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ABSTRACT OF THE DISSERTATION

Optimization Models and Algorithms for

Sample-Preserved Classification and Clustering

by Ya-Ju Fan

Dissertation Director: Wanpracha (Art) Chaovalitwongse

This dissertation presents the development of new optimization models and algorithms

for sample-preserved classification and clustering. A sample-preserved method keeps

some or all of the existing samples when training a rule for classification or clustering,

and continues to use them in the testing or predicting phase. Developing a sample-

preserved method provides the capability of analyzing time series data due to the largely

applied similarity measures on time series.

A proposed sample-preserved classification technique, called Support Feature Ma-

chine (SFM), finds an optimal combination of features that gives the best classification

based on the nearest neighbor rule. It keeps all baseline samples of the selected features

in the predicting phase. Variations of SFM models are also presented. In addition,

the bilinear program sample-preserved k-median (BPSPKM) clustering algorithm is

introduced. While the original k-median problem can be solved by a simple and efficient

bilinear program algorithm, it does not have the sample-preserved property, and only

works with the 1-norm distance. The sample-preserved k-median (SPKM) clustering

method is formulated as an integer programming problem, which is very hard to solve. A

bilinear program algorithm is herein proposed in order to obtain local optimal solutions

of the SPKM clustering method, as well as a new sequential search algorithm that
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can solve the SPKM clustering more efficiently. Finally, a novel feature space sample-

preserved k-median (FSSPKM) clustering algorithm is proposed, as well as feature

selection methods tailor made for such clustering technique.

The experimental results show that the original k-median clustering fails to classify

time series data due to the lack of the sample-preserved property, and the utilization of

time series similarity measures. The sample-preserved medians can avoid having invalid

values in some application domains and can be used to represent the samples in the

clusters. The BPSPKM clustering algorithm with the Euclidean distance is suggested

for clustering attribute (non-time series), univariate time series and multivariate time

series data sets. Furthermore, the proposed feature selection methods consider the

distances between cluster centers and cluster densities. The results show that the

proposed algorithms outperform other feature selection techniques used in the original

k-median methods.
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Chapter 1

INTRODUCTION

This dissertation focuses on developing optimization models and algorithms for multi-

variate data classification and clustering with a sample-preserved property.

A data set can be one of three types: attribute (or non-time series) data, single (or

univariate) time series data, or multivariate (multidimensional or multi-attribute) time

series data. The term non-time series is referred to static data and used to distinguish

them from time series data. Non-time series data are those whose samples can be

represented as real vectors, called attribute data. Time is not a factor, but there

are other attributes that are varied. For example, a non-time series data set may

contain attributes: age, weight and height, which are real-valued. An instance may

be represented by a vector that contains these three elements. Single time series data

have values of a fixed attribute, but vary with time. For example, stock prices vary

with time and form a time series. Multivariate time series (MTS) data have both

properties; having multiple attributes, and varying with time. Each individual sample

is a matrix with information from two characteristics: features (spacial property) and

time (temporal property). For example, sensor data may consist of multiple series of

observations from recordings of multiple sensors over a period of time. Each sensor

counts an attribute (or a feature) of a time series. A combination of these recordings

forms a multivariate time series. Note that both attribute data sets and MTS data sets

are multivariate.

A data set may contain a number of distinct groups (classes). For example, samples

in a two-group data set may be labeled with “positive” or “negative”. If class labels

are used in a learning technique, it is said to be supervised. A classifier is designed

according to sample labels. Data classification can be done by training a classifier
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that can separate labeled samples into their belonging groups, and then applying the

classifier to assign suitable labels on other samples whose class labels are unknown.

On the other hand, unsupervised learning does not use any class labels. It tries to

find unknown groups in a collection of samples without categories (classes). Data clus-

tering is one such method that groups “similar” observations together without knowing

their class labels. The unsupervised methods can be used to find features that will then

be useful for categorization (classification). It can also provide valuable exploratory

data analysis in the early stages of an investigation, and gain some insight into the

structure of the data for preprocessing.

This dissertation deals with both classification and clustering techniques through op-

timization models for multivariate data analysis. The proposed techniques are sample-

preserved methods. A sample-preserved method keeps some or all of the existing sam-

ples when training a rule for classification or clustering, and continues to use them in

the testing or predicting phase. Baseline samples are the samples whose class labels

are known, and are taken as a base for measurement. Methods that keep the baseline

samples have the sample-preserved property. A simple sample-preserved classification

method is the k-nearest neighbor rule, which uses all baseline samples when classifying

new ones. Using this method, the “pattern” of a sample is kept in the model. Devel-

oping a sample-preserved method especially provides the capability of analyzing time

series data due to the largely applied similarity measures on time series. Keeping the

“pattern” of a sample makes it easy to evaluate its similarity to others.

1.1 Motivation

Medical diagnosis is the process of identifying a medical condition or disease by its

symptoms and from evaluated results of various diagnostic procedures. By taking each

patient as an instance, those symptoms and evaluated results of patients can be viewed

as their attributes (or features), thus forming a medical data set. The medical data set

typically consists of two groups of patients; one is considered abnormal (or “positive”,

with a certain symptom or disease) and the other is considered normal (or “negative”,
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without a certain symptom or disease). Physicians make decisions according to those

symptoms and evaluated results.

A classification technique constructs a decision rule (classifier) that can be used as

a tool for medical diagnosis. The classifier is trained according to labeled data whose

class labels are known. It can then be used to classify unlabeled samples (patients)

whose class labels are not known.

Today’s clinical testings and experiments to diagnose patients have resulted in mas-

sive data sets, which physicians have to mine so they can accurately diagnose the

patients. These data ranges from simple blood pressure and heart rate, to magnetic

resonance imaging (MRI) and electroencephalogram (EEG) waveforms. In such situ-

ations, physicians need a tool to quickly analyze the medical data signals, and detect

the patterns that can be used to identify the causes of the symptoms or diseases.

A clustering technique groups similar instances together, which can speed up the

labeling process for a large, unlabeled data set. It may also be helpful for gaining

some insight into the structure of the data. In addition, feature selection in clustering

may help reduce the size of a data set and improve the performance of a classifier.

Moreover, similarity measures are especially useful for analyzing time series types of

data. Clustering techniques that come with such similarity measures can hence be

naturally applied on time series.

1.1.1 Time Series Analysis

Time series analysis can generally be performed in two major domains: the frequency

domain and the time domain (Figure 1.1). The frequency domain of time series is

studied especially in the area of signal processing. Techniques such as Fourier trans-

formation are widely used for signal classification. Extending methods of the fourier

transformation, for example, are fourier kernels proposed by Vapnik (1998) [92], and

the time-frequency kernel given by Davy et al. (2002) [29]. In frequency domain, be-

havior of time series data is approximated by a frequency function. Then the analysis

is performed based on the estimated function. In this way, frequency of the temporal

properties of time series is extracted. However, some important temporal properties
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Time Series Analysis

• Wavelet Transform
• Fourier Transform

• Gaussian Kernel
• Fisher Kernel

Frequency Domain

• Support Feature Machine
• Sample-Preserved k-Median Clustering
• K-Nearest Neighbor Rule
• Dynamic Time Alignment Kernel

Time Domain

Figure 1.1: Two Major Domains of Time Series Analysis and Examples of Their Tech-
niques.

may be lost after fourier transformation, since only the frequency is considered.

This dissertation does not include the area of frequency domain. Instead it is focused

on the time domain, where the temporal properties of time series is examined directly.

More detailed time series analysis techniques in time domain is addressed in Chapter 3.

1.1.2 Optimization Models

Many classification and clustering techniques based on optimization models have been

developed for time series data sets and attribute (non-time series) data sets. The most

well known optimization model for classification is the Support Vector Machine (SVM),

which was originally designed for attribute data sets. It projects samples in a high

dimensional space, and constructs an optimal hyperplane that separates the samples

according to their labels. There exists many hyperplane that can separate most of the

samples. The term “optimal” indicates that the hyperplane is located at the direction

in the way that the distance (called margin) from the hyperplane to the closest samples

from the two groups is the largest possible one. The optimal hyperplane is a classifier

that can be used to discriminate unlabeled data. SVM has been successfully applied

on breast cancer diagnosis and prognosis by a linear programming formulation [70].

To classify a single time-series data set, there are techniques especially developed to

capture the temporal properties of time series samples. For instance, time series can be

embedded in a vector space, then the time series data set can be treated as an attribute

data set for classification [44]; or it can be dynamically aligned with time sequentially
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in the projecting function of SVM, and then an SVM classifier is constructed [85].

However, SVM does not have the sample-preserved property. Its advantage is that it

does not need any baseline sample when classifying a new sample. Only an optimal

hyperplane is needed to label a new sample.

A well known classification technique that has the sample-preserved property is

the Logical Analysis of Data (LAD) [43]. It is especially suited for medical data sets.

LAD is used to find meaningful values with a set of important features. These values

are called patterns, which represent a specific group (positive or negative). A positive

pattern does not appear in any negative sample. Similarly, a negative pattern can not

be found in any positive sample. Combinatorial optimization techniques are used to

find such patterns. Besides SVM and LAD, there are still a lot methods in the literature

for classifying attribute data sets, but there is a very limited number of studies that

can deal with MTS data sets.

Well known clustering techniques such as the k-means clustering and the k-median

clustering can be formulated as optimization models, shown in [13] and [15], respectively.

However, the k-means clustering is based on squared Euclidean distances. Also, the

k-median clustering is limited to 1-norm distance measure. If Euclidean distances or

p-norm, p 6= 1,∞ is applied, the problem becomes very hard to solve [15]. This causes a

problem for time series clustering, since there are many time series similarity measures

needed for time series analysis. In addition, both models are designed for attribute

data, not for MTS.

MTS data sets are common in several application domains such as medical appli-

cations, financial applications and the process industry. Most of these data sets have

large amounts of data and need to be interpreted. They are analyzed for classification,

identification, and prediction of diseases, certain behaviors, or various functional states.

Examples in medical applications are electroencephalogram (EEG), electrocardiogram

(ECG), and various attribute values collected from patients that are generated from

multiple sensors or measurements over a period of time. They are collected in order

to provide information for medical diagnoses and treatment. In financial applications

there are corporate bonds and interest rates series, housing starts and sold series. They
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may be used to predict possible occurrence of events, e.g., economic depression, which is

still a challenging problem. In industrial plants, especially chemical, data are collected

constantly in order to monitor stages of processes and to detect abnormal situations.

As described above, there are many applications related to MTS type of data.

However, there is a need for the development of new methods. Therefore, the main

motivation of this dissertation is to apply optimization techniques in order to construct

an optimal classifier, and find optimal clusters for multivariate data sets; especially for

MTS.

1.2 The Contribution of the Dissertation

This dissertation provides an optimization framework for improving multivariate data

classification and clustering. Figure 1.2 shows the developed classification and clustering

techniques that are applied or proposed here.

Supervised 
Learning

Unsupervised 
Learning

Classification

• K-Nearest-Neighbor Rule
• Support Feature Machine

o Feature Selection
o Sample Selection

Clustering

• Nearest-Neighbor Clustering
• Sample-Preserved k-Median Clustering
• Feature Space Sample-Preserved k-Median Clustering

o Feature Selection

Sample-Preserved Learning Techniques

Figure 1.2: Proposed Sample-Preserved Learning Techniques.

The proposed methods are especially sample-preserved, which means some or all

of the original samples are kept when developing and applying the classifier and the

clusters. The main idea that can keep the original patterns of samples is to use distance

matrices. Using the distance matrices also allows variant distance measures to be

chosen. Due to this flexibility as well as the property that cluster centers are existing

samples, it is easy to incorporate its use with multivariate time series data as opposed

to only vector space attribute data.
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Suppose that there are n samples, and each has m features in a data set. An intra-

class distance matrix is an n × m matrix. Each element in the matrix is an average

distance from sample i to all other samples in the same class at a feature space j, for

i = 1, . . . , n and j = 1, . . . , m. In addition, each element in an inter-class distance

matrix is an average distance from sample i to all samples in the different class at a

feature space j, for all i, j. With these distance matrices, the “shape” of data, especially

time series, can be preserved. Hence, techniques using distance matrices are sample-

preserved methods.

Support Feature Machine (SFM) includes these distance matrices in its optimization

formulation, and is designed especially for MTS classification. It has been shown to be

able to classify EEG MTS data sets [20]. In SFM optimization models, the decision to

choose an optimal combination of features is made while a best classification accuracy

is achieved. Values from all baseline samples at the optimally selected features are then

used in the decision rule. Therefore, SFM has the sample-preserved property. Observe

that class labels are incorporated in these distance matrices, so SFM is a supervised

learning technique.

A sample-to-sample distance matrix is an n×n matrix. Each element in the matrix

is a distance from a sample i to the other sample i′, for i, i′ = 1, . . . , n. Note that such

distance matrix is symmetric with zeros at its diagonal. Again, with such a distance

matrix, the “shape” of data, especially time series, can be preserved.

Sample-preserved k-median (SPKM) clustering applies this distance matrix to group

samples into k clusters. The feature space sample-preserved k-median (FSSPKM) clus-

tering extends the distance matrix into a three-dimensional n×n×m matrix, which con-

tains a n×n sample-to-sample distance matrix at each feature space s, for s = 1, . . . ,m.

Feature selection algorithms are then developed using this extended matrix. The struc-

ture of multivariate data in each feature space is examined. The best combination of

features can then be found for possible improvement of classification.
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1.3 Dissertation Organization

This dissertation is organized as follows:

In Chapter 2, techniques designed for attribute data sets are discussed. A brief

review of popular classification and clustering techniques, which are based on optimiza-

tion formulations is presented. Purposes of optimization models include finding logical

class patterns in a data set, constructing a hyperplane classifier, and approximating

likelihood function values. Since data transformation may be critical for a classifica-

tion decision rule, most commonly applied kernel function and dimensionality reduction

techniques are introduced. In addition, clusters can be optimized by aiming at grouping

most similar samples together according to distances among samples.

In Chapter 3, time series analysis techniques that are commonly used, and time

series classification approaches developed recently are introduced. The most important

time series analysis technique is the time series similarity measure. Measures used

to estimate similarity of both univariate time series and MTS are addressed. Based

on a suitable similarity measure, the nearest neighbor rule is an intuitive classification

method that applies similarities as distances in a space. Studies related to the improved

nearest neighbor rule as well as feature extraction techniques for time series classification

are included.

In Chapter 4 and Chapter 5, novel optimization models for classifying multi-

variate data sets are presented together with its applications on real world data sets.

Chapter 4 contains a description of using the intra-class and inter-class distance matri-

ces in the classification framework of the optimization technique, SFM, and how it is

based on the nearest neighbor rule. Its classification effectiveness depends on a choice

of similarity measure. In SFM optimization models, a set of features is selected while

a highest classification accuracy is achieved. SFM has variate formulations. The stan-

dard SFM model uses binary variables to decide which features are selected. Models

with relaxation and normalization on the decision variables used for feature selection

are also proposed.

Classification performances of SFM models are discussed in Chapter 5. Methods
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designed for evaluating classification performances are also addressed. SFM models are

implemented and applied on multivariate data sets. They are attribute and MTS data

sets. Sample classes (e.g., positive and negative) are used to train SFM classifiers, and

then classification performances are evaluated.

Chapter 6 and Chapter 7 contain the description and the use of the proposed

clustering techniques, as well as feature selection algorithms for clustering. In Chapter

6, novel optimization models, SPKM and FSSPKM clustering techniques are proposed

in order to investigate the structure of multivariate data sets. SPKM incorporates a

sample-to-sample distance matrix in the whole feature space, while FSSPKM incorpo-

rates sample-to-sample distance matrices, each at a single feature space. Both methods

have two advantages. One is that a distance matrix provides a flexibility of choosing

a distance measure. The other is that the sample-preserved property gives the model

the ability to cluster time series due to the kept “shape” of time series. Moreover,

feature selection algorithms are proposed that finds possible improvements of group

classification using the FSSPKM model.

In Chapter 7, both SPKM and FSSPKM clustering performances are discussed.

More data sets are used to evaluate the proposed models. They are attribute data,

single time series data, and multivariate time series data. Moreover, results from fea-

ture selection FSSPKM algorithms are also presented. Classification error curves and

clustering error curves are compared in order to find optimal choices of features that

can provide possible improvement in classification.

Finally, in Chapter 8, ideas for future research opportunities are presented. They

are aimed at applying optimization techniques, and constructing new methods to im-

prove sample-preserved classification and clustering. One may extend the proposed

techniques into stronger pattern-based methods, such as identifying specific sample-

preserved patterns in order to represent a specific group of data. One may also construct

novel classification or clustering models for different analytical purposes, e.g., regres-

sion analysis or hierarchical clustering. These new methods may continue to improve

machine learning techniques and contribute to the research community.
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Chapter 2

CLASSIFICATION AND CLUSTERING WITH

OPTIMIZATION MODELS

The goal of this dissertation is to apply optimization techniques for multivariate data

classification and clustering. In the literature, many optimization models are used for

classifying and clustering attribute (non-time series) data sets. An attribute data set

can be represented by an n × m matrix, where n is the number of samples and m is

the number of features. In this matrix, each column represents a particular feature

(or attribute), while each row represents a sample in the data set with a value at each

feature. Mathematically, a sample can be viewed as a vector, and each element in a

vector corresponds to a specific feature. Suppose that an attribute data set consists

of two disjoint groups ( i.e., one group is “positive” and the other is “negative”), then

each case in the data set is labeled according to the group it belongs to. If class labels

are used in a learning technique, it is said to be supervised. A decision rule (classifier)

is constructed based on the labeled data, called training data. It is then used to classify

new observations in a way that is consistent with classification in the past (training).

On the other hand, unsupervised learning does not use any class labels. It tries to

find unknown groups in a collection of samples without categories (classes). Data clus-

tering is one such method that groups “similar” observations together without knowing

their class labels. The unsupervised methods can be used to find features that will then

be useful for categorization (classification). It can also provide valuable exploratory

data analysis in the early stages of an investigation, and gain some insight into the

structure of the data for preprocessing.

A brief review of popular classification and clustering techniques, which are based

on optimization formulations is presented. Since data transformation may be critical
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for a good decision rule, most commonly applied kernel function and dimensionality

reduction techniques are introduced.

2.1 Classification with Optimization Models

Optimization techniques have been widely applied to construct decision rules. In this

section some of the most recent developed techniques are reviewed. Combinatorial

optimization models are used in Logical Analysis of Data (LAD) [27, 10, 11]. Linear

programming formulations are used to find a classification hyperplane in Support Vector

Machines (SVM) [69]. Nonlinear optimization with convex objective function and linear

constrains is used in a regression model, called Likelihood Basis Pursuit (LBP) model

[100]. Moreover, a multi-group probability-constrained discrimination method [2] is

formulated as a nonlinear programming problem with nonlinear objective functions.

2.1.1 Logical Analysis of Data (LAD)

Instead of viewing data sets as points in a vector space and constructing a hyperplane as

a classifier, LAD tries to find minimal sets of features necessary for classification, such

that positive and negative sample values will not coincide. In addition, combinations

of feature values from the optimal set are found, which represent positive or negative

samples the best. These combination of feature values form logical patterns that can

be used for further classification and can be explained by human experts. Therefore,

LAD is a pattern-based decision technique. Moreover, those feature values are from

existing samples, so LAD is a sample-preserved method.

The original LAD technique is used only for binary data proposed in [27]. To

cope with numerical data, a binarizing method is proposed in [10, 11]. As a result,

LAD deals with numerical data that have been transformed into binary values. The

pattern characteristics found by LAD can be easily explained, and therefore it is a

useful technique in practice, especially in medical diagnosis [43].

Given a binary data set, which can be obtained by binarizing a numerical data set

or is generated naturally, there may be a number of redundant attributes. The main
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purpose of LAD is to eliminate sets of redundant variables, and then find meaningful

patterns accordingly. Two combinatorial optimization models are formulated to reach

this goal. First is to find the minimal support set defined as follows.

The data set consists of two disjoint sets Ω+ and Ω− of d-dimensional binary vectors.

A support set is a set S of attributes such that Ω+
S is disjoint from Ω−S , where Ω+

S is the

projection of Ω+ on S and Ω−S is the projection of Ω− on S. Since in the data set Ω+

and Ω− are disjoint, the complete set D = 1, . . . , d is a support set. A minimal support

set is a support set such that if any one of its variables is eliminated, the remaining

data set will have same observations that belong to both positive and negative groups.

A combinatorial optimization model is formulated in order to find the minimal

support set. Each binary decision variable yi is associated with an attribute i, for

i = 1, . . . , d.

yi =





1, if variable i belongs to the support set;

0, otherwise.

Moreover, each positive observation is represented by a vector U = (u1, . . . , ud) and

each negative observation is represented by a vector V = (v1, . . . , vd). Then a vector is

constructed as (w1(U, V ), . . . , wd(U, V )), which is associated to a pair of a positive and

a negative observation. Here,

wi(U, V ) =





1, if ui 6= vi

0, otherwise.

The condition that Ω+
S and Ω−S are disjoint and yi’s relate to a support set is equivalent

to stating that for any U ∈ Ω+
S and V ∈ Ω−S ,

d∑

i=1

wi(U, V )yi ≥ 1. (2.1)

As a result, by minimizing the sum of yi’s over condition 2.1, the minimum size support

set can be obtained. It is the set covering problem formulated as
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min
y

d∑

i=1

yi

s.t.
d∑

i=1

wi(U, V )yi ≥ 1, for all U ∈ Ω+
S and V ∈ Ω−S

y ∈ {0, 1}d.

After getting rid of redundant variables, the next step of LAD is to find meaningful

patterns. A positive pattern is a subcube of the unit cube which is in Ω+
S and is disjoint

from Ω−S . Similarly, a negative pattern is a subcube of the unit cube that lies in Ω−S

and is disjoint from Ω+
S . For ω ∈ {0, 1}d a positive ω-pattern is a pattern covering ω.

A maximum positive ω-pattern P is a positive ω-pattern where the coverage (|P ⋂
Ω+

S |)
is the largest. Similar definition applies to a maximum negative ω-pattern. The second

combinatorial optimization problem is then formulated to find a maximum ω-pattern

for each observation ω in the data set.

The ω-pattern is represented by a binary vector ω = (ω1, . . . , ωd) ∈ Ω+
S is associated

to an elementary conjunction C. A binary decision variable yi, for i = 1, . . . , d is defined

as follows:

i. ωj = yj = 1 indicates that xj is included in C.

ii. ωj = 0 and yj = 1 indicate that x̄j is included in C.

iii. yj = 0 means that none of xj and x̄j is in C.

A toy example is when ω = (1, 0, 0, 1, 1, 1) and the decision variable y = (0, 0, 1, 1, 0, 1),

the conjunction C is x̄3x4x6.

Consider every negative observation ρ ∈ Ω−S . The definition of positive ω-pattern

indicates that it should not cover any observation from Ω−S . Therefore, when ρj 6= ωj

every variable yi should equal to 1 for at least one of those j’s. That is

∑

j=1
ρj 6=ωj

yj ≥ 1, for every ρ ∈ Ω−S .

Also consider every positive observation σ ∈ Ω+
S . Each σ is covered by the ω-pattern

if and only if yi = 0 for all those indices j where σj 6= ωj . The objective is to find the
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ω-pattern that has the maximum coverage. It is equivalent to minimize the number of

σ’s such that σj 6= ωj . The objective is then to minimize:

∑

σ∈Ω+
S

∏

j=1
σj 6=ωj

ȳj .

The following polynomial set covering problem is then formulated to find the maximum

ω-pattern:

min
y

∑

σ∈Ω+
S

∏

j=1
σj 6=ωj

ȳj

s.t.
∑

j=1
ρj 6=ωj

yj ≥ 1, for every ρ ∈ Ω−S .

2.1.1.1 An Example of Logical Analysis of Data

Table 2.1: Example Data Set
Sample F1 F2 Class Label
1 1 0 +
2 1 0 +
3 0 1 +
4 0 1 +
5 1 1 +
6 1 1 -
7 0 0 -
8 0 0 -
9 0 0 -
10 0 0 -

A data set shown in Table 2.1 contains ten samples. Each sample has values of two

features (F1 and F2) and a class label. Since there are only two features in the data

set and all values are binary, only four possible combinations of the feature values can

appear in the data set. One can then label each combination of values with class labels

of samples that contain those values. Figure 2.1 displays such labels.

Observe that both positive and negative samples contain the combination [1, 1] and

hence it can not be a pattern for classification. One may also observe that [0, 0] only

appears in negative samples. It may be a possible negative pattern. Once the number of

features in a data set increases, it becomes harder to observe such patterns graphically.
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Figure 2.1: Positive and Negative Samples in a Two-Dimensional Space.

Combinatorial optimization techniques are needed to handle data sets with multiple

features.

2.1.2 Support Vector Machines (SVM)

SVM is a well known classification method, which is aimed at finding an optimal hyper-

plane that separates labeled data into two groups, say A and B. The term “optimal”

is used because a set of data of two groups may have many possible separating planes.

SVM only finds one separating hyperplane that has the largest margin. The margin

is defined as the minimum distance from the hyperplane to all other samples in each

group. The resulting optimal hyperplane is intuitively reasonable. The hyperplane is

chosen such that it is located at the place where the distance from the hyperplane to the

closest samples from the two groups is the largest possible one. Note that the hyper-

plane derived here is under the assumption that the two groups A and B are separable.

Further variants may be needed in order to apply on data sets that are not perfectly

separable.

The performance of SVM relies on the projection of data so as to represent patterns

in a high dimension. The strength of SVM is that with a suitable nonlinear mapping

Φ to a sufficiently high dimension, data from two classes can always be separated by a

hyperplane [18, 33]. Kernel functions have been used to perform such mapping. Exam-

ples of SVM related kernel functions include linear, polynomial, radial basis function

(RBF) and sigmoid. In addition, Shimodaira et al. (2001) [85] gives the Dynamic Time-

Alignment Kernel that can deal with time series data. An abstract example is depicted
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Figure 2.2: Kernel Trick.

in Figure 2.2. Suppose a set of data of two groups is impossible to be separated by any

linear function, and it is in a real space of d-dimensional as shown in the left graph.

The idea of a kernel function is to have a projection Φ that maps the data points into

a comparably very high dimensional space, say d′-dimensional, where d << d′. In such

a space, a linear separating plane can be constructed more easily. This is resulted by

the so called kernel trick. With a kernel trick, the simple linear function can still be

used for classifying data in a higher dimensional space. More detailed discussion about

kernel functions can be found in Section 2.2.1.

An SVM classifier can be constructed by solving a linear programming problem.

One can define a hyperplane with normal ω ∈ Rd and express the plane as

xTω = γ,

where d is total number of features used to represent data cases, and γ ∈ R is a scalar.

The objective is to decide values of (ω,γ), which reach the maximum margin. Denote

the set A by the matrix A ∈ Rm×d and the set B by the matrix B ∈ Rk×d, where m

and k are the number of cases which belong to groups A and B, respectively. If the
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A

B

ω

Origin 2/ ||ω||

Aω ≥ eγ + e 

Bω ≤ eγ - e 

xTω = γ

Figure 2.3: Support Vector Machines Classifier

two sets, A and B, are perfectly separable, they separately fall in two open half spaces.

The set A lie in {x|x ∈ <n, xTω < γ} and the set B lie in {x|x ∈ <n, xTω > γ}. Let e

denote a vector of ones with arbitrary dimension. Then the following constraints must

be satisfied:

Aω > eγ, Bω < eγ.

Variables (ω,γ) can be rescaled to obtain non-strict inequalities because strict inequality

constraints are not valid in linear programming formulations. To scale them, variables

(ω,γ) can be divided by the positive value of min
i=1,...,m,j=1,...,k

{Aiω − γ,−Bjω + γ}.
Without loss of generality, the equivalent inequalities can be written as

Aω ≥ eγ + e, Bω ≤ eγ − e. (2.2)

Figure (2.3) shows the two inequalities with the margin, 2
‖ω‖ .

In practice, most data sets are not perfectly separable. Hence, the assumption of

having perfectly separable data sets for SVM is violated, and there exists no solution of

(ω,γ) such that the inequalities (2.2) hold. For this reason, one tries to approximate the

goal of maximizing margin by minimizing an average sum of violations. This leads to the

development of robust linear programming formulation by Bennett and Mangasarian

(1992) [6]. The model is given by
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min
ω,γ,y,z

eT y

m
+

eT z

k

s.t. Aω − eγ − e ≥ y,

−Bω + eγ − e ≥ z,

y ≥ 0, z ≥ 0.

(2.3)

The variables y and z in the constraints of this problem satisfy the conditions:

y ≥ max{0,−(Aω − eγ − e)}

and

z ≥ max{0, (−Bω + eγ − e)}.

Hence, y and z are vectors containing violations of constraints (2.2). Minimizing the

objective function of (2.3) leads to the minimum average violations.

2.1.3 Probability Based Separation

Optimization techniques can include probability concepts. Two techniques are dis-

cussed in this section. One is the Likelihood Basis Pursuit (LBP) model, a regres-

sion model constructed by nonlinear optimization with a convex objective function

and linear constraints. A log likelihood function is incorporated in the model. An-

other method involves probability density function estimation. It is a multi-group

probability-constrained discrimination method [2] aims at constructing an optimal sep-

aration {R0, R1, ..., RG} while maximizing the probability of correct allocation subject

to constraints on the misclassification probabilities under a bound.

2.1.3.1 Likelihood Basis Pursuit (LBP) Model

LBP model is a nonparametric penalized likelihood approach for model building and

feature selection [100]. It determines the probabilities of binary outcomes given labeled

vectors, while automatically selecting and prioritizing important features. The log

likelihood is decomposed into the sum of different functional components, such as main

effects and interactions, in the setting of a tensor product reproducing kernel Hilbert

space. Each functional component is represented by appropriate basis functions. The



19

basis functions are chosen to be compatible with model building and feature selection

in the framework of a smoothing spline analysis of variance (SS-ANOVA) [93].

Bernoulli data is considered in this model, whose probability distribution can be

written as

p(x) ≡ prob(Y = 1|X = x) =
ef(x)

1 + ef(x)
,

where Y takes on two values {0, 1}. f is the “logit” function with

f(x) = log(
p(x)

1− p(x)
).

LBP forms a log likelihood as a function of f , and tries to maximize the log likeli-

hood while minimizing the penalized basis pursuit terms. A reproducing kernel Hilbert

space is constructed corresponding to an SS-ANOVA decomposition [93]. This way f

varies in a high dimensional function space, which leads to a more flexible estimation.

The likelihood basis pursuit estimate of f is achieved by minimizing a constructed non-

linear convex objective function. After solving for the decomposition of function f , an

unlabeled data vector x can be input into f(x) and hence a likelihood is obtained. LBP

provides weights on main effects and interactions, and those weights can also be used

for feature selection. A sequential Monte Carlo bootstrap tests algorithm [28] has been

applied on deciding the best threshold for feature selection [100].

2.1.3.2 Multi-Group Probability-Constrained Discrimination

Optimization techniques can be applied on solving a multi-group probability-constrained

discrimination method proposed in [2]. This method considers population densities and

prior probabilities when constructing a decision rule, and gives a partition {R0, R1, ..., RG} ⊂
Rd for a given data set, where d is the number of features. Its result forms a Multi-group

classification.

The objective is to construct an optimal separation {R0, R1, ..., RG} while maximiz-

ing the probability of correct allocation subject to constraints on the misclassification

probabilities.
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Let fh, denote the conditional density function of group h, for h = 1, . . . , G. The

prior probability that a randomly selected entity is from group g is denoted as πg, for

g = 1, . . . , G. Also, αhg, are constants between 0 and 1 as a bound on misclassification

probabilities, for h 6= g. The probabilistic classification model is then given by

max
G∑

g=1

πg

∫

Rg

fg(w)dw

s.t. ∫

Rg

fh(w)dw ≤ αhg for h, g = 1, . . . , G, h 6= g.

(2.4)

The optimal rule that can be used as a classification method is stated as

Rg =
{

x ∈ <k : Lg(x) = max
h∈{0,1,...,G}

Lh(x)
}

, for g = 0, . . . , G, (2.5)

where

L0(x) = 0, (2.6)

Lh(x) = πhfh(x)−
G∑

i=1,i6=h

λihfi(x), h = 1, . . . , G.

Anderson [2] showed that there exist nonnegative constants λih, i, h ∈ 1, . . . , G, i 6=
h, such that this optimal rule (2.5) holds for the probability classification model 2.4.

The procedure for deriving a discriminant rule is composed of two stages:

1. The first stage is to compute two kinds of estimated values, f̂h and π̂h. The values

of f̂h are estimated density functions, fh; and the values of π̂h are estimated prior

probabilities, πh, for h = 1, . . . , G. There are many methods proposed for density

estimation [92] which can be applied here.

2. Given the estimates of f̂ ′hs and π̂′hs, the second stage is to estimate the optimal

λ′ihs. For estimating the λ′ihs, there is a mixed-integer programming (MIP) ap-

proach proposed in [41], and a linear programming (LP) approach proposed in

[60].
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Experiments using the MIP approach demonstrated its potential to find optimal

λih’s, but it is not possible to examine large-scale problems due to the difficulty of

solving large-scale MIP problems. On the other hand, the LP problems are much easier

to solve than the MIP problems.

The candidate sets of λ′ihs are calculated as the proportion of training samples, i,

that fell into each of the regions, h. The MIP approach uses binary variables to record

whether or not each entity was allocated to each region. This approach measures

the probabilities of correct classification and misclassification for any candidate set

of λ′ihs. The objective is to maximize a linear combination of variables representing

correct allocations. The proportions of misclassified training samples were included in

constraints with a bound on misclassification probabilities.

Since the LP approach gets rid of binary variables, it is not possible to incorporate

proportions of misclassified training samples. As a result, modeling a priori bounds

on misclassification probabilities is not possible. Instead, the LP approach provides a

technique for estimating λ′ihs that balances the minimization of misclassifications and

the maximization of correct classifications. The LP approach especially considers group

0, called the reserved-judgement region as shown in Equation 2.6. It is used for the

training samples that can not fit in any suitable group h, h = 1, . . . , G.

2.1.4 Feature Selection

Optimization models designed for classification can also be used for feature selection.

Given a data set with information from many attributes (features), it is typical that not

all of them are useful for pattern recognition. There may be redundant (not informative)

variables that should be discarded in order to classify samples more efficiently. Table 2.2

summarizes those optimization models with brief explanations on how they can be used

for feature selection.
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Table 2.2: Optimization Models for Classification Used for Feature Selection.
Optimization Models For Feature Selection

Logical Analysis of Data The positive ω-patterns that intersect with
Ω+

S and negative ω-patterns that intersect
with Ω−S found by LAD optimization models
actually provides feature selection.

Support Vector Machines A hyperplane is expressed as xTω = γ with
a normal ω ∈ Rd, where d is total number of
features used to represent data cases. Thus,
elements in the vector ω can be viewed as
feature selection.

Likelihood Basis Pursuit Model LBP provides weights on main effects and
interactions of variables. These weights pri-
oritize the importance of features. A se-
quential Monte Carlo bootstrap tests algo-
rithm has been applied on deciding best fea-
tures [100].

2.2 Classification Using Data Transformations

2.2.1 Kernel Methods

Kernel methods are widely used in SVM for a better data classification. The purpose

of a kernel method is to map data into a higher dimensional space, called feature space.

In the feature space, many methods can be used to find relations in the data. The

main use of a kernel function is to operate those methods in the feature space without

ever computing the coordinates of the data in that space. As a result, a kernel function

provides computational efficiency.

Let a training data X = [x1, x2, . . . , xn] and its corresponding class label Y =

[y1, y2, . . . , yn] be given, where yi ∈ {±1}, and x ∈ X denotes one sample case. Given

two sample cases x and x′, a similarity measure of x and x′ is considered in the form of

k : X ×X → R.

(x, x′) 7→ k(x, x′).

The function k is called a kernel, which returns a real number describing the simi-

larity of x and x′. Generally k is assumed to be symmetric, that is, k(x, x′) = k(x′, x)

for all x, x′ ∈ X. One simple similarity measure is a inner product. Let a bold face
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x be used to denote the vectorial representation of x in the feature space. Given two

vectors x,x′ ∈ Rd′ , the dot product (also known as inner product) is defined as

〈x,x′〉 :=
d′∑

j=1

[x]j [x′]j ,

where [x]j is the jth element of x and d is the length of vector x.

Let the space H denote the dot product space. Then the space H is called a feature

space. The patterns in some dot product space H need to be illustrated in order to use

a dot product as a similarity measure. It can be done by a map:

Φ : X → H.

x 7→ x := Φ(x).
(2.7)

Note that whether the original patterns exist in a dot product space is unknown.

Even so, a more general similarity measure obtained by applying a map (2.7) should

still be considered. A similarity measure from the dot product in H is thus defined by

embedding the data into H via Φ, giving

k(x, x′) := 〈x,x′〉 = 〈Φ(x), Φ(x′)〉. (2.8)

2.2.1.1 Hyperplane Classifiers with Kernel Functions

Consider a hyperplane as a classifier in some dot product space H,

〈w,x〉+ b = 0, wherew ∈ H, b ∈ R. (2.9)

Then its corresponding decision function is

f(x) = sgn(〈w,x〉+ b). (2.10)

There exists a unique optimal hyperplane, specified by the maximum margin of sep-

aration between any training point and the hyperplane. To construct such hyperplane,

a vector perpendicular to the hyperplane that leads to the largest margin need to be

found. To solve for w and b using the training data, one can form the problem:
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Figure 2.4: Hyperplane Classifier

min
w∈H,b∈R

τ(w) = 1
2 ||w||2

s.t. yi(〈w,xi〉+ b) ≥ 1, for all i = 1, . . . , n. (2.11)

Since yi ∈ {±1}, constraints (2.11) ensure that f(xi) = 〈w,xi〉 + b has the same

sign as the corresponding class label yi. That is f(xi) will be +1 for yi = +1, and

−1 for yi = −1. The distance from xi to the hyperplane can be obtained by dividing

yi(〈w,xi〉+ b) by ‖w‖. If ||w|| were 1, then |〈w,xi〉+ b| would equal the distance from

xi to the hyperplane. Scaling w and b, (which can be done by dividing by a constant),

such that closest points to the hyperplane satisfy |〈w,xi〉 + b| = 1. Then the margin

equals to 1/‖w‖ as shown in Figure (2.4). As a result, by satisfying (2.11) for all

i = 1, . . . , n with any w having minimal length, the overall margin will be maximized.

This optimization problem can be solved by including the constrains in the objective

using Lagrange multipliers λi ≥ 0 (λ = [λ1, . . . , λn]). Thus it forms a Lagrangian

L(w, b, λ) =
1
2
||w2|| −

n∑

i=1

λi(yi(〈w,xi〉+ b)− 1). (2.12)
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The optimal hyperplane can then be found by finding the saddle point of the Lagrangian

L. With respect to the primal variables w and b the Lagrangian is minimized, and with

respect to the dual variables αi it is maximized. By the Karush-Kuhn-Tucker (KKT)

complementarity conditions, at the saddle point, the derivatives of L with respect to

the primal variables w and b must vanish. That is

∂

∂w
L(w, b,λ) = w −

n∑

i=1

λiyixi = 0.

∂

∂b
L(w, b,λ) = −

n∑

i=1

λiyi = 0.

(2.13)

The solution vector thus has an expansion in terms of a set of the training cases.

w =
n∑

i=1

λiyixi. (2.14)

n∑

i=1

λiyi = 0. (2.15)

There exist the patterns xi as a subset of the training cases with non-zero λi, called

Support Vectors (SVs). For those i such that λi 6= 0, Constraints (2.11) have to hold

at equalities in order to satisfy the KKT complementarity conditions,

λi[yi(〈w,xi〉+ b)− 1] = 0 for all i = 1, . . . , n. (2.16)

This shows that 〈w,xi〉 + b = 1 if yi = 1 and 〈w,xi〉 + b = −1 if yi = −1 for i with

λi 6= 0. Thus, the SVs lie on the margin. All the constraints yi(〈w,x〉 + b) ≥ 1 of the

remaining training examples (xi, yi) with corresponding λi = 0 are irrelevant. They

could just as well be left out in the expansion of w (Equation (2.14)).

In practice, to solve the problem the primal variables w and b are eliminated by

substituting (2.15) and (2.14) into the Lagrangian (2.12), resulting in the so-called dual

optimization problem [83]:
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max
λ∈Rn

W (λ) =
n∑

i=1

λi − 1
2

n∑

i,j=1

λiλjyiyj〈xixj〉

s.t. λi ≥ 0 for all i = 1, . . . , n
n∑

i=1

λiyi = 0.

After obtaining the optimal λ, w can be derived by (2.14). Using (2.14), the hy-

perplane decision function (2.10) can be written as

f(x) = sgn

(
n∑

i=1

yiλi〈x,xi〉+ b

)
.

The problem can be written in terms of the input patterns X instead of the of bold

face vectors x,x′ used for the feature space. Recall the kernel expression in Equation

(2.8). The decision functions becomes

f(x) = sgn

(
n∑

i=1

yiλi〈Φ(x), Φ(xi)〉+ b

)
= sgn

(
n∑

i=1

yiλik(x, xi) + b

)
,

and the corresponding dual program is:

max
λ∈Rn

W (λ) =
n∑

i=1

λi − 1
2

n∑

i,j=1

λiλjyiyjk(x, xi)

s.t. λi ≥ 0 for all i = 1, . . . , n
n∑

i=1

λiyi = 0.

2.2.1.2 Kernel Functions

As described above, the advantage of a kernel function is to define it as k(xi,xj) =

Φ(xi) · Φ(xj), and one would only need to apply the function k in the training phase

without ever needing to explicitly know what the function Φ is. Two common examples

of kernel functions are polynomial kernels and radial basis functions.

• A Polynomial kernel is defined as

k(xi,xj) = (1 + xT
i xj)p.
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When d = 1, k is a linear kernel. A quadratic kernel is given by taking d = 2.

• A Radial basis function maps the data into an infinite dimensional Hilbert

space. Gaussian kernel is the one most commonly used, which is defined as

K(xi,xj) = e−
‖xi−xj‖2

2σ2 .

Tuning the value of σ is required to obtain a proper Gaussian kernel. It usually

involves brute force search by stepping through a range of values of σ that finds

optimal performance of a model with training data.

2.2.2 Dimension Reduction

Consider data points in an attribute data set having a large number of attributes.

Projecting these data points in a vector space. Those data points are comparably

sparse in a high dimensional vector space made by the large number of attributes,

particularly if the attribute values are binary. This sparsity can lower classification

accuracy and increase computational complexity [33]. Reducing the dimensionality by

combining features can cope with the problem of dimensionality. One method is the

Principal Component Analysis (PCA). Suppose a data set is in a d dimensional space

(has d features), PCA tries to project the data set onto a space spanned by d′ orthogonal

directions, where d′ ≤ d. The projection is chosen where the greatest variance of data

set is achieved.

PCA is not based on a probability model. The principal directions of the observed

data vectors may be determined through maximum likelihood estimation of parame-

ters [66]. A probability can thus be incorporated in PCA. The method is called the

probabilistic PCA (PPCA).

In addition, effectiveness of PCA is limited by its linearity. To capture nonlinearities

involved in data sets, nonlinear variants of PCA have been shown in the literature. Most

popular methods is to integrate neural networks [32], and nonlinear mappings such as

kernel functions [84, 79]. There are also combined probabilistic PCA and nonlinear
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dimension reduction, i.e., Gaussian nonlinear PCA [65] and Bayesian nonlinear PCA

[61].

PCA reduces sample space dimensions in order to avoid sparsity problems and

possibly to achieve better efficiency and accuracy of classification. However, PCA

does not use the class labels when choosing directions in the data that have highest

variance, which does not guarantee that it improves discrimination between data in

different classes.

Fisher liner discriminant analysis (Fisher-LDA) utilizes the label information in

searching projections. Fisher-LDA tries to maximize between-classes variances, and

minimize within-classes variances while searching for directions to form a reduced pro-

jection space. In practice, linear discriminant may not be sufficient to capture data

complexity. Fisher-LDA applied in the feature space can provide a supervised nonlin-

ear feature extraction. This arrives kernel Fisher-LDA [73].

PCA is an unsupervised technique whereas Fisher-LDA is supervised. However,

the supervised technique is not always better than unsupervised technique. The per-

formance of Fisher-LDA can be worse than the PCA when applying it on the face

recognition data, which is discovered in [9].

2.2.2.1 Principal Component Analysis

Principal component analysis (PCA) is a technique that searches for directions in a

sample space which have largest variances. Suppose the sample space is d-dimensional.

A new space is spanned by the d′ (d′ ≤ d) orthogonal directions that PCA has found.

Subsequently it projects the data onto the new space. The projection has the greatest

variance of the data lie on the first coordinate, the second greatest variance on the

second coordinate, and the d′th greatest variance on the last coordinate.

Consider a training data set of n samples with d dimensions. Let x1, . . . ,xn ∈ Rd

denote the vectors of all samples. The sample mean is

x̄ =
1
n

n∑

i=1

xi.



29

Then x̄ ∈ Rd is a vector which has the smallest distances between all other samples xi

for all i = 1, . . . , n. One tries to find a one-dimensional space (a line) running through

the sample mean (x̄), and has the data projected onto the line. Let e denote a vector

of one’s with arbitrary length, and especially be in the direction of the line. Also let a

be the distance of any point x from the mean x̄ ∈ Rd. Then the line can be expressed

as

x = x̄ + ae.

A data vector x can then be projected onto the line as

y = eTx.

There will be unlimited possible lines running through the mean. Let xi = x̄ + aie.

The “optimal” set of coefficients ai and the direction of the line e can be found by

minimizing the squared-error function

J(a1, . . . , an, e) =
n∑

i=1

‖xi − (x̄ + aie)‖2.

Differentiating J with respect to ai, setting the derivative to zero, and knowing that

‖e‖ = 1, one obtains

∂J

∂ai
= 2‖xi − x̄− aie‖‖e‖ = 0.

Hence,

ai = (xi − x̄)Te. (2.17)

Let a scatter matrix S be defined by

S =
n∑

i=1

(xi − x̄)(xi − x̄)T. (2.18)

By expanding the function J and substituting ai by the expression from Equation (2.17)

into function J , one obtains
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J(e) =
n∑

i=1

‖(xi − x̄)2 − 2(xi − x̄)Taie + (aie)2‖

=
n∑

i=1

‖xi − x̄‖2 − eTSe. (2.19)

The last equation applies the fact that

n∑

i=1

a2
i =

∑n
i=1 a2

i [(xi − x̄)Te]2

=
∑n

i=1 a2
i e

T((xi − x̄))((xi − x̄))Te

= eTSe.

Minimizing J by choosing e also maximizes eTSe. Observe that the sample variance

is (
∑n

i=1(xi− x̄)(xi− x̄)T)/(n−1). This means that the optimal direction of e is where

the largest sample variance is. This forms the maximization problem:

max
e

eTSe

s.t. ‖e‖ = 1.

By introducing Lagrange multipliers λ to the problem, the following optimality condi-

tions can be obtained.

L = eTSe− λeTe.

∂L
∂e

= 2Se− 2λe = 0.

Se = λe. (2.20)

Applying Equation (2.20) to the objective function gives eTSe = eTλe = λ. Therefore,

the optimal λ is the largest eigenvalue of the matrix S and e is the corresponding

eigenvector.

Extending this one-dimensional result, PCA can project data onto a d′ dimensional

space, where d′ ≤ d. It can be done by expressing the samples as
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x = x̄ +
d′∑

j=1

ajej .

The optimal solution will be the d′ eigenvectors e1, . . . , ed′ of the scatter matrix S in

(2.18) having the d′ largest eigenvalues. They form the basis of the projected x. The

coordinates of the new space spanned by those orthogonal directions correspond to the

largest variances of the data set. Thus, the projection can help separate the data cases.

Let E = [e1, e2, . . . , ed′ ], the projected data becomes

y = ETx.

2.2.2.2 Kernel Principal Component Analysis

Applying PCA in feature space arrives to a method called kernel PCA [84]. By solving

an eigenvalue problem, kernel PCA finds features in some sense which represent critical

information in a feature space.

Given a training data X = [x1, x2, . . . , xn]. Let a bold face x be used to denote the

vectorial representation of x in the feature space.

Consider a kernel matrix Kij := k(xi, xj) = 〈Φ(xi), Φ(xj)〉.
PCA in feature space H aims to find eigenvectors v and eigenvalues λ of the so-

called covariance matrix C in the feature space. The covariance matrix is defined as

the expectation of xxT, which in terms of the training data X is

C :=
1
m

m∑

i=1

Φ(xi)Φ(xi)T.

The eigenvalue equation for PCA is

Cw = λw (2.21)

for eigenvalues λ ≥ 0 and eigenvectors w ∈ Rn \ 0.

Usually the function Φ projecting x ∈ X into a very high dimensional feature space

H. This space can be arbitrarily large dimensionality. Therefore, calculating the dot
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product explicitly results in very expensive computational costs. A helpful method is

to use the fact that all solutions w to Equation (2.21) with λ 6= 0 must lie in the span

of Φ(x1), . . . ,Φ(xn). That is

w =
n∑

i=1

αiΦ(xi).

Therefore, the solution w can be expanded by Φ-images, and the problem becomes to

finding the values α, where α = (α1, . . . , αn)T. That is a dual eigenvalue problem for

the expansion coefficients:

nλα = Kα.

Detailed discussion about how to derive this dual problem can be found in [84]. After

obtaining values of α, kernel PCA can extract nonlinear features from a test point x

by computing the dot product between Φ(x) and the mth normalized eigenvector in

feature space. The projection becomes

y = 〈vm, Φ(x)〉 =
n∑

i=1

αm
i k(xi, x).

Note that by this equation, 〈Φ(xi), Φ(xj)〉 is replaced by k(xi, x), which is computa-

tionally far more efficient than taking the dot product directly in the feature space.

2.2.2.3 Fisher Linear Discriminant Analysis (Fisher-LDA)

Projecting data onto a smaller dimensional space can help avoid problems of sample

sparsity in classification caused by excessive dimensionality [33]. If orthogonal directions

in a sample space which have largest variances are found, then samples projected on

those chosen directions will be feature independent and will have a largest variance,

which are easier to be classified. PCA is an unsupervised technique whereas Fisher

linear discriminant analysis (Fisher-LDA) (1936) is supervised. Fisher-LDA considers

class labels while seeking directions that spans the reduced space, where the projected

samples of different classes are well separated.
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ω

Origin
x1

x2

Figure 2.5: Example of PCA that provides unsupervised dimensionality reduction and
fails at classification.

In some cases, an unsupervised technique such as PCA may not help for classification

but destroy useful information. Consider an extreme example in a two dimensional

space as shown in Figure 2.5. The goal is to classify the circles and squares without

fillings. PCA finds the direction (ω) that has the largest variance. The solid circles

and squares are projected samples on the direction. The resulting locations of the two

groups of samples are mixed up and they are more difficult to be classified. This is

what happened when applying unsupervised technique. The Fisher-LDA, which is a

supervised technique, can solve such problems. In Figure 2.6, the group means are well

separated with a smallest sum of possible sample variances within groups.

Let x1, . . . ,xn be the data set that has n samples in a d-dimensional space. Let

the data set have two classes, n1 of the samples forms the subset C1 labeled class 1

and n2 of the samples forms the subset C2 labeled class 2. n = n1 + n2. Also Let

W = [ω1, . . . , ωd′ ] be the directions that are used for projecting x into y in a reduced

space, where d′ ≤ d. That is:
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ω

Origin x1

x2

Figure 2.6: Example of Fisher-LDA that provides supervised dimensionality reduction.

y = WTx.

Let x̄k be the d-dimensional sample mean of class k, for k = 1, 2, where

x̄k =
1
nk

∑

x∈Ck

x

Define SB as the “between-classes scatter matrix” and SW as the “within-classes scatter

matrix”. They are:

SB = (x̄1 − x̄2)(x̄1 − x̄2)T

SW =
2∑

k=1

∑

x∈Ck

(x− x̄k)(x− x̄k)T.

The objective of Fisher-LDA is to maximize:

J(ω) =
ωTSBω

ωTSW ω
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The projected data can be divided into two corresponding subsets Y1 and Y2 for class

1 and class 2. Observe that the projected sample variance in its particular class k isP
y∈Yk

(y−ỹk)2

(nk−1) , where ỹk = 1
nk

∑
y∈Yk

y, for k = 1, 2. It can be shown that the objective

tries to separate the class means as much as possible relative to the sum of the variances

of the data in their particular classes for projected samples.

Without loss of generality, ω can always be chosen such that the denominator is

ωTSW ω = 1. The maximization problem becomes a constrained optimization problem:

max
ω

−1
2
ωTSBω

s.t. ωTSW ω = 1

It can be solved by maximizing a corresponding Lagrangian problem with a La-

grangian multiplier λ/2:

L = −1
2
ωTSBω +

1
2
λωTSW ω.

By KKT optimality conditions, the following equation has to be satisfied.

SBω = λSW ω (2.22)

⇒ S−1
W SBω = λω. (2.23)

Equation (2.23) obtained by the assumption that SW is nonsingular and thus in-

vertible. This is an eigenvalue equation. Plugging the Equation (2.22) back into the

objective J , one find

J(ω) =
ωTSBω

ωTSW ω
= λ

ωTSW ω

ωTSW ω
= λ

Therefore, the largest eigenvalue of S−1
W SB maximizes the objective J , and the

optimal ω is the corresponding eigenvector. The projection space of dimension d′

(d′ ≤ d) can be constructed by spanning the generalized eigenvectors with the largest

d′ eigenvalues to provide W = [ω1, . . . , ωd′ ].



36

2.2.2.4 Kernel Fisher-LDA

Fisher-LDA can be applied in feature space which leads to a nonlinear classification

technique [73]. Let a training data X = [x1, x2, . . . , xn] be given, which can be divided

into 2 groups: X1 = [x1
1, x

1
2, . . . , x

1
n1

] of class 1, and X2 = [x2
1, x

2
2, . . . , x

2
n2

] of class 2. Let

a bold face x be used to denote the vectorial representation of x in the feature space.

Also, let Φ be a nonlinear mapping projecting x ∈ X to a feature space H:

Φ : X → H
x 7→ x := Φ(x).

(2.24)

Let the class mean in the feature space be defined as

x̄l :=
1
nl

nl∑

i=1

Φ(xl
i) for all l = 1, 2. (2.25)

Then the between-class scatter matrix SΦ
B and the within-class scatter matrix SΦ

W

in the feature space can be defined as

SΦ
B = (x̄1 − x̄2)(x̄1 − x̄2)T

SΦ
W =

2∑

k=1

∑

x∈Xk

(Φ(x)− x̄k)(x− x̄k)T.

The objective of Fisher-LDA in the feature space H is to maximize:

J(ω) =
ωTSΦ

Bω

ωTSΦ
W ω

. (2.26)

By the theory of reproducing kernels, any solution of ω ∈ H must be in the span of

[Φ(x1), Φ(x2), . . . , Φ(xn)], which are all training samples in H. This gives an expansion

for ω:

ω =
n∑

i=1

αiΦ(xi). (2.27)

Plugging Equation (2.27) into the definition of x̄l in Equation (2.25) and combining

it with the objective (2.26), one can form a new objective which is used in practice as

to maximize
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J(α) =
αTMα

αTNα
. (2.28)

where

(Ml)i :=
1
nl

nl∑

j=1

k(xi, x
l
j) for all i = 1, . . . , n, and l = 1, 2,

M := (M1 −M2)(M1 −M2)T, and

N :=
∑

l = 12Kl(I − 1nl
)KT

l .

Here, Kl is a n × nl matrix with (Kl)ij := k(xi, x
l
j) for each class l = 1, 2. I is the

identity matrix and 1nl
is a matrix with all elements 1/nl. More detail about how to

derive the objective (2.28) can be found in [73].

The problem becomes to find the eigenvectors ω and eigenvalues α of N−1M. The

kernel Fisher LDA gives the projection of the form

〈wTΦ(x)〉 =
n∑

i=1

αiK(xi, x).

2.3 Clustering Algorithms

Unsupervised learning tries to find unknown groups in a collection of samples without

considering any class labels. Data clustering is one such method that groups “similar”

observations together without knowing their class labels. Grouping similar instances

together can speed up the labeling process for a large, unlabeled data set. It may

also be helpful for gaining some insight into the structure of the data. In addition,

feature selection in clustering may help reduce the size of a data set and improve

the performance of a classifier. Moreover, similarity measures are especially useful

for analyzing time series types of data. Clustering techniques that come with such

similarity measures can hence be naturally applied on time series.

Throughout this section, all vectors are column vectors. Suppose a data set contains

n samples, and each has m features. Let i, j ∈ {1, . . . , n}, s ∈ {1, . . . ,m}, p ∈ {1, . . . , k}.
If A is a matrix, Ai is a vector which denotes the ith row of A and Aij is a value of
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the ith row and jth column of A. Let Gp denote the set of indices of samples that are

assigned to cluster p for p = 1, . . . , k. That is Gp ⊂ {1, 2, . . . , n} and Gp ∩Gp′ = ∅ for

joint clustered subsets p 6= p′ for p and p′ ∈ {1, . . . , k}. G1∪G2∪· · ·∪Gk = {1, 2, . . . , n}.

2.3.1 Nearest Neighbor Clustering

A simple clustering algorithm using the nearest neighbor rule is proposed by Lu and

Fu (1978) [64]. The algorithm is used to cluster patterns of sentences as an application

of syntactic pattern recognition.

A set of samples X = {x1, x2, . . . , xn} is to be divided into k clusters. A threshold

value, t, on the nearest-neighbor distance should be specified by the user. Then the

number of clusters k will automatically be decided by the algorithm. That is the

k number of clusters generated is a function of t. Fewer clusters are generated as

the value of the threshold t increases. Two samples should be in the same cluster if

they share neighbors. The description of the Nearest Neighbor Clustering is shown in

Algorithm 2.3.1.

Algorithm 2.3.1 The Nearest Neighbor Clustering Algorithm
Input: Set of sample (X = {x1, x2, . . . , xn}), a distance threshold
(t).
1: Assign sample x1 to cluster C1. (i = 1 and k = 1)
2: for i = 2 to n do
3: Find the nearest neighbor of xi among the samples that are assigned to clusters.
4: If cluster m ∈ {1, . . . , k} contains the nearest neighbor, let dm be the distance

from xi to its nearest neighbor in cluster m.
5: if dm < t then
6: Assign sample xi to Cm.
7: else
8: k = k + 1
9: Assign sample xi to a new cluster Ck.

10: end if
11: end for
Output: Clusters (C = {C1, . . . , CK}).

A variation of the Algorithm 2.3.1 is to consider the average distance between xi

and its q nearest neighbors. Then q is another user specified parameter.
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2.3.2 QT Clustering

The quality cluster (QT clustering) algorithm is described in Algorithm 2.3.2. A dis-

tance threshold d is given by the user. The algorithm tries to calculate the number

of samples within the diameter d for each sample. Then determine a cluster by the

samples that have the largest number of neighbors within that diameter threshold. QT

clustering is good for cluster a data set whose number of classes is unknown. The

algorithm will automatically generate the optimal number of classes in the data set.

It incorporates a pre-calculated distance matrix in its model, and thus provides the

flexibility of choosing a distance measure.

Algorithm 2.3.2 The QT Clustering Algorithm [45]
Input: a set(G), and a diameter threshold (d).
1: Procedure QT Clust(G, d)
2: if |G| ≤ 1 then
3: output G /* Last case */
4: else
5: for i ∈ G do
6: set flag = TRUE
7: set Ai = i /* Ai is a cluster began by i*/
8: while (flag = TRUE) and (Ai 6= G) do
9: find j ∈ (G−Ai) such that diameter(Ai ∪ {j}) is minimum

10: if diameter(Ai ∪ {j}) > d then
11: set flag = FALSE
12: else
13: set Ai = Ai ∪ {j} /* Add j to cluster Ai */
14: end if
15: end while
16: end for
17: identify set C ∈ {A1, A2, . . . , A|G|} with the maximum cardinality
18: output C
19: call QT Clust(G− C, d)
20: end if
Output: a set of clusters.

2.4 Clustering with Optimization Models

Optimization models have been applied to help grouping similar samples together in

clustering techniques. The original k-median problem is formulated as a concave mini-

mization problem in [15]. A nonlinear multi-objective optimization is used for solving
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k-means problem in [13]. Moreover, the sample-preserved k-median (SPKM) clustering

method is formulated in integer programming formulation.

2.4.1 k-Median Clustering via Concave Minimization

Given a data set, the matrix A ∈ Rn×m is used to represent all the data points where

each sample is denoted as Ai ∈ Rm for i = 1, . . . , n. To determine k cluster centers in

the m-dimensional real space Rm, the goal of the k-median algorithm is to assign each

of the n sample points to one of the k clusters, in a way that the sum of distances of

each point to the nearest cluster center is minimized.

Bradley (1997) [15] proposed an optimization model, as shown in Program (2.29),

that is used to find the k desired clusters. The decision variables are the cluster centers

Cp, p = 1, . . . , k in Rm. The distance matrix Dip ∈ Rm is a dummy variable that

represents the bounds on the elements of the difference between point AT
i and cluster

center Cp. The objective is to minimize the 1-norm distance between AT
i and Cp.

min
C,D

n∑

i=1

min
p=1,...,k

{
m∑

s=1

Dips}

s.t.

AT
i − Cp ≤ Dip ∀ i, p

AT
i − Cp ≥ −Dip ∀ i, p.

(2.29)

By Lemma 2.1 in [7] (Lemma 2.4.1), Program (2.29) can be formulated as a different

optimization problem with a nonlinear objective function and linear constraints as

shown in Program (2.33).

Lemma 2.4.1. Given d, t ∈ Rk, then

min
p=1,...,k

{dp} (2.30)

is equal to

min
t





k∑

p=1

dptp|
k∑

p=1

tp = 1, tp ≥ 0, for p = 1, . . . , k



 . (2.31)
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Proof. The dual of the linear program (2.31) is

max
u∈R

{u|u ≤ dp, for p = 1, . . . , k}. (2.32)

Observe that the maximum (2.32) is u = min
p=1,...,k

{dp}, which is equal to (2.30). By

the duality theory of linear programming, the maximum of the dual linear program

(2.32) equals to the minimum of its primal linear program (2.31). This proves the

equivalence.

min
C,D,T

n∑

i=1

k∑

p=1

m∑

s=1

DipsTip

s.t.

AT
i − Cp ≤ Dip ∀ i, p

AT
i − Cp ≥ −Dip ∀ i, p
k∑

p=1

Tip = 1 ∀ i

Tip ≥ 0 ∀ i, p.

(2.33)

The concept of Uncoupled Bilinear Program Algorithm (UBPA) [7] can be applied

to solve this nonlinear optimization problem. This algorithm alternatively solves a

linear program in the variable T and a linear program in the variables C and D. The

algorithm will converge to a local optimal solution in a finite number of iterations.

Observe that the optimization model for k-median clustering in Program (2.29)

applies efficiently only to the 1-norm distance measure. If the 2-norm is applied, the

problem results in many local minima and becomes a considerably harder problem [15].

2.4.2 k-Means Clustering

The k-means clustering algorithm was introduced by J. MacQueen in (1967) [67]. The

algorithm tries to find k cluster centers, C1, . . . , Ck in Rm, such that the choice of

centers minimizes the sum of all the squared 2-norm distances from each sample AT
i

to its nearest cluster center Cp. The k-means clustering algorithm is displayed in

Algorithm 2.4.1.
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Algorithm 2.4.1 The k-Means Clustering Algorithm
Input: k = number of clusters, and an initial k samples, C1, . . . , Ck in Rm.

Step 1.

• Take the k samples, C1, . . . , Ck, as single-element clusters.

• Assign each of the remaining (n− k) samples to the nearest cluster centroid.

• After each assignment, compute and update the centroid of the gaining cluster.

Step 2.

• Sequentially take each sample and compute its distance from the centroid of each
of the clusters.

• If a sample is not in the cluster with the closest centroid, reassign the sample to
the closest cluster.

• Update the centroid of both the cluster losing the sample and the cluster gaining
it.

Step 3. Repeat Step 2 until no new assignments can be made.

Output: A set of cluster centers, C1, . . . , Ck.

A mathematical programming formulation for the k-means clustering can be written

as Problem (2.34) as shown in Bradley (2000) [13].

min
C

n∑

i=1

min
p=1,...,k

(
1
2
‖AT

i − Cp‖2
2). (2.34)

2.4.3 Sample-Preserved k-Median (SPKM) Clustering in Integer Pro-

gramming Formulation

The sample-preserved k-median clustering method tries to find k medians, each of

which is one of the samples in the k clusters. That is, a median of the sample-preserved

method is a sample whose sum of distances to all other samples in the same cluster is the

smallest possible. The sample-preserved k-median clustering method is derived from

the facility location (p-location) problem, which is an integer programming problem

[24].

Two sets of binary decision variables are needed to formulate the problem. The

first set is yi for i = 1, . . . , n, which indicates whether sample i is selected as a median.
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The second set is Zij for i, j = 1, . . . , n, which indicates whether sample j is assigned

to be the cluster which has sample i as its median. A distance matrix D is included in

the objective function where the element Dij represents the distance from sample j to

the median i for i, j = 1, . . . , n. Note that by this definition, D is a symmetric matrix

with a zero value in all of its diagonal elements. The objective is to minimize the sum

of distances from all samples to their cluster medians. The formulation for the SPKM

clustering method can be written as the following Program (2.35).

min
Z,y

n∑

i=1

n∑

j=1

DijZij

s.t.
n∑

i=1

Zij = 1 for j = 1, . . . , n

Zij ≤ yi for i, j = 1, . . . , n
n∑

i=1

yi ≤ k

Zij ∈ {0, 1} i, j = 1, . . . , n

yi ∈ {0, 1} i = 1, . . . , n.

(2.35)

The integer programming formulation of the SPKM clustering in Program (2.35)

can adapt various distance measures, because a precalculated distance matrix is incor-

porated. However, solving the integer programming problem is NP-hard. Therefore,

approximation algorithms for the k-median problem arise and can be found in many lit-

eratures. Studies such as the one in [24] provide approximation algorithms that involve

linear relaxation of the integer programming problem in order to solve the problem

easily and efficiently. Greedy local-search based solutions can be found in [23, 38].

There are also techniques based on a linear programming relaxation proposed in [68],

a hierarchically greedy approach proposed in [72], and an approximation derived from

a primal-dual-based algorithm with the use of Lagrangian relaxation proposed in [49].
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Chapter 3

TIME SERIES ANALYSIS AND CLASSIFICATION

In this chapter, time series analysis techniques that are commonly used and time series

classification approaches developed recently are introduced. The most important time

series analysis technique is the time series similarity measure. Measures used for esti-

mating similarity of both univariate time series and MTS are addressed. Based on a

suitable similarity measure, nearest neighbor rule is an intuitive classification method

that applies similarities as distances in a space. In the literature, there are techniques

developed for improving the nearest neighbor rule. Studies related to the nearest neigh-

bor rule approaches as well as feature extraction techniques for time series classification

are included.

In general, time series related research studies can be divided into the following

three prospects.

1. Value Prediction. Time series value prediction is the use of a model to forecast

the next successive values based on known past values. This is commonly used

for economic situations and control problems. Autoregressive integrated moving

average (ARIMA) model is designed especially for such time series value prediction

[12].

2. Event Prediction. Event prediction in time series is to predict the timing of

upcoming events based on a history of past observations. It is different from

value prediction in the sense that event prediction requires numerical features

and provides patterns of a specific “event” within a segment of time. In real

world applications, it involves predicting fraudulent credit card purchases, system

failures, and customer churn events [75], and so on. An example is a stock market

data set that includes closing prices for the stock for each day. The main interest
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of event prediction is to recognize the approximate timing of future events, i.e.,

the points at which the stock will change the direction of its slope [42].

3. Time Series Classification. Time series classification tries to separate time

series samples into groups. The classifier is trained based on labeled time series

data, whose sample classes are known. Then it is used to classify unlabeled time

series data, whose sample classes are unknown.

The focus of this dissertation in time series is on the last category: time series

classification. In this chapter, analysis techniques, which can help contribute further

discrimination of time series, and time series classification methods that have been

successfully developed, are discussed.

Measuring similarities of time series data is essential for time series classification.

Methods that can be used to estimate similarities for both univariate time series and

multivariate time series (MTS) are introduced in this chapter. For single time series,

there are Euclidean distance, T-statical distance (T-statistics) and dynamic time warp-

ing (DTW), etc. However, when time series has multi-attributes, in order to capture the

relationships among these attributes, similarity measures for MTS without breaking up

the attributes may be needed. Similarity measures developed in [51], called Kullback-

Leibler discrimination information and the Chernoff information are for discrimination

between multivariate time series in the multivariate non-Gaussian case.

Non-parametric analysis such as Principal Component Analysis (PCA) is unique

and independent of any hypothesis about data probability distribution. PCA has been

used as a dimension reduction and classification technique for attribute data, yet it can

not be used to directly classify time series data. Still PCA can be used for analyzing

time series in two aspects. One is to apply PCA results to measure similarities of

multivariate time series [58, 86, 97]. The other is to use PCA as a tool for time series

feature extraction [87].

Most intuitive technique for classifying time series is to apply the k-nearest neigh-

bor (KNN) rule. It may be seen as a brute force technique, but it catches temporal

properties of time series and has been shown to be a powerful algorithm for classifying
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time series. Improved KNN techniques are also included in this chapter.

There are many successful classification techniques designed especially for attribute

data sets. However, they can not be directly applied on time series data sets. To

be able to use these methods on time series data sets, one has to express time series

data in a vector space so that they can be treated as attribute data. One can apply

dynamic time warping as a distance measure and embedding time series in a vector

space [44]. A parameter space is constructed by a meta-feature technique [50], where

recurrent substructures of instances are discovered. The classification is then performed

on the parameter space, which is also a vector space. Another technique proposed in

[99] vectorizes components of a correlation coefficient matrix of MTS. Those vectorized

components are then used as input features of SVM for classification.

3.1 Time Series Similarity Measures

The choice of similarity measures is very important in achieving accurate time series

classification. Two types of measures can be considered. One is for single time series and

the other is for multivariate time series (MTS). The measures used for single time series

can be applied on MTS samples as well. It can be done by breaking each MTS sample

into single time series, calculating similarity at each attribute, and then combining

all measures together as shown in Figure 3.1. This method may lose the correlation

information among MTS attributes, since each attribute is measured separately. Instead

of breaking MTS samples, PCA-based similarity measures, such as PCA similarity

factor [58] and extended Frobenius norm [97], consider all attributes in one calculation.

Hence, the correlation among attributes is preserved.

3.1.1 Similarity between Two Single Time Series Samples

Single time series data have values of a fixed attribute, but vary with time. It can be

viewed as a vector whose elements represent values at different time points. Euclidean

distance measures distance of two points in a vector space, which is a common method

used for comparing similarity. If two time series are not aligned one to one with time,
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MTS Sample 1 MTS Sample 2

Feature 1

Feature 2

Feature m

∙∙∙ ∙∙∙ ∙∙∙∙∙∙

Univariate Time Series Comparison:
Multivariate Time Series Comparison:time time

Figure 3.1: Decompose multivariate time series into multiple univariate time series.

Euclidean distance may fail to compare. In such case, dynamic time warping (DTW)

can help align the two, and only the warping window restricts allowable warping paths.

T-statistics is emphasized on the difference between two time series at each time point,

which is composed of the average and the variance of value differences.

3.1.1.1 Euclidean Distance

The Euclidean distance is the most commonly used similarity measure. It is an average

of the point-to-point differences of two time series. The Euclidean distance (EU(x, y))

between the two time series x = x1, . . . , xL and y = y1, . . . , yL is defined as:

EU(x, y) := (
L∑

i=1

(xi − yi)2)
1
2 .

Euclidean distance in a vector space is also called Euclidean norm, denoted as ‖x−y‖2.

There are also other similar measurements, such as p-norm:

‖x− y‖p := (
L∑

i=1

(xi − yi)p)
1
p .

To be a valid norm, p has to be greater or equal to 1. If 0 < p < 1, the resulting

function will not define a norm. There is also a zero norm, which is not a true norm,

and is known as the Hamming distance in the case of 2-element finite field. Only when
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p ≥ 1, p-norm is a valid distance measure. If p equals to 2, it is Euclidean norm. If p

equals to 1, it is a sum of absolute values of each elements:

‖x− y‖1 :=
L∑

i=1

|xi − yi|.

A maximum norm is defined as:

‖x− y‖∞ := max
i

(xi − yi).

3.1.1.2 Dynamic Time Warping (DTW) Distance

Given two time series (or vector sequences) x and y with lengths |x| = L and |y| = K,

the similarity of DTW is similar to the Euclidean distance, except that DTW considers

dynamic time points. Let s denote a time point in time series x, and t in time series

y. In the calculation of Euclidean distance, where L = K, only at time points s = t,

values of xs and yt is compared, for s = 1, . . . , L and t = 1, . . . ,K. However, in DTW,

at any time points (s, t), the next possible comparison can be the time points (s′, t′)

where s ≤ s′ ≤ s + 1 and t ≤ t′ ≤ t + 1.

The Euclidean distance is used to measure the local distance between two vectors.

d(xs, yt) = (xs − yt)2 is the distance between the sth point of time series x, and the tth

point of time series y. Subsequently, a warp path can be constructed, starting at the

beginning of each time series (1, 1), and finishing at the end of both time series (L,L)

(shown in Figure 3.2).

Note that there can be an exponential number of warping paths that satisfy the

above conditions. However, the optimal warp path is the one with a minimum warping

(distortion) cost.

DTW (s, t) = d(xs, yt) + min





DTW (s, t− 1)

DTW (s− 1, t)

DTW (s− 1, t− 1).

The DTW distance can be obtained by a dynamic programming approach. That is

to calculate the warp path in a reverse order starting at the end of both time series.
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The optimal DTW distance is DTW (L,K).
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rtsrt +≤≤−
Warping window size r:

Figure 3.2: An example of warping matrix with a warp path of two time series X
and Y . Two methods restricting warping paths are Sakoe-Chiba band and Itakura
parallelogram.

The available cells to be evaluated for searching a warping path can be restricted

by a warping window constraint. When constraints are used, the DTW algorithm finds

the optimal warp path only through the warping window. Since less cells are required

to be evaluated, the computation of DTW can be speed up. Also, the evaluation of

the similarity can be more accurate as each step of warping is avoided jumping too

far. The two mostly common used constraints are shown in Figure 3.2. The shaded

areas in Figure 3.2 are called warping window, which are the cells of the cost matrix

that are filled in by the DTW algorithm for each constraint. The width of each shaded

area is specified by a parameter, r. Sakoe-Chiba band [82] uses a constant warping

window, while Itakura parallelogram [46] linearly increases the warping window and

then linearly decreases it. That is r is a linear function of warping indices.

3.1.1.3 T-Statistics

The t-statistics is a statistical analysis used to examine if two time series statistically

different from each other. In particular, it assesses whether the means of two time series

are statistically different from each other. The t-statistics (Tx,y) between the two time

series x = x1, . . . , xL and y = y1, . . . , yL is then defined as:
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T (x, y) =

1
L

L∑
i=1

(xi − yi)

σxy

√
L

,

where

σxy =

√√√√√
L∑

i=1

[
(xi − yi)− 1

L

L∑
i=1

(xi − yi)
]2

L− 1

is the standard deviation of the differences.

3.1.2 Similarity between Two MTS Samples

Similarity measures designed especially for MTS samples are discussed in this section.

These measures do not break the MTS into separate single time series, but calculates

the similarity of MTS samples both spatially and temporally at a time. Hence, they

include the correlations among multiple attributes.

3.1.2.1 PCA Similarity Factor

PCA similarity factor is a similarity measure for two MTS data proposed in [58]. A

MTS item can be viewed as a matrix, which contains elements with two characteristics:

features and time. Hence, techniques that measure similarity of two matrices can be

applied to calculate similarity of two MTS items.

First the correlation coefficient matrices of the two MTS data are obtained, and then

are decomposed via singular value decomposition to derive the principal components.

Consequently, the similarity of the corresponding principal components from the two

MTS data are measured [86]. In the last step, Frobenius norm can be used as similarity

measure between two matrices. The Frobenius norm between two eigenvector matrices

sums up the cosine values of angles between the corresponding eigenvectors.

Definition 3.1.1. The PCA similarity factor (s) between two matrices, X and Y is

defined as:

s(X, Y ) = trace(ABTABT) =
k∑

i=1

k∑

j=1

cos2 θij ,
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where A and B are the matrices consisting of the first k principal components of X

and Y , respectively; and θij denotes the angle between the ith principal component of

X and the jth principal component of Y .

To decide the value k is usually based on heuristics, i.e. choosing the first k prin-

cipal components whose variances reach 95% of total variance. The range of the PCA

similarity factor, s, is from 0 to k.

3.1.2.2 Extended Frobenius Norm

Using both eigenvectors and eigenvalues of covariance matrices, a similarity measure

Eros (Extended Frobenius norm) is proposed in [97] for k-nearest neighbor decision in

multivariate time series data sets. Eros extends the Frobenius norm to obtain similarity

for two matrices using the results of principal component analysis. The process of Eros

to measure similarity of two multivariate time series (MTS) matrices is as follows.

1. Compute covariance matrices of the two MTS items.

2. Calculate eigenvectors and eigenvalues of the covariance matrices.

3. Measure similarities between eigenvectors (principal components) of two MTS

items with weights, as which the corresponding eigenvalues obtained from the

MTS items are taken.

This method does not break the MTS into separate single time series. Instead, Eros

takes the MTS items as a whole, which includes the correlations between features, and

thus results in a more meaningful similarity measure.

3.2 Time Series Classification

The most intuitive method to classify time series is to apply k-nearest neighbor (KNN)

rule. However, since KNN rule is a brute force method, problems of computation

efficiency have been studied. In addition, the success of KNN also depends on its

training samples. Techniques used to edit training samples and to handle unbalanced

data sets are also appeared in the literature.
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SVM can not classify time series directly. However, properties of time series can

be extracted and be viewed as attribute data for SVM to be able to classify them.

In addition, dynamic time alignment kernel in SVM projects single time series in a

different space in order to find a separating hyperplane. Furthermore, one can apply

PCA to extract features of time series for analysis.

3.2.1 k-Nearest Neighbor (KNN) Rule

In order to identify a querying sample, intuitively the similarity of the querying sample

within the training samples is considered. By observing the similarity, the class of the

majority a querying sample is most similar to is what the querying sample most likely

belongs to. Especially taking distance measures as the similarity measure, the classes

of its nearest neighbors determine its class label. This is the KNN rule.

KNN represents a bridge between the parametric techniques that require a priori

knowledge of the distributions underlying the data, and the nonparametric techniques,

which presuppose the functional form of the discriminant surfaces separating the dif-

ferent pattern classes.

In general, for a given unlabeled time series x, the KNN rule finds the k “closest”

(neighborhood) labeled time series in the training data set and assign x to the class that

appears most frequently in the neighborhood of k time series. Besides the training data,

the KNN rule only requires two input parameters used for classifying a new unlabeled

time series; that is, the size of the neighborhood k and a similarity function used as a

measure of “closeness”. KNN classification algorithm is described in Algorithm 3.2.1.

KNN may be seen to be a brute force method, since all training samples are used to

measure the distances from a querying sample. However, for data sets involving time

such as time series, a distance measure is an important method to incorporate time

for classification. Among algorithms used for time series classification, some methods

applied on the same data sets are compared in [96], which has extensive literature

search and suggests that one-nearest neighbor with dynamic time warping (DTW)

distance is difficult to beat. Not only one-nearest neighbor with DTW, but other k

nearest neighbors with three similarity measures (DTW, Euclidean and T-Statistics)
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are successfully applied on classifying EEG time series signals [19]. Moreover, nearest

neighbor rule can be used to pair time series motifs. Instead of calculating all pairs

of time series distance comparisons, by triangular inequality, one can quickly prune

off pairs of time series objects by taking the lower bounds of distances provided by

triangular inequalities as shown in [76].

Algorithm 3.2.1 The k-nearest neighbor Algorithm for Classification
Input: Set of training sample(C), training label (LabelC), one test sample(Q), and
the number of neighbors k.
1: DistK(j) = ∞ for j = 1, . . . , k. % The k nearest distances
2: Index(j) = 0 for j = 1, . . . , k.
3: distMax = ∞
4: maxJ = 1
5: for i = 1 to N do
6: Calculate d = Distance(Ci,Q)
7: if d < distMax then
8: DistK(maxJ) = d
9: Index(maxJ) = i

10: distMax = max
j

(DistK)

11: maxJ = arg max
j

(DistK)

12: end if
13: end for

14: Class =
1
k

k∑

j=1

LabelC[Index(arg min
j

(DistK))]

Output: Class.

3.2.2 Improved k-Nearest Neighbor Rules

The nearest neighbor rule has been applied on many applications in different config-

urations. Methods that improve the KNN rule are developed in order to gain better

classification accuracy and/or to shorten execution time. Here some recent methods

are addressed in the following.

1. Editing Training Data:

Because KNN decision rule depends mainly on training samples, it is believed

that condensing training samples can lead to a better classification and increase

execution speed. Instead of making a decision based on the entire training set, a
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smaller set as a reference for classifying new objects, called a representation set,

may be a better choice. Many studies are proposed aiming at editing the training

data.

When dealing with time series, one-nearest neighbor with DTW distance is one

successful technique. A numerosity reduction technique in [96] can speed up es-

pecially the one-nearest neighbor with DTW. Applying the relationship between

data set size and DTW constraints, an extremely compact data set can be pro-

duced with little or no loss in accuracy.

Except taken as a similarity-based method, nearest neighbor rule can also be used

as dissimilarity-based classifiers. A prototype selection technique is proposed in

[78], which can improve nearest neighbor dissimilarity-based classifiers.

Many instance reduction algorithms are compared as well as new techniques are

proposed in [94]. To drop “useless” samples, information from neighbor instances

are obtained to create criterions. Then, samples are ordered, noise instances are

filtered, or the nearest neighbor decision boundary is smoothed.

2. Enhancing Execution Efficiency: In [91], nearest neighbor is used for anytime

classification, which has a best-so-far answer available after given a small amount

of “setup time”. This anytime nearest neighbor algorithm sorts the sample in-

dices such that useful training samples will be measured early. Hence, a better

classification performance can be achieved earlier.

The basic intuition is to find the “worst” training case and index it as the last

position to be evaluated. Then the worst cases remaining are repeated found and

indexed as the last unoccupied position. Data editing technique is often used to

find the worst cases, i.e. prototype selection or instance reduction.

Another method to find the worst training cases is to give every training samples

a rank according to its “usefulness” to the classification. Suppose a data set can

be divided into G groups. Given instances xi, for i ∈ {1, . . . , n} having x as its

nearest neighbor among {xj}, for j ∈ {1, . . . , n}/i. A leave-one-out one-nearest

neighbor classification can be used for the training data and the rank of each
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training samples can be calculated by the following formula [91]:

rank(x) =
∑

j





1 if class(x) = class(xj)

− 2
G−1 otherwise.

Many worst cases found by this ranking technique may have same ranks as one

another. A further sample sorting according to distances to samples’ nearest

neighbor of the same class can be arranged to break the ties.

3. Handling Unbalanced Data Sets: When data is under-sampled, KNN method

is sensitive to the number of cases selected from one of the classes (or groups) [101].

Consider an unbalanced data set such that the number of negative samples is a lot

smaller than the number of positive samples. Then the k-nearest neighbors may

only contain positive samples most of the time. The minority class, i.e. negative

class, has only a small percentage of all samples. Hence, querying samples tends to

be classified as positive because positive samples are the majority of the k-nearest

neighbors.

The problem caused by unbalanced data distributions can be solved by weight-

ing the k nearest neighbor, proposed in [89], called neighbor-weighted KNN

(NWKNN). To avoid unfair neighbor counting on unbalanced training data, NWKNN

assigns a large weight for neighbors from minority group, and a small weight for

neighbors from majority group.

This dissertation proposed a method to cope with it is the nearest neighbor rule by

taking the same k numbers of samples from both classes as 2k-nearest-neighbors.

This method measures distances from k nearest neighbors of each group individ-

ually. Then the querying observation is labeled as the same class as the group

with shortest k nearest neighbor distance. Figure 3.3 is an example of applying

this improved KNN to determine a class label for a querying sample.
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If d2 < d1, new point is classified as a circle, Otherwise, a square.

d1: Average distance to k nearest squares.
d2: Average distance to k nearest circles.

Figure 3.3: Improved k-Nearest Neighbor Rule

3.2.3 Embedding Time Series in a Vector Space for Classification

There are many successful classification techniques designed especially for attribute

data sets. However, those techniques can not be directly applied on time series data

sets. Therefore, it comes an idea of transforming time series data into values in a vector

space. After time series data are expressed as attribute data, they can then be classified

by those classification techniques.

3.2.3.1 Embedding Time Series in a Euclidean Space

Distance based approaches for embedding univariate time series in a vector space in

order to perform classification are proposed in [44]. The study shows that a successful

embedding technique experimented is the Laplacian eigenmap [4, 5]. A similarity matrix

using DTW distances is computed, so the Laplacian matrix can be derived from the

similarity matrix. Then a generalized eigenvalue problem is constructed, and its solution

provides the coordinates in the embedded space.

Once a time series data set is embedded in a Euclidean space, it can be treated

as an attribute data set which many classification methods can be applied on, such as

SVM.
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3.2.3.2 Constructive Induction Method

A constructive induction method for classifying time series is proposed in [50] with

meta-features applied to sign language recognition and ECG classification.

First, instances with recurring substructure are discovered. Then each instance

can be characterized as having a set of meta-feature events, which are the recurrent

substructures appropriate for the data domain. An example for the sign language

recognition is to express extracted events in a two-dimensional space, called parameter

space, which consists of one axis for start time of recurring events and another for

duration. The parameter domain varies according to the data set that meta-features

are applied to. Finally, classification techniques are used to classify those instances in

the parameter domain.

3.2.3.3 Vectorizing Correlation Coefficient Matrix of MTS

A PCA-based similarity measure discussed in [98] suggests that using the correlation

information among attributes of MTS data can help estimating similarity between two

MTS data. Therefore, a technique proposed in [99] vectorizes components of a corre-

lation coefficient matrix of MTS. Those vectorized components is then used as input

features of SVM for classification.

First the correlation coefficient matrix for each MTS sample is computed. A corre-

lation coefficient matrix is symmetric and its diagonal values are all one’s. Therefore,

to construct features for an MTS sample, the diagonal values can be eliminated and

only the strict upper triangle of the correlation coefficient matrix are utilized. For an

MTS sample of m attributes, the number of features that are obtained from the matrix

and to be used for SVM is
∑m−1

i=1 i = m(m− 1)/2. The vectorizing algorithm is defined

in Algorithm 3.2.2.
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Algorithm 3.2.2 Vectorizing an m×m correlation coefficient matrix of an MTS sample.
Input: a correlation coefficient matrix of an MTS sample with m attributes (C).
1: V = [ ]; /* Initialize a vector. */
2: for i = 1 to m do
3: V = [V, C[i; (i + 1) : m]];
4: end for
5: return V ;

Output: Vectorized correlation coefficient matrix (V ).

3.2.4 Time Series Classification with Dynamic Time Alignment Ker-

nel in Support Vector Machine

For SVM to be applicable to sequential-pattern recognition (such as time series classi-

fication), a nonlinear time alignment technique is incorporated into a kernel function,

called dynamic time alignment kernel (DTAK) [85]. Because the time-alignment of two

sequences is embedded in a kernel function, algorithms used to solve for SVM training

and classification can still be employed without modification.

Consider a sequence of vectors X = (x1, x2, . . . , xL) and V = (v1, v2, . . . , vL), where

xi and vi ∈ R. Assume that the two sequences has the same length, i.e. L = |X| =

|V |. After defining a summation of each inner product (◦) between xk and vk, for

k = 1, . . . , L:

X ◦ V =
L∑

k=1

xk · vk,

an SVM classifier can be formulated as:

f(x) =
n∑

i=1

αiyiφ(xi) · φ(x) + b =
n∑

i=1

αiyiK(xi, x) + b,

where n is the total numbers of samples, yi is a class label of sample i, for i = 1, . . . , n,

and yi ∈ {−1,+1}. Also, K is a kernel function and b is a constant. This classifier

applies the kernel techniques in [83].

An alignment can be made by both linear and nonlinear time-warping function. The

linear time-warping function can be the form as:
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ψ(k) = d(|X|/L)ke, θ(k) = d(|V |/L)ke.

Then a new inner product operator for the linear dynamic time-alignment kernel is

defined as:

X ◦ V =
L∑

k=1

xψ(k) · vθ(k).

This linear warping may not be enough for time series comparison. To catch more

nonlinear behavior, dynamic time warping (DTW) may be a better choice. However,

instead of fining the optimal path that minimizes the accumulated distances by the

original DTW, the DTAK in SVM [85] finds the optimal path that maximizes the accu-

mulated similarity. Let m(k) be a nonnegative coefficient for weighting warping path,

Mψθ be the sum of all weighting coefficients, given as
∑L

k=1 m(k), for normalization.

Also, let Q be a positive constant used to form a warping window and to constrain

on warping paths. The optimization model for the newly defined inner product (the

DTAK) in SVM is formulated as follows:

X ◦ V = max
ψ,θ

1
Mψθ

L∑

k=1

m(k)xψ(k) · vθ(k)

s.t. 1 ≤ ψ(k) ≤ ψ(k + 1) ≤ |X|,
ψ(k + 1)− ψ(k) ≤ Q,

1 ≤ θ(k) ≤ θ(k + 1) ≤ |V |,
θ(k + 1)− θ(k) ≤ Q.

This can be efficiently solved by dynamic programming. Function of G(s, t) is calculated

recursively starting from the largest indices of time series X and V , where (s, t) =

(|X|, |V |). It takes the form as:

G(s, t) = max





G(s− 1, t) + INP (s, t),

G(s− 1, t− 1) + 2INP (s, t),

G(s, t− 1) + INP (s, t),





,
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where INP indicates the inter product. The optimal solution for the newly defined

inner product can then be expressed as:

X ◦ V =
G(|X|, |V |)
|X|+ |V | .

The DTAK in SVM can also incorporate a nonlinear mapping Φ as most kernels do.

The new kernel, DTAK, is then defined as:

Ka(X,V ) = Φ(X) ◦ Φ(V )

=
G(|Φ(X)|, |Φ(V )|)
|Φ(X)|+ |Φ(V )| .

Including the DTAK in SVM, one can formulate an optimization model, DTAK-SVM,

for finding an optimal classifier for a time series data set. It is expressed as:

DTAK-SVM

min
w,b,ξ

1
2
W ◦W + C

N∑

i=1

ξi

s.t. yi(W ◦ Φ(X(i)) + b) ≥ 1− ξi,

ξi ≥ 0; i = 1, . . . , N.

After solving the DTAK-SVM, optimal W and b are found. By the construction that

W =
∑n

i=1 yiαiΦ(xi), a decision rule is obtained as follows.

f(X) =
N∑

i=1

αiyiΦ(X(i)) ◦ Φ(X) + b

=
N∑

i=1

αiyiKz(X(i), X) + b.

3.3 Principal Component Analysis for Time Series Feature Extraction

Nonlinear principal component analysis has been widely used for time series feature

extraction. The method that provides nonlinear principal components using autoasso-

ciative neural networks is originally proposed by Kramer [57]. In the study proposed in
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[87], an application of nonlinear PCA neural network for feature extraction on electro-

cardiogram (ECG) time series segments has been shown to be able to classify normal

and abnormal states of the segments. In this application, two nonlinear principal com-

ponents in feature space are constructed using autoassociative neural networks, which

help produce successful classification.
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Chapter 4

OPTIMIZATION MODELS FOR MULTIVARIATE

DATA CLASSIFICATION

From the literature, both similarity measures and feature selection have been found very

important for time series discrimination. A novel optimization technique is developed

for classifying multivariate time series (MTS), called support feature machine (SFM),

where a set of features is selected while a highest classification accuracy is achieved.

The classification framework of SFM is based on the nearest neighbor rule, whose

classification effectiveness depends largely on a chosen similarity measure.

The SFM optimization model and its variations are developed for classifying multi-

variate time series (MTS). The optimization model is formulated by integer program-

ming, aiming at selecting an optimal subset of features that provides the maximum

classification accuracy. The classification accuracy in SFM is the percentage of cor-

rectly classified training samples under the nearest neighbor rule.

SFM selects optimal features according to nearest neighbor rule. In a data set, values

at each individual feature are evaluated separately. Similarity (or distance) measures

are performed to decide the nearest neighbors. In an attribute data set, single value

similarity such as Euclidean distance can be used to estimate the nearest neighbors for

each feature. In an MTS data set, a similarity measure used for single time series is

applied at each feature. The performance of SFM may depend on the choice of time

series similarity measures.

The nearest neighbor rule can be adapted in two schemes: voting and averaging.

Consider a problem of the two-group classification for a multivariate data set. At each

feature, the voting scheme compares the average distances from a sample to the two

groups, and give one vote to the closest group. Then the sample is assigned to the group
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that earns the majority of votes. The majority of votes has the number of votes that

is greater than half of total number of features. The averaging scheme instead adds up

average distances to each group for all features, and directly compares the distances and

assign the class that is the nearest. This gives two schemes of the standard SFM: voting

SFM (V-SFM) and averaging SFM (A-SFM). Instead of the standard SFM model, there

are other modified SFM formulations as shown in Table 4.1. More detailed description

of these models is addressed in the following sections in this chapter.

The standard SFM model has two binary decision variables. One of the decision

variables decides which features should be chosen. According to the optimization formu-

lation of SFM, the other variable automatically gives the number of correctly classified

training samples under the choice of a subset of features. By relaxing the decision vari-

able used for choosing features, the feasible region of SFM optimization model becomes

larger, and hence the optimal objective value of the standard SFM becomes a lower

bound of the relaxed one. This relaxation provides a higher classification accuracy at

the training phase. Therefore, it forms a hypothesis that the relaxed SFM (rSFM)

model may also perform better. The relaxed feature selection variable gives numbers

between zero and one, which can also be viewed as weights on features. The result

is prioritized feature selection. Instead of only relaxing the feature selection variables,

both standard SFM and rSFM can be combined, called two-stage SFM. It first solves

the standard SFM with binary variables. Then in the second stage, a relaxed SFM op-

timization model is formulated but only includes the chosen features from the standard

SFM in its constraints.

More variations of SFM models are proposed. Since the nearest neighbor rule is

applied in SFM feature selection and data classification, the k-nearest neighbor (KNN)

rule can also be included. In this case, the parameter k needs to be trained to select an

“optimal” model. Moreover, SFM includes all training data samples in its formulation.

The quality of the training samples is unknown, therefore there may be unnecessary

samples or outliers in the training set. Since average distances are used in SFM formu-

lations, outliers may skew the sample average and hence the classifier will not perform

well for test set. Data clustering can help find good quality training samples as similar
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Table 4.1: Support Feature Machine Models.
Standard SFM

V-SFM

max
x,y∈Θ

{c(x, y) = eTy : eTx ≥ 1}, where

Θ :=



x ∈ {0, 1}m, y ∈ {0, 1}n :

Ax− (
1
2eTx

)
e ≤ My

(
1
2eTx

)
e−Ax + εe ≤ M(e− y)





A-SFM

max
x,y∈∆

{c(x, y) = eTy : eTx ≥ 1}, where

∆ :=



x ∈ {0, 1}m, y ∈ {0, 1}n :

Dx−Dx ≤ M1y

Dx−Dx ≤ M2(e− y)





Relaxed SFM

V-rSFM

max
x,y∈ΘR

{f(x, y) = eTy : eTx ≥ 1}, where

ΘR :=





x ∈ Rm, y ∈ {0, 1}n :

Ax− (
1
2eTx

)
e ≤ My

(
1
2eTx

)
e−Ax + εe ≤ M(e− y)

0 ≤ x ≤ e





A-rSFM

max
x,y∈∆R

{f(x, y) = eTy : eTx ≥ 1}, where

∆R :=





x ∈ Rm, y ∈ {0, 1}n :

Dx−Dx ≤ M1y

Dx−Dx ≤ M2(e− y)

0 ≤ x ≤ e





Two-Phase SFM

V-rSFM+

max
x,y∈ΘR

s

{f(x, y) = eTy : eTx ≥ 1}, where

ΘR
s :=





x ∈ R|SV |, y ∈ {0, 1}n :

Asx− ( 1
2eTx)e ≤ My

( 1
2eTx)e−Asx + εe ≤ M(e− y)

0 ≤ x ≤ e





A-rSFM+

max
x,y∈∆R

s

{f(x, y) = eTy : eTx ≥ 1}, where

∆R
s :=





x ∈ R|SA|, y ∈ {0, 1}n :

Dsx−Dsx ≤ M1y

Dsx−Dsx ≤ M2(e− y)

0 ≤ x ≤ e
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samples are grouped together. With clustering results, the training samples for SFM

can be more concise.

In this chapter, it is assumed that a data set contains n samples, each with m

features. Another assumption of the data set is that it can be perfectly divided into

two groups, that is the data set is consists of two disjoint sets. One represents the

“positive” cases, while the other the “negative”. This assumption holds at almost all

medical data sets, since if one set of feature values appears at both groups (positive

and negative), it does not make sense to include that case for classification. One may

need more features with different values to be able to classify such cases.

The following notations are defined for formulating the SFM optimization models.

All vectors are column vectors. Let e denote a vector of ones in a real space of arbitrary

dimension. Let 0 denote a vector of zeros in a real space of arbitrary dimension. Let

|s| denote the length of vector s in a real space. Let arg max
x∈S

f(s) denote the set of f(x)

minimizers over the set S.

4.1 Support Feature Machine (SFM) Framework

SFM is an optimization model with a mixed-integer programming formulation, aiming

at selecting an optimal subset of features that provides the maximum classification

accuracy. Features selected by SFM provides strong class-separability by the nearest

neighbor rule. For example, in the m-dimensional space, the SFM will find m′ ≤ m

features where the nearest neighbor rule will give the best discrimination in the new

m′-dimensional space.

The main advantage of SFM is its ability to select features with high classifiability.

The performance of classification is determined by the available class information from

the provided features. Using all features may not be necessary for good discrimination

and might not be practical in clinical settings. A small number of predictive features

may provide as good performance as all features do [16]. This will be helpful for medical

device companies since smaller number of features would lead to less computational

requirements. In addition, it can save a lot of cost on data collection and processing,
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and especially it is important for physicians who are required to put in lots of labor

work to eye-ball and analyze huge medical data.

4.1.1 Classification Schemes

There are two classification schemes used in SFM proposed for adapting the nearest

neighbor rule: voting under distance measures (called voting scheme) and directly

comparing averaged distances (called averaging scheme). Each of the two schemes is

also used to bind the two types of decision variables in the optimization formulations

of SFM: a feature selection variable and a classification accuracy variable.

4.1.1.1 Voting Scheme

In the voting scheme, values of an average to-the-same-class (intra-class) distance and

an average to-the-different-class (inter-class) distance are calculated for each training

sample.

To model the voting scheme, the SFM requires an input matrix, which is an accuracy

n×m matrix A = (aij), i = 1, . . . , n, j = 1, . . . ,m, where n is the number of training

samples and m is the number of features. In the voting scheme of nearest neighbor

if a sample of a given feature has its average to-the-same-class distance smaller than

its average to-the-different-class distance, then the sample is correctly classified and is

voted the value one. Otherwise, it will be voted the value zero. The entry aij = 1

indicates that the nearest neighbor rule correctly classified training sample i at feature

dimension j; 0, otherwise.

4.1.1.2 Averaging Scheme

Similar to the voting scheme, in the averaging scheme, values of an average to-the-same-

class (intra-class) distance and an average to-the-different-class (inter-class) distance are

calculated for each training sample. The difference between the voting scheme and the

averaging scheme is that the voting scheme compares both types of distance values and

provides votes on each sample at a given feature. The averaging scheme on the other

hand uses both values directly and have SFM do the comparison.
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To model the averaging scheme, the SFM requires two input matrices. One is an

n×m intra-class distance matrix D = (dij), and an n×m inter-class distance matrix

D = (dij), i = 1, . . . , n, j = 1, . . . , m. The entry of the intra-class matrix dij is the

average distance between training sample i and all other training samples from the

same class at feature dimension j. The entry of the inter-class matrix dij is the average

distance between the training sample i and all training samples from the different class

at feature dimension j.

4.1.2 Decision Variables

The standard SFM model has two binary decision variables. One is used for feature

selection and the other is for recording classification accuracy. The feature selection

variable decides which features should be chosen. The classification accuracy variable

records the correctly classified samples according to the set of chosen features and based

on one of the nearest neighbor classification schemes. Let x be a vector of length m,

and y be a vector of length n. The two types of decision variables are defined as follows.

Definition 4.1.1.

xj =





1, if feature j is chosen by SFM;

0, otherwise, for j = 1, . . . , m.

yi =





1, if sample i is correctly classified by SFM;

0, otherwise, for i = 1, . . . , n.

4.1.3 Nearest Neighbor Rule and Similarity Measures

The nearest neighbor rule is a very intuitive classification method, which assigns an

unlabeled sample to the class whose baseline samples are on average closest to the

sample. However, the classic k-nearest neighbor approach faces problems with an un-

balanced class distribution. Performance of k-nearest neighbor becomes very sensitive

to the number of samples in classification [101]. A possible method to avoid issue on

unbalanced data sets is the neighbor-weighted k-nearest neighbor rule in [89].



68

Since all samples from the two classes are taken as neighbors, SFM does not have

issues of imbalanced data sets. Both of its classification schemes (voting and averaging

schemes) deal with imbalanced data sets under nearest neighbor rule. They are de-

rived from to-the-same-class and to-the-different-class distances. Since class labels of

training samples are known, to-the-same-class and to-the-different-class distances can

be evaluated according to a chosen similarity measure. Observe that both voting and

averaging schemes improve the nearest neighbor rule by avoiding issues on unbalanced

data.

Attribute 
Sample 1

Attribute 
Sample 2

Features
1       2            ·  ·  ·            m

∙∙∙

mx2x1x

1x

∙∙∙

∙∙∙2x mx

MTS Sample 1 MTS Sample 2

Feature 1

Feature 2

Feature m

∙∙∙

∙∙∙

∙∙∙

∙∙∙

(a)

(b)

Figure 4.1: SFM Similarity Comparison: (a) Single Value Comparison for an Attribute
Data Set; (b) Univariate Time Series Comparison for an MTS Data Set.

Similarity measures for single attribute values or for single time series are considered

in SFM, because it evaluates each feature individually and then chooses a combination

of features that gives best performance. In an attribute data set, single value similarity

such as Euclidean distance can be used to estimate the nearest neighbors at each feature

dimension as shown in Figure 4.1(a). An MTS sample at a feature dimension is a single

time series. In an MTS data set, single time series similarity measures are applied at
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each feature dimension as shown in Figure 4.1(b). Examples of similarity measures for

single time series can be dynamic time warping (DTW), Euclidean or T-statistics.

4.1.4 Classification Framework

A flowchart of the proposed SFM classification framework is outlined in Figure 4.2.

The framework is comprised of three key steps. In the first step, at every individual

feature, the distance measure is used to generate the accuracy matrix and the distance

matrices as an input to SFM optimization models. There are two parameters in the

SFM classification that need to be selected to incorporate multiple decisions from all

features: majority voting and distance averaging. In the second step, SFM optimization

models are formulated and solved to select the best features, i.e., a subset of features

that maximizes the classification accuracy. To see the performance of SFM, the last

step is to classify each unlabeled data sample, whose class is treated as an “unknown”,

by applying the nearest neighbor rule (with majority voting or distance averaging) with

the selected subset of features.

• Step 1: Generating Accuracy and Distance Matrices from Training

Data.

The accuracy matrix and the distance matrices generated from training data are

the required inputs of SFM. An Accuracy matrix is an input of the SFM using

voting scheme (voting SFM, or V-SFM), while two distance matrices, intra-class

and inter-class distance matrices, are inputs of the SFM using averaging scheme

(averaging SFM or A-SFM).

• Step 2: Building Optimization Models of SFM

After the accuracy matrix and the distance matrices are constructed in Step 1,

V-SFM and A-SFM optimization models can be formulated (for more details,

see the following sections). V-SFM selects the features that gives the majority

correct votes (value one’s) as shown in Figure 4.3. A-SFM also tries to reach an

optimal selection of features such that the sum of intra-class average distances

(dij) are smaller than the sum of inter-class average distances (dij) from the
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ij

dd

a – voting matrix– distance matrixStep 2: Formulate and solve for the SFM models and obtain the optimal feature selection. X – selected featuresY – training classification accuracy
Step 3: Employ the nearest neighbor rule to classify test samples to the closest baseline data from the selected features.

Support Feature Machine 

Figure 4.2: Flowchart of the Support Feature Machine Framework

selected features (Figure 4.4). In other words, the goal is to find a subset S

of all possible combinations of features (S ⊆ {1, 2, ..., m}) such that
∑

j∈S dij <
∑

j∈S dij . As a result, based on the selected features, same class samples are close

to each other and are away from the different class as much as possible.

• Step 3: Applying SFM to Classify Unlabeled Data

After obtaining the optimally selected features by solving SFM optimization mod-

els in Step 2, test samples are treated as unlabeled samples and are classified

according to those selected features. V-SFM classifies an unlabeled sample to the

class with majority vote from all selected features. A-SFM classifies an unlabeled

sample to the class whose baseline training samples are more similar to the sample

based on the dimension of selected features. After each test sample is labeled by

SFM schemes, accuracies of SFM schemes can be calculated by comparing the
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(Correct)  if                    ;                     (Incorrect)  otherwise.    1=ija ijdijd <

Negative Positive
ijd ijdNegative Sample i at Feature j

0=ija

Negative Positive
Positive Sample I’ at Feature jjid ′jid ′

Figure 4.3: Input Construction Process of Voting Support Feature Machine (V-SFM)

Sample i at Feature 1 ∙∙∙Sample i at Feature 2 Sample i at Feature mSelect a subset of features  (                            )  such thatas many samples as possible.{ }m,...,,s 21⊂∑ ∑
∈ ∈

<
sj sj

ijdijd

1id

1id

2id imd

2id
imd

Figure 4.4: Input Construction Process of Averaging Support Feature Machine (A-
SFM)

labeled class with the actual class of each sample.

4.2 Standard SFM

The optimization models of SFM is to maximize the classification accuracy according

to the accuracy matrix and the distance matrices constructed as described in previous

section. A set of all possible solutions of an optimization problem is called a feasible

region. The standard SFM has two types of feasible regions. One feasible region is for

V-SFM and the other feasible region is for A-SFM, which are defined in Definition 4.2.1.

In the definition, M = m
2 and 0 < ε < 1

2 , which is used to break a tie during voting.

Θ is a set used in the voting scheme to ensure that when yi = 1, the combination of
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selected features (S = {j ∈ {1, . . . ,m} : xj = 1}) gives majority correct votes to sample

i. ∆ is a set used in the averaging scheme to ensure that when yi = 1, sample i under

the selected features S has its intra-class average distances smaller than its inter-class

average distances.

Definition 4.2.1.

Θ :=



x ∈ {0, 1}m, y ∈ {0, 1}n :

Ax− (
1
2eTx

)
e ≤ My

(
1
2eTx

)
e−Ax + εe ≤ M(e− y)





∆ :=



x ∈ {0, 1}m, y ∈ {0, 1}n :

Dx−Dx ≤ M1y

Dx−Dx ≤ M2(e− y)





Both V-SFM and A-SFM are trying to find the maximum number of correctly

classified training samples based on majority voting and intra-class versus inter-class

average distances, respectively. Therefore, the objective function is to maximize
n∑

i=1
yi,

which is defined by

V-SFM: zV = max
x,y∈Θ

{c(x, y) = eTy : eTx ≥ 1},

A-SFM: zA = max
x,y∈∆

{c(x, y) = eTy : eTx ≥ 1}.

The last constraint in the maximization model is used to avoid an empty selection. After

solving these two problems, the optimal objective value zV (or zA) can be obtained. It

represents the number of samples correctly classified based on a selection of features

which is the optimal solution x by V-SFM (or A-SFM).

4.3 Relaxed SFM (rSFM) Models

SFM with a relaxed feature selection variable x is called rSFM model. Relaxing x in

the sets Θ and ∆ gives ΘR and ∆R defined as follows:
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Definition 4.3.1.

ΘR :=





x ∈ Rm, y ∈ {0, 1}n :

Ax− (
1
2eTx

)
e ≤ My

(
1
2eTx

)
e−Ax + εe ≤ M(e− y)

0 ≤ x ≤ e





.

∆R :=





x ∈ Rm, y ∈ {0, 1}n :

Dx−Dx ≤ M1y

Dx−Dx ≤ M2(e− y)

0 ≤ x ≤ e





.

Again, the classification accuracy will be maximized according to voting and aver-

aging scheme individually. Thus, the rSFM models with voting scheme (V-rSFM) and

averaging scheme (A-rSFM) are defined by:

V-rSFM: zR
V = max

x,y∈ΘR
{f(x, y) = eTy : eTx ≥ 1},

A-rSFM: zR
A = max

x,y∈∆R
{f(x, y) = eTy : eTx ≥ 1}.

Note that the relaxation of x’s gives a larger feasible region of feature selection. Thus

it is possible to find a better solution other than binary values of x. The following

Lemma 4.3.1 shows that the training classification performance of rSFM is an upper

bound of that of SFM.

Lemma 4.3.1. (i) If the set ΘR relaxes x in the set Θ, then zV ≤ zR
V .

(ii) If the set ∆R relaxes x in the set ∆, then zA ≤ zR
A .

Proof. If the set ΘR relaxes x in the set Θ, (x∗, y∗) ∈ Θ ⊆ ΘR and zV = c(x∗, y∗) ≤
f(x∗, y∗). As (x∗, y∗) ∈ ΘR, f(x∗, y∗) is a lower bound on zR

V , and so zV ≤ f(x∗, y∗) ≤
zR
V .

Similarly, if the set ∆R relaxes x in the set ∆, (x∗, y∗) ∈ ∆ ⊆ ∆R and zA =

c(x∗, y∗) ≤ f(x∗, y∗). As (x∗, y∗) ∈ ∆R, f(x∗, y∗) is a lower bound on zR
A , and so

zA ≤ f(x∗, y∗) ≤ zR
A .

Other than relaxing the feature selection variables x, a normalization to restrict the

scale of x′s is introduced by adding a normalization constraint, called rSFM model.
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The sum of the values of xj is constrained to be equal to one. The resulting models

are:

V-rSFM : zN
V = max

x,y∈ΘR
{f(x, y) = eTy : eTx = 1},

A-rSFM : zN
A = max

x,y∈∆R
{f(x, y) = eTy : eTx = 1}.

4.4 Two-Phase SFM

Since relaxing x provides a larger feasible region, one might think that the rSFM models

may over fit the data, and may lower its testing performances. Therefore, a method

is proposed to give a smaller relaxed region, which has two phases, called SFM Plus

Relaxation (rSFM+) Model. Phase I solves the standard SFM, which has binary x.

Then only the selected features are considered to be relaxed at Phase II. The relaxation

in the Phase II is a modification of the rSFM models. It excludes the unselected features,

and results a reduced relaxation model. New parameters and variables are defined for

the selected features.

Definition 4.4.1. Let SV and SA be the index set of the selected features from V-SFM

and A-SFM, respectively. S ∈ {SV , SA}. Then

xs = (xj)j∈S ,

As = (aij)i=1,...,n
j∈S

,

Ds = (dij)i=1,...,n
j∈S

,

Ds = (dij)i=1,...,n
j∈S

,

where aij is the the element of matrix A at its ith row and jth column.

According to the selected index sets SV and SA, the following convex sets can be

defined as:
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Definition 4.4.2.

Θs :=



x ∈ {0, 1}|SV |, y ∈ {0, 1}n :

Asx− (1
2eTx)e ≤ My

(1
2eTx)e−Asx + εe ≤ M(e− y)





∆s :=



x ∈ {0, 1}|SA|, y ∈ {0, 1}n :

Dsx−Dsx ≤ M1y

Dsx−Dsx ≤ M2(e− y)





The relaxed model used in the Phase II of rSFM+ has the following definitions, which

is the feasible region obtained by relaxing the selection variables in the selected index

sets.

Definition 4.4.3.

ΘR
s :=





x ∈ R|SV |, y ∈ {0, 1}n :

Asx− (1
2eTx)e ≤ My

(1
2eTx)e−Asx + εe ≤ M(e− y)

0 ≤ x ≤ e





∆R
s :=





x ∈ R|SA|, y ∈ {0, 1}n :

Dsx−Dsx ≤ M1y

Dsx−Dsx ≤ M2(e− y)

0 ≤ x ≤ e





After defining its feasible set, the Phase II optimization models of V-SFM with relaxed

xs (V-rSFM+) and A-SFM with relaxed xs (A-rSFM+) are given by:

V-rSFM+: z̃R
V = max

x,y∈ΘR
s

{f(x, y) = eTy : eTx ≥ 1},

A-rSFM+: z̃R
A = max

x,y∈∆R
s

{f(x, y) = eTy : eTx ≥ 1}.

Note that the relaxation model in Phase II is used to fine tune and prioritize the features

x’s selected in Phase I. It is easy to observe that, in the training phase, the performance

of rSFM+ is an upper bound of the standard SFM (see Lemma 4.4.1). However, due

the feature selection in Phase I, the performance of rSFM+ is a lower bound of rSFM

in the training. These extensions of SFM framework give a rise of how restricted the

classification models are. Although theoretical relationships among these models can be

drawn, they hold only in the training phase. Therefore, the relationships might not be
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the same in the testing phase since the classification models might overfit the training

data.

Lemma 4.4.1. 1. If the set ΘR
s relaxes xs in the set Θs, then zV ≤ z̃R

V ≤ zR
V .

2. If the set ∆R
s relaxes xs in the set ∆s, then zA ≤ z̃R

A ≤ zR
A .

Proof. Define

z̃V = max
x,y∈Θs

{c(x, y) = eTy : eTx ≥ 1}

z̃A = max
x,y∈∆s

{c(x, y) = eTy : eTx ≥ 1}

If the set ΘR
s relaxes x in the set Θs, (x∗, y∗) ∈ Θs ⊆ ΘR

s and z̃V = c(x∗, y∗) ≤
f(x∗, y∗). As (x∗, y∗) ∈ ΘR

s is a lower bound on z̃R
V , z̃V ≤ f(x∗, y∗) ≤ z̃R

V .

ΘR
s ⊆ ΘR, so z̃R

V ≤ zR
V . Also, Θs ⊆ Θ, so z̃V ≤ zV . In addition, the construction of

Θs is based on the optimal solution of zV , which implies xj = 0 ∀j ∈ {1, . . . , m}\SV .

Hence, z̃V = zV . As a result, zV = z̃V ≤ z̃R
V ≤ zR

V .

Similarly, zA = z̃A ≤ z̃R
A ≤ zR

A .

4.5 k-Nearest Neighbor SFM

SFM feature selection and data classification is based on the nearest neighbor rule.

Another variation of SFM can be made by including k-nearest neighbor (KNN) rule.

Here k is another model training parameter of SFM. In this case, the parameter k needs

to be trained to select an “optimal” model accordingly. Both the voting and averaging

schemes can be modified to including the KNN rule. It can be made when generating

the accuracy matrix and the average distance matrices. Instead of considering distances

from a sample to all other samples in the same class or a different class, one can consider

only the distances from a sample to only the k nearest neighbors in the same class or

a different class.

4.5.1 Voting Scheme for KNN SFM

In the standard voting scheme, values of an average intra-class distance and an average

inter-class distance are calculated for each training sample. To include the KNN rule
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in the standard SFM, only the distances to the k nearest neighbors in the same class

is averaged, and only the distances to the k nearest neighbors in a different class is

averaged for each sample.

To model the voting scheme, the KNN SFM also requires an input matrix, which

is an accuracy n × m matrix A = (aij), i = 1, . . . , n, j = 1, . . . , m, where n is the

number of training samples and m is the number of features. In the voting scheme of

the KNN rule if a sample of a given feature has its average distances to the k nearest

neighbors in the same class smaller than its average distances to the k nearest neighbors

in the different class, then the sample is correctly classified and is voted the value one.

Otherwise, it will be voted the value zero. Therefore, the entry aij = 1 indicates that

the KNN rule correctly classified training sample i at feature dimension j; 0, otherwise.

4.5.2 Averaging Scheme for KNN SFM

Similar to the voting scheme, in the averaging scheme for KNN SFM, values of an

average distance to the k nearest neighbors in the same class and an average distance

to the k nearest neighbors in a different class are calculated for each training sample.

To model the averaging scheme, the KNN SFM requires two input matrices. One

is an n×m KNN intra-class distance matrix D = (dij), and an n×m KNN inter-class

distance matrix D = (dij), i = 1, . . . , n, j = 1, . . . ,m. The entry of the intra-class

matrix dij is the average distance between training sample i and the k nearest other

training samples from the same class at feature dimension j. The entry of the inter-

class matrix dij is the average distance between the training sample i and the k nearest

training samples from the different class at feature dimension j.

4.6 Clustered SFM

Observe that SFM includes all training samples in its formulation. The quality of the

training samples is unknown, there may be unnecessary samples in the training set.

Since SFM classification relies mainly on distance measures, outliers may skew the

sample average. Hence the classifier may not perform well as expected in the testing.
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Data clustering can help finding good quality training samples and excluding outliers.

With clustering results, the training samples for SFM can be more concise.

The idea of clustering training samples for SFM is to remove non-informative sam-

ples such as outliers. Clustering techniques can help with such problems since it tries to

group similar samples together. There are many clustering techniques in the literature,

such as k-means clustering [48]. The k-means clustering is a method that partitions n

samples into k clusters, so that each sample belongs to a cluster with the nearest mean.

However, such methods do not apply time series similarity measures, and the number of

clusters (k) needs to be specified in advance. They are not suitable for MTS. For MTS

classification, the number of clusters in each class is unknown, and a similarity measure

is essential in grouping data samples into clusters. The quality cluster algorithm (QT

clustering) proposed in [45] is a suggested method that satisfies these requirements. The

idea of QT clustering is to find the data sample with the largest number of neighbors

within the diameter d. The sample and its neighbors form a cluster. The algorithm

is then operated for the rest of samples iteratively until every sample is assigned to a

cluster. The algorithm will automatically generate the optimal number of classes in the

data set. Moreover, it incorporates a pre-calculated distance matrix in its model, and

thus provides the flexibility of choosing a distance measure. QT clustering applies a

dynamic programming technique and generates an optimal number of clusters given a

diameter threshold value d. However, in the application, QT clustering tends to cluster

all data in one group, which does not give sufficient information for further analysis.

A sample-preserved k-median (SPKM) clustering technique is proposed in this dis-

sertation in order to perform the unsupervised learning incorporating similarity mea-

sures. To combine the SPKM clustering with SFM, one can obtain the clusters from a

clustering technique, e.g. SPKM clustering, and use the cluster centers as the training

baseline for SFM as shown in Algorithm 4.6.1.

Training samples are reduced after optimal clusters are generated. Suppose n′(n′ ≤
n) clusters are found. SFM models can be reduced. The accuracy matrix, and the

average distance matrices are reduced to be of size n′ ×m, and classification accuracy

variable y has length n′. The clustered SFM only takes the cluster centers as baseline
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data, which saves computation time and may improve the quality of training samples.

Algorithm 4.6.1 Sample-Preserved k-Median Clustering as Sample Selection for Sup-
port Feature Machine
Input: A data set, k1 and k2.

1. Separate data into disjoint training and testing sets.

2. Group positive training data into k1 clusters and negative training data into k2

clusters.

3. Train the SFM using the k1 positive cluster centers and k2 negative cluster centers.

4. Use the testing set together with the (k1 + k2) cluster centers to evaluate the
performances of the nearest neighbor rule and SFM.

Output: Nearest neighbor and SFM classification accuracies.
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Chapter 5

APPLICATIONS OF DEVELOPED OPTIMIZATION

MODELS FOR CLASSIFICATION

A medical data set is assumed to be perfectly separable. In other words, the medical

data set is a union of two disjoint sets. One set represents the “positive” group asso-

ciated with patients having a specific medical condition or disease, and the other set

represents the “negative ” group associated with patients who do not have the medical

condition or disease. This assumption makes sense, because if one pattern appears at

both positive (abnormal) and negative (normal) classes, it means that the medical con-

dition of that pattern is unknown, and more features from diagnostic procedures are

needed. When training a classifier, such patterns should be excluded or more features

should be included. Thus, a perfectly separable data set can be assumed.

In this chapter, a medical data set is consisted of n observations (patients); each

is represented by m features (or attributes). In other words, each data sample in the

medical database is represented by an m-dimensional vector corresponding to clinical

characteristics of a patient.

Classification techniques applied on medical data sets can be used as a tool for

medical diagnosis. The main purpose of this chapter is to evaluate the performance of

the developed classification framework, Support Feature Machine (SFM), discussed in

Chapter 4. Although SFM is designed especially for MTS data sets [20], it can also

be used on classifying attribute data sets. Samples in an attribute data set are often

viewed as vectors. Single value similarity measures such as Euclidean distance can be

applied on each feature. As a result, SFM is applicable to attribute data sets as well

[36].

SFM performance is evaluated on both MTS and attribute types of real world
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medical data sets. The MTS data sets are consists of electroencephalogram (EEG)

time series with multi-channels (described in Section 5.2.2). The attribute data sets

are medical data sets acquired from the University of California Irvine (UCI) repository

[3] (described in Section 5.2.1).

Classification performance of SFM is then compared with performance of other

existing classification techniques, such as linear Support Vector Machines [39], nonlinear

Support Vector Machines with Gaussian Kernel [40], logical analysis of data [11] and

non-optimized nearest neighbor rule [22].

Note that notations for SFM formulation used in this chapter are the same as those

in Chpater 4.

5.1 Background of Medical Diagnosis

Medical diagnosis is a process of identifying a medical condition or disease by its symp-

toms, and from results of various diagnostic procedures. By taking each patient as

a sample, those symptoms and analytic results of patients can be viewed as their at-

tributes (or features), and thus forms a medical data set. If the medical data set consists

of two types of patients, one is abnormal and the other is normal, a classifier can be

trained according to labeled data, whose class labels are known. It can then be used

to classify unlabeled samples (patients), whose class labels are unknown. Therefore, a

classification technique can be used as a tool for medical diagnosis.

Today’s clinical testings and experiments to diagnose patients have resulted in mas-

sive data sets, which physicians have to mine so that they can accurately treat the

patients. Those data ranges from simple blood pressure and heart rate to magnetic res-

onance imaging (MRI) and electroencephalogram (EEG) waveforms. In such situation,

physicians do need a tool to quickly analyze the medical data signal and detect the pat-

terns that can be used to identify the causes of the symptoms or diseases. Data mining

studies are dedicated to the analysis and computational methods to deal with massive

medical data [77]. Especially there are several data classification and decision making

problems arising in medical diagnosis. In recent years, medical diagnosis have been
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shown to be examples of data classification problem in clinical settings [43, 81, 90]. To

improve current medical diagnosis, data mining techniques can be used in identifying

a disease from its symptoms and making a decision to diagnose a patient.

5.2 Medical Data Sets

In order to evaluate classification performance of SFM framework, it is tested on real

world medical data sets. They consists of both MTS data sets and attribute data sets.

The MTS data sets that the SFM is tested on are obtained from EEG time series signals

with multi-channels. Note that the channels, representing where the EEG signals are

obtained, are taken as features in MTS data sets. For example, univariate EEG time

series has only one channel. Moreover, the attribute data sets that SFM is tested on

are well-known benchmark data sets acquired from the University of California Irvine

(UCI) repository [3]. They are associated with breast cancer, heart disease, diabetes,

and liver disorders. Descriptions of these data sets are as follows. Note that in order

to reduce the bias of scale, all the entries of all features in all data sets were linearly

scaled into values in the interval of [0, 1].

5.2.1 Attribute Data Sets

Four attribute data sets are well-known benchmark data sets acquired from the Univer-

sity of California Irvine (UCI) repository [3]. Parameters of these data sets are shown in

Table 5.1. They are related to breast cancer, heart disease, diabetes and liver disorders,

which are described as follows.

Table 5.1: Parameters of UCI Data Sets [3]
# of Observations # of Features

Data set Positive Negative
Breast Cancer Wisconsin (WDBC) 212 357 30
Heart Disease (HD) 137 160 13
Pima Indian Diabetes (PID) 268 500 8
Bupa Liver Disorders (BLD) 200 145 6

The Breast Cancer Wisconsin Diagnostic (WDBC) data set consists of 569

instances, each with 30 real-valued features which were computed from a digitized
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image of a fine needle aspirate of a breast mass. These features, computed for each

cell nucleus, are considered to be important characteristics for breast cancer diagnosis.

Those tumor’s characteristics include its radius, texture, perimeter, area, smoothness,

compactness, concavity, number of concave portions of the contour, symmetry and frac-

tal dimension. Using these characteristics, oncologists made two diagnosis outcomes:

malignant (positive) or benign (negative) tumors. The WDBC data set contains 357

benign samples and 212 malignant samples.

The Cleveland Heart Disease (HD) data set consists of 300 instances, each with

13 select features that are believed to be a good indicator for the angiographic disease

status. Those features include chest pain type (typical and atypical angina, non-anginal

pain, and asymptomatic), resting blood pressure, serum cholestoral, resting electrocar-

diographic results (normal, abnormality, probable), maximum heart rate, indicator of

exercise-induced angina, ST depression, slope of the peak exercise ST segment, number

of major vessels colored by flourosopy and the main criterion that physicians use to de-

termine the diagnosis of heart disease is the narrowing in diameter of any major blood

vessel. The diagnosis was considered to be positive (presence of heart disease) if the

diameter of any major vessel was narrowed by more than 50%; and negative otherwise.

The HD data set contains 137 positive cases and 160 negative cases, after removing the

samples with missing attribute values.

The Pima Indians Diabetes (PID) data set consists of 768 adult female sam-

ples, each with 8 features and the class attribute (presence of diabetes). The features

were derived from the patients’ insulin doses, the outcome of periodically (before and

after each meal) blood tests including blood glucose measurement, meal ingestion, and

exercise activity. The PID data set contains 258 positive cases and 500 negative cases.

The BUPA Liver Disorders (BLD) data set consists of 345 male samples,

each with 6 features concerning with the patients’ biological markers, the amount of

daily alcoholic beverage consumption, and the class attribute (presence of liver dis-

orders). Those biological markers include the mean corpuscular erythrocyte volume

(MCV), carbohydrate-deficient transferrin (CDT), gamma-glutamyltransferase (GGT),

total plasma homocysteine and folate. The BUPA data set contains 200 positive cases
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and 145 negative cases.

From the literature, WDBC is a clean data set on which many classification methods

provide highly accurate diagnostic models. HD is not as clean as WDBC, but still

reasonably predictable. On the other hand, it is known that PID and BLD are very

complex data sets and difficult to classify.

5.2.2 Multivariate Time Series Data Sets

EEG signals of ten epilepsy patients who were suffering from seizures were recorded.

The recordings are continuous long-term (3 to 13 days) multichannel intracranial EEG

recordings. There are 26 standard channels from every patient where EEG time series

are analyzed and investigated. During the recordings, 7 to 23 seizures occurred and

the time when seizure occurred were marked. The recording durations and number of

seizures occurred during the recordings of each patient are outline in Table 5.2.

In addition, these EEG signals are preprocessed in order to filter noises, capture

essential information, and enable a classification. The measures of chaos, Short-Term

Maximum Lyapunov Exponent (STLmax), has been previously shown capable of con-

templating dynamical mechanisms of the brain network from EEG signals [21]. There-

fore, the estimation of STLmax is calculated for all EEG recordings, which is used as

the final format for classification.

Table 5.2: EEG Data Set Characteristics [20]
Patient ID Duration of EEG (days) ] of seizures

1 3.55 7
2 10.93 7
3 8.85 22
4 5.93 19
5 13.13 17
6 11.95 17
7 3.11 9
8 6.09 23
9 11.53 20

10 9.65 12
Total 84.71 days 153

These recordings need to be sampled into a MTS data set before applying the SFM

framework. The goal of SFM is to classify the normal and pre-seizure states of each
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patient. Therefore, time series segments of normal and pre-seizure states should be

sampled from all 26 channels, and then a MTS data set of two groups, normal and

pre-seizure will be constructed. Finally, a classification with SFM will be performed

separately for each patient.

Seizure Seizure Duration of EEG

30 minutes

8 hours
Pre-seizure

Normal

8 hours 8 hours 8 hours

30 minutes

Figure 5.1: An Example of Normal and Pre-seizure EEG Segments.

To obtain MTS data, two groups (normal and pre-seizure) of five-minute EEG

epochs are randomly sampled from the continuous recordings in each patient. In the

STLmax format of EEG recordings, five-minute EEG epochs contains 30 values. Per

seizure, five EEG epochs from each of normal and pre-seizure states are randomly and

uniformly sampled. Figure 5.1 illustrates normal and pre-seizure segments of EEG

duration. Normal EEG samples are selected from EEG recordings that is more than

eight hours apart from a seizure. Pre-seizure EEG epochs are selected from EEG

recordings during the 30-minute interval before. For example, the first patient had

seven seizures; therefore, 70 EEG epochs (35 (7 × 5) normal and 35 pre-seizure) will

be sampled from the patient’s recordings. Hence, the MTS data set of the first patient

has 70 samples, each sample has 26 features, and each feature is a time series of length

30 points. Finally, the ten EEG MTS data sets are obtained.

5.3 Performance Evaluation

A classification technique is aimed at employing a trained classifier (or a trained decision

rule) to assign a class label to an unlabeled case. Such classifier is trained based on
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samples whose class labels are known. The performance of a classification technique is

determined according to how test samples are classified by the trained classifier (or the

trained decision rule). Therefore, a data set is usually divided into two groups. One

becomes a training set, and the other becomes a test set. Note that the class labels of

test set samples are treated as unknown. After the trained classifier assigns class labels

to the test set samples, those sample labels can be compared with their actual ones.

In medical domain, the performance of data classification is commonly presented

in terms of sensitivity and specificity, which are statistically related to type I and

type II errors. Sensitivity measures the fraction of positive test samples that are

correctly classified as positive. That is, sensitivity = TP/(TP + FN), where TP

and FN denote number of true positives and false negatives, respectively. Speci-

ficity measures the fraction of negative test samples that are correctly classified as

negative. Let FP and TN denotes number of false positives and true negatives, re-

spectively, then specificity = TN/(FP + TN). An overall accuracy is defined as

accuracy = (TP + TN)/(TP + FP + TN + FN).

Results of classification performance can also be used to select the best parameter

setting in a classification framework. The training phase was used to perform classifica-

tion of possible parameter settings and test them in the testing phase. The parameter

setting with the best performance can then be identified. Consider examples of clas-

sification techniques: SFM, support vector machine (SVM) and nearest neighbor rule

(NN). Note that the parameters of the SFM framework are the values of feature se-

lection variables x′s. The parameters of SVM are the characteristics of the optimal

hyperplane, i.e., the weighting vector ω and the scalar γ. The training for the NN

technique can be skipped because there was no parameter to be trained. The best

parameter is often referred to the most appropriate trade-off to maximize the detection

rate (sensitivity) and minimize the false alarm rate (1 − specificity). An ROC plot

is represented with the false alarm rate along the X-axis and the detection rate along

the Y-axis. The best parameter setting for each approach was selected such that it was

closest to the ideal classifier (100% sensitivity and 100% specificity), which is located

at the top left-hand corner of an ROC plot.
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There are many possible ways to divide data into training and testing sets. In

order to estimate how well the model, which is learned from some training data, can

perform on future data, cross validation is an approach. It has been widely used to

check sampling bias in the training and testing phases. After performing classification

from several combinations of training and testing sets, an evaluation can be concluded.

5.3.1 Training and Testing: Cross Validation

Cross validation techniques are motivated by two fundamental problems in classifica-

tion:

• Performance Estimation. Cross validation is typically used to estimate how

well a trained classifier will perform on future as-yet-unseen data (testing data).

• Model Selection. Almost invariably, all pattern recognition techniques have

one or more free parameters. By doing cross validations on different parameter

settings of a classifier, performances of those settings can be compared. Then,

“optimal” parameters with best performance are found.

Cross validation is a model evaluation method that does not use the entire data set

when training a classifier. Part of the data is removed before training a classifier. When

training is done, the removed data is used to test the performance of the learned classifier

on “new” data. The output labels provided by the classifier and the actual label of the

removed data (testing set) are compared. The errors it makes are accumulated, and

the performance of the classification technique is evaluated.

This evaluation may depend on which data points end up in the training set and

which end up in the testing set. Therefore the evaluation may be significantly different

depending on how the division is made. Cross validation technique is extensively used

as a method to estimate the generalization error based on “resampling”. There are

many choices of how to divide data into training and testing sets.
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5.3.1.1 n-Fold Cross Validation

The idea of n-fold cross validation is to randomly divide all the data points into n

mutually exclusive and approximately equal size subsets. All classification approaches

are then trained and tested n times. Each time, one of n subsets is used as a testing set

while the remaining n−1 subsets are used as training set. Thus, n different classification

results are obtained for each training-testing configuration. The average of these results

is used as the overall classification performance.

As mentioned in [74], the result from one n-fold cross validation may not be reliable.

In order to have low mean squared error (MSE) and bias, at least ten repetitions of cross

validations are suggested. After at least ten cross validation replications of n-fold cross

validation are made, a good estimation of classification performance can be obtained.

5.3.1.2 Leave-One-Event-Out Cross Validation

In the case that a data set is obtained from many events and each event is related

to multiple data points in that data set, randomly dividing all the data points into n

mutually exclusive subsets may tend to over estimate the performance of a classifier. By

doing so, one data point of an event may be allocated in the training set and another

data point of the same event may be in the testing set. Thus, the trained classifier

can easily recognize a similar pattern of that event. As a result, classifying another

data point from the same event leads to an over estimated performance. The method

of leave-one-event-out cross validation avoids sample correlations between training set

and testing set. In such cases, leave-one-event-out cross validation gives a fair evaluation

and helps avoid over estimation.

5.3.2 Selection of the Best Classification Schemes

To quantitatively select the best classification scheme as well as the best parameter

settings (i.e., feature selection variables x′s for SFM, and weighting vector ω and the

scalar γ for SVM), a statistical method, called receiver operating characteristics (ROC),

can be applied. ROC is derived from the detection theory to identify the optimal
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parameter settings. The ROC analysis is used to indicate an appropriate trade-off

that one can achieve between the detection rate (sensitivity, plotted on Y-axis) that

is desired to be maximized, and the false alarm rate (1-specificity, plotted on X-axis)

that is desirable to be minimized. Basically, the sensitivity and the specificity of each

classification scheme for each parameter setting are calculated. By definition of ROC

analysis, the best scheme is selected such that it is closest to the ideal classifier (best

performance).

5.3.3 Demonstration of the Use of Leave-One-Event-Out Cross Vali-

dation

To show that the leave-one-event-out cross validation can avoid over estimating of the

classification accuracy, the n-fold cross validation and the leave-one-event-out cross

validation are tested on the simple and intuitive time series classification technique, the

time series k-nearest neighbor (KNN) rule (discussed in Section 3.2.1). The experiment

uses the EEG MTS data sets, and different k values ranging from 3 to 13 are tried (note

that k should be and odd number). In addition, three time series similarity measures

are applied: dynamic time warping (DTW), Euclidean and T-statistics distances.

In the case that a data set is obtained from many subjects and each subject is related

to multiple data points in that data set, randomly dividing all the data points into n

mutually exclusive subsets may tend to over estimate the performance of a classifier.

For the EEG data sets, a classifier is trained for each individual patient. It can be

observed that for each patient, the EEG MTS data set may still be over estimated

because the pre-seizure points are from the same seizure occurrence. Hence, leave-one-

seizure-out (LOSO) cross validation is assumed to be more suitable for performance

estimation and parameter selection. Results of conducting LOSO cross validation for

the time series KNN classification is summarized in this section.

Take Patient 10 as an example. Figure 5.2 illustrates an ROC plot of the KNN

classification using three similarity measures (DTW, Euclidean and T-statistics), ap-

plied on Patient 10 using LOSO cross validation to train and test the classifier. To

compare the results with n-fold cross validation, Figure 5.3 and Figure 5.4 illustrate
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Figure 5.2: ROC plot for in Patient 10 using leave-one-seizure-out cross validation to
train and test the KNN classifier with three similarity measures, dynamic time warping
(DTW), Euclidean (EU) and T-statistics (TS).

an ROC plot of the KNN classification using 3-fold and 5-fold cross validation, respec-

tively, with 10 replications to train and test the KNN classifier. Note that each point

in the plot represents a value of k nearest neighbors (odd values ranging from 3 to 13)

with one of the similarity measures. Comparing the results obtained by LOSO cross

validation and those by n-fold cross validation, most of the paired values, sensitivity

and (1 − specificity), obtained by the n-fold cross validation are closer to the top

left-hand corner of ROC plots than by the LOSO cross validation. Clearly, the n-fold

cross validation over estimates the performance of KNN. Since the LOSO division only

groups pre-seizure points according to the same seizure occurrence, this indicates that

the method of LOSO cross validation avoids sample correlations between training set

and testing set. Therefore, it avoids over estimating sensitivities. Only when the cor-

relation between the training set and the testing set are taken out, the performance

evaluation seems more reasonable.
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Figure 5.3: ROC plot for Patient 10 using 3-fold cross validation to train and test the
KNN classifier with three similarity measures, dynamic time warping (DTW), Euclidean
(EU) and T-statistics (TS).

5.4 SFM Classification on Medical Attribute Data Sets

In this section the performance of SFM framework on attribute data sets are evaluated.

It is tested on four real medical data sets, which are well-known benchmark data sets

acquired from the University of California Irvine (UCI) repository [3]. The four data

sets are associated with breast cancer, diabetes, heart disease, and liver disorders.

Since they are attribute data sets, and SFM measures sample values at each individual

feature separately, a single value similarity measure is needed. The Euclidean distance

measure is the most common one for measuring distances in vector space, and hence

it is applied to the nearest neighbor rule that SFM is based on. To correctly estimate

the classification performance of SFM, ten replications of five-fold cross validation are

applied.

Training performance of the SFM models tested on the four attribute data sets is
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Figure 5.4: ROC plot for Patient 10 using 5-fold cross validation to train and test the
KNN classifier with three similarity measures, dynamic time warping (DTW), Euclidean
(EU) and T-statistics (TS).

summarized in Table 5.3. They are compared with the performance of the linear SVM

and the nonlinear SVM with Gaussian kernel. Lemma 4.3.1 and Lemma 4.4.1 shows

that both rSFM and rSFM+ provide classification accuracy in the training phase at

least the same as the accuracy of standard SFM. Also, Lemma 4.4.1 indicate that rSFM

is at least as good as rSFM+ in the training phase. These are consistent with the results

shown in Table 5.3. Moreover, both of the two-phase optimization models, (rSFM+ and

the normalized rSFM+) and the standard SFM give the same results in the training

phase on all four data sets. The two-phase models did not improve the classification

results from the standard SFM. This may suggest that SFM already captured a good

balance of features already. Thus, it might not be beneficial to further relax the features

selected by standard SFM. The entries in bold indicate the approaches with the two

highest accuracies.
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Table 5.4 shows the breakdown of accuracy results in terms of sensitivity and speci-

ficity in the training phase. Values in the table indicate that SFM approaches provide

a very balanced classification performance for both positive and negative cases when

compared to other approaches.

Table 5.5 presents the number of selected features of each classification approach in

the training phase. From the table, it indicates that the SFM approaches drastically

reduced the number of features to be used in the testing phase. This observation

suggests a very significant medical implication. In practice, in order to make accurate

diagnosis, physicians are not required to obtain and investigate so many test results and

patients’ information, which might be hard to obtain in some patients. On average, the

SFM approaches reduce the number of features by a half while maintaining a very good

classification performance, which is even better than SVM that uses all features. It is

observed that the normalization in V-rSFM drastically reduces the number of features

while maintaining a comparable classification performance.

After SFM classifiers are trained, they can be applied on testing data to estimate

their performance. Table 5.6 shows the accuracy results of all approaches in the testing

phase. The two-phase SFM models in training have the same results as standard

SFM, testing them on unlabeled data will give the same results. Therefore, they are

eliminated from the table. From the literature, WDBC is a clean data set on which

many classification methods provide highly accurate diagnostic models. HD is not as

Table 5.3: Training Performance (in % of accuracy) from ten replications of 5-fold cross
validation on four attribute data sets. The entries in bold are the top two performances.

Data LPSVM V-SFM V-rSFM V-rSFM V-rSFM+ V-rSFM+
Set NLPSVM A-SFM A-rSFM A-rSFM A-rSFM+ A-rSFM+
WDBC 98.08 97.28 97.66 91.57 97.28 97.28

96.17 97.42 98.97 98.97 97.42 97.42
HD 85.06 86.48 88.08 81.68 86.48 86.48

84.66 86.92 89.98 86.67 86.92 86.92
PID 77.66 75.01 75.02 73.71 75.01 75.01

77.51 77.96 79.66 79.64 77.96 77.96
BLD 65.71 63.46 63.46 58.93 63.46 63.46

57.97 66.43 72.80 72.75 66.43 66.43
A: Averaging; V: Voting
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Table 5.4: Training Performance (in % of sensitivity and specificity) from 10 replications
of 5-fold cross validation on 4 publicly available data sets. The entries in bold are the
top two performances.

LPSVM V-SFM V-rSFM V-rSFM V-rSFM+ V-rSFM+

NLPSVM A-SFM A-rSFM A-rSFM A-rSFM+ A-rSFM+
Data set Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec
WDBC 96.22 99.19 93.63 99.44 94.47 99.56 80.59 98.10 93.63 99.44 93.63 99.44

91.31 99.05 93.76 99.59 97.78 99.68 97.70 99.73 93.76 99.59 93.76 99.59
HD 79.76 89.59 80.29 91.77 84.06 91.51 79.02 83.96 80.29 91.77 80.29 91.77

78.12 90.27 79.14 93.59 87.22 92.34 85.34 87.81 79.14 93.59 79.14 93.59
PID 56.45 89.03 52.90 86.87 52.42 87.13 60.96 80.56 52.90 86.87 52.90 86.87

55.84 89.13 58.67 88.29 61.60 89.34 62.15 89.01 58.67 88.29 58.67 88.29
BLD 90.90 30.97 61.44 66.26 61.66 65.95 91.63 13.83 61.44 66.26 61.44 66.26

100 0 63.56 70.40 78.43 65.05 77.86 65.71 63.56 70.40 63.56 70.40
A: Averaging; V: Voting

Table 5.5: Average number of features selected by each classification approach in the
training.

LPSVM V-SFM V-rSFM V-rSFM

Data set NLPSVM A-SFM A-rSFM A-rSFM

WDBC 30 11.6 16.2 5.4
30 8.5 11.6 11.7

HD 13 7.4 9.6 2.3
13 8.7 5.9 4.6

PID 8 4.3 4.3 2.0
8 4.5 6.9 7.2

BLD 6 3.3 3.3 2.0
6 3.7 5.8 5.8

Table 5.6: Testing Performance (in % of accuracy) from 10 replications of 5-fold cross
validation on 4 publicly available data sets. The entries in bold are the top two perfor-
mances.

LAD* LPSVM V-NN V-SFM V-rSFM V-rSFM

Data set NLPSVM A-NN A-SFM A-rSFM A-rSFM

WDBC 95.00** 97.00 91.60 94.99 95.10 90.51
95.38 93.18 96.01 95.82 95.78

HD 83.40 82.96 80.87 82.49 82.45 72.86
83.94 82.77 84.92 70.68 68.93

PID 77.20 76.93 63.14 72.75 72.92 73.38
76.09 74.94 75.83 75.72 75.94

BLD 74.90** 65.71 38.38 58.20 58.03 56.78
57.97 54.09 59.57 63.28 62.93

* LAD results is from [43], which applies 20 replications of 10-fold cross validation.
** The data sets have been cleaned before applying LAD.
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Table 5.7: Testing Performance (in % of sensitivity and specificity) from 10 replications
of 5-fold cross validation on 4 publicly available data sets. The entries in bold are the
top two performances.

LPSVM V-NN V-SFM V-rSFM V-rSFM

Data set NLPSVM A-NN A-SFM A-rSFM A-rSFM
Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

WDBC 94.10 98.71 80.90 97.95 90.10 97.90 90.76 97.67 78.22 97.81
90.29 98.40 82.18 99.72 90.81 99.10 92.93 97.53 92.46 97.76

HD 78.30 86.94 73.78 86.94 76.66 87.50 75.89 88.06 69.17 76.00
76.99 89.88 76.79 87.88 76.22 92.38 70.92 70.44 68.25 69.50

PID 55.63 88.34 28.49 81.70 50.07 84.90 49.81 85.30 60.41 80.30
53.34 88.28 51.46 87.50 55.56 86.70 56.46 86.00 56.94 86.10

BLD 90.90 30.97 13.95 72.07 57.05 59.79 57.00 59.44 90.00 10.97
100 0 29.15 88.48 56.85 63.31 69.00 55.38 68.05 55.86

clean as WDBC, but still reasonably predictable. On the other hand, it is known

that PID and BLD are very complex data sets and difficult to classify. The top two

performances for each data set are highlighted in bold. The consistent results are shown

in Table 5.6. Table 5.7 presents a breakdown of accuracy results in terms of sensitivity

and specificity.

In general, the A-SFM achieved better classification accuracies than those of the V-

SFM. The results in the testing phase show that the performances of SVM models and

SFM models are very comparable while SFM models use far fewer features. Table 5.6

also includes results of another classification technique with feature selection designed

especially for attribute type of medical data sets, called Logical Analysis of Data (LAD),

from Hammer 2006 [43]. Except for the BLD data set, LAD and SFM models are also

comparable. The standard SFM models seem to perform as well as the rSFM models,

which consistently provided better training results. The normalization models of rSFM

models seem to decrease the accuracies in most cases except the PID data set. This

may imply that that the relaxation of SFM, which is easier to solve, can improve the

classification accuracies. However, the numbers are not significant enough to draw such

conclusion.

Although not in the attribute data sets, results in the next section (Section 5.5) will

show that all variations of SFM models outperform SVM in the EEG MTS data sets.

This may indicate that for attribute data sets, the Euclidean distance is not sufficient

for SFM to measure the similarities.
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5.5 SFM Classification on Multivariate Time Series Data Sets

In this section, the developed classification framework discussed in Chapter 4 is applied

on the real EEG MTS data sets. Since the goal is to classify normal and pre-seizure

states of EEG MTS data sets, sample correlations of pre-seizure cases between training

set and testing set should be avoided. Therefore, leave-one-seizure-out cross validation

is operated in order to correctly estimate the performance of the SFM classification

framework.

Table 5.8: Accuracy from validation of EEG classification based on KNN, SVM and
SFM classifiers with their best parameter settings.

NN KNN SVM SFM
Patient Acc. Setting Acc. Setting Acc. Accuracy Setting

1 80.96% EU 85.71% k = 3,TS 71.43% 85.72% A,EU
2 78.57% DTW 83.33% k = 7,TS 78.57% 88.10% A,DTW
3 77.28% TS 85.61% k = 3,TS 85.61% 90.91% A,TS
4 50.00% TS 71.57% k = 3,TS 60.79% 64.71% A,TS
5 52.94% DTW 64.71% k = 3,TS 57.85% 59.81% V,DTW
6 72.22% DTW 92.60% k = 3,TS 79.63% 83.34% A,DTW
7 61.60% TS 88.41% k = 3,TS 70.29% 68.12% A,TS
8 71.06% TS 88.60% k = 5,TS 66.67% 74.56% A,TS
9 54.17% DTW 72.50% k = 3,TS 56.67% 60.84% A,TS
10 66.67% EU 83.34% k = 5,TS 69.45% 76.39% V,DTW

Average 65.14% 80.94% 68.74% 73.21%
A = averaging. V = voting. Acc. = accuracy.

EU = Euclidean. TS = T-statistics. DTW = dynamic time warping.

Table 5.8 shows performance of SFM classification on the ten EEG MTS data sets.

The performance of the nearest neighbor rule is also included, which is what SFM based

on without optimal feature selection. Besides, KNN and SVM classification techniques

are tested on the EEG MTS data sets.

Note that the average values in the table are weighted and calculated according

to the numbers of seizures of each patients. The classification performance of SFM

obtained after the leave-one-seizure-out cross validation yields an accuracy of 73.21%,

while without optimal feature selection, the nearest neighbor rule only gives an overall

accuracy of 65.14%. The SFM feature selection and ensemble classification does improve

the performance of the nearest neighbor rule. The classification performance of SVM
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yields an accuracy of 68.74%, which indicate that SFM outperforms SVM. The best

classification performance for the EEG MTS data sets is provided by KNN rule, which

results in an overall accuracy of 80.94%.

Table 5.9: Classification ability for normal and pre-seizure EEG states in terms of accu-
racies based on nearest neighbor (NN), KNN and SFM classifiers with best parameter
settings. These values are obtained by leave-one-seizure-out and including test sam-
ples in the training phase. As a result, they are the upper bounds on discrimination
accuracies for each classifier.

NN KNN SFM
Patient Accuracy Setting Accuracy Setting Accuracy Setting

1 80.96% A,EU 85.72% k = 9,EU 92.86% A,EU
2 78.57% V,EU 85.71% k = 9,TS 100.00% V,TS
3 77.28% A,TS 85.61% k = 3,TS 100.00% A,EU
4 50.00% A,TS 71.57% k = 3,TS 88.24% A,TS
5 52.94% A,DTW 64.71% k = 3,TS 89.22% V,TS
6 72.22% A,DTW 92.60% k = 3,TS 98.15% A,DTW
7 61.60% A,TS 88.41% k = 3,TS 86.96% V,DTW
8 71.06% A,TS 88.60% k = 5,TS 100.00% A,DTW
9 54.17% A,DTW 72.50% k = 3,TS 94.17% A,DTW
10 66.67% A,EU 83.34% k = 5,TS 95.83% A,DTW

Average 64.49% 81.05% 94.95%
A = averaging. V = voting.

EU = Euclidean. TS = T-statistics. DTW = dynamic time warping.

To show how SFM can be further improved, the classification ability in terms of ac-

curacies of SFM on each EEG MTS data set are first computed as shown in Table 5.9.

For a simple comparison with other techniques, the classification abilities of the KNN

classifier are also computed, as well as the nearest neighbor rule, which is a method

that no training is required. These values are obtained by leave-one-seizure-out sample

division and including the test samples directly to construct the classifier without con-

sider the training phase. They are the upper bounds on discrimination accuracies for

each classifier.

The results show that SFM has very high classification ability in terms of accuracy.

There is a large gap between the SFM accuracy from the cross validation and its

corresponding upper bounds. This means that there are large space for improving the

SFM classification ability. Hence, more improvements for training the SFM model will

need to be investigated. Variations of SFM optimization models may be tried on in
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Table 5.10: Training and testing performance (in % of accuracy) of all classification
approaches tested on the EEG data set. The entries in bold are the top two perfor-
mances.

EEG LPSVM V-NN V-SFM V-rSFM V-rSFM

Classification NLPSVM V-NN A-SFM A-rSFM A-rSFM

Training 88.89 - 78.03 78.28 72.77
54.14 - 79.59 83.58 83.57

Testing 68.74 60.35 69.39 69.06 70.81
49.13 63.83 72.88 72.55 72.98

Table 5.11: Training and testing performance (in % of sensitivity and specificity) of all
classification approaches tested on the EEG data set. The entries in bold are the top
two performances.

EEG LPSVM V-NN V-SFM V-rSFM V-rSFM

NLPSVM V-NN A-SFM A-rSFM A-rSFM
Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

Train- 88.24 89.54 - - 76.75 79.30 79.01 77.55 72.52 73.01
ing 54.03 54.25 - - 79.02 80.15 84.32 82.84 84.02 83.12

Test- 62.75 74.73 67.10 53.59 68.41 70.37 66.01 72.11 73.86 67.76
ing 53.59 44.66 69.28 58.39 71.68 74.07 70.37 74.73 67.10 78.87

order to find possible improvements.

The relaxed optimization models of SFM are also tested on the EEG MTS data sets.

Table 5.10 shows the performance accuracy in both training and testing phases of SFM

classifiers as well as the performance accuracies of linear SVM (LPSVM), nonlinear

SVM with Gaussian kernel (NLPSVM), and the nearest neighbor (NN, which is the

non-optimized SFM) classifiers are included.

Lemma 4.3.1 indicate that in the training phase the relaxed models of SFM (rSFM)

give at least the classification accuracies of what standard SFM does. The empirical

results are consistent with the theoretical results as shown in Table 5.10. Although in

training phase the SVM approach outperformed the SFM approach, they were outper-

formed by all the SFM variations in the testing phase (see Figure 5.5). This is mainly

due to the SVM approach, which may overfit the data and the optimal hyperplanes

found in the training phase did not take into account the sequence correlation between

the data points of time series. The temporal properties in time series were neglected

so that the SVM approach could not search for time series similarity. Consequently,
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the patterns found in the training phase are uncorrelated to the patterns in the test-

ing phase. The classification performance by SVM yielded an overall sensitivity at the

rate of 62.75% and an overall specificity at the rate of 74.73%. The best classification

performance was achieved by A-rSFM, which yielded an overall sensitivity at the rate

of 67.10% and an overall specificity at the rate of 78.87%.

Table 5.11 shows the performance in terms of sensitivity and specificity in both

training and testing phases of these classifiers. It indicates that SFM approaches provide

a very balanced classification performance for both positive and negative cases when

compared to other approaches.

0.000.100.200.300.400.500.600.700.800.901.00
SVM NN SFM SFMRx SFMRxNA

cc
u

ra
cy

EEG Dataset Test Performance
NLP

V
A

VVV
AAA

LP

Figure 5.5: Testing performance (in % of accuracy) of all classification approaches
tested on the EEG data sets.

5.6 Classification Results Using k-Nearest Neighbor SFM

Different k values, k = 4, 8, 12, 14, 16, 20, . . . , 100 and all neighbors, of the KNN rule is

applied on generating the accuracy matrix and the average distance matrices for SFM

optimization models. Figure 5.6 to Figure 5.9 displays the training accuracies obtained

from applying V-SFM and A-SFM on the four attribute data sets. Each point on a

figure represent an accuracy associated with a k value used in calculating the distance

matrices.

Figure 5.10 to Figure 5.13 are testing results with different k values on the four
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Figure 5.6: Training Accuracies of the k-Nearest-Neighbor Support Feature Machine
on the Wisconsin Diagnostic Breast Cancer Data Set.
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Figure 5.7: Training Accuracies of the k-Nearest-Neighbor Support Feature Machine
on the BUPA Liver Disorders Data Set.
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Figure 5.8: Training Accuracies of the k-Nearest-Neighbor Support Feature Machine
on the Cleveland Heart Disease Data Set.
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Figure 5.9: Training Accuracies of the k-Nearest-Neighbor Support Feature Machine
on the Pima Indians Diabetes Data Set.
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Figure 5.10: Testing Accuracies of the k-Nearest-Neighbor Support Feature Machine
on the Wisconsin Diagnostic Breast Cancer Data Set.
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Figure 5.11: Testing Accuracies of the k-Nearest-Neighbor Support Feature Machine
on the BUPA Liver Disorders Data Set.
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Figure 5.12: Testing Accuracies of the k-Nearest-Neighbor Support Feature Machine
on the Cleveland Heart Disease Data Set.
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Figure 5.13: Testing Accuracies of the k-Nearest-Neighbor Support Feature Machine
on the Pima Indians Diabetes Data Set.
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Table 5.12: Performance (%) of sample-preserved k-median in SFM on WDBC data set
using ten times of five-fold cross validation. Numbers of positive and negative training
samples without sample selection are 170 and 286, respectively.

Methods Sensitivity Specificity Accuracy Best Setting
k1 k2

V-NN 80.90 97.95 91.60 N/A N/A
A-NN 82.18 99.72 93.18 N/A N/A
V-SFM 90.10 97.90 94.99 N/A N/A
A-SFM 90.81 99.10 96.01 N/A N/A

V-kMNN 87.22 96.63 93.13 3 5
A-kMNN 91.00 97.77 95.25 2 5
V-kMSFM 80.21 93.56 88.59 3 6
A-kMSFM 91.48 96.08 94.37 2 5

attribute data sets. These results indicate that using all samples is necessary for SFM to

provide its best performance. In addition, the average scheme alone without SFM gives

quite consistent high accuracy in the training, and is not significantly affected by the

change of k values. However, the average scheme of SFM fails to classify the data when

not all neighbors are included. It seems that the average scheme with optimal feature

selection loses its ability to capture the difference of the average distances between the

two classes in the data. It is better to use the average scheme without feature selection.

Moreover, the voting scheme alone without SFM fails to classify the data if fewer

than 50 neighbors are considered in the HD data set and 20 in PID data set. However,

the voting scheme of SFM gives very consistent high accuracy in both the training and

testing phases. This may indicate that the voting scheme with optimal feature selection

can capture the differences of the two classes in the data sets.

5.7 Classification Results Using Clustered SFM

One problem with SFM is that it carries all training samples while performing classi-

fication in the testing phase, which is very inefficient compared with SVM and most

classification models. Hence, the idea of reducing the number of carried samples for

SFM is to only keep most representative samples among the training samples while

classifying unknown samples. The sample-preserved k-median (SPKM) clustering may

be helpful in choosing such training samples.
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Table 5.13: Performance (%) of sample-preserved k-median in SFM on HD data set
using ten times of five-fold cross validation. Numbers of positive and negative training
samples without sample selection are 110 and 128, respectively.

Methods Sensitivity Specificity Accuracy Best Setting
k1 k2

V-NN 73.78 86.94 80.87 N/A N/A
A-NN 76.79 87.88 82.77 N/A N/A
V-SFM 76.66 87.50 82.49 N/A N/A
A-SFM 76.22 92.38 84.92 N/A N/A

V-kMNN 83.25 80.00 81.50 6 5
A-kMNN 83.94 85.00 84.53 6 6
V-kMSFM 77.33 76.88 77.10 4 6
A-kMSFM 72.96 81.88 77.77 2 5

Table 5.14: Performance (%) of sample-preserved k-median in SFM on PID data set
using ten times of five-fold cross validation. Numbers of positive and negative training
samples without sample selection are 214 and 400, respectively.

Methods Sensitivity Specificity Accuracy Best Setting
k1 k2

V-NN 28.49 81.70 63.14 N/A N/A
A-NN 51.46 87.50 74.94 N/A N/A
V-SFM 50.07 84.90 72.75 N/A N/A
A-SFM 55.56 86.70 75.83 N/A N/A

V-kMNN 43.27 74.40 63.54 6 4
A-kMNN 53.03 86.40 74.74 5 3
V-kMSFM 72.33 72.60 72.53 2 4
A-kMSFM 69.04 74.40 72.53 3 4

Table 5.15: Performance (%) of sample-preserved k-median in SFM on BLD data set
using ten times of five-fold cross validation. Numbers of positive and negative training
samples without sample selection are 160 and 116, respectively.

Methods Sensitivity Specificity Accuracy Best Setting
k1 k2

V-NN 13.95 72.07 38.38 N/A N/A
A-NN 29.15 88.48 54.09 N/A N/A
V-SFM 57.05 59.79 58.20 N/A N/A
A-SFM 56.85 63.31 59.57 N/A N/A

V-kMNN 58.50 26.21 44.93 2 5
A-kMNN 71.00 42.07 58.84 2 6
V-kMSFM 61.00 46.90 55.07 2 6
A-kMSFM 68.50 39.31 56.23 5 3
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Table 5.12 to Table 5.15 shows the performance on the four attribute data sets. It

is clear that adapting the sample selection technique does not improve the classification

accuracies in all four data sets. Only nearest neighbor rule is improved. After decreasing

the number of training samples for SFM and shrinking the number of features by SFM,

the classification accuracies are reduced. SFM combining with chosen samples failed

to classify. One major reason could be that the number of training samples is reduced

while the features are shrank, which gives too few information for both the voting

and averaging schemes of nearest-neighbor rule to distinguish new samples. However,

the improved performance on the nearest neighbor rule may indicate that the SPKM

clustering gives good selection of training samples.

The results motivates the new feature selection algorithms in the feature space

SPKM clustering that are proposed in this dissertation, discussed in Section 6.3.1.
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Chapter 6

OPTIMIZATION MODELS FOR MULTIVARIATE

DATA CLUSTERING

Clustering is an unsupervised method for data analysis, in which the group labels

of data points are not known during the training of clusters. It is concerned with

partitioning data into k disjoint subsets, called clusters, such that the data points

are more “similar” among each other within a cluster than to data points in other

clusters. Appropriate measures of “similarity” between two data points may depend

on the underlying characteristics of the data set itself. One may employ the 1-norm or

Euclidean distance measures for data in a metric space [15]. One may use the dynamic

time warping distance for time series data [8, 53].

Given a data set of Rn×m and an integer k. The goal of the k-median clustering

algorithm is to determine k cluster centers in m-dimensional real space Rm so that each

of the n sample points is assigned to one of the k clusters, in a way that the sum of

the distances of each point to the nearest cluster center is minimized. These k cluster

centers are called medians. The k-means clustering is similar. The objective of k-means

clustering is to minimize the sum of squared Euclidean distances from each point to its

cluster center.

Solution ideas used for k-means problems can usually be applied to the k-median

problems [1, 15]. Many efficient algorithms designed for k-group clustering problems

require a “guess” of initial cluster centers, and then try to adjust cluster centers itera-

tively until they converge to a local minimum. The most commonly used technique to

solve the k-means in practice is developed by Lloyd (1982) [63]. The Lloyd’s algorithm

is based on the observation that the optimal location of a center is at the centroid of the

associated cluster [35]. At initial stage, a starting solution is randomly chosen. Then the
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Figure 6.1: An example of a sample-preserved median in a cluster.

algorithm determines new clusters and moves every center to the centroid of a cluster

at each stage until some convergence condition is met. A filtering algorithm proposed

in [52] gives a simple and efficient implementation of Lloyd’s algorithm. Methods in

[15] obtains the k medians by an algorithm that solves a concave optimization problem,

which also requires an initial guess of centers. Studies in [56] have found that a good

cluster center initialization can improve such algorithms. In [62], a global k-means

method especially involves an algorithm for choosing the initial clustering centers. A

technique in [17] refines initial points based on an efficient technique for estimating the

modes of a distribution, which allows the iterative algorithm to converge to a “better”

local optimal solution.

The k-median problem is also similar to the uncapacitated facility location problem

in its goal [24]. It is usually known as a p-center location problem or node selection

problem in a graph [25]. In this dissertation, such a k-median method is called the

sample-preserved k-median (SPKM) method. Figure 6.1 is an example of a sample-

preserved median in a cluster. The highlighted red circle points to the sample that has

the smallest sum of the Euclidean distances to all other samples in the cluster. The

sample-preserved property is critical especially when not all values are valid in some
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application domain. In such a case, a cluster median is better to be an existing sample in

order to contain valid values. The original k-median as shown in [15] chooses a medium

value at each of the m dimension. Those medians may not be any of the existing

samples, which are not sample-preserved. Instead, SPKM method chooses centers from

existing samples by considering the distances between samples in all the m dimensions

simultaneously. By formulating the k-median problem as a facility location problem,

one can benefit from its flexibility of choosing a distance measure. The cost matrix used

in facility location can be taken as a distance matrix for the SPKM method. Since the

distance matrix is pre-calculated, the model dose not depend on the choice of distance

measures. Any applicable similarity measure can be used in the SPKM method.

Similarity measures have been largely applied on analysis of time series data sets

[31, 91, 54]. Therefore, clustering techniques incorporating variant distance measures

may be helpful for the analysis of time series data. SPKM method has this property.

The SPKM method that can incorporate arbitrary time series similarity measures, it

is formulated as an integer programming (IP) problem that is NP-hard [23]. Hence,

approximation algorithms have been developed for SPKM. Greedy local-search based

solutions can be found in [23, 38]. There are also techniques based on a linear pro-

gramming relaxation proposed in [68], a hierarchically greedy approach proposed in

[72], and an approximation derived from a primal-dual-based algorithm with the use of

Lagrangian relaxation proposed in [49].

Although approximation algorithms are developed for the SPKM problem, their

formulations are not as simple and easy as the method proposed for the original (non-

sample-preserved) k-median problem in [15]. Its formulation is a dual minimization

problem, and it comes with a bilinear program algorithm that efficiently approximates

the solution for the original k-median problem. Only two simple linear programs are

needed and the algorithm alternately solves them until a local optimal solution is found.

However, the original k-median method is not sample-preserved. Figure 6.2 is an ex-

ample of an original median in a cluster. All samples are projected onto each of the

feature spaces and the resulting median is a combination of median values from each of

the feature spaces. Those values do not necessarily come from existing sample values.
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Figure 6.2: An example of the original median in a cluster.

Observe also that it does not allow a flexible choice of distance measure. Only the

1-norm distance can be used in order to find a fast efficient solution. If the 2-norm is

applied, the problem results in many local minima and becomes a considerably harder

problem [15]. Hence, it can hardly be applied on time series data.

Therefore, an efficient algorithm for solving the SPKM clustering problem is needed.

In this Chapter, two new k-median algorithms are proposed to satisfy such need. They

are SPKM methods, and each is formulated as a 0-1 integer programming problem. The

first method is called the Bilinear Program Sample-Preserved k-Median (BPSPKM)

method, which applies a sample-to-sample distance matrix in a “whole” m-dimensional

space. The second method is called the Feature Space Sample-Preserved k-Median

(FSSPKM) method, which adapts a sample-to-sample distance matrix at “each” of the

m feature spaces.

Both method can be solved by the same idea of the bilinear program algorithm

used for solving the original k-median method in [7, 15]. The proposed bilinear pro-

gram SPKM algorithm contains two linear programs that give binary solutions under

a condition that is easy to be met. The SPKM solution can be approximated by

solving the two programs alternately until the algorithm converges to a local optimal.
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The bilinear program SPKM algorithm generalizes the original k-median algorithm to

accommodate different distance measures using linear programming formulations. Fur-

thermore, equivalent SPKM algorithms without using any linear programs are proposed

for both BPSPKM and FSSPKM, which is even more efficient to use.

Designing especially for the original k-median algorithm in [15], Mangasarian (2004)

[71] proposed a feature selection clustering algorithm. The proposed feature selection

technique shows possible improvements of classification by using smaller number of

features. Therefore, feature selection criteria tailor made for the FSSPKM clustering

are proposed, which utilize the distance matrix at each feature space for the revised

k-median technique so that the sample-preserved property is kept.

Throughout this chapter, all vectors are column vectors. Suppose a data set contains

n samples, and each has m features. Let i, j ∈ {1, . . . , n}, s ∈ {1, . . . ,m}, p ∈ {1, . . . , k}.
If A is a matrix, Ai is a vector which denotes the ith row of A; and Aij is a value of

the ith row and jth column of A. Let Gp denote the set of indices of samples that are

assigned to cluster p for p = 1, . . . , k. That is Gp ⊂ {1, 2, . . . , n} and Gp ∩Gp′ = ∅ for

joint clustered subsets p 6= p′ for p and p′ ∈ {1, . . . , k}. G1∪G2∪· · ·∪Gk = {1, 2, . . . , n}.

6.1 Bilinear Program Sample-Preserved k-Median (BPSPKM) Clus-

tering

In this section, a bilinear program sample-preserved k-median (BPSPKM) clustering

algorithm is proposed that generalizes the original k-median algorithm to adapt different

distance measures using LP formulations. BPSPKM is an algorithm that provides local

optimal solutions to the IP problem of the SPKM clustering.

All cluster centers obtained by the SPKM method are existing samples, thus the

“shape” of time series is retained in those cluster centers. However, the SPKM method

is formulated in IP problem, which is not easy to solve. Therefore, a BPSPKM clus-

tering algorithm is proposed that contains two LP problems. The algorithm adapts a

precalculated distance matrix that forms a sample-preserved model and can then be

solved by the bilinear program algorithm, which is used to solve the original k-median
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method easily and efficiently as shown in [7, 15]. By this way, the proposed BPSPKM

keeps the major benefits of the two existing k-median clustering methods. It has the

flexibility of choosing a distance measure as what the SPKM method has due to its

sample-preserved property and the incorporated distance matrix. Hence, it can be eas-

ily applied on time series type of data. It can also avoid the problem of having median

values not valid in some application domains. Having sample-preserved medians can

guarantee that the obtained center values are valid. Moreover, it has the efficiency in

obtaining an approximated solution as the original k-median method proposed in [15]

due to the two linear programs in its model.

Let D denote a distance matrix whose element Dij represents the distance from

sample i to sample j for i, j = 1, . . . , n. The objective is to find k samples as cluster

medians so that the sum of the distances from all samples to their closest cluster medians

is minimized. A decision variable X̄ ∈ {0, 1}n×k is used to determine the optimal cluster

medians. If X̄ip = 1, sample i is determined to be a cluster median of cluster p, for

i = 1, . . . , n and p = 1, . . . , k. Otherwise, X̄ip = 0. Let X be the relaxation of the

binary variable X̄. It will be shown that the proposed algorithm gives binary solutions

by solving the relaxation of the integer program under a certain condition.

Program (6.1) is reformulated as a dual minimization problem. In the optimal

solution to the inner minimization, the minimum distances from each sample to each of

the k cluster centers are found, which can be viewed as cluster assignment. The overall

objective function tries to find the optimal cluster centers such that the sum of the

distances from all samples to their nearest cluster medians is minimized. The overall

solution to Program (6.1) provides the optimal samples that represent the k cluster

medians.
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min
X

n∑

i=1

min
p=1,...,k

{
n∑

j=1

DijXjp}

s.t.
n∑

i=1

Xip = 1 p = 1, . . . , k

k∑

p=1

Xip ≤ 1 i = 1, . . . , n

0 ≤ Xip ≤ 1 i = 1, . . . , n, p = 1, . . . , k.

(6.1)

To solve the optimization problem in Program (6.1), the objective function is re-

duced into a single minimization problem. The idea of Lemma 2.1 in [7] (Lemma 2.4.1)

is applied and another equivalent optimization problem is formed with a single nonlinear

objective function and linear constraints as shown in Program (6.2).

Lemma 2.4.1 indicates that solving Program (6.1) is equivalent to solving Program

(6.2). The objective function (6.2a) contains the element-by-element multiplication of

two decision variables Xip and Tip for i = 1, . . . , n and p = 1, . . . , k. Therefore, to

satisfy the equivalent condition stated in Lemma 2.4.1, Constraints (6.2b), (6.2c) and

(6.2d) are included in the formulation.

min
X,T

n∑

i=1

k∑

p=1





n∑

j=1

DijXjp



Tip (6.2a)

s.t.

k∑

p=1

Xip ≤ 1 i = 1, . . . , n

0 ≤ Xip ≤ 1 for i = 1, . . . , n, p = 1, . . . , k

k∑

p=1

Tip = 1 for i = 1, . . . , k (6.2b)

n∑

i=1

XipTip = 1 for p = 1, . . . , k (6.2c)

Tip ≥ 0 for i = 1, . . . , n; p = 1, . . . , k. (6.2d)
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6.1.1 Uncoupled Bilinear Program Algorithm

The concept of Uncoupled Bilinear Program Algorithm (UBPA) proposed in [7] can

be applied to solve this nonlinear optimization problem. The algorithm contains two

major LP formulations. One is for cluster assignment, and the other is for cluster center

update.

1. LP Formulation for Cluster Assignment:

min
T

n∑

i=1

k∑

p=1





n∑

j=1

DijXjp



Tip

s.t.
k∑

p=1

Tip = 1, i = 1, . . . , n

Tip ≥ 0, i = 1, . . . , n; p = 1, . . . , k.

(6.3)

2. LP Formulation for Cluster Median Update:

min
X

n∑

i=1

k∑

p=1





n∑

j=1

DijXjp



 Tip (6.4a)

s.t.

k∑

p=1

Xip ≤ 1 i = 1, . . . , n (6.4b)

n∑

i=1

XipTip = 1 p = 1, . . . , k (6.4c)

0 ≤ Xip ≤ 1, i = 1, . . . , n; p = 1, . . . , k.

Once the two major LP problems are formulated, local optimal solutions to Program

(6.2) can be found by starting with a set of initial cluster centers and alternately solving

the two linear programs, as shown in Algorithm 6.1.1. Both Program (6.3) and Program

(6.4) can produce binary solutions of Xip and Tip for i = 1, . . . , n and p = 1, . . . , k.
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Algorithm 6.1.1 Bilinear Program Sample-Preserved k-Median Clustering Algorithm
Input: k = number of clusters; and X0, an initial decision of k samples as cluster
medians.

Set t = 0 and solve the two linear programs alternatively.

1. Cluster Assignment. Given Xt, find the solution T t of Program (6.3).

2. Cluster Median Update. Given T t from the optimal solution of Program (6.3),
update Xt+1 by solving Program (6.4).

Stop when
k∑

p=1
Xt

ip =
k∑

p=1
Xt+1

ip for i = 1, . . . , n. Set X∗ = Xt+1 and T ∗ = T t.

Otherwise, increment t by one and continue to Step 1.

Output: A decision of cluster medians, X∗, and cluster assignment, T ∗.

F1

F2

Figure 6.3: An example of a violation of the uniqueness.
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Proposition 6.1.1 confirms that Program (6.3) produces binary solutions. Proposition

6.1.2 states a condition for Program (6.4) to produce binary solutions. It is to assume

that the sum of distances from sample i to all other samples in the same cluster p is

“unique” within that cluster for all i ∈ Gp. This assumption is not difficult to achieve.

Only in a very rare case such that all samples in a cluster are symmetric with possible

cluster centers, the sum of distances to other samples can be equal for at least two

separate samples. An example can be found in Figure 6.3, where two circled samples

have the equal sum of the distances to all other samples in the cluster. In such cases,

fractional solutions may occur. Even if the assumption is not satisfied, the samples with

fractional solutions would indicate that any of them can equally be a cluster median.

The fractional solution is due to the equal minimum sum of distances from the samples

with the fractional solution to all other samples in the cluster. Hence, any one of such

samples can be taken as a solution. With these two propositions, one can obtain local

optimal solutions of SPKM without solving the IP problem. Only the two simple linear

programs are needed.

Algorithm 6.1.1 converges to a local optimal solution, according to a similar idea of

the finite termination results proposed in [14], which is given in Proposition 6.1.3.

Proposition 6.1.1. There exists an optimal solution of Program (6.3) such that T ∈
{0, 1}n×k.

Proof. The constraint matrix in Program (6.3) is totally unimodular. By Proposition

3.3 in [95], the linear program (6.3) has integral optimal solution. Since Tip is bounded

by 0 and 1, for i = 1, . . . , n and p = 1, . . . , k, Program (6.3) has a binary optimal

solution.

Proposition 6.1.2. Let Θip =
n∑

j=1

DijTjp for i = 1, . . . , n and p = 1, . . . , k. For each

p, if every element of Θip for all i ∈ Gp is unique, then the linear programming problem

of Program (6.4) gives binary solutions of X.

Proof. It can be proved by contradiction. Recall that Θjp is the sum of distances from

sample j to all other samples in the same cluster p. Constraint (6.4b) ensures that each
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sample can be a cluster center for at most one cluster. Constraint (6.4c) indicates that

for a given p, exactly one of the samples that are assigned to cluster p is a cluster center.

Objective (6.4a) finds the k minimum values of Θjp for all j ∈ Gp where p = 1, . . . , k.

Suppose that for each p, every element of Θjp for all j ∈ Gp is unique. Also, suppose

that an optimal solution of Problem (6.4) contains X∗
ip and X∗

i′p, i, i′ ∈ Gp, that are

fractional for a given p such that X∗
ipTip + X∗

i′pTi′p = 1 and X∗
ip + X∗

i′p = 1 due to

Constraint (6.4c). Then the term X∗
ipΘip + X∗

i′pΘi′p in the objective is the minimum

among any
∑

j∈Gp

XjpΘjp formed by feasible values of X ′
jps corresponding to a given

p. Since every element of Θip for all i ∈ Gp is unique for a given p, without loss of

generality, assume that Θip < Θi′p, which implies that there exists a minimum value of

Θjp for all j ∈ Gp.

Then Θip = X∗
ipΘip + X∗

i′p)Θip < X∗
ipΘip + X∗

i′pΘi′p, since X∗
ip + X∗

i′p = 1 and

Θip < Θi′p. There exist a solution X∗∗
ip = 1 such that the term X∗∗

ip Θip minimizes the

objective function for the given p. This contradicts the fact that X∗
ipΘip+X∗

i′pΘi′p must

be the minimum among all feasible solution of X ′
jps. Hence, the optimal solutions of

Xip are binary if for each p, every element of Θip for all i ∈ Gp is unique.

Proposition 6.1.3. The Bilinear Program Sample-Preserved k-Median Clustering Al-

gorithm (Algorithm 6.1.1) terminates in a finite number of iterations at a cluster as-

signment that is locally optimal.

Proof. It needs to be shown that the objective value of Program (6.2) can not be

decreased by either reassignment of a sample to a different cluster, or by deciding a

new cluster median for any of the clusters. At each iteration, in the step for cluster

assignment, each sample is assigned to a closest median. Thus, the objective value of

Program (6.2) cannot be increased. In the step for cluster median update, each cluster

median is recomputed in order to minimize the sum of all distances from each sample

in the cluster to its cluster median. Hence, the overall objective value can be either

strictly decreased or can stay the same as the algorithm terminates.

It can be concluded that the algorithm must terminate at some clustering assign-

ment that is locally optimal, because the algorithm does not repeat assignments by the
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stopping criterion, the overall objective function is non-increasing and bounded below

by zero, and there is a finite number of ways to assign n samples to k clusters.

6.1.2 Equivalent Sequential Search Algorithm without LP formula-

tions

By introducing two matrices ∆ and Θ, an equivalent algorithm to Algorithm 6.1.1 can

be formulated without the two linear programs. It is a non-LP sequential search SPKM

algorithm shown in Algorithm 6.1.2.

In the step of cluster assignment, a sample is assigned to the closest cluster median.

Let ∆ = D · X, then ∆ip represents distance from sample i to the cluster median p.

Sample i is then assigned to a closest cluster median p, which has the minimum of ∆ip

among all p ∈ {1, . . . , k}. This solution is the same as the exact solution to Program

(6.3).

Similarly, in the step of cluster median update, according to assigned samples in a

cluster, a cluster median in that cluster is a sample, which has the smallest distance

to all other samples in the cluster. Let Θ = D · T . Then for a given p, Θip represents

the sum of the distances from sample i to all other samples in the same cluster p where

i ∈ Gp. Hence, the cluster median is the sample that has the minimum of Θip among

all i ∈ Gp. As in Proposition 6.1.2, for each p, if every element of Θip for all i ∈ Gp is

unique, then the solution of cluster medians from Algorithm 6.1.2 is the same as the one

from Program (6.4). If the uniqueness condition is not satisfied, any sample i having

the same minimum Θip as other samples in the cluster p can be taken as a solution. In

this case, Algorithm 6.1.2 can also pick the same solution as Program (6.4).

Since the same idea is used in Algorithm 6.1.1, Proposition 6.1.3 also applies to

Algorithm 6.1.2 that in finite number of steps it will converge to a local optimal solution.
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Algorithm 6.1.2 (Non-LP) Sequential Search Sample-Preserved k-Median Clustering
Algorithm
Input: k = number of clusters; X0

ip, an initial decision of k samples as cluster medians,
for i = 1, . . . , n and p = 1, . . . , k; and Dij , a distance matrix for i, j = 1, . . . , n.

Set t = 0 and solve the following two problems alternatively.

1. Cluster Assignment. Compute ∆ = D ·Xt. Then ∆ip represents distance from
sample i to the cluster center p. Find the closest median p∗ to each sample i.

p∗ = arg min
p=1,...,k

∆ip for each i = 1, . . . , n.

Set T t
ip∗ = 1 and all other T t

ip = 0 for p = 1, . . . , k \ p∗, for each i = 1, . . . , n.

2. Cluster Median Update. Compute Θ = D · T t. Then Θip represents the sum
of distances from sample i to all other samples in the same cluster p. For each
cluster p, find the sample i∗ which has the smallest sum of distances to all other
samples in the same cluster.

i∗ = arg min
i∈Gp

Θip for each p = 1, . . . , k.

Set Xt+1
i∗p = 1 and all other Xt+1

ip = 0 for i = 1, . . . , n \ i∗, for each p = 1, . . . , k.

Stop when
∑k

p=1 Xt
ip =

∑k
p=1 Xt+1

ip for all i. Output final decision X∗ = Xt+1.
Otherwise, increment t by one and continue to solve the two problems.

Output: A decision of cluster median, X∗.
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F1

F2

Figure 6.4: An example of the feature space sample-preserved median in a cluster.

6.2 Feature Space Sample-Preserved k-Median (FSSPKM) Clustering

The Bilinear Program Sample-Preserved k-median (BPSPKM) method applies a sample-

to-sample distance matrix in a “whole” m-dimensional space. Extending from the BP-

SPKM algorithm, the Feature Space Sample-Preserved k-median (FSSPKM) method

adapts a sample-to-sample distance matrix at “each” of the m dimensions. The objec-

tive of FSSPKM is to find k samples at each of the m feature spaces, and take them as

cluster medians so that the sum of all distances from all samples to their closest cluster

medians is minimized. Figure 6.4 displays an example of the feature space sample-

preserved median in a cluster. All sample values are projected onto each of the feature

spaces. Then a sample is chosen as a median of each feature space. The resulting

feature space sample-preserved median is a combination of those median values from

each of the feature spaces. It is similar to the original k-median clustering as shown in

[15], which chooses a medium value at each of the m feature spaces. However, those

medians obtained from the original k-median clustering may not be any of the existing

samples, which are not sample-preserved. The feature space sample-preserved medians

can avoid the problem of having values that are not valid in some application domain.

It guarantees that the chosen values do exist in each feature space. Figure 6.5 displays
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OriginalFSSPKM SPKM
F1

F2

Figure 6.5: The feature space sample-preserved median, the sample-preserved median
and the original median in a cluster.

the three medians in a cluster obtained according to the SPKM, FSSPKM and the

original k-median. It can be observed that the sample-preserved medians tend to get

closer to the majority of the samples in this example. It may imply that those medians

are most representative of the samples in the cluster.

To solve FSSPKM, a bilinear program FSSPKM clustering algorithm is proposed,

applying similar ideas used in [15]. It contains two linear programming problems adapt-

ing a pre-calculated distance matrix and hence forms a sample-preserved method. Using

this method, the FSSPKM algorithm has two major benefits, the efficiency due to the

linear programming formulation, and the flexibility due to the use of a distance ma-

trix. It is especially beneficial when measuring similarities of time series, where variant

distance measures are usually considered. Also the obtained k medians are sample-

preserved in every single feature space, which means that all cluster centers are existing

samples. As a result, the “shape” of data is retained in those cluster centers. Further

classification may be more meaningful.

Let D denote a three-dimensional distance matrix whose element Dijs represents

the distance from sample i to sample j at a feature space s for i, j = 1, . . . , n and
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s = 1, . . . , m. By having this distance matrix in a clustering algorithm, variant distance

measures can be applied. A decision variable X̄ ∈ {0, 1}n×m×k is used to determine

the optimal decision of choosing cluster centers. If X̄isp = 1, sample i is determined

to be a cluster median for cluster p at feature space s, for i = 1, . . . , n, s = 1, . . . ,m

and p = 1, . . . , k; otherwise, X̄isp = 0. Let X be the relaxed variable of X̄. It will be

shown that the proposed algorithm gives binary solutions by solving the relaxation of

the integer program under a certain condition.

Program (6.5) is reformulated as a dual minimization problem. In the optimal

solution to the inner minimization, the minimum distances from each sample to each of

the k cluster centers are found, which can be viewed as cluster assignment. This optimal

objective is to find the closest cluster for each sample. The overall objective function

tries to find the optimal cluster medians such that the sum of distances from each

sample to its nearest cluster median is minimized. The overall solution to Program (6.5)

provides the optimal samples that represent the k cluster medians.

min
X

n∑

i=1

min
p=1,...,k

{
n∑

j=1

m∑

s=1

DijsXjsp}

s.t.
n∑

i=1

Xisp = 1 ∀s, p
k∑

p=1

Xisp ≤ 1 ∀i, s

0 ≤ Xisp ≤ 1 ∀i, s, p.

(6.5)

To solve the dual minimization problem in Program (6.5), the objective func-

tion is reduced into a single minimization problem. The idea of Lemma 2.1 in [15]

(Lemma 2.4.1) is applied and another equivalent optimization problem is formed with

a single nonlinear objective function with linear inequalities as shown in Program (6.6).

Lemma 2.4.1 indicates that solving Program (6.5) is equivalent to solving Program

(6.6). The objective function (6.6a) contains the element-by-element multiplication of

two decision variables Xisp and Tip for all i, s and p. Therefore, to satisfy the equivalent

condition stated in Lemma 2.4.1, Constraints (6.6c), (6.6d) and (6.6e) are included in
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the formulation.

min
X,T

n∑

i=1

k∑

p=1





n∑

j=1

m∑

s=1

DijsXjsp



Tip (6.6a)

s.t.

k∑

p=1

Xisp ≤ 1 ∀i, s (6.6b)

0 ≤ Xisp ≤ 1 ∀i, s, p
k∑

p=1

Tip = 1 ∀i (6.6c)

n∑

i=1

XispTip = 1 ∀s, p (6.6d)

Tip ≥ 0 ∀i, p. (6.6e)

6.2.1 Uncoupled Bilinear Program Algorithm

The concept of Uncoupled Bilinear Program Algorithm (UBPA) proposed in [7, 15] can

be applied on solving this nonlinear optimization problem. The algorithm contains two

major linear programming (LP) formulations. One is for cluster assignment, and the

other is for cluster median update.

1. LP Formulation for Cluster Assignment:

min
T

n∑

i=1

k∑

p=1





n∑

j=1

m∑

s=1

DijsXjsp



Tip

s.t.
k∑

p=1

Tip = 1 ∀i

Tip ≥ 0 ∀i, p.

(6.7)

2. LP Formulation for Cluster Median Update:
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min
X

n∑

i=1

k∑

p=1





n∑

j=1

m∑

s=1

DijsXjsp



Tip

s.t.

k∑

p=1

Xisp ≤ 1 ∀i, s (6.8a)

n∑

i=1

XispTip = 1 ∀s, p (6.8b)

0 ≤ Xisp ≤ 1 ∀i, s, p.

Algorithm 6.2.1 Bilinear Program Feature Space Sample-Preserved k-Median
(FSSPKM) Clustering Algorithm
Input: k = number of clusters and X0, an initial decision of k samples as cluster
medians.

Set t = 0 and solve the two linear programs alternatively.

1. Cluster Assignment. Given Xt, find the solution T t of Program (6.7).

2. Cluster Median Update. Given T t from the optimal solution of Program (6.7),
update Xt+1 by solving Program (6.8).

Stop when
∑k

p=1 Xt
isp =

∑k
p=1 Xt+1

isp for all i, s. Set X∗ = Xt+1 and T ∗ = T t.
Otherwise, increment t by one and continue to solve Program (6.7) and Program (6.8).

Output: A decision of cluster median, X∗, and cluster assignment, T ∗.

Once the two major LP problems are formulated, local optimal solutions to Program

(6.6) can be found by starting with a set of initial cluster centers and alternately solving

the two linear programs, as shown in Algorithm 6.2.1. Both Program (6.7) and Program

(6.8) can produce binary solutions of Xisp and Tip for all i, s and p. Proposition 6.2.1

confirms that Program (6.7) gives binary solutions. Proposition 6.2.2 states a condition

for Program (6.8) to produce binary solutions. It is to assume that the sum of the

distances from sample i to all other samples in the same cluster p is “unique” within

that cluster for all i ∈ Gp. This assumption is not difficult to achieve. Only in a

very rare case such that all samples in a cluster are symmetric with possible cluster

medians, the sum of the distances to other samples can be equal for at least two separate
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samples. In such cases, fractional solutions may occur. Even if the assumption is not

satisfied, the samples with fractional solutions would indicate that any of them can

equally be a cluster median. The fractional solution is due to the equal minimum sum

of the distances from the samples with the fractional solution to all other samples in

the cluster. Hence, any one of the samples can be taken as a solution. With these

two propositions, one can approximate the solution of FSSPKM efficiently. Only the

two simple linear programs are needed. Algorithm 6.2.1 converges to a local optimal

solution, according to a similar idea of the finite termination results proposed in [7, 15],

which is given in Proposition 6.2.3.

Proposition 6.2.1. There exists an optimal solution of Program (6.7) such that T ∈
{0, 1}n×k.

Proof. The constraint matrix in Program (6.7) is totally unimodular. By Proposition

3.3 in [95], the linear program (6.7) has integral optimal solutions. Since Tip is bounded

by 0 and 1, for i = 1, . . . , n and p = 1, . . . , k, Program (6.7) has a binary optimal

solution.

Proposition 6.2.2. Let Θjsp =
n∑

i=1

DijsTip for j = 1, . . . , n; s = 1, . . . , m and p =

1, . . . , k. Given s, for each p, if every element of Θjsp for all j is unique, then the

linear programming relaxation of Program (6.8) gives binary solutions of X.

Proof. It can be proved by contradiction. Consider a feature space s. Recall that

Θjsp is the sum of distances from sample j to all other samples in the same cluster

p. Constraint (6.8a) ensures that each sample can be a cluster center for at most one

cluster. Constraint (6.8b) indicates that for a given p, exactly one of the samples that

assigned to cluster p is a cluster center. Objective (6.8) finds the k minimum values of

Θjsp for all j ∈ Gp for each p.

Suppose that for each p in a given s, every element of Θjsp for all j ∈ Gp is unique.

Also, suppose that an optimal solution of Program (6.8) contains X∗
isp and X∗

i′sp that

are fractional for a given p and s such that X∗
ispTip +X∗

i′spTi′p = 1 and X∗
isp +X∗

i′sp = 1

due to Constraint (6.8b). Then the term X∗
ispΘip + X∗

i′spΘi′p in the objective is the
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minimum among any
∑

j∈Gp

XjspΘjp formed by all feasible values of X ′
jsps corresponding

to a given p. Since every element of Θjsp for all j ∈ Gp is unique, without loss of

generality, assume that Θisp < Θi′sp, which implies that there exists a minimum value

of Θjsp for all j ∈ Gp.

Then Θisp = X∗
ispΘisp + X∗

i′spΘisp < X∗
ispΘisp + X∗

i′spΘi′p since Θisp < Θi′sp and

X∗
isp + X∗

i′sp = 1. There exist a solution X∗∗
isp = 1 such that the term X∗∗

ispΘip mini-

mizes the objective function for the given p. This contradicts the fact that X∗
ispΘisp +

X∗
i′spΘi′sp must be the minimum among all feasible solution of X ′

jsps. Hence, the op-

timal solutions of Xisp are binary if for each p every element of Θjsp for all j ∈ Gp is

unique in a given s.

Proposition 6.2.3. The Bilinear Program FSSPKM Clustering Algorithm (Algorithm

6.2.1) terminates in a finite number of iterations at a cluster assignment that is locally

optimal.

Proof. It needs to shown that the objective value of Program (6.6) can not be decreased

by either reassignment of a sample to a different cluster, or by deciding new cluster

median for any of the clusters. At each iteration, in the step for cluster assignment,

each sample is assigned to a closest median. Thus, the objective value of program

(6.6) can not be increased. In the step for cluster median update, each cluster median

is recomputed in order to minimize the sum of all distances from each sample in the

cluster to its cluster median. Hence, the overall objective value can be either strictly

decreased or can stay the same as the algorithm terminates.

It can be concluded that the algorithm must terminate at some clustering assign-

ment that is locally optimal, because the algorithm does not repeat assignments by the

stopping criterion, the overall objective function is non-increasing and bounded below

by zero, and there is a finite number of ways to assign n samples to k clusters.

6.2.2 Equivalent Algorithm without Solving the LP Formulations

By introducing two matrices ∆ and Θ, an equivalent algorithm to Algorithm 6.2.1

can be formulated without the two linear programs. It is a non-LP sequential search
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Algorithm 6.2.2 (Non-LP) Sequential Search Feature Space Sample-Preserved k-
Median Clustering Algorithm
Input: k = number of clusters; X0

isp, an initial decision of k samples as cluster medians,
for all i, s and p; and Dijs, a distance matrix for i, j = 1, . . . , n and s = 1, . . . , m.

Set t = 0 and solve the following two problems alternatively.

1. Cluster Assignment. Compute ∆ip =
∑n

j=1

∑m
s=1 DijsX

t
jsp for i = 1, . . . , n and

p = 1, . . . , k. Then ∆ip represents distance from sample i to the cluster center p.
Find the closest median p∗ to each sample i.

p∗ = arg min
p=1,...,k

∆ip for each i.

Set T t
ip∗ = 1 and T t

ip = 0 for i = 1, . . . , n and p = 1, . . . , k \ p∗.

2. Cluster Median Update. Compute Θisp =
∑n

j=1 DijsT
t
jp. Then Θisp repre-

sents the sum of distances from sample i to all other samples in the same cluster
p at the dimension of feature s. For each feature s and each cluster p, find the
sample i∗ which has the smallest sum of distances to all other samples in the same
cluster.

i∗ = arg min
i∈Gp

Θisp for each s, p.

Set Xt+1
i∗sp = 1 and Xt+1

isp = 0 for i = 1, . . . , n \ i∗.

Stop when
∑k

p=1 Xt
isp =

∑k
p=1 Xt+1

isp for all i. Set X∗ = Xt+1 and T ∗ = T t. Otherwise,
increment t by one and continue to solve the two problems.

Output: A decision of cluster median, X∗, and cluster assignment, T ∗.
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FSSPKM algorithm as shown in Algorithm 6.2.2.

In the step of cluster assignment, a sample is assigned to the closest cluster median.

Let

∆ip =
n∑

j=1

m∑

s=1

DijsXjsp for all i, p.

Then ∆ip represents the distance from sample i to the cluster median p. Sample i is

then assigned to a closest cluster median p with the distance obtained by the minimum

of ∆ip for p = 1, . . . , k. This solution is the same as the exact solution to Program

(6.7).

Similarly, in the step of cluster median update, according to assigned samples in a

cluster, a cluster median of the cluster is a sample, which has the smallest distance to

all other samples in the cluster. Let

Θisp =
n∑

j=1

DijsTjp for all i, s, p.

Then given p and s, Θisp represents the sum of distances from sample i to all other

samples in the same cluster p at a feature space s for all i ∈ Gp. Hence, the cluster

median is the sample that has the minimum of Θisp among all i ∈ Gp. As in Proposi-

tion 6.2.2, for each p, if every element of Θisp for all i ∈ Gp is unique, then the solution

of cluster medians from Algorithm 6.2.2 is the same as the one from Program (6.8). If

the uniqueness condition is not satisfied, any sample i having the same minimum Θisp

as other samples in a cluster p can be taken as a solution. In this case, Algorithm 6.2.2

can also pick the same solution as Program (6.8).

Since the same idea is used in Algorithm 6.2.1, Proposition 6.2.3 also applies to

Algorithm 6.2.2 that in finite number of steps it converges to a local optimal solution.

6.3 Feature Selection in FSSPKM Clustering

Feature selection for unsupervised learning is difficult since no class labels are used

when clusters are generated and therefore there is no clear guide for choosing significant
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features [26, 34, 59, 80]. The proposed feature selection methods utilize the sample-to-

sample distance matrix at each feature space. Distances between cluster medians and

their densities are considered. The selection algorithm is based on a mild modification of

the two well known wrapper approaches: forward subset selection (FSS) and backward

subset selection (BSS) [30]. The initial subset of FSS contains no features. At each step,

it adds the feature that improves the classification the most to the subset. This process

continues until no improvement is possible. However, the difference to the proposed

FSS in FSSPKM clustering is that the process continues until no features are left. The

best combination of subset is the one that gives the highest classification accuracy.

BSS starts with an initial subset with all features included, and the worst feature is

eliminated from the subset at each step until no improvement is possible. Similarly, the

proposed BSS in FSSPKM clustering is to have the process continued until only one

feature is left. Then the optimal number of features can be determined.

A possible feature selection in FSSPKM clustering can be made at the second ma-

jor step of the FSSPKM algorithm (Algorithm 6.2.1), where new cluster medians are

determined. Algorithm 6.3.1 displays a modified formulation. Given µ, which denotes

the number of desired features, the optimization program of the second step can be

reformulated into an integer program by adding constraints to force the optimization

model to consider only µ features. Program (6.10) is the optimization model that auto-

matically decides which of the optimal µ features to keep and which others to drop from

the data. Constraint (6.10a) forces only µ features to be considered in each cluster.

Constraints (6.10b) and (6.10c) together ensures that the model keeps same features

at all clusters. The binary variable y ∈ {0, 1}m is a decision variable used to decide

whether to keep a feature or not. The original decision variable X has to be binary since

there is no sufficient condition for the relaxation problem to provide integral solution

due to the added constraints. This formulation then contains n × m × k + m binary

variables. It is an integer programming problem that can not be solved efficiently.

In addition, there is a problem of selecting incorrect features because the objective

function of FSSPKM is to minimize the sum of the distances from every sample to its

closest cluster’s median. Consider an unwanted feature space such that clusters are
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Algorithm 6.3.1 Possible Feature Selection Forced in FSSPKM
Input: µ = desired number of features; k = number of clusters; X0

isp, an initial decision of k samples as cluster
medians, for all i, s and p; and Dijs, a distance matrix for i, j and s.

Set t = 0 and solve the following two problems alternatively.

1. Cluster Assignment. Given Xt
isp, for all i, s and p, find the solution T t to the linear program problem:

min
T t

nX
i=1

kX
p=1

8<: nX
j=1

mX
s=1

DijsXt
jsp

9=;Tip

s.t.
kX

p=1

Tip = 1 ∀i

Tip ≥ 0 ∀i, p.

(6.9)

2. Cluster Median Update. Given T t from the optimal solution of program (6.9), update Xt+1 by
solving the integer programming problem:

min
Xt+1

nX
i=1

kX
p=1

8<: nX
j=1

mX
s=1

DijsXjsp

9=;T t
ip

s.t.
kX

p=1

Xisp ≤ 1 ∀i, s

nX
i=1

mX
s=1

XispT t
ip = µ ∀p (6.10a)

nX
i=1

kX
p=1

XispT t
ip = kys ∀s (6.10b)

mX
s=1

ys = µ (6.10c)

Xisp ∈ {0, 1} ∀i, s, p
ys ∈ {0, 1} ∀s ∈ {1, . . . , m}.

Stop when
Pk

p=1 Xt
isp =

Pk
p=1 Xt+1

isp for all i. Set X∗ = Xt+1 and T ∗ = T t. Otherwise, increment t by one
and continue to solve the two problems.

Output: A decision of cluster median, X∗, and cluster assignment, T ∗.
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not very well defined and samples are closely mixed with each other. In such a case,

the k cluster centers are very close to each other as well. The reformulated model

will keep that unwanted feature since it has the smallest sum of distances. Therefore,

better feature selection criteria is needed to set up for selecting features in the FSSPKM

clustering.

Here, a good feature space is defined as having its samples densely grouped in each

cluster and having its centers as far from each other as possible. The sample-to-sample

distance matrix D is utilized to measure these properties to include best features for

FSS and to drop worst features for BSS. Four feature selection criteria are proposed

based on this definition.

6.3.1 Feature Selection Algorithm

In this section, four feature selection criteria are introduced. They can be applied on

both FSS and BSS. Observe that to obtain a complete subset selection, a clustering

algorithm needs to be tested m(m + 1)/2 times for FSS while only m times for BSS.

Thus, BSS needs less iterations than FSS. Due to this efficiency the feature selection

criteria designed for BSS are first described. Then they can be easily reversed for FSS.

6.3.1.1 Backward Subset Selection Algorithm

The objective function of the FSSPKM Clustering (Problem 6.5) is to find k samples as

centers of each feature space for the k clusters such that the sum of the distances of all

samples to their closest cluster medians are minimized. Let lsp ∈ Gp represent the index

of the sample that is the cluster median in cluster p of feature space s. The objective

of FSSPKM is the solution of the minimum sum of the distances from all samples to

its closest cluster medians. That is:

min
Gp,lsp

∑

i∈Gp

m∑

s=1

Di,lsp,s, p = 1, . . . , k.

Since this minimization problem is independent among features, each feature can

be treated separately. To minimize to-the-center distances of each feature space, the
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problem is divided into m subproblems for a fixed feature space s ∈ {1, . . . , m} as

follows:

min
Gp,lsp

∑

i∈Gp

Di,lsp,s, p = 1, . . . , k. (6.11)

The BSS starts with an initial subset with all features included, and the worst

feature is eliminated from the subset at each step until one feature is left. The goal is

to find a criterion for dropping the worst feature at each iteration. Since the objective

of the FSSPKM clustering is to minimize the function (6.11), the clustering algorithm

would favor the features that have the smaller sum of the distances from each sample

to its cluster’s median. The clustering algorithm would not favor the features that have

a large sum (or small sample density).

Given a solution of cluster medians and cluster assignment, the worst feature may

contain a cluster p that has the largest sum of the distances from all samples in the

cluster to the median. That is a cluster who has the largest to-the-center sample

distance and whose samples are less densely grouped. In a fixed feature space s, the

largest sum of to-the-center sample distances among all clusters is denoted as:

max
p=1,...,k

∑

i∈Gp

Di,lsp,s. (6.12)

This is not enough. A “bad” feature space may have its clusters close to each other.

Such a feature may need to be eliminated as well. The closest center-to-center distance

among all features is defined as follows:

min
s=1,...,m

k−1∑

p=1

k∑

q=p+1

Dlsp,lsq ,s. (6.13)

Combining the above two measurements (6.12) and (6.13) gives a BSS Minimum

Maximum (MM) Feature Selection FSSPKM Algorithm (Algorithm 6.3.2). Let V de-

note the set of all the current optimally selected features. For BSS, the initial set of V

contains all features. In the maximization, the largest cluster ps ∈ {1, . . . , k} of each

feature space s ∈ {1, . . . ,m} is chosen, which has the largest sum of the distances from
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Algorithm 6.3.2 BSS Minimum Maximum (MM) Feature Selection FSSPKM Algo-
rithm

1. Let V = {1, . . . , m}.
2. Apply the FSSPKM algorithm to cluster a data set into k disjoint groups consid-

ering features in V . That is to obtain cluster assignments Gp for p = 1, . . . , k and
cluster center indices lsp for p = 1, . . . , k and s ∈ V .

3. For each feature space s ∈ V and for each cluster p ∈ {1, . . . , k} compute

p∗s = arg max
p=1,...,k

∑

i∈Gp

Di,lsp,s.

4. Delete feature s∗ from V , where

s∗ = arg min
s∈V

k∑

q 6=p∗s ,q=1

Dls
p∗s

,lsq ,s.

5. Stop if all features are deleted, else let D = D̄ ∈ Rn×n×m̄, where m̄ = m− 1 and
D̄ is the matrix with feature s∗ deleted.

6. Go to Step 2.

the cluster median to all other samples in that cluster. After obtaining the largest clus-

ter at each feature, the sum of the distances from the determined median to all other

medians is calculated. Finally, the feature that has the smallest sum of the distances

from the largest cluster’s median to all other cluster medians is deleted from the set

V . The algorithm is then continued by using the FSSPKM to cluster the data again

without the deleted feature. This is repeated until only one feature is left in V .

In addition to the MM feature selection algorithm, three ratios are proposed, α, β

and γ. Algorithm 6.3.3 displays the use of α-ratio, which can be replaced by β and γ

for different feature selections. All three ratios are trying to find the feature that has a

small sum of center-to-center distances. The α-ratio in Equation (6.14) determines the

worst feature by minimizing the sum of center-to-center distances while maximizing the

sum of to-the-center sample distances of all clusters in a feature space. The β-ratio in

Equation (6.15) finds the feature that has the minimum center-to-center distance per

average sum of to-the-center sample distances of all clusters.
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Algorithm 6.3.3 BSS α-Ratio Feature Selection FSSPKM Algorithm

1. Let V = {1, . . . , m}.
2. Apply the FSSPKM algorithm to cluster a data set into k disjoint groups consid-

ering features in V .

3. For each feature space s ∈ V , compute

αs =

k−1∑

p=1

k∑

q=p+1

Dlsp,lsq ,s

k∑

p=1

∑

i∈Gp

Di,lsp,s

. (6.14)

4. Delete feature s∗ from V , where

s∗ = arg min
s∈V

αs.

5. Stop if all features are deleted, else let D = D̄ ∈ Rn×n×m̄, where m̄ = m− 1 and
D̄ is the matrix with feature s∗ deleted.

6. Go to Step 2.

βs =

k−1∑

p=1

k∑

q=p+1

Dlsp,lsq ,s

k∑

p=1

1
|Gp|

∑

i∈Gp

Di,lsp,s

. (6.15)

The γ-ratio in Equation (6.16) considers only one sample at each cluster that has

the largest distance to its cluster center. The largest distance can be seen as a radius

that forms a neighborhood which covers all samples in the cluster. It finds the worst

feature by minimizing center-to-center distance per sum of the largest to-the-center

sample distance over all clusters.

γs =

k−1∑

p=1

k∑

q=p+1

Dlsp,lsq ,s

k∑

p=1

max
i∈Gp

Di,lsp,s

. (6.16)
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6.3.1.2 Forward Subset Selection Algorithm

Similar to BSS, the four proposed feature selection criteria can be applied on FSS. They

are simply the negation of those in BSS. Let m̄ be the current number of optimally

selected features. The initial subset of FSS contains no features, so FSS starts with

m̄ = 0 and the set of all the current optimally selected features V = {∅}. At each

iteration, it adds the best feature to the subset V . Let V̄s = V ∪ {s} denote a set of

selected features with one unselected feature s for each s ∈ {1, . . . , m} \ V , where the

set {1, . . . , m}\V contains those features that are not currently selected. The FSSPKM

algorithm is then tested on the data set with features in V̄s for each unselected features

s ∈ {1, . . . ,m} \ V in order to determine the next optimal feature that should be

selected. The algorithm stops when m̄ = m, which is when V = {1, . . . ,m}.
Algorithm 6.3.4 displays the Maximum Minimum Feature Selection FSSPKM Algo-

rithm for FSS. The distance matrix D̃ represents the sample-to-sample distance matrices

of currently selected features. At the first iteration, each feature is treated separately

and the FSSPKM clustering algorithm is operated m times to obtain optimal clusters

and cluster medians at each feature space. Then the best feature is kept in V according

the MM criterion. In the second iteration, FSSPKM cluster algorithm is operated m−1

times. At each time two features are considered. One is from the unselected features

and the other is the selected feature in V . Then the next best feature is selected. The

algorithm continues until all features are selected.

Instead of finding the minimum α ratio in BSS in order to drop the worst feature,

the FSS tries to find the feature with the maximum α ratio that should be included

in the subset. The FSS α-Ratio Feature Selection FSSPKM Algorithm is displayed in

Algorithm 6.3.5. The α-ratio (6.17) in Algorithm 6.3.5 can then be replaced by β-ratio

(6.15) or γ-ratio (6.16) with the distance matrix replaced by D̃s. Then different feature

selection criteria can be applied.
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Algorithm 6.3.4 FSS Maximum Minimum (MM) Feature Selection FSSPKM Algo-
rithm
Let t = 1, V = {∅} and D̃ ∈ Rn×n×m̄, where m̄ = |V | = 0.

Repeat

1. Let V̄s = V ∪ {s} with feature s appended at the end of the set V , for each
s ∈ {1, . . . ,m} \ V . For each feature space s ∈ {1, . . . ,m} \ V , compute D̃s

considering only those features in V̄s. That is a three-dimensional distance matrix
having the n × n distance matrix of feature space s appended at the end of the
(t-1)th (also the last) feature of D̃. The feature s is then the tth feature of D̃s,
where D̃s ∈ Rn×n×t.

2. Apply the FSSPKM algorithm (m− t+1) times. Each time is to cluster the data
set into k disjoint groups considering features in V̄s. At each time the tth (also
the last) element of the set V̄s refers to feature s for each s ∈ {1, . . . , m}\V . This
is to obtain cluster assignments Gs̃

p and cluster center indices ls̃p for p = 1, . . . , k
and for all s̃ ∈ V̄s.

3. For each feature space s ∈ {1, . . . ,m} \ V and for each cluster p ∈ {1, . . . , k}
compute

p∗s = arg min
p=1,...,k

∑

i∈Gt
p

D̃s
i,ltp,t.

4. Add feature s∗ to the data set, where

s∗ = arg max
s∈{1,...,m}\V

k∑

q 6=p∗s ,q=1

D̃s
lt
p∗s

,ltq ,t.

5. Let D̃ = D̃s∗ ∈ Rn×n×t, include s∗ in V .

6. Increment t by 1.

Until (t > m).
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Algorithm 6.3.5 FSS α-Ratio Feature Selection FSSPKM Algorithm
Let t = 1, V = {∅} and D̃ ∈ Rn×n×m̄, where m̄ = |V | = 0.

Repeat

1. Let V̄s = V ∪ {s} with feature s appended at the end of the set V , for each
s ∈ {1, . . . ,m} \ V . For each feature space s ∈ {1, . . . ,m} \ V , compute D̃s

considering only those features in V̄s. That is a three-dimensional distance matrix
having the n × n distance matrix of feature space s appended at the end of the
(t-1)th (also the last) feature of D̃. The feature s is then the tth feature of D̃s,
where D̃s ∈ Rn×n×t.

2. Apply the FSSPKM algorithm (m− t+1) times. Each time is to cluster the data
set into k disjoint groups considering features in V̄s. At each time the tth (also
the last) element of the set V̄s refers to feature s for each s ∈ {1, . . . , m}\V . This
is to obtain cluster assignments Gs̃

p and cluster center indices ls̃p for p = 1, . . . , k
and for all s̃ ∈ V̄s.

3. For each feature space s ∈ {1, . . . , m} \ V , compute

αs =

k−1∑

p=1

k∑

q=p+1

D̃s
ltp,ltq ,t

k∑

p=1

∑

i∈Gt
p

D̃s
i,ltp,t

. (6.17)

4. Add feature s∗ to the data set, where

s∗ = arg max
s∈{1,...,m}\V

αs.

5. Let D̃ = D̃s∗ ∈ Rn×n×t, include s∗ in V .

6. Increment t by 1.

Until (t > m).
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Chapter 7

APPLICATIONS OF DEVELOPED OPTIMIZATION

MODELS FOR CLUSTERING

The developed clustering techniques, which are sample-preserved k-median (SPKM)

clustering, feature space sample-preserved k-median (FSSPKM) clustering and feature

selection algorithms tailor made for the FSSPKM clustering, are applied on real world

data sets. Characteristics of the data sets, performance evaluation techniques and

experimental results are discussed in this Chapter.

7.1 Experimental Data Sets

The clustering algorithms are tested on three types of data sets in order to examine

their clustering performance. These data sets are attribute (non-time series), single (or

univariate) time series and multivariate time series data sets. The term, non-time series,

is referred to static data and is used to distinguish them from time series data. Non-time

series data are those whose samples can be represented as real vectors. For example, a

non-time series data set may contain attributes (or features): age, weight and height,

which are real-valued. An instance may be represented by a vector that contains these

three elements. Time series data have values of a fixed attribute but vary with time.

For example, stock prices vary with time and form a time series. Multivariate time

series data have both properties, having multiple attributes and varying with time. For

example, sensor data may consist of multiple series of observations from recordings of

multiple sensors over a period of time. Each sensor counts an attribute (or a feature)

of a time series. A combination of these recordings forms a multivariate time series.
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7.1.1 Attribute Data Sets

Attribute data sets are numerical data where each sample can be represented as a

vector. Each element in a vector corresponds to an attribute. Table 7.1 shows numbers

of classes and features for each of the seven publicly available data sets from UCI

database [3].

Each of the first four data sets has two classes. Features in the Wisconsin Diag-

nostic Breast Cancer (WDBC) data set are characteristics of the cell nuclei present in

a digitized image of a fine needle aspirate of a breast mass. The class distribution is

357 benign and 212 malignant cases. The features in BUPA liver disorders (BLD) data

set contains results of blood tests which are thought to be sensitive to liver disorders

that might arise from excessive alcohol consumption. There are 345 instances, 145 are

negative and 200 positive. In the Cleveland Heart Disease (HD) data set, 13 attributes

are used for the presence of heart disease in 303 patients, 164 are negative and 139 are

positive. Pima Indian Diabetes (PID) data set contains eight attributes that may show

signs of diabetes of patients. There are 500 negative and 268 positive instances in the

data set.

Both the Wine Recognition (Wine) and Iris Plants (Iris) data sets are three-group.

The Wine data are the results of a chemical analysis of wines grown in the same region

from three different cultivars in Italy. Numbers of instances of each class are 59, 71 and

48. The Iris data set contains lengths and widths of sepal and petal of three types of iris.

Three classes are equally distributed. Each has 50 instances. The Image Segmentation

(Image) data set has 19 continuous attributes of instances of seven outdoor images.

Each of the seven classes has 330 instances.

Table 7.1: Parameters of UCI Data Sets [3]
Data Set n m k
Wisconsin Diagnostic Breast Cancer (WDBC) 569 30 2
Bupa Liver Disorders (BLD) 345 6 2
Heart Disease (HD) 303 13 2
Pima Indian Diabetes (PID) 768 8 2
Wine Recognition (Wine) 178 13 3
Iris Plants (Iris) 150 4 3
Image Segmentation (Image) 2310 19 7
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Table 7.2: University of California-Riverside Time Series Data Sets [55].
Data Set Number of Size of Size of Length

Classes (k) Training Set Testing Set
Synthetic Control 6 300 300 60

Gun-Point 2 50 150 150
CBF 3 30 900 128

Face (all) 14 560 1690 131
OSU Leaf 6 200 242 427

Swedish Leaf 15 500 625 128
50Words 50 450 455 270

Trace 4 100 100 275
Two Patterns 4 1000 4000 128

Wafer 2 1000 6174 152
Face (four) 4 24 88 350
Lightning-2 2 60 61 637
Lightning-7 7 70 73 319

ECG 2 100 100 96
Adiac 37 390 391 176
Yoga 2 300 3000 426
Fish 7 175 175 463
Beef 5 30 30 470

Coffee 2 28 28 286
OliveOil 4 30 30 570

7.1.2 Single Time Series Data Sets

A single time series is a series of observations made over a period of time. It can be

treated as a vector, and each element in a vector is related to a specific time. Such time

series data set is called a univariate time series data set because it has only one feature

(or attribute).

The University of California-Riverside (UCR) time series data sets [55] have been

used to measure performances of a number of clustering and classification methods.

Each data set contains training and testing subsets. The collected data sets consists of

20 real world and synthetic time series data sets and includes various time series data

properties. Information of these data sets can be found in Table 7.2, including number

of classes, number of training and testing samples and the length of time series.

7.1.3 Multivariate Time Series Data Sets

When a series of observations over a period of time contains more than one feature,

it is called a multivariate (multidimensional or multi-attribute) time series (MTS).

Each individual sample is a matrix with information from two characteristics: features

(spatial property) and time (temporal property).

Table 7.3 displays characteristics of a collection of EEG data sets used in [20]. Each
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Table 7.3: EEG Data Set Characteristics [20].
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

n 42 42 132 114 102 102 54 138 120 72
m = 26, k = 2 and each segment contains 30 time points.

of the data sets has two groups, positive and negative, that are equally distributed.

These data sets are multivariate since each time segment is from a simultaneous record-

ing of 26 channels. Each channel is viewed as one feature.

7.2 Experimental Results Using BPSPKM and FSSPKM Clustering

Methods

The original k-median clustering, the SPKM clustering in IP formulation, together with

the proposed BPSPKM and FSSPKM clustering algorithms are tested on real world

data sets that are publicly available. Three types of data sets are tested: attribute

data from UCI database collected by [3], single time series from UCR database created

by [55] and multivariate time series from multichannel EEG recordings used in [20].

Since both BPSPKM and FSSPKM clustering are the same for univariate data sets,

FSSPKM clustering is tested only on the other two multivariate data sets: attribute

data and multivariate time series data.

7.2.1 Clustering Performance

To measure the performance of the k-median clustering methods, they are tested on

variant data sets. Each of the data sets is divided into two disjoint subsets, the training

set and the testing set, so that the clusters can be trained and tested accordingly as

shown in [15] and [88]. Each clustering method is then used to cluster the training set.

For the k-median clustering, the majority of a class in each cluster defines the cluster

label. The obtained k cluster medians are then used to classify samples in the testing

set. Each sample is assigned to the cluster whose cluster median is the closest to that

sample. The true class labels are then used to determine the clustering accuracy. A

method that gives the more correctly classified samples has the better performance.
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In the training process, class labels of the training samples are assumed to be un-

known. After clusters are constructed by a clustering method, the class labels are used

to measure the training accuracy. Since the cluster label is determined by the major-

ity of the samples in that cluster, this majority is considered to be correctly clustered

samples and the rest are taken as incorrectly clustered. The training accuracy is then

the percentage of correctly clustered samples in all clusters.

After clusters are trained, the cluster centers are used to measure the testing set

accuracy. Distances from each sample in the testing set to all of the cluster centers are

calculated. The label of the closest cluster is assigned to the sample and compared with

the real label of the testing sample. A sample is correctly clustered if both labels are

identical. The testing accuracy is the proportion of correctly clustered testing samples.

7.2.2 Results on Attribute Data Sets

Table 7.4 shows training and testing results of the four k-median clustering techniques

applied on the UCI data sets [3]. Since the data sets are not separated into training

set and testing set when they are given, ten replications of 5-fold cross validation are

used to divide each data set into training and testing subsets. In the training phase,

the three SPKM methods outperform the original k-median on six out of the seven

data sets. Similarly, in the testing phase the SPKM methods get higher accuracy than

that of the original k-median on most of the data sets. The SPKM has lower accuracy

than the original k-median on only one data set, the PID. In addition, both training

and testing results from the BPSPKM (denoted as LP in the table) algorithm is very

close to the results from the IP formulation of SPKM algorithm. This means that

the proposed bilinear program technique approximates the optimal solution of the IP

problem very well. Observe also that the Image data set contains seven groups, which

is very difficult to cluster. All k-median methods have less than 50% accuracy on the

Image data set in both training and testing. FSSPKM gives the best performance on

the Wine data set in both training and testing phase. Overall results indicate that

the SPKM methods give higher classification accuracy. The sample-preserved medians

represent the characteristics of the samples in the clusters very well.
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Table 7.4: UCI training and testing accuracy (%) obtained from solving the original k-
median, SPKM (IP formulation), BPSPKM (LP formulations) and FSSPKM clustering.

Training Testing
Data Set Orig IP LP FSSPKM Orig IP LP FSSPKM
WDBC 62.1 93.3 93.3 94.0 93.3 93.3 93.3 93.1
BLD 57.7 58.0 58.0 58.0 55.0 58.0 58.0 58.0
HD 63.6 78.1 70.6 79.6 46.6 77.6 69.2 74.9
PID 93.4 66.1 65.5 65.4 95.3 65.5 64.7 64.6
Wine 88.5 93.2 90.6 96.2 87.8 93.1 91.8 95.0
Iris 76.9 90.3 89.6 89.1 74.9 88.3 90.1 89.3

Image 35.4 46.2 46.1 47.4 34.8 45.8 45.6 45.3
Orig: original k-median.

7.2.3 Results on Single Time Series Data Sets

Training and testing accuracies obtained from the three k-median clustering techniques

on single time series data sets are summarized in Table 7.5. Three different similarity

measures are used in the two SPKM methods. In the training phase, the dynamic time

warping (DTW) distance strongly dominates the Euclidean (EU) and T-statistics (TS)

similarity measures. The BPSPKM method again very well approximates the solution

of the IP formulation of SPKM. The original k-median fails in most of the data sets.

It achieves less than 50% accuracy on fourteen out of twenty data sets, and less than

5% accuracy on two of them. It is obvious that the original k-median method fails to

cluster single time series data. It may be concluded that the SPKM methods are more

adaptable than the original k-median on time series.

In the testing phase, the performance of the SPKM clustering with DTW distance

is dramatically reduced, creating not as high accuracy as it has in the training phase.

It especially has less than 10% accuracy on the “50Words” data set. Among the three

similarity measures of the SPKM methods, Euclidean distance produces best accuracies

among them all. T-statistics only dominate on two data sets, “Gun-Point” and “Trace”.

Five of the data sets have same testing accuracies from all clustering methods. This

may indicate that the all samples are very well separated into groups so that all methods

produce similar clusters. In addition, the BPSPKM again very well approximates the

solution of the IP formulation of SPKM. Similar to the training results, the original

k-median fails in most of data sets. Only on the “Synthetic Control” data set, the

original k-median gives better accuracy (62.3%) than the SPKM methods (with the
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highest accuracy 54.7%). The overall results further strengthen the implication that

the SPKM methods with Euclidean distances are more adaptable than the original

k-median method on clustering time series.

7.2.4 Results on Multivariate Time Series Data Sets

Training and testing performances of the four k-median methods on multivariate time

series data sets are shown in Table 7.6. Again, since the data sets are not separated

into training set and testing set when they are given, ten replications of 5-fold cross

validation are used to divide each data set into training and testing subsets. In the

training phase, Euclidean distance achieves the highest accuracy among the three dis-

tance measures used in the SPKM methods, though not significantly higher than the

others. The BPSPKM method also very well approximates the solution of the IP for-

mulation of the SPKM. The original k-median achieves 50% accuracy on eight out of

the ten data sets with the highest result being 65.3% of the training accuracy. Since

both positive and negative samples are equally distributed, 50% accuracy may imply

that the original k-median method tends to cluster all samples in one group, which

points to the conclusion that the original k-median fails at clustering multivariate time

series. The best training accuracy of the proposed BPSPKM method with Euclidean

is 77.4% on the P2 data set.

In the the testing phase, the performances of the two SPKM methods using Eu-

clidean distance are very close to their performances in the training phase. Among the

three similarity measures, Euclidean distance again achieves higher accuracies than the

other two on six out of the ten data sets. The second best distance measure is the DTW

distance, which does not perform well on single time series data sets, but produces the

highest accuracies among the three distance measures on four data sets. Data sets

P4 and P5 are difficult data sets, but T-statistics achieves the highest accuracies on

them. Similar to the training phase, the original k-median method gives 50% testing

accuracy on most data sets, which means it fails to cluster multivariate time series.

Again, the proposed BPSPKM method with Euclidean distance is suggested. The best

performance in the testing is BPSPKM with Euclidean on the P2 data set, which has
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Table 7.6: EEG training and testing accuracy (%) obtained from solving the original k-
median, SPKM (IP formulation), BPSPKM (LP formulations) and FSSPKM clustering,
with three distance measures for the two SPKM clustering methods.

Training
Data Set Orig IP LP FSSPKM IP LP FSSPKM IP LP FSSPKM

EU EU EU DTW DTW DTW TS TS TS
P1 50.0 77.4 73.0 76.6 70.2 71.8 78.2 55.2 59.5 63.9
P2 50.0 76.6 77.4 75.8 75.4 74.2 73.8 73.1 76.2 72.2
P3 50.0 51.7 54.2 51.8 51.1 51.3 53.6 51.2 52.3 52.1
P4 50.0 56.1 55.0 53.8 52.9 53.1 52.4 54.0 53.7 53.7
P5 50.0 52.1 51.9 51.7 54.4 53.0 52.3 53.1 55.2 56.0
P6 50.0 67.1 56.5 61.3 70.1 70.1 70.0 65.7 62.3 56.0
P7 50.0 62.2 56.5 54.2 62.2 58.0 58.7 52.1 51.8 51.6
P8 50.0 54.9 53.7 53.5 53.2 52.5 54.5 51.9 51.9 53.6
P9 53.8 54.5 53.5 52.3 53.6 51.1 51.4 55.9 52.2 52.1
P10 65.3 66.0 69.1 65.2 66.4 64.0 67.6 55.7 52.5 52.7

Testing
Data Set Orig IP LP FSSPKM IP LP FSSPKM IP LP FSSPKM

EU EU EU DTW DTW DTW TS TS TS
P1 50.0 73.8 76.2 73.8 45.2 66.7 69.0 50.0 57.1 50.0
P2 50.0 76.2 81.0 73.8 69.0 76.2 71.4 76.2 71.4 59.5
P3 50.0 46.2 56.8 43.2 37.9 40.2 51.5 31.8 31.1 43.9
P4 50.0 44.1 47.1 54.9 54.9 55.9 50.0 60.8 53.9 48.0
P5 50.0 40.2 46.1 32.4 44.1 31.4 55.9 53.9 51.0 52.0
P6 50.0 66.7 59.3 61.1 66.7 66.7 64.8 64.8 63.0 53.7
P7 50.0 61.6 55.8 54.3 61.6 61.6 59.4 50.7 52.2 39.1
P8 50.0 57.0 61.4 51.8 63.2 57.0 50.9 46.5 46.5 53.5
P9 54.2 63.3 51.7 45.8 50.8 42.5 47.5 48.3 46.7 47.5
P10 62.5 65.3 61.1 59.7 68.1 48.6 58.3 54.2 50.0 50.0

81% accuracy.

7.2.5 Computational Time

Table 7.7, Table 7.8 and Table 7.9 display the average clustering computation time

of the three SPKM algorithms (IP, LP and non-LP) on the three different types of

data sets (attribute, single time series and multivariate time series). All programs are

written in MATLAB. All optimization models in the IP and LP formulations are solved

by GAMS from the MATLAB and GAMS interface [37].

It can be observed that it takes time to pass parameters through the MATLAB

and GAMS interface for solving the optimization problems. The IP formulation of the

SPKM algorithm only has one optimization problem, while the BPSPKM algorithm

needs to solve two LP problems alternately until convergence. Theoretically, the LP

problems are easier to solve than the IP problems. However, since the approximation

algorithm needs to solve the bilinear programs alternately, it requires parameters pass-

ing through MATLAB and GAMS alternately as well. This results in a long time for
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Table 7.7: Average Clustering Time (in seconds) on UCI Data Sets
Data Set IP LP Non-LP
WDBC 109.4 305.1 6.4
BLD 42.1 66.0 2.2
HD 32.8 50.7 1.6
PID 255.4 377.4 12.1
WR 8.1 22.3 0.6
IP 5.7 19.6 0.4
IS 5493.1 5286.4 68.4

Table 7.8: Average Clustering Time (in seconds) on UCR Data Sets
EU DTW TS

Data Set IP LP Non-LP IP LP Non-LP IP LP Non-LP
Syn. Control 30.7 108.0 0.008 31.0 124.6 0.011 217.4 25.0 0.004
Gun-Point 0.9 3.1 0.001 0.9 3.7 0.002 0.9 2.9 0.001

CBF 0.4 1.8 0.001 0.4 2.0 0.001 0.4 1.1 0.001
Face (all) 438.1 485.3 0.026 584.7 455.5 0.024 585.6 190.5 0.020
OSU Leaf 34.7 33.9 0.004 128.8 44.9 0.006 187.8 23.0 0.004

Swedish Leaf 90.9 311.0 0.019 486.7 510.3 0.032 252.2 148.3 0.018
50Words 235.4 407.9 0.118 314.7 390.2 0.324 347.1 154.0 0.048

Trace 3.2 15.2 0.003 3.2 12.0 0.002 3.4 15.1 0.005
Two Patterns 3910.0 1462.6 0.053 653.6 1686.3 0.066 60333.9 601.4 0.029

Wafer 914.5 1719.2 0.075 818.7 1666.1 0.072 1054.2 1440.1 0.075
Face (four) 0.3 1.3 0.001 0.3 1.3 0.002 0.4 0.9 0.001
Lightning-2 1.2 5.4 0.001 1.2 4.9 0.002 1.3 3.8 0.002
Lightning-7 1.6 10.4 0.003 1.6 8.5 0.004 1.6 7.1 0.002

ECG 3.3 9.9 0.001 3.4 8.8 0.002 3.3 3.3 0.001
Adiac 173.0 438.8 0.042 393.7 263.7 0.025 111.1 232.5 0.024
Yoga 41.9 96.8 0.008 35.7 168.0 0.013 37.8 77.2 0.008
Fish 16.3 46.7 0.006 32.4 26.4 0.004 21.2 18.2 0.003
Beef 0.4 1.9 0.001 0.4 1.6 0.002 0.4 1.7 0.001

Coffee 0.4 1.6 0.001 0.4 1.4 0.002 0.4 1.5 0.001
OliveOil 0.4 2.3 0.001 0.4 2.1 0.001 0.5 1.1 0.001

LP algorithm to converge to a local optimal solution. Hence, the clustering time of the

LP algorithm is longer than that of the IP algorithm in most cases.

All three tables also show that the equivalent non-LP sequential search SPKM

algorithm takes dramatically less computational time than the other two algorithms. It

is because it does not have any optimization formulation that needs to be solved by the

MATLAB and GAMS interface, and hence no parameters need to be passed between

MATLAB and GAMS. It gives the same solution as the LP algorithm in a more efficient

way.

7.2.6 Conclusion on BPSPKM and FSSPKM Clustering Methods

A new approximation algorithm for the sample-preserved k-median (SPKM) clustering

is proposed, called Bilinear Program Sample-Preserved k-Median (BPSPKM) clustering

algorithm. The cluster medians obtained by SPKM clustering are from existing samples
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Table 7.9: Average Clustering Time (in seconds) on EEG Data Sets
EU DTW TS

Data Set IP LP Non-LP IP LP Non-LP IP LP Non-LP
1 0.5 2.7 0.096 0.6 2.4 0.044 0.6 2.9 0.052
2 0.5 3.3 0.001 0.6 3.3 0.001 0.6 2.1 0.001
3 5.4 25.0 0.005 6.3 20.5 0.003 5.6 17.2 0.003
4 3.0 12.1 0.003 3.1 9.9 0.002 3.0 11.3 0.002
5 3.0 14.2 0.004 3.0 13.0 0.003 3.2 8.8 0.002
6 0.8 3.4 0.002 0.8 4.4 0.002 1.0 3.0 0.001
7 6.0 22.1 0.004 6.4 21.2 0.003 6.1 16.1 0.002
8 3.8 13.7 0.003 3.8 11.3 0.002 4.1 11.1 0.002
9 4.5 15.9 0.004 4.4 13.1 0.002 4.7 14.7 0.002
10 1.5 7.5 0.003 1.5 7.9 0.002 1.5 5.1 0.001

whereas the cluster medians obtained by the original k-median clustering methods may

not be existing samples. The original k-median clustering is not a sample-preserved

method and is limited to 1-norm distance measure. Because the SPKM clustering

method incorporates a pre-calculated sample-to-sample distance matrix, it provides the

flexibility of choosing a distance measure. Hence, it can be easily applied on time series

data, which need special type of similarity measures for a proper data analysis. However,

the SPKM clustering problem is formulated as an integer programming problem and

is hard to solve. Although there exist several approximation algorithms for solving

the IP formulation of SPKM method, they are not as simple and easy as the bilinear

program algorithm that is used to solve the original k-median problem. The proposed

BPSPKM clustering algorithm combines the two major benefits. It is sample-preserved

and contains a pre-calculated distance matrix. It can also be solved by a similar bilinear

program algorithm and provides binary solutions. An equivalent non-LP sequential

search SPKM clustering algorithm is also proposed, which provides the same solution

as the BPSPKM and can be solved even more efficiently.

An extension of the BPSPKM clustering is the FSSPKM clustering method. Instead

of using a sample-to-sample distance matrix in the whole m-dimensional space, the

FSSPKM uses sample-to-sample distance matrices from each of the m feature spaces.

It can also be solved by a similar bilinear program algorithm, and comes with an

equivalent non-LP sequential search algorithm as well.

The computational time of the proposed equivalent non-LP SPKM clustering algo-

rithm is far lower than those of the other two SPKM methods, which need to solve IP

and LP formulations. Moreover, experimental results show that the original k-median
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only works well on attribute data sets, and fails to cluster time series data. Both the

SPKM and BPSPKM achieved very good performance on attribute, single time series

and multivariate time series data sets. Results on multivariate data sets also show that

the performance of FSSPKM clustering is comparable to the BPSPKM clustering.

7.3 Experimental Results Using FSSPKM with Feature Selection

The proposed feature selection approaches for the feature space sample-preserved k-

median (FSSPKM) clustering are tested on four publicly available attribute data sets

from UCI database [3] and on ten Electroencephalography (EEG) multivariate time

series data sets that has been used in [19, 20]. The sample size (n), number of features

(m) and number of classes (k) of each data set are shown in Table 7.1 for attribute

data sets and in Table 7.3 for EEG multivariate time series data sets.

7.3.1 Feature Selection Error Rates

Two error curves, a classification error curve and a clustering error curve, are generated

for performance evaluation. These error curves are also used in [71, 26]. The entire

data set is used for evaluating both the classification error and clustering error. The

clustering algorithm is repeated 50 times with a random initialization. The classification

error is the percentage of incorrectly classified samples. The majority of a true class

label in a cluster determines the estimated label of that cluster. The estimated labels

and the true labels are then compared to give correctness. The true class labels are

used only in obtaining the classification error and not in generating the clusters. The

clustering error is calculated in the same way, except that instead of the true class

labels, the gold labels obtained from the clustering results when using all features are

used. By this definition, the clustering error on the data set containing all features is

zero.

The lowest classification error rates and their corresponding number of features

obtained from the four proposed feature selection criteria in FSSPKM are shown in

Table 7.10 and Table 7.11. Both FSS and BSS feature selection algortihms are used, and
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are compared with the FSSPKM clustering without any feature selection. Table 7.10

contains results on the on the UCI data sets and Table 7.11 EEG multivariate time

series data sets.

Table 7.10: Classification error rates and lowest error rates with corresponding optimal
number of features obtained from experiments on UCI data sets. Methods used are the
FSSPKM clustering and both FSS and BSS feature selection algorithms with all four
feature selection criteria. Error rates are averages of 50 random runs.

FSSPKM only FSSPKM with Feature Selection
MM α β γ

Error # of Error # of Error # of Error # of Error # of
(%) features (%) features (%) features (%) features (%) features

FSS
WDBC 6.3 30 5.0 15 6.0 25 5.3 23 5.3 22
BLD 42.0 6 42.0 Any 42.0 Any 42.0 Any 42.0 Any
HD 21.7 13 21.3 9 21.6 12 21.3 9 21.1 10
PID 34.7 8 34.2 3 28.1 1 34.5 2 33.7 2
Wine 3.9 13 3.9 13 3.9 13 3.9 13 3.9 13
Iris 13.6 4 6.4 1 9.5 3 9.2 1 6.3 1
BSS
WDBC 6.3 30 4.9 15 5.5 22 5.3 23 5.3 16
BLD 42.0 6 42.0 Any 42.0 Any 42.0 Any 42.0 Any
HD 21.7 13 21.3 10 21.3 10 21.3 10 21.3 10
PID 34.7 8 34.6 3 34.7 8 34.7 8 33.8 3
Wine 3.9 13 3.8 7 3.9 13 3.9 13 3.9 13
Iris 13.6 4 7.0 1 10.1 1 10.1 1 7.5 1
Any: Any number of features: {1, 2, . . . , m}.

Overall, feature selection with α-ratio gives very close results to those given by

β-ratio on almost all data sets. In addition, the MM and γ-ratio give similar error

rates. The best result for WDBC data set is using the BSS MM feature selection,

which reduces the error rate from 6.3% to 4.9% with half of the features used. Feature

selection does not improve the classification performance in BLD and HD data sets.

Specifically, in BLD data set the error rates are all the same no matter what numbers

of features are used. The error rate for HD data set can only be decreased from 21.7%

to 21.1% the most by FSS γ-ratio feature selection. The only improvement for Wine

data set is made by BSS MM feature selection, which eliminate six features but only

decrease the error rate from 3.9% to 3.8%. However, feature selection for HD and Wine

data sets is not totally valueless. It indicates that with a smaller number of features,

the HD and Wine data set can be classified with a similar error.

Very different results are from the performances in the PID data set, which is known

to be difficult to classify [11]. The only best performance is made by the FSS α-ratio

feature selection, which decrease the error rate from 33.7% to 28.1% with only one
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feature used. All feature selection methods in FSSPKM significantly improves the

classification on Iris data set. The best result is by using FSS γ-ratio, which reduces

the error rate from 13.6% to 6.3% with only one feature used.

Table 7.11: Classification error rates and lowest error rates with corresponding optimal
number of features obtained from experiments on EEG data sets. Methods used are
the FSSPKM clustering and both FSS and BSS feature selection algorithms with all
four feature selection criteria. Error rates are averages of 50 random runs.

FSSPKM only FSSPKM with Feature Selection
MM α β γ

Error # of Error # of Error # of Error # of Error # of
(%) features (%) features (%) features (%) features (%) features

FSS
P1 23.9 26 20.8 20 20.8 23 21.2 32 20.9 22
P2 24.4 26 17.8 5 20.0 6 19.9 6 20.2 12
P3 48.6 26 45.0 1 44.0 1 44.2 1 45.4 1
P4 47.1 26 43.3 18 43.3 20 43.5 21 43.3 17
P5 48.0 26 44.8 3 43.2 1 45.3 7 45.5 1
P6 33.7 26 32.6 20 32.9 22 32.7 23 33.6 24
P7 47.0 26 38.4 1 41.9 1 42.3 15 42.1 1
P8 45.6 26 38.1 3 41.3 1 41.2 1 41.1 2
P9 46.9 26 46.3 5 44.7 1 44.7 1 46.3 6
P10 34.2 26 34.2 20 34.1 23 34.2 21 34.1 23
BSS
P1 23.9 26 20.8 23 20.8 23 20.8 23 20.8 23
P2 24.4 26 10.2 1 10.2 1 10.2 1 9.5 3
P3 48.6 26 39.3 3 43.7 1 37.8 1 43.3 1
P4 47.1 26 43.5 17 43.1 14 43.1 14 43.1 19
P5 48.0 26 45.5 7 45.7 7 45.7 7 47.4 5
P6 33.7 26 33.7 26 33.4 25 33.4 24 33.7 26
P7 47.0 26 36.3 1 36.3 1 35.4 2 41.1 6
P8 45.6 26 37.6 4 41.7 1 37.9 4 38.8 4
P9 46.9 26 46.9 26 46.9 26 46.9 26 46.3 2
P10 34.2 26 34.2 26 34.1 22 34.1 20 34.0 14

Results show that the EEG data sets are very difficult to cluster. The proposed

feature selection methods work very well only on the P2 EEG data set. The best

results for the P2 EEG data set is BSS γ-ratio feature selection. Its error rate decreases

from 24.4% to 9.5% with only three features used. Observe that both FSS and BSS

produce comparable results, except that on the P2 EEG data set, the BSS methods

dominant the FSS methods. It is also worth noting that with feature selection, the

results made by FSSPKM clustering are improved on almost all data sets. Only on P6,

P9 and P10 EEG data sets no significant improvements occurred with feature selection.

7.3.2 Classification and Clustering Error Curves

The classification error and the clustering error in relation to the number of remaining

features are shown in the error curves, as well as one sample standard deviation above
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and below each value. Note that the real use of the FSSPKM with feature selection is

to unlabeled data, therefore only a clustering error curve can be generated and then a

tolerable magnitude of error can be chosen by deciding the number of features to keep

[71]. However, by having the classification error curve compared with the clustering

error curve, possible improvement made by feature selection can be observed. According

to the definition of the classification error and clustering error, if both classification error

curve and clustering error curve are parallel to each other at some numbers of features

used, it means that the gold labels (obtained from clustering using all features) and the

real labels in the clusters are quite consistent at the chosen numbers of features. In this

case, one may choose a number of features that gives an acceptable error rate. However,

if the classification error curve is not parallel with the clustering error curve, it means

that some of the features contain a lot of noise which makes the resulting gold label not

able to represent the data well. In such a case, feature selection can actually improve

the classification. One can see that the classification error significantly decreases while

the number of features decreases.

Figure 7.1 displays the error curves from the four proposed FSS feature selection

methods on the Wine data set, and Figure 7.2 displays the error curves from the BSS

feature selection methods. The FSS methods start with very high error rates when only

few features are used. The error rates keep reducing while the number of features is

increasing. The error rates generated by the FSS α-ratio behave very differently from

those by the other three.

Similarly, in BSS both classification and clustering error rates increase dramatically

when less than two or three features are used. However, Steady error rates are occurred

in all four BSS feature selection methods when 8 to 13 features are used. This consis-

tency ensure that one may choose only eight features rather than 13 features to have

almost the same clustering performance. The results obtained from α-ratio are similar

to that from the β-ratio, while the results obtained from MM are similar to that from

the γ-ratio.

Error curves obtained from the experiments using the four proposed FSS feature

selection methods on the PID data set are displayed in Figure 7.3, and error curves
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Figure 7.1: Error curves generated by FSS feature selection methods on the Wine data
set

obtained from the BSS feature selection methods are displayed in Figure 7.4. The

classification error rates of the FSS MM, β-ratio and γ-ratio are at around 35% no

matter how many features are used. Only the FSS α-ratio gives the classification error

at a very law 28.1% when using one feature. It may imply that the FSS α-ratio captures

a critical feature which can help in classification. The high clustering error rates when

less than six features are used indicate that the gold labels obtained when using all

features do not match with the real labels of the samples. There exist some features

that need to be eliminated in order to improve classification. In Figure 7.4, the BSS

algorithms of all four feature selection criteria have almost the same classification errors

around 35% no matter how many features are used.

Figure 7.5 shows the error curves of the FSS tests on the P1 EEG data set. It is

obvious that the classification error curves are parallel with the clustering error curves
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Figure 7.2: Error curves generated by BSS feature selection methods on the Wine data
set

almost at any number of features. The standard deviations of both the classification

and clustering errors are high. When more than 12-15 features are used, the error rates

become more steady.

The results of the BSS tests on the P1 EEG data set are shown in Figure 7.6.

Again, the classification error curves are parallel with the clustering error curves almost

at all numbers of features. The standard deviations of both the classification and

clustering errors are not as high as those generated by the FSS methods. In general, the

average errors are not much different when about more than 10 features are used. These

consistent results indicate that there exists no significant improvement in classification

or clustering by selecting certain features. However, using fewer numbers of features

may provide similar classification or clustering results.

Figure 7.7 shows the error curves from the four FSS feature selection methods on the
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Figure 7.3: Error curves generated by FSS feature selection methods on the PID data
set

P2 EEG data set. The classification error is decreasing when using one to five features,

and is increasing when using six features. The classification error curves start to be

constant and parallel with the clustering error curves when more than 10-15 features are

used. This indicates that the gold labels and the real labels are significantly different

and using fewer numbers of features can improve the classification.

The error curves generated by the BSS feature selection methods are shown in

Figure 7.8. The classification and clustering error curves have very different behaviors

from all previous curves. The MM method has a big gap between classification and

clustering error curve when using from 15 to 26 features. Then the classification error

decreases and the clustering error increases while the number of features decreases.

Note that the classification error largely decreases and reaches its lowest when using

only one feature. The α-ratio and β-ratio methods behave similarly and also reach their
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Figure 7.4: Error curves generated by BSS feature selection methods on the PID data
set

lowest classification error when using one feature. Both α-ratio and β-ratio methods

have their classification error decrease and clustering error increase while using less than

10 features. The γ-ratio reaches its lowest classification error when using three features.

These results indicate that feature selection for FSSPKM clustering does improve the

classification on the P2 EEG data set.

Overall results show that both FSS and BSS methods produce similar best perfor-

mances. It may be suggested to prefer using BSS since fewer iterations are needed. It

is also suggested to apply all four feature selection methods since every data set has

different structure. No specific criterion can work for all data sets. If all methods give

consistent results, one can be more confident on the conclusions. A complete collection

of error curves for all data sets that are tested can be found in Appendix A for attribute

data and Appendix B for EEG MTS data.
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Figure 7.5: Error curves generated by FSS feature selection methods on the P1 EEG
data set

7.3.3 Comparison with Other Methods

Table 7.12 shows the comparison of classification errors of the four BSS feature selection

method with other feature selection clustering algorithms. In the LFJ method [59], both

Wine and WDBC data sets are used, which give classification errors at 9.35% and 6.61%,

respectively. Both errors are higher than all other methods. However, its method not

only performs feature selection but also determines the best number of clusters needed.

The M&W method [71] gives higher classification errors than the the proposed BSS MM

method. Its clustering technique is different from the proposed FSSPKM. The M&W

method uses the original k-median clustering without the sample-preserved property,

which our FSSPKM clustering has.

The CAC method [26] gives higher error rates than the BSS MM method on the

WDBC data set. Its lowest error is 6.2% using 16 features, while the BSS MM method’s

lowest error rate is 4.9% using 15 features. On the HD data set, the CAC method of
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Figure 7.6: Error curves generated by BSS feature selection methods on the P1 EEG
data set

gives an error rate of 30.5%, lower than 32% from the BSS MM method when only

two features are used. However, the proposed BSS MM method can reduce the error

rate to 21.3% if 10 features are used. On the Wine data set, even though the CAC

method gives a lower error rate of 5.8% than 6.6% from the BSS MM method when

four features are used. Both methods can give a lowest error of 3.8% if 7 features are

used.

It is important to notice that all other three methods (from [26, 59, 71]) use the

k-median clustering without the sample-preserved property. Our proposed FSSPKM

algorithm forces the cluster medians to be one of the existing samples, which can best

represent the samples in each cluster. Hence, when using the cluster medians to classify

other samples, the FSSPKM with feature selection gives the best results. In summary,

the proposed feature selection methods tend to need higher numbers of features when
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Figure 7.7: Error curves generated by FSS feature selection methods on the P2 EEG
data set

reaching the lowest error rates in some cases. This may be the results of the sample-

preserved property of our clustering algorithm.

7.3.4 Conclusion on Feature Selection in FSSPKM Clustering

A feature space sample-preserved k-median (FSSPKM) clustering algorithm along with

its feature selection methods are proposed. The FSSPKM clustering is comparable to

the original k-median except that the FSSPKM uses a sample-to-sample distance matrix

at each feature space and each cluster median is a combination of the existing sample

values in each feature space. This may be critical because not all values are valid

in some application domains. The sample-preserved property ensures the existence

of the sample values. Due to this property, the FSSPKM can also be easily applied

on multivariate time-series data. Four feature selection criteria utilizing such distance

matrices are tested on real world attribute data sets and multivariate time series data
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Figure 7.8: Error curves generated by BSS feature selection methods on the P2 EEG
data set

sets. They are based on forward subset selection (FSS) and backward subset selection

(BSS) approaches. Experimental results show that both methods produce similar best

performances. BSS is suggested since it needs fewer iterations than what FSS requires.

The behavior of both the classification error and the clustering error curves in relation

to the number of remaining features indicates the possible classification improvements

using the proposed feature selection criteria. For example, the BSS γ-ratio feature

selection technique for the P2 multivariate time series data set gives classification error

rate of 9.5% with three features compared with 24.4% with the full 26 features.

The proposed FSSPKM clustering algorithm and its feature selection methods have

two major strengths. One is that even though the sample-preserved clustering property

may tend to require more number of features in some cases in order to give smaller

classification error rates, such property provides the lowest errors compared with other

feature selection clustering methods which do not have the sample-preserved property.
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Table 7.12: Comparison of the best performance classification errors with different
approaches.

LFJ[59] M&W [71] CAC[26] BSS MM α β γ
Error Error s Error s Error s Error s Error s Error s
(%) (%) (%) (%) (%) (%) (%)

WDBC 9.35 - - 8.8 3 7.9 3 11.6 3 11.6 3 10.4 3
- 9.0 7 - - 7.0 7 7.3 7 10.2 7 9.3 7
- - - 8.8 10 7.9 10 9.1 10 7.9 10 8.6 10
- - - 6.2 16 4.9 15 7.0 15 5.4 22 5.3 16
- - - 6.4 22 5.3 22 5.5 22 5.3 23 5.3 22

HD - - - 30.5 2 32.0 2 30.4 2 30.4 2 33.1 2
- 28.0 8 - - 22.2 8 22.2 8 22.2 8 22.2 8
- - - - - 21.3 10 21.3 10 21.3 10 21.3 10

Wine 6.61 4.0 4 5.8 4 6.6 4 14.1 4 14.1 4 8.6 4
- - - 3.8 7 3.8 7 5.7 7 5.7 7 5.2 7
- - - - - 3.9 13 3.9 13 3.9 13 3.9 13

The second is that only the FSSPKM and its feature selection methods can be applied

directly on multivariate time series data with flexibility of choosing distance measures.

The proposed feature selection methods produce improved performance with FSSPKM,

and outperform other feature selection techniques used in the original k-median clus-

tering.
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Chapter 8

FUTURE RESEARCH

Pattern recognition refers to the identification of individual characters according to a set

of training patterns with class labels. Many opportunities can be found for developing

original research in the pattern recognition area. These opportunities can be aimed

at improving sample-preserved classification (or clustering). They can be focused on:

extending the proposed techniques into stronger pattern-based methods, or constructing

novel classification (or clustering) models aiming at different analytical purposes.

8.1 Identifying Sample-Preserved Patterns

Consider the Logical Analysis of Data (LAD) (described in Section 2.1.1) used to find

positive and negative patterns in an attribute data set. Positive patterns contain values

of selected features guaranteed to be found only in positive samples. Negative patterns

can be found only in negative samples. Once found, a new sample can be classified

into a positive or negative group more confidently. However, LAD can not handle

multivariate time series (MTS) directly.

The proposed techniques may be extended into stronger pattern-based methods,

such as identifying specific sample-preserved patterns in order to represent a specific

group of data. These patterns may be a region in a subspace of the original sample

space, and may be obtained by extending the feature space sample-preserved clustering.

It may then be used for time series data and possibly improve the classification of MTS.
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8.2 Regression Analysis

Sample-preserved methods consider relative distances (similarities) among samples to

train a classifier, or to form clusters. One may develop a new model aiming at different

analytical purposes, such as considering the distribution of variables in a multivariate

data set.

Regression analysis is a technique focused on analyzing the relationship between a

dependent variable and one or more independent variables. It constructs a regression

function as a function of independent variables. There may exist a probability dis-

tribution that describes the variation of the dependent variable around the regression

function. There may also exist a conditional distribution of the dependent variable

given the independent variables. For example, the Likelihood Basis Pursuit (LBP)

model (described in Section 2.1.3.1) determines the probabilities of binary outcomes

given vectors of independent variables, while automatically selecting and prioritizing

important features. Once a regression function is constructed, it can then be used for

prediction and forecasting. Besides regression functions, there are autoregressive mov-

ing average (ARMA) models that have been used for analyzing stationary time series,

and autoregressive integrated moving average (ARIMA) models for nonstationary time

series.

MTS data contain both spacial and temporal properties. Since many regression

functions have been designed for attribute data, and ARMA or ARIMA models can

be built for time series data, the ideas of both techniques may be combined for the

analysis of MTS. Certain distributions of variables may exist in a MTS data set. One

may further investigate those distributions and construct regression analysis models for

MTS sample prediction and forecasting.

8.3 Hierarchical Clustering for Multivariate Time Series

Unsupervised learning can be subdivided into hierarchical clustering and partitional

clustering by the type of structure imposed on the data [47]. Partitional clustering

is a single partition, whereas hierarchical clustering is a nested sequence of partitions.
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Hierarchical clustering can be obtained from a sequence of partitional clusterings.

A clustering is a partition. Suppose a data set contains n samples. Let Gp denote

the set of indices of samples that are assigned to cluster p for p = 1, . . . , k. That

is Gp ⊂ {1, 2, . . . , n} and Gp ∩ Gp′ = ∅ for joint clustered subsets p 6= p′ for p and

p′ ∈ {1, . . . , k}. G1∪G2∪· · ·∪Gk = {1, 2, . . . , n}. The components of the the partition

are called clusters. Partition E is nested into partition G if every component of E is a

subset of a component of G. Consider an example of the following clusterings.

G = {(1, 2), (3, 5, 7, 9), (4, 6, 8, 10)}.
E = {(1, 2), (3, 5), (7, 9), (4, 6, 8), (10)}.
F = {(1, 2), (3, 4, 5, 6), (7, 8, 9, 10)}.

In the example above, the clustering G and F have three clusters, while the clustering

E has five clusters. The clustering E is nested into the clustering G. G is formed by

combining components of E. Observe also that neither G nor E is nested into F , and

F is not nested into G or E.

Clustering

( ) ( ) ( ) ( ) ( ) ( ){ }654321 ,,,,,

( ) ( ) ( ) ( ){ }654321 ,,,,,

( ) ( ) ( ){ }654321 ,,,,,

( ) ( ){ }654321 ,,,,,

( ){ }654321 ,,,,,

2 3 4 5 61

Figure 8.1: An example of a dendrogram.

A hierarchical clustering is a sequence of partitions where each partition is nested

into the next partition in the sequence. A dendrogram is a tree diagram frequently used

to provide a convenient view of a hierarchical clustering. Figure 8.1 shows an example

of a dendrogram. Lines are used to connect nodes whose components are merged to

create components of the next partition. Connected nodes represent clusters that are
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nested into the other. Graph theory has been largely applied for hierarchical clustering

algorithms.

Clustering techniques used in this dissertation are partitional clustering techniques.

No hierarchical relationships of clusters have constructed. There exist opportunities to

explore a different area of clustering methodologies. One possible technique may be a

hierarchical clustering algorithm for multivariate time series.
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Appendix A

FSSPKM Feature Selection Error Curves Part 1: UCI

Data Sets
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Figure A.1: Error curves generated by FSS feature selection methods on the WDBC
data set
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Figure A.2: Error curves generated by BSS feature selection methods on the WDBC
data set
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Figure A.3: Error curves generated by FSS feature selection methods on the BLD data
set
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Figure A.4: Error curves generated by BSS feature selection methods on the BLD data
set
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Figure A.5: Error curves generated by FSS feature selection methods on the HD data
set
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Figure A.6: Error curves generated by BSS feature selection methods on the HD data
set
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Figure A.7: Error curves generated by FSS feature selection methods on the PID data
set
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Figure A.8: Error curves generated by BSS feature selection methods on the PID data
set
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Figure A.9: Error curves generated by FSS feature selection methods on the Wine data
set
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Figure A.10: Error curves generated by BSS feature selection methods on the Wine
data set
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Figure A.11: Error curves generated by FSS feature selection methods on the Iris data
set
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Figure A.12: Error curves generated by BSS feature selection methods on the Iris data
set
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Appendix B

FSSPKM Feature Selection Error Curves Part 2: MTS

Data Sets
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Figure B.1: Error curves generated by FSS feature selection methods on the P1 data
set
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Figure B.2: Error curves generated by BSS feature selection methods on the P1 data
set
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Figure B.3: Error curves generated by FSS feature selection methods on the P2 data
set
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Figure B.4: Error curves generated by BSS feature selection methods on the P2 data
set
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Figure B.5: Error curves generated by FSS feature selection methods on the P3 data
set
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Figure B.6: Error curves generated by BSS feature selection methods on the P3 data
set
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Figure B.7: Error curves generated by FSS feature selection methods on the P4 data
set
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Figure B.8: Error curves generated by BSS feature selection methods on the P4 data
set
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Figure B.9: Error curves generated by FSS feature selection methods on the P5 data
set



187

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of features

T
ra

in
in

g 
se

t e
rr

or
s

P5, MM

 

 

Classification error
Clustering error

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of features

T
ra

in
in

g 
se

t e
rr

or
s

P5, α

 

 

Classification error
Clustering error

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of features

T
ra

in
in

g 
se

t e
rr

or
s

P5, β

 

 

Classification error
Clustering error

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of features

T
ra

in
in

g 
se

t e
rr

or
s

P5, γ

 

 

Classification error
Clustering error

Figure B.10: Error curves generated by BSS feature selection methods on the P5 data
set
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Figure B.11: Error curves generated by FSS feature selection methods on the P6 data
set
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Figure B.12: Error curves generated by BSS feature selection methods on the P6 data
set
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Figure B.13: Error curves generated by FSS feature selection methods on the P7 data
set
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Figure B.14: Error curves generated by BSS feature selection methods on the P7 data
set
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Figure B.15: Error curves generated by FSS feature selection methods on the P8 data
set



193

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of features

T
ra

in
in

g 
se

t e
rr

or
s

P8, MM

 

 

Classification error
Clustering error

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of features

T
ra

in
in

g 
se

t e
rr

or
s

P8, α

 

 

Classification error
Clustering error

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of features

T
ra

in
in

g 
se

t e
rr

or
s

P8, β

 

 

Classification error
Clustering error

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of features

T
ra

in
in

g 
se

t e
rr

or
s

P8, γ

 

 

Classification error
Clustering error

Figure B.16: Error curves generated by BSS feature selection methods on the P8 data
set
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Figure B.17: Error curves generated by FSS feature selection methods on the P9 data
set
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Figure B.18: Error curves generated by BSS feature selection methods on the P9 data
set
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Figure B.19: Error curves generated by FSS feature selection methods on the P10 data
set
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Figure B.20: Error curves generated by BSS feature selection methods on the P10 data
set
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