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Categorizing a continuous variable is easy for communication and statistical 

analysis in public health and medical research. However, categorization loses information, 

reduces statistical power, and biases the estimate of a dose-response association while 

reducing its efficiency. Further, it jeopardizes the validity and efficiency of a meta-

analysis because of the single cutoff point and/or inconsistent cutoff points in the 

included studies. 

In order to appropriately summarize the estimates from each study in a meta-

analysis with comparable categories or dose-response association, a new approach on re-

estimating the underlying distribution of a categorized covariate by using the published 

information is the first step. 
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This dissertation research proposes two types of approaches to estimate the 

underlying distribution. The first approach is linear model approach. When the 

underlying distribution follows a normal distribution, a linear model can be constructed 

by using the mean, standard deviation, and cutoff points with their cumulative 

probabilities in each study. The parameters can be estimated via the weighted mixed-

effect linear regression model. When the underlying distribution follows a gamma 

distribution, a linear model is derived by applying a property of the incomplete gamma 

distribution. The parameters can be estimated by using a numerical iteration algorithm. 

 The second approach is a goodness-of-fit approach. When the parameters of the 

underlying distribution cannot be linearized, based on the cutoff points and their 

cumulative probabilities in each study, the parameter estimates minimize the distance 

between the expected and observed values. We also applied this approach to estimate the 

parameters of a categorized zero-inflated distribution: the proportion of excess zero and 

the continuous variables. 

In addition, we discuss the impacts from categorization on the relative efficiency 

of estimating the parameters and the dose-response association, and the validity of the 

dose-response association by maximum likelihood approach via the multinomial 

distribution and simulation studies. 

In summary, the main contribution from this dissertation is that our approaches 

use published data to convert from the disadvantage of inconsistent cutoff points in many 

studies into useful information and to improve meta-analysis. We also generalize the 

approaches of evaluating the impacts from categorizing a continuous variable. 
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Chapter 1 

Introduction 

 

Categorizing a continuous variable is frequently used in epidemiological and medical 

studies. The main reasons for grouping data are to make it easier to perform statistical 

analyses and to improve clarity for interpretation and communication. However, 

categorization causes loss of information, statistical power, and efficiency. 

 When a variable of interest is only available in the categorized form and this variable 

might be a mixture of a continuous distribution and excess zeroes, it may not be possible 

to know the underlying information about this mixture distribution. Therefore, if methods 

for modeling this continuous variable as well as the true zero are available, they can 

provide more useful information from the estimated parameters than from what was 

originally presented. 

 The worst impact from categorizing a continuous variable would be an incorrect 

estimate from a multiple regression analysis, a multi-center clinical trial, or a meta-

analysis. 

 Meta-analysis has been widely used to summarize results from similar studies. Meta-

analysis is a quantitative method for summarizing a large number of studies, and in some 

cases it may improve the accuracy of estimation by using a larger sample size than each 

individual study (Deeks et al, 2009). As a consequence, its application in medicine has 

strengthened the practice of evidence-based medicine. However, if the impacts from 

categorizing data cannot be handled properly, the results from a meta-analysis could be 

misleading and potentially even jeopardize patient safety. 
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 We start by summarizing the methods used for categorizing continuous variables in 

Section 1.1. In Section 1.2, three published meta-analyses and one pooled analysis will be 

used to illustrate the methods of categorizing data. From those four examples, some 

statistical issues and clinical concerns will be described in Section 1.3. These concerns 

are the motivations for this dissertation research. In Section 1.4, the methods used for 

estimating the underlying distribution based on categorized data will be introduced, and 

the limitations of using those methods on the examples which are described in Section 

1.2 will be discussed. 

 

1.1 Methods for Categorizing a Continuous Variable 

Many different methods for categorizing a continuous variable have been used in the 

literature. Based on the rationale of choosing cutoff points, they may be classified into the 

following three types. 

1) Evidence-based 

This type of categorization is based on the existing cutoff points, such as: the 

cutoff points used in published studies, the cutoff points in the user�s manual of a 

product, or cutoff points defined by professional organizations or governmental 

agencies. 

For example, body mass index (BMI) has been commonly used to classify weight 

status. These BMI groups are then used to evaluate the association with some 

diseases or conditions of interest. Flegal and colleagues (2007) assessed the 

cause-specific excess death associated with being underweight, overweight and 

obese. They used the BMI criteria provided by the National Institute of Health 



  3 

 

and World Health Organization to classify weight status. The classifications for 

BMI from NIH (NIH, 1998) are: Underweight (BMI < 18.5 kg/m2); Normal 

weight (BMI: 18.5-24.9 kg/m2); Overweight (BMI: 25.0-29.9 kg/m2); Obesity 

(Class 1) (BMI: 30-34.9 kg/m2); Obesity (Class 2) (BMI: 35.0-39.9 kg/m2); 

Extreme obesity (Class 3)(BMI: ≥40 kg/m2). 

Similar definitions can also be found from the World Health Organization (WHO, 

1999). They are: Underweight (BMI < 18.50 kg/m2); Normal range (BMI: 18.50-

24.99 kg/m2); Overweight (BMI: ≥25.00 kg/m2); Preobese (BMI: 25.00-29.99 

kg/m2); Obese class I (BMI: 30.00-34.99 kg/m2); Obese class II (BMI: 35.00-

39.99 kg/m2); Obese class III (BMI: ≥40.00 kg/m2). 

2) Interval-based 

This type of categorization is based on pre-defined intervals by using integers as 

the cutoff point. Usually the intervals have equal length. For example, Flum and 

colleagues (2002) assessed the association between age and the chance of 

misdiagnosed appendicitis. They grouped age of study participants into the 

following age groups: 0-4, 5-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79 

and ≥80. 

3) Statistics-based 

This type of categorization is data-driven. Quartiles or other quantiles are 

frequently used to get equal number of subjects in each group. The other popular 

method is the minimum P-value method (Altman et al, 1994). This classification 

is based on the cutoff point for which the smallest P-value can be achieved after 

testing a range of possible cutoff points. 
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For example, Bartali and colleagues (2008) assessed the association between 

serum micronutrient concentrations and decline in physical function among older 

persons. They used the quartiles of vitamin E concentration (µg/ml) of all study 

participants to group them into four groups: 1st quartile (<1.1 µg/ml), 2nd quartile 

(1.1-1.3 µg/ml), 3rd quartile (1.3-1.5 µg/ml) and 4th quartile (≥1.5 µg/ml). 

 

1.2 Examples of Categorized Variable in the Literature 

In the following sub-sections, four examples will be used to demonstrate the types of 

categorization in epidemiological and medical studies. 

 

1.2.1 Dichotomized Quantitative Covariate  

Ferrandina and colleagues (1997) performed a meta-analysis of the association between 

the dichotomized cathepsin-D level and the disease-free survival in node-negative breast 

cancer patients (Ferrandina, 1997). The survival time is the outcome of interest. There are 

11 clinical studies which met the selection criteria. Cutoff points were chosen by the 

researchers of each study to classify the cathepsin-D status as either positive or negative. 

From the 12 published articles, 11 different cutoff points ranging from 20 to 78 pmol/mg 

protein were reported in this meta-analysis from 10 studies. These cutoff points were 

decided by using two statistics-based methods: median or minimum P-value method. 

They are summarized from the original article and shown in Table 1.2.1 on the following 

page. 
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Even though the authors acknowledged the issue of inconsistent cutoff points, they 

still used the dichotomized covariate to summarize the effect from cathepsin-D status by 

using the method developed by Peto (1987). 

This article has been used as an example to demonstrate the unreliability of results 

due to the inconsistent cutoff points (Altman, 2001). However, no corresponding solution 

was proposed. 

 

Table 1.2.1 Cutoff points summarized from studies included in the meta-analysis 

by Ferrandina et al, 1997 

No. of patients 
according to 

cathepsin-D content 

Reference 

Low High 

Cut-ff 
(pmol mg-1 protein) 

Positivity 
(%) 

Isola et al (1993) 167 95 NA 36 

Janicke et al (1993) 64 33 50 34 

Kandalafi et al (1993) 84 51 NA    37.7 

Kute et al (1992) 45 93 39 28* 

Namer et al (1991) 132 114 35 46 

Pujol et al (1993) 38 26 20 40 

Seshadri et al (1994) 117 237 25 67 

Ravdin et al (1994) 467 460 54 50 

Spyratos et al (1989) 39 29 45    42.6 

 57 11 70 16 

Tandon et al (1990) 135 64 75 32 

Thorpe et al (1989) 93 26 78 22 

Thorpe et al (1989) 24 57 24 70 
*: This is an error in the original article. The correct value should be �67�. 
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1.2.2 Categorized Quantitative Covariate 

Kamat and colleagues (2009) evaluated the association between body mass index (BMI) 

and the risk of Barrett�s esophagus (BE) by performing a meta-analysis (Kamat et al, 

2009). The included studies categorized BMI into different weight status to assess the 

association with BE by using relative risk or odds ratio. The number of groups and their 

corresponding cutoff points from all of the included studies are summarized in Table 

1.2.2 on the next page. 

Even though the classifications provided by the World Health Organization are 

commonly used (WHO, 1999), a wide variation of numbers of groups (2 to 5) as well as 

different cutoff points co-exist in the studies included in their meta-analysis. Therefore, 

when two meta-analyses were performed by using different cutoff points (BMI of 30 or 

25 kg/m2), the authors needed to exclude one or two studies to accommodate this 

inconsistency. The exclusion resulted in losing information from relevant studies. 
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Table 1.2.2 Summary of body mass index categories used in the meta-analysis of 

BMI and Barrett�s esophagus by Kamat (2009). 

 

First Author (Year) BMI (kg/m2) category 
Gerson (2002) ≤25 

> 25 
Bu (2006) Quartile I (<22) - low 

Quartile II (22�24.9) 
Quartile III (25�29.9) 
Quartile IV (>30) - high 

Ronkainen (2005) <30 
≥30 obesity 

Corley (2006) <30 
>30 

Johansson (2007) Low tertile (</23.6) 
Middle tertile (23.6-26.6) 
High tertile (>/26.6) 

Corley (2007) <25.0 
25.0�27.4 
27.5�29.9 
30.0�34.9 
>35.0 

Gerson (2007) Underweight (BMI < 18.5) 
Normal (BMI 18.4�24.9) 
Overweight (BMI 25�29.9) 
Obese (BMI > 30) 

Stein (2005) <25 (normal, reference) 
25�30 (overweight) 
>30 (obese) 

Veugelers (2006) Underweight  (BMI < 20) 
normal weight (BMI of ≥20 and < 25) 
overweight (BMI of ≥25 and < 30) 
obesity (BMI ≥30) 

Edelstein (2007) normal weight (BMI <25) 
overweight (BMI 25�29.99) 
obese (BMI ≥30) 

El-Serag (2005) <25 
25�30 
>30 

Smith (2005) <18.5, ��underweight�� 
18.5-24.9, ��normal�� 
25-29.9, ��overweight�� 
≥30, ��obese�� 
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1.2.3 Categorized Quantitative Covariate Containing Excess Zeroes 

Morton and colleagues performed a pooled analysis of the association between alcohol 

consumption and the non-Hodgkin lymphoma risk (Morton et al, 2005). A pooled 

analysis is one type of meta-analysis in which the individual patient data are combined to 

perform the analysis. To categorize the patients who consumed alcohol, the published 

articles of the included case-control studies used various numbers of cutoff points ranging 

from 0 to 5 (Table 1.2.3 on next page). The cutoff points used for categorizing the 

patients were decided by using either a statistics-based (tertile, quartile) or an interval-

based method. 

Most of the studies used the non-drinker group as the reference group to report the 

relative risk via the odds ratio. However, one study (Chang et al, 2004) combined the 

non-drinker and the low level of alcohol consumption subjects together as the reference 

group. One study (Willett et al, 2004) used a low level group instead of the non-drinker 

group as the reference group. 

 Currently there is no statistical method available to estimate the parameters of a 

continuous variable if it is reported as a mixture of a zero exposure group and several 

categories for other groups. One publication uses the Expectation Maximization (EM) 

algorithm to estimate the mixture of a doubly truncated log-normal distribution 

(McLachlan and Jones, 1988). Also there is no method to convert the association from 

the dichotomized status of drinker vs. non-drinker to the association based on the level of 

alcohol consumption. Therefore, without the data from individual patients, these 

published articles cannot be included in meta-analysis with currently available 

methodology.  
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Table 1.2.3 Cutoff points used in the case-control studies on the alcohol 

consumption and non-Hodgkin lymphoma risk 

 

Cutoff Points Author (Year) Level 
Female Male 

Holly et al (1999) None* 
Low 
Medium 
High 

0 
<=2.2 
>2.2-<5.8 
>=5.8 (drinks/week) 

0 
<=5.5 
>5.5-<13.6 
>=13.6 (drinks/week) 
 

Morton et al (2003) Never 
Ever 

Never 
Ever 

No male in the study 
 
 

Chang et al (2004) Q1: 0.00-0.21**
Q2: >0.21-0.78 
Q3: >0.78-1.80 
Q4: >1.80 

Q1: 0.00-0.21 
Q2: >0.21-0.78 
Q3: >0.78-1.80 
Q4: >1.80 (drinks/day) 

Q1: 0.00-0.21 
Q2: >0.21-0.78 
Q3: >0.78-1.80 
Q4: >1.80 (drinks/day) 
 

Willett et al (2004) Never 
>0-1 
>1-2 
>2-4 
>4-6 
>6 (units/day) 
 

(adjusted for gender) (adjusted for gender) 

Tavani et al (2001) None 
<3 
3-6 
>=7 (drinks/day)
 

(combined) (combined) 

 

*: The underlined level represents the reference group. 

**:�Qn� represents the nth quartile. 
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 Another meta-analysis example involves assessing the association between tea 

consumption and endometrial cancer by Bandera and colleagues (Bandera et al, 2007). A 

summary of some relevant studies is shown in Table 1.2.4. From the included studies, 

some of the subjects did not consume tea. Therefore, when the subjects were mixed with 

the subjects who consumed small amount as the reference group, the estimated odds ratio 

impacts the estimate in meta-analysis. 

 

 

Table 1.2.4 Summary of studies which studied the association between tea 

consumption and endometrial cancer 

 

Author 
(Year) 

No. of 
Group  

No. of Group 
containing 0 

Level or Cutoff 
Points 

Notes 

Levi et al 
(1993) 

2 N/A Low 
Intermediate 

Did not specify the 
cutoff point in the 
article. 

Zheng et al 
(1996) 

4 
 

1 Never/Monthly 
Weekly 
1 cup/day 
≥2 cups/day 

Used 1 cup = 237 ml. 

Goodman et 
al (1997) 

4 2 0 
0-34 
34-237 
>237 

Used quartiles. 
Therefore, the �0-34� 
group might be a 
mixture of 0 and low 
dose. The unit of 
cutoff points is gram. 

Jain et al 
(2000) 

4 1 0 
0-250 
250-500 
>500 

The unit of cutoff 
points is gram. 
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1.3 Issues identified from the Examples 

When the results from meta-analysis have been used as evidence for practicing evidence-

based medicine, the examples in the previous section raised some statistical issues and 

clinical concerns. They will be discussed in the following subsections.  

 

1.3.1 Categorizing Quantitative Covariates 

As we have seen, a quantitative variable is frequently grouped as a categorical variable in 

the medical and public health literature. Even though this may make it easier for a 

researcher to analyze data and to communicate results with colleagues and patients, 

information from categorization cannot be fully used and, even worse, might jeopardize 

the results. 

For example, estrogen receptor (ER) has been reported as a useful biomarker for 

predicting outcomes of treating breast cancer patients. The ER status is frequently 

described as either positive or negative. Based on a meta-analysis performed by the Early 

Breast Cancer Trialists� Collaborative Group (EBETCG), breast cancer patients who 

were ER-positive and received Tamoxifen therapy for 5 years had less chance of 

mortality (ratio of annual death rates= 0.66 [SE=0.04]) (EBETCG, 2005). However, the 

patients who were ER-negative and received Tamoxifen therapy for 5 years did not 

benefit from the therapy (ratio of annual death rates=1.04 [SE=0.08]). 

Even though the ER status has been commonly used, the cutoff point used for 

dichotomizing the positive/negative status is not a universal one (Kuo, 2000; Althuis et al, 

2004). As a consequence, the summarized effects of raloxifene on the ER-positive and 
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ER-negative cancer from one large scale multi-center clinical trial are not appropriate 

(Kuo, 2000). 

Covariates in all of the discussed examples in Section 1.2 were categorized. Therefore, 

they all share the problems of losing information and possibly jeopardizing the results. 

More details and discussions about the impacts on the results will be discussed in Section 

1.3.5. 

 

1.3.2 Choice of Cutoff Point(s) and Inconsistency 

For the purpose of categorizing subjects into groups for analysis and clinical 

interpretation, cutoff points need to be decided by the researcher when planning or 

conducting the study. As described in Section 1.1, different methods have been used to 

find the cutoff points. However, there is no consensus on finding �the� best cutoff points 

for categorizing a quantitative variable when each study is conducted individually. 

One of the methods of choosing a cutoff point to dichotomize a covariate is the 

�minimum p-value� method (Altman et al, 1994). The term of �optimum p-value� is also 

used. The rationale for using this approach is to choose a cutoff point which can 

discriminate the collected data best to show a statistically significant difference. 

Therefore, the minimum p-value is a common criterion for choosing a cutoff point. This 

approach is data-driven. As a consequence, different studies use different cutoff points 

for the same covariate. Furthermore, the process of finding the cutoff point involves the 

�multiple comparison� problem. Therefore, the reported p-value should be adjusted to 

prevent Type I error inflation. 
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Quantile is another commonly means for selecting cutoff points. For example, median 

has been a good candidate to dichotomize a covariate. Use of quantiles can prevent the 

problems from multiple comparisons. However, quantiles are still data-driven. Therefore, 

they differ from one study to another. Consequently, when performing a meta-analysis, 

the inconsistent cutoff points between studies introduce problems for summarizing the 

effects. 

From the example in Section 1.2.1, the minimum p-value method was used by three 

studies on finding cutoff points (included one used the classification and regression trees 

[CART] method); three studies report that medians were used as the cutoff points. 

However, two studies do not report how the cutoff point was chosen and two studies do 

not report their cutoff point for dichotomizing the covariate. 

If a single method for identifying the cutoff points is used for all of the studies, the 

distribution of the cutoff point could be used to estimate the covariate distribution. For 

example, if the mean of each study is used as the cutoff point and the covariate is 

normally distributed with mean µ and standard deviation σ in each study, the distribution 

of the cutoff points follows the Central Limit Theorem and has a mean of µ and standard 

deviation of n/σ , where n is the sample size of each study. Therefore, the distribution 

of the cutoff point could be used to estimate the underlying covariate distribution. 

However, when multiple methods are used for finding the cutoff points, the resulting 

cutoff points from studies is a mixture of distributions and might not be able to provide 

any useful information. 
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1.3.3 Mixture Distribution of the Reference Group 

When an individual subject in a study can be classified as one of two types of status 

based on the exposure, either exposed or not exposed, the �no-exposure� group is 

frequently used as the reference group to assess the dose-response association. However, 

in some cases, the subjects in the no-exposure group and the low-level exposure group 

are combined as a group for analysis. For example, Chang and colleagues (2004) grouped 

the subjects into four groups with equal numbers in each group (example in Section 

1.2.3). Therefore, the non-drinker and the low-level drinker groups were mixed together 

as the reference group. Without finding out the number of non-drinkers, this study cannot 

be used for meta-analysis using current methodology, if the other studies used the non-

drinker as the reference group. 

 

1.3.4 Statistics Reported in the Literature 

In printed publications of study results, the space devoted to biostatistics is very limited 

in medical and public health journals as well as other professional journals. Therefore, 

the information reported by the researcher is based on its importance related to the 

outcomes. Unfortunately, detailed statistics describing the covariate distribution are 

usually not available from the publication.  

The following statistics are available from the four examples in Section 1.2 in most of 

the included studies for meta-analysis and are usually available from the published study: 

1. The cutoff points for grouping the quantitative covariate 

2. Numbers of subjects in each group  

3. Measured effect 
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Therefore, the development of statistical methods should focus on using only this limited 

information. 

 

1.3.5 Inappropriate Performance of Meta-Analysis 

When inconsistent cutoff points exist between studies and no appropriate statistical 

methods are available, there are three possible impacts from the inconsistency: 

1) Incorrect effect estimated from ignoring the inconsistency 

The effect in one study cannot be compared with the effect in another study if the 

dichotomized cutoff points are not the same between studies. Therefore, when 

performing a meta-analysis by using studies with different cutoff points, the estimated 

effect is incorrect. The examples described in Section 1.2.1 present this problem. 

2) Fewer studies may be included in the meta-analysis, as a result of acknowledging the 

inconsistency 

Without existing statistical methods on estimating the covariate distribution when 

only one cutoff point is used to categorize a covariate, the studies with a single cutoff 

point cannot be included for meta-analysis. The examples in Section 1.2.2 

encountered this problem and need to exclude some relevant studies.  

3) Failure to perform meta-analysis because of acknowledging the inconsistency 

When the inconsistency exists but no appropriate method can be used to 

overcome the concern, systematic reviews are usually presented instead of 

performing meta-analysis. As a consequence, the results are harder to communicate 

and to be used for practicing evidence-based medicine. 



  16 

 

1.4 Methods for Modeling Categorized Data 

When a continuous variable is categorized into several groups, four types of approaches 

are available for modeling this continuous variable: 

1) Summary Statistics 

When the mean and standard deviation are reported, both summary statistics can 

be used to estimate the assumed continuous distribution. 

2) Expectation and Maximization (EM) Algorithm 

Categorized data can be modeled by using the EM algorithm. When raw data in 

one of the groups are available, a continuous variable can be estimated (Dempster et 

al, 1977). When the data are reported in double-truncated form, the EM algorithm can 

also be used to model the lognormal distribution (McLaren et al, 1986). 

3) Goodness-of-Fit 

The parameters can be estimated by fitting a continuous distribution to the 

observed numbers in each group by minimizing chi square (Hartemink et al, 2006). 

4) Probability Plotting 

Based on the cumulative probability and cutoff points, the parameters can be 

estimated by the linearized association. When the grouped data are from a normal 

distribution, this method estimates the parameters very well (Chêne and Thompson, 

1996). However, their method works only for normally distributed data. 

 

No method for handling the dichotomized quantitative covariate with inconsistent 

cutoff points between studies is currently available. The possible reason could be that the 

status of the categorization (e.g. positive / negative) is used for meta-analysis without 
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considering the inconsistency. Also when only one study is of interest, estimation of the 

underlying distribution is not possible because of the limited information. 

Current methods only take care of modeling a continuous distribution in one study. 

By the criteria of meta-analysis, all of the included studies should have similar 

characteristics. Therefore, estimation of parameters for each study should be able to 

improve if the distribution can be estimated by using information from all of the similar 

studies. 

If the raw data are available, methods for estimating the characteristics of a 

distribution in a mixture distribution have been developed. However, when only grouped 

data are available, the current methods for raw data cannot be used.  

The following table summarizes what has been done for handling some types of the 

studies. This table also describes the role of the proposed approaches: filling the gap and 

improving the current approach. 
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Table 1.4.1  Methods on Modeling the Categorized Distribution 

Type of Studies Existing Methods Our Approach 

Dichotomized covariate with 
inconsistent cutoff points from 
different studies 

N/A Works 

Categorized covariate including 
dichotomized cutoff points from 
different studies 

N/A Works 

Categorized normally distributed 
covariate excluded dichotomized 
cutoff points in one study or from 
different studies 

Chêne and 
Thompson (CT) 
method estimates 
individual study 

Improves the Chêne and 
Thompson method by 
using all studies together 

Covariate with distribution other than 
normal in one study or from different 
studies 

CT suggests 
transformation 

Estimate parameters 
using quantiles via 
weighted linear 
regression approach 
(gamma distribution) or 
weighted goodness-of-fit 

Combined no-exposure and low-level 
exposure subjects into one group and 
also categorizing a quantitative 
covariate in one study 

N/A 

Estimate the proportions 
of the no-exposure and 
low-level exposure 
subjects as well as the 
underlying categorized 
covariate 

 

 

In addition, even though the influence of categorization on the efficiency of 

estimating the parameters of a continuous variable has been studied, the impact on 

estimating the association between the outcome variable and the predictor variable (either 

this categorized covariate serves as the predictor or a confounding variable) is still not 

well understood. 
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1.5 Summary of the Dissertation 

The overall goal of this dissertation research is to develop new approaches by which the 

distribution of a continuous covariate can be estimated from studies included in a meta-

analysis by using the limited information reported in the published manuscript. The 

estimated distribution can be used to answer some new questions of interest and improve 

the summarized effects from relevant studies in a meta-analysis. This research also 

evaluates the impact from categorization on the parameter estimation, either on the 

parameters of a continuous variable or on the association between the outcome variable 

and the predictor variable. 

In Chapter 2, we will review literature to discuss the existing methodology on the 

relevant topics and their limitations. 

In Chapter 3, a novel linear model approach for estimating the underlying normal 

distribution from different studies with inconsistent cutoff points for dichotomizing a 

covariate will be introduced and evaluated. The same rationale is further extended to 

estimate parameters from different studies with multiple inconsistent cutoff points. 

We also discuss the use of linear model approach on estimating the categorized 

gamma distribution. Due to the characteristics of a gamma distribution, we proposed a 

numerical iteration algorithm to estimate parameters based on a property of the 

incomplete gamma distribution. We will associate the linear model approach to a 

goodness-of-fit approach and discuss its application to parameter estimation from 

grouped data. 
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Because this approach works for a categorized covariate, we also propose a goodness-

of-fit approach to estimate the proportion exceeding zero as well as the underlying 

distribution of a categorized covariate from a mixture distribution. 

At the end of Chapter 3, we will use the developed methods to estimate the 

underlying distribution of examples described in Section 1.2. We will also perform a new 

meta-analysis by including the studies which were excluded from the meta-analysis 

described in Section 1.2.2. 

In Chapter 4, the robustness and efficiency of linear model approach will be evaluated 

by using simulation studies. The impact on estimating the parameters of a normal 

distribution from the number of studies used, number of subjects in each study, 

characteristics of the underlying distribution, and variation of the cutoff point, and the 

number of cutoff points will be evaluated. The use of the median and mean as the cutoff 

point will also be discussed.  

In Chapter 5, we will discuss the use of a multinomial maximum likelihood approach 

to estimating the underlying distribution of a categorized continuous covariate. We will 

demonstrate both the analytic and numerical approaches. Simulation studies will also be 

used to compare the relative efficiency. 

In Chapter 6, we evaluate the efficiency of categorizing dose in a dose-response 

relationship. The relative efficiency of the categorization, from dichotomization to many 

cutoff points, will be demonstrated by using the results from simulation studies. We will 

also discuss the impact from the dose-response association and from the characteristics of 

the underlying distribution. 
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In Chapter 7, we will discuss the impact from categorizing a continuous covariate on 

the estimation of treatment effect. We will discuss the general analytical equation for the 

asymptotic relative efficiency. We will also use the equation to replicate a published 

study by providing details of the completed calculation.  
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Chapter 2 

Literature Review 

 

2.1 Methods for Estimating the Covariate Distribution from Categorized Variable 

When the value of a continuous variable is available, the exposure parameter can be 

estimated by using the method of maximum likelihood, the method of moments, and 

probability plotting. We will discuss each method in turn. 

 

2.1.1  Method of Maximum Likelihood 

When a continuous variable is categorized, it is natural to treat the categorized variable as 

the outcome of a multinomial distribution. Therefore, the parameters of this multinomial 

distribution can be estimated by using the method of maximum likelihood. 

 

2.1.2  Method of Moments 

The method of moments provides an alternative approach to estimate the parameters. 

However, as described in Section 1.3.4, the summary statistics are not always available 

from the published studies. Without those statistics, we cannot use this approach.  

 

2.1.3 Probability Plotting Approach 

One of the parameter estimation methods is the method of probability plotting. The 

rationale is that the association between the measurements and the corresponding 

cumulative probability function is able to be expressed as a simple linear regression by 
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using the parameters of the underlying distribution as the coefficients after appropriate 

transformation.  

Chernoff and Lieberman (1954, 1956) applied this approach and discussed using 

normal probability paper for finding the optimum estimates of mean and standard 

deviation of a normal distribution. 

This characteristic has been used for the specific types of probability paper from 

which the parameters of a distribution can be estimated. Probability papers are available 

for use to estimate the parameters for the normal distribution, lognormal distribution, 

exponential distribution and Weibull distribution (e.g. Weibull.com, 2008).  

 Even though probability plotting has been used as a standard method of parameter 

estimation, most of its application was seen on using the raw data, not grouped data.  

 

2.1.3.1 Chêne and Thompson Approach 

The method of probability plotting has been used to estimate the parameters of a 

covariate within a meta-analysis study by Chêne and Thompson (1996). Instead of using 

the original measurements, they used the cutoffs of all of the categories and the 

corresponding cumulative proportions of subjects to fit a linear regression line under the 

assumption that the covariate follows a normal distribution. Following is a more detailed 

description of their approach.  

Let a continuous variable X  be categorized into k groups by the cutoffs xj, j=1, 2, � , 

k-1. Nj is the number of subject in each group, j=1, 2, � , k. The total number of subjects 

is
1

k
jj

N N
=

=∑ . Therefore, the cumulative proportion is ∑ =
= j

i ij NNP
1

/ . That is, jP is 

the proportion of the subjects that had the measurements less than the cutoff jx and 1=kP . 
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Based on the underlying normal distribution, we have )(1
jj pz −Φ=  as the normal 

derivate which corresponds to jP , j=1, 2, � , k, and Φ is the cumulative standard normal 

distribution function. As a result, if the continuous variable X is normal, a plot of cutoffs 

jx  against normal derivates jz should be linear. 

When we regress jx  on jz , the estimated intercept m and slope s are the estimates of 

the mean µ and the standard deviation σ of the normal distribution, respectively. The 

regression analysis should be weighted inversely proportional to the variance of the 

quantiles. 

However, there are two limitations from their method. First, their approach depends 

on the assumption of normality. That is, their method could work only for the normal 

distribution or for another distribution which can be transformed to be normally 

distributed. Secondly, when a study has only one cutoff point, their weighted regression 

approach cannot be used. 

Even though the method of probability plotting used by Chêne and Thompson (1996) 

is related to meta-analysis, their application is to estimate the effect in each study to 

derive the dose-response association, but not to estimate the covariate distribution based 

on all of the studies.  

 

2.1.4 Comparisons on Estimation Methods 

Because the current statistical methods for meta-analysis are developed for 

summarizing effects, no methods are available for estimating the covariate distribution 

from all of the studies included in a meta-analysis. That is, the probability plotting 
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method has not been used for estimating the covariate distribution based on all studies in 

a meta-analysis. 

The comparison of the previous mentioned approaches for estimating the parameters 

of a distribution are summarized in the following table: 

 

Estimating Method  
 
Characteristics 

Maximum 
Likelihood 

Moments Probability 
Plotting 

Assumption for 
Covariate 

Need Need Need 

Information from 
data 

Observed value Observed value Observed grouped 
value and 
cumulative 
proportion 
(quantile) 

Sample Size for 
better result 

Large Large Large 
However, limited 
number of value 
(with quantile) can 
work 

Used for meta-
analysis 

Not yet Not yet Not yet 

Suitability for meta-
analysis 

No No Yes 

 

Instead of using the estimation approach, one may attempt to contact the researcher of 

each study in a meta-analysis to get the individual patient data to estimate the parameters, 

when the quantitative covariate is reported as grouped covariate. That is, once the raw 

data are available, the appropriate statistical methods can be used to estimate the effect 

from covariate on the outcome variable (Stewart et al, 1993, Stewart et al, 1995). But 

obtaining the original datasets from all of the studies is generally not feasible. 
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2.2 Methods for Modeling a Mixture Distribution containing Excess Zeroes 

From the example in Section 1.2.3, the categorized covariate might contain excess zero 

measurements, that is, it may contain more zeros than one would expect from a log-

normal or gamma distribution. When the existence of excess zeros is not under 

consideration while assessing the association between the covariate and the outcome 

variable, the estimated association is in question. Therefore, in order to correctly account 

for the excess zeros, a statistical method needs to be applied to estimate the proportion of 

excess zeros and also estimate the parameters of the distribution of continuous covariate. 

The zero inflated Poisson distribution approach will be briefly discussed in Section 

2.2.1. Because there is also a possibility that the covariate is from the Tweedie families in 

which a high proportion of zero is observed, we will discuss the Tweedie families in 

Section 2.2.2. 

 

2.2.1 Zero Inflated Poisson Distribution Approach 

The zero inflated Poisson distribution can be considered as a special case of mixture 

distribution. It consists of a one-point distribution (zero) and a Poisson distribution. A 

parameter P can be used to model the probability of zero and also model the probability 

of Poisson distribution. To estimate the parameter P and the parameter of Poisson 

distribution λ, the maximum likelihood approach is used.  
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2.2.2 Tweedie Families 

The Tweedie family of densities belongs to the class of exponential dispersion models. It 

is a two-parameter distribution in which a linear exponential family and a dispersion 

parameter. (Dunn and Smith, 2001, 2005).  

When a random variable Y  follows an exponential dispersion model, the density 

function can be written as: 

{ }( ; , ) ( , ) exp [ ( )] /Y pP y a y yµ φ φ θ κ θ φ= −  

{ }( , ) exp ( , ) / (2 )pb y d yφ µ φ= −  

where the mean is E[ ] '( )Yµ κ θ= = , φ >0 is the dispersion parameter, θ is the canonical 

parameter, ( , )d y µ  is the unit deviance, and ( )κ θ is the cumulant function. The power 

variance function V[ ] pµ φµ= characterizes the Tweedie family densities, where 

( ,0] [1, )p ∈ −∞ ∪ ∞  is the index which determines the distribution. 

When the parameter 1<p<2, the density function contains a mass at zero. Therefore, 

this family could be used to model the covariate which containing a mass of zero. Three 

examples of Tweedie families are shown in the following figures by using the tweedie 

library in R. 



  28 

 

 

 

2.3 Effect of Categorizing a Continuous Covariate on the Efficiency 

From a bivariate normal population, when a continuous variable is dichotomized at the 

mean, it reduces the correlation coefficient from r to 0.789r (Cohen, 1983). When both 

continuous variables are dichotomized, the correlation coefficient becomes 0.637r. 

Therefore, the statistical power has been reduced. 

Categorizing a continuous covariate increases the variance of the treatment effect 

when assessing the association between a treatment variable and the outcome variable, 

while controlling for the continuous covariate. In a study by Morgan and Elashoff 

(Morgan and Elashoff, 1986), the authors evaluated the influence from categorization on 

modeling the survival time. They derived an analytical solution on calculating the 

asymptotic relative efficiency (ARE) from categorization. Under the assumption that 

there is no treatment effect, categorizing a covariate increases the variance of treatment 

effect estimate. Therefore, the ARE of treatment effect estimate reduced. The reduction 

of the ARE depends on the parameter of gamma distribution. It also depends on the 
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number of cutoff points. However, their equation was developed under the assumption 

that there is no association between the treatment effect and the survival time and the 

covariate is serving as the confounding variable. This equation is derived for survival 

time which is exponentially distributed. Therefore, the influence on the logistic 

regression model and the effect on the association between covariate and the outcome 

variable are unavailable. See Section 7.1 for more details. 

Categorizing a continuous covariate could result in a biased estimate. Chen and 

colleagues investigated the biases from dichotomizing the age variable on the odds ratio 

(Chen et al, 2007). They used simulated data to demonstrate that when age is 

dichotomized, the estimated odds ratio is biased. The bias happens when age is used 

either as a risk factor or as a confounder in the model of assessing the association via the 

logistic regression models. Their study pointed out that the biased odds ratio is a result of 

dichotomization. However, they did not evaluate the impacts from different distributions. 
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Chapter 3 

Parameter Estimation for Categorized Exposure Variables in Meta-Analysis of 

Disease/Exposure Epidemiological Studies 

 

When a continuous covariate is dichotomized, the estimated odds ratio depends on the 

cutoff point. Therefore, if two different studies use different cutoff points to assess the 

association, the results are not comparable. As a consequence, when performing a meta-

analysis, the synthesized association based on the categorized status does not represent 

the real association. 

As discussed in Chapter 1, the original distribution of the continuous covariate cannot 

usually be determined from the published data. Only the number of subjects in each 

group and the cutoff points are available. Therefore, in order to perform a meta-analysis 

to summarize the association between covariate and the outcome by using a common 

cutoff point from studies with different cutoff points, estimating the underlying covariate 

distribution is the first step. However, there is no existing method can be used to estimate 

the underlying distribution if a covariate is dichotomized. Therefore, a study with a 

dichotomized covariate is usually excluded from a meta-analysis. 

In order to estimate the underlying distribution for unifying the exposure status, we 

propose two novel approaches to convert inconsistent cutoff points which are used in a 

meta-analysis into useful information.  

The first approach is based on the linearization of parameters, that is, the method of 

probability plotting, or the linear model approach. This approach is based on the 

assumption that the parameters of the underlying distribution can be linearized. 
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The second approach is based on the method of goodness-of-fit. This method will 

work even if not all of the parameters can be linearized. 

We will use the normal and gamma distributions as a basis for summarizing studies 

for a meta-analysis. 

 

3.1 Normal Model 

In this section, we use a normal distribution as the underlying distribution of a 

categorized covariate in each study. We start from using the case when each study has 

only one cutoff point to categorize the covariate. Then the same approach will be 

extended to allow for both single and multiple cutoff points for categorizing covariates. 

 

3.1.1  Single Cutoff Point in a Study 

Let X  be the covariate which is distributed as a normal distribution with mean µ and 

standard deviation σ. The density function of X is 

   
2

2
( )
21( )

2

x

f x e
µ

σ

πσ

− −

=  

where -∞<x<∞, -∞<µ<∞, σ>0. 

The cumulative density function of X is 

   ( ) ( ) ( )
x xF x f t dt µ

σ−∞

−= = Φ∫  

where Φ is the cumulative standard normal distribution function. 

The cutoff point Xi of the ith study has a corresponding cumulative probability 

Pi=F(Xi). Let 
σ

µ−= i
i

Xz , then )(1
ii Pz −Φ= . 
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Based on the association, we have )(1
i

i
i PXz −Φ=−=

σ
µ . The association between 

the cutoff point and the cumulative probability can be then expressed as: 

)(1
ii PX −Φ×+= σµ      (3.1.1) 

For notation, we can use Ci to replace Xi to indicate cutoff point, so that (3.1.1) becomes 

1( )i iC Pµ σ −= + × Φ      (3.1.2) 

Therefore, when we regress the cutoff points Ci  on )(1
iP−Φ , the estimates of the 

intercept and the slope from the linear model (Equation 3.1.2) are the estimates of the 

mean and standard deviation of the underlying normal distribution, respectively. 

The numbers of subjects in each dichotomized group are usually reported. Let 1iN  be 

the number of the subject which have the value less or equal to cutoff point Ci and Ni be 

the total number of the subject in the ith study. Therefore, let iii NNP /1=  and the 

Equation 3.1.2 can be expressed as: 

1

1( / )
ii i iC N Nµ σ ε−= + × Φ +     (3.1.3) 

where 2~ (0, )i N εε σ . 

 

3.1.2 Single or Multiple Cutoff Points in a Study 

The model described in the previous section can be generalized to estimate the 

parameters of the underlying normal distribution when the covariate in each study is 

categorized by any number of cutoff points, if the underlying distribution is a normal 

distribution with mean µ and standard deviation σ. 
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Let X  be the covariate which is distributed as a normal distribution with mean µ and 

standard deviation σ. The jth cutoff point Cij of the ith study has a corresponding 

cumulative probability Pij. Let ij
ij

C
z

µ
σ
−

= . Then )(1
ijij Pz −Φ= where Φ is the 

cumulative standard normal distribution function. 

Based on the association, we have 1( )ij
ij ij

C
z P

µ
σ

−−
= = Φ . The association between 

the cutoff point and the cumulative probability can be then expressed as: 

1( )ij ijC Pµ σ −= + × Φ      (3.1.4) 

Therefore, when we regress the cutoff points Cij on )(1
ijP−Φ (the normal deviate of the 

cumulative probability Pij), the estimates of the intercept and the slope from the linear 

model (Equation 3.1.4) are the estimates of the mean and standard deviation of the 

underlying normal distribution, respectively. 

The numbers of subjects in each categorized group are usually reported. Let Nij be the 

number of the subjects which have the value less or equal to cutoff point Cij and Ni be the 

total number of the subject in the ith study. Thus, iijij NNP /=  and the Equation 3.1.4 can 

be expressed as: 

1( / )ij ij i ijC N Nµ σ ε−= + × Φ +     (3.1.5) 

where ijε follows a normal distribution with mean 0 and standard deviation 2
iεσ  

We can further generalize the linear model to handle the situation where the covariate 

in each study follows a normal distribution with its own mean and standard deviation. 

That is,  

1( / )ij i i ij i ijC N Nµ σ ε−= + × Φ +     (3.1.6) 



  34 

 

where ijε follows a normal distribution with mean 0 and standard deviation 2
iεσ , 

i jmµ µ= + , jm follows a normal distribution with mean 0 and standard deviation 2
mσ , 

and i isσ σ= + where is follows a normal distribution with mean 0 and standard deviation 

2
sσ . Therefore, the mean and standard deviation for the ith study is iµ and iσ , 

respectively. 

 

 

3.2 Gamma Model 

The gamma distribution is frequently used to model data because its shape and scale 

parameters can be used flexibly. However, the linear model approach we used for normal 

distribuiton cannot be applied to the gamma distribution. An alternative appraoch will be 

discussed next. 

 

3.2.1 Single Cutoff Point in a Study 

Let X be a random variable with a gamma distribuiton with mean αβ  and variance 2αβ , 

where the shape parameter is α  and the scale parameter is β . The density function of 

the gamma distribution is 

α

βα

βα )(
)(

1

Γ
=

−
−

x

exxf  

where x≥0, α >0, β >0, and Γ  is the gamma function which has the formula  

∫
∞ −−=Γ

0

1)( dtet tαα  
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For the single cutoff point iC in the ith study, its association with the corresponding 

cumulative proportion Pi is 

  1( , ; )i iC F Pα β−=      (3.2.1) 

where ( , )F α β  is the cumulative probability of a gamma distribution with shape 

parameter of α  and scale parameter of β . 

Standardizaiton was tried to make the parameters and the cumulative proportions 

independent. However, the gamma distribution cannot be standardized by using the same 

transformation that was used for the normal distribution.  

In order to linearize the association, we use the following property of the gamma 

distribution. 

 Property 

If X be a random variable with gamma distribuiton of shape parameter α  

and scale parameter β , 
β
X  has a gamma distribution with shape 

parameter α  and scale parameter 1. That is, 
β
X  has an incomplete gamma 

distribution with shape parameter α  

 

Therefore, this association in equation (3.2.1) can be further transformed by using the 

property of incomplete gamma distribution. That is,  

1( ,1; )i
i

C F Pα
β

−=    

=> 1( ,1; )i iC F Pβ α−= ×      (3.2.2) 
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Based on the incomplete gamma distribtion, this associaiton becomes a linear relationship 

when the shape parameter α  is known. 

The equation (3.2.2) can be further extended to become a liner model of parameters. 

That is, the intercept is 0 and the slope corresponds to the scale parameter β , given the 

shape parameterα . Therefore, the linear regression model can be expressed as  

10 ( ,1; )i iC F Pβ α−= + ×       (3.2.3) 

Let Ni be the number of subject in the ith study and Ni1 be the number of subject in the 

i
th group which X value is less than or equal to the cutoff point iC . That is, Pi=Ni1/Ni. 

Therefore, equation (3.2.3) becomes 

1
10 ( ,1; / )i i i iC F N Nβ α ε−= + × +     (3.2.4) 

where 2~ (0, )i N εε σ . 

However, the shape parameter α  cannot be estimated directly from this linear regression 

model. The shape parameter α  needs to be appropriately assigned.  

Based on the characteristic that this regression line (3.2.3) or (3.2.4) goes through 

origin, the criteria used for estimating the shape parameterα is that the shape 

estimateα� can result in an intercept which is closest to the origin among all of the 

possibleα estimates. That is,  

  1

, 1

��( , ) arg min | ( ,1; ) |
k

i i
i

F P C
α β

α β β α−

=

= × −∑    (3.2.5) 

where iC  is cutoff point of the ith study and iP  is the cumulative probabilities which 

corresponding to the cutoff point iC . 
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3.2.2 Single or Multiple Cutoff Points in a Study 

The model described in the previous section can be generalized to estimate the 

parameters of the underlying gamma distribution when the covariate in each study is 

categorized by any number of cutoff points, if the underlying distribution is a gamma 

distribution with shape parameter of α  and scale parameter of β . 

Let Nij be the number of the subjects which have the value less or equal to cutoff 

point Cij and Ni be the total number of the subject in the ith study. Thus, iijij NNP /=  and 

the Equation 3.2.3 can be generalized as: 

10 ( ,1; )ij ijC F Pβ α−= + ×     (3.2.6) 

and Equation 3.2.4 can ge generalized as: 

10 ( ,1; / )ij ij i ijC F N Nβ α ε−= + × +    (3.2.7) 

where 2~ (0,  )ij iN εε σ . 
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3.3 Algorithms for Normal Model 

Based on the linear model for normal distribution discussed in Section 3.1, the mean and 

standard deviation of a normal distribution can be estimated by using the linear model 

approach. 

 

3.3.1 Single Cutoff Point in a Study 

In order to take into account the sample size in each group, a weighted linear regression 

analysis is performed. The weight of the ith study is  

(1 )
i

i
i i

Nweight
p p

=
−

  

which is the inverse of the variance. The weighting provides more weights to the 

probabilities which are in the tails than to those in the middle. 

 

3.3.2 Single or Multiple Cutoff Points in a Study 

When a study has more than one cutoff point, the cumulative probabilities are associated 

with each other. Therefore, in order to take into account the association within each study 

when estimating the intercept and the slope from the linear model approach, the analysis 

can be performed by using the function of linear regression which handles 

repeated/correlated measurements. In R language (R Development Core Team, 2009), the 

lmer function from the lme4 Package (Bates and Maechler, 2009) can be used to 

estimate the parameters when takes into account the correlated measurements (Pi⋅) within 

each study. 
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3.3.3 Covariate Estimation from Categorized Covariates with Similar Distributions 

It is possible that all of the studies are sampled from the same underlying covariate 

distribution. However, it is also possible that the studies are sampled from covariate 

distributions which have different means and standard deviations.  

For example, studies can be sampled from the normal distribution with the same 

standard deviation but different means. The studies can also be sampled from the normal 

distribution with different means and different standard deviations. 

When all of the studies have dichotomized covariates, the estimation can only work 

under the assumption that all of them have the same standard deviation but different 

means. However, when each study has at least 2 cutoff points, the estimation can work 

under the assumptions that each study has its own mean and standard deviation. 

To estimate the parameters assuming a distribution with common parameters across 

studies, the random effects linear regression method which accommodates repeated 

measurements can be used. In R, the lmer function from the lme4 Package can fit such 

a model. 

When the mean of each study and the common variance of all studies have been 

estimated, we can estimate the expected numbers of subjects in newly defined categories, 

or transform the odds ratio of the dichotomized status into the dose-response association. 

After that, we are able to use existing methods to combine all of the dose-response 

associations to re-calculate the overall dose-response association. 
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3.3.4 Property of the Parameter Estimates 

The estimates of intercept and slope from the linear regression model are the maximum 

likelihood estimates. Therefore, the mean and standard deviation estimated from the 

linear regression model are also the maximum likelihood estimates. As a consequence, 

the estimated parameters have the properties of maximum likelihood estimates. 

 

3.4 Algorithms for the Gamma Model 

Based on the gamma model discussed in 3.2, a conventional linear regression model 

cannot be used directly because one of the parameters that needs to be specified but 

indeed needs to be estimated. Therefore, in order to use the linear model approach, this 

challenge needs to be resolved. 

 

3.4.1 Iteration using Linear Regression Modeling 

We propose a numerical iteration algorithm to estimate the shape and scale 

parameters simulanteously.The algorithm is the following: 

1. Find a criteria of acceptable accuracy improvement to the shape 

estimate, such as 10-5. 

2. Assign initial shape estimate. 

3. Use the cutoff points and cumulative proportions to perform linear 

regression analysis to estimate intercept. 

4. When the estimated intercept is greater than 0, choose a smaller shape 

estimate to continue. 
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5. When the estimated intercept is less than 0, choose a larger shape 

estimate to continue. 

6. Continue until convergence is achieved.  

 

Weighted linear regression can provide improved estimates. When there is only one 

cutoff point in each study, the weight of the ith study is based on the sample size Ni and 

the inverse of the product of the cumulative probability and its difference with 1, that is, 

(1 )
i

i
i i

Nweight
p p

=
−

  

The weighting provides more weight to the probabilities which are in the tails of the 

distribution. 

 

3.4.2 Goodness-of-Fit Approach 

Based on the model described previously, the measurement of distance between observed 

values and expected values of cutoff points can be expressed as the sum of the squares of 

the distance, that is,  

~
~

( ; )Q cθ
∧

=∑
=

−
k

i
ii cc

1

2)�(  

= 1 2

~1
( ( ; ))

k

i i
i

c F pθ
∧

−

=

−∑   

where 
~
c is the vector of cutoff points, 

~
θ
∧

 is the vector of parameter estimates, 

( )i ip P x c= ≤ , and F is the cumulative density function with parameter 
~

θ .  
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By minimizing this equation, the parameter estimates can be derived. In order to improve 

the estimation, the weighted distance will be use. That is, 

   
~ ~

( ; )wQ cθ
∧

=
1 2

~

1

( ( ; ))

(1 )

k i i

i i i

c F p

p p

θ
∧

−

=

−

−∑  

In order to minimize the distance
~ ~

( ; )wQ cθ
∧

, conventional analytical or numerical 

approaches are available. For the gamma distribution, a closed form cannot be obtained. 

Therefore, the parameters may be approximated numerically by using optimization 

algorithms. 

When using the linear association between the cutoff points and their corresponding 

cumulative probabilities, the criterion is the same as the method of least squares. That is,   

   )�;(
~

θxQ =∑
=

−
n

i
ii xx

1

2)�(  

    =∑
=

−Φ×+−
n

i
ii px

1

21
10 )])(��[( ββ  

When weights are used to improve the estimation, the criteria become weighted least 

squares. 

 

 

3.5 Covariate Estimation from a Categorized Covariate Containing Excess Zero 

From the Examples in Section 1.2.3, we see that the existence of a categorized covariate 

containing excess zero posts challenges to the data analysis. Therefore, we propose 

methods for accommodating categorized covariates with excess zeros. 
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3.5.1 Model 

Let X ≥0 be the variable of interest, where X is a mixture of a positive continuous 

distribution and a degenerate one at zero in a single study. This can also be considered as 

a zero-inflated distribution. Let π  be the proportion of zeros in the population, and θ  be 

the vector of parameters of the continuous variable. The probability density function of X 

can be expressed as: 

  { })|(*)}0;(1{*)1()0;(*),|( θππθπ xfxIxIxhx −−+=  

where )0;(xI is an indicator function. )0;(xI =1 if x=0, and )0;(xI =0 if otherwise. The 

likelihood function is   

∏
=

−−−=
n

i

xI
i

xIxI
i

iii xfxL
1

)0;(1)0;(1)0;( )|()1()|,( θππθπ . 

The cumulative density function of )|( θXf  is )|( θXF . When X >0, the cumulative 

proportion pi of xi from )|( θXf can be expressed as );();( iii xFxXPp θθ =≤= . 

Therefore, the observed xi can be expressed as the inverse of the cumulative function, that 

is, );(1
ii pFx θ−= . 

Let n  be the total number of subjects sampled from the population. Among them, m  

subjects have measurement of zero. After sorting the measurements of X in the ascending 

order, these n  measurements are classified into k  ordered groups based on the defined 

cutoff points or the specified percentage of the total sample size for each group. Let in  be 

the number of subject in the ith group, i=1, �, k. nn
k

i
i =∑

=1

. All of the 0s are classified 

only into the first group. That is, 0≤ m ≤ 1n . 
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The boundaries of the ith group are [ 1−ic , ic ]. When i=1, the lower bound 1−ic = 0c =0. 

When i=k, the upper bound kc =∞. When only the boundaries (cutoff points) are reported, 

the density and cumulative density function becomes )|( θicf  and )|( θicF , respectively, 

i=1, …, k. 

When the outcome of interested is the proportion of zero,π , in the population, the 

point estimate of the population proportion is
n
m=π� . If only the subjects with 0 

measurements are classified into the first group, (that is, m = 1n ), then
n
n

n
m 1� ==π .  

However, m  might not be available from the reported group data and thus needs to be 

estimated. The only available information about m is its range, that is, 0≤ m ≤ 1n . 

When the first group contains m  zeros and 1n - m  measurements of the continuous 

variable, given that m  is unknown, the continuous distribution based on the known 

numbers of 2n  through kn is considered as truncated data. Even though the exact number 

of truncated observations is unknown, the range of this truncated number in the first 

group is available, that is, 0≤ 1n - m ≤ 1n . Therefore, when m  is known, 1n - m is also 

known, and vise versa. 

The observed probability is calculated based on the number of subjects in each group. 

Let ioP .  be the observed probability of the ith group, 
n
nP i

io =. . When the existence of m  

measurements of zero is excluded from calculating the observed probability of the 

continuous variable, the observed probability in the ith group becomes
mn

nP i
io −

= ** . , 

where mnn −= 11*  for i=1, and ii nn =*  if i=2, �, k. 
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When the parameter of this continuous variable θ  can be estimated, the expected 

probability of the ith group based on the points estimate θ�  is ∫
−

=
i

i

C

C
ie dxXfP

1

)�|(. θ . 

 

3.5.2 Parameter Estimation of a Single Distribution from a Study 

The case where π =0 is a special case of the density function ( | , )xh x π θ . That is, 

)|(),0|( θθ xfxhx = . Therefore, this problem becomes one of estimating the parameter 

of a single distribution. We can use the approaches described previously to estimate the 

parameters based on the assumption of the underlying distribution. 

  

3.5.3 Parameter Estimation of a Mixture Distribution from a Study 

Let the mixture distribution contain the value of zero and a positive continuous 

distribution. By proposing an appropriate assumption for the continuous variable, both  

the proportion π  of zeros and the parameter of the continuous variable can be estimated 

simultaneously by using the principle of goodness-of-fit. 

 

3.5.3.1 Naïve Goodness-of-Fit Score 

To quantify the deviation, a naïve goodness-of-fit score is proposed as the following: 

   ��( , | , )G C n π θ   = ∑
=

−
k

i
ieio PP

1

2
.. )(  

     = 
1

2

1
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n f x dx
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−
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−  
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Based on the principle of goodness-of-fit, ),|,( θπnxG  should equal 0 if the data are 

from the mixture distribution of the parameters of π andθ . 

Therefore, when estimating both parameters, ),|,( θπnxG  should reach the minimum 

if both estimates are the best estimates. The possible values for 
n
m�� =π  is the range of m , 

that is, 0≤ m ≤ 1n . Therefore, the best estimates are:  

)�,�( θπ    = 
10

��arg min ( , | , )
j

j jm n
G x n π θ

≤ ≤
 

  = 
10

��arg min ( , | , )
j
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G x n m θ

≤ ≤
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2
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k

o i j e i jm n i
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     = 
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0 1
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−

≤ ≤ =

 
−  − 

∑ ∫  

Where jm = j , j =0, �, 1n . jθ� is the best estimate when using jm = j and the values of 

in , j =2, �, k. 

The above equation can also be simply expressed by: 

  ∑ ∫
= 
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The minimum value could be obtained by using a numerical approach.  
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We used the numerical approach for this dissertation research. One example of 

calculating the goodness-of-fit scores from the possible values of m  are shown in Figure 

3.5.1. Panel a) shows the possible numbers of non-drinker and their corresponding 

goodness-of-fit scores. For a better separation of those values, the log transformations of 

goodness-of-fit scores which presented in Panel a) are shown in Panel b). From these 

plots, we can see that the lowest goodness-of-fit score corresponds to the number of 85. 

That is, we used 1n =200 and obtained m =85 from this example. 
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Figure 3.5.1 Values of a Naïve Goodness-of-Fit Score  

a) Original Scale of the score 
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b) Log transformation of the scores in Panel a) 
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To take into account the impact from probabilities for improving the estimation, this 

score can be weighted by the probability of each interval. The weight could be 

)1(
1

ii
i pp

weight
−

=  which is proportional to the inverse of the variance of a multinomial 

distribution.  

The Pearson Chi-square goodness-of-fit is also a candidate for the goodness-of-fit 

score. However, the chi-square goodness-of-fit score depends on the sample size. 

Therefore, when all of the possible sample size will be used to make comparisons, the 

impact from sample size might jeopardize the estimation. 

 

3.5.4 Global Goodness-of-Fit Score on Testing Distribution Assumption 

With very limited information from the grouped data, all of the estimates are based on the 

distribution assumption. However, the existing goodness-of-fit test can only conclude 

whether or not the data fit the hypothesized distribution. 

We propose using the naïve goodness-of-fit score as a test to test the possible 

distributions. The distribution with the lowest global goodness-of-score has a higher 

probability to be the appropriate assumption. 
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3.6 Generalization for Meta-Analysis 

Based on the proposed methods (Sections 3.1 through 3.5), we are able to estimate the 

parameters of the underlying distribution of the categorized covariate.  

For instance, if a covariate follows a normal distribution and multiple cutoff points 

are used in studies included in a meta-analysis, we can use the mixed-effect weighted 

linear regression model to estimate the individual mean and standard deviation from each 

study. 

When the underlying covariate distribution has been estimated and performing a 

meta-analysis based on categorized status is necessary, we can use the estimates and the 

chosen cutoff point(s) to perform a new meta-analysis. For example, if the purpose of a 

meta-analysis is to compare high-value group with low-value group, the first step is using 

the estimates and cutoff point to calculate the expected probability in each group. After 

that, we use the total number of subjects in each study to find the expected number in 

each group. Then we can further use the estimated numbers to calculate the association 

within each study based on this chosen and consistent cutoff point. Then a new meta-

analysis can be performed by using those comparable associations. 
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3.7  Application of Proposed Approaches to Examples 

In this section, we present the results from using our methods to analyze examples in the 

sequence of being described in Section 1.2. 

  

3.7.1 Estimation of the Underlying Distribution under the Gamma Distribution 

Assumption from Studies with Single Cutoff Point 

From the published studies, cathepsin-D level in breast cancer patient is not normally 

distributed. Foekens and colleagues (1999) studied cathepsin-D level measured by 

immunoradiometic assay (IMRA) from 2,810 breast cancer patients. They found that the 

mean (standard deviation) level was 58 (48) pmol mg-1 protein. The median level was 47 

pmol mg-1 and the range was 0-902 pmol mg-1. The authors used a log transformation to 

make the values closer to a normal distribution. 

Even though the log transformation is easy to apply, a gamma distribution can be 

more flexible than the log-normal distribution. We assume that the underlying 

distribution is gamma distributed for all the studies included in Ferrandina�s study (1997) 

described in Section 1.2.1. By using the proposed approach described in Section 3.5.1.2 

and 10 cutoff points from 10 studies, the estimated underlying gamma distribution has a 

shape parameter of 1.612738 and scale parameter of 31.25377. Therefore, the estimated 

mean is 50.40414 and estimated standard deviation is 39.69029. By comparing the mean 

(58) and standard deviation (48) described in the study by Foekens and colleagues (1999), 

our estimates are reasonable. 

Of note, there was a transcriptional error in Table 1 on �Positive (%)� for Kute et 

(1992): �28� should be �67�. Two cutoff points were used by Spyratos (1989). We only 
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used �45� for our analysis because it was also used in the meta-analysis. The author 

indicated that the results were unchanged when use anther cutoff point �70�. 

The association between the data and estimated distribution is shown in Figure 3.7.1. 

From the graph, one data point (Pujol 1993) is considered as being a special one. 

However, the estimated distribution fits data well. 

 

 

Figure 3.7.1 Data from a Meta-Analysis and the Estimated Underlying Distribution 
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3.7.2 Estimating the Underlying Distribution under the Normal Distribution 

Assumption from Studies with Different Number of Cutoff Points 

Due to excluding three studies, the result of a meta-analysis assessing the association 

between BMI and Barrett�s esophagus performed by Kamat and colleagues (2009) is of 

concern. However, our concern can be resolved by using the method developed from this 

dissertation research. 

We start by outlining our approach of performing a new meta-analysis to include all 

of the studies: 

1. We need to estimate the underlying distribution of the studies which used 

different cutoff points to classify patients into weight status and did not 

report the mean and standard deviation.  

2. We use the estimated parameters to estimate the number of subjects in 

each category based on the common cutoff points.  

3. We can use the number of subject in each category and exposure status to 

perform meta-analysis.  

We assume that BMI follows a normal distribution (Penman et al, 2006). Therefore, 

we can estimate the underlying distributions by using the cutoff points and their 

corresponding cumulative probabilities. We assume that each study has its own mean and 

standard deviation. In order to estimate the individual parameters, we use the weighted 

linear regression approach with the random effect modeling technique, where the 

intercept and slope are random. The estimation was performed by using the lmer 

function of the lme4 package in the R language (R Development Core Team, 2009). The 

regression model was weighted by the sample size of each study and the inverse of the 
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product of cumulative probability and its difference with 1. For comparison, we also used 

the weighted linear regression approach to estimate parameters study by study. The 

estimated mean and standard deviation of each study are shown in Table 3.7.1. 
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Table 3.7.1  Estimation of mean and standard deviation for underlying normal 

distribution of studies included in the meta-analysis of BMI and 

Barrett�s esophagus 

Reported BMI Estimated BMI 
(random effect ) 

Estimated BMI 
(individual) 

First 
Author 
(Year) 

BMI 
(kg/m2) 
category Case Contro

l 
Case Control Case Control 

Gerson 
(2002) 

≤25 
> 25 

20.05 
(5.7)* 

20.1  
(3.6) 

25.14 
(1.75) 

21.46   
(3.29) 

Cannot 
estimate 

Cannot 
estimate 

Bu  
(2006) 

<22 
22�24.9 
25�29.9 
>30 

N/A N/A 27.39 
(4.26)    

25.46   
(4.53) 

27.32    
(4.33) 

25.43    
(4.57) 

Ronkainen 
(2005) 

<30 
≥30 

N/A N/A 26.94 
(3.41)    

25.72   
(4.34) 

Cannot 
estimate 

Cannot 
estimate 

Corley 
(2006) 

<30 
>30 

N/A N/A 27.47 
(3.94)    

26.73   
(4.56) 

Cannot 
estimate 

Cannot 
estimate 

Johansson 
(2007) 

</23.6 
23.6-26.6 
>/26.6 

N/A N/A N/A N/A N/A N/A 

Corley 
(2007) 

<25.0 
25.0�27.4 
27.5�29.9 
30.0�34.9 
>35.0 

29.5 
(6.1) 

28.9  
(5.3) 

29.20 
(5.56)    

28.65   
(4.90) 

29.23    
(5.63) 

28.66    
(4.89) 

Gerson 
(2007) 

< 18.5 
18.4�24.9 
25�29.9 
> 30 

28  
(5) 

27.8  
(5.5)  

27.33 
(5.33)    

26.94   
(5.42) 

27.24    
(5.38) 

26.98     
(5.47) 

Stein 
(2005) 

<25 
25�30  
>30 

29.8 
(5.6) 

28.0  
(6.0) 

28.59 
(4.19)  

27.80   
(4.92) 

29.01    
(3.93) 

27.84    
(5.08) 

Veugelers 
(2006) 

< 20 
≥20 and < 25 
≥25 and < 30 
≥30 

N/A N/A 28.38 
(4.08)    

27.93   
(3.89) 

28.64    
(4.20) 

27.84    
(3.82) 

Edelstein 
(2007) 

 <25 
25�29.99 
≥30 

N/A N/A 28.79 
(4.60)    

27.21   
(4.67) 

28.99    
(4.62) 

27.23    
(4.73) 

El-Serag 
(2005) 

<25 
25�30 
>30 

27  
(6) 

24  
(5) 

27.49 
(4.16)    

24.60   
(4.40) 

26.78    
(6.32) 

23.60     
(5.41) 

Smith 
(2005) 

<18.5 
18.5-24.9 
25-29.9 
≥30 

N/A N/A 28.60 
(4.75)    

27.62   
(4.43) 

28.96    
(5.13) 

27.69     
(4.03) 

*: Values are expressed as �mean (standard deviation)�. 
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From the random effect model, we were able to estimate the mean and standard 

deviation of three studies in which only one cutoff point was used to classify the BMI. 

That is, we are able to add three more studies to perform a meta-analysis. If we use the 

weighted linear regression approach study-by-study, parameters of those three studies 

cannot be estimated. In addition, our approach uses data from all of the studies for 

estimation. Therefore, when comparing the results with those which estimated by using a 

single study, our approach can improve the efficiency. 

After estimating the parameters, we performed a meta-analysis based on a cutoff 

point of BMI=25 kg/m2 from the estimated distribution of each individual study. In order 

to do so, we performed the sample size re-estimation in the two studies (Ronkainen et al 

2005 and Corley et al, 2006) which had only one cutoff point at BMI=30 kg/m2. Based 

on the parameters and cutoff points, we calculated the expected probabilities in each BMI 

category. Then we used the total number of subjects in the case and control groups to 

calculate the expected number. When the new numbers of subjects were derived, we used 

the metabin function of the meta package (Schwarzer, 2009) in the R language to 

perform a meta-analysis and calculate the summary odds ratio. The re-estimated odds 

ratio from the random effect model is 1.5113 with 95% confidence interval of [1.2965, 

1.7617]. The output is shown in Table 3.7.2 on the following page. 

We also generated a forest plot by using the plot.meta function of the meta 

package in the R language to shown the individual odds ratios and the summary odds 

ratio. The forest plot is shown in Figure 3.7.2. 
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Table 3.7.2 Output of the improved meta-analysis of the association between BMI 

and Barrett�s esophagus. 

 
                         OR            95%-CI %W(fixed) %W(random) 

Gerson, 2002 (21)    1.2696  [0.3635; 4.4341]      1.53       1.50 

Ronkainen, 2005 (23) 1.6905  [0.5830; 4.9019]      2.03       2.07 

Stein, 2005 (28)     2.2281  [1.0966; 4.5272]      4.45       4.68 

El-Serag, 2005 (31)  2.3784  [1.0812; 5.2316]      2.94       3.78 

Smith, 2005 (32)     1.1978  [0.6220; 2.3066]      5.98       5.47 

Bu, 2006 (22)        1.9533  [1.3120; 2.9079]     12.92      14.85 

Veugelers, 2006 (29) 1.6275  [0.8157; 3.2471]      4.66       4.93 

Corley, 2006 (24)    1.4993  [1.0043; 2.2382]     14.40      14.65 

Corley, 2007 (26)    1.1029  [0.7935; 1.5329]     24.91      21.69 

Edelstein, 2007 (30) 1.9463  [1.2235; 3.0962]      9.52      10.91 

Gerson, 2007 (27)    1.3098  [0.8869; 1.9344]     16.67      15.46 

 

Number of trials combined: 11  

 

                         OR            95%-CI      z  p.value 

Fixed effects model  1.5167  [1.3015; 1.7675] 5.3357 < 0.0001 

Random effects model 1.5113  [1.2965; 1.7617] 5.2787 < 0.0001 

 

Quantifying heterogeneity: 

tau^2 = 0; H = 1 [1; 1.57]; I^2 = 0% [0%; 59.6%] 

 

Test of heterogeneity: 

    Q d.f.  p.value 

 9.84   10   0.4544 

 

Method: Mantel-Haenszel method  
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Figure 3.7.2 Forest plot of the association between increased BMI (≥25 kg/m2) and 

Barrett�s esophagus. 
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Of note, we performed this meta-analysis without considering the impacts from using 

the estimated underlying distributions. However, in order to take into account the re-

estimation, the existing methods (such as re-sampling) could be evaluated, or new 

approaches should be developed. 

In addition, when we used the random-effect regression approach, we assumed that 

the association between error term and variance estimate are negligible. However, the 

association between those two terms will be further investigated to improve the 

estimation. 

In summary, our approach allowed estimation of the parameters of the studies which 

containing only one cutoff point, and re-estimation of the numbers of subject in the newly 

defined categories. As a result, we were able to add three more studies to the meta-

analysis (11 studies vs. 8 studies). Inclusion of those additional studies reduced the 

standard error of odds ratio from originally reported 0.096 to 0.078. Therefore, our 

approach contributes to improving the accuracy of estimation. 
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3.7.3 Estimate the Proportion of zero and Underlying Distribution under Gamma 

Distribution Assumption from Covariate containing Excess Zeros 

When a categorized variable is from a measurement which is a mixture of excess zeros 

and a continuous covariate, it is a challenge to use the limited but convoluted information 

to perform meta-analysis. However, our proposed approach provides a useful tool to 

overcome the constraint. 

We used two studies (assessing the association between tea consumption and 

endometrial cancer, described in Section 1.2.3) to demonstrate the process of estimating a 

proportion of zeros and parameters of an underlying distribution. The expected amounts 

of tea consumption were also calculated for each group based on the estimated 

parameters. For comparison purpose, we assumed gamma and lognormal distributions. 

When we used the data from Zheng�s study (1996), under the gamma distribution 

assumption, we estimated that 125 patients (50%=125/249) did not consume tea. 

However, if we change the underlying distribution assumption to be lognormal, the 

estimated number became 139 (58%=139/249). 

When we used the data from Goodman�s study (1997), we estimated that about 48% 

(=406/844) of the patients did not drink tea, under the gamma distribution assumption. 

However, if we use the lognormal distribution assumption, the estimated proportion 

became 45% (=384/844). The results are summarized in Table 3.7.3. 

Because of the different results between different underlying distribution assumptions, 

we will further investigate the use of goodness-of-fit scores on evaluating the assumption. 

In summary, by using our approaches, we were able to estimate the proportion of 

excess zeros and the parameters of the underlying distribution.  
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Table 3.7.3 Estimated numbers of patient and expected consumption amounts in 

each tea consumption category 

 

Tea Consumption 
(g) 

Gamma 
Assumption 

Lognormal 
Assumption 

First 
Author 
(Year) Group 

Lower 
Limit 

Upper 
Limit

No. of 
Subject

Mean 
Amount 

(g)
No. of 

Subject 

Mean 
Amount 

(g)
    

1 0 0 *125 0 *139 0
2 0 33.86 *16   16.77 *2   25.83
3 33.86 237 63  121.32 63  130.86
4 237 474 29  335.55 29  331.70

Zheng 
(1996) 

5 474 Inf 16   16.77 16   25.83
     

1 0 0 *406 0 *384 0
2 0 34 *16 21.16 *38 20.92
3 34 237 211 135.69 211 117.83

Goodman 
( 1997) 

4 237 Inf 211 442.91 211 931.86
     

1 0 0 139 0 139 0
2 0 250 215 100.45 215 119.15
3 250 500 92 360.94 92 356.27

Jain 
(2000) 

4 500 Inf 106 921.73 106 1230.05
*: Estimated number of patients. The reported number is the sum of the estimated 

numbers in Groups 1 and 2. 
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3.8  Conclusions 

We have proposed linear model approach that was the weighted linear regression model 

for estimating the mean and standard deviation of a dichotomized normal distribution by 

regressing the cutoff points on the normal deviates of the cumulative proportions of 

subjects under the cutoff points from different studies with inconsistent cutoff points. 

This approach works not only for the studies with dichotomized covariates, but also 

works for studies with different number of categories.  

By using this approach, we can apply the random effect modeling techniques to 

improve the estimation. As shown in Section 3.7.2, we used one published meta-analysis 

to demonstrate that our approach not only can summarize the common association by 

using re-estimated association but also can add more studies to be in a meta-analysis and 

result in a more accurate result. 

When the underlying distribution is gamma, by applying the property of the 

incomplete gamma distribution, we can use the linear model approach via numerical 

iteration. We also used this approach to estimate the underlying gamma distribution 

based on 10 studies in which one cutoff point was used to dichotomize the status of a 

biomarker. 

The linear model approach was associated with the goodness-of-fit approach. We 

further used the goodness-of-fit approach to estimate the proportion of excess zeros in a 

mixture distribution.  
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Chapter 4 

Bias and Efficiency: Simulations 

 

When estimating covariate parameters from grouped data, the characteristics of a study 

might impact the estimation. Those characteristics may also impact the estimation when 

using all of the studies included in a meta-analysis. In order to assess how the 

characteristics influence the estimation, we conducted simulation studies based on the 

scenario that included studies have only single cutoff point or more than one cutoff point.  

 

4.1 Covariate Estimation from Dichotomized Distributions 

We evaluated the impacts on covariate estimation from the number of studies, the 

numbers of subjects in each included study, the characteristics of the underlying 

distribution, for a range of chosen cutoff points, and using mean or median.  

 

4.1.1 Impact from Number of Studies on Parameter Estimation 

We performed simulation studies to evaluate the impact from the number of studies on 

the parameter estimation. The efficiency of estimation was evaluated by using the relative 

efficiency (RE), which is the variance of estimates from the raw data divided by the 

variance of estimates from the weighted linear regression approach. 

We allowed the number of studies to range from 2 to 30. Two underlying 

distributions were used: normal distributions with mean of 100 and standard deviations of 

10 and 15. The number of subjects in each study was 1,000. Each condition was 

performed 1,000 times. The means of the estimates and standard deviation estimates were 
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calculated and compared with the assigned mean. The standard deviations of the mean 

and standard deviation estimates were calculated and used to compare with the standard 

deviations of the estimates from using the raw data. 

The graphical results are shown in Figure 4.1.1 and Figure 4.1.2 on the following 

page. The numerical results are shown in the Tables A.1 through A.4 in Appendix A. 

From the results, we found that the mean estimate was robust with three or more studies. 

The mean of the mean estimates are similar between both approaches and close to the 

mean parameter. The relative efficiency of the mean estimates increases with the number 

of studies. There was a significant jump from 5 studies (0.5569) to 6 studies (0.6840). 

After that, the relative efficiency is about 72% with the highest value of 0.7657. 

When we compare the results from using different values of the standard deviation, 

we find no differences in the association between RE and number of studies. 

The results for the standard deviation estimates are analogous to those from the mean 

estimate. However, the relative efficiencies are much smaller than the mean estimates. 

The maximum RE is 0.2470. 

From the results, we found that the number of studies impacts the relative efficiency 

when estimate the mean and standard deviation from dichotomized studies. However, the 

variation of a normal distribution does not impact the relative efficiency. 
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Figure 4.1.1 Relative efficiency of the mean estimates 
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Figure 4.1.2 Relative efficiency of the standard deviation estimates 
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4.1.2 Impact of the Number of Subjects on the Parameter Estimation 

We performed simulation studies to evaluate the impact of the sample size in each study 

on the parameter estimation. The efficiency of estimation was evaluated by using the 

relative efficiency, which is the variance of estimates from the raw data divided by the 

variance of estimates from the weighted linear regression approach. 

We used the numbers of subjects in each study as 100, 1,000 and 10,000. The 

numbers of studies ranged from 2 to 30. Two underlying distributions were used: normal 

distributions with mean of 100 and standard deviations of 10 and 15. Simulations for 

each condition were performed 1,000 times. The means of mean and standard deviation 

estimates were calculated and compared with the assigned mean. The standard deviation 

of the mean and standard deviation estimates were calculated and used to compare with 

the standard deviations of the estimates from using the raw data. The graphical results 

from standard deviation of 10 are shown in Figure 4.1.3 and Figure 4.1.4 on the 

following pages. The numerical results are shown in Tables A.1 through A.10 in 

Appendix A. 

The mean estimates from the weighted linear regression approach are robust. The 

results are similar to the estimates calculated from the raw data. The RE�s increase with 

the number of studies. Overall, the REs are similar after the number of studies reached 6. 

The sample size in each study did not show significant impact to the REs. 

The standard deviation estimates showed the same trend as the mean estimates. 

However, the REs are significantly lower than the REs of the mean estimates. The sample 

size in each study did not show significant impact to the REs. 
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When we compared the results between different standard deviation values (10 vs. 

15), the results are similar. 

 

Figure 4.1.3 Relative efficiency of the mean estimates 
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Figure 4.1.4 Relative efficiency of the standard deviation estimates 
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4.1.3 Impact of the Distribution on the Parameter Estimation 

We performed simulation studies to evaluate the impact of the standard deviation on the 

parameter estimation. The efficiency of the estimation was evaluated by using the relative 

efficiency, which is the variance of estimates from the raw data divided by the variance 

of estimates from the weighted linear regression approach. 

Two underlying distributions were used: normal distributions with mean of 100 and 

standard deviations of 10 and 15. We used 10,000 subjects in each study. The numbers of 

studies ranged from 2 to 30. Each simulation was performed 1,000 times. The means of 

the mean and standard deviation estimates were calculated and compared with the 

assigned mean. The standard deviation of the mean and standard deviation estimates were 

calculated and used to compare with the standard deviations of the estimates from using 

the raw data. The graphic results are shown in Figure 4.1.5 and Figure 4.1.6 on the 

following page. The numerical results are shown in Tables A.7 through A.10 in Appendix 

A. 

The mean estimates from the weighted linear regression approach are robust when 

different values of standard deviation were used. The results are similar to the estimates 

calculated from the raw data. The relative efficiencies from both standard deviation 

values are similar. They all increase with the number of studies used for estimating 

parameters. 
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Figure 4.1.5 Relative efficiency of the mean estimates 
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Figure 4.1.6 Relative efficiency of the standard deviation estimates 
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 4.1.4 Impact of the Range of Cutoff Points on the Parameter Estimation 

We performed simulation studies to evaluate the impact of the range of cutoff points on 

the parameter estimation. As before, the efficiency of estimation was evaluated by using 

the relative efficiency. 

We used two different ranges of the cutoff point: one from 20% to 80%; and one from 

35% to 65%, which is half the variation of the previous one. The numbers of subjects in 

each study were 1,000 or 10,000. The numbers of studies ranged from 2 to 30. We used 

normal distributions with mean of 100 and standard deviation of 15. Each simulation was 

performed 1,000 times. The means of the mean and standard deviation estimates were 

calculated and compared with the assigned mean. The standard deviation of the mean and 

standard deviation estimates were calculated and used to compare with the standard 

deviations of the estimates from using the raw data. The graphical results are shown in 

Figures 4.1.7 through Figure 4.1.10 on the next pages. The numerical results are shown in 

Tables A.11 through A.14 in Appendix A. 

The mean estimates were similar when a different range of cutoff points were used. 

However, when the cutoff points had a wider range (20% to 80%), the mean estimates 

had a smaller RE than the cutoff points which had narrower range (35% to 65%).  

However, the REs of the standard deviation estimates showed a reverse association. 

That is, when the cutoff points were from wider range, the REs of the standard deviation 

estimates are larger. 

Different sample sizes did not show significant difference on the trends. 
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Figure 4.1.7 Relative efficiency of the mean estimates 
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Figure 4.1.8 Relative efficiency of the standard deviation estimates 
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Figure 4.1.9 Relative efficiency of the mean estimates 
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Figure 4.1.10 Relative efficiency of the standard deviation estimates 
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4.1.5 Using Median or Mean as Cutoff Point on the Parameter Estimation 

It is possible that all of the studies included in a meta-analysis use the median or mean as 

the cutoff point to dichotomize the continuous covariate. Therefore, we performed 

simulation studies to evaluate the robustness and efficiency of estimation by using the 

sampling distribution of the median and the mean. 

We chose a normal distribution with mean of 100 and standard deviation of 10 as the 

continuous covariate and generated 10,000 data points for each study. The median and 

mean were identified as the cutoff point for dichotomizing the covariate. We used the 

mean of all of the cutoff points in each simulation as the mean estimate. For a given 

number of studies included in a simulation, we summarize the sampling distribution of 

the mean estimate. In the simulations, the number of studies ranged from 2 to 30. We 

performed 1,000 simulations based on each condition. The RE was calculated by using 

the variance of mean estimate based on the mean-cutoff point divided by the variance of 

mean estimate based on the median-cutoff point. The graphical results are shown in 

Figure 4.1.11 and Figure 4.1.12 on the next page. The numerical results are shown in 

Table  

When either the median or mean was used as the cutoff point, the mean of the 

sampling distribution is close to the assigned parameter 100. They are similar across all 

ranges of the number of studies included in a simulation. The variances of the mean 

estimates decrease with the number of studies included. However, the REs did not change 

with the numbers of studies. 

The estimated standard deviation from the mean-cutoff point is close to the assigned 

standard deviation parameter of 10 when the number of study is larger than 6. However, 
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the estimated standard deviation from the median-cutoff point is larger than 10, and 

larger than 12 when the number of studies larger than 6. The REs did not change with the 

numbers of studies. 

 

Figure 4.1.11 Relative efficiency of the mean estimates 
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Figure 4.1.12 Relative efficiency of the standard deviation estimates 
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4.2 Covariate Estimation from Categorized Distributions 

The impacts from different numbers of cutoff points in a study, and the numbers of cutoff 

points and the number of studies use for analysis are discussed. 

 

4.2.1 Impacts from Number of Cutoff Points in a Study on Estimation 

It is known that the estimates can be improved when the number of group increases. 

However, little is known about the improvement by using the Chêne and Thompson 

approach (Chêne and Thompson, 1996). 

We performed simulation studies to evaluate the improvement. Two normal 

distributions with mean of 100 and standard deviations of 10 and 15 were chosen. The 

sample size of a study was 1,000. The numbers of group were ranged from 3 to 30. For 

each group, equal numbers of subjects were used. That is, the cutoff points were tercile, 

quartile, quintile, etc from the generated data. Each condition was repeated 1,000 times. 

The relative efficiency was calculated by using the variance of the estimate from raw data 

divided by the variance of estimate from Chêne and Thompson approach. The graphic 

results are shown in Figures 4.2.1 through 4.2.4. The numeric results are shown in Table 

A.17 through A.24 in Appendix A. 

From the results, we found that the REs of mean estimates are similar between two 

normal distributions which have the same mean but different standard deviations. There 

was no significant difference between moderate and large sample sizes. There were no 

significant differences between the numbers of groups. 

Similar associations between REs of standard deviation estimates and the sample size, 

the number of group and the distribution were also found. 
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Figure 4.2.1 Relative efficiency of the mean estimates 
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Figure 4.2.2 Relative efficiency of the standard deviation estimates 
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Figure 4.2.3 Relative efficiency of the mean estimates 
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Figure 4.2.4 Relative efficiency of the standard deviation estimates 
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 4.2.2 Impact of Number of Cutoff Points and Number of Studies 

When estimating the distribution of a covariate from many studies, using all of the raw 

data should generate the best estimate. However, when only the grouped data are 

available, using the weighted linear regression approach can still yield useful information. 

However, there will be some loss of robustness and efficiency when using grouped data 

resulting from assuming common parameters. 

We performed simulation studies to evaluate the improvement. A normal distribution 

with mean of 100 and standard deviation of 10 was used. The sample size of a study was 

1,000 or 10,000. The numbers of groups ranged from 3 to 10. For each group, equal 

numbers of subjects were used. That is, the cutoff points were tercile, quartile, quintile, 

etc from the generated data. The number of studies ranged from 2 to 30. Each condition 

was repeated 1,000 times.  

The lmer function from lme4 Package of R language was used to perform the 

weighted linear regression approach. Due to the nature of correlated measurements in 

each study, the mixed effect model was used to assign the random effects for the intercept 

and the slope. The relative efficiency was calculated by using the variance of the estimate 

from the raw data divided by the variance of the fixed-effect estimates from the weighted 

linear regression approach. The graphical results are shown Figures 4.2.5 through 4.2.8  

on the following pages. The numerical results are shown in Tables A.25 through A.32 in 

Appendix A. 

Given the same number of studies, the REs of the mean estimates increase with the 

numbers of groups (from 3 to 7 groups) in each study. However, there is no significant 
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difference between 7 groups and 10 groups. Given the same number of group in each 

study, the REs did not change significantly with the increase in the number of studies. 

When we compare the REs of the mean estimates for the sample size of 1,000 vs. 

10,000 in each study, we did not find any significant difference.  

The REs of the standard deviation estimates increase with the number of groups 

(from 3 to 10 groups) in each study. However, as with the mean estimate, the REs did not 

change significantly with the increase of numbers of studies. 

We also compare the REs of the standard deviation estimates between different 

sample sizes, and the results are similar. 
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Figure 4.2.5 Relative efficiency of mean estimates 
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Figure 4.2.6 Relative efficiency of mean estimates 
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Figure 4.2.7 Relative efficiency of standard deviation estimates 
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Figure 4.2.8 Relative efficiency of standard deviation estimates 
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4.3 Conclusions 

In summary, our simulation studies demonstrate that sample size within a study does not 

impact the relative efficiency. The number of cutoff points and the number of studies 

included for parameter estimation impact the efficiency but not the robustness. When 

estimating parameters from studies containing a single cutoff point, the gain of efficiency 

increases rapidly if the number of studies less than 6. But the efficiency does not show 

improvement when the number of studies is more than 10. In addition, using mean as the 

cutoff point has a better efficiency than using median as the cutoff point.  
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Chapter 5 

Computing Asymptotic Relative Efficiency Using the Multinomial Distribution 

 

When a continuous variable is categorized into groups, it is natural to consider these 

groups as multinomial distribution. Therefore, the parameters of the underlying 

distribution can be estimated by using the multinomial maximum likelihood approach. 

 

5.1 Model 

Let 1X , 2X , � nX  be independently and identically distributed (iid) with density 

function ( )if Xξ  and cumulative distribution function ( )iF Xξ , i=1, �, n. ξ  is the scale 

parameter of this distribution, and n is the number of observation. 

Let *
ijX  = 1( )j i jI C X C− ≤ < , j=1, �, m, jC  and 1jC −  is the upper and lower bound of 

the jth interval, respectively; 0C is the minimum value of the distribution; m is the number 

of group. That is,  

1* 1           if 
0 otherwise

j i j

ij

C X C
X

− ≤ <
= 


 

Therefore, 

*( 1)ijP Xξ = =
1

( )j

j

C

C
f X dXξ

−
∫ = ( )jF Cξ - 1( )jF Cξ −   (5.1.1) 

When only *
ijX �s are available, we can only use *

ijX �s and 1( ,  )j jC C −  to estimate ξ . 

Given data *
ijX from m  intervals, the likelihood function of ξ : 

*( | )ic jXL ξ  = 
1

*( 1) j
m

j
n

j
iXPξ

=

=∏     (5.1.2) 
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where 
1

m

j
j

n n
=

=∑ , jn is the number of observation in the jth group.  

Let ( )cl ξ = *( | )ic jXl ξ = *log ( | )c ijXL ξ  and jP  = *( 1)ijP Xξ =  

Therefore,  

( )cl ξ  = *log ( | )c ijXL ξ  

=
1

*( 1) j
ij

m
n

j
log P Xξ

=


=



 
∏ = *

1
1( )

m

j
j

ijn logP Xξ
=

=∑  

=
1

m

j j
j

n logP
=
∑  

Let   '( )cl ξ  = 
ξ

∂
∂

( )cl ξ  

  ''( )cl ξ  = 
2

2ξ
∂

∂
( )cl ξ  

jP ′ =
ξ

∂
∂ jP  

  jP ′′  = 
2

2ξ
∂

∂ jP  

Then 

'( )cl ξ  =
1

'm
j

j
j j

P
n

P=
∑        (5.1.3) 

''( )cl ξ  =
1

m

j=
∑ jn ( )j

j

P
P

′
′  

=
1

m

j=
∑ jn

2

2

( )j j j

j

P P P
P

′′ − ′
      (5.1.4) 
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To find the maximum likelihood estimate cξ
∧

, we can solve the equation (5.1.3) equals to 

0, that is, the solution to ''( )cl ξ =0 is the maximum likelihood estimate. 

Based on the second derivative (5.1.4), the expected Fisher information 

  ( )cI ξ  = [ ''( )]cE l ξ−  = 1( )cVar ξ
∧

−  

Therefore, the variance of the maximum likelihood estimate from the grouped data can be 

calculated by using the expected Fisher information, that is,  

  ( )cVar ξ
∧

= 1( )cI ξ−        (5.1.5) 

When the data in original values are available, the likelihood function is 

( | )iL Xξ  = 
1

( )
n

i
i

f Xξ
=

∏  

By using the procedures described previously, we can find the maximum likelihood 

estimateξ
∧

 by solving the first derivative of log-likelihood function ( ) ( | )il log XLξ ξ= . 

We can also calculate the variance of the maximum likelihood estimate from the original 

data by using the second derivative of the log-likelihood function, that is,  

( )Var ξ
∧

= 1( )I ξ− = 1[ ''( )]E l ξ −−  

After calculating the variances of the maximum likelihood estimate from both 

original and grouped data, the asymptotic relative efficiency (ARE) can be calculated as 

ARE = !
�( )

( )c

Var
Var

ξ
ξ

 = ( )
( )

cI
I

ξ
ξ

=  [ ''( )]
[ ''( )]

cE l
E l

ξ
ξ

−
−

   (5.1.6) 
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5.2 Maximum Likelihood Estimation of A Categorized Exponential Distribution 

When X  is a random variable following exponential distribution with parameter ξ , the 

density function can be written as 

  ( )f x  = ( )P Xξ = xe ξξ −  

and the cumulative distribution ( )F X  = ( )F Xξ  = 1- Xe ξ− . 

Therefore, for the jth interval,   

jP   = ( )jF C  - 1( )jF C −  

   = 1- jCe ξ− - (1- 1jCe ξ −−  ) = 1jCe ξ −− - jCe ξ−  

  jP ′   = - 1jC −
1jCe ξ −− + jC  jCe ξ−  

  jP ′′   = (- 1jC −
1jCe ξ −− + jC  jCe ξ− ) ′  

   =  2
1jC −

1jCe ξ −− + 2
jC jCe ξ−  

  jP jP ′′  = ( 1jCe ξ −− - jCe ξ− ) ( 2
1jC −

1jCe ξ −− + 2
jC jCe ξ− ) 

   = 2
1jC −

12 jCe ξ −−  - 2
1jC −

jCe ξ− 1jCe ξ −−  - 2
jC jCe ξ− 1jCe ξ −−  + 2

jC 2 jCe ξ−  

  ( jP ′ )2 = (- 1jC −
1jCe ξ −− + jC  jCe ξ− )2 

   = 2
1jC −

12 jCe ξ −−  - 2 1jC − jC 1jCe ξ −− jCe ξ−  + 2
jC 2 jCe ξ−  

jP jP ′′ - ( jP ′ )2   

= 2
1jC −

12 jCe ξ −−  - 2
1jC −

jCe ξ− 1jCe ξ −−  - 2
jC jCe ξ− 1jCe ξ −−  + 2

jC 2 jCe ξ−  

- 2
1jC −

12 jCe ξ −−  + 2 1jC − jC 1jCe ξ −− jCe ξ−  - 2
jC 2 jCe ξ−  

= - 1( )j jC Ce ξ −− +  ( 2
jC -2 1jC − jC + 2

1jC − ) 

= - 1( )j jC Ce ξ −− +  ( jC - 1jC − )2 
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2

2

( )j j j

j

P P P
P

′′ − ′
 = 

1

1

( ) 2
1

2

( )
( )

j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

− −
−

 

Consequently, based on (5.1.4),  

''( )cl ξ  = 
1

m

j=
∑ jn

2

2

( )j j j

j

P P P
P

′′ − ′
 

  = 
1

m

j=
∑ jn

1

1

( ) 2
1

2

( )
( )

j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

− −
−

 

To calculate the expected Fisher Information, 

  ( )cI ξ   = [ ''( )]cE l ξ−  

   = E− [
1

m

j=
∑ jn

1

1

( ) 2
1

2

( )
( )

j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

− −
−

]  

   = -
1

m

j=
∑

1

1

( ) 2
1

2

( )
( )

j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

− −
−

E [ jn ]       (because jC �s are known) 

   = -
1

m

j=
∑

1

1

( ) 2
1

2

( )
( )

j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

− −
−

E [ jnP ] 

   = -
1

m

j=
∑

1

1

( ) 2
1

2

( )
( )

j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

− −
−

E [ n { ( )jF C  - 1( )jF C − }] 

   = -
1

m

j=
∑

1

1

( ) 2
1

2

( )
( )

j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

− −
−

E [ n { 1jCe ξ −− - jCe ξ− }] 

   = - n
1

m

j=
∑

1

1

( ) 2
1

2

( )
( )

j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

− −
−

E [ 1jCe ξ −− - jCe ξ− ] 

   = - n
1

m

j=
∑

1

1

( ) 2
1

2

( )
( )

j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

− −
−

1

11

( )j j j

j jj

xC C C
C CC

ee e dx
e e

ξ
ξ ξ

ξ ξ
ξ−

−−

−
− −

− −−
−∫  
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   = - n
1

m

j=
∑

1

1

( ) 2
1

2

( )
( )

j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

− −
−

 
1

j

j

C x

C
e dxξξ

−

−∫  

   = - n ξ
1

m

j=
∑

1

1

( ) 2
1

2

( )
( )

j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

− −
−

 
1

j

j

C x

C
e dxξ

−

−∫  

   = - n ξ
1

m

j=
∑

1

1

( ) 2
1

2

( )
( )

j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

− −
−

 
1

1 jx

j

C
e

C
ξ

ξ
−

−

 
− 
  

 

   = - n ξ
1

m

j=
∑

1

1

( ) 2
1

2

( )
( )

j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

− −
−

 11 ( )j jC Ce eξ ξ

ξ
−− − 

− − 
 

 

            (�-� andξ  can be cancelled out) 

   = n
1

m

j=
∑

1

1

( ) 2
1

2

( )
( )

j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

− −
−

1( )j jC Ce eξ ξ −− −−  

           [- 1( )j jC Ce eξ ξ −− −−  can be cancelled out] 

   = n
1

m

j=
∑

1

1

( ) 2
1( )j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

−
−

 

In summary, the expected Fisher Information from n observations with m groups: 

  ( )cI ξ  = n
1

m

j=
∑

1

1

( ) 2
1( )j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

−
−
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When m = 2 

When data from an exponential distribution are categorized into two groups, we have 

m=2, 2C = ∞ , 0C =0. 

The expected Fisher information from this type of categorization, 

  ( )cI ξ  = n
2

1j=
∑

1

1

( ) 2
1( )j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

−
−

 

= n
1 0 1

1 1 2

2

0

( ) 2 ( ) 2
1 0 2 1( ) ( )C C C C

C C C C
e C C e C C

e e e e

ξ ξ

ξ ξ ξ ξ

− + − +

− − − −

 − −+ − − 
 

    (because 
1

2

2

1

( ) 2
2 1( ) 0

C C

C C
e C C

e e

ξ

ξ ξ

− +

− −

− →
−

, 0 1Ce ξ− = ) 

= n
1

1

2
1

1

C

C
e C

e

ξ

ξ

−

−−
 

Because  1P =1- 1Ce ξ−  

2P =1- 1P = 1Ce ξ−  

2
1C =

2

1
1 (1 )log P
ξ

 
− − 
 

 

Therefore,  

( )cI ξ  = n
1

1

2
1

1

C

C
e C

e

ξ

ξ

−

−−
 

  = 
2

2
1

1

1 log(1 )Pn P
P ξ
 

− − 
 

 

= [ ] 22
12

1

1 log(1 )Pn P
P ξ

−  

= 22
12

1

[ (1 )]Pn log P
Pξ

−  
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By using the original observed data without categorization, the expected Fisher 

information  

( )I ξ  = 2

n
ξ

. 

Therefore, the asymptotic relative efficiency (ARE) from categorizing observed data in 

continuous scale into two groups: 

ARE = !
�( )

( )c

Var
Var

ξ
ξ

= ( )
( )

cI
I

ξ
ξ

 = 

22
12

1

2

[ (1 )]Pn log P
P

n
ξ

ξ

−
 

  = 22
1

1

[ (1 )]P log P
P

−  

  = 21
1

1

1 [ (1 )]P log P
P
− −       (5.2.1) 

 
The followings are the comparisons between using the original observations vs. the 

dichotomized observations from an exponential distribution: 

 

 
Maximum Likelihood 
Estimate 

Complete Data Categorized Data 

Parameter Estimate 
1�
x

ξ =  
1 1

1 1�
1c log

c P
ξ =

−
 

Variance of Parameter 
2

�var( )
n

ξξ =  
2

21
1

1

�var( ) [ (1 )]
1c logP P

n P
ξξ −= −

−
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A simulation study was conducted by using data from an exponential distribution with 

ξ =1. A total of 10,000 simulations were performed and 10,000 data points were used in 

each simulation. By comparing the estimated relative efficiency calculated from the data 

and the asymptotic relative efficiency calculated from the equation of 

21
1

1

1 [ (1 )]P log P
P
− − (solid line), they are agree with each other in Figure 5.2.1. 

 

 

Figure 5.2.1 Comparison between asymptotic relative efficiency based on equation 

(5.2.1) and estimated relative efficiency via simulation using 

exponential distribution with ξ =1. 
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When m = 3 

When data from an exponential distribution are categorized into three groups, we have 

m=3, 3C = ∞ , and 0C =0. 

The expected Fisher information from this type of categorization, 

  ( )cI ξ  = n
3

1j=
∑

1

1

( ) 2
1( )j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

−
−

 

= n
31 0 22 1

0 1 1 32 2

( ) ( )2 2( ) 2
1 0 3 22 1( ) ( )( )C C C CC C

C CC C C C

e C C e C Ce C C
e e e e e e

ξ ξξ

ξ ξξ ξ ξ ξ

− + − +− +

− −− − − −

 − −−+ + − − − 
 

(
2

3

3

2

( ) 2
3 2( ) 0

C C

CC
e C C

e e

ξ

ξξ

− +

−−

− →
−

, 0 1Ce ξ− = ) 

= n
1 2 1

1 1 2

)(2 2
1 2 1)

1
(C C C

C C C
e C e C C

e e e

ξ ξ

ξ ξ ξ

− −

− − −

+ − 
+ − − 

 

Because  1P  =1- 1Ce ξ−  

  1Ce ξ−  =1- 1P  

2
1C  = 2

1
1[ (1 )]log P
ξ

− −  

2 1 )(C Ce ξ +−  = 2 1C Ce eξ ξ− − = [ 21 ( )F C− ][ 11 ( )F C− ] 

     = (1- 1P - 2P )(1- 1P ) 

  2
2 1( )C C−   = 2

1 2 1
1 1[ (1 ) (1 )]log P P log P
ξ ξ

− − − + −  

         = 21 2
2

1

11 [ ]
1
P Plog

Pξ
− −

−
  

  1 2C Ce eξ ξ− −−  = 2P  
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Therefore,  

( )cI ξ  = n
1 2 1

1 1 2

)(2 2
1 2 1)

1
(C C C

C C C
e C e C C

e e e

ξ ξ

ξ ξ ξ

− −

− − −

+ − 
+ − − 

 

  = 
2

21 1 2 1 1 2
12

1 2 1

1 (1 )(1 ) 1[log(1 )] log
1

P P P P P Pn P
P P Pξ

  − − − − − − − +  −   
 

By comparing with the variance from continuous data,  

  ARE  = 
2

21 1 2 1 1 2
1

1 2 1

1 (1 )(1 ) 1[log(1 )] log
1

P P P P P PP
P P P

 − − − − − −− +  − 
 

 

When m = 4 

When data from an exponential distribution are categorized into four groups, we have 

m=4, 4C = ∞ , and 0C =0. 

The expected Fisher information from this type of categorization, 

  ( )cI ξ  = n
4

1j=
∑

1

1

( ) 2
1( )j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

−
−

 

= n
1 0 22 1

0

3

321 1 2

( ) ( )2 2( ) 2
1 0 3 22 1( ) ( )( )C C C CC C

C CC C C C
e C C e C Ce C C

e e e e e e

ξ ξξ

ξ ξξ ξ ξ ξ

− + − +− +

− −− − − −

 − −−+ + − − −
  

                 
4 3

3 4

( ) 2
4 3( )C C

C C
e C C

e e

ξ

ξ ξ

− +

− −

−+ − 
 

= 
2

21 1 2 1 1 2
12

1 2 1

(1 )(1 0) (1 )(1 ) 1[log(1 )] log
1

P P P P P Pn P
P P Pξ

  − − − − − − − − +  − 
 

2

1 2 3 1 2 1 2 3

3 1 2

(1 )(1 ) 1log
1

P P P P P P P P
P P P

 − − − − − − − − +  − −  
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By comparing with the variance from continuous data,  

ARE= 
2

21 1 2 1 1 2
1

1 2 1

(1 )(1 0) (1 )(1 ) 1[log(1 )] log
1

P P P P P PP
P P P

 − − − − − − −− +  − 
 

2

1 2 3 1 2 1 2 3

3 1 2

(1 )(1 ) 1log
1

P P P P P P P P
P P P

 − − − − − − − −+  − − 
 

 

When m = k 

When data from an exponential distribution are categorized into m groups, we have m=k, 

kC = ∞ , and 0C =0. 

After deducting from the previous conditions, the expected Fisher information 

from categorization, 

  ( )cI ξ  = n
1

k

j=
∑

1

1

( ) 2
1( )j j

j j

C C
j j

C C

e C C
e e

ξ

ξ ξ

−

−

− +
−

− −

−
−

 

   = 

21

1
1 0 1

12
1

0

(1 )(1 ) 1
log

1

h h h

g g gk
g g g

h
h h

g
g

P P P
n

P Pξ

−

−
= = =

−
=

=

 − − − 
 
 − 
 

∑ ∑ ∑
∑

∑
  

where 0P =0. 

By comparing with the variance from continuous data,  

  ARE = 

21

1
1 0 1

1
1

0

(1 )(1 ) 1
log

1

h h h

g g gk
g g g

h
h h

g
g

P P P

P P

−

−
= = =

−
=

=

 − − − 
 
 − 
 

∑ ∑ ∑
∑

∑
   (5.2.2) 
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5.3    Numerical Approach for Getting the MLE 

When an analytical solution is available, it is easy to assess the asymptotic relative 

efficiency. However, not all of the likelihood functions have an analytical solution. 

Therefore, the evaluation of estimated relative efficiency needs to use a numerical 

approach. 

In the previous section, we used exponential distribution to derive the analytical form 

for the maximum likelihood estimate. We also derived the equation for calculating the 

asymptotic relative efficiency based on the number of category. We also use the 

simulation studies to demonstrate that the estimated relative efficiency is consistent with 

the results based on our equation. 
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5.4 Simulation Approach for Getting the Relative Efficiency of Exponential 

Distributions 

In order to evaluate the impacts from parameter and sample size in a study, simulation 

studies were performed to assess the estimated relative efficiency and the ARE. 

When n=100 was used for 10,000 simulation, the results are shown in Figure 5.4.1. 

From the results, we found that the parameter of an exponential distribution does not 

impact the estimated relative efficiency. The simulation results are consistent with the 

asymptotic relative efficiency calculated by using equation 5.2.2. 

 

 
Figure  5.4.1 Analytical and simulation results from n=100 in each study  
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When n=1,000 was used for 10,000 simulation, the results are shown in Figure 5.4.2. 

From the results, we found that there is no difference on the relative efficiency between 

exponential distributions with different parameters. The analytical results are consistent 

with the simulation results. 

We further compare the results based on different number of observation in each 

study. There is no difference between the number of observation on the relative 

efficiency.  

In summary, based on the equation 5.2.2 and simulation studies, we found that only 

the cutoff point impacts the relative efficiency in the exponential distribution.  

 

 
 
Figure 5.4.2 Analytical and simulation results from n=1,000 in each study 
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5.5   Conclusions 

We use the maximum likelihood approach to estimate the underlying continuous 

covariate when it is categorized and expressed as the form of a multinomial form. The 

analytic approach was demonstrated by using the exponential distribution. We derive a 

general form to calculate the asymptotic relative efficiency based on the number of cutoff 

points. We also performed simulation studies to assess the potential impact to the relative 

efficiency. From our studies on the exponential distributions, we found that the 

asymptotic relative efficiency depends on only the choice of cutoff points. 
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Chapter 6 

Efficiency of Categorizing Dose in a Dose-Response Relationship 

 

When the parameters of a continuous variable are estimated from a categorized form, the 

major impact is loss of asymptotic efficiency. When the categorized variable is used for 

assessing the dose-response relationship, how the categorization is done impacts the 

efficiency of the coefficient estimation is of interest. 

 

6.1   Model 

Let iY be an independent and identically distributed (i.i.d.) random variable with a density 

function ( )f yξ . Let the expected value of iY , µ, be a linear function of an i.i.d. 

continuous random variable iX . That is, we can use the concept of generalized linear 

model to define  

( ) ( [ ])G G E Yµ = = ββββX 

where G is a link function (McCullagh and Nelder, 1989), ββββ is the vector of regression 

coefficient, and X is the vector of explanatory variables. For simplicity, we use 

( ) ( [ ])G G E Yµ = = 0 1Xβ β+ for this chapter. Therefore, 0 1( ,  )β β β=  

Let ( | ,  )f Y X β  be the density function of Y given X and β . When iX  is categorized 

into the jth interval [Cj-1, Cj], we define  *
ijX  as: 

  
1* 1           if 

0 otherwise
j i j

ij

C X C
X

− ≤ <
= 
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where j=1, � m, and m is the number of groups. Therefore, we have the conditional 

density function  

*( | ,  )i ijf y X β  = 1( | ,  )i j i jf C X Cy β− ≤ <  

   = 1

1

( , | )
( )

j i j

j i j

i

X

C X C
C X C

f y
f

β−

−

≤ <
≤ <

 

   = 1

1

( ,

)

| )

(

j

j

j

j

C

C
C

XC

f y x dx

f x dx

β
−

−

∫
∫

 

   = 1

1

( | ) ( )

( )

,  j

j

j

j

C

C
C

XC

f y x f x dx

f x dx

β
−

−

∫
∫

 

= 1

jP 1

( | ) ( ),  j

j

C

C
f y x f x dxβ

−
∫    

where jP  = 
1

( )j

j

C

XC
f x dx

−
∫  

When we want to estimate the parameter of interest from y  and x , we use the 

density function ( | ,  )f y X β . Let log-likelihood function  

1 1
( | ,  ) ( | ,  ) log ( | ,  )

n n

i i i i i
i i

l y x l y x f y xβ β β
= =

= =∑ ∑  

where ( | ,  ) log ( | ,  )i i i i il y x f y xβ β= . 

Based on the regression model described previously, 0 1( ,  )β β β= . Therefore, we can 

calculate the score function, 

  ( | ,  )i i il y xβ
β

∂
∂

  = log ( | ,  )i if y x β
β

∂
∂
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   = 
( | ,  )

( | ,  )

i i

i i

f y x

f y x

β
β

β

∂
∂  

From the result, we can also calculate the expected Fisher information which is the 

expected value of the product of the first derivative of the log-likelihood function, or the 

negative expected value of the second derivative. When we use the negative expected 

value of the second derivative, the second derivative is: 

2 ( | ,  )i i i
T

l y xβ
β β

∂
∂ ∂

=
'

( | ,  )
( | ,  

1
) i iT

i i

f y x
f y x

β
β β β

 ∂ ∂

 ∂ 

∂
 

 =
[ ]

2

2

( | ,  ) ( | ,  ) ( | ,  ) ( | ,  )

( | ,  )

i i i i i i i i

i i

T Tf y x f y x f y x f y x

f y x

β β
β β β

β β

β
β

∂ ∂ ∂−
∂ ∂ ∂ ∂  

 ( )iI β  =
2 ( | ,  )i i i

T

l y xE β
β β

 ∂− ∂ ∂ 
   

= 
[ ]

2

2
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Therefore, the (a, b)th component of the information matrix is: 

iabI   =

2

1 1 1 1

( | ,  ) ( | ,  ) ( | ,  )( | ,  )

( | ,  )

i i i i i i
i i

a b a b
i

i i

f y x f y x f y xf y x
dy

f y x

β β ββ
β β β β

β
∞ − − − −

−∞

∂ ∂ ∂
∂ ∂ ∂

−
∂

∫  

 

When we want to estimate the parameter of interest from y  and categorized x , we 

use the density function ( | *,  )f y X β . Let log-likelihood function  
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From the result, we can calculate the expected Fisher information which is the expected 

value of the product of the first derivative of the log-likelihood function, or the negative 

expected value of the second derivative. When we use the negative expected value of the 

second derivative, the second derivative is: 
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When we use the data from n observations, the average expected information matrix 

based on the original values is 
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Therefore, the variance of maximum likelihood estimator of β is 
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The equations available at www.wolframalpha.com (Weisstein, 2010) were used to 

calculate the inverse of a square matrix.  

For the coefficient of interest 1β , the variance of maximum likelihood estimator is 

 1
�( )Var β  =

11
1

11 22 12 21
1 1 1 1

n

i
i

n n n n

i i i i
i i i i

I

I I I I

=

= = = =
−

∑

∑ ∑ ∑ ∑
 

 

When we use the data from n observations, the average expected information matrix 

based on the categorized values is 
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Therefore, the variance of maximum likelihood estimator of *β is 
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For the coefficient of interest 1β , the variance of maximum likelihood estimator is 
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Therefore, we can calculate the asymptotic relative efficiency by using the variance of 1β  

estimated from original observations divided by the variance estimated from the 

categorical observations, 

  ARE  = 1

1

�( )
�( * )

Var
Var

β
β
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6.2 Impact from Dichotomization on the Relative Efficiency of Coefficient 

In order to assess the impacts from dichotomization on the relative efficiency of 

coefficient, we performed simulation studies under different conditions. The simulation 

studies were performed by using the R language. The relative efficiency was calculated 

by using the variance of the coefficient which derived from continuous covariate divided 

by the variance of the coefficient which derived from the categorized covariate. 

 

6.2.1 When the Null Hypothesis is True: Coefficient =0 

We assessed the influence by assigning the outcome variable Y as binary with two 

possible outcomes 0 and 1. Therefore, the dose-response association becomes: 

0 1
( 1)logit[ ( 1)] log

1 ( 1)
P YP Y X

P Y
β β == = = + × − = 

 

When the null hypothesis is true, 1β =0.  

For categorization, a value from the data was chosen as the cutoff point C1. The dose-

response association becomes: 

  0 1
( 1)logit[ ( 1)] log

1 ( 1) D D c
P YP Y X

P Y
β β == = = + × − = 

 

The truncated means of each group was used as the value for estimating the 

coefficient 1Dβ . That is, 

  

1

1

1

1

( )      if 

( )      if 

C
i

c
i

C

f x dx X C
X

f x dx C X

−∞
∞

 ≤= 
<



∫
∫

 

Each simulation was performed by using 20,000 data points. A total of 1,000 simulations 

were performed for each distribution. The glm function of R language was used.



  108 

 

6.2.1.1  Gamma Covariate 

We assume that the covariate follows a gamma distribution.  Without loss of generality, 

we assume that the scale parameter 1β  equals to 1. Four different shape parameters (2, 3, 

4, 6) were used to assess the impact from the shape parameters. The graphic results are 

shown in Figure 6.2.1. The numerical results are shown in Table B.1 in Appendix B. 

The estimate of 1β  and the estimate of 1Dβ  are similar and closed to 0. From the graph, 

it shows that the RE changes with the choice of cutoff point. The cutoff point which has 

the highest RE varies with the shape parameter. When α=2, the highest RE is 69.2% 

when the 75th percentile was used as the cutoff point. The highest RE is 67.1% when the 

65th percentile was used as the cutoff point when α=3, When α=4, the highest RE is 

64.6% when the 65th percentile was used as the cutoff point. The highest RE is 68.2% 

when α=6 and the 60th percentile was used as the cutoff point. 

 

Figure 6.2.1 Relative Efficiency of 1β  estimates when X is gamma distribution 
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 6.2.1.2  Normal Covariate 

We assume that the covariate follows a normal distribution.  In order to compare the 

results with the gamma covariate in the previous section, we used four different mean 

values (2, 3, 4, 6) to assess the impacts. The variance is the same as the mean value. The 

graphic results are shown in Figure 6.2.2. The numerical results are shown in Table B.2 

in the Appendix B. 

The estimate of 1β  and the estimate of 1Dβ  are similar and closed to 0. From the graph, 

it shows that the RE changes with the choice of cutoff point. However, different from the 

gamma distribution, the REs are similar among parameters. The highest REs associate 

with the cutoff points of 45th percentile in all 4 different distributions.  

 

 

Figure 6.2.2 Relative Efficiency of 1β  estimates when X is normal distribution 
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6.2.2  When the Null Hypothesis is False: Coefficient≠0 

We were also interested in knowing the impacts from dichotomizing a covariate on a 

dose-response association in which the null hypothesis is false. We performed simulation 

studies on assessing the effects. 

We assume that the underlying dose-response association is: 

logit ( 1) 4 1P Y X= = − + ×  

 

6.2.2.1  Gamma Covariate 

Based on the gamma covariate and this assigned association, the probability of Y=1 is 

about 30%. 

When compare the 1β  estimate with the defined coefficient, the estimate is close to 

the assigned value. However, when compared the 1β estimate with the 1Dβ estimate, the 

ratios changed with the cutoff point as well as the shape parameter of the gamma 

distribution. The results are shown in Figure 6.2.3 and the numerical results are shown in 

Table B.3 in Appendix B. 

From the figure on the next page, we found that 1Dβ tends to be overestimated, that is, 

the ratio of 1β / 1Dβ  less than 1. However, when α=2, 1Dβ  was underestimated when we 

used the cutoff points which are smaller than the median.  

The overall impression from the results here is that dichotomizing a continuous 

covariate biases the coefficient estimation. The impact depends on the choice of cutoff 

points and the distribution of the covariate.  
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Figure 6.2.3 Ratio of the b1 estimates (continuous/grouped) 

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

P(X>cutoff)

R
at

io

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2

3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4

4

4

Ratio of the b1 Estimates (Continuous/Grouped)

logit P(Y=1)= -4 +1*X

 

 

 

1: α=2 
2: α=3 
3: α=4 
4: α=6 



  112 

 

The influences from dichotomization on the RE were also evaluated. The graphic 

results are shown in Figure 6.2.4, and the numeric results are shown in Table B.4 in 

Appendix B. 

From the graph, it shows that the RE changes with the choice of cutoff point and the 

parameter of the gamma distribution. 

When the cutoff points are away from the median under the shape parameters of 3, 4, 

and 6, the RE tends to be smaller than 1. That is, categorization increases the variance 

of 1Dβ . However, when the cutoff points are closed to the median, categorization reduces 

the variance of 1Dβ . 

The observation does not hold for gamma distribution with shape parameter equals 2. 

The REs larger than 1 when the cutoff points were chosen between the 70th and 90the 

percentiles. 

 

Figure 6.2.4 Relative efficiency of b1 estimate when X is gamma distribution 
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 Because the bias was found from the 1Dβ estimation, we further assess the mean 

square error (MSE) of both parameter estimates. The results are shown in Figures 6.2.5 

through 6.2.8 by each shape parameter of the gamma distribution. For a better 

comparison, the MSE values are shown after logarithm transformation. The numerical 

results in original value are also shown in Table B.5 and Table B.6 in Appendix B. 

Overall, all of the MSEs of 1Dβ  are larger than the MSEs of 1β , given the same 

gamma distribution and the same cutoff point. The difference between the MSEs of 

1β and 1Dβ changes with the shape parameter of gamma distribution. 

 

 

Figure 6.2.5 MSE of Coefficient Estimate when X distributed Gamma (2, 1) 
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Figure 6.2.6 MSE of Coefficient Estimate when X distributed Gamma (3, 1) 
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Figure 6.2.7 MSE of Coefficient Estimate when X distributed Gamma (4, 1) 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0

-8
-6

-4
-2

0

P(X>cutoff)

lo
g(

M
S

E
)

2

2
2

2
2

2
2 2 2 2 2 2 2 2 2 2 2

2
2

2

2

MSE of the b1 Estimates

logit P(Y=1)=-4+1*X, X~Gamma(4, 1)
1: continuous
2: grouped

 

 



  115 

 

Figure 6.2.8 MSE of Coefficient Estimate when X distributed Gamma (6, 1) 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0

-8
-6

-4
-2

0

P(X>cutoff)

lo
g(

M
S

E
)

2

2
2 2 2 2 2 2 2 2 2 2

2
2

2

2

2
2

2

2

2

MSE of the b1 Estimates

logit P(Y=1)=-4+1*X, X~Gamma(6, 1)
1: continuous
2: grouped

 



  116 

 

6.2.2.2  Normal Covariate 

We performed simulation studies on assessing the impact from dichotomized covariate 

with different normal distribution. We assume the same underlying dose-response 

association as: 

logit ( 1) 4 1P Y X= = − + ×  

X is assumed to follow a normal distribution. Based on this assigned association, the 

probability of Y=1 is about 20% when the covariate is distributed as normal (µ=6, σ2=6), 

and about 75% when the covariate is distributed as normal (6, 6). 

When compare the 1β  estimate with the defined coefficient, the estimate is close to 

the assigned value. However, when compare the 1β estimate with the 1Dβ estimate, the 

ratios changed with the cutoff point as well as the shape parameter of the normal 

distribution. The results are shown in the Figure 6.2.9. The numerical results are in Table 

B.7 in Appendix B. 

From the figure, we found that 1Dβ tends to be overestimated, that is, the ratio of 

1β / 1Dβ  less than 1. They show similar pattern as gamma covariate but have smaller ratios. 

The overall impression from the results here is that dichotomizing a continuous 

covariate biases the coefficient estimation. The impact depends on the choice of cutoff 

points and the distribution of the covariate.  
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Figure 6.2.9 Ratio of the b1 estimates (continuous/grouped) 
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The influence from dichotomization on the RE were also evaluated. The results are 

shown in Figure 6.2.10. The numerical results are shown in the Table B.8 in Appendix B. 

From the graph, we see that the RE changes with the choice of cutoff point and the 

parameter of the normal distribution. 

When the cutoff points are away from the median under the means of 3, 4, and 6, the 

RE tends to be smaller than 1. That is, categorization increases the variance of 1Dβ . 

However, when the cutoff points are closed to the median, categorization reduces the 

variance of 1Dβ . 

The observation does not hold for normal distribution with mean equals 2. The REs 

larger than 1 when the cutoff points were chosen between the 60th and 90the percentiles. 

 

 

Figure 6.2.10 Relative Efficiency of the b1 estimates (Normal Covariate) 
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Because the bias was found from the 1Dβ estimation, we further assess the mean 

square error of both parameter estimates. The graphical results are shown in Figures 

6.2.11 through 6.2.14 for each mean and standard deviation the normal distribution. For 

better comparison, the MSE values are shown after logarithm transformation. The 

numerical results are also shown in Table B.9 and B.10 in Appendix B.. 

Overall, all of the mean square errors (MSEs) of 1Dβ  are larger than the MSEs of 1β , 

given the same normal distribution and the same cutoff point. The difference between the 

MSEs of 1Dβ and 1β changes with the parameters of normal distribution. 

 

 

Figure 6.2.11 MSE of Coefficient Estimate when X distributed normal (2, 2) 
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Figure 6.2.12 MSE of Coefficient Estimate when X distributed normal (3, 3) 
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Figure 6.2.13 MSE of Coefficient Estimate when X distributed normal (4, 4) 
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Figure 6.2.14 MSE of Coefficient Estimate when X distributed normal (6, 6) 
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6.3 Impact from Different Number of Cutoff Points 

From the studies, we found that the efficiency or the MSE is affected by the hypothesis, 

the covariate distribution and the choice of cutoff points. 

We further investigated the impact from using different number of cutoff points on 

the efficiency of estimation.  

Simulation studies were conducted by using different quantiles (median, tertile, 

quartile and quintile) to evaluate the relative efficiency. 

 

6.3.1 Normal Covariate and β1=0 

We performed simulation studies to evaluate the association between REs and the 

number of cutoff points. The studies were under the null hypothesis that there is no 

association between the covariate and the outcome variable. 

The covariate was from a normal distribution with 4 different means: (2, 3, 4, 6). The 

variance in each distribution is the same as the mean value. The graphic results are shown 

in Figure 6.3.1 on the following page. The numeric results are shown in Table B.11 in 

Appendix B. 

From the results, we found that the REs increase with the number of groups. The REs 

increased significantly before reaching 6 groups. 
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Figure 6.3.1 Relative efficiency on b1 estimate from number of group when X is 

normal distribution and ββββ1=0 
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 6.3.2 Gamma Covariate and β1=0 

We also performed simulation studies to evaluate the association between REs and the 

number of cutoff points by using the gamma distribution as the covariate. The studies 

were under the null hypothesis that there is no association between the covariate and the 

outcome variable. 

The covariate was from a gamma distribution with four different shape parameters: (2, 

3, 4, 6). We used 1 as the scale parameter for all of the studies. The graphic results are 

shown in Figure 6.3.2. The numeric results are shown in the Table B.12 in the Appendix 

B. 

From the results, we found that the REs increase with the number of groups. The REs 

were larger than 90% when the number of group reached 9 in all distributions. 

 

Figure 6.3.2 Relative efficiency on b1 estimate from number of group when X is 

gamma distribution and ββββ1=0 
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6.3.3 Normal Covariate and β≠0 

We performed simulation studies to evaluate the association between REs and the 

number of cutoff points. The studies were under the assumption that there is an 

association between the covariate and the outcome variable. The slope is 1 with the 

intercept of -4. The covariate was from a normal distribution with 4 different means: (2, 3, 

4, 6). The variance in each distribution is the same as the mean value.  

We compared the coefficients estimated by either grouped or continuous covariates. 

The graphical results are shown in Figure 6.3.3. The numerical results are shown in Table 

B.13 in Appendix B. From the results, we found that the coefficients were closed to the 

defined association when used the continuous covariate. However, it is underestimated 

when the categorized covariates were used. The magnitudes of underestimation decreased 

with the increase of number of group. 

 

Figure 6.3.3 Ratio of the b1 Estimates (Grouped/Continuous) when X is Normal  
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For better understand the impact on estimation bias, we calculated the relative bias 

(100%x[estimate-parameter]/parameter). The relative bias depends on the parameter. The 

results are shown in Tables B.14 and B.15 in Appendix B. 

The graphical results for relative efficiency are shown in Figure 6.3.4. The numeric 

results are shown in Table B.16 in Appendix B. From the results, we found that the 

association between REs and the number of groups change with the parameters. The 

same trend is that the REs approach 1 when the number of group is large. 

 

 

Figure 6.3.4 Relative Efficiency of b1 Estimate when X is normal distribution and 

ββββ1=1 

1
1

1

1
1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1

0 5 10 15 20

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Number of Group

R
at

io 2
2

2
2

2
2 2 2 2 2

2 2 2 2 2
2 2 2 2 2

3

3

3

3

3
3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

4

4
4

4 4

4
4

4

4 4 4 4 4
4 4

4 4 4 4 4

Relative Efficiency of b1 Estimates (Normal Covariate)

logit P(Y=1)= -4 + 1*X, X ~ Normal

1: µ=σ2=2 
2: µ=σ2=3 
3: µ=σ2=4 
4: µ=σ2=6 



  127 

 

The MSE of each condition was also evaluated. The graphical results are shown in Figure 

6.3.5 through Figure 6.3.8. The MSE values are shown in Table B.17 and B.18 in 

Appendix B. 

Overall, when used the continuous covariate to assess the dose-response association, 

the MSE is smaller than using the grouped covariate. 

 

 

 

Figure 6.3.5 MSE of Coefficient Estimate when X distributed normal (2, 2) and 

ββββ1=1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 5 10 15 20

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5
0.

00
6

Number of Group

M
S

E

2

2

2

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

MSE of the b1 Estimates

logit P(Y=1)=-4+1*X, X~Normal(2, 2)

1: continuous
2: grouped

 
 



  128 

 

Figure 6.3.6 MSE of Coefficient Estimate when X distributed normal (3, 3) and 

ββββ1=1 
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Figure 6.3.7 MSE of Coefficient Estimate when X distributed normal (4, 4) and 

ββββ1=1 
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Figure 6.3.8 MSE of Coefficient Estimate when X distributed normal (6, 6) and 

ββββ1=1 
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6.3.4 Gamma Covariate and β≠0 

We also performed simulation studies to evaluate the association between REs and the 

number of cutoff points by using the gamma distribution for the covariate. The studies 

were under the assumption that there is an association between the covariate and the 

outcome variable. The slope is 1 with intercept of -4. 

The covariate was from a gamma distribution with 4 different shape parameters: (2, 3, 

4, 6). We used 1 as the scale parameter for all of the studies.  

We evaluate the association between coefficients estimated by using the continuous 

and categorized covariate and the number of groups. The graphical results are shown in 

Figure 6.3.9. The numerical results are shown in Table B.19 in Appendix B. 

Other than when α=2 at 2 groups, we found that the coefficient of dose-response 

association were underestimated. The magnitude of under-estimation decreases with the 

number of group. However, the magnitude of under-estimation is still larger than the 

other shape parameters when α=2 with the increased number of group. 

 
Figure 6.3.9 Ratio of the b1 Estimates (Grouped/Continuous) when X is Gamma 
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For better understand the impact on estimation bias, we calculated the relative bias 

(100%x[estimate-parameter]/parameter). The relative bias depends on the parameter. 

Almost all of the estimates from categorized covariates are under-estimated. The results 

are shown in Tables B.20 and B.21 in Appendix B. 

The relative efficiency of coefficient estimates was also evaluated. The graphic 

results are shown in Figure 6.3.10. The numeric results are shown in Table B.22 in 

Appendix B. 

From the results, we found that the association between REs and the number of 

groups change with the parameters. The REs were approaching 1 when the number of 

group increases. However, when α=2, the REs are still be away from 1, even it decreases. 

 
 
Figure 6.3.10 Relative Efficiency of b1 Estimate when X is gamma distribution and 

ββββ1=1 
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The MSE of the estimates were also studied. The graphic results are shown in Figure 

6.3.11 through Figure 6.3.14. The numeric results are shown in Table B.23 and Table 

B.24. 

Under each gamma distribution, the MSEs of the coefficient from the continuous 

covariate were smaller than the MSEs from the grouped covariate. The magnitude of 

different on MSE changes with the shape parameter. 

 

Figure 6.3.11 MSE of Coefficient Estimate when X distributed gamma (2, 1) and 

ββββ1=1 
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Figure 6.3.12 MSE of Coefficient Estimate when X distributed gamma (3, 1) and 

ββββ1=1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 5 10 15 20

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Number of Group

M
S

E

2
2

2

2

2

2

2

2

2
2

2
2 2 2 2 2 2 2 2 2

MSE of the b1 Estimates

logit P(Y=1)=-4+1*X, X~Gamma(3,1)

1: continuous
2: grouped

 
 
 
 
 
Figure 6.3.13 MSE of Coefficient Estimate when X distributed gamma (4, 1) and 

ββββ1=1 
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Figure 6.3.14 MSE of Coefficient Estimate when X distributed gamma (6, 1) and 

ββββ1=1 
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6.4 Conclusions 

Our simulation studies demonstrated that when a continuous covariate is dichotomized, 

the relative efficiency reduced under the null hypothesis. The magnitude of reduction 

depends on the covariate distribution and the choice of cutoff points. 

When there is an association between the covariate and the outcome variable, the 

coefficient estimate might be biased due to the dichotomization. The mean square error 

(MSE) of the estimate from dichotomized covariate is larger than the MSE of the 

estimate from continuous covariate. 

When the number of group increases, the relative efficiency increases. 
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Chapter 7 

Effect of Categorizing a Continuous Covariate on the Comparison of Survival Time 

and Dose Response 

 

When performing a multivariate analysis, it is very often that a continuous covariate is 

categorized to be treated as a confounding variable. For example, when assessing the 

treatment effect as compared to the control group, age is a potential confounding factor 

which we control for. Instead of using the real age value, researchers often categorized 

age as age group, such as: �Young vs. Old�, or �Young, Mid-age, and Old�. 

As described in Section 2.3, Morgan and Elashoff (1986) assessed the impacts from 

categorizing a gamma-distributed covariate. The choice of cutoff point, the parameter of 

gamma distribution and the number of cutoff point impact the asymptotic relative 

efficiency. However, their study was under the assumption that the null hypothesis is true, 

that is, there is neither effect from the main effect nor the effect from the confounding 

variable.  

In this Chapter we will evaluate the impact on the estimation of main effect from 

categorizing a continuous covariate. We will assess the effect of categorization under the 

assumption that null hypothesis is true.  
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7.1 Model 

Let iY be an independent and identically distributed (i.i.d.) random variable with a density 

function ( )f yξ . Let the expected value of iY , µ, be a linear function of an i.i.d. 

continuous random variable iX . That is, we can use the concept of generalized linear 

model to define  

( ) ( [ ])G G E Yµ = = ββββX 

where G is a link function (McCullagh and Nelder, 1989), ββββ is the vector of regression 

coefficient, and X is the vector of explanatory variables. For simplicity, we use 

( ) ( [ ])G G E Yµ = = 0 1 2Z Xβ β β+ + for this chapter. Z is a dichotomized variable. 

When 1β is the coefficient of interest under our regression model, based on the 

method of maximum likelihood, the following steps of deriving the general form for 

calculating asymptotic relative efficiency will be similar to what we described in Chapter 

6. However, it will be different because more coefficients are included in the regression 

model. 

Let ( | ,  ,  )f Y Z X β  be a density function of Y given Z , X and β . When 1iX  is 

categorized into the jth interval [Cj-1, Cj], we define *
ijX  as: 

  
1* 1           if 

0 otherwise
j i j

ij

C X C
X

− ≤ <
= 


 

where j=1, � m, and m is the number of groups. Therefore, we have the conditional 

density function  

*( | ,  ,  )i ijf y Z X β   = 1( | ,  ,  )i j i jf y Z C X C β− ≤ <  
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    = 1
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( , | ,  )
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j i j

i

i

X j j

f y Z
f
C X C

C X C
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f y Z x f x dx
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−

−

∫
∫

 

= 1

jP 1

,  ( | ,  ) ( )j

j

C

C
f y Z x f x dxβ

−
∫    

where jP  = 
1

( )j

j

C

XC
f x dx

−
∫  

When we want to estimate the parameter of interest from y  and x , we use the 

density function ( | ,  ,  )f y Z X β . Let log-likelihood function  

1 1
( | ,  ,  ) ( | ,  ,  ) log ( | ,  ,  )

n n

i i i i i i i
i i

l z y x l z y x f y z xβ β β
= =

= =∑ ∑  

where ( | ,  ,  ) log ( | ,  ,  )i i i i i i il z y x f y z xβ β= . 

Based on the regression model described previously, 0 1 2( ,  ,   )β β β β= . Therefore, 

we can calculate the score function, 

  ( | ,  ,  )i i i il z y xβ
β

∂
∂

  = log ( | ,  ,  )i i if y z x β
β

∂
∂

 

     = 
( | ,  ,  )

( | ,  ,  )

i i i

i i i

f y z x

f y z x

β
β

β

∂
∂  

From the result, we can also calculate the expected Fisher information which is the 

expected value of the product of the first derivative of the log-likelihood function, or the 



  138 

 

negative expected value of the second derivative. When we use the negative expected 

value of the second derivative, the second derivative is: 

2 ( | ,  ,  )i i i i
T

l z y xβ
β β

∂
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i i i i i i i i i
i i i

i i
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T
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β β

β
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β ββ
β β

β
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∂ ∂ ∂ ∂= ∫
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i i i i i i i i i
i i i
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T
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f f ff
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β β β
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∂ ∂ ∂ ∂
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I I I
I I I
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Based on our model, we have: 

( | ,  ,  )i i if y z x β
β
∂

∂

0

1

2

( | ,  ,  )

( | ,  ,  )

( | ,  ,  )

i i i

i i i

i i i

f y z x

f y z x

f y z x

β
β

β
β

β
β

 ∂
 ∂ 
 ∂=  ∂ 
 ∂
 ∂ 

 



  139 

 

( ) ( )| ,  ,  | ,  ,  
T

i i i i i iy z x y zf f x
β

β
β

β∂ ∂
∂ ∂
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β β β β β β
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β β β β
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∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂=
∂ ∂ ∂ ∂ 1 2
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( | ,  ,  ) ( | ,  ,  ) ( | ,  ,  ) ( | ,  ,  ) ( | ,  ,  ) ( | ,  , )

i i i i
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β β β β β β
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 ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂
 

∂ ∂ ∂ ∂ ∂ ∂ 
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β β
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( | ,  ,  ) ( | ,  ,  ) ( | ,  ,  

i i i i i i i i i
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β β β
β β β β β β

β β β
β β β β β β

β β
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∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂=
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∂ ∂  

 

Therefore, the (a, b)th component of the information matrix is: 

iabI  

2

1 1 1 1

( | ,  ,  ) ( | ,  ,  ) ( | ,  ,  )| ,  ,  

| ,( ,

( )

)  

i i i i i i i i i
i i i

a b a b
i

i i i

f y z x f y z x f y z xy z x
dy

y z

f

f x

β β ββ
β β β β

β
∞ − − − −

−∞

∂ ∂ ∂
∂ ∂ ∂ ∂=

−

∫  

When we want to estimate the parameter of interest from y  and categorized x , we 

use the density function ( | ,  *,  )f y Z X β . Let log-likelihood function  

1 1
*( | ,  ,  ) *( | ,  ,  *) log ( | ,  *,  )

n n

i i i i i i i
i i

l z y x l z y x f y z xβ β β
= =

= =∑ ∑  

where *( | ,  ,  *) log ( | ,  *,  )i i i i i i il z y x f y z xβ β= . 

Therefore, we can calculate the score function, 

 *( | ,  ,  *)i i i il z y xβ
β

∂
∂

 = log ( | ,  *,  )i i if y z x β
β

∂
∂

  

    = 
| ,  ,  

| ,  ,

(

 

* )

( * )

i i i

i i i

f

f

y z x

y z x

β

β
β
∂

∂  
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From the result, we can calculate the expected Fisher information which is the expected 

value of the product of the first derivative of the log-likelihood function, or the negative 

expected value of the second derivative. When we use the negative expected value of the 

second derivative, the second derivative is: 

 
2 *( | ,  ,  *)i i i i

T

l z y xβ
β β

∂
∂ ∂
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'
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T
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∫
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Based on our model, we have: 
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Therefore, the (a, b)th component of the information matrix is: 
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When we use the data from n observations, the average expected information matrix 

based on the original values is 

 ( )I β  =

11 12 13
1 1 1

21 22 213
1 1 1

31 32 33
1 1 1

1

n n n

i i i
i i i
n n n

i i i
i i i
n n n

i i i
i i i

I I I

I I I
n

I I I

= = =

= = =

= = =

 
 
 
 
 
 
 
 
 

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 

Therefore, the variance of maximum likelihood estimator of β is 

 �( )Var β =
1( )I
n

β−
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= = = = = = = = = = = =

= = = = = = = =
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∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
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)
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n n n n
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where 11 32 22 32 23 21 33 12 32 13
1 1 1 1 1 1 1 1 1 1

( ) ( )
n n n n n n n n n n

i i i i i i i i i i
i i i i i i i i i i

DET I I I I I I I I I I
= = = = = = = = = =

= − − −∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

31 23 12 22 13
1 1 1 1 1

( )
n n n n n

i i i i i
i i i i i

I I I I I
= = = = =

+ −∑ ∑ ∑ ∑ ∑  

The equations available at www.wolframalpha.com (Weisstein, 2010) were used to 

calculate the inverse of a square matrix.  

 

For the coefficient of interest 1β , the variance of maximum likelihood estimator is 

  1
�( )Var β  =
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When we use the data from n observations, the average expected information matrix 

based on the categorized values is 

  *( )I β   =

11 12 13
1 1 1

21 22 213
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1 1 1
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Therefore, the variance of maximum likelihood estimator of *β is 
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For the coefficient of interest 1β , the variance of maximum likelihood estimator is 
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Therefore, we can calculate the asymptotic relative efficiency by using the variance of 1β  

estimated from original observations divided by the variance estimated from the 

categorical observations, 

  ARE  = 1

1

�( )
�( * )

Var
Var

β
β

 

 

The expected Fisher information can also be calculated by using the product of the 

first derivative of log-likelihood function. 

 

 

7.1.1 Model for Survival Time 

Morgan and Elashoff (1986) studied the impacts from categorizing a continuous 

covariate on survival time estimates using the asymptotic relative efficiency. However, 

their paper did not provide the full details of deriving the equation but referred to a 

technical report which was not available via request. Therefore, the general equation on 

ARE derived in the previous section was used to justify their equation and to provide 

more details of the steps. The original notations were modified to be consistent with the 

notion in this dissertation. 

 

Define Notations and Associations 

Let hazard of exponential proportional hazard model be 
*Z Xh eµ α β+ += , where 

1    if treatment group
0 if control group

z 
= 
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Let  λ  = eα ,  
*XX eµ β+=  

Therefore, h Xλ= . This simplifies from 3 parameters to 1 parameter. 

Given the hazard function, the conditional distribution of the survival time Y  given X  

follows an exponential distribution with the parameter of h Xλ= . That is, the density 

function of Y  given X is expressed as: 

  ( | ) XYf Y X Xe λλ −=  

When X  is categorized, the density function of Y  within the thj  interval: 

( | *)j jf Y X   = 1( | )j j j jf C X CY − ≤ <  

= 1

jP 1

( | ) ( )j

j

C

C
f y x f x dx

−
∫  where jP  = 

1

( )j

j

C

XC
f x dx

−
∫  

From ( | ) XYf Y X Xe λλ −= , 

  log ( | ) log logf Y X X XYλ λ= + −  

Therefore,  1log ( | )d f Y X XY
dλ λ

= −  

  
2

2 2

1log ( | )d f Y X
dλ λ

−=  

By using the result above to the first derivative, 

  1 1log ( | ) ( | )
( | )

d df Y X f Y X XY
d f Y X dλ λ λ

= = −  

After rearranging the later parts of equation, we got 

1( | ) ( ) ( | )d f Y X XY f Y X
dλ λ

= −  
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Calculate Fisher Information 

When we estimate λ from Y with continuous covariate X, the likelihood function 

  1( | )L yλ  = ( )f y  = 
0

( | ) ( )f y x f x dx
∞

∫  

We assume that there is no censoring for the survival time. 

Let   1( )l λ  = 1log ( | )L yλ  = log ( )f y  

   = 
0

log ( | ) ( )f y x f x dx
∞

∫  

  1 ( )l λ′  = 1 '( )
( )

f y
f y

 

   = 
0

1 ( | ) ( )
( )

d f y x f x dx
f y dλ

∞

∫  

      (differentiating under an integral sign) 

   = 
0

1 ( | ) ( )
( )

d f y x f x dx
f y dλ

∞  
  ∫  

      [because 1( | ) ( ) ( | )d f Y X XY f Y X
dλ λ

= − ]  

   = 
0

1 1( ) ( | ) ( )
( )

XY f Y X f x dx
f y λ

∞  −  ∫  

      [replace ( )f y  with 
0

( | ) ( )f y x f x dx
∞

∫ ] 

   = 
0

0

1( ) ( | ) ( )

( | ) ( )

XY f Y X f x dx

f y x f x dx
λ

∞

∞

 −  ∫

∫
 

We use the expected value of the product of first derivative of log-likelihood function to 

calculate the Fisher information: 
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  2
1[ '( ) ]E l λ  = 
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0

0

0

1( ) ( | ) ( )
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XY f Y X f x dx
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f y x f x dx
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∞

∞
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  −    
 
  

∫
∫

∫
 

      [replace ( )f y  with 
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∞

∫ ] 
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∞

∞ ∞
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∫
∫ ∫

∫
 

       [cancel out 
0

( | ) ( )f y x f x dx
∞

∫ ] 

    = 

2

0

0

0

1( ) ( | ) ( )

( | ) ( )

XY f Y X f x dx
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f y x f x dx

λ
∞

∞

∞

  −    ∫
∫

∫
 

 

 

When we estimate λ from Y  with categorized covariate X , the likelihood function 

  *
1
*( | )L yλ  = *( )f y  = 1

( | ) ( )j

j

C

C

j

f y x f x dx

P
−

∫
 

Let   *
1 ( )l λ  = * *

1log ( | )L yλ  = *log ( )f y  

  *
1 ( )l λ′  = *

*

1 '( )
( )

f y
f y

 

   = 
1

*

1 1 ( | ) ( )
( )

j

j

C

C
j

d f y x f x dx
f y d Pλ −

 
 
  
∫  

(differentiating under an integral sign) 
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= 
1

*

1 1 ( | ) ( )
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j
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C
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f y P dλ−
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j
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 − 
 ∫

∫
 (after canceling out 1

jP
) 

 

We use the expected value of the product of first derivative of log-likelihood function to 

calculate the Fisher information: 
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Assess Asymptotic Relative Efficiency 

Let 1
jE − = * 2 1

1[ '( ) ]E l λ −  be the variance of maximum likelihood estimate derived from Y  

when X  is in the thj interval (that is, 1j j jC X C− ≤ < ). Let jn  be the number of 

observation in the thj group, and 
1

g

j
j

n n
=

=∑ . 

From each observation, the asymptotic relative efficiency: 

  ARE = 
1

1
i

i

e j

j e

E E
E E

−

− =  

where 1
ieE − = 2 1

1[ '( ) ]E l λ −  is the variance of the MLE derived from the thi observation 

when X in its original scale, i=1, �, n. 

Therefore, when MLE is derived from all of the n observations, 

  ARE = cE = 1

1
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i i
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e
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=

∑

∑
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When λ=1 

If under the null hypothesis that there is no treatment effect, that is, α =0, and 

consequence, λ = Zeα =1, the expected Fisher information 

  
ieE = 1

eVariance − = 2
1[ '( ) ]E l λ = 1[ ''( )]E l λ− = 2[ ]E λ− − =1 

Therefore,  

  ARE = 1
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j j
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=
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j j
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The results here confirm what Morgan and Elashoff (1986) derived. 
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7.2 Impact from Dichotomization on the Asymptotic Relative Efficiency of the 

Treatment Effect 

In order to evaluate the influence from dichotomization on the asymptotic relative 

efficiency of the treatment effect, we performed simulation studies under different 

conditions. The simulation studies were formed by using the R language. We calculate 

the asymptotic relative efficiency by using the variance of the coefficient which derived 

from controlling for the categorized covariate divided by the variance of the coefficient 

which derived from controlling for the continuous covariate. 

 

7.2.1 When the Null Hypothesis is True: Coefficient=0 

In order to compare the results from the study by Morgan and Elashoff (Morgan and 

Elashoff, 1986), we assign the outcome variable Y as survival time which follows an 

exponential distribution with the association of: 

XZY 210log βββ +×+=  

When the null hypothesis is true, we have 01 =β and 02 =β  

When X is categorized, a data value was chosen as the cutoff point. The association 

becomes: 

0 1 1log D D D DY Z Xβ β β= + × +  

The truncated means of each group was used as the value for the estimate the coefficient 

of treatment effect, 1Dβ . 

Simulation studies were conducted to assess the impacts from dichotomizing a 

continuous confounding variable on the ARE of treatment effect. Each simulation is 

performed by using 20,000 data points. A total of 1,000 simulations were performed for 
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each distribution. The regression analysis was performed by using the survreg function 

of survival package (Therneau et al, 2009) in R language  

 

7.2.1.1 Gamma Covariate 

We assume that the continuous covariate follows a gamma distribution. Four different 

shape parameters (α=2, 3, 4, 6) were used. Without losing the generality and for 

comparing the results with Morgan�s study (Morgan and Elashoff, 1986), we use the 

scale parameter equals to 1.  

The graphic results are shown in Figure 7.2.1 and the numeric results are shown in 

Table 7.2.1. From the results, we found that the relative asymptotic efficiency changes 

with the choice of cutoff points. It also changes with the parameter of the gamma 

distribution.  

When compare the results with the Morgan�s study, our data are comparable with 

theirs. 

 

Figure 7.2.1 Relative Efficiency of b1 Estimate 
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Table 7.2.1 Relative Efficiency of b1 Estimate  

Percentile αααα=2 αααα=3 αααα=4 αααα=6

0 0.54270 0.58927 0.68249 0.77813

5 0.65542 0.71122 0.73188 0.78955

10 0.66439 0.70402 0.79124 0.87839

15 0.66635 0.70392 0.78614 0.85086

20 0.71589 0.81083 0.78688 0.85473

25 0.76551 0.83148 0.88116 0.87529

30 0.78248 0.84627 0.85298 0.84644

35 0.78779 0.78857 0.89962 0.91787

40 0.81314 0.84504 0.89161 0.91463

45 0.84054 0.84446 0.89355 0.90509

50 0.85582 0.84271 0.84095 0.92123

55 0.88031 0.84978 0.88905 0.92784

60 0.82062 0.86552 0.91112 0.93534

65 0.83566 0.83241 0.89524 0.88994

70 0.78186 0.83756 0.87589 0.91054

75 0.81742 0.87149 0.86940 0.89446

80 0.75068 0.78042 0.85150 0.89345

85 0.72249 0.79706 0.81263 0.87994

90 0.70549 0.74683 0.78704 0.82557

95 0.69613 0.70665 0.74676 0.81500

100 0.50935 0.60454 0.72043 0.77078
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 7.3 Conclusions 

Our studies demonstrated that categorizing a continuous confounding variable impacts 

the estimation of the treatment effect. When the null hypothesis is true, that is, no 

treatment effect exists, the dichotomization of a continuous covariate reduces the relative 

efficiency. The magnitude of influence depends on the distribution of the confounding 

variable and the location of the cutoff point. 

When the distribution of outcome and explanatory variables are available, they can be 

plugged in the ARE equation for calculating ARE. If the ARE cannot be solved 

analytically, the estimated relative efficiency can be calculated numerically or via the 

simulation studies. 
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Chapter 8 

Conclusion and Future Work 

 

8.1 Conclusions 

This dissertation research proposed a linear model approach via weighted linear 

regression for estimating the parameters of a dichotomized covariate from studies with 

inconsistent cutoff points. Because there was no method for estimating the parameters 

from a dichotomized covariate, this type of study is usually excluded from the meta-

analysis, or sometimes inappropriately included. 

This proposed approach can be extended to accommodate categorized covariates from 

studies with different numbers of cutoff points. By using the techniques for handling 

correlated data and the mixed effect model, the estimation can be improved. As a 

consequence, the meta-analysis from using the re-estimated dose-response association 

can be improved. 

We also propose the goodness-of-fit approach to estimate parameters from 

categorized variables included in a meta-analysis. This approach can also be used to 

estimate the proportion of excess zeros when a mixture distribution consists of a 

combination of true zeros and a continuous variable. 

This dissertation also investigated the impact from categorization on the estimation. 

We found that the impact depends on the covariate distribution and on the location and 

number of cutoff points. When categorizing a continuous variable, either it serves as the 

covariate of interest or the confounding variable, a biased association to the outcome 

variable could be estimated. The magnitude of bias depends on the location of the cutoff 
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point as well as the distribution of the covariate. Therefore, researchers should avoid 

categorizing a continuous variable to assess the association with outcome variable if 

possible. 

 

8.2 Future Work 

When the covariate is normally distributed, it is easy to use the linear model approach 

with the mixed effect model. However, the covariate might not be normally distributed, 

or it can be transformed to become normally distributed. The gamma distribution has 

more flexibility to model the covariate. Therefore, the use of the mixed effects model for 

estimating the gamma distribution will be investigated in the future. 

The mixture distribution with excess zeros is common in epidemiology studies. Even 

though it is natural to assume that the mixture distribution comes from two distributions, 

one of which puts point mass at zero, it is still possible that the excess zeros is the 

characteristics of a distribution, such as the Tweedie family. Therefore, the potential 

distributions containing excess zeros will be investigated in the future. 

When we assessed the impact from categorizing a covariate on estimating survival 

time, we only considered the case with no censoring. In order to understand the impact 

from censoring, we will extend the current approach to take censoring into account. 
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 APPENDIX A 
 
Table A.1  Mean Estimate when X ~ Normal (100, 102), n=1,000 in each study 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

2 98.9718 30.5536 99.9972 0.2285 0.0075
3 99.9980 0.6635 100.0087 0.1850 0.2788
4 99.9975 0.2822 99.9934 0.1586 0.5619
5 100.0063 0.2445 99.9996 0.1367 0.5592
6 100.0081 0.1868 100.0072 0.1294 0.6929
7 99.9900 0.1737 99.9924 0.1194 0.6876
8 100.0015 0.1604 100.0018 0.1116 0.6954
9 99.9964 0.1476 99.9982 0.1071 0.7256

10 99.9965 0.1376 99.9973 0.1006 0.7308
11 99.9976 0.1250 100.0001 0.0921 0.7371
12 99.9985 0.1298 100.0019 0.0937 0.7218
13 99.9987 0.1229 100.0004 0.0899 0.7313
14 99.9994 0.1140 99.9974 0.0829 0.7269
15 100.0004 0.1153 99.9995 0.0838 0.7264
16 100.0034 0.1054 100.0018 0.0775 0.7354
17 99.9992 0.1037 99.9997 0.0769 0.7420
18 100.0020 0.1011 100.0011 0.0756 0.7480
19 99.9966 0.0990 99.9954 0.0728 0.7357
20 100.0003 0.0922 99.9972 0.0708 0.7676
21 99.9978 0.0895 99.9978 0.0679 0.7592
22 99.9988 0.0892 100.0025 0.0641 0.7183
23 100.0020 0.0877 99.9995 0.0650 0.7410
24 100.0014 0.0868 100.0011 0.0664 0.7650
25 99.9943 0.0835 99.9963 0.0611 0.7320
26 100.0011 0.0860 100.0002 0.0632 0.7352
27 99.9983 0.0806 100.0004 0.0608 0.7552
28 100.0000 0.0807 100.0000 0.0604 0.7483
29 100.0028 0.0770 100.0019 0.0597 0.7763
30 99.9990 0.0770 100.0003 0.0571 0.7410
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Table A.2  Mean Estimate when X ~ Normal (100, 152), n=1,000 in each study 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

2 100.8516 69.8133 100.0089 0.3325 0.0048
3 100.0144 0.8572 100.0018 0.2757 0.3216
4 100.0215 0.7394 100.0000 0.2381 0.3220
5 100.0148 0.3703 100.0062 0.2126 0.5742
6 100.0269 0.2842 100.0091 0.1942 0.6833
7 100.0028 0.2627 99.9923 0.1817 0.6916
8 100.0078 0.2513 99.9998 0.1730 0.6884
9 99.9938 0.2217 100.0010 0.1626 0.7333

10 99.9987 0.2119 99.9964 0.1518 0.7161
11 99.9993 0.1993 100.0016 0.1481 0.7434
12 100.0066 0.1880 100.0028 0.1357 0.7217
13 99.9984 0.1805 100.0050 0.1369 0.7584
14 100.0031 0.1720 100.0021 0.1273 0.7402
15 100.0001 0.1584 100.0007 0.1194 0.7541
16 100.0021 0.1565 100.0039 0.1169 0.7469
17 100.0025 0.1583 100.0001 0.1185 0.7486
18 99.9964 0.1427 99.9997 0.1089 0.7627
19 100.0035 0.1417 100.0042 0.1069 0.7545
20 100.0003 0.1410 99.9986 0.1061 0.7526
21 99.9991 0.1332 100.0016 0.1007 0.7560
22 99.9960 0.1356 100.0010 0.1020 0.7523
23 99.9880 0.1310 99.9904 0.1006 0.7683
24 99.9940 0.1313 99.9953 0.0939 0.7148
25 99.9991 0.1253 100.0001 0.0957 0.7639
26 99.9987 0.1249 100.0014 0.0891 0.7132
27 100.0006 0.1241 100.0001 0.0922 0.7429
28 99.9998 0.1185 100.0009 0.0906 0.7645
29 100.0006 0.1192 99.9992 0.0917 0.7688
30 99.9962 0.1145 99.9979 0.0879 0.7674
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Table A.3  Standard Deviation Estimate when X ~ Normal (100, 102), n=1,000 in 

each study 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

2 8.1255 78.6075 9.9970 0.1518 0.0019
3 10.0144 1.4126 9.9994 0.1293 0.0915
4 9.9642 0.7831 9.9995 0.1108 0.1415
5 9.9972 0.6052 9.9986 0.1021 0.1687
6 9.9901 0.4735 10.0032 0.0936 0.1977
7 9.9819 0.4164 9.9986 0.0831 0.1996
8 9.9672 0.3849 9.9966 0.0788 0.2046
9 9.9863 0.3506 10.0026 0.0754 0.2149

10 9.9818 0.3202 10.0003 0.0707 0.2208
11 9.9809 0.3063 9.9946 0.0679 0.2216
12 9.9842 0.2922 10.0037 0.0616 0.2107
13 9.9870 0.2719 9.9993 0.0631 0.2321
14 9.9914 0.2516 9.9991 0.0608 0.2417
15 9.9793 0.2512 9.9993 0.0575 0.2288
16 9.9688 0.2460 9.9992 0.0574 0.2333
17 9.9804 0.2362 9.9978 0.0557 0.2357
18 9.9841 0.2379 9.9997 0.0531 0.2234
19 9.9825 0.2256 9.9960 0.0515 0.2284
20 9.9890 0.2132 9.9994 0.0501 0.2349
21 9.9898 0.2070 10.0011 0.0474 0.2289
22 9.9945 0.2004 10.0001 0.0463 0.2312
23 9.9846 0.2076 10.0005 0.0455 0.2192
24 9.9768 0.1950 10.0002 0.0456 0.2337
25 9.9910 0.1876 10.0014 0.0454 0.2420
26 9.9884 0.1944 10.0017 0.0444 0.2283
27 9.9794 0.1785 9.9993 0.0422 0.2366
28 9.9836 0.1826 9.9989 0.0413 0.2261
29 10.0003 0.1730 9.9996 0.0411 0.2378
30 9.9776 0.1707 10.0000 0.0428 0.2509
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Table A.4 Standard Deviation Estimate when X ~ Normal (100, 152), n=1,000 in 

each study 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

2 17.4307 142.9001 14.9867 0.2325 0.0016
3 14.8506 1.9126 15.0028 0.1946 0.1017
4 15.0086 1.4164 15.0040 0.1634 0.1154
5 14.9394 0.9158 15.0035 0.1546 0.1688
6 14.9978 0.7427 14.9996 0.1380 0.1858
7 15.0124 0.5956 15.0087 0.1259 0.2114
8 14.9851 0.5811 15.0013 0.1152 0.1982
9 14.9711 0.5213 15.0007 0.1124 0.2157

10 14.9698 0.4798 14.9965 0.1068 0.2225
11 15.0015 0.4565 14.9967 0.1018 0.2231
12 14.9997 0.4246 15.0030 0.0951 0.2240
13 14.9815 0.4116 15.0019 0.0947 0.2300
14 14.9689 0.4148 15.0001 0.0906 0.2184
15 14.9730 0.3861 15.0022 0.0859 0.2223
16 14.9875 0.3691 15.0026 0.0854 0.2315
17 14.9847 0.3525 15.0025 0.0838 0.2378
18 14.9546 0.3517 14.9985 0.0807 0.2295
19 14.9739 0.3404 14.9950 0.0768 0.2257
20 14.9716 0.3079 14.9976 0.0732 0.2379
21 14.9732 0.3182 15.0014 0.0723 0.2272
22 14.9714 0.3055 15.0014 0.0674 0.2206
23 14.9715 0.3079 14.9962 0.0703 0.2284
24 14.9953 0.2898 14.9952 0.0697 0.2406
25 14.9758 0.2899 14.9998 0.0650 0.2241
26 14.9839 0.2847 15.0017 0.0654 0.2299
27 14.9716 0.2787 15.0009 0.0639 0.2292
28 14.9617 0.2688 15.0004 0.0619 0.2302
29 14.9894 0.2661 15.0006 0.0625 0.2349
30 14.9640 0.2666 14.9979 0.0594 0.2229
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Table A.5  Mean Estimate when X ~ Normal (100, 102), n=100 in each study 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

2 100.2241 28.4943 100.0027 0.7166 0.0251
3 100.0299 1.8829 100.0037 0.5859 0.3111
4 100.0111 0.8911 100.0053 0.4917 0.5517
5 100.0152 1.0398 99.9921 0.4571 0.4396
6 99.9639 0.6474 99.9791 0.4174 0.6447
7 100.0214 0.5675 100.0349 0.3754 0.6616
8 99.9818 0.5013 99.9942 0.3602 0.7187
9 100.0214 0.4519 100.0058 0.3381 0.7482

10 99.9856 0.4416 99.9837 0.3167 0.7171
11 100.0059 0.4114 99.9985 0.3070 0.7464
12 99.9969 0.3910 99.9998 0.2916 0.7458
13 100.0158 0.3811 100.0163 0.2705 0.7097
14 99.9947 0.3658 100.0033 0.2648 0.7240
15 100.0183 0.3512 100.0133 0.2601 0.7405
16 99.9962 0.3356 100.0050 0.2528 0.7533
17 100.0079 0.3251 100.0118 0.2372 0.7297
18 100.0010 0.3239 100.0021 0.2432 0.7508
19 100.0023 0.3120 99.9998 0.2282 0.7313
20 99.9957 0.2984 99.9887 0.2193 0.7348
21 99.9966 0.3039 100.0015 0.2212 0.7281
22 99.9954 0.2823 99.9960 0.2076 0.7352
23 99.9859 0.2784 99.9882 0.2102 0.7552
24 100.0018 0.2758 100.0020 0.2078 0.7535
25 100.0072 0.2616 100.0078 0.1987 0.7594
26 100.0140 0.2682 100.0065 0.1990 0.7420
27 99.9945 0.2600 100.0003 0.1990 0.7654
28 100.0004 0.2472 100.0010 0.1870 0.7565
29 99.9869 0.2499 100.0003 0.1839 0.7359
30 99.9976 0.2469 100.0019 0.1827 0.7397
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 Table A.6 Standard Deviation Estimate when X ~ Normal (100, 102), n=100 in 

each study 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

2 8.2912 49.5094 9.9937 0.4916 0.0099
3 9.7998 4.9195 10.0026 0.3979 0.0809
4 9.7497 2.4439 9.9865 0.3543 0.1450
5 9.9371 2.0127 9.9954 0.3079 0.1530
6 9.8483 1.4624 9.9882 0.2939 0.2010
7 9.9017 1.3747 9.9924 0.2684 0.1953
8 9.8957 1.2322 9.9989 0.2477 0.2010
9 9.8857 1.0832 9.9884 0.2422 0.2236

10 9.8804 1.0736 9.9929 0.2210 0.2058
11 9.9032 0.9504 9.9933 0.2120 0.2231
12 9.9271 0.9205 10.0034 0.2108 0.2290
13 9.9397 0.8876 9.9951 0.1951 0.2198
14 9.9295 0.8142 10.0063 0.1964 0.2412
15 9.8536 0.7700 9.9981 0.1703 0.2212
16 9.8400 0.7812 9.9967 0.1800 0.2303
17 9.8775 0.7415 9.9918 0.1722 0.2323
18 9.9012 0.7576 9.9970 0.1697 0.2240
19 9.8649 0.7359 10.0021 0.1603 0.2179
20 9.9171 0.6962 10.0021 0.1674 0.2404
21 9.8831 0.6633 10.0055 0.1536 0.2315
22 9.9232 0.6497 9.9995 0.1517 0.2335
23 9.8560 0.6191 9.9973 0.1525 0.2464
24 9.8577 0.6401 9.9915 0.1442 0.2253
25 9.8397 0.6304 9.9911 0.1342 0.2130
26 9.8364 0.6291 10.0028 0.1404 0.2232
27 9.8355 0.5796 10.0004 0.1366 0.2356
28 9.8722 0.6107 10.0076 0.1451 0.2376
29 9.8788 0.5375 9.9948 0.1316 0.2449
30 9.8442 0.5525 9.9969 0.1262 0.2284
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Table A.7 Mean Estimate when X ~ Normal (100, 102), n=10,000 in each study 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

2 100.0214 3.5396 100.0035 0.0709 0.0200
3 100.0004 0.1602 100.0002 0.0582 0.3631
4 100.0031 0.0942 100.0020 0.0487 0.5172
5 100.0006 0.0692 100.0007 0.0452 0.6534
6 99.9973 0.0602 99.9973 0.0419 0.6950
7 100.0006 0.0568 100.0012 0.0384 0.6756
8 99.9989 0.0511 100.0011 0.0347 0.6794
9 100.0010 0.0473 99.9995 0.0336 0.7099

10 99.9993 0.0468 99.9994 0.0328 0.7010
11 99.9994 0.0411 100.0003 0.0301 0.7327
12 100.0020 0.0397 100.0003 0.0294 0.7398
13 99.9999 0.0373 100.0007 0.0273 0.7323
14 100.0004 0.0362 100.0002 0.0267 0.7383
15 100.0007 0.0350 100.0007 0.0257 0.7347
16 99.9978 0.0339 99.9987 0.0248 0.7316
17 100.0018 0.0343 100.0011 0.0247 0.7222
18 100.0009 0.0316 100.0006 0.0239 0.7565
19 99.9992 0.0309 99.9994 0.0230 0.7452
20 100.0004 0.0304 100.0001 0.0219 0.7205
21 99.9990 0.0299 99.9993 0.0216 0.7241
22 100.0000 0.0284 99.9996 0.0211 0.7421
23 99.9991 0.0281 99.9993 0.0206 0.7330
24 99.9996 0.0277 99.9993 0.0203 0.7315
25 100.0008 0.0266 100.0007 0.0203 0.7624
26 99.9999 0.0265 99.9998 0.0195 0.7357
27 99.9996 0.0264 100.0002 0.0196 0.7441
28 99.9998 0.0260 99.9999 0.0189 0.7244
29 100.0006 0.0247 100.0010 0.0187 0.7552
30 99.9996 0.0255 99.9995 0.0185 0.7244
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Table A.8 Standard Deviation Estimate when X ~ Normal (100, 102), n=10,000 in 

each study 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

2 9.9783 6.8849 10.0021 0.0505 0.0073
3 10.0052 0.3798 10.0004 0.0410 0.1080
4 9.9963 0.2343 9.9998 0.0350 0.1495
5 9.9995 0.1747 9.9997 0.0320 0.1834
6 10.0023 0.1455 9.9984 0.0285 0.1959
7 9.9983 0.1329 10.0010 0.0267 0.2011
8 9.9969 0.1235 10.0000 0.0246 0.1989
9 9.9926 0.1131 10.0005 0.0235 0.2073

10 10.0076 0.0992 10.0008 0.0223 0.2245
11 9.9960 0.0954 9.9992 0.0212 0.2221
12 10.0044 0.0897 9.9992 0.0205 0.2285
13 9.9958 0.0878 10.0001 0.0191 0.2174
14 10.0023 0.0867 10.0003 0.0183 0.2107
15 9.9946 0.0805 9.9989 0.0183 0.2270
16 9.9987 0.0773 10.0000 0.0180 0.2333
17 9.9988 0.0754 9.9993 0.0171 0.2267
18 9.9961 0.0755 9.9987 0.0169 0.2243
19 9.9969 0.0711 9.9997 0.0152 0.2135
20 9.9978 0.0675 9.9997 0.0168 0.2488
21 10.0008 0.0674 10.0005 0.0150 0.2222
22 9.9996 0.0672 9.9998 0.0149 0.2214
23 9.9961 0.0629 10.0000 0.0144 0.2293
24 10.0011 0.0639 10.0003 0.0143 0.2241
25 9.9962 0.0610 9.9996 0.0138 0.2263
26 9.9979 0.0615 9.9999 0.0137 0.2234
27 10.0016 0.0610 9.9999 0.0134 0.2190
28 9.9964 0.0579 10.0004 0.0137 0.2364
29 10.0013 0.0541 10.0003 0.0135 0.2498
30 10.0005 0.0556 10.0004 0.0131 0.2353
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Table A.9 Mean Estimate when X ~ Normal (100, 152), n=10,000 in each study 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

2 99.7464 3.5852 100.0023 0.1036 0.0289
3 99.9933 0.3013 99.9998 0.0860 0.2856
4 100.0002 0.1511 99.9976 0.0737 0.4873
5 100.0000 0.1102 100.0017 0.0675 0.6128
6 100.0009 0.0963 100.0004 0.0605 0.6282
7 99.9938 0.0830 99.9972 0.0551 0.6641
8 99.9996 0.0740 100.0004 0.0524 0.7076
9 99.9941 0.0691 99.9975 0.0511 0.7397

10 99.9970 0.0659 99.9979 0.0458 0.6947
11 100.0021 0.0596 100.0002 0.0443 0.7437
12 99.9935 0.0595 99.9969 0.0450 0.7567
13 99.9983 0.0563 99.9994 0.0421 0.7470
14 99.9983 0.0540 100.0006 0.0407 0.7532
15 99.9988 0.0529 99.9998 0.0397 0.7514
16 99.9984 0.0501 99.9989 0.0357 0.7127
17 100.0033 0.0463 100.0026 0.0347 0.7481
18 100.0007 0.0478 99.9988 0.0357 0.7463
19 99.9977 0.0453 99.9990 0.0347 0.7653
20 99.9986 0.0461 99.9998 0.0341 0.7391
21 100.0014 0.0427 100.0009 0.0336 0.7863
22 100.0003 0.0409 100.0008 0.0306 0.7482
23 99.9987 0.0418 100.0001 0.0315 0.7537
24 100.0001 0.0404 100.0006 0.0305 0.7558
25 100.0007 0.0408 100.0004 0.0299 0.7330
26 99.9990 0.0412 99.9996 0.0297 0.7212
27 100.0011 0.0388 100.0000 0.0295 0.7602
28 100.0020 0.0382 100.0012 0.0293 0.7676
29 99.9999 0.0378 99.9993 0.0276 0.7290
30 100.0003 0.0363 100.0004 0.0265 0.7282
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Table A.10 Standard Deviation Estimate when X ~ Normal (100, 152), n=10,000 in 

each study 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

2 15.3940 12.6314 14.9999 0.0760 0.0060
3 15.0026 0.7221 15.0010 0.0613 0.0849
4 14.9893 0.3600 15.0016 0.0521 0.1446
5 15.0032 0.2630 14.9977 0.0472 0.1794
6 15.0042 0.2253 14.9989 0.0443 0.1967
7 14.9836 0.1950 15.0012 0.0380 0.1950
8 14.9942 0.1777 14.9971 0.0387 0.2176
9 14.9948 0.1637 15.0002 0.0353 0.2157

10 14.9952 0.1570 15.0003 0.0349 0.2226
11 15.0004 0.1467 15.0022 0.0317 0.2157
12 14.9978 0.1388 14.9993 0.0305 0.2199
13 14.9935 0.1287 15.0003 0.0299 0.2324
14 14.9970 0.1231 15.0001 0.0276 0.2240
15 15.0000 0.1214 15.0003 0.0272 0.2238
16 15.0029 0.1179 15.0004 0.0256 0.2174
17 14.9996 0.1127 15.0011 0.0260 0.2305
18 15.0008 0.1136 15.0009 0.0252 0.2215
19 14.9956 0.1045 15.0000 0.0243 0.2329
20 15.0042 0.1013 15.0006 0.0231 0.2283
21 14.9990 0.1002 14.9996 0.0225 0.2245
22 15.0018 0.0976 15.0002 0.0228 0.2339
23 15.0002 0.0969 15.0011 0.0223 0.2301
24 14.9982 0.0918 15.0015 0.0218 0.2376
25 15.0005 0.0936 15.0009 0.0214 0.2290
26 14.9977 0.0904 15.0002 0.0202 0.2240
27 14.9922 0.0851 14.9996 0.0205 0.2411
28 15.0016 0.0861 14.9999 0.0200 0.2321
29 14.9946 0.0856 15.0004 0.0198 0.2315
30 14.9997 0.0833 14.9994 0.0187 0.2250
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Table A.11 Mean Estimate when X ~ Normal (100, 152), n=1,000 in each study, 

range of cutoff points (35%, 65%) 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

2 99.1300 23.3524 99.9958 0.3427 0.0147
3 100.0118 1.1344 100.0130 0.2775 0.2446
4 99.9936 0.4087 99.9901 0.2379 0.5820
5 100.0011 0.3583 99.9995 0.2051 0.5724
6 100.0152 0.2742 100.0108 0.1941 0.7081
7 99.9898 0.2472 99.9886 0.1791 0.7245
8 100.0018 0.2305 100.0028 0.1673 0.7260
9 99.9928 0.2167 99.9974 0.1606 0.7413

10 99.9985 0.2046 99.9959 0.1508 0.7373
11 99.9970 0.1832 100.0002 0.1382 0.7542
12 99.9967 0.1901 100.0028 0.1406 0.7393
13 99.9976 0.1755 100.0006 0.1349 0.7683
14 99.9998 0.1681 99.9961 0.1243 0.7396
15 99.9987 0.1664 99.9993 0.1256 0.7548
16 100.0047 0.1508 100.0027 0.1162 0.7709
17 99.9993 0.1548 99.9995 0.1154 0.7454
18 100.0005 0.1497 100.0017 0.1134 0.7576
19 99.9932 0.1419 99.9931 0.1092 0.7697
20 100.0038 0.1312 99.9959 0.1062 0.8090
21 100.0013 0.1334 99.9967 0.1019 0.7641
22 99.9995 0.1293 100.0037 0.0962 0.7438
23 100.0016 0.1274 99.9992 0.0975 0.7651
24 100.0028 0.1281 100.0017 0.0996 0.7778
25 99.9906 0.1174 99.9945 0.0916 0.7808
26 99.9968 0.1259 100.0003 0.0949 0.7532
27 99.9983 0.1166 100.0006 0.0913 0.7829
28 100.0021 0.1150 100.0000 0.0906 0.7877
29 100.0040 0.1126 100.0029 0.0896 0.7956
30 99.9988 0.1136 100.0005 0.0856 0.7536
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Table A.12 Standard Deviation Estimate when X ~ Normal (100, 152), n=1,000 in 

each study, range of cutoff points (35%, 65%) 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

2 13.6639 132.4090 14.9955 0.2277 0.0017
3 15.0308 4.8479 14.9992 0.1939 0.0400
4 14.8997 2.2767 14.9993 0.1662 0.0730
5 14.9895 1.7913 14.9978 0.1531 0.0855
6 14.9714 1.3750 15.0047 0.1404 0.1021
7 14.9491 1.2502 14.9979 0.1247 0.0998
8 14.9469 1.1642 14.9949 0.1181 0.1015
9 14.9876 1.0556 15.0039 0.1130 0.1071

10 14.9945 0.9872 15.0004 0.1060 0.1074
11 14.9696 0.9054 14.9919 0.1018 0.1124
12 14.9506 0.9057 15.0055 0.0924 0.1020
13 14.9660 0.7941 14.9989 0.0946 0.1192
14 14.9903 0.7521 14.9987 0.0912 0.1213
15 14.9670 0.7648 14.9990 0.0862 0.1127
16 14.9556 0.7240 14.9987 0.0861 0.1189
17 14.9677 0.6794 14.9967 0.0835 0.1229
18 14.9719 0.7052 14.9995 0.0797 0.1130
19 14.9755 0.6789 14.9941 0.0773 0.1138
20 14.9705 0.6249 14.9991 0.0751 0.1202
21 14.9601 0.6046 15.0016 0.0710 0.1175
22 14.9919 0.6151 15.0002 0.0695 0.1130
23 14.9732 0.6093 15.0007 0.0683 0.1120
24 14.9443 0.6014 15.0003 0.0684 0.1137
25 15.0005 0.5644 15.0020 0.0681 0.1207
26 14.9785 0.5648 15.0025 0.0666 0.1179
27 14.9503 0.5326 14.9990 0.0634 0.1190
28 14.9902 0.5481 14.9983 0.0619 0.1129
29 15.0022 0.5185 14.9995 0.0617 0.1190
30 14.9687 0.5097 15.0001 0.0642 0.1260
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Table A.13 Mean Estimate when X ~ Normal (100, 152), n=10,000 in each study, 

range of cutoff points (35%, 65%) 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

2 100.1221 7.3368 100.0053 0.1063 0.0145
3 100.0000 0.2479 100.0003 0.0873 0.3521
4 100.0071 0.1737 100.0030 0.0731 0.4208
5 100.0022 0.1022 100.0010 0.0679 0.6641
6 99.9957 0.0906 99.9960 0.0628 0.6930
7 100.0010 0.0827 100.0017 0.0575 0.6960
8 99.9980 0.0761 100.0016 0.0521 0.6845
9 100.0015 0.0691 99.9993 0.0504 0.7295

10 99.9987 0.0649 99.9991 0.0492 0.7592
11 99.9987 0.0610 100.0005 0.0452 0.7408
12 100.0011 0.0592 100.0005 0.0441 0.7449
13 100.0003 0.0557 100.0010 0.0410 0.7369
14 100.0021 0.0542 100.0003 0.0401 0.7397
15 99.9992 0.0500 100.0011 0.0385 0.7702
16 99.9959 0.0486 99.9980 0.0372 0.7661
17 100.0030 0.0471 100.0017 0.0371 0.7876
18 100.0010 0.0462 100.0009 0.0358 0.7753
19 99.9988 0.0455 99.9991 0.0346 0.7594
20 99.9991 0.0434 100.0002 0.0328 0.7559
21 99.9987 0.0429 99.9990 0.0324 0.7566
22 99.9999 0.0421 99.9994 0.0317 0.7517
23 99.9981 0.0400 99.9990 0.0308 0.7704
24 100.0001 0.0398 99.9990 0.0304 0.7645
25 100.0013 0.0384 100.0011 0.0305 0.7922
26 99.9989 0.0372 99.9997 0.0292 0.7858
27 100.0003 0.0379 100.0003 0.0294 0.7767
28 100.0007 0.0367 99.9999 0.0283 0.7711
29 100.0012 0.0357 100.0015 0.0280 0.7852
30 99.9992 0.0353 99.9993 0.0277 0.7866
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Table A.14 Standard Deviation Estimate when X ~ Normal (100, 152), n=10,000 in 

each study, range of cutoff points (35%, 65%) 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

2 15.08039 27.25224 15.00313 0.075679 0.002777
3 15.05245 1.225707 15.00058 0.061537 0.050205
4 15.00094 0.7943 14.99968 0.052554 0.066164
5 14.99005 0.543391 14.99953 0.04807 0.088462
6 15.00029 0.433492 14.99766 0.042754 0.098626
7 15.01692 0.403515 15.00147 0.040088 0.099347
8 15.00442 0.37633 15.00006 0.036846 0.09791
9 14.97574 0.337763 15.00077 0.035185 0.10417

10 15.01372 0.298008 15.00124 0.0334 0.112077
11 14.98485 0.286037 14.99879 0.031765 0.111051
12 15.01185 0.26228 14.9988 0.030751 0.117244
13 14.98813 0.25909 15.00022 0.028636 0.110527
14 15.00499 0.253839 15.00051 0.02739 0.107904
15 14.99594 0.231362 14.9984 0.027421 0.118521
16 14.99729 0.223948 15.00003 0.027059 0.120829
17 14.99448 0.224679 14.99896 0.025629 0.11407
18 14.99232 0.224367 14.99803 0.025417 0.113281
19 14.99345 0.209682 14.99952 0.022757 0.10853
20 14.99555 0.198599 14.99959 0.025187 0.126826
21 14.99815 0.199238 15.00081 0.022464 0.112748
22 15.00164 0.197478 14.99977 0.02232 0.113028
23 14.99821 0.189961 14.99993 0.021639 0.113911
24 14.99924 0.187404 15.00042 0.021494 0.114691
25 14.99593 0.178632 14.9994 0.020695 0.115852
26 14.99373 0.182879 14.99985 0.020607 0.112682
27 14.9968 0.179617 14.99983 0.020048 0.111613
28 14.99128 0.168198 15.00053 0.02053 0.122058
29 15.0009 0.163529 15.00048 0.020262 0.123903
30 15.00214 0.165736 15.00053 0.019641 0.118507
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Table A.15 Mean Estimates from median-cutoff point and mean-cutoff point 

when X ~ Normal (100, 102), n=10,000 in each study 

Mean Estimate from Median-
Cutoff point 

Mean Estimate from Mean-
Cutoff point Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

2 99.9980 0.0888 100.0008 0.0705 0.6304
3 100.0022 0.0734 100.0030 0.0583 0.6294
4 99.9990 0.0639 99.9980 0.0502 0.6188
5 100.0021 0.0599 100.0023 0.0470 0.6165
6 100.0000 0.0527 99.9980 0.0411 0.6077
7 100.0006 0.0477 99.9991 0.0377 0.6261
8 100.0002 0.0438 100.0003 0.0346 0.6251
9 100.0018 0.0414 100.0016 0.0336 0.6591

10 100.0001 0.0404 99.9994 0.0326 0.6485
11 99.9988 0.0375 99.9990 0.0297 0.6280
12 100.0011 0.0360 100.0006 0.0298 0.6838
13 99.9986 0.0344 99.9997 0.0277 0.6472
14 99.9983 0.0336 99.9976 0.0270 0.6458
15 99.9991 0.0316 99.9997 0.0257 0.6630
16 100.0005 0.0316 99.9990 0.0253 0.6395
17 99.9998 0.0303 99.9995 0.0242 0.6394
18 99.9988 0.0312 99.9990 0.0243 0.6063
19 100.0006 0.0278 100.0012 0.0226 0.6594
20 99.9996 0.0282 100.0000 0.0222 0.6178
21 99.9986 0.0278 99.9990 0.0225 0.6545
22 99.9998 0.0265 99.9995 0.0209 0.6226
23 99.9992 0.0260 99.9998 0.0204 0.6164
24 99.9995 0.0261 99.9999 0.0204 0.6080
25 100.0007 0.0264 100.0008 0.0204 0.5954
26 99.9997 0.0245 99.9996 0.0195 0.6349
27 100.0000 0.0240 100.0002 0.0190 0.6277
28 100.0003 0.0236 99.9999 0.0186 0.6230
29 99.9996 0.0236 100.0007 0.0187 0.6317
30 99.9991 0.0226 99.9991 0.0187 0.6875
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Table A.16 Standard Deviation Estimate s from median-cutoff point and mean-

cutoff point when X ~ Normal (100, 102), n=10,000 in each study 

Standard Deviation Estimate 
from Median-Cutoff Point 

Standard Deviation Estimate 
from Mean-Cutoff Point 

Number 
of 
Study Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

2 10.1353 7.5867 8.1254 6.1909 0.6659
3 11.4406 5.8694 9.0714 4.6219 0.6201
4 11.7084 4.8933 9.2707 3.9591 0.6546
5 11.9174 4.4343 9.4320 3.4471 0.6043
6 11.8999 3.8750 9.4840 3.0415 0.6161
7 12.2227 3.5069 9.5669 2.7796 0.6282
8 12.0349 3.2674 9.6560 2.6247 0.6453
9 12.0136 3.0376 9.5153 2.4264 0.6381

10 12.1475 2.9243 9.7529 2.2023 0.5671
11 12.2114 2.7932 9.7078 2.1755 0.6066
12 12.1568 2.6645 9.7489 2.0814 0.6102
13 12.2300 2.4663 9.7569 1.9460 0.6226
14 12.2785 2.4559 9.7504 1.9018 0.5997
15 12.2898 2.4329 9.8590 1.8727 0.5925
16 12.3290 2.2825 9.8666 1.7214 0.5688
17 12.5282 2.2504 10.0135 1.7613 0.6126
18 12.4027 2.1509 9.9356 1.7213 0.6404
19 12.3656 2.1537 9.9180 1.6994 0.6226
20 12.2455 2.0101 9.7688 1.5843 0.6212
21 12.4630 1.9095 9.9222 1.5362 0.6472
22 12.3586 1.8608 9.8501 1.5133 0.6614
23 12.5015 1.8415 9.9646 1.4939 0.6581
24 12.4192 1.9138 9.8462 1.4884 0.6049
25 12.4619 1.7909 9.9119 1.3748 0.5892
26 12.4091 1.7004 9.9154 1.3498 0.6301
27 12.3594 1.7053 9.8508 1.4029 0.6768
28 12.4276 1.7362 9.9106 1.3602 0.6138
29 12.4414 1.6779 9.9552 1.2925 0.5934
30 12.4135 1.7057 9.9128 1.3048 0.5852
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Table A.17 Mean Estimate when X ~ Normal (100, 102), n=1,000 in each study 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Group Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

3 100.0114 0.3474 100.0107 0.3259 0.8800
4 99.9864 0.3391 99.9849 0.3155 0.8657
5 100.0164 0.3372 100.0128 0.3186 0.8928
6 99.9809 0.3232 99.9835 0.3008 0.8660
7 100.0016 0.3294 99.9974 0.3145 0.9118
8 99.9916 0.3391 99.9867 0.3144 0.8597
9 99.9997 0.3317 99.9997 0.3086 0.8655

10 100.0177 0.3395 100.0120 0.3155 0.8636
11 99.9950 0.3482 100.0030 0.3265 0.8795
12 99.9922 0.3252 99.9972 0.3002 0.8521
13 100.0022 0.3413 100.0072 0.3216 0.8878
14 100.0122 0.3353 100.0178 0.3118 0.8649
15 100.0028 0.3437 100.0009 0.3281 0.9111
16 99.9937 0.3609 99.9964 0.3381 0.8775
17 100.0061 0.3531 100.0094 0.3265 0.8547
18 99.9993 0.3243 99.9968 0.3055 0.8874
19 99.9934 0.3382 99.9954 0.3143 0.8634
20 100.0014 0.3544 100.0046 0.3288 0.8604
21 100.0095 0.3420 100.0096 0.3189 0.8692
22 100.0082 0.3271 100.0092 0.2983 0.8315
23 99.9904 0.3515 99.9955 0.3231 0.8450
24 99.9918 0.3318 99.9901 0.3109 0.8777
25 99.9997 0.3413 99.9993 0.3196 0.8771
26 100.0124 0.3295 100.0087 0.3087 0.8781
27 100.0040 0.3534 100.0000 0.3303 0.8737
28 99.9833 0.3353 99.9903 0.3162 0.8896
29 99.9887 0.3507 99.9830 0.3274 0.8713
30 100.0062 0.3398 100.0082 0.3101 0.8324
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Table A.18 Mean Estimate when X ~ Normal (100, 102), n=10,000 in each study 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Group Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

3 99.9992 0.1106 99.9988 0.1025 0.8586
4 100.0040 0.1052 100.0047 0.0984 0.8749
5 99.9997 0.1125 99.9968 0.1033 0.8426
6 100.0029 0.1090 100.0027 0.1042 0.9135
7 100.0021 0.1087 100.0023 0.1018 0.8774
8 100.0035 0.1066 100.0042 0.0985 0.8546
9 99.9983 0.1073 99.9977 0.1011 0.8863

10 99.9972 0.1093 99.9967 0.1020 0.8707
11 99.9976 0.1090 100.0008 0.1002 0.8450
12 99.9967 0.1043 99.9968 0.0997 0.9139
13 100.0018 0.1109 100.0023 0.1022 0.8489
14 100.0039 0.1060 100.0018 0.1006 0.9010
15 100.0009 0.1076 100.0018 0.1010 0.8809
16 100.0058 0.1108 100.0056 0.1029 0.8626
17 100.0006 0.1082 99.9999 0.1002 0.8576
18 99.9985 0.1076 100.0005 0.0992 0.8510
19 99.9989 0.1059 99.9981 0.0982 0.8604
20 99.9967 0.1017 99.9950 0.0948 0.8694
21 99.9962 0.1109 99.9953 0.1042 0.8825
22 99.9943 0.1069 99.9966 0.0998 0.8731
23 100.0011 0.1095 100.0025 0.1020 0.8688
24 99.9948 0.1014 99.9945 0.0958 0.8916
25 99.9967 0.1069 99.9974 0.1010 0.8917
26 99.9966 0.1044 99.9978 0.0978 0.8776
27 100.0074 0.1074 100.0059 0.0998 0.8646
28 99.9990 0.1087 100.0010 0.1030 0.8975
29 99.9937 0.1095 99.9940 0.1016 0.8619
30 100.0042 0.1030 100.0032 0.0981 0.9077
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Table A.19 Mean Estimate when X ~ Normal (100, 152), n=1,000 in each study 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Group Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

3 100.0171 0.5211 100.0160 0.4888 0.8800
4 99.9796 0.5087 99.9774 0.4733 0.8657
5 100.0245 0.5057 100.0192 0.4779 0.8928
6 99.9714 0.4848 99.9753 0.4511 0.8660
7 100.0024 0.4941 99.9961 0.4718 0.9118
8 99.9874 0.5086 99.9800 0.4716 0.8597
9 99.9996 0.4975 99.9995 0.4628 0.8655

10 100.0266 0.5093 100.0180 0.4733 0.8636
11 99.9925 0.5222 100.0045 0.4898 0.8795
12 99.9883 0.4878 99.9958 0.4503 0.8521
13 100.0032 0.5120 100.0109 0.4824 0.8878
14 100.0183 0.5029 100.0267 0.4677 0.8649
15 100.0042 0.5156 100.0014 0.4921 0.9111
16 99.9906 0.5414 99.9946 0.5072 0.8775
17 100.0092 0.5297 100.0140 0.4897 0.8547
18 99.9990 0.4864 99.9952 0.4582 0.8874
19 99.9901 0.5073 99.9931 0.4714 0.8634
20 100.0022 0.5317 100.0069 0.4932 0.8604
21 100.0142 0.5130 100.0143 0.4783 0.8692
22 100.0123 0.4907 100.0138 0.4475 0.8315
23 99.9855 0.5272 99.9933 0.4846 0.8450
24 99.9877 0.4978 99.9852 0.4663 0.8777
25 99.9995 0.5119 99.9989 0.4794 0.8771
26 100.0186 0.4942 100.0130 0.4631 0.8781
27 100.0060 0.5301 100.0000 0.4955 0.8737
28 99.9750 0.5029 99.9854 0.4743 0.8896
29 99.9830 0.5261 99.9745 0.4911 0.8713
30 100.0093 0.5097 100.0122 0.4651 0.8324
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Table A.20 Mean Estimate when X ~ Normal (100, 152), n=10,000 in each study 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Group Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

3 99.9987 0.1659 99.9982 0.1537 0.8586
4 100.0060 0.1578 100.0071 0.1476 0.8749
5 99.9996 0.1687 99.9953 0.1549 0.8426
6 100.0043 0.1636 100.0041 0.1563 0.9135
7 100.0031 0.1630 100.0034 0.1527 0.8774
8 100.0053 0.1599 100.0062 0.1478 0.8546
9 99.9975 0.1610 99.9965 0.1516 0.8863

10 99.9957 0.1640 99.9951 0.1530 0.8707
11 99.9964 0.1635 100.0012 0.1503 0.8450
12 99.9950 0.1564 99.9953 0.1496 0.9139
13 100.0027 0.1664 100.0035 0.1533 0.8489
14 100.0058 0.1590 100.0027 0.1509 0.9010
15 100.0014 0.1614 100.0027 0.1515 0.8809
16 100.0087 0.1662 100.0084 0.1544 0.8626
17 100.0008 0.1623 99.9998 0.1503 0.8576
18 99.9978 0.1614 100.0007 0.1489 0.8510
19 99.9984 0.1589 99.9972 0.1474 0.8604
20 99.9950 0.1525 99.9925 0.1422 0.8694
21 99.9943 0.1663 99.9930 0.1563 0.8825
22 99.9915 0.1603 99.9949 0.1498 0.8731
23 100.0016 0.1642 100.0037 0.1531 0.8688
24 99.9922 0.1521 99.9917 0.1436 0.8916
25 99.9950 0.1604 99.9961 0.1514 0.8917
26 99.9949 0.1566 99.9967 0.1467 0.8776
27 100.0110 0.1611 100.0089 0.1498 0.8646
28 99.9985 0.1630 100.0014 0.1544 0.8975
29 99.9906 0.1642 99.9909 0.1524 0.8619
30 100.0063 0.1544 100.0048 0.1471 0.9077
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Table A.21 Standard Deviation Estimate when X ~ Normal (100, 102), n=1,000 in 

each study 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Group Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

3 9.9717 0.2357 10.0016 0.2178 0.8545
4 9.9610 0.2406 9.9871 0.2221 0.8525
5 9.9645 0.2399 9.9913 0.2172 0.8198
6 9.9754 0.2300 10.0037 0.2117 0.8470
7 9.9700 0.2508 9.9965 0.2311 0.8486
8 9.9651 0.2439 9.9920 0.2219 0.8280
9 9.9591 0.2395 9.9908 0.2210 0.8515

10 9.9738 0.2414 10.0007 0.2190 0.8230
11 9.9763 0.2466 10.0078 0.2281 0.8550
12 9.9865 0.2379 10.0118 0.2239 0.8856
13 9.9714 0.2404 9.9987 0.2151 0.8006
14 9.9764 0.2454 10.0071 0.2242 0.8346
15 9.9755 0.2405 10.0021 0.2244 0.8700
16 9.9616 0.2387 9.9889 0.2230 0.8732
17 9.9682 0.2563 9.9925 0.2333 0.8284
18 9.9590 0.2437 9.9856 0.2264 0.8631
19 9.9757 0.2368 10.0045 0.2162 0.8336
20 9.9670 0.2471 9.9961 0.2296 0.8634
21 9.9678 0.2411 9.9960 0.2214 0.8436
22 9.9702 0.2494 9.9954 0.2278 0.8342
23 9.9606 0.2461 9.9848 0.2251 0.8366
24 9.9726 0.2444 10.0056 0.2254 0.8505
25 9.9629 0.2521 9.9943 0.2353 0.8715
26 9.9834 0.2423 10.0078 0.2231 0.8479
27 9.9594 0.2318 9.9895 0.2104 0.8235
28 9.9596 0.2575 9.9853 0.2360 0.8398
29 9.9769 0.2452 10.0056 0.2230 0.8274
30 9.9748 0.2455 10.0059 0.2254 0.8431
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Table A.22 Standard Deviation Estimate when X ~ Normal (100, 102), n=10,000 in 

each study 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Group Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

3 9.9984 0.0750 10.0005 0.0690 0.8465
4 9.9974 0.0777 9.9991 0.0712 0.8401
5 9.9981 0.0769 10.0004 0.0683 0.7889
6 10.0012 0.0744 10.0040 0.0681 0.8379
7 9.9975 0.0790 10.0002 0.0712 0.8121
8 9.9957 0.0768 9.9974 0.0714 0.8636
9 9.9963 0.0768 10.0000 0.0684 0.7917

10 10.0014 0.0800 10.0033 0.0729 0.8287
11 10.0010 0.0763 10.0030 0.0705 0.8555
12 9.9993 0.0775 9.9987 0.0702 0.8216
13 10.0015 0.0797 10.0043 0.0716 0.8065
14 9.9954 0.0782 9.9998 0.0697 0.7932
15 9.9974 0.0793 9.9987 0.0717 0.8167
16 9.9958 0.0785 9.9990 0.0711 0.8206
17 9.9990 0.0810 10.0014 0.0732 0.8158
18 9.9926 0.0775 9.9966 0.0718 0.8575
19 9.9939 0.0786 9.9959 0.0725 0.8514
20 9.9947 0.0765 9.9960 0.0683 0.7973
21 9.9931 0.0766 9.9953 0.0701 0.8377
22 9.9948 0.0787 9.9989 0.0700 0.7904
23 9.9975 0.0773 9.9996 0.0689 0.7963
24 9.9899 0.0785 9.9934 0.0723 0.8485
25 9.9974 0.0796 9.9986 0.0720 0.8189
26 9.9965 0.0760 9.9979 0.0684 0.8104
27 9.9987 0.0782 10.0000 0.0696 0.7937
28 9.9983 0.0795 10.0012 0.0721 0.8216
29 9.9992 0.0802 10.0027 0.0723 0.8141
30 9.9972 0.0793 9.9991 0.0719 0.8215
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Table A.23 Standard Deviation Estimate when X ~ Normal (100, 152), n=1,000 in 

each study 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Group Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

3 14.9575 0.3535 15.0024 0.3268 0.8545
4 14.9416 0.3608 14.9807 0.3332 0.8525
5 14.9468 0.3598 14.9870 0.3258 0.8198
6 14.9631 0.3450 15.0056 0.3175 0.8470
7 14.9551 0.3763 14.9947 0.3466 0.8486
8 14.9476 0.3659 14.9880 0.3329 0.8280
9 14.9386 0.3593 14.9861 0.3315 0.8515

10 14.9607 0.3621 15.0010 0.3285 0.8230
11 14.9645 0.3700 15.0117 0.3421 0.8550
12 14.9797 0.3569 15.0177 0.3358 0.8856
13 14.9571 0.3606 14.9981 0.3226 0.8006
14 14.9646 0.3681 15.0106 0.3363 0.8346
15 14.9632 0.3608 15.0031 0.3365 0.8700
16 14.9424 0.3580 14.9833 0.3346 0.8732
17 14.9523 0.3845 14.9888 0.3500 0.8284
18 14.9385 0.3655 14.9784 0.3396 0.8631
19 14.9636 0.3552 15.0067 0.3243 0.8336
20 14.9505 0.3706 14.9942 0.3444 0.8634
21 14.9518 0.3616 14.9940 0.3321 0.8436
22 14.9553 0.3741 14.9930 0.3417 0.8342
23 14.9409 0.3691 14.9773 0.3376 0.8366
24 14.9589 0.3666 15.0084 0.3381 0.8505
25 14.9443 0.3782 14.9915 0.3530 0.8715
26 14.9751 0.3634 15.0117 0.3346 0.8479
27 14.9391 0.3477 14.9842 0.3156 0.8235
28 14.9393 0.3862 14.9779 0.3540 0.8398
29 14.9654 0.3678 15.0084 0.3345 0.8274
30 14.9621 0.3682 15.0088 0.3381 0.8431
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Table A.24 Standard Deviation Estimate when X ~ Normal (100, 152), n=10,000 in 

each study 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Group Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

3 14.9976 0.1124 15.0007 0.1034 0.8465
4 14.9961 0.1166 14.9986 0.1069 0.8401
5 14.9972 0.1154 15.0006 0.1025 0.7889
6 15.0018 0.1116 15.0060 0.1022 0.8379
7 14.9963 0.1185 15.0003 0.1068 0.8121
8 14.9936 0.1152 14.9960 0.1071 0.8636
9 14.9945 0.1152 15.0000 0.1025 0.7917

10 15.0021 0.1201 15.0049 0.1093 0.8287
11 15.0016 0.1144 15.0045 0.1058 0.8555
12 14.9989 0.1162 14.9980 0.1053 0.8216
13 15.0023 0.1195 15.0064 0.1073 0.8065
14 14.9931 0.1173 14.9997 0.1045 0.7932
15 14.9962 0.1190 14.9980 0.1076 0.8167
16 14.9937 0.1177 14.9985 0.1066 0.8206
17 14.9985 0.1215 15.0022 0.1098 0.8158
18 14.9890 0.1162 14.9950 0.1076 0.8575
19 14.9909 0.1179 14.9939 0.1088 0.8514
20 14.9921 0.1147 14.9941 0.1024 0.7973
21 14.9897 0.1149 14.9929 0.1051 0.8377
22 14.9923 0.1180 14.9984 0.1049 0.7904
23 14.9962 0.1159 14.9994 0.1034 0.7963
24 14.9848 0.1177 14.9901 0.1085 0.8485
25 14.9961 0.1193 14.9980 0.1080 0.8189
26 14.9947 0.1140 14.9968 0.1027 0.8104
27 14.9980 0.1173 15.0000 0.1045 0.7937
28 14.9975 0.1193 15.0017 0.1081 0.8216
29 14.9989 0.1203 15.0040 0.1085 0.8141
30 14.9958 0.1189 14.9986 0.1078 0.8215
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Table A.25 Mean Estimate when X ~ Normal (100, 102), n=1,000 and 3 groups in 

each study 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

2 99.9937 0.2614 99.9978 0.2312 0.8846
3 100.0008 0.2154 99.9979 0.1869 0.8676
4 99.9992 0.1796 100.0003 0.1595 0.8879
5 100.0070 0.1570 100.0039 0.1420 0.9045
6 100.0053 0.1460 100.0041 0.1303 0.8922
7 99.9931 0.1334 99.9953 0.1194 0.8951
8 100.0017 0.1226 100.0032 0.1089 0.8881
9 99.9992 0.1225 100.0019 0.1080 0.8816

10 99.9994 0.1109 100.0015 0.1003 0.9045
11 100.0000 0.1064 100.0008 0.0956 0.8980
12 99.9982 0.1098 99.9990 0.0947 0.8626
13 100.0000 0.0994 99.9992 0.0891 0.8956
14 99.9982 0.0986 99.9972 0.0873 0.8859
15 100.0002 0.0923 100.0027 0.0818 0.8864
16 100.0023 0.0877 100.0028 0.0792 0.9025
17 100.0001 0.0848 100.0021 0.0770 0.9078
18 100.0005 0.0840 99.9992 0.0724 0.8628
19 99.9944 0.0810 99.9957 0.0729 0.9003
20 99.9982 0.0810 99.9982 0.0734 0.9053
21 99.9961 0.0765 99.9967 0.0690 0.9018
22 100.0028 0.0765 100.0020 0.0679 0.8873
23 99.9999 0.0749 99.9992 0.0660 0.8811
24 99.9988 0.0709 99.9981 0.0636 0.8972
25 100.0017 0.0700 100.0024 0.0635 0.9075
26 99.9972 0.0676 99.9988 0.0614 0.9082
27 100.0023 0.0680 100.0025 0.0597 0.8772
28 99.9996 0.0654 99.9996 0.0580 0.8876
29 100.0008 0.0658 100.0018 0.0574 0.8725
30 100.0015 0.0672 100.0016 0.0584 0.8685
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Table A.26 Standard Deviation Estimate when X ~ Normal (100, 102), n=1,000 

and 3 groups in each study 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Group Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

2 9.9912 0.3282 9.9956 0.1510 0.4600
3 9.9799 0.2706 9.9986 0.1250 0.4620
4 9.9889 0.2390 9.9996 0.1152 0.4821
5 9.9799 0.2155 10.0038 0.1017 0.4721
6 9.9805 0.1956 9.9971 0.0903 0.4615
7 9.9858 0.1688 9.9984 0.0826 0.4892
8 9.9863 0.1679 10.0017 0.0761 0.4529
9 9.9905 0.1577 10.0044 0.0728 0.4620

10 9.9863 0.1582 9.9989 0.0716 0.4528
11 9.9904 0.1445 9.9987 0.0668 0.4624
12 9.9867 0.1427 10.0027 0.0649 0.4547
13 9.9884 0.1320 10.0025 0.0618 0.4682
14 9.9952 0.1246 10.0001 0.0600 0.4812
15 9.9876 0.1251 10.0017 0.0572 0.4570
16 9.9837 0.1185 9.9986 0.0558 0.4707
17 9.9917 0.1141 10.0008 0.0545 0.4780
18 9.9786 0.1153 9.9963 0.0525 0.4558
19 9.9843 0.1084 9.9957 0.0498 0.4597
20 9.9877 0.1088 9.9993 0.0485 0.4463
21 9.9883 0.1059 9.9962 0.0494 0.4668
22 9.9845 0.1011 9.9988 0.0481 0.4755
23 9.9880 0.1034 10.0017 0.0467 0.4516
24 9.9843 0.1005 9.9979 0.0458 0.4552
25 9.9918 0.0948 10.0018 0.0453 0.4779
26 9.9925 0.0915 10.0046 0.0441 0.4816
27 9.9814 0.0956 9.9995 0.0460 0.4814
28 9.9875 0.0876 10.0012 0.0431 0.4915
29 9.9854 0.0861 9.9998 0.0422 0.4906
30 9.9874 0.0843 9.9994 0.0393 0.4658
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Table A.27 Mean Estimate when X ~ Normal (100, 102), n=10,000 and 3 groups in 

each study 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

2 100.0023 0.0789 100.0018 0.0696 0.8821
3 99.9983 0.0672 100.0006 0.0586 0.8718
4 99.9994 0.0577 99.9998 0.0502 0.8696
5 100.0013 0.0521 100.0017 0.0464 0.8910
6 99.9977 0.0452 99.9976 0.0408 0.9029
7 99.9995 0.0428 99.9990 0.0380 0.8882
8 99.9998 0.0381 100.0003 0.0345 0.9063
9 100.0013 0.0379 100.0016 0.0338 0.8902

10 99.9988 0.0360 99.9996 0.0325 0.9021
11 99.9996 0.0347 99.9994 0.0306 0.8835
12 100.0001 0.0327 100.0002 0.0297 0.9070
13 100.0000 0.0312 99.9999 0.0277 0.8863
14 99.9976 0.0302 99.9980 0.0268 0.8875
15 99.9988 0.0297 99.9993 0.0264 0.8884
16 99.9998 0.0281 99.9991 0.0252 0.8981
17 99.9995 0.0275 99.9992 0.0245 0.8911
18 100.0000 0.0273 99.9996 0.0245 0.8962
19 100.0007 0.0258 100.0009 0.0229 0.8903
20 99.9996 0.0253 100.0000 0.0220 0.8706
21 99.9999 0.0248 99.9992 0.0221 0.8928
22 99.9994 0.0236 99.9994 0.0208 0.8818
23 99.9996 0.0233 99.9997 0.0204 0.8737
24 100.0001 0.0219 100.0000 0.0197 0.8997
25 100.0007 0.0229 100.0008 0.0205 0.8940
26 99.9993 0.0223 99.9996 0.0197 0.8836
27 100.0005 0.0211 100.0001 0.0191 0.9010
28 100.0007 0.0214 100.0000 0.0181 0.8476
29 100.0009 0.0215 100.0004 0.0193 0.8966
30 99.9991 0.0210 99.9993 0.0186 0.8865
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Table A.28 Standard Deviation Estimate when X ~ Normal (100, 102), n=10,000 

and 3 groups in each study 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Group Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

2 9.9950 0.1045 9.9999 0.0485 0.4639
3 9.9968 0.0888 10.0017 0.0413 0.4648
4 9.9996 0.0738 10.0011 0.0343 0.4638
5 10.0003 0.0696 10.0003 0.0320 0.4597
6 9.9973 0.0635 9.9976 0.0293 0.4616
7 9.9991 0.0575 9.9993 0.0269 0.4675
8 10.0011 0.0550 10.0014 0.0246 0.4468
9 9.9965 0.0519 9.9999 0.0245 0.4724

10 9.9991 0.0475 10.0008 0.0233 0.4913
11 9.9969 0.0441 9.9990 0.0215 0.4880
12 9.9979 0.0414 9.9999 0.0204 0.4924
13 9.9982 0.0423 10.0005 0.0189 0.4476
14 9.9984 0.0408 10.0005 0.0194 0.4742
15 9.9993 0.0390 9.9990 0.0193 0.4957
16 9.9974 0.0366 10.0000 0.0180 0.4913
17 9.9969 0.0367 9.9991 0.0174 0.4732
18 9.9974 0.0351 9.9995 0.0164 0.4656
19 9.9987 0.0346 10.0000 0.0165 0.4775
20 9.9992 0.0330 10.0000 0.0160 0.4852
21 9.9988 0.0343 10.0003 0.0150 0.4360
22 9.9984 0.0315 9.9997 0.0153 0.4863
23 9.9985 0.0316 10.0000 0.0143 0.4535
24 10.0000 0.0312 10.0007 0.0150 0.4822
25 9.9981 0.0296 9.9993 0.0138 0.4654
26 9.9971 0.0304 9.9997 0.0137 0.4517
27 9.9989 0.0281 10.0001 0.0136 0.4850
28 9.9995 0.0293 10.0008 0.0138 0.4704
29 9.9986 0.0285 10.0005 0.0130 0.4561
30 9.9996 0.0280 10.0003 0.0133 0.4749
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Table A.29 Mean Estimate when X ~ Normal (100, 102), n=1,000 and 10 groups in 

each study 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

2 99.9996 0.2281 99.9988 0.2237 0.9807
3 99.9997 0.1903 100.0034 0.1858 0.9763
4 100.0023 0.1624 100.0018 0.1572 0.9674
5 99.9921 0.1417 99.9933 0.1384 0.9765
6 99.9909 0.1318 99.9933 0.1279 0.9706
7 100.0028 0.1221 100.0017 0.1193 0.9771
8 99.9995 0.1135 99.9992 0.1103 0.9725
9 100.0042 0.1082 100.0031 0.1057 0.9771

10 100.0047 0.1016 100.0047 0.0978 0.9626
11 100.0032 0.0985 100.0021 0.0952 0.9664
12 100.0034 0.0928 100.0020 0.0897 0.9668
13 100.0008 0.0894 99.9991 0.0868 0.9711
14 99.9972 0.0862 99.9977 0.0837 0.9710
15 99.9977 0.0827 99.9977 0.0799 0.9656
16 100.0003 0.0833 99.9990 0.0804 0.9648
17 99.9987 0.0808 99.9988 0.0787 0.9743
18 99.9998 0.0729 100.0003 0.0706 0.9688
19 99.9993 0.0762 99.9996 0.0732 0.9596
20 99.9976 0.0707 99.9975 0.0685 0.9696
21 100.0012 0.0712 100.0015 0.0691 0.9704
22 99.9981 0.0719 99.9981 0.0686 0.9538
23 99.9994 0.0683 99.9991 0.0661 0.9683
24 99.9996 0.0660 99.9997 0.0630 0.9546
25 99.9996 0.0662 99.9997 0.0646 0.9764
26 99.9999 0.0621 100.0002 0.0598 0.9622
27 99.9983 0.0616 99.9990 0.0594 0.9645
28 99.9975 0.0592 99.9971 0.0565 0.9550
29 100.0041 0.0599 100.0046 0.0586 0.9789
30 100.0002 0.0581 99.9997 0.0556 0.9585
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TableA.30 Standard Deviation Estimate when X ~ Normal (100, 102), n=1,000 

and 10 groups in each study 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Group Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

2 9.9894 0.1924 10.0077 0.1651 0.8583
3 9.9910 0.1543 10.0079 0.1291 0.8372
4 9.9792 0.1362 10.0023 0.1151 0.8447
5 9.9800 0.1177 10.0001 0.1001 0.8505
6 9.9837 0.1085 10.0004 0.0900 0.8298
7 9.9844 0.1005 10.0014 0.0830 0.8256
8 9.9822 0.0958 9.9991 0.0805 0.8397
9 9.9805 0.0917 10.0010 0.0764 0.8331

10 9.9802 0.0798 9.9979 0.0690 0.8645
11 9.9817 0.0808 10.0001 0.0676 0.8361
12 9.9791 0.0764 9.9990 0.0650 0.8509
13 9.9794 0.0754 9.9996 0.0604 0.8010
14 9.9795 0.0721 9.9970 0.0592 0.8210
15 9.9814 0.0686 9.9989 0.0572 0.8343
16 9.9798 0.0692 10.0000 0.0568 0.8198
17 9.9822 0.0655 10.0005 0.0548 0.8370
18 9.9809 0.0611 10.0015 0.0515 0.8426
19 9.9809 0.0618 9.9987 0.0511 0.8278
20 9.9784 0.0600 9.9968 0.0496 0.8267
21 9.9818 0.0600 9.9999 0.0494 0.8229
22 9.9787 0.0555 9.9978 0.0452 0.8138
23 9.9816 0.0535 10.0000 0.0461 0.8620
24 9.9747 0.0563 9.9960 0.0471 0.8357
25 9.9820 0.0532 10.0010 0.0456 0.8559
26 9.9839 0.0517 10.0027 0.0427 0.8263
27 9.9820 0.0512 10.0018 0.0428 0.8376
28 9.9798 0.0501 9.9994 0.0415 0.8292
29 9.9808 0.0491 10.0002 0.0411 0.8377
30 9.9807 0.0488 10.0000 0.0407 0.8345

 



  187 

 

Table A.31 Mean Estimate when X ~ Normal (100, 102), n=10,000 and 10 groups 

in each study 

Mean Estimate from Weighted 
Linear Regression Approach 

Mean Estimate Calculated 
from Raw Data Number 

of 
Study Mean SD Mean SD 

Relative 
Efficiency 
of Mean 
Estimates 

2 99.9991 0.0754 99.9993 0.0728 0.9658
3 100.0000 0.0600 100.0006 0.0575 0.9586
4 99.9999 0.0513 99.9999 0.0496 0.9671
5 99.9987 0.0456 99.9988 0.0439 0.9644
6 100.0006 0.0418 100.0006 0.0400 0.9578
7 99.9998 0.0370 99.9998 0.0358 0.9675
8 100.0006 0.0364 100.0006 0.0355 0.9739
9 100.0003 0.0341 100.0003 0.0333 0.9756

10 100.0003 0.0329 100.0001 0.0316 0.9613
11 100.0018 0.0303 100.0013 0.0298 0.9837
12 100.0003 0.0299 100.0003 0.0288 0.9659
13 100.0004 0.0287 100.0003 0.0275 0.9582
14 99.9991 0.0275 99.9991 0.0269 0.9771
15 99.9998 0.0261 99.9999 0.0255 0.9784
16 99.9981 0.0249 99.9986 0.0239 0.9601
17 99.9997 0.0248 99.9997 0.0242 0.9759
18 100.0005 0.0239 100.0005 0.0231 0.9668
19 99.9992 0.0243 99.9991 0.0234 0.9628
20 99.9988 0.0228 99.9990 0.0221 0.9680
21 99.9991 0.0230 99.9992 0.0222 0.9636
22 100.0006 0.0222 100.0006 0.0214 0.9645
23 99.9998 0.0215 99.9999 0.0206 0.9559
24 99.9997 0.0204 99.9999 0.0200 0.9784
25 99.9995 0.0208 99.9996 0.0202 0.9723
26 99.9998 0.0207 99.9997 0.0199 0.9620
27 99.9993 0.0198 99.9994 0.0192 0.9697
28 100.0004 0.0202 100.0005 0.0193 0.9571
29 99.9993 0.0197 99.9994 0.0189 0.9573
30 99.9988 0.0189 99.9988 0.0179 0.9507
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Table A.32 Standard Deviation Estimate when X ~ Normal (100, 102), n=10,000 

and 10 groups in each study 

Standard Deviation Estimate 
from Weighted Linear 
Regression Approach 

Standard Deviation Estimate 
Calculated from Raw Data Number 

of 
Group Mean SD Mean SD 

Relative 
Efficiency of 
Standard 
Deviation 
Estimates 

2 9.9989 0.0611 10.0007 0.0519 0.8496
3 9.9951 0.0477 9.9980 0.0400 0.8392
4 9.9984 0.0419 10.0005 0.0355 0.8470
5 9.9967 0.0383 9.9985 0.0321 0.8379
6 9.9989 0.0348 9.9999 0.0297 0.8534
7 9.9978 0.0318 9.9994 0.0264 0.8296
8 9.9991 0.0298 10.0009 0.0253 0.8480
9 9.9975 0.0283 9.9989 0.0236 0.8336

10 9.9977 0.0270 9.9998 0.0223 0.8263
11 9.9990 0.0260 10.0006 0.0218 0.8406
12 9.9977 0.0243 9.9994 0.0211 0.8671
13 9.9990 0.0232 10.0003 0.0196 0.8439
14 9.9976 0.0220 9.9993 0.0185 0.8428
15 9.9975 0.0216 9.9992 0.0182 0.8408
16 9.9974 0.0205 9.9999 0.0175 0.8509
17 9.9982 0.0200 10.0002 0.0167 0.8368
18 9.9974 0.0199 9.9993 0.0168 0.8480
19 9.9975 0.0197 9.9992 0.0169 0.8607
20 9.9978 0.0185 10.0000 0.0149 0.8079
21 9.9981 0.0184 10.0001 0.0153 0.8307
22 9.9983 0.0182 10.0002 0.0149 0.8155
23 9.9983 0.0183 10.0003 0.0150 0.8202
24 9.9988 0.0171 10.0001 0.0143 0.8342
25 9.9979 0.0166 10.0001 0.0138 0.8333
26 9.9978 0.0170 9.9995 0.0143 0.8428
27 9.9981 0.0166 10.0000 0.0142 0.8577
28 9.9976 0.0161 10.0000 0.0134 0.8298
29 9.9982 0.0157 10.0004 0.0130 0.8313
30 9.9991 0.0153 10.0007 0.0128 0.8334
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APPENDIX B 

 

Table B.1 Relative Efficiency of 1β  estimates when X is gamma distribution 

Percentile αααα=2 αααα=3 αααα=4 αααα=6

0 4.71E-06 5.94E-06 8.76E-06 9.95E-06

5 9.08E-02 1.05E-01 1.32E-01 1.34E-01

10 1.65E-01 1.82E-01 2.10E-01 2.20E-01

15 2.18E-01 3.17E-01 2.36E-01 2.82E-01

20 2.63E-01 3.04E-01 3.47E-01 3.76E-01

25 2.95E-01 4.00E-01 4.15E-01 4.07E-01

30 3.94E-01 4.06E-01 4.20E-01 4.35E-01

35 4.42E-01 4.50E-01 4.95E-01 5.50E-01

40 4.97E-01 5.04E-01 5.52E-01 5.64E-01

45 5.27E-01 5.18E-01 5.63E-01 5.94E-01

50 5.68E-01 5.93E-01 6.22E-01 5.98E-01

55 5.66E-01 6.25E-01 6.00E-01 6.00E-01

60 5.83E-01 6.01E-01 6.13E-01 6.82E-01

65 6.45E-01 6.71E-01 6.46E-01 6.68E-01

70 6.57E-01 6.70E-01 6.37E-01 6.34E-01

75 6.92E-01 6.45E-01 6.40E-01 6.21E-01

80 5.84E-01 6.03E-01 5.71E-01 5.57E-01

85 5.97E-01 5.74E-01 5.59E-01 5.31E-01

90 5.61E-01 4.86E-01 4.95E-01 4.58E-01

95 3.81E-01 3.48E-01 3.56E-01 3.02E-01

100 2.13E-04 1.65E-04 1.39E-04 1.23E-04
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Table B.2 Relative Efficiency of 1β  estimates when X is normal distribution 

Percentile µµµµ=σσσσ2=2 µµµµ=σσσσ2=3 µµµµ=σσσσ2=4 µµµµ=σσσσ2=6

0 3.48E-05 3.47E-05 3.36E-05 3.30E-05

5 2.25E-01 2.22E-01 2.17E-01 2.41E-01

10 3.20E-01 3.41E-01 3.40E-01 3.72E-01

15 4.32E-01 4.40E-01 4.63E-01 4.49E-01

20 5.23E-01 4.63E-01 4.46E-01 4.78E-01

25 5.31E-01 5.44E-01 5.39E-01 5.51E-01

30 5.88E-01 5.70E-01 5.81E-01 5.84E-01

35 6.14E-01 6.29E-01 6.13E-01 5.52E-01

40 6.31E-01 6.49E-01 6.19E-01 6.23E-01

45 6.85E-01 6.52E-01 6.59E-01 6.74E-01

50 6.28E-01 6.36E-01 6.40E-01 6.65E-01

55 6.04E-01 6.44E-01 6.67E-01 6.73E-01

60 6.08E-01 6.43E-01 6.63E-01 6.34E-01

65 5.83E-01 5.69E-01 6.05E-01 6.25E-01

70 5.39E-01 5.97E-01 5.85E-01 5.91E-01

75 5.54E-01 5.72E-01 5.23E-01 5.45E-01

80 4.96E-01 4.50E-01 4.70E-01 4.92E-01

85 4.36E-01 4.31E-01 4.20E-01 4.34E-01

90 3.46E-01 3.25E-01 3.25E-01 3.25E-01

95 2.38E-01 2.28E-01 2.36E-01 2.02E-01

100 4.79E-05 5.39E-05 5.07E-05 5.83E-05
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Table B.3 Ratio of the b1 estimates (continuous/grouped) 

Percentile αααα=2 αααα=3 αααα=4 αααα=6

0 4.2866 2.8803 2.3430 2.0553

5 1.2360 1.0690 0.9337 0.7446

10 1.2094 1.0410 0.9085 0.7220

15 1.1854 1.0177 0.8831 0.7110

20 1.1635 0.9957 0.8632 0.7059

25 1.1404 0.9721 0.8458 0.7061

30 1.1161 0.9516 0.8290 0.7105

35 1.0921 0.9295 0.8147 0.7179

40 1.0671 0.9107 0.8027 0.7291

45 1.0436 0.8914 0.7927 0.7434

50 1.0188 0.8738 0.7850 0.7604

55 0.9944 0.8558 0.7803 0.7801

60 0.9691 0.8408 0.7776 0.8025

65 0.9450 0.8266 0.7792 0.8260

70 0.9191 0.8156 0.7851 0.8524

75 0.8941 0.8072 0.7944 0.8833

80 0.8697 0.8032 0.8085 0.9166

85 0.8475 0.8051 0.8305 0.9515

90 0.8297 0.8180 0.8608 1.0580

95 0.8261 0.8479 0.9047 1.7718

100 0.0186 0.0152 0.0142 0.0161
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Table B.4 Relative efficiency of b1 estimate when X is gamma distribution 

Percentile αααα=2 αααα=3 αααα=4 αααα=6

0 1.22E-04 3.13E-04 3.30E-04 8.11E-04

5 2.17E-02 4.73E-02 9.69E-02 5.14E-01

10 4.62E-02 9.66E-02 2.23E-01 1.17E+00

15 8.40E-02 1.64E-01 4.08E-01 1.76E+00

20 1.29E-01 2.87E-01 5.47E-01 2.26E+00

25 1.56E-01 3.47E-01 8.15E-01 2.48E+00

30 2.24E-01 4.87E-01 9.75E-01 2.79E+00

35 2.80E-01 6.38E-01 1.22E+00 2.40E+00

40 3.62E-01 8.00E-01 1.45E+00 2.19E+00

45 4.17E-01 9.35E-01 1.77E+00 1.98E+00

50 5.42E-01 1.21E+00 1.93E+00 1.45E+00

55 5.99E-01 1.34E+00 2.06E+00 1.10E+00

60 8.03E-01 1.54E+00 1.90E+00 8.45E-01

65 9.72E-01 1.68E+00 1.81E+00 5.51E-01

70 1.10E+00 1.63E+00 1.47E+00 3.72E-01

75 1.32E+00 1.71E+00 1.21E+00 2.41E-01

80 1.41E+00 1.50E+00 8.29E-01 1.21E-01

85 1.42E+00 1.12E+00 4.61E-01 6.74E-02

90 1.39E+00 6.25E-01 2.23E-01 2.08E-03

95 6.83E-01 1.82E-01 5.50E-02 4.56E-04

100 2.38E-02 3.22E-02 4.22E-02 9.65E-02
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Table B.5 MSE of b1 Estimate When X is Gamma Distributed (Part 1/2) 

αααα=2 αααα=3 

Percentile Continuous Grouped Continuous Grouped

0 0.000309 13.350150 0.000223 4.250004

5 0.000289 0.069041 0.000251 0.010174

10 0.000282 0.050011 0.000240 0.004195

15 0.000307 0.038506 0.000229 0.001721

20 0.000320 0.029780 0.000246 0.000871

25 0.000298 0.021792 0.000230 0.001461

30 0.000316 0.014965 0.000238 0.002838

35 0.000329 0.009581 0.000239 0.005364

40 0.000313 0.005434 0.000256 0.008214

45 0.000299 0.002676 0.000223 0.012017

50 0.000300 0.000947 0.000251 0.016138

55 0.000322 0.000566 0.000234 0.021042

60 0.000314 0.001282 0.000231 0.025527

65 0.000322 0.003293 0.000225 0.030188

70 0.000290 0.006822 0.000222 0.034046

75 0.000298 0.011469 0.000227 0.037139

80 0.000309 0.017059 0.000238 0.038896

85 0.000279 0.023326 0.000223 0.038237

90 0.000320 0.029231 0.000231 0.033330

95 0.000294 0.030593 0.000228 0.024216

100 0.000315 0.963224 0.000234 0.969821
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Table B.6 MSE of b1 Estimate When X is Gamma Distributed (Part 2/2) 

αααα=4 αααα=6 

Percentile Continuous Grouped Continuous Grouped

0 0.000210 2.438724 0.000268 1.446342

5 0.000220 0.006674 0.000256 0.065586

10 0.000232 0.009393 0.000266 0.077219

15 0.000222 0.014078 0.000251 0.083436

20 0.000199 0.019030 0.000259 0.086306

25 0.000223 0.023846 0.000259 0.086287

30 0.000199 0.029458 0.000273 0.084168

35 0.000202 0.034429 0.000243 0.079345

40 0.000231 0.039005 0.000262 0.073502

45 0.000219 0.042982 0.000266 0.065823

50 0.000220 0.046246 0.000256 0.057252

55 0.000212 0.048399 0.000253 0.048624

60 0.000207 0.049326 0.000260 0.039173

65 0.000207 0.048570 0.000239 0.030713

70 0.000204 0.046249 0.000252 0.022244

75 0.000205 0.042568 0.000247 0.014392

80 0.000216 0.036798 0.000230 0.008846

85 0.000213 0.029066 0.000263 0.006128

90 0.000203 0.020321 0.000255 0.126015

95 0.000223 0.012986 0.000263 1.172839

100 0.000219 0.971867 0.000272 0.968068
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Table B.7 Ratio of the b1 estimates (continuous/grouped) 

Percentile αααα=2 αααα=3 αααα=4 αααα=6

0 1.6008 1.2818 1.1922 1.1858

5 1.1202 1.0284 0.9322 0.7673

10 1.0884 0.9951 0.8940 0.7337

15 1.0655 0.9670 0.8672 0.7189

20 1.0434 0.9435 0.8447 0.7155

25 1.0199 0.9201 0.8258 0.7198

30 1.0003 0.9005 0.8113 0.7301

35 0.9806 0.8820 0.7999 0.7446

40 0.9614 0.8658 0.7917 0.7630

45 0.9439 0.8517 0.7876 0.7849

50 0.9269 0.8390 0.7858 0.8082

55 0.9094 0.8286 0.7872 0.8343

60 0.8940 0.8200 0.7917 0.8610

65 0.8791 0.8141 0.8001 0.8899

70 0.8643 0.8104 0.8106 0.9222

75 0.8514 0.8098 0.8255 0.9540

80 0.8397 0.8129 0.8432 0.9867

85 0.8301 0.8211 0.8663 1.0297

90 0.8249 0.8353 0.8965 1.1061

95 0.8280 0.8615 0.9340 1.6303

100 0.0182 0.0149 0.0141 0.0163
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Table B.8 Relative efficiency of b1 estimates (normal covariate) 

Percentile αααα=2 αααα=3 αααα=4 αααα=6

0 2.86E-02 2.95E-02 2.92E-02 3.35E-02

5 2.04E-02 3.12E-02 6.62E-02 3.61E-01

10 6.28E-02 1.07E-01 2.36E-01 1.16E+00

15 1.05E-01 2.02E-01 4.10E-01 2.03E+00

20 1.74E-01 3.14E-01 7.00E-01 2.30E+00

25 2.28E-01 4.20E-01 9.45E-01 2.78E+00

30 3.28E-01 6.14E-01 1.25E+00 2.61E+00

35 4.15E-01 7.73E-01 1.42E+00 2.31E+00

40 5.78E-01 9.92E-01 1.72E+00 1.91E+00

45 6.37E-01 1.31E+00 1.94E+00 1.53E+00

50 7.93E-01 1.46E+00 2.04E+00 1.11E+00

55 9.35E-01 1.53E+00 1.97E+00 7.89E-01

60 1.04E+00 1.61E+00 1.74E+00 6.55E-01

65 1.16E+00 1.69E+00 1.52E+00 3.98E-01

70 1.30E+00 1.88E+00 1.31E+00 2.93E-01

75 1.43E+00 1.54E+00 9.31E-01 1.79E-01

80 1.45E+00 1.27E+00 6.18E-01 1.30E-01

85 1.29E+00 9.54E-01 4.16E-01 5.99E-02

90 1.13E+00 6.17E-01 1.98E-01 2.95E-03

95 7.05E-01 2.70E-01 6.16E-02 2.74E-04

100 3.32E+04 2.09E+05 7.70E+08 5.13E+04
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Table B.9 MSE of b1 Estimate When X is Normal Distributed (Part 1/2) 

αααα=2 αααα=3 

Percentile Continuous Grouped Continuous Grouped

0 0.000365 0.372945 0.000241 0.087598

5 0.000341 0.031141 0.000227 0.008079

10 0.000356 0.013496 0.000236 0.002218

15 0.000341 0.007505 0.000238 0.002249

20 0.000348 0.003968 0.000232 0.003850

25 0.000334 0.001901 0.000219 0.006724

30 0.000347 0.001058 0.000229 0.010302

35 0.000373 0.001263 0.000220 0.014021

40 0.000369 0.002068 0.000225 0.018178

45 0.000360 0.003793 0.000246 0.022056

50 0.000360 0.005904 0.000228 0.026162

55 0.000372 0.008765 0.000213 0.029674

60 0.000377 0.011449 0.000224 0.032337

65 0.000371 0.014868 0.000237 0.034515

70 0.000341 0.018713 0.000246 0.036211

75 0.000358 0.022508 0.000229 0.036422

80 0.000371 0.025943 0.000252 0.034834

85 0.000338 0.028905 0.000252 0.032225

90 0.000340 0.031077 0.000244 0.027524

95 0.000362 0.030034 0.000251 0.019886

100 0.000360 0.963821 0.000245 0.970372
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Table B.10 MSE of b1 Estimate When X is Normal Distributed (Part 2/2) 

αααα=4 αααα=6 

Percentile Continuous Grouped Continuous Grouped

0 0.000206 0.044152 0.000235 0.041477

5 0.000212 0.007820 0.000240 0.054765

10 0.000207 0.012079 0.000255 0.070841

15 0.000196 0.017941 0.000243 0.078631

20 0.000208 0.024575 0.000227 0.080969

25 0.000196 0.030307 0.000257 0.078191

30 0.000207 0.035761 0.000233 0.072690

35 0.000203 0.039803 0.000244 0.064925

40 0.000196 0.043149 0.000241 0.055987

45 0.000197 0.045039 0.000230 0.046361

50 0.000215 0.045948 0.000239 0.037129

55 0.000205 0.045467 0.000220 0.027718

60 0.000206 0.043195 0.000244 0.019611

65 0.000207 0.040017 0.000234 0.012560

70 0.000201 0.036152 0.000238 0.006922

75 0.000202 0.030464 0.000235 0.003368

80 0.000213 0.024764 0.000266 0.002191

85 0.000204 0.018256 0.000252 0.005115

90 0.000208 0.011660 0.000236 0.091188

95 0.000202 0.007532 0.000225 1.215998

100 0.000204 0.971915 0.000228 0.967728
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Table B.11 Relative efficiency on b1 estimate from number of group when X is 

normal distribution and ββββ1=0 

Number 
of Group µµµµ=σσσσ2=2 µµµµ=σσσσ2=3 µµµµ=σσσσ2=4 µµµµ=σσσσ2=6

2 0.632973 0.632973 0.632973 0.632973

3 0.783756 0.783756 0.783756 0.783756

4 0.858662 0.858662 0.858662 0.858662

5  0.913601 0.913601 0.913601 0.913601

6  0.943288 0.943288 0.943288 0.943288

7  0.929323 0.929348 0.929326 0.929408

8  0.959068 0.959068 0.959068 0.959068

9  0.959444 0.959444 0.959444 0.959444

10 0.950355 0.950355 0.950355 0.950355

11 0.980091 0.980091 0.980091 0.980091

12 0.954304 0.954304 0.954304 0.954304

13 0.967829 0.967829 0.967829 0.967829

14 0.972806 0.972773 0.972787 0.972848

15 0.974872 0.974872 0.974872 0.974872

16 0.980262 0.980262 0.980262 0.980262

17 0.975882 0.975882 0.975882 0.975882

18 0.995099 0.995099 0.995099 0.995099

19 0.989947 0.989947 0.989947 0.989947

20 0.974273 0.974273 0.974273 0.974273

21 0.980936 0.980936 0.980936 0.980936
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Table B.12 Relative efficiency on b1 estimate from number of group when X is 
gamma distribution and ββββ1=0 
 
 

Number 
of Group αααα=2 αααα=3 αααα=4 αααα=6

2 0.602226 0.591823 0.616974 0.597496

3 0.735532 0.749335 0.776034 0.735533

4 0.836449 0.817649 0.844314 0.838709

5  0.808836 0.874016 0.831937 0.871128

6  0.893362 0.871254 0.885381 0.884897

7  0.853849 0.929339 0.931094 0.888490

8  0.906813 0.915437 0.893216 0.914642

9  0.957387 0.922636 0.947836 0.955014

10 0.934467 0.951236 0.934374 0.946619

11 0.952020 0.928079 0.966346 0.949622

12 0.945630 0.936720 0.945290 0.950909

13 0.911925 0.984948 0.951046 0.970245

14 0.924299 0.962164 0.951295 0.968892

15 0.967639 0.962381 0.969942 0.968874

16 0.950975 0.947187 0.966331 0.974517

17 0.970348 0.964186 0.957854 0.987098

18 0.946252 0.978006 0.977071 0.966032

19 0.953593 0.962844 0.980462 0.988214

20 0.972284 0.958170 0.959311 0.974372

21 0.975960 0.965445 0.979491 0.972156
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Table B.13 Ratio of coefficient estimates (grouped/continuous) when X is normal 

distribution with ββββ1=1 

Number 
of Group µµµµ=σσσσ2=2 µµµµ=σσσσ2=3 µµµµ=σσσσ2=4 µµµµ=σσσσ2=6

2 0.926681 0.838928 0.785486 0.808072

3 0.958785 0.888751 0.853228 0.863190

4 0.968758 0.916049 0.895266 0.886000

5  0.973095 0.933692 0.922251 0.904515

6  0.975938 0.946323 0.940306 0.919876

7  0.977700 0.955345 0.952754 0.932368

8  0.979973 0.962286 0.961448 0.942295

9  0.981228 0.967762 0.968161 0.950815

10 0.982417 0.972049 0.972946 0.957146

11 0.983682 0.975299 0.976841 0.962746

12 0.984665 0.978163 0.980042 0.967076

13 0.985336 0.980352 0.982363 0.971008

14 0.986246 0.982324 0.984461 0.974059

15 0.987134 0.984003 0.986117 0.976521

16 0.987707 0.985518 0.987571 0.978843

17 0.988459 0.986686 0.988814 0.980808

18 0.988925 0.987759 0.989772 0.982428

19 0.989321 0.988662 0.990622 0.983872

20 0.989862 0.989495 0.991429 0.985207

21 0.990261 0.990237 0.992120 0.986274
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Table B.14 Relative bias (%) of b1 Estimate When X is Normal Distributed and 

ββββ1=1 (Part 1/2) 

µµµµ=σσσσ2=2 µµµµ=σσσσ2=3 Number 
of Group Continuous Grouped Continuous Grouped 

2 0.024210 12.088232 0.064599 3.008807

3 0.016207 8.991750 -0.005057 -0.437108

4 0.041069 6.483900 -0.004197 -3.234582

5  0.073995 4.399897 -0.001584 -5.770390

6  0.020568 2.172906 -0.048743 -8.026858

7  0.026288 0.075181 -0.033962 -9.958982

8  -0.011998 -1.775618 0.055739 -11.661895

9  0.157323 -3.677346 0.013895 -13.394193

10 -0.087803 -5.641564 0.083678 -14.749009

11 0.068305 -7.248370 0.029763 -16.051712

12 0.000747 -9.046930 0.064639 -17.090785

13 0.066112 -10.606756 0.091120 -17.880462

14 0.062082 -12.035360 0.016605 -18.605011

15 -0.075877 -13.621133 0.044006 -18.905652

16 0.099693 -14.811567 0.043004 -18.982375

17 0.009376 -16.016976 -0.048670 -18.686523

18 0.032334 -16.893825 -0.006649 -17.913719

19 -0.002707 -17.493432 0.021908 -16.505343

20 -0.006247 -17.162058 0.021830 -13.865672

21 0.027132 107.564746 0.052064 65.783786
 

 

 



  203 

 

Table B.15 Relative bias (%) of b1 Estimate When X is Normal Distributed and 

ββββ1=1 (Part 2/2) 

µµµµ=σσσσ2=4 µµµµ=σσσσ2=6 Number 
of Group Continuous Grouped Continuous Grouped 

2 -0.006314 -6.681240 0.061543 -23.208905

3 0.016119 -10.523160 0.031070 -26.613262

4 0.062825 -13.281300 0.060721 -28.051758

5  -0.028715 -15.614080 0.094465 -28.409253

6  0.006067 -17.475190 -0.021076 -28.003912

7  0.002653 -18.875270 0.046035 -26.969621

8  0.041526 -20.009840 -0.082580 -25.521156

9  -0.016787 -20.858810 0.069459 -23.624921

10 0.058646 -21.231450 -0.029643 -21.566399

11 0.045114 -21.407200 0.073377 -19.127173

12 0.035791 -21.223260 0.049239 -16.531941

13 0.009491 -20.818120 0.059954 -13.787998

14 0.048567 -19.996570 0.033561 -10.946520

15 -0.008001 -18.943660 0.029736 -7.796396

16 -0.028513 -17.470870 -0.074416 -4.576388

17 0.049163 -15.452730 0.046846 -1.231657

18 -0.021508 -13.340900 0.020970 2.481098

19 0.050114 -10.515920 0.053527 9.498429

20 0.109454 -6.423840 -0.027545 66.564187

21 -0.040524 35.310010 0.039047 -0.891348
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Table B.16 Relative Efficiency of b1 Estimate when X is normal distribution and 

ββββ1=1 

Number 
of Group µµµµ=σσσσ2=2 µµµµ=σσσσ2=3 µµµµ=σσσσ2=4 µµµµ=σσσσ2=6

2 0.789408 1.357256 1.959999 1.118941

3 0.826222 1.325828 1.603100 1.471997

4 0.954804 1.267808 1.346772 1.514136

5  1.031443 1.202605 1.201126 1.387244

6  1.058861 1.155322 1.133963 1.363870

7  1.078289 1.100753 1.099271 1.258350

8  1.063556 1.090893 1.057659 1.220951

9  1.058631 1.080747 1.042884 1.173933

10 1.083413 1.058562 1.019419 1.100287

11 1.048045 1.050269 1.028884 1.114834

12 1.046369 1.022789 1.023239 1.097673

13 1.054078 1.036442 1.020799 1.073307

14 1.064095 1.020840 1.019368 1.053499

15 1.046106 1.026586 1.017101 1.027128

16 1.062564 1.023194 1.016656 1.048065

17 1.029762 0.996010 1.000024 1.022271

18 1.051212 1.019618 1.007583 1.017931

19 1.048922 1.025703 1.003193 1.042088

20 1.057994 1.017229 1.003457 1.019201

21 1.043659 1.013659 1.001829 0.998636
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Table B.17 MSE of b1 Estimate When X is Normal Distributed and ββββ1=1 (Part 

1/2) 

 

µµµµ=σσσσ2=2 µµµµ=σσσσ2=3 Number 
of Group Continuous Grouped Continuous Grouped 

2 0.000365 0.005892 0.000241 0.026120

3 0.000341 0.002123 0.000227 0.012536

4 0.000356 0.001344 0.000236 0.007263

5  0.000341 0.001063 0.000238 0.004567

6  0.000348 0.000861 0.000232 0.003006

7  0.000334 0.000761 0.000219 0.002086

8  0.000347 0.000696 0.000229 0.001640

9  0.000373 0.000693 0.000220 0.001185

10 0.000369 0.000622 0.000225 0.000979

11 0.000360 0.000635 0.000246 0.000821

12 0.000360 0.000602 0.000228 0.000711

13 0.000372 0.000597 0.000213 0.000613

14 0.000377 0.000521 0.000224 0.000508

15 0.000371 0.000513 0.000237 0.000467

16 0.000341 0.000476 0.000246 0.000463

17 0.000358 0.000497 0.000229 0.000414

18 0.000371 0.000475 0.000252 0.000367

19 0.000338 0.000420 0.000252 0.000371

20 0.000340 0.000432 0.000244 0.000349

21 0.000362 0.000436 0.000251 0.000324
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Table B.18 MSE of b1 Estimate When X is Normal Distributed and ββββ1=1 (Part 

2/2) 

µµµµ=σσσσ2=4 µµµµ=σσσσ2=6 Number 
of Group Continuous Grouped Continuous Grouped 

2 0.000206 0.046029 0.000235 0.037072

3 0.000212 0.021713 0.000240 0.018849

4 0.000207 0.011082 0.000255 0.013002

5  0.000196 0.006107 0.000243 0.009071

6  0.000208 0.003821 0.000227 0.006570

7  0.000196 0.002338 0.000257 0.004646

8  0.000207 0.001674 0.000233 0.003456

9  0.000203 0.001136 0.000244 0.002528

10 0.000196 0.000866 0.000241 0.001983

11 0.000197 0.000703 0.000230 0.001583

12 0.000215 0.000603 0.000239 0.001326

13 0.000205 0.000522 0.000220 0.001043

14 0.000206 0.000414 0.000244 0.000888

15 0.000207 0.000387 0.000234 0.000746

16 0.000201 0.000363 0.000238 0.000693

17 0.000202 0.000312 0.000235 0.000572

18 0.000213 0.000304 0.000266 0.000542

19 0.000204 0.000284 0.000252 0.000486

20 0.000208 0.000272 0.000236 0.000459

21 0.000202 0.000252 0.000225 0.000406
 

 



  207 

 

Table B.19 Ratio of the b1 Estimates (Grouped/Continuous) when X is Gamma 
 

Number 
of Group αααα=2 αααα=3 αααα=4 αααα=6

2 0.538934 1.115097 1.900088 1.479086

3 0.835964 1.486166 1.671579 1.186595

4 1.036162 1.511150 1.336038 1.110818

5  1.216012 1.484386 1.188747 1.096935

6  1.249096 1.330601 1.080591 1.097876

7  1.306316 1.234233 1.023546 1.100560

8  1.333497 1.155529 1.033785 1.071400

9  1.316352 1.085153 1.014674 1.047394

10 1.245376 1.058066 1.014441 1.047665

11 1.231750 1.044032 1.012308 1.032720

12 1.207681 1.030055 0.989094 1.041582

13 1.178206 1.016784 0.995866 1.024382

14 1.169281 1.041118 0.990392 1.029707

15 1.178980 0.984117 0.996368 1.022008

16 1.118731 1.001034 0.993881 1.010020

17 1.130139 1.002035 0.993271 1.028169

18 1.109827 1.002380 0.988895 1.001657

19 1.057578 0.997430 0.995651 1.021392

20 1.107137 0.983383 0.992077 1.014425

21 1.052215 0.991636 0.992487 1.010509
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Table B.20 Relative bias (%) of b1 Estimate when X distributed gamma and ββββ1=1 

(Part 1/2) 

αααα=2 αααα=3 Number 
of Group Continuous Grouped Continuous Grouped 

2 0.039646 1.945214 0.037483 -12.710024

3 0.001801 -2.097025 0.080687 -12.593880

4 0.012021 -4.196667 0.038147 -11.664959

5  0.111929 -5.281037 0.030364 -10.333097

6  0.149258 -5.814004 0.055888 -8.931995

7  0.050398 -6.070428 -0.038128 -7.758571

8  0.031630 -6.120909 -0.008654 -6.664467

9  -0.040190 -6.071076 -0.009578 -5.778615

10 0.047586 -5.818264 0.050242 -4.943386

11 0.066930 -5.595393 0.008279 -4.350076

12 0.109756 -5.302293 -0.006707 -3.862787

13 0.029759 -5.155518 -0.029714 -3.438841

14 0.105950 -4.822279 -0.014019 -3.051120

15 0.060783 -4.627905 -0.000933 -2.725684

16 -0.004610 -4.447812 0.033614 -2.428386

17 -0.010856 -4.214506 0.051002 -2.186830

18 0.066449 -3.948025 0.002956 -2.011342

19 0.053363 -3.725874 -0.016788 -1.864116

20 0.002737 -3.584759 0.050984 -1.633071

21 0.022393 -3.398225 0.065098 -1.503699
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Table B.21 Relative bias (%) of b1 Estimate when X distributed gamma and ββββ1=1 

(Part 2/2) 

αααα=4 αααα=6 Number 
of Group Continuous Grouped Continuous Grouped 

2 -0.038531 -21.517350 0.037214 -23.962889

3 -0.008899 -16.601059 0.030594 -12.976040

4 0.014220 -12.270009 0.072915 -8.290840

5  0.059583 -9.078351 0.049226 -5.944941

6  0.015911 -6.915743 0.080180 -4.477068

7  0.084315 -5.328592 0.050308 -3.527107

8  -0.010027 -4.314802 -0.065214 -2.964737

9  0.021431 -3.495912 0.076258 -2.329070

10 0.026536 -2.892042 0.007837 -2.038269

11 0.036124 -2.408456 0.040824 -1.711033

12 0.026610 -2.067047 0.097378 -1.438895

13 -0.007312 -1.811574 -0.017713 -1.351765

14 0.064992 -1.518809 0.049445 -1.144802

15 0.084581 -1.311502 0.000627 -1.065110

16 0.017921 -1.227623 0.081667 -0.884351

17 -0.033496 -1.142356 0.118364 -0.749516

18 0.047270 -0.955601 0.006123 -0.785418

19 0.043713 -0.865328 0.114945 -0.616270

20 -0.015831 -0.834383 0.065439 -0.606060

21 0.086488 -0.670719 0.021924 -0.590615
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Table B.22 Relative Efficiency of b1 Estimate when X is gamma distribution and 

ββββ1=1 

Number 
of Group αααα=2 αααα=3 αααα=4 αααα=6

2 1.019048 0.872573 0.785129 0.760088

3 0.979012 0.873357 0.834064 0.869973

4 0.957918 0.883014 0.877175 0.916423

5  0.946131 0.896397 0.908675 0.940088

6  0.940456 0.910171 0.930695 0.954464

7  0.938823 0.922766 0.945917 0.964244

8  0.938494 0.933436 0.956948 0.970986

9  0.939667 0.942304 0.964834 0.975965

10 0.941369 0.950089 0.970822 0.979541

11 0.943415 0.956420 0.975563 0.982489

12 0.945939 0.961437 0.979069 0.984652

13 0.948163 0.965899 0.981956 0.986657

14 0.950770 0.969625 0.984172 0.988063

15 0.953142 0.972752 0.986051 0.989343

16 0.955566 0.975388 0.987547 0.990348

17 0.957959 0.977633 0.988908 0.991332

18 0.959882 0.979858 0.989976 0.992085

19 0.962228 0.981524 0.990914 0.992696

20 0.964126 0.983168 0.991813 0.993289

21 0.965802 0.984322 0.992435 0.993876
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Table B.23 MSE of Coefficient Estimate when X distributed gamma and ββββ1=1 

(Part 1/2) 

αααα=2 αααα=3 Number 
of Group Continuous Grouped Continuous Grouped 

2 0.000309 0.000951 0.000223 0.016354

3 0.000289 0.000786 0.000251 0.016029

4 0.000282 0.002033 0.000240 0.013766

5  0.000307 0.003040 0.000229 0.010831

6  0.000320 0.003635 0.000246 0.008163

7  0.000298 0.003913 0.000230 0.006206

8  0.000316 0.003983 0.000238 0.004647

9  0.000329 0.003936 0.000239 0.003560

10 0.000313 0.003636 0.000256 0.002686

11 0.000299 0.003373 0.000223 0.002106

12 0.000300 0.003059 0.000251 0.001736

13 0.000322 0.002931 0.000234 0.001412

14 0.000314 0.002593 0.000231 0.001153

15 0.000322 0.002415 0.000225 0.000971

16 0.000290 0.002238 0.000222 0.000812

17 0.000298 0.002040 0.000227 0.000705

18 0.000309 0.001836 0.000238 0.000642

19 0.000279 0.001652 0.000223 0.000571

20 0.000320 0.001574 0.000231 0.000501

21 0.000294 0.001434 0.000228 0.000456
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Table B.24 MSE of Coefficient Estimate when X distributed gamma and ββββ1=1 

(Part 2/2) 

αααα=4 αααα=6 Number 
of Group Continuous Grouped Continuous Grouped 

2 0.000210 0.046410 0.000268 0.057603

3 0.000220 0.027691 0.000256 0.017054

4 0.000232 0.015229 0.000266 0.007113

5  0.000222 0.008428 0.000251 0.003763

6  0.000199 0.004967 0.000259 0.002240

7  0.000223 0.003057 0.000259 0.001479

8  0.000199 0.002054 0.000273 0.001133

9  0.000202 0.001422 0.000243 0.000774

10 0.000231 0.001064 0.000262 0.000666

11 0.000219 0.000796 0.000266 0.000550

12 0.000220 0.000649 0.000256 0.000452

13 0.000212 0.000541 0.000253 0.000430

14 0.000207 0.000439 0.000260 0.000383

15 0.000207 0.000379 0.000239 0.000347

16 0.000204 0.000356 0.000252 0.000327

17 0.000205 0.000337 0.000247 0.000295

18 0.000216 0.000310 0.000230 0.000292

19 0.000213 0.000288 0.000263 0.000294

20 0.000203 0.000275 0.000255 0.000288

21 0.000223 0.000269 0.000263 0.000295
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