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Dissertation Director:
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This thesis addresses data privacy in various stages of extracting knowledge embedded in

databases. Advances in computer networking and database technologies have enabled the

collection and storage of vast quantities of data. Legal and ethical considerations might

require measures to protect an individual’s privacy in any use or release of the data.

In this thesis, we address the problem of preserving privacy in the two following cases:

• in distributed knowledge discovery;

• in situations where the output of a data mining algorithm could itself breach privacy.

We present results in two different models, namely secure multiparty computation (SMC)

and differential privacy. The first part of the thesis presents privacy preserving protocols

in the SMC model. Secure multiparty computation involves the collaborative computation

of functions based on inputs from multiple parties. The privacy goal is to ensure that

all parties receive only the final output without any party learning anything beyond what

can be inferred from the output. Within this framework we address the problem of pre-

serving privacy in the preprocessing and the data mining stages of knowledge discovery in

ii



databases. For the preprocessing stage, we present private protocols for the imputation of

missing data in a dataset that is shared between two parties. For the data mining stage, we

introduce the notion of arbitrarily partitioned data that generalizes both horizontally and

vertically partitioned data. We present a privacy-preserving protocol for k-means clustering

of arbitrarily partitioned data. We also develop a new simple k-clustering algorithm that

was designed to be converted into a communication-efficient protocol for private clustering.

The second part of the thesis deals with privacy in situations where the output of

a data mining algorithm could itself breach privacy. In this setting, we present private

inference control protocols in the SMC model for On-line Analytical Processing systems. In

the differential privacy model, the goal is to provide access to a statistical database while

preserving the privacy of every individual in the database, irrespective of any auxiliary

information that may be available to the database client. Under this privacy model, we

present a practical privacy preserving decision tree classifier using random decision trees.
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Chapter 1

Introduction

1.1 Motivation

The cost per byte of secondary storage has fallen steeply over the years. Many organizations

have taken advantage of this reduction in cost by creating large databases of transactional

and other data. These databases could contain information about retail transactions, cus-

tomer and client information, geospatial information, web server logs, etc. These large data

warehouses have been “mined” for knowledge that could improve the efficiency and effective

functioning of an organization. However, when these data warehouses contain information

regarding individuals, the use or release of this knowledge could threaten an individual’s

privacy. In this thesis, we address the problem of achieving data privacy in various stages

of extracting knowledge embedded in databases.

A data owner may either extract the knowledge by himself or might provide to external

researchers the individual data records that make up the databases so that new and inno-

vative knowledge mining techniques could be applied to them. For example, a hospital may

create a database containing the medical history of a subset of its patients. The hospital

may use the data to create a system that predicts the potential for cancer recurrence in a

patient. Or, the hospital might want to help advance medical research by distributing the

database it owns. Whether the owner of the data releases the data itself, or the computa-

tional results on the data, he should be aware that they may contain sensitive information



2

about individuals and businesses. Legal and ethical considerations might require measures

to protect an individual’s privacy in any use or release of the data. Beyond legal and ethical

considerations, however, is also the issue of trust—the lack of trust can lead to poor data

quality and low response rates [101].

Knowledge discovery in databases, or KDD, is the process of identifying valid, novel,

potentially useful, and ultimately understandable structure in data. KDD refers to the over-

all process including the integration and cleaning of the data, applying specific algorithms

to extract patterns from the data and finally interpreting the results to obtain knowledge

from it. Within KDD, preparing the raw collected data for knowledge extraction is called

preprocessing. The process of applying algorithms to extract patterns from data is known as

data mining. This thesis addresses privacy in two important steps of knowledge discovery

namely, preprocessing and data mining.

Preprocessing

Due to human error and systemic reasons, real world data sets tend to be noisy, inconsistent

and incomplete. Data preprocessing includes various tasks such as data cleaning, data

transformation, data reduction, data integration and linkage. Data cleaning, an important

preprocessing step, deals with detecting and removing errors and inconsistencies from the

collected data. An uncleaned dataset may lead to wrong predictions that may cost an

organization in many ways. For example, consider a manufacturer that surveys its customers

to gauge interest in a new product. If the data collected is not cleaned, the organization

could potentially manufacture a product that will not be favored by its clients, which could

lead to large financial losses. This problem of preprocessing becomes more complicated

when the data is distributed among multiple parties. Running a preprocessing algorithm
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on the combined data may lead to better results but privacy laws may prevent such pooling

of data. In order to make use of data cleaning algorithms while maintaining privacy, privacy-

preserving methods of data cleaning are required. This thesis considers privacy-preserving

data cleaning in the two-party setting.

Data Mining

Data mining refers to the process of applying algorithms for extracting patterns from data.

It has been successfully applied in a wide range of domains extending from DNA data

analysis [67] to financial data analysis [9] to fraud detection [100]. Although recognizing

patterns in a given database may yield valuable insights about a disease or an organization,

there also exists great potential for privacy breaches when the input data has sensitive

information about individuals [108]. The hidden patterns learned as a result of running a

data mining algorithm can reveal identifying personal information. For example, consider a

cancer center that produces a classifier to predict the probability that an individual might

suffer from some form of cancer in the future. Such a classifier could be valuable to a health

care provider. But if the classifier itself reveals that a certain individual’s data was included

in its creation, a health insurance company could refuse to write a policy for that person.

It is important to emphasize that in this situation we are not considering the loss of privacy

resulting from the use of the classifier—rather, the classifier itself, as summary data, could

breach privacy.

Yet another privacy issue that arises is due to the pooling of data. While much of

knowledge discovery happens within an organization, it is quite common to use data from

multiple sources in order to yield more precise or useful knowledge. Data may be distributed
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among multiple databases owned by different entities. Aggregating all data into a central-

ized location could lead to a serious privacy concern since the data miner can easily “stitch

together” information from multiple sources to find sensitive information about many indi-

viduals. This kind of collation could be less feasible if the data remained distributed among

the original entities. Distributed data mining algorithms [115] have been designed to mine

for patterns in distributed data, when pooling to one centralized location may be infeasible

or undesirable. However, these algorithms do not address privacy breaches.

In this thesis, we address the problem of achieving privacy in the following two cases:

• privacy in a distributed setting, which enables knowledge discovery to be performed

when the data is distributed among multiple sources,

• privacy in situations where the output of a data mining algorithm could itself breach

privacy.

The rest of this chapter is organized as follows. In Section 1.2 we broadly survey re-

lated work. We outline our results in privacy-preserving knowledge discovery in distributed

databases in Section 1.3. In Section 1.4 we outline our results in output privacy in data

mining.

1.2 Related Work

There has been a long-standing tension between the desire to use data for various purposes

and the desire to protect the security and privacy associated with data. The problem of

maximizing the usage of the data collected and preventing the disclosure of sensitive or

confidential information at the same time has been the subject of research in the statistical

sciences (where it is called “statistical disclosure control”) and in computer science for a
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very long time [1]. In this section, we describe some work related to the thesis. We discuss

additional appropriate related work in each chapter.

1.2.1 Privacy Models

Preserving data privacy and extracting useful information from data are inherently conflict-

ing tasks. Perfect privacy can only be achieved with the absolute loss of the utility of a data

set. Under this circumstance, the revised objective has been to maximize the utility of a

data set while minimizing the risk of privacy loss due to the use of the data set. This dual

goal of maximizing confidentiality and data utility together initiated the study of various

privacy models.

Perturbation models.

This approach attempts to achieve privacy through masking—the addition of random noise

drawn from certain carefully chosen distributions. The privacy goal in this setting is to

mask sensitive data in the published data sets. As an example, perturbation was used by

Agrawal and Srikant [2] in the construction of privacy-preserving decision tree classifiers.

Perturbation techniques fall into two categories: (a) Input Perturbation—In this model,

noise is added to the entries of the database prior to the evaluation of queries. (b) Out-

put Perturbation—In this model, the queries are evaluated on the original data and noisy

versions of the “correct” answers are released. These techniques have been used in the

security of some statistical databases [1]. However, it has been shown in [83] that if per-

turbation is not performed with care, in many cases it is possible to estimate the original

values accurately, thereby leading to a loss of privacy. A formal study of privacy through

perturbation eventually led to the much stronger model of differential privacy, although
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differential privacy does not exclusively depend on perturbation.

k-anonymity and its variants.

The k-anonymity model proposed by Samarati and Sweeney [124, 131] achieves privacy by

enforcing the constraint that every row of the released database should be indistinguishable

from at least k other rows with respect to a selected set of attributes called quasi-identifiers.

This is usually achieved by suppressing and generalizing some of the entries in the database.

A variant of k-anonymity known as �-diversity was introduced by Machanavajjhala et

al. [98]. This guarantees privacy in certain situations where k-anonymity does not, such

as when there is little diversity in the sensitive attributes or when the adversary has some

background information. Yet another variant called t-closeness was introduced by Li et

al. [92]. This privacy model enforces the condition that the distances between the distribu-

tion of the sensitive attributes in any equivalence class and the distribution of the attribute

in the overall table should be less than a threshold t. However, recently it has been shown

by Ganta et al. [57] that these models do not offer privacy in the presence of auxiliary in-

formation. Brickell and Shmatikov [15] studied the trade-off between privacy and utility of

these anonymization algorithms and showed that in many cases trivial sanitization provides

better utility and privacy than k-anonymity and its variants.

Secure multiparty computation (SMC).

This setting involves the collaborative computation of functions based on inputs from mul-

tiple parties. Pioneered by Yao [145], the privacy goal in this setting is to ensure that all

parties receive only the final output, without any party learning anything beyond what can

be inferred from the output. Subsequent to [145], a large number of extensions have been
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developed [62, 8, 19]. In this thesis, we present four results under this model:

1. A protocol for the privacy-preserving imputation of missing data, presented in Chap-

ter 3.

2. A protocol for privacy-preserving distributed k-means clustering over arbitrarily par-

titioned data, in Chapter 4.

3. Protocols for communication-efficient privacy-preserving clustering, in Chapter 5.

4. Protocols for private inference control for aggregate database queries, in Chapter 6.

We describe this model in greater detail in Chapter 2.

Differential Privacy.

This privacy model was introduced by Dwork et al. [43]. In this framework the data owner

makes the data available through a statistical database on which only aggregate queries

are permitted. The goal is to answer queries while preserving the privacy of every individ-

ual in the database, irrespective of any auxiliary information that may be available to the

database client. The differential privacy model assures that the data from no single individ-

ual has a substantial impact on the output produced by a differentially private mechanism.

Effectively, no individual data item stands out when accessed through a differential-privacy-

preserving mechanism. Under this model we present, in Chapter 7, a practical algorithm

for private random decision tree classifiers. We describe this model in greater detail in

Chapter 2.
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1.2.2 Privacy-Preserving Distributed Data Mining

Although much of knowledge discovery is based on data within an organization, it is quite

common to use data from multiple sources, owned by different entities, in order to ob-

tain more accurate knowledge. The data sources may be distributed across the network

and hence pooling them at a centralized location may not be possible due to limitations

in computational and communication resources. Distributed data mining provides algo-

rithms to perform data mining in a distributed setting without pooling the data into one

location [115].

A (virtual) database table is said to be horizontally partitioned among a number of

parties if each party has a database table with the same set of attributes. The virtual table

is the union of all these tables. As an example of horizontally partitioned data, consider

a situation where a number of hospitals wish to collaboratively compute some quantity

regarding patients with cancer. All collaborators would agree ahead of time about the

attributes they have in common for the patients in their care. Note that it is not necessary

that each hospital maintain their records in this agreed upon common format. All they need

to be able to do is compute as necessary the attributes needed for collaborative computation.

The union of all such patient data from these hospitals is the virtual database table that

has been horizontally partitioned among the various hospitals.

A virtual database table is said to be vertically partitioned among a number of parties

if each party has data for some fixed set of attributes about individuals that are known to

all the parties. The virtual database table is the “join” of all the distributed tables. As

an example of vertically partitioned data between two parties, consider a credit-card issuer

collaborating with an airline company to find correlations between spending patterns and

flight travel. Each party holds a different set of attributes, except for a common identifier
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attribute that relates a row in the first database table with a row in the second.

Privacy considerations can prohibit organizations from sharing their data with each

other. Privacy-preserving distributed algorithms arose as a solution to this problem by

allowing parties to cooperate in the extraction of knowledge without any of the cooperating

parties having to reveal their individual data items to each other or any other party.

Techniques from secure multiparty computation [61] form one approach to privacy-

preserving distributed data mining. Yao’s general protocol [145] for secure circuit evalu-

ation can be used, in theory, to compute any function over data partitioned between two

parties, without revealing anything to either party beyond the computed output. In the

multiparty setting one could use the result by Goldreich et al. [62]. However, because

data mining usually involves millions or billions of data items, the communication costs of

these protocols render them impractical for these purposes. This has led to the search for

problem-specific protocols that have efficient communication complexity. In many cases,

the more efficient solutions still make use of a general solution such as Yao’s, but only to

carry out a much smaller portion of the computation. The rest of the computation uses

other methods to ensure the privacy of the data. This field has attracted the attention of

the research community since it was introduced by Lindell and Pinkas [94].

Lindell and Pinkas use cryptographic techniques in their protocol. Their work differs

from general secure multi-party computation in the sense that most computation is done

locally by the individual parties. The protocol involves a small number of secure evaluations

of small-sized circuits (thus resulting in a protocol of low communication complexity). Fol-

lowing the work of Lindell and Pinkas, privacy-preserving distributed protocols have been

developed for many data mining problems.

Du and Zhan [40] presented a privacy-preserving protocol for constructing decision trees
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for a two-party vertically partitioned database. This was extended to the multiparty case

(with three or more parties) by Vaidya and Clifton [134]. They also presented a privacy-

preserving association rule mining protocol for vertically partitioned data and a privacy-

preserving naive-Bayes classifier protocol for vertically partitioned data [135]. Kantarcioglu

and Vaidya presented a naive Bayes classifier protocol for horizontally partitioned data [82].

Kantarcioglu and Clifton [81] gave a privacy-preserving association rule mining algorithm

for horizontally partitioned data and Vaidya and Clifton [132] presented the same for ver-

tically partitioned data. A solution for privacy-preserving Bayesian network computation

on vertically partitioned data was presented by Yang and Wright [142].

1.2.3 Output Privacy in Data Mining

The protocols obtained in the secure multiparty computation model give a strong privacy

guarantee, namely, that nothing is revealed by these protocols beyond what can be inferred

from the final output. But sometimes the output itself, possibly combined with external

information, or outputs from multiple runs put together, can be used to infer an individual’s

private information.

Inference Control

Inference control refers to techniques that prevent a user of a database from inferring sen-

sitive data from a sequence of non-sensitive queries. The problem of inference control has

been widely studied in regular databases, statistical databases, and even in database sys-

tems supporting multilevel security [1, 49, 22, 32, 117]. Adam and Worthmann provide a

summary of inference control for statistical databases [1]. The inference control techniques

typically fall into three main categories, namely, Query Restriction, Input Perturbation and
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Output Perturbation [13]. In the case of query restriction, queries are answered accurately

but not all queries are answered. The queries whose answers are seen as potential threats to

the privacy of sensitive information are rejected. The most common query restriction tech-

niques include (a) Query-Set-Size, which rejects any query whose output involves a small

number of database items, (b) Query-Set-Overlap [35], which bounds the amount of overlap

between pairs of queries, (c) Auditing [24], which looks at the history of queries to check if

the database is compromised, (d) Partitioning [23], which clusters the database into similar

groups and ensures privacy in each cluster, and (e) Cell Suppression [71], which identifies

a collection of database entries to be suppressed. In the case of input perturbation, noise

is added to the entries of the database prior to the evaluation of queries [2]. In the case of

output perturbation, the queries are evaluated on the original data and noisy versions of

the “correct” answers are released [1].

On the other hand, the issue of privacy could also be important from the database

client’s point of view. A client who queries the database may not want the database server

to know what information the client is querying. This could be perhaps because the client

wishes to avoid being subjected to targeted marketing, or because the queries themselves

could reveal crucial business information. The problem is thus the assurance of the client’s

privacy along with an assurance to the server who owns the database that the client does not

learn information beyond the query results. Until the work of Woodruff and Staddon [141],

previous work on inference control assumed the database server knew what queries were

being made and retained this information in deciding whether to allow or deny queries. Some

of the work in this thesis generalizes Woodruff and Staddon’s notion of private inference

control (see Chapter 6) by applying it to aggregate queries in statistical databases.
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Differential Privacy

A new line of study has emerged in the last five years that seeks to guarantee the privacy of

every individual in a database. Dinur and Nissim [34] first initiated a formal study of privacy

in the context of output perturbation in statistical databases. They defined the notion of

privacy with respect to a bounded adversary with no prior knowledge. Their privacy model

known as the Sub-Linear Queries Output Perturbation framework, also known as SuLQ,

supports queries that return the fraction of database rows that satisfy a given predicate.

The database returns a noisy version of the true answer to such a query. Blum et al. [10]

used a more general form of these basic SuLQ operations to construct privacy-preserving

versions of more complex structures such as k-means clusterings, ID3 classifiers, perceptrons

and others.

The SuLQ frameworks of [34] and [10] led to the development of differential privacy.

This model, proposed by Dwork et al. [43], assures that a change in any single record

of a database has low impact on the output produced by any mechanism that conforms

to the model. The implication is that the data of any single individual in the database

is likely to have a very small influence on the output of the database access mechanism.

Effectively, no individual “stands out” from the database. Dwork [41] observed that the

counting queries used in the SuLQ framework permit differentially private computations

of many standard data mining algorithms. Following the work in [43], many differentially

private data analysis algorithms and differentially private database query mechanisms have

been developed [110, 97, 84, 102, 42, 18]. Most of the work in this framework addresses the

problem of issuing noisy answers to client queries (the so-called “interactive mechanisms”).

More recently, researchers have studied non-interactive mechanisms [11, 103, 50] where the

collector of the data publishes a noisy version of the database.
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This thesis addresses data privacy in various stages of extracting knowledge embedded in

databases using two different models namely secure multiparty computation and differential

privacy that are described in Section 1.2.1. The first part of the thesis addresses privacy in

various stages of knowledge discovery when the data is distributed among multiple parties

using the secure multiparty computation model. The second part of the thesis deals with

privacy in situations where the output of a data mining algorithm itself breaches privacy.

We address this problem using both the secure multiparty computation and differential

privacy approaches. In the next section, we describe various problems addressed in this

thesis and give a brief overview of our results.

1.3 Part-I : Privacy-Preserving Knowledge Discovery in Distributed Databases

The first set of results in this thesis are protocols for privacy-preserving knowledge discovery

in databases that are distributed among two parties. All of the results in this part of the

thesis fall within the secure multiparty computation model.

1.3.1 Privacy-Preserving Data Imputation

Due to human error and systemic reasons, real-world data sets, particularly those collected

from multiple sources, tend to be incomplete, noisy and inconsistent. If unprocessed raw

data is used as an input for data mining process, the extracted knowledge is likely to be of

poor quality as well. Therefore, data cleaning techniques are applied in order to improve

the quality of the data and make it more reliable for mining purposes. Data cleaning

algorithms attempt to smooth noise in the data, identify and eliminate inconsistencies, and

remove missing values or replace them with values imputed from the rest of the data.

In the case that data is distributed, imputing missing values from “local” data alone
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may lead to biases. Performing imputation on all of the distributed data should result in

more accurate predictions. Thus, in order to maintain privacy in the data mining process,

privacy-preserving methods of data cleaning are required. Such methods are a critical

component of enabling privacy-preserving data mining algorithms to be used in practice,

because if the data needs to be revealed in order to perform data cleaning, then privacy is

lost, while if data cleaning is not performed, then data mining results could be inaccurate.

We provide a privacy-preserving solution to the distributed data imputation problem.

In Chapter 3 we present a privacy-preserving protocol for filling in missing values using a

lazy decision tree imputation algorithm. The protocol applies to data that is horizontally

partitioned between two parties. The participants of the protocol learn only the imputed

values; the computed decision tree is not learned by either party. We also show privacy-

preserving protocols for several other methods of data imputation. Our results (joint work

with Rebecca N. Wright) were originally published in [78].

1.3.2 Privacy-Preserving Clustering Algorithms

Clustering is a well-studied combinatorial problem [70, 79, 69], and there have been a large

number of algorithms developed to solve the various formulations of the problem. The task

is to group similar items in a given data set into clusters. The goal is to obtain a clustering

that minimizes an objective function mapping a given clustering into a numerical value. We

present results for privacy-preserving distributed clustering.
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Privacy-Preserving Distributed k-means Clustering over Arbitrarily Parti-

tioned Data.

We introduce the concept of arbitrarily partitioned data which generalizes both horizontally

and vertically partitioned data. In arbitrarily partitioned data, different attributes for

different items can be owned by either party. Although extremely “patchworked” data

is unlikely in practice, one advantage of considering arbitrarily partitioned data is that

protocols in this model apply both to horizontally and vertically partitioned data, as well

as to hybrids that are mostly, but not completely, vertically or horizontally partitioned. We

present a privacy-preserving protocol for k-means clustering in this setting of data that is

arbitrarily partitioned between two parties. We describe this work in detail in Chapter 4.

After the initial publication of this work [76] (joint work with Rebecca N. Wright), Bunn and

Ostrovsky [16] presented a secure two-party protocol for k-means clustering of arbitrarily

partitioned databases.

Communication-Efficient Privacy-Preserving Clustering Algorithms

Most of the privacy-preserving protocols available in the literature convert existing data

mining algorithms or distributed data mining algorithms into privacy-preserving protocols.

The resulting protocols either leak intermediate information [134, 80], thereby breaching

privacy, or have high communication complexity [16].

In Chapter 5 we describe a k-clustering algorithm that we specifically designed to be con-

verted into a communication-efficient protocol for private clustering. The resulting protocol

does not leak any information about the original data. Our algorithm is also I/O-efficient in

that each data item is examined only once, and it only uses sequential access to the data. We

also present a modified form of our k-clustering algorithm that works for data streams. Our
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results (joint work with Krishnan Pillaipakkamnatt, Daryl Umano and Rebecca N. Wright)

initially appeared in [75].

1.4 Part-II : Output Privacy in Data Mining

In the second part of the thesis we present privacy-preserving alternatives for data mining

algorithms whose outputs themselves breach privacy.

1.4.1 Private Inference Control in OLAP Systems

On-line analytical processing systems, commonly known as OLAP systems, store historical

data or data related to multiple organizations and are mainly used in knowledge discovery.

Aggregate queries plays a major role in OLAP systems. Whenever a database is used to

discover knowledge, sensitive information about individuals must be protected. In a system

that permits aggregate queries to authorized users, no single query may reveal sensitive data.

However, an authorized user might invoke a sequence of queries, each of which is under his

privileges, but whose results can be combined to infer some additional sensitive information

about the data. Various “inference control” methods have been developed in the past to

prevent users from inferring sensitive information through a sequence of queries [1].

Another privacy concern is about the server’s knowledge of the client’s queries. This

is because the queries themselves could reveal the intent, knowledge and processes of the

client. In Chapter 6 of this thesis we provide solutions to the problem of applying inference

control policies to aggregate queries in a privacy-preserving manner. These protocols were

originally published in [77] and are joint work with Rebecca N. Wright.
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1.4.2 A Practical Differentially Private Random Decision Tree Classifier

The framework of differential privacy for private data analysis assures that any change in

a single record of a database has a low impact on the output produced by an appropriate

database mechanism. Much of the work in the differential privacy framework addresses the

problem of issuing noisy answers to queries whose results can be computed using simple

algorithms. These “low-level” queries include simple aggregations such as the SUM and

COUNT queries. These queries can be used in the construction of differentially private

data mining algorithms such as for decision trees [10]. However, a substantial practical

problem arises when complex structures are created using low-level queries via the method

described in [10]. If an algorithm makes q such queries, the overall privacy guarantee of

the structure is reduced by a factor of q. This increases the amount of noise added to each

low-level query, and can have a significant negative impact on the utility of the high-level

structure the user wants to compute.

We study the problem of constructing private classifiers using decision trees, within the

framework of differential privacy. We first construct privacy-preserving ID3 decision trees

using differentially private sum queries. Our experiments show that for many data sets

a reasonable privacy guarantee can only be obtained via this method at a steep cost of

accuracy in predictions.

We then present a differentially private decision tree ensemble algorithm using the ran-

dom decision tree approach. We demonstrate experimentally that our approach yields good

prediction accuracy even when the size of the datasets is small. We also present a differ-

entially private algorithm for the situation in which new data is periodically appended to

an existing database. Our experiments show that our differentially private random deci-

sion tree classifier handles data updates in a way that maintains the same level of privacy
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guarantee. We describe this work in Chapter 7. Our algorithms (joint work with Krishnan

Pillaipakkamnatt and Rebecca N. Wright), originally appeared in [74].

The research described in this thesis was supported by the National Science Foundation

through its grants, CCR-0331584 and CNS-0822269.
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Chapter 2

Preliminaries

In this chapter, we define the privacy models and describe the various cryptographic prim-

itives we use in this thesis.

2.1 Privacy Models

Various models have been proposed in the literature for data privacy, including perturba-

tion models, k-anonymity and its variants, secure multiparty computation, and differential

privacy. The results in this thesis fall within two of these models, namely secure multiparty

computation and differential privacy. We now describe these models in greater detail.

2.1.1 Secure Multiparty Computation

Secure multiparty computation was first introduced by Yao [144] as the following problem

for two or more network participants: How can they jointly compute a function of their

inputs while satisfying constraints of privacy and security? Privacy is said to be satisfied

when no one is able to learn any of the inputs of any of the participants. Security is said to

be obtained when no external entity can learn the private inputs of any of the participants,

and when no external entity can cause the joint computation to fail.

Secure multiparty computation (SMC) [145, 17] is a model of distributed computation in

which n parties P1, P2, . . . , Pn who hold data values x1, . . . , xn, respectively, wish to evaluate
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a function f(x1, . . . , xn). If these n parties completely trust each other, then they could

send their inputs to each other and they could all evaluate the function f . However, it is

often the case that no party completely trusts any other and, thus, party Pi wishes to keep

its data value xi secret. This makes the joint evaluation of f a more difficult problem. If all

the n parties trust a third party, they could securely send their inputs to this third party,

who can then compute the value of the function f and send the output to all the n parties.

This is known as the ideal model. The idea behind secure multiparty computation protocols

is to have the parties perform the computation themselves without the use of a third party.

This is known as the real model. Informally, a SMC protocol is said to be secure if any data

an adversary can obtain in the real model can also be obtained in the ideal model. The

common type of adversaries considered are semi-honest (passive adversaries) or malicious.

We describe below more formally the privacy models with respect to these adversaries with

respect to the case where n = 2 (the two-party case).

Semi-honest Model

A semi-honest adversary faithfully follows the specified protocol, but may retain interme-

diate messages in an attempt to infer as much information about the other players’ secret

as possible. A protocol securely computes a functionality f under the semi-honest model

if whatever the party can obtain during the run of the entire protocol can be learned from

the input and the output available to the party.

Most of the privacy-preserving protocols in this thesis involves sequential invocation

of smaller privacy-preserving protocols. The privacy of the composition of the private

protocols is provided by the following theorem. Whenever there is a sequential execution of

two protocols the output of the first protocol is randomly shared between the parties and
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these random shares are presented as inputs to the second protocol.

An oracle-aided protocol is said to be using the oracle-functionality f if the oracle

answers according to f . An oracle-aided protocol is said to privately reduce g to f , if it

privately computes g when using the oracle functionality f .

Theorem 1 [61] (Composition Theorem for Semi-honest Model) Suppose that g is privately

reducible to f and that there exists a protocol for privately computing f . Then, the protocol

defined by replacing each oracle-call to f by a protocol that privately computes f , is a

protocol for privately computing g.

2.1.2 Differential Privacy

The differential privacy model introduced by Dwork et al. [43] assures that the removal or

addition of a single item in a database does not have a substantial impact on the output

produced by a private database access mechanism.

Let D1, . . . ,Dk denote domains, each of which could be categorical or numeric. Our

database D consists of n rows, {x1, x2, . . . , xn}, where each xi ∈ D1 × . . . × Dk. Two

databases D1 and D2 differ in at most one element if one is a proper subset of the other

and the larger database just contains one additional row [41].

Definition 1 ([41]) A randomized database access mechanism M satisfies ε-differential

privacy if for all databases D1 and D2 differing on at most one element, and all S ⊆

Range(M),

Pr[M(D1) ∈ S] ≤ exp(ε) ∗ Pr[M(D2) ∈ S] (2.1)

The probability is taken over the coin tosses inM.

Note that smaller values of ε correspond to higher levels of privacy. Let f be a function on
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databases with range R
m . A standard technique by which a mechanismM that computes

a noisy version of f over a database D can achieve ε-differential privacy is to add noise from

a suitably chosen distribution to the output f (D).

2.2 Primitives

In this section we enumerate and describe the cryptographic primitives we use throughout

this thesis. Although we use these primitives as black boxes, the efficiency of our protocols

depends on the efficient implementation of these primitives.

2.2.1 Random Shares

A secret sharing method, introduced by Shamir [128], is a way distribute to a secret value

among multiple participants such that the secret value can be reconstituted only if a certain

minimum number of participants are willing to combine their values. Any combination of

shares fewer in number than this threshold reveals nothing about the secret. In this thesis

we use two-party secret sharing methods as primitive operations.

We say that two parties Alice and Bob have random shares (or secret shares) of a value

x to mean that x is divided into two pieces (shares) a and b such that Alice knows a, Bob

knows b, x can be recovered from a and b, and x cannot be recovered without both a and

b. In this thesis, we use both additive sharings and XOR sharings. In additive sharing, we

choose N to be a large prime and a field F isomorphic to ZN . Alice and Bob have additive

random shares of a value x ∈ F if Alice knows a random value a ∈ F and Bob knows a

random value b ∈ F such that (a + b) mod N = x. By XOR sharing, a bit x is shared as

x = a ⊕ b for random bits a and b. An important property of additive shares is that they

allow local computation of additions and subtractions in F. That is, if Alice and Bob share
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values x and y via random shares ax, ay ∈ Alice and bx, by ∈ Bob, then (ax + ay) mod N

and (bx + by) mod N are random shares of (x + y) mod N . If x + y ≤ N , then these are

random shares of x+ y.

2.2.2 Oblivious Transfer

Oblivious transfer, also known as Symmetric Private Information Retrieval (SPIR), is a

primitive that allows a receiver to learn one of a number of values held by a sender without

revealing which value was learned. 1-out-of-2 oblivious transfer (denoted as OT2
1), intro-

duced by Rabin [121], is a two-party protocol in which the sender has two messages m0,m1

and the receiver has a bit b. At the end of the protocol, the receiver receives mb without the

sender knowing what b is while the sender ensures that the receiver receives only mb and

not the other message. 1-out-of-n oblivious transfer (denoted as OTn
1 ) is an extension of

OT2
1 where the sender has n messages m1, . . . ,mn and the receiver has an index i and the

receiver wishes to receive the ith message of the sender without the sender knowing what

message that has been sent. Aiello et al. [3] gave an OTn
1 protocol using a homomorphic

encryption scheme. This scheme involves the communication of n encryptions and the com-

putational overhead of O(n) public key encryptions. Naor and Pinkas [107] gave an efficient

construction for OTn
1 that requires only log n executions of OT2

1.

In this thesis, we use a generalized version of oblivious transfer in which k items are

retrieved from a database of n items, where each item is of length � bits. This can be naively

achieved by k� invocations of OTn
1 . Naor and Pinkas [107] gave an efficient k-out-of-n OT

(OTn
k) protocol which involves O(k log n) invocations of OT2

1.
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2.2.3 Yao’s Circuit Evaluation Protocol

Secure multiparty computation refers to methods for a number of distributed participants,

each with a secret input, to jointly compute a known function based on their inputs. Yao’s

two-party secure circuit-evaluation protocol [145] allows two parties namely Alice and Bob

holding inputs a and b respectively to privately compute any function f(a, b) without reveal-

ing a and b to each other. Roughly, Alice computes an “encrypted” circuit of the function

f(a, ·) and sends it to Bob. Bob does not learn anything since the circuit is in an encrypted

form. Bob has to decrypt the circuit to learn only the output f(a, b) without learning any

intermediate information. Bob accomplishes this by recovering keys from Alice correspond-

ing to its input b using 1-out-of-2 oblivious transfer (OT2
1) protocols. The performance of

Yao’s protocol depends heavily on the size of a Boolean circuit for f and on the perfor-

mance of OT2
1. In theory, Yao’s protocol could be applied to any distributed two-party

privacy-preserving data mining problem. However, as a practical matter, the circuits for

even simple computations on megabyte-sized databases would be intractably large. We

make use of Yao’s protocol for private computation in several cases, but only on functions

involving a small number of small inputs.

2.2.4 Homomorphic Encryption

Homomorphic encryption schemes allow certain computations on encrypted values. In par-

ticular, an encryption scheme is additively homomorphic if there is some operation ⊗ on

encryptions such that for all plaintext values a and b, E(a) ⊗ E(b) = E(a + b). Our

solutions make use of a semantically secure additively homomorphic encryption scheme.

Examples, under suitable cryptographic hardness assumptions, include the Paillier encryp-

tion scheme [114] and the D̊amgard-Jurik generalizations of it [28]. In Paillier’s encryption
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scheme, the encryption of a message m ∈ [1, N ], where N is an RSA modulus, requires two

exponentiations modulo N2, and decryption requires one exponentiation. In the D̊amgard-

Jurik encryption scheme messages belong to [1, N s], where N is an RSA modulus and s is a

natural number. In this scheme, the expansion factor is less than that of Paillier’s scheme.

This allows for efficient encryption of larger messages than Paillier’s scheme. Other ho-

momorphic encryption schemes include the Boneh-Goh-Nissim cryptosystem [12], which

supports arbitrary addition and one multiplication, and Gentry’s fully homomorphic en-

cryption scheme [58], which supports evaluation of arbitrary circuits over encrypted data

without having to decrypt. In the Boneh-Goh-Nissim encryption scheme, decryption takes

polynomial time in the size of the message space. This is efficient for encrypting short mes-

sages. The fully homomorphic encryption scheme can be potentially used to solve most of

the problems addressed in this thesis. However, the computational time and the size of the

ciphertext are high-degree polynomials in the security parameter. This makes the scheme

impractical for many applications.

2.2.5 Secure Scalar Product Protocol

Alice has a vector X = (x1, . . . , xn) and Bob has Y = (y1, . . . , yn). They need to securely

compute the scalar product as sA + sB = X · Y , where sA and sB are the random shares

of Alice and Bob. These computations are carried out modulo N . A secure scalar product

protocol is given by Goethals et al. [60]. This involves the communication of O(n) en-

cryptions and a computational overhead of O(n) encryptions, O(1) decryptions and O(n)

exponentiations.
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Chapter 3

Privacy-Preserving Imputation of Missing Data

3.1 Introduction

Due to human error and systemic reasons, large real-world data sets, particularly those

from multiple sources, tend to be “dirty”—the data is incomplete, noisy, and inconsistent.

If unprocessed raw data is used as input for data mining processes, the extracted knowledge

is likely to be of poor quality as well. Therefore, data cleaning, which seeks to improve the

quality of the data and make the data more reliable for mining purposes, is an important

preliminary step in KDD. Data cleaning algorithms attempt to smooth noise in the data,

identify and eliminate inconsistencies, and remove missing values and replace them with

values imputed from the rest of the data.

Since some data can be potentially sensitive, privacy concerns and regulations often pre-

vent the sharing of data between multiple parties. Privacy-preserving distributed algorithms

(e.g., [2, 94]) allow cooperative computation of the required function without requiring the

participating organizations to reveal their individual data items to each other. Existing

privacy-preserving algorithms assume data is complete. In order to make use of those algo-

rithms while maintaining privacy in the data mining process, privacy-preserving methods

of data cleaning are also required.

In this chapter, we consider privacy-preserving imputation for data that is horizontally
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partitioned between two parties. Our main result is a privacy-preserving imputation algo-

rithm based on ID3 decision trees. In the rest of this introduction, we place our results in

the context of related work and describe our results in more detail.

3.1.1 Related Work

Like data mining itself, pre-processing algorithms perform best when they have access to

sufficient data. Pre-processing of distributed data has been previously investigated in the

context of sensor networks [29, 68]. However, these existing methods are driven by efficiency

concerns and do not protect the privacy of the data. In our context, we view privacy

as a primary concern (while also seeking as much efficiency as possible, as well as good

imputation results).

Several methods for dealing with missing values have been proposed. One general ap-

proach to handling missing values is to create data mining algorithms that “internally”

handle missing values and still produce good results. For example, the CART decision tree

learning algorithm [14] internally handles missing values essentially using an implicit form

of imputation based on regression. However, in this work, we follow the more common

“modular” approach, where pre-processing is performed first and the resulting data is suit-

able for use with a variety of data mining algorithms. This is particularly needed in the

setting of privacy-preserving data mining because, to date, the existing privacy-preserving

data mining algorithms do not make any special internal handling of missing data. A stand-

alone approach to privacy-preserving imputation can therefore be used in combination with

any existing privacy-preserving data mining algorithm for the same distributed setting. In

particular, our results in this chapter are suitable for use with any privacy-preserving data

mining algorithm for data that is horizontally partitioned between two parties (e.g., [94, 82]).
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Some of the simpler pre-processing techniques for handling missing data have limited

applicability or introduce bias into the data [95]. One of the easiest approaches to dealing

with missing values is simply to delete those rows that have missing values. However, unless

the missing values are distributed identically to the non-missing values, this produces poor

quality data [125]. Another common technique for dealing with missing values is to create a

new data value (such as “missing”) and use it to represent missing values. However, this has

the unfortunate side effect that data mining algorithms may try to use missing as a legal

value, which is likely to be inappropriate. It also sometimes has the effect of artificially

inflating the accuracy of some data mining algorithms on some data sets [55].

Data imputation replaces missing values with estimated values, typically producing bet-

ter results in subsequent data mining than either of the above methods. Imputation tech-

niques range from fairly simple ideas (such as using the mean or mode of the attribute as the

replacement for a missing value [26, 72]) to more sophisticated ones that use regression [6],

Bayesian networks [27], and decision tree induction [90]. Using the mean or mode is gener-

ally considered a poor choice [95], as it distorts other statistical properties of the data (such

as the variance) and does not take dependencies between attributes into account. Hot-deck

imputation [51] fills in a missing value using values from other rows of the database that are

similar to the row with the missing value. Hot-deck imputation has been performed with

k-nearest neighbors algorithms [20, 5] and clustering algorithms [91].

Classification is generally considered the best method for imputing missing data [48].

For each attribute with missing values, the attribute with missing data is used as the

dependent attribute (the class attribute), and the remaining attributes are used as the

independent attributes for the data mining algorithm. The row with the missing attribute

is used as an instance that requires prediction and then the predicted value is used for the
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missing value. While any classification or prediction algorithm can be used for imputation,

the most commonly used methods are regression-based imputation and decision-tree-based

imputation.

Regression imputation [6] imputes missing values with predicted values derived from

a regression equation based on variables in the data set that contain no missing values.

Regression assumes a specific relationship between attributes that may not hold for all

data sets. A privacy-preserving linear regression protocol is presented in [39]; this would

be useful for privacy-preserving imputation in cases where the missing values are linearly

related with existing data values.

Decision-tree imputation uses a decision-tree based learning algorithm such as ID3 [118]

or C4.5 [119] to build a decision-tree classifier using the rows with no missing values, with the

attribute that has the missing value as the class attribute. The tree is evaluated on the row

with the missing value to predict the missing value [90, 48]. It has been observed [90, 48] that

single imputation using decision trees is more accurate than imputation based on clustering.

In some cases, the decision tree construction can be lazy [55], in that only the needed path

or paths of the tree is constructed. This has an efficiency advantage because it avoids time

spent on constructing the parts of the tree that will not be needed.

Lindell and Pinkas [94] provide a privacy-preserving algorithm for computing the ID3

tree for databases that are horizontally partitioned between two parties. Although this

is the same distributed setting we consider, we are unable to use their solution directly

because it allows the parties to learn the computed decision tree. (Indeed, that is its goal.)

In our case, we want one or both of our participants to learn the imputed values determined

by using the computed decision tree for classification, but we do not want the participants

to learn the decision tree itself. Specifically, while our privacy-preserving data imputation
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solution uses ID3 trees, it differs from their algorithm in that (for efficiency reasons) we only

construct the path that is needed and (for privacy reasons) we use the path for classification

without either party learning the constructed path. We do, however, make use of some of

Lindell and Pinkas’s subprotocols, which we describe in Section 3.2.3.

3.1.2 Our Contributions

In this chapter, we focus on decision-tree imputation because it generally produces superior

results. Our main result is a privacy-preserving data imputation protocol for databases

that are horizontally partitioned between two parties. Our solution uses a lazy decision

tree algorithm based on ID3 trees. As previously mentioned, the use of a lazy decision tree

algorithm provides an efficiency improvement when only a small number of paths of the tree

are needed. Our algorithm allows either party to compute missing values without requiring

the parties to share any information about their data and without revealing the decision tree

or the traversed path to either party. We present two versions of the protocol that represent

a privacy/efficiency trade-off. The first version is more efficient, but reveals the number of

nodes traversed by the protocol in the undisclosed decision tree. The second version does

not leak any information beyond the computed imputed value, but incurs slightly increased

communication and computation costs.

We also briefly describe private protocols for data imputation based on other well-known

imputation methods—namely, mean, mode, linear regression and clustering, noting that the

simpler methods generally produce inferior results unless it is known that the data itself or

the data mining methods to be applied on the processed data are suited to those methods.

We begin in Section 3.2 by introducing some definitions and existing subprotocols. We

describe our privacy-preserving lazy decision tree imputation protocol in Section 3.3. In
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Section 3.4, we outline private protocols for data imputation using the mean, the mode,

linear regression, and clustering-based prediction.

3.2 Preliminaries

We describe our solution in the simplified scenario in which there is exactly one missing

value to be learned. In practice, the solutions for multiple missing values could be combined

to make use of common subproblems for efficiency. In our distributed setting, there are two

parties, who we call Alice and Bob. We use the notation α ∈ Alice to indicate that Alice

holds the value or object α, and analogously, we write β ∈ Bob if Bob holds β.

Alice and Bob have a horizontally partitioned database. That is, Alice holds a database

DA = (d1, . . . , dm) and Bob holds a database DB = (dm+1, . . . , dn), which are defined over

a common set {A1, . . . , A�} ∪M of attributes. Because the attribute M will be the one

in which there is a missing value, we also refer to it as the class attribute. Together, DA

and DB form a single complete joint database D = DA ∪ DB with no missing values1.

Additionally, there is another instance I ∈ Bob (not included in (d1, . . . , dn)) that has a

missing value for the attribute M . Bob wishes to compute the missing value I(M) using

D = DA ∪DB via a data imputation algorithm agreed to by both Alice and Bob. Ideally,

nothing else about each other’s data should be revealed to either party.

Throughout this chapter, n denotes the number of instances in the joint database, �

denotes the number of attributes, k denotes the maximum number of values any attribute

can take, and g denotes the number of values the class attribute can take. Our solutions also

make use of encryption in various places (usually indirectly through their subprotocols). We

1Technically, these databases are sequences, not sets, but we occasionally abuse notation slightly and
treat them as if they were sets.
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use w to denote the maximum number of bits required to represent any public key encryption

and s to denote the maximum number of bits required to represent any symmetric key

encryption. All computations are performed in a field F of size N .

In the rest of this section, we describe the lazy decision tree algorithm on which our

main distributed protocol is based, our privacy model, and some cryptographic primitives

we use in our solutions.

3.2.1 Lazy Decision Tree Algorithm

In using a decision tree to predict a single value in a single instance, the entire decision

tree is not needed. Rather, only a single path is traversed, whose values are determined by

the instance containing the missing value. For efficiency reasons, we therefore use a lazy

decision tree. We base our distributed solution on a lazy decision tree algorithm that is a

straightforward simplification of ID3.

In this section, we describe this solution as it would proceed in a centralized setting with

access to all the joint data. This algorithm lends itself to an efficient privacy-preserving dis-

tributed solution. Comparing our algorithm to the lazy decision tree algorithm LazyDT of

Friedman et al. [55], their algorithm is more complex, less efficient, and less easily amenable

for conversion to a privacy-preserving protocol, but also slightly more accurate. (Experi-

ments in [55] indicate that LazyDT, on average, has a small improvement in accuracy over

ID3 (84% for LazyDT vs. 80% for ID3).) As in any lazy learning algorithm, our algorithm

does not create an explicit decision tree model from the training data. Instead, the test

instance to be classified is used to directly trace the path that would have been taken if an

ID3 tree had been built from the training data.

Our algorithm, shown in Figure 1, starts by using ID3’s information gain criterion to
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Algorithm 1 Lazy Decision Tree

Input: A database D of labeled instances (with set R = {A1, . . . , A�} of attributes) and
an unlabeled instance I to be classified.

Output: A label for instance I.

1. If R is empty, return the majority label of instances in D.

2. If D is pure, return the single occurring label c.

3. Otherwise,

(a) for i = 1 to �
Entropy(Ai) = Entropy(D,Ai)

(b) Amin = Attribute with least entropy.

(c) D = {X ∈ D | X(Amin) = I(Amin)}
(d) R = R− {Amin}

4. Go to Step 1

compute the attribute to be tested at the root of the tree. Those rows of the training data

which match the test instance on the root attribute are filtered into the next iteration of

the algorithm. A database is said to be pure if all the instances in it have the same class

label. The algorithms repeats the process of choosing an attribute of high information gain,

and then winnowing the training data to those instances that match the test data on the

chosen attribute. This process is repeated until the set of remaining instances is pure or

all attributes have been exhausted. The algorithm then predicts the class label of the test

instance as the most frequently occurring class in the remaining set of instances.

The algorithm does not directly calculate the attribute with the highest information

gain. Instead, it calculates the attribute that results in the current set of instance having

the least amount of entropy. Denote the current set (or subset) of instances by D, the set of

values taken by the class attribute by {c1, . . . , cg}, the set of values taken by an attribute A

as {a1, . . . , ak}, the set of instances of D in which A has value aj by D(aj), and the number

of instances of D(aj) in which the class label is ci for 1 ≤ i ≤ g by pji. Then the conditional
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entropy after splitting on attribute A is defined as

Entropy(D,A) = −
k∑

j=1

|D(aj)|
|D|

(
g∑

i=1

pji
|D(aj)| log

pji
|D(aj)|

)

The computation of this algorithm in a distributed privacy-preserving manner is the main

result of this chapter and is described in Section 3.3.

3.2.2 Privacy Definition

The paradigm of secure distributed computation provides cryptographic solutions for pro-

tecting privacy in any distributed computation [145]. In that setting, the notion of privacy is

defined by comparing the information that parties learn in carrying out a distributed proto-

col to the information that parties would learn if a trusted third party (TTP) were available

to perform the computation for them. We use the same privacy definitions, but rather than

using the general solutions provided by Yao for secure two-party computation [145], we

provide a less general but more efficient solution for our specific two-party computation.

We do, however, use general two-party computation as a building block for some smaller

parts of our computation to design a tailored, more efficient, solution to privacy-preserving

imputation.

As mentioned, our notion of privacy is in relation to the TTP setting in which there is a

trusted third party to whom Alice and Bob send their data. The TTP uses the imputation

algorithm chosen by Alice and Bob to compute a missing value and sends the computed

value to Bob. In a private protocol, Alice and Bob compute the missing value by solely

communicating with each other instead of using the trusted third party; in doing so, they

should not learn anything that they would not learn in the TTP setting. We assume that

both Alice and Bob are semi-honest. That is, both parties faithfully follow their specified

protocols, but they may record intermediate messages in an attempt to infer information
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about the other party’s data. The desired privacy condition in this model is that anything

Alice or Bob learns from participating in the protocol could have been learned by simply

giving them each their initial input and final output.

The privacy of our solution relies on composition of privacy-preserving protocols. In

our solution, we use composition of a number of privacy-preserving subprotocols in which

all intermediate outputs from one subprotocol that are inputs to the next subprotocol

are computed as secret shares (see Section 3.2.3.) Using composition, it follows that if

each subprotocol produces only secret shares and is privacy-preserving, then the resulting

composition is also privacy-preserving [61].

3.2.3 Cryptographic Primitives

We use several existing cryptographic primitives, some are described in Chapter 2 and we

describe the rest in this section. We assume suitable hardness assumptions under which the

various cryptographic primitives described in this section are secure.

Purity Checking Protocol. In a purity checking protocol, Alice has a vector of values

X = (x1, . . . , xn) and Bob has a vector of values Y = (y1, . . . , yn). The protocol outputs c

if x1 = . . . = xn = y1 = . . . = yn = c (i.e., if the set of values in X ∪ Y is pure and includes

only the value c), or ⊥ otherwise. The parties learn nothing else. A simple purity checking

protocol based on secure equality testing is described in [94].

Secure x ln(x) Protocol. When Alice and Bob have random shares of x, denoted as v1

and v2, respectively, a secure x ln(x) protocol (such as the one in [94]), computes the shares

of x ln(x) as w1 and w2 for Alice and Bob, respectively. The parties learn nothing else.

Private Indirect Index Protocol. In a private indirect index protocol (PIX), Bob has
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a vector of values X = (x1, . . . , xn) and Alice and Bob have random XOR shares of an index

i. That is, i1 ∈ Alice and i2 ∈ Bob and i = i1 ⊕ i2. As the output of the protocol, Alice

and Bob learn random shares of xi. The parties learn nothing else. A PIX protocol is given

in [106]. However, it outputs an XOR-sharing of xi, while for our purposes we want an

additive sharing instead. Fortunately, it can easily be modified to give an additive sharing

instead. This protocol requires one invocation of OTn
1 .

3.3 Privacy-Preserving Imputation Based on Lazy Decision Trees

We now describe our main privacy-preserving data imputation protocol. It is based on the

lazy decision tree algorithm described in Section 3.2.1. Recall the definitions of DA, DB and

I given in Section 3.2 and recall that the class attribute M takes the values {c1, . . . , cg}. Bob

wishes to compute the missing value I(M) by applying the lazy decision tree imputation

on D = DA ∪ DB . At the end of the protocol, Bob learns only the missing value I(M)

and Alice learns nothing. Both parties learn nothing else. (For missing values in Alice’s

database, they would reverse roles from what we describe here.) In particular, Alice and

Bob should learn nothing about the path of the decision tree that leads to the missing value

including the remaining instances at each node and the value taken by the attributes along

the path.

In Section 3.3.1, we first describe a basic version of the protocol. Besides the sub-

protocols already described in Section 3.2.3, the protocol requires four additional private

subprotocols: a protocol that computes split entropy (shown in Section 3.3.3), a split pro-

tocol (shown in Section 3.3.4), a protocol that checks if the split database is pure (shown

in Section 3.3.5), and a majority computation protocol (shown in Section 3.3.6). These

subprotocols themselves use two additional subprotocols presented first in Section 3.3.2.
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We discuss the efficiency and privacy of the protocol in Section 3.3.7. As described, the

basic version of our protocol has a small privacy leak. Specifically, it reveals to the parties

the number of nodes traversed by the protocol in the undisclosed decision tree used for

imputation. In Section 3.3.8, we show how this leak can be removed at a slightly increased

cost of communication and computation.

3.3.1 Our Basic Protocol

We rephrase the basic steps of the lazy decision tree algorithm from Section 3.2.1 so that

it functions more clearly as a data imputation algorithm. The lazy decision tree algorithm

computes as the root of the tree the attribute with the highest information gain. This is

followed by the repeated execution of two steps until the remaining instances are pure or

all attributes have been exhausted: First, extract the subset of the instances that match I

on the chosen attribute. Second, choose an attribute of high information gain for the next

iteration. Once the repetition of those two steps has completed, the algorithm outputs to

Bob the majority label on the remaining instances as the missing value. (Again, if Alice

started with the missing value, their roles would be reversed.)

Our privacy-preserving protocol follows the same basic outline. However, the privacy

requirements prohibit the protocol from revealing any information other than the final

output. In particular, this implies that none of the attributes that have been chosen along

the way may be revealed to either party. Further, the subset of the instances that match I

on the chosen attributes cannot be revealed either. To meet these requirements, we make

extensive use of random sharings. The protocol handles the first condition by storing the

index s of the chosen attribute As in any iteration as a random sharing between the two

parties. That is, Alice would have sA and Bob would have sB such that sA ⊕ sB = s. To
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satisfy the second condition, the protocol uses a randomly shared bit-vector representation

of any D′ ⊆ D. That is, Alice and Bob have, respectively, bit vectors (p1, . . . , pn) and

(q1, . . . , qn) such that pi ⊕ qi = 1 if di ∈ D′ and pi ⊕ qi = 0 otherwise, for 1 ≤ i ≤ n. The

entropy computed for each attribute in each iteration is also held as random shares by the

two parties.

We now describe our protocol in more detail. The complete protocol is shown in Figure 1.

At the beginning of the protocol, Alice and Bob jointly check if the database D is pure.

If D is pure, Bob learns the unique label. This is done without revealing either their data

or one-sided information about purity to each other using a purity checking protocol (see

Section 3.2.3).

To compute the root of the lazy decision tree, Alice and Bob compute random shares

of the entropy for every attribute {A1, . . . , A�}. At the root level, computing the shares of

the entropy is straightforward. The conditional entropy of a database D (as explained in

Section 3.2.1) with respect to the attribute A can be rewritten as

Entropy(D,A) = − 1

|D|

⎛
⎝ k∑

j=1

g∑
t=1

pjt log(pjt)−
∑
j

|D(aj)| log(|D(aj)|)
⎞
⎠ (3.1)

where pjt and D(aj) are as explained in Section 3.2.1. Because the database is horizontally

partitioned between Alice and Bob, they can compute shares of pjt andD(aj) independently.

Using a secure x log x protocol (see Section 3.2.3) and local additions and subtractions, Alice

and Bob can jointly compute a random sharing of Entropy(D,A).

After this computation, Alice has a vector (EntA1 , . . . ,Ent
A
� ) of entropy shares and Bob,

correspondingly, has (EntB1 , . . . ,Ent
B
� ) such that EntAi + EntBi ≡ Entropy(D,Ai) mod N for

1 ≤ i ≤ �. The index of the attributes that yields the least entropy is computed as

random shares (minA ∈ Alice and minB ∈ Bob such that min = minA⊕minB) between

Alice and Bob using Yao’s protocol. Note that either EntAi + EntBi = Entropy(D,Ai) or
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Protocol 1 Private Lazy Decision Tree Imputation

Input: A database D = DA∪DB of labeled instances (with attributes {A1, . . . , A�}∪M),
where Alice owns DA = (d1, . . . , dm) and Bob owns DB = (dm+1, . . . , dn) and an instance
I with a missing value I(M).

Output: Bob learns I(M).

1. Using a purity checking protocol (Section 3.2.3), if D is pure, Bob learns unique
label and exits.

2. Alice and Bob communicate with each other to compute the root attribute using
the following steps:

(a) For i = 1 to �, using a secure x log x protocol (Section 3.2.3) and local
computation, Alice and Bob compute random shares of Entropy(D,Ai) as
EntAi + EntBi ≡ Entropy(D,Ai) mod N .

(b) Using Yao’s protocol (Section 3.2.3), Alice and Bob compute minA and minB
such that minA⊕minB = min where EntAmin + EntBmin ≡ minimum{EntAi +
EntBi }, 1 ≤ i ≤ m.

3. for j = 1 to �− 1

(a) Alice and Bob jointly compute the set Dj = {d ∈ Dj−1 | d(Amin) = I(Amin)}
(represented by bit vectors P and Q) as follows:

• Alice and Bob compute random shares of I(Amin) as α ∈ Alice and β ∈
Bob using PIX (Section 3.2.3) with inputs minA ∈ Alice and I, minB ∈
Bob.

• Alice and Bob run the Secure Split protocol of Section 3.3.4 on each of
their instances and α, β to obtain two bit vectors P = (p1, . . . , pn) ∈ Alice
and Q = (q1, . . . , qn) ∈ Bob such that pi ⊕ qi = 1 if di(Amin) = I(Amin)
and pi ⊕ qi = 0 otherwise.

(b) Using the Subset Purity Checking protocol of Section 3.3.5, if Dj is pure, Bob
learns the unique label and exits. Otherwise:

• for i = 1 to �, Alice and Bob run the Secure Split Entropy protocol of
Section 3.3.3 on Dj , P , Q, and Ai to learn shares EntiA and EntiB.

• Using Yao’s protocol (Section 3.2.3), Alice and Bob compute minA
and minB such that minA⊕minB = min where EntAmin + EntBmin ≡
minimum{EntAi + EntBi }, 1 ≤ i ≤ �.

4. Using the Majority Label protocol of Section 3.3.6, Bob learns the majority label to
use as the missing value I(M).
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EntAi + EntBi = Entropy(D,Ai) + N . The circuit first computes EntAi + EntBi and if it is

greater than N − 1 it subtracts N . It then selects the attribute with the minimum entropy.

We emphasize that our privacy criterion requires that the attributes that have been chosen

at various stages in the path of the lazy decision tree computation not be revealed to either

party. To achieve this, we maintain them as random shares between Alice and Bob.

We write Dj to denote the subset of D that has “filtered” through to level j of the lazy

decision tree. To compute the attribute at level j of the lazy decision tree, Alice and Bob

should split the database Dj−1 on the attribute As chosen at level j − 1. This involves

finding I(As). Here the instance I is known to Bob, but the attribute index s is randomly

shared between Alice and Bob. Alice and Bob compute a random sharing of I(As) using

PIX. Since Dj should be unknown to either party, we store the set in the form of two bits

pi ∈ Alice and qi ∈ Bob per instance (1 ≤ i ≤ n) such that

pi ⊕ qi =

⎧⎪⎪⎨
⎪⎪⎩

1 if di(As) = I(As) and di ∈ Dj−1

0 otherwise

The protocol for performing this computation privately is described in Section 3.3.4. Note

that the information about the inclusion of di in Dj−1 is also shared between Alice and

Bob. For the root level (which contains all of D), we set pi = 1 and qi = 0 for all i.

If Dj is pure, then Bob learns the unique label using the secure protocol that checks if

Dj is pure and returns the unique label. It is important to observe that since neither party

knows which of their instances are in Dj , we cannot use here the purity checking protocol

described in Section 3.2.3. Instead, we provide an alternate variation of a purity checking

protocol, described in Section 3.3.5, that works on a secret-shared representation of the

database as required in our case. If Dj is not pure, Alice and Bob engage in the secure
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entropy computation protocol of Section 3.3.3 for the split Dj for each of the attributes

{A1, . . . , A�}, and compute the random shares of the split entropy Entropy(D,Ai). (i.e.,

EntAi + EntBi ≡ Entropy(D,Ai) mod N) The attribute with the least entropy is computed

using Yao’s protocol. To simplify the protocol, the entropy is evaluated for all attributes at

all levels of the decision tree. This does not impact the correctness of the protocol, as the

information gain is zero for any attribute that has already been chosen at a previous level.

3.3.2 Secure Computation of the Number of Instances

In this section, we present two protocols for computing shares of the total number of in-

stances in a subset of the database that is only identifiable by random shares held by Alice

and Bob, respectively.

Secure Hamming Distance

A secure Hamming distance protocol, shown in Figure 2, is useful for us when applied to a

subset D′ ⊆ D represented by bit vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn) known to

Alice and Bob, respectively, where xi⊕ yi = 1 if instance di ∈ D′ and xi⊕ yi = 0 otherwise.

At the end of the protocol, Alice and Bob learn random shares of this Hamming distance,

which is also equal to |D′|. The protocol uses one invocation of SPP. Because of the linear

relationship for binary data between the scalar product and the Hamming distance, the

parties are then able to compute their needed results locally.

The only communication that happens between the two parties is during the invocation

of SPP using two vectors of size n. The communication complexity of the SPP protocol

of [60] is O(wn). (Recall that w denotes the number of bits needed to represented a public

key encryption.) Its computation complexity involves n encryptions and one decryption
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for Alice and n modular exponentiations and one encryption for Bob. The SPP protocol

is secure and it provides no useful information other than the random shares to the two

parties. Hence, this protocol is secure.

Protocol 2 Secure Hamming Distance

Input: Alice has a bit vector X = (x1, . . . , xn) and Bob has a bit vector Y = (y1, . . . , yn),

Output: Alice and Bob learn α and β, respectively, such that (α+β) mod N = v, where
v is the Hamming distance of X and Y—i.e., total number of entries for which xi⊕yi = 1.

1. Alice and Bob run SPP on X and Y to securely compute shares μ ∈ Alice and λ ∈
Bob of their scalar product.

2. Alice computes
∑n

i=1 xi = γ.

3. Bob computes
∑n

i=1 yi = δ.

4. Alice computes α = γ − 2μ and Bob computes β = δ − 2λ.

Secure Computation of the Total Number of Instances in a Subset with a Given

Class Label

Let D′
c denote the set of instances in D′ in which the attribute M takes the value c.

This protocol takes as input a subset D′ ⊆ D and a value c ∈ {c1, . . . , cg} and computes

shares of total number of instances in the set D′
c. The input D′ is represented by the bit

vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn) known to Alice and Bob, respectively, where

xi ⊕ yi = 1 if instance di ∈ D′ and xi ⊕ yi = 0 otherwise.

Alice and Bob first locally determine which of their instances have the right class value

c. Specifically, for 1 ≤ i ≤ m, Alice computes wi = 1 if di(M) = c and wi = 0 otherwise;

Bob does the same for m + 1 ≤ i ≤ n. Then the total number of instances in D′ with

class label c is the number of the instances that satisfy the relation (xi ⊕ yi) ∧ wi = 1 for

1 ≤ i ≤ n. This relation can be rewritten as (xiwi)yi ∨ (xiwi)yi = 1. Since both (xiwi)yi

and (xiwi)yi cannot hold at the same time, this number is equal to the sum of the number of
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Protocol 3 Total Instances with Class Label

Input: A value c for attribute M known to both Alice and Bob and a database D of la-
beled instances where Alice owns DA = (d1, . . . , dm) and Bob owns DB = (dm+1, . . . , dn),
D′ ⊆ D represented by bit vectors X = (x1, . . . , xn) ∈ Alice and Y = (y1, . . . , yn) ∈ Bob
such that xi ⊕ yi = 1 if di ∈ D′ and xi ⊕ yi = 0 otherwise, for 1 ≤ i ≤ n.

Output: Alice and Bob learn γ and δ, respectively, such that γ+ δ ≡ |D′
c| mod N , where

|D′
c| is the total number of instances for which xi ⊕ yi = 1 and M takes the value c.

1. Alice computes a vector (w1, . . . , wm) with wi = 1 if di(M) = c and wi = 0 otherwise,
for 1 ≤ i ≤ m.

2. Bob computes a vector (wm+1, . . . , wn) with wi = 1 if di(M) = c and wi = 0
otherwise, for m+ 1 ≤ i ≤ n.

3. Alice and Bob run SPP four times, as follows:

• inputs (x1w1, . . . , xmwm) and (y1, . . . , ym); outputs α1 and β1.

• inputs (x1w1, . . . , xmwm) and (y1, . . . , ym); outputs α2 and β2.

• inputs (xm+1, . . . , xn) and (wm+1ym+1, . . . , wnyn); outputs γ1 and δ1.

• inputs (xm+1, . . . , xn) and (wm+1ym+1, . . . , wnyn); outputs γ2 and δ2.

4. Alice computes γ = α1 + α2 + γ1 + γ2 and Bob computes δ = β1 + β2 + δ1 + δ2.

instances satisfying (xiwi)yi = 1 and the number of instances satisfying (xiwi)yi = 1. This

is computed as random shares between Alice and Bob using SPP. The complete protocol is

shown in Figure 3.

The communication and computation complexity are the same as that of SPP. The

privacy of this protocol follows from the privacy of the SPP protocol.

3.3.3 Secure Protocol to Compute Split Entropy

This protocol takes a subset D′ of the database D, horizontally partitioned between Alice

and Bob, and an attribute A known to both Alice and Bob. The subset D′ is represented

by two bit vectors P and Q known to Alice and Bob, respectively, such that pi ⊕ qi = 1 if

di ∈ D′ and pi ⊕ qi = 0 otherwise, for 1 ≤ i ≤ n.

The protocol computes random shares of the entropy after splitting D′ on the attribute
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Protocol 4 Secure Split Entropy

Input: A database D of labeled instances where Alice owns DA = (d1, . . . , dm) and Bob
owns DB = (dm+1, . . . , dn), an attribute A known to both Alice and Bob (which takes on
values a1, . . . , ak), and D′ ⊆ D represented by bit vectors P = (p1, . . . , pn) ∈ Alice and
Q = (q1, . . . , qn) ∈ Bob such that pi ⊕ qi = 1 if di ∈ D′, and pi ⊕ qi = 0 otherwise, for
1 ≤ i ≤ n.

Output: Random shares of the entropy resulting from splitting D′ on attribute A.

1. For j = 1 to k

(a) Compute D(aj) ⊆ D′ in which A has value aj. D(aj) is represented as two bit
vectors R ∈ Alice and S ∈ Bob such that, for 1 ≤ i ≤ n,

Ri ⊕ Si =

{
1 if pi ⊕ qi = 1 and di(A) = aj
0 otherwise

To compute R and S, for each i, Alice and Bob use Yao’s protocol where Alice
inputs pi and Bob inputs qi. If di ∈ Alice, then she inputs di(A); otherwise,
Bob inputs di(A).

(b) Alice and Bob engage in the Hamming Distance protocol of Section 3.3.2 on R
and S to compute random shares of |D(aj)|.

(c) To compute shares of the number pjt of instances of D(aj) in which the class
label is ct for 1 ≤ t ≤ g, Alice and Bob engage in g executions of the Total
Instances with Class Label protocol of Section 3.3.2.

(d) They use a secure x log x protocol to compute random shares of
|D(aj)| log |D(aj)|, pjt log pjt for 1 ≤ t ≤ g.

(e) They locally compute random shares of sumj = |D(aj)| log |D(aj)| −∑g
t=1(pjt log pjt).

2. Alice and Bob compute random shares of entropy for the attribute A by locally
adding their own shares obtained in Step 1e.
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A, which takes on values a1, . . . , ak. In the decision tree computation, the entropy after

splitting the database D′ on attribute A is as shown in Equation (3.1) in Section 3.3.1. Alice

and Bob use Yao’s protocol to privately compute an XOR sharing representation of D(aj) ⊂

D′ for 1 ≤ j ≤ k. That is, D(aj) is represented by two bit vectors R = (R1, . . . , Rn) ∈

Alice and S = (S1, . . . , Sn) ∈ Bob, where for 1 ≤ i ≤ n, Ri ⊕ Si = 1 if pi ⊕ qi = 1 and

di(A) = aj ; Ri ⊕ Si = 0 otherwise. Using the protocols of Section 3.3.2, Alice and Bob

compute random shares of |D(aj)| and pjt for 1 ≤ t ≤ g and 1 ≤ j ≤ k. Random shares

of the terms pjt log pjt, for 1 ≤ t ≤ g, are computed using a secure x log x protocol. The

complete Secure Split Entropy protocol is shown in Figure 4.

The size of the circuit in Step 1a is O(logN) and this circuit evaluation occurs n times.

Hence, the communication complexity is O(ns logN). The computation complexity is

O(n logN) invocations of OT2
1. Step 1b involves two parties jointly computing random

shares of |D(aj)| using the protocol described in Section 3.3.2. Step 1c uses g invocations

of the Total Instances with Class Label protocol of Section 3.3.2. The x log x protocol of [94]

has a communication complexity of O(s logN) bits and a computation complexity equal to

that of O(logN) OT2
1 invocations.

Thus, the total communication complexity of the Secure Split Entropy protocol is O(wkng

+(g + n)ks logN). The total computation complexity is the cost of O((n + g)k logN)

OT2
1 invocations plus the cost of O(gk) SPP invocations, which in turn involves a total of

O(gnk) encryptions and O(gk) decryptions for Alice and O(ngk) modular exponentiations

and O(gk) encryptions for Bob.

The output of the Secure Split Entropy protocol is a random sharing of the entropy after

splitting D′ on the attribute A. Yao’s protocol securely computes the subset D(aj) of the

database whose instances take a specific value for the attribute A. This subset is represented
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as a random sharing between the two parties. The subprotocols in Section 3.3.2 used to

compute the size of the split as random shares between the two parties are secure and do

not leak any information. Finally, the x log x protocol is also secure. Thus, the Secure Split

Entropy protocol securely computes random shares of the entropy after splitting D′ on the

attribute A.

3.3.4 Secure Split Protocol

The Secure Split protocol is used to determine if a given instance is in a subset D′ ⊆ D and

attribute Ai takes the value v in that instance. The result of this test (0 or 1) is randomly

shared between Alice and Bob. Here, inputs v and i are shared between Alice and Bob as

v ≡ a+ b mod N and i = i1⊕ i2, where a and i1 are known to Alice and b and i2 are known

to Bob. The inclusion of the given instance in D′ is represented by two bits p ∈ Alice and

q ∈ Bob such that p⊕ q = 1 if the instance is in D′ and p⊕ q = 0 otherwise.

Assuming that the instance belongs to Alice, Alice’s inputs to the protocol are the

instance (v1, . . . , v�), a, i1 and p. Bob’s inputs are b, i2 and q. (The case where Bob owns

the instance is analogous.) At the end of this protocol, Alice and Bob learn bits b1 and b2,

respectively, such that

b1 ⊕ b2 =

⎧⎪⎪⎨
⎪⎪⎩

1 if vi = v and p⊕ q = 1

0 otherwise

In other words, the fact that a given attribute has a specific value in a given instance is

available to both Alice and Bob only as random shares.

This protocol has two stages. In the first stage, Alice and Bob use PIX to learn results

x and y, respectively, where (x + y) ≡ vi mod N . In the second stage, Alice has inputs x,

a, and p, and Bob has inputs y, b, and q. They use Yao’s protocol to learn two bits b1 ∈
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Alice and b2 ∈ Bob such that

b1 ⊕ b2 =

⎧⎪⎪⎨
⎪⎪⎩

1 if (x+ y) ≡ (a+ b) mod N and p⊕ q = 1

0 otherwise

The communication and computation complexity of the first stage is that of one invo-

cation of OT�
1. The second stage of the protocol involves one comparison which is done

using Yao’s protocol, requiring O(s logN) bits of communication and O(logN) invocations

of OT2
1.

The first stage of the protocol uses PIX, which is secure and produces only random shares

as its results. Yao’s protocol is also secure and does not leak any information. Thus, the

Secure Split protocol is secure.

3.3.5 Secure Protocol to Check if D is Pure

The Subset Purity Checking protocol takes as input a subset D′ of a database D and outputs

to Bob the value c if all the instances in D′ have the same label c or ⊥ otherwise. In contrast

to the purity checking primitive of Section 3.2.3, in this case, Alice and Bob only have an

XOR sharing of D′—that is, D′ is represented by two bit vectors P = (p1, . . . , pn) ∈ Alice

and Q = (q1, . . . , qn) ∈ Bob such that pi ⊕ qi = 1 if di ∈ D′ and pi ⊕ qi = 0 otherwise.

Let |D′
c| denote the number of instances in D′ where the class attribute takes value c.

For 1 ≤ i ≤ g, Alice and Bob compute random shares αA
i and αB

i of |D′
ci | using the Total

Instances with Class Label protocol of Section 3.3.2. Alice and Bob then use Yao’s protocol

to check whether there exists j such that (αA
j +αB

j ) �= 0 mod N and (αA
i +αB

i ) ≡ 0 mod N

for every i �= j. If so, Bob’s output from Yao’s protocol is cj ; otherwise, it is ⊥.

Yao’s protocol for the comparison described above requires O(sg logN) bits of com-

munication and O(g logN) invocations of OT2
1. The communication and the computation
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complexity is dominated by the g executions of the Total Instances with Class Label proto-

col. The Total Instances with Class Label protocol returns only random shares to Alice and

Bob. Yao’s protocol is secure and does not leak any information. Hence, the Subset Purity

Checking protocol is secure, in that it does not leak anything other than its output. We

note however that this protocol breaks our convention that its output is secret shares. We

discuss the resulting privacy implications in Section 3.3.7.

3.3.6 Secure Protocol for Majority Label

TheMajority Label protocol is similar to the Subset Purity Checking protocol of Section 3.3.5,

except that it always returns the majority class label even if its input database is not pure.

In the first stage, for 1 ≤ i ≤ g, Alice and Bob using the Total Instances with Class Label

protocol of Section 3.3.2 to compute random shares αA
i ∈ Alice, and αB

i ∈ Bob of |D′
ci |. In

the second stage, Alice and Bob use Yao’s protocol with inputs αA
i and αB

i , respectively, for

Bob to learn the index j = argmax1≤i≤g |D′
ci |. Bob computes cj as the majority label. The

complexity of this protocol is the same as the purity protocol. It reveals nothing beyond

the majority label cj to Bob and nothing to Alice.

3.3.7 Performance and Privacy Analysis

Having defined all the subprotocols required by the Private Lazy Decision Tree Data Impu-

tation protocol, we now return to its complexity and privacy.

Complexity. Alice and Bob communicate with each other to compute the attribute with

the maximum information gain at each level of the path. Putting together the cost of

all the involved subprotocols, we see that the communication complexity is dominated by

O(�2nk(wg + s logN)). The total computation complexity is that of O(�2k(n + g) logN)
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OT2
1 invocations, O(�) OT�

1 invocations, and O(�2kg) SPP invocations. The latter involves

O(�2kgn) encryptions and O(�2kg) decryptions for Alice and O(�2kgn) modular exponen-

tiations and O(�2kg) encryptions for Bob.

Privacy. We compare this protocol with the one that uses the trusted third party (TTP).

When a TTP is used, the two parties send their shares of data to the TTP. The TTP

computes the missing value and sends it to Bob, and Alice gets nothing. Both parties

receive no other information other than Bob receiving the desired imputed value.

In the Private Lazy Decision Tree Data Imputation protocol, the attribute and the split

of the database at each level of the path in the decision tree are only available as random

shares to Alice and Bob. We have already shown that all the intermediate outputs of the

subprotocols are held only as random shares by Alice and Bob and that all the subprotocols

do not leak any information beyond Bob learning the final imputation result, with one

exception. This exception is that the Subset Purity Checking protocol reveals to Bob (and

indirectly to Alice, by whether the computation then terminates or continues) whether the

split database at each node is pure or not. Because the algorithm gradually splits the

database until either the database is pure or all the attributes are exhausted, knowing this

information is equivalent to knowing the length of the path. That is, in executing the

Private Lazy Decision Tree Data Imputation protocol, Bob learns the imputed value, but also

both Alice and Bob learn the number of attributes in the path in the decision tree (though

not which attributes, nor the values they take), which would not be learned in the TTP

solution. The composition result (see Section 3.2.2) implies that they do not learn anything

else; that is, Private Lazy Decision Tree Data Imputation can be viewed as a private protocol

computing an output to Alice consisting of the length of the path in the decision tree and

to Bob consisting of the length of the path and the learned value for the missing attribute.
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In Section 3.3.8, we describe a modification of the protocol that is completely private,

not revealing to Alice and Bob the length of the path.

3.3.8 Enhancing Privacy

As just discussed, the Private Lazy Decision Tree Data Imputation protocol has a minor

leak—it reveals the number of nodes in the evaluation path of the decision tree used in the

imputation process. In this section, we outline a modification that uses additional secret

sharing to eliminate this leak, thus achieving the same level of privacy as in the TTP model.

The modified protocol uses two additional variables: is pure and majority class. We treat

is pure as Boolean (with 0 = false and 1 = true). Each of these variables is randomly shared

between Alice and Bob, via shares is pureA, is pureB , majority classA, and majority classB .

At the end of each iteration, the protocol ensures that is pureA ⊕ is pureB = is pure and

majority class ≡ (majority classA + majority classB) mod N . Initially, is pure is set to false

by setting is pureA = false and is pureB = false. If is pure becomes true at the end of some

iteration, it means that the protocol has determined that the database D at the beginning

of that iteration is pure (all rows have the same class label). At the end of each iteration,

the protocol ensures that majority class contains the most frequently occurring class label

in database D.

The modified protocol requires changes to Subset Purity Checking andMajority Label (Sec-

tions 3.3.5 and 3.3.6). In the modified version of Subset Purity Checking, is pureA, is pureB ,

majority classA and majority classB are supplied as additional inputs and the protocol checks

if is pure is false. If so, the protocol computes random shares of the new values of is pure

and majority class and returns these to Alice and Bob. On the other hand, if is pure is true

when the subprotocol is invoked, then the values of is pure and majority class do not change,
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but a new random sharing of each is computed and sent to Alice and Bob.

In the modified version of Majority Label, the values of is pureA, is pureB , majority classA

and majority classB are supplied as additional inputs. The subprotocol first checks if is pure

is false. If so, the computation for the majority class proceeds as usual. The value of

majority class is randomly shared as majority classA and majority classB . On the other hand,

if is pure is true, the computation of the majority label is skipped. Instead, (majority classA+

majority classB) mod N is used in place of majority class, and this is again randomly shared

as majority classA and majority classB .

Given these modifications, the new version of the main protocol runs as many iterations

as there are attributes. That is, the iteration of the main loop in the protocol does not end

if a pure set D is obtained before all attributes have been used. (Indeed, it could not, as now

neither participant knows that this has occurred.) At the end of all iterations, Alice sends

the value of majority classA to Bob who then uses majority classA+majority classB mod N as

the imputed value. This eliminates the earlier privacy leak and results in a private protocol

for Bob to learn the desired imputed value.

3.4 Other Imputation Protocols

In this section, we briefly describe other private data imputation protocols. As explained

in Section 3.1.1, however, the results of the decision tree solution are likely to be better in

most settings. Let α1, . . . , αn denote the values of the attribute M for which I ∈ Bob has

a missing value for the instances d1, . . . , dn.

Mean. Because Bob will inevitably be able to compute the sum of Alice’s values for

attributeM from the mean of their combined values, we can satisfy the privacy requirements
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described in Section 3.2.2 with a very simple protocol. Alice computes a =
∑t

j=1 αj and

sends a to Bob. Bob computes b =
∑n

j=(t+1) αj and computes the missing value I(M) as

(a+ b)/n.

Mode. Alice computes the frequencies of the possible values (c1, . . . , cg) of M in her

databaseDA as α1, . . . , αg and Bob computes the frequencies in his databaseDB as β1, . . . , βg.

Alice and Bob then use Yao’s protocol with inputs α1, . . . , αg and β1, . . . , βg for Bob to learn

the j = argmax1≤i≤g(αi + βi). Bob then takes cj as the missing value.

Linear Regression. We describe the protocol for two variables. The extension to multiple

regression is straightforward. Suppose x is an independent variable and y is the variable that

has a missing value. Linear regression involves fitting the straight line y = mx+ b, where

m =
∑n

i=i(xiyi)−(
∑n

i=1 xi
∑n

i=1 yi)/n∑n
i=1 x

2
i−(

∑n
i=1 xi)2/n

and b =
∑n

i=1 xi

n −m ·
∑n

i=1 yi
n . The operations involved are

linear, so Alice and Bob can securely compute shares of m and b. Using these shares, Bob

can compute the missing value.

Clustering. Alice and Bob use a secure clustering protocol (such as the one in Chapter 5)

to compute shares of m cluster centers, where m is a user-specified parameter. Let CA
i =

(aAi1, . . . , a
A
ik, p

A
i ) and CB

i = (aBi1, . . . , a
B
ik, p

B
i ), for 1 ≤ i ≤ m, denote the shares of the m

cluster centers for Alice and Bob, respectively. Let the instance I = (x1, . . . , xk, x), where

x denotes the missing value.

Alice and Bob jointly and securely compute the shares of the distance between I and

each of the m cluster centers using only the first k coordinates. Let ZA = (zA1 , . . . , z
A
m)

and ZB = (zB1 , . . . , z
B
m) denote Alice’s and Bob’s shares of the distances, respectively. They

use Yao’s protocol to compute random XOR shares i1 and i2 of the index i such that

zAi + zBi = min1≤j≤m(zAj + zBj ). Bob should learn the missing value as pAi + pBi , where pAi
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and pBi are Alice and Bob’s shares, respectively, of the missing attribute in cluster Ci. To

do this, Alice and Bob then invoke PIX twice, once for the vector (pA1 , . . . , p
A
m) and the other

for the vector (pB1 , . . . , p
B
m). In both invocations, they supply i1 and i2 as input. This gives

them random shares of pAi and of pBi . Alice adds her shares and sends them to Bob for him

to compute the missing value.

3.5 Summary

In this chapter, we addressed the problem of computing missing values in a privacy-

preserving fashion when the database is horizontally partitioned between two parties. We

used a lazy decision tree approach to impute missing values. We presented two versions

of the protocol, one of which has a small leak but with lower communication complexity,

and another that is fully private. We also demonstrated how to privately perform other

common methods of data imputation.
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Chapter 4

Privacy-Preserving Distributed k-means Clustering over

Arbitrarily Partitioned Data

4.1 Introduction

Data mining is an important part of knowledge discovery that refers to the process of

applying specific algorithms for extracting patterns from the data. Well-known data mining

tasks include clustering, prediction, association rule mining, and outlier detection [69]. Data

mining has been extensively used in fields such as biometrics, including biomedical and DNA

data analysis [67], financial data analysis [9], fraudulent pattern analysis, identification of

unusual patterns, and analysis of telecommunications data [100].

While much of data mining occurs on data within an organization, it is quite common to

use data from multiple sources in order to yield more precise or useful knowledge. However,

privacy considerations can prohibit organizations from being willing or able to share their

data with each other. Privacy-preserving data mining arose as a solution to this problem by

allowing parties to cooperate in the extraction of knowledge without any of the cooperating

parties having to reveal their individual data items to each other or any other parties.

In this chapter, we provide a privacy-preserving solution to an important data mining

problem, that of clustering data that is shared between two parties. Clustering is a well-

studied combinatorial problem [70, 79, 69], and there have been a large number of algorithms

developed to solve the various formulations of the problem. The task is to group similar
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items in a given data set into clusters. The goal is to obtain a clustering that minimizes an

objective function mapping a given clustering into a numerical value.

We briefly discuss related work to put our solution into context and then describe our

contributions more fully.

4.1.1 Related Work

Informally, a clustering algorithm partitions a set of objects into clusters so that all ob-

jects within any cluster are “similar”, while objects in different clusters are “dissimilar”.

The notions of similarity and dissimilarity are usually based on the set of attributes that

defines each object. Clustering has been successfully applied in many domains. In image

processing, clustering algorithms are used for image segmentation, which is the problem

of distinguishing objects from the background [136]. In bioinformatics, clustering has been

used to group genes with similar expression profiles [130]. Astronomers have used clustering

to create catalogs of objects in the sky [30]. In this chapter, we present a privacy-preserving

clustering protocol.

Privacy-preserving data mining has attracted the attention of many researchers since it

was introduced in seminal papers by Agarwal and Srikant [2] and Lindell and Pinkas [94].

Since then a number of algorithms and protocols have been developed for privacy-preserving

data mining of both horizontally and vertically partitioned databases.

There are a number of protocols for privacy-preserving clustering. Vaidya and Clifton [133]

presented a private protocol for k-means clustering over vertically partitioned data, while

the protocol by Jha et al. [80] is for the k-means clustering of horizontally partitioned

data. Lin, Clifton and Zhu [93] presented a privacy-preserving clustering algorithm based

on EM mixture modelling for horizontally partitioned data. We present in Chapter 5 of
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this thesis another privacy-preserving protocol for k-clustering based on a new I/O-efficient

clustering algorithm. Prasad and Rangan [116] presented a privacy-preserving version of

the BIRCH algorithm for clustering. Bunn and Ostrovsky [16] presented a secure two party

k-means clustering protocol for well-separated clusters [112]. The latter two results apply

to arbitrarily partitioned data, which will be introduced later in this chapter. (They were

published after the work in this chapter was initially published in KDD 2005.) All of the

above mentioned achieve privacy in a distributed setting using cryptographic techniques in

the secure multiparty computation model. Table 4.1 provides a comparison between some

of the existing privacy-preserving clustering protocols.

Privacy-preserving clustering algorithms have also been studied with respect to other

privacy models. Oliviera and Zaiane [111] addressed the privacy-preserving data clustering

problem using data transformation. Friedman, Wolff and Schuster [54] extended the k-

anonymity model and showed how to use it for various data mining applications including

clustering. Sakuma and Kobayashi [123] presented a k-means clustering protocol under

the privacy-preserving concept called user-centric privacy preservation. In this framework,

users can conduct data mining using their private information by storing them in their local

storages. After the computation, they obtain only the cluster centers without disclosing

private information to others. Recently, Feldman, Fiat, Kaplan and Nissim [50] presented

a way to release a differentially private data set on which a user can apply clustering

algorithms.

4.1.2 Our Contributions

A cluster is usually represented by its center (also called its centroid or mean), which is the

attribute-wise average of all objects in the cluster. A statement for the clustering problem
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Algorithm Applicability Communication Privacy
Our Protocol—version 1 arbitrarily partitioned O(nk) L
Our Protocol—version 2 arbitrarily partitioned O(nk) F
Vaidya and Clifton [133] vertically partitioned O(nk) L

Jha, Kruger and McDaniel [80] horizontally partitioned O(k) L
Our Protocol—Chapter 5 horizontally partitioned O(k3) F
Bunn and Ostrovsky [16] arbitrarily partitioned O(nk) F
Prasad and Rangan [116] arbitrarily partitioned O(nk) F

Table 4.1: Comparison of privacy-preserving clustering protocols; in the Privacy column,
an entry of L indicates that the protocol leaks candidate cluster centers and an entry of F
indicates that the protocol is fully private.

includes some measure of utility, the objective function, which measures the “goodness” of

a given clustering. The k-clustering problem takes as an input parameter an integer k that

indicates the required number of clusters. The k-means objective function seeks to minimize

the sum of the squared distances between objects and their closest cluster centers. The k-

means clustering algorithm [52, 96, 99] (also known as Lloyd’s algorithm) is a well-known

iterative method that successively refines potential clusters in an attempt to minimize the

k-means objective function. Our protocol is based on the k-means clustering algorithm,

used in conjunction with the Euclidean metric (also called the L2 metric) for the distance

between data objects. Hence, our protocol works only for numeric attributes.

Our contributions in this chapter are as follows:

• We introduce the notion of arbitrarily partitioned data, which generalizes both hor-

izontally and vertically partitioned data. In arbitrarily partitioned data, different

attributes for different objects can be owned by any collaborating party. Although

extremely “patchworked” data is unlikely in practice, one advantage of considering

arbitrarily partitioned data is that protocols in this model apply both to horizontally

and vertically partitioned data, as well as to hybrid data that are mostly, but not

completely, vertically or horizontally partitioned.
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• Our main contribution is a privacy-preserving protocol for k-means clustering in the

setting of arbitrarily partitioned data. Our protocol is efficient and provides cryp-

tographic privacy protection. We also provide an analysis of the performance and

privacy of our solution.

In Section 4.2, we provide preliminary definitions that are used in the rest of this chapter

and review the k-means clustering algorithm. Section 4.3 describes a first version of our

privacy-preserving protocol for k-means clustering when the data is arbitrarily partitioned

between two parties. The analysis of the communication complexity and the privacy of the

protocol is given in Section 4.4. This protocol reveals the candidate cluster assignments at

the end of each iteration. In Section 4.5, we show how to obtain full privacy in our k-means

clustering protocol.

4.2 Preliminaries

In this section, we introduce the concept of arbitrarily partitioned data. We also discuss

the privacy properties we seek to achieve and briefly review clustering and the k-means

clustering algorithm.

4.2.1 Arbitrarily Partitioned Data

In the two-party distributed data setting, two parties (call them Alice and Bob) hold data

forming a (virtual) database consisting of their joint data. More specifically, the virtual

database D = {d1, d2, . . . , dn} consists of n objects, or records. Each object di is described

by the values of � numeric attributes. We denote the values of the � attributes of object

di by (di,1, di,2, . . . , di,�). When convenient, we sometimes abuse notation and refer to this

vector of values as the set di = {di,1, di,2, . . . , di,�}. Throughout this chapter, we use n to
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denote the size of the database, � to denote the number of attributes, and k to denote the

number of clusters.

We introduce in this chapter the concept of arbitrarily partitioned data, illustrated in

Figure 4.1. In arbitrarily partitioned data, there is not necessarily a simple pattern of how

data is shared between the parties. For each di, Alice knows the values for a subset of

the attributes, and Bob knows the values for the remaining attributes. That is, each di is

partitioned into disjoint subsets dAi and dBi such that Alice knows dAi and Bob knows dBi .

We emphasize that the set of attributes whose values are known to Alice for some object

di does not have to equal the set of attributes whose values are known to Alice for some

other object dj (i �= j). In particular, it is possible that dAi = ∅ or dAi = di. That is, a given

object may be “completely owned” by Bob or by Alice. We assume that both parties know

the total number n of objects as well as the existence and names of all attributes. Some

data values may be known to both parties; even in such cases, we consider such values to

be owned by one party, who will be responsible for handling the data value.

Clearly, both horizontally partitioned data and vertically partitioned data can be viewed

as specific cases of arbitrarily partitioned data. Specifically, in horizontally partitioned data,

each object in the virtual database is “completely owned” by Alice or completely owned by

Bob. In vertically partitioned data, each attribute is completely owned by either Alice or

Bob, except perhaps for some common “data handle”. As previously mentioned, although

extremely patchworked data is unlikely in practice, the generality of this model can make

it better suited to practical settings in which data may be mostly, but not completely,

vertically or horizontally partitioned.

Our solution also makes use of encryption in various places. We use w to denote the

maximum number of bits required to represent any public key encryption and s to denote
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= Data owned by Alice

= Attribute names (known to both)

= Data owned by Bob

Figure 4.1: Arbitrarily partitioned data
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the maximum number of bits required to represent any symmetric key encryption. All

computations are performed in a field F of size N .

4.2.2 Privacy Properties

Our desired outcome is that clusters are computed on Alice’s and Bob’s joint data. Alice

should learn the cluster number for each data object she owns completely, and Bob should

learn the cluster number for each data object that he owns completely. For objects that

both have attributes for, they should both learn the cluster number. In addition, the parties

should either learn random shares (defined in Section 2.2.1) of the final cluster means, or,

depending on the desired outcome for the particular application, one or both party should

learn the actual final cluster means.

In an ideal world, Alice and Bob would have access to a trusted third party who could

perform the necessary calculations. Alice and Bob would securely send their data to this

trusted party, who would then compute the cluster to which each object is assigned using

the appropriate clustering algorithm and send the desired information to the party that

owns the object. However, trusted third parties are hard to find in the real world, and even

then, such trust may be misplaced. In this work, we do not rely on a third party. Instead,

we provide algorithms by which Alice and Bob can carry out the functionality that would

be provided by the trusted third party without actually requiring such a party or requiring

the parties to send their data to each other.

We assume that both Alice and Bob are semi-honest. That is, both parties faithfully

follow their specified protocols, but we assume they record intermediate messages in an

attempt to infer as much information about the other party’s data as possible. Additional

cryptographic techniques, such as zero knowledge proofs, can be used to provide privacy
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even against malicious behavior, but typically at a significant performance cost.

As we discuss further in Section 4.4, our first solution leaks some additional information

beyond just the cluster numbers, in that it reveals some information about the progress of

the computation as it is carried out. This information does not appear to be useful except

perhaps in degenerate cases, and some protection can be provided by having the initial

choice of candidate cluster centers be chosen randomly. In Section 4.5, we also provide a

modified protocol which obtains full privacy.

4.2.3 Clustering and the k-Means Algorithm

We briefly review the k-means clustering algorithm. For a more detailed description, see [96].

We consider a database D = {d1, d2, . . . , dn} to be a subset of points in R
�. We denote

the jth coordinate of a point x ∈ R
� by xj . Similarly, the jth coordinate of di ∈ D is written

as di,j . For two points x, y ∈ R
�, we use dist(x, y) to denote the Euclidean distance between

x and y. A k-clustering of D is a partitioning of D into k disjoint subsets {C1, C2, . . . , Ck},

for some k ≥ 1. The center cm of a cluster Cm is the coordinate-wise average of all the

points in Cm. That is,

cm,j =
1

|Cm|
∑
x∈Cm

xj.

The error sum of squares ESSm of a cluster Cm is the sum of the squared distances of the

points in the cluster to the center of the cluster:

ESSm =
∑
x∈Cm

dist2(x, cm).

The error sum of squares of a k-clustering is

k∑
i=1

ESSi. The k-means clustering problem

seeks a k-clustering of D with the lowest error sum of squares. The k-means algorithm is a

heuristic for the k-means clustering problem.
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The k-means algorithm proceeds iteratively, successively refining k potential clusters

until a specified termination condition is reached. Initially, the algorithm arbitrarily selects

k of the objects in D as k initial candidate cluster centers. Each object in D is assigned to

the cluster whose center is closest to it. Subsequently, the clusters centers and corresponding

cluster assignments are modified with the intention of reducing the average distance of each

object to its closest candidate cluster center. In each iteration, each object in the database

D is reassigned to the cluster whose candidate center is closest. The current center of each

cluster is then recomputed on the basis of the modified set of the objects in the cluster. This

iterative process continues until a specified termination condition is met. A commonly used

condition terminates the process when the change in the average distance of each object to

its closest cluster center is small. Another commonly used condition is the absence of any

change in cluster composition. In this solution, we use a third commonly used termination

condition, terminating when the change in the centers of all clusters falls below a prespecified

threshold value. This version is illustrated in Algorithm 2.

Algorithm 2 k-means clustering algorithm

Input: Database D, integer k
Output: Cluster centers μ1, . . . , μk

1. Arbitrarily select k objects from D as initial cluster centers μ′
1, . . . , μ

′
k.

2. Repeat

(a) (μ1, . . . , μk) = (μ′
1, . . . , μ

′
k)

(b) Assign each object di ∈ D to the cluster whose center is closest.

(c) Recompute the centroids of the k clusters as μ′
1 . . . μ

′
k.

until (μ1, . . . , μk) is close to (μ′
1, . . . , μ

′
k)
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4.3 Privacy-Preserving k-Means Clustering Protocol

We now describe our privacy-preserving k-means clustering protocol. Alice and Bob share

a dataset in an arbitrary partition, as explained in Section 4.2.1. They wish to learn the

k-means clustering of the virtual database comprising their joint data, without revealing

their data to each other or anyone else. The final output of the algorithm should be an

assignment of a cluster number between 1 and k to each object. If an object is shared,

then both parties learn the assignment; otherwise, only the party who owns the object gets

the assignment. The algorithm can terminate with the final mean of each cluster randomly

shared by both parties, or if desired, one or both parties can learn the actual final means.

As described in Section 4.2.3, the k-means clustering algorithm is an iterative algorithm

that successively refines candidate cluster centers. Initially, k candidate cluster centers are

chosen from the data points in D. This can be done in one of several ways: for example,

they can be taken as a prespecified set of points, such as the first k data points, they

can be chosen randomly by one or the other party, or they can be chosen randomly with

randomness introduced by both parties. As we discuss in Section 4.4, the latter method

provides the most robustness against certain kinds of potential privacy leaks.

In each iteration of the algorithm, each object is assigned to the closest candidate cluster

center. Then, new candidate cluster centers are determined based on the actual centers

of the points as they have been assigned. This procedure is repeated until a specified

termination condition is reached. Our privacy-preserving distributed version follows the

same iterative structure, but protects the data and intermediate values from being learned

by the parties. As we now describe, this is done using interaction, privacy-preserving

subprotocols, and random sharings.
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Protocol 5 Privacy-preserving k-means clustering over arbitrarily partitioned data

Input: Database D with n objects, integer k denoting the number of clusters
Output: Assignment of the cluster numbers to the objects

1. Randomly select k objects from D as initial cluster centers μ1, . . . , μk.

2. Randomly share the cluster centers between Alice and Bob:

Alice’s share = (αA
1 , . . . , α

A
k )

Bob’s share = (αB
1 , . . . , α

B
k )

3. Repeat

(a)
(μA

1 , . . . , μ
A
k ) = (αA

1 , . . . , α
A
k )

(μB
1 , . . . , μ

B
k ) = (αB

1 , . . . , α
B
k )

(b) For each di in D

i. Run the secure closest cluster protocol

ii. Assign to di the closest cluster

(c) Alice and Bob securely recompute random shares of the centroids of the k
clusters as (αA

1 , . . . , α
A
k ) and (αB

1 , . . . , α
B
k ) respectively.

until (μA
1 + μB

1 , . . . , μ
A
k + μB

k ) is close enough to (αA
1 + αB

1 , . . . , α
A
k + αB

k )
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In each iteration of the privacy-preserving protocol, the candidate cluster centers are

calculated as a random sharing between the two parties. Let � denote the number of

attributes and di = (di,1, . . . , di,�) for 1 ≤ i ≤ n denote the ith object in the database. Let

μA
j for 1 ≤ j ≤ k denote Alice’s share of the jth mean, μB

j for 1 ≤ j ≤ k denote Bob’s share.

The candidate cluster centers are given by μA
j +μB

j for 1 ≤ j ≤ k. For each object di, Alice

and Bob securely compute the distances dist(di, μj) for 1 ≤ j ≤ k, between the object and

the k cluster centers. The result of the distance calculation is learned as random shares

between Alice and Bob. Using these random shares, they then securely compute the closest

cluster for each object in the database.

At the end of each iteration, Alice and Bob learn the cluster assignment for the objects,

as follows: If an object di is shared by both Alice and Bob, then both of them learn the

cluster to which the object belongs. If not, it is revealed only to the party who completely

owns di. The iterative process is repeated until the change in the centers of all clusters falls

below a certain specified threshold value.

When the termination condition is reached, the parties may wish to send each other

their cluster center shares so that they can learn the actual cluster centers of the joint

data. Whether this is desirable or not depends on the particular application for which the

clustering results are intended to be used.

Protocol 5 illustrates the overall privacy-preserving k-means clustering protocol. In

the remainder of this section, we describe in detail each of the subprotocols used in our

clustering protocol. In Section 4.3.1, we present a secure protocol that computes the cluster

assignment for each object. In Sections 4.3.2 and 4.3.3, we present secure protocols for

recomputing the cluster centers and for iteration termination, respectively.
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4.3.1 Secure Protocol to Compute Closest Cluster

This subprotocol takes an arbitrarily partitioned object and k randomly shared candidate

cluster means as its input. It outputs to the appropriate party or parties the closest cluster

to which the object belongs. It reveals no other additional information.

Consider an object di = (di,1, . . . , di,�). This object can be owned by Alice or Bob or

shared by both. Suppose that the object is shared by both Alice and Bob. Without loss of

generality, assume di,p1 , . . . , di,ps belong to Alice and the rest of the �− s attributes belong

to Bob. To compute the closest cluster the protocol first computes the distance between

the object di to each of the k clusters. That is, for each cluster 1 ≤ j ≤ k, we compute the

squared distance dist2(di, μj) between the object di and the cluster mean μj . The squared

distance dist2(di, μj) is defined by the following equation:

dist2(di, μj) = (di,1 − μj,1)
2 + (di,2 − μj,2)

2 + . . .+ (di,� − μj,�)
2.

Since μj,t = μA
j,t + μB

j,t, where μA
j,t is Alice’s share of the mean and μB

j,t is Bob’s share of the

mean,

dist2(di, μj) = (di,1 − (μA
j,1 + μB

j,1))
2 + . . .+ (di,� − (μA

j,� + μB
j,�))

2

=

�∑
m=1

d2i,m +

�∑
m=1

(μA
j,m)2 +

�∑
m=1

(μB
j,m)2 + 2

�∑
m=1

μA
j,mμB

j,m

−2
�∑

m=1

μA
j,mdi,m − 2

�∑
m=1

di,mμB
j,m

To privately compute the term
∑�

m=1 d
2
i,m over the shared data, Alice computes the sum

that involves the components di,p1 , . . . , di,ps , while Bob computes the sum of the rest of the

components. The second term
∑�

m=1(μ
A
j,m)2 is completely computed by Alice and similarly

the third term is computed by Bob. They then use a secure scalar product protocol, such

as the one described in [60], to compute random shares of the last three terms. Since a sum
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involving random shares results in random shares, we have

dist2(di, μj) = αi,j + βi,j.

Here αi,j and βi,j are random shares known to Alice and Bob respectively, where

αi,j =

s∑
m=1

d2i,pm +

�∑
m=1

(μA
j,m)2 + aj + cj + ej

βi,j =
�−s∑
m=1

d2i,qm +
�∑

m=1

(μB
j,m)2 + bj + dj + fj

aj + bj = 2

�∑
m=1

μA
j,mμ

B
j,m mod N

cj + dj = −2
�∑

m=1

μA
j,mdi,m mod N

ej + fj = −2
�∑

m=1

μB
j,mdi,m mod N

and N is the size of the chosen finite field.

Alice has a k-length vector A = (αi,1, . . . , αi,k) and Bob has B = (βi,1, . . . , βi,k). They

securely compute the index j such that αi,j + βi,j is minimum using Yao’s circuit evalua-

tion [145]. Since k is typically quite small, particularly in comparison to the number of data

items, the overhead this requires should be sufficiently small. The object di is assigned to

cluster j.

Communication and Computational Complexity

For each object di, this protocol computes the closest cluster. Each object has � compo-

nents. Communication is involved when the two parties engage in the secure scalar product

computation to compute the distance between an object di and each of the cluster centers.

For each distance computation, the scalar product protocol is invoked three times between

vectors of length �. The communication complexity of each scalar product protocol is O(w�).
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Hence it requires a communication of O(kw�) bits to compute the distance of the object

di from all the k centers. Note that w denotes the maximum number of bits required for

public-key encryption.

The overall communication complexity for one invocation of the closest cluster protocol

is O(k(w� + s logN))). The estimation of the computational complexity involves counting

the number of encryptions, decryptions and exponentiations for Alice and Bob. To compute

the closest cluster for each object, the scalar product protocol is executed for each cluster

three times between vectors of length �. For each execution of the scalar product protocol,

Alice performs � encryptions and one decryption. Bob performs � exponentiations and one

encryption. Since there are k clusters, the total computational complexity for computing

the closest cluster for an object is O(k�) encryptions and O(k) decryptions for Alice and

O(k�) exponentiations and O(k) encryptions for Bob. The secure scalar product protocol

described in [60] uses public key encryption schemes and hence increases the computational

complexity. But several optimization tricks are presented in [60] to make the computational

complexity tolerable for both Alice and Bob. An experimental analysis of the scalar product

protocol between two binary vectors held by two parties is presented by Yang, Wright and

Subramaniam [143]. The invocations of Yao’s protocol require O(k logN) invocations of

OT2
1.

Privacy

The above protocol securely computes the index of the closest cluster for every object. The

only information revealed is the output, which is the cluster index. The distance between

each object di to each of the k cluster centers is available only as a random sharing between

Alice and Bob. Hence each cannot obtain any information about the other party’s data.
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For each distance computation, the communication between Alice and Bob occurs through

the secure scalar product protocol. The scalar product protocol leaks no information and

returns only a random share to both Alice and Bob. Thus the distance function is computed

as a random sharing between Alice and Bob, without leaking any information. Finally, Yao’s

circuit evaluation protocol securely computes the closest cluster. The output of the protocol

is an assignment of the closest cluster of a given point. This is the only information available

to the parties at the end of the protocol when a trusted third party is used.

4.3.2 Secure Protocol for Recomputing the Mean

At the end of each iteration Alice and Bob learn his or her share of the cluster centers. The

next iteration requires recomputing each of the k-cluster centers. Let us assume that Alice

has objects dAi1 , . . . , d
A
ip and Bob has objects dBi1 , . . . , d

B
iq , for each cluster 1 ≤ i ≤ k. Each

of the dAi and dBi is an �-tuple, where dAi,j and dBi,j each denote the jth coordinate of the

respective �-tuple.

Alice calculates the shares sj and nj for 1 ≤ j ≤ �, where sj =
∑p

r=1 d
A
ir ,j and nj denotes

the number of objects in dAi1 , . . . , d
A
ip

for which Alice has the values for attribute j. If Alice

does not have the value for attribute j for some object dAi , she treats it as zero in the

computation of the above sum.

Similarly, Bob calculates the shares tj and mj for j, 1 ≤ j ≤ �, where tj =
∑q

r=1 d
B
ir ,j

and

mj denotes the number of objects in dBi1 , . . . , d
B
iq for which Bob has the values for attribute

j. Again, if Bob does not have the value for attribute j for some object di, he treats it as

zero in the computation of the sum. The jth component of the ith cluster center is given

by

μi,j =
sj + tj
nj +mj



72

Since this involves only four values, it can be computed efficiently using Yao’s [145] circuit

evaluation protocol as random shares between Alice and Bob. Alternatively, one could use

Bunn and Ostrovsky’s division protocol [16], which was presented after the initial publica-

tion of our results [76].

Communication and Computational Complexity

Each component of the mean requires communication of O(s logN) bits. Hence the commu-

nication complexity to recalculate the means is O(k�s logN). The computational complexity

is O(k� logN) invocations of OT2
1.

Privacy

The protocols we use to recalculate the means are secure and they do not leak any infor-

mation. Each party learns only a random share of each mean and thus cannot infer any

information about the means of the clusters.

4.3.3 Secure Protocol for Termination of Iterations

The k-means clustering algorithm is an iterative algorithm. At the end of every iteration,

the cluster centers are recalculated. The iterative process is terminated when there is no

substantial change in the cluster means. In our case, the algorithm terminates when the

Euclidean distance between the cluster centers between two consecutive iterations is less

than a specified value ε. Denote Alice’s share of cluster centers at the end of the ith

iteration by μA,i
1 , . . . , μA,i

k and Bob’s share by μB,i
1 , . . . , μB,i

k . Similarly, denote Alice’s share

of cluster centers at the end of the (i+ 1)st iteration by μA,i+1
1 , . . . , μA,i+1

k and Bob’s share

by μB,i+1
1 , . . . , μB,i+1

k . Each μi is an �-tuple and is denoted by (μi,1, ..., μi,�). For 1 ≤ j ≤ k,
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we securely compute the square of the distances:

dist2(μA,i+1
j + μB,i+1

j , μA,i
j + μB,i

j )

= dist2((μA,i+1
j,1 + μB,i+1

j,1 , ..., μA,i+1
j,1 + μB,i+1

j,1 ),

(μA,i
j,1 + μB,i

j,1 , ..., μ
A,i
j,1 + μB,i

j,1 ))

=
�∑

m=1

(μA,i
j,m + μB,i

j,m)
2 +

�∑
m=1

(μA,i+1
j,m + μB,i+1

j,m )2 −

2
�∑

m=1

((μA,i+1
j,m + μB,i+1

j,m )(μA,i
j,m + μB,i

j,m))

= αj + βj ,

where αj is Alice’s share of the distance and βj is Bob’s share. These are random shares.

Alice and Bob have k-length vectors (α1, . . . , αk) and (β1, . . . , βk) respectively. They com-

municate with each other and securely check if αj + βj < ε for 1 ≤ j ≤ k. As before,

since the amount of input involved is small, this can be securely and efficiently implemented

using Yao’s protocol.

Communication and Computational Complexity

To check if the algorithm terminates, Alice and Bob have to check that the Euclidean

distance between two consecutive iterations is less than ε for each of the k cluster centers.

This involves executing the scalar product protocol four times to obtain the random shares

of the distance vectors and then applying Yao’s protocol. It requires a communication of

O(kw�) bits to compute the distance between two consecutive iterations of all the k centers.

Yao’s circuit evaluation involves O(ks� logN) bits of communication to check if all the k

distances are less than ε. The total computational complexity is O(kw�) encryptions and

O(k) decryptions for Alice and O(k�) exponentiations and O(k) encryptions for Bob. The

use of Yao’s protocol requires O(k� logN) invocations of OT2
1.
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Privacy

The scalar product protocol and Yao’s circuit evaluation protocol used in this protocol

are secure and they leak no information. So the only information that Alice and Bob can

obtain at the end of the execution of the protocol is the output whether the iterations can

be terminated or not.

4.4 Performance Analysis

Putting all the subprotocols together as shown in Protocol 5 yields the complete privacy-

preserving k-means clustering protocol over arbitrarily partitioned data.

Communication and Computational Complexity

As described in Section 4.3.1, the two parties need to communicate O(k(w�+ s logN)) bits

to determine the closest cluster for each point. Since there are n objects in the database, the

total communication complexity to assign cluster numbers in each iteration is O(nk(w� +

s logN) bits. At the end of each iteration, the protocol recomputes the mean of each of the

k clusters. Each mean is a �-length vector. The total communication complexity to compute

all k-means is O(s�k logN). The k-means clustering algorithm is an iterative algorithm and

the iterative process is repeated until the improvement to the approximation are within the

threshold. The means at the end of each iteration are shared between Alice and Bob. It

takes O(w�k) bits of communication for Alice and Bob to securely check the termination

criterion at the end of each iteration. Thus, the overall communication complexity for the

privacy-preserving k-means clustering protocol is O(nk(w�+ s logN)) per iteration. It has

been shown that for typical data, the number of iterations required is usually quite small.

For each iteration the total computational complexity for computing the cluster centers
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is O(nk�) encryptions and O(nk) decryptions for Alice and O(nk�) exponentiations and

O(nk) encryptions for Bob, and O(kn logN) invocations of OT2
1.

Privacy

We analyze the privacy of the k-means clustering algorithm on arbitrarily partitioned data.

As a privacy ideal, we compare this protocol with one that makes use of a trusted third

party (TTP) who receives all the data, locally runs the standard k-means algorithm, and

computes the appropriate cluster numbers (and possibly cluster centers) to the parties. If

one party completely owns an object, then only that party gets the cluster number assigned

to that object. If both parties shares an object then both parties gets the assignment.

In contrast, the privacy-preserving k-means clustering protocol is an interactive protocol.

The following information is revealed to Alice and Bob at the end of each iteration:

• The assignment of the cluster number to the objects. If one party holds the object

completely, then only that party gets the assignment. Otherwise, both parties get the

assignment.

• Each party computes its share of the mean of each cluster.

In the TTP case, the assignment to the clusters are revealed only at the final step. In

contrast, in our protocol both parties learn the candidate cluster assignments at the end of

each iteration.

This intermediate information can sometimes reveal information about the parties’ data.

For example, consider a database consisting of n objects, say d1, . . . , dn, and suppose that

each object has two attributes x and y. Further assume that Alice has the values corre-

sponding to the attribute x and Bob has values corresponding to the attribute y. Suppose
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d1[x] = d2[x] = · · · = dn[x] = 0, dn[y] = 4, and d1[y] through dn−1[y] ranges from 0 to 3.

Suppose d1, d3 and dn are chosen as the initial choices for the means (k = 3). If one of the

clusters in the next iteration contains only dn, then Alice can guess that dn[y] is close to 4.

But the result of the final iteration may not have a cluster having dn[y] as a single point.

However, the likelihood of examples such as this occurring can be reduced by choosing the

initial means at random.

Within each iteration, both parties gets their shares of the cluster. They can calculate

their shares of the k means. As discussed in Sections 4.3.1 and 4.3.2, the protocols to

compute closest cluster and to recalculate the mean do not reveal any additional information

other than the assignment of the cluster to the objects and a random share of the means.

We note that our protocol when restricted to vertically partitioned data, is similar to the

one given by Vaidya and Clifton [133] when restricted to two parties. The communication

complexity and the privacy of our protocol is essentially the same as theirs. Our protocol

when restricted to horizontally partitioned data is similar to the one given by Jha, Kruger,

and McDaniel’s [80]. The communication complexity and the privacy of our protocol is same

as theirs. The protocols presented in [133, 80] and our protocol presented in Section 4.3

leak the candidate cluster assignments at the end of each iteration. In Section 4.5, we

present a modification of the Protocol 5 which prevents Alice and Bob from learning the

candidate cluster assignments.

4.5 Enhancing Privacy

As discussed in Section 4.4, the protocol of Section 4.3 has a leak—it reveals the candidate

cluster assignments at the end of each iteration. In this section, we outline a modified

version of the protocol which eliminates this leak, thus achieving the same level of privacy
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as in the TTP model. This new protocol is the same as Protocol 5, except for Steps 3b and

3c. The basic idea is to randomly share the cluster assignments between the two parties

in each iteration and use those random shares to recompute the mean. Let dci denote the

cluster assignment of the object di at the end of an iteration. We associate with each object

di a k-bit vector ei, 1 ≤ i ≤ n where for 1 ≤ j ≤ k,

ei,j =

⎧⎪⎪⎨
⎪⎪⎩

1 if dci = j

0 otherwise

In the modified protocol, Alice and Bob compute as random shares the distance between

an object di and each of the k cluster centers (Section 4.3.1). Then, they use Yao’s circuit

evaluation protocol [145] to compute random shares of ei. Let e
A
i denote Alice’s share of ei

and eBi denote Bob’s share such that ei,j ≡ eAi,j + eBi,j mod N . This step ensures that cluster

assignments in each iteration are not available to either Alice or Bob.

The next step is to recompute the cluster centers at the end of each iteration, given that

the cluster assignment for each object is randomly shared between Alice and Bob. Without

loss of generality, assume di,p1 , . . . , di,ps belong to Alice and the rest of the �− s attributes

belong to Bob. Note that for each 1 ≤ j ≤ k,

∑
di, where dci=j

di,m =
n∑

i=1

ei,j · di,m

=
n∑

i=1

eAi,j · di,m +
n∑

i=1

eBi,j · di,m

In the first term, Alice computes the sum that involves the components di,p1 , . . . , di,ps .

Alice and Bob invoke the scalar product protocol to compute the random shares of the rest

of the first term. They compute the random shares of the second term similarly. Let us

denote the shares of Alice and Bob as sj and tj respectively. Given eAi,j and eBi,j, Alice and
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Bob need to compute the total number of di for each 1 ≤ j ≤ k such that dci = j. Note that

for each 1 ≤ j ≤ k,

|{di,where dci = j}| =
n∑

i=1

ei,j

=

n∑
i=1

eAi,j +

n∑
i=1

eBi,j

Alice computes the first sum and Bob computes the second. Let us denote their shares as

nj and mj respectively. This does not involve any communication between Alice and Bob.

The random shares of the cluster centers given by

sj + tj
nj +mj

are computed using Yao’s circuit evaluation protocol [145]. Alternatively, one could use

Bunn and Ostrovsky’s division protocol [16], which was presented after the initial publica-

tion of our results [76].

Yao’s circuit evaluation protocol uses O(sk logN) bits of communication to compute ei

for each 1 ≤ i ≤ n. Computing the sums of di,m requires O(nw) bits of communication

for each attribute 1 ≤ m ≤ � and for each of the k clusters. Computing the random

shares of the cluster centers involves a communication of O(ks� logN). Hence the overall

communication complexity is O(nk�(w + s logN), which is the same as that of Protocol 5.

The overall communication of this protocol remains O(nk�(w + s logN) when restricted

to horizontally or vertically partitioned databases. However, for horizontally partitioned

databases, we present in Chapter 5 a different fully private k-clustering algorithm with the

overall communication complexity of O(k2�(w + s logN)).
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4.6 Summary

This chapter has two main contributions. First, we introduce the idea of arbitrarily parti-

tioned data, which is a generalization of both horizontally and vertically partitioned data.

Protocols in this model can be applied to both horizontally and vertically partitioned data,

as well as to data anywhere in between. Second, we provide privacy-preserving k-means

clustering algorithm over arbitrarily partitioned data.
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Chapter 5

Communication-Efficient Privacy-Preserving Clustering

Algorithms

5.1 Introduction

Many of the privacy-preserving clustering protocols available in the literature convert exist-

ing clustering algorithms into privacy-preserving protocols. The resulting protocols may ei-

ther leak intermediate information [133, 80], thereby breaching privacy or have high commu-

nication complexity [76, 16, 116]. These protocols, except [116], use k-means whereas [116]

uses BIRCH. All of these either have at least linear communication (in the number of

records in the database) or do not provide full privacy. One could alternately develop

privacy-preserving versions of other k-clustering algorithms such as CLARANS [109] and

STREAMLS [63]. However, CLARANS is an in-memory algorithm, and hence does not

scale well to large databases. The STREAMLS algorithm depends on repeatedly solving a

facility-location problem using a local search algorithm, and then finally applying a linear

programming based clustering algorithm. Each of these subroutines (local search and linear

programming) can be complicated to perform privately.

In this chapter, we describe a k-clustering algorithm that we specifically designed to

be converted into a communication-efficient protocol for private clustering. The resulting

protocol does not leak any information about the original data. Our algorithm is also I/O-

efficient in that each data item is examined only once, and it only uses sequential access
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to the data. We also present a modified form of our k-clustering algorithm that works for

data streams.

5.1.1 Our Contributions

In this chapter, we present a simple deterministic algorithm called ReCluster for I/O-efficient

k-clustering. This algorithm examines each data item only once and uses only sequential

access to the data. For fixed k, the time complexity of the algorithm is linear in the number

n of items in the database and the space complexity is O(log n). We present results from the

application of the algorithm to synthetic data and realistic data, and compare our results

with the well-known iterative k-means clustering algorithm and BIRCH. Our results show

that ReCluster, on average, is more accurate in identifying cluster centers than the k-means

clustering algorithm and compares well against BIRCH. We also experimentally show that

ReCluster requires substantially less memory than BIRCH. We note that although there have

been other clustering algorithms that improve on the k-means clustering algorithm, this is

the first for which a sublinear-communication cryptographic privacy-preserving version has

been demonstrated. ReCluster works only on numeric data. We also present a modified form

of the ReCluster algorithm called StreamCluster which is intended to work on data stream

inputs.

We also demonstrate that the ReCluster algorithm lends itself well to privacy-preserving

computation. Specifically, we present a privacy-preserving version of the ReCluster algo-

rithm, for two-party horizontally-partitioned databases. This protocol is communication-

efficient and it reveals only the final cluster centers (or the cluster assignments of data)

to both parties at the end of the protocol. This protocol does not reveal the intermediate
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Algorithm 3 ReCluster

Input: Database D, Integer k
Output: Cluster centers S

1. S′ = RecursiveCluster(D, 2k) // Produce 2k clusters

2. S = MergeCenters(S′, k) // Compress to k clusters

3. Output S

candidate cluster centers or intermediate cluster assignments. Although an interesting clus-

tering algorithm in its own right, ReCluster was explicitly designed to be converted into a

communication-efficient privacy-preserving protocol.

We present our k-clustering algorithm in Section 5.3. In Section 5.4, we present ex-

perimental results comparing our algorithm with the k-means clustering algorithm and

BIRCH. We present the privacy-preserving clustering protocol with performance analysis

and comparison to other private clustering algorithms in Section 5.5.

5.2 Preliminaries

Throughout this chapter, we use n to denote the size of the database, � to denote the

number of attributes, and k denotes the number of clusters. Our solution also makes use of

encryption in various places. We use c to denote the maximum number of bits required to

represent any public key encryption and s to denote the maximum number of bits required

to denote any symmetric key encryption. All computations are performed in a field F of

size N .
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Algorithm 4 RecursiveCluster

Input: Database D, Integer k
Output: Cluster centers S

If ( |D| ≤ k ) then S = D
Else

1. D1 = First half of D

2. D2 = Second half of D

3. S1 = RecursiveCluster(D1, k)

4. S2 = RecursiveCluster(D2, k)

5. S = MergeCenters(S1 ∪ S2, k)

End If
Output S

5.3 The k-Clustering Algorithm

In this section we present our new algorithm, ReCluster, for k-clustering. We also present

an extension of the algorithm to data streams and a distributed (non-private) version of

ReCluster. ReCluster was explicitly designed to be converted into a communication-efficient

privacy-preserving protocol. We experimentally show that the cluster centers produced by

ReCluster are comparable with the ones produced by other well known algorithms such as

k-means and BIRCH. Experimental results are given in Section 5.4.

5.3.1 Overview

ReCluster makes the assumption that both parties know the size of the data set before

running the algorithm. Our algorithm runs in the typical “divide, conquer and combine”

fashion used in algorithms such as MergeSort. Strictly speaking, this strategy would require

us to divide the database into two equal halves, recursively produce k cluster centers from

each of the halves, and then “merge” these 2k centers into the k final centers. However,

we take a slightly different approach, similar to that used by Guha et al. in [64]. Instead
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of generating k centers from each recursive call, we produce 2k cluster centers from each

recursive call, and then merge the total of 4k centers thus received into 2k centers1. (That

is, the RecursiveCluster algorithm is initially invoked with the second input parameter

being set to 2k, where k is the desired number of clusters.) A final post-processing step

uses the same merge technique to produce the k final centers from the 2k clusters returned

from the top-most level of the recursion tree. The top level of ReCluster is presented in

Algorithms 3 and 4. The subroutine for merging clusters is described in Algorithm 5. This

latter algorithm depends on a notion of merge error which is described in Section 5.3.1. For

a data set of n elements, the overall time complexity of the algorithm is O(nk2).

Error Measure.

The key step in ReCluster is the merging of 4k centers into 2k centers after the two recursive

calls. For this step, we use a variation of the notion of error defined in Ward’s algorithm for

bottom-up hierarchical clustering [137]. Let C1 and C2 be two clusters being considered for

a merge at some stage. Associated with each cluster center C is a weight (denoted C.weight),

which is the number of objects that are assigned to that cluster. In Ward’s algorithm the

error of C1 ∪ C2 is defined as

errorw(C1 ∪ C2) =
C1.weight ∗ C2.weight ∗ dist2(C1, C2)

C1.weight+ C2.weight
,

where dist(C1, C2) is defined as the Euclidean distance between the center of C1 and the

center of C2. ReCluster defines the error of the union as

errorr(C1 ∪ C2) = C1.weight ∗ C2.weight ∗ dist2(C1, C2).

1When the number of items in the database cannot be expressed in the form k2x for some integer x, the
base case of the RecursiveCluster function may end up producing clusters with fewer than k centers. This
has been experimentally seen to sometimes produce poor clusterings.
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Algorithm 5 MergeCenters

Input: Cluster centers S, Integer k
Output: Cluster centers S, such that |S| = k

1. While ( |S| > k )

(a) Compute the merge error for all pairs of centers in S.

(b) Remove from S the pair with the lowest merge error, and insert the center of the
merged cluster, with its weight as the sum of the weights of the pair.

End While

2. Output S

In most situations, the pair of clusters that is chosen for merging is the same whether

we define error of the union as errorw or as errorr. However, there are conditions where

the choices made using the two error measures are different. Consider two cluster pairs

(Cp, Cq) and (Cs, Ct) such that dist(Cp, Cq) ≈ dist(Cs, Ct) and Cp.weight ∗ Cq.weight ≈

Cs.weight ∗ Ct.weight, but Cp.weight � Cq.weight and Cs.weight ≈ Ct.weight. That is, the

distance between the cluster centers of the first pair is the same as the distance between

the cluster centers of the second pair, but cluster Cp has many more objects in it compared

to Cq, while clusters Cs and Ct have about the same number of objects.

If we use errorw to decide which of the two pairs gets merged, we would merge the pair

(Cp, Cq), while errorr would favor the merger of (Cs, Ct). See Figure 5.1. Our experiments

indicate that using errorr in ReCluster makes the algorithm less susceptible to noise, because

noise objects (which do not clearly belong to any cluster) resemble low-weight clusters.

Given this definition of error, the compression of a set S of 4k clusters into 2k clusters

is obtained by repeatedly:

1. choosing a pair of clusters Ci and Cj such that the error of their union is minimum

among all such pairs,
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weight = 100

Cp Cq Cs Ct

weight = 2 weight = 14 weight = 14

Figure 5.1: The effect of choosing errorr over errorw. ReCluster prefers to merge Cs and Ct,
Ward’s algorithm would prefer to merge Cp and Cq.

2. deleting from S the clusters Ci and Cj , and

3. inserting into S the new cluster Ci ∪ Cj.

The weight of this new cluster is Ci.weight+ Cj .weight. See Algorithm 5.

5.3.2 Extension to Data Streams

In this section we modify the ReCluster algorithm to work on data streams. The main idea

is to eliminate recursion since the number of data items to be clustered is not known ahead

of time.

The algorithm (see Algorithm 6) can be said to be “incrementally agglomerative.” That

is, the algorithm merges intermediate clusters without waiting for all the data to be avail-

able. At the beginning of each iteration, the algorithm holds a number of intermediate

k-clusterings. We associate with each such k-clustering a level, a concept similar to the one

in [63]. When two k-clusterings at level i are “merged” to form a new k-clustering, this new

clustering is said to be at level (i+ 1). We also associate with each cluster a weight, which

is the number of data points in that cluster. Each cluster is represented by its center, which

is the mean of all points in it.

In each iteration, the algorithm adds the next k data points as a level-0 intermediate k-

clustering. If the algorithm detects two k-clusterings at level i in the list, these are “merged”
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Algorithm 6 StreamCluster

Input: Database D, Integer k
Output: Cluster centers S

Repeat as long as data remains:

1. Read the next k items from D as a level-0 k-clustering.

2. Add the level-0 clustering to the vector V of intermediate clusterings.

3. While V [last ].level = V [last − 1].level

(a) V [last − 1] = MergeCenters(V [last − 1] ∪ V [last ], k)

(b) V [last − 1].level = V [last − 1].level + 1

(c) Remove V [last ] from V .

4. If an output is needed, union all intermediate clusterings in V and return output from
MergeCenters.

(using the MergeCenters routine, see Algorithm 5) into a k-clustering at level (i+ 1).

When a k-clustering needs to be output after some points have been read from the data

stream, all intermediate k-clusterings at all levels are “merged” using MergeCenters into a

single k-clustering.

For a data stream of n elements, the overall time complexity of the algorithm is O(nk2).

The amount of memory required to store the O(log n
k ) intermediate k-clusterings isO(k log n

k ).

5.3.3 Distributed k-Clustering Protocol for Two Parties

We next present the distributed version of our protocol, which forms the basis for the

privacy-preserving clustering protocol to be presented in Section 5.5. We assume that Alice

holds the data set D1 and Bob holds D2. The protocol runs as follows:

1. Alice uses the ReCluster algorithm on the data set D1 to compute 2k intermediate

cluster centers.

2. Bob computes 2k cluster centers using his data set D2.
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3. Alice sends her intermediate cluster centers to Bob.

4. Bob takes the union of all the intermediate clusters and uses the MergeCenters routine

to obtain the k final cluster centers.

5.4 Experimental Results

In this section we present our experimental results that show the ability of ReCluster and its

extensions to accurately identify clusters, as measured by the error sum of squares. We ran

our experiments on a large number of synthetic and realistic data sets. All algorithms were

implemented in C++ and experiments were run on a Windows-based personal computer

with an AMD 3500+ CPU and 3 GB of main memory. We first describe in Sections 5.4.1

and 5.4.2 the datasets that we use. Results are given in Section 5.4.3 for the basic algorithm

and in Section 5.4.4 for the distributed algorithm.

5.4.1 Synthetic Data Generator

To test ReCluster’s ability to accurately identify clusters, we generated three types of syn-

thetic data sets, namely Random Centers, Grid data sets, and Offset Grid data sets. We de-

scribe these data sets below. These data sets are similar to the ones used in [146, 65, 66, 105].

Each data set consists of points distributed in 2D space. Our synthetic data set generator

takes a number of parameters:

• The number k of clusters.

• The range [nl, nu] of the desired number of points in each cluster.

• The parameters sw and sh which denote the width and the height, respectively, of the

space in which data points are generated.
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Parameter Value

Number of clusters, k 5

Min. number of points per cluster, nl 900

Max. number of points per cluster, nu 1100

Min. major radius of cluster, ral 30

Max. major radius of cluster, rau 50

Min. minor radius of cluster, rbl 30

Max. minor radius of cluster, rbu 50

Max. X-axis value, sw 500

Max. Y-axis value, sh 500

Add noise y

Table 5.1: Sample parameters for our synthetic data set generator while generating a Ran-
dom Centers data set

In one collection of data sets that we call Random Centers, the clusters are chosen as

ellipses with major radius ra chosen in the defined range [ral, rau] and minor radius rb chosen

in the defined range [rbl, rbu]. (When ra = rb we get circular clusters.) The cluster centers

are positioned randomly in the space within which points are generated. In the Grid data

sets and in the Offset Grid data sets, circular clusters are chosen with radius r, with all

clusters having the same radius. The cluster centers are placed on a
√
k ×√k grid. In the

case of the offset grid, the cluster centers are then randomly perturbed with small values in

the x and y directions. After the center and radius of each cluster is finalized, the synthetic

data generator then generates nc ∈ [nl, nu] points at random within the cluster. In all cases,

in addition to the points generated by the procedure above, we add 5% noise in the form

of data points uniformly distributed throughout the data set in order to explore how the

algorithm performs with noisy data. Table 5.1 illustrates a set of sample parameters for

these data sets. For each data set we ran the k-means algorithm 10 times, each run with

a different randomly chosen set of initial cluster centers. We compared the performance of

ReCluster against the average performance of the k-means algorithm.
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Each synthetic data set used either uniform distributions over some intervals or normal

distributions for generating clusters. Our figures do not include any of the normally dis-

tributed data since the results were essentially the same as for uniformly distributions. Our

experiments show that data ordering has a low effect on the output of our algorithm. This

is possibly because the MergeCenters routine acts as a global optimizer.

5.4.2 Realistic Data

In order to test the ability of ReCluster to accurately identify clusters on large realistic

data sets, we chose the network intrusion data set used in the 1999 KDD Cup [85]. We

compared the error sum of squares (ESS) of ReCluster against BIRCH. This data set contains

information about five million network connections. The vast majority of these data points

are about benign network connections. A small fraction of these connections represent

four different kinds of network intrusion attacks. We selected the 10% subset to run our

experiments. Each connection record is described in terms of 41 attributes, of which 34

are continuous. We projected out the 7 symbolic attributes for our experiments. Also, we

eliminated one outlier record. We set k to 5 in our runs of ReCluster and BIRCH.

5.4.3 Results for ReCluster

We present below the results of our experiments on synthetic data sets and on the network

intrusion data set. In order to show the ability of ReCluster to accurately identify clusters

we compute the error sum of squares for the centers detected by ReCluster. For some of the

data sets we also visually present the clusters and the detected centers as a demonstration

of the clustering algorithm.

In Figure 5.2, we present the results from a typical experiment on a Random Centers data
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True centers ×107 Recluster centers ×107 Average for k-means centers ×107
5.52 5.71 7.25

8.14 8.87 11.99

8.77 9.31 14.1

5.68 5.71 7.42

6.13 6.34 7.68

6.59 6.85 8.88

7.48 7.52 13.35

10.04 10.69 14.84

5.65 5.64 11.91

6.55 7.02 8.60

Table 5.2: The error sum of squares for a subset of the Random Centers data sets. In each
case the number of clusters was 5, with approximately 10,000 points in each cluster. Noise
was added at the rate of 5%.

set, which is a synthetically generated data set with randomly positioned cluster centers.

We created 50 such data sets. In 25 of the 50 cases, we distributed data points using

a uniform distribution within each cluster, and the remaining data sets used Gaussian

distributions. Figure 5.2 shows a data set in which the points were distributed using the

uniform distribution. ReCluster does very well in identifying cluster centers, even in the

presence of noise. However, in four out of these 25 data sets ReCluster placed the center

of a cluster outside the cluster, albeit close to the cluster itself. See Figure 5.3 for such a

data set. Also shown in Figure 5.3 are the centers identified in the best run of k-means

algorithm. On this particular data set the k-means algorithm failed to identify all cluster

centers on four of the 10 runs. In Table 5.2 we present the error sum of squares for ReCluster

and k-means on 10 of these Random Centers data sets.

The average running time for ReCluster over all the uniform distribution data sets, which

had about 51,000 points on average, was 1.06 seconds, and the average running time for the

k-means algorithm was 8.09 seconds.

In Figure 5.4, we present the results from experiments on a Grid data set, which is
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Figure 5.2: This synthetic data set consists of about 10,000 points concentrated around
each randomly chosen cluster center plus 5% “noise” points occurring elsewhere. The points
concentrated at each chosen cluster center are illustrated by a large open ellipse around each
center. The noise points are shown as points. Cluster centers shown are those identified by
(a) ReCluster (ESS = 5.71×107) (b) the worst run of k-means algorithm (ESS = 8.49×107)
and (c) the best run of k-means algorithm (ESS = 5.48 × 107) are denoted by x.
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Figure 5.3: An example data set in which ReCluster did not accurately identify all cluster
centers. The data set consists of about 10,000 points concentrated around each randomly
chosen cluster center plus 5% “noise” points occurring elsewhere. The points concentrated
at each cluster center are illustrated by a large open ellipse around each center. The noise
points are shown as points. Also shown are the centers identified by the best run of the
k-means algorithm denoted as.

a synthetically generated data set with cluster centers positioned on a grid. We ran our

experiments on two such data sets and Figure 5.4 represents one of them. As can be seen,

ReCluster accurately identifies the centers of all clusters. On the other hand, for this data

set not even the best run of the k-means algorithm identified all 25 cluster centers. The

worst run of k-means did not identify even half of the cluster centers. In Figure 5.5 we

present the results on an Offset Grid data set. ReCluster was quite successful in identifying

all cluster centers, which k-means did not do even on its best run.

In Table 5.3 we present the result of our experiment on the Network Intrusion data.

As our results indicate, ReCluster does extremely well relative to BIRCH in this data set.

BIRCH needs more than 32 times as much memory as used by ReCluster, to find five clusters.

Even when given 128 times as much memory as ReCluster, BIRCH does not perform nearly

as well as. Perhaps with much more memory BIRCH could perform better.
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Figure 5.4: Cluster centers identified in a grid data set. The data set consists of about 1000
points concentrated around each grid point plus 5% “noise” points occurring elsewhere. The
points concentrated at each grid point are illustrated by a large open circle around each grid
point. The noise points are shown as points. On the left are cluster centers identified by
ReCluster. On the right are the best (identified by small filled circles) and worst (identified
by small open circles) runs of the k-means algorithm.

X

X

X

X

X
X

X

X

X

X
X

X

X

X
X

X

X

X

X
X

X

X

X

X

X

Recluster ESS = 3.37 × 107 Average k-means ESS = 1.01 × 108

Figure 5.5: Cluster centers identified in an offset grid data set. The data set consists of
about 1000 points concentrated around each grid point plus 5% “noise” points occurring
elsewhere. The points concentrated at each grid point are illustrated by a large open circle
around each grid point. The noise points are shown as points. On the left are cluster
centers identified by ReCluster. On the right are the best (identified by small filled circles)
and worst (identified by small open circles) runs of the k-means algorithm.
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Algorithm Mem. Allowed ESS
(× 24000 bytes)

ReCluster 1 4.11259E14

BIRCH 1 *

BIRCH 2 *

BIRCH 4 *

BIRCH 32 *

BIRCH 64 4.83018E17

BIRCH 128 4.8299E17

Table 5.3: Comparison of the error sum of squares for the network intrusion 10% data set.
An asterisk indicates that BIRCH failed to find five clusters due to insufficient memory.

5.4.4 Results for Distributed ReCluster

The synthetic data set generator can also generate data sets for the two-party distributed

k-clustering problem. In addition to the parameters mentioned in Section 5.4.1, the user

can input how the clusters are to be apportioned between the two parties, and how much

data about one party’s clusters are also known to the other party.

Although similar in its essentials to ReCluster, the distributed clustering protocol in

Section 5.3.3 is not identical to ReCluster. The ReCluster algorithm splits the data set into

two equal halves, then recursively clusters each half, following which it merges the clusters

from both halves. In contrast, the distributed algorithm first operates on each parties’ data

independently, regardless of the relative sizes of the data sets hold by the two parties. We

make no assumptions about the relative sizes of the data sets held by the two parties, and one

party could have far more data than the other. Given this distinction, it is not immediately

obvious that the distributed clustering algorithm would have properties similar to that of

ReCluster. To test the effectiveness of this distributed algorithm, we ran experiments where

the parties had different proportions of the total data. In one set of experiments, the first

party had twice as many data points per cluster as the second. In the second set, the first
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party had five times as many data points as the second. Within each set, we also varied the

“separation” between the two parties so that in some cases, the two parties had knowledge

of no clusters in common. That is, some clusters were entirely “owned” by the first party

and the others were entirely “owned” by the second. In other cases, each party had some

fraction of the data points that belong to clusters that were primarily owned by the other

party. In all cases, we compared the results to the k-means clustering algorithm on the

combined data. Some typical runs are presented in Figures 5.6 and 5.7. As can be seen,

the distributed clustering protocol has performance close to that of k-means.

5.5 Privacy-Preserving k-Clustering Protocol

We now describe our privacy-preserving protocol for k-clustering based on the distributed

ReCluster algorithm presented in Section 5.3. Two parties Alice and Bob who own databases

D1 = {d1, . . . , dm} and D2 = {dm+1, . . . , dn}, respectively, wish to jointly compute a k-

clustering of D1 ∪ D2. At the end of the protocol both parties learn the final k cluster

centers. The parties learn nothing else. We assume that Alice and Bob are semi-honest.

5.5.1 Overview of the Private Clustering Protocol

We now describe the private protocol. Alice and Bob separately use the ReCluster algorithm

to compute 2k clusters each from their own shares of the data. Next, they randomly share

their cluster centers with each other using the permute share protocol described in detail

in Section 5.5.2. At this point, Alice and Bob have random shares of 4k cluster centers.

They again use the permute share protocol to prevent each party keeping track of the cluster

centers across iterations.

The two parties use the secure merge clusters protocol, described in detail in Section
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Figure 5.6: Some typical runs of the distributed clustering algorithm. The data sets consists
of about 20,000 points concentrated around each randomly chosen cluster center owned by
the first party (denoted by 1), 10,000 points concentrated around each randomly chosen
cluster center owned by the second party (denoted by 2), plus 5% “noise” points occurring
elsewhere. The points concentrated at each cluster center are illustrated by a large open
ellipse around each center. The noise points are shown as points. Figures (a) and (b) are
example data sets in which the first party “owns” the data for three of the clusters and the
second party has data for the two remaining clusters. Figures (c) and (d) are example data
sets in which the first party has data for four of the clusters and the second party has data
for only one cluster. In Figures (a) and (c) each party has 25% of the data from the other
party’s clusters. In Figures (c) and (d) each party has no information regarding the clusters
of the other party. In all cases the letter X marks the centers detected by the distributed
clustering protocol. Also shown are the error sum of squares value for distributed ReCluster
and the average error sum of squares for k-means.
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Figure 5.7: Typical runs of the distributed clustering algorithm on more “skewed” data.
Clusters owned by the first party have five times as many points as clusters owned by the
second party (5000 points on average versus 1000 points on average). The first party’s
cluster centers are denoted as 1 and the second party’s cluster centers are denoted as 2.
Each party has no data about the clusters owned by the other party. In all cases the letter
X marks the centers detected by the distributed ReCluster protocol. Also shown are the
error sum of squares value for distributed ReCluster and the average error sum of squares
for k-means.

5.5.3, to iteratively merge the 4k clusters into k clusters. If the input to the merge clusters

protocol is j cluster centers, then at the end of the protocol, Alice and Bob obtain as

output a random sharing of j − 1 cluster centers. At the end of 3k joint executions of the

merge clusters protocol, they obtain a random sharing of k cluster centers. The parties may

send each other their cluster center shares so that they obtain the actual cluster centers of

the joint data.2 This privacy-preserving ReCluster protocol does not leak any intermediate

information.

Protocol 6 illustrates the overall privacy-preserving ReCluster protocol. In the rest of

this section, we describe in detail the subprotocols used. In Section 5.5.2, we describe the

protocol that securely permutes and shares data between two parties. In Section 5.5.3, we

present a secure protocol that merges clusters.

2If they wish to learn the assignment of the cluster numbers to the objects they own, they can securely
compute the cluster numbers using the shared cluster centers without revealing the cluster centers.
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Protocol 6 Privacy-preserving k-clustering protocol

Protocol Private K Clustering

Input: Database D consisting of n objects, where Alice owns D1 = (d1, . . . , dm)
and Bob owns D2 = (dm+1, . . . , dn),
and an integer k denoting the number of clusters.

Output: Assignment of cluster numbers to objects

1. Alice computes using the ReCluster algorithm 2k cluster centers from her data objects
{d1, . . . , dm} and Bob computes using the ReCluster algorithm 2k cluster centers from
his data objects {dm+1, . . . , dn}.

2. Alice and Bob jointly share the cluster centers computed in Step 1 with each other.

(a) Let (c1, w1), . . . , (c2k, w2k) denote Alice’s cluster centers. Here ci denote
the ith center and wi denotes its corresponding weight. Similarly let
(c2k+1, w2k+1), . . . , (c4k, w4k) denote Bob’s cluster centers.

(b) Bob chooses a random permutation φ1 and random values r1, . . . , r2k, s1, . . . , s2k.
They engage in a secure permute share protocol and obtain random shares of
Alice’s 2k cluster centers.

(c) Alice chooses a random permutation φ2 and random values p1, . . . , p2k,
q1, . . . , q2k. They engage in a secure permute share protocol and obtain random
shares of Bob’s 2k cluster centers.

(d) Now Alice has (cA1 , w
A
1 ), . . . , (c

A
4k , w

A
4k) and Bob has (cB1 , w

B
1 ), . . . , (c

B
4k, w

B
4k). Bob

chooses a random permutation φ3 and random values α1, . . . , α4k, β1, . . . , β4k.
They engage in a secure permute share protocol and obtain random shares of
Alice’s data.

(e) Bob adds the shares he obtains from Step 2d to his data. Alice chooses a random
permutation φ4 and random values γ1, . . . , γ4k, δ1, . . . , δ4k. They engage in a
secure permute share protocol and obtain random shares of Bob’s data. Alice
adds the shares she obtains from Step 2e to her data.

At the end of Step 2, denote Alice’s share of 4k cluster centers by
(cA1 , w

A
1 ), . . . , (c

A
4k, w

A
4k) and Bob’s share by (cB1 , w

B
1 ), . . . , (c

B
4k, w

B
4k).

3. Repeat the protocol merge clusters 3k times to merge 4k clusters into k clusters.
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5.5.2 Secure Protocol to Share Data

When Alice has a vector of clusters C of the form ((c1, w1), . . . , (ck, wk)), this protocol

helps Bob to obtain a permuted random share of the vector C. (Here each ci is a cluster

center, and wi is its weight.) At the beginning of the protocol, Alice and Bob agree on

a homomorphic encryption scheme. Bob chooses a random permutation φ and a random

vector R = ((r1, s1), . . . , (rk, sk)). At the end of the protocol Bob holds φ(R) and Alice

receives φ(C + R). This protocol is similar to the permutation protocol introduced by Du

and Attalah [38]. We briefly describe the protocol in Protocol 7.

Communication and Computational Complexity

Alice and Bob send k encrypted pairs to each other. If we assume that it takes c bits to

represent each encryption then the total communication complexity is O(kc). The esti-

mation of the computational complexity involves the counting the number of encryptions,

decryptions and exponentiations. Alice performs O(k) encryptions and O(k) decryptions,

while Bob performs O(k) encryptions. The number of exponentiations required by both

Alice and Bob is O(k).

Privacy

If Alice and Bob were to use a trusted third party, then at the end of the protocol, Alice

learns φ(C + R) and Bob learns φ(R). In our privacy-preserving protocol, Alice and Bob

communicate using a semantically secure encryption scheme. Thus, Alice learns only her

output and nothing else.
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Protocol 7 Secure protocol to share data

Protocol permute share

Input: Alice has a vector of cluster centers C of the form ((c1, w1), . . . , (ck, wk)),
Bob has a random permutation φ and a random vector
R = ((r1, s1), . . . , (rk, sk)).

Output: Alice obtains φ(C +R) as output.

1. Alice chooses a key pair (pk, sk) and sends the public key pk to Bob.

2. Alice computes the encryption of the vector C as ((E(c1), E(w1)), . . . , (E(ck), E(wk)))
and sends to Bob.

3. Bob uses the property of the homomorphic encryption scheme to compute φ((E(c1 +
r1), E(w1 + s1)), . . . , (E(ck + rk), E(wk + sk))) and sends to Alice.

4. Alice decrypts to obtain her share φ((c1+r1, w1+s1), . . . , (ck+rk, wk+sk)) and Bob’s
share is φ((−r1,−s1), . . . , (−rk,−sk)).

5.5.3 Secure Protocol to Merge Clusters.

We now describe a protocol that securely merges m clusters into m− 1 clusters where the

cluster centers are shared between Alice and Bob. Let {(cA1 , wA
1 ), . . . , (c

A
m, wA

m)} denote

Alice’s share of the cluster centers and {(cB1 , wB
1 ), . . . , (c

B
m, wB

m)} denote Bob’s share of

the cluster centers. Here c’s denote the cluster centers and w’s denote the weight of the

corresponding clusters, where cAi = (aAi1, . . . , a
A
i�), c

B
i = (aBi1, . . . , a

B
i�) for 1 ≤ i ≤ m and �

denotes the number of attributes.

Alice and Bob jointly compute the merge error for all pairs of clusters. For two clusters

Ci and Cj , for 1 ≤ i < j ≤ m, the merge error is given by

error(Ci ∪ Cj) = Ci.weight ∗ Cj .weight ∗ (dist(Ci, Cj))
2

= (wA
i +wB

i ) ∗ (wA
j + wB

j ) ∗ (dist(Ci, Cj))
2

= (wA
i ∗ wA

j + wB
i ∗ wB

j + (wB
i ∗ wA

j + wA
i ∗ wB

j )) + (dist(Ci, Cj))
2

where

(dist(Ci, Cj))
2 =
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(dist((aAi1 + aBi1, . . . , a
A
i� + aBi�), (a

A
j1 + aBj1, . . . , a

A
j� + aBj�))

2

=

�∑
k=1

((aAik + aBik)− (aAjk + aBjk))
2

=

�∑
k=1

(aAik − aAjk)
2 +

�∑
k=1

(aBik − aBjk)
2 + 2

�∑
k=1

(aAik − aAjk)(a
B
ik − aBjk)

The first term of the distance function is computed by Alice and the second term is

computed by Bob. Alice and Bob use a secure scalar product protocol to compute the

random shares of the third term. Similarly the scalar product protocol can be used to

compute the random shares of (wB
i ∗ wA

j + wA
i ∗ wB

j ). We have

error(Ci ∪ Cj) = eAij + eBij .

where eAij is the random share of the error known to Alice and eBij is the random share of

the error known to Bob, and

eAij = (wA
i ∗ wA

j ) + αij +

�∑
k=1

(aAik − aAjk)
2 + γij

eBij = (wB
i ∗ wB

j ) + βij +

�∑
k=1

(aBik − aBjk)
2 + δij

αij + βij = (wB
i ∗ wA

j + wA
i ∗ wB

j ))

γij + δij = 2

�∑
k=1

(aAik − aAjk)(a
B
ik − aBjk).

All of these computations are done in a finite field of size N .

Alice and Bob have
(
m(m−1)

2

)
-length vectors (eAij) and (eBij), respectively, where 1 ≤

i < j ≤ m, with m being the number of clusters. They securely compute the indices i and

j such that (eAij) + (eBij) is minimum using Yao’s circuit evaluation protocol [145]. Both

Alice and Bob learns the indices i and j. Since m2 is typically quite small, particularly in

comparison to the number of data items, the overhead this requires should be fairly small.
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The next step is to eliminate the ith and the jth cluster centers and jointly compute

the new cluster center and the corresponding weight as random shares. The pth coordinate

of the new cluster center is given by

wi ∗ aip + wj ∗ ajp
wi + wj

=
(wA

i + wB
i ) ∗ (aAip + aBip) + (wA

j + wB
j ) ∗ (aAjp + aBjp)

wA
i + wB

i

This can be computed as random shares using a secure scalar protocol [60] and using Yao’s

circuit evaluation protocol [145]. Alternatively, instead of using Yao’s circuit evaluation

protocol one could use Bunn and Ostrovsky’s division protocol [16].

Communication and Computational Complexity

For each pair of clusters, this protocol computes the merge error, finds the indices for which

the error is minimum and recomputes the new cluster center and weight for the merged

pair of clusters. Each object has � components. Communication is involved when the two

parties engage in the secure scalar product protocol to compute the merge error of each pair

of clusters. The scalar product protocol is invoked once between two vectors of length �.

The communication complexity for one invocation of the scalar product protocol is O(c�).

Hence, O(m2) pairs of error computations involve a communication complexity of O(m2c�),

where c is the maximum number of bits required to represent each encryption.

Yao’s circuit evaluation protocol [145] is invoked once per comparison and it takes

O(s logN) bits of communication. The total communication for finding the minimum of m2

elements is O(m2s logN). Recomputing the cluster centers and the corresponding weights

for the merged clusters involve constant bits of communication. The total communication

complexity for one invocation of secure merge clusters protocol is O(m2s logN)+O(m2c�) =

O(m2(s logN + c�)).
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For the merge clusters protocol, a secure scalar product protocol between vectors of

length � is executed for each pair of clusters. For each execution of the scalar product,

Alice performs � encryptions and one decryption and Bob performs one encryption and �

exponentiations. Yao’s protocol requires O(m2 logN) invocations of OT2
1. So, the overall

computational complexity for an invocation of the merge clusters protocol is O(m2�) encryp-

tions and O(m2) decryptions for Alice, and O(m2�) exponentiations and O(m2) encryptions

for Bob.

Privacy

The merge clusters protocol securely merges m clusters into m−1 clusters without revealing

any information. At the beginning of the protocol, the initial cluster centers and the weights

are randomly shared between Alice and Bob. The merge error of the cluster pairs are

calculated as random shares between Alice and Bob using the scalar product protocol. The

scalar product protocol leaks no information and returns only random shares. Yao’s circuit

evaluation protocol securely computes the cluster pairs that gives a minimum error. The

output of the protocol is a random share of the merged m− 1 cluster centers.

5.5.4 Overall Privacy and Performance of the Private ReCluster Protocol

Privacy

For privacy requirements, we compare this protocol with the one that uses the trusted third

party (TTP). When a TTP is used the two parties send the data objects owned by them

to the TTP. The TTP computes the cluster centers and send them to both parties. Both

parties do not receive any other additional information other than the k cluster centers.

In our privacy-preserving clustering protocol, both parties compute 2k clusters each
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independently from the data objects owned by them. They communicate with each other

when they merge the 4k clusters into k clusters. The merge clusters protocol does the

merging using secure permute share protocol, the scalar product protocol, and the Yao’s

protocol. These protocols are secure. They do not leak any information. The cluster centers

at the end of the merge clusters protocol are obtained as random shares between the two

parties. When the parties need to compute the cluster centers they exchange their shares

to each other. All the intermediate results are also available as random shares between the

two parties. Neither party can learn any information from the encrypted messages that

are communicated since the encryption scheme chosen is semantically secure. Hence the

privacy-preserving ReCluster protocol is secure and does not leak any information.

Communication and Computational Complexity

Alice and Bob initially compute 2k clusters each from their own data. They invoke the

permute share protocol four times to obtain a share of each others data. This requires a

communication of O(kc) bits where c is the maximum number of bits required to represent

each encryption. Alice and Bob jointly invoke the merge clusters protocol 3k times to

compute k cluster centers from 4k cluster centers. Each invocation of the merge clusters

protocol involves a communication of O(k2c(d+�)) bits, where � is the number of attributes

in each row of the table, and d is the maximum number of bits required to represent a

database entry. Hence the overall communication complexity is O(k3(s logN + c�)) bits.

In Step 1 of Protocol 6, Alice and Bob independently compute 2k clusters from their

own data. This involves a time complexity of O(nk2). The sharing of the data between

Alice and Bob in Step 2 requires O(k) encryptions and O(k) decryptions for Alice, and

O(k) encryptions and O(k) decryptions for Bob. They also perform O(k) exponentiations.
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The merge clusters protocol is invoked 3k times. The computational complexity is O(k3�)

encryptions, O(k3) decryptions for Alice, O(k3�) exponentiations and O(k3) encryptions for

Bob, and O(k3 logN) invocations of OT2
1.

We next compare the performance of our new privacy-preserving protocol with earlier

protocols for k-clustering [133, 80, 16, 116], as well as our own protocol presented in Chap-

ter 4. All of these results except [116] were based on the distributed k-means clustering

algorithm. The k-means algorithm computes candidate cluster centers in an iterative fash-

ion. The protocols presented in [133, 80] reveal the candidate cluster to which each object

has been assigned. As explained in Chapter 4, this intermediate information can sometimes

reveal some of the parties’ original data, thus breaching privacy. This leak can be prevented

by having the cluster assignments shared between the two parties. Bunn and Ostrovsky

give a secure protocol that does not leak this information [16]. The protocol presented in

Section 4.5 also does not leak any information. However, these protocols have a large com-

munication complexity of O((n+k)t) for horizontally partitioned data, where t is the number

of iterations of the k-means algorithm. In the expected setting, where n is very large, this

has a substantial impact. Prasad and Rangan [116] presented a privacy-preserving protocol

for BIRCH on arbitrarily-partitioned databases. This algorithm, when reduced to the case

of horizontally-partitioned databases, results in a communication complexity of O(n), where

n is the size of the database.

Our protocol suffers from neither of these drawbacks. Specifically, the communication

complexity does not depend on n. Although, the complexity is cubic in k, for large n and

small k, our protocol is not significantly slower than the k-means protocol for horizontally

partitioned data [80]. Further, it does not leak any intermediate information. We note that

hierarchical agglomerative clustering algorithms, such as Ward’s, can be made private using
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the same techniques used in this chapter. However, the resulting private protocol would

have a communication complexity of Θ(n3).

5.6 Summary

This chapter makes two major contributions. First, we present a simple deterministic

algorithm for I/O-efficient k-clustering. This algorithm examines each data item only once

and only uses sequential access to data. We present extensions of the algorithm to data

streams. Second, we present a privacy-preserving protocol for k-clustering based on our

clustering algorithm. This protocol is communication efficient and does not reveal the

intermediate candidate centers or cluster assignments.
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Chapter 6

Private Inference Control For Aggregate Database Queries

6.1 Introduction

On-line analytical processing systems, commonly known as OLAP systems, store historical

data or data related to multiple organizations and are mainly used in knowledge discovery.

Aggregate queries play a major role in OLAP systems. OLAP systems are essentially

statistical databases that emphasize business applications [129]. Whenever a database is

used to discover knowledge, sensitive information about individuals must be protected. In

a system that permits aggregate queries to authorized users, no single query may reveal

sensitive data. However, an authorized user might invoke a sequence of queries, each of

which is under his privileges, but whose results can be combined to infer some additional

sensitive information about the data.

Another privacy issue that arises in interactions between a client and a database server

is that the client may not want a database server to know what information the client is

querying, perhaps because the client wishes to avoid being subjected to targeted marketing

or because the queries can reveal important business information. At the same time, the

server would like to ensure that the client does not learn information about the database

beyond the output of its queries. Selective private function evaluation (SPFE), introduced

by Canetti et al. [17] provides a solution to these issues. Specifically, it allows a client to

interact with a database server to compute a function f of some of the items in the database,
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in such a way that the client does not learn anything else about the values in the database

and the server does not learn which values were queried.

Applying SPFE to aggregate queries, one might hope that all privacy concerns would

be addressed: the client can only make aggregate queries and so does not learn individual

items, the server does not learn what queries the client makes, and the client does not learn

anything beyond the specified query results. However, this is insufficient to alleviate all

privacy concerns. It may be possible to combine the results from multiple queries to reveal

other information about the data. As a trivial example, if a client first queries the sum

of entries 1 through 10 in the database, and next queries the sum of entries 2 through 10,

she can then subtract the two to learn the value of entry 1. In the statistical database

literature, this kind of privacy violation is sometimes addressed through inference control

mechanisms [1]. The database administrator has an inference control rule that determines

whether a given query is to be allowed or denied based on the query, the history of previous

queries, and possibly the database values themselves. For example, in the case of the two

SUM queries just discussed, inference control could disallow the second query based on its

large intersection with the first query. However, these inference control methods cannot be

directly applied to SPFE because they require the server to know the indices being queried.

Note that SPFE can be thought of as an extension to symmetric private information

retrieval (SPIR) [59]. SPIR allows a client to query individual database elements such

that the client learns nothing else about the database and the server does not learn which

value is being queried. Thus, SPIR can be thought of as SPFE in which the function is

the identity function with a single input. Woodruff and Staddon [141] introduced private

inference control (PIC) to enable inference control for single database element retrievals.

That is, their solutions provide SPIR protocols that ensure that the client only learns query
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results for queries that pass a specified inference control rule while still maintaining the

other privacy requirements of SPIR.

In this chapter, we introduce aggregate private inference control (APIC) for statisti-

cal databases, which applies inference control policies to aggregate queries in a privacy-

preserving manner. In our work, a client wants to interact with a database server to

compute an aggregate query represented by a function f applied to some of the items in the

database. These queries are subject to an inference control rule that determines whether

a given query is allowed. The client performs a sequence of such queries. For each query,

the client learns the value of the function for that query if and only if the query passes the

inference control rule. The server learns nothing about the queries, and the client learns

nothing other than the value of the function.

6.1.1 Related Work

Statistical disclosure control methods aim to prevent statistical data from disclosing confi-

dential information about individuals or organizations [89]. While doing so, these techniques

should not substantially reduce the usefulness of the data. This is generally achieved by

either perturbing the data or by providing a summary of the data so that no individual’s

identity can be easily identified [113]. Data collected by government agencies such the cen-

sus bureau are released in two ways: (i) Through microdata files which contain a subset of

individual records of the database, and are released to the public after the data entries are

perturbed to minimize the risk of disclosure; and (ii) as aggregate data, such as frequency

count tables. In this section we present a brief overview of the well known results in this

area.
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When survey data is released to the public, one of the techniques used to prevent dis-

closure of sensitive information is to add random noise to the data [87]. Although this may

preserve some of the statistical properties of the data, it could compromise the privacy of

the participants of the survey [56]. DeeWaal and Willenborg [33] presented a statistical

disclosure technique that combines global recoding and local suppression. Global recoding

combines several categories into one. For example the two categories “actor” and “artist”

may be combined into “actor or artist”. In local suppression, certain values corresponding

to certain attributes are suppressed. The μ-Argus package [73] was implemented based on

this technique. Warner [139] introduced the randomized response technique that allows

respondents to respond to sensitive questions while still maintaining their privacy. Later

Warner [138] observed that the randomized response technique can also be used to perturb

the data in the database to be released. Rosenberg [122] presented a randomized response

model that works well for categorical data. Microaggregation involves partitioning the orig-

inal data into groups and publishing aggregates for each group instead of publishing the

actual data [37].

The problem of inference control has been widely studied in regular databases, statistical

databases, and even in database systems supporting multilevel security [1, 49, 22, 32, 117].

Statistical databases are particularly vulnerable to these kinds of attacks. Adam and

Worthmann provide a comprehensive, but dated, summary of inference control for sta-

tistical databases in [1]. Inference control techniques in statistical databases include mech-

anisms such as controlling query overlap, restricting the query size, and data perturba-

tion [1]. Chin [21] presented various examples that shows how answering queries with small

counts may compromise individual’s privacy. His work addressed the security in statistical
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databases with small counts. Denning and Scholrer [31] showed that it is possible to con-

struct a “tracker” with which one can construct answers to some of the queries that are not

answered by the database mechanism, such as queries pertaining to small groups.

Aiello et al. [3] introduced priced oblivious transfer in the context of selling digital

goods. Their work addresses certain kinds of inference control, but not in a general context

as in [141]. Kenthapadi et al. [86] note that in some cases, the fact of whether a query is

allowed or disallowed can itself leak information. To avoid this, they define the notion of

simulatable auditing , in which query denials provably do not leak information. However, in

that work the queries are seen by the server and hence the client’s privacy is not met. The

inference control rules used in our paper are dependent only on the query pattern, not on

the query results, and therefore meet the requirements of being simulatable and leak-free.

6.1.2 Our Contributions

In this chapter, we present private inference control techniques for database queries over

multiple elements. In our setting, the server holds a database x = x1, . . . , xn and the client

queries the database to compute the function f(xi1 , . . . , xik). At the end of the protocol,

the client receives f(xi1 , . . . , xik) if the query (i1, . . . , ik) passes the inference control rule.

Otherwise, the client receives an arbitrary value. In any case, the server learns nothing

about the queries themselves, including whether the query was allowed or disallowed. Our

contributions can be summarized as follows:

• We present a protocol for private inference control for aggregate queries. We also present

two alternate protocols, one of which is more efficient when the client makes a small

number of queries, each with a large query size, and the other which is efficient when the

client makes a large number of queries.
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• We present a protocol for private inference control that that uses a more relaxed inference

control rule than the one employed in the first set of protocols.

• In addition to the generic protocol that applies to any arbitrary function f , we present

simpler protocols for two of the most basic types of aggregate query: the SUM function

and the COUNT function.

• We present a protocol for a distributed database that is horizontally partitioned between

two servers.

The rest of the chapter is organized as follows. In Section 6.3, we present our primary

Aggregate Private Inference Control protocol and its variants. In Section 6.4 we present

extensions to our basic protocol, including a protocol that uses a more relaxed inference

control rule, simpler protocols for the SUM and COUNT queries, and a protocol for hori-

zontally partitioned databases.

6.2 Preliminaries

In this section, we define our model for aggregate private inference control. We also provide

brief reviews of SPFE and of Woodruff and Staddon’s PIC protocols.

6.2.1 Selective Private Function Evaluation

Selective Private Function Evaluation (SPFE) was introduced by Canetti et al. [17] as

a generalization of Symmetric Private Information Retrieval (SPIR) [25]. In the SPFE

problem, a client interacts with one or more servers holding copies of a database x =

x1, x2, . . . , xn to compute f(xI) where xI = (xi1 , xi2 , . . . , xim) for some function f and a set

of indices I = i1, i2, . . . , im chosen by the client. A solution to the problem should satisfy

the following privacy requirements:
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1. Client Privacy. No adversary that involves using the collusion of up to t servers learns

anything about the client’s query beyond f and m.

2. Database Privacy. The client learns only the value of f(xI) and nothing else, even if

it arbitrarily deviates from the protocol.

Canetti et al. present three sets of solutions for the SPFE problem:

1. Multi-server protocols based on multivariate polynomial evaluation.

2. Solutions based on private simultaneous message protocols.

3. Solutions based on general secure multiparty computation.

In our work, we add private inference control to the third solution. A brief overview of the

third solution follows. The protocol is divided into two phases:

1. The input selection phase, where the server and the client obtain an additive secret

sharing of the m chosen items xI . In other words, at the end of this phase, the client

and the server respectively receive random elements aI and bI such that the random

shares add up to xI .

2. The secure multiparty computation phase, where the client and the server invoke a

secure MPC protocol to compute f(xI) using their share of the input computed in

the first phase.

6.2.2 Private Inference Control

Private Inference Control (PIC) was introduced by Woodruff and Staddon [141] for queries

of a single database element. A PIC protocol enables the server to provide inference control
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without knowing the client’s queries. We review one of their solutions. The protocol consid-

ers a single honest-but-curious server and malicious clients. They assume a “rectangular”

database of the form ⎛
⎜⎜⎜⎜⎜⎜⎝

x1,1 . . . x1,m

...

xn,1 . . . xn,m

⎞
⎟⎟⎟⎟⎟⎟⎠

Each query is of the form (it, jt), where 1 ≤ it ≤ m, 1 ≤ jt ≤ n.

A solution to this problem should satisfy the following security requirements:

1. Client Privacy: The server learns nothing about the client’s queries.

2. Server Privacy:

(a) Database Privacy: For each query (it, jt), the client learns only (xit,jt).

(b) Private Inference Control: The client learns (xit,jt) if and only if the query (it, jt)

passes the inference control rule.

The protocol makes use of a homomorphic encryption scheme E. The client sends the

server encryptions of the query (E(it), E(jt)). The server encrypts a secret S using the

properties of the homomorphic encryption in such a way that the client can recover S only

if the client’s query has passed the inference control rule.

Since the server does not know the client’s queries, a malicious client can use one query

to pass the inference control test but a different query to retrieve values from the database.

The server handles this situation by choosing two random numbers ui,j and vi,j for each

xi,j, and constructs a “masked” database consisting of entries as follows:

E(ui,j(j − jt) + vi,j(i− it) + Vt + xij)i,j.
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Here Vt denotes the secret value, which the client can recover only if the query has passed

inference control. The client then uses SPIR to retrieve the (it, jt) entry in the reconstructed

database. This succeeds only if the index values used in SPIR match the index values

provided in the query itself.

6.2.3 Our Model

In our setting, a server holds the database x = x1, . . . , xn and the client queries the database.

Each query is specified by a set of indices I = (i1, . . . , ik); the client wishes to compute the

function f(xi1 , . . . , xik), which we also denote by f(xI). For the sake of simplicity, we assume

every query has k indices; our solutions can be modified to work with different numbers of

indices for different queries. We assume both parties know the function f ; it is possible to

avoid the server knowing f by using a universal circuit. We also assume k is known to both

parties. The server should not learn anything about the client’s queries. The client should

learn no more than the output of the function evaluated at the indices chosen by it, and

it should only learn this output if its query passes the inference control rule. Furthermore,

the server should not learn whether a client’s query has passed the inference control rule.

In all cases, these requirements take the form of semantic security, so no partial information

beyond the specified outputs should be revealed. Specifically, our private inference control

protocol should satisfy the following requirements, defined relative to a specified inference

control rule:

• Correctness: When the client and the server follow the protocol, the client obtains

f(xI) if I satisfies the inference control rule.

• Client Privacy: The server should not learn anything about the client’s queries,

including whether or not each query passes the inference control rule. Formally, there
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exists a simulator that produces an output distribution which is computationally

indistinguishable from the server’s view.

• Server Privacy: The server’s privacy includes two concepts:

– Database Privacy: For each query I that passes the inference control rule, the

client learns only f(xI) and nothing else.

– Private Inference Control: For each query I that does not pass the inference

control rule, the client receives an arbitrary value1.

We note that these requirements imply that the server must apply the inference control

rule on the queries without actually knowing the client’s queries or learning whether

each query passes.

• Inference Control Rule: The first inference control rule we consider (in Section 6.3)

requires that, when the client makes multiple queries, the set of input indices in the

current query should not intersect with any of the input indices of previous queries.

The following example demonstrates the privacy need for such a requirement. If f

is the weighted sum function and the client repeats the same query with different

weights k, then the client can solve the system of equations to obtain xI .

In this privacy model, we assume that the server is semi-honest meaning that the server

will faithfully follow the protocol but will record all the intermediate messages. We also

assume that the client is malicious, meaning the client may deviate arbitrarily from the

protocol, change its inputs or abort the protocol. Our protocols only offer weak security [17]

1We note that if the inference control rule is public and dependent only on the indices of all the queries,
then the client knows which queries are allowed and disallowed, and therefore can avoid ever confusing an
arbitrary value with a real response.
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against a malicious client, meaning that the client only learns some function f ′ on some

sequence of data items. Here the function f ′ is determined by the client’s actions and f ′ is

guaranteed to have the same output size as f .

6.3 Private Inference Control for Aggregate Queries

In this section, we present protocols that enforce inference control while processing queries

for statistical information in databases. We assume that all the indices in the client’s query

are distinct and valid (in the sense that, if they are not, the privacy guarantee may not

be met). This last property can, for example, be proved to the server by the client using

a zero knowledge proof for each query. (It is an open problem if there is a more efficient

way to handle this.) The protocols in this section enforce the following inference control

rule on each of the client’s queries: the set of indices in the current query should not

intersect with any of the sets of indices used in previous queries. Because this rule is overly

restrictive, we also consider a relaxed version of this inference control rule which requires

that the cardinality of the intersection of the queries be less than some threshold value t.

We describe the solution to the relaxed inference control rule in Section 6.4.1. We denote

by f a function (such as the sum or average) that the client wants to evaluate in his query.

As mentioned in Section 6.2, we make use of general secure multiparty computation

as part of our solution. In particular, in this section, we make use of secure multiparty

computation to compute f itself. In this setting, especially when k � n, this can be done

efficiently using the protocols of [17]. The APIC protocols presented in this section have

four phases:

1. Query generation phase: In this phase, the client sends his query to the server.

Since he does not want the server to know the indices in the query, they are sent in a
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“masked” form.

2. Inference control phase: In this phase, the server chooses a secret value V and

masks it in such a way that the client can retrieve V if and only if the query satisfies

the inference control rule.

3. Query processing phase: This has two sub-phases, namely

• Input selection phase: The client and the server obtain a simple secret-sharing

of xI .

• Secure multiparty computation phase: The client and the server use their

shares of the input computed in the input selection phase along with the secret

value V chosen by the server to compute the function g(xI , V ) = f(xI)+V . This

is done using the secure multiparty protocol given in [17]. The client receives the

value of the function g(xI , V ) and the server receives no output.

This phase is similar to the SPFE solution presented in [17], with the added feature

of private inference control.

4. Answer construction phase: The client computes V , and hence f(xI). The client

can compute the secret value V if and only if the query passes the inference control

rule. The server does not learn whether the client’s query has passed or failed the

inference control rule.

The structure of the protocol is to first determine whether the client’s query passes

the inference control rule, and then to process the query. Given that the server does not

know the client’s queries, a naive way of doing this would allow a cheating client to use

one query to pass the inference control rule but a different (and possibly disallowed) query
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to retrieve values from the database. To avoid this, our protocol ensures that in such a

situation, at the end of the input selection phase, the shares obtained by the client and

the server do not add up to xI , but instead to an arbitrary vector that is independent of

the contents of database and unknown to the client. Hence, in this case, the output of the

client in the second phase is f(rI) for some arbitrary rI . (As previously noted, the client

already knows if the inference control rule is not satisfied, so an honest client that does not

try to circumvent the inference control rule need never receive an incorrect value.) This is

achieved by the server using the masked form of the client’s queries in both the inference

control phase and in the query processing phase. We present three different APIC protocols

in Sections 6.3.1, 6.3.2 and 6.3.3. We present a comparison between the costs of the three

protocols in Section 6.3.4.

6.3.1 The First Protocol

In our solution, which is shown in full as Protocol 8, the client and the server agree on a

homomorphic encryption scheme. At the beginning of the protocol, the client chooses a

public/secret key pair for the chosen encryption scheme and sends the public key to the

server.

In the query generation phase, the client sends the encryption of the indices of each of

his queries along with a zero-knowledge proof of knowledge that the ciphertexts are well

formed. In the inference control phase, the server uses the information obtained during the

query generation phase along with the homomorphic property of the encryption scheme to

encrypt a secret value V such that the client can compute the secret value V if and only

if the query passes the inference control rule. In the query processing phase, our solution

makes use of homomorphic encryption to perform oblivious polynomial evaluation (similar
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techniques were used in [17, 53]). This allows the client and server to evaluate certain

polynomials in a shared way while keeping certain information private.

Theorem 2 Protocol 8 is a private inference control protocol for aggregate queries.

Proof: We assume the semantic security of the homomorphic encryption scheme.

Correctness

When the client and the server follow the protocol, an honest client obtains f(xI)+V where

V is the secret key. If the query I passes the inference control rule then the client retrieves

the secret key and computes f(xI) the desired output.

Client Privacy

In our protocol, the server (S) is assumed to be honest-but-curious. The server’s view

includes the encryptions sent by the client (C), the SPIR, and the SPFE interactions with

the client. Assuming that the homomorphic encryption scheme used in the protocol is

semantically secure, the client’s privacy of the protocol depends on the privacy of SPIR

and SPFE. Let M1 denote a simulator for SPIR and M2 denote a simulator for SPFE [17].

Since we have assumed that the server is honest-but-curious, the input to the simulator is

fixed at the beginning of the protocol. The server gets no output at the end of the protocol.

Hence, the view of the server in the APIC protocol is the concatenation of the outputs of

M1 and M2.

Inference Control

We compare this protocol with one that uses a trusted third party to perform the compu-

tation. For every client C in the real model, there exists a client C∗ in the ideal model (one
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Protocol 8 Private Inference Control for Aggregate Queries

Server S’s Input: Database D = (x1, . . . , xn)
Client C’s Input: Queries Qj = (ij1, . . . , ijk), for j = 1, 2, . . ..
Client C’s Output: For each query Qj , the client obtains the value of f(xI)

where xI = (xij1 , . . . , xijk ) iff I passes the inference control rule.
Inference control rule: If Qt is the current query and Q1, . . . , Qt−1 are the previous queries,

then Qt is allowed if Qt ∩Q1, . . . , Qt ∩Qt−1 are empty.

• For Q1, C chooses a key pair (pk, sk), and sends pk to the server.

• For j ≥ 1,

1. Query generation:

(a) For query Qj = (ij1, . . . , ijk), C sends the following encrypted values to S.
⎛
⎜⎝

E(ij1) . . . E(ik−1
j1 )

...

E(ijk) . . . E(ik−1
jk )

⎞
⎟⎠

(b) C gives a zero-knowledge proof that the ciphertexts in Step 2a are well formed.

2. Inference control:

(a) S chooses secret values V1, . . . , Vj−1. (For Q1, S sets the secret values as zeros and skips
the rest of the inference control steps) For each 1 ≤ � ≤ j − 1, S generates k2 random shares

{y(�)m1, . . . , y
(�)
mk}, 1 ≤ m ≤ k that add up to V�.

(b) For C to learn V�, for 1 ≤ � ≤ j − 1 if and only if the query passes the inference control
rule, S sends the following (j − 1)k2 values to C:⎛

⎜⎜⎝
E((ij1 − i�1)y

(�)
11 ) . . . E((ij1 − i�k)y

(�)
1k )

...

E((ijk − i�1)y
(�)
k1 ) . . . E((ijk − i�k)y

(�)
kk )

⎞
⎟⎟⎠

(c) C decrypts all the (j − 1)k2 y’s to obtain the secret V1, . . . , V(j−1). (C obtains the correct
V ’s if and only if the inference control rule is satisfied and the client followed the protocol;
otherwise the values do not sum to V�.)

3. Query processing:

(a) Input selection:

1.S chooses a random polynomial P (u) = s0 + s1u + . . . + sk−1u
k−1. For 1 ≤ m ≤ k, S

constructs a masked database E(xp +P (p)+ rmp(p− ijm)) for 1 ≤ p ≤ n, where the rmp’s
are random.

2.For each 1 ≤ m ≤ k, C and S engage in SPIR and client retrieves E(xijm + P (ijm)).
3.C decrypts and obtains zijm = xijm + P (ijm), for 1 ≤ m ≤ k.
4.C and S engage in a secure computation to compute shares of xijm , for 1 ≤ m ≤ k:

•S picks up k random elements q1, . . . , qk and computes E(P (ij1)−q1), . . . , E(P (ijk)−qk)
and sends them to C.
•C decrypts and obtains (P (ij1)− q1), . . . , (P (ijk)− qk)
•C’s shares are aij1 = zij1 − (P (ij1)− q1), . . . , aijk = zijk − (P (ijk)− qk)
•S’s shares are bij1 = −q1, . . . , bijk = −qk.
•C and S’s shares add up to xijm , for 1 ≤ m ≤ k.

(b) Secure multiparty computation: C and S use secure multiparty computation in order
for C to learn the output of the function g(xI , V1, . . . , V(j−1)) = f(xI) + V1 + . . . + V(j−1). S
receives no output.

4. Answer construction: C can recover f(xI) iff he can compute all the secret values.
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with the trusted third party (TTP)) such that the view of C is indistinguishable from the

view of C∗. We describe C∗’s simulation on jth query.

A simulator for SPIR, when given the code of C extracts the indices i1, . . . , ik. C∗ takes

as its input the code of C and uses the knowledge extractor of the zero-knowledge proof of

knowledge to obtain (i
′
1, . . . , i

′
k). If the two sets of indices (i1, . . . , ik) and (i

′
1, . . . , i

′
k) are not

the same then C∗ chooses random values r1, . . . , rk and gives E(r1), . . . , E(rk) to C. If they

are the same then as a result of of SPIR simulation, C∗ gives C, (E(xi1+P (xi1)), . . . , E(xik+

P (xik))). C∗ runs through the inference control phase and the rest of the input selection

phase as a honest server. If (i
′
1, . . . , i

′
k) satisfies the inference control rule, C∗ requests the

TTP to provide f(xi1 , . . . , xxk
) and gives C, f(xi1 , . . . , xxk

) + V as the output of the SMC.

If a malicious client uses one set of indices for inference control and another set for SPIR

then the encryptions obtained by C∗ are encryptions of random values which is also the case

in the actual execution. If the inference control rule is not satisfied C∗’s output is a random

value which is also the case in actual execution. In the case where the inference control

rule is satisfied, the encryptions received by C∗ from C is indistinguishable from the ones

received by C∗ in the actual execution because of the semantic security of the encryption

scheme. Hence, the view of C∗ interacting with a TTP and the view of the C interacting

with a honest server are indistinguishable.

Since our protocol has two phases (the input selection phase and the secure multiparty

computation phase), a malicious client can change its share of xI before passing them

as inputs into the multiparty computation stage [17]. In this case, the client ends up

computing f(xI + δ) rather than computing f(xI). This does not violate inference control,

since the client does not know the entries in the database, and does not know what f(xI+δ)

corresponds to in terms of entries in the database. Hence, our protocol has weak security
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against a malicious client [17].

Communication and Computational Complexity

We discuss in this section the cost of the jth query Qj . Let w denote the maximum

number of bits needed to represent an encryption. In the query generation phase, the client

transmits O(wk2) bits. In the inference control phase, the server transmits O(wjk2) bits.

In the query processing phase, the communication cost is dominated by the k executions

of SPIR and the cost of one execution of SMC. The total communication cost of one query

is O(wjk2) + kw · polylog(n) + cost of SMC. This protocol requires 1.5 rounds + round

complexity of SMC. (1.5 rounds = message sent by client + one round of the SPIR protocol.

The message sent by the server can go in parallel with SPIR.)

Determining the computation complexity involves counting the number of encryptions,

decryptions, and exponentiations. The server performs O(nk) encryptions while masking

the database and O(jk2) encryptions for the inference control rule. The client performs

O(k2) encryptions and O(jk2) decryptions. The encryptions of the polynomial evaluations

in query processing stage involve O(k) exponentiations when done naively, but this overhead

can be reduced using Horner’s method [88]. The polynomial evaluation happens only once

and hence the total number of exponentiations required is O(nk + jk2).

6.3.2 The Second Protocol

The private inference control protocol for aggregate queries presented in Section 6.3.1 is

efficient for moderate sized databases and when the length k of each query is small. For

large k and large n, however, the protocol is inefficient because it requires encrypting the

database k times for each query. In this section, we present a modified solution which avoids
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encrypting the database k times.

In this solution, which is shown in full as Protocol 9, the client and the server agree on

a homomorphic encryption scheme E. At the beginning of the protocol, the client chooses

a public/secret key pair for the chosen encryption scheme and sends the public key to the

server. The server chooses a seed s to a pseudo-random function h. This function h is used

to mask the database.

The query generation phase uses secure circuit evaluation [145]. It evaluates a circuit

which receives as input from the client the indices i1, . . . , ik of the current query. The server’s

input to the circuit is the seed s and the public key pk. The circuit computes random

shares of {h(s, i1), . . . , h(s, ik)}. It outputs the client’s share, {hC(s, i1), . . . , hC(s, ik)}, to

the client, and the server’s share, {hS(s, i1), . . . , hS(s, ik)}, to the server. The circuit also

computes and sends to the server the values {E(i1), . . . , E(ik)}.

In the query processing phase the server constructs a masked database D′ by setting

the ith entry to be xi ⊕ h(s, i). The client and the server engage in SPIR on D′ to obtain

xi�⊕h(s, i�), for 1 ≤ � ≤ k. The client and the server engage in SMC with the client’s input

as xi� ⊕ h(s, i�)⊕ hC(s, i�) and the server’s input as hS(s, i�), for 1 ≤ � ≤ k and a vector of

secret values. The inference control phase and the answer construction phase are the same

as in Section 6.3.1. The proof of privacy is similar to that of Theorem 2.

Communication and Computational Complexity

The communication complexity of the circuit is poly(k log(n)). In the inference control

phase the server transmits O(wjk2) bits. In the query processing phase the communication

cost is dominated by the cost of one execution of SPIR and the cost of one execution of

SMC. The total communication cost of one query is O(wjk2)+cost of SPIR+cost of SMC.
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Here the SPIR protocol takes place on a set of n records each of length w to retrieve k items

and its communication complexity is kw · polylog(n).

The server performs O(jk2) encryptions for the inference control rule. The server’s work

is linear in the size of the database. (Note that the server masks the database using the XOR

operation once rather than encrypting the database k time as in the protocol presented in

Section 6.3.1.) The client performs O(k2) encryptions and O(jk2) decryptions.

6.3.3 The Third Protocol

The communication complexity of the APIC protocols presented in Sections 6.3.1 and 6.3.2

depend on the number of past queries made by the client. So the communication overhead

in the inference control phase increases linearly in terms of the number of queries made by

the client. In this section, we present an APIC protocol that keeps the communication cost

of the inference control phase low even as the number of queries increases. A comparison of

the costs between all the three approaches is provided in Section 6.3.4. This solution is an

extension to the protocol presented in Section 7 of [141]. For consistency we use the same

notation as in [141].

In this protocol, the query generation and inference control phases are combined into

one phase. The phase uses a secure circuit evaluation protocol [145] to evaluate a circuit

which we will now describe. We use a balanced binary tree that has n leaves associated with

the elements {x1, . . . , xn} of the database. We denote the leaves by i where i ∈ {1, 2, . . . , n}.

Let α denotes the root of the binary tree. Each node of the tree is associated with a key

K(w, z) whose computation we will describe shortly. Here w represents the node, and z

an integer value. For a leaf node, z takes the value 0 if the corresponding value has never

been accessed in any query, and 1 otherwise. In the case of an internal node, z denotes the
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Protocol 9 Aggregate Private Inference Control Protocol: A Second Approach

Server S’s Input: D = (x1, . . . , xn) and a seed s to a pseudo-random function h.
Client C’s Input: Queries Qj = (ij1, . . . , ijk), for j = 1, 2, . . ..
Client C’s Output: For each query Qj , the client obtains the value of f(xI)

where xI = (xij1 , . . . , xijk ) iff I passes the inference control rule.
Inference control rule: If Qt is the current query and Q1, . . . , Qt−1 are the previous

queries, then Qt is allowed if Qt ∩Q1, . . . , Qt ∩Qt−1 are empty.

• For Q1, C chooses a key pair (pk, sk), and sends pk to the server.

• For j ≥ 1,

1. Query Generator: Let C denote a secure circuit as described in Section 6.3.2. C
inputs the query indices of Qj and S inputs the seed s and the public key pk into
the circuit. The circuit outputs hC(s, ij1), . . . , h

C(s, ijk) to C. The circuit outputs
hS(s, ij1), . . . , h

S(s, ijk) and E(ij1), . . . , E(ijk) to S.
2. Inference Control

(a) S chooses secret values V1, . . . , Vj−1. (For Q1, S sets the secret values as zeros
and skips the rest of the inference control steps) For each 1 ≤ � ≤ j, S generates

k2 random shares {y(�)m1, . . . , y
(�)
mk}, 1 ≤ m ≤ k, that add up to V�.

(b) For C to learn V� if and only if the query passes the inference control rule, S sends
the following (j − 1)k2 values to C:⎛

⎜⎜⎝
E((ij1 − i�1)y

(�)
11 ) . . . E((ij1 − i�k)y

(�)
1k )

...

E((ijk − i�1)y
(�)
k1 ) . . . E((ijk − i�k)y

(�)
kk )

⎞
⎟⎟⎠

for 1 ≤ � ≤ j − 1.

(c) C decrypts all the (j − 1)k2 y’s to obtain the secret V1, . . . , V(j−1). (C obtains
the correct V ’s if and only if the inference control rule is satisfied and the client
followed the protocol; otherwise the values do not sum to V�.)

3. Query Processing

(a) Input Selection Phase:

i. S constructs a masked database D′ whose ith entry is xi ⊕ h(s, i).

ii. For each 1 ≤ m ≤ k, C and S engage in SPIR and client retrieves xijm ⊕
h(s, ijm)

iii. C computes his share of input as xijm ⊕ h(s, ijm)⊕ hC(s, ijm) for 1 ≤ m ≤ k.
S’s shares are hS(s, ijm) for 1 ≤ m ≤ k.

(b) Secure Multiparty Computation Phase: C and S use secure multiparty com-
putation in order for C to learn the output of the function g(xI , V1, . . . , V(j−1)) =
f(xI) + V1 + . . .+ V(j−1). The server receives no output.

4. Answer Construction Phase: The client can recover f(xI) if and only if he can
compute all the secret values which he can do only if his queries satisfy the infer-
ence control rule and the client follows the protocol. Otherwise the client obtains an
arbitrary value.
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number of times the leaves in the subtree rooted at w have been accessed in past queries.

Let E denote a non-malleable symmetric key encryption scheme [36]. Let sk de-

note the secret key of the encryption scheme chosen and known only to the server. We

compute K(w, z) as the encryption Esk(w, z). For any internal node w along with its

children, we say the keys K(w, z) and {K(v,mv)|v ∈ children(w)} are sum-consistent if

z =
∑

v∈children(w)mv. When the client issues a query {i1, . . . , ik}, he inputs the set of keys

π = ∪k�=1{K(w,mw)|w ∈ sibanc(i�)}

to the circuit where

sibanc(w) = anc(w) ∪ {u|∃v ∈ anc(w) and u = sib(v)},

sib(v) denotes the siblings of v and anc(v) denotes the ancestors of v.

A malicious user may try to use K(w, z) instead of K(w,mw) for some integer z �= mw.

We maintain the invariant that when a malicious client replaces K(w, z) for K(w,mw) then

z < mw. (For further discussion, see [141].) The server inputs a seed s to a pseudo-random

function h and a key sk to the encryption scheme E. The circuit checks whether π satisfies

the following properties:

• For each internal node w ∈ anc(i�), K(w,mw) and {K(v,mv)|v ∈ children(w)} are

sum-consistent, for 1 ≤ � ≤ k.

• mα = jk

• K(i�, 0) ∈ π, for 1 ≤ � ≤ k. (Inference control rule)

If π satisfies these properties, then the circuit computes random shares of {h(s, i1), . . . , h(s, ik)}

and outputs to the client and the server. If not, the circuit sends random values to the client
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and the server. The client also receives the updated keys {K(w,mw + 1)|K(w,mw) ∈ π}.

The query processing and answer construction phase are the same as in Section 6.3.2.

Suppose a malicious client wants to query {xi1, . . . , xik} for which some xi� was a part of

one of the previous queries thus violating the inference control rule. This requires changing

some of the keys K(w,mw) in π to K(w, z) for mw �= z. By the invariance, z < mw and

hence the first two properties mentioned above cannot hold simultaneously.

In [141], for reject queries the client sends an integer P to the circuit. When the client

is honest, P will be of the form Esk(reject, z). When π does not satisfy the inference control

rule the circuit outputs Esk(reject, z+1) to the client. The server gets no output maintaining

user privacy. In our case, the circuit outputs both to the client and the server. When the

client’s query does not pass the inference control rule the circuit outputs random values to

both the client and the server so that the server does not know whether the client’s query

has passed or failed. The client and the server may engage in the query processing phase

but at the end of the protocol the client receives only an arbitrary value. The proof of

privacy is similar to the one in Section 7 of [141].

Communication and Computational Complexity

The communication complexity of the secure circuit evaluation protocol that tests the infer-

ence control rule is poly(k log(n)). The overall communication complexity is poly(k log(n))+

cost of SPIR+ cost of SMC. Here the SPIR protocol takes place on a set of n records each

of length w to retrieve k elements and it communication complexity is kw ·polylog(n). The

computational complexity is O(n). Both the circuit evaluation and the SPIR takes one

round and they can run in parallel. This protocol requires one round more than the round

complexity of SMC.
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6.3.4 A Comparison

The second and the third APIC protocols presented in Sections 6.3.2 and 6.3.3 use a secure

circuit-evaluation protocol for query generation. (The third APIC protocol combines the

query generation and inference control phases into one phase.) The first protocol given in

Section 6.3.1 avoids the expensive circuit evaluation for the query generation and inference

control phases. However, this involves encrypting the database k times in the query pro-

cessing phase which may be expensive for large databases and for large values of k. (Recall

k is the query size.) This protocol works well for moderately sized databases and when the

query size is reasonably small.

On the other hand, the second and the third protocols avoid public key encryptions of

the database and hence work well for large databases. But the price they pay is the use of

a circuit for the query generation and inference control phases. The query processing phase

is the same for both of these protocols. The circuit size for both protocols are the same in

terms of the O notation given by (poly(k log n)). But the input size for the first protocol

is given by O(k log n) bits whereas the input size for the third protocol is O(wk log n),

w ≥ log(nq) where q denotes the number of queries made. Since the number of OT2
1’s

depend on the input size, the computational overhead (number of exponentiations) of the

third protocol is higher than the second protocol. In the second protocol, the number of bits

transmitted by the server in the inference control phase increases linearly in terms of the

number of queries made. Therefore, when a client makes fewer queries, the second protocol

is more efficient. On the other hand, when a client makes a large number of queries, the

third protocol is more efficient in terms of communication complexity.
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6.4 Extensions and Special Cases

In this section, we consider various extensions and special cases of the general case.

6.4.1 Relaxing the Inference Control Rule

In this section, we show how to relax the strict requirement that client query indices should

have empty intersections.

Our inference control rule in Section 6.3 requires that when the client makes a query, the

indices in the current query should not intersect with the indices of previous queries. Here,

we consider a relaxed inference control rule: when a client makes a query, the cardinality

of the intersection of the queries should be less than some threshold value t. Denote the

first two queries as I1 = (i1, . . . , ik) and I2 = (j1, . . . , jk). We describe the protocol for the

second query. It can be generalized for multiple queries.

We describe here the modified inference control phase for the protocols described in

Sections 6.3.1 and 6.3.2. All the other phases remain the same. In the inference control

phase for the second query, the server randomly generates k2 shares y11, . . . , ykk forming a

(k2 − t)-out-of-k2 sharing of V . The server sends the following k2 values to the client:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E((j1 − i1)y11) . . . E((j1 − ik)y1k)

E((j2 − i1)y21) . . . E((j2 − ik)y2k)

...

E((jk − i1)yk1) . . . E((jk − ik)ykk)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

If the cardinality of the intersection of the first and second queries is less than t then the

client can recover at least k2 − t of the y’s and hence reconstruct V . In the APIC protocol

described in Section 6.3.3, the relaxed inference control rule can be easily incorporated since
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the inference control rule is built into the circuit.

6.4.2 Special Cases: SUM and COUNT

In this section, we present specialized protocols for the SUM and COUNT function with

private inference control. The SUM and COUNT functions are very basic and important in

data analysis and processing. The specialized protocols, presented below, use the specific

nature of the given function instead of using the generic solutions of Section 6.3 in order

to obtain simpler solutions that avoid the general circuit evaluation step. We again assume

that all the client’s queries have k indices and all the indices in each query are distinct.

The inference control rule is the same as explained in Section 6.2. Similar to the solution

of Section 6.3, the protocols presented in this section ensure that the client does not use

one set of indices to pass the inference control rule and another set of indices to engage the

server in SPIR to extract values from the database. We present the modification required

for the protocol described in Section 6.3.1. A similar modification can be done for the

protocols described in Sections 6.3.2 and 6.3.3.

The Sum Function

We present a protocol for computing the sum of a selected subset of the database. C has a

set of indices I = (i1, . . . , ik). C learns xi1 + . . . + xik if the inference control rule is passed

and the server learns nothing other than the size of the query.

We describe the modified query processing phase of the protocol described in Sec-

tion 6.3.1. The other phases remain the same. C and S interact to perform a SPIR to

obtain

yij = xij + P (ij), 1 ≤ � ≤ k
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yi1 + . . . yik = xi1 + . . . + xik + P (i1) + . . . + P (ik)

Therefore, if C learns P (i1) + . . .+ P (ik), then this implies that C can learn xi1 + . . .+ xik .

Note that

P (i1) + . . . + P (ik) = c0s0 + c1s1 + . . . ck−1sk−1

where c0 = k, cj = ij1 + . . . + ijk for 1 ≤ j ≤ k − 1, and these cj’s are all known to C.

C sends the encryptions of c0, . . . , ck−1 to S. S chooses a secret value V and computes

E(c0s0 + c1s1 + . . . ck−1sk−1 + V ) = E(P (i1) + . . . + P (ik) + V ) using the homomorphic

property of the encryption scheme and sends it to C. If C can compute V (inference control

rule is satisfied), then C outputs xi1 + . . .+ xik .

Counting Frequencies

We present a protocol for counting the number of occurrences or the frequency of a keyword

in a subset of the database. The keyword and the subset are chosen by the client. At the

end of the protocol, the client gets the frequency of the keyword whereas the server gets no

output. The server should not gain any knowledge about the query or about the keyword.

The only information the server learns is the size of the query.

We describe the modified query processing phase of the protocol described in Sec-

tion 6.3.1. The other phases remain the same. C and S carry out the input selection

phase of Protocol 8 to obtain an additive sharing of xI . Let aI denote C’s share and bI

denote S’s share. C sends the k encryptions E(aij − w) for 1 ≤ j ≤ k to S. S computes

k encryptions E(rj(aij + bij − w) + Vj) for 1 ≤ j ≤ k where rj ’s and Vj ’s are random

values chosen by S. S sends a random permutation of these k encryptions to C to prevent

C from learning the exact locations in which the matching has occurred. S also sends k2

encrypted values E((iq − ij)y
(p)
j ), k + 1 ≤ q ≤ 2k, 1 ≤ j ≤ k for each 1 ≤ p ≤ k where
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Vj = y
(j)
1 + . . . + y

(j)
k2

. C can recover all k secret values if and only if the query satisfies the

inference control rule. The client decrypts all the k encryptions, subtracts the secret values,

and outputs the number of zeros.

6.4.3 Horizontally Partitioned Database

In this section, we present a protocol for aggregate private inference control on a horizon-

tally partitioned database (i.e., one in which each database server holds only some of the

elements). For notational simplicity, we assume that the database (x1, . . . , xn) is shared

between two servers S1 and S2. (The generalization to more than two servers is immedi-

ate.) We assume that S1 has m out of the total n records say xi1 , . . . , xim and S2 has the

remaining n−m records. The client queries the servers to compute the function f(xI) where

I = (i1, . . . , ik). The servers communicate with each other, but should not need to share

their actual data with each other. At the end of the protocol, the client learns the value of

the function f(xI) if and only if the query passes the inference control rule. The servers get

no output. The servers learn nothing about the queries other than the function f and the

size of the query. The client learns nothing other than the value of the function evaluated at

xI . The client should not know the shares of f(xI) that came from the respective servers.

To accomplish this, each server pads its partial database with zeros for the indices it

does not own to obtain a database of n items.

1. Query generation: C sends the encrypted values described in the query generation

phase of Figure 8 to S1, and S1 passes on this information to S2.

2. Inference control: C and S1 go through the inference control phase of Figure 8.

3. Query processing:
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• C carries out the input selection phase of Figure 8 with S1 to obtain an additive

sharing of xI . We denote the resulting shares as aI (client’s share) and bI (S1’s

share). C carries out the input selection phase of Figure 8 with S2 to obtain an

additive sharing of xI . We denote the resulting shares as cI (client’s share) and

dI (S2’s share).

• the client and the two servers carry out the SMC protocol described in [17] with

the inputs as aI + cI , (bI , V ), and dI , respectively, where V is a vector of secret

values chosen by S1. In this way, the client obtains the value of the function

g(xI , V ) = f(xI) + V .

4. Answer construction: The client computes V , and hence f(xI). The client can

compute the secret value V if and only if the query passes the inference control rule.

The server does not learn whether the client’s query has passed or failed the inference

control rule.

6.5 Summary

In this chapter, we introduced private inference control for aggregate queries. This extends

the notion of private inference control for individual queries introduced by Woodruff and

Staddon [141] to the practical setting of aggregate and complex queries over multiple values.

The need for inference control is particularly important in the aggregate query setting

because it may be possible to use combined queries to extract individual elements from the

database, thereby losing the privacy that the restriction to aggregate queries is often used

to provide.

It is open whether our solution in Section 6.3.1 can be improved to require only a single

masked version of the database, rather than k versions as it now does, in a way that does
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not have the additional overhead per query that the solution of Section 6.3.2 does. (The

straightforward way of doing this would allow a client to use a different set of indices for

passing the inference control than the indices of the resulting query, thereby bypassing the

inference control step.) It also remains open to further extend private inference control

additional inference control policies, as well as very efficient solutions for particular kinds

of aggregate queries. Of particular interest are inference control policies that depend on

the return values themselves, not only the indices of the inputs involved. In this case, for

maximum privacy to be guaranteed, it would also be necessary to incorporate notions of

simulatable auditing [86].

More generally, it would be extremely desirable to have private inference control for

general keyword-based queries such as SQL provides (for example, allowing a query to

return the average salary for all individuals in the database who reside in a particular zip

code).
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Chapter 7

A Practical Differentially Private Random Decision Tree

Classifier

7.1 Introduction

Recent work in private data analysis by Dwork et al. [43] has radically changed the research

landscape by defining a model with a strong definition of privacy that addresses how much

privacy loss an individual might incur by being in a database. In the most common setting

under this new framework of differential privacy, the data owner makes the data available

through a statistical database on which only aggregate queries are permitted. The goal is to

answer queries while preserving the privacy of every individual in a database, irrespective

of any auxiliary information that may be available to the database client. The differential

privacy framework has several advantages compared to various other privacy models:

• The privacy guarantee does not depend on the amount of the auxiliary information

available to the adversary, unlike models such as k-anonymity and its variants, as well

as the private inference control setting of [141] and Chapter 6.

• It achieves privacy at a lower computational cost than secure multiparty computation

techniques based on cryptographic primitives that are computationally expensive, and

• it does not assume any prior distribution on the databases.
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Using existing differential privacy results, it is possible to create high-level structures

such as decision trees using multiple low-level differentially private queries [10, 41]. How-

ever, a substantial practical problem arises when high-level structures are created this way.

Specifically, if an algorithm makes a large number m of such low-level queries, the privacy

guarantee for the high-level structure is reduced by a factor of m. Because of this, for many

databases and high-level structures, acceptable levels of privacy in the end result via these

methods can only be obtained by sacrificing utility in the high-level structure.

In this chapter, we address the problem of constructing differentially private classifiers

using decision trees. Our main result is a differentially private classifier using random

decision trees. In the rest of this introduction, we place our results in the context of related

work and describe our work in more detail.

7.1.1 Related Work

The notion of differential privacy was developed over a sequence of results in privacy-

preserving data mining [34, 44, 10, 43]. Much of the work in the differential privacy frame-

work addresses the problem of issuing noisy answers to low-level queries, the so-called

interactive mechanisms. That is, a privacy-preserving database access mechanism would

compute the correct answer to a client’s query, and then add random noise to this result

from a carefully chosen distribution. The client receives only the perturbed result. These

low-level queries, such as queries that count the number of rows that match a given predi-

cate, can be used in the construction of differentially private data mining algorithms such

as those for decision trees [10].

In the work of Dwork et al. [43], the noise added to the client’s query depends only on

the query and not on the database itself. Nissim et al. [110] considered some query types in
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which the methods of [43] would add too much noise. They introduced a new mechanism

that lowers the amount of noise added by tailoring it to both the query and the database

instance on which it applies. Dwork and Lei [42] showed several examples in which even

instance-based noise can be too high. They addressed this issue by presenting a differentially

private sensitivity test that allows a mechanism to answer only those queries that have low

sensitivity. The mechanism may fail to answer queries that have high sensitivity. Following

the work of [43], a number of differentially private algorithms have been developed [97, 18,

84, 102, 126].

Most of the early results in differential privacy involved the analysis of real-valued func-

tions. McSherry and Talwar [103] introduced the exponential mechanism as a technique for

differential privacy that applies to more general functions. They showed that the primary

technique in [43] follows as a specific instantiation of their general-purpose mechanism.

However, the exponential mechanism is not a computationally efficient method.

In contrast with interactive mechanisms, much less work has been done in the area

of differentially private non-interactive mechanisms that output “anonymized” versions of

their input databases. The earliest substantial result in this area was by Blum et al. [11].

They showed a differentially private mechanism that, for any concept class with small

VC-dimension, outputs a (privacy-preserving) database that is simultaneously useful for all

queries in the class. Feldman et al. [50] gave a differentially private algorithm for computing

k-median coresets for a database. Kasiviswanathan et al. [84] show that any PAC learning

algorithm can be converted to a differentially private PAC learning algorithm, although

not necessarily one that runs in polynomial time. They also provide a polynomial time

algorithm for differentially private learning of parity functions.
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7.1.2 Our Contributions

First, we consider the problem of constructing a differentially private decision tree classifier.

We first present experimental evidence that creating a differentially private ID3 tree using

low-level differentially private sum queries does not simultaneously provide good privacy

and good accuracy. Specifically, we present results from the application of this algorithm to

realistic data and observe that in order to obtain a reasonable privacy guarantee, the privacy

parameter for each individual noisy sum query needs to be fairly small. Our experiments

show that such a differentially private decision tree gives poor prediction for many databases.

Motivated by this poor performance, we instead take an alternate approach. Our main

result is an algorithm for differentially private ensemble classifiers. Using random decision

trees [47], our algorithm produces classifiers that have good prediction accuracy without

compromising privacy, even for small datasets. In contrast to the privacy-preserving decision

tree construction methods presented in [94, 2], these decision trees provide provable privacy

guarantees about any individual’s contribution to the final result.

We present results from the application of our differentially private random decision

tree algorithm to both synthetic and realistic data. Our experiments demonstrate that our

approach yields good prediction accuracy even when the size of the datasets are relatively

small. We also extend our results to the case where databases that are periodically updated

by appending new data and show experimentally that the resulting differentially private

random decision tree classifier handles data updates in a way that has small reductions in

accuracy while preserving the privacy guarantee.

We begin in Section 7.2 by describing the differential privacy model in more detail

and summarizing relevant existing results. In Section 7.3, we consider the use of low-level

differentially private sum queries to create differentially private decision trees and motivate
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the necessity of considering a new approach. In Section 7.4, we present an overview of

random decision trees, which form the basis of our new approach. In Section 7.5, we show

how to construct differentially private random decision trees, our main contribution. We

present extensions of private random decision tree classifier in settings that involve data

update. We present a procedure to update private random decision trees as data updates

are made. We also illustrate how to construct private random decision tree classifiers

for databases that are distributed between multiple parties. In Section 7.6, we present

experimental analysis of our differentially private random decision tree algorithms.

7.2 Preliminaries

The ε-differential privacy model introduced by Dwork et al. [43] assures that the removal

or addition of a single item in a database does not have a substantial impact on the output

produced by a private database access mechanism.

Let D1, . . . ,Dk denote domains, each of which could be categorical or numeric. Our

database D consists of n rows, {x1, x2, . . . , xn}, where each xi ∈ D1 × . . . × Dk. Two

databases D1 and D2 differ in at most one element if one is a proper subset of the other

and the larger database just contains one additional row [41].

Definition 2 ([41]) A randomized mechanism M satisfies ε-differential privacy if for all

databases D1 and D2 differing on at most one element, and all S ∈ Range(M),

Pr[M(D1) = S] ≤ exp(ε) ∗ Pr[M(D2) = S] (7.1)

The probability is taken over the coin tosses inM.

Note that smaller values of ε correspond to higher levels of privacy. Let f be a function on

databases with range R
m . A standard technique by which a mechanismM that computes
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a noisy version of f over a database D can achieve ε-differential privacy is to add noise from

a suitably chosen distribution to the output f (D). The magnitude of the noise added to

the output depends on the sensitivity of f , defined as follows:

Definition 3 ([41]) The global sensitivity of a function f is the smallest number S(f ) such

that for all D1 and D2 which differ on at most one element,

‖ f (D1)− f (D2) ‖1≤ S(f ) (7.2)

Let Lap(λ) denote the Laplacian distribution with mean 0 and standard deviation
√
2λ.

The following theorems are proven in [43, 103].

Theorem 3 ([43]) Let f be a function on databases with range R
m . Then, the mechanism

that outputs f (D) + (Y1, . . . , Ym), where Yi are drawn i.i.d from Lap(S(f)/ε), achieves ε-

differential privacy.

Using this method, smaller values of ε imply that more noise is added when query results

are returned.

Theorem 4 ([103]) The sequential application of mechanismsMi, each giving εi-differential

privacy, gives
∑

i εi-differential privacy.

Theorem 4 implies that differential privacy is robust under composition, but with an additive

loss of privacy for each query made.

7.3 ID3 Trees from Private Sum Queries

Most of the work in the differential privacy framework addresses the problem of issuing

noisy answers to low-level queries. These low-level queries, such as count queries, can be
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used in the construction of differentially private data mining algorithms such as for decision

trees [10]. However, a substantial practical problem arises when higher level structures are

created using low-level queries as described in [10]. By Theorem 4, if an algorithm makes q

such queries each with a privacy parameter ε, the overall privacy guarantee of the structure

is ε′ = qε. In practice, for ε′ to be reasonable, one must choose ε to be fairly small, which

increases the amount of noise added to each low-level query. This can have a significant

negative impact on the utility of the high-level structure the user wants to compute.

In this chapter, we study the resulting utility and privacy that occurs when low-level

noisy queries are used to construct high-level structures. We first examine the construction

of differentially private ID3 decision trees using noisy sum queries. See Algorithm 7 for the

original ID3 algorithm [120]. We obtain a differentially private ID3 algorithm by replacing

accesses to the training set S in the algorithm with equivalent queries to a differentially

private interactive mechanism. We list below the affected statements and how they can be

modified with queries to a differentially private mechanism for S.

1. The conditions of the first two If statements in function ID3 access the training set

S. These can be evaluated by using two queries, each of global sensitivity 1:

(a) one query that asks the mechanism to count the number of rows in S, and

(b) one query that asks for the count in S of each value of the class attribute C.

Although it is possible to use the sum of the values obtained for the second query as

the size of S (thus avoiding the use of the first query), this sum has higher variance

than the result for a direct query for the size of S.

2. The return statement in the the third If of function ID3 refers to the most frequently

occurring class value in S.
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3. The entropy computation in the return statement of the function Entropy needs to

know the size of S and sizes of its subsets Sj, for 1 ≤ j ≤ k. These can be computed

using differentially private queries of global sensitivity 1.

4. The weighted entropy computation in the return statement of the function Attribu-

teEntropy needs to know the size of S and the sizes of the subsets Sj, for 1 ≤ j ≤ m.

Note that each of the subsets of the training set S used in the algorithm can be referenced

using some set of attribute-value pairs.

In order to obtain an acceptable privacy guarantee in the final tree, the privacy parame-

ter needs to be fairly small in each noisy sum query used in the computation of information

gain. This requires a large amount of noise to be added to each query result, effectively

destroying the correlation between the attributes in the database. As we observe experi-

mentally, the resulting tree has poor accuracy.

We implemented the private ID3 algorithm and ran our experiments on three datasets

from the UCI Machine Learning Repository [4]—namely the Nursery dataset, the Con-

gressional Voting Records dataset and the Mushroom dataset. Accuracy results are

given in Table 7.1, which is the percentage of test instances that were classified correctly.

(In these cases, the vast majority of the test instances were left unclassified by the trees

created, though some instances were also misclassified. The inability of the noisy ID3 tree

to produce labels for test instances can probably explained by the fact that irrelevant at-

tributes were chosen for testing in many internal nodes of the tree.) In all of these datasets,

the overall privacy parameter of the ID3 tree is set to ε′ = 1. The privacy parameter ε

for each noisy sum query is given by ε′/q , where q is the number of queries made. For

example, in the case of the Mushroom dataset, the value of ε for each noisy query is
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Algorithm 7 The ID3 decision tree learning algorithm.

function ID3( R: a set of independent attributes,
C: the class attribute,
S: a training set) returns a decision tree;

begin
If S is empty, return a single node with value Failure;
If S consists of records all with the same value for the class attribute,

return a single node with that value;
If R is empty,

return a single node with value the most frequent of the values
of the class attribute that are found in records of S;

Let D be the attribute in R with largest InformationGain(D,S,C);
Let {dj |j = 1, 2, . . . ,m} be the values of attribute D;
Let {Sj|j = 1, 2, . . . ,m} be the subsets of S consisting

respectively of records with value dj for attribute D;
Return a tree with root labeled D and arcs labeled

d1, d2, . . . , dm going respectively to the trees
ID3(R − {D}, C, S1), ID3(R− {D}, C, S2), . . ., ID3(R − {D}, C, Sm);

end ID3;

function InformationGain( D: an attribute,
S: a training set,
C: the class attribute) returns information gain;

begin
Return (Entropy(S,C)−AttributeEntropy(D,S,C))

end InformationGain

function Entropy( S: a training set,
C: the class attribute) returns entropy of training set;

begin
Let {cj |j = 1, 2, . . . , k} be the values of the class attribute C;
Let {Sj|j = 1, 2, . . . , k} be the subsets of S consisting

respectively of records with value cj for attribute C;

Return

⎛
⎝− k∑

j=1

|Sj |
|S| log

|Sj|
|S|

⎞
⎠

end Entropy

function AttributeEntropy( D: an attribute,
S: a training set,
C: the class attribute) returns entropy for attribute;

begin
Let {dj |j = 1, 2, . . . ,m} be the values of the attribute D;
Let {Sj|j = 1, 2, . . . ,m} be the subsets of S consisting

respectively of records with value dj for attribute D;

Return

⎛
⎝ m∑

j=1

|Sj |
|S| Entropy(Sj)

⎞
⎠

end AttributeEntropy
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Data set # rows # queries Global Accuracy Accuracy
Sensitivity original ID3 Private ID3

Nursery 12960 8 8 98.19% 33.92%

Cong. Votes 435 16 16 94.48% 1.77%

Mushroom 8124 22 22 100% 5.85%

Table 7.1: Implementing a privacy-preserving version of ID3 using low-level differentially
private queries produces very poor accuracy on many widely used data sets.

approximately 0.045. As can be seen from Table 7.1, for all three datasets the resulting

private ID3 algorithm has poor utility.

To overcome this poor performance, we take a different approach. We construct a

differentially private ensemble classifier using the approach of random decision trees [47].

Instead of adding noise to each of the queries made, this approach computes the entire

decision tree and adds noise at the end to the leaves. We show that this gives good utility

without compromising privacy. We describe this method in detail in Section 7.5 after first

introducing random decision trees.

7.4 Random Decision Trees: An Overview

In most machine learning algorithms, the best approximation to the target function is

assumed to be the “simplest” classifier that fits the given data, since more complex models

tend to overfit the training data and generalize poorly. Ensemble methods such as Boosting

and Bagging [127] combine multiple “base” classifiers to obtain new classifiers. It has been

observed that ensemble methods can have significantly lower generalization error than any

of the base classifiers on which they are based [127]. The base classifiers used in ensemble

methods are usually “conventional” classifiers such as decision trees produced by C4.5,

which are computationally expensive. The final step of combining these base classifiers can

also be computationally intensive.
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However, Fan et al. [47] argue that neither of these steps (creating the classifiers and

combining them) need be computationally burdensome to obtain classifiers with good per-

formance. They present a fast and scalable ensemble method that performs better than the

base classifiers, and frequently as well as the well-known ensemble classifiers. Counterintu-

itively, their ensemble classifier uses base classifiers that are created from randomly chosen

decision trees, in which attributes for decision tree nodes are chosen at random instead

of using a carefully defined criterion. The structure of the decision tree (that is, which

attributes are in which internal nodes of the decision tree) is determined even before any

data is examined. Data is then examined to modify and label the random tree. The end

result based on creating an ensemble of random decision trees is an algorithm that scales

well for large databases.

The algorithm to build a single random decision tree is shown in Algorithm 8 (adapted

from [47]). The algorithm as presented works only for categorical attributes, though

it can easily be extended to continuous-valued attributes by choosing random thresh-

olds for the chosen attribute. The algorithm recursively creates the structure of the tree

(BuildTreeStructure), and then updates the statistics (UpdateStatistics, AddInstance)

at the leaves by “filtering” each training instance through the tree. Each leaf node of the

tree holds T counters, α[1], . . . , α[T ], where T is the number of possible labels for training

instances. After all the examples have been incorporated into the tree, the algorithm prunes

away all internal and leaf nodes that did not encounter any of the examples in the training

set. The running time of the algorithm is linear in the size of the database.

The random decision tree classifier is an ensemble of such random decision trees. When

a test instance needs to be classified, the posterior probability is output as the weighted

sum of the the probability outputs from the individual trees (see Algorithm 9, adapted
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Algorithm 8 Random Decision Tree (RDT)

Input: D , the training set, and
X , the set of attributes.

Output: A random decision tree R

R = BuildTreeStructure(X )
UpdateStatistics(R, D)
Prune subtrees with zero counts
return R

Subroutine BuildTreeStructure(X)

if X = ∅ then
return a leaf node

else
Randomly choose an attribute F as testing attribute
Create an internal node r with F as the attribute
Assume F has m valid values
for i = 1 to m do

ci = BuildTreeStructure(X − {F})
Add ci as a child of r

end for
end if
return r

Subroutine UpdateStatistics(r, D)

for each x in D do
AddInstance(r, x)

end for

Subroutine AddInstance(r, x)

if r is not a leaf node then
Let F be the attribute in r
Let c represent the child of r that corresponds to the value of F in x
AddInstance(c, x)

else
/* r is a leaf node */
Let t be the label of x
Let α[t] = # of t-labeled rows that reach r
α[t]← α[t] + 1

end if
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from [47]).

There are two important parameters to be chosen when using this ensemble method,

namely (i) the height h of each random tree, and (ii) the number N of base classifiers. Using

simple combinatorial reasoning, Fan et al. [47] suggest that a good choice for the height is

h = m/2, where m denotes the number of attributes. They also find that a value for N as

low as 10 gives good results.

Algorithm 9 Classify

Input: {R1, . . . ,RN }, an ensemble of RDTs, and
x, the row to be classified.

Output: Probabilities for all possible labels

For a tree Ri, let �i be the leaf node reached by x
Let αi[t] represent the count for label t in �i

P (t|x) =
N∑
i=1

αi[t]/

(∑
τ

N∑
i=1

αi[τ ]

)

return probabilities for all t

The advantage of creating a random tree is its training efficiency as well as its minimal

memory requirements. The algorithm uses only one pass over the data to create a random

decision tree. In a series of papers, Fan et al. [45, 46] show that the random decision

tree algorithm is simple, efficient and accurate. They surmise that the reason for the

superiority of their ensemble method is that it optimally approximates for each example

its true probability of being a member of a given class—that is, the random decision tree

ensembles form efficient implementations of Bayes Optimal Classifiers.

7.5 Differentially Private Random Decision Trees

As was discussed in Section 7.4, the structure of a random decision tree is created with-

out examining the data. Only the counters in the leaves of the tree depend on the input
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database. This makes the random decision tree algorithm a potentially good candidate

for a differentially private mechanism. Because random decision tree construction already

contains randomness, it is possible that the construction method might already be differen-

tially private. However, the given randomized decision tree algorithm does not satisfy the

requirements of differential privacy because of the way the pruning step is carried out, as

demonstrated by the following counterexample. Consider the databases D1 and D2 (that

differ in at most one element) in Figure 7.1, shown along with an initially empty randomly

generated tree structure. The trees R1 and R2 that result from the deterministic steps of

UpdateStatistics and pruning are shown in Figure 7.2. The probability of the tree R1

being generated from database D2 is zero.

In this section, we present a modified form of the algorithm that does satisfy ε-differential

privacy.

7.5.1 Private Random Decision Tree Algorithm

We now present an algorithm for creating a differentially private random decision tree. It

is a modification of the original random decision tree algorithm. We begin by eliminating

the pruning step that removes “empty” tree nodes. The algorithm thus creates a tree in

which all of the leaves are at the same level. The leaf nodes of a random decision tree,

then, effectively form a leaf vector V of M ·T integers, where M is the number of leaf nodes

and T is the number of possible labels for instances in the training data. This vector of

“counts” is updated by the UpdateStatistics function. Effectively, releasing a random

decision tree amounts to (i) releasing the structure of the tree followed by (ii) this vector

of counts. Since the attributes in the tree nodes are chosen completely at random (even

before the data is examined), the structure contains no information about the data. (This is
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Figure 7.1: RDT Algorithm is not private: Example databases that differ in at most one
element and randomly generated tree structure
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Figure 7.2: RDT Algorithm is not private: Final trees for D1 and D2
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unlike in conventional decision trees such as ID3, where the presence of an attribute in the

root indicates its relative predictive capability.) As we show below in Theorem 5, the leaf

vector has a global sensitivity of 1. Recall that global sensitivity is defined in Section 7.2.

It follows from Theorem 3 that adding Lap(1ε ) noise to each component of V and releasing

the resulting noisy vector satisfies ε-differential privacy. Note that the values in the leaf

vector will no longer be integer counts. The resulting algorithm, shown as Algorithm 10,

produces a single differentially private random decision tree. The data owner releases an

ensemble of differentially private random decision trees obtained by repeated application of

this algorithm.

Algorithm 10 Private-RDT

Input: D , the training set, and
X , the set of attributes.

Output: A random decision tree R

R = BuildTreeStructure(X )
UpdateStatistics(R, D)
Add Lap(1ε ) to each component of the leaf vector.
return R

Theorem 5 The Private-RDT algorithm is ε-differentially private.

Proof Let A denote the Private-RDT algorithm. For a database D and a tree R we

write A(D) = R to denote the event that algorithm A on input D produces the tree R. It

is assumed that the set X of attributes to be use for the tree is implicit in D . For a tree R,

we denote the noisy leaf vector of R by λ(R).

Consider a fixed random decision tree structure into which no examples have yet been

incorporated. Let D1 and D2 be two databases differing in at most one element that generate

leaf vectors V1 and V2 respectively on the tree (before noise is added). The global sensitivity



154

for the leaf vector of that tree is 1, because V1 and V2 must differ in exactly one component

by a value of 1.

We need to show that for any tree R the ratio P (A(D1)=R)
P (A(D2)=R) is bounded from above by

eε. Since the structure of the random decision tree is generated even before the data is

examined, it suffices for us to show that P (λ(A(D1))=V )
P (λ(A(D2))=V ) is bounded by eε, for any leaf vector

V . This immediately follows from Theorem 3, taken with the facts that the sensitivity of

the noiseless leaf vectors is 1 and the noise added is Lap(1/ε).

7.5.2 Updating Random Decision Trees

The Private-RDT algorithm assumes that all data is available at one time. In the real

world data usually arrives in batches. We consider a situation where data is periodically

appended to an existing database. The goal is to build a classifier on the combined data

each time data gets appended to the existing data. A classifier built on the combined data

is likely to be preferred to a classifier built on the new data alone. This kind of incremental

learning is frequently a challenging problem, even when privacy is not an issue. The solution

of rebuilding a classifier from scratch can be a time consuming proposition for large datasets.

In the context of differential privacy, a second problem arises. In order to make use

of the composition theorem, the updated classifier must provide a lower privacy guarantee

than the initial classifier does. Subsequent updates will worsen the privacy guarantee even

further. In this section, we show how private random decision trees can handle data updates

is a way that does not lower the privacy guarantee. The tradeoff is a marginal reduction in

prediction accuracy when compared with building a random decision tree directly from the

combined data.

Let D1 and D2, respectively, represent the old and the new instances of the database.
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Let r1 be a private random decision tree built using D1. We present here some possible

approaches to update r1 to include D2, and associated problems:

• (directly incorporate new instances) One possible option is to incorporate the in-

stances of D2 into r1 and then re-release this updated r1. However, this can result in a

breach of privacy.

• (recreate leaf vector with D1 ∪D2) A second option is to clear out the leaf vector for

r1, and then run UpdateStatistics with D1 ∪D2. Then add Lap(1/ε) noise to the leaf

vector. By the composition theorem, the resulting private random decision tree will have

a privacy guarantee of 2ε. In general, k such updates will raise the privacy parameter to

kε.

• (rebuild RDT with D1 ∪ D2) A third option is to build a new random decision tree

from scratch using D1 ∪D2, and then add noise to the leaf vector. As before, the private

guarantee erodes to 2ε. For example, if the Private-RDT algorithm was run twice with

a parameter of ε = 0.5, once with the old data alone, and once with the union of the old

and new data, the final privacy guarantee would be ε = 1.

We can avoid these privacy related issues using the following procedure:

1. Create a clone r′1 of r1 and clear out the leaf vector of r′1.

2. Use UpdateStatistics to insert the rows of D2 into r′1.

3. Add Laplacian noise to the leaf vector of r′1.

4. Add the leaf vector of r′1 to the leaf vector of r1 and release this updated random

decision tree.

Since the leaf vector of r′1 is based on D2 alone, and not on any instance of D1, the updated
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random decision tree continues to satisfy the privacy parameter of ε. We present experiments

in Section 7.6 to show that the accuracy of r1 is not substantially reduced after a single

update. After a few iterations, the accuracy of the the random decision tree ensemble will

be reduced. At that stage, one could build a new ensemble from scratch and then return to

more efficient updates.

7.5.3 Private Random Decision Trees for Distributed Databases

In this section, we address the problem of constructing a differentially private random

decision tree classifier when the database is distributed among multiple parties. Very little

work has done in this area of applying differential privacy in distributed data mining. Beimel

et al. [7] examined the idea of combining secure function evaluation and differential privacy.

They presented a way of conducting distributed analyses that preserve differential privacy.

This work applies to very simple computations such as computing the sum of n distributed

bits. Recently, Mironov et al. [104] presented a computational version of differential privacy

where privacy guarantees hold only against computationally bounded adversaries. The also

presented a differentially private definition of two-party computation and indicated that

they have a solution to the two-party Hamming distance problem in a computationally

differentially privacy setting. Again, both of the above mentioned work on distributed

differential privacy addresses only low-level primitive queries and it is not known how these

queries when used to construct a complex structure may lead to the loss of utility.

Private random decision trees on horizontally partitioned data.

A (virtual) database table is horizontally partitioned among a number of parties if each

party has a database table with the same set of attributes. The virtual table is the union
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of all these tables. We assume that the parties have no rows in common. The parties need

to decide on the tree structure ensembles and on ε ahead of time.

The solution to this problem is the same as the algorithm for updating random decision

trees described in Section 7.5.2. Each update is equivalent to a partition of the database.

The experimental results discussed in Section 7.6.2 apply for this scenario. Note that we

have presented our experimental results for one update. This implies that those experimen-

tal results will hold for two parties. This approach has the following advantages:

• Since each party constructs a classifier from only his or her share of data and publishes

it, there is no communication overhead.

• A client who wishes to construct a private classifier can pool the data from publishers

of his choice.

Private random decision trees on vertically partitioned data.

A virtual database table is vertically partitioned among a number of parties if each party

has data for some fixed set of attributes about individuals that are known to all the parties.

The virtual database table is the “join” of all the distributed tables. We consider the case

of two parties although the procedure described in this section can be extended to multiple

parties. Each party here holds a different set of attributes, except for a common identifier

attribute which relates a row in the first database table with a row in the second.

Let D1 and D2 denote the vertical partitions of the database D , where D1 is owned by

Alice and D2 is owned by Bob. Let X1 denote the set of attributes for the database D1 and

X2 denote the set of attributes for the database D2. Let us assume that both parties have

the same class attribute, as is assumed in [40]. We also assume that the new instance to be

classified contains the entire set of attributes of the database D. This assumption can be
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relaxed with a small loss in utility. The algorithm works as follows:

• Alice computes an ensemble A of random decision trees using algorithm Private-

RDT with inputs D1 and X1. Alice releases the ensemble A.

• Bob computes an ensemble B of random decision trees using algorithm Private-RDT

with inputs D2 and X2. Bob releases the ensemble B.

• To classify a new instance run the algorithm Classify on the union of the two ensem-

bles A and B.

7.6 Experiments

In this section, we present our experimental results that show that the private random

decision tree algorithm achieves good utility in terms of prediction accuracy. We ran three

sets of experiments. First, we ran experiments to measure the accuracy of private random

decision tree ensembles for various values of the privacy parameter ε. Second, we ran

experiments to observe the change in the accuracy of random decision tree ensembles when

there are batch updates to the data. Third, we ran experiments to measure the utility of

the algorithm for vertically partitioned data. We implemented our algorithms in Java using

the Weka machine learning framework [140].

7.6.1 Accuracy of Private Random Decision Tree Ensembles

The experiments were run on data sets available from the UCI Machine Learning Reposi-

tory [4] and from synthetic data that we generated. We restricted ourselves to data sets with

only categorical attributes, although extending the implementation to continuous attributes

should only take a small amount of additional effort.
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Experimental Setup

As noted by Dwork [41], the technique of obtaining differential privacy by adding noise

proportional to S(f)
ε yields accurate results only when large data sets are used. For example,

consider a histogram query, for which S(f) = 1. If the privacy parameter ε is set to 0.01, the

standard deviation for the Laplacian noise added to each component of the output would

be approximately 141, assuming only a single query is made. If q such queries are expected

to be made then to use the composition theorem to obtain the same privacy guarantee ε the

noise added to each query result should be approximately 141q. If a data set contains only

a few hundred or a few thousand rows, this amount of noise would completely overwhelm

the underlying “signal.” Since our largest realistic data set contains no more than 13,000

rows, and our largest synthetic data set contains only 16,000 rows, we used larger values of ε,

namely 0.25, 0.5, 0.75 and 1. As ε decreases, the amount of noise to be added must increase,

resulting in a decrease in prediction accuracy. The particular choice of ε is specific to the

application and will be decided by the data owner based on the utility/privacy requirements.

Another important parameter to consider is the number of trees in the ensemble. In

the non-private version of random decision trees, increasing the number of trees in the

ensemble increases the accuracy of predictions. Our experiments indicate that, for our data

sets, using as few as five decision trees in an ensemble produces acceptable accuracy on

average. However, the variance in accuracy between runs is higher than is obtained when

using more trees. An ensemble with 10 or more trees has better accuracy on average, with

lower variance. On the other hand, since one count query is required per random decision

tree, creating q trees implies that the per-query privacy parameter needs to be set to ε
q .

This increases the amount of noise added per query, which negatively impacts prediction

accuracy. The Congressional Voting Records data set has only 435 rows. Increasing
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the number of trees beyond five yielded poor results. For the other data sets, we set the

number of trees to 10.

Finally, our experiments indicate that setting the height of the generated random trees

to k/2, where k is the number of attributes, is not always optimal. Instead, the height we

used for a database depended on:

1. the average number of values taken by the attributes of the data set (denoted by b),

2. the number of rows in the database (denoted by n).

Clearly, b is close to the average branching factor of a random decision tree. First, we

wanted to ensure that even if the rows were evenly distributed among the leaves of an RDT,

the leaves would not all be very sparse. Sparse leaves are more susceptible to noise added

by the Private-RDT algorithm. Hence, it is not advisable to choose a height h such that

bh � n. If the rows tend to clump together into a small number of leaves, that is usually

acceptable, because this would imply that the test set is likely to be similarly distributed.

However, if the height is too small there would be too few clumps, and the leaves lose the

power of discrimination. The compromise is to choose a value of h close to logb n. For our

experiments, we chose the height h = min(�k/2�, (�logb n� − 1)).

We performed our experiments on three data sets from the UCI Machine Learning Repos-

itory, namely the Nursery, Mushroom and Congressional Voting Records data sets

and on three synthetic data sets. Each synthetic data set was generated from a handmade

Boolean decision tree. One of these trees is presented in Figure 7.3. We added noise to these

data sets by flipping each class label with a probability of 0.05 to make these synthetic data

sets more realistic. (This has no bearing on privacy.) See Table 7.2 for data characteristics.

To get a sense of the variation of the prediction accuracies, we present in each case
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Figure 7.3: The decision tree used to generate synthetic data set 2.

summary statistics over 10 runs of private ensembles of 10 random decision trees (with the

exception of the Congressional Voting Records data set), for each value of ε ∈ {0.25, 0.5,

0.75, 1}. For the sake of consistency, we used the same set of ensembles for every value

of ε. We also show the prediction accuracy of a non-private implementation of random

decision trees (we set ε to ∞ and the tree is not pruned). We used trees of height of 4

for Nursery, trees of height 5 for Mushroom, and trees of height 6 for Congressional

Voting Records. Prediction accuracy is based on the stratified cross-validation technique

available in Weka. The accuracy for each ensemble and each value of ε is computed by

averaging over 10 runs. We resampled the Laplace Distribution for each run to add noise to

the leaf vector. We removed from the Mushroom database the attribute that has missing

entries. In the Congressional Voting Records database, we replaced each missing vote

with the majority vote for that bill. We did not compare our results with the standard

random decision tree ensemble algorithm with pruning. In a non-private setting, the data

owner can release an ensemble with maximal accuracy. But such a release would leak

information. In our setting, the data owner releases a random ensemble of random decision

trees.
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Results

We use box plots to graphically display the five-number summary of the accuracy of

Private-RDT on each data set and each value of ε. The five-number summary includes

the observed minimum and maximum accuracies, the lower and upper quartiles and the

median. We present in Figures 7.4, 7.5 and 7.6 the box plots of the results of our exper-

iments on the Nursery, Mushroom and Congressional Voting Records data sets.

Figures 7.7, 7.8 and 7.9 present the results of our experiments on three synthetic data sets.

In almost all experiments on the Private-RDT algorithm, whether on realistic data from

the UCI Repository or on synthetic data, we see that lower values of ε generally result in

lowered average accuracy of predictions. This is as expected, since the amount of noise

added is inversely proportional to ε. However, the drop in average accuracy is gradual and

not precipitous.

For the three data sets from the UCI Repository, the reduction in accuracy from ε =∞

to ε = 1, though noticeable, is not substantial. The Mushroom data set appears to be the

least affected by the addition of noise, while the Congressional Voting Records data

set appears to be the most sensitive. The latter can be partly explained by the smaller size

of the data set.

For the three synthetic data sets, just as is the case of the data sets from the UCI

repository, there is a gradual reduction in accuracy with the decrease in ε. The reduction

is privacy appears very slight in relation to the lowering of ε. This is because the synthetic

data sets are relatively large. A more pronounced reduction can be observed by looking at

the minimum accuracy for each value of ε.

Overall, as each of these figures show, the private random decision tree ensemble algo-

rithm has good accuracy, even for relatively small data sets.
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Data set # attribs # rows # Class labels

Nursery 8 12960 3

Mushroom 22 8124 2

Cong. Votes 16 435 2

Set 1 10 16000 2

Set 2 6 14000 2

Set 3 7 14000 2

Table 7.2: Experimental Data Characteristics
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Figure 7.4: Accuracy on the Nursery data set from the UCI Repository. Displayed are the
average and maximum accuracy for ε ∈ {0.25, 0.5, 0.75, 1,∞}.
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Figure 7.5: Accuracy on the Mushroom data set from the UCI Repository.
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Figure 7.6: Accuracy on the Congressional Voting Records data set from the UCI Reposi-
tory.
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Figure 7.7: Accuracy on synthetic data set 1. The decision tree for this data set (not shown)
has 10 attributes.

78

80

82

84

86

88

90

92

94

96

Infinity 1 0.75 0.5 0.25

Epsilon

A
cc

u
ra

cy

Q1 Min Median Max Q3

Figure 7.8: Accuracy on synthetic data set 2. See Figure 7.3 for underlying decision tree.
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Figure 7.9: Accuracy on synthetic data set 3. The decision tree for this data set (not shown)
has 7 attributes.

7.6.2 Updating Random Decision Trees

We ran the algorithm presented in Section 7.5.2 on each of the large data sets from the

earlier experiments. We split each data set into two equal halves. The first half was used

as D1 and the second as D2. We present the results obtained on Nursery, Mushroom

and on the synthetic data set 1 in Figures 7.10, 7.11 and 7.12 respectively. In each case we

compare the accuracy of the ensemble produced by the update algorithm to the ensemble

produced by rerunning Private-RDT on the union of old and new data.

Our experiments on the private random decision tree update algorithm also show that

there is a gradual reduction in accuracy with decreasing values of ε. More importantly, the

difference in accuracy between this algorithm and the Private-RDT algorithm run on the

union of old and new data is low. The slightly increased accuracy for some small values of

ε can be attributed to the fact that we used different ensembles for the various values of ε.

Running the experiments over a larger set of ensembles will show that accuracy is indeed

lowered for smaller values of ε.

The value of ε for the Private-RDT algorithm run on the union of old and new data
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Figure 7.10: Performance of the update algorithm on the Nursery data set.

would be twice the value displayed in Figures 7.10–7.12 because of Theorem 4 (assuming

that the data owner had previously released an ensemble based on the old data alone). For

example, if the Private-RDT algorithm was run twice with ε = 0.5, once with the old data

alone, and once with the union of the old and new data, the final privacy guarantee would

be ε = 1. Therefore, to get a fair comparison, one should compare the results for ε = 1

for the private random decision tree update algorithm against ε = 0.5 for the Private-

RDT algorithm on the unioned data. The results from the experiments run on the private

random decision tree updating algorithm indicate that the algorithm substantially preserves

accuracy with the released trees retaining their original (pre-update) levels of privacy.

7.6.3 Private Random Decision Trees on Vertically Partitioned Data

To test the utility of the ensembles produced for vertically partitioned data, we vertically

partitioned our datasets by randomly dividing the sets attributes into two disjoint sets. We

ran the private RDT algorithm on each partition and computed the union of the ensembles

output for each partition. Figure 7.13 presents the accuracy for the Congressional Voting

Records database.
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Figure 7.11: Performance of the update algorithm on the Mushroom data set.
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Figure 7.12: Performance of the update algorithm on synthetic data set 1.
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Figure 7.13: Performance of the vertically partitioned database algorithm on randomly
partitioned Congressional Voting Records dataset.

7.7 Summary

In this chapter, we presented a differentially private decision tree classifier using the random

decision tree approach. We experimentally showed that our approach yields good predic-

tion accuracy even when the size of the database is small. This was possible because the

classifier was built from fewer summaries of the database. We also presented a differentially

private way of construct a decision tree classifier when new data is periodically appended

to an existing database and how to construct a random decision tree classifier when data

is horizontally or vertically partitioned between multiple parties. In all of these cases, we

experimentally demonstrated that our differentially private random decision tree algorithm

produces good utility even for small databases. One possible future direction is to design

new machine learning algorithms that need only a small number of summary queries, which

could give good accuracy while still maintaining privacy.
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Chapter 8

Conclusions

This thesis addresses data privacy in various stages of extracting knowledge embedded

in databases. We have addressed the problem of privacy preservation in the two following

broad settings: (1) privacy in distributed knowledge discovery, where the data is distributed

over multiple sources; and (2) privacy in situations where the output from data mining could

itself breach an individual’s privacy. Each of the results presented applies to one of two

different privacy models, namely, the secure multiparty computation (SMC) model and the

differential privacy model.

Secure multiparty computation involves the collaborative computation of functions based

on inputs from multiple parties. The privacy goal is to ensure that all parties receive only

the final output without any party learning anything beyond what can be inferred from

the output. Within this framework, we addressed the problem of preserving privacy for

several problems in the preprocessing and the data mining stages of knowledge discovery in

databases. For the preprocessing step, we presented private protocols for the imputation of

missing data when the data is shared horizontally between two parties. We introduced the

notion of arbitrarily partitioned data as a generalization of both horizontally and vertically

partitioned data, and presented a privacy-preserving protocol for k-means clustering of ar-

bitrarily partitioned data. We also presented a new simple k-clustering algorithm that was

designed to be converted into a communication-efficient protocol for private clustering.
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Even though secure multiparty computation offers the strong privacy guarantee that

nothing is leaked beyond what can be inferred from the output, in some cases the output it-

self might leak information. In the second part of the thesis, we presented privacy-preserving

alternatives for data mining algorithms whose outputs themselves breach privacy. In this

setting, we presented private inference control protocols for On-line Analytical Processing

Systems (OLAP) in the SMC model. We also studied privacy in the data mining step

within the framework of differential privacy. In this setting, the goal is to answer queries

while preserving the privacy of every individual in the database, irrespective of any auxil-

iary information that may be available to the database client. Under this privacy model, we

constructed a practical differentially private decision tree classifier using random decision

trees.

A number of interesting results with privacy and utility guarantees have recently ap-

peared under the differential privacy model. Unfortunately, though theoretically powerful,

many of these results appear to be of limited practical utility, especially for constructing

complex structures from small- and medium-sized databases. For example, many clinical

research databases tend to be relatively small, and these algorithms can be expected to

be of little value in such domains. However, there have been a few results in differential

privacy that have demonstrably preserved both privacy and utility. An interesting line of

work will be in designing general-purpose machine learning algorithms that need a small

number of summary queries. The objective is to be able to argue that these summaries can

be privatized by the addition of only a small amount of noise. This may lead to differen-

tially private data mining algorithms that are practical and effective for even small-sized

databases.
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Most models for privacy, irrespective of their strengths, share a common weakness—

they assume a “one size fits all approach” to all data. This absence of fine-grained control

can impose a substantial limitation in the utility of privacy preserving algorithms. Here

are some issues to consider in designing a new privacy model and in creating new privacy

infrastructure:

1. Not everyone values privacy the same way. Each individual should be able to set

their own privacy threshold. For instance, a person may be willing to accept reduced

privacy for their data in exchange for monetary compensation.

2. Not every attribute of an individual is equally private. A person might highly value

the privacy of their annual income, but may be less reluctant to reveal their employer.

3. Not every data consumer is equally close to an individual. A person might have

lower privacy requirements if the data consumer is their employer, higher privacy

requirements if the consumer is a local retailer, and the highest privacy requirement

for everyone else.

4. Not every use of private data is the same. A person might be willing to reveal her

annual income if it is to be used to compute the average income in her neighbor-

hood, but unwilling to reveal it if it is to be used to find the highest earners in her

neighborhood.

Over time, new models for privacy may replace existing ones. But the concept of, and the

need for, privacy and privacy research will be longstanding issues.
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