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The overall goal of this dissertation is the development of a semi-mechanistic, 

physiology-based, multiscale model of human endotoxemia, as a prototype model of 

acute inflammation in humans that integrates essential regulatory processes across the 

host from the cellular to the systemic level. The complex and multiplex characteristics of 

the acute inflammatory response and its complications have been thought to be a leading 

potential reason for the inability to propose effective clinical intervention strategies. The 

nature of the response has led researchers to the realization that mathematical models of 

inflammation offer the opportunity to study the dynamics of interacting components and 

establish a causal inference relationship through the manipulation of the corresponding 

dynamic elements.  

Driven by the premise to develop in silico methodologies that will enable 

translational research to elucidate mechanisms by which macroscopic responses, at the 

physiome level, emerge as the result of propagating information across an intricate web 
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of interacting modules, a systems-level modeling approach is developed that addresses 

the following unique aspects: (i) identification of the essential components characterizing 

cellular transcriptional dynamics in response to an external perturbation; (ii) reverse 

engineering of quantifiable representations of these elements exploring the concept of 

physicochemical and indirect response modeling that connect extracellular signals and 

intracellular signaling cascades leading to the emergent transcriptional dynamics; and 

finally (iii) multiscale, physiology-based modeling that quantifies critical aspects of the 

complex neuro-immune crosstalk while clinical observables are explicitly incorporated to 

assess systemic abnormalities indicative of the severity of the host.  

It is therefore the purpose of this research to demonstrate the feasibility of a relevant 

human inflammation model that bridges the initiating signal and phenotypic expressions 

through semi-mechanistic based host response models that include transcriptional 

dynamics, signaling cascades and physiological components; and to define a notional 

template for multiscale modeling extendable to a wide range of clinically important 

conditions. The ultimate deliverable of the proposed research is the multiscale human 

inflammation model that would allow us to clarify the clinical contexts in which 

inflammatory dysregulation contributes to morbidity and mortality in acutely stressed 

patients; thereby advancing the translational potential of systems modeling in clinical 

research.  
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Chapter 1  

The Problem of Systemic Inflammation 

1.1 Clinical relevance 

More than 40 million major surgical operations are performed annually in the United 

States, of which as many as two million are complicated by surgical site infections 

(Vogel, Dombrovskiy et al. 2009). Surgical adverse effects contribute significantly to 

postoperative morbidity by perturbing the immune system towards a severely suppressed 

state that promotes sepsis (Bruce, Russell et al. 2001). Surgical patients account for 

approximately 30% of all sepsis patients (Angus, Linde-Zwirble et al. 2001) and the 

present incidence of acquired surgical site infections is likely to continue to increase 

among nontrauma surgical patients (Lowry 2009). Sepsis is a syndrome resulting from 

massive, acute activation of the systemic inflammatory response (SIRS) in the setting of 

severe infection (Angus, Linde-Zwirble et al. 2001; Decker 2004). Severe sepsis has a 

substantial impact on healthcare resources and expenditure with an annual incidence 

exceeding three quarters of a million cases, over 25% overall in-hospital mortality rate 

and an average cost per case of more than US$20,000 (Angus, Linde-Zwirble et al. 

2001). Such a mortality rate is translated to over 200,000 deaths annually nationwide and 

therefore sepsis remains to be the 10th leading cause of death in United States (Kochanek 

and Smith 2004).  

The manifestation of SIRS criteria is the common clinical phenotype of stressed 

surgical patients and reflects the presence of consequential systemic inflammation 
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(Lowry 2009). The clinical signs of a systemic inflammatory response syndrome are 

related to: (i) a body temperature greater than 38oC (hyperthermia) or less than 36oC 

(hypothermia), (ii) an increased heart rate, (ii) tachypnea, (iii) hyperventilation and 

hypotension as well as (iii) an alteration in white blood cell count (Bone, Balk et al. 

1992). However, systemic inflammation is not inherently detrimental. Inflammatory 

processes are required for immune surveillance and regeneration after injury during 

which multiple cell types are deployed to locate pathogens, recruit cells and eventually 

eliminate the offenders and restore homeostasis (Cavaillon and Annane 2006). When 

anti-inflammatory processes fail, inflammation becomes prolonged and can lead to 

uncontrolled systemic inflammation which, in turn, can eventuate in various disease 

conditions or aggravate an already existing disease process (Krishnamoorthy and Honn 

2006). It is, therefore, a dysregulation of the resolution of inflammation that, in many 

cases, causes detrimental effects for the host. 

1.2 Neuro-immune crosstalk 

Physiological mechanisms regulating the inflammatory response involve not only the 

local release of anti-inflammatory cytokines but also hormonal influences (Czura and 

Tracey 2005). Recent studies indicate that the central nervous system (CNS) is a pivotal 

regulator of the immune response (Blalock 2002). A primary stress response pathway by 

which the CNS regulates the immune system is the hypothalamic-pituitary adrenal axis 

(HPA), through the production of glucocorticoids and other immunomodulatory signals. 

Further, activation of the sympathetic division (SNS) of the autonomic nervous system 

regulates immune function primarily via the release of adrenergic neurotransmitters 

(Elenkov, Wilder et al. 2000). Although most research has focused on the sympathetic 
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immunomodulatory output, it recently became clear that the other arm of CNS, the 

parasympathetic division (PNS) is also involved in the reflex regulation of inflammation 

(Pavlov and Tracey 2004). These functions are integrated through a network of complex 

interactions between the immune, neuro-endocrine and autonomic systems, Figure 1.1. 

The integrity of this circuitry is essential for maintaining physiological homeostasis and 

therefore disruption of these functions may have untoward effects (Sharshar, Hopkinson 

et al. 2005). 

 

Figure 1.1: Hormonal and neural regulation of immunity. The neuro-immune crosstalk is comprised of a 

descending pathway linking the CNS with peripheral immune tissues and a parallel afferent arm that links 

the immune system with the CNS. The CNS is a pivotal regulator of the immune response and controls 

inflammation at multiple levels including activation of the neuroendocrine axis (epinephrine, 

glucocorticoids) and the vagus nerve (acetylcholine). Adapted from (Matthay and Ware 2004).  
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1.3 Decomplexification and critical illness 

A characteristic feature of deterioration in the physiologic status of the host is the evolved 

state of diminished signal variability among organ systems including the innate immune 

responsiveness and central nervous systems (Lowry and Calvano 2008). Clinical 

measures of heart rate variability (HRV) are non-invasive assessments that may reflect 

real-time alterations of physiologic status (Norris, Ozdas et al. 2006). As a potential 

surrogate marker for systemic decomplexification, diminished HRV has received 

increasing attention in critical illness (Winchell and Hoyt 1996). Decreases in HRV, i.e., 

increases in regularity, have also been extensively studied and characterized as 

generalized responses to human endotoxemia (Godin, Fleisher et al. 1996; Rassias, 

Holzberger et al. 2005). It has been hypothesized that the reduction in HRV represents an 

increased isolation of the heart from other organs (Seely and Christou 2000). This 

hypothesis, originally introduced by Godin and Buchman (Godin and Buchman 1996), 

suggests that healthy organs behave like biological oscillators coupled to one another. 

Thus, reduced HRV reflects systemic-level loss of high level signal variability and is 

associated with a less “healthy” state not only in patients with cardiovascular diseases but 

also in other critically ill conditions that involve injury, severe infection and sepsis 

(Borovikova, Ivanova et al. 2000; Morris, Norris et al. 2006; Morris, Norris et al. 2007; 

Norris, Morris et al. 2005; Norris, Ozdas et al. 2006) 

1.4 The Pathophysiology of systemic inflammation 

An overwhelming systemic inflammatory response (SIRS) can compromise the function 

of distinct organs leading to multiple organ dysfunction syndrome (MODS) (Matsuda and 

Hattori 2006). Local infection develops into a systemic inflammatory response syndrome 
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(SIRS) that is characterized by the stimulation of various inflammatory mediators which 

are under the tight control of sepsis-related inhibitors that embrace the compensatory 

anti-inflammatory response syndrome (CARS), Figure 1.2.  

 

Figure 1.2: The complex mechanisms of the host defense system. The initial pro-inflammatory response 

may be uncontrolled causing the systemic inflammatory response syndrome (SIRS). A compensatory anti-

inflammatory response (CARS) may also be triggered and an imbalance between SIRS and CARS cal lead 

to multiple organ failure (MOF) (Tetta, Fonsato et al. 2005).  

During the progression of severe inflammation the homeostatic balance between the 

two essential arms of the innate immune system (SIRS and CARS) is disrupted being the 

primary cause of multiple organ failure (MOF) (Vincent 2006). An imbalance between 

SIRS and CARS accounts for an increase in the circulation of mediators that have 

significant impact on systemic effects including endothelial damage, fibrinolytic, 

complement activities and hemodynamic shock followed by vasoparalysis. The dynamics 

of inflammation are highly complex and in particular when a pathogen crosses the host’s 
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defense barriers, the innate immune system is activated. It consists of both soluble and 

cellular elements (macrophages, neutrophils, monocytes, dendritic cells and natural killer 

cells) (Hotchkiss and Karl 2003). The “chemo-attraction” of such immune cells 

stimulates the production of pro-inflammatory mediators (TNF-a, IL1) which serve as 

inter-cellular signal for the production of anti-inflammatory mediators (IL-10, TGF-β).  

In physiological conditions there is a homeostatic control between the SIRS-

associated mediators and those that are associated with the compensatory anti-

inflammatory response syndrome. In addition to this, the inflammatory process results in 

the release of free radicals that mediates tissue destruction killing bacteria. and an 

imbalance in their regulatory activity may contribute significantly to the inflammatory 

process (Winrow, Winyard et al. 1993). Another characteristic of septic patients are 

abnormalities in coagulation cascade which results in hypotension and hypoperfusion of 

major organs that contribute to death (Bochud and Calandra 2003). 

It was initially believed that an aberrant production of pro-inflammatory mediators is 

responsible for the pathogenesis of sepsis (Martich, Danner et al. 1991; Michie, Manogue 

et al. 1988; Suffredini, Fromm et al. 1989). However, other studies (Brandtzaeg, Osnes et 

al. 1996; Munoz, Carlet et al. 1991; Randow, Syrbe et al. 1995) address the issue of 

septic hyporesponsiveness as reduced capacity of immune cells to produce several 

cytokines associated with the persistent activation of potent inhibitors. On the other hand, 

there is evidence (Bone, Grodzin et al. 1997) that in patients with either infectious or 

non-infectious sepsis, SIRS and CARS may co-exist and therefore there is the imbalance 

between SIRS and CARS that can lead to an exuberant inflammatory response. Thus, 

although there is active research area on unraveling the ensuing physiological alterations 
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that characterize sepsis, significant challenges remain to be solved before this devastating 

process is understood (Vincent and Abraham 2006). Notably, we need to identify new 

ways of studying the behavior of complex biological systems. 

1.5 The era of interdisciplinary and translational research 

The term “translational research” has been coined by the American Physiological Society 

(APS) (Hall 2001) as the “transfer of knowledge gained from basic research to new and 

improved methods of preventing, diagnosing or treating disease as well as the transfer of 

clinical insights into hypotheses that can be tested and validated in the research lab”. The 

definition implies that the process is bidirectional from the research track to the clinical 

one as well as from the clinical research back to the research track. Apparently, the gap 

between the basic research and clinical track (the two arms of the translational research) 

accounts for the failure of various potential therapies to treat human disease. Recognizing 

such a growing gap the APS has taken several steps to encourage translational research 

(Hall 2001). Such an effort is being appreciated and continued by many organizations, 

including the National Institutes of Health (NIH), American Cancer Society e.t.c.(Gelijns, 

Rosenberg et al. 1998). 

In order to promote a systematic integration across multiple disciplines to help bridge 

this gap in the context of inflammation following traumatic injury the NIH recently 

funded the development of a large-scale collaborative glue grant research program known 

as Inflammation and the Host Response to Injury (Klein, Silver et al. 2006). Participating 

institutions include hospitals involved in clinical research studies, academic medical 

centers that perform analytical studies on blood and tissue samples, and informatics and 

statistics centers that develop databases and analyze data. Furthermore, the current 
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definition of NIH’s Road Map to Medical Research1 clearly identifies and states the 

importance of a deeper and better understanding of inflammation since it is broadly 

implicated in many diseases and conditions. Subsequently, this collaborative research 

program encourages investigators from different research areas to work together and 

indentify the missing pieces of complex biomedical research problems (systemic 

inflammation). Remarkably, such a program bridges the gap between basic and clinical 

research given the fact that it encompasses funded programs that are associated with the 

design of high-throughput experiments (genomics, proteomics, metabolomics) coupled 

with the patient-oriented research. The multi-disciplinary character of this program 

allows researchers to generate and share various quantitative data raising the question of 

what is an appropriate analysis that offers the possibility to unravel the salient features of 

a complex phenomenon.  

Integrated initiatives are identified as valuable in uncovering as-yet-unknown 

immune mechanisms and mediators of inflammation as well as genetic factors, 

environmental triggers, and the relationship of inflammation to disease. Currently, the 

accumulation of massive amounts of data necessitates the development of computational 

approaches that will shed useful insight on the outcome of a patient. Along this critical 

path the FDA stresses the need to incorporate advanced computational methods 

encouraging the development of disease models in that they can improve our 

understanding about the behavior of the system predicting the human response and 

indentifying surrogate endpoints that trace the trajectory of the disease facilitating the 

design of drugs and devices (Miller, Ewy et al. 2005). 

                                                 
1 http://nihroadmap.nih.gov/2008initiatives.asp 
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1.6 Rationale for mathematical modeling 

The progress of high throughput technologies associated with large–scale gene, protein 

and metabolite measurements have dramatically accelerate the hypothesis–driven 

development of in silico disease models. Mathematical modeling offers the opportunity 

of studying the dynamics of the interacting elements of a complex system while it 

provides a systematic framework for integrating research work from many disciplines 

(Sontag 2004). Systems-based modeling enables the systematic integration of massive 

amounts of relevant information shedding invaluable insight into the progression of the 

disease state and into possible therapeutic interventions (Rajasethupathy, Vayttaden et al. 

2005). Oftentimes, in silico models are viewed as the “digital analogs of transgenic 

animals” in which the activity of the immune system can be manipulated in controlled 

conditions (Kitano 2002).  

Mathematical models integrating the interacting elements of the unified inflammatory 

response offer the opportunity to establish a causal inference relationship through the 

manipulation of the corresponding dynamic elements (Lauffenburger and Kennedy 

1980). Systems-based translational research considers physiological conditions as 

dynamically evolving “systems” with clearly identified boundaries and rules defining 

their response (An, Hunt et al. 2007; Seely and Christou 2000). As a result, there is a 

growing research effort towards the development of systems-based, quantitative models 

of the inflammatory response of various degrees of complexity driven by the premise that 

such models can potentially enable the translation of knowledge from bench to bedside 

(Chung, Laramie et al. 2006).  
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1.7 Motivation and outline of the thesis  

The systemic inflammatory response syndrome often accompanies critical illnesses and 

can be an important cause of morbidity and mortality. Although considerable progress 

has been made in elucidating many of the components of inflammation and their 

regulation, most hypotheses related to the management and treatment of severe human 

inflammation have failed rigorous clinical testing. A key reason for this conundrum is the 

difficulty of predicting the impact of manipulating individual components of the highly 

complex and non-linear inflammatory response making model based approaches 

appealing. Therefore, the intricacies in translating basic research to clinical practice is 

recognized as a challenge that needs to be overcome in order to successfully transfer the 

information from the pre-clinical to the clinical stage.  

Significant opportunities emerge in the context of systems biology which aims at the 

deconvolution of complex phenomena to their constituent elements and the quantification 

of the dynamic interactions between these components through the development of 

appropriate computational and mathematical models. Systems biology is based on the 

premise that biological phenotypes can be described as the emergent response of a host to 

an external signal or perturbations. The development of in silico models has been 

accelerated by the availability of massive amounts of data related to dynamic cellular and 

molecular-level responses providing the underlying molecular signatures that drive 

macroscopic phenotypic observations. As a result, there is a growing research effort 

towards the development of systems-based, quantitative models of the inflammatory 

response and their potential role in systems-based translational research is discussed in 

Chapter 2.  
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However, a number of critical issues need to be addressed and are outlined in Chapter 

3. In order to characterize a dynamic system we need to have the ability to properly 

describe the state space defining the response. In doing so, we developed a systematic 

computational framework that decomposes high-dimensional microarray data into an 

elementary set of comprehensive responses; characterized as the “blueprints” of the 

orchestrated dynamics of the perturbed biological system. Such responses effectively 

decompose the overall dynamics and present the constitutive elements of the integrated 

systemic response. We need, therefore, to develop appropriate computational 

methodologies that will allow the identification of these basic response elements and are 

presented in Chapter 4. 

Once the state space has been identified we need to develop the appropriate wiring 

architectures that convolute a multitude of external signals. Although black-box modeling 

has found widespread applications in systems biology, we wish to explore the possibility 

of developing more mechanistic-based and simplified representations of the dynamics. 

By incorporating biological information in the form of critical signaling cascades and 

kinetic rules we would probably be able to develop more interpretable and 

physiologically relevant computational models. As such, cellular physicochemical host 

response models are proposed in Chapter 5 to assess the propagation of an external 

perturbation as the emergence response of a network of interacting components essential 

for the onset, resolution and control of the host response.  

Further, in an effort to develop in silico methodologies that will enable translational 

research to elucidate mechanisms by which macroscopic responses, at the physiome 

level, emerge as the result of propagating information, in the form of disturbances, across 
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an intricate web of interacting modules, functional links between cellular events and 

physiological responses need to be established. A vital enabler in that respect is the 

development of systems-level analysis that integrates data across multiple scales and 

models essential features of the multiscale nature of the response. Specifically, multiscale 

human inflammation models are developed in Chapter 6 that quantify critical aspects of 

the complex bidirectional communication between the CNS and the immune response 

and assess cardiovascular (systemic) abnormalities by incorporating explicitly phenotypic 

expressions such as clinical heart rate measurements that correlate with the severity of 

injury (illness). Thus, the goal of this research is to demonstrate the feasibility of a 

multiscale model of human endotoxemia as a prototype model of acute inflammation in 

humans that couples essential regulatory processes across the host from the cellular to the 

systemic level.  

Finally, we wish to demonstrate not only the potential implications of the proposed 

integrative approach towards the study of the inflammatory response, but also to advocate 

the possibility of the generalization of this framework in a wide range of disease 

progression models and thus enabling the use of systems biology in translational 

research. It is therefore the goal of this dissertation to demonstrate the feasibility of the 

proposed approach as a notional template for multiscale modeling in human physiology. 
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Chapter 2  

Background 

Bacterial infection, trauma, surgery and biological stressors in general, induce an acute 

inflammatory response, characterized by a cascade of events that involve initiation of the 

reaction, progression, and termination followed by resolution of inflammation. Under 

normal circumstances, this inflammatory response is self-limited, and once the pathogens 

are cleared, reparative processes begin and the response then abates (Laroux 2004). 

Oftentimes pro-inflammatory responses prevail or anti-inflammatory processes fail, and 

an amplified runaway inflammation turns what is normally a beneficial reparative process 

into a detrimental physiological state characterized by an inflammatory state of the entire 

system (Nystrom 1998).  

Despite the growing understanding of the cellular and molecular mechanisms of 

systemic inflammatory response syndrome (Tetta, Fonsato et al. 2005) and the success of 

pre-clinical studies, not many effective therapies exist and few drugs are known to reduce 

mortality in clinical trials (Annane, Sebille et al. 2002; Annane, Bellissant et al. 2004a, b; 

Arzt, Sauer et al. 1994; Bernard, Vincent et al. 2001; Kerschen, Fernandez et al. 2007; 

Klaitman and Almog 2003; Marshall 2003; Meduri, Headley et al. 1998; Riedemann, 

Guo et al. 2003). Even the improved capacity to acquire quantitative data in a clinical 

setting has generally failed to improve outcomes in acutely ill patients. Thus, the 

intricacies in translating basic research to clinical practice are recognized as a challenge 

impeding the successful transfer of information from the pre-clinical to the clinical stage 

(Marshall 2005; Marshall, Deitch et al. 2005). This challenge is often linked to the 
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growing gap between basic and clinical research (Hall 2001) and there is growing interest 

to bridge the two through translational research. As such, the nature of the response has 

led researchers to the realization that mathematical models of inflammation might 

provide rational leads for the development of strategies that promote the resolution of the 

response and the eventual establishment of homeostasis (Seely and Christou 2000). Such 

models are critical enablers in advancing the translational potential of clinical research, a 

subject recently reviewed (Foteinou, Calvano et al. 2009c).  

2.1 In-silico modeling of inflammation 

The modeling approaches fall broadly in two categories: those based on explicit 

dynamics (Day, Rubin et al. 2006; Reynolds, Rubin et al. 2006) and agent based models 

which are discrete in time and space (An 2004). One of the earliest mathematical models 

of inflammation dates back to the early 1980s when Lauffenburger and co-workers 

(Lauffenburger and Kennedy 1980) described the local tissue inflammatory response to 

bacterial invasion. In this model the leukocytes are continuously distributed whilst their 

accumulation and efficiency in localization within the inflammatory lesion coupled with 

their phagocytic activity determine the resolution of infection. This model expresses the 

dynamic interaction between the invader and a homogeneous leukocyte population using 

a two variable model that consists of bacterial and leukocyte densities. An extension of 

this model replaced the single cell-target with a density number associated with the target 

population (Fisher and Lauffenburger 1990). In this model the principal goal is to address 

the effect of factors such as chemotaxis, cell speed and persistence on target elimination 

dynamics. Further attempts (Mayer, Zaenker et al. 1995) explored the interaction of the 

immune system with a target population (bacteria, viruses). Such analyses explore non-
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linear interaction rules between the immune and target cells that determine the outcome 

of the immune response. Alternative modeling approaches placed emphasis on simulating 

interactions at the cellular level in response to an infection (Detilleux, Vangroenweghe et 

al. 2006). 

Among the simplest, yet very informative, inflammation models incorporating 

measured quantities is the one proposed by Kumar et al. (Kumar, Clermont et al. 2004). 

The model tracks three basic variables indicative of the onset, progress and resolution of 

the inflammatory response, which include the pathogen, pro- and late- inflammatory 

mediators. Specifically, the pathogen (p) is the instigator of the inflammatory response 

while a pro-inflammatory mediator (m) captures the combined effect of various 

inflammatory cells and finally the late pro-inflammatory mediators (l). The underlying 

basis of this model is to explore the interaction between early and late pro-inflammatory 

mediators. The interaction between the pathogen (p) and the pro-inflammatory cells (m) 

is modeled using the principles of a predator-prey model whilst the interactions among 

the other model elements are characterized by algebraic functions that can simulate an 

early (m) and a late (l) upregulated dynamic response. This model explores the dynamic 

interaction of particular aspects of the inflammatory response investigating regimes of 

parameter values that can account for inflammatory relevant scenarios. 

Later it was suggested (Day, Rubin et al. 2006; Reynolds, Rubin et al. 2006) that the 

outcome of a healthy inflammatory response is determined by a balanced regulation in 

the dynamics of pro- and anti-inflammation. In this model, as seen in Figure 2.1(left), the 

pathogen (P) is the initiating event that stimulates the activation of pro-inflammatory 

mediators (N*) that can be either cytokines or immune cells (macrophages).  
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Figure 2.1: (left) Qualitative structure of the four variable model of acute inflammation. Infection (P) 

triggers inflammation (N*) while regulatory mechanisms conceptualized as anti-inflammation (CA) are 

triggered almost simultaneously. Excessive inflammation results in tissue dysfunction (D); (right) Model 

dynamics proposed and developed in (Reynolds, Rubin et al. 2006).  
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Once the pro-inflammatory response is activated, it serves as a subsequent signal for 

stimulating the anti-inflammatory component of inflammation. Moreover, the increased 

expression of pro-inflammatory mediators can cause tissue damage and is expressed via 

the variable (D). This variable serves as a marker for tissue damage/organ dysfunction 

(unmeasurable variable) whilst CA is considered to be the regulatory component (anti-

inflammation) of the system. The dynamic interactions of this reduced set of 

inflammatory components are modeled mathematically using special functional forms as 

seen in Figure 2.1(right).  

In a further refinement of this model (Clermont, Bartels et al. 2004) the dynamic 

evolution of effector cells (macrophages, neutrophils) is distinguished from the 

corresponding activation of effector cytokines and there is emphasis on the importance of 

modeling crucial signaling pathways (i.e. complement activation). In particular, the 

dynamic state of the model depends on the state of various inflammatory components that 

are related to: (1) pathogen (P), (2) pathogen-derived endotoxin (PE), (3) resting 

macrophages (MR), (4) activated macrophages (MA), (5) activated neutrophils (NA), (6) 

nitric oxide synthase activity (NOD), (7) circulating levels of nitric oxide (NO), (8) tumor 

necrosis factor (TNF), (9) interleukin -6 (IL6), (10) generic anti-inflammatory activity 

(CA, CAI, CAR), (10) activated protein C (PC), (11) tissue factor (TF), (12) thrombin 

(TH), (13) blood pressure (B) and (14) tissue damage (D). All the interacting elements 

are quantified and illustrated in Figure 2.2.  
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Figure 2.2: A complex, multivariable mathematical model of systemic inflammation (Clermont, Bartels et 

al. 2004) 
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The model as shown in Figure 2.2 is expanded with the inclusion of particular pro-

inflammatory mediators (TNF, IL6) followed by the activation of macrophages and 

neutrophils (immune cells). As far as the generic anti-inflammatory activity is concerned, 

this model variable refers to the activity of well-established counter-regulatory 

components such as IL10, steroids, transforming growth factor-β (TGF-β), soluble 

receptors to pro-inflammatory cytokines that are triggered by pro-inflammatory agents 

(TNF, IL-6 and NO). In addition to this, the ordinary differential equations that model the 

tissue factor (TF), thrombin (TH) and the antithrombotic activated protein C (PC) are 

associated with the activation of the coagulation and complement pathway. The 

underlying rationale behind the selection of the aforementioned model elements lies on 

prior biological knowledge. Extension of this research effort focused towards the 

development of more generalized inflammatory models accounting for a diverse array of 

initiating events (Chow, Clermont et al. 2005; Prince, Levy et al. 2006). Models that 

describe the dynamics of the immune system in response to other infectious agents have 

also been proposed (Hancioglu, Swigon et al. 2007) characterizing the rates of various 

processes contributing to the progression of the disease focusing on the control of the 

infection by the innate and adaptive immunity(Lagoa, Bartels et al. 2006). 

An important issue is that of increasing complexity in the model with the lack of a 

total calibration. Regardless of the fact that there are components in the model that still 

need calibration, this model offers the opportunity of evaluating immunomodulatory 

strategies. Thus in (Clermont, Bartels et al. 2004) the authors simulate an anti-TNF 

clinical trial identifying characteristics of trial populations that are going to be benefited 

by such an intervention. Such an approach provides us with significant insight into the 



21 

 

design of clinical trials of immunomodulatory strategies ranging from optimal patient 

selection to individualized selection of drug dosage ant duration of treatment. Further, in 

(Chow, Clermont et al. 2005; Prince, Levy et al. 2006) the model analysis revealed that 

LPS does not mediate cannulation or hemorrhagic shock–induced inflammation via the 

classic CD14-TLR4 pathway and have also been pivotal in supporting the hypothesis that 

shock states induced by a wide range of physiological challenges are the emergent result 

of a universal response despite differences in initiation and modulation. Consequently, in 

silico models can predict a zone of therapeutic opportunity against inflammation 

predicting the effect of various immunomodulatory strategies that target crucial 

inflammatory elements. 

Except for ODE type of modeling, another type of mathematical modeling is the 

agent based modeling (ABM) approach. This type of modeling has been recognized as a 

useful approach to understand complex biologic processes (inflammation) (An 2001; 

Vodovotz, Clermont et al. 2004) and its underlying principle is the establishment of rules 

among the actors of the biological response (agents). Agent based model is an individual 

based computational model in that each rule is a probability of a given event to happen. 

An illustration to this is the agent-based model of inflammation and wound healing 

(cross-linked biological processes) presented in (Mi, Riviere et al. 2007). In this study the 

“agents” represent cells and cytokines that interact through the activation of local rules on 

a spatial grid of various probabilities. In essence, agent based models allow the “agents” 

to interact with each other and move in a region based on the activation of local rules. 

Another ABM type of modeling is discussed in (Alberti, Brun-Buisson et al. 2005) where 

there is emphasis on simulating the acute phonotrauma in cases with various cytokine 
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profiles. In addition to this, in the studies done by An and collaborators (An 2001; An, 

Hunt et al. 2007; An 2008; An, Faeder et al. 2008), the applications of ABM in 

inflammation models have been effectively demonstrated. Therefore, such models shed 

useful insight on the interacting elements that present large heterogeneity. Both models 

(ABM and ODE) provide valuable insight regarding the behavior of complex systems. As 

such, there is no unidirectional answer to what modeling approach is the best as this is 

highly dependent on the scopes of each research task. However, it should be emphasized 

that ABM models need more computational power compared to ODE based models and 

ODE-based models are useful in applications where the overall behavior of an element 

(concentration of a mediator) is sought emphasizing the time-dependence of the 

interacting elements and offering opportunities for their future integration with agent-type 

models. In this research we are primarily interested in semi-mechanistic ODE based 

models in that we would like to simulate the complex dynamic behavior of the entire 

system (progression of a disease) through its elementary dynamic elements. However, the 

feasibility of an agent-based model of systemic inflammation in humans is also 

demonstrated in Chapter 5 (Section 5.5) of this dissertation.  

2.2 Clinical models of human endotoxemia 

Inflammation can be studied in the absence of complex pathophysiology and co-

morbidities of human sepsis by using surrogate models. Human endotoxin challenge is 

one well-accepted surrogate model for studying the acute inflammatory response as it 

captures many of the clinically observed features of systemic inflammation (Calvano, 

Xiao et al. 2005a; Fannin, Auman et al. 2005; Lowry 2005; Talwar, Munson et al. 2006; 

Wittebole, Hahm et al. 2007). Endotoxin, a major component of the outer membrane of 
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gram-negative bacteria, activates the innate immune system, leading to inflammation. 

This moiety can be a complicating factor in a variety of situations including trauma, 

burns, invasive surgery and organ-specific illnesses. The prototypical examples of 

endotoxin are lipopolysaccharides (LPS), Figure 2.3.  

 

Figure 2.3: Electron micrograph of Escherichia Ecoli (E. coli) together with the schematic structure of 

lipopolysaccharide (LPS, endotoxin). The lipid A component is the primary structure of the toxic center of 

LPS (Beutler and Rietschel 2003).  

Protruding from the outer membrane, LPS is composed of a lipid moiety referred to 

as lipid A and a polysaccharide chain called the O-chain that is partially extracellular. 

The inner portion of the O-chain consists of the core region that links the oligosaccharide 

to the lipid A moiety (Andreasen, Krabbe et al. 2008).  

Studies involving experimental human endotoxemia have reported rapid intravenous 

infusion in doses of 2-4ng/kg body weight, which effectively induce a monophasic 

systemic inflammatory response. The response following endotoxin administration in 

human subjects includes core temperature, cardiac, vasomotor, hematologic, metabolic, 

hormonal, acute phase reactant, and cytokine components that have been well described 
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(Copeland, Warren et al. 2005; Lowry 2005; Santos and Wilmore 1996; van Deventer, 

Buller et al. 1990; Van Zee, Coyle et al. 1995). In particular, innate immune cell 

activation leads to the production and release of pro-inflammatory and anti-inflammatory 

cytokines (Opal and DePalo 2000), which are proximal mediators of the systemic 

inflammatory response (SIRS) and of the compensatory anti-inflammatory response 

syndrome (CARS), respectively, Figure 2.4.  

 

Figure 2.4: Endotoxin kinetics and mean expression of critical pro- and anti-inflammatory 

components following 2ng/kg intravenous bolus of endotoxin. Adapted from (Lowry 2005).  

In addition to transcriptional alterations, intravenous endotoxin administration in human 

subjects elicits a neuro-endocrine and hemodynamic response characteristic of acute 

injury and sepsis (Lin and Lowry 1998). Such similarities between the early, transient 

clinical phenotype and the inducible changes of human endotoxin model has led to the 

recognition that experimental human endotoxemia represents a reproducible model to 

evaluate the host response to acute illnesses (Lowry 2005). 
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Chapter 3  

Significance 

Life sciences are facing a transition from descriptive to mechanistic approaches that 

reveal principles of cells, cellular networks, organs and their interactions across multiple 

scales of biological organization. The rapid progress of molecular biology in the wake of 

the identification of DNA’s structure (Watson and Crick 1953) serves as a reminder of 

the power of reducing a system to its smallest possible components and studying them. 

Yet, although reductionism is powerful, its scope is limited. This is widely recognized in 

the study of complex systems whose properties are greater than the sum of their 

constituent parts (Aderem 2005). Recognizing that complexity, the emerging field of 

systems biology attempts to harness the power of mathematics, engineering and computer 

science to analyze and integrate data with the ultimate goal of creating models of entire 

biological systems. Thus, the recent growth of interest in systems biology reflects the 

increasing importance that integrative initiatives are being accorded in the biological 

sciences.  

Central to the analysis of biological systems is the concept of the “network” defined 

as an interconnected group of systems and are potentially characterized by a critical 

property of complexity: emergence (Barabasi and Oltvai 2004). In the context of a 

biological system, the implication is that the macroscopic response (phenotype) of a 

system is the result of propagating information, in the form of disturbances, across an 

intricate web of interacting modules that span multiple biological scales. At the lowest 

level, there are interactions between molecular components of a cell, such as genes, 
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RNA, proteins, and metabolites. These interactions define elementary building blocks 

that are organized into intracellular pathways and regulatory motifs, which in turn are 

integrated, through appropriate interactions, into interacting modules that eventually give 

rise to an organism’s response, Figure 3.1. 

 

Figure 3.1: The state of a system is expressed in multiple scales of the biological organization. Changes at 

the genome (low) level lead to modified intracellular signaling which causes changes in cellular behavior 

and thereby gives rise to perturbations to higher biological scales (tissues, organs, entire organism). 

Focusing on the cell as the fundamental unit allows us to naturally link molecular reductionism with 

quantitative holism (“qolism”) (Anderson and Quaranta 2008).  

The emergent behavior of a biological system, whether it relates to the control of the 

expression of a single gene (Babu, Luscombe et al. 2004) or the manifestation of a 

disease (Calvano, Xiao et al. 2005a) is the result of the coordinated action of network 

elements. It is therefore becoming apparent that in order to quantify such mechanisms 

one need to integrate multiple processes on multiple scales. The host response can be 

therefore considered as the emergence response of a network of interacting elementary 

signaling modules. Deciphering the connectivity and the dynamics of emerging network 

architectures becomes a critical question in the analysis of biological systems. The 
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resurgence of methods that enable the analysis of such question is largely facilitated by 

the tremendous advances in monitoring changes at the cellular and molecular level driven 

primarily by developments in measuring gene expression at the genome-wide scale. 

Further, advances in “bedside” technologies monitor the stage of a disease by measuring 

vital signs defining the clinical outcome of the host response. With the technology 

maturing what started as an attempt to classify temporal patterns (Huang, Hu et al. 2009) 

has evolved into sophisticated analyses providing semi-mechanistic disease progression 

models (Chan and Holford 2001).  

This dissertation presents a systems-level modeling approach that based on human 

experimental data that span multiple scales, explores the emergence of interaction 

networks at the cellular (low) level of signaling and regulation components that give rise 

to the overall systemic response. In this research, multiscale models of human 

endotoxemia, as prototype models of acute inflammation in humans, are developed that 

couple critical aspects of the complex bidirectional relationship between the CNS and the 

immune response linking extracellular signals with transcriptional dynamics, signaling 

cascades and physiological components. Driven by the premise to develop more 

mechanistic, physiology-based in-silico models of inflammation, the unique aspects that 

are explored in this research include:  

(i) identification, based on the analysis of temporal gene expression responses, of the 

essential components characterizing cellular transcriptional dynamics in response 

to an external perturbation. We hypothesize that there exists a critical set of 

dynamic features that capture the essence of the cellular response exploring the 
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idea that cellular responses correspond to dynamically converging high-

dimensional transcriptional trajectories (Yang, Almon et al. 2009b); 

(ii) reverse engineering of quantifiable representations of these elements exploring 

the concept of physicochemical (Aldridge, Burke et al. 2006) and indirect 

response (IDR) modeling (Jusko and Ko 1994) that connect extracellular signals 

and intracellular signaling cascades leading to the emergent transcriptional 

dynamics. Physicochemical modeling seeks to describe essential biological 

processes in terms of equations that can be physiologically interpretable; thus 

creating dynamic repositories of interpretable knowledge. Such models work best 

with regulatory processes where components (i.e. “pathway signals”) and 

connectivity are relatively well established. On the other hand, when prior 

knowledge is sparse, the manifestation of a perturbation is difficult to be 

explicitly described using elementary kinetic reactions. Our inability to precisely 

model such signaling events makes IDR appealing. The underlying assumption of 

indirect response models is that external signals affect indirectly the synthesis 

and/or degradation term of the response of interest; and finally  

(iii) multiscale, physiology-based modeling that quantifies critical aspects of the 

neuro-immune crosstalk while clinical observables at the physiome level are 

explicitly incorporated to assess systemic decomplexification and abnormalities 

indicative of the physiologic status of the host. 

The multiscale human inflammation model will be the ultimate deliverable of the 

proposed research allowing us to clarify how cellular events and inflammatory processes 

contribute to adverse clinical outcomes in acutely stressed patients. 
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Chapter 4  

Transcriptional Analysis and Intrinsic Responses 

Intravenous administration of endotoxin elicits dynamic and reproducible changes in the 

circulating leukocyte population as well as significant changes in blood leukocyte gene 

expression patterns, with resolution of all clinical manifestations within 24hr (Calvano, 

Xiao et al. 2005a). The response following endotoxin administration in human subjects 

includes changes in core temperature, cardiac, vasomotor, hematologic, metabolic, 

hormonal, acute phase reactant, and cytokine components that have been well described  

(Copeland, Warren et al. 2005; Lowry 2005; van Deventer, Buller et al. 1990; Van Zee, 

Coyle et al. 1995). Innate immune cell activation leads to production and release of pro-

inflammatory cytokines, which are proximal mediators of the systemic inflammatory 

response. Although the bulk of this pro-inflammatory mediator release likely originates in 

cells of the reticuloendothelial system (Fong, Marano et al. 1990), the leukocytes present 

in peripheral blood are also activated and, importantly, are available for sampling with 

minimal invasiveness. 

In order to study the underlying complexity of the dynamics of inflammation and to 

establish quantifiable relationships among the various components of the inflammatory 

response, model-based approaches have been proposed (Chow, Clermont et al. 2005; 

Cross and Opal 2003; Lagoa, Bartels et al. 2006). A number of excellent prior 

studies(Chow, Clermont et al. 2005; Day, Rubin et al. 2006; Kumar, Clermont et al. 

2004; Prince, Levy et al. 2006; Reynolds, Rubin et al. 2006; Vodovotz, Chow et al. 2006) 

have placed significant emphasis on simulating inflammation based on the kinetics of 
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well-defined features of the overall response. One of the key characteristics of these 

models is the a priori postulation of certain components that are consistent with 

biological knowledge and are known to play a major role in triggering the inflammatory 

response (Chow, Clermont et al. 2005; Lagoa, Bartels et al. 2006). Thus there is emphasis 

on reducing the complexity of the models of inflammatory response by identifying a 

limited number of time-dependent interactions of key elements that are highly sensitive to 

specific modes of initiation and modulation of the response.  

However, one of the big challenges is the systematic identification of such 

representative biological features, based on experimental data that can adequately 

represent the complex dynamics of a host undergoing an inflammatory response. This 

requires the decomposition of the non-linear dynamics of the response into an elementary 

set that can serve as a surrogate for predicting the collective behavior of the system. A 

possible answer to this problem can be identified through the analysis of gene expression 

data aimed at monitoring the dynamics of the host response to an inflammatory agent, 

exploring the idea that cellular responses correspond to dynamically converging high-

dimensional transcriptional trajectories (Huang, Eichler et al. 2005). Decomposing the 

intrinsic dynamics of the entire system into a reduced set of responses enables us to both 

project and understand the complex dynamics of the system by studying the properties of 

its essential dynamic parts. Given the transcriptional profiling analysis of human blood 

leukocytes, we hypothesized that the genes that are most responsive to LPS are governed 

by a definite mechanism and have concerted changes in their expression profile.  

Gene expression data analyzed in this section were generated as part of the 

Inflammation and Host Response to Injury Large Scale Collaborative Project funded by 
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the USPHS, U54 GM621119 (Cobb, Mindrinos et al. 2005). Human subjects were 

injected intravenously with endotoxin (CC-RE, Lot #2) at a dose of 2-ng/kg body weight 

(endotoxin treated subjects) or 0.9% sodium chloride (placebo treated subjects). 

Following lysis of erythrocytes and isolation of total RNA from leukocyte pellets, 

(Calvano, Xiao et al. 2005a), biotin-labeled cRNA was hybridized to the Hu133A and 

Hu133B arrays containing a total of 44,924 probes for measuring the expression level of 

genes that can be either activated or repressed in response to endotoxin. A set of 5,093 

probe sets were characterized by significant variation (corresponding to 0.1% false 

discovery rate) across the time course of the experiment using the SAM software (Storey, 

Xiao et al. 2005). The data are publicly available through the GEO Omnibus Database 

(http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE3284.  

4.1 Extracting essential inflammatory transcriptional responses 

We recently proposed a systematic computational framework that decomposes high-

dimensional microarray data into an elementary set of temporal responses (Yang, 

Maguire et al. 2007; Yang, Almon et al. 2008; Yang, Almon et al. 2009a). We are 

interested in unraveling a critical set of informative temporal responses that are 

characterized as the blueprints of the orchestrated dynamics of the perturbed biological 

system. In doing so, we hypothesize that there is a definite underlying mechanism that 

describes the emerging dynamic inflammatory response and capturing the essential 

inflammatory responses might serve as surrogates for the dynamic evolution of the host 

response due to endotoxin stimulus. Based on our prior work, we first apply a micro-

clustering approach, which is based on a symbolic transformation of time series data 

which assigns a unique integer identifier (hash value) to each expression motif (Yang, 
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Maguire et al. 2007). The symbolic transformation of the expression motifs and the 

subsequent assignment of hash values to each expression profile (Yang, Maguire et al. 

2007) produces a distribution of motif values for all the available probes, Figure 4.1.  

 

 

Figure 4.1: Number of probe sets in each expression motif of inflammatory transcriptional signatures of 

human blood leukocytes. A histogram of hash values is used to visualize the number of probe sets in each 

micro-cluster. 5,093 probe sets are micro-clustered to 224 expression motifs.  
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Having assigned the temporal expression profiles to distinct motifs, the next task is to 

select expression motifs that appear to be highly non-random based on their gene 

population size. In order to estimate a p-value for each expression motif we generate 

random data with the same dimensions as the original dataset (5,093 probe sets and 6 

time points). Genes that hash to the same integer value for the random data are 

characterized by a distribution that approximately follows an exponential decay and 

subsequently we can estimate the cumulative distribution for an exponential model. Thus, 

an appropriate p-value = 1/(total number of expression motifs) which equals 0.0045, is 

used to evaluate highly non-random expression motifs (clusters) Figure 4.2. The analysis 

generates a sub-set of 16 transcriptional motifs which are considered to be statistically 

significant in terms of their population size, Figure 4.3. Therefore, this family of 

expression motifs, and the associated probe sets, is most characteristic of the exposure of 

the host to LPS.  

Having identified the statistically significant expression motifs from the initial large 

set of micro-clusters we need to identify a discriminating set of critical temporal shapes 

that best characterizes the intrinsic dynamic response of the system. In doing so, we 

explore the concept of Transcriptional State (TS) previously introduced in (Yang, 

Maguire et al. 2007). We define the TS of the system as the overall distribution of 

expression values at a specific time point by quantifying the deviation of the system at 

each time point versus a baseline distribution (t = 0hr) applying a Kolmogorov-Smirnov 

test (Lampariello 2000), Figure 4.4.  
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Figure 4.2: Estimated p-value vs. expression motif sizes. Expression motifs with size ≥ 58 corresponding 

to p-value < 1/224 (total number of probe sets in informative motifs). 

 

Figure 4.3: Temporal profiles of statistically significant expression motifs. Normalized expression values 

of motifs with p-value < 0.0045 (with respect to cluster size) vs. time. 
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Figure 4.4: Estimation of the Transcriptional State of the System. Distribution of expression values for all 

genes at each time point (t > 0hr) versus the baseline distribution (t = 0hr). 
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The distribution of expression values for all genes at each time point (t > 0hr) versus the 

baseline distribution (t = 0hr) is illustrated in Figure 4.4. The difference between these 

two distributions can be quantified (Kolmogorov-Smirnov test) which enables us to 

capture the inflammatory trajectory of the host response due to bacterial endotoxin. 

Therefore, there is a transcriptional deviation that onsets at t = 2hr and progresses 

dynamically while returning to its original state at t = 24hr (inflammatory resolution). 

Such an analytical approach allows us to identify coherent expression motifs that account 

for the intrinsic dynamics of the host.  

Based on the definition of TS of the system the principal task is to extract from the 

entirety of the measured responses a critical set that defines the essential cellular response 

of the system. This selection is a combinatorial optimization problem for which we apply 

a stochastic optimization algorithm, based on simulated annealing (SA) (Kirkpatrick S. 

1983). We run simulated annealing parametrically with respect to the number of 

expression motifs in order to identify the minimum number of informative motifs, Figure 

4.5. The basic assumption is that due to an external disturbance, i.e., LPS administration, 

the system is perturbed from homeostasis and eventually, once LPS is cleared and the 

inflammatory reaction is eliminated, the host returns to the original state. Due to global 

nature of the transcriptional measurements and the fact that we do not a priori select a 

limited set of responsive genes, the entirety of the transcriptional response is expected to 

exhibited a rather Gaussian type of response with no clear defining responses (Vemula, 

Berthiaume et al. 2004). We have, however, previously demonstrated that through the use 

of the concept of TS it is possible to “tease out” the essential components of the cellular 

response in response to an external disturbance. 
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Figure 4.5: Deviation of the Transcriptional State of the system vs. number of expression motifs. The 

maximum perturbation in the intrinsic dynamics of the system occurs for 3 distinct expression motifs.  



38 

 

Thus, given the basis set of 16 statistically significant motifs we identify the 

minimum number of expression motifs that account for the maximum deviation of the 

system from its baseline-homeostasis (Transcriptional State). As seen in Figure 4.5 the 

maximum deviation from homeostasis is observed for three motifs, whereas further 

addition of motifs reduced the deviation indicating the addition of less critical responses. 

Therefore, this result illustrates the existence of distinct critical sets of temporal 

responses that capture the intrinsic dynamics of the host response to endotoxin 

administration, Figure 4.6. The first response (illustrated by red color) is characterized 

by an early increase in the gene expression level during the first 2hrs after the endotoxin 

challenge, whereas the second essential response (green color) shows an increase at the 

gene expression level at a later time event (4hrs – 6hrs). The third response (represented 

by blue color) is characterized by a downregulation during the time course of the 

experiment and eventual return to baseline at 24 hrs. All responses resolve, i.e. return to 

baseline 24 hr post-exposure, which is in agreement with the overall design of the study 

and the reversible nature of the elicited response. Having de-convoluted the inflammatory 

signal into its essential components, it is hypothesized that genes whose transcriptional 

signatures are highly correlated with the essential responses account for the maximum 

deviation of the system from its baseline (homeostasis) and thus play a major role in the 

dynamic evolution of the inflammatory process. The biological relevance of the intrinsic 

responses is identified by evaluating the enrichment of the corresponding subsets in 

inflammation-specific pathways using ARRAYTRACK (Tong, Cao et al. 2003). 
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Figure 4.6: Essential leukocyte transcriptional elements: (red color) Pro-inflammatory response (P), (green 

color) Anti-inflammatory response (A) and (blue color) Energetic response (E). 
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4.2 Functional characterization of essential responses 

Upon identification of the probe sets composing these three essential transcriptional 

responses we identify significant localization in relevant biological pathways. We 

identify three critical expression motifs enriched in critical and relevant biological 

pathways: (i) Early up-regulation response (Pro-inflammatory component, P): Genes in 

this major temporal class are important in cytokine-cytokine receptor interactions (C-X-C 

motifs and cytokines – CXCL1, CXCL2, CCL20) as well as in Toll like receptor 

signaling pathway (CCL4, IL1B, IL8) crucial in activating transcription factors that act 

synergistically with pro-inflammatory transcription factors such as members of 

NFkB/RelA family; (ii) Late up-regulation response (Anti-inflammatory component, A): 

Genes in this functional class participate in the JAK-STAT cascade (IL10RB, JAK3, 

STAT2, STAT5B) which is essential to regulate the expression of target genes that 

counter-react the inflammatory response. In addition to this, it is emphasized (Murray 

2007) that a STAT pathway from a receptor signaling system is a major determinant of 

key regulatory systems, including feedback loops such as SOCS induction which 

subsequently suppresses the early induced cytokine signaling and essential activators for 

IL10 signaling (Brightbill, Plevy et al. 2000). Moreover, we identified the late increased 

expression of IL10RB which is assumed to be indicative of the IL10 signaling cascade; 

and (iii) Down-regulation response (Energetic component, E): The down-regulated 

essential response is characterized by a set of genes, which are mainly involved in the 

cellular bio-energetic processes. In addition to this, a large set of genes, which are 

essential to ribosome biogenesis and assembly (RPL/RPS family) are repressed coupled 

with those genes, which participate in protein synthesis machinery, oxidative 
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phosphorylation (ATP5A, COX11, NDUFA11) and pyruvate metabolism (PDHB, 

PDHX, MDH1). Endotoxin-induced inflammation causes the dysregulation of leukocyte 

bioenergetics and a persistent decrease in mitochondrial activity leads to reduced cellular 

metabolism and a subsequent decline in organ function (Singer, De Santis et al. 2004). A 

restoration of organ function should be associated with an increase in bioenergetics and 

metabolic activity (Brealey, Brand et al. 2002) and we are assuming that a persistent shut 

down of these genes might lead to multiple organ dysfunction.  

These transcriptional responses effectively decompose the overall dynamic and 

present the constitutive elements of the overall response. The computational integration 

of these components is discussed in the following chapter (Chapter 5). In order to 

reproduce the experimental data, we select the transcriptional signature of specific genes 

representative of each essential response. IL1B is selected to serve as the representative 

biomarker of the pro-inflammatory response. The gene transcript of IL10RB is 

considered to be indicative of the immune-regulatory signal of the anti-inflammatory 

response. Finally, a subunit of NADH ubiquinone dehydrogenase complex 

(mitochondrial component) NDUFC2 is considered as the proxy for the energetic 

component. These essential transcriptional signatures are normalized by taking the ratio 

of the measured mRNA level at each time point with respect to the control time point (t = 

0hr), Figure 4.7. Selecting any other gene that belongs to the aforementioned essential 

inflammatory responses can very well be used as a surrogate for a representative of the 

response and will not alter the qualitative characteristic of our semi-mechanistic 

mathematical model to be described in the following chapter. 
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Figure 4.7: Transcriptional signatures of marker inflammatory genes: (red color) mRNA 

of IL1B representative of the essential pro-inflammatory response. (green color) mRNA 

of IL10RB indicative of the late anti-inflammatory response and (blue color) mRNA of 

NDUFC2 which is considered as the proxy for the energetic component. Data are 

represented as mean ± SEM.  
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Chapter 5  

Cellular Level Physicochemical Models of Inflammation 

Considering the leukocytes as a well defined system, the purpose of human studies like 

the ones described in the previous chapter is to characterize qualitatively the cellular 

dynamics. The purpose of a “systems biology” approach, on the other hand, is to reverse 

engineer quantifiable representations of the intracellular dynamics (Zamir and Bastiaens 

2008) by identifying (i) appropriate constitutive elements; (ii) the topology of the 

interactions among these elements; and (iii) the quantitative relations among these 

elements. In Chapter 4 we addressed the first issue, whereas now we will discuss how to 

construct the topology and dynamics of the underlying network describing the dynamics 

at a single scale, i.e, that of the leukocytes. Vodovotz and coworkers recently discussed 

the state of the art in mechanistic simulations of inflammation (Vodovotz, Constantine et 

al. 2009).  

We have recently advocated a cellular, mechanistic-based, modeling approach which 

explores three unique aspects. First, through the analysis of the leukocyte gene 

expression data we identify the essential responses characterizing the cellular 

(transcriptional) dynamics as described. Second, we explore the concepts of 

physicochemical modeling (Aldridge, Burke et al. 2006) to express the intertwined 

relations and dynamics that connect extracellular signals and intracellular signaling 

cascades eventually leading to the emergent transcriptional dynamics (identified in the 

previous step). Finally, we explore the pharmacodynamic concept of indirect response 

(IDR) (Jusko and Ko 1994) in order to establish implicit interaction among signaling 
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molecules and emerging transcriptional responses. In this section we will summarize the 

basic concepts and models.  

5.1 An indirect response model for human endotoxemia 

In our injury model, the inflammatory response is activated when endotoxin is recognized 

by pathogen recognition receptors (Wells, Ravasi et al. 2005). The LPS-induced 

stimulation initiates a complex signaling cascade that ultimately targets the transcription 

initiation of pro-inflammatory cytokines (Kishore, McMullen et al. 2004). During the 

recognition process LPS binds to the LPS-binding protein in plasma and is delivered to 

the surface receptor CD14. Subsequently, LPS is transferred to the signaling receptor toll-

like receptor 4 (TLR4) with the recruitment of its essential accessory protein MD2 (Du, 

Poltorak et al. 1999; Guha and Mackman 2001; Van Amersfoort, Van Berkel et al. 2003). 

Downstream of the receptor-ligand complex there are intermediate secondary messages 

that involve both the amplification of the signaling and its diversification in the 

cytoplasmic region so that ultimately such a signal transduction cascade will activate 

critical signaling modules that will subsequently lead to the translocation (activation) of 

pro-inflammatory transcription factors (i.e. NF-kB) responsible for the transcription 

initiation of inflammatory genes. Therefore LPS interacts with its signaling receptor 

(TLR4) in order to induce the signal transduction cascade that triggers essential signaling 

modules for the activation of pro–inflammatory transcription factors. This cascade of 

events is eventually manifested through the coordinated transcriptional changes measured 

via high-throughput microarray analyses (Calvano, Xiao et al. 2005b).  

Due to our inability to precisely model such a cascade of events using elementary 

kinetic steps we will assume that the effect of the extracellular inflammatory signal (LPS) 
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in initiating the transcriptional machinery is indirect. Thus we propose to model such a 

transcriptional event using the basic principles of an Indirect Response Model (IDR) 

widely used in developing pharmacodynamic and pharmacogenomic models (Jin, Almon 

et al. 2003; Krzyzanski and Jusko 1997). Despite the fact that an IDR model does not 

take explicitly cross-talk interactions into account, the principles of IDR approach can be 

extended to describe transduction processes and time dependent disease processes. 

Therefore, in order to establish quantifiable relationships among the previously identified 

“essential” components of human inflammation, an indirect response model is proposed 

and developed in (Foteinou, Calvano et al. 2007; Foteinou, Calvano et al. 2009a). 

5.1.1 Elements of an indirect response model of acute human inflammation 

We consider each essential transcriptional motif to be the manifestation of a process 

involving a synthesis and a degradation term. The underlying assumption of IDR models 

is that external signals affect indirectly the synthesis and/or degradation term of the 

response of interest, in our case the transcriptional dynamics. In the most general case it 

is assumed that the synthesis, or production, follows 0th order kinetics, whereas the 

degradation follows 1st order kinetics (Derendorf, Lesko et al.). As a result, the existence 

of such signals can either stimulate or inhibit the production and degradation rate of the 

response. Therefore, we assume that the upstream activated ligand-receptor signaling 

complex serves as the intracellular signal that indirectly will stimulate the production rate 

of transcriptional effects associated with the pro-inflammatory response as well as with 

the transcriptional activation of the gene transcript of the receptor (mRNA,R).  

The binding interaction between the endotoxin (LPS) and the receptor (R) is assumed 

to be a standard ligand-receptor interaction (Lauffenburger and Linderman 1996). The 
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activated ligand-receptor complex triggers an intracellular signal (DR*) which indirectly 

stimulates the production rate of the pro-inflammatory response (P). This pro–

inflammatory response can be characterized as the “first-line” transcriptional response 

that is triggered upon the recognition of the extracellular ligand (LPS) by the pattern 

recognition receptors (PRR i.e. TLR4) (Aderem and Smith 2004). Pro-inflammation will 

serve as the signal that will further stimulate the downregulation of genes that are 

associated with the cellular energetic processes (Protti and Singer 2007). We hypothesize 

that the pro-inflammatory response acts as the stimulatory factor for the energetic 

response whilst a dysregulation in the cellular bio-energetics can serve as a positive 

feedback danger signal to the pro-inflammatory response.  

The anti-inflammatory response serves as the essential immunoregulatory signal that 

aims at restoring homeostasis in the host defense system. Thus, it will be stimulated by 

the activation of the inflammatory components which are the pro–inflammation and the 

energetic response. Thus, it will serve as the inhibitory signal on the production rate of 

the pro–inflammation and the energetic response. We are assuming that it will negatively 

regulate the TLR pathway (Aderem and Smith 2004) modeling it as inhibition of the 

activated intracellular signal DR*. The essential hypothetical elements of the 

transcriptional response induced upon recognition of LPS are shown in Figure 5.1.  
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Figure 5.1: Notional modeling framework of LPS response. Upon binding to its receptor a signaling 

cascade is activated which leads to the up/down-regulation of numerous pro- and anti-inflammatory genes. 

LPS binds to the receptor (R) and forms the complex (LPSR) while it activates the signaling complex 

(DR*) which indirectly stimulates the production rate Kin,P of the pro-inflammatory (P) response. The pro-

inflammatory response indirectly stimulates the production rate of the energetic (E) response (Kin,E) and the 

production rate of anti-inflammatory (A) response (Kin,A). The energetic response will stimulate both pro-

inflammation and anti-inflammation whilst anti-inflammation will serve as the immunoregulatory 

component of the system restoring homeostasis intracellularly.  
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5.1.2 Developing an indirect response model 

The dynamics of the inflammatory stimulus (LPS) are described in Eq. (5.1) as a 

convolution of two terms: a first order elimination with rate klps,2 and a logistic-type 

function with growth rate klps,1. Effectively despite the presence of various mediators that 

are activated in response to LPS (i.e. LPS binds to LBP plasma protein during its 

recognition from the host) we model a single compartment pharmacodynamics model for 

LPS assuming a homogeneous circulating blood compartment. The logistic function is 

usually used to model a variety of physical situations in which a quantity’s growth is 

“self-limited” which means that the initial growth is approximately exponential and as 

saturation begins the growth stops (Zwietering, Jongenburger et al. 1990). Therefore, 

depending on the relative magnitude of the two rate parameters of the clearance of LPS 

we can simulate situations where the bacterial concentration is not fully eliminated. In 

human subjects endotoxin is cleared within the first 2 hrs of post-LPS administration with 

an approximate average half time 1 / 2τ ~ 8-15 min (Greisman, Hornick et al. 1969). The 

two parameters klps,1 and klps,2 have been independently estimated so that the LPS profile 

decays within two hrs in the absence of any complications.  

The dynamics of the TLR4 receptor (R), Eq. (5.2), depend on the 

association/dissociation parameters of the ligand–receptor interaction (Lauffenburger and 

Linderman 1996) whose the corresponding  parameters k1 and k2, are based on literature 

values (Shin, Lee et al. 2007) and the translation of its mRNA,R to surface protein (ksyn). 

The rate of translation ksyn of the mRNA,R to the corresponding surface protein describes 

the dynamic evolution of synthesis of new receptors; hence this parameter is estimated so 

that the dynamic profile of the surface free receptor is down-regulated based on the 
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premise that under the inflammatory stimulus the surface free receptors are occupied. The 

dynamics of the gene transcript of the receptor, Eq. (5.3), is characterized by a production 

rate (Kin,mRNA,R) and a degradation rate (Kout,mRNA,R) but is assumed to be indirectly 

stimulated by the convoluted activated DR* signal as shown in Figure 5.1. 

Experimentally, the transcript of the receptor is characterized by an up-regulation for the 

first 4 hrs post-LPS administration and then returns to baseline (Bosisio, Polentarutti et 

al. 2002).  

The dynamics of the equilibrium complex (LPSR) is characterized by the binding 

parameters k1, k2 and the parameter k3 which characterizes the rate of formation of the 

activated signaling complex, DR*, Eq. (5.4). The formation of the activated signaling 

complex (DR*) is proportional to the equilibrium complex with a rate constant k3 and it 

decays with rate k4, Eq. (5.5). However, we assume that the essential anti-inflammatory 

component will indirectly regulate the activated intracellular signaling complex. Such a 

negative feedback serves the purpose of incorporating a regulatory effect on the 

intracellular activated signaling complex once the transcriptional response has been 

initiated. In addition to this, the non-linear Hill type function serves the purpose of 

modeling a bistable behavior of the system (Xiong and Ferrell 2003). Such a bistability is 

an essential characteristic of the non-linear dynamics of inflammation as suggested from 

various animal studies (Kerschen, Fernandez et al. 2007; Lehmann, Freudenberg et al. 

1987; Rifkind 1967; Tschaikowsky, Schmidt et al. 1998; Wang, Bloom et al. 1999). An 

increase in the dose of the inflammatory stimulus can be responsible for an 

overwhelming inflammatory response. We should emphasize that the exponent 

coefficient of the non-linear function in Eq. (5.5) does not quantitatively correspond to a 
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Hill coefficient; instead it can be characterized as an ultrasensitive parameter which is 

associated with the bistable behavior of the system. What is more, the functional form of 

the activated signaling complex (DR*) in Eq. (5.5)  allows us to model an improper 

(uncontrolled) TLR4 signaling even though the inflammatory stimulus (LPS) has been 

completely eliminated from the system. Given the role of TLRs in inducing strong 

inflammation improper regulation of this signaling pathway may also be involved in 

inflammatory diseases (Bhattacharjee and Akira 2006).  

At the transcriptional response level the convoluted activated signal complex (DR*) 

indirectly stimulates the production rate of the essential pro-inflammatory response (P) 

which quantitatively is expressed by the linear function (HP,DR
*), Eq. (5.6). We also 

assume that the energetic response variable will be responsible for more pronounced 

inflammation and thus stimulates the pro-inflammatory response (HP,E). The anti-

inflammatory signaling component is assumed to inhibit the production rate of the pro-

inflammatory transcriptional signature.  

The anti-inflammatory signal (A) is stimulated by the activated pro-inflammatory 

response (HA,P) as well as by the energetic response (HA, E) and it decays with rate Kout,A, 

Eq. (5.7). Finally, the energetic response (E) is indirectly stimulated by the 

proinflammatory response (P) and the anti-inflammatory component (A) indirectly 

counter-regulates both inflammatory components, i.e., the pro-inflammation and the 

energetic response of the system, Eq. (5.8). The parameters associated with the 

production and degradation rate of each essential transcriptional signature are estimated 

in order to best predict the essential responses with their experimental measurements. 

Equations (5.1) - (5.14) denote the functional forms of the indirect response. It is 
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important to realize that special effort was placed in order to avoid high non-linearities in 

the system. 

lps,1 lps,2

dLPS k LPS (1 LPS) k LPS
dt

= ⋅ ⋅ − − ⋅  (5.1)

syn 2 1 syn

dR k mRNA, R k (LPSR) k LPS R k R
dt

= ⋅ + ⋅ − ⋅ ⋅ − ⋅  (5.2)

in,mRNA,R * out ,mRNA,RmRNA,DR

dmRNA, R K (1 H ) K mRNA, R
dt

= ⋅ + − ⋅ (5.3)

1 3 2

d(LPSR) k LPS R k (LPSR) k (LPSR)
dt

= ⋅ ⋅ − ⋅ −  (5.4)

5

3 4 c 5

* *dDR LPSR [DR ]*k k DR k *dt A 1 [DR ]

⎛ ⎞
= ⋅ − ⋅ + ⋅ ⎜ ⎟

⎜ ⎟+⎝ ⎠
 (5.5)

in,P
* P,E out ,PP,DR

KdP (1 H ) (1 H ) K P
dt A

= ⋅ + ⋅ + − ⋅  (5.6)

in,A A,P A,E out ,A

dA K (1 H ) (1 H ) K A
dt

= ⋅ + ⋅ + − ⋅  (5.7)

in,E
E,P out ,E

KdE (1 H ) K E
dt A

= ⋅ + − ⋅  (5.8)

*
* *mRNA ,DR mRNA ,DRR R

H k DR= ⋅  (5.9)

* *P,DR P,DR

*H k DR= ⋅  (5.10)

P,E P,EH k E= ⋅  (5.11)

A,P A,PH k P= ⋅  (5.12)

A,E A,EH k E= ⋅  (5.13)

E,P E,PH k P= ⋅  (5.14)

Figure 5.2: Mathematical representation of an indirect response model of endotoxin-induced human 

inflammation.  
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A self-limited inflammatory response to the endotoxin stimulus corresponds to 

resolved dynamic profiles for all the elements that constitute our model. In our 

computational model the host restores homeostasis without any external intervention. We 

speculate that the initial normalized concentration of the inflammatory stimulus (LPS) 

quickly decays so that it completely clears within the first 2 hours whereas the other 

essential components should return to their baseline within the first 24 hrs after the 

endotoxin administration (homeostasis) based on the design of the experiment. Given the 

available experimental data (Calvano, Xiao et al. 2005a) we can, in principle, evaluate 

appropriate model parameters using standard parameter estimation techniques. The 

relevant kinetic parameters are depicted in Table 5.12 whereas the performance of the 

model in reproducing the self-limited responses is shown in Figure 5.3.  

Building a mathematical model that can predict relevant biological implications to the 

host response to endotoxin allows us to identify ways of both controlling and modulating 

such a complex phenomenon. Thus, the correctness of the model will be tested based on 

its ability to not only reproduce available data, but rather to qualitatively predict 

uncontrolled responses. Of particular interest are computational tests performed to predict 

the possibility and extent of abnormal responses resulting from various levels of inherent 

mechanistic dysregulation. In the following we will demonstrate the ability of our model 

to enable such “predictions” and provide further evidence of the appropriateness of the 

assumptions invoked in the development of the model.  

 

 

                                                 
2 Estimated values of relevant model parameters are succinctly presented in Table 5.1 (see Appendix 5.2) 
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Figure 5.3: Model Building Results: Dynamic profiles of the elements that constitute the semi-mechanistic 

model of endotoxin-induced inflammation. Experimentally measured normalized mRNA transcript levels 

are denoted by symbols (•), solid lines (⎯) are the model predictions.  
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5.1.3 Designining and performing in silico experiments 

We have notionally devised three levels of in silico “predictions”. Regarding these 

“predictions” we should underline that such a term is loosely used to demonstrate the 

potential of our model to reproduce clinically relevant conditions. First, we explore the 

implication of increasing levels of initial insult since this would probably constitute the 

most obvious irreversible disturbance. Then we explore possible mechanistic 

dysregulation which may reflect secondary effects that lead to potential malfunction of 

the response leading to sustained inflammation. Finally, we explore the emergence of 

“memory” effects and evaluate the implication of priming the host with controlled level 

of endotoxin stimulus as a prequel to the main inflammatory stimulus. 

Implications of increased insult 

High concentrations of the inflammatory insult can be responsible for the amplification of 

the host immune response (Munford 2006), followed by a dysregulation in the host 

defense intrinsic dynamics leading to a an unconstrained inflammatory response even 

after the circulating levels of LPS have been cleared. In order to simulate such a scenario 

we increase the initial condition of LPS at various levels, i.e. LPS(t = 0hr) = (1, 2, 3, 4) 

inferring in silico the progression of the inflammatory trajectory, Figure 5.4. We observe 

that when the concentration of the inflammatory stimulus exceeds a critical threshold, the 

inflammatory response does not abate. In this case it is the host response to endotoxin 

rather than the stimulus itself that yields the progression of a systemic inflammatory 

response syndrome that fails to resolve. Clinically, in a retrospective analysis of critically 

ill patients (Reyes, Brimioulle et al. 1999), a progression of septic shock characterized a 
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number of patients without documented infection. Namely, the mortality rate of these 

patients was higher compared to infected patients.  

 

 

Figure 5.4: Temporal responses of critical inflammatory components for various initial conditions of the 

inflammatory stimulus. A high concentration of LPS can cause a malfunction in the dynamics of the host 

response to infection described by an exacerbated inflammatory response (dashed line). Solid lines 

correspond to self-limited responses, the dashed line represent a predicted unconstrained inflammatory 

response when the LPS concentration exceeds a critical value.  
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Modes of dysregulation of the inflammatory response 

The dynamics of the host response to an inflammatory stimulus are highly complex 

and non-linear, suggesting that a dysregulation in the dynamics of the inflammatory 

response in restoring homeostasis can have multiple causes. One such possibility is 

associated with a malfunction in the clearance rate of endotoxin (which corresponds to a 

higher exposure of the host response to the stimulus followed by persistence in the 

concentration of LPS). Secondly, a dysregulation in the intracellular dynamics can occur 

being responsible for an aberrant response, given that improper regulations of TLR4 

signaling might also be involved in the inflammatory component of a disease like sepsis 

(Bhattacharjee and Akira 2006); such a mode of dysregulation separates the host response 

dynamics from the insulting agent. The model was probed by appropriately manipulating 

parameters that include: (i) a reduction in the first order degradation rate of LPS and (ii) a 

reduction in the degradation rate of the active signaling complex. 

Malfunction in the clearance rate of LPS  

An increased exposure of the host response to the inflammatory stimulus leading to a 

persistent disease is simulated in Figure 5.5. Such a case is simulated by manipulating 

(decreasing) the parameter associated with the degradation rate of LPS. Although 

decreased degradation of LPS is not associated with a distinct, defined clinical condition, 

it is possible that this phenomenon may exist. For example, it is known that triglyceride-

rich lipoproteins bind to LPS and that these complexes are cleared by binding to 

lipoprotein receptors. Furthermore, these receptors are abundant in the liver which clears 

~70% of lipoproteins from the circulation. Therefore, it can be postulated that patients 
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with liver dysfunction may have impaired clearance of LPS. But, even without this 

speculation, another purpose for simulating “decreased LPS clearance” was to determine 

the response of the model to differing, but plausible, perturbations (Lauffenburger and 

Kennedy 1980). 

 

 

Figure 5.5: Temporal responses of inflammatory components in persistent infectious inflammatory 

response where the inflammatory stimulus cannot be eliminated responsible for the observed persistence in 

the dynamic profiles of the inflammatory constituents. Reducing the degradation rate of LPS to half of its 

initial value the inflammatory stimulus cannot be cleared.  
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As seen in Figure 5.5 decreasing the degradation rate to half of its initial value (self-

limited response) we observe that even small amounts of endotoxin might account for an 

overwhelming inflammatory response. Such persistence in the inflammatory stimulus 

leads to a sustained elevation of the activated intracellular signaling complex (DR*) 

which subsequently accounts for an uncompensated inflammatory response. In particular, 

there is an overexcitation of both pro– and anti– inflammatory mediators that are coupled 

with the uncontrolled regulation of the energetic response which settles to an 

uncontrolled state (energetic depletion). Such a simulated clinical scenario lies in 

agreement with experimental evidence about persistent endotoxin activity in critically ill 

patients undergoing gram-negative sepsis (Marshall, Walker et al. 2002). 

Maladaption in the active intracellular signaling DR* 

It is now generally accepted that the host response plays a pivotal role in determining 

the outcome of an overwhelming inflammatory response. Thus, our model allows us to 

explore another mode of unconstrained inflammatory response that emerges from a 

dysregulation in the intracellular dynamics downstream of the ligand – receptor complex. 

In general, downstream of the activated LPSR complex, there are various kinases, second 

messengers that are being activated in response to LPS that are constituents of the signal 

transduction cascade. A dysregulation in the dynamics of the intracellular domain might 

hamper the homeostatic control of its domain, accounting for a persistent activated 

signaling that will over – excite the elementary inflammatory mediators, Figure 5.6. We 

explore such a perturbation in the dynamics of the system by decreasing the degradation 

rate of the active signaling complex (DR*) to a value which is about one third of its initial 

value which corresponds to a self-limited inflammatory response.  
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Figure 5.6: Temporal profiles of persistent non – infectious inflammation. It is not the infection itself but 

rather the host response to infection that plays a determinant role in controlling the outcome of an 

overwhelming inflammatory response. Manipulating the degradation rate of the activated intracellular 

signaling (i.e. reducing it by 1/3 of its initial value) perturbs the homeostasis of the system.  

The unconstrained inflammatory effect as shown in Figure 5.6 occurs downstream of 

the activated signaling complex and as result the rate of the formed complexes is not 

affected by this perturbation given that the inflammatory stimulus is completely 
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eliminated from the system. However, a dysregulation in the intracellular homeostasis 

can lead to a cytokine “storm” that is followed by a global disturbance in the 

inflammatory control system followed by elevated/uncompensated anti – inflammatory 

signaling. If the gene transcript of the receptor is persistently elevated it will also lead to 

an overproduction of protein receptors; therefore, the baseline of total free receptors is 

dysregulated. Both cases correspond to biological scenarios exploring different modes of 

dysregulation in the inflammatory response which suggest that there is a critical time 

interval during which any therapeutic intervention may restore homeostasis. In the drug 

discovery area there is emphasis on discovering endogenous mediators that can modulate 

the inflammatory response but they are not clinically tractable in terms of a broader 

therapeutic time window (Sama, D'Amore et al. 2004); for example, one reason for the 

failure of anti – TNF treatment for sepsis in clinical settings may be due to its narrow 

therapeutic window (very early release). 

The emergence of memory effects 

“Rapid” tolerance 

Repeated doses of endotoxin stimulus in many instances is considerably characterized by 

a less vigorous immune system which is namely known as endotoxin tolerance (Fan and 

Cook 2004). Even though the phenomenon of endotoxin tolerance involves the 

administration of low, repeated doses of endotoxin over periods of time ranging from one 

day to a week (Wysocka, Robertson et al. 2001),herein, we opt to investigate the response 

of the system being pre-exposed to low dose of LPS for less than a day. This is because 

in our proposed model all the interacting components do resolve within the first 24hr 
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while the system has not acquired a reprogramming dynamic state. However, published 

studies (McCall, Grosso-Wilmoth et al. 1993; Poll 1996) report that “rapid” endotoxin 

tolerance can be induced when the system is pre-exposed to a low endotoxin challenge 

for between 3-6hr. Thus, we simulate such a scenario administering low dose of LPS i.e. 

LPS(t = 0hr) = 0.5 followed at t = 4hr by the main endotoxin insult, LPS(t = 4hr) = 1. 

When the system is pre-exposed to a lower inflammatory stimulus for about 4 hrs 

before the main endotoxin challenge our model predicts a much less vigorous 

inflammatory response as seen in Figure 5.7. In particular such an event, which can be 

characterized either as a short - time attenuation effect or else rapid tolerance is 

experimentally observed by the decreased  concentrations of various pro-inflammatory 

mediators i.e. TNF-a, IL1B in response to secondary ex vivo whole blood stimulation 

with LPS (McCall, Grosso-Wilmoth et al. 1993). In addition to this, in the experimental 

study (Poll 1996) concentrations of the particular pro – inflammatory mediator (TNF-a) 

were decreased profoundly ex vivo at 3hr – 6 hr  after in vivo endotoxin administration. 

However, by 24 hrs the endotoxin tolerance had completely resolved. Such pre-

conditioning results in an attenuation of the inflammatory response characterized by a 

less vigorous intracellular signaling coupled with the decreased peak level of the pro-

inflammatory response. 
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Figure 5.7: Rapid Endotoxin Tolerance: Pre – exposuring the system into a smaller inflammatory insult 

results in a reduction in the cell capacity to respond to the main endotoxin challenge which is characterized 

as a short-time attenuation scenario Solid line: LPS(t = 0hr)=0.5 & LPS(t = 4hr) = 1 Dashed line: LPS(t = 

0hr)=0 & LPS(t = 4hr) =1.  
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“Protective” tolerance 

The rapid tolerance scenario observed in Figure 5.7 implies that the emergence of 

controlled memory in the system, elicited after the first dose of endotoxin is 

administered, plays a major role in determining the modulated dynamics of the system in 

response to the second dose. If the system is primarily exposed to a much higher dose of 

endotoxin which is responsible for an overwhelming inflammatory response then the pre-

exposure to lower non - lethal dose of LPS can modulate its intracellular dynamics that 

reverses the lethal outcome of the main endotoxin dose. This is a response characteristic 

of endotoxin hypo-responsiveness (or “protective” tolerance).  

Protective” tolerance is another extended paradigm for endotoxin hyporesponsiveness 

that involves the administration of a sub-lethal dose of endotoxin followed by a high 

(lethal) one. Such pre-exposure “tolerates” the dynamics of the host reversing the 

implications of a high inflammatory insult as seen in Figure 5.8. Therefore, the 

magnitude of endotoxin doses plays a critical role in the underlying dynamics of the host 

and we reproduce such a scenario infusing low dose of LPS at t = 0hr, i.e., LPS(t = 0hr) = 

1 followed by the administration of high endotoxin concentration, i.e., LPS(t = 4hr) = 4. 

As a result the system shows a reduced capacity (hypo-responsiveness) in response to a 

high concentration of the inflammatory stimulus which may be associated with decreased 

TLR signaling by proteins that negatively regulate LPS-induced inflammatory responses 

(Cook, Pisetsky et al. 2004).  
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Figure 5.8: Endotoxin Hypo-responsiveness: Pre-existing infection might cause a profound hypo-

responsiveness in system’s response to a lethal LPS challenge Solid line: LPS(t = 0hr) =1 & LPS(t = 4hr) = 

4 Dashed line: LPS(t = 0hr)=0 & LPS(t = 4hr) = 4.  
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“Lethal” potentiation  

Not only the magnitude but also the timing of repeated doses of endotoxin are key 

determinants for discriminating between endotoxin tolerance and potentiation. Rapid 

tolerance and endotoxin hypo-responsiveness (or else “protective” tolerance) are 

associated with an emergent acquired dynamic state of the system that actually modulates 

the response of the system not to respond rigorously to the primary endotoxin challenge. 

However, such an emergence is highly time dependent which implies that if the repeated 

doses are characterized by a very short time interval it is possible the dynamics of the 

system to result in an overwhelming inflammatory response. Therefore, the successive 

administration of two inflammatory insults that individually account for constrained 

(“self-limited”) inflammatory responses might be determinant to the outcome of sepsis 

(unresolved inflammatory response). Such an event can occur because of the absence of a 

“protective” memory in the system so that the system has not elicited its regulatory 

mechanism to compensate for the cumulative result of two successive doses. Such an 

abrupt insult might dysregulate the dynamics of the host response to infection having a 

detrimental effect in the physiological state of the system.  

From the modeling standpoint, we simulate such a case administering at t=0hr low 

dose of endotoxin, i.e. LPS(t = 0hr) = 1 which is shortly followed at t=0.5hr by another 

“sub-lethal” insult, i.e. LPS(t = 0.5hr) = 2. Thus, the successive administration of low 

doses of LPS as seen in Figure 5.9 may perturb system’s homeostasis towards the 

progression of an unresolved inflammatory response.  
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Figure 5.9: Lethal Potentiation: Successive administration of small doses of endotoxin can lead to an 

unresolved inflammatory response (due to loss of “regulatory” memory Solid line: LPS(t = 0hr) = 1 & 

LPS(t = 0.5hr) = 2 Dashed line: LPS(t = 0hr) = 0 & LPS(t = 0.5hr) = 2.  
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The aforementioned results indicate that the cellular response is critically affected by 

the mode of exposure, thus demonstrating the need for an appropriate, quantifiable, 

model to account for, and integrate the, various components constituting the response. 

Furthermore, our results clearly indicate that the dynamics of the response are definitely 

affected by the parameters defining the exposure to the inflammatory agent. 

In conclusion, the proposed receptor mediated indirect response model of 

inflammation describes the sequence of inflammatory events connecting extracellular 

signals and transcriptional dynamics. The mechanistic-based indirect response model, 

allows us to identify possible critical targets either upstream of the activated signaling, 

such as endotoxin elimination rate, or downstream are associated with modulating the 

Toll- like receptor signaling pathway. The temporal profiles of the essential inflammatory 

components under an unresolved inflammatory state highlight the potential importance of 

early effective therapeutic interventions i.e. (2hr – 4hr) whilst after 4hrs the system seems 

to have lost any potential for attenuation. Furthermore, we explored the possible effects 

of systemic perturbations associated with repeated pre-exposure to endotoxin (tolerance 

and potentiation scenarios) emphasizing timing and dosing as the key determinants for 

endotoxin hypo-responsiveness or lethality. Such a modeling approach enables us to gain 

a better understanding of the complexities of inflammation via the development of a more 

mechanistically interpretable model of human inflammation. 
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5.2 Appendix to the indirect response model 

5.2.1 Table of inflammatory relevant mediators 

Model component Description 

LPS 
Inflammatory stimulus (lipopolysaccharide) derived from 

gram-negative bacteria 

R Endotoxin signaling receptor (TLR4) 

LPSR Endotoxin-TLR4 complex 

mRNA,R Gene transcript of endotoxin receptor 

DR* Activated signaling complex 

P Transcriptional pro-inflammatory response 

A Transcriptional anti-inflammatory response 

E Transcriptional energetic response 

5.2.2 Estimated values of parameters  

Table 5.1: The 21 relevant model parameters based on self-limited response data. The values for k1 and k2 

are taken from (Shin, Lee et al. 2007).  

klps,1 = 4.500 k3 = 2.000 Kout,P = 2.428 

klps,2 = 6.790 Kin,mRNA,R = Kout,mRNA,R = 0.211 kA,P = 0.022 

ksyn = 0.020 kmRNAR,DR* = 13.467 Kin,E = 0.050 

k1 = 3.000 kp,E = 25.191 Kout,E = 0.234 

kp,DR* = 15.717 k4 = 0.330 Kin,A = 0.256 

kE,P = 3.644 kc = 3.000 Kout,A = 0.860 

k2 = 0.040 Kin,P = 0.093 kA,E = 2.291 
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5.2.3 Steady state equations 

( )

*
in,mRNA,R * ss out ,mRNA,R ssmRNA ,DRR

*
in,mRNAR *R mRNA ,DRR

out ,mRNAR
R

out ,mRNA in,mRNARR R

dmRNA, R 0 K (1 k DR ) K mRNA, R 0
dt

K 1 k DR (0)
Eq. (4.3) K
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K K

⎧ = → ⋅ + − ⋅ =⎪
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⎪ ⋅ + ⋅⎪ =⎨
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( ) ( )

in,E
E,P ss out ,E ss

ss

in ,E E,P
out ,E out ,E in,E E,P
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K K K 1 k
A(0) E(0)

⎧ = → ⋅ + ⋅ − ⋅ =⎪
⎪
⎨
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5.2.4 Initial conditions of relevant model components 

LPS(0) = 1 R(0) = 1 mRNA,R(0) = 1 LPSR(0) = 1 

DR*(0) = 0 P(0) = 1 A(0) = 1 E(0) = 1 
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5.3 An NF-kB dependent physicochemical model of systemic inflammation 

One of the key assumptions underpinning our modeling effort, as discussed in the 

previous section (Section 5.1), is that intracellular signaling cascades activating 

inflammation-specific transcriptional responses can be mathematically approximated by 

an aggregate variable, DR*, serving as a proxy of the activating signal. However, during 

the onset of an inflammatory response signaling pathways are activated for “translating” 

extracellular signals into intracellular responses (Aderem and Smith 2004). Such a signal 

transduction cascade converges to the activation of effector proteins (transcription 

factors) that regulate the expression of critical genes. Therefore, understanding more 

about the complex inflammatory reactions would require the development of 

computational models that incorporate biological information in the form of critical 

signaling cascades and kinetic rules. We wish therefore to deconvolute and interpret the 

combined activating signal with its “mechanistic” equivalence developing more 

interpretable and biologically relevant systems based models of inflammation.  

The work to be discussed in this section aims to address the possibility of a semi-

mechanistic host response model that integrates signaling and pharmacokinetic (PK) 

models of drug action for the modulation of the inflammatory response. Nuclear factor 

(NF)-kB is a central transcription factor that plays a major role in driving the 

inflammatory response (Senftleben 2003). Anti-inflammatory drugs such as 

corticosteroids play a critical role in modulating the progression of inflammation (van der 

Poll, Barber et al. 1996). We opt therefore to develop a physicochemical model of human 

inflammation that couples pro-inflammatory pathways with PK models of corticosteroids, 

to be used as a template for assessing anti-inflammatory intervention strategies.  
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5.3.1 Developing physicochemical models of acute inflammation in humans  

In order to introduce a finer level of detail in our computational model of inflammation 

we wish to deconvolute and interpret mechanistically the combined signal DR*. In the 

original model, DR* represent the event activating the transcription of the pro-

inflammatory response (P) which in turn initiates the inflammatory response. As such, 

DR* is the signal activating, i.e., transcriptionally regulating, the expression of the pro-

inflammatory genes. Thus, the mechanistic equivalent of DR* would be the signaling 

cascade that activates pro-inflammatory transcription factors controlling the expression of 

the pro-inflammatory genes as illustrated in Figure 5.10.  

 

 

Figure 5.10: Endotoxin-induced intracellular signaling cascade. The inflammatory response is activated 

when endotoxin is recognized by pathogen recognition receptors that triggers downstream critical signaling 

modules for the activation of inflammatory relevant transcriptional factors (Annane, Bellissant et al. 2005).  
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Although a large family of transcription factors is known to be involved in 

inflammation, we focus on a particular family, NF-kB, for two reasons. First, the nuclear 

factor kB family is known to be a major player in the inflammatory response (Saklatvala, 

Dean et al. 2003) and as such it has been widely studied as a major contributor. Second, 

the fact the NF-kB plays an important role has led to the development of numerous, 

independent, modeling approaches in order to quantify the expected response of its 

signaling cascade (Hoffmann, Levchenko et al. 2002b). Therefore, we introduce the NF-

kB signal transduction cascade as the prototypical module for initiating and controlling 

the expression of pro-inflammatory genes.  

Numerous signaling molecules and reactions participate in the NF-kB signaling 

pathway (Hoffmann, Levchenko et al. 2002b). However, sensitivity analysis (Ihekwaba, 

Broomhead et al. 2004) demonstrated that the activity of NF-kB is maximally modulated 

by a reduced set of basis signaling molecules (IKK, IKBa and NF-kB). As such (Krishna, 

Jensen et al. 2006) proposed a minimal model of NF-kB that accounts for the propensity 

of oscillations in the dynamic behavior of NF-kB activity. However, instead of simulating 

the kinase activity as a constant parameter and incorporating saturation degradation rates 

as discussed in (Krishna, Jensen et al. 2006), we propose to model IKK as a transient 

signal. Qualitatively, the dynamic IKK activity corresponds to its intracellular 

concentration and it serves as the “input signal” for the subsequent activation of NF-kB 

signaling module, Eq. (5.15) - (5.17).  
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2

3 4 2

IKKdIKK k (LPSR) / (1 IkBa) k IKK Pdt 1 IKK
⎛ ⎞

= ⋅ + − ⋅ + ⋅ ⎜ ⎟+⎝ ⎠
 (5.15)

nn NFkB,1
nNFkB,2

k IKK (1 NFkB )dNFkB k NFkB IkBa
dt (1 IkBa)

⋅ ⋅ −
= − ⋅ ⋅

+
 (5.16)

IkBa
in,IkBa IkBa,1 out,IkBa IkBa

dmRNA K (1 k NFkBn) K mRNA
dt

= ⋅ + ⋅ − ⋅  (5.17)

Thus, the cellular surface complex (LPSR) induces the activation of kinase activity 

(IKK) with a rate k3, while being eliminated with a rate k4, Eq. (5.15). The non-linear 

function of Hill-type is an essential functional form in order to achieve a bistability 

response in the dynamics of the probed system (Kerschen, Fernandez et al. 2007; 

Lehmann, Freudenberg et al. 1987; Rifkind 1967; Tschaikowsky, Schmidt et al. 1998). 

Such a bistability is an essential characteristic of the non-linear dynamics of 

inflammation, as suggested by various animal studies (Kerschen, Fernandez et al. 2007; 

Lehmann, Freudenberg et al. 1987; Rifkind 1967; Tschaikowsky, Schmidt et al. 1998; 

Wang, Bloom et al. 1999). In chronic inflammatory diseases, several cytokines might be 

responsible for perpetuating and amplifying the inflammatory reaction through the 

critical node (IKK) (Barnes and Karin 1997). Therefore, we simulate such an interaction 

by the presence of a positive feedback loop in the kinetics of kinase (IKK) activity. 

Assuming that NFkBn, Eq. (5.16) is the fraction of total NF-kB that is in the nucleus, the 

term (1-NFkBn) denotes the available free cytoplasmic concentration of NF-kB and 

herein the nuclear concentration (NFkBn) and nuclear activity are used interchangeably. 

The import rate of cytoplasmic NF-kB into the nucleus depends on the availability of the 

free cytoplasmic concentration (1-NFkBn) stimulated by the kinase activity (IKK). 

However, its degradation rate depends on the presence of its primary inhibitor (IkBa), as 
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it retrieves nuclear NF-kB by forming an inactive complex in the cytoplasmic region 

(Carmody and Chen 2007). The dynamics of the gene transcript of IKBa (mRNAIkBa), 

Eq. (5.17), are characterized by a zero order production rate (Kin,IkBa) and a first order 

degradation rate (Kout,IkBa), which is stimulated by NF-kB (Barnes and Karin 1997).  

The protein inhibitor IkBa, Eq. (5.18), is the product of translation of its gene 

transcript (mRNA,IkBa) and it degrades at a rate kI,2, which is stimulated by the kinase 

activity (IKK). Based on the premise that IkBa forms a complex with the available 

cytoplasmic NF-kB, mathematically we expressed this as the product (1-NFkBn) IkBa. 

From the modeling point of view, in order to achieve a zero steady state for the protein 

inhibitor IkBa we need the additional negative term –kI,1.  

nI,1 IkBa I,2 I,1
dIkBa k mRNA k (1 IKK) (1 NFkB ) IkBa k

dt
= ⋅ − ⋅ + ⋅ − ⋅ −  (5.18)

The dynamics of the gene transcript of the endotoxin signaling receptor (mRNA,R) 

are described by a zero order production rate (Kin,mRNA,R) and a first order degradation 

rate (Kout,mRNA,R), Eq. (5.19) - (5.20).  

Rin,mRNA,R mRNA ,P out,mRNA,R
d(mRNA,R) K (1 H ) K mRNA,R

dt
= ⋅ + − ⋅  (5.19)

RP,R mRNA ,PH k P= ⋅  (5.20)

We assume that the pro-inflammatory signaling indirectly stimulates the 

transcriptional activation of endotoxin receptor (TLR4); which quantitatively is expressed 

by the linear function (HP,R), Eq. (5.20). Recently, there is research effort to elucidate the 

unknown mechanism that drives the regulation of TLR4 expression (Abreu, Arnold et al. 

2002) and research findings (Mahony, Pham et al. 2008) support the potential role of pro-

inflammatory cytokines to up-regulate the TLR expression. 
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At the transcriptional response level, instead of assuming the active signaling 

complex, DR* of Eq. (5.5) to manifest the effect of LPS on the cellular response level, 

herein we assume that the nuclear activity of NF-kB (NFkBn) serves as the “active 

signal” that indirectly stimulates the production rate of the essential pro-inflammatory 

response (P), Eq. (5.21) - (5.23).  

in,P P,NFkBn P,E
out,P

K (1 H ) (1 H )dP K P
dt A

⋅ + ⋅ +
= − ⋅  (5.21)

n
nP,NFkBn P,NFkBH = k NFkB⋅  (5.22)

P,E P,EH = k E⋅  (5.23)

Mathematically the stimulation of the nuclear activity NFkBn is expressed by the 

linear function (HP,NFkBn), Eq. (5.22) and downstream of the pro-inflammatory response 

we preserve the structure of the elements that constitute the anti-inflammatory and the 

energetic response the same as shown in Eq. (5.1) - (5.14). For example, the energetic 

response variable will be responsible for more pronounced inflammation and therefore 

stimulates the pro-inflammatory response (HP,E), Eq. (5.23). The anti-inflammatory 

signaling component is assumed to inhibit the production rate of the pro-inflammatory 

transcriptional signature, Eq. (5.21). The transcriptional dynamics of anti-inflammation 

(A) and the energetic response (E) are modeled on the same manner as discussed in Eq. 

(5.7) - (5.8).  

Two major differences exist between the model in Eq. (5.1) - (5.14) and the proposed 

NF-kB dependent host response model, Eq. (5.15) - (5.23). First, the “translation” of the 

active signaling complex (DR*) into biologically relevant signaling compartments; 

namely involving the activation of NF-kB signaling module. Such “translation” allows us 
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to simulate the positive interaction between the pro-inflammation and the intracellular 

signaling (IKK). Second, in Eq. (5.5) the variable DR* is assumed to be the convoluted 

signal that propagates the LPS signaling initiating the transcriptional synthesis of both the 

pro-inflammatory response (P) and the mRNA of TLR4 (mRNAR). However, in the 

model Eq. (5.15) - (5.23) the elucidation of DR* to the NF-kB activity limits the potential 

structure of the model. That is to say NF-kB is a pro-inflammatory transcription factor 

and it is not involved in the transcriptional regulation of the gene that encodes for the 

protein TLR4. On the other hand, based on literature evidence we support the potential 

role of pro-inflammatory signaling in mediating the transcriptional machinery of TLR4 

(mRN,R) and we take it into consideration in the extended structure of the model. The 

proposed physicochemical host response model sheds insight on the interactions of the 

elements that constitute the inflammatory response. It offers us “realistic” handles on 

evaluating the effectiveness of various intervention strategies that modulate the intrinsic 

dynamics of the system opening areas amenable to the design of effective treatment 

schedules (Kumar, Chow et al. 2008). In the present study we aim at exploring in silico 

the pharmacodynamic effect of particular immunomodulatory agents – corticosteroids - 

in modulating the progression of an unresolved inflammatory response  

5.3.2 Modeling corticosteroid interventions 

The progression of a disease involves the perturbation in the intrinsic dynamics of a 

system from its homeostasis (Post, Freijer et al. 2005). The presence of a disturbance 

(stimulus) initiates complex interaction of components at multiple scales (genetic, 

molecular, cellular level). The administration of a drug aims at modulating the 

progression of the disease by interfering with either individual molecules or signaling 
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pathways. As such, we will explore means of modulating the activity of NF-kB through 

the use of corticosteroids. Developing mechanistic models of inflammation allows us to 

both characterize the non-linear inflammatory trajectory under various “what-if” 

scenarios and importantly to evaluate the effectiveness of drug-based treatment strategies 

that modulate the dynamics of the system. Integrating the cellular mechanism of drug 

action on disease progression models sheds insight on the better characterization of their 

pharmacodynamic effect against the disease status.  

In this study, we consider corticosteroids as the means for controlling (modulating) 

the inflammatory state. One of the key aspects is the integration of the opposing effect of 

two crucial signaling pathways: one associated with the transcriptional dynamics that are 

elicited in response to endotoxin stimulus (LPS) and one related to the genomic signaling 

of exogenous corticosteroids. Such a modeling approach allows us to explore the 

pharmacodynamic effect of corticosteroids against inflammation exploring various modes 

of action. 

Significant prior research efforts have attempted to elucidate the mechanisms driving 

corticosteroid activity (Almon, DuBois et al. 2002; Almon, Dubois et al. 2005; Almon, 

Lai et al. 2005; Almon, DuBois et al. 2007; DuBois, Xu et al. 1995; Jusko 1994; Sun, 

DuBois et al. 1998; Xu, Sun et al. 1995) Such studies simulate the pharmacogenomic 

effect of glucocorticoids at the transcriptional level taking their mechanistic (signaling) 

action into account (Jusko, DuBois et al. 2005; Ramakrishnan, DuBois et al. 2002b) and 

mathematically is expressed by Eq. (5.24) - (5.28) (Ramakrishnan, DuBois et al. 2002b).  
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F
syn _ R m f re on F dgr _ R F

dR k R R k FR(N) k F R k R
dt

= ⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅  (5.26)

on F T
dFR k F R k FR
dt

= ⋅ ⋅ − ⋅  (5.27)

T re
dFR(N) k FR k FR(N)

dt
= ⋅ − ⋅  (5.28)

In essence, the corticosteroid intervention envelope consists of a set of elementary 

interactions that involve: (i) the binding of the corticosteroid drug (F) to its cytosolic 

receptor (RF), (ii) the subsequent formation of the drug-receptor complex (FR) (iii) the 

translocation of the cytosolic complex to the nucleus (FR(N)) that alters the 

transcriptional machinery activating or repressing numerous genes and finally (iv) the 

autoregulation of the gene transcript of the glucocorticoid receptor (Rm).  

In the original study (Ramakrishnan, DuBois et al. 2002b), the drug disposition is 

modeled, driven by the available experimental data, via a bi-exponential kinetic model, 

Eq. (5.24) and the plasma concentration of the drug (F) is mathematically expressed by a 

kinetic model with Ci and ki to be the coefficients of intercepts and slopes 

(Ramakrishnan, DuBois et al. 2002b; Sun, DuBois et al. 1998). However, in our case 

study drug disposition can be simplified and described by either a mono-exponential 

kinetic model that quantifies the plasma concentration of the steroid (F) under conditions 

of intravenous injection or via the time invariant parameter (Rin) and the elimination rate 

kel for the case of a constant infusion mode of administration, as follows:  
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in el

el

R k F, infusiondF
k F, injectiondt
− ⋅⎧

= ⎨− ⋅⎩
 

The dynamics of the gene transcript of the corticosteroid drug (Rm), Eq. (5.25), are 

characterized by a zero order production rate (ksyn_Rm) and a first order degradation rate 

(kdeg). The active drug-receptor complex, FR(N), exerts an inhibitory effect towards the 

mRNA of the glucocorticoid receptor. The parameter IC50_Rm denotes the concentration 

of the nuclear drug-receptor complex FR(N) at which the synthesis rate of the receptor 

drops at 50% of its baseline value. The dynamics of the free cytosolic receptor density, 

RF, is modeled in Eq. (5.26) where ksyn_R is the synthesis rate of receptor that stems from 

its transcription, rf is the fraction of the drug that is recycled, kre is the parameter that 

shows the recycling of drug from the nucleus to the cytosol and kon is a parameter 

associated with the drug-receptor binding. In addition to this, kdgr_R is the degradation rate 

of the receptor (RF). The formed cytosolic complex (FR), Eq. (5.27), depends upon the 

binding interaction kon of the ligand (F) with its receptor (RF) and on its translocation rate 

kT to the nucleus. Therefore, the translocation of the drug-receptor complex to the nucleus 

accounts for the nuclear receptor complex FR(N), Eq. (5.28), which is the active complex 

that mediates the transcriptional induction of various genes.  

Effectively, in the study (Jin, Almon et al. 2003), equations (5.24) - (5.28) simulate in 

rat liver the effect of plasma concentration of a corticosteroid drug after a single 

intravenous administration of 50mg/kg. The model parameters are estimated based on 

available experimental data and the qualitative structure of the integrated inflammatory 

model with the active corticosteroid intervention envelope is presented in Figure 5.11. 

We observe that the interaction of the corticosteroid drug (F) with its receptor (RF) 

mediates the activation of the nuclear drug-receptor complex (FR(N)). This complex 
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serves as the “active signal” that induces transcriptional alterations suppressing the 

mRNA of the glucocorticoid receptor (Rm) which drives downstream the reduced 

cytosolic receptor density.  

 

Figure 5.11: Dynamic evolution of model elements that constitute the mechanistic pharmacokinetic model 

of corticosteroids for a single intravenous administration (bolus injection) of 50mg/kg and given the 

parameters and initial conditions extracted from (Jin, Almon et al. 2003).  

 

Given, therefore, a quantification of the dynamics of corticosteroids and putative 

modes of action of CS in regulating the activity of NF-kB (Auphan, DiDonato et al. 



81 

 

1995; Scheinman, Cogswell et al. 1995) we test the hypothesis that corticosteroids exert 

their immunosuppressive effect by enhancing the transcriptional synthesis of NF-kB’s 

inhibitor IkBa (mRNA,IkBa). Such a hypothesis does not imply that corticosteroids exert 

their anti-inflammatory mechanisms via only this mechanism. It has become increasingly 

evident (Rhen and Cidlowski 2005) that corticosteroids manifest their anti-inflammatory 

properties by various mechanisms that involve (i) either up-regulation of critical anti-

inflammatory proteins, i.e. IkBa, IL-10; (ii) or increased expression of an inhibitor to 

phospholipase A2 (annexin I) which subsequently leads to reduced formation of both 

arachidonic acid and platelet-activating factor as well as (ii) a disruption of the basal 

transcriptional machinery that inhibits the transcriptional activity of NF-kB. In this study, 

due to our inability to model all the mediators that may be affected by corticosteroids we 

opt to simulate the effect manifested by exogenous corticosteroids performing systematic 

perturbations on either the primary inhibitor of NF-kB, i.e. IkBa, as shown in Eq. (5.29) 

or the anti-inflammatory component of the response, Eq. (5.30). 

IkBa nin,IkBa IkBa,1 norm out,IkBa IkBa

dmRNA K (1 k NFkB ) (1 FR(N) ) K mRNA
dt

= ⋅ + ⋅ ⋅ + − ⋅  (5.29)

( )in,A A,P A,E norm out,A
dA K (1 H ) (1 H ) 1 FR(N) K A
dt

= ⋅ + ⋅ + ⋅ + − ⋅  (5.30)

where FR(N)norm represents the normalized FR(N) signal that numerically it ranges 

between (0,1) for a given drug dose. The reason for such normalization stems from the 

fact that the aim of this study is to provide a qualitative understanding about how the 

dynamics of a host undergoing an inflammatory response are modulated due to the 

corticosteroid intervention envelope. The mathematical representation of the integrated 

cellular host response model is succinctly presented in Eq. (5.31) - (5.36).  
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in,P P,NFkBn P,E out,P

Kin,A A,P A,E out,A

in,E E,P out,E

dP
K (1 H ) (1 H ) / A K P

dt
dA

Intrinsic transcriptional responses (1 H ) (1 H ) K A
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dE
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⎪
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⎪
⎨
⎪
⎪
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(5.36)

5.3.3 Qualitative assessment of NF-kB dependent physicochemical host response 

model 

We have previously demonstrated that the transcriptional dynamics of human leukocytes 

exposed to bacterial endotoxin can be decomposed into to three elementary 

comprehensive responses (Foteinou, Calvano et al. 2007; Foteinou, Calvano et al. 2009a). 

Unlike previous approaches that concentrate on specific biomarkers, these elementary 

responses capture the functional dynamics and were shown to be related to pro-

inflammatory (P), anti-inflammatory (A) and energetic (E) transcriptional events 

associated with the overall host response. The response is triggered by the activation of 

the NF-kB signaling module as a result of the formation of an activating signal associated 
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with the binding of LPS to appropriate receptors. We hypothesize that NF-kB serves as a 

proxy for the inflammation specific transcription factors that initiates the expression of 

pro-inflammatory genes while its activity is primarily modulated by the kinase activity 

(IKK) and the inhibitor (IKBa). In this study, we seek to describe the host response to 

endotoxin via interacting modules that involve the propagation of LPS signaling on the 

transcriptional response level through NF-kB dependent mechanism and the genomic 

signaling of exogenous corticosteroids, as the putative controllers of inflammation. The 

corticosteroid intervention envelope consists of a set of elementary interactions that 

involve: (i) the binding of the corticosteroid drug (F) to its cytosolic receptor (RF), (ii) the 

subsequent formation of the drug-receptor complex (FR) (iii) the translocation of the 

cytosolic complex to the nucleus (FR(N)) that alters the transcriptional machinery 

activating or repressing numerous genes and finally (iv) the autoregulation of the gene 

transcript of the glucocorticoid receptor (Rm). All the interacting components and 

modules that constitute the NF-kB dependent physicochemical model of inflammation 

are shown in Figure 5.12. 
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Figure 5.12: Schematic illustration of a reverse engineered model of systemic inflammation. Interacting 

modules involve the propagation of LPS signaling on the transcriptional response level coupled with the 

anti-inflammatory effect of corticosteroids. The propagation of LPS signaling involves the interaction of 

the inflammatory stimulus, LPS with its receptor (R) forming the surface complex (LPSR) which activates 

IKK activity. The IKK-dependent signal activates the translocation of NF-kB (NFkBn) through 

phosphorylation and degradation of its primary inhibitor, IkBa. The nuclear NF-kB (NFkBn) is auto-

regulated by its inhibitor protein, IKBa and stimulates the production rate of the pro-inflammatory response 

(P) while there is certain connectivity among the essential transcriptional signatures (P, A, E). The mRNA 



86 

 

of the receptor (mRNA,R) is stimulated by pro-inflammation (P) and it is translated to the surface protein 

(R). The corticosteroid intervention envelope consists of the corticosteroid drug (F) which binds to its 

intracellular receptor (RF) forming the cytosolic complex (FR) that translocates to the nucleus (FR(N)) and 

modulates the dynamics of inflammation via an upregulation of anti-inflammatory proteins (IkBa, A) 

represented by dotted lines.  

 

Kinetic parameters are estimated in order to best reproduce the essential transcriptional 

responses associated with experimental measurements, Table 5.23. The reconstructed 

dynamic profiles associated with a self-limited inflammatory response triggered by the 

activation of NF-kB signaling pathway are shown in Figure 5.13. In essence, a self-

limited inflammatory response involves the successful elimination of the inflammatory 

stimulus within the first 2hr post-endotoxin administration while followed by a 

subsequent resolution within 24hr.  

 

 

 

 

 

 

 

                                                 
3 Estimated values of relevant model parameters are presented in Table 5.2 (see Appendix 5.4) 
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Figure 5.13: Estimation of relevant model parameters. Temporal profiles of the elements that constitute the 

NF-kB dependent model of endotoxin-induced inflammation. Solid lines (⎯) correspond to model 

predictions whilst the symbols (•) denote for the experimentally measured transcriptional signatures.  
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Malfunction in LPS’s clearance rate 

The dynamics of the inflammatory response are highly complex such that a maladaption 

in the homeostasis of the system can be attributed to various reasons. One such 

possibility is associated with a malfunction in endotoxin clearance rate which 

corresponds to a higher exposure of the host to the stimulus. Under such conditions the 

inflammatory stimulus persists and leads to an aberrant NF-kB activity that drives 

downstream a chronic inflammatory response, Figure 5.14. Specifically, the inferred NF-

kB activity can be characterized as a “two-wave” response; initially it increases due to the 

inflammatory stimulus while trying to adapt its regulatory activity at 2-3hr post-

endotoxin administration. However, at t>3hr the activity of NF-kB cannot be regulated 

successfully and it settles to a sustained elevated state that drives downstream the over-

excitation of both pro- and anti-inflammatory mediators; leading to an unconstrained 

inflammatory response. Interestingly, in (Klinke, Ustyugova et al. 2008) Klinke et al. aim 

at exploring experimentally the possibility of modulating the temporal control of NF-kB 

activation. Macrophages are exposed to a persistent inflammatory stimulus (LPS) and the 

available experimental data show the presence of a “damped” oscillatory behavior in NF-

kB activity. We therefore assess the appropriateness of the structure of the proposed 

model by simulating a malfunction in the clearance rate of pathogen-derived endotoxin, 

as follows.   
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Figure 5.14: Temporal responses of model elements in a persistent infectious inflammatory response. 

Reducing the degradation rate of LPS to half of its initial value we simulate the case of an unsuccessful 

clearance of LPS that accounts for the sustained (aberrant) activity of NF-kB leading to a chronic 

inflammatory response.  

 

We further evaluate the proposed in silico model by exploring the possibility of a 

mechanistic maladaption in the dynamics of the regulatory NF-kB signaling module. As 

illustrated in Figure 5.15, performing an in silico IkBa-/- knock-out experiment we 

simulate a sustained inflammatory response that fails to resolve. 
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Figure 5.15: Simulation of a knock-out in silico experiment (IkBa-/-, kIkBa,1 = 0). Manipulating the model so 

that there is no de novo transcriptional synthesis of NF-kB inhibitor (IkBa) which is responsible for the 

absence of NF-kB auto-regulatory feedback loop. Such a scenario accounts for maladapted activity of 

NFkBn that triggers an uncompensated inflammatory response.  

 

The protein inhibitor of NF-kB (IkBa) aims at retrieving nuclear concentration of NF-

kB with the formation of an inactive complex in the cytoplasm regulating the expression 

of various inflammatory genes. The transcription factor NF-kB up-regulates the gene 

transcript of IkBa (mRNA,IkBa) so that the translated protein IkBa serves as the major 
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component for regulating its transcriptional activity. Thus, in Figure 5.15 we simulate 

the case of no transcriptional activity of NF-kB in the promoter region of IkBa. In the 

absence of NF-kB inhibitor (IkBa-/-) there is an aberrant regulatory activity of NF-kB that 

leads to its persistent nuclear activity driving an inflammatory response that fails to 

restore homeostasis. Such an in silico result has been experimentally tested annotating the 

impact of such a knock out in inducing a chronic inflammatory response (Hoffmann, 

Levchenko et al. 2002b).  

Another mode of perturbation of the underlying dynamics of the probed system is 

related to the presence of a “prior” insult that coupled with the LPS stimulus account for 

an overwhelming production of pro-inflammatory mediators, Figure 5.16. Such a 

sustained pro-inflammatory signaling deregulates the NF-kB signaling module leading to 

a persistent NF-kB activity. Such persistence implies that the nuclear concentration of 

NF-kB cannot be further constrained by its primary inhibitor, IkBa and eventually settle 

to a steady state far away from their equilibrium (homeostasis). We simulate such a 

scenario by manipulating the zero order production rate of the pro-inflammatory response 

(Kin,P) and particularly increasing it twice its initial value. A pre-existence of pro-

inflammatory cytokines due to the presence of a prior “insult” may deregulate the 

intracellular dynamics responsible for an amplification of the inflammatory response. In 

our model such a scenario can be simulated due to the positive feedback interaction 

between the intracellular critical node (IKK activity) and the pro-inflammatory response 

that disturbs the bistable behavior of the system. Therefore we attempt to manipulate 

(increase) the zero order production rate of the essential pro-inflammatory signaling. 

Clinically, such an increased rate in the production of pro-inflammatory mediators might 
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be the outcome of a surgical trauma followed by bacterial infection, a so called two hit 

scenario (Romascin, Foster et al. 1998). 

 

 

Figure 5.16: Pre-existence of pro-inflammatory mediators may enhance abnormally the intracellular 

signaling through IKK. Such a response leads to an unconstrained activity of NFkBn that drives 

downstream a persistent pro-inflammatory response which cannot be counter-regulated by the anti-

inflammatory arm of the host defense system. Such a mode of dysregulation is simulated by manipulating 

the zero production rate of pro-inflammation (Kin,P) so that Kin,P (unconstrained response) ~ 2*Kin,P (self-

limited response).  
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5.3.4 Modulating the progression of an unresolved response 

The in silico model of inflammation enables us to predict an inflammatory response that 

does not properly abate making it a critical enabler for the evaluation of corticosteroid-

based intervention strategies. Due to the physiological role of corticosteroids in the 

immune system (Briegel, Jochum et al. 2001) researchers have put significant effort in 

understanding the cytokine dynamics under hypercortisolemia (Barber, Coyle et al. 1993; 

Barnes and Karin 1997; Bornstein and Briegel 2003; Hawes, Rock et al. 1992; Keh, 

Boehnke et al. 2003; Richardson, Rhyne et al. 1989). These studies have focused on 

elucidating the in vivo responses to endotoxin (LPS) when there is an exposure of 

subjects to hypercortisolemia for various durations of time. Thus, in (Barber, Coyle et al. 

1993) normal human subjects were exposed to glucocorticoid infusion concurrent with 

and before the endotoxin challenge. The hydrocortisone infusion lasted for a 6hr period 

with subsequent intervening periods of 6 (CORT-6-LPS), 12 (CORT-12-LPS) and 144hr 

(CORT-144-LPS) before endotoxin administration or simultaneously with LPS challenge 

(CORT-LPS). Experimental measurements of cytokines and hemodynamic parameters 

suggest the integral role of hypercortisolemia in CORT-LPS and CORT-6-LPS groups in 

modulating the cytokine network characterized by decreased plasma concentrations of 

various cytokines, i.e. TNF, IL-6 when compared to the group that received only LPS. 

However, in CORT-12-LPS and CORT-144-LPS the plasma concentrations of the 

aforementioned inflammatory mediators were significantly increased compared to 

CORT-LPS and CORT-6-LPS groups. Therefore, such evidence suggest the critical 

impact of the duration of the corticosteroid intervention before inducing inflammation in 

perturbing the dynamics of both hormonal and cytokine level. 
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Herein, we explore the capability of corticosteroids to modulate the inflammatory 

response under various treatment schedules. An intravenous injection of the drug, via the 

activation of intermediate signaling steps, eventually leads to the up-regulation of the 

active complex, FR(N). Based on the mode of corticosteroids action defined, we explore 

the potential of the active signal, FR(N)norm, in modulating the progression of an 

unresolved inflammation, Figure 5.17. We observe that such a signal mediates the 

corticosteroid effect on the transcriptional response level primes the dynamic state of NF-

kB inhibitor so that it suffices to promote resolution of the inflammatory response. 

Despite the high initial LPS concentration which perturbs the dynamics of inflammation 

(dashed lines), the corticosteroid intervention in the form of an intravenous (i.v.) injection 

initiated at t = 0hr “reprograms” the dynamic state of the system in favor of a balanced 

regulation (solid lines). While comparing the dashed and solid lines in Figure 5.17 we 

observe that the intervention strategy plays a critical role in the dynamics of IkBa during 

the first 4 hrs post-LPS where suffices to control the intrinsic inflammatory dynamics 

favoring homeostasis within 24 hrs. On the other hand, prior to any intervention the 

system seems to have lost any potential for attenuation and its inability to adapt to high 

LPS concentration is mathematically translated into unconstrained responses (dashed 

lines). Therefore, the intervention envelope based on corticosteroids serves as a critical 

enabler to explore the capability of different intervention strategies in modulating the 

progression of systemic inflammation. 
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Figure 5.17: Exploring the mode of corticosteroid action in enhancing the transcriptional synthesis of IkBa 

which is illustrated by the solid arrow. An i.v. injection of the corticosteroid drug administered 

concomitantly with endotoxin (tin = 0hr) suffices to reverse (prevent) the lethal effect of a high dose of 

endotoxin. Solid lines (⎯) correspond to the inflammatory resolution due to the corticosteroid injection at t 

= 0hr while dashed lines simulate the progression of inflammation in response to a high concentration of 

LPS (i.e. LPS(t = 0hr) = 4).  
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As shown in Figure 5.17 a single i.v. injection of corticosteroids at t = 0hr suffices to 

reverse the dynamics in response to the high concentration of LPS. Similar results were 

obtained if we preserved the timing of intervention but modified the route of drug 

administration switching to a continuous infusion, Figure 5.18.  

 

 

Figure 5.18: Exploring the effect of steroid infusion initiated simultaneously with LPS injection (tin = 0hr) 

and continued for 6hr (tstop = 6hr) after LPS exposure in modulating the progression of unremitting 

inflammation evoked by high LPS dose. Solid lines (⎯) correspond to the inflammatory resolution due to 

the corticosteroid infusion while dashed lines simulate the progression of aberrant inflammation in response 

to high LPS challenge. 
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As seen in Figure 5.18 such treatment strategy suffices to reverse the deleterious 

outcome of a persistent non-infectious inflammatory response (due to high initial LPS 

concentration). Moreover, pre-exposing the system before endotoxin challenge for 6hr to 

hypercortisolemia we observe a proper modulation on the progression of the 

inflammatory response as well, Figure 5.19.  

 

Figure 5.19: Hypercortisolemia for 6hr prior to LPS challenge (tin = -6hr). The system is pre-exposed for 

6hr to a continuous infusion of corticosteroids while it is continued for another 6hr after the endotoxin 

challenge (tstop = 6hr). Such an intervention “reprograms” the dynamics of the system modulating the effect 

of a high LPS concentration.  
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In addition to Figure 5.19, similar responses are observed for the system if it is pre-

exposed to hypercortisolemia for 6hr but the steroid intervention is initiated at t = -12hr. 

Such results support an early intervention strategy that targets the regulatory arms of 

systemic inflammation and successfully capture the dynamic behavior of the system in 

CORT-LPS and CORT-6-LPS groups of the aforementioned experimental study. 

Complementary to this, in (Sato, Koeda et al. 2002) there is emphasis on the potential of 

a preoperative administration of corticosteroids in alleviating surgical stress. The 

underlying hypothesis of such a preoperative exposure stems from the fact that a 

modification of the inflammatory dynamics at an early stage (transcriptional level) would 

seem to be beneficial in balancing the immune response given that these anti-

inflammatory drugs (corticosteroids) inhibit pro-inflammatory transcription factors (NF-

kB).  

However, if the system is pre-exposed to hypercortisolemia for the same duration as 

previously mentioned (6hr) but the time interval between the termination of infusion and 

LPS administration is much greater (i.e. >12h), we observe a blunted effect of the 

corticosteroid treatment on the progression of inflammation (Note that the drug has been 

eliminated from the host), Figure 5.20. Such an intervention strategy fails to reverse the 

effects of a high concentration of LPS. Similar results are observed if the intervention 

strategy elapses at times greater than 12hr from LPS administration (data not shown 

here). The primary reason for such a failure stems from the fact that at t>12hr the 

transcriptional profile of anti-inflammatory molecules i.e. (A) and (IkBa) are resolved. 

Therefore any pre-exposure to corticosteroid infusion that is terminated at t>9hr would 
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not “reprogram” the inflammatory dynamics towards a reversal in the progression rate of 

an inflammatory response. 

 

 

Figure 5.20: Pre-exposure the system into hypercortisolemia which is assumed to modulate the dynamics 

of IL-10 signaling (A). Such intervention strategy is initiated 18hr before the endotoxin challenge and 

continued for 6hr while it does not have a profound effect in the dynamic state of the system where the 

progression of an unresolved inflammation (⎯ lines) continues after the termination of steroid infusion 

(represented by overlap between solid and dashed lines).  
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Similar results in the context of no reversibility in the host dynamics are obtained if the 

system is exposed to a continuous infusion of hypercortisolemia initiated at t>0hr after 

the administration of endotoxin (i.e. t = 1hr), dashed and dotted lines, Figure 5.21. 

 

Figure 5.21: Explore the effect of corticosteroids at multiple drug doses initiated at t = 1hr and continued 

for 6hr after the endotoxin challenge priming the production rate of IL10 signaling (A component) 

illustrated by green arrow. Solid lines characterize a resolution in the progression of systemic inflammation 

whereas dashed and dotted lines correspond to lower drug doses that cannot sufficiently reverse the 

progression rate of an aberrant inflammation. All the active signals, FR(N)norm, have been normalized 

with respect to the lowest drug dose, F0=20ng/mL (represented by dotted lines).  
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Exploring the response of the system at later stages of the progression of the 

inflammatory response, Figure 5.21, the active steroid signal, FR(N)norm, has to increase 

in magnitude in order for the inflammatory response to be tightly regulated. Thus, the 

progression of the inflammatory response is differently perturbed on a dose-dependent 

manner (dotted and dashed lines versus solid). Preserving the route of drug 

administration the active signal FR(N) must increase in magnitude in order for the system 

to respond to a multitude of external signals (LPS, Drug).Therefore, dose-dependent 

profiles are simulated in the aforementioned figure where there exists a dosage regime 

that modulates the dynamics of the system towards resolution. 

These in silico results lie in agreement with studies (van der Poll, Barber et al. 1996) 

that suggest a dose-dependent decrease in LPS-induced TNF in peripheral human blood 

leukocytes that are exposed to hydrocortisone infusion. In particular, van der Poll and 

Lowry (van der Poll, Barber et al. 1996) demonstrate increased plasma concentrations of 

IL10 at higher corticosteroid doses. In our model, if we assume that corticosteroids 

instead of up-regulating the inhibitor of NF-kB they prime the production rate of IL10 

signaling (A), the gradual increase in the anti-inflammatory (A) signaling as the drug 

dose increases modulates the response of the system towards a more balanced 

inflammatory response. In addition, the computational experiments presented in Figure 

5.17 - Figure 5.19 can be reproduced if we consider that the corticosteroid intervention 

envelope perturbs the state of the anti-inflammatory (A) signaling which lie in agreement 

with the pleiotropic mode of corticosteroids anti-inflammatory activity. Despite the 

controversies regarding the administration of either high-dose steroids for the short-term 

in septic patients (Lefering and Neugebauer 1995) or the prolonged use of low dose 
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steroids in clinical settings (Klaitman and Almog 2003) the present study provides 

qualitative insight on how the system responds to various intervention strategies opening 

challenging windows towards the design of effective drug treatment schedules 

(Zurakowski and Teel 2006).  

In summary we have developed a semi-mechanistic host response model that 

describes the dynamic evolution of an in vivo human response to endotoxin. Interacting 

components involve elementary signaling pathways that propagate extracellular signals to 

the transcriptional response level and pharmacokinetic models of corticosteroids, as 

putative controllers of the inflammatory response. Model parameters are appropriately 

evaluated so that to reproduce a self-limited inflammatory response that resolves within 

24hr post-endotoxin administration. The potential of the model is demonstrated via 

computational tests performed to reproduce biologically relevant scenarios associated 

with an increase in host’s susceptibility to endotoxin stimulus as well as in the regulatory 

interactions of signaling cascades. Exploring the possible effects of systemic 

perturbations enables us to trace the dynamics of a systemic inflammatory response 

syndrome. In silico experiments that activate the corticosteroid intervention envelope in 

order to modulate the progression of inflammation, encourage the proper design of 

intervention strategies that target early arms of the host response modulating the activity 

of crucial pro-inflammatory transcription factors. Such a modeling framework can 

potentially offer significant insight as to how a host undergoing an inflammatory 

response responds to a multitude of external signals through interacting signaling 

modules and possible strategies for restoring homeostasis.  

 



103 

 

5.4 Appendix to the NF-kB dependent physicochemical model 

5.4.1 Table of relevant model components 

Symbol Description Symbol Description 

IKK Kinase activity F Drug (Cortisol) 

mRNAIkBa 

Gene transcript of NF-kB inhibitor 

(IkBa) 
Rm 

Gene transcript of steroid 

receptor 

IkBa Protein inhibitor IkBa RF 
Free cytosolic steroid 

receptor 

NFkBn Nuclear concentration of NF-kB FR 
Cytosolic steroid-receptor 

complex 

FR(N) Nuclear steroid-receptor complex   

5.4.2 Estimated parameter values 

Table 5.2: Estimated values of parameters based on self-limited human data4  

k3 = 5.000 Kout,IkBa = 0.463 Kin,P = 0.033 kA,E = 5.300 

k4 = 2.240 kI,1 = 1.400 kP,NFkBn = 29.741 Kout,A = 0.592 

kNFkB,1 = 16.294 kI,2 = 0.870 kP,E = 9.050 Kin,E = 0.080 

kNFkB,2 = 1.186 Kin,mRNAR,R = 0.091 Kout,P = 0.333 kE,P = 2.217 

Kin,IkBa = 0.463 kmRNAR,P = 1.740 Kin,A = 0.093 Kout,E = 0.257 

kIkBa,1 = 13.273 Kout,mRNA,R = 0.2505 kA,P = 0.010  

 

                                                 
4 Parameter values klps,1, klps,2, ksyn, k1 and k2 are maintained to agree with those presented in Table 5.1 (see 
Appendix 5.2) 
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5.4.3 Fixed parameter values involved in cortisol dynamics5 

C1 = 39130 IC50_Rm = 26.200 kon = 0.003 

C2 = 12670 kdeg = 0.112 kdgr_R = 0.057 

k1 = 7.540 ksyn_R = 1.199 kT = 0.630 

k2 = 1.200 rf = 0.490  

ksyn_Rm = 2.900 kre = 0.570  

5.4.4 Initial conditions of relevant model components 

IKK(0) = 0 mRNAIkBa(0)=1 F(0) = C1+C2
* Rm(0) = 25.8 FR(0) = 0 

NFkBn(0) = 0 IkBa(0) = 0 F(0) = 0 (infusion) RF(0) = 540.7 FR(N)(0)=0 

*F(0) = 51800 ng/mL for injection as reported in the original analysis (Jin, Almon et al. 
2003) 

5.4.5 Steady-state baseline equations 

( )

( )

in,mRNA,R mRNA ,P ss out ,mRNA,R ssR

in,mRNAR mRNA ,PR R
out ,mRNAR

R
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dmRNA, R 0 K (1 k P ) K mRNA, R 0
dt

K 1 k P(0)
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5 Parameter Rin for infusion kinetics is defined as (drug_dose*k1)/duration where k1 and duration represent 
elimination rate and duration of infusion respectively.  
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5.5 An agent-based model of acute human inflammation 

Biological systems, unlike physical or chemical systems are characterized by the 

emergence of inhomogeneous distribution of their components (Bauer, Beauchemin et al. 

2009). The recognition that equation based models are predicated on the assumption of a 

homogeneously distributed system has made it less applicable in situations where spatial 

effects are important (An, Faeder et al. 2008). On the other hand, agent based models 

(ABM) has an intrinsically spatial component based on its reliance upon local 

interactions and environmental heterogeneity. Although both modeling approaches (EBM 

and ABM) have both advantages and disadvantages (Vodovotz, Clermont et al. 2004), 

agent based modeling has emerged as an alternative for addressing features of complex 

biological systems (Ermentrout and Edelstein-Keshet 1993).  

To examine the effects of the assumption of spatial heterogeneity, there is a growing 

body of research probing the effects of spatial distribution in the innate immune system 

(Funk, Jansen et al. 2005; Louzoun, Solomon et al. 2001). Thus, a central premise of 

ABM is that they map intuitively to biological phenomena such as cells within tissues 

and organs capturing the stochastic nature and dynamic transitional states in biological 

systems (An 2006; Lowry and Calvano 2008; Neugebauer, Willy et al. 2001; Seely and 

Christou 2000). In addition to this, the ABM approach provides a very intuitive means of 

translation of basic science data on the innate immune response through a series of simple 

rules that dictate their behaviors. Accordingly, a number of excellent prior studies have 

placed significant emphasis on simulating the dynamics of inflammation predicated upon 

the principles of agent based models (Baldazzi, Castiglione et al. 2006; Clermont, Bartels 

et al. 2004; Kataoka, Ito et al. 2004; Mi, Riviere et al. 2007; Vodovotz, Chow et al. 
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2006). Specifically, in the studies conducted by An and collaborators (An 2001; An, Hunt 

et al. 2007; An 2008; An, Faeder et al. 2008), the applications of ABM in inflammation 

models have been effectively demonstrated. 

The key elements in ABMs are the agents, which are entities that represent a certain 

aspect of the system, for instance a family of cells and/or molecules that are able to adapt 

and interact with the environment and with each other based on a specific set of rules 

(Vodovotz, Csete et al. 2008). While agents within a class will have the same rules for 

behavior, the behavior of individual agents varies because of differences in local 

conditions. The individual interactions then aggregate to engender the overall behavior 

observed in an experimental setting. The advantage of ABMs lies in the fact that the 

interactions of agents are derived from fundamental occurrences in biological processes, 

like the binding of molecules, and as such, they are more intuitive to implement and 

easier to understand. Additionally, the instructions that describe the interactions are taken 

from published literature and translated into programming language. Furthermore, the 

model is naturally stochastic in that the interactions can be designed to be based upon 

probabilities and some of the agent dynamics can be highly random.  

The work to be discussed in this section seeks to address the possibility of an agent 

based modeling approach that defines the propagation of a perturbation across the system 

taking into account spatial orientation at the molecular level as well as cellular 

interactions and heterogeneity. Driven by the premise that peripheral blood leukocytes 

(PBLs) are major effectors in response to endotoxin and that PBLs represent a composite 

mixture of several cellular subpopulations we opted to simulate the stochastic interactions 

particularly in the macrophages and T helper cells. During the onset of the inflammatory 
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response, the secretion of pro-inflammatory cytokines from macrophages stimulates the 

activation of precursor T helper cells (Th0) and induce them to exhibit the type 1 T helper 

cell (Th1) phenotype thatin turn facilitates the secretion of various pro-inflammatory 

cytokines (McKnight, Zimmer et al. 1994). The other fate of Th0 is to become type 2 T 

helper cells (Th2) and produce anti-inflammatory cytokines that are essential for 

restoring homeostasis (Kidd 2003). Physiologically, the recruitment of macrophages and 

the differentiation of Th cells occur in separate locations. Yet they retain strong 

interconnectivity facilitated by the inflammatory cytokines. Due to limitation of the 

framework, the proposed model did not separate the aforementioned cell types into 

different topological compartments. We assumed however that the movement of the 

cytokine agents from the macrophages to the Th cells would signify the transportation of 

the cytokines between different biological tissues. Previous agent based studies have 

placed emphasis on simulating either intercellular interactions between a multitude of 

such cell types (Folcik, An et al. 2007) or the spatial orientation of molecules involved in 

the NF-kB signaling pathway (Pogson, Holcombe et al. 2008) while considerable 

attention has been also given to modeling the transcriptional regulatory network of TH 

differentiation (Santoni, Pedicini et al. 2008).  

In this section we have taken an integrative approach to elucidate molecular 

interactions involved in the NF-kB signaling pathway, coupled with the spatial 

orientation of various inflammation specific molecules and cell populations such as 

macrophages and T-helper cells. Our agents of choice reflected the characteristics of 

biological molecules. This allowed us to focus on the intracellular dynamics of the NF-

kB signaling module and further illustrate the subsequent intercellular interactions 
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through the up-regulation of inflammatory mediators. The stochastic behavior of the 

agents was partially attributed to the random motion of the molecules. The probability 

that determined whether an interaction should occur relied on the spatial configuration of 

the participants. Cells were not considered as reactor spaces with an even distribution of 

molecules. To accommodate for this, some of the agent-based rules regarding the 

mobilization of molecules were implemented, in order to ensure that a specific interaction 

occurs within an allocated time frame and the network topology of the model. A key 

characteristic of our approach was to represent the cellular interactions as the aggregated 

output of an intricate process that influenced the cellular behavior and therefore the 

overall systemic response.  

5.5.1 Elements of the agent based host response model of human inflammation 

At the transcriptional response level, we have previously demonstrated (Chapter 4) that 

the transcriptional dynamics of human leukocytes exposed to bacterial endotoxin can be 

decomposed into to three elementary comprehensive responses. These responses defined 

the major (essential) transcriptional elements of the host response to endotoxin that 

subsequently manifest the integrated systemic response. In an attempt to establish 

quantifiable relationships among these essential components of human endotoxemia we 

have proposed the development of deterministic, semi-mechanistic based host response 

models that include transcriptional dynamics, signaling and physiological components for 

the modulation of the response (Section 5.1 and 5.3). Herein, we have sought to describe 

the host response to endotoxin via interacting molecules and cells based on an integrated 

ABM framework as shown in Figure 5.22. 
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Figure 5.22: Schematic illustration of elements and interactions involved in the agent based model of 

endotoxin induced inflammation.  
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Each macrophage possessed a cell membrane comprised of agents arranged in a circle 

around the center of the cell which constitutes the nucleus. Receptors for LPS, IL-4, and 

TNF-alpha were embedded in the membrane while the inhibitor protein IkBa, IKK, and 

NF-kB are located in the cytosol. Prior to any external perturbation, NF-kB is inactive in 

the cytoplasm forming a complex with its primary inhibitor, IkBa. Upon stimulation, NF-

kB translocates to the nucleus activating the transcriptional machinery for the up-

regulation of the critical transcriptional events [27-29]. During the recognition process of 

LPS from its signaling receptor (R), a signal transduction cascade is triggered that up-

regulates the transcription of TNF-a. Since pro-inflammatory cytokines might be 

responsible for perpetuating and amplifying the inflammatory reaction through the 

critical node (IKK) (Karin and Delhase 2000), such interaction is simulated via the 

positive interaction between TNF-a, and the kinase activity (IKK).  

Consequently, the presence of pro-inflammatory mediators (P) promoted the 

migration of mature T helper cells (Mackay 2000) where Th0 cells become Th1, while 

the production of anti-inflammatory mediators (A) incited formation of Th2 cells which 

further potentiate the anti-inflammatory response (A) (Kidd 2003). Since the anti-

inflammatory arm of the host defense system restores homeostasis, the anti-inflammatory 

component of the model, including anti-inflammatory mediator agents (A), was assumed 

to exert its counter-regulatory properties by stimulating the degradation rate of the early 

potent pro-inflammatory mediator TNF-a, coupled with the active populations of T helper 

cells. In particular, the Th2 agents continuously produced anti-inflammatory mediators to 

ensure that the population of (A) agents was sufficient to attenuate TNF-a production in 

macrophages. Since circulating pro-inflammatory (P) agents have the ability to turn Th0 
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into Th1, instead of Th2, the population of Th2 cells is primarily affected by the 

concentration of (P) agents. Therefore, the resolution of the inflammatory response is 

highly dependent on the balance between pro- and anti-inflammatory mediators that are 

additionally regulated by the energetic state of macrophages. To establish the link 

between the inflammatory response and the cellular energetic state, we assumed that 

upon activation of a pre-defined threshold the essential energetic response was assumed 

to subsequently modulate the degradation rate of TNF-a (Gupta and Gollapudi 2005). 

The production rate of the inflammatory mediator TNF-a increased when the energetic 

state was lowered during the progression of the inflammatory reaction by NF-kB. 

Meanwhile, the presence of anti-inflammatory mediators leads to a decrease in the 

proximal inflammatory mediator, TNF-a.  

5.5.2 Developing an agent based model of endotoxin induced human inflammation 

The inflammatory response is activated when endotoxin is recognized by pathogen 

recognition receptors (Wells, Ravasi et al. 2005). Such recognition process involves the 

induction of a signal transduction cascade that triggers downstream critical signaling 

modules for the activation of transcriptional factors that play a critical role for the 

transcriptional initiation of inflammatory genes. LPS molecules collide with their 

receptor, TLR4, on the surface of the macrophages. If the receptor is unoccupied, the LPS 

molecule will have a probability to bind to its signaling receptor, forming a complex. A 

receptor that is already bound to a LPS molecule will be unable to receive another one. 

The bound receptor is also considered activated, in that it will up-regulate the production 

of TNF-a molecules stimulating downstream intricate signaling cascades. Such a cascade 

involves the activation of kinase (IKK) activity, which in turn phosphorylates the 
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inhibitor protein IkBa and leads to the activation of the transcription factor NF-kB. The 

transcriptional end result of this signaling pathway is the production of pro-inflammatory 

cytokines including IL-12, TNF-a, and IkBa. The IkBa molecules effectively terminate 

the pathway by forming an inactive complex with nuclear NF-kB in the cytosol. The 

production of IL-12 initiates the production of IL-4 molecules. These two cytokines 

populate the system and bind to their respective receptors on the macrophages or type T0 

helper cells. The fate of Th-0 cells is determined by the number of either IL-4 or IL-12 on 

its surface receptors (Kidd 2003). 

The pro- and anti-inflammatory mediator profiles (P and A) and the energetic 

response of the macrophages (E) were used as a primary indication of a constrained or 

unresolved inflammatory response. During the progression of systemic inflammation, 

pro-inflammatory (P) molecules specifically reflect the presence of IL-12 mediators that 

are circulating in the system. The primary reason for such a selection stems from the fact 

that the role of IL-12 has been implicated in the differentiation of Th-0 cells. However, 

each essential transcriptional signature (P, A, E) as it previously mentioned, serves as the 

aggregate signal that describes complex inflammatory reactions. Thus, (P) would 

qualitatively reflect the secretion of cytokines and chemokines such as TNFSF2 (TNF), 

IL1A, IL1B, CXCL1, CXCL2, CCL2, CXCL8 (IL-8) and CXCL10. Similarly, the anti-

inflammatory arm of the system (A) reflects either the number of IL-4 molecules upon 

endotoxin simulation or mediators such as IL1RAP, IL1R2, IL10 and TNFRSF1A. We 

would like to comment that while these two quantities specifically measures the amount 

of a particular species, they are however a qualitative description to indicate the state of 

the system. By the same token, although the energetic response (E) is given as a quantity 



113 

 

in “molecules” in the model, it is only a descriptive quality as a marker to track the state 

of the system and does not have a physical manifestation in physiology. The energetic 

response (E) refers to those transcriptional signatures that participate in the cellular bio-

energetic processes, mainly in the ATP producing pathways (Carre and Singer 2008) and 

is affected by the transcriptional activities of NF-kB, coupled with the anti-inflammatory 

cytokine response. Moreover, activated NF-kB, IKK, and IkBa molecules are the 

summation of activated population of respective species in all macrophages and LPS 

refers to the total amount of LPS in circulation, both bound and free. Regarding TNF-a, it 

refers to free TNF-a molecules. 

Agent rules and behaviors 

Agents are the main components that follow specific instructions on how they should 

behave and interact with other agents. Each agent has its own properties that define the 

type of behavior and interactions that the agent is involved with. Different types of agents 

are grouped into different classes, i.e., a type of interleukin or stimulus. Some properties 

are present in many classes, i.e., degradation counter that determines when an agent 

disappears or die; or location reporter that informs the molecule its position with regard 

to another molecule. Other properties only pertain to a certain class, i.e., receptor 

sensitivity that dictates whether binding occurs, or macrophage energetic level that serves 

as a survival indicator. The “world” is defined by a coordinate system with boundaries 

that wrap around horizontally and vertically. Macrophages are placed randomly in the 

world, provided that there is no overlapping between each macrophage. The simulation is 

computationally intensive in that each macrophage cell alone is composed of more than 

400 agents. For the purpose of reducing the computation time for each simulation, a 161 
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by 161 world and 4 macrophages were used for the experiments. After experimenting 

with a range of world sizes, we decided that the selected size was appropriate to 

accurately generate the dynamic profiles while allowing repeated simulations to run at a 

desirable pace.  

As the model is executed, it performs a list of procedures in an order. The execution 

is an iterative process where each iteration represents a “tick” or a discrete time point. 

Each procedure governs the behavior of a specific class of agent; it contains instructions 

on how an agent should move, whether to bind to a receptor or “bounce” off of the cell 

membrane, etc. The instructions are conditional (rule) based (if-then) and may involve 

multiple agents, such as when two molecules bind together, both molecules’ parameters 

change due to the binding, for instance, they now move in the same pattern. Moreover, 

the instructions are derived from literature regarding relevant mechanisms for LPS 

activation (Bosshart and Heinzelmann 2007; Du, Poltorak et al. 1999; Monick and 

Hunninghake 2002), intricate signaling cascades (Delhase, Hayakawa et al. 1999; 

Hoffmann, Levchenko et al. 2002a; Li and Verma 2002; Mittal, Peak-Chew et al. 2006; 

Ting and Endy 2002; Zhang, Chan et al. 2005), cytokine network (Gri, Savio et al. 1998; 

Xing, Jordana et al. 1994; Zhou, Lin et al. 1994) and cell (Th) differentiation (Kidd 2003; 

Santoni, Pedicini et al. 2008). The specific rules that determine the behavior of the 

relevant agents are presented in Table 5.3 (see Appendix 5.6).  

The movement of LPS molecules is characterized by a random walk routine, namely, 

each molecule heads to a random direction and moves several steps forward. When one 

LPS molecule comes in contact with its signaling receptor on the surface of the 

macrophage, it will have a chance to bind to it. Once bound a molecule will no longer be 
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moving freely; it will move in accordance with its counterpart. Such process triggers the 

production of the proximal inflammation-specific mediator, TNF-a causing a decrease in 

receptor’s sensitivity. Receptor sensitivity determines the probability by which one LPS 

molecule will bind to its endotoxin receptor. Bound LPS molecules are degraded shortly, 

freeing up the receptor. Molecules of TNF-a also move randomly where they can diffuse 

into the cell (move past the cell membrane agents) and bind to their appropriate receptors 

either from the cytoplasm or from outside of the membrane. The activated receptor will 

trigger downstream a signal transduction cascade that stimulates IKK activity. Activated 

IKKs move randomly inside the cytosol while they are not capable in moving past the 

cell membrane agents or enter the nucleus region. They activate the NF-kB complex by 

dissociating the bound between NF-kB and its inhibitor, IkBa. This is achieved through 

the phosphorylation of the inhibitory protein IkBa where dissociated IkBa is therefore 

ubiquitinated and degraded by the proteasome. Activated NF-kB then moves into the 

nucleus region initiating the transcriptional machinery program which up-regulates the 

transcription of IkBa, of pro-inflammatory cytokines (P) followed by a decrease in the 

energetic state of the macrophage.  Activated IkBas are capable of moving into the 

nucleus, binding to activated NF-kB molecules, and deactivate them, as they retrieve 

nuclear concentrations of NF-kB by forming an inactive complex in the cytoplasmic 

region.  

The pro-inflammatory (P) agents are limited by cell membranes and their presence 

excites the production of anti-inflammatory cytokines (A) and the migration of 

undifferentiated T-helper cells (Th0) which are not present under conditions of no 

infec7tious challenge. However, the secretion of pro-inflammatory (P) molecules by 
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macrophages during the progression of the inflammatory reaction induces Th0 cells to 

enter the “virtual world”. This event signifies the migration of cytokines into the spleen, 

within which the differentiation of Th0 cells takes place. In this model the role of T-

helper cells is to regulate the feedback loops associated with pro-(P) and anti-

inflammatory (A) mediators. Further, the binding of (A) molecules with their signaling 

receptor will stimulate an energy expenditure causing nearby bound TNF-a to degrade 

faster. In addition to Th0 cell type under conditions of an abundance of bound anti-

inflammatory (A) cytokines with their receptors it will morph into a Th2 cell. If it 

happens that the presence of (P) molecules on the surface receptors to outweigh the (A) 

response, then Th0 will become of Th1 type which potentiates the pro-inflammatory 

response. Conversely, Th2 cell type response potentiates the secretion of anti-

inflammatory cytokines (A).  

In order to facilitate the translation from literature evidence into a programming 

language, it is necessary to provide a feasible framework that integrates disparate 

research into a conceptually valid scheme, taken into account the abstractness and 

limitations of the model. Some of the goals are outlined in literature (An 2006) but in this 

model, we place emphasis on the potential mechanisms that drive complex responses 

identifying essential elements of the probed response.  

Model calibration and validation  

Due to the inherent stochasticity of the ABM development, calibration is oftentimes 

performed on a trial and error basis. This process involves generating multiple sets of 

results by systematically varying the model parameters at each set. Also known as 

“parameter sweeping”, this process allows us to explore the possible behaviors of the 
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model and determine which parameters will engender the patterns that best represent the 

behavior of interest. For instance, we first examine the signaling agents that will have the 

most leverage on repressing the inflammatory response. After each simulation, we adjust 

the parameters such as the production rate of P and TNF-a, the movement speed of LPS, 

or the probability that an interaction will occur between two colliding signaling 

molecules. These parameter values were manipulated so that the simulations lie in 

qualitative agreement with the self-limited inflammatory response. This implies that from 

among the multiple runs we select those that can effectively reproduce dynamic profiles 

associated with the successful elimination of the inflammatory stimulus within the first 

2hr post-endotoxin administration while followed by a subsequent transcriptional 

resolution within 24hr. 

We define the parameters that can produce the self-limited profile as a basis set and 

based on this set we simulate the LPS dosage dependent responses. A set of parameters is 

considered satisfactory if the model is capable of simulating the dynamics of a self-

limited inflammatory response (resolution within 24hr post-LPS administration) as well 

as successfully generating the series of unconstrained (non-linear) responses as 

previously discussed in this paper. The results of the simulations are compared on a 

qualitative manner with our prior equation-based host response models as shown in 

Figure 5.24 and Figure 5.25 (dashed lines). While comparing the output of ABM with 

the output of the ODE, it should be noted that both modeling approaches are not 

characterized by the same network topology. Specifically, in the proposed ABM 

additional inflammatory mediators (molecules, cells) are considered when compared to 

the ODE model which may account for the observed variations in the simulated 
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responses of the two modeling frameworks. However, albeit different in network 

topology, the two modeling frameworks predict responses (i.e. P, A, E) that lie in a good 

qualitative agreement.  

This ABM is developed using NetLogo (Center for Connected Learning and 

Computer-Based Modeling, Northwestern University, Evanston, IL), a freeware that 

constructs agent based models. 

5.5.3 Qualitative assessment of the model 

A self-limited inflammatory response to the endotoxin stimulus corresponds to resolved 

dynamic profiles for all the elements constituting the model. The objective was to 

produce the dynamic profiles of a successful inflammatory resolution as shown in Figure 

5.23 that qualitatively agreed with the previously models using a deterministic approach 

(Foteinou, Calvano et al. 2009a, b). While the inflammatory stimulus, namely LPS agents 

were successfully cleared within 1h, the activation of anti-inflammatory cytokines 

expedited the attenuation of the early pro-inflammatory cytokine TNF-a with subsequent 

termination of the pro-inflammatory signaling cascade. Inevitably there is a level of 

abstraction that needs to be considered when representing molecular reactions as discrete 

events that follow somewhat arbitrary rules. The correctness of the model was evaluated 

based on its ability to qualitatively predict the uncontrolled responses as below. 
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Figure 5.23: A self-limited inflammatory response (LPS(0) =350 units). Temporal profiles of essential 

components that constitute the agent based model resolved within 24hr.  
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The validity of our approach will be demonstrated through its potential to reproduce 

biologically relevant scenarios indicative of the non–linear dynamics of systemic 

inflammation described as the following scenarios: (1) a persistent infectious response 

where the inflammatory stimulus was not eliminated, leading to an aberrant inflammatory 

response, (2) a persistent non-infectious inflammatory response that can be elicited under 

high concentrations of the inflammatory stimulus, causing an inflammatory insult that 

can disturb the dynamics of the host response leading to an unconstrained inflammatory 

response; and finally, (3) two scenarios associated with endotoxin tolerance and 

potentiation effects followed by perturbations in the regulatory (NF-kB) signaling 

module. 

Implications of increased insult 

High concentrations of LPS, corresponding to an increase in the strength of the 

inflammatory insult, can be responsible for the amplification of the host immune 

response (Munford 2006). This event is followed by a dysregulation in host defense 

intrinsic dynamics leading to an unconstrained inflammatory response even after the 

circulating levels of LPS have been cleared. The model predicted the situation where the 

initial levels of LPS are increased in Figure 5.24. We observed that when the 

concentration of the inflammatory stimulus exceeded a critical threshold, the 

inflammatory response did not abate. Such a response is characterized by overwhelming 

production of the pro-inflammatory instigator, TNF-a, which amplifies the activity of 

NF-kB. In particular, high LPS concentration potentiates the secretion of pro-

inflammatory mediators (P) which in turn may increase the probability of Th0 cells to 

differentiate into Th1 cells rather than into Th2 cells. Additionally Th1 cells further 



121 

 

increase (P) population; thus disturbing the balance between Th1/Th2 accounted for the 

progression of an unconstrained inflammatory response. 

 

 

 

Figure 5.24: Temporal responses of an unresolved inflammatory response due to high LPS concentration. 

A high concentration of LPS (LPS(0) =750) can cause a malfunction in the dynamics of the host leading to 

an exacerbated inflammatory response (solid lines). Dashed lines refer to the implications of high 

concentration of LPS as simulated by our deterministic (ODE) approach. For the purpose of comparing the 

simulated output between the ABM and the ODE model, all responses are normalized so that numerically 

they range between (0,1).  
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Malfunction in LPS clearance rate  

An acute pro-inflammatory cytokine “burst” results from intravenous administration of 

high concentration of LPS into the system of healthy subjects. The subsequent effect is 

associated with the host’s inability to resolve the inflammatory reaction followed by the 

persistent infectious challenge (unsuccessful clearance of endotoxin) (Xing, Jordana et al. 

1994; Zhou, Lin et al. 1994). Accordingly, the prolonged exposure of the system to 

bacterial infection leads to a significant down-regulation of the endotoxin signaling 

receptor which further accounts for a slower decay rate causing a dysregulation in the 

phagocytic capabilities of macrophages (Nomura, Akashi et al. 2000).  

The relevant agent rule that captured such scenario was the “sensitivity” parameter of 

the endotoxin signaling receptors. As these receptors become saturated during the 

presence of high amounts of endotoxin, the sensitivity parameter decreases which thereby 

influences the probability of LPS receptors to be occupied with LPS molecules. During 

an overwhelming endotoxin challenge, the LPS receptors eventually lose their capability 

to form additional complexes with LPS, and therefore the LPS agents remain in the 

system. Although decreased degradation of LPS is not associated with a distinct, well-

defined, clinical condition, it is possible that this phenomenon may exist. It is known that 

triglyceride-rich lipoproteins bind to LPS and that these complexes are cleared by binding 

to lipoprotein receptors (Du, Poltorak et al. 1999). Furthermore, these receptors are 

abundant in the liver where ~70% of lipoproteins are cleared from the circulation. Such 

malfunction in LPS clearance rate was simulated in Figure 5.25.  
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Figure 5.25: Temporal responses in a persistent infectious inflammatory response. Solid lines correspond 

to LPS(t = 0hr) = 1000 which accounts for a prolonged inflammatory activity causing a malfunction in LPS 

clearance rate. Dashed lines refer to equation-based model predictions for the case of a persistent infectious 

challenge which can be achieved by manipulating the first order degradation rate of LPS as discussed in the 

deterministic approach (Section 5.3). The output of both modeling approaches is normalized so that 

numerically it ranges between (0,1).  
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Similar to the progression of the increased insult scenario as shown in Figure 5.24, 

the progression of a persistent infectious response (Figure 5.25) was simulated due to the 

activation of the feedforward loop regarding the activation of IKK which drives 

downstream an aberrant transcriptional activity of NF-kB and thereby affecting the 

transcriptional rate of the critical pro-inflammatory mediators, i.e. TNF-a. The secretion 

of TNF-a further amplified the activity of NF-kB through the critical IKK node (Sakurai, 

Suzuki et al. 2003). These interactions perturb the dynamics associated with the energetic 

state of the system. Furthermore, we speculated that a switch-like rule related to the 

energetic state of the cell can be responsible for the disturbance of the homeostatic 

production of anti-inflammatory mediators. Such rule has been implemented in the ABM 

framework in that when the energetic state is below 25% of its original value the 

production of the anti-inflammatory mediators should increase. 

Endotoxin hypo-responsiveness  

The pre-exposure of the host to controlled levels of inflammatory agents affects the 

eventual fate of the response. It has been observed that repeated doses of endotoxin insult 

might lead to a less vigorous innate immune response (Fitting, Dhawan et al. 2004). Such 

an effect can reverse the lethal outcome of a high dose of the inflammatory stimulus. That 

is to say, in spite of the potent efficacy of LPS, if the system is pre-exposed to lower sub– 

lethal doses of LPS then this induces an acquired state of resistance to a subsequent 

endotoxin challenge (Cook 1998). This phenomenon, known as endotoxin hypo-

responsiveness is a multifactorial problem that can be associated with decreased TLR 

signaling by proteins that negatively regulate LPS-induced inflammatory responses 

(Cook, Pisetsky et al. 2004).  
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From a modeling standpoint, small dose of LPS is administered 8 hours prior to the 

main endotoxin insult. Such perturbation modulates the dynamic profiles of both pro-

inflammatory and anti-inflammatory mediators as well as the energetic state of the 

macrophage populations towards resolution within 24 hours. The endotoxin 

hyporesponsiveness was simulated in Figure 5.26 where pre-existing infection caused a 

profound reduction in cells’ capacity to respond to the main (high) endotoxin challenge. 

There were no agent rules that specified the time interval between the injections that 

would yield the emergent attenuated response. From a biological standpoint the prior 

inflammatory insult desensitizes the endotoxin signaling receptors in a manner that these 

receptors become less sensitive to the subsequent infectious challenge and therefore the 

cells have enough time to mitigate the endotoxin challenge and resolve the inflammatory 

reaction. 
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Figure 5.26: Endotoxin tolerance scenario. Pre-existing infection might cause a profound reduction in 

cell’s capacity (hypo-responsiveness) to respond in the main endotoxin challenge. Solid line: LPS(t = 0hr) 

= 750. Dotted line: LPS(t = 0hr) =100 & LPS(t = 8hr) = 650.  
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“Lethal” potentiation 

Endotoxin hypo-responsiveness is associated with an emergent acquired dynamic state of 

the system that modulates the response of the system not to respond rigorously to the 

primary endotoxin challenge. On the other hand, the successive administration of 

sublethal doses of endotoxin can potentiate the system in that, because of the lack of an 

acquired state in the dynamics of the system, such an insult may dysregulate the host 

response dynamics leading to an exacerbated inflammation that cannot resolve. Thus, 

based on our agent-based model we further explore the behavior of the system when it is 

either pre-exposed to lower levels of endotoxin for “adequate” time as well as when the 

system has not manifested its “dynamic memory” to tolerate the second endotoxin 

challenge (Murai, Nakagawa et al. 1996).  

In particular, we simulate such a case administering at t = 0hr low dose of endotoxin 

which is shortly followed within 2hr by another “sub-lethal” insult. From a modeling 

standpoint, this short time interval was characterized by the accumulation of both pro-

inflammatory (P) and anti-inflammatory (A) mediators. The response was exaggerated 

under conditions of the second endotoxin stimulation due to the priming of various 

inflammation-specific intracellular signaling molecules which further propagated the 

inflammatory reaction to nearby cells/agents. The effect of this lethal potentiation 

scenario was demonstrated in Figure 5.27.  Additionally, if the second dosage was 

administered when the inflammatory mediators are diminishing, then the effect is less 

prominent due to both the lack of cytokines and the receptor desensitization which occurs 

due to pre-existing infection.  
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Figure 5.27: Lethal potentiation. Successive administration of small doses of endotoxin can lead to an 

unresolved inflammatory response. Solid line: LPS(t = 0hr) = 350. Dotted line: LPS(t = 0hr) = 100 & LPS(t 

= 2hr) = 250.  
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Modulation in the dynamics of NF-kB signaling module 

Another mode of perturbation of the underlying dynamics of the probed system was 

related to the presence of a “prior” insult that coupled with the LPS stimulus. It accounted 

for an increased production of pro-inflammatory mediators as shown in Figure 5.28(left 

panel). Such a sustained pro-inflammatory signaling was possible to deregulate the NF-

kB signaling module and led to a persistent NF-kB activity (Yamakawa, Eguchi et al. 

1999). The elevated NF-kB activity implied that the nuclear concentration of NF-kB 

cannot be further constrained by its primary inhibitor, IkBa and eventually settled to a 

steady state far away from their equilibrium (homeostasis). We simulated this scenario by 

pre-conditioning the system with low-dose of TNF-a. Since TNF-a is a potent 

inflammatory instigator that stimulates IKK activity it can perturb the behavior of the 

system towards an unbalanced immune response. Clinically, such an increased rate in the 

production of pro-inflammatory mediators might be the outcome of a surgical trauma 

followed by bacterial infection, a so called two hit scenario (Romascin, Foster et al. 

1998).  

We have demonstrated the ability of our model to simulate the trajectory of an 

unconstrained inflammatory response. Further, the potential of the proposed model was 

also demonstrated through its capability to respond to an intervention strategy that 

intended to modulate the dynamics in favor of a balanced immune response. In Figure 

5.28(right panel) the effectiveness of a molecule that inhibited IKK activity (IKK-

inhibitor) was simulated. From a biological standpoint, these molecules diffuse into the 

cytoplasm and bind to IKK triggering its deactivation. This process directly competed 

with the activation of the NF-kB complex through IKK and therefore attenuation in the 



130 

 

pro-inflammatory response was observed. As such, despite the implications of high LPS 

concentration, the dynamics were reversed towards homeostasis. Qualitatively, this result 

agreed with experimental data that documented the potential of IKK inhibitors in treating 

inflammatory disorders (MacMaster, Dambach et al. 2003).  

 

 

 

 

 

 

Figure 5.28: (left) Pre-existence of inflammatory mediators (TNF-a) may enhance abnormally the intracellular 

signaling amplifying IKK activity. Such response leads to an aberrant inflammatory response which cannot be 

counter-regulated by the anti-inflammatory arms of the system. Such a mode of dysregulation is simulated by 

concomitant exposure of the system to TNF-a and bacterial infection (LPS): LPS(t = 0hr) =350 & TNF-a(t = 0hr) 

=300; (right) Exploring the effect of an intervention (anti-inflammatory) strategy that inhibits IKK activity. Such 

scenario is simulated by administering LPS(t = 0hr) = 750 and IKK inhibitors, IKK inhibitors (t = 0hr) = 400 

(dashed lines).  
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The proposed ABM model exhibited a bistable behavior which implied the co-

existence of two steady states. Physiologically, such dynamics would reflect either a 

successful inflammatory resolution or the progression of a systemic inflammatory 

response syndrome. Such bistability is an essential characteristic of the non-linear 

dynamics of inflammation as suggested from various animal studies [36]. In an attempt to 

simulate the bistable behavior, a “switch” in the agent rules was employed. A switch was 

defined as a conditional procedure under which the output could diverge into different 

states based on a current set of inputs. In our simulation the switch was the production 

rate of TNF-a with regard to the energetic state of the macrophage. As the current energy 

value become lower than a certain threshold, the production of TNF-a via the 

transcription factor NF-kB was amplified, activating the switch. The rationale behind this 

rule was predicated upon the hypothesis that the activation of NF-kB, followed by the 

production of (P) response ultimately decrease the expression of genes that are involved 

in bio-energetic cellular processes (Protti and Singer 2007). On the other hand the 

number of anti-inflammatory (A) molecules raised the energy level and drove the cells to 

the “healthy” state, deactivating the switch. Many switch-like phenomena have been 

observed in biological systems (Ramakrishnan and Bhalla 2008).  

In summary, an agent based modeling framework is proposed as an alternative 

modeling approach to study the complex, non-linear dynamics of acute human 

inflammation. Agent based models offer a promising approach in that they can express 

the dynamics through intuitive multiple interactions between the agents over time. A well 

known feature of ABMs is their ability to generate surprisingly complex and emergent 

behavior from very simple rules. Although they are abstract and have their own 
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limitations (i.e. computationally intensive, difficult to be quantitatively calibrated), 

ABMs facilitate the translation from the results of basic science experiments into agent 

rules that allow for heterogeneous responses based on local conditions. We therefore 

proposed an agent based model that couples critical aspects of the host response to 

endotoxin. Predicated upon our prior research effort where a deterministic approach has 

been taken to couple extracellular signals and intricate signaling cascades with the 

transcriptional response level, the work discussed in this study explored the potential of 

an agent based modeling approach to improve our understanding of how a system gives 

rise to a response through its interacting molecules (or cells). The recognition that both 

approaches (EBM and ABM) have their advantages and limitations has placed emphasis 

on cross-platform validation where some processes are simulated discretely while other 

processes are handled in a continuous simulation (Kiehl, Mattheyses et al. 2004). It is 

important to realize that such multi-modal approaches are complementary and ideally 

both would be used to provide a mathematical characterization of a complex dynamical 

system. 
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5.6 Appendix to the agent-based model of acute human inflammation  

Table 5.3: List of agent-based rules 

Agents Agent rules 
Macrophages Produce 1 unit of IKK every 5 ticks 
 Move towards the direction that has the highest LPS count within 5 + cell radius 
 Bind free LPS molecules with unoccupied receptors 
IKK Activated by the formed TNF-TNFR complex 
 70% chance to bind to inactive NF-kB 
 Dissociate from the complex after 10 ticks 
 Stimulates Nf- kB, IkBa is ubiquitinated  
 Deactivated by activated IkBa as a result of the transcriptional activity of NF-kB 
 Degrades after a random of 1 to 799 ticks 
NF-kB If activated and translocates to the nucleus, asks the macrophage to produce 1 IkBa every 10 

ticks, 1 unit of IL-12 with 80% chance and 1 unit of TNF-a 
IkBa If activated, seek out activated NF-kB within radius of 1 
 Bind to any activated NF-kB, form a complex  and both members of the complex become 

inactivated 
Receptors TLR4 (LPS receptors) become activated when bind to LPS molecules. If activated, then 

produce 1 unit of TNF-a every 100 clicks 
 IL-4 and IL-12 receptors receive their respective targets (receptors) 
IL-4 In the presence of free IL-12, 3 units of IL-4 are produced by 86% for every 1 to 5 clicks 
 Bind to IL-4 receptors on Th-0 cells or macrophages. On macrophages, the binding rate 

increases the energetic level of the macrophage by 1 
IL-12 Produced by macrophages and Th-1 cells  
 Bind to IL-12 receptors on Th-0 directing the differentiation towards either Th-1 orTh-2 
Th cells Th-0 cells count the unit of interleukins on its surface receptors. Once the number of 

interleukins reaches 25, then differentiate into either Th-1 or Th-2. If more IL-12 molecules 
are present than IL-4, then become Th-1. Otherwise, it becomes a Th-2 type 

LPS Frequency of movement: 800 times more frequent than other cellular agents 
 Collides with LPS receptors on the surface of macrophages 
 Activates the receptor while the “sensitivity value” decreases by 1 
 A successful binding occurs if a random value between 1 and the maximum value of 

sensitivity (which equals to 5) is less than the current sensitivity 
 Activated endotoxin receptors produce 1 unit of TNF-a 
 If binds to its receptor, then degrade 1 to 2 ticks 
TNF-a Start with 600 ticks  
 Binds to TNFR on the surface of macrophages 
 Amplifies intracellular IKK activity  
 If it binds to a receptor, then degrade in 50 clicks or in 200 clicks if there is nearby bound IL-

4. Degrades by 1 click naturally 
Movement 
restrictions 

Intracellular molecules i.e. NF-kB, IkBa, IKK are confined inside the agents of the plasma 
membrane. Only activated NF-kB and IkBa can enter the nucleus. Before these agents 
perform any rule based movement, a check is made whether they are facing the membrane, 
other molecules or the nucleus. If the destination is inaccessible, then they will face another 
direction until the next move is achieved. Their positions are further updated as the 
macrophage moves 

 Extracellular molecules cannot enter the nucleus have similar restrictions with the plasma 
membrane agents 
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5.6.1. List of agents 

Cell types Macrophage, Th-0, Th-1, Th-2 
Stimulus, mediator LPS, IL-12, IL-4, TNF-a 
Receptors TLR4, IL-12R, IL-4R, TNFR 
Intracellular signaling molecules IKK, NF-kB, IkBa 

Cellular component Plasma membrane, nucleus 

 



135 

 

Chapter 6  

Multiscale Models of Human Endotoxemia 

Severe injury and infection are associated with autonomic dysfunction. The realization 

that a dysregulation in autonomic function may predispose a host to excessive 

inflammatory processes has renewed interest in understanding the role of central nervous 

system (CNS) in modulating systemic inflammatory processes. Assessment of heart rate 

variability (HRV) has been used to evaluate systemic abnormalities and as a predictor of 

the severity of illness. Dissecting the relevance of neuro-immunomodulation in 

controlling inflammatory processes requires an understanding of the multiscale interplay 

between CNS and the immune response. A vital enabler in that respect is the 

development of a systems-based approach that integrates data across multiple scales, and 

models the emerging host response as the outcome of interactions of critical modules. 

Based on our prior work as discussed in the previous chapters, a cellular level 

physicochemical host response model is used as template for connecting extracellular 

signals and intracellular signaling cascades eventually leading to the emergent 

transcriptional dynamics (Foteinou, Calvano et al. 2007; Foteinou, Calvano et al. 2009a, 

b). However, one of the simplifying hypotheses made in this model is that the 

immunomodulatory role of hormonal influences, including endogenous cortisol, is not 

explicitly incorporated. It is now well established that the human response to endotoxin 

evokes both leukocyte transcriptional alterations and a neuro-endocrine response 

characteristic of acute injury (Lin and Lowry 1998). Accordingly, a rise in circulating 

endocrine hormones is manifested 2-4 hrs following endotoxin administration (Lowry 



136 

 

2005). Driven by the premise that a characteristically enhanced endocrine hormone 

profile is elicited during the early-phase response to endotoxin injury, essential modules 

associated with the bi-directional communication between the immune response and the 

neuro-endocrine axis (HPA, SNS) are considered. Moreover, diminished heart rate 

variability in association with a hyperdynamic state, as a component of autonomic 

dysfunction, is induced by low-dose endotoxin to human subjects (Alvarez, Katsamanis 

Karavidas et al. 2007; Jan, Coyle et al. 2009). Thus, the acute systemic inflammatory 

condition mediated by endotoxin administration in healthy volunteers elicits a complex 

network of multiscale interactions between the immune and the central nervous system 

(CNS) which is essential for maintaining homeostasis.  

In this chapter, multiscale models of human endotoxemia are developed that integrate 

regulatory processes across the host from the cellular to the systemic level. Of particular 

relevance of this chapter are human data associated with plasma concentrations of neuro-

endocrine hormones including cortisol and catecholamines. Further, clinical 

measurements of heart rate and parameters of heart rate variability are also incorporated 

to assess cardiovascular abnormalities and systemic decomplexification manifested as 

very early diminution in parameters of HRV and/or increased heart rate (HR). It is 

therefore the goal of this research to demonstrate the feasibility of a relevant human 

inflammation model that bridges the initiating signal and phenotypic expressions (HR, 

HRV) through semi-mechanistic based host response models that include transcriptional 

dynamics, signaling cascades and hormonal components that should not be viewed as 

distinct functional domains. Such a modeling approach could potentially provide 
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invaluable insights into how disruption within these compartments contributes to 

morbidity and mortality in severely stressed patients.  

6.1 Modeling neuro-endocrine immune system interactions 

The primary stress response pathway by which the CNS regulates the immune system is 

the hypothalamic-pituitary adrenal axis (HPA) through the production of glucocorticoids 

(cortisol in primates; corticosterone in most rodents). The HPA, as one of the peripheral 

limbs of the stress system, responds to the pro-inflammatory cytokines produced by 

immune-mediated inflammatory reactions by releasing cortisol that inhibits pro-

inflammatory cytokine expression (Chrousos 1995; Webster, Tonelli et al. 2002). In order 

to mathematically describe the dynamics of cortisol, a joint PK model (Mager, Lin et al. 

2003) is employed as shown in the following equations (6.1) - (6.3). 

( )
exF in,F in,F F,P out,F

dF w R K 1 H K F
dt

= ⋅ + ⋅ + − ⋅  (6.1)

,PF F,PH k P= ⋅  (6.2)

exF

exogenous hormone
elsewhere

1,
w

0,
⎧

= ⎨
⎩

 (6.3)

Total plasma cortisol concentrations are defined as the additive effect between 

endogenous and exogenous cortisol. Upon inflammatory stimulation, the rate of change 

of total cortisol concentration (F), Eq. (6.1), is described by a zero order production rate 

(Kin,F) stimulated by the pro-inflammatory response (P), through the activation function 

(HF,P), Eq. (6.2) and a 1st order elimination rate constant (Kout,,F). Further, the contribution 

of exogenous cortisol upon total cortisol concentrations is assessed through the 

stimulatory parameter (Rin,F) which is active based on the binary variable (wFex).  
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Given a quantification of the cortisol dynamics, equations (5.35) - (5.36), the 

influence of cortisol on the host response to endotoxin can be simulated. However, it 

should be noted that these equations, as outlined in the original analysis (Jin, Almon et al. 

2003), describe receptor/gene-mediated corticosteroid effects based on results from an in 

vivo adrenalectomized model and therefore the baseline value of plasma cortisol is zero. 

However, in our model the baseline value of cortisol (F) equals to one (Note that it 

represents the concentration of cortisol relative to the measured response at t = 0hr) and 

Eq. (5.35) is modified as follows:  

( )F
syn _ R m f re on F dgr _ R F

dR
k R r k FR(N) k F 1 R k R

dt
= ⋅ + ⋅ ⋅ − ⋅ − ⋅ − ⋅  

(6.4)

( )on F T
dFR

k F 1 R k FR
dt

= ⋅ − ⋅ − ⋅  

In the absence of exogenous cortisol (wFex = 0), the active steroid signal, FR(N), is 

normalized so that numerically it ranges between (0,1). Thus, any increase in the 

concentration of the active signal FR(N) will be relative to the trajectory that is elicited 

upon the systemic inflammatory manifestations of human endotoxemia. Regarding the 

immunosuppressive effects of glucocorticoids, antecedent periods of exogenously-

induced hypercortisolemia attenuate circulating levels of pro-inflammatory cytokines 

through an increase in plasma IL-10 concentrations during human endotoxemia (van der 

Poll, Barber et al. 1996). For purposes of this model, it is assumed that cortisol modulates 

the host response to endotoxin primarily via potentiation of IL-10 signaling (A). Such 

anti-inflammatory influence is quantified through the linear stimulatory function, HA,FRN, 

which is discussed below in equation (6.12).  
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Along the same lines, catecholamines such as epinephrine, (EPI), also modulate a 

range of immune functions (Padgett and Glaser 2003). Such hormones are secreted by the 

sympathetic nervous system pathway (SNS) and act via adrenergic receptors on immune 

cells (van der Poll 2000). In addition, there is evidence indicating that the pro-

inflammatory response (P) stimulates central components of the stress system through the 

afferent vagus nerve (Elenkov, Wilder et al. 2000). We will therefore assume that the 

pro-inflammatory response (P) acts as the peripheral immune signal that not only 

stimulates the secretion of cortisol but also the secretion of epinephrine. The afferent 

transit mechanism that describes the propagation of the local pro-inflammatory signal (P) 

to the sympathetic nervous system (SNS) is shown in equations (6.5) – (6.7).  

( )EPI,ex in,EPI in,EPI EPI,P out,EPI
dEPI

w R K 1 H K EPI
dt

= ⋅ + − ⋅⋅ +  (6.5)

EPI,P EPI,PH k P= ⋅  (6.6)

exEPI

exogenous hormone
otherwise

1,
w

0,
⎧

= ⎨
⎩

 (6.7)

The dynamics of epinephrine, Eq. (6.5), are described in the same manner as in Eq. (6.1) 

where total epinephrine concentration is defined as the joint effect between endogenous 

and exogenous hormone. Upon the systemic inflammatory manifestations of human 

endotoxemia, the rate of change of total epinephrine concentration (EPI), Eq. (6.5), is 

described by a zero order production rate (Kin,EPI) stimulated by the pro-inflammatory 

response (P) through the linear function (HEPI,P), Eq. (6.6) and a first order degradation 

rate (Kout,EPI). Further, in the case of exogenous epinephrine, the stimulatory effect of 

such perturbation is simulated via the parameter (Rin,EPI) which becomes activated in the 

presence of exogenous epinephrine controlled by the binary variable (wEPIex). 
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Though pro-inflammatory cytokines stimulate the secretion of epinephrine, the latter 

attenuates the pro-inflammatory manifestations of human endotoxemia as supported by 

reduced TNF levels (van der Poll, Coyle et al. 1996). The anti-inflammatory influence of 

epinephrine is shown to be mediated by β adrenergic stimulation resulting in an increase 

in cAMP intracellular levels followed by potentiation in the production rate of IL-10 

signaling (A) (van der Poll, Coyle et al. 1996; van der Poll 2000). In order to 

mathematically describe such post-receptor effect, a precursor-dependent indirect 

response model (Mager, Wyska et al. 2003) is proposed where the precursor reflects the 

signaling receptor of epinephrine (REPI) as shown in equations (6.8) – (6.11).  

( )EPI EPI EPI

0EPI
R 1,R R ,EPI 2,R EPIEPI

dR
k k 1 H k R

dt
⎡ ⎤= − ⋅ + + ⋅⎣ ⎦  (6.8)

( )EPI EPI1,R R ,EPI EPI 3,EPIR 3,EPIR
dEPIR

1 H R k
dt

k EPIR k= ⋅ + ⋅ − ⋅ −  (6.9)

( )ndcAMP 1
cAMP

dt
(1 EPIR)

τ
= ⋅ + −  (6.10)

EPI EPIR ,EPI RH EPIk= ⋅  (6.11)

The dynamic changes of epinephrine receptor (REPI) depend on an apparent zero-order 

\production rate k0
REPI and k1,REPI, k2,REPI represent first-order rate constants for the loss of 

the receptor, Eq. (6.8). Since the response is triggered as a result of the formation of an 

activating complex associated with the binding of EPI to its receptor, EPIR represents the 

formed signaling complex which decays with a first-order rate k3,EPI, (6.9). Further, the 

stimulatory post-adrenergic effect of sympathetic activity in favoring the production of 

cAMP signaling is described by the principles of a signal transduction model as outlined 

in (Mager and Jusko 2001; Sun and Jusko 1998). In particular, the production and loss of 
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the cAMP signaling depends on first-order rate constants which are equivalent to the 

reciprocal of the transit times (τ) consistent with the transit compartment model while n is 

the shaping (scaling) factor, Eq. (6.10) (Mager, Wyska et al. 2003). Such a scaling factor 

is used to amplify the signal transduction cascade associated with the post-adrenergic 

effect of epinephrine on the host. Regarding the immunosuppressive effect of 

epinephrine, a cAMP-dependent potentiation in IL-10 signaling (A) is quantified in Eq. 

(6.12) through the linear stimulatory function HA,cAMP. In addition to this, we previously 

mentioned that cortisol also increases IL-10 levels. Thus, such steroid-dependent 

immunomodulatory effect is quantified via the stimulatory function HA,FRN. 

( ) ( ) ( )A,cAMP A,Ein,A A,FRN out,A
dA

K 1 H 1 H K A
dt

1 H= ⋅ + ⋅ + − ⋅+ ⋅  (6.12)

A,cAMP A,cAMPH k cAMP= ⋅  

A,E A,EH k E= ⋅  

A,FRN A,FRN FR(N)H k= ⋅  

In addition to the neuro-endocrine response evoked by endotoxin is the evolving concept 

of autonomic dysfunction as assessed by HRV indices. Recent studies imply that 

disordered neuro-endocrine functions are also associated with diminished HRV in 

stressed patients (Lowry and Calvano 2008). In order to quantify systemic abnormalities, 

clinical measurements of HRV will be further incorporated. 

6.2 A model for the assessment of reduced heart rate variability in human 

endotoxemia 

Clinical data associated with HRV measurements (Lowry 2005) establish that the host 

response to endotoxin causes a depression in both cardiac-vagal tone and in overall HRV 
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and are consistent with prior studies (Godin, Fleisher et al. 1996; Rassias, Holzberger et 

al. 2005) indicating diminished physiologic variability as a generalized response to 

human endotoxemia. Several studies have implied the use of HRV as a readily available 

vital sign (Huikuri, Makikallio et al. 1999) in the assessment of critically ill patients with 

the hope of earlier intervention for those patients deemed at higher risk (Morris, Norris et 

al. 2006; Morris, Norris et al. 2007; Norris, Ozdas et al. 2006; Winchell and Hoyt 1997). 

Thus, the prognostic significance of HRV has made it a critical enabler to detect either 

physiologic deterioration or response to therapy (Winchell and Hoyt 1996). 

In order to quantify the effect of acute endotoxin injury on heart rate variability a 

critical question that arises involves the relationship between pro-inflammatory markers 

and autonomic dysfunction. There is considerable human evidence indicating that 

systemic low-grade (pro)inflammatory activity is associated with reduced heart rate 

variability (Aronson, Mittleman et al. 2001; Malave, Taylor et al. 2003; Marsland, 

Gianaros et al. 2007). Assuming a linear relationship between pro-inflammation and 

HRV would imply that any modulations in the peripheral immune response will 

subsequently drive changes in hemodynamic parameters. However, it is important to 

realize that it cannot be taken for granted that factors modifying the magnitude of the 

immune response should affect all circulatory parameters equally (Bendixen, Osgood et 

al. 1964).  

Such non-linearity in the sinus node transduction processes may arise from sensitivity 

of pacemaker discharge to the timing of pulsatile neural activity and from functional in-

homogeneity within the sinus node tissue (Brown and Eccles 1934). In addition to this, 

the concept of non-linearity in cardiovascular variability has been stressed in the 
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hemodynamic parameters of endotoxin-induced systemic inflammation under conditions 

of prior endocrine stress hormone infusion (Alvarez, Katsamanis Karavidas et al. 2007; 

Jan, Coyle et al. 2009). One of the interesting observations was that the anti-

inflammatory influence of endocrine hormones including cortisol and epinephrine does 

not extend to changes in heart rate variability induced by a relatively low dose of the 

inflammatory stimulus (LPS). Thus, reduction in endotoxin-induced pro-inflammation 

does not influence autonomic dysfunction (HRV), at least in a context of self-limited 

systemic inflammatory disease that resolves within 12-24 hours.  

In order to quantify such non-linear interactions, the effect of peripheral pro-

inflammation upon HRV response to endotoxin will be assumed that it can be 

mathematically approximated by employing appropriate sigmoid activation functions as 

outlined in (Berntson, Cacioppo et al. 1991). Although the overall heart rate variability is 

assessed, for instance, by evaluating the standard deviation of normal to normal interbeat 

intervals, the physiological background for such variation involves the activation of 

signal transduction mechanisms in the sinus node of the heart associated with the 

modulation of neuromediator concentrations (Zaza and Lombardi 2001). Thus, we 

introduce the signal Sf as a surrogate for the up-regulation of such transduction processes 

in the heart and the relevant dynamics are described in equations (6.13) - (6.16). 
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( )( )P
P P

df
1 tanh P w f H

dt
= + − − ⋅  (6.13)

S

P
f

fP
S

ndS 1 H f Sdt
⎛ ⎞

⋅⎜ ⎟
⎝ ⎠

= ⋅ −τ  (6.14)

( )in,HRV out,HRV HRV,S f
dHRV

K K 1 k S HRV
dt

= − ⋅ + ⋅ ⋅  (6.15)

PH tanh P 1
φ

φ
= −⎛ ⎞

⎜ ⎟
⎝ ⎠

 (6.16)

The possible non-linear modulatory effect of pro-inflammation (P) upon HRV is 

described by the dynamics of fP, Eq. (6.13), where the switch-like behavior is determined 

by the sigmoid function (tanh(P-w)) and w is a parameter greater than the pro-

inflammatory response (P) elicited upon endotoxin-induced inflammation. This non-

linear gain modulatory function should be active under conditions of an inflammatory 

response and inactive when the system lies in its homeostasis. We therefore model such 

event based on the function, HP, Eq. (6.16), where φ is an M-big number and HP takes 

values zero, when pro-inflammation (P) lies in its baseline (homeostasis) and one 

otherwise. The underlying rationale for this function is predicated upon a neuro-

computational model (Gutkin, Dehaene et al. 2006) which aims at simulating the firing 

rate of neuronal activity. In our model, fP could therefore reflect the activation of efferent 

nerve activity on the heart eventually leading to the up-regulation of intracellular 

mediators, (Sf). The loss and production of such mediators, Eq. (6.14) is thereby 

described by the principles of time-dependent transduction systems (Mager, Wyska et al. 

2003) depending on first-order rate constants which are equivalent to the reciprocal of the 

transit times (τS) and nS is the shaping (scaling) factor, Eq. (6.14). The dynamics of HRV, 
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(6.15) are described by a zero order production rate (Kin,HRV) and a first order degradation 

rate (Kout,HRV) which is stimulated by the effector biological signal (Sf). Taken together, 

the integrated module that describes critical aspects of the neuro-endocrine immune 

system interactions is presented in equations (6.17) – (6.19).  

( )

( )

( )

F in,F in,F F,P out,Fex

syn _ Rm deg
50 _ Rm

F Rsyn _ R m f re on F dgr _ R F

on F T

T re

dF w R K 1 k P K F
dt
dR FR(N)m k 1 k Rmdt IC FR(N)

dRCortisol signaling k R r k FR(N) k F 1 k R
dt

dFR k F 1 R k FR
dt

dFR(N) k FR k FR(
dt

⋅

= ⋅ + ⋅ + ⋅ − ⋅

⎛ ⎞
= ⋅ − − ⋅⎜ ⎟⎜ ⎟+⎝ ⎠

= + ⋅ ⋅ − ⋅ − ⋅ − ⋅

= ⋅ − ⋅ − ⋅

= ⋅ − ⋅ N)

⎧
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

 (6.17)

( )

( )
( )

in,EPI in,EPI EPI,P out,EPI
EPI,ex

0

R 1,R R ,EPI 2,R EPIEPI EPI EPI EPI

1,R R ,EPI EPI 3,EPIR 3,EPIREPI EPI

dEPI w R K 1 k P K EPI
dt

dREPI k k 1 k EPI k R
dtEpinephrine signaling

dEPIR k 1 k EPI R k EPIR k
dt

dcAMP 1 1
dt

= ⋅ + ⋅ + ⋅ − ⋅

⎡ ⎤= − ⋅ + ⋅ + ⋅⎣ ⎦

= ⋅ + ⋅ ⋅ − ⋅ −

= ⋅ +
τ

( )
n

EPIR cAMP

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪

⎛ ⎞⎪ −⎜ ⎟⎪ ⎝ ⎠⎩
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( )( )

( )

P
P P

Sf
fP P

S

in,HRV out,HRV HRV,S f

i, j i, j i, ex

df 1 tanh P w f H
dt

n
dS 1Systemic (HRV) dynamics H f S
dt

dHRV K K 1 k S HRV
dt

1, exogenous hormone F,cortisol
H k J, w , i=

0, elsewhere EPI,epinephri

⎧ = + − − ⋅⎪
⎪

⎛ ⎞⎪⎪ ⎜ ⎟= ⋅ ⋅ −⎨ ⎜ ⎟τ ⎜ ⎟⎪ ⎝ ⎠⎪
⎪ = − ⋅ + ⋅ ⋅⎪⎩

⎧
= ⋅ = ⎨

⎩
P, H tanh P 1

ne

φ
φ⎧ ⎛ ⎞= −⎨ ⎜ ⎟

⎝ ⎠⎩

(6.19)
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While the model of equations (5.31) - (5.36) aims to describe the key determinants of the 

cellular response to endotoxin, the elements that constitute the module in equations (6.17) 

– (6.19) intend to connect the (cellular) inflammatory response with neural based 

pathways (HPA, SNS) while systemic disruptions are assessed by physiologic variables 

such as HRV.  

Data used in this model linking extracellular signals with hormonal and physiological 

components include plasma concentration of counter-regulatory hormones such as 

cortisol and epinephrine (Alvarez, Katsamanis Karavidas et al. 2007; Barber, Coyle et al. 

1993). Specifically, cortisol levels were measured at 0, .5, 1, 1.5, 2, 3, 4, 6, and 24 h in 

relation to endotoxin administration (Alvarez, Katsamanis Karavidas et al. 2007) while 

the study period for epinephrine levels was 0, 2, 4 and 6h after endotoxin administration 

(Barber, Coyle et al. 1993). Further, human volunteers were injected with the same 

amount of LPS while vital signs, including heart rate variability indices were recorded 

(Alvarez, Katsamanis Karavidas et al. 2007). There are two basic approaches to 

quantifying heart rate variability , namely time-domain methods and frequency-domain 

(spectral) analyses (Berntson, Bigger et al. 1997).  

In time-domain analysis, the heart rate at any time is determined from the time 

interval between successive respiration peaks in the QRS complexes (resulting from sinus 

node depolarization) of ECG (RR intervals). From the distribution of RR intervals, 

statistical measures of variance such as standard deviation of the time interval between 

consecutive respiration peaks and the root-mean square of the difference between 

adjacent RR intervals are determined. The root mean square of the successive beat 

differences is the recommended estimate of short-term variability while the standard 
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deviation of normal interbeat intervals (SDNN) is for assessing longer-term variability 

(Berntson, Bigger et al. 1997). In addition to this, other time-domain measures that 

quantify the physiologic complexity between organ systems include multiscale entropy 

(MSE) (Costa, Goldberger et al. 2002). However, SDNN and MSE both quantify the 

complexity of interactions between organ systems and generate equivalent results when 

predicting mortality in intensive care unit (Norris, Stein et al. 2008).  

Analysis of HRV in the frequency domain requires more complex algorithms but 

provides additional information. Frequency-domain measurements using Fourier analysis 

calculate the power of selected frequencies within a given frequency range (i.e. 

parasympathetic frequency ranges) (Winchell and Hoyt 1996). Thus, spectral methods 

produce a decomposition of total variation of a data series into its frequency components, 

which reflect operation of a particular modulatory reflex. For instance, parasympathetic 

(vagal) function is, oftentimes, assessed using the high frequency HRV while low 

frequency variability is a measure associated with both sympathetic and parasympathetic 

activation (Huikuri, Makikallio et al. 1999).  

Although a wide variety of estimates of heart rate variability have been employed 

including both global descriptive statistics and spectral methods in this study, the time-

domain measure SDNN will be used to assess overall heart rate variability which will 

serve as a surrogate for systemic abnormalities. During the analysis of heart rate 

variability, parameters and inter-beat intervals were collected using ECG data at a rate of 

256 samples/s where each QRS complex (which corresponds to the depolarization of the 

ventricles) was detected and the “normal-to-normal” (NN) intervals were tabulated. HRV 

measurements and plasma cortisol concentrations are employed from (Alvarez, 
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Katsamanis Karavidas et al. 2007) while epinephrine concentrations are also assessed 

under the systemic inflammatory manifestations of human endotoxemia (Barber, Coyle et 

al. 1993). The data have been appropriately de-identified and appropriate IRB approval 

and informed, written consent were obtained from the volunteers. 

6.2.1 Elements of the multiscale host response model of human inflammation 

We have previously demonstrated that the transcriptional dynamics of human leukocytes 

exposed to bacterial endotoxin can be decomposed into to three elementary 

comprehensive responses (Foteinou, Calvano et al. 2007). These elementary responses 

capture the functional dynamics and were shown to be related to pro-inflammatory (P), 

anti-inflammatory (A) and energetic (E) transcriptional events associated with the overall 

host response. The response is triggered by the activation of the NF-kB signaling module 

as a result of the formation of an activating signal associated with the binding of LPS to 

appropriate receptors (R). In order to introduce higher level biological information we 

further incorporate critical aspects of the neuro-endocrine immune crosstalk. A schematic 

illustration of the network architecture that constitutes the multi-level host response 

model is presented in Figure 6.1.  
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Figure 6.1: Basic topological interactions composing the multi-level model of endotoxin induced human 

inflammation. At the cellular level, interacting components involve the propagation of LPS signaling on the 

transcriptional response level (P, A, E) through the activation of endotoxin signaling receptor (R) and 

elementary signaling pathways (NF-kB signaling module). At the level of circulating hormones, essential 

modules are associated with the release of endocrine stress hormones from neuroendocrine axis (HPA, 

SNS) coupled with their anti-inflammatory influence on the host. The dynamics of cortisol and epinephrine 

signaling involve components interacting at the cellular level. At the systemic level, physiologic 

deterioration of the host is quantified by HRV.  
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At the cellular level (Figure 6.1) interacting components are associated with 

elementary signaling pathways that propagate extracellular signals to the emergent 

transcriptional response level. Essential modules associated with the release of endocrine 

stress hormones coupled with their immunosuppressive effects are also considered. Such 

hormones are integral parts of the bi-directional communication pathway between 

peripheral inflammation (cellular level) and the neuro-endocrine axis (HPA, SNS) and 

interact with appropriate receptors potentiating the production rate of anti-inflammatory 

cytokines (A). Finally, clinical measurements, at the systemic level, of HRV are 

incorporated to assess systemic decomplexification manifested by deterioration in the 

physiologic status of the host. 

6.2.2 Estimation of relevant model parameters 

Standard parameter estimation techniques are applied in order to evaluate appropriate 

model parameters associated with the neuro-endocrine immune system interactions 

(Contreras and Ryan 2000). In particular, we estimate those model parameters that are 

involved in the dynamics of epinephrine (EPI), cortisol (F), anti-inflammation (A) and 

heart rate response (HRV). The relative experimental data are normalized by taking the 

ratio of the measured response at each time point of the study period with respect to the 

control time point (t = 0 hr). Further, parameter estimation is performed to estimate the 

parameter (Rin,F) under conditions of hydrocortisone infusion (exogenous cortisol) 

reproducing human plasma cortisol levels in subjects pre-exposed 6h prior to LPS and 

continued for another 6h after the endotoxin injection. All the other parameters associated 

with the propagation of LPS signaling on the transcriptional response level are 

maintained to agree with those presented in (Foteinou, Calvano et al. 2009b) and are 
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shown in Table 5.1 (see Appendix 5.4) while parameters relevant to the neuro-endocrine 

immune system interactions are estimated and presented in Table 6.1 (see Appendix 6.4). 

The performance of the multi-level human inflammation model is shown in Figure 6.2.  

 

Figure 6.2: Basic topological interactions composing the multi-level model of endotoxin induced human 

inflammation. At the cellular level, interacting components involve the propagation of LPS signaling on the 

transcriptional response level (P, A, E) through the activation of endotoxin signaling receptor (R) and 

elementary signaling pathways (NF-kB signaling module). At the level of circulating hormones, essential 

modules are associated with the release of endocrine stress hormones from neuroendocrine axis (HPA, 

SNS) coupled with their anti-inflammatory influence on the host. The dynamics of cortisol and epinephrine 

signaling involve components interacting at the cellular level. At the systemic level, physiologic 

deterioration of the host is quantified by HRV.  
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In our computational model the host restores homeostasis without any external 

perturbation. A self-limited inflammatory response to the endotoxin stimulus corresponds 

to resolved dynamic profiles for all the elements that constitute our model. In essence, a 

self-limited inflammatory response involves the successful elimination of the 

inflammatory stimulus within the first 2hr post-endotoxin administration while followed 

by a subsequent resolution within 24hr. Though, the kinetic parameters associated with 

the epinephrine-receptor interactions are not calibrated, the dynamic profile of β-

adrenergic receptor (REPI) lies in qualitative agreement with the basis of receptor 

occupancy theory (Mager and Jusko 2001) in that the concentration of free adrenergic 

receptors decreases in the presence of the ligand (EPI). Regarding the gain modulatory 

effect of peripheral pro-inflammation in the heart (fP), such an exponential decrease 

would biologically reflect the decay rate of cardiac neuronal activity (Lameris, de Zeeuw 

et al. 2002) which is eventually “translated” to the up-regulation of neuro-mediator 

concentrations (Sf) in the heart. Further, the reconstruction of plasma cortisol levels under 

conditions of either prior cortisol infusion or LPS only are shown in Figure 6.3. While 

comparing the top and bottom panel of Figure 6.3, both plasma cortisol levels (F) and the 

steroid active signal, FR(N) are expected to be greater under conditions of exogenously-

induced hypercortisolemia (bottom panel, wFex = 1) relative to the baseline cortisol 

profiles (top panel, wFex = 0). 
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Figure 6.3: Estimation of relevant model parameters intending to reproduce available experimental data 

associated with transcriptional signatures (A) and plasma counter-regulatory hormones including 

epinephrine (EPI) and cortisol (F) as well as clinical data (HRV). Solid lines (⎯) correspond to model 

predictions under conditions of low-dose endotoxin while the symbols (•) refer to experimental data 

expressed as mean ± SEM. The initial condition of endotoxin (LPS(t = 0h) =1) refers to LPS concentration 

relative to 2-ng/kg body weight. 
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6.2.3 Qualitative assessment of the model 

Building a mathematical model that can predict relevant biological implications to the 

host response to endotoxin allows us to identify ways of both controlling and modulating 

such a complex phenomenon. In the following we will demonstrate the ability of our 

model to enable such “predictions” and provide further evidence of the appropriateness of 

the assumptions invoked in the development of the model. First, we explore the 

implications of increasing levels of initial insult (LPS) since this would probably 

constitute the most obvious disturbance. Then we explore possible reversibility in the 

dynamics of the host in response to an acute endocrine hormone stress infusion (cortisol, 

epinephrine excess). Finally, the implications of acute stress hormone infusion upon the 

systemic inflammatory manifestations of human endotoxemia will be evaluated. We opt 

therefore to validate the correctness of the proposed model by assessing the implications 

of anti-inflammatory treatment strategies that are active under conditions of either high or 

low infectious challenge. 

Implications of increased insult  

An increase in the dose of the inflammatory stimulus can be responsible for an 

overwhelming inflammatory response. Such situation in which the initial levels of 

endotoxin are increased is simulated in Figure 6.4. This response can be equated with an 

exacerbated inflammatory state in the early phase of severe injury, which in our model is 

simulated as high concentration of the initial stimulus (LPS), i.e. four times greater than 

the nominal which corresponds to 8ng/kg, (Note: maximum dose of LPS is administered 

safely to humans is 4ng/kg (Andreasen, Krabbe et al. 2008)), which deregulates the host 

defense intrinsic dynamics towards a cytokine “burst”.  
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Figure 6.4: Simulation of an unresolved inflammatory response due to high endotoxin concentration 

(LPS(t = 0h) =4). Such high concentration of LPS (four times greater than the nominal value) deregulates 

the NF-kB signaling module giving rise to an unconstrained immune response followed by abnormal 

hormonal responses that macroscopically are translated into diminished physiologic variability.  

 

As shown in Figure 6.4 the cytokine “burst” is further accompanied by the 

uncontrolled secretion of endocrine hormones that are not adequate to balance (control) 

the overall immune response even after the circulating levels of LPS have been cleared. 

Phenotypically, such physiologic deterioration is expressed as diminished heart rate 
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variability that does not return to baseline within 24hr (solid lines) as was seen in Figure 

6.3 where a lower dose of LPS was simulated compared with experimental data. Such 

computational results implicate the role of the host rather than the inflammatory stimulus 

itself, which is eventually cleared from the system, accounting for the progression of an 

unconstrained inflammatory response. Qualitatively, this amplification of the host 

immune response (trajectories of inflammatory relevant components do not return to 

baseline-homeostasis) without present infection represents clinically stressed patients 

without documented infection (Reyes, Brimioulle et al. 1999). 

Evaluation of stress hormone infusion in modulating the inflammatory response  

Since we have demonstrated the ability of our model to simulate the trajectory of an 

unconstrained inflammatory response, the potential of the proposed model is also 

demonstrated through its capability to respond to systematic perturbations that modulate 

the dynamics in favor of a balanced immune response coupled with a restoration in 

autonomic balance. Considerable attention has been given to the effectiveness of 

pharmacological agents such as ligands of adrenergic receptors in influencing the 

production rate of both pro- and anti-inflammatory cytokines (Hasko, Elenkov et al. 

1995; Ignatowski and Spengler 1995). In particular, significant modulations in the 

cytokine network was observed in human subjects exposed to epinephrine infusion (van 

der Poll, Coyle et al. 1996) underscoring the role of neuro-endocrine activity in 

dampening excessive pro-inflammatory effects. In particular, we opt to simulate the 

mode of an intervention strategy that mimics the activity of sympathetic nervous system 

pathway. Such intervention strategy results in potentiation of the total plasma 
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concentration of epinephrine (EPI) which further increases the intracellular cAMP 

signaling (dashed lines) Figure 6.5.  

 

 

Figure 6.5: Simulating the effect of acute epinephrine infusion (wEPI,ex = 1), which is initiated 3h prior to 

the main endotoxin challenge (LPS(t=0h)=4) and continued for 6hr after LPS (Rin,EPI = 15), under 

conditions of severe inflammation. Dashed and solid lines represent the progression of a balanced (due to 

system’s pre-exposure into epinephrine infusion) and unconstrained inflammatory response (due to high 

inflammatory challenge, LPS(t = 0h) = 4) respectively. Acute pre-exposure of the host to epinephrine 

attenuates the aberrant pro-inflammatory response (P) induced by high LPS concentration which allows for 

recovery in HRV dynamics (restoration in autonomic balance).  
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Based on the anti-inflammatory effect of acute EPI infusion via cAMP dependent 

mechanism, it is expected an increase in intracellular cAMP levels (Figure 6.5) to 

attenuate the pro-inflammatory response (P) followed by a subsequent restoration in 

autonomic activity (HRV) which serves as a proxy indicator of improved survival (Stein 

and Kleiger 1999). Thus, the acute pre-exposure of the host to epinephrine attenuates the 

pro-inflammatory response (P) which allows for recovery of HRV dynamics. Such 

improvement in autonomic activity underscores the role of epinephrine in improving 

cardiac index under severe conditions (i.e. low-output septic shock) as supported by 

Court et al (Court, Kumar et al. 2002). 

Further the central nervous system controls inflammation through the activation of 

HPA axis by releasing cortisol. Prior studies evaluating human responses within the 

context of antecedent stress hormone excess have shown that glucocorticoid excess, as 

produced by hydrocortisone injection (Lin, Calvano et al. 1999) or 6-hr infusion before 

LPS challenge abrogates several features of human endotoxemia (Barber, Coyle et al. 

1993). In an effort to assess the impact of such hypercortisolemia as a potential 

endogenous in vivo anti-inflammatory mechanism, hydrocortisone infusion is initiated 

6hr before the administration of high LPS concentration, Figure 6.6. Note that in our 

model, high LPS dose which is simulated by simply varying the concentration of LPS at 

time zero, serves as one putative mode of dysregulation in the host defense intrinsic 

dynamics giving rise to unremitting inflammation. Prior mathematical models of 

inflammation also simulate severe inflammatory states by varying the initial conditions of 

the inflammatory insult (Chow, Clermont et al. 2005). 
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Figure 6.6: Explore the effect of low-dose steroid administration initiated 6h prior to endotoxin challenge 

(dashed lines) while continued for another 6h after LPS (wFex = 1) under conditions of high LPS 

concentration (solid lines). Solid lines simulate the progression of a systemic inflammatory response 

syndrome (due to high LPS concentration, LPS(t = 0h) = 4) while dashed lines reflect the protective effect 

that can be exerted by hormonal(steroid) replacement therapy. The acute pre-exposure of the host to 

exogenous cortisol dampens the excessive pro-inflammatory effects induced by high LPS concentration 

which allows for restoration in autonomic balance (HRV).  

 

The acute pre-exposure of the host into cortisol, as represented by dashed lines in 

Figure 6.6, attenuates pro-inflammatory responses that mitigate the subsequent amplified 

inflammatory response. Specifically, the initiation of such intervention strategy increases 
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the total concentration of cortisol (F) which subsequently potentiates the active steroid 

signal (FR(N)). Such increase in total cortisol levels potentiates the anti-inflammatory 

arm of the system (A) immediately after the administration of LPS and thereby attenuates 

the pro-inflammatory response (P). Thus, the initiation of such intervention strategy that 

indirectly attenuates the pro-inflammatory signaling (P) via potentiation of the humoral 

anti-inflammatory signaling (A) suffices to reverse the inflammatory dynamics and 

eventually restore autonomic balance. Collectively, such in silico predictions as 

illustrated in Figure 6.5 and Figure 6.6 annotate the impact of dynamic anti-

inflammation on the host evoked by stress hormone background upon the systemic 

inflammatory manifestations of acute illnesses and suggest that the rates of this response 

may be well tuned to yield optimal outcomes.  

Thus, a fundamental assumption of our model is the existence of two steady states 

that depending on the anti-inflammatory “reservoir” of the host can represent either 

“recovery/self-limited” or “uncontrolled/sustained HRV depression”. Qualitatively, such 

equilibria might account for the transient clinical improvement (i.e. “survivors”) noted to 

critically ill patients that respond to a treatment. For example, in the study (Morris, Norris 

et al. 2007) among injured patients there exists a subset of severely stressed patients 

whose clinical condition improved upon treatment with exogenous steroid. However, we 

would like to point out that a direct comparison between our model predictions and 

clinical observations is beyond the scope of the present study. Instead, the overall goal of 

this study is to develop an in silico model of human endotoxemia that would allow us to 

evaluate antecedent stresses upon the systemic inflammatory manifestations of acute 

injury.  
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Although the immunosuppressive effects of corticosteroids upon the systemic 

inflammatory manifestations of human endotoxemia have been well described, the 

influence of this anti-inflammatory intervention on overall autonomic dysfunction is not 

well understood. Predicated upon this, the influence of steroid administration on a self-

limited endotoxin-induced inflammatory response is simulated in Figure 6.7. Although 

measurements of the transcript abundance of cytokines are not available under such 

conditions, soluble inflammatory markers (i.e. TNF-a, IL-8, Il-10) were measured and 

were significantly modulated by prior hydrocortisone treatment. Specifically, antecedent 

cortisol infusion blunts the pro-inflammatory cytokine response to LPS administration 

while enhancing some anti-inflammatory responses as reflected by increased plasma IL-

10 concentrations (Alvarez, Katsamanis Karavidas et al. 2007; van der Poll, Barber et al. 

1996). Predicated upon the hypothesis that cytokine protein expression correlates well 

with gene expression (Prabhakar, Conway et al. 2005), we seek to validate our model 

qualitatively by simulating an enhanced transcriptional anti-inflammatory response (A) 

followed by diminished pro-inflammation (P) under conditions of exogenously-induced 

hypercortisolemia as represented by dashed lines (Figure 6.7). In addition to such 

attenuation in the pro-inflammatory response, antecedent cortisol infusion also induces 

hormonal changes and particularly reduction in plasma epinephrine concentrations. Such 

decrease in endogenous epinephrine secretion under acute hypercortisolemia is simulated 

in Figure 6.7(panel E); thus validating the assumptions invoked in the development of 

the proposed integrated model.  
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Figure 6.7: Explore the effect of exogenously-induced hypercortisolemia on autonomic dysfunction under 

the systemic inflammatory manifestations mediated by low-dose endotoxin. Solid lines simulate the 

progression of a self-limited endotoxin-induced inflammatory response while dashed lines reflect the 

antecedent period of exogenously-induced hypercortisolemia which is initiated 6h prior to LPS 

administration and continued for 6h after endotoxin (wFex = 1). Solid markers and open circles refer to 

experimental data (expressed as mean ± SEM) under conditions of acute endotoxin injury and prior 

hydrocortisone infusion respectively which do not vary across the two experimental conditions (LPS, Cort-

6h+LPS). Such prior cortisol infusion modulates cytokine responses (P, A) and hormonal responses (EPI) 

but there is no change in overall system’s adaptability as assessed by HRV (solid and dashed HRV lines 

overlap). 
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Remarkably, although acute hypercortisolemia significantly attenuated endotoxin-

induced production of pro-inflammatory cytokines, such attenuation in a context of acute 

systemic inflammatory condition mediated by endotoxin administration (Alvarez, 

Katsamanis Karavidas et al. 2007) does not contribute to any alterations in HRV indices. 

From a computational standpoint, such effect is represented as superimposition of the 

solid and dashed lines in the HRV component as shown in Figure 6.7F. 

In addition to the influence of low-dose steroid on endotoxin-induced inflammation, 

recent data document that prior EPI exposure may attenuate the pro-inflammatory 

response but such anti-inflammatory influence does not extend to changes in overall 

system’s adaptability (HRV) (Jan, Coyle et al. 2009). Since increased catecholamine 

secretion accompanies modest infection and the propensity of a dose dependent effect of 

EPI in inhibiting LPS-induced pro-inflammatory response has been documented in (Van 

der Poll and Lowry 1997), we sought to simulate whether antecedent EPI infusion would 

modulate in a dose-dependent manner the cytokine responses to endotoxin, Figure 6.8. In 

particular, increasing doses of acute sterile stress condition modulate the innate immune 

system activation and particularly attenuate the pro-inflammatory response through 

potentiation of the anti-inflammatory effect of cAMP signaling. However, such 

attenuation in the progression of the pro-inflammatory response does not contribute to 

any changes in HRV response as experimentally observed (Jan, Coyle et al. 2009), and 

represented by the superimposition of predicted HRV dynamics in Figure 6.8 which is 

consistent with the aforementioned results with steroid administration before LPS. 
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Figure 6.8: Dose-dependent modulation in the progression of the inflammatory reaction due to short-term 

epinephrine infusion (wEPI,ex = 1), initiated 3h before LPS and continued for 6h after LPS at increasing 

values of the parameter Rin,EPI = 5, 10, 20. Such intervention potentiates, in a dose dependent manner 

(dashed and dotted lines), the secretion of epinephrine from SNS that through cAMP anti-inflammatory 

signaling can protect, in part, the host response attenuating the pro-inflammatory response (P). Such 

attenuation in the pro-inflammatory response relative to endotoxin administration (solid lines) does not 

extend to changes in autonomic balance (HRV) as represented by the superimposition of predicted HRV 

dynamics (solid and dashed lines overlap). Solid markers and open circles refer to relevant experimental 

data (expressed as mean ± SEM) under conditions of low-dose endotoxin administration and prior 

epinephrine infusion respectively. These data have not been used as a training dataset but rather to validate 

the structure of the proposed model. Descriptive statistics in the original analysis (Jan, Coyle et al. 2009) 
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show that there was no significant variation between these experimental measurements (solid markers vs. 

open circles) from 0hr until 24 hours after LPS exposure. 

 

From a modeling standpoint, such responses are captured due to the possible non-

linear interaction between peripheral pro-inflammation and heart rate variability. In 

particular, a fundamental assumption of the proposed study is that any reduction in the 

pro-inflammatory response relative to the constrained response evoked by low-doses of 

endotoxin, will not affect the magnitude of HRV relative to the naïve (LPS) injection. 

Such assumption is primarily predicated upon evidence (Alvarez, Katsamanis Karavidas 

et al. 2007; Jan, Coyle et al. 2009) that indicate the existence of reduced differential pro-

inflammatory responses within the context of antecedent stresses without altering 

endotoxin-induced HRV dynamics. On the other hand, under conditions of high 

inflammatory challenge, as illustrated in Figure 6.4, an unconstrained pro-inflammatory 

response will account for a persistent diminished physiologic variability (HRV) 

indicative of the severity of injury.  

While the proposed model does not capture the sympathomimetic properties of 

epinephrine, we recognize that antecedent epinephrine infusion significantly reduced the 

parasympathetic tone and there was a relative decrease in HRV in the initial hours after 

EPI administration (Jan, Coyle et al. 2009). In the following section, we plan to describe 

dynamic changes in heart rate variability as a result of cardiac autonomic imbalance 

incorporating explicitly the interplay between efferent branches of the autonomic nervous 

system (sympathetic/parasympathetic outflow) that account for modulations in heart rate 

response. Such modeling extensions associated with the autonomic control of heart rate 

would allow us to simulate the vagolytic influence of EPI and therefore explore the 
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possibility of developing more mechanistic-based and physiological relevant in silico 

disease progression models.  

In summary, a multi-level human inflammation model is proposed that couples 

essential aspects of the complex bidirectional relationship between the neuro-endocrine 

axis and the immune response. We addressed how to construct the topology and the 

dynamics of the underlying network linking processes across the host from the cellular to 

the systemic level. Essential modules associated with the secretion of endocrine stress 

hormones (cortisol, epinephrine) and their counter-regulatory role are particularly taken 

into account while phenotypic expressions such as HRV are further incorporated to assess 

systemic decomplexification. The proposed work bridges the initiating signal and 

phenotypic expressions through semi-mechanistic based host response models that 

include transcriptional dynamics, signaling cascades and physiological (hormonal) 

components. Model parameters are appropriately evaluated so that to reproduce a self-

limited inflammatory response that resolves within 24hr. The potential of the model is 

evaluated via computational tests performed to assess the implications of neuro-endocrine 

activity across the host. Exploring the possible effects of systemic perturbations enables 

us to trace the dynamics of a systemic inflammatory response syndrome improving our 

understanding of how interacting inflammatory responses and neural based mechanisms 

influence the host’s ability to regulate inflammation. Since both glucocorticoids and 

catecholamines are used clinically in the context of systemic inflammation the proposed 

modeling has the potential for direct clinical relevance.  
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6.3 A physiological model for autonomic control of heart rate in human 

endotoxemia 

Among the many interesting correlates for human infectious pathology arising from the 

human models of endotoxemia is the documentation that low-dose LPS (2-4 ng/kg BW) 

induces an increase in cardiac index and heart rate (Andreasen, Krabbe et al. 2008). In 

recent years, there is increasing recognition that elevated heart rate might be associated 

with increased cardiovascular mortality leading to a reappraisal of the clinical importance 

of heart rate as a prognostic risk factor (Palatini and Julius 1997, 2004; Palatini 2007, 

2009). Being overall variations in heart rate largely dependent on autonomic modulation, 

an increased heart rate has been considered to reflect a diminished parasympathetic 

(vagal) tone and an increased sympathetic modulation of the sinus node (Lowry 2009). 

Such interpretation lies in agreement not only with experimental evidence indicating 

sympathetic activity excess (and/or parasympathetic attenuation) but also with the 

findings that reductions in implied vagal nerve activity is associated with increased 

morbidity in critically ill patients (Annane, Trabold et al. 1999). Although, the 

mechanism for this systemic “decomplexification” is unknown, it is likely that altered 

central autonomic (ANS) activity and disruptions in efferent sympathetic and 

parasympathetic signaling are contributory.  

In this section we will discuss the potential of a physiology-based model of 

autonomic control of heart rate response to endotoxin, to describe changes in heart rate 

response to endotoxin, as a result of altered central activity, incorporating explicitly the 

relative contribution of efferent branches of the autonomic nervous system 

(sympathetic/parasympathetic outflow). Data used in this study include vital signs such as 
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heart rate and parameters of heart rate variability (HRV), namely pNN50, which reflects 

operation of a particular modulatory reflex on the sinus node. Specifically, of particular 

relevance to this research are the studies where human volunteers were injected 

intravenously with endotoxin (CC-RE, Lot #2) at a dose of 2-ng/kg body weight (BW) 

while vital signs including heart rate and parameters of heart rate variability including 

pNN50 were recorded (Alvarez, Katsamanis Karavidas et al. 2007; Jan, Coyle et al. 

2009). In addition to clinical monitoring, blood samples are also collected and analyzed 

to determine hormonal and cytokine responses to human endotoxemia. The purpose of 

these two studies was broader and attempted to assess the influence of acute stress 

hormone infusion on heart rate variation under the systemic inflammatory manifestations 

of human endotoxemia.  

Vital signals including heart rate were recorded every 30 minutes from the arterial 

monitoring system for the first 6 hours and then periodically taken manually for up to 24 

hours after LPS administration. Specifically, heart rate was measured at 0, 0.5, 1, 1.5, 2, 

2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6 and 24 hours in relation to endotoxin administration while the 

determination of HRV indices was obtained using a continuous electrocardiography 

technique (ECG). In a continuous ECG record, each QRS complex (resulting from sinus 

node depolarization) was detected and one of the time-domain measures, which analyzed 

in this study, included the percentage of interval differences of successive interbeat 

intervals greater than 50 milliseconds (pNN50). A baseline determination of this 

parameter was obtained every hour (0 to +6 hours) following endotoxin challenge and at 

24 hours after LPS. This time domain statistic reflects the occurrence of large changes 

between adjacent heart beats and it serves as surrogate for parasympathetic influences on 
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the heart (vagal function) (Goldberger, Challapalli et al. 2001). In addition to time-

domain analyses, spectral methods have also been employed to describe parasympathetic 

modulation of the sinus node. For instance, high frequency variability (HF) (0.15-0.4 

Hz), the usual statistic for assessing respiratory sinus arrhythmia (RSA), correlates with 

parasympathetic and vagal tone. However, respiration rate, oftentimes, falls outside the 

high frequency range during the post-LPS administration and pNN50 can be used as an 

alternative method for assessing parasympathetic efferent activity (Berntson, Bigger et al. 

1997). Further, analysis of the heart rate variability spectrum reveals lower frequency 

(<0.10 Hz) components that tend to reflect the combined effect of sympathetic and 

parasympathetic neural influences and as such does not reflect accurately changes in 

sympathetic activity (Berntson, Bigger et al. 1997; Houle and Billman 1999). Taken 

together, in this study among the various HRV indices, the time-domain measure pNN50 

will be used to assess vagus nerve activity and parasympathetic influences on the sinus 

node pacemaker activity. 

6.3.1 Developing a semi-mechanistic model for the autonomic control of heart rate 

in acute human inflammation 

The effect on heart rate of combined modulation of sympathetic and parasympathetic 

(vagal)  nerves has been described in a quantitative fashion since the 1930s (Rosenblueth 

and Simeone 1934). In the 1960s, Warner and his colleagues developed a mathematical 

model (Warner model) to simulate the dynamics of sinoatrial (SA) node in response to 

vagal and sympathetic stimulations (Warner and Cox 1962). This model consists of a set 

of first order differential equations that describe the release, binding and degradation of 

neurotransmitters in the synapses between neural fibers and the SA nodal cells. Since this 
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model forms the foundation of this study, we will briefly summarize the key elements 

and the associated interactions. The relationship, for instance, between stimulation of 

sympathetic nerve to the heart and the heart rate (HR) is illustrated in Figure 6.9. 

 

 

Figure 6.9: Schematic illustration of the Warner model representing the relationship between stimulation 

of efferent sympathetic nerve activity to the heart and heart rate (HR). A1 represents the concentration of 

sympathetic neurotransmitter (catecholamine) at the nerve ending and f1 represents the frequency stimulates 

preformed on the nerve; Ao represents the concentration of catecholamine in peripheral tissues (i.e. blood); 

A2 represents the concentration at the active site on sinoatrial (SA) node which must react with chemical 

substance B to produce a change in heart rate, adapted from (Warner and Cox 1962). 

 

Specifically, at the level of sympathetic nerve activity, the instantaneous neural 

activity is described by a sinusoidal function (f1) that serves as the input of the model 

stimulating the release of sympathetic neurotransmitters at the nerve ending (A1). 

However, the cardiac neurotransmitter release is not limited to centrally mediated neural 

traffic but may be also triggered in response to neurotransmitters from peripheral tissues 

such as blood (Olufsen, Tran et al. 2006). Thus, (Ao) represents catecholamine 

concentration in blood which upon elevation affects the amount of SNS neurotransmitter 
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released by sympathetic nerve stimulation (A1). On the active site (SA node), an effective 

concentration of catecholamine (A2) is derived from a set of first order kinetic equations 

that reacts with substance (B) in order to produce a change in heart rate (HR) when only 

sympathetic activity was present. During combined sympathetic and vagal control, albeit 

no interplay between the kinetics on the sympathetic and vagal sites is considered, the 

final heart rate is described as a function of the two instantaneous heart rates obtained 

from the two separate autonomic control systems.  

In this study, the kinetic part of the Warner model will be used as a template for 

producing the concentrations of neurotransmitters in response to the related autonomic 

activities in human endotoxemia. Specifically, we focus on the kinetic part of the 

sympathetic site assuming that the released neurotransmitters from SNS nerve are 

triggered by the increased circulating levels of catecholamines evoked by endotoxin, Eq. 

(6.20), and thereby influencing the effective neurotransmitter concentration on the sinus 

node of the heart, equation (6.21).  

( ) ( )1
1 1 2 2 1

dA
SNS nerve = K EPI - A - K A - A

dt
⎧

⋅ ⋅⎨
⎩

 (6.20)

( )2
2 1 2

dA
Active SA node = K A - A

dt
⎧

⋅⎨
⎩

 (6.21)

Embedding the structure of Figure 6.9 in the dynamics of our human endotoxin 

model, increased circulating levels of epinephrine (EPI), emerging from the dynamic 

evolution of the endotoxin-induced inflammatory response, stimulate the release of 

sympathetic neurotransmitters from the SNS nerve ending (A1) and are quantified by first 

order kinetics (K1 and K2), Eq. (6.20). The re-uptake process of the SNS neurotransmitter 

from the sinus node to the nerve ending is described by the term K2(A2-A1); while the 
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effective concentration of the neurotransmitter at the active site of the heart (A2) is 

influenced by the rate of sympathetic nerve traffic (A1), Eq. (6.21). We recognize that in 

the kinetic part of the Warner model sinusoidal functions were also used as input signals 

to sympathetic nerve stimulation. Since these functions represent the frequency stimulus 

which was experimentally performed in the nerves of anesthetized animals, such neural 

patterns are not considered in our model. Alternatively, for purposes of our model, 

plasma concentration of epinephrine serve as the primary “input” signal to the efferent 

sympathetic site, which in line with evidence (Goldstein 1981; Goldstein, McCarty et al. 

1983; Grassi and Esler 1999) high plasma catecholamine concentrations are associated 

with high rate of sympathetic nerve traffic.  

As it previously mentioned, the effective concentration (A2) has to react with 

substance (B) in order to influence the automaticity of SA nodal cells forming the signal 

(AB). Thus, the formed signal (AB) represents the sympathetically-mediated active signal 

that affects pacemaker activity and herein this mediator serves as a surrogate for the 

overall sympathetic response (Tsym). Regarding the dynamics of the vagal site, although 

the relationship between the two major autonomic divisions may be highly complex, it is 

believed that changes in heart rate are brought about by simultaneous reciprocal changes 

in the autonomic influences on the heart (Glick and Braunwald 1965). Such mutual 

antagonism between the efferent sympathetic and parasympathetic branches of the (ANS) 

is further considered and quantified in equations (6.22) – (6.23).  
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( )

( )

2sym 3
4 sym

T ,T parsym par

in,Tpar par
out,T ppar

T T sympar, sym

K A BdT
= - K T

dt 1+ k T
Autonomic outflow

KdT
= - K T

dt 1+ k T A1

⋅ ⋅⎧
⋅⎪

⋅⎪
⎪
⎨
⎪ ⋅⎪

⋅ ⋅⎪⎩
 

(6.22)

sym symT + B = constant, C B = C - T⇒  (6.23)

Assuming that the two major autonomic control systems act as endogenous neuronal 

antagonists (Rittirsch, Flierl et al. 2008), such dynamic interaction is described by the 

kinetic parameters (kTsym,Tpar, kTpar,Tsym), Eq. (6.22). Thus, the kinetics of the Warner 

model are extended by incorporating the stimulatory function (1+kTsym,TparTpar) that 

inhibits the first order kinetic rate (K3) of sympathetic activity and represents the 

antagonism of parasympathetic response (Tpar). Similarly, the inhibitory effect of 

sympathetic response (Tsym) to vagal function is represented by the linear function 

(1+kTpar,TsymTsym) while the dynamics that define the substance (B) are the same as in the 

original Warner model, Eq. (6.23). 

In an effort to quantify the overall dynamics of the parasympathetic reflex activity 

(Tpar) the principles of indirect response modeling are employed (Jusko and Ko 1994; 

Mager, Wyska et al. 2003). The underlying assumption is that the baseline of 

parasympathetic tone is produced in a zero order kinetics (Kin,Tpar) and removed in a first 

order kinetics described by a constant rate (Kout,Tpar). In our endotoxin injury model, a 

dynamic change in vagal function (Tpar) is simulated due to an increase in sympathetic 

outflow (Tsym) which is evoked by neuroendocrine stress hormones (i.e. epinephrine) 

coupled with the activation of other sympathetically mediated physiological processes 

(i.e. blood pressure) (Davos, Davies et al. 2002) that might contribute to further 
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modulation of vagal function and are represented by (A1) signaling mediator. The 

potential of the IDR modeling in simulating physiological variables (i.e. temperature) 

including autonomic reflex activity such as parasympathetic activity has been effectively 

demonstrated in (Josa, Urizar et al. 2001; Perlstein, Stepensky et al. 2001; Perlstein, 

Stepensky et al. 2002) and herein this modeling concept will also be explored in order to 

quantify heart rate dynamics as follows, Eq. (6.24).  

( ) ( )in,HR HR,T sym out,HR HR,T parsym par

dHRHeart rate K 1 k T K 1 k T HR
dt

⎧ = ⋅ + ⋅ − ⋅ + ⋅ ⋅⎨
⎩

 (6.24)

The basal heart rate response is assumed to be maintained by the balance of relevant 

neurotransmitters that are given by a constant (zero order) rate of synthesis (Kin,HR) and a 

first order degradation rate (Kout,HR) (see Appendix 6.4). It is well recognized that the 

heart rate (HR) increases when sympathetic stimulation increases and that it decelerates 

upon increased parasympathetic response (Uijtdehaage and Thayer 2000). Hence, the 

effect of sympathetic and parasympathetic activities on the heart rate is quantified by 

(kHR,Tsym) and (kHR,Tpar), respectively. Specifically, in this model the vagus nerve mediates 

deceleration of heart rate by stimulating the degradation rate of heart rate response 

(Kout,HR). Taken together, in our endotoxin injury model, cardiac acceleration is induced 

by the antagonistic interplay of autonomic activities on the heart manifested as 

prevalence (increase) of efferent sympathetic activity (Tsym) and attenuation of 

parasympathetic nervous system function (Tpar). Such a semi-mechanistic, systems based 

modeling approach integrates central influences between autonomic control systems and 

physiological inflammatory components making it a critical enabler for clarifying how 

cellular events and inflammatory processes mediate the links between patterns of 

autonomic activities and clinical outcomes. 
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6.3.2 Elements of the physiology-based model of human endotoxin-induced 

inflammation 

We have previously demonstrated the feasibility of a multiscale physicochemical host 

response model that integrates essential regulatory processes across the host linking the 

initiating signal (LPS) with transcriptional (cellular) dynamics, signaling cascades and 

hormonal (physiogical) components. Specificaly, elementary pro-inflammatory patways 

(i.e. NF-kB signaling module) triggered by the recognition process of LPS form its 

signaling receptor (i.e. R, TLR4) propagate the acute inflammatory reaction on the 

transcriptional response level (P, A, E). Essential aspects associated with the 

neuroendocrine immune crosstalk and systemic “decomplexification” are also 

considered. In an effort to assess autonomic modulation of the sinus node of the heart, we 

attempted to describe the effect on heart rate of simultaneous sympathetic and vagal 

controls as illustrated in Figure 6.10. Specifically, at the systemic level of the sinus node, 

physicochemical interactions related to the release, binding and degradation of cardiac 

(SNS) neurotransmitters (A1, A2) are incorporated. Such interactions are stimulated by 

the neuroendocrine axis and particularly by circulating levels of epinephrine (EPI) 

released upon endotoxin from neural SNS pathway. During the progression of endotoxin 

induced inflammation, disruptions in autonomic cardiac control are evaluated by 

alterations in the interplay between sympathetic (Tsym) and parasympathetic (Tpar) arms of 

the autonomic nervous system which thereby influence the intrinsic pacemaker activity 

(heart rate). Thus, the proposed model intends to associate disordered neuroendocrine 

function with concomitant dysfunctional adrenergic modulation at the sinoatrial node 

(cardiac pacemaker). 
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Figure 6.10: Network topology of the multiscale model of human endotoxemia for the assessment of 

autonomic heart rate regulation. Elementary pro-inflammatory pathways (i.e. NF-kB signaling module) 

triggered by the recognition process of endotoxin (LPS) from its signaling receptor (TLR4, R) propagate 

the effect of LPS signaling on the transcriptional (cellular) response level (P, A, E). Essential modules 

associated with the release of stress hormones (cortisol (F), epinephrine (EPI)) from neuroendocrine axis 

(HPA, SNS) coupled with their anti-inflammatory influence on the host are further considered. Finally, at 

the systemic level, biochemical reactions associated with the release, binding and degradation of cardiac 

(sympathetic) neurotransmitters (A1, A2) on the SA node are also incorporated. Efferent autonomic outflow 
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is represented by sympathetic (Tsym) and parasympathetic activities (Tpar) that act antagonistically giving 

rise to changes in heart rate (HR) response assessed by clinical monitoring of vital signs.  

6.3.3 Model calibration and validation 

Of critical importane in developing a mathematical model is the relation between the in 

silico model and the “real-world” process that is being modeled. As nicely discussed in 

(Vodovotz, Clermont et al. 2004) validation strategies are focused at two basic levels that 

involve the assumptions that go into the development of the model and the subsequent 

behavior of the model. Such strategies consist of comparing the behavior of the model 

with available experimental data. For instance, if the model successfully reconstructs the 

relevant experimental data, then it is deemed valid not only for that test but also for 

further assessment predicting inflammatory responses in settings on which it had not been 

trained explicitly (Vodovotz, Chow et al. 2006). Thus, the appropriateness of the 

assumptions invoked in the construction of the proposed model will be demonstrated in 

the following three stages including: (i) calibration of the model using human 

experimental data associated with heart rate measurements and time-domain measures of 

heart rate variability, namely pNN50 after exposure to low-dose of LPS; (ii) model 

verification using experimental data that have not been used as a training data set. These 

data refer to human subjects received either low dose (2ng/kg body weight) LPS or an 

infusion of epinephrine for 3hr before LPS administration and continued until +6 hours. 

Hence, we opt to assess the validity of our model by assessing the cardiovascular 

implications of acute epinephrine infusion on the host, and finally (iii) further qualitative 

model validation simulating a series of biological implications of the host response to 

endotoxin that can be equated with the (complex) non-linear dynamics of severe 
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inflammation in the critical care setting. Such scenarios refer to systematic perturbations 

that modulate the dynamics towards either an irreversible response or in favor of a 

balanced immune response depending on the anti-inflammatory “reservoir” of the host 

relative to the intense (pro) inflammatory response.  

Parameter Estimation 

Model kinetic parameters involved in the autonomic control of heart rate are estimated by 

minimizing the discrepancy (error) between model predictions and the experimental data 

as depicted in Table 6.2 (see Appendix 6.4). Relevant experimental data are normalized 

by taking the ratio of the measured response at each time point of the study period with 

respect to the control time point (t = 0hr). Thus, the associated model variables represent 

dimensionless entities and are considered to quantify the response of the immune 

function. The parameter estimation (optimization) problem consists of a nonlinear 

performance criterion (sum of square of errors) and is solved using MATLAB nonlinear 

optimization solvers such as fmincon (Contreras and Ryan 2000). All the other 

parameters related to the propagation of LPS signaling on the transcriptional level and to 

the neuro-endocrine immune system interactions are maintained to agree with those 

presented Table 6.1 (see Appendix 6.4). The differential equations are solved using 

MATLAB’s solver ode15s, which is a variable-order, variable-step solver for stiff 

ordinary differential equations. Since it is a variable-step solver, the numerical solutions 

are, in general, computed at times that extent those where the experimental data were 

recorded. Hence, in order to obtain computed values at the specified times where 

experimental data were recorded, numerical interpolation is required.  
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The performance of the model in reconstructing the clinical manifestations of human 

endotoxemia is presented in Figure 6.11. In essence, a self-limited inflammatory 

response, as previously simulated (Foteinou, Calvano et al. 2009a, b), involves the 

successful elimination of the inflammatory stimulus (endotoxin) within 2hr post-

endotoxin administration followed by subsequent resolution of all inflammatory 

manifestations (i.e. transcriptional responses, hormonal concentrations) within 24hr. 

Herein, at the level of autonomic cardiovascular control, intravenous administration of 

endotoxin elicits tachycardia (elevated heart rate, HR) as a result of cardiac autonomic 

imbalance, reflected by increased sympathetic activity (Tsym) and reduced 

parasympathetic response (Tpar). An increase in sympathetic activity followed by 

reductions in implied vagal nerve activity have now been noted during inflammatory 

conditions associated with human endotoxemia (Lowry 2009). In our computational 

model, such dysregulation is mediated by acute neuroendocrine stress response evoked 

by endotoxin and specifically by increased circulating levels of epinephrine which give 

rise to a high rate of efferent sympathetic nerve traffic. Such stimulation is manifested as 

up-regulation in the concentration of cardiac sympathetic neurotransmitters (A1, A2) that 

participate in the sympathetic control of heart rate (HR). 
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Figure 6.11: Dynamic profiles of the elements that constitute the autonomic heart rate regulation signaling 

module in human endotoxemia.(A) Simulated concentrations of cardiac (SNS) neurotransmitters at the 

level of sympathetic nerve ending (A1) and at the active site of sinus node (SA) of the heart (A2); (B) 

Efferent sympathetic activity during the progression of the acute inflammatory reaction; (C) Simulated 

efferent parasympathetic (vagal) activity and (D) Heart rate (HR) response to endotoxin induced 

inflammation. Human experimental data (open circles) associated with vagal measurements (time domain 

HRV measure, pNN50) and vital signs (heart rate measurements) are used to calibrate the model. Solid 

lines (⎯) represent model predictions under conditions of low-dose endotoxin while ○ circles refer to 

experimental data expressed as mean ± SEM. The initial condition of the inflammatory stimulus 

(LPS(t=0hr) = 1) reflects LPS concentration relative to 2-ng/kg body weight. 
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Implications of acute epinephrine infusion on the host response to endotoxin 

It is well established that the SNS-driven “fight or flight response” is an essential 

physiological reaction activated during acute stress or illness (Padgett and Glaser 2003). 

Catecholamines, the main neurotrasmitters of the sympathetic nervous system pathway, 

exert anti-inflammatory and vasoactive properties affecting both immune cell activation 

and cardiovascular function (van der Poll 2000). At the cellular (immune) level, we have 

previously simulated the effect of epinephrine on attenuating the pro-inflammatory 

manifestations of human endotoxemia via a cAMP dependent mechanism. Such 

mechanism is stimulated by β-2 adrenergic receptors and results in potentiation in the 

anti-inflammatory IL-10 signaling (Foteinou, Calvano et al. 2010-in press). Although the 

immunosuppressive effects of antecedent periods of catecholamine excess following the 

systemic inflammatory manifestations of human endotoxemia have been well described 

(van der Poll, Coyle et al. 1996; Van der Poll and Lowry 1997), their effect on heart rate 

parameters induced by endotoxin is not well understood.  

Predicated upon this, the influence of epinephrine (EPI) infusion initiated 3hr before 

the intravenous administration of endotoxin and continued until +6hr after LPS exposure 

is simulated at various doses in Figure 6.12. We specifically sought to simulate whether 

there exists a particular dose of exogenously-induced catecholamine excess (defined in 

our model by the parameter, Rin,EPI) that describes significantly the relevant experimental 

data. Thus, increasing the parameter (Rin,EPI) at various values the total concentration of 

EPI represented by dashed and dotted lines (Figure 6.12A) increases in a dose-dependent 

manner which subsequently potentiates the cardiac sympathetic activity (Figure 6.12B) 

relative to the response invoked by the administration of the inflammatory stimulus. 
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Figure 6.12: In silico simulation of the cardiovascular (sympathoexcitatory) effects of acute epinephrine 

infusion on the host initiated 3hr prior to endotoxin challenge (t = 0hr) and continued for another 6hr after 

LPS. Solid lines simulate the host dynamics under conditions of low-dose endotoxin (LPS) while dashed 

and dotted lines reflect the dynamics of the host pre-exposed to epinephrine infusion at various doses. The 

acute pre-exposure of the host into epinephrine (wEPI,ex = 1) at increasing values of the parameter Rin,EPI = 6, 

12 , 24 (represented by a, b and c lines respectively) potentiates (A) circulating levels of epinephrine and 

(B) the overall efferent sympathetic outflow (Tsym) relative to the responses induced by endotoxin 

administration while (C) vagal activity is significantly attenuated compared to the effect induced only by 

LPS and finally (D) heart rate response to endotoxin is further increased due to prior epinephrine infusion.  

Such increase in efferent sympathetic outflow further diminishes the parasympathetic 

(vagal) function (Tpar) and thereby affects the intrinsic pacemaker activity as assessed by 
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increased heart rate (HR). Experimentally, such modulation in parasympathetic and heart 

rate response to endotoxin under conditions of prior epinephrine infusions is 

demonstrated in (Jan, Coyle et al. 2009). Regarding the experimental study, antecedent 

EPI infusion mediated a decrease in parasympathetic function which was significantly 

different from the effect induced by LPS (Figure 6.13C) and a significantly higher heart 

rate response (HR) (Figure 6.13D). It is important to emphasize that the aforementioned 

experimental data represent the dynamics of the host under conditions of a particular dose 

of epinephrine and are used to test the validity of our model in predicting inflammatory 

relevant responses in situations on which it has not been trained. Although plasma 

concentrations of epinephrine are not available under conditions of pior EPI infusion, our 

simulations indicate that there exists a value of the model parameter (Rin,EPI) that captures 

the vagolytic influence of exogenously-induced catecholamine excess as assessed by an 

average correlation coefficient that approximates the value of 0.8 between relevant 

experimental data and model output (Table 6.5, see Appendix 6.4). 
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Figure 6.13: In silico assessment of the cardiovascular implications associated with acute epinephrine 

infusion on the host. Human experimental data depicted by squares and diamonds represent mean ± SEM 

refer to human subjects that received either low dose (2ng/kg BW) LPS or an infusion of epinephrine for 

3hr before LPS administration and continued until +6 hours, respectively. These data are specifically used 

to validate qualitatively the structure of the proposed human inflammation model employed from (Jan, 

Coyle et al. 2009) and not to train the model. Descriptive statistics in the original experimental study show 

that there was a significant change in the parasympathetic activity (Tpar) and heart rate response (HR) 

across the two experimental conditions (□ vs. ◊) from 0hr until 24 hours after LPS exposure. 

Computationally such situation is captured by the differential predicted responses between dashed and solid 

lines. We specifically observe that there exists a simulated trajectory of exogenously induced 

catecholamine excess (represented by dashed lines, Rin,EPI = 6) that lies in general agreement with the 

relevant human experimental data.  
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Dose-dependent effects of acute endotoxin injury on the neuroendocrine-immune axis 

The dose-dependence LPS inflammatory effects on immune-endocrine host responses is 

reported by relevant human studies (Suffredini, Hochstein et al. 1999; Vedder, Schreiber 

et al. 1999). Specifically, in the study (Vedder, Schreiber et al. 1999) increasing the 

concentration of LPS leads to differential peak responses of the human host response as 

assessed by immune-neuroendocrine parameters including cytokines, stress hormones 

(i.e. cortisol) and physiological responses (i.e. heart rate) after the administration of low 

doses of endotoxin (i.e. 0.4 ng/kg) in healthy human subjects. On the other hand, high 

doses of endotoxin can be responsible for a dysregulation in the host defense intrinsic 

dynamics, even though this bacterial byproduct does not proliferate as a Gram-negative 

bacteria (Munford 2006). Regarding endotoxin administration and mortality, it is 

generally accepted that the maximum dose of LPS that can be safely administered to 

humans is 4ng/kg BW (Andreasen, Krabbe et al. 2008). That the administration of a 

larger dose can amplify the immune host response was dramatically illustrated by a 

patient who injected herself with Salmonella endotoxin (Taveira da Silva, Kaulbach et al. 

1993). In the following we will demonstrate the ability of our model to enable such 

“predictions” providing further evidence of the validity of the assumptions invoked in the 

development of our model. 

In an effort to simulate proper responses to survivable and lethal endotoxin doses, we 

simply vary the concentration of LPS at time zero (LPS(t = 0hr)) carrying out simulations 

with low (i.e. LPS(t = 0hr) = 0.4 ng/kg) and high LPS doses (i.e. 8ng/kg - four times 

greater than the nominal value (2ng/kg BW) used to calibrate the model), (Figure 6.14 

and Figure 6.15).  
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Figure 6.14: Simulated dose dependent effects of LPS on neuroendocrine immune system interactions. A 

high concentration of LPS can cause a dysregulation in the host dynamics characterized by abnormal 

transcriptional and hormonal responses. Temporal responses of critical inflammatory components for 

various initial conditions of the inflammatory stimulus include (A) pro-inflammatory response (P); (B) anti-

inflammatory response (A) and stress hormones such as (C) cortisol (F) and (D) epinephrine (EPI). Solid 

lines simulate the progression of a self-limited inflammatory response at increasing LPS doses (LPS(t=0hr) 

= 0.4 ng/kg, LPS(t=0hr) = 4ng/kg and LPS(t = 0hr) = 6ng/kg) that are less than the critical threshold 

(LPS(t=0hr) = 8ng/kg - four times greater than the nominal value (2ng/kg BW) used to calibrate the model) 

that gives rise to unresolved inflammatory responses represented by sustained inflammatory markers and 

hormonal responses (dashed lines).  
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Figure 6.15: Simulated dose dependence of LPS effects on systemic (heart) level responses. A high 

inflammatory challenge disrupts the autonomic control systems which give rise to prolonged elevations in 

heart rate. Dynamic responses of (A) catecholamines at the sinus node of the heart (A2); (B) efferent 

sympathetic, (C) parasympathetic activities and (D) heart rate (HR) responses to increasing levels of the 

inflammatory stimulus (LPS). While solid lines represent constrained inflammatory responses, dashed lines 

refer to a persistent inflammatory response simulated by high LPS concentration given that such situation 

can be equated to the severely stressed clinical phenotype manifested as sustained elevations in heart rate 

(cardiovascular instability).  

 

We observe that when the concentration of LPS exceeds a critical threshold, the 

inflammatory response does not abate as was seen in solid lines where lower doses of 

LPS were simulated. This response is characterized by the uncontrolled secretion of 
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endocrine hormones (cortisol, epinephrine) that are not adequate to balance (control) the 

overall immune response, thereby giving rise to a cytokine “burst”, Figure 6.14. Such 

dysregulation is further accompanied by impaired autonomic function and cardiac 

instability manifested as sustained elevations in heart rate response, Figure 6.15. 

Prolonged heart rate elevations are particularly simulated due to a persistent diminished 

vagus nerve activity (Tpar) and/or sympathetic (Tsym) overshooting that occur under 

conditions of severe endotoxin injury. In acute critical illness, comparable to the 

overwhelming immune response, adrenergic stress may also get out of control and cause 

adverse effects.  

Qualitatively, such situation where the dynamic interactions between pro-

inflammatory and late anti-inflammatory mediators may lead to a non-abating 

inflammatory response (trajectories of inflammatory relevant components do not return 

to baseline-homeostasis) can be equated with the progression of an exacerbated 

inflammatory state in the early phase of injury. Clinically, a sustained acute inflammatory 

response is manifested as septic shock that could culminate in multiple organ 

dysfunction. Although this might be a simplification of the pathogenesis of sepsis, this 

assumption is supported by the persistence of high levels of pro-inflammatory cytokines 

(Blackwell and Christman 1996), sustained elevations of endocrine hormones and 

sympathetic overstimulation (or parasympathetic withdrawal) in critically ill patients 

(Desborough 2000; Dunser and Hasibeder 2009; Van den Berghe 2002).  

We recognize that we have previously simulated the dose-dependence of LPS effects 

on the cellular host response level (Foteinou, Calvano et al. 2009a, b). However, the 

proposed model allows us to simulate concomitant dysfunctional adrenergic modulation 
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of the heart and peripheral blood leukocytes during the progression of severe human 

injury. Specifically, impaired neuroendocrine regulation during systemic inflammatory 

response syndrome contributes to disruptions in cardiovascular homeostasis 

phenotypically expressed as persistent elevations in heart rate that are, in many cases, 

associated with increased morbidity and mortality (Cook, Togni et al. 2006). Having 

established these non-linear responses, we now consider scenarios that involve possible 

reversibility in the dynamics of unremitting inflammation in response to a dynamic anti-

inflammatory intervention strategy. 

Evaluation of hormone replacement “therapy” in modulating severe acute inflammation 

Properly built mathematical models of inflammation oftentimes enable several relevant 

asymptotically stable (AS) steady states that can be equated with self-limited (“healthy”) 

response, sustained response with ongoing presence of the inflammatory instigator and 

sustained inflammation without persistent inflammatory trigger (Vodovotz, Constantine 

et al. 2009). A fundamental assumption of our model is the existence of two AS 

equilibria, which depending on the anti-inflammatory capacity of the host can represent 

either “recovery/self-limited” or “uncontrolled/sustained tachyarrhythmias) that might 

account for the transient clinical phenotype of severely stressed patients. To illustrate 

such scenarios, we consider the trajectory of an unconstrained response, simulated as 

high concentration of the initial stimulus (LPS), to serve as a surrogate for the high-risk 

profile of severely stressed patients. Predicated upon the fact that antecedent stress 

hormone excess abrogates several features of human endotoxemia (Barber, Coyle et al. 

1993), anti-inflammatory intervention strategies will involve pre-exposure of the host 
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into either exogenously-induced catecholamine excess (Figure 6.16) or 

hypercortisolemia (Figure 6.17). 

Critically ill patients show a variety of endocrine (hormonal) alterations and 

intervening with hormone substitution could possibly contribute to the recovery of the 

critically ill profile (Ligtenberg, Girbes et al. 2001). Catecholamines, as potent anti-

inflammatory and vasoactive agents, have received increased recognition as part of 

“replacement” therapy in the critical care setting (Santman 1992). In order to capture 

such situation, antecedent periods of epinephrine (EPI) infusion following high 

inflammatory challenge (t = 0hr) are simulated in Figure 6.16. We observe that acute 

pre-exposure of the host to catecholamine excess reverses the dynamics of the intense 

inflammatory reaction towards homeostasis - “recovery phase” - manifested as autonomic 

restoration and control of cardiovascular instability which is relevantly disturbed during 

critical illness (Dellinger, Levy et al. 2008). Such reversibility in the transient 

inflammatory phenotype of severe injury annotates the impact of dynamic anti-

inflammation on compromising outcome.  
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Figure 6.16: Dynamic inflammatory cellular and physiological responses as a function of time after the 

administration of high inflammatory challenge (dashed lines) given that at time point 0 (t = 0hr) solid lines 

represent “virtual” human subjects that receive an infusion of epinephrine. The acute pre-exposure of the 

host into epinephrine (initiated 3hr before LPS and continued until +6hr after endotoxin, i.e. Rin,EPI = 6) 

attenuates the pro-inflammatory response (P), relative to the effect mediated by high concentration of LPS, 

via potentiation of the anti-inflammatory component of the host (A). In addition to the anti-inflammatory 

role of epinephrine, exogenous up-regulation in circulating levels of epinephrine increase the efferent 

sympathetic activity (Tsym) which is followed by further reduction in vagal function (Tpar) and these 

autonomic changes mediate early tachycardia (HR) which is eventually restored within 24 hours.  
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It is worth mentioning that the sympathomimetic properties of epinephrine prevail 

(Figure 6.16), during the first hours of stress hormone (EPI) infusion, i.e. 3 hours before 

LPS, against its anti-inflammatory effect. This prevalence is illustrated by diminished 

vagal function (Tpar) and/or increased sympathetic control of heart rate (HR) as shown by 

solid lines relative to the effect invoked by LPS administration (dashed representation). 

However, in our model as the inflammatory response evolves the dynamic anti-

inflammatory mechanism (A) mediated by epinephrine signaling becomes activated and 

attenuates the build-up of pro-inflammation (P) mitigating the subsequent protracted 

stimulation of neuroendocrine axis and the heart rate response. Such dynamics indicate 

the careful use of catecholamine vasopressors in the critically ill to an extent where 

beneficial effects still prevail without putting an excessive adrenergic stress on the heart 

(Dunser and Hasibeder 2006). 

During the progression of sustained tachycardia (dashed lines – Figure 6.16F) 

attained by an irreversible disturbance (i.e. high LPS concentration), the heart rate 

response (HR) settles to an “unhealthy” steady state which approximates the value of 

1.68 or else 107bpm. Such simulations associate adverse stress (adrenergic) outcomes 

with severe cardiovascular complications manifested as persistent tachycardia at a high 

rate. As reviewed by Dunser et al (Dunser and Hasibeder 2009), among the several 

hemodynamic parameters, heart rate >106 bpm was linked to mortality in patients with 

septic shock (Azimi and Vincent 1986; Parker, Shelhamer et al. 1987). In addition to this 

threshold, other clinical evidence suggest that patients with persistent tachycardia (>100 

bpm) are deemed at higher risk (Levy, White et al. 1945; Sander, Welters et al. 2005). 

Such strong association between increased heart rate and cardiovascular mortality has 
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resurged interest in treatments that compromise heart rate control and reduce excessive 

adrenergic stress including hydrocortisone infusion (Dunser and Hasibeder 2009) as 

simulated in Figure 6.17. 

Antecedent periods of hypercortisolemia participate in regulation of the 

hemodynamic, hormonal, and cytokine responses to infection (Briegel, Jochum et al. 

2001). In severely stressed patients, low-dose hydrocortisone infusion attenuates clinical 

and biochemical features of the systemic inflammatory response syndrome (Briegel, 

Kellermann et al. 1994; Keh, Boehnke et al. 2003). This has been exclusively proven by 

studies evaluating human responses within the context of antecedent stress hormone 

excess. In healthy volunteers, glucocorticoid excess as produced by 6hr infusion before 

LPS challenge abrogates much of the clinical responses to endotoxin including heart rate 

(Barber, Coyle et al. 1993). It also attenuates the production of circulating pro-

inflammatory cytokines through an increase in plasma IL-10 concentrations (van der Poll, 

Barber et al. 1996). Further, cortisol excess as produced by low-dose hydrocortisone 

infusion modulates hormonal and hemodynamic responses of human endotoxemia 

leading to a decrease in circulating levels of epinephrine appearance and suppressed heart 

rate relative to the naïve injection. In our prior models, we simulated the 

immunosuppressive effects of low-dose hydrocortisone infusion upon the systemic 

inflammatory manifestations of human endotoxemia (Foteinou, Calvano et al. 2010-in 

press). 
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Figure 6.17: Modulation of the progression of unresolved inflammatory response due to high LPS 

concentration under conditions of hydrocortisone infusion. The effect of low-dose steroid administration 

initiated 6hr before high LPS concentration and continued until +6hr after LPS is simulated in solid lines. 

Such exogenously-induced hypercortisolemia (wFex = 1, Rin,F = 2.922 – parameters taken from our prior 

work (Foteinou, Calvano et al. 2010-in press) potentiates total plasma concentration of cortisol a shown in 

panel (A) and modulates cytokine and hormonal responses. Circulating levels of epinephrine are attenuated 

in response to antecedent periods of hypercortisolemia relative to the excessive adrenergic response which 

is illustrated in panel (B). At the autonomic level such attenuation is expected to reduce efferent 

sympathetic activity mediating (C) an increase in implied vagal function (Tpar) and finally (D) controlling 

heart rate as shown by reversibility in the progression of the inflammatory reaction towards homeostasis 

(baseline) – “recovery phase” (solid lines).  
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The aim of the present study, however, is to associate the anti-inflammatory effects of 

glucocorticoids, during the progression of uncontrolled inflammation, with the abrogation 

of prolonged and intense adrenergic stress that mitigates the subsequent amplified 

inflammatory response, Figure 6.17. Exogenously-induced hypercortisolemia initiated 

6hr before the LPS challenge potentiates total cortisol levels (solid lines – Figure 6.17A) 

which accounts for alterations in the observed adrenergic stress signaling (Figure 6.17B). 

Such dynamic changes are simulated by reductions in circulating levels of epinephrine 

(EPI) that mediate further attenuation in the efferent sympathetic activity; whilst the latter 

gives rise to increased parasympathetic function (Tpar) when compared to the dynamics 

elicited upon the manifestation of severe endotoxin injury. Such altered adaptability in 

neuroendocrine and autonomic function under conditions of acute hypercortisolemia 

results in improved autonomic heart rate regulation as assessed by reversibility in 

sustained tachyarrhythmias towards homeostasis. Qualitatively, such dynamics might 

reflect the transient clinical improvement (i.e. “survivors”) noted to critically ill patients 

that respond to a treatment. For example, in the observational study (Briegel, Kellermann 

et al. 1994) the impact of low-dose hydrocortisone infusion on modulating the course of 

the systemic inflammatory response syndrome is manifested by reduced heart rate, 

inflammatory markers and eventual recovery from stress-induced implications. However, 

we would like to emphasize that it is not the purpose of this study to make direct 

comparisons between our model predictions and clinical observations. Instead, the overall 

goal of this study is to develop a semi-mechanistic model of human endotoxemia as a 

prototype model of acute human inflammation that would potentially allow us to evaluate 
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antecedent stresses upon the systemic inflammatory manifestations of acute infectious 

illnesses.  

A key assumption of the present study is the association between increased 

circulating levels of epinephrine and high rate of sympathetic nerve traffic (outflow to the 

sinus node). Since catecholamines are secreted from sympathetic nerves, plasma 

catecholamines have been widely used to indicate sympathetic nervous system activity 

(Goldstein, Eisenhofer et al. 2003; Grassi and Esler 1999). It is thus expected any 

modulation in the plasma concentration of epinephrine to drive subsequent changes in the 

efferent sympathetic nerve activity accompanied by further changes in the autonomic 

heart rate dynamics. We note, however, that such relationship is not simple given that a 

modulation in the plasma concentration of catecholamines does not necessarily indicate a 

change in the rate of sympathetic nerve traffic (Goldstein, Eisenhofer et al. 2003). 

Recently, exogenously-induced hypercortisolemia within the context of human 

endotoxemia modulated inflammatory responses to low-dose endotoxin without affecting 

any autonomic relevant parameter including heart rate (Alvarez, Katsamanis Karavidas et 

al. 2007). In this experimental study, the implied discordance between acute 

hypercortisolemia and no modulation of adrenergic stress response to endotoxin as 

previously shown (Barber, Coyle et al. 1993) raises questions related to a possible non-

linear relationship between glucocorticoid activity and these inflammatory parameters. 

On the other hand, factors such as axonal re-uptake, local metabolism within the synaptic 

cleft and turnover may alter the relationship between sympathetic neural activity and 

plasma contents (Mueller and Ayres 1980). As new mechanisms become established and 

their role demonstrated reproducibly, these other mechanisms can be integrated leading to 
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more complete in silico representations (Vodovotz, Clermont et al. 2004). Until all 

fundamental interactions and behaviors are well understood, the process of modeling 

remains inherently iterative. Though the current model is a very incomplete 

representation of all the processes involved in inflammation, we believe that it captures 

essential features of the multiscale nature of human acute inflammatory response that 

could potentially provide significant insights into how disruptions in the neuro-immune 

axis contribute to adverse clinical outcomes manifested as autonomic dysregulation. 

In conclusion, a semi-mechanistic, physiology-based model of human endotoxemia is 

developed, as a prototype model of acute inflammation in humans that quantifies 

essential aspects of the autonomic heart rate regulation. We expanded our prior 

mathematical modeling work to include systemic level interactions associated with the 

dynamic interplay of sympathetic and parasympathetic nerves to the heart. Such 

physicochemical interactions are related to the release, binding and degradation of 

cardiac neurotransmitters that allow us to associate endogenous neuroendocrine stress 

responses with centrally altered autonomic activities that give rise to heart rate changes. 

Kinetic parameters are estimated by reconstructing human relevant experimental data 

associated with a constrained hyperdynamic cardiovascular response to the endotoxin 

paradigm. Further, the proposed model is evaluated through its potential to simulate the 

cardiovascular implications of acute epinephrine infusion on the host as well as a series 

of systematic perturbations that balance neuro-immunologic dissonance promoting 

inflammatory resolution and thereby cardiovascular homeostasis during the course of 

unremitting inflammation.  
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6.4 Appendix to the multiscale models of human endotoxemia 

6.4.1 Table of relevant model components 

Symbol Description Symbol Description 

LPS Lipopolysaccharide, endotoxin FR(N) Nucler steroid-receptor 
complex  

R 
Endotoxin signaling receptor 

(TLR4) 

EPI  Epinephrine 

LPSR Endotoxin-TLR4 complex REPI β adrenergic receptor 

mRNAR Gene transcript of endotoxin 

receptor (TLR4) 

EPIR epinephrine-adrenergic 
receptor complex 

IKK Kinase activity cAMP cyclic adenosine 
monophosphate  

NFkBn Nuclear concentration of NF-kB fP efferent (cardiac) nerve 
activity 

mRNAIkBa Gene transcript of NF-kB inhibitor 
(IkBa) 

Sf cardiac active signal 

IkBa Protein inhibitor IkBa HRV heart rate variability 

P Transcriptional pro-inflammatory 
response 

A1 Catecholamines at the SNS 
nerve ending 

A Transcriptional anti-inflammatory 
response  

A2 Catecholamines at the sinus 
node (SA)  

E  Transcriptional energetic response  B Chemical substance at the SA 
of the heart 

F Cortisol  Tsym Efferent sympathetic activity  
Rm Gene transcript of glucocorticoid 

receptor  
Tpar Efferent parasympathetic 

activity  
RF Free cytosolic glucocorticoid 

receptor  
HR Heart rate  

FR  Cytosolic steroid-receptor 
complex  
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6.4.2 Estimated parameter values 

Table 6.1: Estimated values of parameters involved in the neuro-endocrine immune axis. 

Rin,F(wFex=0) = 0 k2,REPI = 5.465 k0
REPI = 11.011 

Kin,Fen = 0.842 k3,REPI = 5.546 Kout,A = 0.809 

kFen,P = 0.256 τ = 0.053 w = 10 

Kout,F = 1.058 n = 5.509 τS = 0.723 

Rin,F(wFex=1) = 2.922 Kin,A = 0.461 nS = 1.185 

Kin,EPI = 5.921 kA,cAMP = 0.145 Kin,HRV = 0.038 

KEPI,P = 0.231 kA,E = 0.534 Kout,HRV = 0.038 

k1,REPI = 3.005 kA,FRN = 0.401 kHRV,S = 35.254 

kR,EPI = 0.845 Kout,EPI = 7.286 Kout,EPI = 7.286 

 

Table 6.2: Estimated values of parameters related to the autonomic heart rate regulation.  

K1 = 3.653 kTpar,Tsym = 9.756 

K2 = 0.055 Kout,Tpar = 4.200 

K3 = 2.926 Kin,HR = 23.279 

C = 11.286 kHR,Tsym = 0.055 

kTsym,Tpar = 7.763 kHR,Tpar = 0.296 

K4 = 3.435 Kout,HR = 18.942 

Kin,Tpar = 45.181  
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6.4.3 Steady-state baseline equations  
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Table 6.3: Initial conditions of relevant model components 

LPS(0) = 1 mRNAIkBa(0) = 1 Rm(0) = 25.8 EPIR(0) = 0 A2(0) = 1 

R(0) = 1 IkBa(0) = 0 RF(0) = 540.7 cAMP(0) = 1 Tsym(0) = 1 

LPSR(0) = 0 P(0) = 1 FR(0) = 0 fP(0) = 1 Tpar(0) = 1 

mRNA,R(0) = 1 A(0) = 1 FR(N)(0) = 0 Sf(0) = 0 HR(0) = 1 

IKK(0) = 0 E(0) = 1 EPI(0) = 1 HRV(0) = 1  

NFkBn(0) = 0 F(0) = 1 REPI(0) = 1 A1(0) = 1  
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6.4.4 Statistical complement  

The performance of the model in capturing the characteristics of actual measurements is 

assessed by measures of goodness of fit including estimation of a correlation coefficient 

between the data and the model as previously proposed (Chow, Clermont et al. 2005). 

We test the null hypothesis that the correlation coefficient between experimental data and 

calculated values is zero, versus the alternative that it is greater than zero yielding a p-

value quantifying the likelihood of getting a correlation as large as the one calculated by 

chance. If the p-value is small, for example less than 0.05 (a commonly used threshold 

for significance level), then the correlation is significant at 95% confidence interval and 

the model accurately captures the characteristics of the data. The correlation coefficients 

between experimental data and the simulated HRV values (depicted in Figure 6.8D) 

were calculated across the two experimental scenarios (LPS, EPI-3hr+LPS) as illustrated 

in Table 6.4. This analysis yields very small p-values indicating a strong correlation 

between actual measurements and the model output. 

Table 6.4: Statistical assessment of the model in comparison to HRV data presented in Figure 6.8D 

Experimental scenario Measure of goodness of fit 
(correlation coefficient) p-value 

LPS (Figure 6.8D) 0.85 0.0072 

EPI-3hr+LPS (Figure 6.8D) 0.92 0.0014 

 

It is important to note that the data displayed in Figure 8D (both solid and open markers), 

albeit well described by our model (Table 6.4), are not used to calibrate our model but 
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rather to validate the intended structure of our model in predicting the non-linear 

interaction between peripheral immune responses and autonomic activities. Regarding the 

fitting process, relevant quantitative (HRV) data are employed from the experimental 

study (Alvarez, Katsamanis Karavidas et al. 2007) as shown in Figure 2(manuscript, last 

panel)) and the measure of goodness of fit yields a correlation coefficient of 0.91 and a p-

value of 0.0018 (<<0.05). Across all experimental data used in this study (Figure 6.3) 

under the administration of LPS, we obtain an average correlation coefficient of 0.956 

indicating significant correlation between the experimental measurements (solid markers 

of A, F, EPI, HRV) and the predicted values of our model. 

The correlation coefficients between experimental data not used to calibrate the 

model and the simulated Tpar and HR values represented by dashed lines (Figure 6.13) 

were calculated across the two experimental scenarios (LPS, EPIex+LPS) as illustrated in 

Table 6.5. This analysis yields a significant strong correlation between actual 

measurements and the model output. 

Table 6.5: Statistical assessment of the model in comparison to data presented in Figure 6.13C and Figure 

6.13D 

Experimental scenario Measure of goodness of fit 
(correlation coefficient) p-value 

LPS (Figure 6.13C) 0.92 0.012 

LPS (Figure 6.13D) 0.89 1.e-4 

EPIex+LPS (Figure 6.13C) 0.77 0.023 

EPIex+LPS (Figure 6.13D) 0.76 9.e-3 
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It is important to note that the data displayed in Figure 6.13C and Figure 6.13D (square 

and diamond markers), albeit well described by our model yielding a correlation 

coefficient ~ 0.8 (Table 6.5), are not used to calibrate our model but rather to validate the 

intended structure of our model in predicting the sympathomimetic properties of acute 

epinephrine infusion upon the inflammatory manifestations of human endotoxemia. 

Relevant quantitative data (Tpar and HR) are employed from the experimental study 

(Alvarez, Katsamanis Karavidas et al. 2007) (depicted in Figure 6.11C and Figure 

6.11D) and the measure of goodness of fit yields a correlation coefficient of 0.92 for Tpar 

dynamics (p-value 0.012) and 0.89 for HR (p-value 1.e-4) indicating strong correlation 

between the experimental measurements and the predicted (estimated) values of the 

proposed model. 
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Chapter 7  

Conclusions and Future Perspectives 

7.1 Summary 

A critical goal of translational research is to convert novel insights from basic science to 

clinically relevant actions related to disease prevention and diagnosis, eventually 

enabling physicians to identify and evaluate treatment strategies. Integrated initiatives are 

identified as valuable in uncovering the mechanisms underpinning the progression of 

human diseases. The advent of high-throughput technologies has enabled the generation 

of massive amounts of biological data at an unprecedented rate, facilitating a dramatic 

increase in the degree of quantification applied to modern biological research (Beard, 

Bassingthwaighte et al. 2005). Further, the organization, regulation and dynamical 

responses of biological systems are in many cases too complex to allow intuitive 

predictions and require the development of mathematical modeling for quantitative 

assessments and a reliable understanding of the systems’ functions. The recognition that 

biological systems display emergent properties has renewed interest in systems biology 

approaches which investigate how the various components are organized across scales 

and how they interact to generate a behavior. However, central to integrative systems 

biology is the identification of those critical components and the rules that define their 

interactions and give rise to the emergent host response.  

In this dissertation we discussed the potential role of systems-based approaches can 

have in the quest to better understand and module critical physiological responses, 
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namely human inflammation. We demonstrated how data analysis can yield significant 

insights and enable the development of semi-mechanistic, quantitative models of 

inflammation that can be used as minimal representations of biological reality to 

reconcile observations and potentially guide future experimental design. The unifying 

hypothesis is that the observed response is the outcome of the orchestrated interactions of 

critical modules in the form of a network. Thus, a multiscale integrative approach is 

proposed and developed that aims at exploring the emergence of interaction networks and 

functional modules linking processes that span various scales from the cellular (low) 

level to the systemic (high) host response level.  

The overarching goals of this research are to demonstrate the feasibility of a relevant, 

physiology-based and multiscale model of human endotoxemia, as a prototype model of 

acute inflammation in humans, coupling essential regulatory processes across the host 

from the cellular to the systemic level; and to propose a template for multiscale modeling 

extendable to a variety of clinically important conditions. The unique aspects of the 

proposed modeling effort include: (i) identification of the essential responses 

characterizing the cellular (leukocyte) transcriptional dynamics in response to endotoxin 

administration. Specifically, these responses, in the case of transient human endotoxemia, 

include a pro-inflammatory response (P) that consists of the early increased expression of 

cytokines and chemokines; an anti-inflammatory response (A) which serves as the 

immunoregulatory arm of the host defense system and, an energetic response (E) that 

involves the decreased expression of genes participating in cellular bio-energetic 

processes; (ii) reverse engineering of quantifiable representations of these elements 

exploring the concept of physicochemical (Aldridge, Burke et al. 2006) and indirect 
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response (IDR) modeling (Jusko and Ko 1994) that connect extracellular signals and 

intracellular signaling cascades leading to the emergent transcriptional dynamics. 

Physicochemical modeling seeks to describe essential biological processes in terms of 

equations that can be physiologically interpretable. Such models work best with 

regulatory processes where components (i.e. “pathway signals”) and connectivity are 

relatively well established. By incorporating biological information in the form of kinetic 

rules and signaling cascades we would probably be able to develop dynamic repositories 

of interpretable knowledge. Accordingly, in our injury model, the response is triggered 

by the activation of critical pro-inflammatory signaling cascades (i.e. NF-kB signaling 

module) as a result of the formation of an activating signal associated with the 

recognition of extracellular signals (LPS) from their appropriate receptors (R, TLR4). On 

the other hand, when prior knowledge is sparse, the manifestation of a perturbation is 

difficult to be explicitly described using elementary kinetic reactions. Our inability to 

precisely model such signaling events makes IDR appealing. The underlying assumption 

of indirect response models is that external signals affect indirectly the synthesis and/or 

degradation term of the response of interest, in our case the transcriptional dynamics; and 

finally (iii) multiscale, physiology-based modeling that quantifies critical aspects of the 

complex neuroendocrine-immune crosstalk and autonomic heart rate regulation while 

systemic disruptions are assessed by clinical monitoring of vital signs (i.e heart rate) and 

parameters of heart rate variability.  

This research is accomplished by exploring the interaction networks at the level of 

intracellular signaling in conjunction with the (high) level of interacting hormonal and 

physiological components. At the cellular level, elementary signaling pathways propagate 
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extracellular signals to the transcriptional response level. At the autonomic level, 

essential modules associated with the secretion of endocrine stress hormones (cortisol, 

epinephrine) are considered. Finally, at the (high) systemic level, phenotypic expressions 

such as clinical heart rate measurements and parameters of heart rate variability are 

incorporated to assess systemic abnormalities and autonomic dysfunction indicative of 

the severity of the host. These elements are critical for the development of a multiscale 

human inflammation model that bridges the initiating signal (LPS) and macroscopic 

(phenotypic) observables (HR, HRV) through semi-mechanistic based models that 

include transcriptional dynamics, signaling and hormonal components.  

Model parameters are appropriately evaluated based on human experimental data that 

span multiple scales including gene expression data, data at the level of circulating 

hormones and finally data at the level of the host (i.e. clinical observables). The validity 

of the proposed model is demonstrated through its potential to reproduce key 

inflammatory relevant scenarios indicative of the complex (non-linear) dynamics of acute 

inflammation and involve: (1) a constrained inflammatory response elicited by low-dose 

endotoxin corresponding to successful resolution of all systemic inflammatory 

manifestation within 24hr after the administration of the inflammatory stimulus 

(endotoxin, LPS); (2) an unconstrained inflammatory response that can be elicited under 

high concentrations of LPS characterized by a pro-inflammatory cytokine “storm” that 

contributes to derangements in neuro-endocrine and autonomic activities phenotypically 

expressed as uncontrolled/sustained tachyarrhythmias and/or diminished physiologic 

variability; (3) sustained inflammatory response with ongoing presence of the 

inflammatory instigator – persistent infectious response where the inflammatory stimulus 



209 

 

is not cleared from the host; (4) tolerance and potentiation effects evoked by the repeated 

pre-exposure of the host to controlled levels of endotoxin emphasizing timing and dosing 

as key determinants for endotoxin hypo-responsiveness or “lethality” and finally (5) 

systematic perturbations associated with the cardiovascular implications of acute stress 

hormone infusion (cortisol, catecholamine excess) on the host under conditions of either 

low or high infectious challenge.  

A fundamental assumption of our model is the existence of two steady states that 

depending on the anti-inflammatory “reservoir” of the host can represent either 

“recovery/self-limited” or “uncontrolled/sustained inflammation” that might account for 

the transient clinical phenotype of severely stressed patients. However, we would like to 

point out that a direct comparison between our model predictions and clinical 

observations is beyond the scope of this dissertation. Instead, the overall goal of this 

research is to develop an in silico model of human endotoxemia that would allow us to 

evaluate antecedent stresses upon the systemic inflammatory manifestations of acute 

injury. Thus, the proposed model lays the foundation for a translational systems-based 

model of inflammation that could clarify how cellular inflammatory processes and 

neural-based pathways mediate the links between patterns of autonomic control and 

clinical outcomes. It is therefore the goal of this research to explore the possibility of 

developing such relevant human inflammation models that would allow us to evaluate 

antecedent stresses upon the systemic inflammatory manifestations of acute illnesses; 

thereby enabling the use of systems biology in translational research. 
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7.2 Future work 

One of the key hypotheses made in the development of the model as presented in Section 

6.2 is that changes in heart rate variability (HRV) during inflammation occur due to 

conversion of the neuronal firing rate, represented by fP, into neuromediator 

concentrations (Sf) which affect changes in pacemaker cycle length driving beat to beat 

variations as quantified by HRV (Zaza and Lombardi 2001). For purposes of this model, 

the dynamics of the firing rate, fP, are simulated as an exponential decay that would 

biologically reflect an instantaneous “burst” of efferent nerve activity. However, this 

time-dependent function (fP) should be reset to its baseline and give rise to another 

“burst” as the inflammatory reaction evolves. In an effort to model such neuronal firing 

rate, we propose using an “integrate-and-fire” model which has been used for the impulse 

generation process of nerve cells (Sanderson 1980). This model transforms a continuous-

time input signal into discrete-time series – a point process signal that in our case should 

be the neuronal spike train. A point process is a useful mathematical representation of a 

signal which consists of repeated similar events. The significance of the event is attached 

to the time at which it occurs rather than the detailed properties of the event itself. Prior 

studies (Chiu and Kao 2001; Olufsen, Tran et al. 2006) have employed the general 

principles of an integrate-and-fire model to characterize heart beats as discrete-time series 

in response to chemical concentrations (continuous signals).  

In our model as described in Section 6.2, since the pro-inflammatory response (P) can 

signal to the autonomic nervous system via afferent sensory neurons (Elenkov 2008), we 

have assumed that (P) response serves as the input signal to cardiac neurons. Thus, the 

integrate-and-fire model will transform the continuous-time (P) signal into a train of 
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spiking firing rates, fP. It is expected that a neuronal spike occurs every time the time-

dependent function, fP, has deviated from its baseline (i.e. quantified by the value 1) and 

take the value 0. When this event occurs the function, f, is reset to its baseline by the 

integrator component of the model (de Boer, Karemaker et al. 1985). Assuming that an 

increase in spiking firing rate is associated with increased release of neuromediator 

concentrations affecting heart rate, variations in heart rate as manifested by HRV can 

thereby be described by the time intervals where cardiac nerves have fired a pulse. 

Moreover, the general principles of the integrate-and-fire model can be applied to 

demonstrate the characteristics of beat-to-beat fluctuations in heart rate under 

simultaneous sympathetic and vagal controls as presented in Section 6.3. By considering 

the ANS influence (sympathetic/parasympathetic activities) as the input signal, the 

integrate-and-fire model will generate a heartbeat series and thus heart rate can be 

expressed as discrete-time series of interbeat intervals rather than a continuous-time form.  

Further, in this modeling effort homeostasis can be viewed as a temporally invariant 

equilibrium steady state. However, physiologic and biochemical activities exhibit 

circadian rhythms(Green, Takahashi et al. 2008) and variations at both the level of 

autonomic and endocrine functions(Coogan and Wyse 2008; Lowry 2009). Thus, innate 

and adaptive immune activities are influenced by circadian rhythms and the diurnal 

incidence of some adverse events may be related to stress-induced alterations in the 

normal circadian pattern. Therefore, detailed knowledge about circadian aspects of the 

host defense system may be of considerable importance for the chronotherapy in neuro-

endocrine and autonomic disorders (Haus 2007). Modeling circadian aspects of the host 

defense system would provide the necessary ammunition for moving forward with the 



212 

 

proposed integrated model predicting the influence of anti-inflammatory  interventions in 

the context of physiological circadian therapy (Liu, Lewis et al. 2007). 

Predicated upon the assumptions invoked in the development of the multiscale human 

inflammation model, an exogenously-induced prolonged stress condition, assessed by 

infusion kinetics (Hazra, Dubois et al. 2008; Ramakrishnan, DuBois et al. 2002a; Yao, 

Hoffman et al. 2008), will increase circulating levels of stress hormones followed by a 

concomitant increase in their pharmacodynamic effect. This effect will be manifested as 

potentiation in the anti-inflammatory signaling component (A) that gives rise to reduced 

levels of the pro-inflammatory response (P). Although the anti-inflammatory capacity of 

exogenously-induced acute hypercortisolemia or catecholamine excess is well established 

(Barber, Coyle et al. 1993; van der Poll, Coyle et al. 1996) such relationship varies 

considerably under prolonged stress condition(van der Poll, Barber et al. 1996; van der 

Poll, Coyle et al. 1996).Thus, the duration of exposure to stress (acute versus chronic) is 

an important distinguishing characteristic of stress-induced effects in the immune 

response altering the antecedent state of the in vivo host defense mechanisms. This 

dissertation is founded upon the hypothesis that during the early post-injury response the 

anti-inflammatory capacity of stress hormones is evident. However, alternative 

topologies may be explored (Porchet, Benowitz et al. 1988) with the availability of data 

related to the influence of extended period stress hormone infusion for simulating 

clinically severe stressful conditions.  

It is important to realize that in silico models will never replace either biological or 

clinical research. They could, however, rationalize the decision making process by 

establishing the range of validity and predictability of intervention strategies. Finally, we 
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would like to argue that possibly a very significant, and often overlooked, success of 

systems-based research is that through the universal language of mathematics and the 

opportunity of formalizing and quantifying abstract concepts of complex physiological 

phenomena, albeit with significant simplifications often times, it has managed to 

establish communication bridges between scientists from a variety of fields with a 

common goal: to develop a better understanding of a physiological condition. This could 

be one of the most significant impacts of systems-based translational research. 
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