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ABSTRACT OF THE DISSERTATION

Interplay of Strain, Polarization and Magnetic

Ordering in Complex Oxides from First

Principles

by Carl-Johan Eklund

Dissertation Director: Prof. Karin M. Rabe

We study mechanisms of structural and magnetic phase transitions in crystalline

oxides from first principles. The focus is on epitaxial stabilization in perovskites

and on magnetoelastic coupling and frustration in spinels. These materials and

phenomena are of great interest for basic science and have important roles to play

in the design and discovery of new functional materials.

The effects of epitaxial strain on the structure of the perovskite oxide CaTiO3

are investigated. Particular attention is paid to the stabilization of a ferroelectric

phase related to the polar instability found in previous first-principles studies

of calcium titanate in the ideal cubic perovskite structure. At 1.5% strain, we

find an epitaxial orientation transition between the ab-ePbnm phase, favoured for

compressive strains, and the c-ePbnm phase. For larger tensile strains, a polar

instability, which was hidden in the equilibrium bulk structure, develops in the c-

ePbnm phase and an epitaxial-strain-induced ferroelectric phase is obtained with
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polarization along a [110] direction with respect to the primitive perovskite lattice

vectors of the square substrate. A ferroelectric rhombohedral R3c phase, with a

different combination of octahedral rotations, is also found to be competitive in

energy for large tensile strains, and might be observable under the application of

additional perturbations, such as a small degree of cation substitution.

We present an ongoing project to construct a first-principles effective Hamil-

tonian to investigate the transition from the high-temperature cubic phase to

a low-temperature low-symmetry phase observed in the spinel structure oxides

CdCr2O4 and ZnCr2O4. The local modes included in the expansion are the

chromium displacements, distortions of the cadmium- or zinc-centred tetrahe-

dra, and the homogeneous strain. The magnetostructural coupling of these de-

grees of freedom to the spins of the chromium ions is included in the effective

Hamiltonian parametrization and first-principles determination using a symme-

try analysis. The role of the magnetostructural coupling in the phase transition

is analysed and discussed.
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Chapter 1

Introduction

1.1 Background

Essential to scientific progress across many disciplines is the discovery and de-

sign of novel materials with enhanced properties. Modern experimental methods

enable the synthesis and tailoring of new, potentially useful materials, and the

development of a comprehensive conceptual framework for understanding their

properties is of paramount interest both for fundamental science and technol-

ogy. To this end, experimental investigations have traditionally constituted the

primary means. Nowadays, however, alongside experimental techniques and com-

plementing these, theoretical methods are being employed with great success. In

this context so-called first-principles density-functional-theory methods, which

require no assumptions based on experiments, have emerged as a powerful tool

with predictive power for obtaining information on a microscopic level about the

electronic and atomic structure of complex structured compounds [1, 2]. Par-

ticularly amenable to highly accurate computation within the density-functional

formalism are structural properties and energetics. Largely owing to the contin-

uing improvements in computer hardware and numerical algorithms, theory is

presently used not only to interpret and explain experimental results, but also for

predictions, guiding future experiments. Computations can advantage the often

laborious traditional experimental trial-and-error process by screening candidate
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materials, possibly as-yet unsynthesized, for desired properties. This has accel-

erated scientific innovation and synthesis of new complex oxide materials and

heterostructures with enhanced properties as well as led to significant advances

in our understanding of the fundamental physics of a wide range of systems. A re-

cent case in point is the prediction of a strain-induced ferroelectric-ferromagnetic

phase in the perovskite EuTiO3 [3].

The use of density functional theory is currently limited to systems with a

low or moderate degree of electronic correlation. The method is also ill-suited

for finite-temperature investigations and becomes prohibitively computationally

demanding for large systems (presently meaning a unit cell of around a hun-

dred atoms). However, first-principles methods can provide a basis for the study

of finite-temperature and large-scale problems when combined with other tech-

niques. For instance, in the effective Hamiltonian approach [4–9] a symmetrized

expansion in the degrees of freedom related to relevant behaviour is constructed,

hence the full Hamiltonian of the system is reduced. The model Hamiltonian is

fitted to first-principles calculations and used in Monte Carlo or molecular dy-

namics simulations to compute finite-temperature properties or to probe large

systems. This and other types of first-principles modelling can develop our con-

ceptual understanding and act as a further guide to experimentalists, especially

when phenomenological investigations are impossible due to insufficient or un-

available experimental data.

The general context of this thesis is the use of first-principles methods to

elucidate phenomena in complex oxides and to explore techniques the ultimate

goal of which is materials-by-design. Interesting material properties often being

the result of an interplay between many interacting degrees of freedom and such

systems typically being difficult to probe experimentally, the atomic-scale infor-

mation that first-principles can provide is especially valuable. Furthermore, from
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such complexity a strong sensitivity to external fields and other perturbations

can emerge, especially in the proximity of phase boundaries. The delicate phase

competition may be influenced by changes in external parameters, e.g., epitaxial

strain, pressure, or temperature, inducing structural phase transitions. A use-

ful application of the first-principles method is to explore and predict structural

phase boundaries by identifying low-energy alternative structures not manifested

in bulk systems. The possibility of clearly distinguishing intrinsic factors from

extrinsic ones facilitates assessment of their relevance and determination of the

origin of observed behaviour.

Two families of crystalline oxides displaying structural motifs of sufficient

complexity to exhibit many intriguing characteristics are perovskites and spinels.

Materials belonging to the perovskite structure class (see Fig. 1.1) are widely stud-

ied and demonstrate virtually all of the properties found in complex oxides. The

high degree of flexibility inherent in the perovskite structure renders it prone to

various types of symmetry-breaking distortions—such as rotations of the oxygen

tetrahedra and cation displacements—the precise details of which are crucial to

the physical properties of a given compound. As a result, the perovskites exhibit

a wide range of non-trivial structural phases. Their dynamics can in large part be

understood in terms of soft-mode theory [10] and an often strong sensitivity of the

unstable phonons to external influences such as stress can be used to drive a sys-

tem through a phase transition leading to stabilization of non-bulk phases. The

ease with which external factors can be incorporated within the first-principles

formalism makes it highly suitable for these types of investigations.

The group of compounds crystallizing in the spinel structure (see Fig. 1.2) also

exhibit a large variety of behaviours. Especially exotic phenomena are seen in the

antiferromagnetic spinels whose interesting properties stem from an incompati-

bility between the magnetic interactions and the crystal symmetry—geometric



4

frustration [11]—yielding a large ground-state degeneracy which makes the sys-

tems highly sensitive towards perturbations and their behaviour notably rich and

difficult to predict. In addition to a large ground-state entropy, a defining char-

acteristic of frustrated magnets is the inability of the spins to order at tempera-

tures of the order of the magnetic interaction. In fact, an analysis of the classical

Heisenberg model for nearest-neighbour interacting spins on a lattice of vertex-

sharing tetrahedra, as in the spinel structure, predicts fluctuating spins at zero

temperature [12]. In a real material, all means of relieving the frustration are

of course not absent; features such as further-neighbour interactions, disorder,

anisotropy, and quantum effects may determinately affect the magnetic order. A

particularly important mechanism for lifting the ground-state degeneracy is spin-

lattice coupling which may induce a distortion of the lattice and thereby reduce

the frustration and promote spin ordering. Which distinct magnetic configuration

is selected under a small distortion depends ultimately on how the cost in elastic

energy compares to the gain in magnetic energy.

This thesis presents first-principles investigations of spin-lattice coupling and

frustration in spinels, and epitaxial stabilization [13] of novel phases at the nanoscale

of perovskites. Albeit fundamental in character, these problems have tantalizing

potential for technological applications and are also of direct experimental rele-

vance. Chapter 2 treats structural phase transitions in the perovskite CaTiO3.

We studied the interaction between some competing structural instabilities in

CaTiO3 and the effect of epitaxial strain [14]. We showed that a ferroelectric

phase of CaTiO3 can be epitaxially stabilized—a prediction that has since been

confirmed experimentally. In chapter 3 we present preliminary results addressing

finite-temperature properties of two geometrically frustrated magnets, the spinels

CdCr2O4 and ZnCr2O4. Both compounds have a transition to a low-symmetry

structure that seems to be driven by a symmetry breaking in the spin sector
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Figure 1.1: The ABX3 cubic perovskite structure. The A cations are located
at the cube corners, the B cations at the cube centres, and the X anions at the
center of the cube faces. Alternatively, the structure can be viewed as a three-
dimensional network of corner-sharing X6 octahedra, with the A and B atoms
occupying the octahedral interstices and centres, respectively. This structure
belongs to the space group Pm3m and is typically the one found in the highest-
temperature phase.

coupling to the lattice, as suggested by structural anomalies manifested at the

magnetic phase transition. Our goal is to explore this transition by means of a

first-principles effective Hamiltonian in conjunction with Monte Carlo methods

to determine phase transformation thermodynamics.

1.2 Approach

We employ first-principles density-functional methods that approximately solves

the many-body Schrödinger equation by variational minimization of the total en-

ergy, yielding the zero-temperature ground state for a given set of fixed atomic

positions. Experience has shown that these methods give estimates of good accu-

racy to structural parameters and energetics for many compounds. They are less

reliable in describing magnetism due to the high electronic correlation inherent

in such systems, but, if used with discretion, can still provide valuable qualitative
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Figure 1.2: The AB2X4 cubic spinel structure [15]. It is an open structure
of linked tetrahedra with the A cations occupying the centres of the X anion
tetrahedra and the B cations forming a pyrochlore lattice (indicated by dashed
lines). The structure belongs to the space group Fd3m and has one structural
parameter besides the lattice constant, viz. the anion parameter u which sets the
size of the X tetrahedra. The primitive tetragonal unit cell counts two formula
units, the conventional cubic cell eight. The inequivalent atoms of the primitive
cell are labelled.

insight.

In this work, we frequently use total-energy calculations to survey a collection

of lower-symmetry structural configurations, all of which are related to an aptly

chosen higher-symmetry reference structure via moderate distortions, in order to

identify low-lying phases. Each distortion introduced fixes the space group whose

free structural parameters are subsequently optimized. A comparison between

all structures considered allows us to determine the one with the lowest energy.

All calculations are on bulk materials which are represented by means of periodic

boundary conditions; a cell containing a small number of atoms is repeated to
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create an effectively infinite system. Epitaxial strain is implemented by imposing

appropriate epitaxial constraints on the lattice parameters of the periodic crys-

tal (the “strained bulk” method). Information on structural stability is obtained

from phonon frequencies at the zone-center and high-symmetry zone-boundary

points of the Brillouin zone. The phonons are computed via the “frozen phonon”

method; in this approach, a dynamical matrix is constructed from finite differ-

ences of the atomic forces resulting from small atomic displacements. We extract

Heisenberg exchange constants from calculations with different collinear magnetic

ordering and an otherwise unchanged structure. Other expansion parameters are

determined in two ways; either through total-energy computations on sequences

of distorted structures followed by polynomial fitting of the energy with respect

to atomic positions and lattice parameters, or through linear combinations of

force constant matrix components, computed for structures with different spin

configurations and frozen-in strain.
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Chapter 2

Exploring the Epitaxial Phase Diagram of

Orthorhombic CaTiO3

2.1 Introduction

In the extensive ABX3 perovskite oxide family, a wide variety of equilibrium struc-

tures are observed, including ferroelectric, antiferroelectric, antiferrodistortive,

and mixed-character phases. The structure of each individual phase can be

described as a distortion of the ideal cubic perovskite structure (see Fig. 1.1),

produced by freezing in one or more lattice instabilities of the high-symmetry

cubic reference structure. This classification of perovskite structures is due to

Glazer [16, 17], with a recent systematic treatment in Ref. [18]. This relation

between low-symmetry phases and lattice instabilities of the cubic perovskite

structure is the basis of the well-established soft-mode theory of structural phase

transitions [19].

The type, strength, coupling and/or competition of instabilities are character-

istic of the structural energetics of the particular compound under consideration.

In the case of CaTiO3, as summarized in Ref. [20], the observed equilibrium

phases include a paraelectric cubic structure at high temperatures, two interme-

diate phases (one tetragonal and one orthorhombic), and an orthorhombic low-

temperature phase with space group Pbnm, a structure type that includes a large

number of other perovskite oxides [21]. The Pbnm structure is obtained by freez-

ing in components of the M+
3 and R+

4 oxygen octahedron modes (notation from
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Ref. [18]) involving rotation around [001] and tilting around [110], respectively,

with additional changes in the lattice constants a, b and c and Ca displacements

preserving the space group symmetry. Less is known about high-pressure phases,

though a transition to an orthorhombic Cmcm structure and, at higher pressures,

to a post-perovskite structure like that of MgSiO3 have been proposed based on

first-principles results [22]. None of these phases are polar, though a relatively

large temperature-dependent dielectric response has led to the characterization

of CaTiO3, like SrTiO3, as an incipient ferroelectric [23].

First-principles calculations of the full phonon dispersion relation of the cubic

perovskite structure of CaTiO3 show that in addition to the expected instability

of M+
3 and R+

4 , the cubic perovskite structure has a third strongly unstable high-

symmetry mode: Γ−
4 [21, 24, 25]. Freezing in of this polar mode, which involves

displacements of the Ca and Ti ions relative to the oxygen octahedron network,

would yield a ferroelectric phase with nonzero spontaneous polarization. The fact

that it does not contribute to the observed bulk phases suggests that it is inhibited

by the oxygen octahedron rotations; such competition has already been noted for

SrTiO3 where frozen-in rotational modes inhibit the polar mode [26, 27]. If the

rotations are artificially suppressed, as is possible in a first-principles calculation,

the Γ−
4 mode dominates and the resulting ferroelectric P4mm phase is found to

have a very large polarization [24, 28].

This raises the possibility that a ferroelectric phase of CaTiO3 might be sta-

bilized under conditions realizable in the laboratory. To do this, it would be

necessary to change the balance of the competition between the octahedral ro-

tations and the polar instability in favour of the latter. This can be done by

strengthening the polar instability through the well-established sensitivity of the

polar mode to strain in the titanates [10]. Alternatively or concurrently, the in-

hibition of the polar instability could be reduced by modifying the octahedral
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rotation distortion. This could take the form of reducing the amplitude of the

M+
3 [001]+R+

4 [110] distortion in the Pbnm structure, or by replacing this pattern

of rotations with a different pattern that allows the gain of energy associated with

the strong octahedral rotation instability but that is less inhibitory to at least

one polar mode component.

Both strengthening of the polar mode and modification of the octahedral dis-

tortions could be achieved though tuning epitaxial strain [29, 30]. For example,

Landau theory [31] and first-principles [32, 33] analysis show that epitaxial strain

on (001) substrates can change both the polar instability and the oxygen octahe-

dron distortion patterns in SrTiO3, which is paraelectric in bulk. Experimental

observation of epitaxial-strain induced ferroelectricity in SrTiO3 [33, 34] demon-

strates this behaviour both for compressive and tensile strain.

In this work, part of which has appeared in [14], we study the use of epitaxial

strain to stabilize a ferroelectric phase of CaTiO3. We pursue two distinct av-

enues of investigation. First, we focus on the orthorhombic bulk ground state,

and investigate whether epitaxial strain can induce a polar instability, analogous

to the behaviour of SrTiO3. The relatively low symmetry of the Pbnm structure

requires careful attention in imposing the epitaxial constraints, and introduces

new features into the strain-induced ferroelectric state. Second, we turn our at-

tention to modifying the oxygen octahedron rotations. We perform first-principles

structural optimizations to explore a large space of oxygen octahedron rotation

patterns, looking for those that support a polar instability. Then, we impose

the epitaxial strain constraints and compute the energies of low-lying structures.

We consider epitaxial matching to square and triangular substrate lattices. In

the latter case, a polar Pmn21 state remains most stable for accessible strains,

although we also find a competitive rhombohedral eR3c phase that might be pre-

pared in a metastable form, or stabilized by additional perturbations such as a
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small fraction of cation substitution.

Lastly, we address our discovery that the polar Pmn21 state appears for ten-

sile, but not compressive, strains. In an unsuccessful attempt to better under-

stand this asymmetry, we construct an energy expansion in the polar Γ−
4 mode,

the rotational M+
3 and R+

4 modes plus two additional modes around the Pm3m

structure.

2.2 Method

We performed density functional theory total-energy calculations within the local-

density approximation (LDA) with projector-augmented wave potentials (PAW) [35,

36] as implemented in VASP1 [37, 38]. The plane-wave energy cutoff was 680 eV

and the Brillouin zone k-point grid was 8×8×8 for the five- and ten-atom super-

cells and 8× 8× 6 for the twenty-atom supercells. A grid of 6× 6× 14 (with the

dense grid in the direction of electronic polarization) was employed for the Berry

phase calculations [39]. The polarization of some structures were obtained us-

ing Born effective charges [40] and atomic displacements—this is explicitly noted

where applicable.

2.2.1 Structural optimizations and epitaxially strained cal-

culations

A survey was performed of candidate ground-state and low-lying structures gen-

erated by unstable modes of the high-symmetry cubic perovskite reference struc-

ture with a computed lattice constant of 3.812 Å. The modes considered were

the Γ−
4 , M+

3 , and R+
4 modes; the ferroelectric-like mode Γ−

4 is defined by the dis-

placement patterns of the eigenvectors with the smallest eigenvalue of the force

1Versions 4.6.28 and 4.6.26 of VASP were used.
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constant matrix at the Γ point; the R+
4 mode (M+

3 ) corresponds to rigid rotations

of the oxygen octahedra around one of their fourfold symmetry axes out of phase

(in phase) in adjacent planes. This standard set of lattice modes has been ex-

tensively analysed in Ref. [18]. It generates the experimentally observed Pbnm

ground state and allows for the possibility of ferroelectricity. While previous work

has found the high-temperature cubic structure also to be unstable with respect

to an X-point distortion [21], our frozen-phonon calculation yielded no unstable

modes at the X-point, in agreement with Ref. [25]; the discrepancy may be due

to a small difference in the lattice constant used. Since this instability is weaker,

to the extent it is present at all, X-type distortions were not included in the set

of modes considered for the structural optimizations. The components of our

computed normalized soft-mode eigenvector of the force constant matrix at the

Γ point are (Ca,Ti,O⊥,O⊥,O‖)= (0.698, 0.322,−0.440,−0.440,−0.150), where O‖

and O⊥, respectively, refer to motion along and transverse Ti-O bonds. The other

modes are fully determined by symmetry.

The starting structures of the structural optimizations were obtained by freez-

ing in pairs of the Γ−
4 , M+

3 , and R+
4 modes, thereby establishing the space group

symmetry of the distorted perovskite structure [18]. The minimum-energy con-

figurations were established by relaxing the lattice parameters and the internal

structural parameters until the forces on the atoms were less than 2.5 meV/Å.

For the study of the effects of epitaxial strain, we carried out “strained bulk”

calculations, in which total-energy calculations are performed for the periodic

crystal with appropriate epitaxial constraints imposed on the lattice parameters.

In some cases, these are constraints which cannot be automatically imposed within

the available VASP relaxation algorithms. In such cases, we developed an elastic

energy expansion around the lowest energy Pbnm or R3c structure that satisfies

the epitaxial constraint by fitting to the energies of structures with small changes
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in strain (the latter structures not necessarily satisfying the epitaxial constraints).

This energy was then minimized with respect to strain, imposing the epitaxial

strain constraint; the resulting lattice parameters were then fixed in a total-energy

calculation in which the internal structural parameters were relaxed.

For selected structures, we computed the stability against zone-center modes

by performing frozen phonon calculations in which symmetry adapted modes or,

for the c-ePbnm structure, single atoms were displaced by approximately 0.01

Å. From finite differences of the resulting forces, the force constant matrices

were determined and subsequently diagonalized to obtain eigenfrequencies and

eigenvectors.

2.2.2 Energy-surface parametrization

In an attempt to elucidate the mechanisms producing the epitaxial phase dia-

gram, we parametrized the energy surface around the high-temperature cubic

perovskite structure, hoping it would enable us to reproduce the first-principles

epitaxial phase diagram and clarify the competition between the different de-

grees of freedom at play. The parametrization we developed is similar to that of

Refs. [41, 42], but we included a larger set of modes in the expansion: Γ−
4 , R+

4 ,

M+
3 , X+

5 , and R+
5 (notation from Refs. [18, 43]). The zone-boundary distortions

are all present in the Pbnm ground state (except the component of the triply

degenerate R+
4 which describes an octahedral rotation about [001]). The Γ−

4 , R+
4 ,

M+
3 have been described above. The R+

5 involves the Ca atoms moving along

[110]. The ground state k = (0, 0, 1/2) X+
5 mode consists of the Ca atoms and the

O atoms at Wyckoff position 4c atoms moving along [110]; the computed compo-

nents of the normalized eigenvector is (Ca, O(4c))=(−0.912, 0.409). In addition

to these modes, strain degrees of freedom are included in the expansion as they

strongly influence the energies of the ferroelectric phases in particular. We used
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the following expansion:
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where ∆E = E − E0, E0 is the energy of the ideal cubic perovskite structure,

ηi (i = 1 − 6) are the six independent components of the strain tensor in Voigt

notation, and Γα and Rα (α = x, y, z) are the Cartesian components of the

soft-mode amplitudes describing the ferroelectric and antiferrodistortive mode,
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respectively.

The 56 parameters appearing in the energy expansion (2.1) were determined

from a series of first-principles total-energy calculations on distorted perovskite

structures [41, 42]. For example, the κ′, α′, β ′, and ζ ′ coefficients were deter-

mined by introducing the M+
3 distortion at different amplitudes M into the cubic

perovskite structure and fitting the energy dependence on M to a polynomial of

the form

E(M) = E0 + κ′M2 + α′M4 + β ′M6 + ζ ′M8, (2.2)

see Fig. 2.1. The coupling parameters were determined from changes in the

second-order coefficients over a sequence of computations with either two modes

or one mode and strain present in the system. For instance, the B̃1xx coefficient

was extracted from a series of total-energy computations analogous to the one

just described, but with X+
5 replacing M+

3 and different values of η1 frozen into

the cell for each computation, see Fig. 2.2. The parameter θ (θ′) was determined

by comparing the energy between two structures, each of which containing a

combination of R+
4 , M+

3 , and X+
5 (R+

4 and R+
5 ) such that the product of the small

amplitudes have opposite signs for the two structures.

2.3 Results

2.3.1 Structural optimizations and epitaxially strained cal-

culations

Our results for the structure of the bulk orthorhombic ground state are given in

Table 2.1. The structure has an energy 410 meV/f.u. lower than the ideal cubic

perovskite structure. Consistent with previous first-principles calculations [21,

25], we find good agreement between the computed structure and experiment,
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Figure 2.1: Depicts the energy as a function of M+
3 amplitude. The fit (solid

line) was used to determine the interaction parameters in Eq. 2.2.

Figure 2.2: Shows f(η1) = κ̃ + 1
2
B̃1xxη1. The slope reflects the coupling coeffi-

cient between X+
5 and η1.
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Table 2.1: The Wyckoff parameters of the Pbnm ground state and the c-ePbnm
structure at 4% tensile strain.

Pbnm c-ePbnm

Ca (4c) x = 0.510, y = −0.047 x = 0.509, y = −0.042

Ti (4a) − −
O (4c) x = 0.081, y = 0.021 x = 0.085, y = 0.022

O (8d)
x = 0.207, y = 0.292,

z = −0.043
x = 0.218, y = 0.283,

z = −0.044

taking into account that in the local density approximation lattice constants typ-

ically tend to be underestimated by about one percent.

Next, we investigated the effects of epitaxial strain on the Pbnm phase. As in

Ref. [44], we designated the strained phases as ePbnm, where the prefix e denotes

“epitaxial.” We first considered epitaxial strain on a square lattice substrate,

corresponding to a (001) perovskite surface. To allow direct comparison with

experiment despite the lattice constant underestimate discussed above, we defined

epitaxial strain relative to a0 = 3.77 Å, which is the cube root of the computed

volume per formula unit of the relaxed Pbnm structure. In the Pbnm structure,

there are two symmetry-inequivalent primitive perovskite (001) planes, as shown

in Fig. 2.3. Thus, there are two distinct orientations for an epitaxial film: the

first, with c in the substrate plane and a and b out of the plane (ab-ePbnm,

Fig. 2.3 (a)), and the second, with c normal to the matching plane (c-ePbnm,

Fig. 2.3(b)).

We computed the total energies for these two orientations for epitaxial strains

ranging from −1.5% to 4% 2. For c-ePbnm, the c lattice parameter and internal

2The strain values are −1.51%, −1.01%, 1.01%, 2.02%, 3.03%, and 4.05%.
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structural parameters were relaxed at each strain, maintaining the Pbnm sym-

metry; the a and b lattice parameters are fixed by the constraint to equal
√

2as,

where as is the side of the square substrate. The epitaxial constraint allows for tc

not to be normal to the matching ab-plane and tilting tc could lower the energy.

However, an elastic analysis for the −1.5% and 4% cases showed that tilting tc

does not lower the energy and we assumed this to be true for the intermediate

strains as well. ab-ePbnm has lower symmetry than c-ePbnm; that is, distin-

guishing one of the two (110) planes removes space group symmetries, resulting

in a space group P21/m; the constraint fixes

|tc| = 2as and |tb − ta| = 2as, (2.3)

as well as the condition

tc · (tb − ta) = 0. (2.4)

To optimize the lattice parameters for this case, we used the elastic energy ex-

pansion method described in Sec. 2.2.1.

The results are shown in Fig. 2.4. ab-ePbnm is favourable for compressive

strains and c-ePbnm is favourable for tensile strains. Within this subspace of

nonpolar structures, there is an epitaxial orientation transition at 1.5 %.

Next, we turned to the stability of the ePbnm phases against symmetry-

breaking distortions, with special attention to polar phonons. Previous compu-

tation of the phonon frequencies for the bulk equilibrium structure showed three

low-frequency polar phonons at 94 cm−1, 88 cm−1 and 89 cm−1, with induced

polarizations along a, b and c, respectively [25]. These phonons are expected to

be sensitive to changes in strain, based on known polarization-strain coupling in

calcium titanate [42].

We first considered c-ePbnm with 4% tensile strain, with computed structural
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Figure 2.3: The two distinct relative orientations of the lattice vectors and the
primitive perovskite substrate matching planes in the Pbnm structure are shown
for (a) the ab-ePbnm phase and (b) the c-ePbnm phase.

Figure 2.4: Total energy per five-atom formula unit for various epitaxially
constrained structures as a function of square misfit strain. At each strain, the
energy of the c-ePbnm structure is taken as the zero of energy. The symbols show
the result of the calculations, the lines are merely a guide to the eye.
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parameters reported in Table 2.1. A zone-center frozen phonon computation

for this structure showed four unstable phonons, the lowest two, at 213i cm−1

and 209i cm−1, being polar and generating structures with space groups Pmn21

(polarization along a) and Pmc21 (polarization along b), respectively. In both

cases, the orientation of polarization with respect to the primitive perovskite

axes is along the [110] directions. The energies of the structures for these two

space groups, optimized under the epitaxial strain constraint, are 35 meV/f.u.

and 28 meV/f.u. below c-ePbnm, respectively, with polarizations 46 µC/cm2 and

45 µC/cm2 computed using Born effective charges and atomic displacements [40].

Thus, at 4% tensile strain, we predict strain-induced ferroelectricity in CaTiO3.

For the full range of strains, the unconstrained internal structural parameters

were optimized within these two polar space groups. Only in the 4% case were

|tc| re-optimized for the polar structures as this only had a marginal effect on the

energy and the polarization compared to when the relaxed value for the c-ePbnm

structure was used, presumably because the polarizations are in the ab-plane.

At compressive strain, the nonpolar c-ePbnm structure is stable against polar

distortions, and no ferroelectricity is observed. For tensile strain, the ferroelectric

instabilities first appear at 2% strain, and the energy gain and polarization of the

optimized ferroelectric phases grow with increasing strain.

Let us now consider ab-ePbnm with 4% tensile strain. We looked for polar

instabilities in this structure by displacing atoms in such a way that the result-

ing, lowered symmetry allowed for nonzero polarization, and then relaxing the

internal structural parameters while keeping the lattice parameters fixed at their

ab-ePbnm values. This procedure revealed two structures with polarizations in

the matching plane of 33 µC/cm2 along c (space group P21) and 40 µC/cm2

along the ab diagonal (space group Pm), respectively. (The polarizations were

obtained using Born effective charges and atomic positions [40].) The former is
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Figure 2.5: Shows the magnitude of the polarization of the lowest-energy struc-
ture in Fig. 2.4 for each value of epitaxial strain.

the lowest in energy but still above Pmn21 and Pmc21, see Fig. 2.4. This proce-

dure was also carried out for epitaxial strains of 3% and −1.5%. No polar phase

was found in the latter case. Fig. 2.5 shows the magnitude of the polarization

of the lowest-lying structure at each value of epitaxial strain imposed by square

substrate.

For both epitaxial orientations, we decomposed the structures at each strain

into the R+
4 , M+

3 , X+
5 , and R+

5 modes (the atomic displacement ratios of the X+
5

mode were those of the ground state) by projecting the atomic positions onto

the space spanned by this set of distortions. The result is presented in Figs. 2.6

and 2.7. For comparison, the corresponding ground state amplitudes are: (R+
4 ,

M+
3 , X+

5 , R+
5 )= (0.167, 0.170, 0.102, 0.020).

Next, we investigated the possibility of a transformation as a function of

strain to another structure type. If such a transformation fails to occur, it would

strengthen our prediction for the observation of strain-induced ferroelectricity in

Pbnm; if it were to occur, the identification of a new phase and phase boundary
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Figure 2.6: Mode decomposition in relative arbitrary units and η3 of the c-
ePbnm structure at various square misfit strains. The X+

5 atomic displacement
ratios are those of the ground state. The strain values are -2.52%, -1.51%, -1.01%,
0.00%, 1.01%, 2.02%, 3.03%, and 4.05%.

Figure 2.7: Mode decomposition of the ab-ePbnm structure in relative arbitrary
units at various square misfit strains. The R+

4 directions are with respect to the
cubic perovskite axes.
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would be of great interest in the functional behaviour of CaTiO3.

We considered a range of structures obtained by freezing in Γ−
4 , M+

3 , and R+
4

modes and relaxing the structure within the resulting space group. The computed

energies of the structures considered are summarized in Table 2.2; the equilibrium

lattice parameters for each structure are given in Table 2.3. The data show that

in the space of structures defined by the distortions Γ−
4 , M+

3 , and R+
4 , the R+

4

instability is the dominant one. When separately introduced into the system,

the R+
4 mode leads to structures that are the lowest in energy, the M+

3 yields

structures a fair amount higher in energy, and the Γ−
4 distortion leads to much

higher-lying structures. The instability of the cubic high-energy structure (space

group Pm3m) with respect to the polar Γ−
4 mode is, however, clearly evident.

The situation is different when we introduce combinations of the Γ−
4 mode and

the M+
3 or R+

4 mode into the system. The polar mode is consistently suppressed

by the rotational modes, a phenomenon touched upon in the introduction. In

some cases the polar instability is completely eliminated, e.g. Γ−
4 [001] combined

with R+
4 [001], R+

4 [110], or M+
3 [001]. However, certain combinations of modes

allow the polar character to partly remain; a key observation to make from the

data in Table 2.2 is that a polar phase with both the ferroelectric Γ−
4 distortion

and the antiferrodistortive R+
4 distortion frozen in along the [111] direction lies at

only about 70 meV per formula unit above the Pbnm ground state. This polar

structure has the trigonal space group R3c, hence representing a different class

of structures than the orthorhombic ground state and non-polar phase obtained

by relaxing R+
4 [110] (which is close in energy to the R3c phase). The computed

spontaneous polarization, 45 µC/cm2 along the [111] direction, is quite large,

being, for example, almost twice the spontaneous polarization of the prototypical

ferroelectric BaTiO3 [19].

One needs to keep in mind that it cannot be concluded from the structural
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Table 2.2: Energy in meV per formula unit relative to the perfect cubic per-
ovskite structure of various structures obtained from the first-principles structural
optimizations (in decreasing order). The choices of axes follow the conventions
of Table 1 in Ref. [18]. Also listed are the polarizations in µC/cm2 of the polar
structures computed via the Berry phase technique [39]. Brackets signify that the
optimized structure belongs to the space group of highest symmetry.

Γ−
4 [111] −40 53 R3m

Γ−
4 [001] −70 69 P4mm

M+
3 [001]

M+
3 [001] + Γ−

4 [001]

}
−260

{
P4/mbm
P4bm

M+
3 [100]+Γ−

4 [001] −270 32 Amm2

M+
3 [001]+Γ−

4 [110] −270 38 Pmc21

R+
4 [001]

R+
4 [001] + Γ−

4 [001]

}
−300

{
I4/mcm
I4cm

R+
4 [111] −320 R3c

R+
4 [111]+Γ−

4 [111] −340 45 R3c

R+
4 [011]

R+
4 [110] + Γ−

4 [001]
R+

4 [110] + Γ−
4 [110]



 −340





Imma
Ima2
Ima2

M+
3 [001] + R+

4 [110]
M+

3 [001] + R+
4 [110] + Γ−

4 [001]
M+

3 [001] + R+
4 [110] + Γ−

4 [110]
M+

3 [001] + R+
4 [110] + Γ−

4 [110]





−410






Pbnm
Pna21

Pmn21

Pmc21



25

Table 2.3: Computed lattice parameters in Ångström and degrees for the struc-
tures in Table 2.2.

R3m a = 3.82, φ = 89.4

P4mm a = 3.78, c = 3.94

P4/mbm a = 5.29, c = 3.86

Amm2 a = 3.85, b = 7.48, c = 7.54

Pmc21 a = 3.84, b = 5.32, c = 5.33

I4/mcm a = 5.29, c = 7.71

R3c a = 5.33, φ = 60.6

R3c a = 5.36, φ = 60.0

Imma a = 5.36, b = 7.51, c = 5.38

Pbnm a = 5.29, b = 5.40, c = 7.53

optimization that the R3c phase is a local minimum. It is not a tractable task to

compute full phonon dispersions using VASP; therefore, in order to obtain at least

some information about the stability of the R3c structure, we performed frozen-

phonon computations at the Γ, L, and X points (the lattice was approximated

to be face-centred cubic during the symmetry analysis of the zone-boundary

phonons). No unstable phonons were found; the lowest-frequency phonons were

at 85 cm−1, 97 cm−1, and 108 cm−1 at the Γ, L, and X point, respectively. Al-

though this result does not prove that the R3c phase is a local minimum, we

found it encouraging enough to warrant an investigation of the effects of epitaxial

strain on the R3c phase.

First, we considered epitaxial strain on a square substrate surface with the

strain measured relative to a0 = 3.77 Å (the cube root of the computed volume

per formula unit of the relaxed Pbnm structure). The lattice parameters were

optimized by means of the elastic energy expansion method described in Sec. 2.2.1.

The space group of the optimized structures is Cc [45] and they are denoted

by eR3c. As can be seen in Fig. 2.8, the resulting structure is 24 meV/f.u.
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Figure 2.8: Total energy of the eR3c phase on a square substrate is plotted
with solid circles for comparison with the energies of nonpolar c-ePbnm (taken as
the zero of energy at each strain and shown as open diamonds) and the two polar
phases Pmn21 and Pmc21 (solid triangles). The connecting lines are a guide to
the eye.

above the polar Pmn21 phase at 4% strain, but below nonpolar c-ePbnm. Using

Born effective charges [40] and atomic positions, the polarization comes out to

be 75 µC/cm2 and has both in- and out-of-plane components. Extrapolation

of the curves for the polar ePbnm phases and for eR3c suggests that the latter

might become more stable for higher strains, but these would be too large to be

experimentally accessible.

Lastly, we explored the idea that matching the structures to a triangular sub-

strate surface might favour a rhombohedral structure such as the R3c relative to

an orthorhombic one like the Pbnm ground state. There are two distinct prim-

itive perovskite (111) planes in the Pbnm structure, see Fig. 2.9. Consequently,

the matching of the Pbnm structure to a triangular substrate with side l ≈
√

2a0

(where a0 is the primitive perovskite constant) can be implemented via either of
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the following two constraints:

|ta + tb − tc| = | − ta + tb − tc| = 2l, and |ta| = l, (2.5)

or

|ta + tb − tc| = |ta − tb − tc| = 2l, and |tb| = l. (2.6)

Similarly, the lattice vectors of the R3c structure must satisfy the following rela-

tion:

|ti + tj | = l, (2.7)

where i, j = 1, 2, 3. The constraint (2.7) has one free parameter.

We performed constrained structural optimizations for strains ranging from

−0.5% to 3.5% 3. As before, the strain is defined relative to a0 = 3.77 Å, the cube

root of the computed volume per formula unit of the relaxed Pbnm structure. The

eR3c structure was optimized with respect to constraint (2.7) by first finding the

optimal lattice vectors through a sequence of total-energy computations and then

relaxing the internal parameters while keeping the optimal lattice parameters

fixed. The ePbnm structure was optimized using the energy expansion method

described in Sec. 2.2.1, resulting in structures having the symmetry P21/c.

The relative energies of the optimized structures are shown in Fig. 2.10. The

non-polar P21/c structure remains lower than eR3c at all values of epitaxial

strain; in fact, the energy difference between the two structures does not change

significantly with strain. The näıve idea that epitaxial matching to a triangu-

lar lattice would energetically favour the rhombohedral R3c structure over the

orthorhombic Pbnm therefore proved incorrect. Interestingly, we do, as we did

when using a square substrate, observe an orientational transition. This is seen

3The strain values are -0.55%, 0.45%, 1.46%, 2.46%, and 3.47%
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Figure 2.9: A schematic depiction of the eR3c and ePbnm structures when
matched to a triangular substrate. The one (two) distinct orientation(s) of the
triangular substrate plane relative to the R3c (Pbnm) lattice vectors are shown.

in the ePbnm data in Fig. 2.10, which is included for this purpose (note that the

constraints (2.5) and (2.6) can be satisfied without breaking the Pbnm symme-

try). Below 0.5%, the structure with ta in the epitaxial plane (which satisfies

(2.5)) is lower in energy than the structure with tb in the epitaxial plane (which

satisfies (2.6)). Above 0.5%, the roles are reversed. There is a corresponding

orientational transition of the P21/c structure.

For the largest tensile strain considered, a frozen-phonon computation showed

that there were no unstable zone-center phonons in the eR3c structure, although

the lowest frequency had decreased relative to that of the unstrained R3c structure

(from 85 cm−1 to 58 cm−1).

2.3.2 Energy-surface parametrization

The energy expansion (2.1) failed to adequately describe the structural energet-

ics of the subspace defined by the Γ−
4 , R+

4 , M+
3 , X+

5 , and R+
5 distortions. The
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Figure 2.10: Total energy per five-atom formula unit for various epitaxially
constrained structures as a function of triangular misfit strain. At each strain,
the energy of the ePbnm structure satisfying constraint (2.5) is taken as the zero
of energy. The lines are a guide to the eye.

coefficients obtained through the procedure outlined in Sec. 2.2.2 are listed in

Table 2.4.

2.4 Discussion

2.4.1 Structural optimizations and epitaxially strained cal-

culations

The mechanism of strain-induced ferroelectricity in the Pbnm phase is closely

related to that for SrTiO3, which similarly has a high strain sensitivity of the

low-frequency polar mode. However, the effect in SrTiO3 is equally strong for

compressive as for tensile strain, as elongation of the unit cell produced by com-

pressive strain destabilizes the polar mode as effectively as elongation in the

in-plane direction for tensile strain. This is a direct consequence of the fact that

SrTiO3 is cubic in the paraelectric phase; the octahedron transition being at low
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Table 2.4: The first-principles coefficients of the energy expansion (2.1). The

units are such that the energy is in eV/f.u. given mode amplitudes in Å. The
modes are normalized so that the square root of the sum of the squared atomic
displacements of a ten-atom cell equals 1 Å (except Γx, Γy, and Γz which are
analogously normalized with respect to the five-atom cell).

κ −0.90 α′ 0.51 Bxx 3.86 B4yz 0.43

α 8.65 β ′ −0.08 Bxy 1.97 B̃1yy −4.07

γ −3.60 ζ ′ 0.01 Bxyxy −5.92 B̃1xx −8.29

β −9.65 κ̃ 0.06 B1xx −51.69 B
(5)
1 −8.99

δ 16.09 α̃ 1.30 B1yy 8.93 B
(5)
2 −4.79

λ 11.97 κ5 0.64 B4yz −9.74 B11 139.42
κ −0.71 α5 0.65 B′

xx 3.63 B12 37.00
α 0.54 θ −0.45 B′

xy 1.27 B44 34.55
γ −0.25 θ′ −0.65 B′

1xx ≈ 0 D1 4.37

β −0.09 C1 10.76 B′
1yy 6.67 D2 3.52

δ 0.16 C2 3.16 B
′

xx 2.66 D1 0.91

λ 0.31 C ′ 0.40 B
′

xy 0.73 D2 0.73

ζ 0.01 C1 1.47 B1xx 1.45 D′ 0.47

κ′ −0.64 C2 0.61 B1yy 6.81 D̃ ≈ 0
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temperatures and the rotational distortion not being strong enough to inhibit the

strain-enhanced polar instability.

In CaTiO3, in contrast, the rotational instabilities are much stronger and the

resulting distortions are much larger. No ferroelectric ePbnm phase was found

for compressive strain, despite elongation of the unit cell along the direction

normal to the surface; this presumably is due to inhibition by the pattern of

octahedral rotations. This highlights the idea that in a nonpolar low-symmetry

phase, unlike in a cubic phase, the relationship between the crystal axes and the

epitaxial constraints is very important, different choices yielding quite distinct

structures and coupling to potential instabilities.

To investigate the relative importance of enhancing the polar instability com-

pared to suppressing the rotational instabilities, we analysed the structural para-

meters of the c-ePbnm and ab-ePbnm phases as a function of epitaxial strain.

Figs. 2.6 and 2.7 display a tendency for one rotational mode to weaken with

increasing strain, albeit the rotational amplitudes remain large throughout the

entire range of strains reported here, suggesting that the dominant mechanism

of the strain-induced ferroelectricity is the strain enhancement of the polar in-

stability. Indeed, the rotational instabilities are so strong that it is unlikely that

they can be suppressed by epitaxial constraint alone, though it is possible that

appropriate epitaxial strain could favour a combination of rotations that was less

inhibitory to a polar instability, at least along some direction, as we have found

in the R3c structure. A different avenue to suppress rotations has been proposed:

that of isoelectronic substitution of some of the Ca with larger ions [46]. Be-

cause of the long coherence length of the octahedral rotations, resulting from the

sharing of oxygen atoms between octahedra, this local change could suppress the

rotations over a much longer length scale and thus have effects for a relatively

small degree of substitution.
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In comparing these predictions with experiments on epitaxial strained CaTiO3,

it is important to keep in mind that our approach considers only the effect of strain

on the ground state structure and properties. In a real thin film, especially the

ultrathin films needed to sustain very high strains, other factors can affect the

observed phase, including temperature, the atomic arrangements at the substrate

and the film-substrate interface, relaxation, reconstruction, and adsorption at the

free surface, and defects and impurities in the film itself. However, the tendency

to ferroelectricity with increasing tensile strain is clear in our results, and to

the extent that these other factors do not act dominantly against it, we expect

ferroelectricity in CaTiO3 to be observed at experimentally accessible strains.

2.4.2 Energy-surface parametrization

As noted in Sec. 2.3.2, the predictions of the energy expansion (2.1) are not in

qualitative agreement with the first-principles results. The most significant cause

for disagreement between the two methods is probably due to the interactions

being included only to the lowest order. This approximation limits the expan-

sions applicability given the large distortions present in the CaTiO3 and the large

strains being sampled. Another source of error is that the atomic displacement

ratios of the Γ−
4 and X+

5 modes are fixed in the computations and may not agree

particularly well with the optimized atomic displacements.
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Chapter 3

Phase Transitions and Magnetostructural

Coupling in CdCr2O4 and ZnCr2O4

3.1 Introduction

Magnetic and structural frustration promotes the development of exotic mag-

netic orderings unobserved in non-frustrated systems and presents a formidable

challenge to theorists and experimentalists alike. The inherent complexity of the

physics of frustration renders complementary theoretical and experimental in-

vestigations crucial for improving our understanding of systems exhibiting this

phenomenon. In this spirit, first-principles computations can provide valuable

quantitative predictions about the structural and magnetic energetics, phases,

and phase boundaries, facilitating interpretation and explanation of experimental

results and providing useful information for future experimental investigations.

In this chapter, we address finite-temperature properties of a particular class

of geometrically frustrated antiferromagnets by applying a first-principles effec-

tive Hamiltonian approach to the spinels CdCr2O4 and ZnCr2O4. Spinels and

pyrochlores are prototype systems for geometrical frustration. The effect is espe-

cially striking in CdCr2O4 and ZnCr2O4 so these materials lend themselves well

for the study of frustration. Moreover, their chemical and structural similarities,

yet manifestly dissimilar ground states, offer opportunity for comparison and in-

vestigation of the multiple ways to relieve frustration compatible with the spinel

structure.
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CdCr2O4 and ZnCr2O4 belong to a family of binary chalcogenides with the

chemical formula AB2X4, where A and B are cations and X is an anion, and

which crystallize over a wide temperature range in the cubic spinel structure [15].

One representation of the structure is illustrated in Fig. 1.2. A salient feature is

its incompatibility with the antiferromagnetic interaction between the magnetic

Cr3+ ions (S = 3/2). More precisely, the magnetic moments form a network

of vertex-linked tetrahedra—a pyrochlore lattice [47]—and when magnetic mo-

ments preferring anti-alignment reside on such a lattice, all interactions cannot be

satisfied simultaneously, resulting in frustration [48]. Experimentally, the large

amount of low-energy entropy is evidenced by the spins failing to order at the

temperature expected from the Curie-Weiss constant which is a measure of the

characteristic strength of the interaction between the magnetic moments. For

ZnCr2O4, the Curie-Weiss temperature is 390 K whereas the spins order at the

much lower Néel temperature of 12.5 K after a spin-driven effect has introduced

a distortion of the lattice, thereby lowering the symmetry and relieving the geo-

metric frustration in the process. Also CdCr2O4 enters a spin-ordered state, the

Néel and Curie-Weiss temperatures are 7.8 K and 88 K, respectively. The struc-

tural anomalies observed at the magnetic transitions strongly indicate that the

coupling between spin and lattice degrees of freedom plays a major role in these

first-order transitions from the paramagnetic cubic state to the antiferromagnetic

states. Much regarding the details of the latter phases remain unclear, e.g. their

precise spin structure. Like many frustrated compounds, however, CdCr2O4 and

ZnCr2O4 form complicated non-collinear spin structures as a way to relieve the

frustration. The spatial orientation of the magnetic moments have been exam-

ined via neutron diffraction using both single-crystal and powder samples (only

ZnCr2O4). The low-symmetry state of ZnCr2O4 has a complex commensurate

magnetic order with coplanar spins in the [110] plane, the exact details of which
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has yet to be resolved [49–51]. The measurements suggest that ZnCr2O4 is prox-

imate to several spin configurations after the transition from the high-symmetry

cubic phase to the low-temperature low-symmetry state. CdCr2O4, in contrast,

has a somewhat better understood incommensurate spin structure with a char-

acteristic wave vector of QM = (0, d, 1), where d ≈ 0.09, with the spins lying

in the [101] plane [49, 52]. A major complication in these experiments are the

small structural distortions of the magnetically ordered phases relative to the cu-

bic paramagnetic phases, making it challenging to distinguish between different

crystal domains. The distortions have been measured with single-crystal X-ray

diffraction. For ZnCr2O4, the low-temperature low-symmetry state is reported as

tetragonal I4m2 [49, 50] or orthorhombic F222 [53] (motivated by results from

a single-crystal electron-spin-resonance study). The lattice distortion of the low-

symmetry structure of CdCr2O4 is distinctly different from that of ZnCr2O4, in-

volving a simple elongation of the c-axis as opposed to a contraction for ZnCr2O4

the transition of which also involves additional local distortions. The space group

of the low-symmetry phase of CdCr2O4 is tetragonal I41/amd [49].

Magnetostructural coupling in CdCr2O4 and ZnCr2O4 have been studied from

first-principles calculations [54–56]. The focus has been on how the symmetry

breaking in the spin sector is manifested in the energetics of the structure. In

short, one has computed the splittings induced by antiferromagnetic ordering

on the infrared active phonon modes. The calculations show that a cubic-to-

tetragonal symmetry lowering, induced by changing the magnetic order from

ferro- to antiferromagnetic while keeping the crystal fixed, produces a significant

splitting in frequency among the infrared active phonons (which are degenerate

in the cubic case). This magnetically induced phonon anisotropy demonstrates a

coupling between the magnetic order and the lattice.



36

The collinear spin arrangement used in the first-principles computations rep-

resents a simplification of the true spin structures. We intend to study these

materials more systematically by means of an effective Hamiltonian. This is an

approximate interpolative method which has proved capable of explaining the ef-

fects of temperature when combined with the intrinsically zero-temperature first-

principles scheme. It has been successfully applied to, e.g., several perovskite

compounds [4–7], including more recently multiferroic BiFeO3 [8, 9] in which

spontaneous magnetism and polarization coexist and are strongly coupled. Our

main focus is to elucidate the interplay between the magnetic and structural de-

grees of freedom in these spinels, a mechanism which plays an important role in

other classes of compounds as well, e.g., multiferroics. We thereby hope to con-

tribute to the interpretation of the experimental data and help resolve the issues

regarding the magnetic order in both materials and the ground state of ZnCr2O4.

We would also like to enhance our general understanding of the different ways

frustration is relieved in spinels. This is a work in progress, we will present the

part that is finished and a brief outline of what remains.

3.2 Method

Our goal is to construct an effective Hamiltonian to investigate the phase tran-

sitions in the geometrically frustrated spinels CdCr2O4 and ZnCr2O4. This com-

putationally advantageous approach rests on the assumption that the energetics

of system under study can be adequately modelled by a Taylor expansion around

a high-symmetry structure using only a restricted set of judiciously chosen de-

grees of freedom. The method comprises three main steps: (i) the construction

of an effective Hamiltonian which describes the dynamics of the relevant degrees

of freedom; (ii) the determination of the effective Hamiltonian parameters via
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zero-temperature first-principles computations; and (iii) Monte Carlo simulations

to determine the finite-temperature behaviour.

3.2.1 Construction of the effective Hamiltonian

The partition function of a system is the primary quantity when studying finite-

temperature equilibrium properties. The fact that the terms in the partition sum

decreases exponentially with increasing energy motivates our working assumption

that the low-temperature partition function can be well approximated by using

a simplified energy function which only includes low-energy states. Experiments

on CdCr2O4 and ZnCr2O4 indicate that the atomic distortions and strain de-

formations manifested in their respective transition from the cubic phase to the

low-symmetry phase are small [49]. We therefore assume that the energetically

relevant atomic configurations are close to the cubic structure and that the en-

ergy surface around it can be parametrized in terms of a Taylor expansion in the

displacements from the cubic structure.

The first step, then, in constructing the effective Hamiltonian consists of iden-

tifying the relevant degrees of freedom, which, in addition to atomic distortions

and strains, obviously must include spin since the lattice instabilities are driven

by magnetic interactions. The spins are treated as classical vectors, an approx-

imation motivated by the rather large magnetic moment of the Cr atoms. The

atomic distortions are included in the Taylor series as local modes, i.e. localized

real-space atomic displacement patterns. Our choice of local modes consists of the

individual displacements of the magnetic ions and distortions of the zinc-centred

oxygen tetrahedra. We assume that the effect of the zinc atoms is small and do

not include their motion, whereas, on the other hand, a lot of the action presum-

ably involves the magnetic ions so their movement is not restricted. As to the

oxygen tetrahedra, the experimental results of the ground state space groups help
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us identify which distortions are necessary to include. First note that the trans-

formation properties of the 42 zone-center modes of the Fd3m spinel structure

split into the following irreducible representations of Oh [43]:

ΓAcoustic : T1u

ΓIR : 4T1u

ΓRaman : A1g ⊕ Eg ⊕ 3T2g

ΓSilent : 2A2u ⊕ 2Eu ⊕ T1g ⊕ 2T2u

(3.1)

Considering ZnCr2O4, the effective Hamiltonian must be able to generate its

proposed ground state structure belonging to I4m2 [49, 50] or F222 [53]. A

group-theoretical analysis reveals that the modes transforming according to the

two rows of the irreducible representation Eu separately lowers the symmetry

from Fd3m to either I4m2 or F222 [43]. Similarly, one finds that the CdCr2O4

ground state space group I41/amd [49] is reached via a distortion of the two

oxygen tetrahedra which transform as one of the two rows of Eg. It is possible

to describe all of these distortions using a set of four local modes, see Fig. 3.1,

which also increases the number of symmetry groups that can be generated by

oxygen tetrahedral distortions alone since the two tetrahedra are decoupled. The

zone-center modes generated by these four oxygen local modes are Eu (v1 + v2

and w1 + w2) and Eg (v2 − v1 and w2 − w1). The chromium degrees of freedom

generate A2u, Eu, T1u, and T2u. This choice of local modes reduces the size of the

atomic configuration space from 14 × 3 to 16.

The next step in the construction of the effective Hamiltonian consists of

deriving its analytical form. Up to second-order terms are included in the expan-

sion and up to third nearest-neighbour Heisenberg exchange interactions. These

approximations are based on previous first-principles results for the spin-lattice
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Figure 3.1: The four oxygen local modes: v1 (lower left) and w1 (lower right) are
distortions of the oxygen tetrahedra centred on the 43m A-site cation. Similarly,
v2 (upper left) and w2 (upper right) describe distortions of the oxygen tetrahedra
centred the other A-site cation. For v1 and v2, the displacement along z is twice
that along x and y.
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coupling and local moment interactions [54, 55, 57] and the experimental re-

sults that the distortions involved in the low-temperature transition are small. If

needed, they can be systematically improved by adding higher-order terms and

further-neighbour interactions. Mainly for organizational purposes, it is common

to let the expansion be invariant with respect to the symmetry group of the ref-

erence structure, in our case Fd3m. An analysis of the transformation properties

of the degrees of freedom under Fd3m yields the precise form of the expansion

which is presented in Appendix A (except H(uiα, vi, wi, ηi; siα) and Hdipole which

we have not yet derived). Schematically,

Htot =H(uiα, vi, wi) + H(ηi) + H(siα) + H(uiα, vi, wi; ηi)

+ H(uiα, vi, wi, ηi; siα) + Hdipole(uiα, vi, wi),

where the local modes are denoted as in Fig. 3.1, siα (α = x, y, z) represents the

spin component α on Cr atom i, and ηi (i = 1 − 6) is the strain tensor in Voigt

notation.

The symmetry analysis leaves us with a set of undetermined parameters.

There are to many of them for all to be determined phenomenologically, but

they can be determined from independent first-principles calculations.

3.2.2 First-principles calculations

In order to determine the effective Hamiltonian parameters, we have performed

density-functional theory calculations within LSDA+U using the VASP code1 [37,

38] with its supplied PAW potentials [35, 36]. A plane-wave kinetic energy cutoff

of 500 eV was used and the Brillouin zone was sampled by a 6×6×6 Γ-centred k -

point grid (for both 14- and 28-atoms cells). For the Berry-phase calculations [39],

1Version 4.6.28 of VASP was used.
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the mesh was 6× 6× 12, with the dense grid in the direction of electronic polar-

ization. Structural relaxations were performed until the forces on the atoms were

less than 2.5 meV/Å. Collinear spin configurations were used throughout and no

spin-orbit coupling was included. Previous first-principles calculations [54] have

found spin-orbit effects to be small; presumably due to Cr3+ lacking orbital mo-

mentum. The values for the Coulomb on-site repulsion U and exchange parameter

j were 3 eV and 0.9 eV, respectively. These values have been used in previous

first-principle calculations [54–56], but were not determined from first-principles.

Rather, they were chosen as to reproduce certain experimental band gap and

photoemission spectral features in other chromium-based spinels.

Force-constant matrices were constructed from finite differences of the forces

on symmetry-adapted modes having an amplitude of 0.01 Å. We utilized modes

transforming according to the irreducible representations listed in Eq. (3.1) in all

computations as this is a complete set (although only for Fd3m structures does

it yield block-diagonal force-constant matrices). The derivation of the modes was

facilitated by the use of [43])

The three exchange constants J1, J2, and J3—capturing the interaction be-

tween first, second, and third nearest neighbours respectively—can be extracted

from total-energy computations on cubic structures with four different collinear

spin configurations by relating the computed energy with the effective Hamilto-

nian model. Similar calculations allow us to quantify how the Heisenberg ex-

change interactions are modified in the presence of local modes and strain.

Coefficients involving local modes can be determined by forming linear com-

binations of the elements of the force constant matrices of appropriate structures.

To be more precise, the procedure consists of writing the first-principles force

constant matrix in the basis defined by the local modes and comparing it to the
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same matrix as constructed from the analytical expansion. By way of illustra-

tion, consider the submatrix that consists of the interaction parameters between

v1, v2, v3, and v4. The expansion yields for the ferromagnetic Fd3m zone-center

force-constant matrix: 


2B1 4B12 0 0

2B1 0 0

2B1 4B12

2B1




(3.2)

where the order of the base vectors is (v1, v2, w1, w2). Computing the zone-center

force-constant matrix of the relaxed Fd3m structure with ferromagnetic spin or-

dering thus allow us to extract B1 and B12. In fact, from considering the entire

matrix the chromium local modes parameters Ax, Axy, Axx, Azz, Axy, Axz can also

be determined. This zone-center computation does not, however, provide enough

information to determine the coupling coefficients between chromium and oxy-

gen local modes. One way to produce the necessary supplementary equations

are through cumbersome—due to the large cell required—zone-boundary com-

putations. An alternative approach, which eliminates the need for additional

computations but also introduces further approximations, is to keep only two

coupling coefficients. The complication then is how to perform this reduction

without resorting to guesswork.

By recomputing the force constant matrix for strained structures and different

spin arrangements we can determine the coupling between the local modes, strain,

and spin; consider, e.g., the change in (3.2) due to a strain along the z-axis
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(η3 6= 0):

2η3 ×




k1 l1 0 0

k1 0 0

k2 l2

k2




where

k1 =
1

2
Lxxv + Lzzv +

3

2
Lxxw + 2Lxxvw,

k2 =
3

2
Lxxv + Lzzw +

1

2
Lxxw − 2Lxxvw,

l1 = Lxxv + Lzzv + 3Lxxw + 2Lxxvw,

and l2 = 3Lxxv + Lzzw + Lxxw − 2Lxxvw.

Analogous computations with other combinations of non-zero η1, η2, and η3 pro-

vide the additional equations necessary to determine the coupling coefficients

between the four oxygen local modes and strain (but all the coupling coefficients

between the chromium local modes and the diagonal strain tensor components

can actually be determined from this computations).

3.3 Results

Optimizations in the Fd3m space group of the lattice parameter a and anion

parameter u (for the origin is 443m on an A-site cation) resulted in a = 8.534

Å and u = 0.394 for CdCr2O4 and a = 8.255 Å and u = 0.386 for ZnCr2O4.

The Born effective charges are listed in Table 3.1 and the zone-center phonon

frequencies in Table 3.2. The effective Hamiltonian terms that have been derived

are listed in Appendix A and the parameters determined thus far are reported in

Table 3.3.
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Table 3.1: Born effective charges for the two AB2X4 spinels. The subscripts
1 and 2 refer to the diagonal and off-diagonal entries, respectively, of the Born
effective charge tensor.

CdCr2O4 ZnCr2O4

Z∗(A) 2.32 2.26

Z∗
1(B) 3.00 2.95

Z∗
2(B) −0.73 −0.59

Z∗
1(X) −2.07 −2.04

Z∗
2(X) 0.07 0.02

Table 3.2: Phonon frequencies in cm−1 of the ferromagnetic Fd3m structures.

CdCr2O4 ZnCr2O4

A1g 695 688

A2u 480 503
676 667

Eg 463 471

Eu 324 338
478 505

T1g 424 449

T1u 157 195
379 389
488 510
616 614

T2g 132 180
505 518
603 609

T2u 198 204
449 478
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Table 3.3: First-principles effective Hamiltonian parameters in eV/Å2 per prim-
itive unit cell.

CdCr2O4 ZnCr2O4

Ax 11.90 13.08

Axy 2.28 3.13

Axx −1.17 −1.42

Azz 0.27 0.35

Axy −2.74 −3.10

Axz 0.08 0.01

B1 6.46 6.91

B12 0.07 0.19

3.4 Outlook

The dipole-dipole part of the Hamiltonian and the part describing how the Heisen-

berg exchange interaction is modulated by the local modes and strain have not

been derived yet. Furthermore, as mentioned in Sec. 3.2.2, computations on cells

larger than the primitive unit cell are necessary to determine the coupling coeffi-

cients between the chromium and oxygen local modes. The same difficulty arises

with the coupling between the oxygen local modes and shear. Alternatively, one

includes fewer terms in the expansion; we have investigated this method which

requires a systematic procedure to reduce the number of coefficients.

When the determination and validation of the coefficients are finished, finite-

temperature behaviour can be studied using Monte Carlo simulations. We have

written a computer programme that solves the effective Hamiltonian by means of

the Metropolis algorithm [58]. The code is ready except for the implementation

of the energy terms mentioned above. This technique enables the modelling of

systems with sizes completely impractical to treat directly from first-principles,
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allowing, e.g., for complex spin orderings requiring large supercells. With this

machinery at one’s disposal, one can hopefully clarify the role of spin-lattice cou-

pling in the transitions to the antiferromagnetic ground states. By comparing the

results for CdCr2O4 and ZnCr2O4, one may also gain additional insight into the

different ways to relieve frustration that are compatible with the spinel structure.
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Appendix A

The Spinel Effective Hamiltonian

The terms of the spinel effective Hamiltonian derived thus far are listed in this

Appendix. All terms are summed over R = n1t1 + n2t2 + n3t3, where t1 =

a(0, 1, 1)/2, t2 = a(1, 0, 1)/2, and t3 = a(1, 1, 0)/2 are the lattice vectors of

the cubic spinel primitive unit cell. The origin is at 43m on an A-site cation.

Many obvious plus signs are suppressed in the formulae and the following short-

hand notation is used: uiα ≡ uiα(R), vi ≡ vi(R), wi ≡ wi(R), Si ≡ Si(R),

uiαvj(R + ∆) ≡ uiα(R)vj(R + ∆), α = 1/2 and β =
√

3/2.

J1

2

∑

n.n.

Si · Sj +
J2

2

∑

2nd n.n.

Si · Sj +
J3

2

∑

3rd n.n.

Si · Sj

Ax

4∑

n=1

∑

α=x,y,z

[unα(R)]2

Axy

(
u1xu1y u1xu1z u1yu1z

u2xu2y −u2xu2z −u2yu2z

−u3xu3y u3xu3z −u3yu3z

−u4xu4y −u4xu4z u4yu4z

)

Azz

(
u1zu2z u1z(R)u2z(R − t3) u2xu3x u2x(R)u3x(R − t2 + t3)

u1yu3y u1y(R)u3y(R − t2) u2yu4y u2y(R)u4y(R − t1 + t3)

u1xu4x u1x(R)u4x(R − t1) u3zu4z u3z(R)u4z(R − t1 + t2)
)
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Axx

(
u1xu2x u1x(R)u2x(R − t3) u1yu2y u1y(R)u2y(R − t3)

u1zu3z u1z(R)u3z(R − t2) u1xu3x u1x(R)u3x(R − t2)

u1yu4y u1y(R)u4y(R − t1) u1zu4z u1z(R)u4z(R − t1)

u2yu3y u2y(R)u3y(R − t2 + t3) u2zu3z u2z(R)u3z(R− t2 + t3)

u2zu4z u2z(R)u4z(R − t1 + t3) u2xu4x u2x(R)u4x(R− t1 + t3)

u3xu4x u3x(R)u4x(R − t1 + t2) u3yu4y u3y(R)u4y(R− t1 + t2)
)

Axy

(
u1xu2y u1y(R)u2x(R − t3) −u2yu3z −u2z(R)u3y(R− t2 + t3)

u2xu1y u2y(R)u1x(R + t3) −u3yu2z −u3z(R)u2y(R + t2 − t3)

u1zu3x u1x(R)u3z(R − t2) −u2zu4x −u2x(R)u4z(R− t1 + t3)

u3zu1x u3x(R)u1z(R + t2) −u4zu2x −u4x(R)u2z(R + t1 − t3)

u1yu4z u1z(R)u4y(R − t1) −u3xu4y −u3y(R)u4x(R− t1 + t2)

u4yu1z u4z(R)u1y(R + t1) −u4xu3y −u4y(R)u3x(R + t1 − t2)
)

Axz

(
u1xu2z u1x(R)u2z(R− t3) u1yu2z u1y(R)u2z(R − t3)

−u2xu1z −u2x(R)u1z(R + t3) −u2yu1z −u2y(R)u1z(R + t3)

u1zu3y u1z(R)u3y(R− t2) u1xu3y u1x(R)u3y(R − t2)

−u3zu1y −u3z(R)u1y(R + t2) −u3xu1y −u3x(R)u1y(R + t2)

u1yu4x u1y(R)u4x(R− t1) u1zu4x u1z(R)u4x(R − t1)

−u4yu1x −u4y(R)u1x(R + t1) −u4zu1x −u4z(R)u1x(R + t1)

u2yu3x u2y(R)u3x(R − t2 + t3) −u2zu3x −u2z(R)u3x(R − t2 + t3)

−u3yu2x −u3y(R)u2x(R + t2 − t3) u3zu2x u3z(R)u2x(R + t2 − t3)

−u2zu4y −u2z(R)u4y(R − t1 + t3) u2xu4y u2x(R)u4y(R − t1 + t3)

u4zu2y u4z(R)u2y(R + t1 − t3) −u4xu2y −u4x(R)u2y(R + t1 − t3)

u3xu4z u3x(R)u4z(R − t1 + t2) −u3yu4z −u3y(R)u4z(R − t1 + t2)

−u4xu3z −u4x(R)u3z(R + t1 − t2) u4yu3z u4y(R)u3z(R + t1 − t2)
)
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B12

(
v1v2 + v1(R)v2(R− t1) + v1(R)v2(R − t2) + v1(R)v2(R − t3)

w1w2 + w1(R)w2(R− t1) + w1(R)w2(R − t2) + w1(R)w2(R − t3)
)

B1

(
v2
1 + v2

2 + w2
1 + w2

2

)

C11

(
η2

1 + η2
2 + η2

3

)

C12

(
η1η2 + η1η3 + η2η3

)

C44

(
η2

6 + η2
5 + η2

4

)

Kxxxx

4∑

i=1

(
η1u

2
ix + η2u

2
iy + η3u

2
iz

)

Kxxyy

4∑

i=1

(
η1

(
u2

iy + u2
iz

)
+ η2

(
u2

ix + u2
iz

)
+ η3

(
u2

ix + u2
iy

))

Kxxxy

( (
η1 + η2

)(
u1xu1y + u2xu2y − u3xu3y − u4xu4y

)

+
(
η1 + η3

)(
u1xu1z − u2xu2z + u3xu3z − u4xu4z

)

+
(
η2 + η3

)(
u1yu1z − u2yu2z − u3yu3z + u4yu4z

) )

Kxxyz

(
η1

(
u1yu1z − u2yu2z − u3yu3z + u4yu4z

)

+ η2

(
u1xu1z − u2xu2z + u3xu3z − u4xu4z

)

+ η3

(
u1xu1y + u2xu2y − u3xu3y − u4xu4y

) )

Kxyxx

(
η6

(
u2

1x + u2
2x − u2

3x − u2
4x + (x → y)

)

+ η5

(
u2

1x − u2
2x + u2

3x − u2
4x + (x → z)

)

+ η4

(
u2

1y − u2
2y − u2

3y + u2
4y + (y → z)

) )

Kxyzz

(
η6

(
u2

1z + u2
2z − u2

3z − u2
4z

)

+ η5

(
u2

1y − u2
2y + u2

3y − u2
4y

)

+ η4

(
u2

1x − u2
2x − u2

3x + u2
4x

) )
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Kxyxz

(
η6

(
u1xu1z − u2xu2z − u3xu3z + u4xu4z

+u1yu1z − u2yu2z + u3yu3z − u4yu4z

)

+η5

(
u1xu1y − u2xu2y − u3xu3y + u4xu4y

+u1yu1z + u2yu2z − u3yu3z − u4yu4z

)

+η4

(
u1xu1y − u2xu2y + u3xu3y − u4xu4y

+u1xu1z + u2xu2z − u3xu3z − u4xu4z

) )

Kxyxy

4∑

i=1

(
η6uixuiy + η5uixuiz + η4uiyuiz

)

L
(

η1

(
(1 − α)v1 + βw1 − (1 − α)v2 − βw2

)

+ η2

(
(1 − α)v1 − βw1 − (1 − α)v2 + βw2

)

+ η3

(
− 2αv1 + 2αv2

))

Lxxv

∑

i=1,2

(
η1

(
(1 + α2)v2

i − 2αβviwi + β2w2
i

)

+η2

(
(1 + α2)v2

i + 2αβviwi + β2w2
i

)
+ η32

(
α2v2

i + β2w2
i

))

Lzzv

∑

i=1,2

(
η1

(
α2v2

i + 2αβviwi + β2w2
i

)
+ η2

(
α2v2

i − 2αβviwi + β2w2
i

)
+ η3v

2
i

)

Lxxw

∑

i=1,2

(
η1

(
β2v2

i + 2αβviwi + (1 + α2)w2
i

)

+η2

(
β2v2

i − 2αβviwi + (1 + α2)w2
i

)
+ η32

(
β2v2

i + α2w2
i

))

Lzzw

∑

i=1,2

(
η1

(
β2v2

i − 2αβviwi + α2w2
i

)

+η2

(
β2v2

i + 2αβviwi + α2w2
i

)
+ η3w

2
i

)

Lxxvw

∑

i=1,2

(
η1

(
− αβv2

i + (1 − α2 + β2)viwi + αβw2
i

)

− η2

(
αβv2

i + (1 − α2 + β2)viwi − αβw2
i

)
+ η32αβ

(
v2

i − w2
i

))
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C3xv1

(
− u1xv1(R + t1 + t2 − t3) αu1zv1(R + t1) αu1yv1(R + t2)

−βu1zw1(R + t1) βu1yw1(R + t2)

−u1yv2(R) αu1xv2(R + t2 − t3) αu1zv2(R + t1 − t3)

−βu1xw2(R + t2 − t3) βu1zw2(R + t1 − t3)

u2xv1(R + t1 + t2) −αu2yv1(R + t1) αu2zv1(R + t2)

−βu2yw1(R + t1) −βu2zw1(R + t2)

u2yv2(R) −αu2xv2(R + t1) αu2zv2(R + t2)

βu2xw2(R + t1) βu2zw2(R + t2)

u3xv1(R + t2) −αu3zv1(R + t1 + t2) αu3yv1(R + t1 + t2 − t3)

βu3zw1(R + t1 + t2) βu3yw1(R + t1 + t2 − t3)

−u3yv2(R + t1 + t2 − t3) −αu3zv2(R + t2) −αu3xv2(R + t2 − t3)

−βu3zw2(R + t2) βu3xw2(R + t2 − t3)

−u4xv1(R + t1) −αu4yv1(R + t1 + t2) −αu4zv1(R + t1 + t2 − t3)

−βu4yw1(R + t1 + t2) βu4zw1(R + t1 + t2 − t3)

u4yv2(R + t1 + t2 − t3) αu4xv2(R + t1) −αu4zv2(R + t1 − t3)

−βu4xw2(R + t1) −βu4zw2(R + t1 − t3)

−
(
u1yv1(R + t1 + t2 − t3) −αu1zv1(R + t2) −αu1xv1(R + t1)

−βu1zw1(R + t2) βu1xw1(R + t1)

u1xv2(R) −αu1yv2(R + t1 − t3) −αu1zv2(R + t2 − t3)

−βu1yw2(R + t1 − t3) βu1zw2(R + t2 − t3)

−u2yv1(R + t1 + t2) αu2xv1(R + t2) −αu2zv1(R + t1)

−βu2xw1(R + t2) −βu2zw1(R + t1)

−u2xv2(R) αu2yv2(R + t2) −αu2zv2(R + t1)

βu2yw2(R + t2) βu2zw2(R + t1)

u3yv1(R + t2) αu3xv1(R + t1 + t2) αu3zv1(R + t1 + t2 − t3)

−βu3xw1(R + t1 + t2) βu3zw1(R + t1 + t2 − t3)

−u3xv2(R + t1 + t2 − t3) −αu3yv2(R + t2) αu3zv2(R + t2 − t3)

−βu3yw2(R + t2) −βu3zw2(R + t2 − t3)

−u4yv1(R + t1) αu4zv1(R + t1 + t2) −αu4xv1(R + t1 + t2 − t3)

βu4zw1(R + t1 + t2) βu4xw1(R + t1 + t2 − t3)

u4xv2(R + t1 + t2 − t3) αu4zv2(R + t1) αu4yv2(R + t1 − t3)

−βu4zw2(R + t1) βu4yw2(R + t1 − t3)
))
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C3xw1

(
− u1xw1(R + t1 + t2 − t3) αu1zw1(R + t1) αu1yw1(R + t1 + t2)

βu1zv1(R + t1) −βu1yv1(R + t1 + t2)

u1yw2(R) −αu1xw2(R + t2 − t3) −αu1zw2(R + t1 − t3)

−βu1xv2(R + t2 − t3) βu1zv2(R + t1 − t3)

u2xw1(R + t1 + t2) −αu2yw1(R + t1) αu2zw1(R + t2)

βu2yv1(R + t1) βu2zv1(R + t2)

−u2yw2(R) αu2xw2(R + t1) −αu2zw2(R + t2)

βu2xv2(R + t1) βu2zv2(R + t2)

u3xw1(R + t2) −αu3zw1(R + t1 + t2) αu3yw1(R + t1 + t2 − t3)

−βu3zv1(R + t1 + t2) −βu3yv1(R + t1 + t2 − t3)

u3yw2(R + t1 + t2 − t3) αu3zw2(R + t2) αu3xw2(R + t2 − t3)

−βu3zv2(R + t2) βu3xv2(R + t2 − t3)

−u4xw1(R + t1) −αu4yw1(R + t1 + t2) −αu4zw1(R + t1 + t2 − t3)

βu4yv1(R + t1 + t2) −βu4zv1(R + t1 + t2 − t3)

−u4yw2(R + t1 + t2 − t3) −αu4xw2(R + t1) αu4zw2(R + t1 − t3)

−βu4xv2(R + t1) −βu4zv2(R + t1 − t3)

−
(
− u1yw1(R + t1 + t2 − t3) αu1zw1(R + t2) αu1xw1(R + t1)

−βu1zv1(R + t2) βu1xv1(R + t1)

u1xw2(R) −αu1yw2(R + t1 − t3) −αu1zw2(R + t2 − t3)

βu1yv2(R + t1 − t3) −βu1zv2(R + t2 − t3)

u2yw1(R + t1 + t2) −αu2xw1(R + t2) αu2zw1(R + t1)

−βu2xv1(R + t2) −βu2zv1(R + t1)

−u2xw2(R) αu2yw2(R + t2) −αu2zw2(R + t1)

−βu2yv2(R + t2) −βu2zv2(R + t1)

−u3yw1(R + t2) −αu3xw1(R + t1 + t2) −αu3zw1(R + t1 + t2 − t3)

−βu3xv1(R + t1 + t2) βu3zv1(R + t1 + t2 − t3)

−u3xw2(R + t1 + t2 − t3) −αu3yw2(R + t2) αu3zw2(R + t2 − t3)

βu3yv2(R + t2) βu3zv2(R + t2 − t3)

u4yw1(R + t1) −αu4zw1(R + t1 + t2) αu4xw1(R + t1 + t2 − t3)

βu4zv1(R + t1 + t2) βu4xv1(R + t1 + t2 − t3)

u4xw2(R + t1 + t2 − t3) αu4zw2(R + t1) αu4yw2(R + t1 − t3)

βu4zv2(R + t1) −βu4yv2(R + t1 − t3)
))
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C3xv2

(
− u1yv1(R + t1) αu1zv1(R + t1 + t2 − t3) αu1xv1(R + t2)

βu1zw1(R + t1 + t2 − t3) −βu1xw1(R + t2)

−u1xv2(R + t1 − t3) αu1zv2(R) αu1yv2(R + t2 − t3)

−βu1zw2(R) βu1yw2(R + t2 − t3)

u2yv1(R + t2) −αu2xv1(R + t1) αu2zv1(R + t1 + t2)

βu2xw1(R + t1) βu2zw1(R + t1 + t2)

u2xv2(R + t2) −αu2yv2(R + t1) αu2zv2(R)

−βu2yw2(R + t1) −βu2zw2(R)

−u3yv1(R + t1 + t2) −αu3zv1(R + t2) −αu3xv1(R + t1 + t2 − t3)

−βu3zw1(R + t2) βu3xw1(R + t1 + t2 − t3)

u3xv2(R + t2) −αu3zv2(R + t1 + t2 − t3) αu3yv2(R + t2 − t3)

βu3zw2(R + t1 + t2 − t3) βu3yw2(R + t2 − t3)

u4yv1(R + t1 + t2 − t3) αu4xv1(R + t1 + t2) −αu4zv1(R + t1)

−βu4xw1(R + t1 + t2) −βu4zw1(R + t1)

−u4xv2(R + t1 − t3) −αu4yv2(R + t1) −αu4zv2(R + t1 + t2 − t3)

−βu4yw2(R + t1) βu4zw2(R + t1 + t2 − t3)

−
(
u1xv1(R + t2) −αu1yv1(R + t1) −αu1zv1(R + t1 + t2 − t3)

−βu1yw1(R + t1) βu1zw1(R + t1 + t2 − t3)

u1yv2(R + t2 − t3) −αu1xv2(R + t1 − t3) −αu1zv2(R)

βu1xw2(R + t1 − t3) −βu1zw2(R)

−u2xv1(R + t1) −αu2zv1(R + t1 + t2) αu2yv1(R + t2)

βu2zw1(R + t1 + t2) βu2yw1(R + t2)

−u2yv2(R + t1) −αu2zv2(R) αu2xv2(R + t2)

−βu2zw2(R) −βu2xw2(R + t2)

−u3xv1(R + t1 + t2 − t3) −αu3yv1(R + t1 + t2) αu3zv1(R + t2)

−βu3yw1(R + t1 + t2) −βu3zw1(R + t2)

u3yv2(R + t2 − t3) αu3xv2(R + t2) αu3zv2(R + t1 + t2 − t3)

−βu3xw2(R + t2) βu3zw2(R + t1 + t2 − t3)

u4xv1(R + t1 + t2) αu4zv1(R + t1) αu4yv1(R + t1 + t2 − t3)

−βu4zw1(R + t1) βu4yw1(R + t1 + t2 − t3)

−u4yv2(R + t1) αu4zv2(R + t1 + t2 − t3) −αu4xv2(R + t1 − t3)

βu4zw2(R + t1 + t2 − t3) βu4xw2(R + t1 − t3)
))
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C3xw2

(
u1yw1(R + t1) −αu1zw1(R + t1 + t2 − t3) −αu1xw1(R + t2)

βu1zv1(R + t1 + t2 − t3) −βu1xv1(R + t2)

−u1xw2(R + t1 − t3) αu1zw2(R) αu1yw2(R + t2 − t3)

βu1zv2(R) −βu1yv2(R + t2 − t3)

−u2yw1(R + t2) αu2xw1(R + t1) −αu2zw1(R + t1 + t2)

βu2xv1(R + t1) βu2zv1(R + t1 + t2)

u2xw2(R + t2) −αu2yw2(R + t1) αu2zw2(R)

βu2yv2(R + t1) βu2zv2(R)

u3yw1(R + t1 + t2) αu3zw1(R + t2) αu3xw1(R + t1 + t2 − t3)

−βu3zv1(R + t2) βu3xv1(R + t1 + t2 − t3)

u3xw2(R + t2) −αu3zw2(R + t1 + t2 − t3) αu3yw2(R + t2 − t3)

−βu3zv2(R + t1 + t2 − t3) −βu3yv2(R + t2 − t3)

−u4yw1(R + t1 + t2 − t3) −αu4xw1(R + t1 + t2) αu4zw1(R + t1)

−βu4xv1(R + t1 + t2) −βu4zv1(R + t1)

−u4xw2(R + t1 − t3) −αu4yw2(R + t1) −αu4zw2(R + t1 + t2 − t3)

βu4yv2(R + t1) −βu4zv2(R + t1 + t2 − t3)
(
u1xw1(R + t2) −αu1yw1(R + t1) −αu1zw1(R + t1 + t2 − t3)

βu1yv1(R + t1) −βu1zv1(R + t1 + t2 − t3)

−u1yw2(R + t2 − t3) αu1xw2(R + t1 − t3) αu1zw2(R)

βu1xv2(R + t1 − t3) −βu1zv2(R)

−u2xw1(R + t1) −αu2zw1(R + t1 + t2) αu2yw1(R + t2)

−βu2zv1(R + t1 + t2) −βu2yv1(R + t2)

u2yw2(R + t1) αu2zw2(R) −αu2xw2(R + t2)

−βu2zv2(R) −βu2xv2(R + t2)

−u3xw1(R + t1 + t2 − t3) −αu3yw1(R + t1 + t2) αu3zw1(R + t2)

βu3yv1(R + t1 + t2) βu3zv1(R + t2)

−u3yw2(R + t2 − t3) −αu3xw2(R + t2) −αu3zw2(R + t1 + t2 − t3)

−βu3xv2(R + t2) βu3zv2(R + t1 + t2 − t3)

u4xw1(R + t1 + t2) αu4zw1(R + t1) αu4yw1(R + t1 + t2 − t3)

βu4zv1(R + t1) −βu4yv1(R + t1 + t2 − t3)

u4yw2(R + t1) −αu4zw2(R + t1 + t2 − t3) αu4xw2(R + t1 − t3)

βu4zv2(R + t1 + t2 − t3) βu4xv2(R + t1 − t3)
))
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C3yv2

(
u1xv1(R + t1) −αu1yv1(R + t1 + t2 − t3) −αu1zv1(R + t2)

−βu1yw1(R + t1 + t2 − t3) βu1zw1(R + t2)

u1yv2(R + t1 − t3) −αu1xv2(R) −αu1zv2(R + t2 − t3)

βu1xw2(R) −βu1zw2(R + t2 − t3)

−u2xv1(R + t2) −αu2zv1(R + t1) αu2yv1(R + t1 + t2)

βu2zw1(R + t1) βu2yw1(R + t1 + t2)

−u2yv2(R + t2) −αu2zv2(R + t1) αu2xv2(R)

−βu2zw2(R + t1) −βu2xw2(R)

−u3xv1(R + t1 + t2) −αu3yv1(R + t2) αu3zv1(R + t1 + t2 − t3)

−βu3yw1(R + t2) −βu3zw1(R + t1 + t2 − t3)

u3yv2(R + t2) αu3xv2(R + t1 + t2 − t3) αu3zv2(R + t2 − t3)

−βu3xw2(R + t1 + t2 − t3) βu3zw2(R + t2 − t3)

u4xv1(R + t1 + t2 − t3) αu4zv1(R + t1 + t2) αu4yv1(R + t1)

−βu4zw1(R + t1 + t2) βu4yw1(R + t1)

−u4yv2(R + t1 − t3) αu4zv2(R + t1) −αu4xv2(R + t1 + t2 − t3)

βu4zw2(R + t1) βu4xw2(R + t1 + t2 − t3)

−
(
− u1yv1(R + t2) αu1zv1(R + t1) αu1xv1(R + t1 + t2 − t3)

βu1zw1(R + t1) −βu1xw1(R + t1 + t2 − t3)

−u1xv2(R + t2 − t3) αu1zv2(R + t1 − t3) αu1yv2(R)

−βu1zw2(R + t1 − t3) βu1yw2(R)

u2yv1(R + t1) −αu2xv1(R + t1 + t2) αu2zv1(R + t2)

βu2xw1(R + t1 + t2) βu2zw1(R + t2)

u2xv2(R + t1) −αu2yv2(R) αu2zv2(R + t2)

−βu2yw2(R) −βu2zw2(R + t2)

−u3yv1(R + t1 + t2 − t3) −αu3zv1(R + t1 + t2) −αu3xv1(R + t2)

−βu3zw1(R + t1 + t2) βu3xw1(R + t2)

u3xv2(R + t2 − t3) −αu3zv2(R + t2) αu3yv2(R + t1 + t2 − t3)

βu3zw2(R + t2) βu3yw2(R + t1 + t2 − t3)

u4yv1(R + t1 + t2) αu4xv1(R + t1) −αu4zv1(R + t1 + t2 − t3)

−βu4xw1(R + t1) −βu4zw1(R + t1 + t2 − t3)

−u4xv2(R + t1) −αu4yv2(R + t1 + t2 − t3) −αu4zv2(R + t1 − t3)

−βu4yw2(R + t1 + t2 − t3) βu4zw2(R + t1 − t3)
))
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C3yw2

(
− u1xw1(R + t1) αu1yw1(R + t1 + t2 − t3) αu1zw1(R + t2)

−βu1yv1(R + t1 + t2 − t3) βu1zv1(R + t2)

u1yw2(R + t1 − t3) −αu1xw2(R) −αu1zw2(R + t2 − t3)

−βu1xv2(R) βu1zv2(R + t2 − t3)

u2xw1(R + t2) αu2zw1(R + t1) −αu2yw1(R + t1 + t2)

βu2zv1(R + t1) βu2yv1(R + t1 + t2)

−u2yw2(R + t2) −αu2zw2(R + t1) αu2xw2(R)

βu2zv2(R + t1) βu2xv2(R)

u3xw1(R + t1 + t2) αu3yw1(R + t2) −αu3zw1(R + t1 + t2 − t3)

−βu3yv1(R + t2) −βu3zv1(R + t1 + t2 − t3)

u3yw2(R + t2) αu3xw2(R + t1 + t2 − t3) αu3zw2(R + t2 − t3)

βu3xv2(R + t1 + t2 − t3) −βu3zv2(R + t2 − t3)

−u4xw1(R + t1 + t2 − t3) −αu4zw1(R + t1 + t2) −αu4yw1(R + t1)

−βu4zv1(R + t1 + t2) βu4yv1(R + t1)

−u4yw2(R + t1 − t3) αu4zw2(R + t1) −αu4xw2(R + t1 + t2 − t3)

−βu4zv2(R + t1) −βu4xv2(R + t1 + t2 − t3)
(
− u1yw1(R + t2) αu1zw1(R + t1) αu1xw1(R + t1 + t2 − t3)

−βu1zv1(R + t1) βu1xv1(R + t1 + t2 − t3)

u1xw2(R + t2 − t3) −αu1zw2(R + t1 − t3) −αu1yw2(R)

−βu1zv2(R + t1 − t3) βu1yv2(R)

u2yw1(R + t1) −αu2xw1(R + t1 + t2) αu2zw1(R + t2)

−βu2xv1(R + t1 + t2) −βu2zv1(R + t2)

−u2xw2(R + t1) αu2yw2(R) −αu2zw2(R + t2)

−βu2yv2(R) −βu2zv2(R + t2)

−u3yw1(R + t1 + t2 − t3) −αu3zw1(R + t1 + t2) −αu3xw1(R + t2)

βu3zv1(R + t1 + t2) −βu3xv1(R + t2)

−u3xw2(R + t2 − t3) αu3zw2(R + t2) −αu3yw2(R + t1 + t2 − t3)

βu3zv2(R + t2) βu3yv2(R + t1 + t2 − t3)

u4yw1(R + t1 + t2) αu4xw1(R + t1) −αu4zw1(R + t1 + t2 − t3)

βu4xv1(R + t1) βu4zv1(R + t1 + t2 − t3)

u4xw2(R + t1) αu4yw2(R + t1 + t2 − t3) αu4zw2(R + t1 − t3)

−βu4yv2(R + t1 + t2 − t3) βu4zv2(R + t1 − t3)
))
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C3zv1

(
− u1zv1(R + t1 + t2 − t3) αu1yv1(R + t1) αu1xv1(R + t2)

−βu1yw1(R + t1) βu1xw1(R + t2)

−u1zv2(R) αu1yv2(R + t2 − t3) αu1xv2(R + t1 − t3)

−βu1yw2(R + t2 − t3) βu1xw2(R + t1 − t3)

−u2zv1(R + t1 + t2) −αu2xv1(R + t1) −αu2yv1(R + t2)

−βu2xw1(R + t1) βu2yw1(R + t2)

−u2zv2(R) −αu2yv2(R + t1) −αu2xv2(R + t2)

βu2yw2(R + t1) −βu2xw2(R + t2)

u3zv1(R + t2) αu3yv1(R + t1 + t2) −αu3xv1(R + t1 + t2 − t3)

−βu3yw1(R + t1 + t2) −βu3xw1(R + t1 + t2 − t3)

u3zv2(R + t1 + t2 − t3) −αu3xv2(R + t2) αu3yv2(R + t2 − t3)

−βu3xw2(R + t2) −βu3yw2(R + t2 − t3)

u4zv1(R + t1) αu4xv1(R + t1 + t2) −αu4yv1(R + t1 + t2 − t3)

βu4xw1(R + t1 + t2) βu4yw1(R + t1 + t2 − t3)

u4zv2(R + t1 + t2 − t3) −αu4yv2(R + t1) αu4xv2(R + t1 − t3)

βu4yw2(R + t1) βu4xw2(R + t1 − t3)
))
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C3zv2

(
− u1zv1(R + t1) αu1xv1(R + t1 + t2 − t3) αu1yv1(R + t2)

βu1xw1(R + t1 + t2 − t3) −βu1yw1(R + t2)

−u1zv2(R + t1 − t3) αu1yv2(R) αu1xv2(R + t2 − t3)

−βu1yw2(R) βu1xw2(R + t2 − t3)

−u2zv1(R + t2) −αu2yv1(R + t1) −αu2xv1(R + t1 + t2)

βu2yw1(R + t1) −βu2xw1(R + t1 + t2)

−u2zv2(R + t2) −αu2xv2(R + t1) −αu2yv2(R)

−βu2xw2(R + t1) βu2yw2(R)

u3zv1(R + t1 + t2) −αu3xv1(R + t2) αu3yv1(R + t1 + t2 − t3)

−βu3xw1(R + t2) −βu3yw1(R + t1 + t2 − t3)

u3zv2(R + t2) αu3yv2(R + t1 + t2 − t3) −αu3xv2(R + t2 − t3)

−βu3yw2(R + t1 + t2 − t3) −βu3xw2(R + t2 − t3)

u4zv1(R + t1 + t2 − t3) −αu4yv1(R + t1 + t2) αu4xv1(R + t1)

βu4yw1(R + t1 + t2) βu4xw1(R + t1)

u4zv2(R + t1 − t3) αu4xv2(R + t1) −αu4yv2(R + t1 + t2 − t3)

βu4xw2(R + t1) βu4yw2(R + t1 + t2 − t3)
(
u1zv1(R + t2) −αu1xv1(R + t1) −αu1yv1(R + t1 + t2 − t3)

−βu1xw1(R + t1) βu1yw1(R + t1 + t2 − t3)

u1zv2(R + t2 − t3) −αu1yv2(R + t1 − t3) −αu1xv2(R)

βu1yw2(R + t1 − t3) −βu1xw2(R)

u2zv1(R + t1) αu2yv1(R + t1 + t2) αu2xv1(R + t2)

−βu2yw1(R + t1 + t2) βu2xw1(R + t2)

u2zv2(R + t1) αu2xv2(R) αu2yv2(R + t2)

βu2xw2(R) −βu2yw2(R + t2)

−u3zv1(R + t1 + t2 − t3) αu3xv1(R + t1 + t2) −αu3yv1(R + t2)

βu3xw1(R + t1 + t2) βu3yw1(R + t2)

−u3zv2(R + t2 − t3) −αu3yv2(R + t2) αu3xv2(R + t1 + t2 − t3)

βu3yw2(R + t2) βu3xw2(R + t1 + t2 − t3)

−u4zv1(R + t1 + t2) αu4yv1(R + t1) −αu4xv1(R + t1 + t2 − t3)

−βu4yw1(R + t1) −βu4xw1(R + t1 + t2 − t3)

−u4zv2(R + t1) −αu4xv2(R + t1 + t2 − t3) αu4yv2(R + t1 − t3)

−βu4xw2(R + t1 + t2 − t3) −βu4yw2(R + t1 − t3)
))
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C3zw2

(
u1zw1(R + t1) −αu1xw1(R + t1 + t2 − t3) −αu1yw1(R + t2)

βu1xv1(R + t1 + t2 − t3) −βu1yv1(R + t2)

−u1zw2(R + t1 − t3) αu1yw2(R) αu1xw2(R + t2 − t3)

βu1yv2(R) −βu1xv2(R + t2 − t3)

u2zw1(R + t2) αu2yw1(R + t1) αu2xw1(R + t1 + t2)

βu2yv1(R + t1) −βu2xv1(R + t1 + t2)

−u2zw2(R + t2) −αu2xw2(R + t1) −αu2yw2(R)

βu2xv2(R + t1) −βu2yv2(R)

−u3zw1(R + t1 + t2) αu3xw1(R + t2) −αu3yw1(R + t1 + t2 − t3)

−βu3xv1(R + t2) −βu3yv1(R + t1 + t2 − t3)

u3zw2(R + t2) αu3yw2(R + t1 + t2 − t3) −αu3xw2(R + t2 − t3)

βu3yv2(R + t1 + t2 − t3) βu3xv2(R + t2 − t3)

−u4zw1(R + t1 + t2 − t3) αu4yw1(R + t1 + t2) −αu4xw1(R + t1)

βu4yv1(R + t1 + t2) βu4xv1(R + t1)

u4zw2(R + t1 − t3) αu4xw2(R + t1) −αu4yw2(R + t1 + t2 − t3)

−βu4xv2(R + t1) −βu4yv2(R + t1 + t2 − t3)

−
(
u1zw1(R + t2) −αu1xw1(R + t1) −αu1yw1(R + t1 + t2 − t3)

βu1xv1(R + t1) −βu1yv1(R + t1 + t2 − t3)

−u1zw2(R + t2 − t3) αu1yw2(R + t1 − t3) αu1xw2(R)

βu1yv2(R + t1 − t3) −βu1xv2(R)

u2zw1(R + t1) αu2yw1(R + t1 + t2) αu2xw1(R + t2)

βu2yv1(R + t1 + t2) −βu2xv1(R + t2)

−u2zw2(R + t1) −αu2xw2(R) −αu2yw2(R + t2)

βu2xv2(R) −βu2yv2(R + t2)

−u3zw1(R + t1 + t2 − t3) αu3xw1(R + t1 + t2) −αu3yw1(R + t2)

−βu3xv1(R + t1 + t2) −βu3yv1(R + t2)

u3zw2(R + t2 − t3) αu3yw2(R + t2) −αu3xw2(R + t1 + t2 − t3)

βu3yv2(R + t2) βu3xv2(R + t1 + t2 − t3)

−u4zw1(R + t1 + t2) αu4yw1(R + t1) −αu4xw1(R + t1 + t2 − t3)

βu4yv1(R + t1) βu4xv1(R + t1 + t2 − t3)

u4zw2(R + t1) αu4xw2(R + t1 + t2 − t3) −αu4yw2(R + t1 − t3)

−βu4xv2(R + t1 + t2 − t3) −βu4yv2(R + t1 − t3)
))
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