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ABSTRACT OF THE THESIS 

A statistical forecast model of weather-related damage to a major electrical utility 

By: BRIAN JOHN CERRUTI 

 

Thesis Director: 

Steven G. Decker 

 

A model has been developed to relate meteorological conditions to damages incurred by 

the outdoor electrical equipment (plant) of Public Service Electric and Gas (PSE&G), the 

largest public utility in New Jersey. Utilizing a perfect prognosis approach, the model 

consists of equations derived from a backwards eliminated  multiple linear regression 

analysis of observed damage (the predictand) and corresponding surface observations 

from a variety of sources including local storm reports (the predictors). The analysis 

gives a different equation for each combination of plant damage element (e.g., poles 

down, transformers blown), the four PSE&G service territories, and objectively defined 

storm modes (e.g., Thunderstorm, Heat Wave, None). The predictors used most often 

were found to be products of maximum wind gust with maximum temperature, daily 

liquid water equivalent precipitation, and ten day accumulated liquid equivalent 

precipitation, and were often found to be significant (p-value less than 0.05). The number 

of severe weather reports provided significant predictors for the Thunderstorm storm 
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mode. The resulting regression equations produced coefficients of determination ranging 

from 0.032 to 0.697 with the lowest values for the None and Cold storm modes, and the 

highest values for the Thunderstorm and Mix storm modes. The appropriate model 

equations were applied to an independent verification dataset and the verification 

standard deviations were compared to the model derived standard errors which revealed 

heteroscedasticity (predictand error variance is proportional to the predictand itself) in the 

model. Both error measurements are calculated assuming independence, and they 

represent a lower-bound on the error estimation because the training dataset was not 

transformed into a normal distribution and the use of count data for damaged elements 

yields a non-independent dataset. Two case studies analyzed to critique model 

performance yielded insight into model shortcomings where lightning information and 

wind duration were found to be important missing predictors.  The case studies were also 

used to develop guidelines for applying the model in an operational setting. The 

development of a damage model for other utility companies in other contexts is 

discussed.  



 

 

iv 

 

ACKNOWLEDGMENT / DEDICATION 

The author would like to acknowledge the support and guidance of Dr. Steven G. Decker 

through the project. The author would also like to recognize Steven Nicholls for his 

endless help with preparation of figures and programming difficulties encountered. The 

author wishes to acknowledge Dr. Lisa Rodenburg for her advice while using Microsoft 

Excel to calculate multiple linear regression. The author is very grateful for the 

opportunity to conduct research provided by PSE&G, in particular, Wayne Wittman. 

Frank Schwartz, also of PSE&G, was instrumental in providing the damage data used in 

this thesis and for answering questions and addressing concerns from the author in a 

timely and courteous manner.  

 

This thesis is dedicated to my parents for their ability to endure relentless map 

discussions, stay interested in my mathematically intensive endeavors, and their love and 

support through my entire life. I also dedicate this thesis to my beautiful fiancé, 

Kimberlyanne; without her love, respect, and patience, this work would not have been 

possible. 



 

 

v 

 

Table of Contents 

ABSTRACT OF THE THESIS ....................................................................................................... ii 

ACKNOWLEDGMENT / DEDICATION ..................................................................................... iv 

I. Introduction ............................................................................................................................ 1 

Chapter One: Model development ................................................................................................... 3 

1. INTRODUCTION .............................................................................................................. 3 

2. BACKGROUND ................................................................................................................ 4 

a. Regression methods ......................................................................................................... 4 

b. Statistical forecasting applications for utilities ............................................................... 5 

3. DATA AND METHODS USED ....................................................................................... 9 

a. Data sources .................................................................................................................. 10 

b. Storm mode stratification ............................................................................................... 10 

c. Post processing .............................................................................................................. 12 

d. Predictors ....................................................................................................................... 13 

4. RESULTS ............................................................................................................................. 15 

a. Regression ...................................................................................................................... 15 

b. Validation ....................................................................................................................... 20 

5. CASE STUDIES ................................................................................................................... 24 

a. Thunderstorm storm mode: 9 June 2009 ....................................................................... 24 

b. Warm storm mode: 11 September 2009 ......................................................................... 25 

6. CONCLUDING DISCUSSION .......................................................................................... 26 

a. Conclusions .................................................................................................................... 26 

b. Applications for other utilities ....................................................................................... 27 

c. Future Work ................................................................................................................... 28 



 

 

vi 

 

7. TABLES ............................................................................................................................ 31 

8.  FIGURES .............................................................................................................................. 40 

Chapter Two: Model comparison and application ......................................................................... 45 

1. OVERVIEW ...................................................................................................................... 45 

a. Model equations ............................................................................................................. 46 

b. More on model assumptions .......................................................................................... 48 

2. MODEL PERFORMANCE ............................................................................................... 49 

a. Confidence Intervals ...................................................................................................... 49 

b. Statistical verification .................................................................................................... 50 

3. CASE STUDIES ................................................................................................................ 51 

a. Thunderstorm Storm Mode: 29 July 2009 ..................................................................... 53 

b. Mix Storm Mode: 28 January 2009 ............................................................................... 54 

c. None Storm Mode: 12 February 2009 and 4 April 2009 ............................................... 56 

d. Various Storm Modes: 17 July 2009 .............................................................................. 58 

e. High-End Event: 12−14 March 2010 ............................................................................ 61 

4. POST-PROCESSING ........................................................................................................ 65 

5. MODEL IMPROVEMENTS ............................................................................................. 67 

a. Duration ......................................................................................................................... 67 

b. New variables................................................................................................................. 69 

c. Rules of thumb................................................................................................................ 70 

6. CONCLUDING REMARKS ............................................................................................. 74 

7. TABLES ............................................................................................................................ 76 

8. FIGURES ......................................................................................................................... 109 



1 

 

 

 

I. Introduction  

The weather can have a serious impact on electrical equipment (plant), often 

resulting in financial losses to utility companies. These losses may be the cost of 

replacing field equipment damaged by a storm or overtime pay for the men and women 

working to restore power, clear downed trees, and fix damaged elements (i.e., direct 

losses). Indirect losses, such as revenue loss resulting from unavailable services and fines 

for unacceptable restoration times, are some possible consequences of a utility company 

which is unprepared to rapidly mobilize its storm restoration workforce. 

Public Service Electric and Gas (PSE&G) has developed a relationship with 

Rutgers University where undergraduate students in the University’s Undergraduate 

Meteorology Program provide daily weather forecasts for cooperative credits. Ideally, a 

method for predicting the plant damage would be incorporated into a forecast issued to 

PSE&G so they may adequately prepare for adverse weather As such, a plant damage 

model is presented in Chapter One to provide a tool by which student participants of the 

Rutgers University Undergraduate Forecasting Program may provide such forecasts. The 

plant damage model will consist of utilizing perfect prognosis backwards elimination 

multiple linear regression to statistically relate observed weather (the predictor) to a 

database of observed plant damage (the predictand) provided by PSE&G. The equations 

will assume the input data is Gaussian, independent, and homoscedastic (i.e., that the 

variance in the model error will not depend on the magnitude of the predictand). A 

comparison of various standard error measures will test the underlying assumptions and 

draw conclusions about the bounds of the error estimates. The model will be applied to an 
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independent dataset provided by PSE&G using surface observations as the input. The 

model will be verified in Chapter Two according to a statistical reliability analysis 

(testing whether the observed damage is within the 95% confidence interval) and 

statistical forecast verification (assessing the model’s ability to predict a given threshold 

of total plant damage). Case studies will be used in Chapters One and Two to address 

model shortcomings, investigate new variables, and develop forecasting guidelines to 

adjust model damage forecasts.  



3 

 

 

 

Chapter One: Model development  

1. INTRODUCTION  

The weather can have a significant impact on electric utility operations. Hurricanes 

can cause widespread equipment damage, resulting in power outages which often last for 

days (Liu et al. 2008; Han et al. 2009). Ice and snow storms have been responsible for 

significant outages, which typically occur when ice and snow laden trees fall or are 

blown onto overhead electrical equipment or when ice accrues onto transmission lines 

(Changnon and Karl 2003; DeGaetano et al. 2008). Thunderstorms can also cause 

destruction of electrical equipment due to damaging wind gusts, large hail, and cloud to 

ground lightning (Rakov and Rachidi 2009; Li et al. 2010; Treinish et al. 2010). The 

impact of a storm is often exacerbated on the electrical grids in densely populated areas 

because the equipment coverage is dense, allowing an isolated event to cause more 

damage relative to a rural utility company (Wittman et al. 2006; Cerruti et al. 2009). 

Public Service Electric and Gas (PSE&G) is the largest public utility in New Jersey, 

the nation’s most densely populated state, providing service to several large urban areas 

such as Trenton, Newark, New Brunswick, and the Philadelphia suburbs. PSE&G also 

serves some of the largest waste management facilities, hospitals, and schools in the state. 

Electrical service to such venues is dependent upon prompt restoration time, typically a 

function of workforce preparedness. The weather can have a dramatic impact on PSE&G 

workforce operations, as a typical overtime crew can cost $2 400 per hour, and a large 

cleanup effort may cost over $1 000 000, not counting the costs of materials (Cerruti et 

al. 2009).  
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In an attempt to alleviate the large costs of storm restoration and material 

replacement, this study presents a statistical damage model, hereafter called a plant 

damage model,  which is a tool forecasters may use to predict the damage to utility 

equipment (i.e., plant) in advance of adverse weather conditions. In this case, it is a 

statistical relationship using multiple linear regression with weather observations as the 

predictors and plant damage as the predictand. The model may be used to create a 

deterministic forecast of plant damage while allowing for uncertainty in the model to be 

addressed explicitly via statistical analysis of the model results. A well constructed plant 

damage model should allow utility companies to be more adequately prepared for 

impending storms. 

 

2. BACKGROUND  

a. Regression methods  

Several attempts have been made to use statistical methods for weather prediction, 

most notably the methods known as Model Output Statistics (MOS) and Regression 

Estimation of Event Probabilities (REEP), itself an application of MOS. These methods 

use multiple linear regression to correct deterministic model forecast errors at various 

lead times (Glahn and Lowry 1972; Glahn 1985). The main advantage to such methods is 

that systematic errors in the model calculations, including model bias, are statistically 

corrected, allowing for a more accurate forecast.  

The MOS and REEP methods have several shortcomings, however. The first is the 

need for a large dataset of model forecasted variables as input for the regression. The 
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second is that the model should remain constant, which implies that either new equations 

should be derived for every version of the model or improvements not be implemented to 

preserve the integrity of the statistical forecasts. An additional drawback is that at longer 

lead times, the MOS and REEP methods approach the local climatological mean 

(Vannitsem and Nicolis 2007).  

The perfect prognosis (PP) approach avoids these drawbacks. Perfect prognosis 

forecasts can be similar to REEP and MOS in terms of using a form of linear regression 

to make a statistical forecast, but the PP method uses observed fields, not model predicted 

fields, to create the statistical forecast, eliminating the need for a model dataset. Thus, 

unlike MOS and REEP, the PP method has an advantage because the numerical weather 

prediction model may be upgraded as needed without affecting the statistical model. In 

fact, whereas model upgrades may degrade the reliability and accuracy of REEP or MOS-

based forecasts, the PP method will likely yield a better forecast, assuming that the model 

upgrades improve the accuracy of the output (Wilks 2006). The exclusion of model input 

data during the regression development also makes the PP approach more 

computationally efficient. In order to remain consistent with MOS, multiple linear 

regression was the selected statistical method. 

 

b. Statistical forecasting applications for utilities  

In general, statistical models in the utility industry deal with predicting peak electrical 

loads at various lead times for varying windows of time. These models often depend on 

economic indicators along with meteorological input while utilizing analogue forecasting 
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methods to make predictions. Hippert et al. (2001) provided an in-depth review of load 

forecasting via neural networks and concluded that, although the issue of overfitting is 

not well understood with respect to neural networks, the models perform well when used 

operationally. Saini (2007) was able to produce seven day peak load forecasts using 

Bayesian regularization and the incorporation of weather variables through 

backpropagation learning methods. The data were stratified by weekday versus weekend 

and normal day versus holiday to classify the daily load profiles for input into the 

backpropagation method. Ružić et al. (2003) related temperature and average daily wind 

speed to observations of total daily energy and hourly load with stratification for the day 

of the week and holidays. Fan et al. (2009a) used support vector regression to forecast 

spatial electric load based on weather diversity throughout a utility’s service territory. 

Fan et al. (2009b) coupled a meteorological ensemble forecast with an ensemble neural 

network for more accurate load forecasting while incorporating stratification by day.  

Several studies have attempted to enhance utility response to significant events. 

Brown et al. (1997) studied the reliability of distribution systems during high wind events 

using Monte Carlo simulations and found wind speed and wind duration to be essential 

for assessing system reliability. Han et al. (2009) used a general additive model to predict 

power outage risk based on measured characteristics of hurricanes and were able to 

outperform regression based approaches. The potential for ice storms and hurricanes to 

produce power outages is addressed in Liu et al. (2008) via a generalized linear mixed 

model approach which found maximum wind gust and maximum ice thickness to be 

important predictors for hurricanes and ice storms, respectively. DeGaetano et al. (2008) 
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used a precipitation-type algorithm adjustment to 6−12 hr Weather Research and 

Forecasting (WRF) model forecasts to predict ice accretion to utility equipment in terms 

of outages. While limited outage data was available for model verification, the model 

results generally matched the observations. The intended use of these models is to aid 

distribution managers in deciding how much extra material and how many crews may be 

needed in advance of a weather event.  

Some attempts at explicitly predicting plant damage have recently been made. Takata 

et al. (2005) used a cross validation method to produce forecasts of damaged poles and 

transmission lines from typhoons based on 29 typhoon cases. Using the typhoon forward 

speed, maximum wind speed, central pressure and wind radii as input, they combined the 

use of neural networks and group methods of data banding. These two methods combined  

outperform each method individually with an error decreased of up to 40%. Treinish et al. 

(2010) used weather observations from the New York, NY metropolitan area and power 

outage information from a local utility company to create a model to predict the outage 

related infrastructure damage caused by weather events. The statistical damage forecast 

model was coupled to a numerical weather prediction model, Deep Thunder (DT, a 

version of the WRF model with three domains at 18, 6, and 2 km grid spacing), to 

operationally predict infrastructure damage. Li et al. (2010) expanded on this work by 

creating a statistical model to predict the spatial extent, duration, and severity (measured 

by number of customers without power) of power outages. The statistical outage model is 

stratified according to season and the magnitude of certain weather variables such as 

precipitation.  
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The DT-based models attempted to account for uncertainty exhaustively in several 

areas, such as the DT initial conditions, the local weather variables used to calibrate the 

statistical model coupled to DT, the possible input variable errors in the training dataset 

used for the regression equations, and DT model errors. These numerous and often 

substantial sources of uncertainty may be to blame for the model’s modest performance 

and large uncertainty in their forecasts presented in the case studies. Additionally, DT’s 

inability to directly produce wind gust forecasts may be a substantial shortcoming for 

attempting to forecast damage (which will be shown in this work to be an important 

predictor).  

Wittman et al. (2006) describes an early attempt at producing a plant damage model 

applicable to PSE&G, which was based on three years of customer phone call data (18 

September 2003–7 September 2006). With temperature, wind gust, and precipitation as 

the primary predictors, the weather observations were stratified and mainly single 

variable PP regression was used. Multiple linear regression was used when possible, but 

with a maximum of two variables and only for isolated cases. Here, the principal cause 

for the observed customer calls was subjectively identified by investigating daily surface 

observations for each of the four service territories. The resulting model, an excerpt of 

which is shown in Table 1.1, was presented in tabular form for quick reference 

forecasting. A forecaster could use the tables by applying their forecast of the weather to 

obtain a value of expected phone calls, which were then used as a proxy for damage. If 

multiple events were forecast, the tabular data was summed across all relevant storm 
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modes. The forecast could then be subjectively adjusted according to storm coverage and 

duration. 

The first damage model includes several shortcomings that the current study 

addresses. These shortcomings include the following:  

1) The use of call data as a proxy for damage, as one downed pole in a heavily 

populated area can yield numerous phone calls; this is also an issue for the models 

documented in Treinish et al. (2010) and Li et al. (2010).  

2) The use of single variable regression, which yields low coefficients of 

determination (R
2
), a measure of how well the predictand is explained by the 

predictor, and  

3) The use of subjectivity in the application of the model, which leads to low 

confidence forecasts (Wilks 2006).  

 

3. DATA AND METHODS USED 

The method used in this study is to determine a regression equation for each of the 

four PSE&G service territories, six plant elements, and six storm modes, yielding 144 

equations. The storm modes [Thunderstorm, Warm Precipitation (Warm), Cold 

Precipitation (Cold), Mixed Precipitation (Mix), Heat Wave (Heat), and No Weather 

(None)] are defined later. A multiple linear regression analysis relating various surface 

weather observations to plant damage observations will result in a PP statistical model, 

which will be used to predict plant damage. 
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a. Data sources 

This study employs several improvements to both the data and methods used in 

Wittman et al. (2006). Rather than phone call counts, the input data for this study comes 

from a unified damage database compiled by PSE&G covering the period 1 January 2003 

to 31 October 2008. Typical MOS equations use a dataset of five years to calculate the 

regression equations, so the training damage dataset used in this study is of sufficient 

length for statistical analysis (Wilks 2006). Counts of damage to transformers; poles; 

trees; and service, secondary, and primary wires were selected from the database as the 

six predictands. To simplify the process, only one weather station per PSE&G service 

territory is used, similar to original MOS methods of using the closest model grid point to 

represent a weather station (Glahn and Lowery 1972). The stations chosen to represent 

the four service territories were Newark Liberty International Airport (EWR), Teterboro 

Airport (TEB), Somerset Airport (SMQ), and Trenton Mercer County Airport (TTN) for 

the PSE&G service territories of Metropolitan, Palisades, Central, and Southern, 

respectively (Fig. 1.1). Surface data was obtained from the National Climate Data Center. 

To identify the occurrence of severe thunderstorms, local storm reports were obtained 

from the Storm Prediction Center (SPC 2009). 

 

b. Storm mode stratification  

The weather observations for the selected stations in each territory were objectively 

analyzed to identify each day as a particular storm mode (Thunderstorm, Warm, Cold, 

Mix, Heat, and None). The stratification method will provide a more straight forward 
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forecasting approach relative to stratifying the predictors as in Li et al. (2010). Each 

storm mode is defined below.  

The Thunderstorm storm mode was diagnosed when thunderstorms were observed at 

the station, in the vicinity of the station, or if severe weather occurred within the territory 

according to local storm reports. The inclusion of data from local storm reports account 

for events where thunderstorms hit the territory but not the station. As a result, 

Thunderstorm days can occur without reports of thunder at the designated station. In 

particular, there were 15, 7, 7, and 16 such days in Central, Metropolitan, Palisades, and 

Southern, respectively.  

The Warm storm mode was diagnosed if the only form of precipitation observed was 

rain and precipitation accumulated greater than 0.01″ (0.254 mm). The Cold storm mode 

was diagnosed if only wintry precipitation was observed (such as snow, freezing rain, or 

sleet) with precipitation of at least 0.01″ (0.254 mm). The Mix storm mode was 

diagnosed if a combination of Warm and Cold storm modes occur (rain and at least one 

of snow, sleet, or freezing rain) with precipitation of at least 0.01″. Precipitation of 

exactly 0.01″ (0.254 mm) was included for Cold and Mix storm modes and excluded for 

the Warm storm mode to account for possible undercatch of precipitation gauges during 

times of freezing or frozen precipitation (Yang et al. 1998). 

The Heat storm mode was diagnosed if maximum temperatures exceeded 90ºF (32ºC) 

and measured precipitation was no more than 0.01″ (0.254 mm). A no-weather (None) 

storm mode was diagnosed if none of the previous criteria were met. A seventh storm 

mode (Questionable) emerged as a result of missing or suspect data or if precipitation 
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was measured to be greater than 0.01″ (0.254 mm) while no report of falling precipitation 

was observed. The Questionable storm mode days were omitted from the regression 

procedure. Table 1.2 presents a summary of the occurrence of each storm mode, within 

this training dataset. 

 

c. Post processing 

The damage database is a collection of field reports compiled on a daily basis with a 

day defined as midnight to midnight LST. The data is collected as it is reported, which 

means a significant late-day thunderstorm’s damage reports are likely to spill into the 

next day. For particularly extensive severe weather events, it may take several days for all 

of the damage from that event to be reported and logged. Thus, the plant element damage 

data were post-processed to account for any potential lag in reporting during extreme 

weather. Table 1.2 includes counts of the days and events for which post processing was 

performed. Days may be post processed if the surface observations indicate a strong 

storm occurred but damage is higher on the following day(s) and these following day(s) 

are classified as None storm mode. If the None storm mode is not diagnosed following a 

strong storm, the damage observations may not be adjusted. 

10 June 2008 presents an example of a high end severe weather day that required post 

processing. On that day, the Thunderstorm mode was diagnosed for Central, 

Metropolitan, and Palisades territories followed by three consecutive None days; 

however the damage was spread out over multiple days. In Central, 69 elements were 

reported as damaged on 10 June compared to 62, 21, and 10 on 11, 12, and 13 June, 
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respectively. In Palisades, a total of 287 elements were reported as damaged on 10 June, 

with 517, 237, and 78 damaged elements reported for 11, 12, and 13 June, respectively. 

For Metropolitan, damage reports of 190, 598, 282, and 90 total elements for 10, 11, 12, 

and 13 June, respectively, were observed. As a result of the post-processing, the damage 

from 11 June to 13 June was set to zero and the sum of the damage from 10 June to 13 

June replaced the original damage observed for 10 June. A total of 106 days over the four 

territories were adjusted according to this method, with Thunderstorm days representing 

91.5% of the adjustments. The post-processed data represents only 1.25% (106/8516) of 

the days in the dataset. 

 

d. Predictors 

In contrast to Wittman et al. (2006), the regression analysis performed here used 

multiple predictors as a starting point in each case. Three predictors were included at 

times in the Wittman et al. (2006) analysis: maximum wind gust (Vmax), maximum 

temperature (Tmax), and liquid water equivalent precipitation (LWEd). Additional 

parameters were added in an attempt to improve the R
2
 values in the past model attempt: 

ten-day accumulated liquid water equivalent precipitation (LWE10), three-day maximum 

temperature sum (T3), the number of severe weather reports in a given territory, and 

various Storm Factors (SF). The LWE10 is the sum of the precipitation amounts from one 

to ten days prior to the forecast day and was intended to serve as a proxy for the amount 

of moisture in the top layer of the soil, which is thought to be a contributor to downed 

trees and poles (Wittman et al. 2006; Han et al. 2009). The T3 was considered as a proxy 
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for the cumulative heat to which equipment has been exposed. It is defined as the sum of 

the maximum temperature for the previous two days and the forecast day.  

An investigation of these variables revealed a stronger relationship if the product of 

some variables were considered. These products, denoted Storm Factors (SF), include the 

product of the wind gust and liquid equivalent precipitation (SF1), the product of the wind 

gust and ten day accumulated precipitation (SF2), and the product of the wind gust and 

maximum temperature (SF3). Figure 1.2 illustrates the importance of SF3 for the 

Thunderstorm mode in Palisades territory. In Fig. 1.2a, the observed maximum 

temperature for KTEB is plotted against the total observed damage for Palisades territory 

where the storm mode was diagnosed to be Thunderstorm, yielding an R
2 

value of ~0.08. 

Figure 1.2b shows the total damage for Palisades plotted with the maximum wind gust, 

with an R
2
 of ~0.34. The product of the maximum temperature and maximum wind gust 

(SF3) is plotted in Fig. 1.2c against the total Palisades damage and the R
2
 increases 

dramatically to ~0.80, demonstrating the potential usefulness of the Storm Factors.  

A closer inspection of the training dataset reveals that one of the assumptions 

underlying multiple linear regression is violated. A visual inspection of Fig. 1.2a and 1.2b 

show that the higher predictand values also have the largest errors while smaller 

predictand values generally have the smallest errors. This relationship between the 

magnitude of the predictand and the predictand error variance (i.e., heteroscedasticity) is 

typical of count data (Han et al. 2009). Heteroscedasticity will cause the standard error 

(se) to underestimate the true error variance of higher forecasts of plant damage, which 

results in larger uncertainty when high-end plant damage is forecast by the model. Fig 
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1.2c shows that a transformation of the data (multiplying Vmax and Tmax) can decrease 

heteroscedasticity so that the largest values of the predictand now have similar error 

values relative to the lower magnitude predictand values.  

 

4. RESULTS 

a. Regression  

The backwards regression consisted of repeatedly removing the predictor with the 

highest p-value from the regression until the adjusted R
2
 value of the regression, a 

modified R
2
 value which accounts for the number of predictors, was maximized (Draper 

and Smith 1998). The general form of the regression equations is: 

 

.   (1) 

Here, ŷ is the model predicted plant damage and t denotes the various territories, p 

denotes the plant element under consideration, m denotes the storm mode, and d denotes 

a particular day. The regression coefficients are denoted by b and the predictors are 

denoted as c, d, etc. In some cases the adjusted R
2
 value was maximized with only one 

variable remaining, leading to a simple linear regression model. Conversely, if the 

adjusted R
2
 value decreased as a result of removing the first variable, then all variables 

were used in the final regression model. Out of the 144 regression models produced, 12 

extreme cases occurred with six resorting to single variable regression and six 

necessitating all eight input variables. All six cases which used all eight original variables 

were in the Mix storm mode. Table 1.3 shows a summary of the R
2
 values for each 
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territory and storm mode, which vary from 0.032 to 0.697 for the None and Mix storm 

modes, respectively. Table 1.3 also shows the percentage of p-values which were found 

to be significant for each storm mode. The regression program automatically calculated 

the se values for every equation. However, discussing all 144 se values would be 

cumbersome, so the following equation is used to summarize the results and redefine se 

for convenience: 

 

,     (2) 

where the overbar denotes not an average, but the se of the total damage [i.e., summed 

over all plant damage elements (p)]. The se values for every storm mode and territory are 

shown in Table 1.4. Strictly speaking, equation (2) is only valid if the individual errors 

are Gaussian (normally distributed) and independent (i.e., when a pole breaks, wires and 

trees are not more likely to break as a result). However, transformers are typically 

attached to poles and wires are usually supported by poles and attached to transformers. 

This ensures that if a pole fails, the attached transformer and wires will be much more 

likely to fail.  Therefore, under stormy conditions the damage data is likely to become 

highly dependent. This should ensure that equation (2) produces a lower bound on the 

true se.  

The baseline storm type, None, represents the situations where meteorological 

conditions are assumed to be unfavorable for causing plant damage. Not surprisingly, this 

type displays the lowest R
2
 values. The None storm mode was found to have an 
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unexpectedly large percent of significant predictors, however this is likely a side effect of 

having a large (>1 200) number of data points to train the model, as this would inflate the 

degrees of freedom and possibly cause the p-values calculated to be a lower bound. When 

the weather is presumably not having a strong impact on the physical plant (as the None 

mode would imply), non-weather-related damage factors not included in the model, such 

as random car accidents, equipment failure due to age alone, or human error factors, 

should dominate. By comparison, all other storm types have higher R
2
 values for each 

territory, validating the assumed hypothesis that the weather has an impact on electrical 

field equipment. The most important predictors for the None storm mode are LWE10 and 

SF2, which were each used 22 times, and were often significant. The None storm mode 

also yielded the lowest average se value, likely due to less damage resulting from a lack 

of adverse weather. It should be noted, however, that an exception to this rule exists: 

when strong mid-latitude cyclones exit the area, the synoptic conditions are typified by 

strong cold air advection, partly cloudy skies, and strong gusty winds. These dry, gusty 

days are responsible for the weather-related damage in the None storm mode.  

The Warm storm mode also has the highest percentage of significant coefficients, 

meaning the predictors likely adequately captured the damage variance in the training 

dataset. The high percentage of significant p-values may also indicate the model is over 

fit due to large degrees of freedom value due to excessive data points. For the Warm 

storm mode, SF1 was the most important variable (used for every regression equation) 

and was often significant. The LWEd was also found to be very important for the Warm 

storm mode as it was used 23 times in the 24 regressions. SF2 was also essential, used 18 
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times in the 24 regressions. The se values for the Warm storm mode are generally higher 

than most other storm modes due to several high-end events such as the passage of the 

remnants of Hurricane Ernesto. Possible improvements for the None and Warm storm 

modes due to the excessive number of data points used in each regression are suggested 

in section 5.2 of Chapter One.  

The Heat storm mode had low R
2
 values, but it was concluded that only the 

transformers are expected to incur damage in this instance due to their failure dependence 

on high temperatures, and most territories display a much higher R
2
 value for 

transformers relative to the other plant damage elements. The percent of significant 

coefficients is the largest among all storm modes when considering transformers alone, 

compared to 50.6% when considering all plant elements. This provides evidence to the 

claim that transformers are the only plant element expected to fail in the Heat storm 

mode. The transformers had an average R
2
 value of 0.317 for Central, Palisades, and 

Southern territories combined, which was found to be 313% higher than the rest of the R
2
 

values for the other five elements considered in these territories, signifying that the 

variables used are able to capture some variance of transformer heat-related damage. The 

transformer R
2
 value for Metropolitan was 0.129, which was found to be only 32% higher 

than the other five elements. This discrepancy likely exists for Metropolitan because 

several of the transformers in that territory are underground, providing enhanced 

insulation from extreme heat (F. Schwartz 2010, personal communication). As expected, 

Tmax was used most frequently (14 times) for the Heat storm mode, with SF3 used second 

most (13 times). Vmax and LWEd were used 12 and 11 times, respectively. While it may 
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seem nonsensical that LWEd could be used so frequently, it is mainly used for non-

transformer damage and is of little consequence since only transformers are expected to 

break in the Heat storm mode. The maximum temperature was used in the regression 

equations for transformers in all territories except Metropolitan, providing further 

evidence of the insulating effect of placing equipment underground.  

The Vmax was the most commonly used predictor for the Cold storm mode, used 14 

times, and, SF3, LWEd, and SF1 were used 13 times each. It is not surprising that Vmax, 

LWEd, and SF1, are often significant and the most frequently used predictors because it 

has been well documented that precipitation and strong winds are important for 

producing damage in winter storms (Changnon and Karl 2003; Changnon 2007; Lui et al. 

2009). The Cold storm mode also displays the lowest percent of significant predictors, 

indicating that other predictors may be necessary. Several of the high-end Cold storm 

mode days in the training dataset were immediately preceded by Mix or Warm storm 

mode days which produced high LWEd and Vmax. The damage observed on the second 

day potentially should have been post-processed and assigned to the preceding day which 

might have caused the importance of LWE10 and SF2 to be inflated. This lack of post-

processing may be to blame for the lack of significant coefficients.  

The Mix storm mode presumably has high R
2
 values because cyclones bringing 

multiple precipitation types tended to have higher precipitation totals and stronger winds. 

The most frequently used variable for the Mix storm type was SF1, used 20 times, 

followed by LWEd, Vmax, and SF3, each used 18 times. One would expect these variables 

to dominate based on previous winter storm studies. The high R
2
 values for Metropolitan 



20 

 

 

 

are likely a result of all eight variables being included in four out of six of the 

regressions. The Mix storm mode displayed the largest number of predictors included 

after the backwards elimination procedure, which may cause most of these equations to 

be over fit, further evidenced by this storm mode having the lowest percentage of 

significant predictors.  

The Thunderstorm storm mode is unique in that it has an extra predictor, the number 

of severe thunderstorm reports within the territory. This predictor proved essential as it 

was used in all 24 regressions, was always significant, and was often the most significant 

predictor in each equation. The Vmax was also used in all 24 regressions, and Tmax was 

used in 23 of the regressions. The largest se values are for the Thunderstorm storm mode, 

likely due to the inclusion of several large scale and high-end severe weather episodes. 

Because thunderstorms are a small-scale phenomena, typically smaller in scale than the 

spacing of the stations used in this study, they are likely not adequately resolved in the 

model, leading to larger residuals in the regression equations. The inverse problem, when 

a small storm only strikes the vicinity of a station used in the study, also would contribute 

to increasing residuals.  

 

b. Validation  

To verify the plant damage model developed in the previous subsection, an 

independent data set was obtained from PSE&G for the period 1 November 2008–15 

November 2009. The daily weather observations and local storm reports were obtained 

for the appropriate weather stations and the plant damage data was post-processed 
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according to the methods in Section 3.3 of Chapter One. A summary of storm occurrence 

for the verification dataset can be found in Table 1.5. The training and verification 

datasets both show similar trends, with the None storm mode occurring most often, 

Warm storm mode occurring second most often, and the Cold and Heat storm modes 

occurring less frequently. The plant damage model discussed in the previous section was 

applied to produce hindcasts of plant damage, which were compared to the observed 

damage.  

Several methods were used to analyze the results of the model validation. First, the 

model error ( ) was calculated for all days and plant elements using the subscripts as 

in equation (1): 

.     (3) 

Next, the standard deviation ( ) of the model error is calculated for every territory, 

plant element, and storm mode using (4): 

 .    (4) 

To easily compare standard deviations between storm mode and territories for discussion, 

a cumulative standard deviation is calculated via (5) making the same assumptions as (2):  

.     (5) 

The subscripts are the same as in (2) to show a representative standard deviation value for 

each storm mode and territory. The total model error ( ) is calculated according to 
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(6), and it will be utilized to construct an additional standard deviation value to analyze 

the results: 

.    (6) 

The second method for analyzing standard deviation per territory and mode is: 

.   (7) 

The  value in (7) represents the standard deviation of the total model error for each 

storm mode and territory.  

In light of many y-intercepts of the regression having a negative value, weak storms 

often produced damage estimates less than zero. In these instances, to eliminate 

nonsensical damage estimates, plant elements calculated to have damage less than zero 

were automatically set equal to zero. However, removing the bias introduced by this 

model post-processing step does not change the variance. Therefore, the error measures 

defined here are still acceptable measures of the relative error magnitude for each 

territory and storm mode.  

When using count data, the distribution is by definition not Gaussian, and in many 

instances, the variance of the data is not constant (Han et al. 2009). Therefore, the se 

values should provide a lower bound on the cumulative standard deviations, which are 

provided in Table 1.6. However, this is not the case. Instead, comparing Tables 1.6 and 

1.4 show that the e values are often smaller then the se values. Reasons for this will be 

discussed below. The one case where se values are higher is the None storm mode, 
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probably because damage occurrence is non-weather related and more randomized. In 

Metropolitan, where the most plant is located underground, the e value is the lower, 

indicating the damage is still non-independent and may be due to the insulating effect of 

locating equipment underground. 

Figure 1.3 shows a box and whiskers plot of the damage counts in each of the six 

storm modes in the training and validation datasets.  Notice that the validation dataset has 

fewer high-end damage events then the training dataset, suggesting that sampling error 

exists. This may explain why the se values are larger then the e values for the 

Thunderstorm, Mix, Cold, Heat, and Warm storm modes. The only exception is the None 

storm mode where the validation dataset has more high-end damage events; however, in 

that case the e value was larger. It also becomes apparent that neither dataset is Gaussian 

because the log-transformed box and whisker plots do not resemble a log-transformed 

normally distributed dataset.  

The E values, shown for every territory and storm mode in Table 1.7, mainly fall 

between the other two standard error measures. The notable exceptions are for the 

Thunderstorm storm mode and the None storm mode. The E values for the 

Thunderstorm storm mode are the highest of the three because the data is highly non-

independent (i.e., when a pole must be replaced, transformers and wires are more likely 

to be replaced) and non-Gaussian (normally distributed; i.e., there are many more days 

with very little damage than days with more appreciable damage). However, the   

value is the smallest for the None storm, indicating that the data is more independent and 
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the damage in this mode is more reliant on causes not included in the model, such as age-

related failure, automobile collisions with equipment, or installation errors.  

 

5. CASE STUDIES  

The following is a series of two case studies intended to show the functionality of the 

plant damage model on a per-territory basis for two selected storm types. The model 

results will be compared with observed damage per territory, and a discussion will 

follow. Please note that the damage in the figure and table may not match due to 

rounding error as each damage element forecast was rounded to the nearest whole 

number.   

 

a. Thunderstorm storm mode: 9 June 2009 

Thunderstorms affected the PSE&G service territories in the early morning hours of 9 

June 2009 with frequent lightning, wind gusts of 16−31 mph (7−14 m s
-1

), rainfall of 

0.2−1.05″ (5−27 mm), and a report of severe hail in the Southern territory. The 

appropriate regression equations were applied for each territory to the surface 

observations from each weather station using the Thunderstorm storm mode. The results 

are summed graphically in Fig. 1.4, and the complete results are in Table 1.8.  

The model performed well in Central by correctly predicting a low damage total. The 

model overestimated the damage to Palisades and underestimated damage to the Southern 

territory. These errors may be due to the anomalous timing of the convection crossing 

New Jersey, as temperatures likely would have risen higher had the storms arrived in the 
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late afternoon allowing for a higher model damage forecast due to the strong correlation 

between maximum temperature and predicted damage. The damage in Metropolitan was 

measured to be zero, but the model predicted four elements to break, indicating further 

impact of placing plant underground. Another possible source of error is the omission of 

lightning data in the damage model, as this particular thunderstorm event was observed to 

have frequent lightning at EWR for several hours. Other surrounding stations such as 

TEB, TTN, and Philadelphia International Airport (PHL) also observed lightning for 

several hours. The large underestimation in Southern may be caused by the selection for 

the input station. TTN is in the northernmost part of the territory and may not fully 

represent the surface weather conditions experienced during this storm as evidenced by 

the report of severe hail originating ~40 km south of the station.  

 

 

b. Warm storm mode: 11 September 2009 

A weak surface cyclone formed late on 10 September and tracked across New Jersey 

from south to north through the day of 11 September while dissipating. This system was 

responsible for wind gusts of 31−37 mph (14−17 m s
-1

), rainfall of 0.5−1.5″ (13−38 mm), 

and maximum temperatures of 64−68 ºF (18−20ºC) across the area. The damage model’s 

Warm storm mode was applied for each territory (Fig. 1.5; Table 1.9).  

The model performed quite well in Central where the total damage estimate error was 

nine elements with small errors for each element except poles and primary wires. The 

damage is underestimated again in Metropolitan with the only observed damage assigned 
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to trees. The damage for Palisades is overestimated, mainly attributed to an 

overestimation of service wire and pole damage. The Southern territory’s damage is 

underestimated by the model due to substantial errors in pole, service wire, and tree 

forecasts. The large underestimation in Southern may again be caused by the selection for 

the input station, as PHL reported rainfall of 2.00″ and a maximum wind gust of 48 mph 

(21.5 m s
-1

) with thunderstorms. Using these values for the Thunderstorm storm mode in 

Southern yields a total damage forecast of 126 plant elements, and substituting the TTN 

observed weather into the Southern Warm storm mode yields a total damage forecast of 

54 plant elements. This illustrates the importance of proper storm mode selection and 

choosing predictor values which properly represent the territory for operational use.  

 

6. CONCLUDING DISCUSSION  

a. Conclusions  

Using multiple linear regression to forecast damage to PSE&G’s physical plant 

yielded encouraging results as measured by relatively high coefficients of determination 

for most storm modes and territories, with the most variance captured in the 

Thunderstorm and Mix modes. The verification of the model yielded reasonable standard 

deviation scores, which encourage future work. The largest standard deviations occurred 

with the Thunderstorm storm mode, which also has the highest R
2
 values. An explanation 

for this contradiction is that the Thunderstorm storm mode incurs most of the damage as 

shown in Fig. 3. The large range in observed damage explains why the Thunderstorm 

mode would have the largest errors and the ability for predictors like SF3 and the number 
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of severe weather reports to predict high-end damage account for the relatively high R
2
 

values. The high R
2
 values may also be a byproduct of the post-processing method. This 

contradiction may also be explained by the use of station observations in the training 

dataset instead of in-situ storm data for predictors such as VMax and LWEd during model 

development and validation, as the model is very sensitive to these variables as 

demonstrated by the 9 June 2009 case study. Additionally, the lack of lightning activity in 

the model may be a substantial shortcoming as lightning can have a destructive impact on 

utility equipment (Bothwell 2002). 

Unlike some previous work, the data was not stratified by season. For example, 

stratifying the None storm mode by season will likely allow for the occurrence of windy 

but fair weather, which was found to mainly occur in the cold season, to be emphasized 

in the colder months and for borderline Heat storm mode days found in the data to be 

emphasized in the warmer months. Due to the lack of seasonal stratification, LWE10 was 

not corrected for precipitation type. This would likely yield an overestimate of soil 

moisture after snow events because the precipitation is in solid form and would not seep 

into the soil until the snowpack melts. This may cause some overestimations in damage 

forecasts following heavy snow events for equations where the coefficients for LWE10 or 

SF2 are positive. 

 

b. Applications for other utilities 

This study was performed with the New Jersey climate in mind; therefore, it is 

recommended other utility companies use different data stratification methods. For 
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example, New Jersey experiences an infrequent number of tropical cyclones relative to 

the Gulf coast and southeast United States. Thus, it may be prudent in such areas to 

include a Tropical Cyclone mode to allow for damage calculations of tropical cyclones 

explicitly (whereas for the model presented in this paper, the Warm storm mode would be 

used for forecasting damage incurred by tropical systems). Locations which more 

frequently experience high-end severe convection may include a Severe storm mode to 

address tornado and high wind thunderstorm outbreaks. In locations where wintry 

precipitation is uncommon, combining stratification from the Cold and Mix modes into a 

single storm mode may prove beneficial. In locations where destructive ice storms are 

more frequent an Ice Storm mode may be a more appropriate stratification. Finally, in 

areas prone to wildfires such as California and the southwest United States, a Fire 

Weather storm mode may be necessary.  

 

c. Future Work  

Future plans include implementing the plant damage model via a web interface 

wherein a forecaster may enter a forecast of the necessary variables and obtain a 

statistical damage forecast for each territory. The idea is to utilize the damage model 

output as a forecast guidance tool, similar to MOS. Human interaction with the damage 

model will hopefully produce more useful forecasts in certain situations, similar to how 

human forecasters outperform MOS forecasts, and better convey forecast uncertainty by 

using the most appropriate standard error measure. An example of possible improvements 

a human forecaster may provide is using a forecast of wind gust and precipitation which 
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represent the entire territory as input for the model. In contradiction to using a point 

forecast approach to only forecast the weather at the stations used, a forecast entered into 

the damage model which is representative of the impending weather will produce a better 

damage forecast, as shown in the 9 June 2009 case study. This case study also 

highlighted the importance of selecting the correct storm mode.  

A number of approaches may be taken to improve the current model. For instance, the 

number of stations used for surface observations may be increased to better account for 

spatial variability within a service territory. With subterritory-scale damage data, damage 

observations could be assigned to the closest weather station leading to a damage forecast 

on a smaller scale than at present, which would provide added insight into the amount 

and location of materials and man-power needed.  

Other improvements to the plant damage model should act to overcome the use of 

count data and the associated heteroscedasticity within the training data. The count data 

errors may be corrected by utilizing a generalized linear model with negative binomial 

regression following the methods of Han et al. (2009). This will correct the false 

assumption that the input data is Gaussian distributed and homoscedastic. The importance 

of the SFs in the regression equations suggests transforming the data (such as taking the 

log of the predictands) will also act to decrease the variance in the predictand as the 

predictor magnitude increases.  

Finally, incorporating new variables, such as thunderstorm coverage and wind 

direction, may improve the model performance. Including lightning information could 

account for cases where weak thunderstorms cause anomalously large damage, as seems 
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plausible in the 9 June 2009 case study, and would account for the substantial impact 

lightning has on electrical distribution operations (Balijepalli et al. 2005). The type of 

thunderstorm observed (e.g., pulse, supercellular, linear) may also provide beneficial 

information which was previously subjectively accounted for in Wittman et al. (2006). 

Analysis of morning atmospheric soundings may provide additional useful variables, 

such as the strength of the morning capping inversion when thunderstorms are expected 

(James et al. 2005).  Inclusion of additional upper air parameters such as the magnitude 

and direction of the low level jet may provide useful information into the regression for 

heavy precipitation and wind events (Gronas 1995; Harnack et al. 2001). Wind duration 

was found to be an important predictor by Brown et al. (1997) and would likely provide 

important additional information for long lasting events. To avoid overfitting the 

regression for the None and Warm storm modes, an additional stratification into seasonal 

regression equations may be necessary.  
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7. TABLES 

TABLE 1.1. An excerpt from the Wittman et al. (2006) damage model for the PSE&G 

service territory. Pole represents the expected number of customer calls about damaged 

poles, Wire represents the expected number of customer calls for downed wires, Tree 

represents the number of expected customer calls for trees or branches which must be 

cleared, and Trans represents the expected number of customer calls for transformers that 

need to be replaced.  

Metropolitan Pole Wire Tree Trans Total 

Wind Gust 25 mph 2 12 7 0.25 21.25 

Wind Gust 30 mph 3 15 8 0.25 26.25 

Wind Gust 35 mph 4 24 12 0.25 40.25 

Wind Gust 40 mph 6 32 15 0.25 53.25 

Wind Gust 45 mph 8 43 27 0.3 78.30 

Wind Gust 50 mph 9 75 45 0.3 129.30 

Wind Gust 55 mph 12 120 67 1 200.00 

Wind Gust 60 mph 20 182 94 2 298.00 

Cold (Any) 2 12 7 0.25 21.25 

Heat Temp > 94° 2 12 7 0.25 21.25 

Heat 90° - 94° 2 12 7 0.25 21.25 

Ice (Any) 12 35 20 0.5 67.50 

Snow > 8" 7 30 17 0.5 54.50 

Snow < 8" 5 17 6 0.3 28.30 

Rainfall < 1" 4 17 9 0.3 30.30 

Rainfall 1 - 1.5" 6 25 14 0.7 45.70 

Rainfall < 1.5" 7 29 16 1 53.00 

Lightning 7 30 25 1 63.00 

Severe (Average) 8 42 28 1 79.00 

Severe (Extreme) 14 77 85 1.5 177.50 

Severe (Isolated) 6 14 10 0.5 30.50 
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Table 1.2. A summary of storm mode occurrence (number of days) for the training 

dataset. The bottom row depicts the number of total days in which data was modified and 

the corresponding number of events necessitating the lagged damage corrections, 

separated by a slash. Territories are abbreviated so that CEN, MET, PAL, and SOU 

represent Central, Metropolitan, Palisades, and Southern, respectively.  

 
STORM MODE OCCURRENCE 

...Training Dataset... 

MODE CEN MET PAL SOU 

THUNDER 163 131 133 158 

WARM 426 560 546 461 

COLD 91 91 98 100 

MIX 39 43 56 46 

HEAT 78 106 101 55 

NONE 1160 1167 1143 1151 

?? 331 163 182 316 

Modified 22/9 17/6 30/10 37/13 

 

Thunder is Thunderstorm mode 

 

?? are Questionable days 
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TABLE 1.3. Summary of regression models for each storm type and division. The R
2
 

value shown is an average of the R
2
 values from each of the six plant element 

regressions. Also shown is the percent of coefficients measured to be significant. 

 

 

 

MODE CEN MET PAL SOU Avg. p-values < 0.05** 

THUNDER 0.310 0.456 0.569 0.223 0.389 0.632 

WARM 0.121 0.186 0.189 0.182 0.169 0.640 

COLD 0.177 0.138 0.092 0.124 0.131 0.549 

MIX 0.452 0.697 0.187 0.309 0.411 0.508 

HEAT* 0.355 0.103 0.318 0.278 0.263 0.643 

NONE 0.045 0.064 0.032 0.072 0.053 0.579 

 

*Only R
2
 values for Transformers are shown; see text for details. 

**Percent of coefficients having significant p-values (< 0.05). 
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TABLE 1.4. Model derived se values for each territory and storm mode. Bold-faced 

(italicized and underlined) values denote the maximum (minimum) of the three error 

scores analyzed, here and in Tables 1.6 and 1.7. 

 

 

 MODE CEN MET PAL SOU Average 

THUNDER 15.586 46.610 36.318 28.617 31.783 

WARM 12.118 11.781 22.179 10.376 14.114 

COLD 5.720 10.766 2.102 10.613 7.300 

MIX 6.863 16.308 2.100 7.737 8.252 

HEAT 5.614 2.446 5.663 3.812 4.384 

NONE 3.676 5.371 3.183 3.546 3.944 

Average 8.263 15.547 11.924 10.783 11.629 
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TABLE 1.5. Same as Table 1.2, except for the verification dataset. 

 
STORM MODE OCCURRENCE 

… Verification Dataset… 

MODE CEN MET PAL SOU 

THUNDER 23 21 13 25 

WARM 93 112 121 111 

COLD 20 20 18 19 

MIX 8 9 14 5 

HEAT 4 7 5 3 

NONE 174 199 173 190 

?? 79 31 47 50 

Modified 12/5 2/1 2/1 11/5 

 

Thunder is Thunderstorm mode 

?? are Questionable days 
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TABLE 1.6. Standard deviations ( ) from the verification dataset, see text for 

calculation. Bold-faced (italicized and underlined) values denote the maximum 

(minimum) of the three error scores analyzed, here and in Tables 1.4 and 1.7. 

 

 MODE CEN MET PAL SOU Average 

THUNDER 15.586 46.610 36.318 28.617 31.783 

WARM 12.118 11.781 22.179 10.376 14.114 

COLD 5.720 10.766 2.102 10.613 7.300 

MIX 6.863 16.308 2.100 7.737 8.252 

HEAT 5.614 2.446 5.663 3.812 4.384 

NONE 3.676 5.371 3.183 3.546 3.944 

Average 8.263 15.547 11.924 10.783 11.629 
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TABLE 1.7.  Total model damage standard deviation ( ) from the verification dataset, 

see text for calculation. Bold-faced (italicized and underlined) values denote the 

maximum (minimum) of the three error scores analyzed, here and in Tables 1.4 and 1.6. 

 

 MODE CEN MET PAL SOU Average 

THUNDER 35.930 53.613 34.827 64.080 47.112 

WARM 6.108 4.051 8.266 7.425 6.463 

COLD 3.871 1.753 3.327 3.335 3.072 

MIX 11.096 4.391 1.840 5.450 5.694 

HEAT 4.796 0.787 1.581 6.110 3.318 

NONE 14.555 4.495 5.962 9.063 8.519 

Average 12.726 11.515 9.301 15.911 12.363 
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 TABLE 1.8. Complete damage count data for 9 June 2009 Case Study. Model = 

Modeled data (according to Thunderstorm storm type); Obs = Observed data. The plant 

damage elements are labeled on the left side as TRANS is the number of transformers 

transformers damaged, POLE is the number of poles damaged, SVC is the number of 

service wires replaced, SEC is the number of secondary wires replaced, PRI is the 

number of primary wires replaced, and TREE is the number tree related damages. The 

bold-faced values indicate where the model error is two or less (and the observed damage 

is nonzero).  

 
CASE STUDY: 9 June 2009 (Thunderstorm Storm Mode) 

 

CEN MET PAL SOU 

  Obs Model Obs Model Obs Model Obs Model 

TRAN 9 2 0 1 2 5 18 0 

POLE 0 1 1 0 2 5 1 3 

SVC  0 0 0 1 0 11 6 8 

SEC 0 2 0 0 0 2 12 2 

PRI 2 0 0 0 0 3 27 6 

TREE 2 1 0 1 0 2 25 4 
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TABLE 1.9. Same as Table 8, except for 11 September 2009 and using the Warm storm 

mode.  

 

 

 

CEN MET PAL SOU 

  Obs Model Obs Model Obs Model Obs Model 

TRAN 3 4 0 1 4 2 4 4 

POLE 10 4 0 1 3 12 8 4 

SVC  13 12 0 6 7 11 14 8 

SEC 1 2 0 1 0 1 4 3 

PRI 6 2 0 2 1 3 14 5 

TREE 13 13 3 5 0 3 9 5 
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8.  FIGURES 

 
FIG 1.1. A map showing the location of the PSE&G service territories and the weather stations used to 

construct the plant damage model. 
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FIG 1.2.  Plots for (a) Tmax versus total damage, (b) Vmax versus total  damage, and (c) SF3 versus total 

damage used to investigate new potential predictors for the Thunderstorm storm  mode in Palisades.  
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 FIG 1.3.  Box and whiskers plot showing the total observed damage for all territories in each storm mode 

for all territories for the Test dataset and Verification dataset in log-10 scale. The top and bottom of the box 

represents the first and third quartiles, respectively, and the middle line represents the median. The upper 

and lower whiskers extend to the 90
th

 and 10
th

 percentile, respectively. The values denoted by ‘x’ are 

outside the 90
th

 and 10
th

 percentile, which represent extreme values. 
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FIG 1.4.  PSE&G total plant damage observations (left) and corresponding Thunderstorm model prediction 

(right) for 9 June 2009.    
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FIG 1.5.  Same as Fig 4, but for 11 September 2009 using the ‘Warm’ model. 
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Chapter Two: Model comparison and application 

1. OVERVIEW 

The model presented in Chapter One resulted from a backwards elimination of the 

initial model. This first model attempt contained some insignificant predictors which act 

to artificially increase the R
2
 values. It follows that this original model may suffer from 

overfitting. Thus, the first model containing all available predictors will be referred to as 

the overfitted model and the model studied in Chapter One which was developed using 

backwards elimination will be referred to as the backwards eliminated model throughout  

chapter Two. This chapter will provide deeper insight via several methods into some 

questions raised in Chapter One and a few issues which were omitted. The first method 

will be comparing the equations from the overfitted model, and the backwards eliminated 

model to investigate changes in the coefficients and to explain the behavior of the model. 

Next, the assumptions for a linear model are investigated, and conclusions are drawn 

based on violations of these assumptions. This will be followed by a comparison of 

model reliability and skill by applying forecast verification techniques to the model 

derived forecasts for the verification dataset. Next, additional case studies will be 

presented to seek potential predictors for any future work and to develop guidelines for 

utilizing plant damage guidance in an operational forecast setting. Post-processing of 

storms that occur over the course of multiple days and when the post-processing methods 

presented in Chapter One fail will then be discussed. Finally, model improvements will 

be suggested based on the content of the investigation. 
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a. Model equations 

Some interesting aspects of the predictor coefficients must be addressed, including 

negative b1−b8 values, large and positive b0 values, and situations when the sign of the 

coefficient differs from the overfitted model to the backwards eliminated model. No 

significant (p-values < 0.05) predictors were removed from the overfitted model as a 

result of the objective backwards elimination procedure, however in some isolated 

instances significant predictors were omitted from the overfitted models, described in 

more detail shortly. A summary of the predictors and corresponding coefficients is 

presented in Table 2.1. The coefficients for every equation in the overfitted model and 

backwards eliminated model are presented in Table (2.2) and (2.3), respectively. 

Plant element damage was found to be positively correlated with predictor magnitude, 

which suggests that the y-intercepts (b0) should be negative or near zero, but several 

equations display large and positive b0 values. This may intuitively imply the slope of 

these equations is negative, but these equations mainly contain large positive coefficients 

which quickly act to overcome the effect of a large positive b0. For instance, the service 

wire equations for the Thunderstorm storm mode in Metropolitan have b0 values > 200 

for both model versions. However, these equations also possess b7 coefficients on the 

order of 0.16215 and 0.108894 for the overfitted and backwards eliminated models, 

respectively. When multiplied with the associated predictor (SF3) they produce a product 

on the order of 10
2
. Even if moderate conditions for thunderstorms to produce damage 
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exist [Tmax = 75 °F (10 °C), Vmax = 30 mph (4.5 m s
-1

), SF3 = 1870]. Substituting these 

values for the predictors and applying the appropriate coefficients for service wires in 

Metropolitan using the Thunderstorm storm mode that the b0 values are overcome easily 

[b7*SF3 (0.108894*1875) = 204.177]. 

The nuance discussed above leads into an understanding of why negative b1−b8 

coefficients exist. Under the special circumstance of a large and positive b0 value, 

negative coefficients will act to decrease the damage forecast and negative coefficients 

exist widespread in the model equations. While this seems counterintuitive, when large 

positive predictor coefficients exist, other predictors act to constrain the model 

predictions to match the training dataset observations, herein referred to as restrictor 

coefficients. Knowledge of restrictor coefficients may allow for constraints to be 

removed during high-end events, such as hurricanes and severe weather outbreaks, which 

are not common or may not exist in the training dataset. An example of this scenario will 

be provided in the case studies.   

The third scenario, coefficient signs differing between the overfitted model and 

backwards eliminated model, exists merely because some restricting predictors are 

removed. For example, the Heat Storm mode in Central has negative b8 coefficients (T3) 

in the overfitted model but positive coefficients in the backwards eliminated model for 

transformers and primary wires. In each equation, restrictor coefficients b5 and b3 were 

objectively eliminated from the transformer and primary wire equations, respectively. 

Conversely, for the None storm mode in Central, coefficients with positive slopes (b4 and 

b5) were objectively eliminated, resulting in the restrictor variable b8 becoming positive.  
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b. More on model assumptions  

The plant damage model presented in the previous chapter utilized a multiple linear 

regression approach, but some clear assumption violations exist in the training and 

validation dataset. The three main violated assumptions are:  

1) The data is independent 

2) The data is Gaussian distributed 

3) The data is homoscedastic. 

Intuition suggests that the damage data is dependent. The box and whiskers plot 

demonstrate that the data is non-Gaussian. The heteroscedasticity of the data is 

demonstrated via plots of the residuals (Fig. 2.1). This plot clearly shows an increasing 

variance with increasing magnitude of the predictand. This property introduces error 

during attempts to measure the error of the model (e.g., standard error, standard 

deviation), which has important implications for conveying uncertainty when using 

guidance generated by the model in question. For example, a linear model will assume 

the se is a constant and can be applied to measure uncertainty at any range of predictand 

provided it is within the bounds of the training dataset (i.e., calibration issues can be 

ignored). However, the se values are not constant, and they depend on the magnitude of 

the predictand. Given the inadequate power of the tool used to formulate the regression 

coefficients for such a situation, the calculated se values are incorrect for high and low 

damage estimates alike. Despite this lack of an explicit method to convey uncertainty 

when the model is used for forecasting, it follows that uncertainty will likely be larger for 
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more intense storms (i.e., larger predictions of damage) and smaller for weaker storms 

(i.e., lower predictions of damage) assuming the magnitude of the storm is relatively well 

known.  Explicit methods for overcoming this issue will be developed later.  

 

2. MODEL PERFORMANCE 

Two methods were used to investigate the performance of the model using the 

verification dataset. The first was applying the 95% confidence interval (CI95) bounds, 

calculated to be 1.96(se), to all model forecasts and testing whether the observed damage 

fell between the bounds. This analysis will provide a discussion on the error bounds, 

previously presented, and will allow for an assessment of model reliability. The second 

was carried out using well known forecasting verification scores [e.g., probability of 

detection (POD), false alarm ratio (FAR), critical success index (CSI), and Heidke skill 

score (HSS)] to verify the model’s ability to predict a predetermined amount of total 

damage. For more information on the calculations associated with these indices, the 

reader is referred to Roebber (2009). This analysis will allow for an assessment of 

deterministic model skill.  

 

a. Confidence Intervals 

Tables 2.4 and 2.5 show the CI95 results for the overfitted model and the backwards 

eliminated model, respectively. It would be expected that the overfitted model would 

have more observations within its CI95 because it has extraneous predictors. This will 
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increase the se values, allowing a larger possible range for which the observations may 

lie, resulting in more then 95% of the observations falling within the CI95 bounds. If the 

model were very reliable, all values in the tables would be 0.95. However, given the 

assumption violations and sample error presented in Chapter One, the error estimates 

used seem to be an upper bound for the validation dataset, so several values greater than 

0.95 can be expected in both tables. This is indeed the outcome with over half of the 

values in both tables scoring greater than 0.95. 

This analysis found the backwards eliminated model to be more reliable via 17 values 

closer to 0.95 compared to 12 for the overfitted model. This indicates that the error 

bounds calculated by the backwards eliminated model outperform those of the overfitted 

model in terms of reliability. When using the error bounds to convey forecast uncertainty, 

ideally the CI95 would verify 95% of the time, however these findings showed that the 

error range may be artificially large due to sample error and assumption violations.  

 

b. Statistical verification 

Statistical forecasting parameters were used to analyze the model predictions. Here, 

both models’ ability to predict greater than 10, 20, and 30 total damaged plant elements is 

critiqued using the POD, FAR, CSI, and HSS values. While the analysis would ideally be 

carried out for all storm modes individually, the lack of damage greater than 30 total 

elements per division on a daily basis in the verification dataset precludes such a study. 
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The results of the analysis for predictions of greater than 10, 20, and 30 total damaged 

plant elements are presented in Table 2.6, Table 2.7, and Table 2.8, respectively. 

Tables 2.6−8 show that both models suffer from high (> 0.50) FARs, however skill 

(HSS > 0) does exist across most storm modes and territories for both versions of the 

model (except in Metropolitan for greater than 30 damaged elements). The skill appears 

to be increasing as the prediction threshold increases as displayed by the total HSS values 

increasing with increasing threshold value. This is further evidenced by decreasing FARs 

and increasing POD and SCI values as the damage threshold increases.This would likely 

benefit a utility company receiving the model output, as detecting damaging events is 

essential to planning workforce operations and material needs. It is interesting to note that 

while the backwards eliminated model has less predictors, it consistently has a similar 

HSS value compared to the overfitted model and actually shows more skill at predicting 

higher values of damage. This is unexpected because the loss of predictors decreases the 

R
2
 value of the backwards eliminated model, meaning it should explain less of the 

variance and show less skill. However, the backwards eliminated model likely 

outperforms the overfitted model because extraneous predictors were removed during the 

backwards elimination process.  

 

3. CASE STUDIES  

The following is a series of case studies used to investigate new predictors and 

potential forecasting guidelines for operational use of the plant damage model in PSE&G 
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operations. The cases are selected to intentionally highlight shortcomings or to display 

working examples of how forecasting guidelines may be utilized. The first case study, 29 

July 2009, investigates the performance of the model for severe thunderstorms and 

sensitivity to the number of severe thunderstorm reports in a territory. The second 

analyzes a Mix storm mode case, 28 January 2009, in which freezing rain occurred 

widespread across the PSE&G service territories. This case will be investigated to 

determine model performance with the Mix storm mode and to analyze hourly 

observations to suggest improvements to the application of the model in instances when 

the strongest winds do not correlate with the times of precipitation. Next, two None storm 

mode days typified by dry, windy conditions, 12 February 2009 (a high-end damage day), 

and 4 April 2009 (a typical damage day) are investigated to elucidate the model 

shortcoming responsible for vastly underestimating observed damage in the 12 February 

2009 case. An example of when multiple storm modes are anticipated for the PSE&G 

area is then analyzed using 17 December 2008 and operational forecasting guidelines are 

suggested. Finally, an in depth study of the 12−14 March 2010 Nor’easter is conducted to 

investigate the possible causes for underestimation of damage for this multi-day event 

and to suggest model improvements and forecasting guidelines which may be utilized to 

reduce large errors during high-end events. The findings of these case studies will be 

discussed fully in Section 5 of Chapter One.  

Within the case studies, the role of forecaster will be investigated by using alternate 

predictor values to explore the model’s sensitivity. In this sense, the damage model will 

be used as a guidance tool, similar to MOS forecasts, except the damage model will have 
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the flexibility to calculate alternate scenarios at the forecaster’s discretion. Some 

examples of alternate model calculations analyzed include using alternate storm modes 

and adjusting Vmax to match observations not sampled by the selected stations. The 

findings will provide a basis for damage model guidelines, which will be used to aid the 

forecaster when utilizing the damage model output. 

 

a. Thunderstorm Storm Mode: 29 July 2009  

A line of thunderstorms crossed the northern half of the PSE&G service territories in 

the early afternoon of 29 July 2009. These storms contained heavy downpours, frequent 

lightning, wind gusts up to 70 mph (31 m s
-1

), and severe [> 0.75″ in diameter or larger 

(19 mm)] hail. Maximum temperatures ranged between 85−87 °F (29.4−30.5 °C) and 

daily rainfall totals ranged from 0.47−2.97″ (11.9−75.4 mm). The storms were 

responsible for 11 total severe weather reports within the PSE&G service territories with 

four, three, three, and one severe reports for Central, Metropolitan, Palisades, and 

Southern, respectively. On this date, SMQ was diagnosed as a Questionable weather day 

due to a suspect wind gust of 87 mph (39.9 m s
-1

). However a gust of 70 mph was 

measured within Central territory at Edison, NJ and this value is substituted into the 

surface observations in place of the suspect measurement from SMQ. The appropriate 

regression equations were applied to the surface observations using the Thunderstorm 

storm mode for all territories and the results are discussed below. A summary of the 

results is presented in Table 2.9 and graphically in Fig. 2.2. 
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The model did not perform well in all territories for this particular event, 

overestimating the damage for Central, Metropolitan, and Palisades, but underestimating 

the damage for Southern. The errors in Central, Metropolitan, and Palisades may be due 

to the convection arriving before peak heating and the hail reports causing inflated 

damage estimates as hail was found to have less destructive potential relative to wind of 

the data in this study. Decreasing the number of severe reports to ignore severe hail 

results in the number of severe reports decreasing from three to two in Central and two to 

one in Metropolitan, respectively. This yields a total plant damage forecast of 124 and 13 

for Central and Metropolitan, respectively, which is closer to the observations. For 

forecasting applications, this case study suggests not forecasting a high number of severe 

weather reports when hail is the main threat, as wind-related severe weather reports 

appear to be the important predictor. The damage may be underestimated in Southern 

because this area experienced two waves of thunderstorms, both containing wind gusts to 

30 mph (13.4 m s
-1

) and frequent cloud-to-ground lightning. The lack of lightning 

information in the model is again exposed as an important weakness.  

 

b. Mix Storm Mode: 28 January 2009 

A weak storm system emerged from the Rocky Mountains and crossed the southern 

plains 27 January 2009 bringing light snow and rain to the central United States. Taking 

an inland track, the storm began to intensify the afternoon of 28 January before tracking 

into eastern Canada. Across the PSE&G service territories, light snow began to fall 
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widespread late on 27 January. This light snow continued into 28 January resulting in 

0.5−4.0″ (13−101 mm) of snow by ~12 UTC. Warmer air aloft began to intrude into the 

area after 8 UTC, causing light freezing rain to fall across western portions of the area 

from around 9 UTC to 15 UTC. With profiles continuing to warm through the morning 

and early afternoon, light rain took over and was widespread by 18 UTC lasting until 00 

UTC on 29 January. As the storm departed, wind gusts quickly rose to 31-39 mph 

(13.9−17.4 m s
-1

) after 21 UTC. Maximum temperatures for the event were 40−41 °F 

(~4.5 °C) and liquid equivalent precipitation was measured to be 0.76−1.00″ (19.3−25.4 

mm) across the service territories. The Mix storm mode was applied to the appropriate 

surface observations and the model results are compared with plant damage observations 

below. The Mix storm mode was applied for all territories and a summary of the results is 

presented in Table 2.10 and graphically in Fig. 2.3.  

The Mix storm mode produced accurate damage forecasts for Metropolitan and 

Palisades by correctly predicting no damage for all wire types and tree-related damage in 

Metropolitan and secondary wires and tree-related damage in Palisades. The model 

performed adequately in Central and Southern, exactly predicting the number of 

secondary wires and transformers in Central and Southern, respectively. The model also 

accurately predicted primary wire damage and damaged poles in Central and Southern, 

respectively. However, the model performed poorly for predicting the other damage 

elements in Central and service and primary wires in Southern. The damage may be 

overestimated in these areas because the wind gusts did not occur during the 

precipitation, which is more common in the Training dataset. Here, the gusty winds 
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occurred well after the light ice accretion produced by the period of light freezing rain 

had melted. Substituting in the maximum wind observed during precipitation [7 mph (3.1 

m s
-1

) for Central and 12 mph (5.4 m s
-1

) for Southern] yields total plant damage forecasts 

of 0 and 3 for Central and Southern, respectively. Forecasting a lower wind gust for 

Palisades [13 mph (5.8 m s
-1

)] also decreased the total plant damage forecast to two. 

While these differences appear non-substantial due to their small magnitude, a few 

elements may mean the difference between holding an overtime crew and releasing one, 

which over time will save PSE&G money if the forecast is adjusted properly.  

 

c. None Storm Mode: 12 February 2009 and 4 April 2009 

A storm system in the lower Mississippi River valley on 11 February 2009 tracked 

north northeast and intensified through the day on 12 February, deepening from a 997 mb 

surface low over Missouri  at 12 UTC on 11 February to a 985 mb surface low over Lake 

Champlain at 12 UTC on 12 February. The storm would move slightly northeast and 

continue to intensify, reaching 973 mb over Nova Scotia at 00 UTC on 13 February. The 

storm brought little in the way of precipitation to the PSE&G area, but winds gusted 

51−60 mph (22.7−27.3 m s
-1

) on 12 February as the storm intensified.  

The None storm mode was generally applied to the appropriate surface observations, 

with a few exceptions. In Metropolitan, 0.06″ (1.5 mm) of rain fell from a few scattered 

showers, so the Warm storm mode was used for the model results. In Palisades, 0.08″ (2 

mm) of liquid equivalent precipitation was reported at TEB, but an observation of rainfall 
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was not reported for 12 February, causing this day to be classified as Questionable. 

However, given that EWR did report light rain, the Warm storm mode was applied for 

the Palisades data using the observations from TEB. The results are presented in Table 

2.11 and graphically in Fig. 2.4.  

The model drastically underestimated the observed damage for all elements in all 

territories. When compared to the Training dataset, the 597 combined total plant elements 

damaged on 12 February 2009 is by far the largest for the None storm. While the model 

seems to be inadequate for this day’s damage, the sampling error can likely be blamed for 

its poor performance.  

The None storm mode was also applied to an event that began on 3 April at 12 UTC, 

as a deep surface cyclone (988 mb) located over Ohio tracking northeastward. This storm 

then became occluded while deepening slightly to 982 mb over southern Ontario by 00 

UTC on 4 April. By 4 April 12 UTC, the cyclone had filled slightly (996 mb) while 

drifting slowly northeast and continuing to occlude, after which it slightly deepened to 

989 mb while reforming over Maine by 5 April 00 UTC. This system brought wind gusts 

of 37−49 mph (16.5−21.9 m s
-1

) to the area on 4 April. A light shower produced rainfall 

near TEB, so the Warm storm mode was diagnosed and applied to the surface 

observations. All other territories used the None storm mode to predict the damage. A 

summary of the results is presented in Table 2.12 and graphically in Fig. 2.5.  

The model performed adequately for this wind event and showed a vast improvement 

over the 12 February case. The model correctly forecast no damage for most of 
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Metropolitan, tree-related damage in Southern, and secondary wire damage in Palisades. 

The model also exactly forecast the number of transformers and primary wires in Central 

and damaged poles in Southern.  

This discrepancy in model performance for similar high-end westerly wind events 

was further investigated by examining hourly observations of wind gusts. It was 

concluded that the magnitude of the wind in the 12 February case combined with eight 

consecutive hours of sustained winds near or above 35 mph (15.6 m s
-1

) likely caused the 

enhanced damage. In the 4 April case, the winds were not greater than 35 mph more for 

more than three consecutive hours. This indicates a predictor to account for wind duration 

should be included in any future work.  

 

d. Various Storm Modes: 17 July 2009 

An upper level trough centered near Lake Superior allowed a southerly flow of warm, 

moist air from the northern Gulf of Mexico to spread into the Mid Atlantic and New 

England through the morning of 17 July 2009. The trough deepened and amplified 

through the afternoon allowing a cold front to advance toward the U.S. East Coast. This 

front interacted with the lake breeze off Lake Ontario to produce numerous showers and a 

few severe thunderstorms across New England, responsible for wind damage and large 

hail (SPC 2010). As the front crossed the Mid Atlantic, a surface low developed along the 

front near Washington, D.C., at approximately 00 UTC on 18 July. This feature enhanced 
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low level convergence in south New Jersey, resulting in scattered thunderstorms which 

produced three severe weather reports (one hail, two wind) in Southern territory.  

In terms of sensible weather for the PSE&G area, high temperatures ranged from 

88−91 °F (31.6−32.8 °C), with the warmest temperatures in Metropolitan and Palisades. 

Central and Metropolitan did not report precipitation for this day, which resulted in the 

None and Heat storm modes being diagnosed, respectively. In Palisades, showers did 

occur with the frontal passage, resulting in a diagnosis of Warm storm mode. In 

Southern, TTN reported rain and only 0.01″ (0.25 mm) of precipitation, however, the 

severe weather reports necessitate the Thunderstorm storm mode be diagnosed. Wind 

gusts from the frontal passage were measured to be 16−29 mph (7.1− 12.9 m s
-1

), 

however higher gusts occurred within the thunderstorms in Southern but the exact 

magnitude was not observed. The appropriate storm modes were applied for the surface 

observations and the results are summarized in Table 2.13 and Fig. 2.7. 

The model performed quite well for all territories with low errors indicated for many 

of the plant elements, and often correctly forecast the exact damage count. While the 

model performance for this particular case is very encouraging, correctly forecasting the 

storm mode for each territory may prove difficult. Often, situations may become 

favorable for several storm modes to occur, such as during a heat wave when 

thunderstorms are possible or an event when the precipitation type is not forecast with 

sufficient confidence, which often happens for the PSE&G service territories in the 

winter months. When multiple storm modes may be possible for a territory, it follows that 

a forecaster would consider each mode when creating a plant damage forecast. Tables 
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2.14−17 present the possible combinations of damage forecasts for Central, Metropolitan, 

Palisades, and Southern, respectively, when various storm modes are applied to the 

observations assuming perfect prognosis was attainable (i.e., the same predictor values 

are used regardless of storm type).   

Table 2.14 presents the model results for Central which suggest the Heat storm mode, 

while not the diagnosed storm mode, would have produced a more accurate forecast. In 

Metropolitan, Table 2.15 shows that the None and Warm storm modes would have also 

produced an excellent damage forecast. For Palisades, all applied models would have 

produced an excellent forecast, with the Heat and None storm modes providing more 

insight (Table 2.16). For Southern, the other applied storm modes would have performed 

quite poorly because they do not account for the thunderstorms which produced severe 

weather (Table 2.17). 

 It is interesting that the observations for KTTN were able to adequately describe the 

plant damage for storms which were not observed at the station. This may be because 

most damaging thunderstorms for Southern in the Training dataset occurred south of the 

station in a similar fashion to the day under consideration. Also, the timing of the 

convection was very close to what is typical in the training dataset, allowing the 

predictors used to reach a value representative of the conditions when the thunderstorms 

arrived.  

While the data presented in the case study verified for most storm modes, it is 

unlikely the assumptions made to construct Tables 2.14−17 would hold in a real world 
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forecasting scenario. For example, assuming precipitation of 0.25″ (6.4 mm) and a wind 

gust of 30 mph (13.4 m s
-1

) for Palisades, the plant damage model forecast becomes 18 

total elements, and if severe thunderstorms are anticipated [assuming a wind gust of 55 

mph (24.6 m s
-1

) and the number of severe reports is one] the plant damage model 

forecast becomes 48 total elements. An ensemble forecast, where ensemble in this sense 

refers to a weighted average of the possible predictor values given the range of possible 

storm modes, may be used as the predictors in the damage model. This method will likely 

produce more reliable forecasts in conditions when the storm mode is highly uncertain.  

 

e. High-End Event: 12−14 March 2010 

The following is a case study of a strong nor’easter which affected the PSE&G 

service territories from 12−14 March 2010 with strong easterly winds and heavy rain. 

This storm caused near record crests on several rivers in northern New Jersey and several 

million dollars of flood related damage in New Jersey alone (NWS 2010). A discussion 

of the synoptic evolution of the storm (Fig. 2.7) will be followed by a discussion of 

damage data and modeling efforts using the plant damage model presented herein.  

On 11 March 2010 12 UTC, a deep upper level trough was positioned over the central 

United States with a surface low pressure located over northern Missouri and an attendant 

occluded front stretching south to a triple point in Louisiana. The triple point was 

associated with a warm front extending from Louisiana into northern Florida and a cold 

front draped from Louisiana westward into Texas. A strong 300 mb jet streak was located 
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over the northern Gulf of Mexico, providing upper level divergence for scattered 

thunderstorm activity along the southeast United States coast. A weak high pressure 

system to the north of the upper trough was located over the southern Hudson Bay.  

By 12 March 00 UTC the convective activity in the southeast U.S. had moved off the 

Georgia coast. The upper level support for these storms rounded the base of the mean 

trough and resulted in a surface low pressure forming along the warm front 

approximately 150 km east of Savannah, GA. By this time, a deep, moist fetch had 

developed from the southern Mid-Atlantic southeastward into the western Atlantic Ocean 

in response to a strengthening of the high pressure system in eastern Canada and slight 

eastward movement of the upper trough. By 12 March 12 UTC the trough had deepened 

slightly and the jet streak in the northern Gulf of Mexico strengthened, likely due to a 

phasing of the polar and subtropical jet streams. The high pressure system in eastern 

Canada also strengthened, increasing the temperature and pressure gradient across the 

Mid-Atlantic as the low pressure system, now off the South Carolina coast, deepened 

slightly (Fig. 2.7a).   

On 13 March 00 UTC, the coastal low had deepened further and tracked north to the 

Outer Banks while the Canadian high strengthened, resulting in a strong (30 m s
-1

) 

easterly low level jet over the Mid-Atlantic. The upper level trough also continued to 

strengthen and had tilted more negatively, allowing the attendant upper level jet to 

provide strong diffluence across much of the Mid-Atlantic and causing the moisture flux 

off the northwest Atlantic to increase (Fig 2.7b). By 12 UTC 13 March, the easterly low 

level jet over the Middle Atlantic area strengthened to approximately 40 m s
-1

 in response 
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to a tightening of the pressure gradient between the coastal low, now over eastern 

Virginia, and the Canadian high. At this time, the upper level trough became oriented 

west-to-east from the Ohio River Valley to the Mid-Atlantic Coast. The low level jet 

maintained intensity, shifting slightly north to the northern Mid-Atlantic and southern 

New England in response to the coastal low tracking into central Virginia and Canadian 

high drifting slightly northeastward (Fig 2.7c).  

By 14 March 00 UTC, the upper-level and lower-level storms became stacked, 

indicating a weakening trend would begin, but the strong low level jet was still 

maintaining its intensity over New England (Fig 2.7d). On 14 March 12 UTC, the 

Canadian high had moved further northeastward, allowing the upper-level trough and 

attendant surface low to track slowly northeast across the Mid-Atlantic into the northwest 

Atlantic by 16 March 00 UTC. 

In terms of sensible weather, light rain began to fall the evening of 12 March and 

increased in intensity into 13 March as a result of the strong easterly low level jet moving 

into the area. In response, winds at the surface became easterly and sustained at 20−30 

mph (8.9−13.4 m s
-1

) with gusts to 45−70 mph (20.1−31.3 m s
-1

) into the evening of 13 

March. The heavy rain and strong easterly winds subsided in the early morning of 14 

March, but thunderstorms formed across the area bringing heavy downpours and 

lightning strikes to all territories. This storm resulted in major river flooding, coastal 

flooding and beach erosion, and substantial power outages. PSE&G incurred 

approximately 459 000 customers without power on 13 March, making this nor’easter the 

worst storm in PSE&G’s 107 year history (NOAA 2010).  
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Surface observations were collected and the appropriate model equations were 

applied for each day and territory for 12−15 March 2010. The model results and 

corresponding PSE&G damage observations are presented in Table 2.18. The damage 

only included tree-related damage, service and secondary wires, and poles replaced 

because the transformer damage and primary wire damage data was not available at the 

time of publication. The model vastly underpredicted the amount of damage, tying into 

the heteroscedasticity of the count data used, as an event of this magnitude would be 

expected to have a large residual. The damage model was re-calculated using the Warm 

storm mode for all days, as the cooler conditions provide more favorable predictor values 

for higher damage in this mode, however the model total plant damage forecast does not 

increase very much (Table 2.19). Due to the extreme magnitude of this event, a special 

model circumstance was considered; removing restrictor coefficients from the equations 

to allow an extreme upper bound value to be calculated. The results of this procedure are 

presented in Table 20, and the total model damage forecast increases but still does not 

adequately forecast the amount of damage.  

A comparative study where the maximum observed wind gust and maximum 

observed precipitation (according to local NWS storm summaries) were used as the 

model predictor values for each territory represent a perfect prognosis forecast to account 

for the selected stations failing to capture the strongest wind or heaviest precipitation 

(Table 2.21). These values are substituted for the predictors and the model equations are 

carried out with and without restrictor coefficients (Table 2.22). This study revealed that 

using the maximum value for precipitation and wind gust allowed for the highest model 
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predictions when the restrictor coefficients were eliminated, but the model errors are still 

quite high.  

This case study demonstrates the importance of wind duration and direction for 

subjectively adjusting forecasts. Despite the large model error and relatively poor 

performance, it is hoped that the damage data (once received in complete form) will 

provide an analogue forecast for any future tropical system or nor’easter expected to 

bring strong easterly winds to the area. This analogue technique will provide forecasters 

some objectivity when subjectively adjusting damage forecasts for high-end easterly 

wind events.  

 

4. POST-PROCESSING 

While the plant damage model presented in the previous chapter displays 

characteristics which encourage future work, such as an increasing skill (increasing and 

positive HSS values) with predicting higher damage totals, some flaws in model 

developmental stages exist. One main factor which could not adequately be accounted for 

using the post-processing methods presented in Chapter One is post-processing multi-day 

storm-related damage. The methods of Chapter One state that damage may only be post-

processed if the day in question is followed by None storm mode days. However, several 

examples of significant multi-day events which were un-processed in the training dataset 

exist.  
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The remnants of Hurricane Eduardo, which tracked up the eastern United States 

Coast 31 August 2006 to 2 September 2006 provide an example of a multi-day event 

which presented post processing issues. The gusty winds and heavy rainfall, which 

occurred in the PSE&G service territories for several days, resulted in substantial damage 

(Table 2.23). The cumulative plant damage totals of 1257 elements for 2 September is the 

3
rd

 highest daily total observed in the training dataset. The corresponding cumulative 

plant damage total observed on 3 September represented the 7
th

 highest total in the 

training dataset. A None storm mode was diagnosed widespread for 4 September, but 

reassigning this damage to 3 September (as per the method presented in Chapter One) did 

not seem to be rational given that the damage and meteorological observations from 3 

September do not warrant such methods. The relatively high total observed damage for 5 

September seems to indicate the associated observed damage is anomalously large and 

perhaps is left-over cleanup from the remnants of Ernesto due to the observed weak wind 

gusts and low precipitation totals. 

While the remnants of Ernesto provide an extreme example of how multiple-day 

events are poorly post-processed using the current technique, several more examples can 

be found in the training dataset. A similar problem is present in the verification dataset 

from 26 July to 2 August 2009 when several severe thunderstorms impacted the PSE&G 

territories with 22 reports of severe weather resulting in 948 cumulative plant elements 

damaged. While None storm mode days do exist between these Thunderstorm storm 

mode days, it is unlikely the current post-processing method fully accounts for such 

periods. To adequately describe storms which encompass multiple days, perhaps a future 
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damage model attempt would redefine the post-processing to stratify the damage data not 

by day when adverse weather is present, but by event.  

 

5. MODEL IMPROVEMENTS 

Several improvements to the model were suggested in Chapter One and will be 

expanded in this section. Also, further improvements utilizing lessons learned from the 

additional case studies will be examined. Improvements will also be suggested to address 

the additional shortcomings of the model addressed previously in this chapter. 

 

a.  Duration 

The case study of the 12-14 March 2010 Nor’easter and the investigation of the 

remnants of Hurricane Ernesto which impacted the PSE&G territories from 1−2 

September 2006 strongly suggest incorporating the duration of the wind and wind 

direction to account for strong, long duration easterly winds which appear to be quite 

destructive, especially in Palisades. The duration of the wind may be accounted for in 

several ways, but the two easiest seem to be either defining a binary predictor or creating 

a count predictor. The binary predictor for duration would act like switches, operating on 

the basis of ‘on’ if the winds are expected to be above a certain magnitude for a certain 

amount of time or ‘off’ if they will be below it (Wilks 2006). However a count predictor 

is suggested in order to follow the count data theme already existing. A count predictor 

for wind duration could be developed based on the number of hours the wind will be 
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above a certain magnitude, as suggested by the None storm mode case studies. While the 

potential for such a variable seems promising based on previous case studies, obtaining 

accurate values for this predictor in a practical sense may prove difficult. However, 

ensemble forecasts, such as the Short Range Ensemble Forecast (SREF), or any other 

combination of NWP output can easily be processed to create probabilities of wind 

duration and magnitude, given the model output has sufficient timesteps, to aid in the 

decision making process for creating forecasts of a duration variable.  

The Thunderstorm storm mode also has practical use for a duration predictor. The 29 

July 2009 and 9 June 2009 case studies highlight the importance of the duration of 

frequent lightning events. While severe winds from thunderstorms are often discrete 

events, frequent lightning may last for several hours after the strongest winds and 

heaviest downpours have passed. In order to incorporate lightning data adequately into 

the model, cloud-to-ground strikes must first be segregated from any lightning dataset 

and these strikes must be sorted by geographical area using a mapping interface such as 

GIS to obtain strike density values for the PSE&G service territories. As a substitute for 

the process of including lightning data, a duration element for the Thunderstorm storm 

mode may be developed. Conditions favorable for thunderstorm formation and 

sustenance have been known to exist in a post-thunderstorm environment. Forecasters 

routinely are able to predict the occurrence of multiple thunderstorms in a single day; 

therefore, the number of thunderstorms may be used as a predictor. More directly, hourly 

observations may be examined for the Thunderstorm storm mode to define the number of 

hours a station reported lightning.  



69 

 

 

 

 

b. New variables 

Through a discussion with PSE&G officials familiar with plant damage data, it 

became apparent that non-meteorological predictors should be incorporated into the 

prediction of transformer failures (F. Schwartz 2010, personal communication). 

Transformers process the electrical load travelling through the wires and are subject to 

large stresses during times of large demand. For instance, during times of extreme heat or 

cold most homes and businesses continuously run their air conditioning unit or furnace, 

respectively, to moderate the indoor air on a large scale which produces a substantial 

demand for electricity. This demand stress can act alone to cause transformer failure, and 

when combined with adverse weather, transformer failure becomes more likely. 

Therefore, combining daily load profiles, which have been well researched, would result 

in more accurate forecasts of transformer damage. While most techniques used to predict 

load profiles involve neural networks, a simpler approach could be made to account for 

load profiles through stratification. Electricity demand is higher on weekdays than 

weekends, and is typically lower on most national holidays when most businesses are 

closed. Stratification to account for the day of the week and holiday versus non-holiday 

may act to improve model forecasts as in Ružić (2003) and Saini (2007).  

Several of the new variables introduced in Chapter One provide necessary insight into 

the variance between the observed damage and surface observations. However, the ten-

day accumulated liquid equivalent precipitation (LWE10) does not fully account for soil 
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moisture. Thusly, it is suggested that future work with soil moisture variables utilize 

additional predictors such as fractional soil moisture at varying depths or recent 

precipitation anomalies presented in Han et al. (2009) and Liu et al. (2008). While these 

methods generally deal with modeling soil moisture in advance of landfalling hurricanes, 

this work could be extended and applied to soil-moisture related plant damage as a 

predictor of plant damage. Specifically, utilizing actual measurements of water content at 

various depths for use as potential predictors may add to the accuracy of the model, 

especially for the None, Warm, and Cold storm modes which rely heavily on LWE10 and 

SF2. Because such data would not need a correction for precipitation type, seasonal 

stratification for the None storm mode is made simpler.  

 

c. Rules of thumb 

The 16 July 2009 case study provided some insight into how a human forecaster may 

input data into the plant damage model and how utilizing multiple storm modes may 

elucidate the uncertainty for a particular day. Applying the lessons learned from the 

various case studies to create some general rules of thumb for forecasting will hopefully 

provide a useful guide for future users of the plant damage model developed above. The 

following is an overview of forecast application guidelines.  

In general, a deterministic forecast must be accompanied by a standard error measure 

to effectively communicate uncertainty. However, using a range of expected values as 

predictors will naturally create an effective range of plant damage which accounts for 
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uncertainty in the forecast. When entering the predictors into the model, one must closely 

examine the predictor coefficients to ensure an upper-bound and lower-bound are 

produced [i.e., the values which will maximize (minimize) the damage forecast are 

entered simultaneously to create a maximum (minimum) damage forecast]. For example, 

ranges of maximum temperature, maximum wind gust, and maximum precipitation 

should be entered as the predictors to produce a range of plant damage forecasts.  

Since duration has been shown to be an important predictor omitted by the plant 

damage model, it is recommended that damage forecasts be adjusted to compensate using 

the following method. If a long-lasting storm is expected, the forecaster should reference 

the training dataset for clues about the potential damage outcome and make adjustments 

in an objective manner. The training dataset analogue should be thoroughly searched to 

find an event which most closely resembles the expected conditions in terms of Tmax, 

Vmax, LWEd, and season. If a sufficient analogue cannot be found, then removing 

restrictors is recommended for high-end events. When considering the None storm mode, 

if maximum temperatures are expected to be greater than 86 °F, it is recommended the 

Heat storm mode be applied in addition to the None storm mode to investigate potential 

transformer damage trends.  If the storm mode is anticipated to be None but a slight 

chance of showers or flurries exists, entering 0.01″ as the value for LWEd may prove 

useful. This method may be extended to account for situations when maximum 

temperatures are expected to be well in excess of 90°F (high confidence Heat storm mode 

day) but isolated showers or weak thunderstorms are possible. 
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For the Thunderstorm storm mode, several rules of thumb must be developed to 

handle the relatively large uncertainty inherent in prediction of such events. An upward 

adjustment of the plant damage forecast should be applied in the following 

circumstances: 

1) When multiple storms are anticipated to strike the same territory. 

2) When thunderstorms are expected to be contained in a large squall line.  

3) When frequent lightning is expected to occur . 

4) When lightning activity is anticipated to linger in the area. 

While the upward adjustment will be subjective, an investigation of the training 

dataset may provide clues for the adjustment magnitude. In circumstances when 

conditions for thunderstorms are favorable but aerial coverage of thunderstorms is 

expected to be isolated, it is recommended that the maximum wind gust of the non-

convective wind be entered as Vmax. This will simulate the conditions when a storm 

affects the area but is not directly observed at the station, which often occurred in the 

training dataset.  

When severe thunderstorms are anticipated, the number of severe weather reports 

should be representative of both the confidence in severe weather occurring and potential 

magnitude of the event. The following values are recommended based on experience 

forecasting for severe thunderstorms in the PSE&G area and intimate knowledge of the 

damage dataset: 
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1) For low confidence of severe weather occurring and isolated storm coverage, a 

value of one severe thunderstorm report and a Vmax equal to the non-convective 

wind gust is recommended.  

2) For moderate confidence of severe weather occurring with scattered storm 

coverage, a value of three severe thunderstorm reports and a Vmax between 

35−55 mph (15.6−24.6 m s
-1

) is recommended. The value for Vmax in this 

situation should approximately be the magnitude of the low level jet at the time of 

storm passage.  

3) For high confidence of severe weather occurring and widespread storm coverage, 

a value of five severe thunderstorm reports is recommended. The value for Vmax 

when confidence is high for widespread severe thunderstorms should be derived 

from a WINDEX calculation or chosen to be the maximum gust measured in the 

training dataset in an attempt to produce an upper bound on the damage forecast.  

When forecasting an ice storm or an event where nontrivial amounts of freezing rain 

accretion are expected, the following is recommended: 

1) When the maximum wind gust is expected to occur before any accretion takes 

place, subjectively decrease the plant damage forecast. 

2) When ice accretion is expected and trees are not bare (e.g., leaves are present or 

trees are in bloom) subjectively increase the plant damage forecast.  
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3) When greater than 1″ of ice accretion is expected but the maximum wind gust is 

expected to be relatively low, subjectively increase the plant damage forecast.  

4) In situations where freezing rain is expected to change to rain, the timing of the 

maximum wind gust is thought to play a key role. If the maximum gust is 

expected to occur after substantial melting of ice, subjectively decrease the plant 

damage forecast.  

 Snow is only expected to be a significant contributor to plant damage if snow is 

permitted to accumulate on equipment. This is most likely to happen when  

1) Winds are light while snow is accumulating. 

2) The snowfall has a high density (e.g., wet snow). 

When both factors combine, a subjective increase to plant damage forecasts is 

recommended. In situations when both factors exist and strong wind gusts are anticipated 

after a period of calm winds, removing the restrictor coefficients may produce a better 

forecast. 

 

6. CONCLUDING REMARKS 

The plant damage model presented herein provides encouraging results for use in an 

operational setting and for future research. The model se, e, and E values provide an 

underestimate of the true variance due to a non-Gaussian distribution, non-independence, 

and heteroscedasticity in the training and verification datasets. Although these 
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assumptions are often violated, human forecasters can account for them in order to 

produce a more accurate range of forecasted damage. Rules of thumb were presented to 

serve as a guide for operational forecasting applications, which generally act to 

compensate for model shortcomings such as a lack of lightning information, storm 

duration and wind direction in the model equations. The model was applied to an 

independent verification dataset and displayed skill (HSS > 0) in forecasting greater than 

10, 20, and 30 total damaged elements for all territories and damage thresholds except 30 

total damaged elements in Metropolitan. With the exception of Metropolitan, which has 

the most subterranean plant out of the four territories, skill seemed to increase as the 

damage threshold increased, providing very encouraging implications for using the model 

to identify extreme events. Based on the model skill and the ability of human forecasters 

to overcome model shortcomings to apply the forecasting guidelines discussed above, an 

electric utility receiving damage model forecasts presented by this thesis would likely be 

more adequately prepared for damaging storms. 
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7. TABLES  

TABLE 2.1. Equation coefficients and corresponding predictors. SVR is the number of 

severe weather reports in a territory.  

Coefficients 

b1 Tmax 

b2 LWE10 

b3 LWEd 

b4 Vmax 

b5 SF1 

b6 SF2 

b7 SF3 

b8 T3 

b9 SVR 
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TABLE 2.2. Overfitted Model coefficients. Values have been truncated to four decimal 

places for display purposes. The ‘—‘ indicates the coefficient is not used in the equation. 

CENTRAL Thunderstorm Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 6.6058 -0.0938 0.1895 -0.6512 -0.4279 0.0553 -0.0251 0.0064 0.0102 1.6365 

POLE -2.5723 0.0296 0.1992 -1.5311 0.3375 0.0729 -0.0138 -0.0036 0.0036 0.9679 

SVC  -6.9635 0.0786 0.2144 -2.6055 0.3888 0.1369 -0.0174 -0.0037 0.0012 2.6513 

SEC -2.2103 0.0364 -0.1631 -1.0810 0.1122 0.0506 0.0095 -0.0014 -0.0020 0.5570 

PRI -6.5235 0.0881 -0.2362 -1.8126 0.2352 0.1242 0.0037 -0.0030 0.0031 2.0719 

TREE -5.2021 0.0384 0.2786 -2.2112 0.2507 0.1304 -0.0158 -0.0016 0.0078 2.3167 

           
METROPOLITAN Thunderstorm Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 53.1119 -0.9062 -0.6649 6.5925 -2.0786 -0.2244 0.0308 0.0294 0.0484 2.4700 

POLE 57.8779 -0.9101 -0.6871 4.8453 -2.1054 -0.1743 0.0364 0.0293 0.0321 1.9761 

SVC  202.2051 -3.1137 -3.4123 20.2920 -7.7444 -0.6762 0.1625 0.1078 0.0864 10.9683 

SEC 86.5930 -1.3658 -0.7343 7.0621 -3.1571 -0.2587 0.0415 0.0443 0.0471 2.5399 

PRI 93.3291 -1.4935 -1.8787 9.3095 -3.5024 -0.3374 0.0858 0.0480 0.0649 6.1476 

TREE 20.1907 -0.4637 1.0629 1.4355 -0.9809 -0.0044 -0.0443 0.0164 0.0356 1.6201 

           
PALISADES Thunderstorm Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 60.5595 -1.0625 1.5784 -3.8303 -2.8023 0.1756 -0.0471 0.0404 0.0641 3.3418 

POLE 38.0359 -0.5708 1.5681 -2.9684 -1.4545 0.1170 -0.0606 0.0213 0.0063 1.6830 

SVC  279.1048 -4.6125 8.3994 -27.1499 -11.5697 1.0913 -0.3256 0.1664 0.1919 11.7752 

SEC 118.0548 -1.7273 1.9006 -8.7737 -4.5401 0.3075 -0.0591 0.0629 0.0285 2.6265 

PRI 61.3107 -0.9901 2.3578 -6.6071 -2.6567 0.3025 -0.0948 0.0376 0.0373 4.2526 

TREE 139.8248 -2.1369 3.8382 -4.2218 -5.8054 0.1533 -0.1393 0.0835 0.0364 4.7043 

           
SOUTHERN Thunderstorm Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -4.6555 0.1712 1.2079 -0.3195 0.1904 0.0624 -0.0611 0.0011 -0.0529 1.4722 

POLE -19.3629 0.3827 0.8376 -6.0100 1.1249 0.2352 -0.0366 -0.0123 -0.0522 1.1975 

SVC  -28.3333 0.4737 3.3077 -13.1934 1.5164 0.5269 -0.1684 -0.0106 -0.0844 3.2080 

SEC -9.6063 0.1702 0.1416 -2.6620 0.4656 0.1040 0.0091 -0.0052 -0.0213 0.6000 

PRI -29.8867 0.4680 0.5101 -3.2011 1.4829 0.1792 -0.0299 -0.0164 -0.0400 2.7905 

TREE -38.8775 0.6815 1.2534 -9.5638 1.9449 0.4301 -0.0625 -0.0204 -0.0870 2.4637 
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CENTRAL Warm Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -2.5856 0.0505 0.4165 -0.6615 0.1365 0.0593 -0.0181 -0.0012 -0.0013 -- 

POLE -0.5949 0.0223 -0.0750 -1.7112 0.1331 0.0782 0.0095 -0.0015 -0.0003 -- 

SVC  0.2834 0.0034 -0.6072 -8.3476 0.0184 0.4120 0.0435 0.0005 -0.0002 -- 

SEC -0.0911 -0.0051 0.1565 -0.6685 0.0051 0.0360 -0.0051 0.0004 -0.0001 -- 

PRI 0.7034 -0.0106 -0.1088 -1.9580 -0.0392 0.1257 0.0062 0.0011 -0.0004 -- 

TREE -1.1218 0.0179 -0.3916 -6.6978 0.0016 0.3443 0.0360 0.0013 0.0005 -- 

           
METROPOLITAN Warm Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -1.5843 0.0332 -0.3210 -2.6387 0.0752 0.0977 0.0140 -0.0011 -0.0023 -- 

POLE -1.7296 0.0379 -0.2186 -3.4763 0.0940 0.1240 0.0091 -0.0010 -0.0051 -- 

SVC  -5.2561 0.0934 -0.2448 -15.3542 0.2343 0.5910 0.0089 -0.0015 -0.0166 -- 

SEC -1.1278 0.0104 -0.2128 -2.7246 0.0518 0.1004 0.0090 -0.0003 -0.0003 -- 

PRI -2.6623 0.0405 -0.4095 -5.6795 0.1240 0.2085 0.0159 -0.0013 -0.0026 -- 

TREE -4.4897 -0.0006 -0.4289 -11.1976 0.1918 0.4248 0.0209 -0.0008 0.0104 -- 

           
PALISADES Warm Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 7.1462 -0.0669 -0.9508 -6.0521 -0.2664 0.2678 0.0394 0.0031 -0.0003 -- 

POLE 2.0878 -0.0164 -0.2782 -9.2301 -0.0382 0.3764 0.0132 0.0007 -0.0008 -- 

SVC  7.4664 -0.1069 0.0065 -33.6694 -0.3643 1.5904 0.0135 0.0044 0.0012 -- 

SEC 8.8300 -0.0879 -1.1184 -11.4933 -0.3983 0.4787 0.0535 0.0042 -0.0007 -- 

PRI 12.5985 -0.1305 -1.4528 -16.7269 -0.5544 0.7009 0.0665 0.0064 -0.0012 -- 

TREE 14.9414 -0.1569 -1.6331 -20.3117 -0.6866 0.8456 0.0779 0.0076 -0.0008 -- 

           
SOUTHERN Warm Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -0.5970 0.0131 -0.3889 -2.1065 0.0126 0.1209 0.0185 -0.0005 0.0074 -- 

POLE -1.4211 0.0437 -0.2485 -1.0667 0.1092 0.0776 0.0099 -0.0012 -0.0039 -- 

SVC  -4.7643 0.0624 -1.8760 -11.3060 0.1761 0.4935 0.1124 -0.0037 0.0155 -- 

SEC -1.3732 0.0603 -0.1356 -3.5766 0.0616 0.1643 0.0122 -0.0009 -0.0125 -- 

PRI -2.3602 0.0496 -0.9601 -4.3689 0.0622 0.2369 0.0516 -0.0013 0.0006 -- 

TREE -3.6994 -0.0331 -2.1365 -7.3533 0.1201 0.3216 0.1160 -0.0029 0.0414 -- 
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CENTRAL Cold Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -2.1778 0.0603 -0.4939 -5.0496 0.0314 0.2424 0.0114 -0.0025 0.0245 -- 

POLE -0.3871 0.0237 -0.5767 -1.7423 0.0203 0.1441 0.0228 -0.0013 0.0153 -- 

SVC  -0.1406 0.0119 -0.6240 1.9117 0.0273 -0.1856 0.0335 -0.0008 0.0055 -- 

SEC 0.1014 0.0173 -0.2509 -1.3808 0.0029 0.0751 0.0100 -0.0003 -0.0030 -- 

PRI 0.6396 0.0173 -0.4511 0.3450 -0.0237 -0.0513 0.0160 0.0003 -0.0040 -- 

TREE 0.8012 -0.0052 -0.4861 1.5891 -0.0502 -0.1834 0.0461 0.0011 -0.0009 -- 

           
METROPOLITAN Cold Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -0.0171 0.0003 0.0709 -0.0979 -0.0054 0.0020 -0.0029 0.0002 -0.0002 -- 

POLE -5.1750 0.1085 0.3947 8.1386 0.1598 -0.2114 -0.0079 -0.0038 0.0051 -- 

SVC  -43.2423 0.7424 -1.8255 65.9832 1.4139 -1.7392 0.0534 -0.0346 0.1012 -- 

SEC -2.6947 0.0463 -0.1008 4.5952 0.0875 -0.1213 0.0030 -0.0021 0.0059 -- 

PRI -4.0529 0.0679 -0.0855 6.0737 0.1321 -0.1560 0.0015 -0.0031 0.0091 -- 

TREE -19.9628 0.3390 0.0255 53.5763 0.6230 -1.4110 -0.0024 -0.0136 0.0271 -- 

           
PALISADES Cold Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -0.2341 0.0447 -1.2624 0.4003 0.0105 -0.0250 0.0450 -0.0018 0.0053 -- 

POLE 2.7435 -0.1245 -0.3400 2.8724 -0.1697 -0.0830 0.0083 0.0044 0.0269 -- 

SVC  -0.5416 0.0171 -0.3908 1.0569 0.0238 -0.0465 0.0208 -0.0016 0.0080 -- 

SEC 0.4200 0.0048 -0.5896 0.1351 -0.0244 -0.0102 0.0219 0.0002 0.0002 -- 

PRI 0.8827 -0.0131 -0.2108 0.2983 -0.0266 0.0029 0.0058 0.0008 -0.0015 -- 

TREE -0.0907 0.0012 0.0190 -0.0038 0.0007 0.0008 -0.0009 0.0000 0.0004 -- 

           
SOUTHERN Cold Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -1.3718 0.0456 0.3026 -0.9630 0.1041 0.0452 -0.0150 -0.0016 -0.0045 -- 

POLE 2.9842 -0.0733 -0.8918 1.5502 -0.0568 0.0132 0.0304 0.0023 0.0089 -- 

SVC  -18.1689 0.2664 4.8361 -25.0184 0.7709 1.0156 -0.2385 -0.0109 0.0210 -- 

SEC -12.5603 0.2531 0.6838 -9.5508 0.5408 0.4399 -0.0350 -0.0123 0.0170 -- 

PRI -6.5073 0.0957 1.1770 -2.5427 0.2826 0.1773 -0.0567 -0.0049 0.0123 -- 

TREE -6.0042 0.0207 2.4089 -6.7800 0.2478 0.3244 -0.1253 -0.0011 0.0158 -- 
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CENTRAL Mix Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 10.5234 -0.2319 0.0381 -5.6748 -0.4995 0.2785 0.0098 0.0114 0.0005 -- 

POLE 13.3498 -0.3276 0.4239 -3.4614 -0.6595 0.1894 -0.0018 0.0166 0.0000 -- 

SVC  19.3127 -0.3276 -0.3182 -19.6005 -0.7863 1.0179 -0.0009 0.0140 -0.0009 -- 

SEC 3.2692 -0.0814 0.1830 -1.0715 -0.1187 0.0612 -0.0009 0.0032 -0.0006 -- 

PRI 8.0981 -0.1576 0.0111 -7.2625 -0.3984 0.4060 -0.0010 0.0078 -0.0003 -- 

TREE 39.8127 -0.7841 0.7599 -40.1781 -1.5476 1.9620 -0.0737 0.0313 -0.0017 -- 

           
METROPOLITAN Mix Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 34.6388 -0.8903 -3.2115 6.7080 -1.2592 -0.2142 0.0920 0.0296 0.0224 -- 

POLE 207.4523 -5.3089 -20.1775 38.7585 -7.5599 -1.2092 0.6003 0.1756 0.1400 -- 

SVC  38.9995 -1.0058 -3.7585 8.5435 -1.4137 -0.2767 0.1106 0.0331 0.0265 -- 

SEC 51.3696 -1.3424 -4.7646 12.4561 -1.8611 -0.4164 0.1384 0.0441 0.0365 -- 

PRI 119.3226 -3.0187 -11.6800 17.4597 -4.3754 -0.5059 0.3516 0.1005 0.0780 -- 

TREE 476.6769 -12.2120 -46.2061 88.5964 -17.3732 -2.7660 1.3716 0.4039 0.3239 -- 

           
PALISADES Mix Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 4.2630 -0.0226 -1.3318 -0.8709 -0.1299 0.0154 0.0531 0.0015 -0.0008 -- 

POLE 0.4418 -0.0027 -0.7536 3.0984 0.0086 -0.0988 0.0193 0.0002 0.0005 -- 

SVC  0.3155 -0.0150 -0.0281 0.4070 0.0156 -0.0179 0.0011 0.0005 -0.0002 -- 

SEC 0.6338 -0.0095 -0.0289 -0.2106 -0.0139 0.0018 0.0015 0.0002 0.0001 -- 

PRI 3.5981 -0.0442 -1.3626 0.1374 -0.1338 -0.0065 0.0505 0.0019 0.0003 -- 

TREE 0.1201 0.0009 -0.3890 0.0184 -0.0440 -0.0008 0.0185 0.0007 0.0004 -- 

           
SOUTHERN Mix Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -1.0954 -0.0280 1.4963 3.9445 0.0799 -0.1167 -0.0459 0.0009 0.0009 -- 

POLE -0.7859 -0.1210 1.7197 0.7893 0.0755 0.0251 -0.0646 0.0011 0.0335 -- 

SVC  -14.0325 0.2933 1.8204 -13.5226 0.5833 0.6499 -0.0789 -0.0160 0.0337 -- 

SEC -1.1172 0.0406 0.1847 -1.0963 0.0190 0.0574 -0.0083 -0.0005 -0.0038 -- 

PRI -1.9451 0.0842 0.7177 -5.3871 0.1974 0.2460 -0.0407 -0.0040 -0.0100 -- 

TREE -3.6923 0.0586 1.1609 -5.4018 0.1362 0.2659 -0.0420 -0.0042 0.0181 -- 
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CENTRAL Heat Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -221.2898 2.3928 3.0945 471.0767 6.5454 -28.4287 -0.0950 -0.0675 -0.0068 -- 

POLE -3.0878 0.0389 1.1356 -187.4568 0.2752 14.3130 -0.0576 -0.0024 -0.0024 -- 

SVC  -2.3074 0.0358 0.3790 -140.9134 -0.4754 11.1294 -0.0156 0.0052 -0.0008 -- 

SEC -25.8764 0.2864 -0.0114 200.4169 1.4403 -10.1709 0.0051 -0.0157 -0.0009 -- 

PRI -13.6921 0.1522 0.5503 -13.1802 0.7474 -0.0807 -0.0288 -0.0079 -0.0007 -- 

TREE 21.3896 -0.2080 1.4454 -277.3864 -1.5914 17.4455 -0.0741 0.0167 -0.0014 -- 

           
METROPOLITAN Heat Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -9.4866 0.1131 0.2896 205.2361 -0.4119 -9.9717 -0.0146 0.0047 -0.0044 -- 

POLE -3.4860 0.0420 -0.0787 -7.8936 -0.0699 -0.0102 0.0036 0.0006 0.0001 -- 

SVC  1.2764 -0.0395 0.1411 -180.8901 -0.8565 8.4190 -0.0040 0.0094 0.0086 -- 

SEC -9.2439 0.0889 0.1597 14.9618 0.2887 -0.7498 -0.0063 -0.0030 0.0033 -- 

PRI -7.4803 0.0778 0.0415 41.1075 0.2333 -1.8748 -0.0016 -0.0024 0.0000 -- 

TREE 1.8886 -0.0508 0.4671 127.2216 -0.6278 -5.3042 -0.0216 0.0072 0.0076 -- 

           
PALISADES Heat Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -89.3319 0.7264 -0.4591 -850.1683 0.1814 31.1590 0.0242 -0.0037 0.1070 -- 

POLE 2.8232 0.0439 -0.1272 -58.1308 -0.0157 1.5531 0.0105 -0.0003 -0.0197 -- 

SVC  -24.2135 0.0894 0.4374 -231.8984 0.0272 7.5826 -0.0168 0.0000 0.0604 -- 

SEC -3.3436 0.0212 -0.0404 25.2796 -0.0052 -0.9920 0.0027 0.0000 0.0055 -- 

PRI -4.2456 0.0681 -0.1626 -221.8845 0.0276 9.0169 0.0079 -0.0005 -0.0043 -- 

TREE -0.3564 -0.0043 0.0085 -243.6249 -0.0060 11.6026 -0.0002 -0.0001 0.0046 -- 

           
SOUTHERN Heat Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -99.8218 1.2424 1.3074 3578.9168 1.7773 -213.5209 -0.0479 -0.0207 -0.0374 -- 

POLE -67.9842 0.7269 0.3674 1016.9446 3.6927 -66.6227 -0.0095 -0.0406 0.0111 -- 

SVC  4.9353 0.0641 1.1542 -6693.4276 -0.7773 409.8694 -0.0568 0.0086 -0.0382 -- 

SEC -19.1867 0.1849 0.0513 1745.2769 1.2328 -104.6510 -0.0007 -0.0133 0.0082 -- 

PRI -69.8556 0.7810 -0.3550 1928.8379 3.1059 -96.9528 0.0231 -0.0340 -0.0036 -- 

TREE -51.0976 0.5978 0.5796 1512.3367 2.0960 -80.1960 -0.0334 -0.0220 -0.0155 -- 
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CENTRAL None Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -0.1655 0.0283 -0.1558 -10.8833 0.0316 -0.3288 0.0135 -0.0008 0.0000 -- 

POLE 1.5036 -0.0034 -0.1240 37.9880 -0.0004 -0.8820 0.0117 -0.0001 -0.0003 -- 

SVC  -0.8891 0.0256 -0.2961 75.7633 0.0664 -3.8690 0.0255 -0.0009 -0.0008 -- 

SEC -0.1167 0.0087 -0.1856 7.3764 0.0113 -0.3891 0.0118 -0.0004 -0.0001 -- 

PRI -0.3418 0.0105 -0.2624 15.8961 0.0149 -0.8066 0.0176 -0.0003 -0.0001 -- 

TREE -2.4960 0.0563 -0.7448 87.0851 0.1021 -5.0431 0.0535 -0.0019 0.0010 -- 

           
METROPOLITAN None Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -1.2598 0.0713 -0.1873 7.6622 0.0465 -0.8981 0.0060 -0.0008 -0.0150 -- 

POLE -1.3247 -0.0118 -0.2028 52.8892 0.0384 -2.6821 0.0085 -0.0004 0.0106 -- 

SVC  -4.5925 -0.0503 -1.0461 169.4507 0.1127 -8.7875 0.0470 -0.0014 0.0410 -- 

SEC -1.4230 -0.0166 -0.2378 25.3237 0.0320 -1.6316 0.0102 -0.0004 0.0133 -- 

PRI -1.8270 -0.0289 -0.2509 40.3744 0.0412 -2.4596 0.0099 -0.0004 0.0188 -- 

TREE -3.6229 -0.0857 -1.6642 119.3530 0.0419 -6.5647 0.0718 -0.0009 0.0537 -- 

           
PALISADES None Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 0.0306 -0.0049 0.1288 -21.5033 -0.0081 0.5944 0.0003 0.0004 0.0039 -- 

POLE 0.3144 0.0132 -0.0535 -3.8325 0.0052 0.4676 0.0034 0.0001 -0.0038 -- 

SVC  -0.3607 -0.0043 -0.1887 56.3405 0.0203 -2.2083 0.0091 -0.0001 0.0039 -- 

SEC -0.0650 -0.0014 -0.0337 12.5931 0.0031 -0.5552 0.0020 0.0000 0.0008 -- 

PRI -0.1132 -0.0016 -0.1779 28.6227 0.0048 -1.3893 0.0084 -0.0001 0.0016 -- 

TREE -0.5106 0.0042 -0.6058 74.7094 0.0134 -3.3416 0.0293 -0.0003 0.0027 -- 

           
SOUTHERN None Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -0.2520 0.0228 -0.1356 -72.7184 0.0120 4.1214 0.0100 -0.0003 0.0002 -- 

POLE 0.6541 -0.0014 -0.1012 -44.0109 0.0240 2.9115 0.0080 0.0000 0.0006 -- 

SVC  -0.4127 0.0242 -0.3208 -63.4590 0.0438 4.4951 0.0230 -0.0008 -0.0010 -- 

SEC -0.0690 0.0027 -0.1250 -68.4733 0.0009 3.5668 0.0081 -0.0001 0.0003 -- 

PRI -0.0948 0.0118 -0.2553 -147.2550 -0.0088 7.8961 0.0162 0.0002 -0.0024 -- 

TREE 0.0172 0.0179 -0.3751 -144.7441 -0.0173 7.9592 0.0230 0.0003 -0.0022 -- 
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TABLE 2.3. Backwards Eliminated Model coefficients. Values have been truncated to four 

decimal places for display purposes.  

CENTRAL Thunderstorm Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 4.8900 -0.0718 -- -1.7918 -0.3659 0.1071 -0.0160 0.0058 0.0091 2.3927 

POLE -10.1874 0.1378 -- -4.4476 0.7544 0.2036 -- -0.0090 -- 1.7220 

SVC  -19.9728 0.2501 -- -8.5885 1.0265 0.4068 -- -0.0120 -- 3.9982 

SEC 5.6927 -0.0550 -- -1.6946 -0.3955 0.1051 -0.0159 0.0062 -- 2.3788 

PRI -14.2579 0.1926 -- -4.7467 0.6177 0.2641 -- -0.0080 -- 2.6637 

TREE -17.9514 0.2250 -- -8.9012 0.9001 0.4349 -- -0.0100 -- 4.0509 

           
METROPOLITAN Thunderstorm Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 51.5818 -0.9140 -- 6.4437 -2.0108 -0.2200 -- 0.0291 0.0536 2.4381 

POLE 60.1259 -0.8489 -- 4.4710 -2.1140 -0.1589 -- 0.0299 -- 1.9103 

SVC  205.6693 -2.9438 -- 18.8859 -7.6501 -0.6218 -- 0.1089 -- 10.7135 

SEC 90.3195 -1.2770 -- 6.5849 -3.1912 -0.2385 -- 0.0451 -- 2.4577 

PRI 96.8607 -1.3674 -- 8.4476 -3.4971 -0.3030 -- 0.0491 -- 5.9969 

TREE 231.7411 -3.2633 -- 19.3146 -8.5356 -0.6825 -- 0.1192 -- 15.8924 

           
PALISADES Thunderstorm Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 51.5663 -0.8075 2.5698 -- -2.3680 0.0492 -0.0917 0.0369 -- 3.2795 

POLE 37.0881 -0.5448 1.7098 -2.8958 -1.4011 0.1156 -0.0672 0.0209 -- 1.6706 

SVC 226.1969 -3.5905 15.0483 -25.3067 -8.8957 1.0565 -0.6242 0.1422 -- 11.2292 

SEC 97.1534 -1.4559 4.1985 -8.4126 -3.5581 0.2999 -0.1627 0.0539 -- 2.4895 

PRI 50.9211 -0.7904 3.6490 -6.2526 -2.1328 0.2958 -0.1525 0.0329 -- 4.1444 

TREE 126.5938 -1.9231 4.9550 0.0000 -5.2179 -- -0.1888 0.0786 -- 4.6866 

           
SOUTHERN Thunderstorm Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -5.8626 0.1999 0.1968 -- 0.0539 -- -- -- -0.0507 1.3770 

POLE -18.4531 0.3859 -- -5.8080 1.0734 0.2300 -- -0.0122 -0.0525 1.1398 

SVC -6.5892 -- -- -15.3404 0.4725 0.5960 -- -- -- 2.6798 

SEC -10.8217 0.1242 -- -2.8767 0.4909 0.1090 0.0150 -0.0055 -- 0.5963 

PRI -36.6321 0.4239 -- -- 1.6725 0.0794 -- -0.0186 -- 2.8000 

TREE -37.3025 0.6805 -- -9.3001 1.8404 0.4242 -- -0.0201 -0.0865 2.3396 
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CENTRAL Warm Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -2.7719 0.0460 0.4181 -- 0.1415 0.0337 -0.0181 -0.0012 -- -- 

POLE 0.5560 -- -- -1.6655 0.0487 0.0762 0.0063 -- -- -- 

SVC 1.4761 -- -0.8824 -8.9229 -- 0.4376 0.0575 -- -- -- 

SEC 0.0101 -0.0068 0.1537 -0.6745 -- 0.0363 -0.0049 0.0005 -- -- 

PRI -0.1787 -- -- -2.0029 0.1278 0.0006 0.0000 -- -- -- 

TREE -1.4119 -0.0771 -- -7.2468 -- 0.3649 0.0192 0.0018 -- -- 

           
METROPOLITAN Warm Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -1.5937 0.0259 -0.3206 -2.6612 0.0752 0.0983 0.0140 -0.0011 -- -- 

POLE -1.7368 0.0217 -0.2166 -3.5279 0.0931 0.1253 0.0091 -0.0010 -- -- 

SVC  -2.9946 -- -- -15.5775 0.1580 0.5972 -- -- -- -- 

SEC -0.5470 -- -0.1977 -2.7394 0.0312 0.1010 0.0086 -- -- -- 

PRI -0.6763 -- -0.3694 -5.7457 0.0439 0.2109 0.0146 -- -- -- 

TREE -2.9703 -- -- -11.1794 0.1611 0.4252 -- -- -- -- 

           
PALISADES Warm Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 7.0388 -0.0667 -0.9421 -6.0479 -0.2663 0.2681 0.0391 0.0031 -- -- 

POLE -- -- -9.7127 -- 0.3969 -- -- -- -- -- 

SVC  -0.2662 -- 0.0000 -32.5044 -- 1.5420 -- -- -- -- 

SEC 8.5512 -0.0875 -1.0960 -11.4824 -0.3980 0.4794 0.0529 0.0042 -- -- 

PRI 4.0110 -- -1.6087 -16.5749 -0.2378 0.6976 0.0727 0.0012 -- -- 

TREE 14.6179 -0.1565 -1.6071 -20.2991 -0.6863 0.8465 0.0771 0.0076 -- -- 

           
SOUTHERN Warm Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -0.2497 -- -0.3755 -2.1991 -- 0.1240 0.0179 -0.0003 0.0101 -- 

POLE -1.7236 0.0321 -- -1.1780 0.1203 0.0809 -- -0.0012 -- -- 

SVC -0.7747 0.0622 -2.0209 -11.6192 -- 0.5119 0.1198 -0.0017 -- -- 

SEC -0.0066 0.0409 0.0000 -3.6899 -- 0.1698 0.0063 0.0000 -0.0130 -- 

PRI -0.9936 0.0357 -1.0135 -4.5956 -- 0.2470 0.0542 -0.0006 -- -- 

TREE -4.6971 0.0000 -2.1623 -7.1037 0.1578 0.3128 0.1173 -0.0035 0.0350 -- 
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CENTRAL Cold Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -1.0328 -- -0.2662 -4.1543 -- 0.2234 -- -0.0010 0.0287 -- 

POLE 0.0028 -- 0.0000 0.0000 -- 0.0000 -- -- 0.0138 -- 

SVC 0.8188 -- -0.6545 2.7171 -- -0.2246 0.0356 -- -- -- 

SEC 0.2248 0.0107 -0.1912 -- -- -- 0.0075 -- -0.0039 -- 

PRI 0.0655 0.0124 -0.2758 -- -- -- 0.0072 -- -- -- 

TREE 40.4453 -0.7949 -- -38.5318 -1.7107 1.9011 0.0000 0.0334 -- -- 

           
METROPOLITAN Cold Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 0.0336 -- -- -0.0069 -- -- -- 0.0002 -- -- 

POLE -5.1672 0.1264 0.1931 8.3691 0.1655 -0.2180 -- -0.0041 -- -- 

SVC -45.0084 0.7574 -- 67.2138 1.4591 -1.7775 -- -0.0342 0.0951 -- 

SEC -2.7893 0.0470 -- 4.6629 0.0899 -0.1234 -- -0.0021 0.0056 -- 

PRI -4.2512 0.0730 -- 6.1411 0.1376 -0.1579 -- -0.0032 0.0085 -- 

TREE -19.9717 0.4030 -- 55.3338 0.6498 -1.4641 -- -0.0136 -- -- 

           
PALISADES Cold Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 0.2514 -- -0.9060 -- -- -- 0.0311 -0.0011 0.0134 -- 

POLE 3.9451 -0.1381 0.0000 2.1921 -0.1611 -0.0607 -- 0.0040 0.0222 -- 

SVC 0.5349 -- -0.4692 0.8184 0.0000 -0.0384 0.0234 -0.0011 0.0060 -- 

SEC 0.5683 -- -0.5512 0.0000 -0.0307 -- 0.0201 0.0004 -- -- 

PRI 0.0341 -- -- 0.3751 -- -- -- 0.0002 -- -- 

TREE -0.0663 -- -- -- -- -- -- -- 0.0008 -- 

           
SOUTHERN Cold Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -0.0502 -- -- -- 0.0441 -- -0.0055 -- -- -- 

POLE 1.8849 -- -1.2966 1.8816 -- -- 0.0495 -- -- -- 

SVC -7.4519 -- 4.7638 -21.1361 0.4232 0.8830 -0.2346 -- -- -- 

SEC -2.8073 -- -- -- 0.1510 -- -- -- -- -- 

PRI -2.4068 -- 1.2017 -- 0.1339 0.0894 -0.0569 -- -- -- 

TREE -4.3568 -- 2.3559 -- 0.2321 0.0947 -0.1198 -- -- -- 
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CENTRAL Mix Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 10.7038 -0.2303 -- -6.1463 -0.4655 0.2951 -- 0.0108 -- -- 

POLE 13.3892 -0.3281 0.3955 -3.4395 -0.6627 0.1884 -- 0.0167 -- -- 

SVC 5.5355 -0.3489 -- -16.7341 -0.2069 0.8458 -- -- 0.1115 -- 

SEC 0.8216 -0.0293 0.1744 -- -- 0.0162 -- 0.0006 -- -- 

PRI 6.6855 -0.2242 -- -6.6697 -0.3424 0.3659 -- 0.0064 0.0327 -- 

TREE 35.9538 -1.0168 -- -36.6582 -1.5258 1.7699 -- 0.0290 0.1074 -- 

           
METROPOLITAN Mix Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 24.8941 -0.6460 -2.6138 4.6707 -0.9040 -0.1435 0.0787 0.0209 0.0204 -- 

POLE 35.4121 -0.8386 -3.1490 6.2409 -1.2597 -0.1867 0.0892 0.0295 -- -- 

SVC 207.4523 -5.3089 -20.1775 38.7585 -7.5599 -1.2092 0.6003 0.1756 0.1400 -- 

SEC 39.9132 -0.9448 -3.6847 7.9916 -1.4142 -0.2442 0.1072 0.0330 -- -- 

PRI 51.3696 -1.3424 -4.7646 12.4561 -1.8611 -0.4164 0.1384 0.0441 0.0365 -- 

TREE 119.3226 -3.0187 -11.6800 17.4597 -4.3754 -0.5059 0.3516 0.1005 0.0780 -- 

           
PALISADES Mix Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 3.5403 -1.3000 -- -0.3169 -0.1013 -- 0.0517 0.0010 -0.0067 -- 

POLE 1.2515 -- -0.2123 3.5283 -- -0.1118 -- 0.0010 -0.0107 -- 

SVC -0.2806 -- -- -- 0.0301 -- -- -- -- -- 

SEC 0.4092 -0.0057 -- -0.1667 -- -- -- -- -- -- 

PRI 4.2280 -0.0480 -1.2002 0.5375 -0.1474 -0.0198 0.0455 0.0024 -0.0050 -- 

TREE 0.5722 -- 0.0401 -- -0.0417 -0.0003 0.0024 0.0011 -0.0057 -- 

           
SOUTHERN Mix Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -2.1430 -- 1.5029 3.7965 0.1198 -0.1110 -0.0463 -- -- -- 

POLE -2.4340 -0.0838 1.7033 1.5408 0.1342 -- -0.0641 -- 0.0319 -- 

SVC 3.7638 -- -- -10.4041 -- 0.5454 -- -0.0037 -- -- 

SEC 0.0251 -- -- 0.0000 0.0207 -- -- -- -- -- 

PRI 1.0101 -- -- -5.2870 0.0857 0.2380 -0.0194 -0.0019 -- -- 

TREE 0.1270 -- -- -- -- 0.0818 -- -- -- -- 
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CENTRAL Heat Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -127.3035 1.0530 1.9663 -- -- -- -- -- 0.1215 -- 

POLE 0.6480 -- 0.7728 -207.5427 -- 15.7278 -0.0345 -- -- -- 

SVC  1.0836 -- 0.1352 -132.8207 -0.7095 10.7542 0.0075 -- -- -- 

SEC -29.5692 0.3234 -- 213.2877 1.7164 -10.9215 -- -0.0186 -- -- 

PRI -3.5902 -- 0.1265 -- -- -- -- -- 0.0149 -- 

TREE 1.5534 -- 1.6271 -256.6917 -0.0292 15.9423 -0.0876 -- -- -- 

           
METROPOLITAN Heat Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 0.3536 -- -- -- -0.7989 -- -- 0.0086 -- -- 

POLE -5.0772 0.0562 -- -- -- -- -- -- -- -- 

SVC  0.0763 -- -- -- -0.8134 -- -- 0.0089 -- -- 

SEC -2.1421 0.0155 -- -- -- -- -- -0.0001 0.0033 -- 

PRI -7.1683 0.0754 -- -- 0.2291 -- -- -0.0024 -- -- 

TREE -0.0399 -- -- -- -0.5440 -- -- 0.0060 -- -- 

           
PALISADES Heat Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -83.1800 0.6241 -- -130.6169 -- -- -- -- 0.1061 -- 

POLE 2.3968 0.0496 -- -- -- -- 0.0043 -0.0004 -0.0208 -- 

SVC  -18.3540 0.0720 -- -- -- -- -- -- 0.0000 -- 

SEC -3.3203 0.0225 -- -- -- -- -- -- 0.0049 -- 

PRI 0.5996 -- -- -221.1067 -0.2006 8.9441 0.0006 0.0021 0.0000 -- 

TREE -15.3106 0.1710 -- -276.1301 0.6677 13.0273 -- -0.0074 0.0000 -- 

           
SOUTHERN Heat Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -67.7619 0.7982 0.5062 -- -- -- -- -0.0020 -- -- 

POLE -67.1140 0.7513 0.1853 -- 3.5568 -- -- -0.0393 -- -- 

SVC 10.8210 -- 1.1347 -6698.3997 -1.0958 410.0621 -0.0557 0.0120 -0.0379 -- 

SEC 0.2264 -- -- 1677.3585 -- -100.0000 -- -- -- -- 

PRI -74.5474 0.8165 -- 325.2670 3.3649 -- 0.0056 -0.0366 -- -- 

TREE -13.5738 0.1601 -- 166.4027 -- -- -- -- -- -- 
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CENTRAL None Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN 0.4104 -- -0.1248 -14.2976 -- -- 0.0109 -0.0003 0.0064 -- 

POLE 0.8362 -- -- 33.3998 -- -- 0.0059 -- 0.0004 -- 

SVC 0.0521 0.0052 -0.1073 58.2516 0.0207 -2.5098 0.0106 -- -- -- 

SEC -0.0536 0.0106 -0.1802 0.0000 0.0096 -- 0.0111 -0.0004 -0.0010 -- 

PRI 0.0078 -- -0.1844 8.8429 -0.0043 -0.1504 0.0113 0.0001 0.0012 -- 

TREE -1.5527 0.0117 -0.5479 67.1908 0.0474 -3.4539 0.0380 -0.0009 0.0101 -- 

           
METROPOLITAN None Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -1.2490 0.0718 -0.1894 0.0000 0.0463 -0.6209 0.0061 -0.0008 -0.0152 -- 

POLE -0.1533 -- -0.0989 35.7371 0.0076 -1.5410 0.0043 -- 0.0006 -- 

SVC -0.0301 -- -0.6568 96.1204 0.0031 -4.7007 0.0329 -- -- -- 

SEC -0.4377 0.0073 -0.1795 26.2438 0.0165 -1.2186 0.0086 -0.0003 -- -- 

PRI -0.3075 0.0039 -0.1196 25.1651 0.0123 -1.2064 0.0056 -0.0001 -- -- 

TREE -0.2181 0.0200 -1.3983 101.0606 -- -4.5333 0.0652 -0.0007 -- -- 

           
PALISADES None Storm Mode 

  b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -0.1840 -- 0.1359 -- -- -- -- 0.0003 0.0032 -- 

POLE 0.1408 0.0157 0.0119 -- -- 0.3111 0.0014 -- -0.0041 -- 

SVC  -0.5554 -- -0.1950 57.4766 0.0281 -2.2440 0.0094 -0.0002 0.0036 -- 

SEC -0.0834 -- -0.0333 12.8794 0.0037 -0.5708 0.0020 -- 0.0004 -- 

PRI -0.1604 -- -0.1822 28.3142 0.0070 -1.3726 0.0086 -0.0001 0.0015 -- 

TREE -0.2102 -- -0.5624 78.4184 -- -3.5310 0.0273 -- 0.0015 -- 

           
SOUTHERN None Storm Mode 

 
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 

TRAN -0.0144 0.0177 -- -80.5308 -- 4.5437 0.0039 -- -- -- 

POLE 0.7047 -- -0.1268 -51.1755 0.0200 3.2962 0.0094 -- 0.0003 -- 

SVC -0.0743 0.0198 -0.3799 -80.4419 0.0271 5.4126 0.0262 -0.0007 -- -- 

SEC -0.0533 0.0024 -0.1045 -66.6010 -- 3.4770 0.0070 -- -- -- 

PRI 0.2870 -- -0.2717 -155.5127 -0.0279 8.3500 0.0171 0.0004 -- -- 

TREE 0.4651 0.0091 -0.4506 -166.1623 -0.0399 9.0994 0.0270 0.0004 -- -- 
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TABLE 2.4. Summary of the CI95 analysis performed for the Overfitted Model. The 

values represent an average for all territories. The Net CI95 analysis verifies the amount 

of times that all plant element forecasts fell within the CI95 on a daily basis. The average 

CI95 analysis is an average of the CI95 for each territory. Bold values indicate the value 

is closer to 0.95 then those of Table 2.5. 

Overfitted Model Confidence Interval Analysis 

MODE TRAN POLE SVC  SEC PRI TREE NET 

THUNDER 0.9583 0.9683 0.9791 0.9374 0.9491 0.9383 0.9174 

WARM 0.9852 0.9594 0.9881 0.9901 0.9856 0.9879 0.9475 

COLD 0.9639 0.9630 0.9463 0.9648 0.9815 0.9630 0.8380 

MIX 0.9688 0.9375 0.9688 0.9643 0.9688 0.9018 0.8527 

HEAT 1.0000 0.8875 0.8542 0.8333 0.7708 0.9375 0.5958 

NONE 0.9745 0.9795 0.9862 0.9776 0.9808 0.9851 0.9235 

Average 0.9349 0.9091 0.9143 0.9044 0.8985 0.9121 0.8109 
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TABLE 2.5. Same as Table 2.4 but for the Backwards Eliminated Model.  Bold values 

indicate the value is closer to 0.95 then those of Table 2.4. 

Backwards Eliminated Model Confidence Interval Analysis 

MODE TRAN POLE SVC  SEC PRI TREE NET 

THUNDER 0.9783 0.9683 0.9683 0.9591 0.9491 0.8906 0.8698 

WARM 0.9852 0.9780 0.9757 0.9901 0.9834 0.9879 0.9541 

COLD 0.9480 0.9722 0.9597 0.9861 0.9861 0.9597 0.8660 

MIX 0.9688 0.9375 0.9375 0.9643 0.9509 0.8482 0.7813 

HEAT 0.9167 0.7208 0.8542 0.8333 0.8542 0.8542 0.5958 

NONE 0.9761 0.9846 0.9887 0.9776 0.9860 0.9863 0.9315 

Average 0.9237 0.8898 0.9094 0.9137 0.9135 0.8843 0.7998 
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TABLE 2.6. Summary of forecast verification scores based on predicting a total of 10 

plant damage elements in a day. 

  Overfitted Model Backwards Eliminated Model 

SCORE POD FAR CSI HSS POD FAR CSI HSS 

CEN 0.47 0.76 0.19 0.22 0.53 0.77 0.19 0.22 

MET 0.33 0.92 0.07 0.11 0.17 0.95 0.04 0.05 

PAL 0.33 0.79 0.15 0.23 0.33 0.84 0.12 0.18 

SOU 0.77 0.62 0.34 0.43 0.77 0.58 0.37 0.48 

TOTAL 0.56 0.73 0.22 0.31 0.57 0.73 0.22 0.31 
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TABLE 2.7. Same as Table 2.6, except using a threshold of 20 total damaged plant 

elements.  

  Overfitted Model Backwards Eliminated Model 

SCORE POD FAR CSI HSS POD FAR CSI HSS 

CEN 0.45 0.69 0.23 0.34 0.55 0.74 0.21 0.32 

MET 0.33 0.80 0.14 0.23 0.17 0.86 0.08 0.14 

PAL 0.67 0.83 0.15 0.26 0.67 0.83 0.15 0.26 

SOU 0.80 0.73 0.25 0.37 0.80 0.72 0.26 0.38 

TOTAL 0.57 0.75 0.21 0.33 0.57 0.76 0.20 0.31 
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TABLE 2.8. Same as Table 2.6 except using a threshold of 30 total damaged plant 

elements.  

  Overfitted Model Backwards Eliminated Model 

SCORE POD FAR CSI HSS POD FAR CSI HSS 

CEN 0.44 0.56 0.29 0.43 0.44 0.60 0.27 0.40 

MET 0.00 1.00 0.00 -0.01 0.00 1.00 0.00 -0.01 

PAL 0.50 0.75 0.20 0.32 0.78 0.50 0.44 0.60 

SOU 0.50 0.64 0.26 0.40 0.55 0.60 0.30 0.44 

TOTAL 0.39 0.69 0.21 0.33 0.50 0.60 0.28 0.43 
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TABLE 2.9. Complete data for the 26 July 2009 Case Study. Model = Modeled data 

(according to Thunderstorm storm type); Obs = Observed data. The bold-faced values 

indicate where the model error is two or less (where observed damage is > 0). 

 

 

CEN MET PAL^ SOU 

  Obs Model Obs Model Obs Model Obs Model 

TRAN 9 24 0 4 8 7 12 3 

POLE 6 20 0 5 6 2 12 5 

SVC  0 44 0 30 2 11 13 20 

SEC 0 24 0 5 0 1 8 3 

PRI 3 28 0 11 5 5 43 7 

TREE 14 49 0 35 7 5 60 11 

 

^ The maximum wind gust was corrected for a suspect observation at TEB. The 

maximum measured wind gust from TEB not associated with the passage of 

thunderstorms is substituted and the Thunderstorm storm mode as applied.  
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TABLE 2.10. Same as Table 2.9, but for the 28 January 2009 Mix storm mode case study.  

 

 

CEN MET PAL SOU 

  Obs Model Obs Model Obs Model Obs Model 

TRAN 0 4 1 0 1 0 2 2 

POLE 10 3 1 0 0 1 4 3 

SVC  0 6 0 0 0 1 1 6 

SEC 1 1 0 0 0 0 0 1 

PRI 4 3 0 0 0 1 1 4 

TREE 0 14 0 0 0 0 0 2 
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TABLE 2.11. Same as Table 2.9, but for the 12 February 2009 None storm mode case 

study. 

 

 

CEN MET
w
 PAL^ SOU 

  Obs Model Obs Model Obs Model Obs Model 

TRAN 30 1 10 1 6 0 12 3 

POLE 32 1 9 2 12 21 43 3 

SVC  69 1 25 8 73 4 22 3 

SEC 6 0 10 2 10 0 6 1 

PRI 20 0 13 3 12 0 14 3 

TREE 22 0 102 8 3 0 36 3 

 

w 
This day was diagnosed as a Warm storm mode day, so the Warm storm mode 

equations are used for the damage forecast presented.  

^ This day was originally diagnosed as Questionable due to TTN reporting 0.08″ of 

precipitation without reporting the occurrence of precipitation. See text for more details.  
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TABLE 2.12. Same as Table 2.9, but for the 4 April 2009 None storm mode case study. 

 

 

CEN MET PAL
w
 SOU 

  Obs Model Obs Model Obs Model Obs Model 

TRAN 1 1 0 0 3 1 2 1 

POLE 9 2 0 0 2 0 2 2 

SVC  1 1 0 0 1 0 0 2 

SEC 3 0 0 0 0 0 1 0 

PRI 0 1 0 0 1 0 0 1 

TREE 4 2 0 1 1 0 0 0 

 

w 
This day was diagnosed as a Warm storm mode day, so the Warm storm mode 

equations are used for the damage forecast presented.  
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TABLE 2.13. Same as Table 2.9, but for the 17 July 2009 event. Multiple storm modes 

were diagnosed across the PSE&G service territories and were applied to produce the 

damage forecast. 

CASE STUDY: 16 July 2009 (Various Storm Modes) 

 

CEN
N
 MET

H
 PAL

W
 SOU

TH
 

  Obs Model Obs Model Obs Model Obs Model 

TRAN 1 2 0 0 1 1 2 5 

POLE 0 1 0 0 0 0 3 5 

SVC  0 1 0 0 0 0 10 15 

SEC 0 0 0 0 0 0 2 2 

PRI 0 0 0 0 0 1 13 10 

TREE 2 2 1 0 0 0 29 10 

 

N
 Denotes the None storm mode was used to calculate the plant damage forecast. 

H
 Denotes the Heat storm mode was used to calculate the plant damage forecast.   

W 
Denotes the Warm storm mode was used to calculate the plant damage forecast.   

TH 
Denotes the thunderstorm storm mode was used to calculate the plant damage forecast.   
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TABLE 2.14. Other possible model forecasts for Central using the Heat, Warm, and 

Thunderstorm storm modes for 17 July 2009. 

CENTRAL 

  HEAT WARM THUNDER 

TRAN 0 2 3 

POLE 1 1 1 

SVC  0 1 1 

SEC 0 0 3 

PRI 0 2 1 

TREE 1 2 2 
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TABLE 2.15. Other possible model forecasts for Metropolitan using the None, Warm, and 

Thunderstorm storm modes for 17 July 2009. 

METROPOLITAN 

  NONE WARM THUNDER 

TRAN 1 0 0 

POLE 0 0 1 

SVC  0 1 9 

SEC 0 0 0 

PRI 0 0 0 

TREE 0 1 4 
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TABLE 2.16. Other possible model forecasts for Palisades using the Heat, None, and 

Thunderstorm storm modes for 17 July 2009. 

PALISADES 

  HEAT NONE THUNDER 

TRAN 0 1 0 

POLE 1 1 0 

SVC  0 1 0 

SEC 0 0 0 

PRI 0 0 0 

TREE 0 1 0 
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TABLE 2.17. Other possible model forecasts for Southern using the Heat, None, and 

Warm storm modes for 17 July 2009. 

SOUTHERN 

  HEAT NONE WARM 

TRAN 0 2 2 

POLE 2 2 2 

SVC  0 2 1 

SEC 0 1 0 

PRI 1 2 1 

TREE 1 1 1 
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TABLE 2.18. Model plant damage forecast using station observations (Obs) and forecasts 

from the Rutgers-PSE&G Undergraduate Forecast Program (Forecast) as predictors for 

12−15 March 2010. The Warm mode was applied to all days. Plant elements are 

abbreviated same as before, but transformer and primary wire damage counts were 

unavailable when the data was requested.  

 

  Obs Forecast Observed 

Element     Damage 

SEC 62 86 448 

SVC 286 345 1600 

POLE 85 82 1011 

TREE 178 200 1368 

Total 611 713 4427 
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TABLE 2.19. Same as Table 2.18, except corrected to properly diagnose 14 March as a 

Warm storm mode day.  

 

  Obs Forecast 
Observed 

Damage Element     

SEC 60 90 448 

SVC 288 412 1600 

POLE 80 89 1011 

TREE 175 253 1368 

Total 603 843 4427 
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TABLE 2.20. Same as Table 2.18 except the restrictor coefficients are removed in the 

model equations for all territories. The warm storm mode was used to calculate damage 

on all days to provide the maximum possible forecast.  

  Obs Forecast Observed 

Element     Damage 

SEC 214 274 448 

SVC 583 800 1600 

POLE 165 179 1011 

TREE 570 705 1368 

Total 1532 1960 4427 
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TABLE 2.21. Maximum observations for wind gust and precipitation within the PSE&G 

service territories. All values were obtained from the appropriate local NWS office 

(Upton, NY for Metropolitan and Palisades and Mount Holly, NJ for Central and 

Southern). 

  

  Vmax LWEmax 

Territory mph in. 

  [m s
-1

] [mm] 

CEN 62 6.08 

 

[22.7] [154.4] 

MET 55 5.17 

 

[24.6] [131.3] 

PAL 78 4.64 

 

[34.9] [117.9] 

SOU 63 3.78 

  [28.1] [96.0] 
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TABLE 2.22. Model plant damage forecast using the values from Table 20 in place of 

forecasted or station observed values. The model equations were applied with all 

coefficients and restrictor coefficients removed for analysis. 

  Restrictors No Restrictors TOTAL 

Element Vmax SF1 max Vmax SF1 max DAMAGE 

SEC 149 175 345 385 448 

SVC 626 762 1012 1222 1600 

POLE 108 123 199 225 1011 

TREE 371 463 821 966 1368 

Total 1254 1523 2376 2798 4427 
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TABLE 2.23.  A summary of the observed total plant element damage from each territory 

for 1−5 September 2009. The total damage is calculated as the sum of the damage from 

each territory. Light indicate wind gusts were not reported. 

 

Evidence of Lagged Damage Reporting 

 

Vmax Range LWEd Range 

     

 

MPH In. CEN MET PAL SOU Total 

2006 [m s-1] [mm]           

1-Sep 23-40 0.08-0.33 14 10 4 21 49 

 

[10.3-17.9] [2-8.4] 

     2-Sep 35-41 1.09-2.15 306 164 567 211 1248** 

 

[15.6-18.3] [22.7-54.6] 

     3-Sep 16-25 trace 70 11 365 11 457* 

 

[7.1-11.2] [0.25] 

     4-Sep Light 0.00 11 1 100 6 118 

 

Light [0.0] 

     5-Sep < 19 0.28-0.56 31 0 46 13 90 

  < 8.5 [7.1-14.2]           

 

** Represents the 3
rd

 highest daily cumulative plant damage total in the Training dataset. 

* Represents the 7
th

 highest daily cumulative plant damage total in the Training dataset. 

 

 



109 

 

 

 

8. FIGURES 

 

FIG 2.1.  Plot of model error (residual) and predicted damage (predictand) for Tree related 

damage in Central for the Thunderstorm storm mode. 
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FIG 2.2.  PSE&G plant damage observations (left) and Thunderstorm storm mode model 

prediction (right) for 26 July 2009.    
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FIG 2.3.  Same as Fig. 2.2 but for 28 January 2009.    
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FIG 2.4. Same as Fig. 2.2 but for 12 February 2009. 
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FIG 2.5. Same as Fig. 2.2 but for 4 April 2009.  
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FIG 2.6.  Same as Fig. 2.2 but for 16 July 2009.  
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Fig 2.7. Map of Sea Level Pressure in millibars (dark solid lines) and 1000-500 mb 

thickness (dark dashed lines) for a) 12 UTC 12 March 2010, b) 00 UTC 13 March 2010, 

c) 12 UTC March 13 2010, and d) 00 UTC 14 March. 
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