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ABSTRACT OF THE DISSERTATION

Correction for Guessing in the Framework of the 3PL Item Response Theory

By TING-WEI CHIU

Dissertation Chair:

Gregory Camilli, Ph.D.

Guessingoehavioris an important topic with regauto assessing proficiency orultiple

choice testgparticularlyfor examineesit lower levels of proficiencylue to greater the

potential forsystematic error or bias whithatinflates observed test scaeMethods

that incorporate a correction for gsing on higkstakes tests generally rely on a scoring

model that aims to minimize the potential benefit of guessimgome cases,farmula

score basedn classical test theory (CTT)appliedwith the intention of eliminatinghe

influenceof guessingrom the numbefright score (e.g., Holzinger, 1924). However,

sinceits inception significant controversy has surrounded the use and consequences

associated witklassicaimethodsof correctingfor guessing.

More recently, item response theory (IRT} baen used to conceptualize and

describe the effects of guessivgt CTT remains a dominant aspect of many assessment

programs, and IRT models are rarely usecdekimating proficiency withMC itemsi



where guessing is most likely to exert an influendéhdugh there has been tremendous
growth in the research of formal modeling based on IRT with respect to guessing, none of
these IRT approaches have had widespread application.

This dissertatiorprovides a conceptual analysh ow t he fAcorrecti on
gus si ngo wor ks wi t BRLmode| aneltwd nevegoessmgarréction f a
formulasbased onRT are derivedor improving observed scoestimatesTo
demonstrate the utility of the nelarmula scoresthey are applied as conditioning
variable in wo different approaches to DIthe MantelHaenszel ash logistic regression
procedurs.

Two IRT formula scores were developed using Taylor approximateach of
these érmula scors requires the use of sample statistics in lieu of IRT parameters for
estmating corrected true scores, and these statistics were obtained in two different ways
that are referred to as theeudeBayes and conditional probabilitgethods. It is shown
that he IRTformula scoresdjustthe numbeicorrect score based doththe poficiency
ofanexamineesa nd t h e pakesni res@orséssacross items.

In two different simulation studiethe classical formula score performed better in
terms of bias statisticbutthe IRT formula scorelBadnotable improvemennibias and

r? statistics compared to the numiparrect scoreThe advantage of the IR®rmula



scoresaccounted for aboutO® more of the variance icorrected true scoréas the first

guartile.Results also suggested timat much information lost due tine use ofraylor

approximation The pseudeBayesand conditional probabilitiesiethodsalso resulted in

little information loss. When applied to DIF analyses, the IRT formula staciswer

bias in both the logdds ratios antype 1 error rates compared to thenbercorrected

score.Overall, the IRTiormula scoreslecreased bias in tteg-oddsratio by about6%

and in the type 1 error rate by abd@es.
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CHAPTER I. INTRODUCTION

Guessing is amportantissue with regard to multiple choi¢®IC) tests Examinee

guessing behavior increases wieaminees are encouraged to answer as many

guestions as posse (e.g.,ATry to answer all itemd, regardless of whether they know

an answerin this caseguessing is likely to increasehich in turn is likely to introduce a

type oferrorvariancedistinct fromclassicarandommeasurement errdespecially athe

lower range of test scorgguessing islsolikely to introduce a posite bias to examinee

proficiency (Rowley & Traub, 1977)While the former problem can lead to incorrect

interpretatiorof a score where there is no actual variability, téer prdlemhasthe

potentialinflating average test scord®oth problemsan result inncorrect

interpretations oéxaminee proficiency relative to a proficiency classification (e.g.,

partially proficient, proficient, and advanceaf)to examinees that do ngaessIn

general, guessing potentiallyd® number ofmpactson test scores iterms ofreliability

and validity For this reason, research focused on remedying the effects of guessing on

test scores has a long history in the field of educational mezasui.

There have been many approaches to correct or réldeiedfects of guessing. A

formula scoréased on classical test theory (CTd)he mostwidely known and is (or

has been) used for major achievement test programs such@&TtiReasoning Tes



SAT Subject Tests, arttie Graduate Record Examination (GRE) Subject Tests

(Bridgeman, & Schmitt, 1997 heclassicaformula score adjus&s numbeicorrect

score by subtracting proportion of thencorrect responses based on the numbéef

optiors. Since its inception, significant controversy has existed regatkdéegpplication

of this formula scor@nd its consequenc@loberts 1995) More recentlymodern test

theory likethethreeparametef3PL) model of item response theory (IRfgasbeenused

to conceptualize and describe the effects of guessioftaininge x a mi needés pr of i

by adding a pseudguessing item parameter (Embretson & Reise, 2000RT,

e X a mi nadiogeicy levplis estimated usirigm parameteras applied tatem

response pattesnBoth classicaformula scoring methods andB IRT models assume

that examinees either guegsandomly or respond based on their knowleddelZinger,

1924 Waller, 1989). However,dih methodsgnorethe common situatiorn which

ordinaryexamineegnswer questions using partial knowledgeliminate some choices

(Waller, 1989) Therefore, even withralRT 3PL model, proficiency estimation may be

less than optimadecausguessing takes the form of many psychological strategies that

are difficult to incorporate in a psychometric model

In the remainder of Chapterd short background anohsic rationad used to

justify correction for guessing are given. The main utility of¢laessicaformula score,



as argued first, is actuallystrategy for preventing guessingecond, a number of

criticisms ofclassicalformula scoring areeviewed which fall into the two general

categories of behavioral prevention and postdtatisticalcorrection. A link between

IRT and post hoc statisticabrrections ishenmade. Given thibackgroundthe

objectivesof this dissertation armtroduced, followed by the methodology and the

potentialsignificance obbtaining a clearer understanding of the effects of guessing

Background for the Correctieior-Guessing

Assessments are used &ovariety of purposes and a wide range of séafesm

classrooms to state and natwide programs. The more frequently encountered purposes,

such aschool admissions, evaluation of teaching and learning, career placand

recruitment, angbrofessionalicenaure, employ a variety of item formagé/illingham &

Cole, 1997) The most common typef item format instandardized achievement testing

is multiple choice(MC) because, comparéd othertestformats,this formd is relatively

costeffective intestdevelopmentind can be designed to assess many different content

domains and skill leveld-errara & DeMauro, 2006Multiple-choiceitems can also be

administered in a relatively short amount of time arekasily €ored relative to other

item formatssuchas short or extended constructed respefesg., essayqFerrara &

DeMauro, 2006)Even when tests are designed with both MC and constructed response



items, MC items typically comprise a large portion of theljaténts possible.

Of particular concerwith MC itemsis the possitity of guessing during test

administration (Alnabhan, 2002Pn a MC test, examinees magcounteitems for

which they do not recognize the correption While some examinees may clsedo

omit responses teuchitems, others may choose to guésesn amonghe presented

options. When examinees choose to guess, they frequently employ various stiiaétgies

are dependent on the context in which the test is administeveéxample,fiexamines

are encouraged to answer as many questions as possible, regdndlesther they know

an answerguessing is likely to increask geneal, guessingmpactsontest scores in

terms ofreliability and validity(Burton& Miller, 1999 Ebel, 1972 ord, 1975.

ClassicalFormula Scoring

The impact of correction®r guessinghas been studied for decades in terms of both

preventingguessing, and providing statistical methods of correction for guessing.

Corrections for guessing on highakes tests artypically applied after administration,

andthe classicaformula scoe is widely considered teliminate the influence of

guessing (e.g., Holzinger, 192Zhoughclassicalformula scorings a procedure

ostensiblydesigned to reduce score inflatjanis more accurately defined asprevention

strategy becausex@mineeseceive a formulacoring instructiomprior to test



administrationTherefore, if examinees respondationally to the warning of a formula

correction they would omit itemé$or whichthey do not know the correct answers.

Guessing behavias reducedluring a testaking rather tharduring scoring

lllustration of Prevention

To prevent guessing behaviduring a test administratiokyise, Bhola, and Yang (2006)

introduced an effortnonitoring method in a lowstakes test by using a computer

monitorexaminee efforts based on item response tideeause \th low-stakedesting

scores carry little or no personal consequena@saminees magot have the motivation

to solve the problem3hey may engage in guessibgrespondhg to items rapidlyso

their test scores may underestimate their true abilfesthat reason, warning messages

may prevent guessing duertipid responsed\ote that in this example, the effect of

guessing is taeflate test scores, and thus formsdmring would actually make matters

WOrse.

Argumentsfor andagainstClassicaFFormula Scores

The guiding principle foclassicaformulascoringis thatexaminees with the same

underlying ability should receive tharse score regardless of whether they guess

randomly or omita responseOver the decades that tipigoceduréhas been in use, the

formula-adjustedscores have generally been showmhave slightly higher reliabilities



thanuncorrected scoseyet inconsignt results have been found with respect to validity

(Lord 1963, Diamond & Evans 1973, Alnabhan, 2002, and Burton, 280)a number

of criticisms ofclassicaformula scoring have been made from both psychological and

statistical perspectives.

Psychdogical Perspective

Althoughclassicaformula scoe has been applied to standardized tegsifscant

controversy has surrounded the use and consequences associatéabgiithformula

scoresinceits inception(Roberts 1995) In particular,this controvery hasfocused on

the Ainvariance effect (1 Egs(Atbandse d988)f er ent i

Advocates of the IE hypothesis, such as Ango8chrader(1984) asseedthat if

examinees were forced to respond to omitted items, regaadlessring instructions

received, the chance for them to get the correct responses on those items would not

exceed the chance levéhey hypothesizitthat guessingvould result in random error,

and that everyoneould havean equal chance of answering tetl items correctly.

Thus,use ofclassicaformulascoreeliminates the random errzonceptualized as an

invariant effect on test scoresqused by guessing.

However, examinees usually do not choose the answer randomly when they do

not know the correatption They might use knowledge on the item to eliminate one or



more options, and guess from the remaining options. Besides using partial knowledge,

theymayalso applydifferentoptionselection strategiess a result, e distributionof

responses wdd not be uniforma conditioninconsistent with random guessing

(Cronbach, 1984)Therefore, m contrast tdA\dvocates of the |IE hypothesthe advocates

of the DE hypothesis assert tligrtainexaminees may omit items for which they have a

greater thamandom chance of answering correctly, in order to avoid the scoring penalty

associated witlkelassicaformula scoreln this casetest scores may underestimate an

e x ami n e e 0 sSeverakiveliesdhdvehbwnithgt.when examinees are forced to

resporl to itemsthey would naturally omjtthey have better than chance leals

answering correctl{Bliss, 1980 & Albanese, 1988 ersonality and psychological

factors may affect guessing behavior (Budescu &Bidlel, 1993; Burton, 2005), and

under formud-scoring instruction, certain groups of examinees would be penalized.

Statistical Perspective

Identicalpoints are subtracted for each wrong respamsterclassicaformula score

(given a constant number of optiongjtimately, this results in ormulascorewhichis

a simple linear transformation from the numberrect scoreThe classical measures of

reliability and validity aradentical under linear transformation; therefanegprovements

in these indicatoref test qualityare necessarily the rdsof changing examinee behavior



by a priori formulascoringwarnings

Modern test theory offers several alternatives to the conceptualization of guessing.

Item response theohasbeen used to conceptualize and describe the effects of guessing.

In the cantext ofIRT, the3PL model(Birnbaum, 1968)s apopular choice for MC tests,

because examineebs proficiency estimates

and item parametethat describalifficulty, item discrimination, ané lower asymptote

(or pseudeguessig). Indeed, the argument could be made thatRT 3PL modelis

preferred for estimating item and individual proficiency parameters in the presence of

guessing because it generally fits data better (Hambleton, Swaminathan, & Roger, 1991;

Embretson & Reise, 2000)

Both classicaformula scoreand IRT L assume that examinees guess randomly,

yet, the effect of guesslincdagsicaformuascarmg nee 6s

methodse x ami nee 6s t r uthecamrectonasapplied dinpatiytatheo n

numbercorrect score. See Figurelifor a visual description of this effect.

d



Figure 1-1. The effect of guessing on IRT 3PL model and formula scoring method

IRT 3PL Model

Item Parameters (a, b, c) ltem Response Pattern
Examineeds (gfoficiency

Formula Scoring

Number-Correct Score

e

Corrected True Score

Correction factor &%
F-1

w: number of incorrect response
k: number of options peritem

The IRT 3PL model adds the guessing paragnéb create a nonzero lower asymptote to

theitem response function for MC item$an IRT 3PL model fitsitem responses wek

corrected tne score based on IRT scoricguld be obtainethat is roughly similar to the

classicafformula scoring. Howevens shown belown the framework of an IRT 3PL

model, the effecoft he | ower a syimpd @ t pom BGERAEITHES re

estimated proficiency is not just a function of item parameters, but atsmof e x a mi ne e 0 ¢

item response patterelative tothoseparametersSo, the impressiogiven by the

classical formula score is incomplete because it is item dependent but not person

dependent.
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Purpose

Thepurpose of this dissertation wedseefold and is designetb answer the following

guestions:

1. Howdoes the fAcorrection for guessingo Vv

3PLmodel?

2. CanIRT formula score®e constructed thaprovetrue scoreestimates?

3. Do IRT formula scorefiave potential applications in assessment programs

usingtraditionalnumbercorrect scores?

The first studyin this dissertationvasdesigned t@answer question 1 and &hile

a second study watkesigned to answepuestion 3The aim of thidissertatiorwasto

investigate guessing in the IRT framework, and then to determine whieihteormula

scorescan produce more reliable and accuedmates of true scores thaould be

obtained without guessingersonality and psychological factors as they relate to

formulascoringmethod aretopics outside the scopd this dissertationMoreover, he

basicassumptionsvere maden this dissertatiothatexaminees armstructed to provide

answers to all questions, atithtomitted items arscored as incorrectheeffects of

these assumptions wemet evaluated.
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The goalof this researth wasto derive IRTformula scoresnd to conpare the

properties of these scores to those obtained sla$sicaformula scoing. Guessing wa

first examined as a conceptual analysis withenflamework of an IRBPL model to

understand how IRT proficney estimatesre adjusted fothe lower asymptote (ar

parameter)Unlike theclassicaformula scoresn which pointsare subtractettom the

numbercorrect scores based on the numbenodrrectresponsest was showrthatIRT

formula scoresdjust poficiency estimates for patterns adrrectresponses

The second goal of this studyas to show howRT formula scoregsanbe

developed thaprovidesmore reliablegrue score estimatesmder certain conditiongwo

IRT formula scores werdevelopedand nvestigated in two simulation studi&ecause

these IRTformula scores takimto accountesponse patterns and item characteristics

they are nosimple linear transformations of the numiserrect scoreMoreover, he IRT

formula scoregan be implementewithout IRT software.

ThelRT formula scores were th@valuated in terms of accuracy and accounting

for true score variance compared to nurtmrect anctlassicaformula scoes

Previous studies have focused on overall comparisons between an examinee

numbefright sore and formula score. Becaube effects of guessing behavior @kely

to bethe strongest with examinees of lower abilitp(d, 1980) separate analysegre
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conductedvithin each quarke of the true score distribwin in order toexplorewhether

the IRT formulascoregerformdifferenty at different score levslIn particular, this

study soughto determine if théRT formula scoresf lower-ability examinees improvk

themost.

ThelIRT formulascoresvereobtained, as describe@lbw, by a modification of

the maximum likelihood method for estimating proficiendy Accordingly, the log

likelihood wasdifferentiatel with respect to examinee proficiency, sezéwo, andhe

resultsimplified with severakey assumptions. A majgoalwasto showhowability

estimatesre affected bg parameters. It could be arglthat no correction in observed

score units is required if ability is estimated using IR®wever, theationale forusing

IRT 3PLability estimationin the presence of guessiiggnot equivalent to a conceptual

demonstration of the function of tlegparameter

Thethird goalof thisdissertation wato demonstraten application ofiRT

formula scoreso differential item functioning (DIF)BecausdRT formula scores were

obtainedwithout IRT parameter estimatdheymay havea potential use in largecde

programs that useumbercorrect scoes for condary analyses. ImportantylF

analysisis atype of validityevaluationis most oftenconducted in the observed score

metric in most, if not allstateassessment progranssich asCalifornia (CA Depantnent
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of Education, 2006), New York (NY State Department of Education, 2005), and Idaho

(Hauser & Kingsbury, 20040bserved scoreseaalso typically usetb examine

linguistic issues in assessment programs (e.g., Puhan & Gierl, 2006). Testing

organizatios such as the Educational Testing Service (ETS) and the CTB Md&@Haw

all conductDIF analygs based on numberorrect score® examineviolations of

measurement invariance fethnic and gender groups (Bridgeman & Schmitt, 1997).

In the secondtudy DIF wasinvestigatel by conditioning ordifferentformula

scoresaswell as the numbetorrect scoreusing the ManteHaenszel (MH) procedure

(Holland & Thayer, 1988) and logistic regression (LR) (Swaminathan & Rogers, 1990)

procedureDifferent factors vinich are likely to affect thgype 1 erros aremanipulated,

including item parameters, sample size, and abéirgl (Rogers & Swaminathan, 1993;

Roussos & Stout, 1996; Tian, 199%he goal wato evaluate whethehe use ofRT

formulascorescan improve inferencegelativeto those obtained withumbercorrect

SCcores

In summaryformula scoring in the framework of the 3PL IRT moidel

conceptually analyzeith this study Based on thimmathematicahnalysis|RT formula

scoresareevaluatedfor their statistical propertieg=inally, thesdRT formulascoresare

appliedas conditioning variabtan DIF analysisin the following chaptes of this
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dissertationa literature reviews given in Chapter lbn bothcorrectionfor-guessing and
DIF. In Chaptelll, details of the derivations of the new IRdrmula scores arden
given, and the simulatiotesigns for the DIF analyses aiso providedin Chapter IV,
resultsarepresented and explaineginally, in Chapter V, educational importance,

limitation d this dissertation isliscussed along witbuggestions fofuture research.
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CHAPTER Il. LITERATURE REVIEW

In this dhapter, a reviewfdifferent scoring rules for K testss given followed by a

review d corrections for guessing in ordergoovidenecessargonceptuatontext

Different statistical methods related to correcsitor guessig areaddresseddém the

perspective otlassical test theory(TT), followed by the perspective @dém response

theory(IRT) in the framework of theBL model. Empical results areeviewed from

different perspectivesn corrections for guessirgased on CTT, and several IRT

investigatios areexamined BecausdRT formula scoresreapplied to differential item

functioning (DIF),an overview ofeverakurrent methodologies usednombercorrect

DIF analysisarealso includedComparisons betvea different methods, limitations of

DIF, and empiricatesearch results are thpresented.

Correction for Guessing

A necessary but not sufficient condition for guessing is thaxaminee desnot have

enough knowledge to answanitem correctly.Givenits condition,and the fact that an

examinee chooses to ansvaeryway there is a nonzenarobability ofselectinga correct

answer.The primary effecof suchguessings that bothobserved test scoresdtest

variance are artificially inflatedlhree dfferent methods for scoring MC tests are

discussed below: the numbeaurrect score, thexistingformula score based ona CTT
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perspectiveanda conceptual approadiased on th&RT threeparameter logistic (L)

model.

NumberCorrect Scoring Method

Typically, for a MC itemthere is only one correct option and each item is scored either

right or wrong (wrong-= 0, right=1). Items are equally weighted and summed to a total,

which is called the numberght scoe. In the traditional method of scoring an etijve

test withn items,

n=R W @ (2.1)

whereR represents the number ofroect responsedV refers to the number of incorrect

responses, and represents the number @mittedresponses. dimberright scoringis the

most typical scoring rule arfd canbe expressedsthe total test score for an examinee.

In general, numbetorrect scores remain an operational aspechaify

assessmemrogramsdue to a number of factors including: the ease of implesient of

statistical techniquegreferencedased othistorical precedentand the greater

communicative value of classical tesatistics to lay audiences. Thembercorrect

score is simple and straightforward, jtedoes notadjust forthe impact of guessing. This

is an important issue becaupgessing may impactnreliability to test scores that is

different from random measement error, and can resultstatistical biagRowley &
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Traub, 1977)Moreover, the numbecorrect scoring method can@urag@ examinees to

answer as many questions as possible and increase the likelihood of guessing.

Encouragement of guessing mightebglicit in the testaking instructionse . g . ATry t

answer atlalko coutd benirspliciif testwise examinees infer thdtdre is no

penalty for guessingheymay attempt to optimize their scores by answering all items.

Encouraging guesgycanalsolead to examinees losing capacity to-sséluate

(Abu-Sayf, 1979; Kurz, 1999), and thus open the door fowsdof undesirable

testwiseness or irrational behaviors that affect score validity (Hopkins & Stanley, 1981,

Chevalier, 1998).

Classi@al Test Theory (CTT) Perspective on Correction for Guessing

To reduce the effect @fuessing, someesting programs employ a statistical adjustment to

numbercorrect scoredn this case,nformation abat scoring adjustments ggven in the

test instrucons so that examinees understand that, for each incorrect answer, there will

bea score adjustmetn the total test scordf examinees respond to this information

rationally, they will omit their response to any item for which they are completely unsure

of the answer. The decept i igmdstyftesusadpol e phr a

describethese adjustment3 he rationale for using the formula scoring mettmdorrect

for guessings based on three assumptions (Rowley & Traub, 1977; Crocker &algin
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1986):the examinee either knows the correct answer or hasowl&dge at all about the
item; the examinee will answer the item correctly with knowleageyill guess or omit
the item; and eery incorrect response is randorgslyoserby the examinee. s

implicitly assumes that the degree of guessing is constant across items.

Consistent with the assumptions above, there are three scoring models used to
correct the impact from guessingtive current researdheratures. All models are
consistent witlthe randorrguessing assumptions above.

Reward for omitted item3.he first scoring model rewards examinees additional
points for not guessing. The formula can be written as

Co=R +, (2.2)
whereCy is the corrected observed score, &mdpresents the number of options per item.
This formula assumes that if the examinee had attemptechiied item, the probability
of answering correctly would bk, which corresponds to a random guess (Crocker &
Algina, 1986; Kurz, 1999).

Rights minus wrongd.he second and the most widely used method is also known
as theformula scoe or negative marikug which can be expressed as

C. =R kﬂl , 2.3)

whereCy represergthe estimated nuimer of correct response based on knowledge.
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Higham (2007) proposed a psychological threshold model, shown in Figuyre 2

describe how formula scoring method works in psychological terms.

Figure 2-1. The Psychological Threshold Model Implied by Cladsiegamula Score

Item
Correct Response Do not Know the Answer
Guess Omit
/ & SN
¥ Y
Correct Guess Incorrect Guess Correct Guess Incorrect Guess
41- n)p,p. g-p)p(t-p)  PE-R)L-R)R HL-R)(-p)(L R)
Forced Response

Accordingto this schemagxaminees have probabili(gi) to select theorrectanswer
when in fact they know the answehi$ probabilitypk is refering to the psychological
threshold of answering the itewith enough knowledgeéNext, when the examinee does
not know the answer, thexamineedecides whether to guesgyg) or not to guesgl- pg)

on those item$or which he/shedoes not haveertainknowledge Based orthe CTT

assumptionexaminees seleenoption randomly wheihey do not know the answer of
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the items; therefore, if a guess is made, the probability to answer the item correctly is

(pc = ¢ = 1/Kk). The ratio of correct guessing to incorrect guessifd-c) or 1/(k-1)] can

be used t@stimatehe number of correct guessing from the number of incorrect guessing.

As a resultthe ratiorepresents thportion scorenecessarily to be adjusted from the

number of incorrect answers.

Although two scoring methods described above give numerically elffealue

and adjustment on test scoré® resulting score is a linear transformation of the

numbercorrect scorel-urthermore, iyen n=R+W+0O, Equation(2.2) can be rewtten as

(2.4)

If there are no omitted item&o is equal taR and isperfectly correlated witlCx. Both

scoring methods provide the identical rank order of scores for fixed values of the same

set of item responses.

Scharf and Baldwin metho&charfand Baldwin (2007) proposedfard method

which takes the omitted items intocacint in a maximum penalty equation. This method

considers omitted items atitédms not attempted to be incorrectly answered. By replacing

Wwith n-R, andCx with Cy in Equation (2.3), the number of items assumed correctly

answered as a resul't of the examineebds kno

(2.5)
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Scharf and Baldwiri2007)compared three different methods above and concluded that

the maximum penalty equation is the least justifiable; whereas the formula scoring

method can be regarded as the faisstimingthatrandomguessing on average will be

canceled in the final score.

Empirical Resarch Results of Formula Saog based on CTT

Psychological factorsThe differentcorrectionmethods described above can be

considered asimple linear transformains of the numbercorrect scoreThereforethe

reliability and validityshould benvariantexcept for psychological factors involved in

guessingln fact, over three decades of research have shown that the formulyistdse

slightly higherreliability estimateshan the uncorrected score methlbut inconsistent

results have been found with respectadidity (Lord 1963, Diamond & Evans 1973,

Alnabhan, 2002, and Burton, 200Rhrd (1963)arguedthat the increasd validity due to

formula scoe occursonly with itemshavinglessthan five optionsthe test is more

difficult, and the examineegry differently in their tendency to guesbhus, it appears in

these instances that some npkl/chological effectare operative

Personality factorsAs notedby Burton (2005) and others, personality factors

may affect guessing behavidmn application of the formula score usually provided in

the testadministrationnstructions The argumetnfor the formula scais thatexaminees
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areencouraged in advancetrio guess when thejo notfeel confidentabout answering
an item.Some gaminees who understand the formula scofimgtionwill minimize
their guessingluring the examin turn, irrelevant tesscore variance and biassociated
with guessing will beeduced. However, examinees may hdwerentreactiongo
formulascoring instructions. Examine#dsatare more prone to ristakingmay be more
willing to guess. Such riskaking behaviors are a form of testwiseness andicently
impactexamineegsaores.

Diamond and Evans (1973) summarized several studiegieidual differences
in risk-taking andconcluded that risk takers are penalized thas complierdy the
formulascoring instruction onbjective testsAvila and Torrubia (2004) conducted
metaanalysisof 19 medical examinations to look at how personality facéiect
examinee8answering behaviors duriramexam. They found that extraversion and
sensitivity to rewards and punishments (inhibiti@ndisinhibition) can affect the number
of incorrect responses and omitted items, even when examinees ar¢hatfarenula
scoringapplied.Davis (1967) recommended a test instruction to be used under formula
scoring method:

Your score will be the number of items you mark correctly minuactiém of the

number you mark incorrectly. You should answer questions even when you are
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not sure your answers are correct. This is especially true if you can eliminate one
or more choice as incorrect or have a hunch or feeling about which choice is
corred¢. However, it is better to omit an item than to guess wildly among all of the
choice given. (p.43)
To reducepersonality effecs it is important to ensure all examinees are informed clearly
about the answering strategy which will benefit their scorearyFt988).
Effects on high and low ability examine@sgoff and Schrader (1984pnducted
a study using data from the SAT and the GMAT to examine the effects @rthula
scoring method. In ik study, the fomula scoring method was applied to btita
numbefright scoringinstructions andthe formula-scoring instructionsThe results
suggested that the formula scoring method did not necessarily penaimines §cores,
becausehe differences between the groups (different instructions) were. gxsall
suggested by Lor¢l980), differences due to instructions may only occutdarability
regions of proficiency. Thesxamineesend topick theattractivebut wrong options
more regularlyand their scores on difficult items are often worse thadaanguessing.
Bliss (1980)foundthat the formula scestend to penalize highbility examinees
Examineesf hightability considerformula scoring instructiomoreseriously and

usually hesitate tguess on items without knowing correct answers. Howeélsreffect
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was not confirmed intherstudies. Lord (1975) suggested that based on the stated
assumptions of the formula scoring method, the number of omitted items is the major
controller for improing score accuracyle arguedhat the greatest imprement in
accuracy should occur for lowability examinees who omit many items, and is
insubstantiafor high-ability students who know mo®rrect answerLrocker and
Algina (1986) added that the increasing accuracy for leakdity examinees male due
to theirlack ofunderstanohg of the formulascoringinstructions Because they do not
understand the instructions, they may not properly employ the instructions and may be
more likely to guess at items which they shouldattgmpt In this caseysingthe
formula-scoring method cainonically ensuremore reliablepredictionof anexamineed
true ability

The role of omitsThe number of omitted items decritical featureof the quality
of the correadscore. BerShakhar & Sinai (1991) documenttdt females are more
likely to omit questions than males even under nursberect scoring instruction.
However, Grandy (1987unds no significant difference between males and females on
omitting items Examinees from minority backgrounds teddo omit mae items based
on resuls from the GRE General Test (Bridgeman & Schmitt 1997).

Partial information and confident misinformatioc®@ne major consideration



25

regarding formula scoring that examineéguessing behaviatoes not always compl

with the randonguessing assumption®nepossibleviolationis that the correction

ignores partial knowledge. Examinees are assumed either to know the correct answer or

to have no knowledge at all under formula scoring mettetpartial knowledge can

arise in at leadivo related forms. Some incorrect options may be moreaoget than

others, or an examineeaychoose an option by eliminating one or more incorrect

options (Rowley & Traub, 1977). Frothis point of view, the correctiobecomes

penalty for not guessy becausexaminees have a better chance to get an item correct.

Burton (2002) suggested that whenithe e g at i v é appleedtokrueffaise tests

the examiner would have tmnvinceexamineesn advancehat they are more likely to

get a higher sare when they answer the items for which they hagee tharb0%

certainty

However, there are also pitfalls to numiserrect scoring. Kamines who

answerltems incorrectly based on confident misinformatiare at a particular

disadvantage withumber corect scoring Theseexaminee®mit answers even if

instruction specifies that no penalty for guessing is applied. @#aagninees without any

knowledgemayprefer to guess randomijhus, relative to other examinees, both

numbetcorrect and formula scogmmethodshave the potential to penalize students
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whose answers are based on faulty knowledge or reasd@ridgeman and Schmitt

(1997) suggested that for tests scansmgthe numbeicorrect scoring method,

examinees willnquestionablye at a disadvaage if theyarereluctant to guess.

Moreover, if examinees are unwilling tseaninformed guess, their chance to perform

well on a test using th@rmula scoring method may be smé&llirthermorethe

distinction between partial knowledge and guesbmgp mesparticularly difficult for MC

items requiring complex cognitive behaviors, such as rstdfp problem solving.

Examinees of higlability may benefifrom guessing on those uncertain items

because their guesses are more likely determineatdyratgoartial knowledge, even

though it is incomplete. ®the other hand{ may be a disadvantage for thev-ability

examinees$o guess, becauskeir guesses are based on incorreciglanformation

(Angoff, 1989).

Summary of empirical resultsormula score would seem to worthe best when

the three assumptions are tridther the examinee knows the correct answer and

chooses it, or the examinee does not know the answer arglitomitthe examinee select

one option randomlgFrary, 1988). MuijtiensMameen, Hoogenboom, Evers, & van der

Vleuten(1999) provided a usefdiscussiorof these issues. Based on their research, the

numbetcorrectscoring methodakes moreaccount opartial knowledge thadoesthe



27

formula scoring methadlrheyobserved thatvhereas the number correct scoring method

tends to decrease bias, the formula scoring method tends to increase reliability. Given this

tradeoff, they preferretb usethe numbeicorrect score, but they also concluded that

psychometric anthe educational spects should be weighadhenchoosing a scoring

methodand this choice may vadepending on thspecific testingircumstances

Anltem Response TheoR{l) Perspectiveof Correction for Guessing

Modern test theory offers several alternatives to theetalization of

correction for guessingtem response theoprovides a statistical framework for

describing how item and examinees characteristics interact in test performaite

an examine®& performance depends on an overall ahifjtgnd therelationship between

the item performance of an examinee and traits can be described by a parametric item

response functiol RF) (Hambleton, Swaminathan, & Roger, 1991). RiIimaps

changes in trait level corresponding to changes in the probability abarect response

(Embretson & Reise, 2000ompared with CTTIRT ability estimates caprovide a

wider range of detailed predictions on unobserved testing situafices that item

parameters are available IRT, examinees with different ability lelgal have different

probabilities of answering a particular item correctly. A given model represents the

probability of a discrete response to an item as a function of a person parameter and one
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or more item parameter§he most common models employ one priefacy and either
one(1PL), two (2PL), or three (3Plijemparameters. Therobabilitya for the examinee
with a certain ability leveld) to answer a particular item right based on 3PL can be
represented as

/(u=1qa.b.¢) =c & 9 F (2.6)
where

expgDa (7- b) g
1+expgDa (g -h)

R = (2.7)

The symboly represents the scored respofser 1)of an examinee to item and he

parametersy, b, ¢ areindicesof item discrimination, item difficulty,

pseudechartelevel (guessing) parameters, respectivlgcaling constard = 1.7is

included in the modeThe item difficulty parameteh;, represents the point on the ability

scale where an examinee has 50% chance of giving a correct response=vden
(1+q )/2 chance otherwis& he item discrimination parameter, represents item
difference in discrimination and is proportional to the slope of®tealk the point where
the ability scale equals. The parametet; represents the probdity that an examinee
with infinitely low ability answering the item correctly. It is assumed that examinees

either randomly guess or answer on the basis of knowledge
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To determine which IRT model to use, several rules can be applied to make the

decision TheRasch (1PL) model is favored if each item is equally weighted for scoring.

On the other hand, if the goal is to model the existing date with more flexible parameter

estimates, the 2PL or 3PL models may be used (Embretson & Reise, BGOBIPL

modelis a common choice because it generallyMhiS data better thathe 1PL or 2PL

modelswith ¢ parametergHambleton, Swaminathan, & Roger, 1991; Embretson & Reise,

2000).There are two solutions to define a guessing parameter and add into mottels: 1)

define a fixed valuewith ¢ = 1k, wherek representshe number of options per itermnd

2) to usean identicauessingraluefor all itemswhich isestimated from the da{&an

Martin, del Pino,andDe Boeck 2006).After adding a guessing parameter imgd in the

1PL or 2PL model,ite probabilityfor the examinee to answer a particular item rigitit

be similar to Equatior(2.6). Because ofheir flexibility, efficiency, and

comprehasiveness, IRT models angdely used in largescaleassessmeitiesting

programs in different forms (Yen & Fitzpatrick, 2006).

Lord (1980) suggested that the formula scoring method may be used to estimate

examineeétrue score for tests desigghwith any IRT modelccording to this method,

the formula score correction would be applied directly to the estimated true score based

on Equation(2.6). The two critichassumptions of the use of the formula score indRT
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thatexaminees answer items based on their ability orspleeificlatent trait only and

thatexaminees understand and follow the formsdaring instructiond.ord (1980)

suggested that the praeican be used to estimate an exan@seoreaven when there

are omitted itemsas long as the examinee finishes all test items. He also argued that if

examinees exhibit different patterns in omitted itemndo not finish the test, a

modification of thismodel will beneeded.

Modern test theory offers several alternatives to the conceptualization of guessing.

Informal approaches to IRT analysis have been attempted in which guesseentiied

and excluded from the data set before item parameteratgtimwith a2PL model A

second approach is based on the ideathigapresence of noise in test score datah as

guessing or other different resporsseategiesleads to difficulty in the estimation of

proficiencies.Onesolution to this problens robust estimation as reported by Wainer and

Wright (1980). They employed a jackknife scheme for estimating proficighdased

on a Rasch moddin order to compute jackknife pseudalues each item was omitted

sequentially andl was reestimated Their results indicated that the jackknifeestimates,

the effects ofinusual item responsé@sacluding items that appearéa be answered by

guessingwere reduce. Some criticisms of this work were given by Divgi (1986) and

Dimitrov (2004)because the procedure can not estimate ability if the score is near zero or
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perfect.Dimitrov (2004) also suggested methods for improvimg jackknife approach on

ability estimation.

In contrast, onetherformal measurement approach to guessing treats examinees

as havinga probabilisticmembership in latent classes. Yamamoto (1989) formulated a

mixture model in which one group (or laterss) of examinees are random guessers,

and a second group responds to an item according to the RaschXxme@2002) found

that the estimate of item difficulties from the mixture moslascloser to the true item

difficulties than from a simple Raschoehel and in further simulation work, showed that

the mixture model providasore accuratestimates than the 3PL model of ba#m and

person paramete(the modelvasalso successful iretrievingthe mixture proportions.

San Martin et. al. (2006) proped an abilitybased guessing model. They conducted a

simulation study with a 3PL model, which guessivags modeleds a function of

examinee proficiency. They applied the modéb different tests in language and

mathematicendconcludel that thec paraneters seemed to depend on proficiency for

thereading test, but not fahe mathematics tesfThey concludedhat partial knowledge

plays more of a role in readinthat is,examinees use their ability to guéssa greater

degreeon the language test. Bmother innovative application, Wise and DeMars (2006)

proposed the effoinoderated IRT model which takes into account item response time in
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the estimatiorof proficiencyand item parameter$heir proposed model reduced the

effects of rapid guessing wdfi results in better model fit. The efforhoderated IRT

model also improved accuracy of itgrarametergstimates and yieldgaroficiency

estimates with higher convergent validity.

In sum, there has been tremendous growth in the research of formaingodel

with respect to guessing.is obviousthat many debates on the application of formula

scoringstem from the lack of sensitivity to partial knowledgadthe inconsistency of

psychological effed due tdformula-scoringinstructions Someresearch ogorrection

for guessing has been dondRT theory; however, none of the new IRT approaches have

widespread application in formal testing progsam

Differential Iltem Functioning

In this section, a brief introduction to differential item functioniBgR) is given. This

providessome context for the application of the tRY formula score$o DIF analysis.

ThelRT formula scores after development applied toanonIRT method of DIF. Thus

after a brief review of some topics in IRT framework BdF, two major noAlIRT

methodsof DIF analysis aréiscussed (the Mantélaenzel and logistic regression

approachés

Along with the development of testing theoriag,issue of great importante
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the public is test fairness. In the lasb decadesthere has &en considerable attention in

the measurement community to detecttegnsthat may lead to the misestimation of

proficiency forparticular group of examinees (Embretson & Reise, 2000)is area of

research is known as differential item functionibdR), which is definedy

psychometricians s o | | Anatem shaws DIF if individuals having the comparable

ability, but from different groups, do not have the same probability of getting the item

righto (Hambleton, Swaminathan, & Roger, 199Racial, ethic, and gender differences

arethe mostcommon groups in DIF research, but other groupings susbcl class,

age and geographic regidmave also been considergamilli & Shepard, 1994). The

different groupsre usually referred tas thefocal group whichis the particular group of

interest (usually the minoritgroup, and reference groughite is usually a baseline

group.

In the past decades, psychometricians have developed many parametric and

nonparametric techniques to assess DIF basethesical measurement theogndIRT.

Researchearinitially focused on group differencesitem difficulty, calculated as

p-values, and then relative differencespvalues. However, subsequent research

indicatal thatthese methodgrovidebiased estimatesf DIF under certain conditions,

e.g., when the reference and focal groups truly differ in ability (Cole & Moss, 1989;
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Hunter, 1975; Shepard981; Angoff, 1982)In this case, biased type 1 error levels can

arise from ignoringtem discrimination (Lim & Dragow, 1990; Angoff, 1993; Camilli &

Shepard, 1994).

Compared to CTT, IREgimates of DIF are based @em response functien

(IRF), which describehe probabilityof answeringanitem correctly based on the

characteristics of the item parameters and tyithg ability levels. Thedefinition of DIF

then can be stated as Awhen the I RFs acros

shows DI Fo et(dd B8ipTherd acertwo categories of DIF based on the IRT

perspective, uniform DIF and nonuniforDIF (Mellenbergh, 1982). An item with

uniform DIF is defined as group differences in the probability of answering the item

correctly are constant across all ability levels. In other words, thedRRstwo groups

are notidentical, butdo not crosshroughout the range aibility. Nonuniform DIF occurs

when an item favors one group members at certain ability levels and favors the other

group at other ability levelassuming two groupsNonuniform DIF can be observed

when the 2PL or 3PL model is usghmilli & Shepard, 1994; Kristjanssofylesworth

McDowell, & Zumbg 2005).Camilli andShepard (1994) summarizeaad different IRT

approachessed for detecting DIFHRT measurement of DIF, and IRT tests for DIF.

There are four methods to measure tke sif DIF: 1) simple area indices, @pbability
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difference indices, 3) parameter difference, and lBF method for small samples. Five

methods designed to do statistical test for DIF: 1) tebtdifference, 2) item drift

met hod, 3-3quaked)rempirisal sarhpling distributions for DIF indices, and 5)

model comparison measures.

In typical DIF studiesnonIRT methods are used due to their relative ease of

implementation. Moreovethe number of examinees in the focal group (usually from

minority) is usually small and with limited ability range (Hambleton et. al., 1991; Camilli,

2006).More flexible IRT models (2PL and 3PL) are more difficult to calibrate in this

situation, even thought an argument can be made for employing IRT models with stron

assumptions, such as the 1PL. The inevitablyier parameteestimates for the focal

group drive most criticism of these IRT metholisany caseit may not be possible to

conduct a DIF analysis onralativelysmall sample.

Because of the potentialglslems associated wigiarametric approacheshich

may primary be a problem of expert laboonparametric methods detect DIFusing

observed soresarewidely acceptedSeveral statistical method®mve beemleveloped to

detect DIFfor MC items. The mos widely studied andppliedmethodsncludethe

ManteltHaenszel (MH) procedure (Holland & Thayer, 1988), logistic regression (LR)

(Swaminatha& Rogers, 1990), the simultaneous item bias test (SIBTESHgaly&
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Stout, 1993), anthe standardizatiompprach(Dorans & Kulick, 1986)Among these

procedures, th®IH procedure and the LR procedure are the two most popular.

ManteltHaenszeEProcedure

The MH procedure was designed and used in medical research by Mantel and Haenszel
(1959) and applied to psychoriies by Holland and Thayer (1988) in ordeiirispect

item bias on dichotomously scored items. The MH procedure identifies DIF by
considering betweegroup differences in the odds@&€orrect response, after matching
(or conditioning) orobserved test sces of the reference and focal groupse
characteristi@esignof this method is based @ncontingency tableith a 2

(groups)by-2 (item scorespy-M (score categories)esignthat provideshe frequencies

of item responsg(correct and incorrect) afifferent groups (focal and reference groups)
with possible numbecorrect categoriegn= 1, 2, & , M) as a matching variable. The

null hypothesisnaintains thatunder theconditioningon the observed test score, the odds
of correct response will be eduar the focal and reference grougsdthe oddratio will

be equal to 1, which is no DIF. The odds ratio for score lensldefined as

a = PRm/QRm _PRm Frr (2.8)
" I:)Fm/QFm F)FmQRm

wherePrm andPgr, represent the population proportsof correct responsdor the

reference and focal groupstae m™ score levelandQgm andQgm represent the
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correspondingopuldaion proportiors of incorrect responseHowever,when the
matching variable igeroor M (perfect scorexhe MH odd ratio will be indeterminate
andtheodds ratio cannot be calculatéitherefore, for 8- item test, thendexm runs
from 1 toM-1. TheManteland Haenszel (195@yocedure also assumais U, to be a

constant value, and tlewmbined estimate acrossof the odds ratidJis given by

& RmEm
"& N
a,, :ﬁ, (2.9)
é

"& N,
whereRrm andRgn, refer to the frequemesof having a correct response to the itenthe
referenceand focalgroups, Wem= Ntm T Rrm @andWem = Nt T Rem, @andNqyy refers to the
total number of responses from both referencefacal group examinees. This oddgio
is an estimate athe DIF effect size andhdicates there ino DIF when thevalueequals
to 1. If the ratio is greater than 1, itenmsiid tofavor thereferencegroup. On the
contrary, if the value is less thanthe item favos the focal group (Dorans & Holland,
1993; Penfield & Camilli, 2007Nonethelessthe estimatedddsratio:;r/sIH is notvery
useful for DIF interpretation because of its asymmetric distribudmtiand and Thayer
(1988) proposeda transformatiorof /V/JH asdelta score (MH D-DIF) obtained through

atransformation td,,, = 2.53In( “@,H) leading toa symmetricand more usefuhdex
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for interpretation. Vdenthis valuediffers from O, DIF andhereforepotertial bias exist.
The converted MH EDIF has been usesk an index ofelativeitem difficulty (Dorans &
Holland, 1993; Camilli & Penfield, 1997; Camilli, 2006).

The MantelHaenszel chsquare H-G?) has a test distribution of ckjuare with
1 degree ofreedom It providesthe mostpowerful anduniformly statistical unbiased test
of no DIF undethe null hypothesiof uniform bias(Holland & Thayer, 1988)As an
alternative taVIH-G%, the logodds ratio can be divided by its standard error to obtain a
teststatistic(Holland & Thayer, 1988)Rules used to measure degrees of DIF were also
developed and categorized by ETS regarding both the absolute value of[MH d@nd
the significant test results (Zieky, 1993). Camilliand Shepard (198fHestea way to
conceptualize the MH oddatio in the framework of IRTh orderto detect DIFInthe

IRT 2PL model € = 0), the log odds raticonditional ornd can be expressed as
aexpgDag (9- be) g9
ZexpgDar (q- b ) g2
=Dg(a; -a:) B(a:h &h)

/MH—ZPL :I

(2.10)

If the item discrimination parametars invariantfor referenceand focal groupEquation

(2.10) can besimplified asayn-2pL= Da(be1 bg). The effect sizeauu-2pL, iS then

proportional tahe difference between item difficulty parameters in the reference and

focal group(uniform DIF). Holland and Thayer (1988) emphasized th&method gives
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an unbiased estimate of DIF under the Rasch model (&iha = 1) with the

assumptions that all ies included in matching variable, all other itemsraeasurement

invariant across groupand data are random samples from both groups. However, if

aparameters are different in two groupss-2pL IS N0 longerproportional to the

difference betweetheb parametes (i.e., nonuniform DIF)

The MH log-odds ratio LOR) proceduras not designed to deteabnuniform

DIF, and a number of alternative procedures have been sugdestekampleRoussos

SchnipkeandPashley (1999) proposed a general formula of the MH DIF population

parameter which is appropriate for any IRT modeliaradso applicable for either

uniform DIF or nonuniform DIF. However, the findings frahis research suggested that

more attention is needed applying theprocedurenith 3PLdata, becausguessing can

affect the MH DIF estimatfor relatively difficult items, especially when the focal group

has significantly lower mean proficiendyowever, there is little evidence suggest

nonuniform DIF is prevalent, and even in this case, the MH procedure provides a useful

index for screening test items for bias.

Logistic RegressioRrocedure

Thelogistic regressioprocedurgLR) is anothempopularmethod fordetecting DIF da

to its ability to take into accoumtihe continuous nature of ability levels, and its dalgg
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to detect unifornas well asonuniform DIF.Swaminthan and Rogers (199@¢re the
first toappl LR procedureon DIF analysisThe LR procedure models the probay of
observing each dichotomous item respofiser(1)as a function of independevdriables,
whichincludesa group indicator (G)a matchingvariable (X, usuallyhe observed total
score), and group-by-ability (GX) interaction TheLR procedure mploysthe
assumption thahe examineé ability is well represented by Hierobserved total scoye
and the probability othe individualanswering the item correctly is lineagyoportional
to the examina® ability (Camilli and Shepard, 1994). The bidel can be written as

Z

_ _ €
P(Y=1) == (2.11)

Zi=b, +o6 & PG

whereP(Y; = 1) represents the proballifor individuali to answer the studied item

correctly Thecoefficientb; corresponds to theffect onperformancenf ability level;

wheread, andb; correspond to theffects ofgroupand theability-by-group interaction.

The fullmodel mentioned in Equatio(2.11) can be simplified dependingpon

three different situations: no DIF, uniform DIF, and nonuniform.@&milli and Shepard

(1994)summarizesstepwiseselection of model testing using likelihood ratio statistics.

First, conditionedn observed totals score, the presence of nonuniform DIF is evaluated

by comparingZ = by + b Xi + b,G; + bs XiGj to Z = b + b X + b,G;. Next, to test the
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uniform DIF, comparison betweeéh= by + by X + b,G; andZ = by + byX; is conducted.

A chi-square statistic is used eévaluatemodel differencedn addition this2-step
procedure an beusedto compae differencesamong multiple groups with the addition of
dummy codegCamilli, 2006).The estimat®f b, is an effectsize measure of DIF and is
usually similar in value to MH LOR/CH) when the grouoy-ability interaction is not
included in the model. The coefficients can be estimated by maximum likelihood
estimation (Swaminathan & Rogers, 1990).

The coefficient, and coefficient$s indicateuniform and nonuniform DIFfI
bothb, andb; equal 0, the DIF does noexist. Whenb, shows a statistically significant
differerce from O, it suggests thahe oddof geting the itemcorrectfrom two groups
are different. The estimate bf is aneffectsizemeasure of DIF and is usually similar in
value toMH LOR (/V/;H) when the grouby-ability interaction is not included in the
model. The case of nonuniform Di§-indicatedwhenbs; is significantly different from 0.
Unsurprisingly b; is almostsignificanty different fromzero;since the examinees \via
higher level of ability (or higher observed total score) terigbiee a better chance of
answeing the itemcorrectly The coefficients can be estimated by maximum likelihood

estimation (Swaminathan & Rogers, 1990).
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Comparison betweethe MH andtheLR Rocedure

Swaminathan and Rogers (1990) designed a simulation gtatlyarieddifferent sample

size, test length, and the nature of the @encomparing the LR anMH procedurs.

They concludedhat LR is as powerful agH in detecting uniform DIF ad is more

powerful thanMH in detecting nonuniform DIRwvhich is not surprising given the

assumption of a uniform LOR across score categoriesLR procedurevas also found

to have slightly higher falgeositiveerror type lerror) thanthe MH procedue, andit

contaired more inconsistent classifications of DIF items (Swaminathan & Rogers, 1990;

Narayanan & Swaminathan, 1996; Huang, 198&)gers and Swaminathan (1993)

extended their study under different conditions (including 2PL,r8Bdeld to compae

the performance of the LR and the MH procedufée LR procedure did not function

well for very difficult andhighly discriminating items. Li and Stout (1996) provided a

possibleexplanatiorfor this result. They pointed out that the presengesefidoguessing

wasassociatedvith the inflatedtype lerror rates.

Giventhesimilar power in detecting uniform DIfhe MH procedure iselatively

easierto implement. According to Rogers and Swaminathan (1993), the LR procedure

takes thredo four times morecomputingtime in conductinga DIF analysishan the MH

procedure. However, if researcharould like to incorporate different variables intee
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explanation, the LR procedure is preferable (Kristjansson et al.; 30@tninathan &

Rogers, 1990, MazpKanee, & Clauser1995). In any case, the MH procedure is the

most frequently used DIF procedure in practice.

Limitations of DIF

For all of the DIF methodsabove it is important to understand that the presence of DIF

does not necessarily mete item isbiased A DIF index onlyprovides an indicator of

potentialy bias.Moreover, neasurement err@ssociated witlDIF procedurecan

include bothtype 1 erroandtype 2 errors. It is well known thatype 1 erros andtype 2

errorsareimpossible taninimize simultaneouslyMore false occurrences of the flagged

items(type 1 erroy implies fewerundetected potentibiased itemsgtype 2 error)and

vice versaMost statistical models focus on the reductiotypé 1 erroyespecially from

thetest develope@ard researchetpoints of view. Howeverf r om t he exami nee

of view, the presence d&fpe 2 erros would seem to be a more serious problem.

Camilli and Shepard (1994) suggested ikt can be detected lexamining the

content of each item and idefiying patterns of significant DIF in similar itemshis is

because IF indicesmaysignal multidimensionality in the test (Camilli and Shepard,

1994).Multiple dimensionsasdefined by Shealy and Stout (1993), are the essential

characteristics of an itethat carhave an effect othe probability of a correct response.
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One of the commoassumptiosof IRT models isunidimensionality However,most

tests to some degree assess a number of skill dimensions. In characterizing such items,

the primary dimensiors referredto asthe target trait measured by tiem, whereas the

secondary dimension is referredthe@ confounding trait. If a secondary dimension is

significantlyrelated toatest item, then DIF indicemayreflect multidimensionalityand

not bias An interpretation of bias would require the judgment that the secondary

dimensions leading to group differences are irrelevant to the test construct.

To ensurdghatthe itemsncludedin the test have the smallest DIF possible, most

test developers anédting organizations evaluate DIF at the pretest sBxggigeman and

Schmitt (1997) suggested that DIF anebmmaybe conducted after the pretest, before

score reporting, and after score reporting. Penfield and Camilli (2007) presenstepa 6

procedurdor DIF analyses to conduct a more comprehensive and reliable DIF enalys

Summary

Test scoreare widely used as criteriar decisions regarding placement, promotion, and

licensure BecauseMIC testsare prevalent in assessment programs, there is armotiat

systematic error due to guessing can lead to incorrect interpretations of examinee

proficiency or bias statistical estimates from secondary analyses of test information (e.g.,

DIF). The measurement error involved iffatent from random error wbh pushes
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observed scores up or down randonglyessing behaviaranresult in consistently higher

observed scoreand inflated test varianc&herefore correctiafor guessingapplied via

scoringmethod, have the potentiéd enhancenterpretations ofestscores

Although modern test theory has more flexibilypredicting examineés

performancea moresophisticatedinderstanding of how guessiaffects proficiency

estimation in 3PLURT modelsis yet to be developeéurthermore, becaus@agssing

represents a systematic error, it could result in statistical bias in analyseshsanged

total scoreln particular,DIF proceduresuch as théH procedure and the LR procedure

depend on the accuraoyobserved total scor@s the matching variabldf the effects

of guessing behaviare more likely in one group (focal or reference), tthenobserved

total score is less useful as a matching variable. There¢f@developnent ofIRT-based

corrections for observed sconesy potentially be usefuhiobserveegscore DIF analysis.
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CHAPTER Ill. METHODOLOGY

In this chapter, researcjuestions and assumptiomseaddressed. Then a comprehensive

conceptual and statistical framework on differentection for guessing methods

presentedFormulascoresveredescribed based on the CTT perspective, followed by the

IRT 3PL model. Next,wo new methods motiveg the ussof the3PL IRT modelare

derived Two simulation studiearethen conductedn the first, the accuracy of thBT

formulascoesis assessedn thesecongdthe MH and LR DIF procedures acaried out

matching on the mabercorrect score and alternatively matching onl&Ee formula

scores. The results are themmparedn terms oftype lerrors and bias.

Research Questiormsd Assumptions

To date, IRT modelfor MC itemshave been developed that model the probabilitgrof

examinee answering an item correcily.modelthe effects of guessing, a fixed

lower-asymptoteparameter can be addexthe 1PL or 2PL IRT model®r the full3PL

modelcan be chose\lthough IRT has been uséadl estimateability, numbercorrect

scaesare more prevalenih operational psychometric data processingpart, he goal

of this dissertatiorwasto develop a new correctiefor-guessing based dhe 3PLIRT

modelwith practical applicatiomo DIF analysis and other analyses based on

numbercorrect score
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In IRT, maximumlikelihood estimation (MLE) is a pcedureused to estimatte
ability (d) levek of examinees awell asitem parameters. Findirdjrequiresmaximizng
the likelihood(or log likelihood)of an examine® item response @datnwith respect ta
set of fixeditem parameter@Embretson & Reise, 2000). The NewtiBaphsorprocedure
Is acommoniterative procedure usddr MLE. The algorithmis applied tdind the mode
of ane x a mi prdadicencylikelihood function.lt requires the firstand second
derivatives of the logikelihood functionto updated estimates iterativelyl he logic of

the Newton Raphson procedure is illustrdtbelow in Figure 3L.

Figure 3-1. lllustration of the Logic of NewtoiiRaphson Procedure

L'(6)

8

In Figure 31, the first derivative of the logjkelihood function ofd is graphedgainst
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ability (d) level The starting valuefpinthiscase i s a guess of an exal

trait level. The projectedsecond derivativéhengives the updated; estimate and in turn,

dh leads tady. The iterations end when tisecond derivatie is zerd Embretson & Reise,

200Q Veerkamp, 2000)One basic method of this dissertation is to derive an expression

of the true score when tisecond derivative of the 3PL ldigelihood is zero.

The MLE provides an unbiased estimateidiowever, it ha some problems. The

major problem is that with MLEjo d canbe obtained foperfector zero score

(Embretson & Reise, 2000rhe other alternative to estimafethe expected a posteriori

(EAP) estimation, offerinite d estimation for perfect score @or the patterns with all

incorrect responses.n E AP, i nformation from the exami

information about the population are combined. The EAP is a Bayesian estimator from

the mean of the posterior distributidnibretson & Reise, 20000ne drawback on EAP

estimation is thaanestimateof d is regressed toward the meafthe prior distribution

unless the number of itemsriativelylarge Meijer & Nering 1999;Embretson &

Reise, 200Q

In this dissertatiorthe essential approach to understanding the effects of

parameters wa® 1) goproximate thdog-likelihood functionas aTaylor series expansion

around aguessing parameter and 2) examining the implications of the model when the
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approximate likelihood is maximizedhig provided the link between the 3PL IRT model

proficiency esmateanda correcteeior-chanceobserved scorénemaingoalof this

studywasto understand the effect of guegswithin the IRT framework.

The second purpose of thdsssertatiorwasto develop twdRT formula scores

based upomsing the 3PL modeTl houghidealy undesirable effects of guessisigould

be preventedhe IRT formula scoreprovidel a post hogtatistical correctiothat is not

a function of thenumbercorrect score. These IRdrmula scores conceptuailjustrated

the mechanisrby whichthe 3PL IRT model adjusts for guessing, gnolvided estimates

of proficiency that may improve analyses traditionally carried out with nuctdreect

scoresln the next section, different scoring methedsedetailedanddiscussed froma

mathematical piot of view.

Scoring Methods
Formula Scoebased on CTT

The most widely usedmethodis the formula scoring method. For a teshdtems, the

number of correct responsd®) for an examinee may be expressed as

R:q< +CG' (3.2)

whereCyx andCg representhe number of correct responses with knowledge and the

number of correct responses hyegsing, respectively. To determine the number of
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correct responses with knowledge, Equat({@rl) can be rewritten as
C.=R -G. (3.2)
Assuming no omitted items, the expected number of items which an examinee answers
by guessingr(c) is the difference lheveen the total number of items and the number of
correct responses. This can be represented as
n=n-G R W G, (3.3)
whereW is the number of incorrect responséle highestnumber of correct responses
based on random guessingth k options per itenis
C;=k'n, «*(R W §), (3.4)
therefore, substitutinthe righthand side of Equatioi(3.4) for Cg in Equation (3.2)

results in
Cc=R-K'(R W )
(3.5
=R {k BH'W.

This correction method penalizes examinees for guessing by subtracting partial points

from the numberight score based on the numbeiraforrectresponses.
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IRT 3PLModel

In a3PL IRT model, therobabilitya: for the examinee with a certain ability levgl ) to
answer a particular item right can be represented as

/i(u=1qa.b.¢) == & 9F (3.6)
where

expgDa (7- h) g

R= N :
1+expgDa (¢ )

(3.7)

a, b, ¢, andD areindicesof item discrimination, item difficulty, pseuechancelevel
(guessing parameter), and a scaling conddantl.7, respectively. Let; represent the
scored respond@ or 1)of an examinee to item The numbercorrect scor® can then be
given &

R=3y, (3.8)
and the numbeincorrect scor&V as

W=n -R 5(1 W. (3.9)

i=1

Note thatn = R + Wif no items are omitted. Assuming a comnmeparameter for all

items (i.e.,ci = c for all i), the truescore formula can be expressed as
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—y
—A @ 41 P . (3.10
=nc {1 (—:)an P

i=1

If the IRT 3PL model fits the item responses well, thesmould provide a good
approximation oR; that isT can be thought of &§R]. The corrected true score can be

represented as

n

i=1
and this definethe probability for an examinee to answer the item corréetbedon

item difficulty and item discrimination, but not on ggég.Assumingthatn =R + W, it

is straightforward to show

0 _T-nc
CT_ia:lFi) 1 c
_T-gT{n T) g
1-c¢ . (3.12)
_(1-¢)T ¢(n )
B 1- ¢

=e[R] -* HW

Using thesubstitution

c
1-c

1
—, 3.13
< 1 (313

Equation (3.12) is parallelto Equation(3.5), and thushe IRT scoreCr appears ttear a

strongsimilarity to the classicdbrmula scoreCx. However, as shown in the next section,
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this impression is incomplete because of the derivati@y @bove does not take into

account an examiné&eitem response pattern.

IRT-Based Methods for Guessifigrrections

In this dissertation e IRT formula scoresin contrast to the traditional method as the
simple analogy in Equatio(3.12), tookinto account thgatternof item responses, and
resuledin a scae that is not linear function of theumbercorrect score. Thusyhile
the traditional method lgkits greatest impact by preventing guessthg,newly proposed
methods hd some potential to provide a statistipaisttestingcorrection.

First IRT gproach (formuld). In IRT, theprobabilityof an examinee answering
an item correctly depends on the exam@edbility and item discrimination and difficulty
(Hambleton etl., 1991). For most MC tests, examinees with very low abilities have
probabilities grater than zero of answering even the most difficult items. The 3PL model
(Birnbaum, 1968) adds the pseucliance parameter (to discrimination and difficulty) to
remove the effect of random guessitg. ve n t he | Rl asfgiveaime wor k ,
Equation (3.11), represents an examir@eorrected true scoreCr, which can be
conceptualized as the true score obtainbdnthe effects ofjuessing are eliminated. The
IRT formula scoe is based on a simplification of a common approach for estimating

examinee proficiency. Forraitem MC test, the log likelihood of a response pattern for



54

an examinees given by

F©=nO /@ - )
R (3.14)
:_a'[ui In/, 41 g)In@@ /)],

with u; =1 or O for a correct or incorrect response, respelgtiAn estimated proficiency
is obtained by maximizing this function witkspect tal. To derive the firstRT formula
score the log likelihood function ispproximated as a otterm Taylor series at the
common guessing parametgrand maximized with respect ¢b Upon simplification, an

estimate o is obtained as well asbroader prspective on the estimatdd

The standard Taylormaterm power expansion @btained by

H(c)=F(0) +% c. (3.15)
Let
Wi _ M .
wo g R (316
=1k Q.

(3.17)

Atc=0,
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£0 _ & ey (1- u) 9

c=0 e_Q
2 &P
le ) Q (3.18)
Zi;é U, Q gW.
(;izl R -
Thenonetermexpansion of F(c) atc = 0is given by
N A 0 o
H© = FO) @A aé!% SW g (319
éi=1¢ + 0

Next,to maximize H(c) with respect tal, differentiae F% with respect taf which

yields
é"a Q 0. @ g
iéa aé'i% W u=au—“ %e
Mg gi=1 ¢ P+ Uiz Mg iC (320)
" Q
=D =
aatip
Then set the result edua zero
H :—;?F(O) 9 cCgo; (3.21)
Mg
which resultgn
aaw- P -caand o (322)
=1 |
Then settingy = 1 givesthe solution for the first IRT forma scoreCry
C.=8P °R 4w, (323
i=1 (=3
where
h = cg. (3.29)
R

Equala parameteswasa big assumptin, but again, tils assumptions alsoimplicit in
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theclassical femula andhumber correct scorindo interpretd;, consider a correct

response to an item with 5 options arw 0.2(a random guessh this scenario, if the

item is very difficult, the probability of answering incorrectly is greater than the
probability of providing a correct responde.this casethe potential impact oguessing

is higher thant would be foran easier iteror a higher ability examinedo reduce the

positive bias introduced by guesise correct responsgadjusteddownward by the

factord.! n i ntuitive terms, the | RTFabilByPL model ¢
examinees should be able to answer difficult itéivisen such a correct response is
encountered, the model tre#tss as a probable guess and adjusts downwitt.regard

to examinee proficiency, scores for examinees with lower proficiency levels would be
adjusted more&vhencompared to those with higher proficiency lev&8e.u(1- d;)

characterizes an item response adjusted downward on the basis of examinee proficiency.
This demonstratethe kind of implicit correction employed in IRIPL estimates of
proficiency.To simplify this resultfurther,assumd thata = 1. A measure ofrue score

adjusted forc can then be obtained with

C.oau(th) R Aup (3.29

i=1

One najor goal in this dissertatias to apply the approximatioi3.25) with

numbetcorrectscoresFor this purpose, two different approaches are used to obtain
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estimates of. based on observestore statistics.

PseudeBayes ProbabilityThe first methodf estimating?. is motivated by Bayes
Theorem. To obtain values for these parametaa@m guessingwas assumegdand
thusc = 1k. To estimatd?;, that does not require IRT parameter estimates option for
obtaining a value foP; is to use the overall sample averggealue for item, sayp;.
However, this is not adequate because the essence of the new method calls for sensitivity
to whether garticular examinee is expected to answer a question correctly. Likewise,
the overdlproportion correct for an examinee, says not sensitive to whether an
examinee has a higher propensity to answer correctly for some items than others. A
solution can be motivated by an analogical application of Bayes rule which combines the
estimate®f the proportionsp; andr.

Define u; as the €1 response of examingen itemi, and a, as the response

a randomly selected item belonging to examin&efine

P(a,; =1) =,
(3.26)
P(a,=0) 4 F w.
Now letthe expected probability for examingéo getitemi correct givena; be
Plu =1la, &) »
(4 =11, 9 529

P(uji:1|avj :O) g .

The explanation of Equatio(8.27) is as follows. Suppose a randomly select response for
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examineg isa; =1. Knowing nothing else, it could then be guessed that examinee
probably got u; correct. A reasonable choice for this conditional probabilify isvhich
is thep-value fori. However, ifa; =0, then one would guess a lower probability for a
correct response. A reasonable choice ferabnational probabilityin this case
isg =1 -p.While these choices aneformal, they are consistent with intuitive
expectations.
The purpose of the randoméampleditem idea is to motivate the situation in
which there is prior infamation on an examinee acquired from a set of item responses.
This information is then modified by an it
of the examineebds performance on a test it

Bayes Theorem as folvs:

P(a, =1y, 4 = Plo,=tle, )72 3 (3.28)

P(uji =1la, ::L)P(‘?’ 39 P(Lﬂ liza ()*% i 4 ()
Substituting Equation$3.26) and (3.27) into (3.28) gives tle updated probability for

examinegq for a correct response:

P
P(a, =1y, =) m. (3.29
(]

Note that for each item a different updated probability for a correct response is

obtained.
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Correcting the probabilities i1§3.26) and (3.27) for guessingesults in

e (3.30)
pi=— .

Theposterior probabilityof an examine® succesghe]j subscript is dropped below for

ease of presentationhp an iterrsayF'? can then be obtainday combining the

e X a mis prierénformation with the probabijitof success on the iteas:

Sl VI

L orpAwg i

—_(r-op 9 fp e (3.31)
o 9 wg

otherwise
and

(3.32)

These estimateserereferred toaspseudeBayesitem probabilitiesThe oneterm Bayes

formula scorewasthen obtained as

CTlB:R 'an '“VE
= 3.33
S5 (r-c)(p )

where

4?(
:ﬁ-,] e

(3.39)
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It should be clear that no correction is applied wherD.

Conditional Probability.Instead of simplyisng the overall sample average
p-valuep; to estimateP (u; = 1), in the second approadtr estimatingz. , thesample
averagep-value for item wasconditioned orR. For an-item test with] examinees, let
u, be definedas the 61 response of examingen itemi; andletu, be defined as the
response of a randomly selected examinegeoni. To estimate the probability of a
correct response from examineen item i, the expected value of randomly selected with
ri=R can be takerAssuming a Rasch model, this estimate incorporates all sample

information concerning performance on ite(lased on the principle of sufficiency).

The required probabilityP(uji =1| R) for an examinee is then obtained as the expected

value
au
E&P(y =1|R rg)”[\:I::R =} (3.35)
and
&=1-F. (3.36)

These estimats weraeferred to asonditionalitem probabilities,the oneterm

probability formulascoreis obtained as
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(3.37)

Anotherissuewasto set the maximum correctidactorvalued;. In terms of
practical significancea reasonablenaximum amount for guessing correctiould be
less tharl point, that is, the amount of credit given for a correct anervalue of the
correctionfactorwasset to be restricted to the intery@) 1], that isO Od; O1. This

Q R

impliesthatF' ¢ ct, or alternativelyg 2 —- .

i i

Comparison betweetlassicalformula score and the firdRT formula The

significance of this approaatasthat an individuak item reponse patteris taken into
account to provide a score adjustment. For a coarewer, the adjustment requre
subtraction of the term from the full point of item credit, ando correctioris made
when guessing not present. Although this seems wJery different from the standard
logic of classicaformula scoring of subtracting partial points on incorrect items, the
classical formula shown in Equatigi3.5) couldbe also reexpressed as a sum over
attempteditems as

k
C.=——
<Tioad

1RW

8 1 (3.39)
C k
The dassical ormula scoe from this perspectivdownweights all correct responses

equally, whereathe IRT formuladownweightsa correct response proportionaiigised
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on the ratio of an examinéeoddsof answeringhatitem incorrectiyto the odds of
answeriig the item correctly

Second IRT pproach(formuld). The approximation abovs based on a orrm
power expansion of the log likelihood function around a comoymerameter. An
alternativeapproachs based on factoring tH#PL probability given in Equigon (3.6)
with d;, therefore, th@PL IRT probabilitya-can be expressed as

/,=P(1 +f), (3.39
whereP; is the2PL model and
. (3.40)
=cexpg Da (g )

The log likelihood function can then be written as

F(c):é ulngk(1 #) gt win 18P £) - (3.41)

DifferentiatingF with respect ta) , setting the result equi zero, and simplifyingjives

n n

aapr= dau(t )" (342)
i=1 i 3
Assuminga; = 1, the resulting estimator of formula forCy is
C,=au(#)". (3.43)

i=1

This approaclgivesa resultidenticalto aM-termTaylor expansion of the

likelihood functionas shown in Appendix Arhe M-term Bays formula scoy€r,g, using
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the Bayeétheorem in Equatior{3.31) and the assumptias = ¢, can then be obtasd as

Cros :q U, (1 'ﬂ?—)l
N R : (3.44)
- 4 w9
A COICRC

The Mterm probability formula scor€r2p, using the conditional probability in Equation

(3.35), can be obtained as

(3.45)

I
m >
<

VO%QJO

&
i
-aD: O

Note thatf ¢ = O, thenno correctioris made anCrs =Cr2p=R. Unlike theoneterm
correction, no bourshrerequired org; with theM-termcorrection.

Evaluation of twgroposedcorrected scoresThe wo IRT formulas described
above can based for obtainingampleestimates o€orrectedrue scors, but t is
important to ensure both IRT formwdaores are unbiased estimaf thecorrectedrue
scoresAs an estimate o€orrectedrue scoreCr, Cr; andCr, areunbiased if the expected

n

values ofCr; andCr,, E[Cri] = E[Cr)] =Cr=§ P . The expected value &, is equal to

i=1
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i=1 c i

_ S0 _&P+cQ OFA-cQ O

=aRea on o - (3.46)
= '¢c R =cR :

=arE#)(t £ ar(t A
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And the expected value G is

u
Uis
& o b
:a(c {1 ¢ I?)aé 045‘ P
i=1 (; i -
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=8(c {1 ¢Rlad = & (347)
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Clearly Cr;wasnot an unbiased estimate becatseexpected value @fr; wassmaller
thanCr andnegativebias exsts In fact, as shown belowgr; wasuseful for conceptually
understanding the effects of guessiimgaddition,Cr; equalsCr, whenCr; is rescaled to
Cr by dividing by (1-d/%). But Cr, is an unbiased estimate of the true sadis

expected to have more accurate estimation on the true scores.
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Baselinecorrection

Theposterior probabilityproposedn Equation (3.31) providesan easy and practical
approacho score correction withoutsingIRT responseyatterncomplexities. Therefore,
asimplescoring formulecan be obtaineds

B=§ (3.48)

n
i=1

That is,B is the sum of the posterior probabilitigs.this studyindexB is used as a
baseline criterion for evaluatinhe other two more elaborate IRarmula scoresThat
was for an IRTformula scordo be considered useful, it must show less biasadmgher

correlationwith the corrected true sco€a than the indeXB.

Study I: Comparisons of Scoring Methods

To evaluge the twolRT formulas(include two ongerm formula scores and two-idrm
formula scores)three simulation studiegeredesigned using the IRIPL model to
generate data with two sets of item parameters. Examineeeslilteregenerated from

therandom normal distributioN (0, 1) for all simulations

Data Generation

Itemparameters Set | In the first set of item parameters, ai&3n test(labeled
SIM hereafterwas generatedn Table 31, theitem discrimination pametesin (&) had

three levelsd = 0.5 1.0, andL.5) and these three levels were crossed tdtlevels of
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item difficulty (b; = -2.5 t02.5in steps of 0.5)All guessing parameters)were fixed at

0.2, consistent with random guessing on MC iteangriyg five options.

Table3-1

Item Parameters: Set(S§1M)All items haves = 0.2

Item a b Item a b Item a b
1 0.5 -2.5 12 1.5 -1.0 23 1.0 1.0
2 1.0 2.5 13 0.5 -0.5 24 1.5 1.0
3 1.5 2.5 14 1.0 -0.5 25 0.5 1.5
4 0.5 -2.0 15 1.5 -0.5 26 1.0 1.5
5 1.0 -2.0 16 0.5 0.0 27 1.5 1.5
6 1.5 -2.0 17 1.0 0.0 28 0.5 2.0
7 0.5 -1.5 18 1.5 0.0 29 1.0 2.0
8 1.0 -1.5 19 0.5 0.5 30 1.5 2.0
9 1.5 -1.5 20 1.0 0.5 31 0.5 2.5
10 0.5 -1.0 21 1.5 0.5 32 1.0 2.5
11 1.0 -1.0 22 0.5 1.0 33 1.5 2.5

Itemparameters Set I. The second set of item parameter valwasobtained from

theAbstract Reasoning Test (ART; Embretson, 1998). Thentat30 itemsandwas

designed to measure general intelligence. Item parameters were estimatddtadom

anadministationto 787 young adultsTable3-2 presents the IRT 3PL item parameter

estimatesThe result from this simulatiois usedo examine how th&RT formula scores
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work with data froman existing test

Table3-2

Item parametes: Set Il ART)

Item a b c Item a b c
1 1.286 -2.807 0.192 16 1.150 -0.882 0.204
2 1.203 0.136 0.162 17 0.846 1.303 0.112
3 0.814 -2.033 0.196 18 0.986 1.090 0.113
4 0.941 -0.557 0.142 19 1.295 0.597 0.115
5 1.083 -1.461 0.153 20 1.065 -0.017 0.110
6 0.752 -1.979 0.182 21 0.948 0.470 0.095
7 1.363 -1.785 0.146 22 1.150 2.609 0.170
8 1.083 -0.776 0.118 23 0.928 -0.110 0.155
9 1.149 -0.239 0.214 24 0.934 1.957 0.103
10 1.837 -1.247 0.132 25 0.728 3.461 0.128
11 1.269 -0.917 0.153 26 1.452 1.144 0.107
12 0.783 0.819 0.129 27 0.460 -0.799 0.226
13 1.501 -0.963 0.196 28 0.609 -1.018 0.192
14 1.417 0.526 0.118 29 0.779 1.291 0.142
15 0.949 0.577 0.126 30 0.576 1.607 0.178

First Simulation

Using the item parametein Tables 3-1 and3-2, asingle sample of size=100000

(separately for&ch set of parametersasgenerated using SAS 9.1 computer software

package (SAS Institute, 2003) to study the asymptotic behavior of the various corrections.
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The estimateR, &, Crig, Crip, B, Cros andCrzp (numbercorrect score, classical
formula scoreoneterm Bayes formula scoreneterm probability formula score,
baseline correctiorM-term Bayes formula score andtérm probability formula score
respectivelywereobtained and compared to the corrected true scora fixed ¢ (used

in score adjstment) waset as the average thie c parametes (0.2 for Set I, and 0.15 for

Set II).

Second Simulation

In order to study the new formula scoresnaderatesizedsamples, mother sample=
5000for each testvassampled from the data sets generated/@lath 10 replications.
Calibrations of itemsvereconductedvith Parscalaising the 3PL IRTmodel(Muraki &
Bock, 2003). Examineeds werealso estimated using a Bayesian expected a posteriori
(EAP) methodThe IRT estimate of corrected true scﬁ)ﬁe(labeled,ET) wasthen

obtained by substituting sample estimates of item parametersaicigncies into
Equaton(3.11). Cr wasused as a standard for evaluating corrected satksughin
samples with n=5000, it may be the case tét providesa betteistandard because it
preserved more information about the true sddoavever, the issue here is that the
estimation erroexists irLET , and with EAP estimation used to estimdtéhe resultingg

would regress taera Therefore, (,ET is not an unbiased estimate@fin given
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neighborhoods of. For that reasarthe comparison betwee@vr andCy wasobtainedto
see how well (,ET explainsCt. The comparison between the corrected score<aisl
usedas a pragmatic critericio evaluate the reliability of scoresnd alsdow wellthe
corrected scorestimateperformed Corrected scorestimatesverethenobtainedin two
different ways:
1. Corrected scoresereobtained by plugging estimated IRT itemrpmeters
and estimated thetato Equations(3.25) and (3.43) to get (EH and(,ETz.
2. Corrected scoresereobtained by calculating tHgayesformula scoresnd
probability formula scorefrom the sample olesvations by using Equation
(3.33), (3.44), (3.37), and (3.45) to obtainthe formula score€rig, Crip,
Cr2sandCrzp. For each of these 10 replicatio®s;s, Crip, Cros andCrop
wascomputed and compared to ithespectivevalues of (-En and(,ETz.

The purpose heneasto evaluate potential information loss due to the Taylor
approximationandthe use opseudeBayesestimatesand conditional probabilities
instead of estimated IRT item probabilities. The quanti@§and (Ezwerethe IRT
modetbasedversiors of Ct; andCr,. They can be thought of as theovidinganupper

limit to the performance dbrmulascore estimates @i, Crip, Cr2s andCrop.
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Criteria for Evaluating the Two New IRT Scoring Models

Previous studies have focused on overall compasisitimer between examindges
observed scores and formula &) or between examing#sue scoregbased oranIRT
mode) and formula scores. To find out if theT formula scoresmprovel estimates of
ability level, examineewerestratified inquartilesbased on thenowncorrectedrue
score,Cr. Analyses in thisnalysiswere carried out separatelyy quartile Q11 Q4).
Because arrectiors made bytheformula scoreCk, could result in negative valsgall
negativevalueswere set td.

First simulation In first simulation bias andpercent of variance accoeuat for (r?)
wereused to evaluate different correction methods for twedddests. The bias statistic
wascomputed over examinggsas

J

Bias:%al( S -G). (3.49

where§ representshe givenproficiency estimatéR, G, Crig, Crip, B, Crog, 0Or Cr2p) for
examined; and C; represents the corrected true score f@anginegj, Cr. Thecriterion
of primary interestvasthe predictive accuracy of the different scoring model, and this
wasassessed by obtaining the correlation between the different corrected Bgdzes (
Crie, Crip, B, Cr2s, andCr.,p) andthe correctedruescore,Cr. Scoring methaosithat

resuledin lower bias and highet wereconsiderecpreferable.
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Second simulatiorBias, root mean square error (RMSEndthe correlation
werecalculatedover 10 replicationfor & , the appoximations &, and &, relative to

Ct. The RMSE statist&werecomputedas

(3.50)

where i equalsthe IRT estimate of corrected true scof® , and IRT estimate of
corrected score, and &, The corresponding bias statistic and the root mean square

errors (RMSE) and the correlation coefficierdf Crig, Crip, Cr2s andCrzp With Cr were

calculatedbver 10 replications.

Study II: Applicationto DIF Analyses

Thethird goalof this dissertation wato demonstrate potential application of
IRT formula scoresn DIF analysesTo evaluate howheIRT formula scoreperformed
onaDIF analysis, LR and thielH proceduresvere appliedThis studyhadtwo goals:a)
to study the effect adifferent scoring methods on thge 1 erroestimation of the DIF

procedureand b) 6 compare the LR andH procedurs with regard to detection of DIF

Data Generation

Different factors which arékely to affect thetype 1 erroof DIF analysisvere

manipulatedincluding item parameters, sample size, and ablifitgypical DIF there are
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two groups of examinees (reference group and focal group) and this provides a choice of
usingeithergroup percent corre@br an item pg, pr) or the correct perceracross all
examineegpr:r) to capture thebserved pralue for an item for the purpose of

estimating /. . Based on the pilot work in whiclpg, pr) was usedlargebiases irtype 1
errorrates and LORs were foun@lhereforethe orrect percentage fonatem from the

total sample fr+r) is usedo estimaté, .

Item parametersExaminee response dat@regeneréedusing the3PL IRT
mode| based on the two sets of itgrarametes described in th@revious sudy, using
SAS 9.1 computer software package (SAS Institute, 2003).

Sample sizeNumerous studies indicate that samplestfdocal and reference
groups appear to havaneffect ontype 1 erro(Rogers & Swaminathan, 1993; Roussos
& Stout, 1996b; Tian1999). In addition, when gender difference is the target,
approximatelyequal focal and reference group samplesszereasonablewhen the
comparisoris between majority and minority subjects, unequal sampls &izdoth
groupsaremore realistic. Thefore,two differentsamplesize conditionsvere
investigated in this studyt) equalsamplesize for focal group and reference group
(N,=Ng=1000), and2) unequal sample siz&\-=500, Ng=1000).

Ability distribution A few researches suggest that largeftirences in the ability
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distributionof two groups could result in higtype 1 errol(Tian, 1999) However, sme

researches endorse the opposit®nclusionand suggedhat ability distribution

differences d not significanly affecttype 1 errorates wnlessthe ability distribution

difference betweethetwo groupss greater thad SD (Narayanan & Swaminathan,

1994). Because ability distribution differences between the reference and foca group

usually existthreeconditions are considered this sudy:

1. Equal ability distributions: both reference and focal gratgN (0, 1).

2. Unequal ability distributionaN (0, 1)for the reference group amtl(-0.5, 1)

for the focal group.

3. Unequal ability distributionaN (0, 1)for the reference grougndN (-1, 1) for

the focal group.

Procedure

The MH and LR procedusaverestudiedunder various conditions fabtaining

matching scoresiumbercorrectscore(R), first IRT formulas(Crig andCrip), and

second IRT formuks(Cr2s andCrzp). For each condition, perforance oved 000

replications per conditiowasevaluatedThe matching scoreseserounced off to

integes for the MH procedureResults for thé.R procedurevere obtained witlisAS

Logistic procedureinder SAS 9.1. The MH proceduras alsgerformedusingSAS 9.1
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Type 1 erros andaveragelog-oddsratio wereobtainedfor both procedures
Across itens, linear regressionagused toevaluatehe extent to whiclfactors
(described below) may have affected g odds ratio Separate linear geession \as
conducted for each scoring method and for each DIF proceithereverage logdd ratio
across replications was usedtlas dependent viable for each combination of conditions
The independent variablescluded item parametersa( b andc), two differentsample
size ratio(Ne/Ngr = 1 andNg/Ng = 0.5), andthreedifferent ability distributios (one equal
and two unequahbility distribution)between reference group and focal grasp
described aboveA standardizedegression analysisagconductedas folows:
LOR=bH,a +pb +6 +1 (3.51)
for the SIM testandbecause paraneters are not constaior theART test:
LOR=bH,a+pb +b& +D ,+, (3.52
wherea, b andc represent item parametessandprepresent sample size ratio between
reference group and focal group, and different ability distribsticspectively.
Binomial regression wassed to evaluate the effect of the independent variables
on type 1 error. Separabmomialregressions wereonductedor each scoring method

and for each DIF procedyrthe dependent variable for each analyss determined by

the count of the number dimes thathelog odds ratiodll outsidethe 95% confidence
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intervd. The independent variables wesameas described above for linear regression

for LOR, which includes, b, ¢, s andp Again, only main effects wertested.

Criteria for Evaluatbn

ThenominalU=.05 level of significance asused for altests The empiricatype
1 errorlevelis defined as the proportion of times (out of 1000 replication)thiedbg
odds ratio falloutsidethe 95% confidencénterval The average logodds ratio vas
calculatedfor each itemacrossl000 replicationgn order to evaluate bias. Because no

DIF was introduced to either test, the true value of the W@Rzero.
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CHAPTER IV. RESULTS

In this chapter, a detailed description is given of the results obtained following

applicdion of the methodology illustrated in Chapter Ill. The results of two simulation
studies based on IRT 3PL models are reported. In the first study, bias, RMSE statistics,
and coefficients of ekermination® areused to evaluate whether tHeT formulas

improve estimation of the corrected true score. In the second study, the logistic regression
and MantetHaenszel procedure is usedobtain DIF under various conditions for

different scoring method3ype 1 error rates and log agldre usetb evaluate the

accuracy resulting from conditioning on different formula scores.

Study I: Comparisons of Scoring Methods

The purpose of the first studyts find out if the IRTformulasimprovedtrue score
estimates and tevaluate potential information loss due hie fTaylor approximation, the

use ofpseudeBayesestimates anthe use otonditional probabilitiegstimats. All
evaluation statisticarepresented first by quartile followed hbiye full distribution for
numbercorrect scores, corrected true scoesgldifferentformula scoresDescriptive
statistics include means, standard deviations, skewrnes&ugosis. Bias statistics are
used to determinaccuracyand the direction of measurement error (either overestimation

or underestimation)f the differentscoringmethods. The coefficient of determinaticn
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Is used to provide a measure of how well the true score is predicted by each scoring

method.

First SimulationStudy

Descriptive statistics results by quartile for different scoring methods base @ats of

item parameters aggven in Table 41 and Table €. For both test designs, &irmula

scoregesuledin a lower average score thRnMoreoverthe standard deviatioof

corrected true scor€g) waslower than that for anformula scoréecausehe latter

include differing amourstof measure erroFor every quartile, the classical formula score

Cyyieldedthe highest statistical variability. For all scoring methd@isandQ, showed

higher variability with larger score ranges, compared to smedges irQ, andQs.
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Descriptive Statistics with N=25000 in Eaclu&tile: SIM

78

Q Statistic R Cr Ck Crie Crip B Cros Crop
Mean 14.234 9.553 9.558 9.387 10.356 11.728 10.683 11.773
SD 3.143 2.425 3.889 3.360 3.548 3.170 3.367 3.243

o Skewness -0.202  -0.894 -0.134 -0.395 -0.108 -1.017 -0.454 -0.112
Kurtosis -0.008 0.199 -0.198 0.168 -0.193 1.769 0.399 -0.134
Mean 18.335 14.646 14.669 14.104 15.451 15.328 15.284 16.318
SD 2.501 1.084  3.127 2.464 2.826 1.972 2.452 2.636

@ Skewness  -0.008 -0.071  -0.008 0.052 0.032 -0.122 0.025 0.043
Kurtosis -0.098 -1.175 -0.098 0.021 -0.073 0.192 -0.024 -0.080
Mean 21.265 18.310 18.331 17.337 19.021 17.617 18.415 19.590
SD 2.353 1.083 2.941 2.428 2.708 1.845 2.364 2.542

@ Skewness  -0.093 0.054 -0.093 0.026 -0.060 -0.004 -0.006 -0.046
Kurtosis -0.071  -1.189 -0.071 -0.015 -0.054 0.127  -0.026 -0.065
Mean 25286 23.370 23.358 21.819 23.821 21.062 22.740 24.101
SD 2.763 2.418 3.454 3.216 3.250 2.665 3.048 3.096

< Skewness 0.112 0.891 0.112 0.447 0.146 0.769 0.372 0.176
Kurtosis -0.231 0.189 -0.231 0.211 -0.228 1.151 0.081 -0.207

Note. R: Nimbercorrect score; G. Corrected true score;

Cx: Classical formula score; g OneTermBayesformulascore;

Cr1p. OneTerm probabilityformulascore B: Baseline score;

Crog M-TermBayesformulascore Cr,p. M-Term probabilityformulascore
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Table 42

Descriptive &tistics wth N=25000 in Each Quartile: ART

Q Statistic R Cr Ck Cris Crip B Cr2s Crop
Mean 10.814 7.622 7.454 7.704 8.057 9.544 8.548 9.059
SD 3.055 2.489 3.533 3.299 3.245 3.233 3.249 3.062

o Skewness  -0.115 -0.568 -0.017 -0.219 0.008 -0.768 -0.282 -0.009
Kurtosis -0.217 -0.594 -0429 -0.252 -0.379 0.564 -0.112 -0.339
Mean 15.674 13.364 13.145 13.110 13.610 13.940 13.768 14.216
SD 2.418 1.244 2.845 2.469 2.646 1.9018 2.389 2.505

@ Skewness  -0.013  -0.074 -0.013 0.020 0.035 -0.155 0.009 0.035
Kurtosis -0.112  -1.169 -0.112 -0.053 -0.100 0.188 -0.036 -0.090
Mean 19.252 17.563 17.355 16.940 17.692 16.742 17.453 18.061
SD 2.340 1.241 2.753 2.455 2.620 1.845 2.365 2.493

& Skewness  -0.059 0.067  -0.059 0.014 -0.032 0.051 0.013  -0.009
Kurtosis -0.099 -1.182 -0.099 -0.078 -0.120 0.105 -0.081 -0.112
Mean 23.882 22,927 22.803 22.065 23.003 20.769 22.386 23.149
SD 2.573 2.169 3.027 2.941 2.930 2.553 2.818 2.840

Q4
Skewness  -0.068 0.532  -0.068 0.094 -0.054 0.510 0.085 -0.029

Kurtosis -0.403 -0.598 -0.403 -0.355 -0.401 0.363 -0.345 -0.420

Table 43 and Table 4 summarize descriptive statistics for the full distribution.

Predictally, all formula scores had lower average score thRnHowever, unlike the

results by quartile, alRT formula scoresiverages werelose to the corrected true score

averages for both tests. Among the foRT formula scoresCrighaddescriptive statistics

that closely trackdthose of the corrected true scdwe full distribution
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Although all four RT formula scores werbetter estimates of the corrected true
score for the full distribution, none of them closely tedthe corrected true sce in any
quartile (see Table-2 and Table €). The criteria of bias and provided more sensitive
information, in this context, for comparing the different formula scores than simple

descriptive statistics

Table 43

Descriptive &tisticsfor Full Distribution: SIM

Statistic R Cr Ck Cris Crip B Cr2s Cr2p
Mean 19.780 16.470 16.479 15662 17.162  16.434 16.779 17.946
SD 4865 5391 6.070 5.388 5.820 4202  5.244 5.358
Skewness -0.107 -0.005 -0.094 -0.051 -0.083 -0.228 -0.111  -0.033
Kurtosis -0.287 -0.362 -0.327 -0.060  -0.368 0.942 -0.033  -0.347
Table 44

Descriptive &tisticsfor Full Distribution: ART

Statistic R Cr Ck Cris Crip B Cr2s Cr2p
Mean 17.405 15.369 15.189 14.955 15590 15.249 15539 16.121
SD 5456  5.915 6.403  5.961 6.185 4770  5.752 5.843
Skewness -0.115  -0.085 -0.010 -0.089 -0.069 -0.241  -0.109  -0.042

Kurtosis -0.580 -0.668 -0.621 -0.484 -0.653 0.240 -0.449 -0.633
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Bias

In Table 45 and Table 4, bias estimates are given for all scores by quartile for both

tests. Other thaR, the baselinendexB hadthe highest bias iQ; andQ,. This index

appersto be the least useful @; where guessing is likely to have the greatest impact.

Cropalso showedhigh bias in the first quartil@®verall, the classicaformula scoreCg

hadthe smallest bas in every quartile for the Sikst. However, for the ART tesEyg,

Cr1p, andCrzg each hadhe lowest bias iQ;, Q4 andQs, respectively. A trend was

apparent for the new corrected scoresGals andCr,p, bias trendegbositive to negate

from Q; to Q. In absolute value, bias increadeaim Q; to Q4 for Cri5, but decreased

from Q; to Qs and then increasdd Q4 for Crzg. CripandCrzp hadsimilar trends in bias.

Both hadpositivebias in every quartile and hadrend to decrease fro@a to Q. IRT

formula scoresilways resutdin less bias thaR.

Table 45
Biasby Quartile SIM
Quartile R Ck Crie Crip B Cr2s Cr2p
Q 4.681 0.004 -0.166 0.803 2.175 1.130 2.220
Q2 3.689 0.023 -0.541 0.805 0.682 0.638 1.673
Qs 2.955 0.021 -0.973 0.711 -0.693 0.105 1.280

Q4 1.916 -0.012 -1.5561 0.451 -2.307 -0.630 0.731
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Table 46

Biasby Quartile ART

Quartile R Ck Cris Crip B Cros Crop
Q 3.192 -0.168 0.083 0.435 1.923 0.927 1.437
Q> 2.309 -0.219 -0.254 0.246 0.575 0.404 0.852
Qs 1.689 -0.208 -0.623 0.129 -0.821 -0.110 0.498
Qs 0.956 -0.124 -0.861 0.076 -2.158 -0.541 0.222

Table 47 summarizebias estimates for the full distribution. Teecond IRT

formula scores werderived from the 3PL model, and theref@eg andCrpwere

expected to pragde a bettegpproximation throughout thguartiles However,C still

hadthe smaller bias compared to new scoring methods with only exception that for the

ART test,Crogresultedn the smallest bias.

Table 47

Bias for Full Distribution

Test R Ck Cris Crip B Cros Crop
SIM 3.310 0.009 -0.807 0.692 -0.036 0.309 1.476
ART 2.037 -0.180 -0.414 0.221 -0.120 0.170 0.752

Plots comparing bias for the various scores are giadrigure 41 to 410. In

these scatter plots, true score categonierecreated i rounding fractional true scores,

Ct, to the nearest integer and then averaging corrscta@s within these categories.



Figure 4-1. SIM test: Comparison of bias fé&randCk.
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For both setsf tests, as it can be seen in Figusgé dnd 42, the classical formula

scoreCk provided a nearly unbiased estimate&Cpfvhile the numbecorrect scor®

initially showed a positive bias and then diminished to zero at the upper range of the true

score.

Figure 43 and 44 demonstrate comparisons amawg Bayes formulacores

(Cris andCr2p) and the baseline sco)( In both figuresCrig andCros werecompared

to the rival scord3, and both werat least as good &sover the rangdt is evident that

Cris hadgoodestimation irthe lowerrange of true score but exhibitachegative bias at

the high endCr2s, on the other hand, hadpositive bias in the loweange of true score

and provided better approximation at the higher end tGays.

Figure4-5 and 46 exhibit comparisons amoitgyo probability formula scores

(CripandCr2p) and the baseline scormB)( Similar results téhe Bayesformula scores

werefound. Crip still revealedthe least bias compared @,p andB. Again, the figures

show netiher Cr2g nor Crzp provideda better approximatioof the true scoréhroughout

the rangeas its expectation. Yet they both prowdds least as good estimationBsver

the range and as good@gsg andCr;pat the higher end.



Figure 4 3. SIM test: Comparison of bias foCr1g, Crog and baseline sco#
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Figure 44. ART test:Comparison of bias fd€tig Cr2s and baseline scoi
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Figure 45. SIM test: Comparison of bias f@rip, Cropand baseline sco
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Figure 46. ART test:Comparison of ias forCr1p, Cropand baseline scoi
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Figure 47 to 410 shoved comparisons among the two different approa¢tess

vs. Crip; Cr2s VS. Crzp) Used to obtain IRTormulascores and the classical formula score

Ck. Figure 47 and 48 reveatda stabé pattern that in both testmjeterm Bayes

formula scoreCrig performedalmost as good & in the lower range, whe@neterm

probability formulascoreCrip hada positive bias. In contrasi;p estimation was

almost the same & at the high end, arhadbetter estimation compared @ which

hada negative bias. Figure®and 410 exhibit comparisons amorgx, Crzg andCrzp.

Ck revealedhe least bias throughout the rangad againM-term Bayes formula score

Cr2s showed better approximatioto the true score in the lower end whilg,p had better

estimation at the higher end of score.

Figure 47. SIM test: Comparison of bias f@r;g, CripandCy.
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Figure 48. ART test: Comparison of bias f@r1g, CripandCk.
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Figure 49. SIM test: Comprison of bias foCrg, Crp andCx.
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Figure 410. ART test: Comparison of bias f@rs, Crp andCy.
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Coefficient of Determinatiorfr

In Table 48 and 49, r? for the different correction scores are given by quartile for two
sets of tests. The estates of? for R andCx wereidentical except in the first quartile
(due to rounding up of negaéiwalues to 0), because they wezkated by a linear
transformation. The® estimation results wersimilar for both tests. The baseline scBre
accountedor more variance than tldassicaformula scoreCx in Q; andQ,, but about
the same iQ, and Qs (where variability is lower). Th&RT formula score€ris, Cros,
Crip, andCrop, in contrast, always haalhigher? thanCx, and accourd for more
variancein Q; andQ, than inQ, andQs. In Q;, where guessing hatle largest effect,

compared tdk, the advantage waabout 11.3%, 6.3%, 5.5%, and 4.8% of variance for
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Cris, Cr2, Cr1p, andCrop, respectively. The advantage of the {BASed corrections

diminishedto 1-3% in the remaining quartile$able 410 summarizes thé statistics for

the full distribution In contrast to the® betweerR andCr, the IRT formulascores hal

higher, though similar? for both tests

Table 48

r? by quartile SIM

Quartile R Ck Cris Crip B Cros Crop
Q 0.382 0.379 0.492 0.462 0.403 0.473 0.429
Q> 0.123 0.123 0.152 0.144 0.123 0.146 0.137
Qs 0.138 0.138 0.154 0.151 0.138 0.153 0.147
Q4 0.492 0.492 0.497 0.498 0.520 0.504 0.500
Table 49
r* by Quartile: ART
Quartile R Ck Cris Crip B Cra2s Cr2p
Q 0.461 0.458 0.532 0.517 0.473 0.521 0.496
Q. 0.196 0.196 0.217 0.214 0.196 0.214 0.209
Qs 0.215 0.215 0.226 0.225 0.215 0.225 0.223
Q4 0.532 0.532 0.546 0.541 0.553 0.548 0.541
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Table 410

r? for Full Distribution

Test R Ck Cris Crip B Cros Crop
SIM 0.786 0.786 0.818 0.814 0.774 0.813 0.806
ART 0.856 0.857 0.870 0.870 0.842 0.868 0.866

The classical formula scof& providedthe least bias among all corrected scores,
but the IRTformula scores habigherr? values to theorrected true scoi@r than the
numbercorrect scor® (or Cx) i especially in the first quartile. Comparitige two
different approaches to obtain IR&sed corrected scores, ti® formula scores
obtained with thd8ayesmethod(Cris andCr2g) Were moreaccurateéhanthose obtained
with the conditional probability methdrip andCq,p) in every studied aspect.

To minimize bias irCr1g andCrog and keep the highef, a linear transformation
wasapplied in whichCr;g andCrogwerescaled tadCx. BecauseCk can always be
computed directly fronthe data, this scaling requires additional information; however,
the usefulness of the scalidges dependn the accuracy of the classical formula score.
The bias statistics differences betwé&ans andCx decreaed at higher proficiency levels
(as in Figure 47 and 48). Moreover,Cr,g andCk wereboth better estimations at

mid-range ofCt and further off at extreme ranggse Figure 4 and 410). BothCrip
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andCrzs werebetter represented as quadratic tramsfiions comparing tbnearand
cubic transbrmation. For SIM test, thecaledCr;g andCrzgwere obtained aSs;gand

Cszg With the regression

Cqp=-0.72477+ 1.06107 G, + 0.00017668,C

2 (4_1)
C,,;=-1.88151+ 1.08464 , + 0.00078921.G
And for ART test,Cs;gandCszgwere obtained with the regression
Cqys=-0.72477+ 1.06107 G, + 0.00017669,C 4-2)

Co,5 =-1.88151+ 1.08464 G, + 0.00078921,G
Updatedr? and bias statistics for two tests are shown in Taldlé tb 414.Since they
wererelated by a linear transformation, the estimate$ fifr CsigandCsogwerealmost
identical toCr1g andCr,g in each quartile and for the full range. Biase, when the
analyses carried out by quartif@s;gandCsygresuledin smaller biagin absolute value)
compared tdCr1g andCrzg, but the result still had slightly larger bias tharCy (see Table
4-11 and Table 4.2). However, when the analysesused on overall comparisoGs;s
andCs,ghadthe same bias &3« (see Table 4.3 and Table 4.4). Figure 411 and Figure
4-12 give comparisons amoi@1g Cs2g andCk. For boh sets of tests, as it is shown in
the figuresCsigandCs,gperformed comparable t&x, and all providd nearly unbiased
estimate ofCt. In contrast to the untransformed res@tsgandCrop (Figure 47 and

Figure 410), CsigandCs,gimproved significantly on overall bias reduction igfure
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4-11). Much smaller bias vgafound on lower and upper end of score after scaling.

Table 411

r? and Biasby Quartile SIM

Quartile Statistic Ck Cris Csi Crs Cs2s
r? 0.379 0.492 0.492 0.473 0.472
< Bias 0.004 -0.166 -0.052 1.130 -0.057
r? 0.123 0.152 0.152 0.146 0.146
& Bias 0.023 -0.541 0.120 0.638 0.086
r’ 0.138 0.154 0.154 0.153 0.153
& Bias 0.021 -0.973 0.042 0.105 0.021
r? 0.492 0.497 0.496 0.504 0.505
< Bias -0.012 -1.551 -0.074 -0.630 -0.014
NoteCrig OneTermBayesformula score Cros: M-TermBayesformulascore;
Cqip: ScaledOneTermBayedormula scoreCsys ScaledM-TermBayesformula score
Table 412
r’and Biasby Quartile ART
Q Statistic Ck Cris Csis Cra2s Cs2s
r? 0.458 0.532 0.532 0.521 0.520
< Bias -0.168 0.083 -0.159 0.927 -0.165
r’ 0.196 0.217 0.217 0.214 0.214
& Bias -0.219 -0.254 -0.147 0.404 -0.159
r? 0.215 0.226 0.226 0.225 0.225
& Bias -0.208 -0.623 -0.261 -0.110 -0.269
r’ 0.532 0.546 0.546 0.548 0.548
< Bias -0.124 -0.861 -0.151 -0.541 -0.125




Table 413

r? and Biasfor Full Distribution: SIM
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Statistic Ck Cris Csis Crs Csos
r? 0.786 0.818 0.818 0.813 0.814
Bias 0.009 -0.807 0.009 0.309 0.009
Table 414
r? and BiasAll Quartiles: ART
Statistic Ck Cris CSlB Crs CSZB
r? 0.857 0.870 0.870 0.868 0.868
Bias -0.180 -0.414 -0.180 0.170 -0.180

Figure 411. SIM test:Comparison of bias fd€s;5 CszsandCy.
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Figure 412. ART test:Comparison of bias fo€s1g CszsandCy.

30.007 &

ART

27.007

24.007

21.007

g

15.00

Corrected Scores

12.00

9.007] O Classical
A CSIB
[ cs2B

— True Score

6.00

3.00

0.00-

T T T T T T T T
0.00 3.00 6.00 9.00 1200 1500 18.00 21.00 24.00 27.00 30.00

True Score

Summary of First Simulation Study

The classicalormula scorerovidedthe least bias of forala score methods, but the IRT
formula scores haligher correlations witkhe corrected true scotlean the
numbercorrectscor® especially in the first gartile.If one isinterested only in
comparing aggregate test scores to some criterion, this would argueriofaive
classical correctiorHHowever, if the goal iso remove the effestof unreliability dueo
guessing while substantially reducib@s the IRTformulashave better measurement

properties
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SecondsimulationStudy

The purpose athe second simulation studyts determine the practical utility of using
the IRT formula scores in moderately large samples. Accordiaglgt ofn= 5000

sampe for each testvassampled from the data sets generatetthe first simulation
studywith 10 replicationsTo evaluatéhe two new formula scores, several benchmarks
were created. Recall that the so&evasottained bysubstituing sample estimates of
item parameters and proficiencies itquatior§3.11). The comparison betweéz and

Cr is thenobtained toestablish the mamum level of predictability based on IRT
estimates. Second, the scdégand(gzwere determined witkstimated IRT item
parameters and usingEquations(3.25) and3.43). These can be used as benchmarks for
determining how much information wadsst in calculatingCris, Csigs Crip, Crog, Cs2s
andCrzpwith the observed score methods (Bafg@sula scores, scaldBlayes formula
scoresand probabilityformula scores Note also tha(E1 and(,ETzcontaired measurement
error as well as sampling error in IRTrametersThe corresponding biasatistics,

RMSE andof & ,&,, &,, Cris Csia Crim Cras CszsandCropassociatd with Cr
arecalculated over 10 replicationResults are preseed first byquartile followed by all
range.

In Table 415 and 416, bias, RMSE and relative toCr are first given by the
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first quartile (based 0@7) then calculated for the full range for twasts. Results from
two tests wersimilar. The average #ses and RMSE &5-[ in the first quartile wer@.944
(SIM) and 2.18@ART), and 0.891SIM) and 2.185 (ART), and& explainedabout
53.2% (SIM) and 54 % (ART) of the variance o€rin the first quartile (Tabld-15).
However (,ETwasa better predictor ot for SIM and ART in the full distribution: not
only wasits aveage biasrery small €0.009 and 0.048, respectiyglbutthe average
RMSE wasalsosmaller .112and 2.030) for two s (Table 416). For the full

distribution, (,ET explainedabout 84.8% (SIM) and 88.2% (ART) of the varianc€af

Information Loss due to the Taylopproximation

To evaluate potential information loss due to Taylor approximati@btaining, (En and
(,ET2 werecompared witlCr. It can be seen in Tablelb that the corresponding absolute
values of biasin the first quartileveresmaller thamEr . The RMSEs foc.,ETl and(,ETzwere
slightly higher thamEr for SIM and wereslightly lower for ART. The amounts &
variance explained for SIM and ARy (,ETl (50.6% and 53%and (,ETZ(Sl% and 53.6%)
wereonly slightly lower than for(,ET (53.2% and 54.9%). ThusLET accountedabout 2%

more variance tha(ﬁ1 and about 1.5% more th&lzin the first quartile.



Table 415

First Quartile Results for 10 Replications of N=1250
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Bias RMSE r

Test statisic & & &, & & &, & & &,

Mean 0.944 -0.649 0.421 2.189 2.302 2.257 0.532 0506 0.510
SIM

SD* 0.116 0.099 0.090 0.057 0.067 0.055 0.014 0.014 0.012

Mean 0.891 -0.355 0.500 2.185 2.173 2.183 0.545 0.530 0.536
ART

SD* 0.151 0.130 0.106 0.068 0.062 0.055 0.019 0.019 0.018

Note.d‘::_T . IRT estimate corrected true score;

&, IRT estimate on¢éerm formula scre;

(Erz: IRT estimate Merm formula score;

* The standard deviation (SD) measures the stability of the bias result across 10 replications.

For the full range (Table-46), compared t@ ,(,ET1 and(,ET2 had larger bias, RMSE,

although the differences were not large. The proportidrafriance explained for SIM

and ARTby & (83.5% and 87.6%nd & (83.7% and 87.7%oth were only

slightly less tharby (,ET (84.8% and 88.2%). Consequenthete appears to be very little

information lostdue to Taylor approximation.
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Table 416

All Quartiles Results for 10 Replications of K600

Bias RMSE r?

Test stistc & & & & & & & & &

Mean  -0.009 -0.935 0.060 2112 2503 2.270 0.848 0.835 0.837
SIM
SD* 0.084 0.082 0.073 0.023 0.037 0.028 0.003 0.003 0.003

Mean 0.048 -0.491 0.150 2.030 2.264 2.132 0.882 0.876 0.877
ART
SD* 0.078 0.098 0.078 0.018 0.042 0.020 0.003 0.003 0.003

Note. * The standard deviation (SD) measures the stability of the bias result across 10 replications.

Information Losof PseudeBayesand Conditional probability Estimates

It would be expected on theoretical grounds that thed®imates (Em and (,ET2 would
lead to betteestimation orCy, compared to either Bayes or probabifitymula socre,

and this indeed wa$e case for both cases of the first quartile and the full range. Both
(Enand (,ET2 hadsmaller biases (Table 47 and Table 4.8), RMSEs (Table49 and
Table 420), and higher? (Table4-21 and Table €2). There weréwo exceptions to this
general finding foboth sets of tests: the scalBdyesformula score€si;gandCszs

always hadgsmaller bias compared tél and(,ETz; and in the first quartileCr1g hada
smaller biasthan(ETl. The latter ragit waspossible an artifactf@verfit because sample
statistics ratér than population estimates werged to construct the formula scores. It is

also important to recognize that the effectiveness of the scaling depends on the accuracy
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of the classical formula score.

Table 417

Aveaage Bias: First Quartile Results for 10 Replications of N=1250

IRT First Formula Second~ormula

Test Statistic (.EH (.,ET 2 Cris Crip CSlB Crs Crop CSZB

Mean -0.649 0.421 -0.228 0.902 -0.082 1.078 2.256  -0.090
SIM
SD 0.099 0.090 0.071 0.061 0.080 0.072 0.057 0.075

Mean -0.355 0.500 0.087 0.502 -0.160  0.933 1.459 -0.166
ART

SD 0.130 0.106 0.083 0.074 0.080 0.079 0.071 0.083

Note.d:Erl: IRT estimate ongerm formula score;(Erz: IRT estimate Merm formula score;
Crie OneTermBayesformula score Cr1p. One Term probabilityformulascore
Croe M-TermBayedformulascore;Cqr,p. M-Term probabilityformulascore

Caip: ScaledOneTermBayedormula scoreCsys ScaledM-TermBayesformula score

Table 418

AverageBias: Full Distribution Resuls for 10 Replications of N=5000

IRT First Formula Second~ormula

Test Statistic él éZ Cris Crip Csie Crs Crop Csop

Mean -0.935 0.060 -0.842 0.729 0.002  0.285 1.499 0.002
SIM

SD 0.082  0.073 0.040 0.027 0.026  0.027 0.027 0.026

Mean  -0.491 0.150 -0.388 0.255 -0.165 0.193 0.772 -0.165
ART

SD 0.098 0.078 0.046 0.038  0.042 0.042 0.038 0.042
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Table 419

Average RMSH-irst Quartile Results for 10 Replications of N=1250

IRT First Formula Second Formula

Test Statistic (EM (.,ET 2 Cris Crip CSlB Crs Crop CSZB

Mean 2.302 2.257 2.406 2.696 2.679 2.673 3.326 2.769

SIM

SD 0.067 0055 0.049 0.055 0.056 0.038 0.048 0.055

Mean 2173 2183 2260 2285 2403 2434 2.623 2.472
ART

SD 0.062 0.055 0.055 0.041 0.066 0.043 0.037 0.066
Table 420

Average RMSH-ull Distribution Results for 10 Replications of 8600

IRT First Formula Seond Formula

Test Statistic él éz Cr Crip Csie Crs Crop Csas

Mean 2.503 2.270 2.496 2.594 2544 2.373 2.851 2.595
SIM
SD 0.037 0.028 0.028 0.027  0.029 0.025 0.021  0.030

Mean 2.264 2.132 2.202 2.229 2.287 2.160 2.307 2.313
ART
SD 0.042 0.020 0.026 0.019 0.025 0.019 0.016 0.026

It appears that in moderately large samples, much of informatiGawas

retained by Bayes amitobability formula scoresas indicated by the high correlations

with Cy, especially in the full range (Table2R). The correlations betwe€iy andCrig

(note that the scaled formulas have the same correlational properties as the original ones)
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were0.91 and 0.93 for the SIM and AR@&sts, respectively; which weabout the same
as(,ETl. Even though the correlations wesaller in the first quartile compared to
correlations of the full range (see Tal#21), all formula scores hambrrelatiors in range
of 0.65-0.73 and werenly slightly smaller than congped tolRT estimatescoresléTl

and (,ETZ(O.?l and 0.73 for SIM and ART, respectively) Table 421, it can be seen that
in the first quatrtile, (Em explainedabout 1.4% and 5% more Gf variance tharCrig and
Cripfor the SIMtest. For ART, the difference was even smaller. Therenoas/erage”
difference betwee@1 andCq1g, and only 1.9% difference betwetgn andCryp.

Comparable resultserefound betweeézandcm, Crepand also in the full

distribution.

Table 421

Averager?: First Quartile Results for 10 Replicatiod§=1250

IRT First Formula Second Formula
Test Statistic (-'ETl ("ETZ Cris Crip Croe Crop
Mean 0.506 0.510 0.492 0.456 0.473 0.429
SIM
SD 0.014 0.012 0.013 0.017 0.013 0.017
Mean 0.530 0.536 0.530 0.511 0.519 0.495
ART

SD 0.019 0.018 0.018 0.018 0.018 0.018
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Table 422

Averager®: Full Distribution Results for 10 Replications/=5000

IRT First Formula Second Formula
Test Statistic él éz Crig Crip Crs Crop
Mean 0.835 0.837 0.820 0.815 0.815 0.807
SIM
SD 0.003 0.003 0.004 0.004 0.004 0.004
Mean 0.876 0.877 0.871 0.871 0.868 0.867
ART
SD 0.003 0.003 0.003 0.003 0.003 0.003

Comparison betweeRayesFormulaScores

Both SIM and ART tests revesl similar results. Bias wdmsgher forCrzg thanCrig in

the first quartile, and the directiométhe magnitude of the bias wetensistent with the
expectations from the first simulation study. Howe@s provided a better
approximation throughout thguartiles, which waalso consistent with the result from
the first simulation. The RMSE wadso hgher forCr,g thanCrygin the first quartile, yet
Cr2s hadsmaller RMSE in the full score rangehe average squared correlation @tg
andCrogin the first quartile were®=0.492,r>=0.473 (SIM) and*=0.530,r’=0.519
(ART), respectivelyThese wereither the same or slightlpwer than the larggample
squared correlations given in the fisgtnulation (see Table-8 and Table ). The

oneterm Bayedormula scoreCrig consistently ha@ higher? thanCr.s throughout
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guartiles. Similar to the regslin the first simulation study, tleealedBayesformula
scoreCs;gandCszgimprovel significantly on bias estimation fro@r;g andCrog While

keepingr? identical to that 0€r15 andCrog.

Comparison betweeRrobability Formula Scores

Results for biasRMSE, and? showed comparable trends with the Bayfesmulascores,
with the exception of a greater bias waand in full score range @r,p. Again, this
result waconsistent with the finding from the first simulation study.

Comparison betweeBayesand Probability Formula Score

Similar with the results in thigrst simulation study, th8ayes formulascoreqCrig and
Cr2p) retaired moretrue score information and hadhaller bias in the first quartithan
the probabilityformulascores Crip andCrzp). Overall,Crig performedbest among these

four alternatives.

Summary of Second Simulation Study

Relative to a pragmatic criterion created through IRT calibration, thédReéd
corrections (,Enand (,ET2 tradkedthe corrected true sco@ closely. Moreover, there
wasnot much information loss due Taylor approximationThe use oBayesand
probability formula scorealso resuktdin little information loss for the two tests studies

with moderately large sgpte sizes. Finally, the moderaseed samples resatiin
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similar result with largesized samples.

Study II: Applications to DIF Analyses

The purpose of study Il t® demonstrate a potential application of H&fmula scoring
methodgo DIF. The MH andthe LR procedures weresed to evaluateow thelRT
formula scoreperformedas conditioning scores f@lF analysiscompared to
numbercorrect scoreAverage type 1 erroand average legdds ratios werebtained
for both procedures, under the conditiof no DIF (e.g., the null hypothesis is true)e
average loghdds ratiowascalculated for each item across 1000 replications in order to
evaluate biasLinear regressiowasthenused to evaluate which factaffect differences
in theaveragdog-odds ratioand type 1 errofdependent variables) across items
Separate linear regressiaasconducted for each scoring method and for each DIF
procedurelndependent variables includiitgm parameters, ability distributions, focal
group sampleize weretested The nominalJ=.05 level of significancevasused for all

tests.

Type 1 Error

The Type 1 error rates for each DIF identification procedure, by all combinations of the
factors included in this study, are summarized in Taf#28 4nd Table 424 forthe two

tests. The results shedthat a similar pattern of performance on type 1 error rates for all
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different scoring method3.he average type drror ratewasclose to or less than 0.05 for

equal means in thedistributions ée=0). As predicted, type 1 error rates increhae the

separation between the abilijstributionsof the two groups increased. This effectswa

more praounced when the focal group haell000 cases versus-500 cases.

Table 423

Mean Type Error Propations at a =0.05for SIM

Type 1 Error Rate

Procedure D Ng Ne R Crip Crip Croe Crap
1000 500 0.047 0.048 0.048 0.048 0.048
° 1000 1000 0.049 0.048 0.049 0.048 0.049
1000 500 0.070 0.056 0.059 0.057 0.063
MH 0.5
1000 1000 0.079 0.058 0.063 0.060 0.068
1000 500 0.143 0.074 0.088 0.079 0.106
! 1000 1000 0.177 0.089 0.106 0.094 0.128
1000 500 0.048 0.048 0.047 0.048 0.047
° 1000 1000 0.049 0.048 0.049 0.049 0.049
1000 500 0.073 0.057 0.060 0.059 0.064
g o 1000 1000 0.080 0.059 0.062 0.060 0.067
1000 500 0.165 0.091 0.106 0.100 0.125
! 1000 1000 0.190 0.094 0.112 0.103 0.135

Results for the SIM test are shownTiable 423. When comparisons wemade

within the same scoring metho®, Cris, Cr2s, Crip, Or Cr2p)

under

t

he

S ame

NRr, NE), the MH procedure haal lower probability of incurring type 1 errors than the LR

S
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procedure in almost all cases. Similarly, results from ART also stidlaat MH had

lower type 1 errors at higher delta settings (see TaBk)4Findings from both tests

were consistentvith prevous studies that haeund the LR procedure to have slightly

higher type 1 error rates than the MH proced@waminathan & Rogers, 1990;

Narayanan & aminathan, 1996; Huang, 1998).

The results shoed that type 1 error rates variadross different secong methods.

Type 1 errors associated with IRdrmula scores wereonsistently lower in every

condition. Type 1 error differences between conditioning onftRTiulascores versuR

increasd w h e randd®cal group size increaséthr the MH procedure bad on SIM

withe=0, average type RarmeliRFbasedscoresweredi ff er e

about 0.001 fon-=500 anchr,.=1 0 0 O . However ,toObhteeraveigei ncr eas

differences increasdo 0.010 fom:=500 (range = 0.007 to 0.014) and 0.0dr7n¢

=1000 (range = 0.011 t0 0.021). Whe a&e=1, t he di tof0.856 ¢angeees i ncr «

0.037 to 0.069) and 0.072 (range = @.@d 0.088). Similar results wefeund for the LR

procedure and the ART test.

To compare type 1 errors between two IRT folerscores@rig Vs. Crog andCrap

vs. Cr2p), it appeared that the first IRT formula scor€s; andCrip) had lower type 1

errors than theecond IRT formula score€{,s andCq2p). Within the same IRT formula,
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Bayes formula scores resulted in lower tylperror ratescompared to probability

formulascores Crig vS. Crip, andCrog vs. Crzp). Overall,Crig had the lowest average

type 1 error in every settinhe ame trendsverefound for both tests and both DIF

procedures.

Table 424

Mean Type ZError Proportions at a =0.05for ART

Type 1 Error Rate

Procedure D N Ne R Cris Crp Cre Crop
1000 500 0.050 0.051 0.051 0.051 0.051
0
1000 1000 0.050 0.050 0.049 0.050 0.049
1000 500 0.059 0.053 0.055 0.053 0.056
MH 0.5
1000 1000 0.062 0.054 0.057 0.056 0.057
1000 500 0.093 0.062 0.067 0.065 0.073
1
1000 1000 0.109 0.068 0.072 0.070 0.082
1000 500 0.050 0.050 0.050 0.050 0.050
0
1000 1000 0.050 0.049 0.049 0.050 0.049
1000 500 0.060 0.053 0.054 0.054 0.057
LR 0.5
1000 1000 0.062 0.054 0.055 0.054 0.057
1000 500 0.114 0.073 0.080 0.081 0.091
1
1000 1000 0.116 0.069 0.075 0.074 0.088

Log-odds Ratio

Becauseno DIF wassimulated thevalue of the LORvasexpected to baearzero; thus,
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LOR simultaneously representétk indicator of DIF effect size and bidSLOR is

greaer than Qanitem favorsthe reference group. On the contrary,dR is less thar0,

the item favorshe focal groupBecausgositive and negativBIF tend to cancel across

items within a testthe average LOR across itemsniot an appropriate evaluaii statistic.

For this reason, average root mean squareadog ratios (RMS) across items wersed

for the two tests as shovim Table 425 and Table 4£6.

Table 425

AverageRoot Mean Squared LeQdds Ratidor SIM

RMS-LOR
Procedure D Ng ne R Crs Crp Cras Crop
1000 500 0.010 0.009 0.010 0.010 0.009
0
1000 1000 0.007 0.007 0.006 0.007 0.007
1000 500 0.081 0.046 0.052 0.056 0.064
MH 0.5
1000 1000 0.084 0.047 0.053 0.057 0.066
1000 500 0.168 0.092 0.103 0.112 0.132
1
1000 1000 0.170 0.094 0.104 0.113 0.133
1000 500 0.011 0.010 0.011 0.010 0.010
0
1000 1000 0.007 0.007 0.007 0.007 0.007
1000 500 0.083 0.046 0.053 0.056 0.065
LR 0.5
1000 1000 0.084 0.047 0.054 0.055 0.065
1000 500 0.178 0.102 0.116 0.121 0.141
1

1000 1000 0.175 0.098 0.111 0.113 0.135







