conditions. Further, we find that ex ante betas have significant 

explanatory power for realized ex post returns. A significant relation between ex ante 

forward returns and forward betas is also found. Other interesting findings are that, in 

an ex ante world, firm size is still negatively significant, but book-to-market is also 

negatively significant, which is the opposite of the ex post results; also, investors‘ ex 

ante expectation on returns is not predicated on past stock performance. 
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Chapter-2 

Related Literature 

The area of this dissertation touches a broad spectrum of research from derivatives to 

asset pricing. However, in this chapter we discuss the literature that is immediately 

related to the risk-adjusted option pricing model and its empirical findings.  Broadly 

speaking there are three areas of research that branch out of Black-Scholes (1973) 

option pricing model. First area of research is the study of option properties and market 

efficiency. Second group of research is on extending the Black-Scholes model to 

include additional features such as stochastic volatility, and jumps. Third area of 

research is on extraction of information using observed market prices of options. In the 

following paragraphs we discuss the first two areas in brief and the third area in detail, 

since our findings are related more to the third area of research. We also discuss related 

literature that extract ex ante expected return from other sources. For completeness, the 

last section of this chapter reviews some of the option pricing models using various 

utility structures.  

The first group of research is the extensive study of Black-Scholes model to 

examine the properties of   American and European option prices. For example, Merton 

(1973) shows the pricing relationship of different contingent claims on any stock based 

on the weak assumption that investors prefer more to less. Even though this assumption 

may not give the option price in exact form, it helps in formulating tight bounds and 

relationships across various options of that stock without any distributional 

assumptions. Since Merton‘s paper, many researchers have expanded the literature to 
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understand the pricing relationship of different contingent claims and related market 

efficiency
1
.  

The second group of research is based on expanding the model of Black-Scholes 

to more generalized equations. For example, Merton (1976a) extends the option pricing 

model to have both continuous time Wiener and noncontinuous jumps in the stock price 

dynamics. With this setting, Merton shows that if investors use Black-Scholes formula 

when the true process contains jumps, that will introduce significant error in the option 

pricing. In this line of research papers by Cox and Ross (1976a and 1976b), Cox, Ross 

and Rubenstein (1979),  Scott (1987),  Hull and White (1987), Wiggins (1987), Stein 

and Stein (1991), and   Heston (1993a and 1993b) provide extensions to the Black-

Scholes model to have jumps and stochastic volatilities so that the models  are close to 

the reality of observed option prices. We discuss the stochastic volatility models in 

more detail in chapter 6. 

The third line of research is to view the option pricing models not as a pricing 

mechanism but as a method to extract the properties of the underlying asset return by 

using observed option prices in the market. Our current work on estimation of implied 

expected return, beta, and volatility is aligned with this line of research. The existing 

research in this line can be divided into three sub-groups. We discuss these in details in 

the following paragraphs. 

 

                                                 
1
 Following is a partial list of papers in this area of research:  

Ross (1976), Jarrow (1980), Whaley (1986), and Hentschel (2003). 
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2.1 Implied Volatility from Option Prices 

The first sub-group of research is based on extracting implied volatility from option 

prices and examining its properties for different values of option maturity and 

moneyness
2
.  We briefly discuss some of these papers in this section. For example the 

papers that find Black-Scholes implied volatility (ISD) is a better measure for 

forecasting volatility are given by Latane and Rendleman (1976) (LR), and Chiras and 

Manaster (1978) (CM). The paper by Latane and Rendleman (1976) (LR) computes the 

implied standard deviation using the Black-Scholes (B-S) model. To adjust for 

sensitivity of option prices to implied volatility they compute the weighted average 

implied standard deviation (WISD) in which the implied standard deviation on all 

options on a given underlying stock are weighted by the partial derivatives of  price of 

option in B-S equation with respect to each implied standard deviation. Then they 

compare the two methods to compute volatility, namely, the historical method, and the 

WISD method. They use continuous hedging of a portfolio of stock and its option for 

over-priced and under-priced options. The pricing and hedging are based on different 

combinations of computing volatilities by historical method and WISD.  They argue 

with an approximate continuous hedging the portfolio should earn close to risk-free rate 

with lowest standard deviation. In their experiment they show that the portfolio return 

where historical volatility is used in the hedge weight computation has the highest 

standard deviation thus are far from being risk-less compared to the portfolio return 

where WISD is used. They also show that the mean return of the portfolio formed on 

                                                 
2
 In this sub-group of research the papers are by Latane and Rendleman (1976) (LR), Chiras and Manaster 

(1978) (CM), Beckers (1981), Day and Lewis (1992), Canina and Figlewski (1993) (CF), Christensen and 

Prabhala (1998), Lamoureux and Lastrapes (1993), Blair, Poon and Taylor (2001). Granger and Poon 

(2005) provides a comparison of different methods of forecasting volatility. 
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the basis of WISD is significant, and is in the expected direction and thus it is a better 

estimate of market volatility. Chiras and Manaster (1978) (CM) argue that the weighted 

average in LR is not truly a weighted average since the sum of weights is less than one. 

They compute the weighted average of ISD by price elasticity of the option with respect 

to its implied standard deviation, which they argue is a better method to compute the 

WISD. With empirical experimentation, they show that WISD does a better job than the 

historical volatility in predicting the realized volatility. Papers that do not support the 

hypothesis that the information content of implied volatility is superior are given by 

Day and Lewis (1992), and Canina and Figulewski (1993). Day and Lewis (1992) argue 

that the implied volatility is biased and inefficient since in their research, past volatility 

contained predictive information beyond the information content of implied volatility. 

One of the most interesting researches not supporting the ISD is given by Canina and 

Figulewski (1993) (CF). Using binomial model of option pricing that adjusts for 

dividends they argue implied volatility is not as better a predictor of realized volatility 

as the prior research suggested. Most importantly, Canina and Figulewski show that the 

implied volatility is not same for different maturity options, thus we cannot combine 

them to compute a WISD, since implied volatilities for different maturities may be 

influenced by systematic factors rather than the noise in the data. To take into account 

the possible systematic effects of time to maturity and moneyness they formed different 

groups based on these two factors and analyze each group separately. They show 

neither the implied volatility nor the realized volatility is an appropriate volatility 

forecast. Thus, they suggest, a better way might be to incorporate all sources of 

information rather than use only implied volatility to forecast realized volatility. 
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However, there are no papers, which show how we can combine different information 

to have a better volatility forecast.  CF finding questions the B-S model in the following 

way. As shown in previous literature B-S can be thought of as a pricing model that 

prices the future volatility, However CF findings of no significant relationship between 

option‘s prices through implied volatility with the realized volatility refutes this belief 

within the rational expectations setting. In subsequent research, Christensen and 

Prabhala (1998) (CP) show that implied volatility is a better forecast of future volatility 

than previously reported. Christensen and Prabhala use monthly observations to avoid 

data overlaps and adjust for regime shift around the market crash of October 1987 that 

was not taken into account in Canina and Figulewski. Christensen and Prabhala also 

show past volatility has no incremental explanatory power over implied volatility in 

their test which is in contrast to Canina and Figulewski findings. They argue that the 

reason for this could be in extreme overlap in CF data that might have caused biased 

estimates as opposed to the nonoverlapping data in their experiment. Findings in 

Christensen and Prabhala research supports the idea that B-S model can be better used 

as a volatility forecaster than previously thought. Recent survey by Granger and 

Poon(2005) categorizes the future volatility forecast into four methods namely: 

historical volatility method, ARCH and GARCH models, stochastic volatility models, 

and implied volatility method. They rank these methods based on past literature. Their 

overall ranking suggests that B-S implied volatility provides the best forecast, followed 

by historical volatility and GARCH roughly with equal performance. Despite the added 

flexibility and complexity of stochastic volatility models, they find no clear evidence 

that it provides a superior volatility forecast. Our research is closer to the B-S 
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framework. However, we use a risk-adjusted discrete time pricing method that retains 

not only the implied volatility but also the implied return in the equation. Using near-

the-money options and computing different implied volatilities and returns for different 

days-to-maturity we avoid the systematic effects of moneyness and maturity described 

in Canina and Figulewski literature. 

 

2.2 Implied Beta from Option Prices 

The second sub-group of research is in the area of extracting implied beta from option 

prices. Papers in this area include Siegel (1995), and Christoffersen, Jacob and 

Vainberg (2006). Segiel (1995) proposes a new ‗exchange option‘, the price of which is 

based on number of units of a specific stock, that can be exchanged for one unit of an 

index. Thus, he argues the price of this exchange option can reveal the implied beta of 

the stock.  More recently, Christoffersen, Jacob and Vainberg (2006) show that implied 

beta can be extracted from option prices without using this new derivative. The beta in 

their model is computed using forward-looking variance and skewness. Using methods 

from previous literature, they retrieve the underlying distributions for index options and 

stock options from cross-section of option prices. Then they use traditional one-factor 

model and express the forward-looking beta as a function of the skewness and variance 

of  the underlying distribution. They show these forward-looking betas perform well 

compared to historical betas in many cases. However, the main limitation in their 

approach could be the extraction of market betas from skewness. As shown in past 

literature market beta obtains when the stock returns are multivariate normal or 
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preference is quadratic. The use of skewness to compute beta is at odds with 

multivariate normal assumption of the CAPM. On the other hand, our method to 

compute beta uses a time series estimate based on ex ante information set of market and 

stock expected returns.  

  

2.3 Implied Expected Stock Return from Different Sources 

 

2.3.1 Implied Expected Stock Return from Option Prices 

The third sub-group of research is based on extraction of implied expected stock return 

(or implied return) from option prices. Option pricing models of  Sprenekle (1961), 

Ayres (1963), and Boness (1964) had  implicitly or explicitly assumed that the investors 

buy and hold the options until maturity to extract the option implied returns, which then 

could be linked to the stock implied return. However, none of these models provides an 

adequate theoretical structure to determine the implied return values. The Black-Scholes 

(1973), models the option price by taking advantage of the interesting feature that a 

certain portfolio of the stock and the option can cancel out the unknowns namely the 

implied stock return and the implied option return in continuous time. Thus if our 

objective is to value the option then we remain in this risk-neutral framework so that 

implied returns are not required in the pricing formula. However if our objective is to 

extract implied return given the market price of options we form the corresponding risk-

adjusted valuation model that will retain the expected returns in the pricing models. 

Comparison between risk-neutral and risk-adjusted model of option pricing was given 

by  Galai (1978), in which the author shows that if we use the risk-adjusted model then 
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it will retain the stock implied return in the pricing equation. Our approach parallels this 

approach. However, there are at least three differences between our approach and his 

approach. First, he compares the properties of  implied option return derived from risk-

adjusted model with the risk-neutral model, whereas we derive a relationship between 

the implied stock return and option return in discrete time and then link that with the 

risk-adjusted model. Second, we derive a discrete time version of equations for 

covariance of option return and stock return, and variance of stock return. Finally, we 

compute the implied stock return and volatility from observed market price of options 

whereas his paper takes a range of implied stock returns as given and then uses the 

equation to compute a range of implied option returns.  

 

Another paper that studies the properties of the risk-neutral valuation is given by 

Heston (1993b). In this research, the author suggests a generic framework under which 

the prior option pricing models do not depend on risk aversion parameters.  For 

example, in diffusion models (Black and Scholes (1973)) option prices are independent 

of the stock drift; in Poisson models (Cox and Ross (1976a)) option prices are 

independent of the Poisson intensity, and in binomial models (Cox, Ross, and 

Rubinstein (1979)), option prices are independent of the jump probabilities. To derive 

these models we need the assumption about market completeness so that continuous 

time hedging is possible. Another alternative is to have a certain preference structure so 

that option pricing will not depend on risk aversion parameter even if we do not have 

continuous hedging. By this approach, Heston generalizes Rubinstein (1976) preference 

structure and by combining that with log-normal spot asset prices, he obtains the B-S 
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pricing formula free of risk aversion parameters. Heston also shows a log-gamma 

formula, which depends on, mean return parameter but is independent of volatility, the 

scale parameter. If this distribution holds then option prices will be insensitive to sigma 

which contrasts with many findings that implied volatility has useful information to 

explain realized volatility. In contrast to these papers we follow a discrete time risk-

adjusted approach with geometric Brownian price process, so that the implied return 

and implied volatility parameters are retained in our pricing equation. 

 

Another paper related to implied stock return is given by McNulty et al. (2002). 

They use a heuristic approach to compute the ‗real cost of equity capital‘. Their findings 

of higher implied return in the short-term and lower implied return in the long-term 

matches with our finding; however, their approach lacks the theoretical support. 

Another recent paper, which computes the stock implied return from option prices, is by 

Camara, Chung, and Wang (2007). There are two aspects of their approach. First, they 

assume a specific utility structure such that the marginal utility of wealth of the 

representative investor is: 

( )T TU W W     

where   and  are risk preference parameters. Based on this utility structure they show 

their option pricing equation contains implied stock return as one of the parameters to 

be estimated.
3
 Second, their approach requires an intermediate parameter that needs to 

be computed using options of all companies, before they compute the implied return of 

any individual firm. In contrast to the above papers, we follow a discrete time approach 

                                                 
3
 Unlike the Camara, Chung, and Wang (2007) paper, our approach is consistent with the standard CAPM 

and thus consistent with a specific utility structure of hyperbolic absolute risk aversion (HARA) 

preference family namely the quadratic utility structure. 
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that has the advantage of being consistent with single period standard CAPM.  Using 

our approach, the expected return of a stock can be computed without using any 

information of option of all companies or of the market portfolio such as the market risk 

premium. This implies we do not have to define what the ‗market‘ consists of, and we 

do not have to estimate the risk premium of the market, which is required in traditional 

asset pricing models to estimate the expected return. 

 

2.3.2 Other Sources of Expected Stock Return 

Recent research explores different sources to extract ex ante stock return. In this section 

we will briefly discuss some of those studies. Campello, Chen, and Zhang (2008) use 

corporate bond yields to estimate expected equity returns. They argue that, since 

forward-looking bond yields are reflected in bond prices, this provides a natural 

selection of data source for ex ante information. However, their approach is not entirely 

based on ex ante information. For example, they use existing default information to 

gauge expected default losses that is required to back out the systematic component of 

yield spread. Further, to estimate the extent of empirical relationship between the bond 

yield and stock expected return using the elasticity of equity value with respect to the 

bond value, they again use historical data. Therefore, the ‗links‘ the process of 

extraction of expected stock return goes through relies on ex post information at many 

intermediate steps. Fama and French (2002), also use the historical average dividend 

growth as the expected rate of capital gain and measure the equity premium as the sum 

of the expected rate of capital gain and the average dividend yield. However, use of ex 
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post return in any form for test of ex ante models is a questionable assumption.
4
 In fact 

as Sharpe (1978) pointed out: 

  "All the econometric sophistication in the world will not completely solve the 

basic problem associated with the use of ex post data to test theories dealing 

with ex ante  prediction, however. The Capital Asset Pricing Model deals with 

predictions concerning a future period [...]. It does not assume that the 

predictions or the implied relationships among them are stable over time. Nor 

does it assume that actual results will accord with such predictions, either 

period-by-period or, in any simple sense, 'on average'." (p. 920) 

 

Unlike these approaches our model relies on option prices which is a direct 

source of ex ante expected return for the underlying stock. 

Another group of literature relies on accounting information to estimate the 

expected returns. Using Value Line forecasts of dividends and target prices, Botosan 

and Plumlee (2005) obtain estimates of firm cost of capital and ask whether these 

estimates are correlated with firm characteristics. They find a positive relation between 

market beta and cost of equity. However, they generally find no association between 

market capitalization and Value Line estimates of the cost of equity. In a similar vein 

Brav, Lehavy, and Michaely (2005) use the Value Line forecasts and First Call 

analyst‘s expectations, and argue that researchers and practitioners use this database of 

earning and growth forecast as a proxy for expectation of these variables. Thus they 

argue, this source of information is superior to using the realized return for asset pricing 

                                                 
4
 Pastor, Sinha, and Swaminathan (2008) use simulations to show that, except for very long time 

windows, realized returns do not converge to expected returns and often yield wrong inferences. 

Moreover using realized returns as a proxy for expected returns, the evidence is mixed. Early tests, such 

as Fama and MacBeth (1973) find that firms' betas are positively related to their realized returns. Using 

later data and monthly return intervals, Fama and French (1992, 1993) and others do not find a significant 

relation. However, when annual return intervals are used (Kothari, Shanken. and Sloan, 1995) find that 

beta is significantly related to average realized returns. 
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tests.  Using these data sources they find that market beta is positively associated with 

expected returns. Furthermore, using Value Line expectations, they do not find evidence 

that high book-to-market stocks have higher expected returns than low book-to-market 

stocks. When they use the analysts expected returns from First Call, they find that the 

coefficient on book-to-market is negative and significant. These results challenge the 

notion that the market perceives high book-to-market stocks as riskier and therefore 

they command higher expected returns. In fact Brav, Lehavy, and Michaely (2005) 

finding is consistent with our finding that there is no evidence of high book-to-market 

stock being riskier than low book-to-market stocks. 
5
  However, their approach has 

strong assumptions regarding the future evolution of accounting variables. For example 

they assume that dividends will continue to grow at the same historical rate, in the 

following four years. Furthermore, their paper and Botosan and Plumlee (2005) use 

indirect measures for expected stock returns such as the analyst‘s price targets by Value 

Line and expected returns from First Call.  

To overcome the shortcomings of the above mentioned measures, we use option 

prices to extract information regarding ex ante expected returns and market beta of the 

underlying asset. Since option prices reflect investor expectations for future stock price 

movements, option data are an excellent information source for ex ante parameters. 

                                                 
5
 This finding is consistent with Shefrin and Statman (2003), who use an ordinal ranking of 

recommendations as their proxy for expected returns and relate them to firm characteristics such as book-

to-market and market capitalization. They find that stocks with buy recommendations are more 

likely to be low book-to-market stocks. They interpret this finding as an indication of higher 

expected return for those types of stocks, which is consistent with our findings.  

Furthermore, Lakonishok, Shleifer, and Vishny (1994) find that there is no eveidence of high book-to-

market being fundamentally risker. To be fundamentally riskier, high book-to-market (value) stocks 

must underperform low book-to-market (glamour) stocks with some frequency, and particularly in 

the states of the world when the marginal utility of wealth is high. They find little, if any, support for the 

view that value strategies are fundamentally riskier. 
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Unlike the information content in bond prices which provides an indirect relationship 

with model assumptions, our approach is a direct source of ex ante expected stock 

return. Our risk-adjusted approach jointly extracts implied mean return and implied 

volatility of the underlying asset from forward-looking option prices. We use this 

implied mean return as a proxy for ex ante expected return. 

 

2.4 Brief Review of Utility Based Option Pricing 

Rubinstein (1976) and Brennan (1979) use specific utility structures to price the options 

in discrete time. Rubinstein (1976) obtains the Black-Scholes model with constant 

proportional risk aversion (CPRA) preferences. He also assumes that aggregate 

consumption and the underlying asset are bivariate lognormally distributed. Brennan 

(1979) derives a risk-neutral valuation relation assuming a representative agent who has 

a negative exponential utility function, and a bivariate normal distribution for aggregate 

wealth and the underlying asset.
6
 Using Rubinstein (1976) approach with a general 

pricing distribution and discrete trading, Perrakis and Ryan (1984) show the upper and 

lower bound for call options based on a utility structure such that the normalized 

conditional expected marginal utility for consumption is non-increasing in the price 

change of the stock. Bates (1991) show that the high price for ‗crash insurance‘ during 

1987  cannot be explained by standard option pricing models with positively skewed 

distributions, such as Black-Scholes, constant elasticity of variance, or GARCH; instead a  

                                                 
6
 Brennan (1976) and Rubinstein (1976) have the following additional common assumptions: (i) the 

single-price law of markets, (ii) non-satiation, (iii) perfect, competitive, and Pareto-efficient financial 

markets, (iv) rational time-additive tastes, and (v) weak aggregation, or the existence of an average 

investor. 
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jump diffusion process with time-separable power utility function explains this crash, 

when the jump risk is systematic and nondiversifiable.  

 

Levy (1985) shows upper and lower bound for call options with less restrictive 

assumption on the utility structure using a discrete time model. Levy argues, on the one 

hand, Brennan (1979), assuming some specific stock value distributions and investor 

utility functions, derives a relative pricing relationship between stock and the option. On 

the other hand, Merton (1973), imposing no restrictions on the stock price behavior and 

the investors' characteristics, obtained upper and lower bounds on the option value 

relative to the stock value. Knowing these two extreme cases the upper and lower 

bounds can be further improved by assuming simply a concave utility function. Levy 

shows that the bounds are much tighter than Merton bounds with this simple 

assumption.  

   

Camara (2003) generalizes Brennan-Rubinstein approach to show a new range 

of preferences and distributions of wealth pairs under which the Black-Scholes model 

holds. The author shows Black-Scholes model might be obtained, when the underlying 

asset has a lognormal distribution, with any of the following risk preferences and wealth 

distribution pairs:  (i) The utility function is an extended power displaying DARA and 

aggregate wealth has a displaced lognormal distribution. (ii) The utility function is a 

negative exponential displaying CARA and aggregate wealth has a normal distribution. 
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(iii) The utility function is a cubic one displaying IARA and aggregate wealth has a 

negatively skew lognormal distribution. 

 

Vanden (2006) analyzes asset pricing with nonnegative wealth constraints. In 

the presence of these constraints, using exponential, power, and quadratic utility 

functions, Vanden shows that options on the market portfolio are nonredundant 

securities and the economy's pricing kernel depends on both the market's return and the 

option's returns. This leads to a pricing model in which the expected excess return on 

any risky asset is linearly related to the expected excess return on the market portfolio 

and to the expected excess returns on the nonredundant options. The empirical results 

indicate that the inclusion of the option returns can improve the CAPM and this 

improvement is significant for nonsmall stocks.  
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Chapter – 3 

Risk-Adjusted Information from Option Prices
1
 

As option‘s payoff depends upon future stock price, option prices contain important 

information of their underlying stocks.  For a bullish stock, the price of the call goes up 

and the put goes down.  However, using the Black-Scholes model, we can only retrieve 

the volatility information, as risk preference disappears from the pricing model.  In this 

paper, we price options with the physical measure where we can jointly estimate the 

expected return () and implied volatility of the underlying stock from market prices of 

options.   

Pricing measures are not unique.  Yet the law of one price (or known as no 

arbitrage) guarantees all pricing measures lead to a unique option price.  As a result, 

there exists a pricing measure where  is present and the same option price is obtained.  

In this paper, we choose the physical measure to price options so that we can jointly 

estimate the expected return and implied volatility of the underlying stock.  The use of 

the physical measure in pricing assets has been the standard methodology in 

microeconomic theories.  In fact, the earlier literature (such as Sprenkle (1961) and 

Samuelson (1965)) in option pricing used the physical measure to price options.  Our 

contribution is to extend those models and further derive the closed form solution to the 

                                                 
1
 This chapter is a superset of a joint paper with my dissertation committee members Dr. Ren-Raw Chen 

(advisor), and Dr. Dongcheol Kim. We wish to thank Dr. Kose John, Dr. C.F. Lee, Dr. Oded Palmon, and 

the 2009 Financial Management Association Meetings participants for their helpful comments and 

suggestions. We thank the Whitcomb Financial Center for data assistance.  
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expected return of the option as a function of the expected return of the stock.   

Black and Scholes (1973) show that if the market is complete,
2
 then the 

expected return of the stock should disappear from the valuation of the option as 

dynamic hedging (or known as continuous rebalancing, price by no arbitrage, or risk 

neutral pricing) should effectively remove the dependence of the option price on the 

stock return.  This is true, however, only if the market is truly complete in reality.  In 

other words, if the reality were exactly described by the Black-Scholes model, it is 

impossible to theoretically solve for both the expected return and implied volatility of 

the stock .  However, it has been empirically shown that the Black-Scholes model 

cannot explain all option prices (known as the volatility smile and volatility term 

structure).  As a result, we can solve for these two parameters simultaneously under our 

model.   

Except for the expected return parameter, the physical pricing measure adopted 

by our model assumes the same assumptions of the Black-Scholes model.  In particular, 

we assume the same stock price process as the Black-Scholes model does.  This design 

is to assure that we have a closed form solution to our model.  In theory, we could relax 

as many assumptions by the Black-Scholes model as possible and build a model that 

can explain every traded option price in the market place.  However, in doing so, we 

shall lose the closed form solution and furthermore once we have as many parameters as 

the number of the traded options, the model can no longer ―price‖ any option as all 

option prices are used to calculate parameters.  As a result, we need to seek balance 

between over-parameterization (having same number of parameters as option prices), 

                                                 
2
 This is complete market in the dynamic sense, as later described carefully by Duffie and Huang (1985). 
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under-parameterization (such as the Black-Scholes model), and computation feasibility 

(maintaining closed form solution).  As we shall show in our empirical study, with two 

parameters (expected return and implied volatility), we find that we can predict realized 

volatility much better than the Black-Scholes model.   

Option pricing models of Sprenkle (1961), Ayres (1963), Boness (1964), and 

Samuelson (1965) employed the physical measure and implicitly or explicitly assumed 

some form of risk-adjusted model such that the investors buy and hold the options until 

maturity to extract the option implied return, which then could be linked to the stock 

return.  However, none of these models provides an adequate theoretical structure to 

determine the implied return values.
3
  Under the risk neutral pricing measure, Heston 

(1993b) shows that, under a log-gamma dynamic assumption for the stock price, the 

expected stock return will show up in the pricing formula and yet the volatility 

disappears.  Hence, his model is not capable of jointly determining both the expected 

return and volatility of the stock price.  Nonetheless, Heston‘s paper shows the 

possibility of retaining the expected return parameter in the model with suitable 

adjustments to the pricing equation.   

Using the S&P 500 index call options, we estimate expected stock return and 

implied volatility with our model.  We use options with various strikes at a given day 

and compute expected return and volatility for each time to maturity.  As a result, we 

obtain jointly the term structure of expected return and the term structure of implied 

volatility of the stock.  We find a downward sloping term structure of expected return 

that is consistent with existing studies to be reviewed in details later in the empirical 

                                                 
3
 Galai (1978) later showed that the Boness model and the Black-Scholes model are consistent. 



25 

 

 

 

section.  We find that implied volatility carries more information in predicting realized 

volatility of the stock than the term structure of Black-Scholes implied volatility. 

The reminder of this chapter is organized as follows.  Section 3.1 presents the 

risk-adjusted discrete time model that retains the stock expected return in the option 

pricing equation.  Section 3.2 presents the data and estimation methodology.  Section 

3.3 discusses the empirical results of our estimation.  Section 3.4 provides the 

concluding remarks.   

 

3.1 The Model 

It is well known that the Black-Scholes model can be used to compute implied volatility 

and not implied expected return of the underlying stock due to the fact that no-arbitrage 

argument renders a preference-free model and hence contains no such parameter.  In 

this sub-section, we demonstrate that such parameter can be re-discovered via an 

―equilibrium‖ pricing approach similar to Samuelson (1965) and Sprenkle (1961).  Let 

the stock price follow the usual log normal process under the physical measure: 

(1) 
dS

dt dW
S

 

where the annualized instantaneous expected return is  and the volatility is .  The 

classical economic valuation theory states that any price today must be a properly 

discounted future payoff: 

(2) ,[ ]t t t T TC E M C  
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where ,t TM  is the pricing kernel, also known as the marginal rate of substitution, 

between time t  and time T .   

Continuous rebalancing, which constitutes a dynamically complete market, 

guarantees the existence of the risk neutral pricing measure where the risk premium is 

removed from the expectation and hence the discount rate is the risk-free rate as 

follows:
4
 

(3) 

,

,

( )

( )
,

[ ]

[ ] [ ]

[ ] if interest rate is constant

[ ] if interest rate follows a random process

t t t T T

Q
t t T Tt

Qr T t
Tt

F T
t T Tt

C E M C

E M E C

e E C

P E C

 

where Q  represents the risk neutral measure and ( )F T  represents the T -maturity 

forward measure and, ,t TP  is the risk free zero coupon bond price of $1 paid at time T .PT 

Or alternatively, one can find a more familiar pricing measure where the expected 

payoff is discounted at a properly risk-adjusted discount rate as follows: 

 (4) 
,

,
( )

[ ]

[ ] [ ]

[ ]

t t t T T
C
t t T t T
k T t

t T

C E M C

E M E C

e E C

 

where C represents the measure where the option price serves as a numeraire,  and k is 

the annualized expected instantaneous return on this option in the physical world.  We 

then assume that the C-measure expectation of the pricing kernel takes a form of 

continuous discounting.  Now, we can derive our option pricing formula as: 

                                                 
4
 See Duffie and Huang (1985) for this result. 
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(5) 

( )

( )

( )( ) ( )
1 2

[max{ ,0}]

( ) ( )

( ) ( )

k T t
t t T
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T T T T T
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k T t k T t
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e S S dS K S dS
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where t  and T are the current time and maturity time of the option, and K  is the strike 

price of the option and 

2ln ln ½ ( )
1

2 1

S K T t
h

T t
h h T t

 

To derive a pricing formula that contains , we need the following propositions.  

These propositions describe how implied return and volatility can be simultaneously 

estimated from option prices.   

Proposition 1.  Assume stock price S follows a geometric Brownian motion with an 

annualized expected instantaneous return of  and volatility of . Let a call option on 

the stock at any point in time t  is given by ( , )C S t  that matures at time T .  Let k is the 

annualized expected instantaneous return on this option.  Then for a small interval of 

time t , the relationship between  and k can be given by: 

(6) ( )k r r  

where 

(7) 
cov( , )

var( )
C S

S

r r
r

 

and /Sr S S  and /Cr C C  are two random variables representing the stock 
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return and call option return respectively during the period t .  And, r is the annualized 

constant risk-free rate for the period of the option.  Proposition 1 can be proved without 

assuming the CAPM.   

Proof.  See Appendix 3.A.1.1.
5
 

Equation (6) holds for a small interval of time t .  We assume the distributions 

of stock return, Sr  and option return, Cr  are stationary over the period of the option.  This 

implies the annualized instantaneous expected return and variance over a small interval 

of time and the annualized instantaneous expected return and variance over the discrete 

time (from time t  and time T ) will be same.  This also implies is constant over this 

period, which means the linear relationship between k  and  as in equation (6) is valid 

over the life of the option from current time t  to maturity timeT .
6

PT Since our approach 

will be pricing the option in a discrete setting, we approximate the  over the discrete 

time from t  to T  as: 

(7a) ,

cov ,
cov ,

var( )
var

T T

T Tt t t
t T

T t T

t

C S

C SC S S

S C S

S

 

and with the assumption of stationarity as above, equation (6) holds for the life of the 

option as: 

 (6a) , , , , , ,( )t T t T t T K tT t Tk r r  

                                                 
5
 Appendix 3.A.2.1 provides a similar derivation for put options. 

   

TP

6
PT This can be easily seen by integrating both side of equation (6) from t to T.   
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Equation (6) with equation (7), in continuous time, and equation (6a) with 

equation (7a) in discrete time can also be proved using the CAPM.  However, for these 

two equations to hold it is not necessary that the CAPM should hold.  The assumptions 

of the CAPM are much stronger so that all return distributions are stationary, however 

here we need only the stationarity of the stock and the option return to obtain these two 

equations.  Hence stationarity assumption of Sr  and Cr  is a weaker assumption than 

what is needed for CAPM.  Further Galai (1978) shows many similarities between the 

continuous time and discrete time properties of Cr  that support our assumption of 

stationarity of distribution.   

Equation (5) is obtained based on the assumption that the expected return of the 

option k , expected return of the stock  and volatility  are constants.  We 

approximate  by ,t T  based on the discrete time period of the option from t to T as 

explained above. Furthermore, we assume that the stock price follows a geometric 

Brownian motion.  In discrete time, equation (5) can be written as: 

(5a) 
, , ,( )( ) ( )

, , 1 2( ) ( )t T t T t Tk T t k T t
t T K tC e S N h e KN h  

where t  and T are the current time and maturity time of the option, and K  is the strike 

price of the option and 

2

, ,

,

,

ln ln ½ ( )

1

2 1

t t T t T

t T

t T

S K T t
h

T t

h h T t

 

Combining equations (7a) and (5a), we arrive at the following proposition.   
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Proposition 2:  The t based on the life of the option can be written as: 

(8) 

2

, ,

2

,

( ) ( )

3 1 2 1

, ,
( )

( ) ( ) ( ) ( )

1

t T t T

t T

T t T t

t

t

t T K
T t

t

K
S e N h e N h N h N h

S

C e
 

where 

½ 2
, ,

3

,

ln ln 1 ( )t t T t T

t T

S K T t
h

T t
 

Proof:  See Appendix 3.A.1.2.
7
 

It should be noted that  we do not use the distributional properties of the market 

return Mr  to obtain (8).  Using (8), (5a), and (6a) we can solve for the call price 
, ,t T K
C  

explicitly in terms of the known values: stock price ( tS ), strike price (K ), risk free rate 

(r ), time-to-maturity (T t ), and two important unknown parameters: expected stock 

return t,T  and volatility t,T.
8
  If we observe the values of two or more call options, 

with same time-to-maturity with different strike prices, we can then simultaneously 

                                                 
7
 Appendix 3.A.2.2 provides the corresponding derivation for put options.  

  
8
 t,T  and t,T  represent expected stock return ( and implied volatility of the stock ( respectively for a 

specific time period, where t is the date of observation of option prices, and T is the maturity date of the 

options. 
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solve for t,T  and t,T.
9
 

It should be noted that unlike the Black-Scholes model, the advantage of the 

risk-adjusted (physical measure) pricing equation is that it does not require a continuous 

rebalancing assumption. However the disadvantage of the physical measure approach is 

that it has many unknowns, whereas the Black-Scholes equation has only one unknown 

namely the volatility of the stock return. It can be easily shown that with the assumption 

of continuous rebalancing (or instantaneous holding period)  the risk-adjusted model 

will collapse to the Black-Scholes model so that the pricing equation will not contain 

the expected stock return. Therefore, our model is consistent with Black-Scholes model 

when their assumptions hold. Furthermore our model is applicable in discrete time and 

is consistent with the standard CAPM. 

 

3.2 Data and Estimation Methodology Using S&P 500 Index Options 

3.2.1 Data 

To extract implied expected return from option prices we use the end-of-day 

OptionMetrics data of options on S&P 500 (SPX) for the last business day of every 

month during January 1996 – April 2006.  This data file contains the end-of-day stock 

CUSIP, strike price, offer, bid, volume, open interest, days-to-maturity, and Black-

Scholes implied volatility for each option.  From this dataset, we exclude all put options 

and options with zero trading volume.    We also exclude single option records for a 

                                                 

TP

9
PT With prices for options with more than two strike prices, we can find values for t,T  and t,T  that 

produce option prices closest to the observed prices in the least squares sense.  A similar least-squares 

methodology was used by Melick and Thomas (1997).   
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particular trade date and days-to-maturity.
10

   

We obtain daily levels of the index and returns from CRSP.  We need the returns 

for realized volatility computation. To match the CRSP records with option records, we 

use the trade date and CUSIP of the index. In our data all S&P500 records have a 

common CUSIP.  Merging CRSP and option data by trade date and CUSIP can be used 

for any stock option in general.  

For the interest rates, we use the St. Louis Fed‘s 3-months, 6-months, 1-year, 2-

year, 3-year, and 5-year Treasury Constant Maturity Rates.  Assuming a step-function of 

interest rates, we match the days-to-maturity in the option record with its corresponding 

constant maturity rate.  For example if the days-to-maturity of the option is less than or 

equal to 3-months we use 3-months rates, and if the days-to-maturity is between 3-

months and 6-months, we use the 6-months rate and so on.   

In this paper, the results are based on the last business day observations for each 

calendar month.  This results in 124 months, 791 different trade date and maturities 

combinations (on average 6.38 maturities per month), and a total of 7865 options (9.94 

different moneyness levels per trade date and maturity combination).  Taking any other 

day of the month produces similar results.  For example, we verified our results by 

taking first working day, second Thursday, and third Friday of every month.  The results 

are similar. Table I shows the summary statistics of all moneyness S&P500 index call 

                                                 
10

 We need at least two option records for a specific trade date and days-to-maturity to compute t,T  and 

t,T.  
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option input data that are used to compute t,T  and t,T.
11

 

3.2.2 Estimation of Implied Expected Stock Return and Implied Volatility 

We jointly estimate the implied expected stock return (t,T) and implied volatility (t,T) 

using the risk-adjusted option pricing model described in previous section.  For a given 

trade date for S&P500 index, we have many call options with same days-to-maturity.  

We use all these options records to compute implied stock return and implied volatility 

by a method of grid search to look for the global optima that minimizes the square error.  

A square error is defined as the square of the difference between the market observed 

option price and right hand side of the equation used to compute the option price based 

on the observed values.
12

 Since we are searching for the entire spectrum for the global 

optima we need to specify search intervals without which we would not be able to 

implement the search.
13

 We use the implied expected return (t,T) search range from 

0.0% to 200.00%, and implied volatility (t,T) search range from 0.0% to 100.00% for 

the grid search.  To compute implied expected returns we need two or more records with 

same key value of trade date, CUSIP, and days-to-maturity.  Thus, all the single records 

for a key value cannot be used to compute implied return and are discarded.  By this 

                                                 
11

 The option data also contain Black-Scholes implied volatilities adjusted for stock dividends.  Using this 

information along with the interest rates, we can reverse compute the corresponding European option 

price.  If the European option price thus computed is higher than the bid and ask midpoint price, then we 

take the bid and ask midpoint price, else we take the European price as the option price to compute t,T  

and t,TS&P 500 options are European style and the prices should reflect as such.  However,  minor 

differences exist between the reported closing prices and the prices reversely computed from end of day 

implied volatilities.  

 
12

 The observed values used on the right hand side of the equation are stock price, strike price, option 

price, days to maturity, and interest rate. 

 
13

 Theoretically an interval of  -∞ to +∞ is the full search interval for both t,T  and t,THowever, we 

would not be able to practically implement such a search for global optima given limited processing 

power of resources.  Therefore, we choose the upper and lower bound based on the most feasible interval 

possible from prior experience.     
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method, we extract the market implied return and market volatility for different days-to-

maturity based on S&P500 index option prices, and corresponding S&P500 index 

levels. 

 

3.3  Results 

Using the S&P 500 monthly index option prices from January 1996 till April 2006, we 

estimate expected stock return (t,T) and volatility (t,T) with our model.  We use options 

with various strikes at a given day and compute t,T  and t,T  for each time to maturity.  

As a result, we obtain jointly the term structure of t,T and the term structure of t,T.   

Using the S&P 500 index call options of all moneyness,
14

 we find the following: 

 A downward sloping term structure of t,T that is consistent with existing studies 

to be reviewed in details later in section 3.3.1, 

 Much flatter term structure for t,T than the Black-Scholes model, 

 t,T carries more information in predicting realized volatility than the Black-

Scholes implied volatility (i.e., average implied standard deviation, or ,
BS
tT ) 

based on near term options maturing in 90-days or less.
15

  

                                                 
14

 We also perform combined call and put option testing. The results are presented in robustness test 

section. 

 
15

 Average implied standard deviation is the arithmetic average of Black-Scholes implied standard 

deviation of all options with different strike prices that are used to estimate t,T  and t,T.   
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 A combination of our implied expected return (t,T) and implied volatility (t,T) 

with ,
BS
tT  provides a better model, than using ,

BS
tT alone to forecast future 

volatility for any maturity and moneyness combination. 

 

3.3.1 The Term Structure of t,T 

Table II shows the descriptive statistics of implied expected return (t,T) and implied 

volatility (t,T) using all moneyness S&P 500 index call options.  To analyze the results 

we classify the data into different days-to-maturity groups.  Thus the options whose 

days-to-maturity is less than or equal to 90 days are classified into ‗<=90‘ group.  The 

options whose days-to-maturity is greater than 90 days are classfied into ‗>90‘ group.  

Figure I shows t,T  and t,T graphs for S&P500 index call options of all moneyness.  In 

these table and graph, we see a term structure of t,T.  For example in Table II for ‗<=90‘ 

days-to-maturity t,T is 19.5%, whereas for ‗>90‘ days to-maturity it is 9.41.
16

 

The term structure of t,T implies the expected return is impacted by the time 

horizon of investment.  McNulty et al. (2002) study the ‗real cost of equity capital‘ 

using option prices.  They find high expected returns in the short term and low expected 

returns in the long term, which is consistent with our finding.  They argue that the 

marginal risk of an investment (the additional risk the company takes on per unit time) 

declines as a function of square root of time. The falling marginal risk should be 

                                                 
16

 We also see the term structure when we group the data into 30, 60, 90, and so on days-to-maturity 

groups.  
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reflected in the annual discount rate.
17

 Our term structure of t,T is consistent with this 

explanation. However, unlike our approach, their approach is heuristic and lacks the 

theoretical foundation. Recently, Camara et al. (2007) compute the cost of equity from 

option prices using a specific utility function and arrive at the same downward sloping 

term structure of expected stock returns as did by McNulty et al.  Their approach 

requires an intermediate parameter that needs to be computed using options of all firms 

before they compute the implied expected return of any individual firm.  In contrast to 

their approach, we do not assume any explicit utility function.
18

   

The data points for the term structure graphs (Figure I) are generated by non-

parametric spline interpolation using the neighborhood data points.  Our approach can 

be used to estimate the cost of equity for any time horizon of investment.
19

  One of the 

advantages of our approach is that the expected return of a stock can be computed 

without using any information of the market portfolio such as the market risk premium.  

This implies one does not have to define what the ‗market‘ consists of, and one does not 

have to estimate the risk premium of the market, which is required in traditional asset 

pricing models, to estimate the expected return. 

To validate the robustness of our finding, we examine the influence of market 

friction proxies such as the option open interest, volume, and bid-ask spread on the term 

structure of implied expected return.  We control for time to expiration bias, moneyness 

                                                 
TP

17
PT This is explained in McNulty et al.  (2002).   

 
18

 Note that our model is consistent with the Black-Scholes and assumes normality of stock returns.  As a 

result, our model is implicitly consistent with the quadratic utility function. 

 
19

 Our approach can be used to estimate cost of equity for different industry portfolios. We do similar 

experiments and show the term structure of expected return persists for these industry portfolios. 
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bias, and volatility bias in this regression.
20

 Our results show, the market friction proxies 

do not explain this term structure.  We also find the term structure of expected return 

remains for deep-in and deep-out of the money call options.  Furthermore, this term 

structure also persists for combined call and put options (discussed in robustness 

section). 

 

3.3.2 Comparison of Term Structure of t,T and Black-Scholes Volatility 

Our model also demonstrates a flatter (less variation) term structure of t,T.
21

  From 

Figure I, we can eyeball the two volatility term structures from t,T of our model and 

,
BS
tT of the Black-Scholes model that the term structure of t,T is much flatter than the 

term structure of ,
BS
tT .  While it is not easy to compare the two term structures 

statistically, we can compute the relative variation of the two term structures from Table 

II.  For all maturities, the mean and variation (standard deviation) of t,T are 0.2139 and 

0.0705 respectively; and of ,
BS
tT are 0.1968 and 0.0785 respectively.  Hence, the relative 

variation, defined as standard deviation divided by the mean, is 0.3296 for our model 

and 0.3989 for the Black-Scholes model.
22

  This demonstrates that the t,T of our model 

presents a ―flatter‖ term structure than the ,
BS
tT of the Black-Scholes model. 

                                                 
20

 Papers by Chiras and Manaster (1978), Macbeth and Merville (1980), Rubenstein (1985), and Canina 

and Figlewski (1993) find these biases.  Longstaff (1995) has similar controls for these biases.   

 
21

 By term structure of t,T, we mean the value of t,T for different days to maturity of T, for same 

observation date, t.  

 
22

 Table III provides a detail comparison of t,T and ,
BS
t T . 
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When we divide the sample into short term (<=90 days) and long term (>90 

days), we find that our model performs better than the Black-Scholes model for the 

short term options – 0.3481 versus 0.4310; yet worse for the long term options – 0.3143 

versus 0.2992.  This demonstrates that the term structure of the Black-Scholes ,
BS
tT

dissipate off, for higher days to maturity options. 

To have a detail comparison of the characteristics of t,T of our model and the 

implied volatility (i.e. implied standard deviation, or ,
BS
tT ) of the Black-Scholes model, 

we estimate various attributes of comparison as shown in Table III.  t,T is jointly 

estimated with t,T using multiple option records as described in section 3.2.1 and 3.2.2.  

To compute the values in this table, first, we estimate the mean and standard deviation 

of t,T and Black-Scholes implied volatility ( ,
BS
tT ) for each year and days-to-maturity 

based on our entire dataset. Then we compute the difference of these means and 

standard deviations of t,T and ,
BS
tT for each year and days-to-maturity.

23
  Panel A of 

Table III provides the summary statistics of the difference of the means for different 

days-to-maturity groups. Panel B provides the summary statistics of the difference of 

the standard deviations for different days-to-maturity groups. As we see in Panel A, the 

t-statistics is significant for all maturity groups.  Similarly in Panel B the t-statistics is 

significant for both ‗<=90‘ days-to-maturity and ‗all maturities‘ groups and they are 

negative. This shows the standard deviation is lower for sigma than ,
BS
tT . Panel C shows 

the summary statistics of the difference of coefficient of variation (CV) of t,T and ,
BS
tT  

                                                 
23

 Difference of the means is computed as the mean of t,T minus the mean of ,
BS
tT . Similarly we 

compute difference of standard deviation and difference of coefficient of variation. 



39 

 

 

 

for different days-to-maturity groups. Here we see the CV of t,T and ,
BS
tT are 

statistically different.  Similar to Table II we see CV of  t,T are lower compared to CV 

of ,
BS
tT  and thus t,T is ‗flatter‘ than ,

BS
tT . Overall, Table III shows that t,T has lower 

standard deviation, lower CV, and higher mean compared to ,
BS
tT . This implies that t,T 

of our risk-adjusted model might have additional information beyond ,
BS
tT  that might be 

valuable to estimate the characteristics of the underlying stock. 

 

3.3.3 Volatility Forecast 

In this section we analyze whether the t,T  and t,T  pair of our model carries more 

information than ,
BS
tT of the Black-Scholes model to forecast realized volatility.  We find 

that t,T alone can predict the future realized volatility significantly better than the 

Black-Scholes ,
BS
tT   when we use options of all moneyness.  More interestingly, we find 

that when t,T, t,T and ,
BS
tT  are all used in the prediction, the result is significantly 

better than either t,T or ,
BS
tT alone.  These results are stronger for near term options.  

First, when we use all moneyness, t,T and its second order term does better than ,
BS
tT

and its second order term for both the days-to-maturity groups namely ‗<=90‘ and 

‗>90‘, based on adjusted R-square. Second, for near term options, the coefficients of 

t,T, and the second-order term are significant even in the presence of ,
BS
tT .  

Furthermore, a likelihood ratio test rejects the null hypothesis that the restricted model 
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with ,
BS
tT  and its second-order term is better than the unrestricted model with all the 

three variables and their second-order terms for all near and far maturity groups, and for 

any moneyness level. 
24

 

A vast body of literature exists on the volatility forecasting front, that 

investigates the forecasting capability of implied volatility from option prices.
25

PT In a 

recent comparison study, Granger and Poon (2005) finds that the Black-Scholes (1973) 

implied volatility  provides a more accurate forecast of realized volatilities.  In their 

paper, they show the outcomes of 66 previous studies in this area that uses different 

methods to forecast the realized volatility.  These methods are historical volatility, 

ARCH, GARCH, Black-Scholes (1973) implied volatility, and stochastic volatility 

(SV).
26

  Based on their ranking they suggest that Black-Scholes (1973) implied 

volatility provides the best forecast of future volatility.  Despite the added flexibility of 

SV models, authors find no clear evidence that they provide superior volatility 

forecasts.  Furthermore, they find Black-Scholes (1973) implied volatility dominates 

over time-series models because the market option prices fully incorporate current 

information and future volatility expectations.  Therefore, we choose Black-Scholes 

implied volatility ( ,
BS
tT ) as the benchmark, and compare the information content of our 

                                                 
24

 As we show in Table V, we take all moneyness or near-the-money options; we take ‗<=90‘ days and 

‗>90‘ days-to-maturity groups. In all these cases we reject the restricted model that uses only Black-

Scholes implied volatility and its second order term to predict the realized volatility.  

 

TP

25
PT Papers are by Latane and Rendleman (1976) (LR), Chiras and Manaster (1978) (CM), Beckers (1981), 

Day and Lewis (1992), Canina and Figlewski (1993) (CF), Christensen and Prabhala (1998), Lamoureux 

and Lastrapes (1993), Blair et al. (2001).  Granger and Poon (2005) provides a comparison of different 

methods of forecasting volatility.  

  
26

 Option pricing models by Merton (1976a), Cox and Ross (1976a), Hull and White (1987), Scott (1987), 

and Heston (1993a) extend basic Black-Scholes (1973) model to incorporate stochastic volatility and 

jumps.   
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implied expected return (t,T) and implied volatility (t,T) with the ,
BS
tT .  To understand 

the forecastability of realized volatility using t,T  and t,T and ,
BS
tT we plot these time 

series values in Figure II and Figure III for ‗<=90‘ days-to-maturity and ‗>90‘ days-to-

maturity groups respectively for S&P500 index options using all moneyness.   

 

3.3.3.1 Information Content of the Nested Model  

The comparison of information content of ,
BS
tT  over a model of t,T  and t, and ,

BS
tT can 

be evaluated using the following regressions: 

(R1) 
2

, 10 11 , 12 , 1 ,α α αRE BS BS

t T t T t T t T        

(R2) 
2

, 20 21 , 22 , 2 ,σ σRE

t T t T t T t T         

(R3) 
2 2 2

, 40 41 , 42 , 43 , 44 , 45 , 46 , 4 ,α α α α α αRE BS BS

t T t T t T t T t T t T t T t T                 

Past literature typically uses equation (R1) without the second-order term.  In 

our investigation we include the second-order terms
27

 to capture the higher order effects 

to explain the annualized ‗realized‘ volatility ( ,

RE

t T ), where t is the date of observation 

of option prices for a given stock, and T is the maturity date.  To compute the ,
BS
tT , we 

use the dividend adjusted Black-Scholes implied volatilities given in the OptionMetrics 

                                                 
27

 We test the validity of the restricted model without the square term. Based on the likelihood ratio test 

our results in most cases reject the restricted model. Therefore, we take the variables (t,T,  t,T, or Black-

Scholes implied standard deviation) with the square terms. 



42 

 

 

 

data file.  ,
BS
tT is the average of these implied volatilities of all options that are used to 

estimate the t,T  and t,T pair.
28

  To compute ,

RE

t T , first, we compute daily ‗realized‘ 

volatility based on ex post daily returns TPFFPT of the underlying asset for the remaining life of 

the option and then multiply by 252 : 

 
2

,

1

252

1

RE

t T i i

i

u u



 

 

  

where   is the remaining life (in working days) of the option; ln(1 )i iu r  ;  ir  is the 

daily return of the underlying asset for day i in CRSP database; iu  is the mean of  the iu  

series.
 29

  Table II shows the summary statistics of ‗realized‘ volatilities ( ,

RE

t T ) of 

S&P500 index options for different day-to-maturity groups of options.   

Andersen et al. (2001) show that the conventional squared returns produce 

inaccurate forecast if daily returns are used. The inaccuracy is a result of noise in these 

returns. They further show that impact of noise component is reduced if high-frequency 

returns are used (e.g., 5-minute returns). However, a relatively recent study by Aїt-

Sahalia, Mykland, and Zhang (2005) demonstrate that more data does not necessarily 

lead to a better estimate of realized volatility in the presence of market microstructure 

noise. They show that the optimal sampling frequency is jointly determined by the 

magnitude of market microstructure noise and the horizon of realized volatility. For a 

given level of noise, the realized volatility for a longer horizon (e.g., one month or 

                                                 
28

 t,T,  t,T
  

represent  and  respectively for a specific time period, where t is the date of observation of 

option prices, and T is the maturity date of the options.   

 

TP

29
PT Hull (2002) uses a similar procedure to compute realized volatilities.   
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more) should be estimated with less frequent sampling than the realized volatility for a 

shorter horizon (e.g., one day).  Since our experiments are mostly for more than one 

month time horizon, the optimum data frequency should neither be 5-minutes nor be the 

daily returns. In the absence of high-frequency data, to the extent the optimum 

frequency is closer the daily return our measure based on this frequency should closely 

represent the realized returns.
30

   

Using the above regression models, (R1) ~ (R3), we can test three hypotheses.  

First, we can test if t,T predicts better than ,
BS
tT .  Second, we can verify if the 

coefficients of t,T and t,T are significant even in the presence of ,
BS
tT .  Third, we can 

test the hypothesis H B0 B: 43 44 45 46α α α α 0    .  If we reject this null hypothesis then 

we can argue that t,T and t,T have significant contribution in forecasting the future 

volatility using the model as given in equation (R3).   

The regression results are shown in Table IV.  We have separate regressions for 

different maturity groups.  As before, if days-to-maturity is less than or equal to 90 days 

then the observations are in ‗<=90‘ days-to-maturity group.  If days-to-maturity is 

greater than 90 days then the observations are in ‗>90‘ days-to-maturity group.  We 

estimate these regressions using the generalized method of moments. Using OLS may 

not be appropriate for our data in the presence of nonspherical disturbances.   

Panel A of Table IV shows the regression results using all moneyness of 

                                                 
30

 Therefore we use ‗realized‘ volatility, ‗ex post‘ volatility, and ‗historical‘ volatility interchangeably. 
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S&P500 index call options.
31

 As shown in this panel the coefficients of ,
BS
tT , t,T 

and
2

,σt T

are significant using models (R1) and (R2) respectively. However, the adjusted R-

square is higher for the equation containing t,T 
and 

2

,σt T  for every maturity group. This 

shows, when we take all options t,T provides a better forecast of realized volatility of 

the stock than the ,
BS
tT . To investigate the performance of t,T further we have similar 

regressions in Panel B and Panel C of Table IV.  As we see in Panel B, for stock 

price/strike price between 0.95 and 1.05 the adjusted R-squares are not higher for the 

equations containing
,σt T

and 
2

,σt T . However, the adjusted R-squares are higher for the 

equations containing 
,σt T

and 
2

,σt T  using far-the-money options.
32

 This shows 
,σt T

 

provides a better representation of ex ante volatility than ,
BS
tT  using the information in 

far-from-the-money options. Even though ,
BS
tT  does better when we take only near-the-

money options, it is unable to provide a single implied volatility that we can use for 

options of all moneyness. On the other hand 
,σt T

 provides a better measure of ex ante 

volatility that can be used for options of all moneyness.  

How does equation (R1) compare with equation (R3) in explaining the realized 

volatility? To address this question first we see for all panels using near-the-money, all 

moneyness, and far-the-money options, the adjusted R-square is higher for the 

unrestricted regression (R3) as shown in Table IV. For example, in Panel A for ‗<=90‘ 

days-to-maturity group the adjusted R-square for the unrestricted model (R3) is 46.29% 

                                                 
31

 In all our samples, we do not include options that have zero trading volume. 

 
32

 Options are defined to be far-the-money if the stock price divided by strike price is either higher than 

1.05 or lower than 0.95.  
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and for the restricted model (R1) it is 41.87%. This shows that equation (R3) provides a 

better model such that it has a higher adjusted R-square for near-the-money, far-the-

money, and options of all moneyness. Second, for all maturities the coefficients of 
,σt T

 

and 
2

,σt T are significant for all Panels of Table IV in the unrestricted equation (R3). 

However that is not the case with ,
BS
tT . For example in Panel A and Panel C the 

coefficients of ,
BS
tT  are not significant.   

Finally, we use the likelihood ratio to test the hypothesis H B0B: 

43 44 45 46α α α α 0    .  The likelihood ratios are significant in our experiment for all 

panels of Table IV.  Therefore, we reject the restricted model as given in equation (R1) 

for all maturity groups shown in this table.  This result indicates that the inclusion of t,T  

and t,T , and their second-order terms provides a better model than simply using Black-

Scholes implied volatility to forecast the realized volatility for all near and far maturity 

groups, and for any moneyness level. 

 

3.3.3.2 Information Content of Non-Nested Models  

In this subsection we compare the non-nested models that have only the risk-adjusted 

variables (t,T  and t,T,, and the square terms) or the ,
BS
tT  variable (and its square term) 

to forecast realized volatility. We use two different variations of J-test that are popularly 

used in the literature. 

The non-nested models that we use to forecast realized volatility can be given by 
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the following regressions: 

(R4) 
2

, 10 11 , 12 , 1 ,

RE BS BS

t T t T t T t T           

(R5) 
2

, 20 21 , 22 , 2 ,σ σRE

t T t T t T t T         

(R6) 
2 2

, 30 31 , 32 , 33 , 34 , 3 ,α α α αRE

t T t T t T t T t T t T             

 

To compare (R5) or (R6) with (R4) we take the fitted values of ,

RE

t T  from these 

equations and use the following J-test regressions: 

(R7) 
2

, 1 20 21 , 22 , 1 , 1 , ,[ σ σ ] (1 )[ ]RE RE

t T t T t T t T t T t Te               

(R8) 
2 2

, 1 30 31 , 32 , 33 , 34 , 1 , 1 , ,[α α α α ] (1 )[ ]RE RE

t T t T t T t T t T t T t T t Te                   

(R9) 
2

, 2 10 11 , 12 , 2 , 2 , ,[ ] (1 )[ ]RE BS BS RE

t T t T t T t T t T t Te                 

 

Using (R7) and (R9) we can test whether the Black-Scholes implied standard 

deviation offers any incremental information over risk-adjusted implied volatility. If the 

Black-Scholes model does not have any incremental information, then 1 should be close 

to 1 and significant, and 2 should be insignificant.
33

To find whether 1 is in fact 1, we 

                                                 
33

 Our discussions compare (R5) with (R4). However, we can also compare (R6) with (R4) to find if 

Black-Scholes implied standard deviation offers any incremental information over risk-adjusted t,T and 

t,T. In that case we use (R8) instead of (R7) and (R9) is given by: 



47 

 

 

 

test the null hypothesis of H0 : 1 =1. Since our null hypothesis is the result intended, in 

this test, to minimize the Type II error p-value should be higher.
34

  The left side of Table 

V shows the results of this comparison. As we see from left side of Panel A using all 

moneyness, 2 is insignificant for ‗<=90‘ days-to-maturity group. Also, 1  is significant 

and we fail to reject the null hypothesis that 1 =1 for this maturity group. This show 

that for ‗<=90‘ days-to-maturity group Black-Scholes implied standard deviation 

provide no incremental information over our implied volatility. However for ‗>90‘ days-

to-maturity group we cannot say that the Black-Scholes implied standard deviation 

provide no incremental information over the risk-adjusted t,T. Results are similar when 

we take both t,T  and t,T to compare with the Black-Scholes implied standard 

deviation. Even for the near-the-money options (Panel B) for ‗<=90‘ days-to-maturity 

group, 2  is insignificant, and we fail to reject the null hypothesis that 1 =1. This 

indicates that even when we do not have a volatility smile the risk-adjusted 

t,Tperforms marginally better than ,
BS
tT . Furthermore, as we see from Panel C, of 

Table V, consistent with the prior literature, when we have many far-from-the-money 

options, ,
BS
tT does not provide any incremental information. These results suggest, to 

forecast volatility for shorter maturity of 90-days or less, the risk-adjusted t,T provides 

a better alternative over the ,
BS
tT for any moneyness level. Furthermore, if we have many 

far-from-the-money options, then t,Tis a better choice irrespective of days-to-maturity.  

                                                                                                                                               

(R9) 
2

, 2 10 11 , 12 , 2 , 3 , ,[ ] (1 )[ ]RE BS BS RE

t T t T t T t T t T t Te               
 

We show the results for both (R5), (R4) comparison, and (R6), (R4) comparison in Table VI. 

 
34

 We take 5% significance level as the cutoff point, approximately in the middle of 10% and 1%. 
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We also test another variation
35

 of the above J-test using the following 

regressions: 

 (R10) 
2

, 2 20 21 , 22 , 2 , 1 , ,(1 )[ σ σ ] [ ]RE RE

t T t T t T t T t T t Te               

(R11) 
2 2

, 2 30 31 , 32 , 33 , 34 , 2 , 1 , ,(1 )[α α α α ] [ ]RE RE

t T t T t T t T t T t T t T t Te                   

(R12) 
2

, 1 10 11 , 12 , 1 , 2 , ,(1 )[ ] [ ]RE BS BS RE

t T t T t T t T t T t Te               
 
 

 

For Black-Scholes implied volatility not to have any incremental contribution to 

forecast realized volatility, 2 should be insignificant in (R10) and 1  should be 

significant and closer to 1 in (R12).
36

 Similar to the prior J-test, we test the null 

hypothesis that H0 : 1 =1. The results are given on the right side of Table V. The results 

using this alternative J-test are mostly similar to the prior J-test. Consistent with the 

prior J-test, when we take any moneyness for near term options (90-days or less), our 

results show Black-Scholes implied standard deviation does not contain incremental 

information beyond the risk-adjusted t,T(or t,T  and t,T). However, for far term 

options (more than 90-days), we cannot argue that t,T( or t,T  and t,) alone is 

sufficient to forecast realized volatility. Nonetheless, in this case we can still use the 

unrestricted regression using all the three variables which provide a better model for all 

                                                 
35

 Davidson and MacKinnon (1981). 

 
36

 If we use risk-adjusted t,T and t,T. instead of just t,T , then we use (R11) instead of (R10) and (R12) 

will be given by: 

(R12) 
2

, 1 10 11 , 12 , 1 , 3 , ,(1 )[ ] [ ]RE BS BS RE

t T t T t T t T t T t Te               
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near and far maturity groups, and for any moneyness level as we find in Table IV. In 

general, our risk-adjusted approach provides a better measure (than ,
BS
tT ) that captures 

moneyness biases even without adjusting for stochastic volatility. Our results are 

stronger in forecasting the short term volatility for 90-days or less. Therefore, if we are 

concerned about the smile while forecasting realized volatility using all options data, 

then our approach provides a better solution than ,
BS
tT so that we do not need any 

adjustment for moneyness bias.  

 

3.3.4  Measurement Error and Robustness Checks 

Option spread and option volume could be one possible reason for the term structure of 

t,T.
37

 As we see in Table I, spread and option volume are lower for higher days-to-

maturity.
38

   This experiment is also motivated by the findings of Longstaff (1995).  

Using S&P100 index options and Black-Scholes (1973) risk-neutral valuation Longstaff 

shows that the implied cost of the index is significantly higher in the option market than 

in the stock market.  The author also shows the percentage pricing difference between 

the implied and actual index is directly related to the measures of transaction costs and 

liquidity such as the option spread, volume, and open interest.  To examine the possible 

influence of these market friction proxies on the term structure of t,T, we regress t,T on 

transaction cost proxy that is given by the average spread, and liquidity measures that 

                                                 
37

 Term structure of t,T is the value of t,T for different option maturity date of T, for a given option 

pricing date of t. 

 
38

 When we take finer groups, such as 30, 60, 90 days-to-maturity groups we clearly see the average 

volume and spread decrease with days-to-maturity.  
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are given by average volume and total open interest.  We also control for other finding 

of pricing biases of Black-Scholes model.  These findings include Chiras and Manaster 

(1978), Macbeth and Merville (1980), Rubenstein (1985), and Canina and Figlewski 

(1993).  These studies find three types of pricing bias in Black-Scholes model namely a 

time to expiration bias, a moneyness bias, and a volatility bias.  To control for these 

biases we include the time to expiration, moneyness (stock price/strike price), and 

current and first two lagged values of absolute daily returns.  To control for volatility 

bias, we use current and first two lagged values of absolute daily returns instead of  

implied volatility t,T since this parameter is jointly estimated with t,T, which can 

induce spurious correlation.  Further, we use number of calls to compute t,T and t,T as 

a measure of trading activity, current and lagged daily returns as a measure of path-

dependent effects (Leland (1985)).  The results are shown in Table VI.  The regression 

results provide mixed evidence that term structure of t,T is related to the market friction 

proxies namely spread, volume, and open interest.  For example, for ‗>90‘ days-to-

maturity group the coefficient of average spread and total open interest are 0.0989 and -

1.04E-07 respectively and are significant, whereas average volume is not significant.  

Similarly, for ‗<=90‘ days-to-maturity group only total open interest is significant. 

Interestingly coefficient of total open interest is negative and significant for all maturity 

groups. However, in the data, total open interest does not increase (as the days to 

maturity increases) to support the declining term structure of  t,T.
39

 As we see average 

spread is not significant for ‗<=90‘ days to maturity groups, that means spread cannot 

explain the sharp term structure of t,T especially for the lower days-to-maturity group 

                                                 
39

 Open interest is mostly lower for higher days to maturity. 
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as seen in Figure I,. Therefore, our evidence shows that friction proxies are not the 

cause of the term structure of t,T.
40

   

Our modified risk-adjusted approach can be questionable in a framework with 

stochastic volatility and jumps, which means we may not be using the exact model of 

option pricing.  Many of the past literature for example Merton (1976a), Cox and Ross 

(1976a), Hull and White (1987), Scott (1987), and Heston (1993a) extend basic Black-

Scholes (B-S) model to incorporate jumps and stochastic volatility.  However, the risk-

adjusted formulas we use do not have these adjustments and assumes a lognormal 

diffusion process.  This can create errors-in-variable problem in implied return and 

implied volatility computation.  To minimize the effect of errors-in-variable bias, we 

alternatively take options, which are only near-the-money (stock price divided by strike 

price is between 0.95 and 1.05).
41

  We still see a strong term structure of t,T in this case. 

Moreover, we do not take options that do not have any trading in a given day.  We also 

separately estimate t,T  and t,T for deep-in-the-money call options where stock price 

divided by strike price is greater than 1.20, and deep-out-of-the-money call options 

where stock price divided by strike price is less than 0.90.  In both cases, we still get the 

term structure of t,T.  Measurement error may be systematically affected by time-to-

maturity (Canina and Figlewski (1993)).  To mitigate these errors, options with same 

days-to-maturity are used to compute implied expected return and implied volatility.  It 

may also be possible to have systematic bias in our computation due to other factors 

                                                 
40

 Table IV is based on all moneyness of S&P500 index options. When we take only near-the-money 

(stock price divided by strike price is between 0.95 and 1.05) the evidence of friction proxies on t,T are 

much weaker; however,  we still see a very strong term structure of t,Teven in this case. 

 
41

 The term structure of t,T using near-the-money is also downward sloping.  



52 

 

 

 

such as the market friction (Longstaff (1995)) proxies.  To examine this possibility, we 

regress t,T on these proxies to show in the previous paragraph that they do not explain 

the term structure of t,T.   

Furthermore, our procedure might have problems of computing European option 

prices from OptionMetrics implied volatility and using that to compute our implied 

return and implied volatility.  As a part of our robustness check, we show even if we use 

different methods to compute option prices, the term structure of implied expected 

return remains in our result.  For example, in our main result we compute the European 

price using the OptionMetrics implied volatility adjusted for dividends.  If this price is 

higher than the bid-ask midpoint then we take the bid-ask midpoint, else we take the 

European price as the option price for t,T  and t,T estimation.  In our robustness check, 

we compute t,T  and t,T first by taking the European price, and then by taking the bid-

ask midpoint price as the option price and we get clear term structures of implied 

expected return in both cases.  

As we discussed before, the term structure of implied expected return (t,T) is 

robust to various tests using call options. However it would be interesting to find out if 

the term structure persists using both call and put options. For this experiment, we take 

a set of ‗balanced‘ call and put options. Balanced options means we take only the 

options that have both call and put with same strike price.  If any call (put) does not 

have a corresponding put (call) with same strike price we do not take that option. Since 

for a bullish stock, the price of the call goes up; that might be the cause of the term 

structure of t,T  using only call options. Similarly, taking just the put options might 
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reflect only specific set of investor needs. 
42

 From this argument it is clear that if we 

take all the calls and puts for a given maturity we might have either more number of 

calls or more number of puts, and thus our inference might be dominated by a specific 

type of option. Therefore, to make sure we have same number of calls and puts, we take 

a ‗balanced‘ options approach to estimate the implied expected return (t,T) jointly with 

implied volatility (t,T). The input data summary statistics for these observations are in 

Table VII and the t,T and t,T  results are in Table VIII. As we see in Table VII the total 

number of observations used is 6242. This compares with 7865 number of observations 

in Table I where we use only call options.  Number of options in the balanced dataset 

will be lower if we do not have a corresponding put option with the same strike price. 

Alternatively if for some maturities we had rejected the call options because we did not 

have at least two options, those records might not get rejected when we take both call 

and put options, thus increasing the number of observations.  Therefore, taking a 

balanced set does not imply that the total number of observation will increase or 

decrease compared to taking only the call options. As we see from Table VIII, t,T  for 

less than 90 days group is 15.53% whereas for more than 90 days group is 9.83%.
43

 

This compares with corresponding t,T  value of 19.50% and 9.41% when we take only 

call options. Figure IV also shows a similar term structure. This graph is sharp near zero 

days to maturity (only for the recent year) due to the extrapolation effect of the spline 

algorithm. Nonetheless our experiment shows that the term structure of t,T  still persists 

when we use balanced call and put options.    

                                                 
42

 Buying a put does not have the same payoff as writing a call. So the investor needs to choose a suitable 

option (call or put) and suitable side (buy or sell) of the trade for the investment need.   

  
43

 We also see this term structure when we break into smaller interval groups of days-to-maturity. 



54 

 

 

 

 

3.4 Possible Explanations of the Term Structure of Expected Return 

As we show in this chapter: 1) there is a term structure of stock expected return in 

option prices; 2) this term structure is robust to near-the-money, far-the-money, and all 

moneyness. It is also robust to all stock options (shown in chapter 4) and S&P500 index 

options. Further, it is robust to the bid and ask midpoint price and European option 

price. Therefore the next phase of natural exploration is why the term structure is there 

in the option price. Following are few possible explanations for this term structure for 

future investigation.  

First, the term structure of expected return could be model dependent. This 

means the geometric Brownian with constant volatility assumption might be little 

restrictive to describe the evolution of the price process that might be resulting this term 

structure. Therefore as a future extension of our research we suggest a stochastic 

volatility risk adjusted model in chapter 6. Nonetheless, even in the presence of this 

term structure, we show in chapter 5 that ex ante expected return has the properties so 

that it satisfies the tradition CAPM and has information about future macroeconomic 

factors. Using stochastic volatility should possibly further improve the information 

content of this ex ante expected return. The second possible story could be the urgency 

to rebalance and cost of liquidity. Imagine two options on the same stock: one that 

matures in one month and the second that matures in six months. In the absence of any 

transaction cost, the more we rebalance the more we are close to the Black-Scholes 
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price with lower standard error.
44

 . Let us assume we need to rebalance around n times 

during the life of the option to have a specific level of standard error.
45

 So the liquidity 

cost (in terms of immediacy of availability) of obtaining n opportunities in a short 

period of one month is higher than in a long period of six months. Including this cost in 

the option price lowers the price of the option and raises the expected return of the 

option (and thus raises the expected return of the stock) in the short term. The above 

discussion is based on a flat volatility term structure. In the presence of a downward 

sloping term structure of volatility, this reasoning even becomes stronger. Third 

possibility is related to a possible extension of Leland (1985). Leland‘s paper has 

developed a technique for replicating option returns in the presence of transactions costs. The 

strategy depends upon the level of transactions costs and the time period between portfolio 

revisions, in addition to the standard variables of option pricing. However, our finding might 

imply a correlation between the transaction cost and the time period between revisions. 

Therefore, Leland‘s transaction cost option pricing could possibly be extended to address this 

term structure of expected return. 

 

 

3.5 Conclusion 

This dissertation uses a risk-adjusted method for joint estimation of implied expected 

stock return and volatility from market observed option prices.  We find that investors in 

option markets have a higher expectation of stock return in the short-term, but a lower 

                                                 
44

 This can be seen using MonteCarlo simulation. 

 
45

We assume n is a function of asset characteristics, more specifically the volatility of the stock. So if 

volatility term structure is flat then we will need same number of rebalancing, n for short- and long-term 

options for a given standard error. Also, keeping all parameters same, if we change the volatility to obtain 

the price of the option, using MonteCarlo simulation, we can easily see, that the standard error of option 

price is higher when we the volatility is higher.  
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expectation of stock return in the long-term.  This term structure of expected stock 

return also remains for deep-in and deep-out of the money call options.  We also find 

that the market friction proxies such as volume, open interest and bid-ask spread do not 

explain this term structure.  It also persists for combined call and put options.  This term 

structure finding supports McNulty et al.  (2002) explanation where the authors argue 

that shorter horizon investments should be discounted at a higher rate.  However, they 

use a heuristic approach without a theoretical setting to arrive at these results.  On the 

other hand, our research provides the necessary theoretical support for this finding.  

Using all moneyness options, we further find that the term structure of our volatility is 

‗flatter‘ than the term structure of Black-Scholes implied standard deviation. We also 

find that the implied volatility (t,T) provides a better model than Black-Scholes implied 

standard deviation ( ,
BS
tT ) to forecast realized volatility for maturities of 90-days or less 

for any moneyness level. In general, our risk-adjusted approach provides a better 

measure (than ,
BS
tT ) that captures moneyness biases even without adjusting for 

stochastic volatility. Therefore, if we are concerned about the smile while forecasting 

realized volatility using all options data, then our approach provides a better solution 

than ,
BS
tT so that we do not need any adjustment for moneyness bias. In addition, we find 

that a combination of our implied expected return (t,T) and implied volatility (t,T) with 

,
BS
tT provides a better model, than using ,

BS
tT alone to forecast future volatility for all 

near and far maturity groups, and for any moneyness level.  

These findings may provide a starting point for further research.  For example, 

our approach may be used to estimate the cost of equity for different industry portfolios.  
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Especially estimates of expected return for one-year or more will have lower standard 

error, which is a necessary condition for this to be useful as an estimate of cost of 

equity.  Using this approach, we can compute the expected return of any individual 

stock without using any information of the market portfolio such as the market risk 

premium.  Moreover, our results can be deduced without assuming a utility structure for 

the representative agent.  Furthering the research, we plan to investigate whether the 

term structure persists using other approaches.  Nonetheless, better forecasting 

capability of future volatility using our sigma and expected return might suggest 

additional investigation of information content in these findings.   
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3.A Appendix 

3.A.1 Risk-Adjusted Formulas for Call Options 

3.A.1.1 Proof of Proposition 1: 

We prove the proposition without assuming the CAPM.  Let the price change for the 

stock and option during a small interval of time t  are S  and C  respectively.  

Without loss of generality, we assume t as the current time.  Let the current stock and 

option prices are tS  and tC  respectively.  This implies:  

(A1) 

[ ]

[ ]

S
t

C
t

S

C

S
r

S

C
r

C

E r t

E r k t

 

When t  is a small interval of time, then t  tends todt , S  tends todS , and

C tends todC .   

Since stock price S follows a geometric Brownian, the change in the price of the 

stock S  during the small interval of time t  is: 

(A2) t tdS S dt S dW  

where dW  is the Wiener differential.  Then, following Ito‘s Lemma, option price 

change is given by: 
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(A3) 

2
2 2

2

1
2 t

t t

C C C
dC dS S dt

S tS

C C
dS rC rS dt
S S

 

where the second line of (A3) is derived from the Black-Scholes PDE (partial 

differential equation).  From (A3), we can then compute the covariance between the 

option return and the stock return as follows: 

(A4) 

1
cov , cov[ , ]

1
var[ ]

var

t t t t

t t

t

t t

dC dS
dC dS

C S C S
C

dS
C S S
S C dS

C S S

 

Then it follows that: 

(A5) 

cov ,

var

t t t

t

t

dC dS
C SS C

C S dS
S

 

Finally, taking the expectation of (A3), we obtain: 

(A6) (1 )kdt dt r dt  

Q.E.D. 

Further, we note that, if we take covariance of both sides of (A3) with respect to 

the market return Mr , then we will obtain the following: 

(A7) ( )k r r  
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where  

  C

S
 

cov( , )
var( )

C M
C

M

r r
r

 

cov( , )
var( )

S M
S

M

r r
r

 

This implies: 

(A8) 

cov( , )
 =

var( )

cov( , )
    =

cov( , )

C S

S

C M

S M

r r
r

r r
r r

 

 

3.A.1.2.  Proof of Proposition 2: 

For readability we drop the subscript t,T for , , and k during this proof. From (5a), we 

can compute the expected value of the call payoff using the risk-adjusted measure as: 

(A9) 
( )

( )
1 2

[ ]

( ) ( )

k T t
T t

T t
t

EC e C

S e N h KN h
 

From the known result of the moment generating function of a Gaussian 

variable, we have: 
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(A10) 
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2 (2 )( ) 2 2 ( )
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and 

(A11) 

2

0

2

2 (2 )( ) ( )
3 1

[ ] max{ , 0} ( )

( ) ( )

( ) ( )

T T T T T T

T T T T T T
K K

T t T t
t t

E S C S S K S dS

S S dS K S S dS

S e N h KS e N h

 

where 

2

3

3ln ln ( )2S K T t
h

T t
 

Hence, the covariance term in (7a) can be computed as: 

(A12) 
2

2

2 (2 )( ) ( ) ( ) ( )
3 1 1 2

2 2 ( ) ( ) ( )
3 1 2 1

cov , [ ] [ ] [ ]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T T T T

T t T t T t T t
t t t t

T t T t T t
t

t

S C E S C E S E C

S e N h KS e N h S e S e N h KN h

K
S e e N h e N h N h N h

S

  

Finally, combining equations (7a), (A10), and (A12) we have: 

(A13) 

2

2

( ) ( )
1 2 1

( )

( ) ( ) ( ) ( )3

1

T t T t
t

t

T t
t

K
S e N h e N h N h N h

S

C e
 

With the subscripts t,T attached to the parameters, equation (A13) can be written 

as equation (8) of Proposition (2).: 

Q.E.D. 
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3.A.2 Risk-Adjusted Formulas for Put Options 

3.A.2.1 Proposition 1 for put options: 

Assume stock price S follows a geometric Brownian motion with an annualized 

expected instantaneous return of  and volatility of .  Let a put option on the stock at 

any point in time t  is given by ( , )P S t  that matures at time T .  Let k  is the annualized 

expected instantaneous return on this option.  Then for a small interval of time t , the 

relationship between  and k  can be given by: 

(A14) ( )k r r  

where 

(A15) 
cov( , )

var( )
P S

S

r r
r

 

and /Sr S S  and /r P PP  are two random variables representing the stock 

return and put option return respectively during the period t .  And, r is the annualized 

constant risk-free rate for the period of the option.   

Proof: The proof is similar to proposition 1.   

As in proposition 1, we have:  
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(A16) 

[ ]

[ ]

S
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S
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S
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S
P

r
P
E r t

E r k t

 

When t  is a small interval of time, then t  approaches dt , S  approaches 

dS , and P approaches dP .   

Since stock price S follows a geometric Brownian, the change in the price of the 

stock S  during the small interval of time t  is: 

(A17) t tdS S dt S dW  

where dW  is the Wiener differential.  Then, following Ito‘s Lemma, option price 

change is given by: 

(A18) 

2
2 2

2

1
2 t

t t

P P P
dP dS S dt

S tS

P P
dS rP rS dt
S S

 

where the second line of (A18) is derived from the Black-Scholes PDE (partial 

differential equation).  From (A18), we can then compute the covariance between the 

option return and the stock return as follows: 

(A19) 
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Then it follows that: 

(A20) 

cov ,

var

t t t

t

t

dP dS
S P P S
P S dS

S
 

Finally, taking the expectation of (A18), we obtain: 

(A21) (1 )kdt dt r dt  

Q.E.D. 

Without the subscripts of t,T   we write  over the life of the put options as: 

(A22) 
cov ,
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The put option risk-adjusted pricing equation is: 

(A23) 
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where t  and T are the current time and maturity time of the option, and K  is the strike 

price of the option and 
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3.A.2.2 Proposition 2 for put options: 

The  based on the life of the put option can be written as: 

(A24) 
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Proof: 

The expected value of the put payoff using the risk-adjusted measure is: 

(A25) ( )
2 1[ ] ( ) ( )T t

T tE P KN h e S N h  

From the known result of the moment generating function of a Gaussian 

variable, we have: 

(A26) 
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(A27) 
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Hence, the covariance term in (A22) can be computed as: 

(A28)
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Finally, combining equations (A22), (A26), and (A28) we have: 

(A29) 
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Q.E.D. 
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Tables 

 

Table I:  Input Data Summary Statistics of S&P500 Index Options 
This table presents the summary statistics of all moneyness month-end S&P 500 index call options 

having positive trading volume based on the month-end observations for the period of January 1996- 

April 2006.  Days-to-maturity groups are formed based on option days-to-maturity.  For example, if 

days to maturity is less than or equal to 90 days then the observation is in '<=90' days-to-maturity 

group. If days to maturity is greater than 90 days it is in '> 90' days-to-maturity group.  Moneyness we 

define as the stock price divided by the strike price.  For S&P500, stock price is the level of the index. 

Avg. volume is the average of volume of call options used for a t,T  and t,T pair estimate.  Avg. 

spread is the average of spread of call options used for a t,T  and t,Tpair estimate.  Spread is defined 

as (offer - bid)/call price.  Call price is the midpoint of bid and offer or the European option price 

whichever is lower.  European option price is computed from Black-Scholes implied volatility in the 

data.  Number of calls used is the number of option records that are used to compute a t,T  and 

t,Tpair. 
Days-to-maturity groups <= 90 Days > 90 Days All Maturities 

Number of observations 5602 2263 7865 

Days-to-maturity Mean 48.9749 321.2702 198.0316 

Avg. moneyness  Mean 0.9818 0.953 0.966 

Std. Dev.   0.0298 0.0709 0.0579 

Min 0.8757 0.6242 0.6242 

Max 1.1446 1.3697 1.3697 

Median 0.9832 0.954 0.9714 

Number of calls used  Mean 15.648 5.2263 9.9431 

Std. Dev. 7.9866 3.1247 7.8171 

Min 2 2 2 

Max 42 26 42 

Median 15 4 7 

Avg. spread  Mean 0.1365 0.035 0.0809 

Std.  Dev.   0.1347 0.0418 0.1082 

Min 0.0065 0.0008 0.0008 

Max 1.0806 0.3773 1.0806 

Median 0.1016 0.0229 0.0427 

Avg. volume Mean 603.0293 350.6503 464.8749 

Std.  Dev.   526.9405 660.0032 616.0207 

Min 3.5 1 1 

Max 4385.5 8186.75 8186.75 

Median 472.8111 191.0833 301 

Total open interest  Mean 143911.3017 44156.9307 89304.9267 

Std.  Dev.   180980.9924 50192.6798 136556.5071 

Min 0 0 0 

Max 1336404 280941 1336404 

Median 88911.5 23619 41591 
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Table II: Implied and Realized Summary Statistics Using S&P500 Index Options 

The sample consists of all moneyness month-end S&P 500 index call options based on the month-end 

observations for the period of January 1996-April 2006. Days to maturity groups are formed based on 

option days-to-maturities. For example, if days to maturity is less than or equal to 90 days then the 

observation is in '<=90' days-to-maturity group. If days to maturity is greater than 90 days it is in '> 90' 

days-to-maturity group.  We use all the call options on the same CUSIP, days-to-maturity, and trade 

date to compute the implied expected return and implied volatility by a grid search method that 

minimizes the square of difference between the observed and computed option price.  Realized 

volatility is computed based on actual return of the index from trade date to maturity date of the option.  

Implied standard deviation ( ,
BS
tT ) is the Black-Scholes implied volatility. Results are shown in 

decimals.  

 

Days-to-maturity groups <= 90 Days > 90 Days All Maturities 

Implied expected return t,T 

 

Mean 0.195 0.0941 0.1397 

Std. Dev.   0.0876 0.0379 0.0823 

Min 0.0745 0 0 

Max 0.5887 0.2428 0.5887 

Median 0.173 0.0897 0.1216 

Implied volatility t,T 

 

Mean 0.2146 0.2132 0.2139 

Std. Dev.   0.0747 0.0670 0.0705 

Min 0.0788 0.1017 0.0788 

Max 0.464 0.4611 0.464 

Median 0.2068 0.2073 0.2071 

Implied standard deviation ( ,
BS
tT ) 

Mean 0.1979 0.1942 0.1968 

Std. Dev.  0.0853 0.0581 0.0785 

Min 0.0738 0.0898 0.0738 

Max 1.7805 1.1215 1.7805 

Median 0.1854 0.1889 0.1865 

Realized volatility  

 

Mean 0.1678 0.1712 0.1697 

Std. Dev.   0.0697 0.0544 0.0618 

Min 0.0632 0.0882 0.0632 

Max 0.4324 0.3255 0.4324 

Median 0.1553 0.181 0.166 
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Table III:  Comparison of Sigma and Black-Scholes Implied Volatility 

This table presents the summary statistics of comparison of our sigma (t,T) estimates and Black-

Scholes implied volatility ( ) for different days-to-maturity groups based on all moneyness S&P500 

Index call options for the period of January 1996-April 2006. Days to maturity groups are formed 

based on option days-to-maturities. For example, if days to maturity is less than or equal to 90 days 

then the observation is in '<=90' days-to-maturity group. If days to maturity is greater than 90 days it is 

in '> 90' days-to-maturity group. For this table, first, we compute mean and standard deviation of 

sigma and for each year and days-to-maturity. Panel A presents the test of difference between 

mean level of sigma and for different maturity groups. Panel B presents the test of difference 

between standard deviation level of sigma and for different maturity groups. For Panel C, we 

compute the coefficient of variation (CV) of sigma and as corresponding standard deviation 

divided by the mean for each year and days-to-maturity. Then we take the difference of CV of sigma 

and for each year and days-to-maturity. The t-statistics shows whether these differences are 

significant for different days-to-maturity groups. ** and * represent the p-values of less than 0.01, and  

between 0.01 and 0.05 respectively. 

 

Days-to-maturity groups <= 90 Days > 90 Days All Maturities 

Panel A: Test of difference between level of Sigma and  

Difference:  

    Mean 0.0192 0.0201 0.0153 

   Standard Deviation 0.0232 0.0274 0.0176 

    t-statistics 10.9284** 13.3524** 2.88** 

Panel B: Test of difference between standard deviation of Sigma and  

Difference:  

    Mean -0.0071 -0.0004 -0.0203 

   Standard Deviation 0.0313 0.0207 0.0115 

    t-statistics -2.2813* -0.1710 -5.8584** 

Panel C: Test of difference between coefficient of variation of  Sigma and  

Difference:  

    Mean -0.0565 -0.0200 -0.1232 

   Standard Deviation 0.1371 0.0870 0.0600 

    t-statistics -4.1222** -2.0475* -6.8079** 
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Table VI: Results from Regressing Level of Mu on the Indicated Variables 

This table presents results from regression of t,T levels for different days-to-maturity groups using 

S&P500 index all moneyness call option data.  We use generalized method of moments for this 

estimation. Days to maturity groups are formed based on option days-to-maturities. For example, if 

days to maturity is less than or equal to 90 days then the observation is in '<=90' days-to-maturity 

group. If days to maturity is greater than 90 days it is in '> 90' days-to-maturity group.  The values in 

parenthesis are the t-statistics.  AvgMoneyness is average of the stock price divided by the strike price 

of options used to compute t,T.  For S&P500, stock price is the level of the index. AbsRet, LAbsRet, 

L2AbsRet are the current and first two lagged daily absolute returns of the S&P 500 index.  

AvgSpread is average of (offer-bid)/call price of all option records used to compute t,T.  TotalOpnInt 

is the total option interest of the options used to compute t,T.  AvgVolume is the average volume, and 

RecCount is the number of records used to compute t,T.  Ret, LRet, L2Ret are the current and first 

two lagged daily returns of the S&P 500 index.  ** and * represent the p-values of less than 0.01, and  

between 0.01 and 0.05 respectively. 

 
Days-to-maturity 

groups 

<= 90 Days > 90 Days All Maturities 

Intercept -0.3439(-1.95) -0.0548*(-2.31) -0.1674**(-5.56) 

AvgMoneyness 0.6083**(3.42) 0.1732**(7.49) 0.2641**(8.64) 

DaysToMaturity -0.002**(-8.16) -1.10E-04**(-9.55) -1.10E-04**(-9.11) 

AbsRet 2.6419**(4.64) 1.2907**(5.76) 1.3217**(3.69) 

LAbsRet 2.3448**(4.25) 1.1145**(4.64) 1.1902**(3.58) 

L2AbsRet 1.3331**(2.65) -0.3074(-1.57) 0.122(0.37) 

AvgSpread -0.0264(-0.65) 0.0989*(2.54) 0.1085**(2.73) 

TotalOpnInt -1.14E-07**(-3.91) -1.04E-07**(-2.71) -2.10E-07**(-6.34) 

AvgVolume -1.00E-05(-1.74) 1.25E-06(0.47) 3.00E-06(1.02) 

RecCount 0.0011(0.94) 1.85E-04(0.25) 0.0061**(7.25) 

Ret -0.1874(-0.46) -0.0695(-0.4) 0.0063(0.03) 

LRet -0.219(-0.62) -0.0729(-0.48) -0.0236(-0.11) 

L2Ret -0.0687(-0.2) 0.0872(0.63) -0.0751(-0.35) 

Adj-R2 0.5142 0.4554 0.5843 
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Table VII:  Input Data Summary Statistics of S&P500 Index Balanced Call 

and Put Options 

 
This table presents the summary statistics of all moneyness month-end S&P 500 index call and 

put balanced options having positive trading volume based on the month-end observations for the 

period of January 1996- April 2006.  Balanced options means we take only the options that have 

both call and put with same strike price. If any call (put) does not have a corresponding put (call) 

with same strike price we do not take that option. Days-to-maturity groups are formed based on 

option days-to-maturity.  For example, if days to maturity is less than or equal to 90 days then the 

observation is in '<=90' days-to-maturity group. If days to maturity is greater than 90 days it is in 

'> 90' days-to-maturity group.  Moneyness we define as the stock price divided by the strike price.  

For S&P500, stock price is the level of the index. Avg. volume is the average of volume of 

options used for a t,T  and t,T pair estimate.  Avg. spread is the average of spread of options used 

for a t,T  and t,Tpair estimate.  Spread is defined as (offer - bid)/option price.  Option price is the 

midpoint of bid and offer or the European option price whichever is lower.  European option price 

is computed from Black-Scholes implied volatility in the data.  Number of options used is the 

number of option records that are used to compute a t,T  and t,Tpair. 

  
Days-to-maturity groups <= 90 Days > 90 Days All Maturities 

Number of observations 4206 2036 6242 

Days-to-maturity Mean 56.5615 316.1805 213.7511 

Avg. moneyness  Mean 1.0102 1.0036 1.0062 

Std. Dev.   0.031 0.0685 0.0568 

Min 0.9087 0.8142 0.8142 

Max 1.1554 1.8598 1.8598 

Median 1.008 0.9972 1.0031 

Number of options used  Mean 16.1769 5.1028 9.4719 

Std. Dev. 10.37 3.7946 8.9653 

Min 2 2 2 

Max 48 30 48 

Median 16 4 6 

Avg. spread  Mean 0.0366 0.0182 0.0254 

Std.  Dev.   0.0284 0.0159 0.0235 

Min 0.003 0.0015 0.0015 

Max 0.2632 0.129 0.2632 

Median 0.0325 0.0128 0.0181 

Avg. volume Mean 688.7162 349.5335 483.3537 

Std.  Dev.   733.9706 607.5059 680.2962 

Min 1.5 1 1 

Max 7839 8311 8311 

Median 533.35 180 300.9167 

Total open interest  Mean 152587.6346 51103.0727 91142.5053 

Std.  Dev.   213038.8693 69700.8886 152535.4084 

Min 0 0 0 

Max 1660937 511561 1660937 

Median 77180 23191 34169 

 

 

 

 



77 

 

 

 

Table VIII: Implied and Realized Summary Statistics Using S&P500 

Balanced Call and Put Options 

 
This table presents the implied (using risk-adjusted model) and realized summary statistics using 

moneyness month-end S&P 500 index call and put balanced options having positive trading 

volume based on the month-end observations for the period of January 1996- April 2006.  Balanced 

options means we take only the options that have both call and put with same strike price. If any 

call (put) does not have a corresponding put (call) with same strike price we do not take that option. 

Days to maturity groups are formed based on option days-to-maturities. For example, if days to 

maturity is less than or equal to 90 days then the observation is in '<=90' days-to-maturity group. If 

days to maturity is greater than 90 days it is in '> 90' days-to-maturity group.  We use all the 

options on the same CUSIP, days-to-maturity, and trade date to compute the implied expected 

return and implied volatility by a grid search method of global optima that minimizes the square of 

the difference between the observed and computed option prices.  Realized volatility is computed 

based on actual return of the index from trade date to maturity date of the option.  Implied standard 

deviation ( ,
BS
tT ) is the Black-Scholes implied volatility. Results are shown in decimals.  

 

Days-to-maturity groups <= 90 Days > 90 Days All Maturities 
Implied expected return t,T 
 
Mean 0.1553 0.0983 0.1208 

Std. Dev.   0.1012 0.0331 0.074 

Min -0.2589 -0.0639 -0.2589 

Max 0.8189 0.2169 0.8189 

Median 0.1584 0.0961 0.1109 

Implied volatility t,T 

 

Mean 0.2129 0.2168 0.2153 

Std. Dev.   0.0565 0.0501 0.0527 

Min 0.0992 0.1191 0.0992 

Max 0.4028 0.4796 0.4796 

Median 0.2143 0.2157 0.2153 

Implied standard deviation ( ,
BS
tT ) 

Mean 0.2171 0.2054 0.2133 

Std. Dev.  0.08 0.0627 0.075 

Min 0.0876 0.0948 0.0876 

Max 1.3255 1.1215 1.3255 

Median 0.2087 0.2005 0.2063 

Realized volatility  

 

Mean 0.1722 0.1694 0.1705 

Std. Dev.   0.0679 0.0541 0.0599 

Min 0.0632 0.0871 0.0632 

Max 0.4119 0.3255 0.4119 

Median 0.1601 0.1767 0.169 

 

 

 



    

 

7
8
 

 

F
ig

u
re

s 

F
ig

u
re

 I
: 

 T
er

m
 S

tr
u

ct
u

re
s 

o
f 

M
u

, 
S

ig
m

a
, 
a
n

d
 B

la
ck

-S
ch

o
le

s 
Im

p
li

ed
 V

o
la

ti
li

ty
 U

si
n

g
 A

ll
 M

o
n

ey
n

es
s 

S
&

P
5
0
0
 I

n
d

ex
 

C
a
ll

 O
p

ti
o
n

s.
  

PT 

  

 



    

 

7
9
 

 

F
ig

u
re

 I
I:

  
9
0
 D

a
y
s 

o
r 

L
es

s 
P

re
d

ic
ta

b
il

it
y
 o

f 
R

ea
li

ze
d

 S
ig

m
a
 b

y
 S

ig
m

a
, 

M
u

, 
a
n

d
 B

-S
 I

m
p

li
ed

 V
o
la

ti
li

ty
 o

f 
S

&
P

5
0
0
 

In
d

ex
 U

si
n

g
 A

ll
 M

o
n

ey
n

es
s 

C
a
ll

 O
p

ti
o
n

s.
PT 

    

 

*
 

*
 

*
 

*
 

*
 

*
 



    

 

8
0
 

 F
ig

u
re

 I
II

: 
 M

o
r
e 

T
h

a
n

 9
0
 D

a
y
s 

P
re

d
ic

ta
b

il
it

y
 o

f 
R

ea
li

ze
d

 S
ig

m
a
 b

y
 S

ig
m

a
, 

M
u

, 
a
n

d
 B

-S
 I

m
p

li
ed

 V
o
la

ti
li

ty
 o

f 
S

&
P

5
0
0
 

In
d

ex
 U

si
n

g
 A

ll
 M

o
n

ey
n

es
s 

C
a
ll

 O
p

ti
o
n

s.
 PT 

   

 

 

*
 

*
 

*
 

*
 

*
 

*
 



    

 

8
1
 

 F
ig

u
re

 I
V

: 
 T

er
m

 S
tr

u
c
tu

re
s 

o
f 

M
u

, 
S

ig
m

a
, 
a
n

d
 B

la
ck

-S
ch

o
le

s 
Im

p
li

ed
 V

o
la

ti
li

ty
 U

si
n

g
 A

ll
 M

o
n

ey
n

es
s 

S
&

P
5
0
0
 I

n
d

ex
 

‘B
a
la

n
ce

d
’ 

C
a
ll

 a
n

d
 P

u
t 

O
p

ti
o
n

s.

 
 



82 

 

 

 

Chapter-4 

Cost of Equity Estimate Using Risk Adjusted Expected Return 

Estimation of forward-looking expected stock return is an important part of financial 

research for at least two reasons. First, it helps determine the cost of capital of an 

investment of a firm. Second, it is useful for portfolio allocation and balancing.  The 

commonly used methods of estimating the cost of equity (and expected returns) are 

based on a relationship between one or more factor expected returns and the asset 

expected return. In particular, the capital asset pricing model (CAPM) of Sharpe (1964),  

Lintner (1965) and Mossin (1966); the three-factor model of Fama and French (1993); 

the momentum factor of  Jegadeesh and Titman (1993), and the macroeconomic factor 

model of Chen, Roll, and Ross (1986) provide different fundamental factors that can 

explain the expected return of assets. The common feature of these models is that they 

use historical data to estimate the expected returns of the assets into the future. 

However, as we discussed in chapter 2, use of historical returns may not be a good 

substitute for ex ante expected returns. Unless return distributions are stationary and 

precise over time, the cost of equity estimated by these methods may not perform well 

as the discount rate of the future cash flows of an investment project. Moreover, these 

models do not explain any relationship between the time horizon of investment and the 

expected return. 

Recent research has used forward-looking options data to estimate the cost of 

equity. McNulty et al. (2002) uses a heuristic approach to compute the ‗real cost of 
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equity capital‘ from option prices.  Their finding of higher implied expected return in 

short term and lower implied expected return in long term matches with our finding, 

however their approach lacks the theoretical support. Another recent paper, which 

computes the stock implied expected return from option prices, is by Camara, Chung, 

and Wang (2007). Interestingly, even though they assume a different utility structure 

they find a downward sloping term structure of expected return similar to our finding.
1
 

In contrast to the above papers, we follow a discrete time approach that has the 

advantage of being consistent with single period standard CAPM.  Using our approach, 

the expected return of a stock can be computed without using any information of option 

of all companies like the Camara, Chung, and Wang (2007), or of the market portfolio 

such as the market risk premium. This implies we do not have to define what the 

‗market‘ consists of, and we do not have to estimate the risk premium of the market, 

which is required in traditional asset pricing models to estimate the expected return. 

This chapter is organized as follows. Section 4.1 provides the descriptive 

statistics using all stock options, Section 4.2 discusses estimates of cost of equity, and 

Section 4.3 provides the concluding remarks. 

 

4.1 Descriptive Statistics Using All Stock Options 

In the previous chapter we showed the results of expected return using S&P500 index 

data. In this chapter we show similar results using all stock options and then examine 

                                                 
1
 Our approach is consistent with the standard CAPM and thus consistent with a specific utility structure 

of hyperbolic absolute risk aversion (HARA) preference family namely the quadratic utility structure. 

Camara, Chung, and Wang (2007) assume a specific utility structure (see chapter 2). 
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the cost of equity for different industry groups. We jointly estimate expected stock 

return and implied volatility using the risk-adjusted model as explained in the previous 

chapters. Before we analyze the cost of equity for different industry groups we show in 

Table I the descriptive statistics of the input data used for our estimation of option 

implied expected stock return (  ) and implied volatility ( ) using all stock options. To 

analyze the results we group the data into different days-to-maturities. Thus the options 

whose days to maturity is less than or equal to 30 days are grouped in 30-days-to-

maturuty group. The options whose days-to-maturity is greater than 30 days but less 

then or equal to 60-days are grouped in 60 days-to-maturity groups and so on. As we 

see from Table I, the number of observations is higher for lower days to maturity than 

for higher days to maturity.  For example, for 30 days-to-maturity, the number of 

observations is 11565, and for 720 days to maturity, it is 730 observations. Since we 

take only near-the-money options, the average moneyness mean is around 0.99. In most 

cases we have around two option records to compute a   and   pair. The spread in our 

data is defined as (offer-bid)/call price.  Interestingly even though all our options are 

near the money we see the average spread is mostly higher for lower days-to-maturity. 

Since closer to maturity options are most actively traded, it is not surprising to see the 

average volume to be higher for lower days-to-maturity.  Table II shows the descriptive 

statistics of   and   estimated using all stock options. This table and Figure I show 

the term structure of  for all stock options which is similar to the results we got using 

the S&P500 index options. Mcnulty et al. (2001), and Camara Chung and Wang (2008) 

find similar term structure of expected returns using options data.  
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4.2 Estimates of Cost of Equity 

The option implied expected stock return (  ) can be used as an estimate of cost of 

equity (COE) of projects. The traditional approach is to use the capital asset pricing 

model (CAPM) to estimate the COE. The most popular market-based alternative to the 

CAPM is the Fama and French (1993 and 1996) three-factor model, which is shown to 

be better than the CAPM in explaining expected returns of stocks. Therefore, in this 

study we compare the Fama and French approach with our option implied method of 

estimation of the cost of equity for one-year into the future for different industry 

portfolios grouped by standard industry classification (SIC) codes. We obtain the 

industry group to SIC code mapping from Kenneth French website. For this 

comparison, we take six industry groups namely, Consumer Products and Services, 

Manufacturing, Information Technology, Healthcare, Utilities and Finance. To have a 

smooth estimate of cost of equity by the Fama and French model, we take previous 

three-years of historical data. Using this historical data, first we estimate the loadings of 

the three factors
2
. We use the historical average of the factors with these loading to 

estimate the cost of equity. Then by rolling over the sample period month by month, we 

obtain the time series of cost of equity estimates for the entire period of January 1996-

April 2006. The option implied cost of equity that we use to compare with the Fama and 

French is based on options with 360 days-to-maturity group. We take equally-weighted 

average to compute the cost of equity for different industry groups, although the 

comparison properties are similar when we use the value-weighted average.  The results 

                                                 
2
 A similar method was used in Fama and French (1997) to estimate the cost of equity. 
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of the comparison are given in Table III.  As we see, the mean of option implied 

expected return for Consumer Products and Services is about same for our method, and 

Fama andFrench method. Whereas for Manufacturing, Utilities and Finance our 

approach produces lower, and for Information Technology and Healthcare our approach 

produces slightly higher cost of equity than the Fama and French approach. It should be 

noted that the option implied cost of equity shown in Table III is based on the options in 

360 days-to-maturity group. As we see from Table I, the average days-to-maturity for 

this group is 239 days. An alternative comparison could have the interpolated option 

implied expected returns for one-year (365 days). Since we know the estimates of 

option implied cost of equity decrease with days-to-maturity, an interpolation to one-

year will provide lower of cost of equity with lower standard deviation, than the values 

shown in this table.  

As we see from Table III, the standard deviations of cost of equity by our option 

implied method are lower compared to the Fama and French method for all industry 

groups. For example, the standard deviation of  Fama and French cost of equity 

estimates varies from 5.48% to 19.59% across different industry groups. Whereas the 

standard deviation of our option implied cost of equity varies from 3.15% to 4.39%. 

Moreover, the cost of equity estimate of all industries by Fama and French method 

varies from -44.64% to 53.78%, whereas by our option implied method it varies from 

0.89% to 26.99%. More specifically, the standard deviation by option implied method 

for Consumer Products and Services is 3.54%, whereas it is 10.23% by the Fama and 

French method. It clearly shows that our option implied estimates are less volatile 

compared to the Fama and French estimates. Moreover, the Fama and French method 
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may produce negative estimates of cost of equity for some industry groups, or for some 

time periods, which cannot be used as a discount rate for the projects. For example at 

some point in time Consumer Products and Services industry cost of equity was -

10.07%. Clearly the Fama and French cost of equity estimates are very volatile and in 

some cases it produces negative cost of equity. This finding is consistent with the Fama 

and French (1997) argument that CAPM or three-factor model produces imprecise 

estimate of cost of equity due to the uncertainty about the true factor risk premiums, and 

the imprecise estimate of the factor loadings.  Figure II depicts the time series process 

of cost of equity by our option implied, and by the Fama and French method. This 

supports the previous observation that cost of equity estimate by our option implied 

method is stable over time, compared to the Fama and French method. 

 

4.3 Conclusion 

In this chapter we extended our results to all stock options. The finding of term structure 

of   using all stock options is similar to the results using S&P500 index options. The  

estimated from our risk-adjusted model can be used to estimate the cost of equity for 

different industry groups. The cost of equity estimate by our approach has at least two 

advantages. First, our approach uses observed option and stock prices to extract 

expected returns, whereas the traditional models such as the CAPM and the Fama and 

French model need the unobservable market risk premium. Second, unlike the CAPM 

or the Fama and French, our approach does not use historical information to compute 

the forward-looking expected return. There are two empirical findings in this chapter. 
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First, the option implied expected returns are more stable over time than the Fama and 

French estimates. In fact the Fama and French cost of equity estimates in some case 

become negative, which is not the case using our model. Second, our result shows even 

using all stock options the downward sloping term structure of  is maintained.  
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Tables 

Table I:  Input Data Summary Statistics of All Options 

 
The sample consists of all month-end near-the-money U.S. exchange traded call options for the period 

of January 1996- April 2006. Days to maturity groups are formed based on option days to maturity. For 

example, if days to maturity is less than or equal to 30 days then the observation is in 30 days to 

maturity group. If days to maturity is greater than 30 but less than or equal to 60 then the observation is 

in 60 days to maturity group and so on. Moneyness we define as the stock price divided by the strike 

price. Volume is the call option volume. Spread is defined as (offer - bid)/call price. Call price is the mid 

point of bid and offer or the European option price whichever is lower. European option price is 

computed from Black-Scholes implied volatility in the data. Number of calls used is the number of 

option records that have same days to maturity on the same CUSIP with different strike prices on the 

same trade date.  

Days-to-maturity groups 30 60 90 120 180 360 540 720 

Number of observations 11565 8881 3240 2763 4373 3371 642 730 

Days-to-maturity Mean 19.48249 49.99257 80.2608 110.8064 155.5751 239.0389 449.9486 708.0863 

Avg. moneyness Mean 0.998656 0.997899 0.997736 0.998565 0.997883 0.998086 0.997091 0.998257 

Std. Dev. 0.010261 0.010452 0.010799 0.010609 0.0107 0.01087 0.010648 0.010765 

Min 0.960968 0.954817 0.958715 0.959115 0.959948 0.962419 0.965038 0.962616 

Max 1.038239 1.036293 1.034318 1.038687 1.034853 1.044099 1.030084 1.032731 

Median 0.998601 0.997899 0.997665 0.998693 0.997958 0.99825 0.997163 0.998202 

Number of calls used Mean 2.364462 2.312577 2.357099 2.211726 2.1866 2.179769 2.160436 2.156164 

Std. Dev. 1.638055 1.274061 1.154322 0.754696 0.662989 0.599965 0.570293 0.465839 

Min 2 2 2 2 2 2 2 2 

Max 24 21 14 13 11 10 7 6 

Median 2 2 2 2 2 2 2 2 

Avg. spread Mean 0.135416 0.080799 0.068048 0.059072 0.052442 0.044398 0.03364 0.033451 

Std. Dev. 0.129671 0.067326 0.060767 0.046554 0.047561 0.030124 0.031041 0.024066 

Min -0.46121 -0.36306 -0.20916 -0.15284 -1.33368 -0.10263 -0.52822 -0.03165 

Max 1.625 1.227679 1.714286 1.153846 1.645161 0.62079 0.209304 0.253661 

Median 0.102403 0.068027 0.058277 0.052668 0.04739 0.04028 0.032072 0.029731 

Avg. volume Mean 547.0359 266.7459 206.621 157.6575 131.0213 139.379 121.7841 104.5247 

Std. Dev. 1786.683 814.9684 519.0864 433.2877 459.6463 708.1293 369.9922 453.1043 

Min 1 1 1 1 1 1 1 1 

Max 53213 25245 10729.25 8100 13579.5 27849 6054 10015.33 

Median 122 61.66667 48.5 38.5 31.33333 27 30.5 21 

Total open interest Mean 12396.11 7452.418 11179.92 9480.218 7398.776 8462.374 16587.81 8422.127 

Std. Dev. 42459 27743.11 29327.43 24452.97 20893.22 25813.37 37569.38 24622.19 

Min 0 0 0 0 0 0 0 0 

Max 984687 1003966 541457 499967 514526 445689 321969 293838 

Median 3161 1344 3406.5 2698 2053 1314 4715.5 1667 
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Table II: Implied and Realized Summary Statistics Using All Options 

 
The sample consists of all month-end near-the-money U.S. exchange traded call options for the period of 

January 1996- April 2006. Days-to-maturity groups are formed based on option days-to-maturity. For 

example, if days-to-maturity is less than or equal to 30 days then the observation is in 30 days-to-maturity 

group. If days-to-maturity is greater than 30 but less than or equal to 60 then the observation is in 60 

days-to-maturity group and so on. We use all the call options on the same CUSIP, days-to-maturity, and 

trade date to compute the implied stock expected return () and implied volatility () by a grid search 

method that minimizes the square of difference between the observed and computed option price. The 

grid search for , is in the interval of 0.00%-200.00%, and for  it is in the interval of 0.00%-100.00%. 

Realized volatility is computed based on actual return of the stock from trade date to maturity date of the 

option. Results are shown in decimals. 

Days-to-maturity groups 30 60 90 120 180 360 540 720 

Implied expected return Mean 0.430065 0.274133 0.21481 0.187903 0.159334 0.129949 0.107797 0.092186 

Std. Dev. 0.230455 0.131472 0.099885 0.085866 0.075132 0.05942 0.0477 0.040843 

Min 0 0 0 0 0 0 0 0 

Max 2 0.820043 0.582205 0.483588 1.504852 0.374305 0.240838 0.219323 

Median 0.3818 0.255299 0.201111 0.180111 0.15197 0.125633 0.107531 0.09107 

Implied volatility Mean 0.443168 0.432945 0.411373 0.416079 0.413623 0.390927 0.393844 0.41534 

Std. Dev. 0.236102 0.225957 0.216578 0.214337 0.216488 0.206093 0.189718 0.199014 

Min 0.04648 0.031193 0.047858 0.032757 0.037692 0.038889 0.058111 0.081111 

Max 1 1 1 1 1 1 1 1 

Median 0.371658 0.372446 0.35557 0.36157 0.35987 0.342989 0.361167 0.38752 

Realized volatility Mean 0.410876 0.402699 0.384182 0.397161 0.402098 0.383391 0.400312 0.434903 

Std. Dev. 0.329419 0.299004 0.286341 0.285333 0.286419 0.269453 0.268378 0.28585 

Min 0.020839 0.031882 0.025105 0.025999 0.012713 0.016992 0.077382 0.03674 

Max 3.957029 3.281549 2.15659 2.071244 2.547094 2.522718 2.414214 2.90283 

Median 0.309298 0.310205 0.301039 0.311524 0.318625 0.310317 0.337483 0.374236 
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Table III:  Summary Statistics of Cost of Equity Estimates by Different Methods 

 
This table presents the equally-weighted cost of equity by our option implied method and the Fama and 

French method for various standard industry classification (SIC) code industry groups based on option 

data for the period of January 1996- April 2006. By the Fama and French method, first we estimate 

factor loadings based on previous three-year of historical data and then we use average of historical 

factor values along with these factor loadings to get the cost of equity estimate for each point in time. 

Option implied expected returns for different industries are estimated using the options in 360 days-to-

maturity group. Results are shown in decimals. 

Panel A: Option implied expected return         

Industry Group 

Consumer 

Products and 

Services Manufacturing 

Information 

Technology Healthcare Utilities Finance 

Mean 0.1312 0.1179 0.1602 0.1387 0.0776 0.1283 

Median 0.1263 0.1151 0.1590 0.1367 0.0644 0.1159 

Std. Dev. 0.0354 0.0315 0.0344 0.0413 0.0367 0.0439 

Minimum 0.0653 0.0489 0.0760 0.0097 0.0241 0.0089 

Maximum 0.2224 0.2357 0.2699 0.2616 0.1752 0.2663 

Panel B: Fama and French expected return         

Industry Group 

Consumer 

Products and 

Services Manufacturing 

Information 

Technology Healthcare Utilities Finance 

Mean 0.1322 0.1444 0.1002 0.1035 0.1416 0.1538 

Median 0.1273 0.1442 0.1599 0.0901 0.1547 0.1683 

Std. Dev. 0.1023 0.1062 0.1959 0.1043 0.0548 0.1484 

Minimum -0.1007 -0.0702 -0.4464 -0.1010 0.0206 -0.1219 

Maximum 0.3805 0.3939 0.5378 0.3663 0.2110 0.4119 
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Chapter-5 

On the Ex-Ante Cross-Sectional Relation Between Risk and Return Using Option-

Implied Information
1
 

One of the most fundamental issues in finance is what is the appropriate amount of 

return expected (or required) by investors when they bear risk. The first and most 

prominent model among others to address this issue is the Capital Asset Pricing Model 

(CAPM) by Sharpe (1964), Lintner (1965), and Black (1972). This model posits a 

linearly positive relationship between systematic risk (or market beta) and expected 

return on a risky asset. Indeed, the CAPM applies to all areas: computation of the cost 

of capital, measurement of investment performance, determination of fair returns for 

regulated industry, etc. Numerous investment institutions, such as Value Line, Standard 

& Poor‘s, and Merrill Lynch, use beta as the appropriate risk index and report beta to 

their customers. Due to the importance of the model, many researchers have been 

testing its validity since it was introduced. Empirical testing of the validity of the 

CAPM is the most heavily investigated area in finance.
2
 

                                                 
1
 This chapter is based on a joint paper with my dissertation committee members Dr. Ren-Raw Chen 

(advisor), and Dr. Dongcheol Kim. 

 
2
 There are many obstacles to the test of traditional CAPM. First, the model needs the ex ante expected 

return and beta. Second, there should be time horizon matching of this information for the CAPM test; 

alternatively researchers assume that the beta and risk premium are stationary. Finally, Roll‘s critique 

(1977) applies for this test. As Roll points out ―the only legitimate test of the CAPM is whether or not the 

market portfolio is mean-variance efficient‖ and  ―If performance is measured relative to an index that is 

ex post efficient, then from the mathematics of the efficient set no security will have abnormal 

performance when measured as a departure from the security market line.‖ This means that the efficiency 

of the market portfolio and the validity of the CAPM are joint hypothesis that are almost impossible to 

test because of the difficulty of measuring the true market portfolio. 
  

* 
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 Contrary to the prediction of the CAPM, however, most empirical results have 

found that idiosyncratic risk factors have significant explanatory power for stock 

returns, while market beta has little power. For example, Fama and French (1992) 

reports that firm size and book-to-market explain well the cross-section of average stock 

returns, while market beta has no explanatory power. This challenges the validity of the 

CAPM, one of the most important models in finance. In this chapter we examine the 

test of the CAPM using the ex ante expected return that we extract from risk-adjusted 

option prices.  

This chapter is organized as follows. Section 5.1 discusses various sources of ex 

ante information and the findings, Section 5.2 describes the risk-adjusted option pricing 

model for implied return and volatility, Section 5.3 describes the data, and Section 5.4 

explains the computational details for the implied variables. Section 5.5 presents 

empirical results, and Section 5.6 sets forth our conclusion. 

 

5.1 Sources of Ex-Ante Expected Return 

 The CAPM determines the equilibrium risk–return relationship on an ex ante 

basis. Thus, empirical test of the CAPM should be performed on an ex ante basis. It is 

difficult, however, to empirically test the CAPM on an ex ante basis, since the future 

expected return and beta are unavailable at the beginning of the investment period. 

Because of this empirical difficulty, most previous tests have been done on an ex post 

historical basis, implicitly assuming that historical realized average returns are good 

estimates of future expected returns. However, there is ample evidence that average 
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realized return does not converge to expected return in finite samples. One of the 

features, which work against the convergence of average realized return to expected 

return, is the time-variation of expected returns and market risk premium (i.e., 

nonstationarity). Unless return distributions are stable and precise over time, the 

expected returns estimated by these methods may not perform well as a true 

representation of ex ante market expectations.
3
 In his presidential address, Elton (1999) 

notes that ―there are periods longer than 10 years during which stock market realized 

returns are on average less than the risk-free rate (1973 to 1984). There are periods 

longer than 50 years in which risky long-term bonds on average underperform the risk-

free rate (1927 to 1981).‖ In these circumstances, the use of realized returns for 

expected returns and market betas could lead to biased estimation and to rejection of the 

CAPM. Despite the problems caused by the use of realized returns, most results in the 

empirical asset pricing literature are obtained from such returns. 

Elton (1999) also notes that ―developing better measures of expected return and 

alternative ways of testing asset pricing theories that do not require realized returns 

have a much higher payoff than any additional development of statistical tests that 

continue to rely on realized returns as a proxy for expected returns.‖ In this vein, several 

studies construct alterative proxies for expected returns. Gebhardt, Lee, and 

Swaminathan (2001), Fama and French (2002), Botosan and Plumlee (2005), and 

Easton and Monahan (2005) use valuation models to estimate expected returns. Brav, 

Lehavy, and Michaely (2005) construct estimates of expected returns using financial 

                                                 
3
 Fama and French (1997) and Pastor and Stambaugh (1999) find that both the CAPM and the Fama and 

French three-factor model are imprecise owing to the uncertainty about true factor risk premiums and 

imprecise estimates of the factor loadings that are based on historical returns. 

 



97 

 

 

 

analysts‘ target prices from Value Line, and Campello, Chen, and Zhang (2008) use 

corporate bond yields to estimate expected equity returns.
4
 In particular, Brav, Lehavy, 

and Michaely (2005) and Campello, Chen, and Zhang (2008) conduct cross-sectional 

tests for the relation between market beta and expected return by using their own 

measures of expected returns, and find that market beta is significantly priced. 

However, the measures of expected returns used in the previous studies have 

several problems. The most frequently used approach to obtain estimates of expected 

returns is to use valuation models and calculate internal rates of return for the estimates. 

Most valuation models use unrealistic assumptions for the future evolution of 

accounting variables, such as constant dividend growth. Furthermore, most models use 

indirect measures for expected stock returns. For example, the Brav, Lehavy, and 

Michaely (2005) approach of using analyst target prices from Value Line adopts similar 

assumptions. Another popular measure of investors‘ expected return is bond yields, 

which are used in Campello, Chen, and Zhang (2008). Bond yields are forward-looking 

expected returns over the life of the bonds, under the conditions that the bonds do not 

default, the yields do not change in the next periods, and coupon payments are 

reinvested at the same rate as the yield until maturity. However, although bond yields 

reflect the expected risk premium for default risk, which is the financial side of 

systematic risk, bond yields may not reflect the expected risk premium caused by an 

uncertain business environment, which is the business side of systematic risk. It would 

be difficult to say, therefore, that bond yields fully reflect the expected risk premium of 

                                                 
4
 Levy (1997) conducts a classroom experiment to estimate ex ante parameters. 
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all systematic risks of a firm. Another problem inherent in using bond yields as a proxy 

for ex ante expected return is that many firms‘ bond trade prices are unavailable. 

To overcome the shortcomings of the above-mentioned measures, we use 

option prices to extract information regarding ex ante expected returns and market beta 

of the underlying asset. Since option prices reflect investor expectations for future stock 

price movements, option data are an excellent information source for ex ante 

parameters. Option data have many advantages over other information sources for 

expected returns used in the previous studies. Option data are observed market prices, 

are not obtained from any specified model, and expected returns implied from option 

prices might reflect investor expectations for all systematic risk of the underlying asset. 

We extract implied mean return and implied volatility of the underlying asset from 

forward-looking option prices using a risk-adjusted approach. We use this implied mean 

return as a proxy for ex ante expected return. 

 

5.1.1 The Risk-Adjusted Approach 

The approach we follow is a risk-adjusted option pricing model that prices an option in 

discrete time and that retains the expected return of the underlying asset in the pricing 

equation. The Black-Scholes (1973) risk-neutral model prices options by taking 

advantage of the interesting feature that a particular portfolio of the stock and the option 

can cancel out the unknowns—namely the expected mean returns of the option and its 
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underlying stock in continuous time.
5
 However, if our objective is to extract expected 

return given the market price of options, we should form the corresponding risk-

adjusted valuation model that will retain the expected returns in the pricing model. 

Option pricing models that embed mean stock returns are not new. The early 

option pricing models of Sprenkle (1961), Ayres (1963), and Boness (1964) have 

implicitly or explicitly assumed some form of risk-adjusted framework such that 

investors who employ a buy and hold strategy could be linked to expected stock returns. 

However, none of these models provides an adequate theoretical structure that relates 

option returns and stock returns, hence they lack the ability to extract stock returns from 

option prices. Our risk-adjusted model, however, provides the pricing equations 

necessary to jointly estimate the expected returns of both the stock and the option. 

The main purpose of this study is to examine the CAPM relation on an ex ante 

basis. While more complex versions of the CAPM may include quite a number of 

parameters, in the standard CAPM that we study in this paper, two ex ante parameters 

are needed in this test: expected return and market beta. In order to obtain these two 

parameters on an ex ante basis, we must derive a risk-adjusted option pricing model that 

contains these two parameters and at the same time the model is consistent with the 

standard CAPM.  

                                                 
5
 Black and Scholes (1973) show that if the market is complete, the expected return of the stock should 

disappear from the valuation of the option as dynamic hedging (known as continuous rebalancing, price 

by no arbitrage, or risk neutral pricing) effectively removes the dependence of the option price on the 

stock return. This is true, however, only if the market is truly complete in reality. In other words, if the 

reality is exactly described by the Black-Scholes model, it is impossible to theoretically solve for both 

expected return and volatility. However, it has been empirically shown that the Black-Scholes model 

cannot explain all option prices (known as the volatility smile and volatility term structure). 
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Our model to obtain the expected return and market beta follows a two-step 

process. First, at the end of each month (i.e., at the last trading day of each month), we 

observe the prices of a stock option with a particular maturity and compute implied 

returns of the underlying stock from the observed option prices based on the risk-

adjusted option model. We regard these option-implied returns (or simply, implied 

returns) as ex ante expected returns. At the same time, we also observe the prices of a 

market index option such as Standard  & Poor‘s 500 index option whose maturity is 

matched with that of the stock option. Then we compute implied market returns from 

the observed market index options based on the risk-adjusted option model. Thus, each 

implied return of a stock has its counterpart implied market return. 

Second, there is no explicit way to directly extract expected market betas. The 

literature is limited in the area of extraction of implied betas from option prices. To our 

knowledge, there are only two papers in this area. Siegel (1995) proposes a new 

―exchange option,‖ the price of which is based on the number of units of a specific 

stock that can be exchanged for one unit of an index. Thus, he argues that the price of 

this exchange option can reveal the implied beta of the stock. However, such exchange 

options do not exist in current capital markets. More recently, Christoffersen, Jacob, and 

Vainberg (2006) show that implied beta can be extracted from option prices without 

using this new derivative. The beta in their model is computed using forward-looking 

variances and the skewnesses of the stock and the market. However, the main limitation 

in their approach is the internal conflict between the assumption of the CAPM where 

returns of the stocks follow a multivariate normal distribution, and the existence of 

skewness in stock returns. Furthermore, their approach does not generate the unique 
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implied beta in that an implied beta can be obtained by using kurtosis (or any moment), 

which can differ from the one obtained by using skewness. Because of these problems, 

we simply estimate expected market betas by regressing option-implied returns of the 

underlying stock on option-implied returns of the market index, the Standard & Poor‘s 

500 Index. 

 Option-implied monthly returns for a total of 4,078 stocks are obtained over the 

period January 1996 through April 2006. One feature of our implied returns is that it 

portrays how investor expectations differ for different investment horizons. We find that 

there is apparently a downward sloping term structure of implied returns. That is, the 

longer the investment horizon, the smaller the expected return. The term structures of 

implied volatility and implied market beta are also downward sloping.
6
 

In month-by-month, cross-sectional regressions of ex ante implied returns on 

implied market betas, which is an ex ante version of the CAPM test, we find that there 

is a significantly positive relation between these two ex ante variables. Even though 

firm characteristics such as firm size, book-to-market, and momentum are included in 

the model, this positively significant relation is strongly maintained. We also examine 

whether implied market betas have explanatory power for ex post realized stock returns 

and find that implied market betas are significantly priced. Since there is apparently a 

non-constant term structure of expected returns, we repeat the cross-sectional asset 

pricing tests for each maturity group. In all maturity groups, we find results similar to 

those obtained from using the whole sample. 

                                                 
6
 The downward sloping term structure of volatilities is well documented in the literature.  See Hull 

(2002). 
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Since we have implied returns with various investment horizons at a given 

time, it is possible to compute forward-implied returns and betas and to examine cross-

sectional relations between these two forward variables. We find that forward-implied 

returns also have a positive and significant relation with forward market betas. 

Another way to test whether our CSR estimate of ex ante market risk premium 

has economic significance is to examine whether the ex ante market risk premia 

estimate contains forward-looking information on macroeconomic conditions. We find 

that the ex ante market risk premium has a significant positive relation with the future 

default premium. And, it has a significant negative relation with future dividend yield 

and a generally negative relation with the future growth of real economic activity as 

measured by consumption, GDP, and labor income. These results indicate that as more 

cash flows (from more dividends and expanding real economic activity) are expected in 

the future, the stock price level increases and then the subsequent ex ante expected 

return is lowered. In sum, the ex ante market risk premium contains significant forward-

looking information on future macroeconomic conditions. When the implied market 

returns (from S&P 500 Index options) are used instead of the ex ante market risk 

premium estimate, we obtain stronger but similar results. However, when the CRSP 

value-weighted market returns are used in the regression, we find that the realized 

market returns have no significant forward-looking information on future 

macroeconomic conditions. 
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5.2 A Model for the Forward-Looking Implied Return and Volatility 

As mentioned in the previous section, in order to test the CAPM on a true ex ante basis, 

we need an option pricing model that contains expected return and market beta and at 

the same time is consistent with the CAPM to be tested. While the seminal Black-

Scholes model is consistent with the standard CAPM [see page 645 in Black-Scholes 

(1973)], it is well-known that the Black-Scholes model contains only the volatility of 

the stock.
7
 As a result, we must derive an option pricing model that contains the 

parameters desired and is also consistent with the Black-Scholes model and the standard 

CAPM. 

Black and Scholes (1973) first showed that if continuous rebalancing is 

possible then the expected return will be replaced by the risk-free rate as continuous 

rebalancing effectively removes any risk in option prices (known as no arbitrage 

trading).  Furthermore, they demonstrated that their model is consistent with the CAPM 

over the infinitesimal time period. In this paper, we derive the option pricing model 

under the standard CAPM where there is no rebalancing before maturity and the return 

period is not infinitesimal. Note that if either assumption holds (i.e., continuous 

rebalancing is permitted, or the return period is infinitesimal), our option pricing model 

reduces to the Black-Scholes model. We shall note that our option pricing model is 

consistent with the standard CAPM only.  If one tests other versions of the CAPM, then 

different option pricing models must be derived.  For example, if one tests the CAPM 

under random volatility, then one must extend the Heston model (1993) to derive an 

option pricing model with the expected return. 

                                                 
7
 Volatility is the only unknown in the Black-Scholes equation. 
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We derived risk-adjusted pricing equations in chapter 3. For ease of exposition 

we will restate the propositions in this chapter. However, for detail derivations, readers 

are requested to look in appendix of chapter 3. We show several propositions required 

to compute the implied return and implied volatility. Our objective is not to price 

options as the Black-Scholes model does, but to have a closed-form solution in which 

the expected risk-adjusted return is retained. Using this framework, we jointly estimate 

implied return and implied volatility through the market prices of options.  Proposition 

1, below, describes how the implied mean return and volatility can be simultaneously 

estimated from option prices. 

Proposition 1: 

Assume stock price S follows a geometric Brownian motion with an expected 

instantaneous return of 𝜇𝑠 and volatility of 𝜎𝑠. Let a call option on the stock at any point 

in time t be given by 𝐶(𝑆, 𝑡) that matures at time T. Let 𝜇𝑐  be the expected 

instantaneous return on this option. Then for a small interval of time, Δt, the relationship 

between the expected returns on the underlying stock and the option, 𝜇𝑠 and 𝜇𝑐 , can be 

given by:
8
 

(1) 𝜇𝑐  =  𝑟𝑓 +  𝛽𝑐𝑠 𝜇𝑠 − 𝑟𝑓                                                           

where 

(2) 𝛽𝑐𝑠 =  
Cov  𝑟𝑐 ,𝑟𝑠 

Var  𝑟𝑠 
,                                                                          

                                                 
8
 The notations used for the variables are optimized for presenting the story in this chapter independent of 

other chapters. However, the notations could be different from other chapters. Therefore we explain each 

notation as and when they are introduced. 
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and 𝑟𝑠 = 𝛥𝑆/𝑆 and 𝑟𝑐 = 𝛥𝐶/𝐶 are two random variables representing the stock return 

and call option return, respectively, over the period Δt. And, 𝑟𝑓  is the instantaneous risk-

free rate of return for the period Δt. Note that Proposition 1 can be proved without 

assuming the CAPM. Also, note that all returns and volatility are annualized, otherwise 

mentioned.  

Proof: See chapter 3 appendix 3.A.1.1.
9
 

If the CAPM holds, then the expected returns on the underlying stock and call 

option are expressed, respectively, as: 

(3) 𝜇𝑠 =  𝑟𝑓 +  𝛽𝑠 𝜇𝑚 − 𝑟𝑓   and 

            𝜇𝑐 =  𝑟𝑓 +  𝛽𝑐 𝜇𝑚 − 𝑟𝑓 ,                                                       

where 𝜇𝑚  is the instantaneous expected return on the market portfolio, and 𝛽𝑠 and 𝛽𝑐  

are the market betas of the underlying stock and the call option, respectively, which are 

defined as: 

 𝛽𝑠  =  
Cov  𝑟𝑠 ,𝑟𝑚  

Var  𝑟𝑚  
    and 

 𝛽𝑐 =  
Cov  𝑟c ,𝑟𝑚  

Var  𝑟𝑚  
. 

Thus, it can be seen that 

(2a)  𝛽𝑐𝑠 =  
𝛽𝑐

𝛽𝑠
.                                                                              

                                                 
9
 Chapter 3 Appendix 3.A.2.1 provides a similar derivation for put options.   



106 

 

 

 

Equation (1) holds for a small interval of time Δt. We assume the distributions 

of stock and option returns, 𝑟𝑠 and 𝑟𝑐 , are both Gaussian and stationary over the life of 

the option. This implies that 𝛽𝑐𝑠  is constant over this period. Since our approach is to 

price the option in a discrete setting, we approximate 𝛽𝑐𝑠  over the discrete time from t to 

T as: 

(2b) 𝛽𝑐𝑠
∗ =  

Cov  𝐶𝑇 𝐶𝑡 , 𝑆𝑇 𝑆𝑡  

Var  𝑆𝑇 𝑆𝑡  
  

                    =    
𝑆𝑡

𝐶𝑡
  

Cov  𝐶𝑇 , 𝑆𝑇 

Var  𝑆𝑇 
 . 

The linear relation between 𝜇𝑠 and 𝜇𝑐  in discrete time is the same as in 

continuous time when 𝑟𝑠 and 𝑟𝑐  are stationary over the life of the option. Since we use 

the risk-adjusted model for pricing the option where the expectation of the pricing 

kernel is based on the entire life of the option, 𝛽𝑐𝑠
∗  as given in equation (2b) is more 

appropriate for our equations. 

Equation (1) in continuous time and equation (2b) in discrete time can also be 

proved using the CAPM. For these two equations to hold, however, it is not necessary 

that the CAPM should hold. The assumptions of the CAPM are much stronger, so that 

all return distributions are stationary. However, here we need only the stationarity and 

Gaussian distribution assumption of the stock and option returns to obtain these two 

equations. Hence, the stationarity assumption of 𝑟𝑠 and 𝑟𝑐  is weaker than what is needed 

for the CAPM. Furthermore, Galai (1978) demonstrates many similarities between the 

continuous time and discrete time properties of 𝑟𝑐  that support our stationarity 
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assumption for the return distribution.
10

 We also note that the right hand side of 

equation (2b) is a close approximation of 𝛽𝑐𝑠  under the stationarity of 𝑟𝑠 and 𝑟𝑐  .  

 

Proposition 2: 

Under the physical measure, the risk-adjusted price of the call option over the discrete 

time period from t to T is given by: 

(4) 𝐶𝑡 =  𝑒 𝜇𝑠−𝑟𝑓  1−𝛽𝑐𝑠  𝑇−𝑡  𝑆𝑡𝑁 ℎ1 − 𝑒−𝜇𝑐 𝑇−𝑡  𝐾 𝑁 ℎ2 ,                           

where K is the strike price of the option, N(∙) is the standard normal probability density 

function, and 

𝜇𝑐 = 𝑟𝑓 + 𝛽𝑐𝑠(𝜇𝑠 − 𝑟𝑓) 

ℎ1 =  
𝑙𝑛 𝑆𝑡 − 𝑙𝑛𝐾 +   𝜇𝑠 + 𝜎𝑠

2 2   𝑇 − 𝑡 

𝜎𝑠 𝑇 − 𝑡
 

ℎ2 =  ℎ1 − 𝜎𝑠 𝑇 − 𝑡 . 

Proof: See chapter 3 section 2. 

Equation (4) is obtained based on the assumption that the expected return of the 

option, 𝜇𝑐 , the expected return of the stock, 𝜇𝑠, and the volatility of stock price, 𝜎𝑠, are 

constants. We approximate 𝛽𝑐𝑠   by  𝛽𝑐𝑠
∗ , based on the discrete time period of the option 

                                                 
10

 Note that our assumption of stationarity of 𝑟𝑠  and 𝑟𝑐  is applicable only to the options with the same 

days-to-maturity. This means that the distributional properties of 𝑟𝑠  and 𝑟𝑐  are allowed to differ for 

different days-to-maturity. 
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from t to T as explained above. Furthermore, we assume that the stock price follows a 

geometric Brownian motion.  

 

Proposition 3: 

The ratio of the market beta of the stock to the option, 𝛽𝑐𝑠
∗ , over the life of the option 

can be written as: 

  5             𝛽𝑐𝑠
∗  =   

𝑆𝑡  𝑒𝜎𝑠
2 𝑇−𝑡  𝑁 ℎ3 −  

𝐾
𝑆𝑡

 𝑒−𝜇𝑠 𝑇−𝑡  𝑁 ℎ1 − 𝑁 ℎ2  − 𝑁 ℎ1  

𝐶𝑡 𝑒𝜎𝑠
2 𝑇−𝑡 −  1 

,        

where 

ℎ3  =  
𝑙𝑛 𝑆𝑡 − 𝑙𝑛 𝐾 +  𝜇𝑠 + 3

2
 𝜎𝑠

2  𝑇 − 𝑡 

𝜎𝑠 𝑇 − 𝑡
. 

Proof:  See chapter 3 appendix 3.A.1.2.
11

 

  Substituting equations (1), (2b), and (5) into (4), we arrive at an option pricing 

model as a function of the known variables 𝑆𝑡  (current stock price), 𝐶𝑡  (current call 

option price), K (strike price), 𝑟𝑓  (risk-free interest rate), and T-t (time to maturity), 

along with two unknown variables, 𝜇𝑠 and 𝜎𝑠 .  If we observe two or more call option 

prices with the same days-to-maturity but different strike prices, we can simultaneously 

solve the option pricing model for 𝜇𝑠 and 𝜎𝑠 for each individual stock and days-to-

                                                 
11

 Appendix 3.A.2.2 provides the corresponding derivation for put options.   
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maturity.
12

 Through this approach, for each stock, we obtain different 𝜇𝑠 and 𝜎𝑠 pairs 

for different days-to-maturity. Similarly, we can estimate the market expected return 

(𝜇𝑚 ) and market volatility (𝜎𝑚 ) using S&P 500 Index call options. 

Note that the implied return here indicates investors‘ forward-looking ex ante 

expected return of the stock over the period from the current time, t, to the maturity 

date, T. We therefore obtain different implied returns and volatilities for different 

maturities at a given trade date, t. This is consistent with investor expectations of return 

and volatility, which could differ according to their investment horizon. 

 

5.3 Data  

In order to extract forward-looking information on implied return and volatility from 

option trading prices, we obtain daily close transaction data of the options of individual 

stocks listed on NYSE, NASDAQ, and AMEX from OptionMetrics for the last trading 

day of each month for the period from January 1996 to April 2006. This data file 

contains CUSIP, trade date, strike price, offer price, bid price, trading volume, option 

open interest, Black-Scholes implied volatility, and maturity date for each option. This 

data set also contains the daily closing data of S&P 500 Index options. 

For the corresponding stocks whose option data are available, we obtain daily 

stock prices and returns from the CRSP. To match the stock price with option records, 

we use the CUSIP and trade date of the stock. A total of 4,078 stocks are found to have 

                                                 
12

 With prices for options with more than two strike prices, we can find values for 𝜇𝑠 and 𝜎𝑠 that produce 

option prices closest to the observed prices in the least squares sense.  A similar least-squares 

methodology is used by Melick and Thomas (1997). 
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both option and stock price data. We also obtain information of firm characteristics, 

such as firm size and book-to-market, from CRSP and Compustat. 

For the risk-free interest rates, we use the St. Louis Fed‘s 3-month, 6-months, 

1-year, 2-year, 3-year, and 5-year Treasury Constant Maturity Rates. Assuming a step-

function of interest rates, we match the days-to-maturity in the option record with its 

corresponding constant maturity rate. For example, if the days-to-maturity of the option 

is less than or equal to 3 months, we use 3-month rates, and if the days-to-maturity is 

between 3 months and 6 months, we use the 6-month rate, and so on. 

 

5.4 Computation of the Implied Return, Volatility, and Market Beta 

We jointly estimate implied mean return (or implied return) and implied volatility of the 

underlying stock, 𝜇𝑠 and 𝜎𝑠, by using the risk-adjusted option pricing model through 

equations (4) and (5). At a given trade date (i.e., the last trading day of each month), we 

obtain the market prices of only near-the-money call options with same maturity date 

but different strike prices. We define the near-the-money option as any option whose 

ratio of stock price to strike price  𝑆𝑡 𝐾   falls between 0.9 and 1.3. By using all these 

options, we compute the implied return and implied volatility via a method of grid 

search to look for global optima that minimizes the error square. The error is defined as 

the difference between the observed option price and the right hand side of equation (4) 

using market observed values along with implied return and implied volatility. For the 

grid search, we set the implied return search range from 0 to 175.00 percent, and the 

implied standard deviation search range from 0 to 100 percent. The reason we take only 
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near-the-money options is to minimize the effect of measurement error in estimating 

implied returns and volatilities, since measurement error could be caused by failing to 

adjust for jumps and the stochastic behavior of volatilities, such as the volatility smile, 

which are observed in deep-out-of-money options.
13

 Options with zero trading volume 

are excluded. Put options are not used only because our models are designed for call 

options. 

We use the closing bid/ask mid-point as the closing American option price. The 

option dataset also has the Black-Scholes implied volatility adjusted for any stock 

dividends during the life of the option. Using this information along with interest rates, 

we reverse to compute the corresponding European option price. If the computed 

European option price is higher than the American option price, we take the American 

option price as the option price. Otherwise, we take the European price as the option 

price. Our results are based on the last trading day observations of option prices of each 

calendar month. Taking any other day of the month produces similar results. For 

example, we verify our results by taking the first working day, second Thursday, and 

third Friday of each month. The results are qualitatively similar. 

Since one pair of the estimated implied return and volatility is obtained for each 

maturity and there are several different maturity dates at a given trade date, we obtain 

several sets of implied return and volatility pairs at a given trade date. That is, we obtain 

term structures of implied returns and implied volatilities of a stock at a given date. 

                                                 
13

 According to Canina and Figlewski (1993), measurement errors may also be systematically affected by 

time-to-maturity, even though there are no jumps and stochastic behavior of volatilities. To mitigate these 

errors, options with the same maturity are used to compute implied return and implied volatility. 
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Similarly, at a given trade date, we also obtain similar term structures for S&P 500 

Index options. 

If there are no such market index options available at a given trade date, we 

interpolate the value of market implied return and volatility using other days-to-

maturity information of the market index options. For example, suppose that for a 

particular trade date, we have three different implied market returns corresponding to 

three different days-to-maturities: 90 days, 120 days, and 150 days. For the implied 

return of an underlying stock whose option has 140 days to maturity, the corresponding 

market implied return will be obtained from a linear interpolation using the market 

implied returns of 120 days and 150 days. If days-to-maturity of stock implied return is 

more than 150 days, the corresponding market implied return will be the market implied 

return of 150 days. Therefore, there is one-to-one correspondence between the implied 

return of an underlying stock and the market implied return. Hence, we obtain the 

matched implied market returns and implied stock returns. 

 Since options whose payoffs are determined by the correlation between the 

underlying stock and the market portfolio do not exist, it would be difficult to directly 

extract information regarding implied market betas like the implied mean return. 

Therefore, we estimate implied market betas of an underlying stock by regressing 

implied returns of the stock on implied market returns. 
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5.5 Empirical Results 

5.5.1 Basic Statistics of the Implied Variables 

Table 1 presents the basic statistics of the three key implied variables of all pooled 

sample obtained from all 4,078 firms‘ individual stock call options over the period from 

January 1996 to April 2006: implied return, 𝜇𝑖 , implied volatility, 𝜎𝑖 , and implied beta 

estimate, 𝛽 𝑖
imp

. Note that for the implied variables of individual stock options, now we 

use subscript i instead of s. These implied variables are computed from the option prices 

observed at the last trading day of each month. The total number of firm-month 

observations is 179,048. Days to maturity of the sample ranges from 3 days to 1,027 

days. 𝜇𝑖  and 𝜎𝑖  are implied instantaneous return (or continuously compounded return; 

CCR) and volatility, respectively. As seen in Table 1, the number of firm-year 

observations is much greater for short-term options than for long-term options.
 14

 This is 

because the near-the-money options of most of the stocks are actively traded on short 

maturities. 

Table 1 shows that implied return decreases with maturity; that is, the term 

structure of implied returns is apparently downward sloped. Specifically, when days to 

maturity are less than or equal to 30 days (0 < 𝑇 ≤ 30), between 30 and 60 days (30 < 

T ≤ 60), between 60 and 120 days (60 < T ≤ 120), between 120 and 210 days (120 < T 

≤ 210), and longer than 210 days (T > 210), the averages of implied returns are 0.538, 

0.336 0.243, 0.178, and 0.122, respectively. The average of the whole implied returns is 

                                                 
14

 Among these, the numbers of firm-month observations whose days to maturity are between 0 and 30 

days, between 30 and 60 days, between 60 and 120 days, between 120 and 210 days, and longer than 210 

days are 47863, 41838, 31188, 34171, and 23988, respectively. 
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0.315. This indicates that investors have high expectation in a short-term horizon, while 

they are more subdued and hold more reasonable expectation in a long-term horizon. In 

previous chapters we show that this downward term structure is robust to market 

friction proxies such as option volume, open interest, and bid-ask spread. Furthermore, 

this term structure is found for both European and American option prices.
15

 Our 

findings on this term structure indicate that expected returns are affected by investment 

time horizon. These findings are consistent with McNulty et al. (2002). They argue that 

shorter-horizon investments should be discounted at a higher rate and that the marginal 

risk of an investment declines as a function of the square root of time. This falling 

marginal risk should be reflected in the annual discount rate for longer-horizon 

investments. A recent paper by Camara et al. (2007) also shows the similar result that 

short-term expected returns are higher than long-term expected returns when using 

market-observed option prices.
16

 

Implied volatility also shows a downward sloping term structure. That is, 

implied volatility is higher for a shorter maturity than for a longer maturity. However, 

                                                 
15

 This downward sloping term structure of the implied returns is also found in deep-in-the-money call 

options. We separately estimate implied returns and volatilities by using deep-in-the-money call options 

where stock price divided by strike price is greater than 1.20 and deep-out-of-the-money call options 

where stock price divided by strike price is less than 0.90. In both cases, we obtain a similar downward 

term structure of implied returns (not reported). 

 
16

 However, there are at least two differences between our approach and theirs. First, they assume a 

specific utility structure for the representative agent such that the marginal utility of wealth of the 

representative investor is: 
'( )T TU W W    

where  and  are risk aversion parameters.
 

Based on this utility structure, they show that their option pricing equation contains implied stock return 

as one of the parameters to be estimated. Our approach instead uses a risk-adjusted version of option 

pricing with no explicit assumption about the utility structure. Second, their approach requires an 

intermediate parameter that needs to be computed using options of all companies, before computing the 

implied return of any individual firm. On the other hand, our model does not need information about 

other companies to compute the expected return and volatility. Our model jointly computes implied 

volatility using all stock options and S&P 500 Index options.  
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the decreasing rate of the slope over days-to-maturity is smaller than the case of implied 

returns. The averages of the implied standard deviations are 0.515, 0.497, 0.474, 0.456, 

and 0.423 over the above-mentioned five intervals of maturity, respectively. 

Since we observe a downward sloping term structure of implied returns and 

volatilities, the risk-return structure differs across maturities (or investment horizon). It 

is appropriate, therefore, that implied returns be matched with implied market betas in 

the tests, which are both in the same maturity group. As mentioned above, we classify 

the whole sample into five maturity groups: 0 < 𝑇 ≤ 30, 30 < T ≤ 60, 60 < T ≤ 120, 

120 < T ≤ 210, and T > 210. In each maturity group, implied betas are estimated by 

regressing implied returns of an underlying stock on implied market returns over the 

whole period contained in the maturity group. For any stock, therefore, there can be up 

to five implied betas according to the availability of implied returns. Since the CAPM is 

a one-period model, holding period return (HPR) should be used in the tests. Thus, 

implied HPRs are used in estimating implied market betas, 𝛽 𝑖
imp

, instead of CCRs. 

Implied HPR is computed as 𝑒𝜇 − 1, where μ is implied CCR. The implied beta also 

shows a similar downward pattern across maturities. The averages of the implied beta 

over the five maturity groups are 1.146, 0.959, 0.542, 0.530, and 0.467, respectively. 

The longer is the investment horizon, the smaller is the beta. These results are 

somewhat consistent with Levhari and Levy (1977), who show theoretically that market 

beta is a function of investment horizon. 

Table 1 also reports the correlation coefficients between the implied variables 

and their historical counterparts. Using the whole pooled sample, the correlation 
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coefficient (ρ
μ,r 

) between the implied return (μ) and its historical counterpart 

(annualized CCR of the underlying stock over the option life, (r )) is 0.100. There is no 

particular pattern in this correlation coefficient across the five maturity groups. The 

correlation coefficient (ρ
σ,s

) between the implied volatility (σ) and its historical 

counterpart (annualized sample standard deviation over the option life is 0.695, and the 

correlation coefficient (ρβ,β ) between the implied beta (β) and its historical market beta 

(Scholes-William‘s (1977) beta estimate using daily returns over the option life) is 

0.114. The correlation coefficients, ρσ,s and ρβ,β , tend to increase with length to 

maturity, which indicates that implied volatility and beta could be more informative in 

predicting their historical counterparts. 

 Table 2 presents the basic statistics of the implied variables of the market index 

option, S&P 500 Index call option. The number of firm-month observations of the 

market-implied variables is exactly matched with the number of observations of 

individual stock options. The term structure of the implied market returns is also 

apparently downward across investment horizons, although its slope is less steep than 

the case of implied returns for individual stocks. The averages of the implied market 

return and standard deviation are 0.169 and 0.202, respectively, using the whole pooled 

sample. These are much smaller in magnitude than those of individual stock options. 

The term structure of the volatility of S&P 500 Index option is almost flat. 
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5.5.2 Cross-Sectional Regression Tests Using Ex-Ante Implied Returns and 

Implied Betas 

As mentioned above, the forward-looking implied variables obtained from option prices 

can be used as investors‘ ex ante expectation on the risk and return. In this sense, 

implied return and implied beta are the most plausible proxies for ex ante return and 

risk. By using the computed implied returns and betas, we examine the ex ante risk–

return relationship by using the classical Fama and MacBeth methodology. In order to 

do this, we estimate the following cross-section regression (CSR) model at month t, 

(6) μ
𝑖,[𝑡,𝑇]

− 𝑟𝑓,[𝑡,𝑇] = 𝛾0𝑡 + 𝛾1𝑡𝛽 𝑖𝑡
imp

+ 𝛤𝑡   Control variables + 𝜀𝑖𝑡 ,               

where μ
𝑖,[𝑡,𝑇]

 is the implied annualized HPR on underlying stock i over the option life 

([t, T]) from the last trading day of month t to maturity T, and 𝑟𝑓,[𝑡,𝑇] is the Treasury bill 

annualized holding period yield over the period [t,T]. In fact, μ
𝑖,[𝑡,𝑇]

 is the expected 

return over the period from the first trading day of month t+1 to the maturity, T. 𝛽 𝑖𝑡
imp

 is 

the OLS implied beta estimate of stock i obtained from regressing implied HPRs of 

stock i on implied market HPRs over the whole period in each maturity group. The 

control variables used in the CSR tests are firm characteristics such as firm size, book-

to-market, and momentum (past six-month returns), which are the variables for the 

widely known market anomalies that the CAPM fails to explain. 

 Table 3 shows the CSR estimation results of equation (6) over the period from 

January 1996 to April 2006. The upper panel presents time series averages of the 

gammas (or the risk premium estimates) with implied market beta alone in the model, 
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and the bottom panel presents those of the full model including the control variables. 

The estimates of the risk premium (γ  1) are positively significant regardless of the 

inclusion of the control variables. When the implied market beta is alone in the model, 

the risk premium estimate is 11.30 percent per year (with t-statistic of 13.67), using the 

whole sample. Its significance is also maintained in each maturity group, although it is 

weakened. That is, the risk premium estimates are 6.12 percent (t=7.43), 2.45 percent 

(t=5.09), 0.75 percent (t=1.89), 0.57 percent (t=1.73), and 1.06 percent (t=4.18), 

respectively, in the five maturity groups. However, the intercept estimates are strongly 

positive in all cases, which means that the implied ex ante returns may not be fully 

explained by the implied market beta. The large positive intercept estimates may be 

from a large value of the implied mean returns. 

Even when the control variables (firm size, book-to-market, and momentum) 

are added to the model, the estimates of the risk premium are even more positively 

significant; using the whole sample, it is 12.31 percent (t=14.80). The risk premium 

estimates in the five maturity groups are 5.10 percent (t=5.95), 3.53 percent (t=7.32), 

1.93 percent (t=4.83), 1.98 percent (t=5.68), and 2.03 percent (t=6.72), respectively. 

The above results indicate that the implied market beta has a significant explanatory 

power for ex ante expected returns in all maturity groups. 

 Table 3 also presents the estimation results on the control variables. The CSR 

coefficient estimates on the firm size variable (log(ME)) are all negative and 

statistically strongly significant. That is, investors have high (low) ex ante expected 

returns on small (large) firms. The CSR coefficient estimates on the book-to-market 

variable (log(BM)) are all negative and statistically significant, which implies that 
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investors have high ex ante expected returns on low book-to-market stocks, while they 

have low ex ante expected returns on high book-to-market stocks. These results are 

consistent with the Lakonishok, Shleifer, and Vishny (1994) explanation that low book-

to-market stocks are in fact growth stocks whose ex ante expected return tends to be 

high. The opposite holds for high book-to-market value stocks. The CSR coefficient 

estimate on the momentum variable (annualized past six-month return) is overall 

insignificant, which implies that investors may not have an a priori, ex ante expectation 

based on past intermediate-term stock performance. These ex ante results on momentum 

are interesting because they contrast with the ex post results in which the presence of 

momentum is significant.
17

 

 

5.5.3 Cross-Sectional Regression Tests Using Ex-Ante Implied Betas and Realized 

Returns 

In order to examine whether implied betas explain the cross-section of realized ex post 

returns, we also cross-sectionally regress realized ex post returns on the implied betas 

and the control variables. The CSR model to be estimated at month t is given by: 

(7) 𝑅𝑖,[𝑡,𝑡+𝐻] − 𝑟𝑓,[𝑡,𝑡+𝐻] = 𝛾0𝑡 + 𝛾1𝑡𝛽 𝑖𝑡
imp

+ 𝛤𝑡   Control variables + 𝜀𝑖𝑡 ,                  

where 𝑅𝑖,[𝑡,𝑡+𝐻] is the ex post HPR of an underlying stock i over the period H (i.e., from 

one day after the last trading day of month t to H days after the last trading day of 

month t), and 𝑟𝑓,[𝑡,𝑇] is the Treasury bill annualized holding period yield over the 

                                                 
17

 The above results on the control variables are also similar when each of the control variables is alone in 

the CSR model. 
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corresponding measurement period 𝑅𝑖,[𝑡,𝑇]. We consider two different holding periods, 

H. The first holding period is up to maturity (H=T), which means that investors invest 

in each stock at the last trading day of every month according to the value of the 

implied betas and hold the stock until the option maturity date. The second holding 

period is one month (H=one month), which means that investors invest in each stock at 

the last trading day of each month according to the value of the implied betas and hold 

each stock for one month. Thus, the investment period overlaps in the first scheme, 

while it does not overlap in the second scheme. 

 Table 4 presents the time series averages of the CSR coefficients (γ  ) of equation 

(7) when the holding period is up to the maturity (in Panel A; 𝑅𝑖,∙ is annualized retutn) 

and up to one month (in Panel B; 𝑅𝑖,∙ is monthly return), respectively. Panel A shows 

that implied market betas have cross-sectionally significant explanatory power for 

average realized returns over the option life. That is, the coefficient estimate (γ  1) on the 

implied betas is 9.49 percent per year, with t-statistic of 8.44, using the whole sample. It 

is also positive and statistically significant in all maturity groups except for the shortest 

maturity group. That is, it is 1.61 percent (t=1.27), 5.75 percent (t=3.68), 6.35 percent 

(t=3.71), 6.50 percent (t=3.89), and 10.67 percent (t=4.36), respectively, for the five 

maturity groups. Even when the three control variables are added to the model, the risk 

premium estimates are more strongly significant. They are 12.11 percent (t=9.72) for 

the whole sample, 3.06 percent (t=2.22), 7.43 percent (t=4.89), 6.95 percent (t=3.60), 

13.21 percent (t=6.74), and 15.04 percent (t=6.46), respectively, for the five maturity 

groups. 
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Panel B of Table 4 also presents the time series average of the gammas when 

the holding period is one month. The results indicate that implied market betas also 

have a significant explanatory power for the cross-section of average realized returns 

over the next 1-month period. That is, the coefficient estimate (γ  1) on the implied betas 

is 0.21 percent per month, with t-statistic of 2.74, using the whole sample. It is also 

positive and statistically significant in all maturity groups except for the shortest 

maturity group; -0.02 percent (t=-0.43), 0.25 percent (t=2.01), 0.32 percent (t=2.15), 

0.65 percent (t=2.17), and 0.99 percent (t=1.91), respectively, for the five maturity 

groups. Even when the control variables are added to the model, the risk premium 

estimates are more strongly significant. The intercept estimates are insignificant in all 

cases. 

Table 4 also presents the CSR estimation results of ex post realized returns on 

the control variables. The CSR coefficient estimates on the firm size variable are also 

negative and statistically significant, as ex ante expected returns are used. It could be 

argued, therefore, that investors‘ ex ante expected return based on firm size tends to be 

realized as expected. However, investors‘ ex ante expectation based on book-to-market 

and momentum tends to be realized differently from their expectation. That is, the CSR 

coefficient estimates on the book-to-market variable are overall positive and marginally 

significant, which is opposite when ex ante expected returns are used. The CSR 

coefficient estimates on the momentum variable are positive and significant, which 

means that momentum does not exist a priori but appears significant a posteriori. Note 

that even when each of the control variables is alone in the model, the estimated 

coefficients on the control variable are similar. 
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5.5.4 Forward Relationships Between Ex-Ante Implied Betas and Implied Ex-Ante 

Returns 

Since implied returns and volatilities observed at any given time have a variety of 

maturities (from short to long), it is possible to compute forward-implied returns and 

volatilities for an underlying stock. That is, the forward-implied return, observed at time 

t, on an underlying stock over the forward period [𝑇1, 𝑇2] is computed as: 

(8) 𝜇𝑡,[𝑇1 ,𝑇2]
𝑓

 =  
𝜇 [𝑡 ,𝑇2] 𝑇2−𝑡 − 𝜇 [𝑡,𝑇1] 𝑇1−𝑡 

 𝑇2−𝑇1 
,                                        

where 𝜇[𝑡,𝑇1] and 𝜇[𝑡,𝑇2] are the implied (annualized) returns on the underlying stock over 

the option lives  𝑡, 𝑇1  and  𝑡, 𝑇2 , respectively. These implied returns are observed at 

time t (i.e., at the last trading day of each month), and 𝑇1 and 𝑇2 are the shorter and 

longer maturities of the option, respectively. Note that implied returns in equation (8) 

are CCRs, but their HPRs are used in estimating forward-implied betas and in the 

CAPM tests. Similarly, the forward-implied standard deviation over the forward period 

[𝑇1, 𝑇2] is computed as: 

(9) σ𝑡, 𝑇1 ,𝑇2 
𝑓

=   
σ 𝑡 ,𝑇2 

2  𝑇2−𝑡 − σ 𝑡,𝑇1 
2  𝑇1−𝑡 

 𝑇2−𝑇1 
,                                       

where σ[𝑡,𝑇1] and σ[𝑡,𝑇2] are the implied standard deviations of the underlying stock over 

the option lives  𝑡, 𝑇1  and  𝑡, 𝑇2 , respectively. When there are more than two options 

with different maturities at a given time, say, 𝑇1, 𝑇2, and 𝑇3, we compute the forward-
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implied variables over nonoverlapped forward periods, such as over the periods  𝑇1, 𝑇2  

and  𝑇2, 𝑇3 , not  𝑇1, 𝑇3 . 

 Table 5 presents the basic statistics of the forward-implied returns, standard 

deviation, and betas. Note that forward-implied betas are estimated by regressing the 

forward-implied HPRs of an underlying stock on the forward-implied market HPRs in 

each forward period length group over the whole sample period. Forward period length 

groups are classified as four groups: 0 <  𝑇1, 𝑇2  ≤ 30, 30 <  𝑇1, 𝑇2  ≤ 90, 90 <  𝑇1, 𝑇2  ≤ 

120, and  𝑇1, 𝑇2  > 120 days. As shown in Table 5, the forward-implied return also 

decreases with the length of the forward period; that is, the term structure of forward-

implied returns is downward shaped, although its slope is slower than that of the 

implied returns. The forward-implied volatility and forward-implied beta estimates also 

show a modestly downward term structure across the length of the forward period. 

 It would be interesting to examine whether there is a positive forward relation 

between ex ante expected returns and betas. To do this, we estimate the following CSR 

model at month t, 

(10) 𝜇𝑖𝑡 ,[𝑇1 ,𝑇2]
𝑓

 − 𝑟𝑓𝑡 ,[𝑇1 ,𝑇2] = 𝛾0𝑡
𝑓

+ 𝛾1𝑡
𝑓
𝛽 𝑖𝑡

𝑓,𝑖𝑚𝑝
+ 𝜀𝑖𝑡 ,                                       

where 𝜇𝑖𝑡 ,[𝑇1 ,𝑇2]
𝑓

 is the implied forward annualized HPR on underlying stock i over the 

forward period [𝑇1, 𝑇2], 𝑟𝑓𝑡 ,[𝑇1 ,𝑇2] is the Treasury bill annualized holding period yield 

over the same forward period, and 𝛽 𝑖𝑡
𝑓,𝑖𝑚𝑝

 is the forward-implied estimate of stock i 

obtained from regressing forward-implied HPRs of stock i on forward-implied market 
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HPR returns over the whole sample period; both forward returns are contained in each 

forward period length group. 

 Table 6 reports the time series averages of the gamma estimates of equation 

(10), which are the forward risk premium estimates (𝛾 0𝑡
𝑓

 and 𝛾 1𝑡
𝑓

); these are positively 

significant in all cases. Using the whole forward sample, the forward market risk 

premium estimate is 1.88 percent per year (with t-statistic of 5.42). This positive 

significance holds regardless of the length of the forward period. That is, the forward 

market risk premium estimates are 1.12 percent (t=2.41), 0.75 percent (t=1.87), 1.05 

percent (t=2.70), and 1.58 percent (t=4.16), respectively, for the four forward period 

length groups. 

 

5.5.5 Do the Ex-Ante Market Risk Premia Estimates Contain the Forward-

Looking Information of Macroeconomic Conditions? 

Investors‘ ex ante returns reflect their forward-looking expectation for individual stocks 

and the market as a whole. Therefore, another way to test whether our CSR estimate of 

ex ante market risk premium (presented in Table 3) has an economic significance is to 

examine whether the ex ante market risk premium estimates contain forward-looking 

information on macroeconomic conditions. To do so, we regress the ex ante market risk 

premia estimate on the future macroeconomic variables. That is, we estimate the 

following time-series regression model: 
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(11)    𝛾 1𝑡 = 𝑏0 + 𝑏1TB𝑡+1,𝑡+𝐿 + 𝑏2TERM𝑡+1,𝑡+𝐿 + 𝑏3DEF𝑡+1,𝑡+𝐿 + 𝑏4DIV𝑡+1,𝑡+𝐿 +

𝑏5CONSUME𝑡+1,𝑡+𝐿 + 𝑏6GDP𝑡+1,𝑡+𝐿 + 𝑏7LABOR𝑡+1,𝑡+𝐿 + 𝜀𝑡 ,           

where 𝛾 1𝑡  is the estimate of ex ante market risk premium (i.e., the CSR coefficient 

estimates) at month t, TB𝑡+1,𝑡+𝐿 is the three-month Treasury bill yield from month t+1 

through month t+L (L is the number of months of the forward-looking period), TERM 

is the term spread defined as the difference between the yield on 10-year government 

bonds and the yield on the three-month Treasury bill, DEF is the default spread defined 

as the difference between the yield on Moody‘s BAA rated bonds and the yield on 

Moody‘s AAA rated bonds, DIV is the dividend yield on the value-weighted market 

index, CONSUME is the growth rate of personal consumption expenditures, GDP is the 

growth rate of GDP, and LABOR is the growth rate of personal labor income.
18

 The 

value of each macroeconomic variable is its geometric average (i.e., compounded value) 

over L forward-looking months from t+1 to t+L.
 19

 The sample period is from January 

1996 to April 2006. 

 Table 7 presents the regression estimation results of the ex ante market risk 

premium estimated using each maturity group on the future macroeconomic variables 

with L = 1 month (Panel A), L = 2 months (Panel B), L = 4 months (Panel C), and L = 6 

months (Panel D), respectively. The results apparently show that the ex ante market risk 

premium reflects the forward-looking information on future macroeconomic conditions. 

                                                 
18

 The dividend yield (DIV) is obtained by using the CRSP value-weighted market returns with and 

without dividends through the method in Fama and French (1988). 

 
19

 The minimum number of forward-looking months is one month. Over the last L months from the last 

sample period, therefore, we calculate the geometric average value of the macroeconomic variables by 

using the remaining observations up to the last month of the sample period. 
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The association between the ex ante market risk premium and the future 

macroeconomic variables becomes stronger with the length of the forward-looking 

period (L) and with the maturity of implied mean returns used in estimating the ex ante 

market risk premium. Specifically, the adjusted R-squares of equation (11) using all 

maturities are 0.329, 0.357, 0.432, and 0.454 for L = 1 month, 2 months, 4 months, and 

6 months, respectively. For a particular length of the forward-looking period, say L = 4 

months, (in Panel C), the adjusted R-squares are 0.201, 0.295, 0.247, 0.401, and 0.427 

for the maturities of 0 < 𝑇 ≤ 30, 30 < T ≤ 60, 60 < T ≤ 120, 120 < T ≤ 210, and T > 

210 days, respectively. These R-squares are quite high. 

 The ex ante market risk premium also has a significant forward-looking relation 

with individual macroeconomic variables. In all regressions (all 24 regressions), it has a 

strongly significant positive relation with future default premium (DEF). This indicates 

that investors‘ ex ante risk premium is proactively increased as the default premium will 

be increased in the future (at least one month through six months later). In turn, option-

implied returns contain important information about future defaults. The ex ante market 

risk premium also has a clear relation with future dividend yield (DIV). It has a strongly 

significant negative relation with DIV in most regressions. This indicates that as 

dividend yield increases in the future, the stock price level increases and the subsequent 

expected return (i.e., ex ante market risk premium) is lowered. The negative magnitude 

of the regression coefficients tends to decrease with the length of maturity. 

The ex ante market risk premium has generally negative relations with the 

future growth of real economic activity as measured by consumption, GDP, and labor 

income (CONSUME, GDP, and LABOR), although the estimated coefficients are not as 
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statistically significant as those on DEF and DIV. This indicates that as real economic 

activity is expected to be in expansion, the stock price level increases and then the ex 

ante market risk premium declines. The ex ante market risk premium is insignificantly 

related to future short-term interest rates (TB). This may be because the riskless rate of 

return is already adjusted in the market risk premium; however, it generally has a 

significant positive relation with future term structure (TERM). Since the coefficient on 

TERM can also be the coefficient on long-term interest rates (10-year Treasury bond 

yield), these results indicate that the ex ante market risk premium is positively 

associated with future long-term interest rates. 

In sum, the CSR estimates of the ex ante market risk premium are significantly 

associated with forward-looking economic conditions and are rationally consistent with 

our perception. These results support that the CSR estimates have economic 

significance as well as statistical significance. 

 Table 8 presents the estimation results of the time-series regression model of 

equation (11) by using the implied market returns (extracted from S&P 500 Index 

options) as the dependent variable, rather than the CSR estimates of the ex ante market 

risk premium. The results are stronger than but overall similar to those using the ex ante 

market risk premium estimates (Table 7), except for the results for future short-term 

interest rates (TB). The coefficient estimates on TB are mostly positively significant, 

which means that the ex ante market return increases with future short interest rates. In 

sum, implied market returns contain significant information on future macroeconomic 

conditions. In order to compare these ex ante results with ex post results, we regress the 

CRSP value-weighted market returns on the forward-looking economic variables. The 
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results are reported in Table 9. Most of the estimated coefficients are insignificant. The 

R-squares are quite low, compared with the R-squares from the regressions using the ex 

ante values. It is difficult to say that the realized market returns contain information on 

future macroeconomic conditions. 

 

5.6 Conclusion 

This chapter examines the CAPM relation on an ex ante basis. That is, we investigate 

the cross-sectional relation between ex ante expected returns and ex ante betas. As a 

proxy for ex ante expected returns, we use implied mean returns obtained from the risk-

adjusted option pricing model that we suggest in this paper. Ex ante betas are estimated 

by regressing implied returns of an underlying stock on implied market returns. 

We find that the ex ante cross-sectional relation between ex ante expected 

returns and betas is positive and statistically strongly significant. This significant 

relation is maintained regardless of the inclusion of the well known firm characteristics 

such as firm size, book-to-market, and momentum. Since there is an apparent 

downward term structure of implied mean returns and betas across investment horizons, 

we examine the ex ante relation in each maturity group and find there is still a strongly 

significant ex ante cross-sectional relation. We also find a significant positive forward 

relation between these two ex ante variables. 

In order to examine whether ex ante betas have explanatory power for realized 

ex post returns, we estimate cross-sectional regressions of realized returns on ex ante 
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betas and find that ex ante betas have a positive and statistically significant relation with 

ex post realized returns, regardless of the inclusion of the firm characteristics mentioned 

above. That is, ex ante betas are significantly priced in realized returns. 

 We also find an interesting difference between ex ante and ex post market 

anomalies such as firm size, book-to-market and momentum. Investors‘ ex ante 

expected return based on firm size tends to be realized as expected. However, investors‘ 

ex ante expectation based on book-to-market and momentum tends to be realized 

differently from their expectation. That is, investors‘ ex ante expected returns are 

negatively associated with book-to-market, but their realized returns are positively 

related with book-to-market. Investors‘ ex ante expected returns are not associated with 

past stock returns, but their realized returns are positively related with past stock 

returns.    

In order to test whether our CSR estimate of ex ante market risk premium contains 

forward-looking information on future macroeconomic conditions, we regress the ex 

ante market risk premia estimate on the future macroeconomic variables. We find that 

the ex ante market risk premium has a significant positive relation with future default 

premium. Further, it has a significant negative relation with future dividend yield and 

also has generally negative relations with the future growth of real economic activity as 

measured by consumption, GDP, and labor income. These results indicate that as more 

cash flows (from increasing dividends and expanding real economic activity) are 

expected in the future, the stock price level increases and then the subsequent ex ante 

expected return is lowered. In sum, the ex ante market risk premium contains significant 

forward-looking information on future macroeconomic conditions. When the implied 
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market returns (from S&P 500 Index options) are used instead of the ex ante market risk 

premium estimate, we obtain stronger but similar results. However, when the CRSP 

value-weighted market returns are used in the regression, we find that realized market 

returns contain no significant forward-looking information on future macroeconomic 

conditions. 
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Table 3: Time-Series Averages of Cross-Sectional Regressions of Ex Ante 

Implied Returns on Implied Beta Estimates  

 
This table presents the time-series averages (in percent, ×100) of the Fama-MacBeth month-by-

month cross-sectional regression coefficients:  

            μ
𝑖,[𝑡,𝑇]

− 𝑟𝑓,[𝑡,𝑇] = 𝛾0𝑡 + 𝛾1𝑡𝛽 𝑖𝑡
imp

+ 𝛤𝑡   Control variables + 𝜀𝑖𝑡 ,  

where μ
𝑖 ,[𝑡,𝑇]

 is the implied annualized holding period mean return on underlying stock i over the 

option life, measured at the end of each month (𝑡). 𝑟𝑓,[𝑡 ,𝑇] is the Treasury bill annualized holding 

period yield measured at the end of each month (t). 𝛽 𝑖𝑡
imp

 is the OLS implied beta estimate of stock i 

obtained from regressing the implied mean returns of stock i on the implied market mean returns in 

each maturity group over the whole sample period. Maturity groups are classified as 5 groups: 

0 < 𝑇 ≤ 30, 30 < T ≤ 60, 60 < T ≤ 120, 120 < T ≤ 210, and T > 210 days. Control variables are as 

follows: ME is the market value of common equity measured one month before the option trading 

day, BM is the book-to-market ratio and the earnings–price ratio, which is most recently available six 

months before the option trading day, and ―Momentum‖ is the stock return over the past six months 

before the option trading day. Numbers in parentheses indicate t-statistics. The sample period is from 

January 1996 to April 2006. 
 

Maturity        

(in days) 
Intercept 𝛽 𝑖𝑡

imp
 

Control Variables 

log (ME) log(BM) Momentum 

All maturities 29.95 (62.25) 11.30 (13.67)    

0 < 𝑇 ≤ 30 68.78 (55.78) 6.12 ( 7.43)    

30 < T ≤ 60 35.83 (84.65) 2.45 ( 5.09)    

60 < T ≤ 120 24.23 (79.30)  0.75 ( 1.89)    

120 < T ≤ 210 16.21 (74.61)  0.57 ( 1.73)    

T > 210 8.84 (59.41) 1.06 ( 4.18)                         

      

All maturities 44.70 (60.19) 12.31 (14.80) -8.84 (-44.65) -3.44 (-13.84) -0.87 (-1.44) 

0 < 𝑇 ≤ 30 85.96 (53.51) 5.10 ( 5.95) -12.92 (-33.03) -5.95 (-12.02) -3.25 (-2.53) 

30 < T ≤ 60 41.68 (71.56) 3.53 ( 7.32) -5.68 (-34.41) -3.46 (-14.73) -3.46 (-1.19) 

60 < T ≤ 120 26.71 (67.73) 1.93 ( 4.83) -3.21 (-29.26) -2.61 (-13.87) 0.52 ( 1.17) 

120 < T ≤ 210 17.24 (58.94) 1.98 ( 5.68) -1.84 (-25.87) -1.66 (-15.59)  0.08 ( 0.30) 

T > 210 10.31 (38.08) 2.03 ( 6.72) -1.08 (-16.56) -0.96 (-12.35) 0.37 ( 2.43) 
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Table 4: Time-Series Averages of Cross-Sectional Regressions of Ex-Post 

Returns on the Implied Beta Estimates 
 

 

This table shows the time-series averages (in percent, ×100) of the Fama-MacBeth month-by-month 

cross-sectional regression coefficients: 

  𝑅𝑖 , 𝑡,𝑡+𝐻 − 𝑟𝑓, 𝑡,𝑡+𝐻 = 𝛾0𝑡 + 𝛾1𝑡𝛽 𝑖𝑡
imp

+ 𝛤𝑡   Control variables + 𝜀𝑖𝑡 , 

where 𝑅𝑖 ,[𝑡,𝑡+𝐻] is the ex post annualized holding period return of underlying stock i over the period 

H. The period H is the option life from the following day of the end of each month (𝑡) to its maturity 

date (T) (in Panel A) or is one month from the day following the end of each month (𝑡) to the end of 

the next month (in Panel B). The option trading day is the last day of each month. Thus, the realized 

ex post return is measured from the
 
first day of the month following the option trade month to the 

option maturity. 𝑟𝑓,[𝑡 ,𝑇] is the Treasury bill annualized holding period yield over the same 

measurement period of 𝑅𝑖,[𝑡,𝑇], and 𝛽 𝑖𝑡
imp

 is the OLS implied beta estimate of stock i obtained from 

regressing implied mean returns of stock i on implied market mean returns in each maturity group. 

Maturity groups are classified as follows: 0 < 𝑇 ≤ 30, 30 < T ≤ 60, 60 < T ≤ 120, 120 < T ≤ 210, 

and T > 210 days. Control variables are as follows: ME is the market value of common equity 

measured one month before the option trading day, BM is the book-to-market ratio and the earnings-

price ratio, which is most recently available six months before the option trading day, and 

―Momentum‖ is the stock return over the past six months prior to the option trading day, Numbers in 

parentheses indicate t-statistics. The sample period is from January 1996 to April 2006. 

 
 

Maturity            

(in days) 
Intercept 𝛽 𝑖𝑡

Imp
 

Control Variables 

log (ME) log(BM) Momentum 

Panel A: Y-variable = Realized returns over the option life (H = T) 

All maturities 31.64 (10.52) 9.49 (8.44)    

0 < 𝑇 ≤ 30 61.98 (10.53) 1.61 (1.27)    

30 < T ≤ 60 44.11 ( 8.94) 5.75 (3.68)    

60 < T ≤ 120 25.03 ( 8.66) 6.35 (3.71)    

120 < T ≤ 210 18.37 ( 6.00)  6.50 (3.89)    

T > 210  6.98 ( 3.11) 10.67 (4.36)    

All maturities 46.74 (10.60) 12.11 (9.72) -5.80 (-6.92) 2.47 ( 1.93) 7.29 (2.81) 

0 < 𝑇 ≤ 30 63.49 ( 9.77) 3.06 ( 2.22) 1.41 ( 1.09) 4.38 ( 1.92) 6.15 (1.41) 

30 < T ≤ 60 54.94 ( 8.06) 7.43 ( 4.89) -6.07 (-4.95) -0.50 (-0.23) 3.13 (0.68) 

60 < T ≤ 120 44.64 ( 8.22) 6.95 ( 3.60) -7.09 (-7.60) 0.08 ( 0.00) 11.54 (3.21) 

120 < T ≤ 210 28.76 ( 6.42) 13.21 ( 6.74) -5.41 (-6.61) 1.35 ( 1.00) 10.90 (5.03) 

T > 210 22.86 ( 6.74) 15.04 ( 6.46) -4.58 (-5.46) 1.27 ( 1.26) 7.60 (4.87) 
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    Panel B: Y-variable = Realized returns over the next one month (H = 1 month) 

All maturities  0.66 (1.26) 0.21 ( 2.74)    

0 < 𝑇 ≤ 30  0.56 (1.03) -0.02 (-0.43)    

30 < T ≤ 60  0.61 (1.12) 0.25 ( 2.01)    

60 < T ≤ 120  0.52 (1.06) 0.32 ( 2.15)    

120 < T ≤ 210  0.40 (0.68)  0.65 ( 2.17)    

T > 210  0.39 (0.62)  0.99 ( 1.91)    

All maturities  0.79 (1.17)  0.26 (3.07) -0.04 (-0.32) 0.24 (1.25) 0.90 (2.19) 

0 < 𝑇 ≤ 30  0.75 (1.15) 0.07 (1.47) 0.07 ( 0.53) 0.36 (1.99) 0.77 (1.87) 

30 < T ≤ 60  0.61 (0.92)  0.35 (2.87) -0.04 (-0.27)  0.21 (1.10) 0.66 (1.61) 

60 < T ≤ 120  0.68 (1.13)  0.46 (2.28) -0.13 (-0.91) 0.04 (0.17)  0.92 (2.14) 

120 < T ≤ 210  0.63 (0.87)  0.97 (3.27) -0.17 (-1.09) 0.22 (1.04)  1.10 (2.48) 

T > 210  1.52 (1.70)  1.41 (2.30) -0.32 (-1.74) 0.18 (0.75) 0.98 (2.01) 
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Table 6: Forward Relationship: Time-Series Averages of Cross-Sectional 

Regressions of Implied Forward Returns on Implied Forward Beta Estimates  
 

 

This table shows the time-series averages (in percent, ×100) of the Fama-MacBeth month-by-month 

cross-sectional regression coefficients: 

           𝜇𝑖𝑡 ,[𝑇1 ,𝑇2]
𝑓

 − 𝑟𝑓𝑡 ,[𝑇1 ,𝑇2] = 𝛾0𝑡
𝑓

+ 𝛾1𝑡
𝑓
𝛽 𝑖𝑡

𝑓,𝑖𝑚𝑝
+ 𝜀𝑖𝑡 ,  

where 𝜇𝑖𝑡 ,[𝑇1 ,𝑇2]
𝑓

 is the forward-implied annualized holding period return (HPR) on an underlying stock i 

over the forward period [𝑇1 , 𝑇2] which is from the day following the first option maturity (𝑇1) to the 

maturity of the second option (𝑇2), and 𝑟𝑓𝑡 ,[𝑇1 ,𝑇2] is the Treasury bill annualized holding period yield over 

the forward period. Both 𝜇𝑖𝑡 ,[𝑇1 ,𝑇2]
𝑓

 and 𝑟𝑓𝑡 ,[𝑇1 ,𝑇2] are measured at time t (i.e., the last trading day of each 

month). 𝛽 𝑖𝑡
𝑓,𝑖𝑚𝑝

 is the forward-implied beta estimate of stock i obtained from regressing the forward-

implied HPRs of stock i on the forward-implied market HPRs in each forward period length group over 

the whole sample period. Forward period length groups are classified as follows: 0 < 𝑇 ≤ 30, 30 < T ≤ 

90, 90 < T ≤ 120, and T > 120 days. 

 

Forward periods 

 (in days) 

Intercept 

 𝛾  0𝑡
𝑓
  

𝛽 𝑖𝑡
𝑓,𝑖𝑚𝑝

 

 𝛾  1𝑡
𝑓
  

All forward periods 16.66 (91.83) 1.88 ( 5.42) 

0 <  𝑇1, 𝑇2 ≤ 30 24.61 (52.78) 1.23 ( 2.41) 

30 <  𝑇1, 𝑇2  ≤ 90 18.99 (45.99) 0.75 ( 1.87) 

90 <   𝑇1 , 𝑇2 ≤ 120 11.58 (81.62) 1.05 ( 2.70) 

  𝑇1, 𝑇2 >120 8.44 (49.63) 1.58 ( 4.16) 
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Chapter- 6 

Future Extension of the Risk-Adjusted Model: A Stochastic Volatility Approach 

In the previous chapters we provided a framework for discrete time risk-adjusted option 

pricing model that is consistent with the capital asset pricing model (CAPM) of Sharpe 

(1964), Lintner (1965), and and Black (1972). Similar to the standard CAPM 

equilibrium model, this option pricing can be regarded as a single period model where 

the investor buys and holds till maturity that does not need rebalancing. Also, we argued 

that the risk-adjusted model is consistent with the Black and Scholes (1973) continuous 

time model. In this setting our risk-adjusted model can be thought of as the 

generalization of the Black and Scholes model of no-arbitrage. In the presence of 

continuous rebalancing or with instantaneous holding, our model will collapse to the 

Black-Scholes model. However, if continuous rebalancing or instantaneous holding is 

not imposed then our model can still be used. Therefore our model is consistent with the 

standard CAPM and does not conflict with Black-Scholes pricing model when their 

assumptions hold. Since our model is consistent with the standard CAPM, the expected 

return from our model can be used to have an ex ante test of the standard CAPM. 

Extending this idea, if we want to test the asset pricing model under random volatility, 

first we would need to extract expected return from an option pricing equation that is 

consistent with random volatility. In fact, this concept can be extended for testing 

numerous other asset pricing models by extracting the information from a 

corresponding option pricing model with similar assumptions. More specifically in this 
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chapter we suggest a risk adjusted option pricing model with stochastic volatility to 

extract the ex ante expected stock returns. The parameter estimates from this model 

along with the risk-adjusted characteristic function can then be used to understand the 

higher moments of the stock return distribution, and to test a single period asset pricing 

model with random volatility.  

This chapter is organized as follows. Section 6.1 provides the motivation for 

stochastic volatility, Section 6.2 describes different stochastic volatility processes, 

Section 6.3 discusses stochastic volatility option pricing models, Section 6.4 derives the 

risk-adjusted stochastic volatility option pricing model, Section 6.5 provides estimation 

methodology, and Section 6.6 provides the conclusion. 

 

6.1 Motivation for Stochastic Volatility 

Unlike the Black-Scholes model, our risk-adjusted model of previous chapters is a 

discrete time model. On the other hand, similar to Black-Scholes model our model 

assumes a geometric Brownian price process with constant volatility.
1
  Even though the 

models with constant volatility are simple and elegant they do not capture all the 

important distributional characteristics of stock returns. In this section we briefly 

discuss few empirical studies that imply stock price process does not follow the 

constant volatility assumptions in real life and hence we need a stochastic volatility 

model.  

                                                 
1
 The volatility of the stock price process is usually quoted as the standard deviation of continuously 

compounded return per year (see Hull 2002). Therefore study of stochastic volatility is the study of how 

the standard deviation of return distribution changes over time.   
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Early papers by Mandelbrot (1963), Fama (1965), and Blattberg and Gonedes 

(1974) found the stationary (log)normal distribution to be an inadequate descriptor of 

stock returns, and have fitted various alternate stationary distributions to the data. These 

papers find that the probability that extreme events will occur is greater than the 

corresponding probability calculated under the normal distribution. In other words, the 

empirical distribution of returns exhibits excess kurtosis. Therefore a leptokurtic 

distribution describes the return distribution better than a normal distribution. 

Subsequent studies by Black (1976) and Christie (1982) have uncovered an inverse 

correlation between stock returns and changes in volatility, at least partly attributable to 

financial leverage effects. Black (1976), Poterba and Summers (1986), and Beckers 

(1983) provide evidence that shocks to volatility persist but tend to decay over time. 

Mandelbrot (1963) and Fama (1965) also report evidence that periods of high (low) 

volatility are followed by periods of high (low) volatility. Mandelbrot (1963) has called 

this phenomenon "the clustering effect" of volatility. Volatility clustering suggests 

heteroscedasticity in volatility that is autocorrelated. Based on these findings, papers by 

Engle (1982), Bollerslev (1986), Bollerslev, Chou, and Kroner (1992), and Taylor 

(1994) have introduced models to capture volatility clustering in form of ARCH, 

GARCH, and SV models in time-series data. Furthermore, studies by Scott (1987), 

Poterba and Summers (1986), Stein (1989), and Harvey and Whaley (1992) have found 

that volatility oscillates around a constant value. This phenomenon is termed as "mean 

reversion," indicating that volatility tends to revert to a long-run mean.  

Another interesting finding using the Black-Scholes model is the volatility smile 

and volatility skew.  For a given day, for a specific maturity deep in-the-money and 
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deep out of the money options might have higher volatility than near-the-money 

options. This U-shaped pattern is the volatility smile mostly observed in foreign 

currency options. It has been argued (Hull 2002) that volatility smile in currency 

options are a result of stochastic volatility or jump in the price process. Also, it is found 

that volatility decreases gradually with strike prices (called volatility skew), most 

frequently found in equity options. Volatility skewness in implied distributions has 

heavier left tail and a less heavy right tail than the lognormal distribution. If the 

assumption of the price process with constant volatility would have been valid in real 

life then we would not have observed the volatility smile or volatility skew. Early paper 

by Rubinstein (1985) and Taylor and Xu (1994) provide evidence of volatility smile and 

volatility skew in the observed options data. As shown in Heston (1993a) stochastic 

volatility model, if volatility is uncorrelated with the price process, then increasing the 

volatility of volatility increases the kurtosis of stock returns, not the skewness. In this 

case, random volatility is associated with increases in the prices of  far-from-the-money 

options relative to near-the-money options. In contrast, the correlation of volatility with 

the price process produces skewness. And positive skewness is associated with 

increases in the prices of out-of-the-money options relative to in-the-money options. 

Therefore, it is essential to choose properly the correlation of volatility with spot returns 

as well as the volatility of volatility to model the stochastic volatility.  Papers by 

Rubinstein(1985), Stein (1989), Xu and Taylor (1994), and Canina and Figulewski 

(1993) provide evidence of term structure of implied volatility. Volatility tends to be 

increasing function of maturity when short-dated volatilities are historically low. 
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Similarly volatility tends to be a decreasing function of maturity when short-dated 

volatility is historically high. This is consistent with mean reversion in volatility. 

 

6.2 Different Stochastic Volatility Processes 

We start with a generic process for the volatility and discuss how specific 

characterization of this process could provide various effects that are observed in real 

life. Let the volatility process be given by: 

(1) ( , ) ( , )dV a V t dt b V t dW   

where V is the instantaneous volatility at time t, and W is a standard Weiner process at 

time t. The drift term in a, and the volatility of volatility term in b could be in general 

functions of both V and t. The specific models of volatility processes that could be 

explained by the above equation are:  (1) the geometric Brownian process; (2) the mean 

reverting Gaussian process; and (3) the mean reverting square-root process. 

The Geometric Brownian motion Process 

This process is similar to the price process in Black-Sholes (1973) model. Under this 

process the evolution of volatility is given by: 

(2) dV Vdt VdW    
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where   is the constant drift term or the expected growth rate of the volatility, and   is 

the volatility of the volatility process per unit time. Solving equation (2) for VT
 (the 

volatility at any time T in the future) yields: 

(3) 

1 2
2

0

[ ]
0

22 2
var[ ] 1

0

T W

V V e
T

T
E V V e

T

T TV V e e
T

  



 

 
 
 
 

 
  
 

 





 

 

where 
0

V is the initial volatility, and VT  is the volatility at time T . The properties of the 

process show that the volatility is unbounded and does not conform to the observed 

pattern in real life namely the mean-reversion.  

The Mean-Reverting Gaussian Process 

The mean-reverting Gaussian process also known as the Ornstein-Uhlenbeck process is 

a continuous time version of the AR1 process. Nelson (1990) has shown that this 

process is the diffusion limit of the GARCH (1,1) process. The mean-reverting 

Gaussian process is modeled as: 

 (4)  dV V dt dW     , 

where  is the long-run mean,  is the speed of mean reversion. The above process 

implies: 
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(5) 
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Equation (4) and (5) show a small value of  indicates strong autocorrelation in 

volatility, whereas a greater value of  implies a faster convergence to the long-run 

mean. In this model the mean and variance of the volatility are bounded from above. 

Scott (1987), Hull and White (1987) and Wiggins (1987) use the mean-reverting 

Gaussian process to price the options. Using this model Stein and Stein (1991) derive an 

exact closed-form solution for the stock price process and show with suitable value to 

the parameters this process can explain the ‗fat-tail‘ pattern that is observed in stock 

returns. However, the limitation of this process is that, V
T

is normally distributed which 

means volatility can take negative values.  

The Mean-Reverting Square-Root Process 

This process has the feature of mean-reversion and it does not allow negative values. 

The evolution of variance, V under this process is given by: 

(6)  dV V dt V dW      

The above process implies: 
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(7) 
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In this process, volatility is no longer normally distributed. Cox, Ingersoll, and 

Ross (1985b) have shown that the probability density function follows a noncentral chi-

square distribution using this process. Heston (1993a) and Hull and White (1987) use 

this assumption for variance process in deriving and analyzing option pricing models, 

given the close resemblance of real life data with this process. Our risk-adjusted 

stochastic volatility model in this chapter also assumes this variance process to price the 

option.  

 

6.3 Stochastic Volatility Option Pricing Models 

The earlier papers before Heston (1993a) used the equilibrium argument to price the 

options with stochastic volatility. For example Hull and White (1987), Scott (1987), and 

Wiggins (1987) use the Garman (1976) differential equation for the security process, 

Cox, Ingersoll, and Ross (1985a) intertemporal capital asset pricing model or the 

Merton (1973) equilibrium model. These option pricing models imply that the solution 

of the differential equation is independent of the risk preference only if (a) the volatility 

is a traded asset or (b) the volatility is uncorrelated with aggregate consumption. Hull 

and White (1987) assume that the volatility is uncorrelated with the aggregate 

consumption which means that volatility has a zero systematic risk. However it is 
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difficult to see how this assumption could be realistic, in general given the empirical 

evidence of stock return and volatility correlations. They also state that constant 

correlation between rate of change in volatility and aggregate consumption can be used 

but do not discuss the preference restrictions that are required.  To simplify the model 

Scott (1987) also had similar assumptions. Wiggings (1987) show that the logarithmic 

utility assumption is consistent with options on the market portfolio so that the price of 

risk of the hedge portfolio is zero. Thus the author argues the logarithmic utility 

assumption could be used to price the option on a market portfolio. These prior models 

provide the motivation for addressing the stochastic volatility issue; nonetheless they 

did not provide a close form general solution. Jarrow and Eisenberg (1994) and Stein 

and Stein (1991) assume the volatility is uncorrelated with the spot asset, thus it could 

not capture the important skewness effect in the option prices that arise from such 

correlation. Using a square-root process for variance, Heston (1993a) provided a closed-

form solution where the risk preference is accommodated through the market price of 

volatility risk as we will explain in the following sections. Heston‘s model can explain 

the skewness and kurtosis of the return distribution with suitable adjustment of the 

volatility process parameters. We also assume a square-root process and follow the 

Fourier inversion approach to obtain a close form solution similar to Heston (1993a) for 

the risk-adjusted model. In our approach the option is held till maturity without 

rebalancing so as to extract the expected stock return along with other parameters. 
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6.4 The Risk-Adjusted Stochastic Volatility Option Pricing Model 

We assume the stock price process follows a geometric Brownian and the variance 

process follows a mean-reverting square root process at time t,  

(8a) 1dS Sdt VSdW  

(8b) ( ) 2dV V dt VdW  

where  is the expected growth rate of the stock in risk-adjusted world, S is the stock 

price, V is the variance,  is the speed of mean reversion, and  is the long-run mean 

variance, 1 2dW dW dt ,  is the volatility of volatility, and W1 and W2 are the two 

Weiner processes. The mean-reverting square-root variance process has the nice feature 

that volatility will be positive and will revert to mean level when it moves above or 

below this level. The speed of reversion will depend on. As  increases, the level of 

volatility stays close to the long-run mean level. In the Black-Scholes model we had a 

single uncertainty so that the stock with one call option can form the riskless portfolio 

and the partial differential equation (PDE) does not contain the Weiner process; here we 

need two call options and the stock to form the PDE that will not contain any of the 

above two Weiner process. If C(S,V,t) is the call price, then with Ito‘s Lemma we have: 

(9) 

2 21 1
( )( )

2 2
1 2   ( )1 22

1 2      ( )
2

1 12 2     = ( )
2 2

    

dC C dt C dS C dS C dV C dV C dS dVt S SS V VV SV

C dt C Sdt VSdW C VS dt C V dt VdWt S SS V

C V dt C SVdtVV SV

C SC VS C V C V C SVC dtt S SS V VV SV

  1 2VSC dW VC dWS V
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In the following equations, we form a portfolio X that contains two options (C* 

and C**) and the stock, and set the terms having dW1 and dW2 separately to zero to get 

two equations that we use to compute the portfolio weights h1 and h2. 

(10) 
* * *1 2

* * *1 2

X C h S h C

dX dC h dS h dC
 

Solving for h1 and h2 as explained above, we get: 

(11) 

*
* **

1 **

*

2 **

CVh C CS S
CV

CVh
CV

 

Since the portfolio is riskless we have: 

(12) 
* * *1 2

     =

dX dC h dS h dC

rXdt
 

Substituting the values of h1 and h2 from equation (11) and the value of X from 

equation (10) in equation (12) and equalizing the terms containing the same options (C* 

or C**) on left and right hand side we get the following PDE (after the adjustment of 

market price of volatility risk): 

(13)  
1 12 2( ) 0
2 2

rSC VS C V V C V C SVC C rCtS SS V VV SV  

The corresponding volatility process after the adjustment for market price of risk for the 

risk-neutral valuation is given by: 
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(14) ( ) 2dV V V dt VdW  

where  is the market price of volatility risk.  

To process the PDE in risk-neutral world we adjust the volatility process for 

market price of risk as shown in equation (14). In the Black-Scholes one-dimensional 

PDE where the uncertainty comes from the single traded asset (the stock process), the 

market price of risk is such that the stock and the option growth rate can be set to the 

risk-free rate to value the option in traditional risk-neutral world. However when call 

option price is a function of additional uncertainties, the growth rate of these processes 

may not be the risk-free growth rate (using change of measure). This implies in general 

the stochastic volatility option pricing equation will be dependent on the risk preference 

parameter (via ). Alternatively the PDE will be independent of risk preference if (a) 

the volatility is a traded asset or (b) the volatility is uncorrelated with aggregate 

consumption. For example if the underlying asset is a hypothetical market portfolio or 

aggregate wealth, then volatility risk will be orthogonal (to market risk) in which case 

the price of volatility risk will be zero for this portfolio. However, in general the price 

of volatility risk of an individual stock will not be zero and a risk-neutral PDE will have 

an adjustment for market price of risk in equation (13). In general when there are 

multiple processes, Cox, Ingersoll, Ross (1985a) provide the necessary framework to 

show the link between the option expected return and the stock expected return in 

equilibrium. From their paper using equation (13) and (22) with change of notation to 

our paper and assuming constant relative risk aversion (CRRA), the relationship 

between the option return and the stock return can be given as: 
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(15) 
var( ) cov(cov( , ) (cov( , ))

     = ( )

J J JSS SC SSkC rC C S S V C S CS VJ J JS S S
rC C r S C VS V

   

where J is the indirect utility function, k is the expected growth rate of the option in risk 

adjusted world (same as expected return of the option), and 

 (16) 

 

2

2
2

J
JS S

J
JSS

S
J

JSC S C

 

Furthermore, with the assumption of CRRA we have: 

(17) 
,

JSS
J SS

 

where  is a constant of the CRRA that measures the degree of risk aversion of the 

representative agent, and  is the market price of risk for volatility process. For 

example,  =0 implies a logarithmic utility function which makes the market price of 

risk zero. A value of  > 0 will imply a lower relative risk aversion than a log utility 

function, and a value of  < 0 will imply the opposite. Therefore  depends on the 

utility structure of the representative agent and it is an empirical issue to estimate the 

constants and that are required to estimate . In our risk-adjusted approach the 

PDE does not need a market price of risk adjustment. By analogy of risk-adjusted 

model with risk-neutral model in constant volatility, the risk-adjusted PDE in stochastic 

volatility can be written as: 
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(18a) 
1 12 2( ) 0
2 2

SC VS C V C V C SVC C kCtS SS V VV SV  

Since the above model is a risk-adjusted model we don‘t have the market price 

of risk () term in the equation. The risk-adjusted volatility process is given by: 

(18b) ( ) 2dV V dt VdW  

 

To solve the above equation we follow the Fourier inversion approach of Chen 

(2009). The risk adjusted option pricing model is given by: 

(19) 

( ) [max{ ( ) , 0}]
( )

( ) ( )[ ] 1 2
( )( ) ( )

1 2

k T tC e E S T K
k T te U
k T t k T te E S e K
k T t k T tSe e K

 

where (via Fourier inversion) 

ln ( )1 1
Re ;  1 or 202

iu Ke f uj
du jj iu

 

( )
1 2

T tU Se K  

( )f uj  is the characteristic function, and C is the call price at time t.  We guess the form 

of the solution in second and third line of equation (19). 

Before we solve the PDE of equation (18) we do the following transformation: 
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(20) lnx S  

Using the above transformation the original PDE of equation (18a) can be transformed 

to: 

(22) 
1 1 1 2( ) 0
2 2 2
V C VC V C V C VC C kCx xx tV VV xV  

From equation (19) using the partial first and second order derivatives of C with respect 

to x , V, and t in equation (22) we have: 

(23) 
2

[ ] 0
2 2 2

V V V
U U VU U VU Ux xx tV VV Vx  

Furthermore, U of equation (19) can be written as: 

(24) ( )
1 2

x T tU e K  

Before we transform the PDE of equation (23) to ordinary differential equations we 

compute the partials of U with respect to x , V, and t using equation (24): 

(25) 

( ) ( )
1 1 2

( ) ( ) ( )21 1 1 2
( )

1 2
( )

1 2
( ) ( )

1 1 2
( ) ( )( ) 1 1 2

x T t x T tU e e Kx x x
x T t x T t x T tU e e e Kxx x xx xx
x T tU e KV V V
x T tU e KVV VV VV
x T t x T tU e e KxV V xV xV

x T t x T tU e e Kt t t

 

Using equation (25), PDE of equation (23) is written as two partial differential 

equations corresponding to the partials of 1and 2  as follows: 
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(26) 

2
[ ( ) ] 01 1 11 1 12 2 2

2
[ ] 02 2 22 2 22 2 2

V V V
V Vxx x tVV xV V

V V V
V vxx x tVV xV V

 

The following characteristic function satisfies the above partial differential equations: 

(27) 
( ) ( )C T t D T t V iuxj jf ej , J=1,2.  

Cj and Dj are functions of the parameters  and , and the time to maturity. 

Using an approach similar to Chen (2009) we can solve the above PDEs, and write the 

solutions to Dj and Cj as follows: 

(28) 

(1 ) ) ( )1 1 1
(1 ) ) (1 )1 1

1 2 (1 ) ) ( )1 11 1
(1 ) )1

d iu d T t
e

d iud iu
D

d iu d T t d
e

d iu

 

and 

(29) 

( )2 2 1
2 2

2 2 ( )2 2 21
2

d iu d T t
ed iud iu

D
d iu d T t ded iu

 

where 

2 2 2[ (1 ) ]1d iu iu u   

2 2 2[ ]2d iu iu u ; 
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(30)

2 2 2( (1 )) ( (1 )) ( ) ( )1 2

2 2 2 2 2 2( (1 )) ( (1 )) ( ) ( (1 )) ( )( )ln 1
2 2 22 ( (1 )) ( (1 )) ( )

2 ( (1 )) (
ln 1

C iu iu u iu T t

iu iu u iu iu u iu T te
iu iu u iu

iu 2 2 2(1 )) ( )
2 2 2( (1 )) ( (1 )) ( )

iu u iu

iu iu u iu

and 

(31)     

2 2 2( ) ( )2 2

2 2 2 2 2 22 2 21 ( ) ( )( )( )ln 1 ln 1
2 2 2 2 2 2 2( ) ( )

C u iu T t

u iu u iuu iu T te
u iu u iu

 

As we note unlike the risk-neutral approach in this risk-adjusted model Cj and Dj 

do not contain , the market price of volatility risk. Instead,  is in the expected growth 

rate of the option price using the ICAPM equation (15). Therefore, using equation (15) 

equation (19) can be written as: 

(32) 

( ) ( )
1 2

( ) ( )
( )   = 1 2

k T t T tC e Se K

C S CS Vr r V T t
C C T te Se K

 

where 1and 2  can be solved using the values of Cj and Dj from equation (28) 

through (31).  
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6.5 Methods of Estimation 

Unlike the risk-adjusted constant volatility model there are many unknown parameters 

in additions to the ex ante expected stock return (, in this model. More specifically the 

unknown parameters in equation (32) are ,  and   In one extreme, when all 

the parameters are considered ex ante, we  need six or more near the money call options 

with same maturity for our estimation. Similar to the risk-adjusted constant volatility, 

we use a grid search for global optima to estimate these parameters. The limitation of 

this method is that for many stocks we may not have six options that are actively traded 

for a given day with same maturity.  Therefore, this method will discard many options 

for most of the stocks. An alternative method to estimate these parameters is to have a 

three step approach. In the first step we estimate  and   using the physical world 

historical volatilities along with the econometric model corresponding to equation 

(18b). In the second step we compute the risk-neutral probability density for the stock 

price. To obtain the risk-neutral probability density, we use the Black-Scholes implied 

volatility smile. From the smile curve, we extract a set of call price and the 

corresponding strike prices. Then we use the following Breeden and Litzenberger 

(1978) result to extract the risk-neutral density:  

(34) 
2

( ) ( , | , )
2
C r T te p K T S t
K

 

where ( , | , )p K T S t is the conditional risk-neutral probability of an underlying price to 

reach the level K at time T given the price at time t is S. From this risk-neutral density 

we can compute the volatilities in risk-neutral world for any time t. By this approach we 
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obtain a time-series of risk-neutral volatilities. Using these risk-neutral volatilities with 

the estimates of  and   from the previous step, along with the econometric model 

corresponding to equation (18b) we can estimate . We use the maximum likelihood 

estimator for the above two steps. In the last step we use the above estimated  

and  along with equation (33) to compute   and . Using this approach we need only 

two traded options to estimate   and . When the parameters are stationary the second 

approach is a better approach that does not need many option records. A third method 

could be to identify the specific parameters that can be considered stationary. This 

would be a separate interesting empirical study. Once the stationary parameters are 

identified, these parameters can be estimated using the econometric models as in the 

previous method. Then the remaining parameters can be estimated along with  using 

equation (33).    

 

6.6 Conclusion 

In this chapter we used a mean-reverting square root volatility process in addition to the 

geometric Brownian price process, to estimate risk-adjusted expected return. Similar to 

the prior chapters, using this expected return, we can examine whether the term 

structure of expected return remains with stochastic volatility approach. We can also 

use the information content of risk-adjusted stochastic volatility to forecast ex post 

volatilities. Similar to the ex ante test of standard CAPM we can derive a single period 

CAPM with stochastic volatility and then pursue an ex ante test of this version of 

CAPM using the expected return estimates. Our approach provides a starting point for 
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estimation of risk-adjusted expected return and volatility from option prices using 

different assumption of stochastic processes. These risk-adjusted parameters can be 

used to understand the ex ante underlying return distribution and to examine different 

versions of capital asset pricing models that are consistent with these risk-adjusted 

model assumptions.  
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