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ABSTRACT OF THE DISSERTATION 

Correction for Guessing in the Framework of the 3PL Item Response Theory   

By TING-WEI CHIU 

 

Dissertation Chair: 

Gregory Camilli, Ph.D. 

 

Guessing behavior is an important topic with regard to assessing proficiency on multiple 

choice tests, particularly for examinees at lower levels of proficiency due to greater the 

potential for systematic error or bias which that inflates observed test scores. Methods 

that incorporate a correction for guessing on high-stakes tests generally rely on a scoring 

model that aims to minimize the potential benefit of guessing. In some cases, a formula 

score based on classical test theory (CTT) is applied with the intention of eliminating the 

influence of guessing from the number-right score (e.g., Holzinger, 1924). However, 

since its inception, significant controversy has surrounded the use and consequences 

associated with classical methods of correcting for guessing. 

More recently, item response theory (IRT) has been used to conceptualize and 

describe the effects of guessing. Yet CTT remains a dominant aspect of many assessment 

programs, and IRT models are rarely used for estimating proficiency with MC items ï 
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where guessing is most likely to exert an influence. Although there has been tremendous 

growth in the research of formal modeling based on IRT with respect to guessing, none of 

these IRT approaches have had widespread application. 

This dissertation provides a conceptual analysis of how the ñcorrection for 

guessingò works within the framework of a 3PL model, and two new guessing correction 

formulas based on IRT are derived for improving observed score estimates. To 

demonstrate the utility of the new formula scores, they are applied as conditioning 

variable in two different approaches to DIF: the Mantel-Haenszel and logistic regression 

procedures. 

Two IRT formula scores were developed using Taylor approximations. Each of 

these formula scores requires the use of sample statistics in lieu of IRT parameters for 

estimating corrected true scores, and these statistics were obtained in two different ways 

that are referred to as the pseudo-Bayes and conditional probability methods. It is shown 

that the IRT formula scores adjust the number-correct score based on both the proficiency 

of an examinees and the examineeôs pattern of responses across items.  

In two different simulation studies, the classical formula score performed better in 

terms of bias statistics, but the IRT formula scores had notable improvement in bias and 

r
2
 statistics compared to the number-correct score. The advantage of the IRT formula 
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scores accounted for about 10% more of the variance in corrected true scores in the first 

quartile. Results also suggested that not much information lost due to the use of Taylor 

approximation. The pseudo-Bayes and conditional probabilities methods also resulted in 

little information loss. When applied to DIF analyses, the IRT formula scores had lower 

bias in both the log-odds ratios and type 1 error rates compared to the number-corrected 

score. Overall, the IRT formula scores decreased bias in the log-odds ratio by about 6% 

and in the type 1 error rate by about 10%. 
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CHAPTER I. INTRODUCTION 

Guessing is an important issue with regard to multiple choice (MC) tests. Examinee 

guessing behavior increases when examinees are encouraged to answer as many 

questions as possible (e.g., ñTry to answer all itemsò), regardless of whether they know 

an answer. In this case, guessing is likely to increase, which in turn is likely to introduce a 

type of error variance distinct from classical random measurement error. Especially at the 

lower range of test scores, guessing is also likely to introduce a positive bias to examinee 

proficiency (Rowley & Traub, 1977). While the former problem can lead to incorrect 

interpretation of a score where there is no actual variability, the latter problem has the 

potential inflating average test scores. Both problems can result in incorrect 

interpretations of examinee proficiency relative to a proficiency classification (e.g., 

partially proficient, proficient, and advanced) or to examinees that do not guess. In 

general, guessing potentially has a number of impacts on test scores in terms of reliability 

and validity. For this reason, research focused on remedying the effects of guessing on 

test scores has a long history in the field of educational measurement.  

There have been many approaches to correct or reduce the effects of guessing. A 

formula score based on classical test theory (CTT) is the most widely known, and is (or 

has been) used for major achievement test programs such as the SAT Reasoning Test, 
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SAT Subject Tests, and the Graduate Record Examination (GRE) Subject Tests 

(Bridgeman, & Schmitt, 1997). The classical formula score adjusts a number-correct 

score by subtracting a proportion of the incorrect responses based on the number of item 

options. Since its inception, significant controversy has existed regarding the application 

of this formula score and its consequences (Roberts, 1995). More recently, modern test 

theory like the three-parameter (3PL) model of item response theory (IRT) has been used 

to conceptualize and describe the effects of guessing in obtaining examineeôs proficiency 

by adding a pseudo-guessing item parameter (Embretson & Reise, 2000). In IRT, 

examineeôs proficiency level is estimated using item parameters as applied to item 

response patterns. Both classical formula scoring methods and 3PL IRT models assume 

that examinees either guess at randomly or respond based on their knowledge (Holzinger, 

1924; Waller, 1989). However, both methods ignore the common situation in which 

ordinary examinees answer questions using partial knowledge to eliminate some choices 

(Waller, 1989). Therefore, even with an IRT 3PL model, proficiency estimation may be 

less than optimal because guessing takes the form of many psychological strategies that 

are difficult to incorporate in a psychometric model.  

In the remainder of Chapter I, a short background and basic rationale used to 

justify correction for guessing are given. The main utility of the classical formula score, 
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as argued first, is actually a strategy for preventing guessing. Second, a number of 

criticisms of classical formula scoring are reviewed, which fall into the two general 

categories of behavioral prevention and post hoc statistical correction. A link between 

IRT and post hoc statistical corrections is then made. Given this background, the 

objectives of this dissertation are introduced, followed by the methodology and the 

potential significance of obtaining a clearer understanding of the effects of guessing. 

Background for the Correction-for-Guessing 

Assessments are used for a variety of purposes and a wide range of scalesðfrom 

classrooms to state and nation-wide programs. The more frequently encountered purposes, 

such as school admissions, evaluation of teaching and learning, career placement and 

recruitment, and professional licensure, employ a variety of item formats (Willingham & 

Cole, 1997). The most common type of item format in standardized achievement testing 

is multiple choice (MC) because, compared to other test formats, this format is relatively 

cost-effective in test development and can be designed to assess many different content 

domains and skill levels (Ferrara & DeMauro, 2006). Multiple-choice items can also be 

administered in a relatively short amount of time and are easily scored relative to other 

item formats such as short or extended constructed responses (e.g., essays) (Ferrara & 

DeMauro, 2006). Even when tests are designed with both MC and constructed response 
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items, MC items typically comprise a large portion of the total points possible. 

Of particular concern with MC items is the possibility of  guessing during test 

administration (Alnabhan, 2002). On a MC test, examinees may encounter items for 

which they do not recognize the correct option. While some examinees may choose to 

omit responses to such items, others may choose to guess from among the presented 

options. When examinees choose to guess, they frequently employ various strategies that 

are dependent on the context in which the test is administered. For example, if examines 

are encouraged to answer as many questions as possible, regardless of whether they know 

an answer, guessing is likely to increase. In general, guessing impacts on test scores in 

terms of reliability and validity (Burton & Miller , 1999; Ebel, 1972; Lord, 1975). 

Classical Formula Scoring 

The impact of corrections for guessing has been studied for decades in terms of both 

preventing guessing, and providing statistical methods of correction for guessing. 

Corrections for guessing on high-stakes tests are typically applied after administration, 

and the classical formula score is widely considered to eliminate the influence of 

guessing (e.g., Holzinger, 1924). Though classical formula scoring is a procedure 

ostensibly designed to reduce score inflation, it is more accurately defined as a prevention 

strategy because examinees receive a formula-scoring instruction prior to test 
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administration. Therefore, if examinees responded rationally to the warning of a formula 

correction, they would omit items for which they do not know the correct answers. 

Guessing behavior is reduced during a test-taking rather than during scoring.  

Illustration of Prevention  

To prevent guessing behavior during a test administration, Wise, Bhola, and Yang (2006) 

introduced an effort-monitoring method in a low-stakes test by using a computer to 

monitor examinee efforts based on item response time. Because with low-stakes testing, 

scores carry little or no personal consequences, examinees may not have the motivation 

to solve the problems. They may engage in guessing by responding to items rapidly, so 

their test scores may underestimate their true abilities. For that reason, warning messages 

may prevent guessing due to rapid responses. Note that in this example, the effect of 

guessing is to deflate test scores, and thus formula-scoring would actually make matters 

worse. 

Arguments for and against Classical Formula Scores 

The guiding principle for classical formula scoring is that examinees with the same 

underlying ability should receive the same score regardless of whether they guess 

randomly or omit a response. Over the decades that this procedure has been in use, the 

formula-adjusted scores have generally been shown to have slightly higher reliabilities 
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than uncorrected scores, yet inconsistent results have been found with respect to validity 

(Lord 1963, Diamond & Evans 1973, Alnabhan, 2002, and Burton, 2002). Still, a number 

of criticisms of classical formula scoring have been made from both psychological and 

statistical perspectives. 

Psychological Perspective 

Although classical formula score has been applied to standardized tests, significant 

controversy has surrounded the use and consequences associated with classical formula 

score since its inception (Roberts, 1995). In particular, this controversy has focused on 

the ñinvariance effect (IE) and differential effect (DE)ò hypotheses (Albanese, 1988). 

Advocates of the IE hypothesis, such as Angoff & Schrader (1984) asserted that if 

examinees were forced to respond to omitted items, regardless of scoring instructions 

received, the chance for them to get the correct responses on those items would not 

exceed the chance level. They hypothesized that guessing would result in random error, 

and that everyone would have an equal chance of answering omitted items correctly. 

Thus, use of classical formula score eliminates the random error (conceptualized as an 

invariant effect on test scores) caused by guessing. 

However, examinees usually do not choose the answer randomly when they do 

not know the correct option. They might use knowledge on the item to eliminate one or 
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more options, and guess from the remaining options. Besides using partial knowledge, 

they may also apply different option selection strategies. As a result, the distribution of 

responses would not be uniform, a condition inconsistent with random guessing 

(Cronbach, 1984). Therefore, in contrast to Advocates of the IE hypothesis, the advocates 

of the DE hypothesis assert that certain examinees may omit items for which they have a 

greater than random chance of answering correctly, in order to avoid the scoring penalty 

associated with classical formula score. In this case, test scores may underestimate an 

examineeôs true ability. Several studies have shown that when examinees are forced to 

respond to items they would naturally omit, they have better than chance levels of 

answering correctly (Bliss, 1980 & Albanese, 1988). Personality and psychological 

factors may affect guessing behavior (Budescu & Bar-Hillel, 1993; Burton, 2005), and 

under formula-scoring instruction, certain groups of examinees would be penalized. 

Statistical Perspective 

Identical points are subtracted for each wrong response under classical formula score 

(given a constant number of options). Ultimately, this results in a formula score which is 

a simple linear transformation from the number-correct score. The classical measures of 

reliability and validity are identical under linear transformation; therefore, improvements 

in these indicators of test quality are necessarily the result of changing examinee behavior 
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by a priori formula-scoring warnings.  

Modern test theory offers several alternatives to the conceptualization of guessing. 

Item response theory has been used to conceptualize and describe the effects of guessing. 

In the context of IRT, the 3PL model (Birnbaum, 1968) is a popular choice for MC tests, 

because examineeôs proficiency estimates depend on both examineeôs responses pattern 

and item parameters that describe difficulty, item discrimination, and a lower asymptote 

(or pseudo-guessing). Indeed, the argument could be made that the IRT 3PL model is 

preferred for estimating item and individual proficiency parameters in the presence of 

guessing because it generally fits data better (Hambleton, Swaminathan, & Roger, 1991; 

Embretson & Reise, 2000).  

Both classical formula score and IRT 3PL assume that examinees guess randomly, 

yet, the effect of guessing on examineeôs score is different. In classical formula scoring 

methods, examineeôs true scores depend on the correction as applied directly to the 

number-correct score. See Figure 1-1 for a visual description of this effect. 
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Figure 1-1. The effect of guessing on IRT 3PL model and formula scoring method 

Item Parameters (a, b, c) Item Response Pattern

Examineeôs Proficiency ()q

IRT 3PL Model

Formula Scoring

Correction factor å õ
æ ö
-ç ÷1

w

k
Number-Correct Score

Corrected True Score

w: number of incorrect  response

k: number of options per item

 

The IRT 3PL model adds the guessing parameter to create a nonzero lower asymptote to 

the item response function for MC items. If an IRT 3PL model fits item responses well, a 

corrected true score based on IRT scoring could be obtained that is roughly similar to the 

classical formula scoring. However, as shown below, in the framework of an IRT 3PL 

model, the effect of the lower asymptote or ñguessingò parameter on an examineeôs 

estimated proficiency is not just a function of item parameters, but also of an examineeôs 

item response pattern relative to those parameters. So, the impression given by the 

classical formula score is incomplete because it is item dependent but not person 

dependent. 



10 

 

 

 

Purpose 

The purpose of this dissertation was three-fold and is designed to answer the following 

questions: 

1.  How does the ñcorrection for guessingò work within the framework of an IRT 

3PL model? 

2.  Can IRT formula scores be constructed that improve true score estimates? 

3.  Do IRT formula scores have potential applications in assessment programs 

using traditional number-correct scores? 

The first study in this dissertation was designed to answer question 1 and 2, while 

a second study was designed to answer question 3. The aim of this dissertation was to 

investigate guessing in the IRT framework, and then to determine whether IRT formula 

scores can produce more reliable and accurate estimates of true scores than would be 

obtained without guessing. Personality and psychological factors as they relate to 

formula-scoring methods are topics outside the scope of this dissertation. Moreover, the 

basic assumptions were made in this dissertation that examinees are instructed to provide 

answers to all questions, and that omitted items are scored as incorrect. The effects of 

these assumptions were not evaluated.  



11 

 

 

 

The goal of this research was to derive IRT formula scores and to compare the 

properties of these scores to those obtained with classical formula scoring. Guessing was 

first examined as a conceptual analysis within the framework of an IRT 3PL model to 

understand how IRT proficiency estimates are adjusted for the lower asymptote (or c 

parameter). Unlike the classical formula scores in which points are subtracted from the 

number-correct scores based on the number of incorrect responses; it was shown that IRT 

formula scores adjust proficiency estimates for patterns of correct responses. 

The second goal of this study was to show how IRT formula scores can be 

developed that provides more reliable true score estimates under certain conditions. Two 

IRT formula scores were developed and investigated in two simulation studies. Because 

these IRT formula scores take into account response patterns and item characteristics, 

they are not simple linear transformations of the number-correct score. Moreover, the IRT 

formula scores can be implemented without IRT software. 

The IRT formula scores were then evaluated in terms of accuracy and accounting 

for true score variance compared to number-correct and classical formula scores. 

Previous studies have focused on overall comparisons between an examineeôs 

number-right score and formula score. Because the effects of guessing behavior are likely 

to be the strongest with examinees of lower ability (Lord, 1980), separate analyses were 
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conducted within each quartile of the true score distribution in order to explore whether 

the IRT formula scores perform differently at different score levels. In particular, this 

study sought to determine if the IRT formula scores of lower-ability examinees improved 

the most. 

The IRT formula scores were obtained, as described below, by a modification of 

the maximum likelihood method for estimating proficiency (ɗ). Accordingly, the log 

likelihood was differentiated with respect to examinee proficiency, set to zero, and the 

result simplified with several key assumptions. A major goal was to show how ability 

estimates are affected by c parameters. It could be argued that no correction in observed 

score units is required if ability is estimated using IRT. However, the rationale for using 

IRT 3PL ability estimation in the presence of guessing is not equivalent to a conceptual 

demonstration of the function of the c parameter. 

The third goal of this dissertation was to demonstrate an application of IRT 

formula scores to differential item functioning (DIF). Because IRT formula scores were 

obtained without IRT parameter estimates, they may have a potential use in large-scale 

programs that use number-correct scores for secondary analyses. Importantly, DIF 

analysis is a type of validity evaluation is most often conducted in the observed score 

metric in most, if not all, state assessment programs, such as California (CA Department 
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of Education, 2006), New York (NY State Department of Education, 2005), and Idaho 

(Hauser & Kingsbury, 2004). Observed scores are also typically used to examine 

linguistic issues in assessment programs (e.g., Puhan & Gierl, 2006). Testing 

organizations such as the Educational Testing Service (ETS) and the CTB McGraw-Hill 

all conduct DIF analyses based on number-correct scores to examine violations of 

measurement invariance for ethnic and gender groups (Bridgeman & Schmitt, 1997).  

In the second study, DIF was investigated by conditioning on different formula 

scores as well as the number-correct score, using the Mantel-Haenszel (MH) procedure 

(Holland & Thayer, 1988) and logistic regression (LR) (Swaminathan & Rogers, 1990) 

procedure. Different factors which are likely to affect the type 1 errors are manipulated, 

including item parameters, sample size, and ability level (Rogers & Swaminathan, 1993; 

Roussos & Stout, 1996; Tian, 1999). The goal was to evaluate whether the use of IRT 

formula scores can improve inferences relative to those obtained with number-correct 

scores.  

In summary, formula scoring in the framework of the 3PL IRT model is 

conceptually analyzed in this study. Based on this mathematical analysis, IRT formula 

scores are evaluated for their statistical properties. Finally, these IRT formula scores are 

applied as conditioning variables in DIF analysis. In the following chapters of this 
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dissertation, a literature review is given in Chapter II on both correction-for-guessing and 

DIF. In Chapter III, details of the derivations of the new IRT formula scores are then 

given, and the simulation designs for the DIF analyses are also provided. In Chapter IV, 

results are presented and explained. Finally, in Chapter V, educational importance, 

limitation of this dissertation is discussed along with suggestions for future research. 
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CHAPTER II. LITERATURE REVIEW 

In this chapter, a review of different scoring rules for MC tests is given, followed by a 

review of corrections for guessing in order to provide necessary conceptual context. 

Different statistical methods related to corrections for guessing are addressed from the 

perspective of classical test theory (CTT), followed by the perspective of item response 

theory (IRT) in the framework of the 3PL model. Empirical results are reviewed from 

different perspectives on corrections for guessing based on CTT, and several IRT 

investigations are examined. Because IRT formula scores are applied to differential item 

functioning (DIF), an overview of several current methodologies used in number-correct 

DIF analysis are also included. Comparisons between different methods, limitations of 

DIF, and empirical research results are then presented. 

Correction for Guessing 

A necessary but not sufficient condition for guessing is that an examinee does not have 

enough knowledge to answer an item correctly. Given its condition, and the fact that an 

examinee chooses to answer anyway, there is a nonzero probability of selecting a correct 

answer. The primary effect of such guessing is that both observed test scores and test 

variance are artificially inflated. Three different methods for scoring MC tests are 

discussed below: the number-correct score, the existing formula score based on a CTT 
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perspective, and a conceptual approach based on the IRT three-parameter logistic (3PL) 

model. 

Number-Correct Scoring Method 

Typically, for a MC item there is only one correct option and each item is scored either 

right or wrong (wrong = 0, right = 1). Items are equally weighted and summed to a total, 

which is called the number-right score. In the traditional method of scoring an objective 

test with n items,  

  ,= + +n R W O  (2.1) 

where R represents the number of correct responses, W refers to the number of incorrect 

responses, and O represents the number of omitted responses. Number-right scoring is the 

most typical scoring rule and R can be expressed as the total test score for an examinee. 

In general, number-correct scores remain an operational aspect of many 

assessment programs due to a number of factors including: the ease of implementation of 

statistical techniques; preferences based on historical precedents; and the greater 

communicative value of classical test statistics to lay audiences. The number-correct 

score is simple and straightforward, yet it does not adjust for the impact of guessing. This 

is an important issue because guessing may impart unreliability to test scores that is 

different from random measurement error, and can result in statistical bias (Rowley & 
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Traub, 1977). Moreover, the number-correct scoring method can encourage examinees to 

answer as many questions as possible and increase the likelihood of guessing. 

Encouragement of guessing might be explicit in the test-taking instructions, e.g., ñTry to 

answer all items.ò It also could be implicit; if test-wise examinees infer that there is no 

penalty for guessing, they may attempt to optimize their scores by answering all items. 

Encouraging guessing can also lead to examinees losing capacity to self-evaluate 

(Abu-Sayf, 1979; Kurz, 1999), and thus open the door for a host of undesirable 

testwiseness or irrational behaviors that affect score validity (Hopkins & Stanley, 1981, 

Chevalier, 1998). 

Classical Test Theory (CTT) Perspective on Correction for Guessing 

To reduce the effect of guessing, some testing programs employ a statistical adjustment to 

number-correct scores. In this case, information about scoring adjustments is given in the 

test instructions so that examinees understand that, for each incorrect answer, there will 

be a score adjustment to the total test score. If examinees respond to this information 

rationally, they will omit their response to any item for which they are completely unsure 

of the answer. The deceptively simple phrase ñformula scoringò is most often used to 

describe these adjustments. The rationale for using the formula scoring method to correct 

for guessing is based on three assumptions (Rowley & Traub, 1977; Crocker & Algina, 
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1986): the examinee either knows the correct answer or has no knowledge at all about the 

item; the examinee will answer the item correctly with knowledge, or will guess or omit 

the item; and every incorrect response is randomly chosen by the examinee. This 

implicitly assumes that the degree of guessing is constant across items. 

Consistent with the assumptions above, there are three scoring models used to 

correct the impact from guessing in the current research literatures. All models are 

consistent with the random-guessing assumptions above. 

Reward for omitted items. The first scoring model rewards examinees additional 

points for not guessing. The formula can be written as 

 = +O

O
C R

k
, (2.2) 

where CO is the corrected observed score, and k represents the number of options per item. 

This formula assumes that if the examinee had attempted an omitted item, the probability 

of answering correctly would be 1/k, which corresponds to a random guess (Crocker & 

Algina, 1986; Kurz, 1999). 

Rights minus wrongs. The second and the most widely used method is also known 

as the formula score or negative marking which can be expressed as 

 
1

= -
-

K

W
C R

k
, (2.3) 

where CK represents the estimated number of correct response based on knowledge. 
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Higham (2007) proposed a psychological threshold model, shown in Figure 2-1, to 

describe how formula scoring method works in psychological terms. 

 

Figure 2-1. The Psychological Threshold Model Implied by Classical Formula Score. 

Item

Correct Response Do not Know the Answer

Guess Omit

Correct Guess Incorrect Guess Correct Guess Incorrect Guess

Forced Response

kp 1 kp-

gp 1 gp-

cp 1 cp- cp 1 cp-

( )kp

( )1 k g cp p pè ø-ê ú ( ) ( )1 1k g cp p pè ø- -ê ú ( )( )1 1k g cp p pè ø- -
ê ú ( )( )( )1 1 1k g cp p pè ø- - -

ê ú

 

According to this schema, examinees have probability (pk) to select the correct answer 

when in fact they know the answer. This probability pk is referring to the psychological 

threshold of answering the item with enough knowledge. Next, when the examinee does 

not know the answer, the examinee decides whether to guess (pg) or not to guess (1- pg) 

on those items for which he/she does not have certain knowledge. Based on the CTT 

assumption, examinees select an option randomly when they do not know the answer of 
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the items; therefore, if a guess is made, the probability to answer the item correctly is c 

(pc = c = 1/k). The ratio of correct guessing to incorrect guessing [c/(1-c) or 1/(k-1)] can 

be used to estimate the number of correct guessing from the number of incorrect guessing. 

As a result, the ratio represents the portion score necessarily to be adjusted from the 

number of incorrect answers.  

Although two scoring methods described above give numerically different value 

and adjustment on test scores, the resulting score is a linear transformation of the 

number-correct score. Furthermore, given n=R+W+O, Equation (2.2) can be rewritten as 

 
1-

= +O K

n k
C C

k k
. (2.4) 

If there are no omitted items, CO is equal to R and is perfectly correlated with CK. Both 

scoring methods provide the identical rank order of scores for fixed values of the same 

set of item responses. 

Scharf and Baldwin method. Scharf and Baldwin (2007) proposed a third method 

which takes the omitted items into account in a maximum penalty equation. This method 

considers omitted items and items not attempted to be incorrectly answered. By replacing 

W with n-R, and CK with CM in Equation (2.3), the number of items assumed correctly 

answered as a result of the examineeôs knowledge can be written as 

 
1

-
= -

-
M

n R
C R

k
. (2.5) 
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Scharf and Baldwin (2007) compared three different methods above and concluded that 

the maximum penalty equation is the least justifiable; whereas the formula scoring 

method can be regarded as the fairest assuming that random guessing on average will be 

cancelled in the final score. 

Empirical Research Results of Formula Scoring based on CTT 

Psychological factors. The different correction methods described above can be 

considered as simple linear transformations of the number-correct score. Therefore, the 

reliability and validity should be invariant except for psychological factors involved in 

guessing. In fact, over three decades of research have shown that the formula score yields 

slightly higher reliability estimates than the uncorrected score method, but inconsistent 

results have been found with respect to validity (Lord 1963, Diamond & Evans 1973, 

Alnabhan, 2002, and Burton, 2002). Lord (1963) argued that the increased validity due to 

formula score occurs only with items having less than five options, the test is more 

difficult, and the examinees vary differently in their tendency to guess. Thus, it appears in 

these instances that some mild psychological effects are operative. 

Personality factors. As noted by Burton (2005) and others, personality factors 

may affect guessing behavior. An application of the formula score is usually provided in 

the test administration instructions. The argument for the formula score is that examinees 
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are encouraged in advance not to guess when they do not feel confident about answering 

an item. Some examinees who understand the formula scoring function will minimize 

their guessing during the exam. In turn, irrelevant test-score variance and bias associated 

with guessing will be reduced. However, examinees may have different reactions to 

formula-scoring instructions. Examinees that are more prone to risk-taking may be more 

willing to guess. Such risk-taking behaviors are a form of testwiseness and can directly 

impact examineesô scores.  

Diamond and Evans (1973) summarized several studies of individual differences 

in risk-taking and concluded that risk takers are penalized less than compliers by the 

formula-scoring instruction on objective tests. Avila and Torrubia (2004) conducted a 

meta-analysis of 19 medical examinations to look at how personality factors affect 

examineesô answering behaviors during an exam. They found that extraversion and 

sensitivity to rewards and punishments (inhibition vs. disinhibition) can affect the number 

of incorrect responses and omitted items, even when examinees are aware that formula 

scoring applied. Davis (1967) recommended a test instruction to be used under formula 

scoring method: 

Your score will be the number of items you mark correctly minus a fraction of the 

number you mark incorrectly. You should answer questions even when you are 
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not sure your answers are correct. This is especially true if you can eliminate one 

or more choice as incorrect or have a hunch or feeling about which choice is 

correct. However, it is better to omit an item than to guess wildly among all of the 

choice given. (p.43) 

To reduce personality effects, it is important to ensure all examinees are informed clearly 

about the answering strategy which will benefit their scores (Frary, 1988).   

Effects on high and low ability examinees. Angoff and Schrader (1984) conducted 

a study using data from the SAT and the GMAT to examine the effects of the formula 

scoring method. In this study, the formula scoring method was applied to both the 

number-right scoring instructions, and the formula-scoring instructions. The results 

suggested that the formula scoring method did not necessarily penalize examineesô scores, 

because the differences between the groups (different instructions) were small. As 

suggested by Lord (1980), differences due to instructions may only occur for low-ability 

regions of proficiency. These examinees tend to pick the attractive but wrong options 

more regularly, and their scores on difficult items are often worse than random guessing.  

Bliss (1980) found that the formula scores tend to penalize high-ability examinees. 

Examinees of high-ability consider formula scoring instruction more seriously and 

usually hesitate to guess on items without knowing correct answers. However, this effect 
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was not confirmed in other studies. Lord (1975) suggested that based on the stated 

assumptions of the formula scoring method, the number of omitted items is the major 

controller for improving score accuracy. He argued that the greatest improvement in 

accuracy should occur for lower-ability examinees who omit many items, and is 

insubstantial for high-ability students who know more correct answers. Crocker and 

Algina (1986) added that the increasing accuracy for lower-ability examinees may be due 

to their lack of understanding of the formula-scoring instructions. Because they do not 

understand the instructions, they may not properly employ the instructions and may be 

more likely to guess at items which they should not attempt. In this case, using the 

formula-scoring method can ironically ensure more reliable prediction of an examineesô 

true ability.  

The role of omits. The number of omitted items is a critical feature of the quality 

of the corrected score. Ben-Shakhar & Sinai (1991) documented that females are more 

likely to omit questions than males even under number-correct scoring instruction. 

However, Grandy (1987) founds no significant difference between males and females on 

omitting items. Examinees from minority backgrounds tended to omit more items based 

on results from the GRE General Test (Bridgeman & Schmitt 1997).  

Partial information and confident misinformation. One major consideration 
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regarding formula scoring is that examineesô guessing behavior does not always comply 

with the random guessing assumptions. One possible violation is that the correction 

ignores partial knowledge. Examinees are assumed either to know the correct answer or 

to have no knowledge at all under formula scoring method. Yet partial knowledge can 

arise in at least two related forms. Some incorrect options may be more off-target than 

others, or an examinee may choose an option by eliminating one or more incorrect 

options (Rowley & Traub, 1977). From this point of view, the correction becomes a 

penalty for not guessing because examinees have a better chance to get an item correct. 

Burton (2002) suggested that when the ñnegative markingò is applied to true/false tests, 

the examiner would have to convince examinees in advance that they are more likely to 

get a higher score when they answer the items for which they have more than 50% 

certainty. 

However, there are also pitfalls to number-correct scoring. Examinees who 

answer items incorrectly based on confident misinformation are at a particular 

disadvantage with number correct scoring. These examinees omit answers even if 

instruction specifies that no penalty for guessing is applied. Other examinees without any 

knowledge may prefer to guess randomly. Thus, relative to other examinees, both 

number-correct and formula scoring methods have the potential to penalize students 
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whose answers are based on faulty knowledge or reasoning. Bridgeman and Schmitt 

(1997) suggested that for tests scored using the number-correct scoring method, 

examinees will unquestionably be at a disadvantage if they are reluctant to guess. 

Moreover, if examinees are unwilling to use an informed guess, their chance to perform 

well on a test using the formula scoring method may be small. Furthermore, the 

distinction between partial knowledge and guessing becomes particularly difficult for MC 

items requiring complex cognitive behaviors, such as multi-step problem solving. 

Examinees of high-ability may benefit from guessing on those uncertain items 

because their guesses are more likely determined by accurate partial knowledge, even 

though it is incomplete. On the other hand, it may be a disadvantage for the low-ability 

examinees to guess, because their guesses are based on incorrect partial information 

(Angoff, 1989). 

Summary of empirical results. Formula scores would seem to work the best when 

the three assumptions are true: Either the examinee knows the correct answer and 

chooses it, or the examinee does not know the answer and omits it, or the examinee select 

one option randomly (Frary, 1988). Muijtjens, Mameren, Hoogenboom, Evers, & van der 

Vleuten (1999) provided a useful discussion of these issues. Based on their research, the 

number-correct scoring method takes more account of partial knowledge than does the 
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formula scoring method. They observed that, whereas the number correct scoring method 

tends to decrease bias, the formula scoring method tends to increase reliability. Given this 

tradeoff, they preferred to use the number-correct score, but they also concluded that the 

psychometric and the educational aspects should be weighed when choosing a scoring 

method and this choice may vary depending on the specific testing circumstances. 

An Item Response Theory (IRT) Perspective of Correction for Guessing 

Modern test theory offers several alternatives to the conceptualization of 

correction for guessing. Item response theory provides a statistical framework for 

describing how item and examinees characteristics interact in test performance. In IRT, 

an examineeôs performance depends on an overall ability ɗ, and the relationship between 

the item performance of an examinee and traits can be described by a parametric item 

response function (IRF) (Hambleton, Swaminathan, & Roger, 1991). An IRF maps 

changes in trait level ɗ corresponding to changes in the probability of a correct response 

(Embretson & Reise, 2000). Compared with CTT, IRT ability estimates can provide a 

wider range of detailed predictions on unobserved testing situations given that item 

parameters are available. In IRT, examinees with different ability levels ɗ have different 

probabilities of answering a particular item correctly. A given model represents the 

probability of a discrete response to an item as a function of a person parameter and one 
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or more item parameters. The most common models employ one proficiency and either 

one (1PL), two (2PL), or three (3PL) item parameters. The probability ɚi for the examinee 

with a certain ability level (ɗ) to answer a particular item right based on 3PL can be 

represented as 

 ( ) ( )1 , , , 1i i i i i i i iu a b c c c Pl q= = + - , (2.6) 

where 
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è ø+ -ê ú

. (2.7) 

The symbol ui represents the scored response (0 or 1) of an examinee to item i, and the 

parameters ai, bi, ci are indices of item discrimination, item difficulty, 

pseudo-chance-level (guessing) parameters, respectively. A scaling constant D = 1.7 is 

included in the model. The item difficulty parameter, bi, represents the point on the ability 

scale where an examinee has 50% chance of giving a correct response when ci = 0 or 

( )1 2ic+  chance otherwise. The item discrimination parameter, ai, represents item 

difference in discrimination and is proportional to the slope of the IRF at the point where 

the ability scale equals bi. The parameter ci represents the probability that an examinee 

with infinitely low ability answering the item correctly. It is assumed that examinees 

either randomly guess or answer on the basis of knowledge. 
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To determine which IRT model to use, several rules can be applied to make the 

decision. The Rasch (1PL) model is favored if each item is equally weighted for scoring. 

On the other hand, if the goal is to model the existing date with more flexible parameter 

estimates, the 2PL or 3PL models may be used (Embretson & Reise, 2000). The 3PL 

model is a common choice because it generally fits MC data better than the 1PL or 2PL 

models with c parameters (Hambleton, Swaminathan, & Roger, 1991; Embretson & Reise, 

2000). There are two solutions to define a guessing parameter and add into models: 1) to 

define a fixed value with c = 1/k, where k represents the number of options per item, and 

2) to use an identical guessing value for all items which is estimated from the data (San 

Martin, del Pino, and De Boeck, 2006). After adding a guessing parameter included in the 

1PL or 2PL model, the probability for the examinee to answer a particular item right will 

be similar to Equation (2.6). Because of their flexibility, efficiency, and 

comprehensiveness, IRT models are widely used in large-scale assessment testing 

programs in different forms (Yen & Fitzpatrick, 2006). 

Lord (1980) suggested that the formula scoring method may be used to estimate 

examineesô true score for tests designed with any IRT model. According to this method, 

the formula score correction would be applied directly to the estimated true score based 

on Equation (2.6). The two critical assumptions of the use of the formula score in IRT are 
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that examinees answer items based on their ability on the specific latent trait only, and 

that examinees understand and follow the formula-scoring instructions. Lord (1980) 

suggested that the practice can be used to estimate an examineeôs score even when there 

are omitted items, as long as the examinee finishes all test items. He also argued that if 

examinees exhibit different patterns in omitted items or do not finish the test, a 

modification of this model will be needed.  

Modern test theory offers several alternatives to the conceptualization of guessing. 

Informal approaches to IRT analysis have been attempted in which guessers are identified 

and excluded from the data set before item parameter estimation with a 2PL model. A 

second approach is based on the idea that the presence of noise in test score data, such as 

guessing or other different response strategies, leads to difficulty in the estimation of 

proficiencies. One solution to this problem is robust estimation as reported by Wainer and 

Wright (1980). They employed a jackknife scheme for estimating proficiency (ɗ) based 

on a Rasch model. In order to compute jackknife pseudo-values, each item was omitted 

sequentially and ɗ was re-estimated. Their results indicated that in the jackknife estimates, 

the effects of unusual item responses (including items that appeared to be answered by 

guessing) were reduced. Some criticisms of this work were given by Divgi (1986) and 

Dimitrov (2004) because the procedure can not estimate ability if the score is near zero or 
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perfect. Dimitrov (2004) also suggested methods for improving the jackknife approach on 

ability estimation. 

In contrast, one other formal measurement approach to guessing treats examinees 

as having a probabilistic membership in latent classes. Yamamoto (1989) formulated a 

mixture model in which one group (or latent class) of examinees are random guessers, 

and a second group responds to an item according to the Rasch model. Xie (2002) found 

that the estimate of item difficulties from the mixture model was closer to the true item 

difficulties than from a simple Rasch model and in further simulation work, showed that 

the mixture model provides more accurate estimates than the 3PL model of both item and 

person parameters (the model was also successful in retrieving the mixture proportions). 

San Martin et. al. (2006) proposed an ability-based guessing model. They conducted a 

simulation study with a 3PL model, which guessing was modeled as a function of 

examinee proficiency ɗ. They applied the model to different tests in language and 

mathematics and concluded that the c parameters seemed to depend on proficiency for 

the reading test, but not for the mathematics test. They concluded that partial knowledge 

plays more of a role in reading, that is, examinees use their ability to guess to a greater 

degree on the language test. In another innovative application, Wise and DeMars (2006) 

proposed the effort-moderated IRT model which takes into account item response time in 
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the estimation of proficiency and item parameters. Their proposed model reduced the 

effects of rapid guessing which results in better model fit. The effort- moderated IRT 

model also improved accuracy of item parameters estimates and yielded proficiency 

estimates with higher convergent validity.  

In sum, there has been tremendous growth in the research of formal modeling 

with respect to guessing. It is obvious that many debates on the application of formula 

scoring stem from the lack of sensitivity to partial knowledge, and the inconsistency of 

psychological effects due to formula-scoring instructions. Some research on correction 

for guessing has been done in IRT theory; however, none of the new IRT approaches have 

widespread application in formal testing programs. 

Differential Item Functioning 

In this section, a brief introduction to differential item functioning (DIF) is given. This 

provides some context for the application of the two IRT formula scores to DIF analysis. 

The IRT formula scores after development are applied to a non-IRT method of DIF. Thus, 

after a brief review of some topics in IRT framework for DIF, two major non-IRT 

methods of DIF analysis are discussed (the Mantel-Haenzel and logistic regression 

approaches). 

Along with the development of testing theories, an issue of great importance to 
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the public is test fairness. In the last two decades, there has been considerable attention in 

the measurement community to detecting items that may lead to the misestimation of 

proficiency for particular groups of examinees (Embretson & Reise, 2000). This area of 

research is known as differential item functioning (DIF), which is defined by 

psychometricians as follows: ñAn item shows DIF if individuals having the comparable 

ability, but from different groups, do not have the same probability of getting the item 

rightò (Hambleton, Swaminathan, & Roger, 1991). Racial, ethnic, and gender differences 

are the most common groups in DIF research, but other groupings such as social class, 

age, and geographic region have also been considered (Camilli & Shepard, 1994). The 

different groups are usually referred to as the focal group, which is the particular group of 

interest (usually the minority group), and reference group, white is usually a baseline 

group. 

In the past decades, psychometricians have developed many parametric and 

nonparametric techniques to assess DIF based on classical measurement theory and IRT. 

Researchers initially focused on group differences in item difficulty, calculated as 

p-values, and then relative differences in p-values. However, subsequent research 

indicated that these methods provide biased estimates of DIF under certain conditions, 

e.g., when the reference and focal groups truly differ in ability (Cole & Moss, 1989; 
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Hunter, 1975; Shepard, 1981; Angoff, 1982). In this case, biased type 1 error levels can 

arise from ignoring item discrimination (Lim & Drasgow, 1990; Angoff, 1993; Camilli & 

Shepard, 1994). 

Compared to CTT, IRT estimates of DIF are based on item response functions 

(IRF), which describe the probability of answering an item correctly based on the 

characteristics of the item parameters and underlying ability levels. The definition of DIF 

then can be stated as ñwhen the IRFs across two subgroups are not identical, the item 

shows DIFò (Hambleton et. al., 1991). There are two categories of DIF based on the IRT 

perspective, uniform DIF and nonuniform DIF (Mellenbergh, 1982). An item with 

uniform DIF is defined as group differences in the probability of answering the item 

correctly are constant across all ability levels. In other words, the IRFs of the two groups 

are not identical, but do not cross throughout the range of ability. Nonuniform DIF occurs 

when an item favors one group members at certain ability levels and favors the other 

group at other ability levels (assuming two groups). Nonuniform DIF can be observed 

when the 2PL or 3PL model is used (Camilli & Shepard, 1994; Kristjansson, Aylesworth, 

McDowell, & Zumbo, 2005). Camilli and Shepard (1994) summarized two different IRT 

approaches used for detecting DIF: IRT measurement of DIF, and IRT tests for DIF. 

There are four methods to measure the size of DIF: 1) simple area indices, 2) probability 
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difference indices, 3) b parameter difference, and 4) IRF method for small samples. Five 

methods designed to do statistical test for DIF: 1) test of b difference, 2) item drift 

method, 3) Lordôs chi-square, 4) empirical sampling distributions for DIF indices, and 5) 

model comparison measures. 

In typical DIF studies, non-IRT methods are used due to their relative ease of 

implementation. Moreover, the number of examinees in the focal group (usually from 

minority) is usually small and with limited ability range (Hambleton et. al., 1991; Camilli, 

2006). More flexible IRT models (2PL and 3PL) are more difficult to calibrate in this 

situation, even thought an argument can be made for employing IRT models with strong 

assumptions, such as the 1PL. The inevitably poorer parameter estimates for the focal 

group drive most criticism of these IRT methods. In any case, it may not be possible to 

conduct a DIF analysis on a relatively small sample. 

Because of the potential problems associated with parametric approaches, which 

may primary be a problem of expert labor, nonparametric methods to detect DIF using 

observed scores are widely accepted. Several statistical methods have been developed to 

detect DIF for MC items. The most widely studied and applied methods include the 

Mantel-Haenszel (MH) procedure (Holland & Thayer, 1988), logistic regression (LR) 

(Swaminathan & Rogers, 1990), the simultaneous item bias test (SIBTEST) (Shealy & 
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Stout, 1993), and the standardization approach (Dorans & Kulick, 1986). Among these 

procedures, the MH procedure and the LR procedure are the two most popular. 

Mantel-Haenszel Procedure 

The MH procedure was designed and used in medical research by Mantel and Haenszel 

(1959), and applied to psychometrics by Holland and Thayer (1988) in order to inspect 

item bias on dichotomously scored items. The MH procedure identifies DIF by 

considering between-group differences in the odds of a correct response, after matching 

(or conditioning) on observed test scores of the reference and focal groups. The 

characteristic design of this method is based on a contingency table with a 2 

(groups)-by-2 (item scores)-by-M (score categories) design that provides the frequencies 

of item responses (correct and incorrect) of different groups (focal and reference groups) 

with possible number-correct categories (m = 1, 2, 3é, M) as a matching variable. The 

null hypothesis maintains that, under the conditioning on the observed test score, the odds 

of correct response will be equal for the focal and reference groups and the odd-ratio will 

be equal to 1, which is no DIF. The odds ratio for score level m is defined as 

 Rm Rm Rm Fm
m

Fm Fm Fm Rm

P Q P Q

P Q P Q
a = =  (2.8) 

where PRm and PFm represent the population proportions of correct responses for the 

reference and focal groups at the m
th
 score level, and QRm and QFm represent the 
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corresponding population proportions of incorrect responses. However, when the 

matching variable is zero or M (perfect score), the MH odd ratio will be indeterminate 

and the odds ratio cannot be calculated. Therefore, for a M- item test, the index m runs 

from 1 to M-1. The Mantel and Haenszel (1959) procedure also assumes all Ŭm to be a 

constant value, and the combined estimate across m of the odds ratio Ŭ is given by  
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where RRm and RFm refer to the frequencies of having a correct response to the item in the 

reference and focal groups, WRm = NTm ï RRm and WFm = NTm ï RFm, and NTm refers to the 

total number of responses from both reference and focal group examinees. This odds ratio 

is an estimate of the DIF effect size and indicates there is no DIF when the value equals 

to 1. If the ratio is greater than 1, item is said to favor the reference group. On the 

contrary, if the value is less than 1, the item favors the focal group (Dorans & Holland, 

1993; Penfield & Camilli, 2007). Nonetheless, the estimated odds ratio MHa
%

is not very 

useful for DIF interpretation because of its asymmetric distribution. Holland and Thayer 

(1988) proposed a transformation of MHl
%

 as delta scores (MH D-DIF) obtained through 

a transformation to ( )2.53lnMH MHl a=-  leading to a symmetric and more useful index 
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for interpretation. When this value differs from 0, DIF and therefore potential bias exist. 

The converted MH D-DIF has been used as an index of relative item difficulty (Dorans & 

Holland, 1993; Camilli & Penfield, 1997; Camilli, 2006). 

The Mantel-Haenszel chi-square (MH-ɢ
2
) has a test distribution of chi-square with 

1 degree of freedom. It provides the most powerful and uniformly statistical unbiased test 

of no DIF under the null hypothesis of uniform bias (Holland & Thayer, 1988). As an 

alternative to MH-ɢ
2
, the log-odds ratio can be divided by its standard error to obtain a 

test statistic (Holland & Thayer, 1988). Rules used to measure degrees of DIF were also 

developed and categorized by ETS regarding both the absolute value of MH D-DIF and 

the significant test results (Zieky, 1993). Camilli and Shepard (1994) suggested a way to 

conceptualize the MH odds ratio in the framework of IRT in order to detect DIF. In the 

IRT 2PL model (c = 0), the log odds ratio conditional on ɗ can be expressed as 
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. (2.10) 

If the item discrimination parametera is invariant for reference and focal group, Equation 

(2.10) can be simplified as ɚMH-2PL = Da(bF ï bR). The effect size, ɚMH-2PL, is then 

proportional to the difference between item difficulty parameters in the reference and 

focal group (uniform DIF). Holland and Thayer (1988) emphasized that this method gives 
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an unbiased estimate of DIF under the Rasch model (1PL, with a = 1) with the 

assumptions that all items included in matching variable, all other items are measurement 

invariant across groups, and data are random samples from both groups. However, if 

aparameters are different in two groups, ɚMH-2PL is no longer proportional to the 

difference between the b parameters (i.e., nonuniform DIF). 

The MH log-odds ratio (LOR) procedure is not designed to detect nonuniform 

DIF, and a number of alternative procedures have been suggested. For example, Roussos, 

Schnipke and Pashley (1999) proposed a general formula of the MH DIF population 

parameter which is appropriate for any IRT model and is also applicable for either 

uniform DIF or nonuniform DIF. However, the findings from this research suggested that 

more attention is needed to applying the procedure with 3PL data, because guessing can 

affect the MH DIF estimate for relatively difficult items, especially when the focal group 

has significantly lower mean proficiency. However, there is little evidence to suggest 

nonuniform DIF is prevalent, and even in this case, the MH procedure provides a useful 

index for screening test items for bias. 

Logistic Regression Procedure 

The logistic regression procedure (LR) is another popular method for detecting DIF due 

to its ability to take into account the continuous nature of ability levels, and its capability 
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to detect uniform as well as nonuniform DIF. Swaminthan and Rogers (1990) were the 

first to apply LR procedure on DIF analysis. The LR procedure models the probability of 

observing each dichotomous item response (0 or 1) as a function of independent variables, 

which includes a group indicator (G), a matching variable (X, usually the observed total 

score), and a group-by-ability (GX) interaction. The LR procedure employs the 

assumption that the examineeôs ability is well represented by his/her observed total score, 

and the probability of the individual answering the item correctly is linearly proportional 

to the examineeôs ability (Camilli and Shepard, 1994). The LR model can be written as  

 
( )

0 1 2 3

1
1

i

i

Z

i Z

i i i i i

e
P Y

e

Z X G X Gb b b b

= =
+

= + + +

, (2.11) 

where P(Yi = 1) represents the probability for individual i to answer the studied item 

correctly. The coefficient ɓ1 corresponds to the effect on performance of ability level; 

whereas ɓ2 and ɓ3 correspond to the effects of group and the ability-by-group interaction.   

The full model mentioned in Equation (2.11) can be simplified depending upon 

three different situations: no DIF, uniform DIF, and nonuniform DIF. Camilli and Shepard 

(1994) summarized stepwise selection of model testing using likelihood ratio statistics. 

First, conditioned on observed totals score, the presence of nonuniform DIF is evaluated 

by comparing Zi = ɓ0 + ɓ1Xi + ɓ2Gi + ɓ3 XiGi to Zi = ɓ0 + ɓ1Xi + ɓ2Gi. Next, to test the 



41 

 

 

 

uniform DIF, comparison between Zi = ɓ0 + ɓ1Xi + ɓ2Gi and Zi = ɓ0 + ɓ1Xi is conducted. 

A chi-square statistic is used to evaluate model differences. In addition, this 2-step 

procedure can be used to compare differences among multiple groups with the addition of 

dummy codes (Camilli, 2006). The estimate of ɓ2 is an effect-size measure of DIF and is 

usually similar in value to MH LOR (MHl
%

) when the group-by-ability interaction is not 

included in the model. The coefficients can be estimated by maximum likelihood 

estimation (Swaminathan & Rogers, 1990).  

The coefficient ɓ2 and coefficients ɓ3 indicate uniform and nonuniform DIF. If 

both ɓ2 and ɓ3 equal 0, then DIF does not exist. When ɓ2 shows a statistically significant 

difference from 0, it suggests that the odds of getting the item correct from two groups 

are different. The estimate of ɓ2 is an effect-size measure of DIF and is usually similar in 

value to MH LOR ( MHl
%

) when the group-by-ability interaction is not included in the 

model. The case of nonuniform DIF is indicated when ɓ3 is significantly different from 0. 

Unsurprisingly, ɓ1 is almost significantly different from zero; since the examinees with a 

higher level of ability (or higher observed total score) tend to have a better chance of 

answering the item correctly. The coefficients can be estimated by maximum likelihood 

estimation (Swaminathan & Rogers, 1990). 
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Comparison between the MH and the LR Procedure  

Swaminathan and Rogers (1990) designed a simulation study that varied different sample 

size, test length, and the nature of the DIF when comparing the LR and MH procedures. 

They concluded that LR is as powerful as MH in detecting uniform DIF and is more 

powerful than MH in detecting nonuniform DIF, which is not surprising given the 

assumption of a uniform LOR across score categories. The LR procedure was also found 

to have slightly higher false positive error (type 1 error) than the MH procedure, and it 

contained more inconsistent classifications of DIF items (Swaminathan & Rogers, 1990; 

Narayanan & Swaminathan, 1996; Huang, 1998). Rogers and Swaminathan (1993) 

extended their study under different conditions (including 2PL, 3PL models) to compare 

the performance of the LR and the MH procedures. The LR procedure did not function 

well for very difficult and highly discriminating items. Li and Stout (1996) provided a 

possible explanation for this result. They pointed out that the presence of pseudo guessing 

was associated with the inflated type 1 error rates. 

Given the similar power in detecting uniform DIF, the MH procedure is relatively 

easier to implement. According to Rogers and Swaminathan (1993), the LR procedure 

takes three to four times more computing time in conducting a DIF analysis than the MH 

procedure. However, if researchers would like to incorporate different variables into the 
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explanation, the LR procedure is preferable (Kristjansson et al., 2005; Swaminathan & 

Rogers, 1990, Mazor, Kanjee, & Clauser, 1995). In any case, the MH procedure is the 

most frequently used DIF procedure in practice. 

Limitations of DIF 

For all of the DIF methods above, it is important to understand that the presence of DIF 

does not necessarily mean the item is biased. A DIF index only provides an indicator of 

potentially bias. Moreover, measurement error associated with DIF procedures can 

include both type 1 error and type 2 errors. It is well known that type 1 errors and type 2 

errors are impossible to minimize simultaneously. More false occurrences of the flagged 

items (type 1 error) implies fewer undetected potential biased items (type 2 error) and 

vice versa. Most statistical models focus on the reduction of type 1 error; especially from 

the test developersô and researchersô points of view. However, from the examineeôs point 

of view, the presence of type 2 errors would seem to be a more serious problem. 

Camilli and Shepard (1994) suggested that DIF can be detected by examining the 

content of each item and identifying patterns of significant DIF in similar items. This is 

because DIF indices may signal multidimensionality in the test (Camilli and Shepard, 

1994). Multiple dimensions, as defined by Shealy and Stout (1993), are the essential 

characteristics of an item that can have an effect on the probability of a correct response. 
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One of the common assumptions of IRT models is unidimensionality. However, most 

tests to some degree assess a number of skill dimensions. In characterizing such items, 

the primary dimension is referred to as the target trait measured by the item, whereas the 

secondary dimension is referred to the confounding trait. If a secondary dimension is 

significantly related to a test item, then DIF indices may reflect multidimensionality, and 

not bias. An interpretation of bias would require the judgment that the secondary 

dimensions leading to group differences are irrelevant to the test construct. 

To ensure that the items included in the test have the smallest DIF possible, most 

test developers and testing organizations evaluate DIF at the pretest stage. Bridgeman and 

Schmitt (1997) suggested that DIF analyses may be conducted after the pretest, before 

score reporting, and after score reporting. Penfield and Camilli (2007) presented a 6-step 

procedure for DIF analyses to conduct a more comprehensive and reliable DIF analyses. 

Summary 

Test scores are widely used as criteria for decisions regarding placement, promotion, and 

licensure. Because MC tests are prevalent in assessment programs, there is a concern that 

systematic error due to guessing can lead to incorrect interpretations of examinee 

proficiency or bias statistical estimates from secondary analyses of test information (e.g., 

DIF). The measurement error involved is different from random error which pushes 
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observed scores up or down randomly; guessing behavior can result in consistently higher 

observed scores and inflated test variance. Therefore corrections for guessing, applied via 

scoring methods, have the potential to enhance interpretations of test scores. 

Although modern test theory has more flexibility in predicting examineesô 

performance, a more sophisticated understanding of how guessing affects proficiency 

estimation in 3PL IRT models is yet to be developed. Furthermore, because guessing 

represents a systematic error, it could result in statistical bias in analyses using observed 

total score. In particular, DIF procedures such as the MH procedure and the LR procedure 

depend on the accuracy of observed total score (as the matching variable). If the effects 

of guessing behavior are more likely in one group (focal or reference), then the observed 

total score is less useful as a matching variable. Therefore, the development of IRT-based 

corrections for observed scores may potentially be useful in observed-score DIF analysis. 
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CHAPTER III. METHODOLOGY 

In this chapter, research questions and assumptions are addressed. Then a comprehensive 

conceptual and statistical framework on different correction for guessing methods is 

presented. Formula scores were described based on the CTT perspective, followed by the 

IRT 3PL model. Next, two new methods motivating the uses of the 3PL IRT model are 

derived. Two simulation studies are then conducted. In the first, the accuracy of the IRT 

formula scores is assessed. In the second, the MH and LR DIF procedures are carried out 

matching on the number-correct score and alternatively matching on the IRT formula 

scores. The results are then compared in terms of type 1 errors and bias. 

Research Questions and Assumptions 

To date, IRT models for MC items have been developed that model the probability of an 

examinee answering an item correctly. To model the effects of guessing, a fixed 

lower-asymptote parameter can be added to the 1PL or 2PL IRT models, or the full 3PL 

model can be chosen. Although IRT has been used to estimate ability, number-correct 

scores are more prevalent in operational psychometric data processing. In part, the goal 

of this dissertation was to develop a new correction-for-guessing based on the 3PL IRT 

model with practical application to DIF analysis and other analyses based on 

number-correct scores. 
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In IRT, maximum-likelihood estimation (MLE) is a procedure used to estimate the 

ability (ɗ) levels of examinees as well as item parameters. Finding ɗ requires maximizing 

the likelihood (or log likelihood) of an examineeôs item response pattern with respect to a 

set of fixed item parameters (Embretson & Reise, 2000). The Newton-Raphson procedure 

is a common iterative procedure used for MLE. The algorithm is applied to find the mode 

of an examineeôs proficiency likelihood function. It requires the first and second 

derivatives of the log-likelihood function to update ɗ estimates iteratively. The logic of 

the Newton- Raphson procedure is illustrated below in Figure 3-1. 

 

Figure 3-1. Illustration of the Logic of Newton-Raphson Procedure 

 

 

In Figure 3-1, the first derivative of the log-likelihood function of ɗ is graphed against 
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ability (ɗ) level. The starting value, ɗ0 in this case, is a guess of an examineeôs possible 

trait level. The projected second derivative then gives the updated ɗ1 estimate, and in turn, 

ɗ1 leads to ɗ2. The iterations end when the second derivative is zero (Embretson & Reise, 

2000; Veerkamp, 2000). One basic method of this dissertation is to derive an expression 

of the true score when the second derivative of the 3PL log-likelihood is zero. 

The MLE provides an unbiased estimate of ɗ; however, it has some problems. The 

major problem is that with MLE, no ɗ can be obtained for perfect or zero score 

(Embretson & Reise, 2000). The other alternative to estimate ɗ, the expected a posteriori 

(EAP) estimation, offers finite ɗ estimation for perfect score or for the patterns with all 

incorrect responses. In EAP, information from the examineesô response pattern and 

information about the population are combined. The EAP is a Bayesian estimator from 

the mean of the posterior distribution (Embretson & Reise, 2000). One drawback on EAP 

estimation is that an estimate of ɗ is regressed toward the mean of the prior distribution 

unless the number of items is relatively large (Meijer & Nering, 1999; Embretson & 

Reise, 2000).  

In this dissertation, the essential approach to understanding the effects of c 

parameters was to 1) approximate the log-likelihood function as a Taylor series expansion 

around a guessing parameter c, and 2) examining the implications of the model when the 
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approximate likelihood is maximized. This provided the link between the 3PL IRT model 

proficiency estimate and a corrected-for-chance observed score. One main goal of this 

study was to understand the effect of guessing within the IRT framework. 

The second purpose of this dissertation was to develop two IRT formula scores 

based upon using the 3PL model. Though ideally undesirable effects of guessing should 

be prevented, the IRT formula scores provided a post hoc statistical correction that is not 

a function of the number-correct score. These IRT formula scores conceptually illustrated 

the mechanism by which the 3PL IRT model adjusts for guessing, and provided estimates 

of proficiency that may improve analyses traditionally carried out with number-correct 

scores. In the next section, different scoring methods were detailed and discussed from a 

mathematical point of view. 

Scoring Methods 

Formula Score based on CTT 

The most widely used method is the formula scoring method. For a test of n items, the 

number of correct responses (R) for an examinee may be expressed as 

 = +K GR C C , (3.1) 

where CK and CG represent the number of correct responses with knowledge and the 

number of correct responses by guessing, respectively. To determine the number of 
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correct responses with knowledge, Equation (3.1) can be re-written as 

 = -K GC R C . (3.2) 

Assuming no omitted items, the expected number of items which an examinee answers 

by guessing (nG) is the difference between the total number of items and the number of 

correct responses. This can be represented as 

 = - = + -G K Kn n C R W C , (3.3) 

where W is the number of incorrect responses. The highest number of correct responses, 

based on random guessing, with k options per item is  

 ( )1 1- -= = + -G G KC k n k R W C , (3.4) 

therefore, substituting the right-hand side of Equation (3.4) for CG in Equation (3.2) 

results in 

 

( )1

1( 1) .

-

-

= - + -

= - -

K KC R k R W C

R k W

 (3.5) 

This correction method penalizes examinees for guessing by subtracting partial points 

from the number-right score based on the number of incorrect responses. 
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IRT 3PL Model 

In a 3PL IRT model, the probability ɚi for the examinee with a certain ability level (ɥ) to 

answer a particular item right can be represented as 

 ( ) ( )1 , , , 1i i i i i i i iu a b c c c Pl q= = + - , (3.6) 

where 
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ai, bi, ci, and D are indices of item discrimination, item difficulty, pseudo-chance-level 

(guessing parameter), and a scaling constant D = 1.7, respectively. Let ui represent the 

scored response (0 or 1) of an examinee to item i. The number-correct score R can then be 

given as 
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=ä
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R u , (3.8) 

and the number-incorrect score W as 
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Note that n = R + W if no items are omitted. Assuming a common c parameter for all 

items (i.e., ci = c for all i), the true-score formula can be expressed as 
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If the IRT 3PL model fits the item responses well, then T should provide a good 

approximation of R; that is T can be thought of as E[R]. The corrected true score can be 

represented as 
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=ä , (3.11) 

and this defines the probability for an examinee to answer the item correctly based on 

item difficulty and item discrimination, but not on guessing. Assuming that n = R + W, it 

is straightforward to show 
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Using the substitution, 

 
1

1 1

c

c k
=

- -
, (3.13) 

Equation (3.12) is parallel to Equation (3.5), and thus the IRT score CT appears to bear a 

strong similarity to the classical formula score CK. However, as shown in the next section, 
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this impression is incomplete because of the derivation of CT above does not take into 

account an examineeôs item response pattern. 

IRT-Based Methods for Guessing Corrections 

In this dissertation, the IRT formula scores, in contrast to the traditional method as the 

simple analogy in Equation (3.12), took into account the pattern of item responses, and 

resulted in a score that is not a linear function of the number-correct score. Thus, while 

the traditional method had its greatest impact by preventing guessing, the newly proposed 

methods had some potential to provide a statistical post-testing correction. 

First IRT approach (formula). In IRT, the probability of an examinee answering 

an item correctly depends on the examineeôs ability and item discrimination and difficulty 

(Hambleton et al., 1991). For most MC tests, examinees with very low abilities have 

probabilities greater than zero of answering even the most difficult items. The 3PL model 

(Birnbaum, 1968) adds the pseudo-chance parameter (to discrimination and difficulty) to 

remove the effect of random guessing. Given the IRT framework, ɆPi, as given in 

Equation (3.11), represents an examineeôs corrected true score, CT, which can be 

conceptualized as the true score obtained when the effects of guessing are eliminated. The 

IRT formula score is based on a simplification of a common approach for estimating 

examinee proficiency. For a n-item MC test, the log likelihood of a response pattern for 
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an examinee is given by 
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with ui =1 or 0 for a correct or incorrect response, respectively. An estimated proficiency 

is obtained by maximizing this function with respect to ɗ. To derive the first IRT formula 

score, the log likelihood function is approximated as a one-term Taylor series at the 

common guessing parameter c, and maximized with respect to ɗ. Upon simplification, an 

estimate of CK is obtained as well as a broader perspective on the estimated ɗ. 

The standard Taylor one-term power expansion is obtained by 
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It follows that the first derivative 
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At c = 0, 
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Then one-term expansion of ( )F c at c = 0 is given by 
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Next, to maximize ( )H c  with respect to ɗ, differentiate (1)

0cF =
 with respect to ɗ which 

yields 
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Then set the result equal to zero 
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which results in 
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Then setting ai = 1 gives the solution for the first IRT formula score CT1 
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where 
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Equal a parameters was a big assumption, but again, this assumption is also implicit in 
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the classical formula and number correct scoring. To interpret ɖi, consider a correct 

response to an item with 5 options and c = 0.2 (a random guess). In this scenario, if the 

item is very difficult, the probability of answering incorrectly is greater than the 

probability of providing a correct response. In this case, the potential impact of guessing 

is higher than it would be for an easier item or a higher ability examinee. To reduce the 

positive bias introduced by guess, the correct response is adjusted downward by the 

factor ɖi. In intuitive terms, the IRT 3PL model does not ñbelieveò that low-ability 

examinees should be able to answer difficult items. When such a correct response is 

encountered, the model treats this as a probable guess and adjusts downward. With regard 

to examinee proficiency, scores for examinees with lower proficiency levels would be 

adjusted more when compared to those with higher proficiency levels. So ui(1- ɖi) 

characterizes an item response adjusted downward on the basis of examinee proficiency. 

This demonstrates the kind of implicit correction employed in IRT 3PL estimates of 

proficiency. To simplify this result further, assumed that ai = 1. A measure of true score 

adjusted for c can then be obtained with 

 ( )1

1 1

1 h h
= =

º - = -ä ä
n n

T i i i i

i i

C u R u . (3.25) 

One major goal in this dissertation is to apply the approximation (3.25) with 

number-correct scores. For this purpose, two different approaches are used to obtain 
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estimates of
ihbased on observed-score statistics.  

Pseudo-Bayes Probability. The first method of estimating ihis motivated by Bayes 

Theorem. To obtain values for these parameters, a random guessing c was assumed, and 

thus c = 1/k. To estimate Pi, that does not require IRT parameter estimates, one option for 

obtaining a value for Pi is to use the overall sample average p-value for item i, say pi. 

However, this is not adequate because the essence of the new method calls for sensitivity 

to whether a particular examinee is expected to answer a question correctly. Likewise, 

the overall proportion correct for an examinee, say r, is not sensitive to whether an 

examinee has a higher propensity to answer correctly for some items than others. A 

solution can be motivated by an analogical application of Bayes rule which combines the 

estimates of the proportions pi and r. 

Define jiu  as the 0-1 response of examinee j on item i, and ja as the response of 

a randomly selected item belonging to examinee j. Define  
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Now let the expected probability for examinee j to get item i correct given ja be 
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The explanation of Equation (3.27) is as follows. Suppose a randomly select response for 
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examinee j is 1ja= . Knowing nothing else, it could then be guessed that examinee j 

probably got jiu correct. A reasonable choice for this conditional probability is
ip , which 

is the p-value for i. However, if 0ja= , then one would guess a lower probability for a 

correct response. A reasonable choice for the conditional probability in this case 

is 1i iq p= - . While these choices are informal, they are consistent with intuitive 

expectations. 

The purpose of the randomly-sampled-item idea is to motivate the situation in 

which there is prior information on an examinee acquired from a set of item responses. 

This information is then modified by an itemôs difficulty to produce an updated estimate 

of the examineeôs performance on a test item. The procedure can be accomplished with 

Bayes Theorem as follows: 
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. (3.28) 

Substituting Equations (3.26) and (3.27) into (3.28) gives the updated probability for 

examinee j for a correct response: 
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+
. (3.29) 

Note that for each item i, a different updated probability for a correct response is 

obtained. 
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 Correcting the probabilities in (3.26) and (3.27) for guessing results in 
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The posterior probability of an examineeôs success (the j subscript is dropped below for 

ease of presentation) on an item sayĔiP , can then be obtained by combining the 

examineeôs prior information with the probability of success on the item as:  
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and  

 Ĕ Ĕ1i iQ P= -. (3.32) 

These estimates were referred to as pseudo-Bayes item probabilities. The one-term Bayes 

formula score was then obtained as  
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where 
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It should be clear that no correction is applied when c = 0. 

Conditional Probability. Instead of simply using the overall sample average 

p-value pi to estimate P (uji = 1), in the second approach for estimating ih, the sample 

average p-value for item i was conditioned on R. For a n-item test with J examinees, let 

jiu be defined as the 0-1 response of examinee j on item i; and let
iu be defined as the 

response of a randomly selected examinee on item i. To estimate the probability of a 

correct response from examinee j on item i, the expected value of randomly selected with 

r j=R can be taken. Assuming a Rasch model, this estimate incorporates all sample 

information concerning performance on item i (based on the principle of sufficiency). 

The required probability ( )1|jiP u R= for an examinee is then obtained as the expected 

value 

 ( ) *Ĕ1|
j

j

ji

r R

i ji i

r R
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E P u R P
N

=

=

è ø= º =
ê ú

ä
, (3.35) 

and 

 * *Ĕ Ĕ1i iQ P= - . (3.36) 

These estimates were referred to as conditional item probabilities, the one-term 

probability formula score is obtained as 
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Another issue was to set the maximum correction factor value ɖi. In terms of 

practical significance, a reasonable maximum amount for guessing correction should be 

less than 1 point, that is, the amount of credit given for a correct answer. The value of the 

correction factor was set to be restricted to the interval [0, 1], that is 0 Ò ɖi Ò 1. This 

implies that 1i

i

Q
c

P

-¢ , or alternatively, i

i

P
c

Q
² . 

Comparison between classical formula score and the first IRT formula. The 

significance of this approach was that an individualôs item response pattern is taken into 

account to provide a score adjustment. For a correct answer, the adjustment requires 

subtraction of the term ɖi from the full point of item credit, and no correction is made 

when guessing is not present. Although this seems to be very different from the standard 

logic of classical formula scoring of subtracting partial points on incorrect items, the 

classical formula shown in Equation (3.5) could be also re-expressed as a sum over 

attempted items as 
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1
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= -æ ö
- ç ÷
ä . (3.38) 

The classical formula score from this perspective down-weights all correct responses 

equally, whereas the IRT formula down-weights a correct response proportionally based 
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on the ratio of an examineeôs odds of answering that item incorrectly to the odds of 

answering the item correctly.  

Second IRT approach (formula). The approximation above is based on a one-term 

power expansion of the log likelihood function around a common c parameter. An 

alternative approach is based on factoring the 3PL probability given in Equation (3.6) 

with ɖi, therefore, the 3PL IRT probability ɚi can be expressed as 

 ( )1i i iPl h= + , (3.39) 

where Pi is the 2PL model and 
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The log likelihood function can then be written as 
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Differentiating F with respect to ɥ, setting the result equal to zero, and simplifying gives 
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Assuming ai = 1, the resulting estimator of or formula for CT is 
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This approach gives a result identical to a M-term Taylor expansion of the 

likelihood function as shown in Appendix A. The M-term Bays formula score, CT2B, using 
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the Bayesô theorem in Equation (3.31) and the assumption ci = c, can then be obtained as  
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The M-term probability formula score, CT2P, using the conditional probability in Equation 

(3.35), can be obtained as 
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Note that if c = 0, then no correction is made and CT2B =CT2P =R. Unlike the one-term 

correction, no bounds are required on ɖi with the M-term correction. 

Evaluation of two proposed corrected scores. The two IRT formulas described 

above can be used for obtaining sample estimates of corrected true scores, but it is 

important to ensure both IRT formula scores are unbiased estimate of the corrected true 

scores. As an estimate of corrected true score CT, CT1 and CT2 are unbiased if the expected 

values of CT1 and CT2, E[CT1] = E[CT2] = CT =
1

n

i

i

P
=

ä . The expected value of CT1 is equal to 
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And the expected value of CT2 is  
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Clearly, CT1 was not an unbiased estimate because the expected value of CT1 was smaller 

than CT and negative bias exists. In fact, as shown below, CT1 was useful for conceptually 

understanding the effects of guessing. In addition, CT1 equals CT2 when CT1 is rescaled to 

CT by dividing by (1-ɖi
2
). But CT2 is an unbiased estimate of the true score and is 

expected to have more accurate estimation on the true scores.  
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Baseline correction 

The posterior probability proposed in Equation (3.31) provides an easy and practical 

approach to score correction without using IRT response-pattern complexities. Therefore, 

a simple scoring formula can be obtained as 

 
1

Ĕ
n

i

i

B P
=

=ä , (3.48) 

That is, B is the sum of the posterior probabilities. In this study, index B is used as a 

baseline criterion for evaluating the other two more elaborate IRT formula scores. That 

was, for an IRT formula score to be considered useful, it must show less bias and a higher 

correlation with the corrected true score CT than the index B. 

Study I: Comparisons of Scoring Methods 

To evaluate the two IRT formulas (include two one-term formula scores and two M-term 

formula scores), three simulation studies were designed using the IRT 3PL model to 

generate data with two sets of item parameters. Examinee abilities ɗ were generated from 

the random normal distribution N (0, 1) for all simulations. 

Data Generation 

 Item parameters: Set I. In the first set of item parameters, a 33-item test (labeled 

SIM hereafter) was generated. In Table 3-1, the item discrimination parameters in (ai) had 

three levels (a = 0.5, 1.0, and 1.5) and these three levels were crossed with 11 levels of 
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item difficulty (bi = -2.5 to 2.5 in steps of 0.5). All guessing parameters (ci) were fixed at 

0.2, consistent with random guessing on MC items having five options.  

 

Table 3-1  

Item Parameters: Set I (SIM) All items have c = 0.2 

Item a b Item a b Item a b 

1 0.5 -2.5 12 1.5 -1.0 23 1.0 1.0 

2 1.0 -2.5 13 0.5 -0.5 24 1.5 1.0 

3 1.5 -2.5 14 1.0 -0.5 25 0.5 1.5 

4 0.5 -2.0 15 1.5 -0.5 26 1.0 1.5 

5 1.0 -2.0 16 0.5 0.0 27 1.5 1.5 

6 1.5 -2.0 17 1.0 0.0 28 0.5 2.0 

7 0.5 -1.5 18 1.5 0.0 29 1.0 2.0 

8 1.0 -1.5 19 0.5 0.5 30 1.5 2.0 

9 1.5 -1.5 20 1.0 0.5 31 0.5 2.5 

10 0.5 -1.0 21 1.5 0.5 32 1.0 2.5 

11 1.0 -1.0 22 0.5 1.0 33 1.5 2.5 

 

 Item parameters: Set II. The second set of item parameter values was obtained from 

the Abstract Reasoning Test (ART; Embretson, 1998). The test had 30 items and was 

designed to measure general intelligence. Item parameters were estimated from data from 

an administration to 787 young adults. Table 3-2 presents the IRT 3PL item parameter 

estimates. The result from this simulation is used to examine how the IRT formula scores 
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work with data from an existing test. 

Table 3-2 

Item parameters: Set II (ART) 

Item a b c Item a b c 

1 1.286 -2.807 0.192 16 1.150 -0.882 0.204 

2 1.203 0.136 0.162 17 0.846 1.303 0.112 

3 0.814 -2.033 0.196 18 0.986 1.090 0.113 

4 0.941 -0.557 0.142 19 1.295 0.597 0.115 

5 1.083 -1.461 0.153 20 1.065 -0.017 0.110 

6 0.752 -1.979 0.182 21 0.948 0.470 0.095 

7 1.363 -1.785 0.146 22 1.150 2.609 0.170 

8 1.083 -0.776 0.118 23 0.928 -0.110 0.155 

9 1.149 -0.239 0.214 24 0.934 1.957 0.103 

10 1.837 -1.247 0.132 25 0.728 3.461 0.128 

11 1.269 -0.917 0.153 26 1.452 1.144 0.107 

12 0.783 0.819 0.129 27 0.460 -0.799 0.226 

13 1.501 -0.963 0.196 28 0.609 -1.018 0.192 

14 1.417 0.526 0.118 29 0.779 1.291 0.142 

15 0.949 0.577 0.126 30 0.576 1.607 0.178 

 

First Simulation 

Using the item parameters in Tables 3-1 and 3-2, a single sample of size N=100000 

(separately for each set of parameters) was generated using SAS 9.1 computer software 

package (SAS Institute, 2003) to study the asymptotic behavior of the various corrections. 
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The estimates R, CK, CT1B, CT1P, B, CT2B and CT2P (number-correct score, classical 

formula score, one-term Bayes formula score, one-term probability formula score, 

baseline correction, M-term Bayes formula score and M-term probability formula score, 

respectively) were obtained and compared to the corrected true score CT. A fixed c (used 

in score adjustment) was set as the average of the c parameters (0.2 for Set I, and 0.15 for 

Set II). 

Second Simulation 

In order to study the new formula scores in moderate-sized samples, another sample n= 

5000 for each test was sampled from the data sets generated above with 10 replications. 

Calibrations of items were conducted with Parscale using the 3PL IRT model (Muraki & 

Bock, 2003). Examineesô ɗs were also estimated using a Bayesian expected a posteriori 

(EAP) method. The IRT estimate of corrected true score CT (labeledĔTC ) was then 

obtained by substituting sample estimates of item parameters and proficiencies into 

Equation(3.11). CT was used as a standard for evaluating corrected scores, although in 

samples with n=5000, it may be the case that ĔTC  provides a better standard because it 

preserved more information about the true score. However, the issue here is that the 

estimation error exists inĔTC , and with EAP estimation used to estimate ɗ, the resulting q 

would regress to zero. Therefore, ĔTC  is not an unbiased estimate of CT in given 
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neighborhoods of ɗ. For that reason, the comparison between Ĕ
TC and CT was obtained to 

see how well Ĕ
TC explains CT. The comparison between the corrected scores and CT is 

used as a pragmatic criterion to evaluate the reliability of scores, and also how well the 

corrected score estimates performed. Corrected score estimates were then obtained in two 

different ways: 

1. Corrected scores were obtained by plugging estimated IRT item parameters 

and estimated theta into Equations (3.25) and (3.43) to get 1
Ĕ

TC  and
2
Ĕ

TC . 

2. Corrected scores were obtained by calculating the Bayes formula scores and 

probability formula scores from the sample observations by using Equation 

(3.33), (3.44), (3.37), and (3.45) to obtain the formula scores CT1B, CT1P, 

CT2B and CT2P. For each of these 10 replications, CT1B, CT1P, CT2B and CT2P 

was computed and compared to their respective values of 1
Ĕ

TC and 2
Ĕ

TC . 

The purpose here was to evaluate potential information loss due to the Taylor 

approximation, and the use of pseudo-Bayes estimates and conditional probabilities 

instead of estimated IRT item probabilities. The quantities 1
Ĕ

TC and 2
Ĕ

TC were the IRT 

model-based versions of CT1 and CT2. They can be thought of as the providing an upper 

limit to the performance of formula-score estimates of CT1B, CT1P, CT2B and CT2P. 
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Criteria for Evaluating the Two New IRT Scoring Models 

Previous studies have focused on overall comparisons either between examineesô 

observed scores and formula scores, or between examineesô true scores (based on an IRT 

model) and formula scores. To find out if the IRT formula scores improved estimates of 

ability level, examinees were stratified in quartiles based on the known corrected true 

score, CT. Analyses in this analysis were carried out separately, by quartile (Q1 ï Q4). 

Because corrections made by the formula score, CK, could result in negative values, all 

negative values were set to 0. 

First simulation. In first simulation, bias and percent of variance accounted for (r
2
) 

were used to evaluate different correction methods for two sets of tests. The bias statistic 

was computed over examinees, j, as 

 ( )
1

1 J

j Tj

j

Bias S C
J =

= -ä , (3.49) 

where Sj represents the given proficiency estimate (R, CK, CT1B, CT1P, B, CT2B, or CT2P) for 

examinee j; and TjC  represents the corrected true score for examinee j, CT. The criterion 

of primary interest was the predictive accuracy of the different scoring model, and this 

was assessed by obtaining the correlation between the different corrected scores (R, CK, 

CT1B, CT1P, B, CT2B, and CT2P) and the corrected true score, CT. Scoring methods that 

resulted in lower bias and higher r
2
 were considered preferable. 
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Second simulation. Bias, root mean square error (RMSE), and the correlations 

were calculated over 10 replications for Ĕ
TC , the approximations 

1
Ĕ

TC and 
2
Ĕ

TC relative to 

CT. The RMSE statistics were computed as: 
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j

C

RSME
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w
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-

=

ä
, (3.50) 

where Ĕjw  equals the IRT estimate of corrected true score Ĕ
TC , and IRT estimate of 

corrected score, 1
Ĕ

TC  and 
2
Ĕ

TC . The corresponding bias statistic and the root mean square 

errors (RMSE) and the correlation coefficient r of CT1B, CT1P, CT2B and CT2P with CT were 

calculated over 10 replications.  

Study II: Application to DIF Analyses  

The third goal of this dissertation was to demonstrate a potential application of 

IRT formula scores on DIF analyses. To evaluate how the IRT formula scores performed 

on a DIF analysis, LR and the MH procedures were applied. This study had two goals: a) 

to study the effect of different scoring methods on the type 1 error estimation of the DIF 

procedure, and b) to compare the LR and MH procedures with regard to detection of DIF. 

Data Generation 

Different factors which are likely to affect the type 1 error of DIF analysis were 

manipulated, including item parameters, sample size, and ability. In typical DIF there are 
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two groups of examinees (reference group and focal group) and this provides a choice of 

using either group percent correct for an item (pR, pF) or the correct percent across all 

examinees (pR+F) to capture the observed p-value for an item for the purpose of 

estimating 
ih. Based on the pilot work in which (pR, pF) was used, large biases in type 1 

error rates and LORs were found. Therefore, the correct percentage for an item from the 

total sample (pR+F) is used to estimate ih.  

Item parameters. Examinee response data were generated using the 3PL IRT 

model, based on the two sets of item parameters described in the previous study, using 

SAS 9.1 computer software package (SAS Institute, 2003). 

Sample size. Numerous studies indicate that sample sizes of focal and reference 

groups appear to have an effect on type 1 error (Rogers & Swaminathan, 1993; Roussos 

& Stout, 1996b; Tian, 1999). In addition, when gender difference is the target, 

approximately equal focal and reference group sample sizes are reasonable; when the 

comparison is between majority and minority subjects, unequal sample sizes for both 

groups are more realistic. Therefore, two different sample size conditions were 

investigated in this study: 1) equal sample size for focal group and reference group 

(NF=NR=1000), and 2) unequal sample size (NF=500, NR=1000). 

Ability distribution. A few researchers suggest that large differences in the ability 
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distribution of two groups could result in high type 1 error (Tian, 1999). However, some 

researchers endorse the opposite conclusion and suggest that ability distribution 

differences do not significantly affect type 1 error rates unless the ability distribution 

difference between the two groups is greater than 1 SD (Narayanan & Swaminathan, 

1994). Because ability distribution differences between the reference and focal groups 

usually exist, three conditions are considered in this study: 

1. Equal ability distributions: both reference and focal group are N (0, 1). 

2. Unequal ability distributions: N (0, 1) for the reference group and N (-0.5, 1) 

for the focal group. 

3. Unequal ability distributions: N (0, 1) for the reference group and N (-1, 1) for 

the focal group. 

Procedure 

The MH and LR procedures were studied under various conditions for obtaining 

matching scores: number-correct score (R), first IRT formulas (CT1B and CT1P), and 

second IRT formulas (CT2B and CT2P). For each condition, performance over 1000 

replications per condition was evaluated. The matching scores were rounded off to 

integers for the MH procedure. Results for the LR procedure were obtained with SAS 

Logistic procedure under SAS 9.1. The MH procedure was also performed using SAS 9.1. 
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Type 1 errors and average log-odds ratio were obtained for both procedures. 

Across items, linear regression was used to evaluate the extent to which factors 

(described below) may have affected the log-odds ratio. Separate linear regression was 

conducted for each scoring method and for each DIF procedure; the average log-odd ratio 

across replications was used as the dependent variable for each combination of conditions. 

The independent variables included item parameters (a, b and c), two different sample 

size ratio (NF/NR = 1 and NF/NR = 0.5), and three different ability distributions (one equal- 

and two unequal- ability distribution) between reference group and focal group as 

described above. A standardized regression analysis was conducted as follows: 

 a b s dLOR a b sb b b b= + + + D (3.51) 

for the SIM test, and because c parameters are not constant for the ART test: 

 a b c s dLOR a b c sb b b b b= + + + + D, (3.52) 

where a, b and c represent item parameters, s and ȹ represent sample size ratio between 

reference group and focal group, and different ability distributions, respectively. 

Binomial regression was used to evaluate the effect of the independent variables 

on type 1 error. Separate binomial regressions were conducted for each scoring method 

and for each DIF procedure; the dependent variable for each analysis was determined by 

the count of the number of times that the log odds ratio fell outside the 95% confidence 
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interval. The independent variables were same as described above for linear regression 

for LOR, which include a, b, c, s and ȹ. Again, only main effects were tested. 

Criteria for Evaluation 

The nominal Ŭ =.05 level of significance was used for all tests. The empirical type 

1 error level is defined as the proportion of times (out of 1000 replication) that the log 

odds ratio falls outside the 95% confidence interval. The average log-odds ratio was 

calculated for each item across 1000 replications in order to evaluate bias. Because no 

DIF was introduced to either test, the true value of the LOR was zero. 
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CHAPTER IV. RESULTS 

In this chapter, a detailed description is given of the results obtained following 

application of the methodology illustrated in Chapter III. The results of two simulation 

studies based on IRT 3PL models are reported. In the first study, bias, RMSE statistics, 

and coefficients of determination r
2
 are used to evaluate whether the IRT formulas 

improve estimation of the corrected true score. In the second study, the logistic regression 

and Mantel-Haenszel procedure is used to obtain DIF under various conditions for 

different scoring methods. Type 1 error rates and log odds are used to evaluate the 

accuracy resulting from conditioning on different formula scores.    

Study I: Comparisons of Scoring Methods 

The purpose of the first study is to find out if the IRT formulas improved true score 

estimates and to evaluate potential information loss due to the Taylor approximation, the 

use of pseudo-Bayes estimates and the use of conditional probabilities estimates. All 

evaluation statistics are presented first by quartile followed by the full distribution for 

number-correct scores, corrected true scores, and different formula scores. Descriptive 

statistics include means, standard deviations, skewness, and kurtosis. Bias statistics are 

used to determine accuracy and the direction of measurement error (either overestimation 

or underestimation) of the different scoring methods. The coefficient of determination r
2
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is used to provide a measure of how well the true score is predicted by each scoring 

method. 

First Simulation Study 

Descriptive statistics results by quartile for different scoring methods based on two sets of 

item parameters are given in Table 4-1 and Table 4-2. For both test designs, all formula 

scores resulted in a lower average score than R. Moreover, the standard deviation of 

corrected true score (CT) was lower than that for any formula score because the latter 

include differing amounts of measure error. For every quartile, the classical formula score 

Ck yielded the highest statistical variability. For all scoring methods, Q1 and Q4 showed 

higher variability with larger score ranges, compared to smaller rages in Q2 and Q3. 
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Table 4-1 

Descriptive Statistics with N=25000 in Each Quartile: SIM 

Q Statistic R CT CK CT1B CT1P B CT2B CT2P 

Q1 

Mean 14.234 9.553 9.558 9.387 10.356 11.728 10.683 11.773 

SD 3.143 2.425 3.889 3.360 3.548 3.170 3.367 3.243 

Skewness -0.202 -0.894 -0.134 -0.395 -0.108 -1.017 -0.454 -0.112 

Kurtosis -0.008 0.199 -0.198 0.168 -0.193 1.769 0.399 -0.134 

Q2 

Mean 18.335 14.646 14.669 14.104 15.451 15.328 15.284 16.318 

SD 2.501 1.084 3.127 2.464 2.826 1.972 2.452 2.636 

Skewness -0.008 -0.071 -0.008 0.052 0.032 -0.122 0.025 0.043 

Kurtosis -0.098 -1.175 -0.098 0.021 -0.073 0.192 -0.024 -0.080 

Q3 

Mean 21.265 18.310 18.331 17.337 19.021 17.617 18.415 19.590 

SD 2.353 1.083 2.941 2.428 2.708 1.845 2.364 2.542 

Skewness -0.093 0.054 -0.093 0.026 -0.060 -0.004 -0.006 -0.046 

Kurtosis -0.071 -1.189 -0.071 -0.015 -0.054 0.127 -0.026 -0.065 

Q4 

Mean 25.286 23.370 23.358 21.819 23.821 21.062 22.740 24.101 

SD 2.763 2.418 3.454 3.216 3.250 2.665 3.048 3.096 

Skewness 0.112 0.891 0.112 0.447 0.146 0.769 0.372 0.176 

Kurtosis -0.231 0.189 -0.231 0.211 -0.228 1.151 0.081 -0.207 

Note. R: Number-correct score; CT: Corrected true score;  

CK: Classical formula score; CT1B: One-Term Bayes formula score;  

CT1P: One-Term probability formula score; B: Baseline score;  

CT2B: M-Term Bayes formula score; CT2P: M-Term probability formula score. 
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Table 4-2 

Descriptive Statistics with N=25000 in Each Quartile: ART 

Q Statistic R CT CK CT1B CT1P B CT2B CT2P 

Q1 

Mean 10.814 7.622 7.454 7.704 8.057 9.544 8.548 9.059 

SD 3.055 2.489 3.533 3.299 3.245 3.233 3.249 3.062 

Skewness -0.115 -0.568 -0.017 -0.219 0.008 -0.768 -0.282 -0.009 

Kurtosis -0.217 -0.594 -0.429 -0.252 -0.379 0.564 -0.112 -0.339 

Q2 

Mean 15.674 13.364 13.145 13.110 13.610 13.940 13.768 14.216 

SD 2.418 1.244 2.845 2.469 2.646 1.918 2.389 2.505 

Skewness -0.013 -0.074 -0.013 0.020 0.035 -0.155 0.009 0.035 

Kurtosis -0.112 -1.169 -0.112 -0.053 -0.100 0.188 -0.036 -0.090 

Q3 

Mean 19.252 17.563 17.355 16.940 17.692 16.742 17.453 18.061 

SD 2.340 1.241 2.753 2.455 2.620 1.845 2.365 2.493 

Skewness -0.059 0.067 -0.059 0.014 -0.032 0.051 0.013 -0.009 

Kurtosis -0.099 -1.182 -0.099 -0.078 -0.120 0.105 -0.081 -0.112 

Q4 

Mean 23.882 22.927 22.803 22.065 23.003 20.769 22.386 23.149 

SD 2.573 2.169 3.027 2.941 2.930 2.553 2.818 2.840 

Skewness -0.068 0.532 -0.068 0.094 -0.054 0.510 0.085 -0.029 

Kurtosis -0.403 -0.598 -0.403 -0.355 -0.401 0.363 -0.345 -0.420 

 

Table 4-3 and Table 4-4 summarize descriptive statistics for the full distribution. 

Predictably, all formula scores had a lower average score than R. However, unlike the 

results by quartile, all IRT formula scores averages were close to the corrected true score 

averages for both tests. Among the four IRT formula scores, CT1B had descriptive statistics 

that closely tracked those of the corrected true score for full distribution.  
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Although all four IRT formula scores were better estimates of the corrected true 

score for the full distribution, none of them closely tracked the corrected true score in any 

quartile (see Table 4-1 and Table 4-2). The criteria of bias and r
2
 provided more sensitive 

information, in this context, for comparing the different formula scores than simple 

descriptive statistics. 

 

Table 4-3 

Descriptive Statistics for Full Distribution: SIM 

Statistic R CT CK CT1B CT1P B CT2B CT2P 

Mean 19.780 16.470 16.479 15.662 17.162 16.434 16.779 17.946 

SD 4.865 5.391 6.070 5.388 5.820 4.202 5.244 5.358 

Skewness -0.107 -0.005 -0.094 -0.051 -0.083 -0.228 -0.111 -0.033 

Kurtosis -0.287 -0.362 -0.327 -0.060 -0.368 0.942 -0.033 -0.347 

 

 

Table 4-4 

Descriptive Statistics for Full Distribution: ART 

Statistic R CT CK CT1B CT1P B CT2B CT2P 

Mean 17.405 15.369 15.189 14.955 15.590 15.249 15.539 16.121 

SD 5.456 5.915 6.403 5.961 6.185 4.770 5.752 5.843 

Skewness -0.115 -0.085 -0.010 -0.089 -0.069 -0.241 -0.109 -0.042 

Kurtosis -0.580 -0.668 -0.621 -0.484 -0.653 0.240 -0.449 -0.633 
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Bias 

In Table 4-5 and Table 4-6, bias estimates are given for all scores by quartile for both 

tests. Other than R, the baseline index B had the highest bias in Q1 and Q4. This index 

appears to be the least useful in Q1 where guessing is likely to have the greatest impact. 

CT2P also showed high bias in the first quartile. Overall, the classical formula score CK 

had the smallest bias in every quartile for the SIM test. However, for the ART test, CT1B, 

CT1P, and CT2B each had the lowest bias in Q1, Q4 and Q3, respectively. A trend was 

apparent for the new corrected scores: for CT1B and CT2B, bias trended positive to negative 

from Q1 to Q4. In absolute value, bias increased from Q1 to Q4 for CT1B, but decreased 

from Q1 to Q3 and then increased in Q4 for CT2B. CT1P and CT2P had similar trends in bias. 

Both had positive bias in every quartile and had a trend to decrease from Q1 to Q4. IRT 

formula scores always resulted in less bias than R. 

 

Table 4-5 

Bias by Quartile: SIM 

Quartile R CK CT1B CT1P B CT2B CT2P 

Q1 4.681 0.004 -0.166 0.803 2.175 1.130 2.220 

Q2 3.689 0.023 -0.541 0.805 0.682 0.638 1.673 

Q3 2.955 0.021 -0.973 0.711 -0.693 0.105 1.280 

Q4 1.916 -0.012 -1.551 0.451 -2.307 -0.630 0.731 
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Table 4-6 

Bias by Quartile: ART  

Quartile R CK CT1B CT1P B CT2B CT2P 

Q1 3.192 -0.168 0.083 0.435 1.923 0.927 1.437 

Q2 2.309 -0.219 -0.254 0.246 0.575 0.404 0.852 

Q3 1.689 -0.208 -0.623 0.129 -0.821 -0.110 0.498 

Q4 0.956 -0.124 -0.861 0.076 -2.158 -0.541 0.222 

 

Table 4-7 summarizes bias estimates for the full distribution. The second IRT 

formula scores were derived from the 3PL model, and therefore CT2B and CT2P were 

expected to provide a better approximation throughout the quartiles. However, CK still 

had the smaller bias compared to new scoring methods with only exception that for the 

ART test, CT2B resulted in the smallest bias. 

 

Table 4-7 

Bias for Full Distribution 

Test R CK CT1B CT1P B CT2B CT2P 

SIM 3.310 0.009 -0.807 0.692 -0.036 0.309 1.476 

ART 2.037 -0.180 -0.414 0.221 -0.120 0.170 0.752 

  

Plots comparing bias for the various scores are given in Figure 4-1 to 4-10. In 

these scatter plots, true score categories were created by rounding fractional true scores, 

CT, to the nearest integer and then averaging corrected scores within these categories. 
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Figure 4-1. SIM test: Comparison of bias for R and CK. 

 

 

Figure 4-2. ART test: Comparison of bias for R and CK. 

  

SIM 

ART 
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For both sets of tests, as it can be seen in Figure 4-1 and 4-2, the classical formula 

score CK provided a nearly unbiased estimate of CT while the number-correct score R 

initially showed a positive bias and then diminished to zero at the upper range of the true 

score.  

Figure 4-3 and 4-4 demonstrate comparisons among two Bayes formula scores 

(CT1B and CT2B) and the baseline score (B). In both figures, CT1B and CT2B were compared 

to the rival score B, and both were at least as good as B over the range. It is evident that 

CT1B had good estimation in the lower range of true score but exhibited a negative bias at 

the high end. CT2B, on the other hand, had a positive bias in the lower range of true score 

and provided a better approximation at the higher end than CT1B.  

Figure 4-5 and 4-6 exhibit comparisons among two probability formula scores 

(CT1P and CT2P) and the baseline score (B). Similar results to the Bayes formula scores 

were found. CT1P still revealed the least bias compared to CT2P and B. Again, the figures 

show neither CT2B nor CT2P provided a better approximation of the true score throughout 

the range as its expectation. Yet they both provided at least as good estimation as B over 

the range and as good as CT1B and CT1P at the higher end. 
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Figure 4-3. SIM test: Comparison of bias for CT1B, CT2B and baseline score B. 

 

Figure 4-4. ART test: Comparison of bias for CT1B, CT2B and baseline score B. 

 

SIM 

ART 
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Figure 4-5. SIM test: Comparison of bias for CT1P, CT2P and baseline score B. 

 

Figure 4-6. ART test: Comparison of bias for CT1P, CT2P and baseline score B. 

 

 

ART 

SIM 
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Figure 4-7 to 4-10 showed comparisons among the two different approaches (CT1B 

vs. CT1P; CT2B vs. CT2P) used to obtain IRT formula scores and the classical formula score 

CK.  Figure 4-7 and 4-8 revealed a stable pattern that in both tests, one-term Bayes 

formula score CT1B performed almost as good as CK in the lower range, where one-term 

probability formula score CT1P had a positive bias. In contrast, CT1P estimation was 

almost the same as CK at the high end, and had better estimation compared to CT1B, which 

had a negative bias. Figure 4-9 and 4-10 exhibit comparisons among CK, CT2B and CT2P. 

CK revealed the least bias throughout the range. And again, M-term Bayes formula score 

CT2B showed better approximation to the true score in the lower end while CT2P had better 

estimation at the higher end of score.  

Figure 4-7. SIM test: Comparison of bias for CT1B, CT1P and CK. 

 

SIM 
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Figure 4-8. ART test: Comparison of bias for CT1B, CT1P and CK. 

 

Figure 4-9. SIM test: Comparison of bias for CT2B, CT2P and CK. 

 

ART 

SIM 
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Figure 4-10. ART test: Comparison of bias for CT2B, CT2P and CK. 

 

Coefficient of Determination r
2 

In Table 4-8 and 4-9, r
2
 for the different correction scores are given by quartile for two 

sets of tests. The estimates of r
2
 for R and CK were identical except in the first quartile 

(due to rounding up of negative values to 0), because they were related by a linear 

transformation. The r
2
 estimation results were similar for both tests. The baseline score B 

accounted for more variance than the classical formula score CK in Q1 and Q4, but about 

the same in Q2 and Q3 (where variability is lower). The IRT formula scores CT1B, CT2B, 

CT1P, and CT2P, in contrast, always had a higher r
2
 than CK, and accounted for more 

variance in Q1 and Q4 than in Q2 and Q3. In Q1, where guessing had the largest effect, 

compared to CK, the advantage was about 11.3%, 6.3%, 5.5%, and 4.8% of variance for 

ART 
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CT1B, CT2B, CT1P, and CT2P, respectively. The advantage of the IRT-based corrections 

diminished to 1-3% in the remaining quartiles. Table 4-10 summarizes the r
2
 statistics for 

the full distribution. In contrast to the r
2
 between R and CT, the IRT formula scores had 

higher, though similar, r
2
 for both tests. 

 

Table 4-8 

r
2
 by quartile: SIM 

Quartile R CK CT1B CT1P B CT2B CT2P 

Q1 0.382 0.379 0.492 0.462 0.403 0.473 0.429 

Q2 0.123 0.123 0.152 0.144 0.123 0.146 0.137 

Q3 0.138 0.138 0.154 0.151 0.138 0.153 0.147 

Q4 0.492 0.492 0.497 0.498 0.520 0.504 0.500 

 

Table 4-9 

r
2
 by Quartile: ART 

Quartile R CK CT1B CT1P B CT2B CT2P 

Q1 0.461 0.458 0.532 0.517 0.473 0.521 0.496 

Q2 0.196 0.196 0.217 0.214 0.196 0.214 0.209 

Q3 0.215 0.215 0.226 0.225 0.215 0.225 0.223 

Q4 0.532 0.532 0.546 0.541 0.553 0.548 0.541 
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Table 4-10 

r
2
 for Full Distribution 

Test R CK CT1B CT1P B CT2B CT2P 

SIM 0.786 0.786 0.818 0.814 0.774 0.813 0.806 

ART 0.856 0.857 0.870 0.870 0.842 0.868 0.866 

 

The classical formula score CK provided the least bias among all corrected scores, 

but the IRT formula scores had higher r
2
 values to the corrected true score CT than the 

number-correct score R (or CK) ï especially in the first quartile. Comparing the two 

different approaches to obtain IRT based corrected scores, the two formula scores 

obtained with the Bayes method (CT1B and CT2B) were more accurate than those obtained 

with the conditional probability method (CT1P and CT2P) in every studied aspect.  

To minimize bias in CT1B and CT2B and keep the higher r
2
, a linear transformation 

was applied in which CT1B and CT2B were scaled to CK. Because CK can always be 

computed directly from the data, this scaling requires no additional information; however, 

the usefulness of the scaling does depend on the accuracy of the classical formula score. 

The bias statistics differences between CT1B and CK decreased at higher proficiency levels 

(as in Figure 4-7 and 4-8). Moreover, CT2B and CK were both better estimations at 

mid-range of CT and further off at extreme ranges (see Figure 4-9 and 4-10). Both CT1B 
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and CT2B were better represented as quadratic transformations comparing to linear and 

cubic transformation. For SIM test, the scaled CT1B and CT2B were obtained as CS1B and 

CS2B, with the regression 

 
2

2

1 1 1

2 2 2

-0.72477+  1.06107 C 0.00017669 C

-1.88151+ 1.08464 C 0.00078921 C .

S B T B T B

S B T B T B

C

C

= +

= +
 (4-1) 

And for ART test, CS1B and CS2B were obtained with the regression 

  

2

1 1 1

2

2 2 2

-0.72477+  1.06107 C 0.00017669 C

-1.88151+ 1.08464 C 0.00078921 C .

S B T B T B

S B T B T B

C

C

= +

= +
 (4-2) 

Updated r
2
 and bias statistics for two tests are shown in Table 4-11 to 4-14. Since they 

were related by a linear transformation, the estimates of r
2
 for CS1B and CS2B were almost 

identical to CT1B and CT2B in each quartile and for the full range. Bias-wise, when the 

analyses carried out by quartile, CS1B and CS2B resulted in smaller bias (in absolute value) 

compared to CT1B and CT2B, but the result still had a slightly larger bias than CK (see Table 

4-11 and Table 4-12). However, when the analyses focused on overall comparison, CS1B 

and CS2B had the same bias as CK (see Table 4-13 and Table 4-14). Figure 4-11 and Figure 

4-12 give comparisons among CS1B, CS2B, and CK. For both sets of tests, as it is shown in 

the figures, CS1B and CS2B performed comparable to CK, and all provided nearly unbiased 

estimate of CT. In contrast to the untransformed results CT1B and CT2B (Figure 4-7 and 

Figure 4-10), CS1B and CS2B improved significantly on overall bias reduction (Figure 
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4-11). Much smaller bias was found on lower and upper end of score after scaling. 

Table 4-11 

r
2
 and Bias by Quartile: SIM 

Quartile Statistic CK CT1B CS1B  CT2B  CS2B  

Q1 
r2 0.379 0.492 0.492 0.473 0.472 

Bias 0.004 -0.166 -0.052 1.130 -0.057 

Q2 
r2 0.123 0.152 0.152 0.146 0.146 

Bias 0.023 -0.541 0.120 0.638 0.086 

Q3 
r2 0.138 0.154 0.154 0.153 0.153 

Bias 0.021 -0.973 0.042 0.105 0.021 

Q4 
r2 0.492 0.497 0.496 0.504 0.505 

Bias -0.012 -1.551 -0.074 -0.630 -0.014 

Note.CT1B: One-Term Bayes formula score; CT2B: M-Term Bayes formula score; 

CS1B: Scaled One-Term Bayes formula score; CS2B: Scaled M-Term Bayes formula score 

 

Table 4-12 

r
2 
and Bias by Quartile: ART 

Q  Statistic CK CT1B CS1B  CT2B  CS2B  

Q1 
r

2
 0.458 0.532 0.532 0.521 0.520 

Bias -0.168 0.083 -0.159 0.927 -0.165 

Q2 
r2 0.196 0.217 0.217 0.214 0.214 

Bias -0.219 -0.254 -0.147 0.404 -0.159 

Q3 
r2 0.215 0.226 0.226 0.225 0.225 

Bias -0.208 -0.623 -0.261 -0.110 -0.269 

Q4 
r2 0.532 0.546 0.546 0.548 0.548 

Bias -0.124 -0.861 -0.151 -0.541 -0.125 
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Table 4-13 

r
2
 and Bias for Full Distribution: SIM 

Statistic CK CT1B CS1B  CT2B  CS2B  

r2 0.786 0.818 0.818 0.813 0.814 

Bias 0.009 -0.807 0.009 0.309 0.009 

 

Table 4-14 

 r
2
 and Bias All Quartiles: ART 

Statistic CK CT1B CS1B  CT2B  CS2B  

r2 0.857 0.870 0.870 0.868 0.868 

Bias -0.180 -0.414 -0.180 0.170 -0.180 

 

Figure 4-11. SIM test: Comparison of bias for CS1B, CS2B and CK. 

  

 

SIM 
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Figure 4-12. ART test: Comparison of bias for CS1B, CS2B and CK. 

  

Summary of First Simulation Study 

The classical formula score provided the least bias of formula score methods, but the IRT 

formula scores had higher correlations with the corrected true score than the 

number-correct scoreðespecially in the first quartile. If one is interested only in 

comparing aggregate test scores to some criterion, this would argue in favor of the 

classical correction. However, if the goal is to remove the effects of unreliability due to 

guessing while substantially reducing bias, the IRT formulas have better measurement 

properties. 

 

ART 



96 

 

 

 

Second Simulation Study 

The purpose of the second simulation study is to determine the practical utility of using 

the IRT formula scores in moderately large samples. Accordingly, a set of n= 5000 

sample for each test was sampled from the data sets generated in the first simulation 

study with 10 replications. To evaluate the two new formula scores, several benchmarks 

were created. Recall that the scoreĔ
TC was obtained by substituting sample estimates of 

item parameters and proficiencies into Equation(3.11). The comparison betweenĔ
TC and 

CT is then obtained to establish the maximum level of predictability based on IRT 

estimates. Second, the scores1
Ĕ

TC and
2
Ĕ

TC were determined with estimated IRT item 

parameters and ɗ using Equations (3.25) and(3.43). These can be used as benchmarks for 

determining how much information was lost in calculating CT1B, CS1B, CT1P, CT2B, CS2B 

and CT2P with the observed score methods (Bayes formula scores, scaled-Bayes formula 

scores and probability formula scores). Note also that 1
Ĕ

TC and 2
Ĕ

TC contained measurement 

error as well as sampling error in IRT parameters. The corresponding bias statistics, 

RMSE and r
2
 of ĔTC , 1

Ĕ
TC , 2

Ĕ
TC , CT1B, CS1B, CT1P, CT2B, CS2B and CT2P associated with CT 

are calculated over 10 replications. Results are presented first by quartile followed by all 

range. 

In Table 4-15 and 4-16, bias, RMSE and r
2
 relative to CT are first given by the 
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first quartile (based on CT) then calculated for the full range for two tests. Results from 

two tests were similar. The average biases and RMSE ofĔ
TC in the first quartile were 0.944 

(SIM) and 2.189(ART), and 0.891 (SIM) and 2.185 (ART), and Ĕ
TC explained about 

53.2% (SIM) and 54.5% (ART) of the variance of CT in the first quartile (Table 4-15). 

However, Ĕ
TC was a better predictor of CT for SIM and ART in the full distribution: not 

only was its average bias very small (-0.009 and 0.048, respectively), but the average 

RMSE was also smaller (2.112 and 2.030) for two tests (Table 4-16). For the full 

distribution, Ĕ
TC explained about 84.8% (SIM) and 88.2% (ART) of the variance of CT.   

Information Loss due to the Taylor Approximation 

To evaluate potential information loss due to Taylor approximation in obtaining, 1
Ĕ

TC and 

2
Ĕ

TC  were compared with CT. It can be seen in Table 4-15 that the corresponding absolute 

values of bias in the first quartile were smaller thanĔTC . The RMSEs for 1
Ĕ

TC and 2
Ĕ

TC were 

slightly higher thanĔTC for SIM and were slightly lower for ART. The amounts of CT 

variance explained for SIM and ART by 1
Ĕ

TC (50.6% and 53%) and 2
Ĕ

TC (51% and 53.6%) 

were only slightly lower than for ĔTC (53.2% and 54.9%). Thus, ĔTC accounted about 2% 

more variance than 1
Ĕ

TC and about 1.5% more than2
Ĕ

TC in the first quartile.  
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Table 4-15   

First Quartile Results for 10 Replications of N=1250  

  Bias RMSE r
2 

Test Statistic Ĕ
TC  

1
Ĕ

TC  
2
Ĕ

TC  Ĕ
TC  

1
Ĕ

TC  
2
Ĕ

TC  Ĕ
TC  

1
Ĕ

TC  
2
Ĕ

TC  

SIM 
Mean 0.944 -0.649 0.421 2.189 2.302 2.257 0.532 0.506 0.510 

SD* 0.116 0.099 0.090 0.057 0.067 0.055 0.014 0.014 0.012 

ART 
Mean 0.891 -0.355 0.500 2.185 2.173 2.183 0.545 0.530 0.536 

SD* 0.151 0.130 0.106 0.068 0.062 0.055 0.019 0.019 0.018 

Note.Ĕ
TC : IRT estimate corrected true score; 

1
Ĕ

TC : IRT estimate one-term formula score; 

2
Ĕ

TC : IRT estimate M-term formula score; 

* The standard deviation (SD) measures the stability of the bias result across 10 replications. 

 

For the full range (Table 4-16), compared toĔTC , 1
Ĕ

TC and 2
Ĕ

TC  had larger bias, RMSE, 

although the differences were not large. The proportion of CT variance explained for SIM 

and ART by 1
Ĕ

TC (83.5% and 87.6%) and 2
Ĕ

TC (83.7% and 87.7%), both were only 

slightly less than by ĔTC (84.8% and 88.2%). Consequently, there appears to be very little 

information lost due to Taylor approximation. 

 



99 

 

 

 

Table 4-16  

All Quartiles Results for 10 Replications of N=5000  

  Bias RMSE r
2 

Test Statistic Ĕ
TC  

1
Ĕ

TC  
2
Ĕ

TC  Ĕ
TC  

1
Ĕ

TC  
2
Ĕ

TC  Ĕ
TC  

1
Ĕ

TC  
2
Ĕ

TC  

SIM 
Mean -0.009 -0.935 0.060 2.112 2.503 2.270 0.848 0.835 0.837 

SD* 0.084 0.082 0.073 0.023 0.037 0.028 0.003 0.003 0.003 

ART 
Mean 0.048 -0.491 0.150 2.030 2.264 2.132 0.882 0.876 0.877 

SD* 0.078 0.098 0.078 0.018 0.042 0.020 0.003 0.003 0.003 

Note. * The standard deviation (SD) measures the stability of the bias result across 10 replications.  

Information Loss of Pseudo-Bayes and Conditional probability Estimates 

It would be expected on theoretical grounds that the IRT estimates, 1
Ĕ

TC and 
2
Ĕ

TC  would 

lead to better estimation on CT, compared to either Bayes or probability formula socre, 

and this indeed was the case for both cases of the first quartile and the full range. Both 

1
Ĕ

TC and 2
Ĕ

TC  had smaller biases (Table 4-17 and Table 4-18), RMSEs (Table 4-19 and 

Table 4-20), and higher r
2
 (Table 4-21 and Table 4-22). There were two exceptions to this 

general finding for both sets of tests: the scaled-Bayes formula scores CS1B and CS2B 

always had smaller bias compared to 1
Ĕ

TC and 2
Ĕ

TC ; and in the first quartile, CT1B had a 

smaller bias than 1
Ĕ

TC . The latter result was possible an artifact of overfit because sample 

statistics rather than population estimates were used to construct the formula scores. It is 

also important to recognize that the effectiveness of the scaling depends on the accuracy 
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of the classical formula score.  

 

Table 4-17 

Average Bias: First Quartile Results for 10 Replications of N=1250 

  IRT First Formula Second Formula 

Test Statistic 
1
Ĕ

TC  
2
Ĕ

TC  CT1B CT1P CS1B CT2B CT2P CS2B 

SIM 
Mean -0.649 0.421 -0.228 0.902 -0.082 1.078 2.256 -0.090 

SD 0.099 0.090 0.071 0.061 0.080 0.072 0.057 0.075 

ART 
Mean -0.355 0.500 0.087 0.502 -0.160 0.933 1.459 -0.166 

SD 0.130 0.106 0.083 0.074 0.080 0.079 0.071 0.083 

Note.
1
Ĕ

TC : IRT estimate one-term formula score; 
2
Ĕ

TC : IRT estimate M-term formula score; 

CT1B: One-Term Bayes formula score; CT1P: One-Term probability formula score; 

CT2B: M-Term Bayes formula score; CT2P: M-Term probability formula score; 

CS1B: Scaled One-Term Bayes formula score; CS2B: Scaled M-Term Bayes formula score 

 

Table 4-18 

Average Bias: Full Distribution Results for 10 Replications of N=5000 

  IRT First Formula Second Formula 

Test Statistic 
1
Ĕ

TC  2
Ĕ

TC  CT1B CT1P CS1B CT2B CT2P CS2B 

SIM 
Mean -0.935 0.060 -0.842 0.729 0.002 0.285 1.499 0.002 

SD 0.082 0.073 0.040 0.027 0.026 0.027 0.027 0.026 

ART 
Mean -0.491 0.150 -0.388 0.255 -0.165 0.193 0.772 -0.165 

SD 0.098 0.078 0.046 0.038 0.042 0.042 0.038 0.042 



101 

 

 

 

Table 4-19 

Average RMSE: First Quartile Results for 10 Replications of N=1250 

  IRT First Formula Second Formula 

Test Statistic 1
Ĕ

TC  
2
Ĕ

TC  CT1B CT1P CS1B CT2B CT2P CS2B 

SIM 
Mean 2.302 2.257 2.406 2.696 2.679 2.673 3.326 2.769 

SD 0.067 0.055 0.049 0.055 0.056 0.038 0.048 0.055 

ART 
Mean 2.173 2.183 2.260 2.285 2.403 2.434 2.623 2.472 

SD 0.062 0.055 0.055 0.041 0.066 0.043 0.037 0.066 

 

Table 4-20 

Average RMSE: Full Distribution Results for 10 Replications of N=5000 

  IRT First Formula Second Formula 

Test Statistic 
1
Ĕ

TC  2
Ĕ

TC  CT1B CT1P CS1B CT2B CT2P CS2B 

SIM 
Mean 2.503 2.270 2.496 2.594 2.544 2.373 2.851 2.595 

SD 0.037 0.028 0.028 0.027 0.029 0.025 0.021 0.030 

ART 
Mean 2.264 2.132 2.202 2.229 2.287 2.160 2.307 2.313 

SD 0.042 0.020 0.026 0.019 0.025 0.019 0.016 0.026 

 

It appears that in moderately large samples, much of information in CT was 

retained by Bayes and probability formula scores, as indicated by the high correlations 

with CT, especially in the full range (Table 4-22). The correlations between CT and CT1B 

(note that the scaled formulas have the same correlational properties as the original ones) 
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were 0.91 and 0.93 for the SIM and ART tests, respectively; which were about the same 

as
1
Ĕ

TC . Even though the correlations were smaller in the first quartile compared to 

correlations of the full range (see Table 4-21), all formula scores had correlations in range 

of 0.65 -0.73 and were only slightly smaller than compared to IRT estimate scores
1
Ĕ

TC  

and 
2
Ĕ

TC (0.71 and 0.73 for SIM and ART, respectively). In Table 4-21, it can be seen that 

in the first quartile, 
1
Ĕ

TC explained about 1.4% and 5% more of CT variance than CT1B and 

CT1P for the SIM test. For ART, the difference was even smaller. There was no average r
2
 

difference between 1
Ĕ

TC and CT1B, and only 1.9% difference between1
Ĕ

TC and CT1P. 

Comparable results were found between 2
Ĕ

TC and CT2B, CT2P and also in the full 

distribution. 

 

Table 4-21 

Average r
2
: First Quartile Results for 10 Replications, N=1250 

 IRT First Formula Second Formula 

Test Statistic 1
Ĕ

TC  2
Ĕ

TC  CT1B CT1P CT2B CT2P 

SIM 
Mean 0.506 0.510 0.492 0.456 0.473 0.429 

SD 0.014 0.012 0.013 0.017 0.013 0.017 

ART 
Mean 0.530 0.536 0.530 0.511 0.519 0.495 

SD 0.019 0.018 0.018 0.018 0.018 0.018 
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Table 4-22 

Average r
2
: Full Distribution Results for 10 Replications, N=5000 

 IRT First Formula Second Formula 

Test Statistic 
1
Ĕ

TC  
2
Ĕ

TC  CT1B CT1P CT2B CT2P 

SIM 
Mean 0.835 0.837 0.820 0.815 0.815 0.807 

SD 0.003 0.003 0.004 0.004 0.004 0.004 

ART 
Mean 0.876 0.877 0.871 0.871 0.868 0.867 

SD 0.003 0.003 0.003 0.003 0.003 0.003 

  

Comparison between Bayes Formula Scores 

Both SIM and ART tests revealed similar results. Bias was higher for CT2B than CT1B in 

the first quartile, and the direction and the magnitude of the bias were consistent with the 

expectations from the first simulation study. However, CT2B provided a better 

approximation throughout the quartiles, which was also consistent with the result from 

the first simulation. The RMSE was also higher for CT2B than CT1B in the first quartile, yet 

CT2B had smaller RMSE in the full score range. The average squared correlation for CT1B 

and CT2B in the first quartile were r
2
=0.492, r

2
=0.473 (SIM) and r

2
=0.530, r

2
=0.519 

(ART), respectively. These were either the same or slightly lower than the large-sample 

squared correlations given in the first simulation (see Table 4-8 and Table 4-9). The 

one-term Bayes formula score CT1B consistently had a higher r
2
 than CT2B throughout 
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quartiles. Similar to the results in the first simulation study, the scaled-Bayes formula 

scores CS1B and CS2B improved significantly on bias estimation from CT1B and CT2B while 

keeping r
2
 identical to that of CT1B and CT2B. 

Comparison between Probability Formula Scores 

Results for bias, RMSE, and r
2
 showed comparable trends with the Bayes formula scores, 

with the exception of a greater bias was found in full score range of CT2P. Again, this 

result was consistent with the finding from the first simulation study. 

Comparison between Bayes and Probability Formula Score 

Similar with the results in the first simulation study, the Bayes formulas scores (CT1B and 

CT2B) retained more true score information and had smaller bias in the first quartile than 

the probability formula scores (CT1P and CT2P). Overall, CT1B performed best among these 

four alternatives. 

Summary of Second Simulation Study 

Relative to a pragmatic criterion created through IRT calibration, the IRT-based 

corrections 1
Ĕ

TC and 2
Ĕ

TC  tracked the corrected true score CT closely. Moreover, there 

was not much information loss due to Taylor approximation. The use of Bayes and 

probability formula scores also resulted in little information loss for the two tests studies 

with moderately large sample sizes. Finally, the moderate-sized samples resulted in 
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similar result with large-sized samples.   

Study II: Applications to DIF Analyses 

The purpose of study II is to demonstrate a potential application of IRT formula scoring 

methods to DIF. The MH and the LR procedures were used to evaluate how the IRT 

formula scores performed as conditioning scores for DIF analysis, compared to 

number-correct score. Average type 1 errors and average log-odds ratios were obtained 

for both procedures, under the condition of no DIF (e.g., the null hypothesis is true). The 

average log-odds ratio was calculated for each item across 1000 replications in order to 

evaluate bias. Linear regression was then used to evaluate which factors affect differences 

in the average log-odds ratio and type 1 error (dependent variables) across items. 

Separate linear regression was conducted for each scoring method and for each DIF 

procedure. Independent variables including item parameters, ability distributions, focal 

group sample size were tested. The nominal Ŭ =.05 level of significance was used for all 

tests.   

Type 1 Error  

The Type 1 error rates for each DIF identification procedure, by all combinations of the 

factors included in this study, are summarized in Table 4-23 and Table 4-24 for the two 

tests. The results showed that a similar pattern of performance on type 1 error rates for all 
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different scoring methods. The average type 1 error rate was close to or less than 0.05 for 

equal means in theqdistributions (æ=0). As predicted, type 1 error rates increased as the 

separation between the ability distributions of the two groups increased. This effect was 

more pronounced when the focal group had n=1000 cases versus n=500 cases.   

 

Table 4-23 

Mean Type 1 error Proportions at 0.05a= for SIM 

    Type 1 Error Rate 

Procedure D Rn
 Fn

 R  1T BC  1T PC  2T BC  2T PC  

MH 

0 
1000 500 0.047 0.048 0.048 0.048 0.048 

1000 1000 0.049 0.048 0.049 0.048 0.049 

0.5 
1000 500 0.070 0.056 0.059 0.057 0.063 

1000 1000 0.079 0.058 0.063 0.060 0.068 

1 
1000 500 0.143 0.074 0.088 0.079 0.106 

1000 1000 0.177 0.089 0.106 0.094 0.128 

LR 

0 
1000 500 0.048 0.048 0.047 0.048 0.047 

1000 1000 0.049 0.048 0.049 0.049 0.049 

0.5 
1000 500 0.073 0.057 0.060 0.059 0.064 

1000 1000 0.080 0.059 0.062 0.060 0.067 

1 
1000 500 0.165 0.091 0.106 0.100 0.125 

1000 1000 0.190 0.094 0.112 0.103 0.135 

 

Results for the SIM test are shown in Table 4-23. When comparisons were made 

within the same scoring method (R, CT1B, CT2B, CT1P, or CT2P) under the same settings (æ, 

nR, nF), the MH procedure had a lower probability of incurring type 1 errors than the LR 
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procedure in almost all cases. Similarly, results from ART also showed that MH had 

lower type 1 errors at higher delta settings (see Table 4-24). Findings from both tests 

were consistent with previous studies that have found the LR procedure to have slightly 

higher type 1 error rates than the MH procedure (Swaminathan & Rogers, 1990; 

Narayanan & Swaminathan, 1996; Huang, 1998).  

The results showed that type 1 error rates varied across different scoring methods. 

Type 1 errors associated with IRT formula scores were consistently lower in every 

condition. Type 1 error differences between conditioning on IRT formula scores versus R 

increased when æ and focal group size increased. For the MH procedure based on SIM 

withæ=0, average type 1 error rate differences between R and IRT-based scores were 

about 0.001 for nF =500 and nF =1000. However, when æ increased to 0.5, the average 

differences increased to 0.010 for nF =500 (range = 0.007 to 0.014) and 0.017 for nF 

=1000 (range = 0.011 to 0.021). When æ=1, the differences increased to 0.056 (range = 

0.037 to 0.069) and 0.072 (range = 0.049 to 0.088). Similar results were found for the LR 

procedure and the ART test. 

To compare type 1 errors between two IRT formula scores (CT1B vs. CT2B and CT1P 

vs. CT2P), it appeared that the first IRT formula scores (CT1B and CT1P) had lower type 1 

errors than the second IRT formula scores (CT2B and CT2P). Within the same IRT formula, 
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Bayes formula scores resulted in lower type 1 error rates, compared to probability 

formula scores (CT1B vs. CT1P, and CT2B vs. CT2P). Overall, CT1B had the lowest average 

type 1 error in every setting. The same trends were found for both tests and both DIF 

procedures. 

 

Table 4-24 

Mean Type 1 error Proportions at 0.05a= for ART 

    Type 1 Error Rate 

Procedure D Rn
 Fn

 R  1T BC  1T PC  2T BC  2T PC  

MH 

0 

1000 500 0.050 0.051 0.051 0.051 0.051 

1000 1000 0.050 0.050 0.049 0.050 0.049 

0.5 

1000 500 0.059 0.053 0.055 0.053 0.056 

1000 1000 0.062 0.054 0.057 0.056 0.057 

1 
1000 500 0.093 0.062 0.067 0.065 0.073 

1000 1000 0.109 0.068 0.072 0.070 0.082 

LR 

0 

1000 500 0.050 0.050 0.050 0.050 0.050 

1000 1000 0.050 0.049 0.049 0.050 0.049 

0.5 

1000 500 0.060 0.053 0.054 0.054 0.057 

1000 1000 0.062 0.054 0.055 0.054 0.057 

1 
1000 500 0.114 0.073 0.080 0.081 0.091 

1000 1000 0.116 0.069 0.075 0.074 0.088 

 

Log-odds Ratio 

Because no DIF was simulated, the value of the LOR was expected to be near zero; thus, 
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LOR simultaneously represented the indicator of DIF effect size and bias. If LOR is 

greater than 0, an item favors the reference group. On the contrary, if LOR is less than 0, 

the item favors the focal group. Because positive and negative DIF tend to cancel across 

items within a test, the average LOR across items is not an appropriate evaluation statistic. 

For this reason, average root mean squared log-odds ratios (RMS) across items were used 

for the two tests as shown in Table 4-25 and Table 4-26.  

 

Table 4-25 

Average Root Mean Squared Log-Odds Ratio for SIM 

    RMS-LOR 

Procedure D Rn
 Fn

 R  1T BC  1T PC  2T BC  2T PC  

MH 

0 

1000 500 0.010 0.009 0.010 0.010 0.009 

1000 1000 0.007 0.007 0.006 0.007 0.007 

0.5 

1000 500 0.081 0.046 0.052 0.056 0.064 

1000 1000 0.084 0.047 0.053 0.057 0.066 

1 
1000 500 0.168 0.092 0.103 0.112 0.132 

1000 1000 0.170 0.094 0.104 0.113 0.133 

LR 

0 

1000 500 0.011 0.010 0.011 0.010 0.010 

1000 1000 0.007 0.007 0.007 0.007 0.007 

0.5 

1000 500 0.083 0.046 0.053 0.056 0.065 

1000 1000 0.084 0.047 0.054 0.055 0.065 

1 
1000 500 0.178 0.102 0.116 0.121 0.141 

1000 1000 0.175 0.098 0.111 0.113 0.135 

 




