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Thermal systems play significant roles in the engineering practices and our lives.  

To improve those thermal systems, it is necessary to model and optimize the operating 

conditions.  More importantly, the design uncertainties should be considered because the 

failures of the thermal systems may be very dangerous and produce large loss.  This study 

focuses on the parametric modeling and the optimization of the thermal systems with the 

considerations of the design uncertainties.  As an example, the material processing 

thermal system, the Chemical Vapor Deposition (CVD), is simulated with different inlet 

velocities and susceptor temperatures.  Several responses are considered to represent the 
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performance of the thin-film deposition, including the percentage of the working area, the 

mean of the deposition rate, the root mean square of the deposition, and the surface 

kurtosis.  Those responses are then parametrically modeled by one of the Response 

Surface Method (RSM), the Radial Basis Function (RBF), and utilized to formulate the 

optimization problems to enhance the system performances.  However, it is not until the 

design uncertainties are considered that the thermal system designs have high risk of the 

violations of the performance constraints.  One of the Reliability-Based Design 

Optimization (RBDO) algorithms, the Reliability Index Approach (RIA), is used to solve 

the optimization problems with the design uncertainties.  However, the algorithm suffers 

from a convergence problem when the design point falls into the infeasible domain 

during the optimization process.  A Modified Reliability Index Approach (MRIA) is 

proposed with a modified definition of the reliability index, and utilized to solve the 

RBDO problems of the CVD process.  The MRIA converts the design space to the 

standard normal space and finds the Most Probable Points (MPPs) to evaluate the failure 

probabilities of the performance constraints.  The probabilistic optimization problem is 

then solved using the approximate probabilistic constraints generated in terms of the 

MPPs.  The MRIA has been used to solve several different optimization formulations 

with both normally and lognormally distributed random variables.  The Monte Carlo 

Simulation (MCS) results verify that the optimal solutions have acceptable failure 

probabilities.  As a result, the proposed strategy of parametrically modeling and 

optimizing with design uncertainties can be applied to the experiments or the simulations 

of other thermal systems to improve their productivity, maintain the quality control, and 

reduce the probability of system failure. 
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Chapter 1. 

Introduction 

This study presents the parametric modeling and the optimization of the thermal 

systems with the design uncertainties.  The responses of the thermal systems are firstly 

parametrically modeled by the Radial Basis Functions (RBFs) and then utilized to 

formulate the optimization problems to enhance the system performances.  Moreover, the 

Reliability-Based Design Optimization (RBDO) algorithms are used to solve the 

optimization problems of the thermal systems with the design uncertainties.  In this 

research work, a Modified Reliability Index Approach (MRIA) is proposed to solve the 

RBDO problems without any convergence problems from which the Traditional 

Reliability Index Approach (TRIA) suffers.  Session 1.1 presents the motivation, the 

objective and the scope of the proposed research.  Session 1.2 contains the literature 

reviews in the related aspects of the proposed research.  The research contributions are 

illustrated in Session 1.3 while the overview of the dissertation is shown in Session 1.4. 

1.1. Motivation and Objective 

Thermal systems not only have been essential technologies in engineering 

practices but also play significant roles in our lives.  With the continuously growing 

needs of the thermal systems in many different applications, such as power systems, air 

conditioning, energy conversion, chemical processing, material processing, aerospace, 
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and automobiles, the design and the optimization of the thermal systems have become 

very important research works in the engineering field. 

The thermal systems are often very complicated because of the complex physics 

and mechanics involved in the systems, including fluidic mechanics, heat transfer, mass 

transfer, and chemical reactions.  It is nearly impossible to realize the closed-form 

relationships between the system performances and all the involved variables.  Therefore, 

it is important to firstly understand the basic characteristics of the thermal systems and 

subsequently determine the principal design variables which dominantly control the 

system performances. 

A systematic strategy is then desired to model and optimize the thermal systems.  

This proposed strategy must be able to resolve the following questions: 

 How to model the system performances in terms of the design variables so that the 

system performances can be accurately described by the proposed models? 

 How to formulate the optimization problems in terms of the defined models for 

improving the system performances? 

In the aspect of the modeling, the mathematical models that are able to quantitatively and 

literally represent the physical behaviors of the system performances are necessary.  With 

the desired models, the optimization problems can then be formulated to achieve the 

goals of the thermal system designs. 
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Unfortunately, the existence of the design uncertainties is unavoidable.  A 

traditional deterministic optimization algorithm often leads the optimal solution to the 

boundaries of the active constraints.  Without the considerations of the design 

uncertainties, the optimal solution from the deterministic optimization formulation is 

unreliable and has high probabilities of violating the active constraints.  Therefore, 

additional attentions should be drawn to the optimization problems with the design 

uncertainties and the following questions should be answered: 

 How to formulate a non-deterministic optimization problem when the design variables 

are uncertain? 

 How to solve this non-deterministic optimization problem and how to solve it 

efficiently? 

1.2. Literature Reviews 

In this session, the thermal systems are firstly reviewed. One of the material 

processing thermal systems, the Chemical Vapor Deposition (CVD), is then reviewed as 

an example.  The design and the optimization of the CVD process are also reviewed. 

1.2.1. Different Thermal Systems 

As described earlier, the thermal systems are very important in various 

applications and our lives.  To design and optimize the thermal systems, the most 

fundamental step is to recognize their existence and classify them into different groups in 
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terms of their functionalities.  A common classification of the thermal system is given as 

follows [1]: 

 Manufacturing and materials processing systems. 

 Energy systems. 

 Cooling systems for electronic equipment. 

 Environmental and safety systems. 

 Aerospace systems. 

 Transportation systems. 

 Air conditioning, refrigeration, and heating systems. 

 Fluid flow systems and equipment. 

 Heat transfer equipment. 

 Other thermal systems. 

Figure 1.1 illustrates different types of the thermal systems using the classification in 

Ref. [1].  After understanding the physics and the mechanics behind the thermal systems, 

the control variables are chosen to determine the system performances.  Therefore, the 

decision of the design variables is the key factor of the modeling and the optimization of 

the thermal systems. 
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(a) 

 

(b) 

 

(c) 

Figure 1.1. Different Types of Thermal Systems. 

(a) Materials Processing System of Chemical Vapor Deposition [2], (b) Combined Cooling, Heating 
and Power (CCHP) System by Solar Energy [3], and (c) Heat Sink Design for CPU Cooling [4]. 
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(d) 

 

(e) 

 

(f) 

Figure 1.1. Different Types of Thermal Systems (Continued). 

(d) Heat Rejection System in a Power Plant [5], (e) Aerospace Rocket System (adapted from [6]), and 
(f) Transportation System of A Turbine Engine [7]. 
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(g) 

 

(h) 

 

(i) 

Figure 1.1. Different Types of Thermal Systems (Continued). 

(g) Air Conditioning System [8], (h) Wastewater Treatment System (adapted from[9]), and (i) Heat 
Exchanger in A Heater [10]. 
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Manufacturing and Materials Processing Systems 

Heat transfer plays an important role in the manufacturing and materials 

processing systems, where the materials often change their mechanical properties due to 

temperature changes.  The controls of the temperature changes determine the productivity 

and the quality of the processes.  Examples include crystal growing, metal casting, metal 

forming, plastic injection molding, etc. [1]  One of those processes, the Chemical Vapor 

Disposition (CVD) process, will be considered in the later sessions.  A systematic 

strategy to design and optimize the CVD process with design uncertainties will be 

proposed and it can be applied to the design and the optimization of other thermal 

systems. 

Energy Systems 

Energy systems have become one of the most important thermal systems in recent 

years in which the thermodynamics of the energy conversions are the issues of most 

concern.  Energy systems are often very complicated because they contain several 

subsystems, such as energy collector, steam generator, turbines, condenser, etc. [11]  

Numerous design variables should be considered to improve the thermal efficiency of the 

energy system. 

Cooling Systems for Electronic Equipment 

Cooling systems are essentially important for electronic equipment where the 

operating temperatures are constrained within certain allowable temperatures [12].  Other 

constraints for the cooling systems include the spatial working space, the allowable noise, 
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etc.  The objective of the cooling system design is often minimizing the ratio of used 

power to reduced temperature, while the design variables are often the geometries of the 

heat sink which differ the surface area of the heat transfer [4, 13]. 

Environmental and Safety Systems 

Safety is an important factor for systems with extreme environmental conditions, 

such as high temperature and toxicity.  Environmental and safety systems include the 

applications for heat rejection to air or water, control of the temperature and the pollution 

of thermal systems, etc.  Figure 1.1 (d) demonstrates the heat rejection from a power 

plant where the heat is dumped to the river as a cooling pond.  The operation of the 

power plant will be under high risks if the safety systems fail.  Therefore, the safety 

system should be taken into careful consideration in the design of the systems with 

extreme environmental conditions. 

Aerospace Systems 

Thermal systems are the most important components in aerospace systems, such 

as rockets, turbines, etc.  For the example of a rocket system shown in Figure 1.1 (e), the 

alcohol/water mixture is pumped into the combustion chamber to heat the fuel and cool 

the chamber.  The balance between the high thrust for launching and the efficient cooling 

is the focus in the design of the rocket systems. 
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Transportation systems 

Transportation systems cannot operate without the existence of the thermal 

systems, including diffusion, compression, combustion, turbine, and nozzle systems.  

Figure 1.1 (f) shows a scheme of the turbine engine where the thrust energy comes from 

the combustion of the air/fuel mixture.  Thermodynamics is significant for the design of 

the transportation systems [11], while they are often optimized in terms of maximizing 

the ratio of the generated power to utilized fuel. 

Air conditioning, Refrigeration, and Heating Systems 

Air conditioning, refrigeration, and heating systems are indispensable to our daily 

lives.  Detailed information about such kind of the thermal systems can be found in 

Refs. [14-15].  Figure 1.1 (g) shows a scheme of an air conditioning system, where the 

physical phase, the temperature, and the pressure of the fluid change via the mechanisms 

of the condenser, the evaporator, and the compressor.  The optimization for such thermal 

systems often focuses on decreasing the power consumption and improving the efficiency 

of the temperature control. 

Fluid Flow Systems and Equipment 

Fluid flow systems and equipment include hydraulic components, such as pumps, 

turbines, compressors, fans, etc.  Fluid mechanics is of the major concern in the fluid 

flow systems and is closely related to the thermal systems with energy transmission, 

cooling, and mass transfer [16].  Figure 1.1 (h) demonstrates a wastewater treatment 
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system where the waste water is transferred through several different fluid mechanisms, 

clarified, and delivered to the drainage system.  

Heat Transfer Equipment 

Heat transfer systems contain heat exchangers [17], furnaces, heaters, condensers, 

etc.  Figure 1.1 (i) demonstrates an example of the heat exchangers where the heat is 

transferred to the water and increase its temperature for human usage.  The design of the 

heat exchanging mechanisms considers the transmission of the energy and the control of 

the heat loss. 

There is never a best way to classify all kinds of the thermal system but the most 

practical ones have been covered and discussed.  In the later session, one of the materials 

processing systems, the CVD process, is taken into consideration.  The design and the 

optimization of the CVD process will be studied and a systematic strategy will be 

proposed to implement the modeling and the optimization of the CVD process with 

design uncertainties.  The proposed methodology is expected to have the capability of 

designing and optimizing of the other thermal systems. 

1.2.2. Chemical Vapor Deposition Processes 

Chemical Vapor Deposition (CVD) is a process that a solid crystalline or 

amorphous layer is formed on a heated substrate by chemically reacting premixed gases 

using the activation energy.  Figure 1.2 shows a schematic sequence of the steps of the 

CVD process.  The process involves the transport of reactants to the susceptor, the 
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chemical reactions and generations of new species, the desorption of the reaction 

products, and their diffusion back to the main stream [18].  Unlike the cold substrate in 

the Physical Vapor Deposition (PVD) process [19-20], the one in the CVD process has a 

higher temperature with a various range from 500 K to 1500 K due to different 

applications and materials, different types of CVD processes, and different configurations 

of the CVD reactors.  The details about the applications of the CVD processes, different 

types of the CVD processes, and the configurations of the CVD reactors will be discussed 

in the following subsession. 

Main Gas Flow

Gas Phase Reactions

Transport
to Surface

Absorption of
Film Precursor

Surface Diffusion Surface Reaction,
Nucleation and
Lattice Incorporation

Desorption of Gaseous
Reaction Products

Diffusion to Main
Gas Stream

Transport Away From 
the Deposition Chamber

Mass Transport to 
Reaction Zone

 
Figure 1.2. Schematic Sequence of Steps in CVD Process (Adapted from [18]). 
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Different Applications of the CVD Processes 

The CVD-based products have become more and more important in our daily 

lives because of the high quality of the deposited thin layers with various kinds of 

materials.  The CVD process is well utilized to produce highly uniform thin films 

deposited on different kinds of substrates (typically 0.01 – 10 µm ) [18].  It is used in a 

wide range of applications where thin coatings of high purity are required.  Examples 

include semi-conductor devices, solar cells, wear resistant coatings, and synthetic growth 

of crystalline materials, demonstrated in Figure 1.3. 

 

(a) (b) 

  

(c) (d) 

Figure 1.3. Different Applications of the CVD process. 

(a) Integrated Circuits [21], (b) Solar Cells [22], (c) Protective Coatings [23], and (d) Synthetic 
Diamonds [24]. 
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The CVD processes can be utilized to produce high-quality microstructures in 

semiconductors, special materials with dielectric properties as insulators, and metallic 

conductors with different resistivities.  Furthermore, the CVD processes generate high-

strength products such as protective coatings, anticorrosive coatings, and ceramic 

materials.  Besides the productions of thin layers, it is possible to generate powers and 

fibers of different materials by the CVD processes.  Other applications such as optical 

materials and synthetic diamonds have high qualities and purities of different materials.  

The common materials in different applications of the CVD processes are listed in 

Table 1.1.  Most of the research interests in the later discussions is directed at the CVD of 

silicon because of its relevance to the semiconductor industry [25-26]. 

Different Types of the CVD Processes 

CVD processes can be classified in terms of their operating conditions or different 

kinds of instruments.  With different operating pressures of the CVD reactors, the CVD 

processes include three different types: 

 Atmospheric Pressure CVD (APCVD). 

 Low-Pressure CVD (LPCVD). 

 Ultra-High Vacuum CVD (UHVCVD). 

The APCVD operates at the pressure of 0.1 – 1 atm while the LPCVD works at a lower 

pressure of 310−  atm [18].  Other modern CVD processes reach high or ultra-high 

vacuum (below 610−  Pa) and have high-quality thin-film depositions. 
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Table 1.1. Common Materials in Different Applications of the CVD Processes [18, 24-33]. 

Different CVD Applications Common Materials 

Semiconductors Silicon (Si) and gallium arsenide (GaAs) 

Dielectrics Silicon dioxide (SiO2) and silicon nitride (Si3N4) 

Metallic conductors 
Tungsten silicide (WSi2), molybdenum silicide (MoSi2), tungsten (W), 

aluminum (Al), molybdenum (Mo) and polysilicon (Si) 

Protective coatings 
Titanium nitride (TiN), Tungsten (W), molybdenum (Mo), gold (Au), and 

platinum (Pt) 

Ceramics 
Aluminum oxide (Al2O3), titanium carbide (TiC), silicon carbide (SiC), 

boron carbide (B4C), and titanium biboride (TiB2) 

Anticorrosive coatings for turbine 

blades 

Boron nitride (BN), molybdenum disilicide (MoSi2), silicon carbide (SiC), 

and boron carbide (B4C) 

Powers for sintering and hot 

pressing 
Silicon nitride (Si3N4) and silicon carbide (SiC) 

Fibers for composite materials Boron (B), boron carbide (B4C), and silicon carbide (SiC) 

High-purity monolithic materials 

for infrared optics 

Zinc selenide (ZnSe), zinc sulfide (ZnS), cadmium sulfide (CdS), and 

cadmium telluride (CdTe) 

Synthetic diamonds Carbon (C) 

 

Another method to classify the CVD processes considers the operating wall 

temperature of the CVD chamber.  They are: 

 Cold-Wall CVD. 

 Hot-Wall CVD. 

Most of the CVD processes operate with the hot-wall reactors and the gaseous 

temperature is distributed uniformly inside the reactor.  The advantage of the hot-wall 
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setting is higher deposition rate and better uniformity of the deposition.  On the other 

hand, the cold-wall setting allows higher throughput and easier cleaning but has lower 

speed of the deposition and poor uniformity of the thin film. 

In the consideration of different instruments, a wide variety of CVD processes 

have been developed, listed in Table 1.2.  Plasma-assisted CVD processes operate at low 

pressure and allow the cold-wall setting because the plasma bombards the gas mixture 

and decompose into active species for deposition at low temperature.  Photo CVD is 

another instrument that works at low temperature and uses the activation energy from 

ultraviolet or visible photons to achieve the gaseous decomposition.  Laser CVD is a 

device that provides higher activation energy and, furthermore, very accurate control of 

the local deposition.  Other CVD instruments like Metal-Organic CVD (MOCVD) and 

Chemical Vapor Infiltration (CVI) have specific applications.  The epitaxial growths of 

III/V materials from MOCVD have become very important in the manufacturing of solar 

cells and light-emitting diodes (LEDs), and the semiconductors with organo-metallic 

compounds.  CVI is the specific instrument for the growth of ceramic materials in a 

porous body. 

Different Configurations of the CVD Reactors 

For different operating conditions and applications, several different 

configurations of the CVD reactors have been developed.  Figure 1.4 illustrates some 

common CVD reactors.  Typically, the reactors in Figure 1.4 (a), (b), and (c) are utilized 

for cold-wall settings and the ones in Figure 1.4 (d), (e), and (f) have higher wall 
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temperatures of the CVD chambers.  The barrel reactor has been greatly used for the 

huge-amount production of the silicon epitaxial wafers.  The vertical reactor with rotating 

susceptor is often utilized for single-wafer depositions; on the other hand, the one in 

Figure 1.4 (e) has higher area of uniform deposition and is used for the depositions of 

multiple wafers.  The tubular reactor is usually used to deposit films with polysilicon and 

dielectric materials.  In the later discussion, the modeling and the optimization of the 

CVD processes focus on the configuration of the vertical impinging reactor with the 

stationary susceptor in Figure 1.4 (e). 

Table 1.2. Different Types of the CVD Processes. 

Different Types Abbreviation Descriptions 

Plasma-Enhanced 

CVD 
PECVD 

A CVD instrument with plasma enhancement where higher density 

of reactant species are produced to the substrate due to the high-

energy electron impact.  Higher activity of the gaseous species allows 

deposition at comparatively low temperature (450 – 650 K). [18, 27]

Metal-Organic CVD MOCVD 

Also known as Organo-Metallic Vapor Phase Epitaxy (OMVPE).  An 

epitaxial growth of materials from the surface chemical reaction of 

organic or metal-organic compounds and an important process for the 

manufacturing of solar cells and LEDs. [34-35] 

Laser CVD LCVD 
A laser-assisted instrument that locally heat the substrate to activate 

the CVD reaction with precise control [36]. 

Photo CVD PCVD 

A photo-assisted deposition technique where UV or visible photon 

energies are used for gas decomposition.  The deposition at very low 

temperature (300 – 450 K) is allowed but having a low deposition rate 

and poor uniformity. [18, 37] 

Chemical Vapor 

Infiltration 
CVI 

A variant CVD device that deposits within a porous body and is 

widely used for the fabrication of ceramic materials [38]. 

Hot Wire CVD HWCVD 
A special instrument for producing high-temperature gas 

decomposition but room-temperature deposition on the substrate [39].

Atomic Layer CVD ALCVD 
A technology to produce ultrathin layers of crystalline materials 

(typically 1 – 50 nm) [40]. 
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(a) (b) 

  

(c) (d) 

 

(e) (f) 

Figure 1.4. Different Configurations of the CVD Reactors (Adapted from [18]). 

(a) Horizontal Reactor, (b) Pancake Reactor, (c) Barrel Reactor, (d) Vertical Impinging Reactor with 
Rotating Susceptor, (e) Vertical Impinging Reactor, and (f) Tubular Reactor. 

In the design and optimization of the CVD processes, different design variables 

should be taken into consideration for different configurations.  For example, the 

horizontal reactor in Figure 1.4 (a) has a tilt angle of the susceptor for uniform deposition 
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with horizontal gaseous flow of the reactant species.  The rotation speeds of the reactors 

in Figure 1.4 (c) and (d) differ the quality of the deposition.  The directions of the 

reactant flow above the susceptor certainly provide different characteristics of the fluidic 

mechanics and heat transfer.  Among all configurations of the CVD reactors, there are 

some common variables that dominate the performance of the thin-film deposition, 

including the concentration of the gaseous reactant in the inlet flow, the velocity of the 

inlet flow, the temperature of the susceptor, the temperature of the chamber wall, the 

operating pressure in the CVD chamber, etc.  The review about the design of the CVD 

processes will be given in the next subsession. 

1.2.3. Design of the CVD Process 

Different designs of the CVD processes have a wide variety of the film thickness, 

generally ranges from a few nanometers to tens of microns.  As described previously, the 

film formation process is highly dependent on the flow and the heat transfer between the 

gas and the heated substrate.  Therefore, in order to produce thin films with higher 

deposition rates and quality, the operation conditions must be studied.  There are two 

major aspects to be considered in the design of the CVD processes: 

 Experiments or simulations of the CVD processes.  

 Modeling of the responses.  

Reviews about those aspects are given in the following. 
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Design Variables and Responses of the CVD Processes 

Once the reactant species, the type of the CVD process, and the CVD 

configuration have been determined for the desired thin-film production on the susceptor, 

several operating parameters should be chosen to perform the experiments or the 

simulations of the CVD process.  Among those parameters, some of them dominate the 

control of the deposition performance and are selected to be the design variables.  The 

typical design variables are categorized into two different types, including hardware 

settings and operating conditions, and listed in Table 1.3.  The hardware settings vary the 

boundary conditions and the mechanical properties of the fluid mechanics and the heat 

transfer in the CVD processes.  On the other hand, the operating conditions are the 

quantitative variables to control the behavior of the reactant fluid and the performance of 

the deposition.  Besides the hardware and operating design variables, the rest of the 

parameters remain constant because of either their minor impacts to the deposition or the 

simplicity of the CVD design.  In this research work, the inlet velocity and the susceptor 

temperature are chosen as the design variables because their quantities can be easily 

controlled by the designers. 

The merit of the deposition performance requires several quantitative responses to 

judge, where those responses typically have physical meanings and provide numerical 

measures.  Table 1.3 points out several common responses from either the experiments or 

the simulations of the CVD processes.  Among those typical responses, some of them still 

lack of numerical measures to decisively quantify its degree of intensity.  For example, 

the deposition uniformity itself is a subjective scale of the quality of the CVD production.  
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George [41] utilized a weighted sum of the local slopes of the deposition to quantify its 

uniformity.  Lin et al. [42] used some standard statistical measures, including the root 

mean square and the kurtosis, as the responses of the uniformity factors.  More details 

about the chosen design variables and the significant responses in the proposed research 

are shown in Chapter 2. 

Table 1.3. Typical Design Variables and Responses in the CVD Designs [18, 28, 43-46]. 

Design Variables Responses 

Hardware 

settings 

Susceptor size 

Shape of the CVD chamber 

Angle of the susceptor versus the flow direction 

Orientation of the susceptor versus gravity 

Buoyancy driven / force driven flow 

Diffusivity of susceptor material 

Operating 

conditions 

Velocity of the inlet flow 

Susceptor temperature 

Operating pressure 

Rotation speed of the susceptor 

Concentration of the reactant species 

Deposition thickness 

Deposition rate 

Deposition uniformity 

Nusselt number 

Temperature distribution of the susceptor 

Purity of the deposition 

Composition of the deposition 

Adhesion to the substrate 

Surface morphology 

Grain structure in the deposition 

Distance of flow separation 

 

Experiments or Simulations of the CVD Processes 

The mechanics of the CVD process, in which the flow, the heat transfer, and the 

chemical reaction are involved, is very complicated.  The flow in the CVD process has 

firstly been visualized by seeding micro-scale titanium dioxide (TiO2) particles in the 

reactant gas and illuminating by laser [47-49].  However, the holography observation 

using the laser provided poor resolution of the lowly concentrated reactants.  On the other 
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hand, numerical simulations provide relatively better understanding of the fluid 

mechanics and have become very important to study the complex flow in CVD process. 

Numerous researchers have been devoted to investigate the flow and heat transfer 

in CVD reactors [28, 43-46, 50-64].  Some of them focused on the simulations of the 

horizontal CVD reactors [28, 46, 52, 57, 62], while many other important studies have 

been conducted to the vertical configurations [43, 51].  Among all the numerical analysis 

in CVD reactors, three major governing equations are considered – continuity, 

momentum, and energy conservations governing equations:energy conservation [65].  

Generally, parabolic governing equations [52, 55] are utilized to predict the flow pattern 

in CVD reactors.  However, extreme conditions, such as low Reynolds numbers and high 

density gradients, lead to reverse flow [54] which required elliptic governing equations 

for better predictions [55, 57]. 

Simulations of the CVD processes are very complicated because of huge amount 

of controlling variables [66], complicated analysis of the fluidic dynamics and the 

kinetics of the chemical reactions, and all the variable properties [44] to be considered.  

Numerical models with constant properties [50, 67-68] and Boussinesq approximations 

[67, 69] have been utilized to simplify the complex simulations.  Wang et al. [64] and 

Chiu et al. [61] demonstrated that the constant-property models are acceptable for most 

practices but variable-property models give more accurate predictions for extreme 

operating conditions.  The Buoyancy effect has been neglected when the ratio of Grashof 

number and square of Reynolds number is less than two [70-71].  The geometry of the 
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reactor is also a factor in the fluid dynamics of the CVD process [43] but it is negligible 

in a large aspect ratio [61].  The temperature distribution of the susceptor is approximated 

to be isothermal for some CVD configurations [70]. 

Thorough comparisons between the experiment and simulation results are 

provided by Dimitrios et al. [43] and Chiu et al. [62].  Comprehensive reviews on CVD 

reactor studies are given by Mahajan [18] and Jensen et al. [44].  Kee et al. [59, 66] 

demonstrated that model simulations have much greater flexibility and versatility as 

compared to experimental counterparts.  Experimental studies have also been carried out 

on the flow in channels for CVD applications [44, 46, 62, 72]. 

Optimization of the CVD Processes and Existence of the Design Uncertainties 

Simulation and optimization of CVD systems have been studied by many 

researchers [41-42, 66, 72-76].  However, design uncertainties can found everywhere in 

the CVD process.  Even if an optimal design is obtained from the optimization models, 

the irresistible uncertainties will cause unstable responses of the CVD process.  For 

example, the compositions of the deposition species have errors of 15 % [77].  Several 

researchers have estimated the randomness of the operating parameters in the CVD 

process.  The rate constant of the chemical reaction may have a wide variance; for 

example, 1013 – 1014 cm3/mol-s [78].  In this research work, the existence of the design 

uncertainties is considered at the design variables, the inlet velocity and the susceptor 

temperature of the CVD process. 
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1.3. Research Contributions 

The main contribution of this research includes 

 The development of the performance responses in the CVD process. 

 The parametric modeling of those responses in terms of the chosen design variables.  

 The optimization formulations of the operating operations for the CVD process. 

 The realization of the convergence problem in a traditional RBDO algorithm, the 

TRIA. 

 The development of the MRIA to solve optimization problems with normally 

distributed design uncertainties. 

 The development of the MRIA for the non-normally distributed random variables. 

 The application of the MRIA on the RBDO problems of the CVD process. 

Figure 1.5 schemes the systematic strategy to parametrically model the responses from 

the experiments or the simulations of the thermal systems and optimize the operating 

conditions with design uncertainties using the proposed RBDO algorithm. 

At the beginning of the productions of any thermal systems, several trials of the 

experiments or the numerical simulations are necessary to determine the operating 

conditions and examine the system performances.  A RSM model helps the engineers or 

the designers recognize the behavior of the responses with respect to the design variables.  

Optimization problems are formulated in terms of the RSM models and are utilized to 

provide the operating conditions for higher productivity and quality of the productions.  
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Due to the existence of the design uncertainties, the traditional deterministic optimization 

formulation is no longer reliable to generate safe designs because it may lead to a design 

with high risk of system failure.  The development of the RBDO algorithm evaluates the 

probabilities of the system failures and provides a more conservative design which 

reaches to the optimality as the failure probabilities are subject to some acceptable level.  

Finally, the productions of the thermal systems are executed based on the optimal design 

variables.  If any design uncertainties are found in the experiments, the simulations, or 

the mass productions, the information of the uncertainties are fed back to the formulation 

of the RBDO problems and new optimal conditions can be generated by the proposed 

strategy. 

Simulations

Performance Responses

Respond Surface Method

Reliability-Based
Design Optimizations

Convergence? NO

YES

Project of Productions

Optimal Solutions

Uncertainties

Experiments                                   

Executions of Productions

Proposed Methodology

 
Figure 1.5. Flowchart of the Proposed Research. 
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1.4. Overview of the Dissertation 

In Chapter 2, the description about the simulation of the CVD process is followed 

by the function formulations of the responses to quantitatively describe the productivity 

and uniformity of the deposition.  A design of the vertical impinging CVD process is 

defined and simulated by a commercial CFD software, FLUENT.  The inlet velocity and 

the susceptor temperature are chosen to be the design variables.  Simulated deposition 

profiles due to different operating conditions are studied and the four different responses 

are measured in terms of the design variables, including the Percentage of the Working 

Area (PWA), the Mean of the Deposition Rate (MDR), the Root Mean Square (RMS), 

and the Surface Kurtosis (KUR). 

In Chapter 3, the responses of the CVD process are parametrically modeled with 

respect to the design variables.  Instead of using the common Response Surface Method 

(RSM), Polynomial Response Surface (PRS), which has poor approximations on the 

highly nonlinear responses of the CVD process, the parametric modeling is completed by 

the Radial Basis Function (RBF).  RBF is constructed by nonlinear functions in terms of 

the distance covariance functions between the sampling data.  The approximation using 

RBF is much accurate and is validated by comparing with large-scale sampling data. 

Chapter 4 demonstrates several optimization problems to find better operating 

conditions for improving the performance of the CVD process.  The objective and 

constraint functions are formulated in terms of the RBF models of the CVD responses.  

For higher productivities, one of the objective functions is to maximize the PWA while 
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another one is to maximize the MDR.  On the consideration of the uniformity of the 

deposition, the RMS and the KUR are subject to certain quantitative levels.  Both 

constraints of the deposition uniformity are very significant to the locations of the 

optimal operating conditions.  However, the probabilities of that the optimal solutions 

violate the performance constraints are very high if the design uncertainties exist. 

In Chapter 5, the RBDO technique is introduced to solve the optimization 

problems with design uncertainties.  Replacing the original deterministic constraints, the 

probabilistic constraints where the probabilities of the system failures are constrained by 

acceptable levels are formulated.  This study focuses on the one of the RBDO algorithms, 

the RIA.  The failure probabilities are evaluated by the Standard Normal Cumulative 

Distribution Functions in terms of the Hasofer-Lind reliability index.  However, the RIA 

has been reported to have convergence problems.  As a result, it may provide incorrect 

optimal solutions or it may have inefficient optimization processes. 

In Chapter 6, the convergence problem in the traditional RIA is revealed and it 

occurs when the design point is located in the infeasible domain during the iteration 

process.  A modified reliability index is defined to resolve the problem and the 

evaluations of the failure probabilities using the modified reliability index are correct 

despite of the locations of the design points.  This new method is called the Modified 

Reliability Index Approach (MRIA).  The numerical examples show the MRIA provides 

the correct optimal solutions with acceptable failure probabilities for the normally 

distributed random variables.  For non-normally distributed random variables, their 
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standard deviations vary with respect to the design point and an additional updating 

scheme of the standard deviation is necessary for the MRIA. 

In Chapter 7, the proposed RBDO algorithm, the MRIA, is utilized to solve the 

optimization problems of the CVD process with design uncertainties.  The random 

variables are firstly assumed to be normally distributed and the MRIA provides new 

optimal solutions to the CVD problems where the failure probabilities are constrained.  

Secondly, the random variables are considered to be lognormally distributed and their 

standard deviations are iteratively updated during the optimization process by the MRIA.  

Numerical examples show the MRIA can find the correct optimal solutions for the 

RBDO problems of the CVD process for both the normally and non-normally distributed 

random variables. 

In Chapter 8, a conclusion is provided for this study and a future research is 

proposed for the applications of other thermal systems with various kinds of design 

uncertainties using the MRIA. 
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Chapter 2. 

Simulation and Responses of the CVD Process 

2.1. Introduction 

This chapter is directed at the simulation of the CVD process and the responses of 

to represent the productivity and the uniformity of the deposition.  The effect of different 

operating conditions on the deposition rate and the film quality are identified from the 

numerical simulations performed using a commercial software, FLUENT.  Session 2.2 

discusses the simulation of the thin-film growth of silicon from the reactant of silane in a 

vertical impinging CVD reactor.  The design operating conditions focus on the velocity 

of the inlet flow and the temperature of the susceptor.  In session 2.3, four responses, 

including Percentage of the Working Area (PWA), the Mean of the Deposition Rate 

(MDR), Root Mean Square (RMS), and the Surface Kurtosis (KUR), are defined in terms 

of the design variables and measured from the simulated deposition profiles.  Session 2.5 

is the conclusion and the remarks about the simulation and the responses of the CVD 

process. 

2.2. Simulation of the CVD Process 

The reaction gases are introduced at the top in a vertical impinging reactor.  A 

schematic of the CVD reactor is shown in Figure 2.1.  A two dimensional steady laminar 

flow is assumed.  Chiu and Jaluria [60] described the validity of the two-dimensional 

steady flow assumptions for a similar system.  The flow with a dilute precursor 
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concentration of silane in hydrogen as the carrier gas deposits silicon onto the susceptor.  

Silicon deposition follows a one step reaction mechanism, where silane decomposes to 

silicon and hydrogen.  The three species being considered are silane, silicon and 

hydrogen.  Continuity, momentum, energy and species conservation [79] is considered. 

Reaction gases entering reactor
(Silane + Hydrogen) 

Reaction gases entering reactor
(Silane + Hydrogen) 

SiH4(g) Si(s) + 2H2(g)
H2(g) H2(g)H2(g) H2(g)

Isothermally heated susceptor

2cm 6cm 2cm

2cm

 
Figure 2.1. Vertical Impinging CVD Reactor [41]. 

Simulations are carried out employing the commercial software FLUENT using 

the laminar finite-rate model [79].  The laminar finite-rate model computes the chemical 

source terms using Arrhenius expressions, and ignores the effects of turbulent 

fluctuations.  In Figure 2.1, the dimensions are based on a similar reactor configuration 

studied by the research group earlier for titanium nitride deposition.  Gas phase and wall 

surface reactions are considered.  The surface reaction rate is given by the product of the 

concentration of the reactant gases at the substrate and the rate constant.  An Arrhenius 

expression is used to calculate the rate constant and is given by ( )exp aA E RTακ τ= − , 

where κ  is the rate constant, A  is the pre-exponential factor, τ  is the temperature, aE  is 
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the activation energy, α  is the temperature exponent, and R  is universal gas constant.  

The values to be used for the quantities are given by the FLUENT database [80], where 

0.334A = , 0.5α = , and 51 10aE = × .  The material properties can be entered into 

FLUENT but here they are given by the FLUENT database.  FLUENT is used because it 

can accommodate different geometries and boundary conditions, while there is less 

flexibility in the validated codes and modifying existing codes is time consuming. 

The properties of the materials and the reaction kinetics are loaded from the 

FLUENT database [80].  The property variations with temperature are taken into account.  

The power-law discretization scheme [65] is used to solve the equations of the 

momentum, energy, and species conservations.  Coupled algorithm [79] is used to 

approach the governing equations of continuity, momentum, energy, and species 

transport simultaneously in the earlier iterations.  In the later iterations, the corrections 

for pressure and velocities are performed by the PISO algorithm [79] in order to achieve 

more efficient convergence.  The boundary conditions are shown in Figure 2.2.  Non-slip, 

impermeable and thermally insulated boundary conditions are applied at the upper and 

lower surfaces, which are maintained at 300 K, except the susceptor.  The isothermally 

heated susceptor is assumed to be maintained at temperature, T .  The temperature of the 

reaction gases entering the reactor is 300 K.  The ranges of inlet flow velocity, V , and 

susceptor temperature, T , considered are 0.1 m/s – 1 m/s and 400 K – 1500 K [50] 

respectively.  The mass fraction of silane is kept at 0.1 because it ensures sufficient 

amounts of precursor gas in the mixture [31].  Chiu [75] used a range of susceptor 

temperature from 900 K – 1323 K but here a larger range is considered.  Only half of the 
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fluid domain is considered in the simulation due to the geometrical symmetry.  Quad 

meshes are utilized in the half domain: 320 nodes in the horizontal direction and 139 

nodes in the vertical direction.  Node density is chosen such that further increase in node 

density does not significantly affect the solution.  Typical cases require about ten minutes 

for converging on an Intel® Pentium® M processor 2.0 GHz with 2.0 GHz of RAM. 

Outflow

Inflow; T = 300 K;
Fraction of SiH4 = 0.1;
Vin (m/s)

Non-slip wall; Tsus (K) Non-slip wall; T = 300K

Non-slip wall; T = 300K

 
Figure 2.2. Boundary Conditions of the Simulation for the Vertical CVD Reactor. 

Figure 2.3 illustrates a typical numerical result of the streamlines of the reactant 

flow in the CVD reactor.  The inlet has uniformly distributed velocity, V , and the 

stagnation point at the center of the susceptor has zero velocity.  Figure 2.4 demonstrates 

the corresponding temperature distribution of the entire fluid domain where the susceptor 

is isothermally heated at the temperature of T .  Figure 2.5 shows a scheme of the 

deposition profile.  The red area has poor uniformity of the deposition rate where its local 

slope of the deposition profile is too oblique; on the other hand, only the green area has 

acceptable uniformity because its local slope is very close to zero. 
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Velocity
(m/s)

Vin

Velocity
(m/s)

Vin

 
Figure 2.3. A Typical Result of the Streamlines of the Flow. 

Tsus

Temperature
(K)

Tsus

Temperature
(K)

 
Figure 2.4. A Typical Result of the Temperature Distribution. 

Deposition Rate of Si (kg/m2s)

Position of Susceptor (m)
 

Figure 2.5. Scheme of the Deposition Profile of Silicon. 
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2.3. Simulation Validation 

To validate the correctness of the numerical simulations with the developed 

settings in FLUENT, the deposition rate of the silicon in a horizontal CVD reactor is 

compared with experimental and numerical results from other researchers [41, 45, 50, 56, 

63].  Figure 2.6 illustrates the configuration of the horizontal CVD reactor and its 

dimensions.  The reactant, the silane, is mixed in the hydrogen carrier flow, with the inlet 

velocity of 0.175 m/s.  The partial pressure of the silane is 124.1 Pa under the 

atmospheric pressure, providing the information of the mass fraction of the silane.  The 

operating temperature is 300 K and the susceptor is isothermally heated at 1323 K.  The 

material properties and the kinetics of the chemical reactions are given from the Ref. [41] 

otherwise from the FLUENT database.  The rest of the settings and the utilized solvers 

remain the same as the previous discussion. 

Reaction gases entering reactor
(Silane + Hydrogen) 

SiH4(g) Si(s) + 2H2(g)

Isothermally heated susceptor

5cm 30cm 15cm

2cm

 
Figure 2.6. Horizontal CVD Reactor [41]. 
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The results from the simulation of a horizontal CVD reactor using FLUENT are 

compared with the experimental results obtained by Ref. [50] and the numerical results 

from Refs. [45, 56, 63], shown in Figure 2.7.  A detailed comparison between 

experimental and numerical results has been made and fairly good agreements has been 

found [75].  The numerical results using the settings described in the previous discussion 

is almost identical to George‘s simulation results [41] with the mass diffusivity in the 

FLUENT database, which is given by a polynomial equation of the temperature as 

follows: 

 8 10 2 14 37.234 10 4.569 10 8.016 10D T T T− − −= × + × − ×  (2.1) 

Simulation (Yoo & Jaluria)
Diffusion-Controlled Simulation (Yoo & Jaluria)
Experiment (Eversteyn et al.)
Simulation (Mahajan & Wei)
Simulation (Chiu & Jaluria)
Simulation with Increased Mass Diffusivity (George)
Simulation with FLUENT Database (George)
Present

Simulation (Yoo & Jaluria)
Diffusion-Controlled Simulation (Yoo & Jaluria)
Experiment (Eversteyn et al.)
Simulation (Mahajan & Wei)
Simulation (Chiu & Jaluria)
Simulation with Increased Mass Diffusivity (George)
Simulation with FLUENT Database (George)
Present

 
Figure 2.7. Deposition Rate of Silicon in the Horizontal CVD Reactor Compared with Others [41, 
45, 50, 56, 63]. 
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George [41] has also shown the numerical results are very close to the 

experimental results in Ref. [50] if higher mass diffusivity is utilized.  Eversteyn et al. [50] 

utilized a power law to describe the mass diffusivity which is given by 

 ( )0 300D D T γ=  (2.2) 

where 0D  is the pre-exponential factor, γ  is the temperature exponent, and the 

temperature, T , is normalized by the operating temperature, 300 K.  Considering the pre-

exponential constant in Ref. [63], 5
0 6.24 10D −= ×  m2/s, and varying the temperature 

exponent from 1.7 to 2.0 as Eversteyn et al. [50] suggested, different levels of the mass 

diffusivity of the silane are obtained and shown in Figure 2.8.  With the higher 

temperature exponent, the corresponding mass diffusivity increases as well as the growth 

rate of the silicon along susceptor in the horizontal CVD reactor increases, shown in 

Figure 2.9.  In this research work, the mass diffusivity is chosen from the FLUENT 

database. 

γ
γ
γ
γ

 
Figure 2.8. Mass Diffusivity of Silane with Different Temperature Exponent Compared with 
FLUENT database. 
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γ
γ
γ
γ

 
Figure 2.9. Growth Rate of Silicon in the Horizontal CVD Reactor with Different Mass Diffusivity. 

2.4. Function Formulations of the Responses in CVD Process 

To achieve higher deposition rate and better film quality on the susceptor during 

the CVD process, some quantitative measures are needed to justify the performance of 

the deposition profile.  Three mathematical functions, Mean of Deposition Rate (MDR), 

Root Mean Square (RMS) and Surface Kurtosis (KUR) are used to measure the 

deposition rate and film quality.  However, because the quality of deposition close to the 

edge of the susceptor sometimes is not stable due to the significant drop of temperature, 

one additional function, Percentage of Working Area (PWA), which excludes all un-

usable areas must be defined first.  In this session, the four function formulations will be 

discussed. 

2.4.1. Percentage of Working Area (PWA) 

To determine the usable region on the susceptor, the Percentage of Working Area 

(PWA) is defined.  First, a set of uniformly distributed sampling nodes across the 
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deposition profile is selected and the absolute value of the local slope between two 

consecutive nodes is set as S .  If 0S ≅ , the deposition profile between these two nodes 

is considered as uniform.  According to a specific application, process engineer can 

choose an upper bound, US , so that a region with the slope of any two consecutive nodes 

satisfying US S≤  is considered as uniform.  The quantity of US  is selected as the 

criterion of local uniformity based on different applications.  In the current study, 

0.00055US =  is chosen.  Normally, regions with higher slopes occur around the edges of 

the susceptor where the deposition rate decreases dramatically due to temperature drop. 

However, there are some cases that the areas with higher slopes are not connected.  

For example, the deposition profile (1) in Figure 2.10 has local non-uniformity at the 

edge from 0.028 m to 0.03 m and the area from 0.021 m to 0.024 m, highlighted by red 

curves.  Even if the in-between area from 0.024 m to 0.028 m has acceptable slopes, 

shown by green curves, it is isolated and cannot be utilized to produce micro-structures.  

When the isolation of working area occurs, the small pieces of isolated working areas 

must be excluded.  Hence, the Percentage of Working Area (PWA) is defined as: 

 EWAPWA 100%
Total Area

= ×  (2.3) 

where EWA denotes the Effective Working Area.  The deposition profile (1) has the 

PWA of 70.59 % while the profile (2) has 87.25 %.  More details about the two 

deposition profiles in Figure 2.10 are shown in the later discussions. 
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(2)

(1)
Fig. (b)

Working Area
Non-Working Area
Isolated Working Area

Working Area
Non-Working Area
Isolated Working Area

(a)                                                             (b)  
Figure 2.10. Deposition Profiles with Different PWA. 

(a) Deposition Profiles of Samples (1) and (2), and (b) Details at the Edges. 

Two remarks should be noticed for the PWA.  Firstly, larger PWA represents the 

thin-film deposition has better uniformity; therefore, one of the possible optimization 

formulations is to maximize the PWA to increase the quality of the deposition.  Secondly, 

the rest of the responses should be measured within the EWA instead of the entire area of 

the susceptor because the non-working area will be dumped and only the deposition 

performance in the working area is of concern. 

2.4.2. Mean of Deposition Rate (MDR) 

Rate of thin film deposition is one of the key criteria to measure the performance 

of CVD process.  To provide an overall measure of the deposition rate, an averaged local 

deposition rate is defined as the Mean of Deposition Rate (MDR).  However, instead of 
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studying the deposition rate of the entire susceptor, only the areas within the EWA is 

considered.  The definition of the MDR is very straight forward as: 

 
1

1MDR
Q

D
Q ι

ι=

= ∑  (2.4) 

where Q  is the number of uniformly distributed sampling nodes within the EWA, and Dι   

is the deposition rate at the sampling node.  The higher MDR represents better CVD 

productivity.  It is obvious that a larger PWA along with high MDR is very desirable in 

CVD.  However, these two objectives sometimes conflict with each other.  In Figure 2.10, 

the profile (2) has higher PWA than the profile (1); however, the profile (1) has a higher 

MDR of 41.884 10−×  kg/m2s than the one of 41.168 10−×  kg/m2s in the profile (2).  In 

Chapter 4, these two optimization formulations will be studied and discussed. 

2.4.3. Root Mean Square (RMS) 

Because the PWA only provides a local measure for uniformity, it is essential to 

determine the global uniformity mathematically which represents the global physical 

behaviors of the deposition profile within the EWA.  Two statistical measures, the Root 

Mean Square (RMS) and the Surface Kurtosis (KUR), are utilized to quantify the global 

uniformity. 

The Root Mean Square (RMS) is used to measure the magnitude of the varying 

deposition rate.  The definition of RMS of the silicon deposition rate is given by: 

 ( )2

1

1RMS MDR
Q

D
Q ι

ι=

= −∑  (2.5) 
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which is the standard derivation of the deposition rate of all sampling nodes within the 

EWA.  A deposition profile with large RMS represents un-even uniformity of the thin-

film formation even all regions are considered as workable from the PWA point of view.  

Therefore, the RMS is an important global indicator for the film quality, which is 

complementary to the local indicator, PWA.  Figure 2.11 demonstrates two different 

deposition profiles under different operating conditions.  They have close PWA at around 

93 % and similar KUR at around 1.8; however, the RMS of the profile (3), 

61.713 10−×  kg/m2s, is more than double of the one of 77.810 10−×  kg/m2s in the 

profile (4).  Thus, the profile (3) is considered less uniform than the profile (4). 

(4)

(3) Fig. (b)

Working Area
Non-Working Area
Isolated Working Area

Working Area
Non-Working Area
Isolated Working Area

(a)                                                             (b)  
Figure 2.11. Deposition Profiles with Different RMS. 

(a) Deposition Profiles of Samples (3) and (4), and (b) Details at the Edges. 



 
 

 

42

2.4.4. Surface Kurtosis (KUR) 

The Surface Kurtosis (KUR) is a statistical quantitative measurement that implies 

the existences of the sharper peaks in the deposition profile which cannot be recognized 

by the RMS.  The measure of KUR of silicon deposition rate is given by 

 
( )

( )4
4

1

1KUR MDR
RMS

Q

D
Q

ι
ι=

= −∑  (2.6) 

where the terms of MDR and the RMS are defined in the Eqs. (2.4) and (2.5) respectively.  

The KUR represents the “peakedness” of the deposition profile, or the variance due to 

infrequent extreme deviations [81].  A larger KUR represents peakier profile of the 

silicon deposition and this acute shape of the profile leads to non-uniformity within the 

EWA.  Figure 2.12 illustrates the profile (5) is lessly peakier than the profile (6); 

furthermore, the profile (5) has a lower KUR, 1.686, than the one of the profile (6), 4.550. 

(6)

(5) Fig. (b)

Working Area
Non-Working Area
Isolated Working Area

Working Area
Non-Working Area
Isolated Working Area

Fig. (c)

(a)                                                             (c)

(b)

 
Figure 2.12. Deposition Profiles with Different KUR. 

(a) Deposition Profiles of Samples (5) and (6), (b) Details at the Edge of Sample (5), and (c) Details at 
the Edge of Sample (6). 
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The detailed information about the six examples of the deposition profiles are 

listed in Table 2.1.  Comparing the samples (1) and (2), the PWA is found sensitive to the 

inlet velocity and has higher working area at lower velocity at 0.25 m/s.  However, in the 

contrast of samples (4) and (5), higher velocity, 0.95 m/s, has larger working area.  This 

implies the responses are highly nonlinear with respect to the design variables, V  and T .  

A nonlinear modeling tool is needed. 

Table 2.1. Conditions and Uniformity Factors of Samples (1) to (6). 

Sample # V (m/s) T (K) PWA (%) MDR (kg/m2s) RMS (kg/m2s) KUR Figure 

1 0.7 650 70.59 1.884E-4 1.229E-6 2.687 Figure 2.10

2 0.25 650 87.25 1.168E-4 1.201E-6 2.653 Figure 2.10

3 0.75 850 94.12 1.775E-4 1.713E-6 1.812 Figure 2.11

4 0.95 1500 92.65 1.671E-4 7.810E-7 1.786 Figure 2.11

5 0.6 1500 89.71 1.369E-4 6.214E-7 1.686 Figure 2.12

6 0.1 1000 76.47 7.234E-5 5.395E-7 4.550 Figure 2.12

 

2.5. Conclusion and Remarks 

The percentage of the EWA in the susceptor has been defined to quantify the 

production yield of the CVD process.  The MDR is measured within the EWA to 

represent the productivity, while the RMS and the KUR are utilized as the indicators of 

the uniformity inside the EWA.  Several samples of the CVD simulations under different 

operating conditions have been utilized to show the importance of four responses in the 

quantifications of the productivity and the uniformity of the CVD process. 
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Both RMS and KUR are global measures for the quality of deposition uniformity 

whereas the PWA and MDR are direct local measures.  These four functions are greatly 

influenced by the inlet velocity and the susceptor temperature.  However, the true forms 

of these functions are not available.  Therefore, we will establish response surface models 

of these functions with respect to the design variables in Chapter 3.  Once the models are 

established and validated, we will use the PWA and the MDR as the objective functions 

and the RMS and the KUR as constraints to study the optimal operation conditions in 

Chapter 4. 

Besides the application of the silicon deposition, the proposed responses are also 

very useful in other thermal systems regarding the thin-film growth with desired 

uniformity.  Firstly, the range of the working area should be considered carefully based 

on the allowable local slope otherwise the specific needs in different designs of the 

thermal systems.  The statistical moments and the quantitative performance measures 

should be studied within the working area because the productions outside the EWA have 

been excluded from the consideration.  Other useful statistical measures include the 

surface skewness and other higher-order statistical moments.  The skewness is not 

considered in the current research work because the configuration of the vertical CVD 

reactor is symmetric about the centerline of the inlet flow and the skewness is always 

zero. 
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Chapter 3. 

Parametric Modeling of the CVD Process 

3.1. Introduction 

The best way to represent the behavior of the responses in the CVD processes and 

model them in terms of numerical functions with respect to the design variables is to use 

the technique of curve fitting, also known as metamodeling or Response Surface Method 

(RSM).  RSM provides a parametric equation in terms of the design variables and some 

coefficients to be determined by substituting the experiment / simulation data into the 

parametric model.  Instead of using the common RSM tool, Polynomial Response 

Surface (PRS), the Radial Basis Function (RBF) is used to model the deposition rate and 

the uniformity of the deposition profile.  These obtained parametric models of the four 

responses will be validated before being utilized to formulate the optimization problems 

of CVD process. 

3.2. Review of Parametric Modeling Techniques 

The RSM can be divided into two different types [1]: 

 Exact fitting. 

 Best fitting. 
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The exact fitting is the technique that generates a smooth curve that passes through all the 

data points.  It typically is a function with M  parameters to be determined by the known 

information from M  data points.  Therefore, it is very accurate and useful for small 

amount of data.  On the other hand, the best fitting does not necessarily pass through any 

of the data points but provides a best prediction of the behavior of the responses.  It is 

very useful when the amount of data points is very large (i.e. There are only K  

parameters to be determined for M  sampling points while K M< .) or the obtained 

responses are not accurate enough.  Several methods have been developed to achieve 

either exact or best fitting with single variable, two variables, or multiple variables.  

Table 3.1 lists different kinds the RSM methods and their characteristics. 

Table 3.1. Different RSM Methods [1, 82-84]. 

Methods Available Dimension Exact Fitting Best Fitting 

Polynomial fitting 1D, 2D, and multiple variables ○ ○ 

Kriging 1D, 2D, and multiple variables ○ ○ 

Radial basis function 1D, 2D, and multiple variables ○ ○ 

Thin plate spline 1D, 2D, and multiple variables ○ ○ 

Hermite curve / surface Curve for 1D; surface for 2D ○ ╳ 

Bezier curve / surface Curve for 1D; surface for 2D ╳ ○ 

B-spline curve / surface Curve for 1D; surface for 2D ╳ ○ 
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3.2.1. Polynomial Response Surface (PRS) 

The polynomial fitting, often called Polynomial Response Surface (PRS), is the 

most common and simple technique to interpolate or extrapolate the obtained responses 

with  M  sampling points.  For small-scale models, a regression formulation is given as 

follows: 

 ( ) ( )F ≅ ⋅x w B x  (3.1) 

where w  is a vector of the K  regression coefficients to be determined and it can be 

written in Einstein’s notation: [ ]1 2
T

t t Kw w w w= = "w e  and 1,2, ,t K= … .  Another 

vector, ( )B x , is a linear combination of the modeling monomials.  The Eq. (3.1) is used 

for exact fitting when the number of the parameters, K , equal to the number of the 

sampling points, M ; otherwise, it provides predictions with best fitting as K M< .  

Table 3.2 demonstrates several typical design of ( )B x  for different K . 

Table 3.2. Typical Coefficients for Polynomial Response Surface. 

Different PRS K  ( )B x  

Linear regression 2 [ ]11 Tx  

Planar regression 3 [ ]1 21 Tx x  

Coupling 2-D fitting 4 [ ]1 2 1 21 Tx x x x  

Independent 2-D quadratic fitting 5 2 2
1 2 1 21

T
x x x x⎡ ⎤⎣ ⎦  

Coupling 2-D quadratic fitting 6 2 2
1 2 1 2 1 21

T
x x x x x x⎡ ⎤⎣ ⎦  
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For exact fitting, the coefficients, w , can be obtained by the following equation: 

 ( ) ( )1 S S S−= ⋅w A x F x  (3.2) 

where ( )S SF x  is a 1K ×  vector of the responses in terms of the K  sampling points and 

( )SA x  is a K K×  matrix whose ths  row is ( )s
T SB x .  For example, when 6K M= = , 

the coefficients of w  can be obtained by the following equation in terms of six distinct 

2-D sampling points: 

 

( ) ( )
( ) ( )

( ) ( )

( )
( )

( )

12 2

1,1 2,1 1,1 2,1 1,1 2,1 1 1

2 2
2 21,2 2,2 1,2 2,2 1,2 2,2

2 2
6 61,6 2,6 1,6 2,6 1,6 2,6

1

1

1

S S S S S S S S

S SS S S S S S

S SS S S S S S

x x x x x x F

Fx x x x x x

Fx x x x x x

−
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥= ⋅ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

##

x

x
w

x

 (3.3) 

For best fitting, ( )S SF x  is a 1M ×  vector and ( )SA x  is a M K×  matrix as K M< ; 

therefore,  Eq. (3.2) is no longer valid because ( )1 S−A x  only exists for K M= .  In this 

case, the coefficients of w  need to be obtained by Least Square Approximation [85], 

which is given by: 

 ( ) ( ) ( ) ( )1T S S T S S S−
⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦w A x A x A x F x  (3.4) 

3.2.2. Kriging 

Kriging is a general method to predict the responses from the experiment or 

simulation data with minimum error variance estimation [86].  It is constructed by an 

inner product of a vector of coefficients, w , and a covariance vector, ( ), S
xC x x , shown 

as follows: 
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 ( ) ( ), S
xF ≅ ⋅x w C x x  (3.5) 

where the covariance vector contains 1M ×  components of the covariance functions and 

is given by 

 ( ) ( ) ( ),
1 1

, , ,
M M

S S S
x x s s s s s

s s

C Cov
= =

= =∑ ∑C x x x x e x x e  (3.6) 

and se  is the ths  normal basis.  Since the responses from the M  sampling points provide 

the following equation: 

 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )

1 1 2 2

1 2

1 1 1 2 1

2 1 2 2 2

1 2

1

, , ,

, , ,

, , ,

, , ,

,

TS S S S S S S S
M M

TT S S T S S T S S
x x x M

S S S S S S
M

S S S S S S
M

S S S S S S
M M M M

M
S S
r s r s

s

F F F

Cov Cov Cov

Cov Cov Cov

Cov Cov Cov

Cov
=

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⋅⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥

⋅⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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F x x x x

C x x C x x C x x w

x x x x x x

x x x x x x
= w

x x x x x x

= x x e e ( )
1

M
S

r=

⋅ ⋅∑∑ w = C x w

 (3.7) 

the coefficients of w  can be obtained by 

 ( ) ( )1 S S S− ⋅w = C x F x  (3.8) 

where ( )SC x  is a M M×  symmetric matrix with zero diagonal terms and non-zero 

off-diagonal terms of covariance functions, ( ),S S
r sCov x x .  This kind of Kriging 

technique is utilized for exact fitting.  On the other hand, a linear combination of the 

polynomial fitting function in Eq. (3.1) and the Kriging function in Eq. (3.5) makes best 

fitting possible for Kriging [87].  The polynomial term provides the global shape of the 

response surface, while the Kriging term provides local predictions of the responses. 
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Sequentially, the Radial Basis Function (RBF) [88] is a special kind of Kriging, 

where the covariance function, also known as the basis function, is evaluated by the 

Euclidean distance between two corresponding vectors; namely, 

 ( ), ,S S S S
r s r sCov =x x x x  (3.9) 

Many other kinds of covariance functions have been utilized for the predictions of the 

response surfaces and they are listed in Table 3.3.  Besides those common covariance 

functions utilized for different applications by different researchers, other available 

covariance functions are constructed in a class of polynomial functions in terms of the 

basis function, ,S S
r sx x , shown in Ref. [89] 

3.2.3. Geometric Modeling Curves and Surfaces 

There are several famous geometric modeling methods that can be utilized for the 

purpose of RSM.  Those include Hermite, Bezier, and B-Spline curves for single-variable 

RSM and Hermite, Bezier, and B-Spline surfaces for two-variable RSM [84].  A Hermite 

cubic curve contain multiple continuously connected cubic curves which are 

parameterized by polynomial functions in terms of four sampling points.  The parametric 

equation is a single-variable polynomial fitting function in Eq. (3.1) with 

( ) 2 3
1 1 11

T
x x x⎡ ⎤= ⎣ ⎦B x .  The advantage of using a known parametric function like 

Hermite curve is that the coefficients, w , are given already and no further calculation is 

needed for the determination of w .  However, it is generally used for exact fitting.  

Bezier and B-spline curves are utilized for best fitting of the responses with different set 

of coefficients, w .  More details are included in Ref. [84]. 
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Table 3.3. Common Covariance Functions for Different Kriging Techniques. 

Different Kriging Techniques ( ),S S
r sCov x x  References

Gaussian covariance function ( )2 2

, ,exp ,S S S
h h r h s

h
x xσ θ⎡ ⎤−⎢ ⎥⎣ ⎦∑   * [83, 87] 

Exponential covariance function ( )2

, ,exp ,S S S
h h r h s

h
x xσ θ⎡ ⎤−⎣ ⎦∑  [83] 

Product-form covariance function ( )2

, ,exp ,S S S
h h r h s

h

x xσ θ⎡ ⎤−⎣ ⎦∏   � [83, 90] 

Radial basis function ,S S
r sx x  [88] 

Pseudo-cubic spline 
3

,S S
r sx x  [91] 

Weighted distance function , ,, hS S
h h r h s

h
x x

γ
θ∑   � [82, 92] 

Thin plate spline 
2

, log ,S S S S
r s r sx x x x  [86] 

 

In the later discussion, the parametric modeling of the responses in the CVD 

processes focuses on the exact fitting technique using the Radial Basis Function using the 

Eq. (3.5) with the covariance function in Eq. (3.9).  Those parametric models will be used 

to formulate optimization problems for improving the performance of the CVD processes. 

                                                 
 
*  Sσ  stands for the known standard deviation of the responses and hθ  is the unknown correlation 

parameter to be determined by maximizing the likelihood estimates. 
†  h  denotes the index for the important sampling points and there exists more than one important 

sampling points. 
‡  hγ  controls the smoothness of the distance function. 
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3.3. Radial Basis Function (RBF) 

The simplest approach to creating a RSM model is to apply PRS.  However, the 

approximation of PRS may not be very accurate if the response is highly nonlinear.  

Therefore, the RBF is used to construct the response surface models of the four functions 

described in the previous section.  The resulting models are validated with a 437-point 

uniformly distributed sampling model over the design domain.  For comparison purpose, 

models from the simple PRS are also listed. 

3.3.1. Formulation of the RBF 

Using Eq. (3.5) with the covariance function in Eq. (3.9), the RBF approximates 

any function, F , as a weighted summation of covariance functions: 

 ( )
1

,
M

S
s s

s
F w Cov

=

≅ ∑ x x  (3.10) 

where sw  is the weighting factor to be determined.  Two CVD operation parameters are 

studied, inlet velocity, V  and susceptor temperature, T .  Therefore, any of the four 

functions described in the previous section can be approximated using the RBF in the 

design domain which contains M  sampling points, 
TS S S

s s sV T⎡ ⎤= ⎣ ⎦x  for 1, 2, ,s M= … .  

The utilized covariance function is the Euclidean distance between some point, 

[ ]TV T=x , and the ths  sampling point, S
sx , and can be expressed as: 

 ( )
2 2

,
S S

S s s
s

m m

V V T TCov
V T

⎛ ⎞ ⎛ ⎞− −
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
x x  (3.11) 
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where V  varies from 0.1 to 1 m/s and T  varies from 400 to 1500 K.  The velocity 

difference, ( )S
sV V− , is normalized by the maximum V , mV = 1.0 m/s; similarly, 

mT = 1500 K.  Since the responses at all S
sx  satisfy the Eq. (3.10), the values of 

[ ]1 2
T

Mw w w= "w  can be obtained by the Eq. (3.8) where 

( ) ( ) ( ) ( )1 1 2 2, , ,
TS S S S S S S S

M MF V T F V T F V T⎡ ⎤= ⎣ ⎦"F x  includes the function values at 

the sampling points, and 

 ( )

( ) ( )
( ) ( )

( ) ( )

1 2 1

2 1 2

1 2

0 , ,

, 0 ,

, , 0

S S S S
M

S S S S
MS

S S S S
M M

Cov Cov

Cov Cov

Cov Cov

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"

"

# # % #

"

x x x x

x x x x
C x

x x x x

 

is a M M×  symmetric matrix containing the values of Euclidean distances between 

given sampling points.  The RBF has no approximation error at all sampling points and is 

expected to provide better approximations of the responses with non-linear behaviors 

than the simple PRS.  In the next section, functions modeled by the RBF will be validated 

by a 437-point sampling model and compared with the simple PRS approximation. 

3.3.2. Model Validation 

In this session, the responses at different sampling data sets are compared and 

validated.  Three different sample sets are used: 9-point design, 13-point design, and 

25-point design, as shown in Table 3.4.  Figure 3.1 illustrates the difference between 

these three different kinds of sampling designs.  In order to validate and compare the 

quality of the approximated models, the resulting models using the RBF of four functions 
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discussed in the previous section are compared with the responses generated from 437 

samplings and the responses from 25 point PRS.  The PRS utilized is given by 

 ( ) 2 2
1 2 3 4 5 6,F V T w w V w T w V w VT w T= + + + + +  (3.12) 

where the coefficients of w  are determined by Least Square Approximation from the 25 

samplings, using the Eq. (3.4). 

Table 3.4. Sampling Data Sets: 9 Points, 13 Points, and 25 Points. 

Point V (m/s) T (m/s)  Point V (m/s) T (m/s) 

1 0.1 400  14 0.1 650 

2 0.1 950  15 0.1 1250 

3 0.1 1500  16 0.3 400 

4 0.55 400  17 0.3 950 

5 0.55 950  18 0.3 1500 

6 0.55 1500  19 0.55 650 

7 1.0 400  20 0.55 1250 

8 1.0 950  21 0.8 400 

9 1.0 1500  22 0.8 950 

10 0.3 650  23 0.8 1500 

11 0.3 1250  24 1.0 650 

12 0.8 650  25 1.0 1250 

13 0.8 1250     
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Figure 3.1. Sampling Data Sets. 

The responses of the PWA are shown in Figure 3.2.  Three responses from RBF 

with 9-point samplings, 13-point samplings and 25-point sampling are listed in the sub-

figures (a), (b) and (c), respectively.  A 437-point sampling is shown in sub-figure (d) as 

the baseline for comparison.  The comparison is performed in terms of an error function, 

err , which is defined as 

 ( )
437 2

1

1
437

err F Gη η
η=

= −∑  (3.13) 

where Fη  and Gη  denote the thη  function values of the response surface model and the 

simulation respectively.  The function values of err  of the 9-point RBF, the 13-point 

RBF and the 25-point RBF are 7.303 %, 5.486 % and 3.794 %, which implies more 

sampling points provide better accuracy with RBF.  For simplicity, the following sessions 

will use the 25-point RBF.  Due to the occurrence of the isolated working areas at high 

inlet velocity and low susceptor temperature, a sudden drop of PWA is found around that 

region.  This sudden decrease of the PWA causes non-smooth behaviors during the 

transition.  Beyond the region with isolated working areas, the highest PWA is illustrated 
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by the dark red region at high inlet velocity and intermediate susceptor temperature in the 

sub-figure (d).  The non-smooth behavior and the quantitative distribution can be 

captured using the RBF whereas the response from a 25-point PRS, as shown sub-

figure (e), fails to recognize it.  The error measurement of a 25-point PRS is 5.259 %, 

which is apparently higher than that of the RBF. 

The approximated models of MDR from the RBF, a 437-point response, and PRS 

are shown in Figure 3.3.  Unlike the models of PWA, the MDR behavior is very smooth.  

The error measurements of the RBF and the PRS are both small – 62.046 10−×  kg/m2s and 

63.479 10−×  kg/m2s respectively.  This is because the MDR is an averaged value in the 

EWA.  Any non-linear behavior is blended into the entire function.  The maximum MDR 

are all located at the same region as shown in the sub-figures (a), (b), and (c). All models 

of MDR are in very good agreement.  Although PRS can model well-behaved function, it 

lacks the capability of approximating non-smooth behaviors, such as the PWA.  

Therefore, only the 25-point RBF will be used in the following discussion. 

The 25-point parametric model and the 437-point sampling of the responses of 

RMS are shown in Figure 3.4. Some non-linear behaviors are found at the region of high 

velocity and low temperature due to the occurrence of the isolated working areas.  The 

infrequent topological change of the RMS, shown in the sub-figure (b), can hardly be 

handled when making the response surface approximations.  Similar to the comparison of 

the 25-point RBF and 25-point PRS in the Figure 3.2 (c) and (e), the RBF with 25-point 
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samplings can capture this non-smoothness but not from the PRS with the same 25-point 

samplings. 

(a) (b) 

(c) (d) 

 

(e)  

Figure 3.2. Response Surfaces of the PWA. 

(a) 9-Point RBF, (b) 13-Point RBF, (c) 25-Point RBF, (d) 437-Point Sampling, and (e) 25-Point PRS. 
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(a) (b) 

 

(c)  

Figure 3.3. Response Surfaces of the MDR. 

(a) 25-Point RBF, (b) 437-Point Sampling, and (c) 25-Point PRS. 

(a) (b) 

Figure 3.4. Response Surfaces of the RMS. 

(a) 25-Point RBF and (b) 437-Point Sampling. 
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The 25-point RBF and the 437-point sampling of the KUR are shown in 

Figure 3.5. Several minor non-linear behaviors are found at the low velocity and the low 

temperature regions.  The 25-point RBF has accurate approximations because it has good 

agreement with the 437-point sampling. 

(a) (b) 

Figure 3.5. Response Surfaces of the KUR. 

(a) 25-Point RBF and (b) 437-Point Sampling. 

3.4. Conclusion and Remarks 

The response surface models using PRS have less accuracy than the ones by the 

RBF because PRS has poor approximations when the responses are highly nonlinear.  

Three different amounts of sampling points have been utilized for RBF models, including 

9-point, 13-point, and 25-point designs.  Those models are firstly compared with the PRS 

models confirming that PRS is not suitable for the parametric modeling of the nonlinear 

responses in the CVD process.  Those RBF models have also been validated with a 

437-point sampling model and the 25-point designs have been found to have acceptable 

accuracy.  The detailed information about the 437-point simulations is shown in the 
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Appendix I.  Those responses then can be utilized to optimize the CVD process.  In the 

next chapter, several different optimization formulations will be used to modify existing 

systems and design new ones to produce better film characteristics and deposition rates in 

the thin films of CVD process. 

The proposed RBF can be utilized to parametrically model the responses in any 

other thermal systems.  It is especially useful when the responses are highly nonlinear.  

The complexity of the RBF increases with the increasing number of the design variables 

as well as the sampling points.  To simplify the RBF, the designer can efficiently define 

the locations of the sampling points instead of using the uniformly distributed ones.  One 

possible method is the Latin Hypercube Sampling [93].  For the moderate-scale responses, 

5N -uniformly distributed sampling has been found to be a good choice. 
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Chapter 4. 

Optimization of the CVD Process 

4.1. Introduction 

The response surface models are used to formulate the optimization problems of 

the CVD process in this chapter.  Better operating conditions are expected to be found to 

improve the performance of the CVD process.  The objective and constraint functions are 

formulated by the RBF models of the CVD responses.  For higher productivities, one of 

the objective functions is to maximize the PWA while another one is to maximize the 

MDR.  On the consideration of the uniformity of the deposition, the RMS and the KUR 

are subject to certain quantitative levels.  Both constraints of the deposition uniformity 

are very significant to the locations of the optimal operating conditions. 

4.2. Problem Formulations 

In a general CVD process, the PWA and the MDR should be maximized in order 

to obtain the highest productivity, and two global uniformity factors, the RMS and the 

KUR are required to satisfy some desirable guidelines.  Therefore, three optimization 

formulations are proposed.  The first one is to maximize the PWA with constraints on the 

RMS and the KUR.  The second one is to maximize the MDR with the same constraints 

on the RMS and the KUR.  They will be discussed in this section.  There are three 

different ways to formulate optimization problems which deal with the both disciplines, 

the PWA and the MDR.  Both of the PWA and the MDR are to be maximized in terms of 
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a penalty function subject to the same constraints of the uniformities.  Besides the multi-

objective formulation, the PWA is to be maximized subject to a desired level of the MDR.  

On the contrary, the MDR is lastly maximized subject to the constraint of the PWA.  The 

detailed information about the optimal solutions is given in the later subsessions. 

4.2.1. Example 1: Maximizing the PWA 

The first formulation is to maximize the PWA while satisfying the constraints of 

the RMS and the KUR.  The maximization of the PWA is essential to practical needs in 

terms of yielding higher productivities of micro-devices and greater capacities of 

potential fabrication sources.  It can be formulated as follows: 

 

,

U

U

PWA

. . RMS RMS
KUR KUR

V T

L U

L U

Max

s t

V V V
T T T

≤
≤

≤ ≤

≤ ≤

 (4.1) 

The bounds of the design variables are slightly smaller than the sampling domain of the 

responses surface modeling because the interior of the responses surface model has better 

approximation than its edges.  The chosen bounds are 0.2LV =  m/s, 0.9UV =  m/s, 

400LT =  K, and 1400UT =  K.  The upper bounds of the RMS and the KUR are defined 

as 6
URMS 1.35 10−= ×  and UKUR 2.62=  respectively. All functions are approximated 

using the 25-point RBF and the optimization problem is solved by the optimization 

toolbox in MATLAB®. 
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Figure 4.1 marks the location of the optimal design by a black dot.  The dash 

contour lines represent the objective function, PWA.  The boundaries of the uniformity 

constraints are plotted by the solid curves and the infeasible regions are hatched with 

colors.  Because the feasible region is not a convex region, many local optimal solutions 

exist.  To overcome this problem, multiple starting points are used to find the optimal 

solution.  The optimal solution is ( ) ( )* *, 0.75,1009V T =  and its feasibility is verified by 

FLUENT simulation.  Furthermore, the best feasible setting in the 437 samplings, 

( ) ( )* *, 0.75,1000V T = , verifies the obtained optimal result.  The optimal solution also 

shows good agreement with Figure 3.2 (d).  The temperature of the susceptor is a 

significant factor in the control of the working area and the uniformity.  If the inlet 

velocity is fixed at the optimal, the working area decreases dramatically as well as the 

uniformity constraints are mostly violated when temperature drops from 1000 to 500 K. 

Obj. Func.
Deter. Con. #1
Deter. Con. #2
Optimal Solution

 
Figure 4.1. Optimal Solution of Maximizing the PWA. 
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4.2.2. Example 2: Maximizing the MDR 

The second formulation is to maximize thin-film deposition rate while controlling 

global uniformity factor within certain bounds.  The mathematical form is expressed as: 

 

,

U

U

MDR

. . RMS RMS
KUR KUR

V T

L U

L U

Max

s t

V V V
T T T

≤
≤

≤ ≤

≤ ≤

 (4.2) 

Same constraints of surface uniformities as first formulation are considered within the 

same design domain.  The feasible regions and the optimal solution are shown in 

Figure 4.2.  Similarly, multiple starting points are used to find the global optimal solution 

because the feasible region is not convex.  The optimal solution of 25-point RBF model is 

( ) ( )* *, 0.9,500V T = , and its feasibility is also verified by FLUENT simulation.  The 

solution is verified while exactly same optimal solution is found in the 437 point 

sampling and the previous observations in Figure 3.3.  Both the inlet velocity and the 

susceptor temperature are important to the quantity of the deposition rate and the 

conditions of the uniformity constraints.  High velocity and low temperature provide 

highest deposition rate in the Eq. (4.2); however, they lead to smallest working area in the 

Eq. (4.1).  A multi-objective formulation will be considered to compensate the decision 

of design variables. 
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Obj. Func.
Deter. Con. #1
Deter. Con. #2
Optimal Solution

 
Figure 4.2. Optimal Solution of Maximizing the MDR. 

4.2.3. Example 3: A Multi-Objective Formulation 

The third formulation is to maximize the PWA and the MDR simultaneously with 

the same constraints of the RMS and the KUR described previously.  Instead of 

optimizing the PWA and MDR individually, it would be more practical to form a multi-

objective optimization problem.  Using a simple normalized sum of these two functions, 

an optimization problem is listed as: 

 

,
m m

U

U

PWA MDR
PWA MDR

. . RMS RMS
KUR KUR

V T

L U

L U

Max

s t

V V V
T T T

+

≤
≤

≤ ≤

≤ ≤

 (4.3) 

where the PWA and the MDR are normalized by their maximum quantities within the 25 

samplings, mPWA 93.63=  and 4
mMDR 2.664 10−= × .  Same constraints for the film 
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uniformity are utilized.  The feasibility and the optimality are shown in Figure 4.3, where 

the global optimal solution is obtained from multiple starting points.  The optimal 

solution is *V = 0.9 m/s and *T = 1079 K, which is verified in 437 samplings, 

*V = 0.9 m/s and *T = 1100 K.  The FLUENT simulation also confirms the feasibility of 

the optimal operation setting.  Since a multi-objective formulation is used, the optimal 

solution is a compromised solution between the PWA and the MDR.  High inlet velocity 

is found to be the optimal simply because it leads to high MDR and large PWA.  

However, the decision of the susceptor temperature is crucial.  Although low temperature 

provides high MDR, the PWA decreases massively.  As shown in Figure 4.3, a feasible 

and moderate setting of the susceptor temperature is found to compensate for the 

unacceptable PWA and satisfy the desired uniformity control. 

Obj. Func.
Deter. Con. #1
Deter. Con. #2
Optimal Solution

 
Figure 4.3. Optimal Solution of the Multi-Objective Formulation. 
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4.2.4. Example 4: Maximizing the PWA Subject to Constraint of 

Deposition Rate 

The forth formulation is to maximize the working area on the susceptor subject to 

the same desired constraints of the global uniformity factors described previously and an 

additional constraint on the deposition rate.  It is expressed as follows: 

 

,

U

U

L

PWA

. . RMS RMS
KUR KUR
MDR MDR

V T

L U

L U

Max

s t

V V V
T T T

≤
≤

≤
≤ ≤
≤ ≤

 (4.4) 

where the lower bound of the MDR constraint is considered as 

4 2
LMDR 1.5 10 kg/m s−= × .  Figure 4.4 shows the feasible regions in white background 

color and the infeasible ones in three different colors, where red color is used for the first 

constraint, purple area indicates the infeasible domain of the second constraint, and the 

blue one is for the third MDR constraint.  Similar to the previous examples, a strategy of 

using multiple starting points is used to resolve the convergence problem due to the 

disjoint feasible region.  The optimal solution is found the same as the Example 1 

because the constraint of the MDR is not active.  The FLUENT simulation verifies the 

result and the 437-point samplings show good agreement with it. 
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Obj. Func.
Deter. Con. #1
Deter. Con. #2
Deter. Con. #3
Optimal Solution

 
Figure 4.4. Optimal Solution of Maximizing the PWA Subject to the MDR Constraint. 

4.2.5. Example 5: Maximizing the MDR Subject to Constraint of 

Working Area 

The last example is to maximize the MDR subject to the constraints of the 

uniformity factors and an additional constraint of the PWA, which is written as follows: 

 

,

U

U

L

MDR

. . RMS RMS
KUR KUR
PWA PWA

V T

L U

L U

Max

s t

V V V
T T T

≤
≤

≤
≤ ≤
≤ ≤

 (4.5) 

where the PWA is desired to exceed the lower bound of LPWA 85 %= .  The feasible 

region is narrower than the Example 2 due to the additional constraint, shown in 

Figure 4.5, and the optimal design in the Example 2 is no longer feasible in the Eq. (4.5).  
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Multiple starting points show the optimal solution is located at *V = 0.9 m/s and 

*T = 1079 K, which is verified by the FLUENT simulation and the 437 point samplings. 

Obj. Func.
Deter. Con. #1
Deter. Con. #2
Deter. Con. #3
Optimal Solution

 
Figure 4.5. Optimal Solution of Maximizing the MDR Subject to the PWA Constraint. 

4.2.6. Results 

The deposition process of silicon from silane in a vertical impinging CVD reactor 

has been modeled and studied.  Two quality factors, the Percentage of Working Area and 

the Mean of Deposition Rate were defined and two global uniformity factors, the Root 

Mean Square and the Surface Kurtosis, were modeled.  The responses were approximated 

using the Radial Basis Function with respect to the two operation parameters – the inlet 

velocity and the susceptor temperature.  The approximating models were compared with 

models from a Polynomial Response Surface and validated against a 437-point sampling 

surface.  Using the RBF models, five optimization formulations were proposed to 
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maximize the productivity while maintaining a specific minimum level of the global 

uniformity factors.  The obtained optimal solutions of the design variables have been 

verified by the simulations at the optimal points, and the solutions were found to be all 

feasible.  The detailed information about the optimal solutions of the 25-point models and 

the 437-sampling models is shown in Table 4.1.  Good agreements have been found 

between the optimization with 25-point models and 437-samplings.  Therefore, not only 

the 25-point RBF models have fairly good approximations of the responses of the CVD 

process, but they are capable of providing correct optimal solutions.  It is expected that 

the same methodology can be used in the deposition of many other materials such as 

titanium nitride (TiN), gallium nitride (GaN), silicon carbide (SiC), etc. 

Table 4.1. Optimal Solutions and the Corresponding Responses for Examples 1 to 5 with the 
25-Point RBF Models and the 437-Sampling Simulations. 

Example # Models Optimal Solution PWA (%) MDR (kg/m2s) RMS (kg/m2s) KUR

25-point (0.75, 1009) 93.78 1.682E-4 1.345E-6 1.690
1 

437-point (0.8, 1000) 93.63 1.741E-4 1.369E-6 1.707

25-point (0.9, 500) 56.13 2.354E-4 9.825E-7 2.611
2 

437-point (0.9, 500) 57.35 2.332E-4 9.751E-7 2.628

25-point (0.9, 1079) 91.07 1.779E-4 1.351E-6 1.726
3 

437-point (0.9, 1100) 93.63 1.785E-4 1.255E-6 1.692

25-point (0.75, 1009) 93.78 1.682E-4 1.345E-6 1.690
4 

437-point (0.8, 1000) 93.63 1.741E-4 1.369E-6 1.707

25-point (0.9, 1079) 91.07 1.779E-4 1.351E-6 1.726
5 

437-point (0.9, 1100) 93.63 1.785E-4 1.255E-6 1.692
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4.3. Optimization with Design Uncertainties 

If the design variables have some design uncertainties, they can be 

mathematically described by some statistical distributions.  Due to the randomness of the 

design variables, the constraint values are no longer constant and have some probability 

distributions with respect to the random variables.  Theoretically, the probabilities of the 

violations of the performance constraints are non-zero; therefore, an optimal solution 

with zero failure probabilities does not exist.  A lower bound is needed for these 

probabilistic constraints where the failure probabilities are subject to some allowable 

level.  For most engineering practices, the allowable failure probability is less than 1 %. 

Suppose that the inlet velocity and the susceptor temperature are normally 

distributed random variables with the standard deviations of 0.02 m/s and 20 K 

respectively.  The mean of the distributions are located at the optimal solutions obtained 

from the previous optimization problems.  For examples 1 to 5, Monte Carlo Simulations 

are utilized to evaluate the failure probabilities of the constraints with the given 

uncertainties, listed in Table 4.2.  The active constraints in terms of the RMS function 

have the failure probabilities of 43.03 %, 50.23 %, 42.90 %, and 50.10 % for examples 1, 

3, 4, and 5 respectively at their optimal solutions.  Example 2 has a high failure 

probability of the KUR constraint, 12.73 %, at its optimal solution.  Without the 

considerations of the design uncertainties, the thermal systems have high risks of the 

constraint violations resulting in massive defective productions.  Additionally, the MCS 

results of the failure probabilities with lognormally distributed operating conditions are 
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shown in Table 4.2.  Unacceptable results are also found as some of the constraints have 

failure probabilities far larger than 1 %. 

Table 4.2. Monte Carlo Simulations at the Optimal Solutions with Design Uncertainties, 0.02Vσ =  

and 20Tσ = , for Examples 1 to 5. 

Example # Optimal 
Solution 

Distribution 
of Uncertainty 

MCS of 
Con. #1 

MCS of 
Con. #2 

MCS of 
Con. #3 

Normal 43.03 % 0 % ─ 
1 (0.75, 1009) 

Lognormal 43.13 % 0 % ─ 

Normal 0 % 12.73 % ─ 
2 (0.9, 500) 

Lognormal 0 % 12.66 % ─ 

Normal 50.23 % 0 % ─ 
3 (0.9, 1079) 

Lognormal 50.35 % 0 % ─ 

Normal 42.90 % 0 % 0 % 
4 (0.75, 1009) 

Lognormal 43.02 % 0 % 0 % 

Normal 50.10 % 0 % 0 % 
5 (0.9, 1079) 

Lognormal 50.33 % 0 % 0 % 

 

4.4. Conclusion and Remarks 

The response surface models of the productivity and the uniformity of the CVD 

process have been utilized to formulate several different optimization problems.  The 

maximization of the MDR and the PWA is the objective, while the uniformity factors, the 

RMS and the KUR, are subject to certain acceptable limit.  With different definitions of 

the objective and constraint functions, different optimal operating conditions have been 

found and validated by comparing with the numerical simulations.  The proposed strategy 
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up to this point, which includes the definitions of the performance responses, the 

parametric modeling using the RBF, and the optimization in terms of those response 

surface models, can be applied to any other kinds of thermal systems than the CVD 

process to modify existing systems and design new ones with better operating conditions. 

However, the optimal design of the thermal system becomes unstable if the 

uncertainties exist in the design.  As the traditional deterministic optimization algorithm 

pushes the design variables to the optimality, they are often on the limit state of the 

performance constraints or very close to them.  The existence of the design uncertainties 

gives high probabilities of that the constraint limits are violated at the optimal solutions.  

Thus, an improved strategy is highly necessary to optimize the thermal system with 

design uncertainties.  In the next chapter, the Reliability-Based Design Optimization is 

discussed and utilized to solve the optimization problems with random design variables. 
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Chapter 5. 

Reliability-Based Design Optimization (RBDO) 

5.1. Introduction 

Optimization techniques have been well developed and widely utilized to seek for 

better engineering designs in terms of reducing the system cost and enhancing the 

performance or the quality.  Traditionally, engineering design problems are formulated as 

a deterministic optimization problem while neglecting the uncertainties of design 

variables.  Under the deterministic optimization formulation, the optimal designs are 

selected based on the feasibility and optimality.  However, the existence of uncertainties 

on the design variables will lead to the violations of constraints and destroy the optimality.  

To this end, Reliability-Based Design Optimization (RBDO) has been developed to 

provide a much better design of which the probability of system failures is reduced to an 

acceptable level. 

General RBDO Formulation 

Consider the random design variables, X , where the thj  random design variable, 

jX , has an expected value of jd  and a standard deviation of jσ .  Instead of using the 

original deterministic optimization formulation as follows: 

 
( )
( ). . 0 1...i

Min z

s t g i n≤ =
d

d

d
 (5.1) 

a probabilistic design optimization is formulated as follows: 
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( )

( ) ,. . 0 1...i f i

Min z

s t P g P i n> ≤ =⎡ ⎤⎣ ⎦

d
d

X
 (5.2) 

where ,f iP  is the thi  allowable probability of the system failure.  Mathematically, 

probabilities of the system failure, ( ) 0iP g >⎡ ⎤⎣ ⎦X , can be calculated by an integral of its 

Joint Probability Density Function (JPDF), ( )if x , within the infeasible domain, shown 

as follows: 

 ( )
( )

( ) 10
0

i
i i Ng

P g f dx dx
>

> =⎡ ⎤⎣ ⎦ ∫ ∫"" "
X

X x  (5.3) 

However, it is very computationally expensive to evaluate the JPDF and the failure 

probability in Eq. (5.3). 

5.2. Early Definitions of Reliability Indices 

Instead of computing the integral in Eq. (5.3), several researchers have defined 

quantitative measures in the field of reliability analysis to evaluate the probabilities of 

system failures.  Those are called reliability indices.  The early definitions of those 

reliability indices are introduced in this subsession. 

5.2.1. Cornell Reliability Index 

Cornell [94] provided another approach to evaluate the failure probability by 

 ( ) ( ),0i C iP g β> ≅ Φ −⎡ ⎤⎣ ⎦X  (5.4) 

where Φ  is the Standard Normal Cumulative Distribution Function and ,C iβ  is the 

Cornell reliability index for the thi  constraint, which is given by 
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( )
( )

,
i

C i

i

E g

Var g
β

− ⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

X

X
 (5.5) 

In Eq. (5.5), ( )iE g⎡ ⎤⎣ ⎦X  is the expected value of the thi  constraint corresponding to the 

random variable, X , and ( )iVar g⎡ ⎤⎣ ⎦X  is the coefficient of variance of the constraint.  

These two statistical quantities can be obtained by Monte Carlo Simulations (MCS) but 

MCS is still pretty costly. 

Madsen [95] introduced the First-Order Second-Moment (FOSM) method to 

express the Cornell reliability index.  First, a linear Taylor expansion of the nonlinear 

constraint at some design variable, Tx , is given as follows 

 ( ) ( ) ( ) ( )i i T T i Tg g g≅ + − ⋅∇ xX x X x x  (5.6) 

The FOSM Cornell reliability index can then be expressed by 

 

( ) [ ]( ) ( ){ }
( )

( ) ( ) ( ){ }
( )

,
i T T i TFOSM

C i

i T

i T T i T

i T

g E g

Var g

g g

Var g

β
− + − ⋅∇

=
⋅∇⎡ ⎤⎣ ⎦

− + − ⋅∇
=

⋅∇⎡ ⎤⎣ ⎦

x

x

x

x

x X x x

X x

x d x x

X x

 (5.7) 

Since 

 

( ) ( ) ( )

( ) ( ) [ ]

( ) ( )

1 1 1

1 1

,

,

k k m

k m

N N N

k x i T k x i T m x i T
k k m

N N

x i T x i T k m
k m

i T i T

Var X g Cov X g X g

g g Cov X X

g g

= = =

= =

⎡ ⎤ ⎡ ⎤∇ = ∇ ∇⎢ ⎥ ⎣ ⎦⎣ ⎦

= ∇ ∇

= ∇ ⋅ ⋅∇

∑ ∑∑

∑∑

x x

x x x

x x

x xΣ

 (5.8) 

where [ ]
1 1

,
N N

k m k m
k k

Cov X X
= =

≡ ∑∑ e eΣ  is the covariance matrix, the ,
FOSM

C iβ  becomes 
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( ) ( ) ( ){ }

( ) ( ),
i T T i TFOSM

C i
i T i T

g g

g g
β

− + − ⋅∇
=

∇ ⋅ ⋅∇
x

x x

x d x x

x xΣ
 (5.9) 

For the special case of mutually independent random variable, i.e. 

[ ], 0k mCov X X =  for k m≠  otherwise [ ] [ ] 2,k k k kCov X X Var X σ= = , the ,
FOSM

C iβ  reduces 

to a simpler form as follows 

 
( ) ( ) ( ){ }

( ),
i T T i TFOSM

C i
i T

g g
g

β
− + − ⋅∇

=
⋅∇

x

x

x d x x
xσ

 (5.10) 

where 
1

N

j j j
j
σ

=

=∑ e eσ  is the standard deviation matrix.  If the Taylor expansion in Eq. (5.6) 

is evaluated at the mean value d , i.e. T =x d , the method is called Mean-Value First-

Order Second-Moment (MVFOSM) [95].  From Eq. (5.10), the MVFOSM Cornell 

reliability index is given by 

 ( )
( ),

iMVFOSM
C i

i

g
g

β
−

=
⋅∇ x

d
dσ

 (5.11) 

The evaluation of the failure probability using ,
MVFOSM
C iβ  only requires 1N +  function calls 

(FCs), which is less costly than the integral method in Eq. (5.3) and the original Cornell 

reliability index in Eq. (5.5). 

5.2.2. Chance Constrained Programming (CCP)  

The Chance Constrained Programming (CCP) method [96-101] has been 

introduced to convert the probabilistic constraints in RBDO problems to solvable 
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deterministic constraints using the definition of ,
MVFOSM
C iβ .  Considering the thi  original 

probabilistic constraint as follows 

 ( ) ,0i f iP g P> ≤⎡ ⎤⎣ ⎦X  (5.12) 

the failure probability, ( ) 0iP g >⎡ ⎤⎣ ⎦X , is approximated as follows [100]: 

 ( ) ( ),0 MVFOSM
i C iP g β> ≅ Φ −⎡ ⎤⎣ ⎦X  (5.13) 

Defining an allowable reliability index as 

 ( ), ,f i f iPβΦ − ≡  (5.14) 

and applying an inverse operator of the Standard Normal CDF, ( )1−Φ • , to Eq. (5.12), a 

deterministic constraint is then obtained: 

 ( ), ,
MVFOSM

C i f iβ β− ≤ −d  (5.15) 

As a result, the following optimization formulation is considered instead of Eq. (5.2): 

 
( )

( ), ,. . 1...MVFOSM
C i f i

Min z

s t i nβ β− ≤ − =
d

d

d
 (5.16) 

Substituting Eq. (5.11) into Eq. (5.16), it can be rewritten as: 

 

( )
( )

( ) ,. . 1...i
f i

i

Min z

g
s t i n

g
β≤ − =

⋅∇

d

x

d

d
dσ

 (5.17) 

which is similar to the Approximate Moment Approach (AMA) at present times [102]. 

The CCP method using ,
MVFOSM
C iβ  has one major problem [100]: The 

approximation of Eq. (5.5) leads to an inaccurate evaluation of the failure probability 
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when the constraint is nonlinear.  Other researchers have defined different reliability 

indices to resolve this problem.  

5.2.3. Veneziano Reliability Index 

In order to have better approximation of the nonlinear constraint, Veneziano [103] 

introduced a new definition of the reliability index which utilized the information at the 

“tail” of the distribution instead of the expansion point at the mean value, d , in 

Eq. (5.11).  The concept aimed at the point where the constraint is active, namely 

( ){ }0a ig∈ =x x x .  Following the idea that the Cornell reliability index is geometrically 

the distance from the origin to the linearized constraint in the u -space [95], Veneziano 

mapped the active point to the u -space and measured the reliability index as the distance 

from the origin to the corresponding active point: 

 , ,V i a iβ = u  (5.18) 

where ( )1
,a i a

−= ⋅ −u x dσ  and ( ){ }, 0a i ig∈ =u u u .  However, ,V iβ  varies with the 

decision of ,a iu  leading to an unstable determination of the reliability index. 

5.3. Reliability Index Approach (RIA) 

Since the failure probability can be evaluated by the standard normal CDF in 

terms of a reliability index instead of a costly integral of the PDF in the failure region, 

several different kinds of the reliability indices have been studied.  The Cornell 

Reliability Index is a function in terms of expected value and the variance of the 
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constraint.  The MVFOSM method linearly expands the constraint at the mean of the 

design variable; however, it lacks accurate approximation at the tale of the probability 

distribution.  The Veneziano Reliability Index is often chosen from a set of reliability 

indices evaluated on the limit state of the performance constraint.  It is still not the best 

way to evaluate the failure probability because the decision of the Veneziano Reliability 

Index is not unique and it lacks a systematic searching approach.  In this session, a well 

utilized reliability index, Hasofer-Lind (H-L) Reliability Index, is introduced and 

implementation of the H-L Reliability Index to solve the RBDO problems is discussed. 

5.3.1. Hasofer-Lind Reliability Index 

To overcome the indeterminable problem in the definition of ,V iβ , Hasofer and 

Lind [104] defined the reliability index as the shortest distance from the origin to the 

constraint in u -space yielding a point-searching sub-problem: 

 
( ). . 0

i

i i

Min

s t g =

u

u
 (5.19) 

The optimal solution of the Eq. (5.19) is called the Most Probable Point (MPP), *
iu , for 

the thi  constraint.  The H-L reliability index then is given by 

 *
,HL i iβ = u  (5.20) 

The evaluation of the failure probability using the ,HL iβ  is more accurate than ,
MVFOSM
C iβ  

because *
iu  provides the information at the tail of the distribution.  Another advantage is 
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that the determination of the ,HL iβ  is unique, unlike the various choices of the ,V iβ , 

because only one *
iu  is obtained from the MPP problem in Eq. (5.19). 

Figure 5.1 illustrates the difference between ,
MVFOSM
C iβ , ,V iβ , and ,HL iβ .  Not only 

the ,
MVFOSM
C iβ  can be evaluated by the Eq. (5.11), it also can be measured by the distance 

from the origin to the root of the perpendicular of the linearized constraint which is 

expanded at the origin in the standard normal space.  The ,V iβ  is the distance from the 

origin to some active point on the constraint.  The ,HL iβ  is measured by the distance from 

the origin to the MPP, *
iu , and can be obtained by iteratively solving the Eq. (5.19).  The 

iteration process involves linearizations of the constraints at the perpendicular points, 

( )m
iu .  More details about the MPP searching algorithms are discussed later. 

u1

u2

( ) 0g =u

( ) 0g >u

( ) ( )0 0g =
u

u

( ) ( )1 0g =
u

u

( ) ( )0 0g >
u

u

au

V aβ = u
( )0u

( )1u

( )2u
*u

*
HLβ = u

( )1
Cβ = u

 
Figure 5.1. Scheme of Three Different Kinds of the Reliability Indices: Cornell, Veneziano, and 
Hasofer-Lind Reliability Indices. 
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Finally, the failure probability can be evaluated by 

 ( ) ( )0,1 ,0i HL iP g β> ≅ Φ −⎡ ⎤⎣ ⎦X  (5.21) 

and the probabilistic constraint in Eq. (5.12) is converted to the deterministic formulation 

as follows: 

 ( ), ,HL i f iβ β− ≤ −d  (5.22) 

If the MPP can be obtained efficiently, the Eq. (5.22) will become a very useful 

formulation which includes the accurate information of the failure probability and can be 

solved with less computational efforts.  It has become an important research to solve the 

MPP-searching problem in Eq. (5.19) and understand how it can be used to solve RBDO 

problems. 

5.3.2. Most Probable Point (MPP)-Searching Algorithms 

Many researchers then focused on how the MPP-problem is solved [104-106].  

Hasofer and Lind [104] firstly suggested an iterative method, as known as the HL 

algorithm, to find the MPP at the foot of the perpendicular from the origin to the linear 

approximation at the tail of the variable distribution in u -space, as known as the Normal 

Tail Approximation [95].  Rackwitz and Fiessler [105] developed a systematic procedure 

to complete the iterative method that Hasofer and Lind suggested.  This method is called 

the HL-RF algorithm, also known as the Advanced First-Order Second-Moment 

(AFOSM) methodmethod, or the First-Order Reliability Method (FORM) at the present 

time.  Ayyub and Haldar [106] have utilized a similar iterative scheme to find the MPP 

by FORM.  With more function calls, higher order of the reliability analysis has been 
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utilized to provide better approximations of the performance constraints and have more 

accurate MPP, such as Second-Order Reliability Method (SORM) [95].  Beyond those 

iterative methods, the HL-RF algorithm is the most common one and will be discussed in 

detail in the following paragraph. 

HL-RF Iterative Algorithm 

In the thm  iteration of the MPP searching process, the standard normal design 

variable for the thi  constraint, ( )m
iu , in the MPP-problem in Eq. (5.19) is utilized as the 

expansion point of the first-order Taylor approximation of the constraint, which is given 

by 

 ( ) ( )( ) ( )( ) ( )( )m m m
i i i i i i i ig g g≅ + − ⋅∇uu u u u u  (5.23) 

The foot of the perpendicular from the origin to the linearized constraint in Eq. (5.23), 

( )m
i

⊥u , is given by 

 ( ) ( ) ( )( ) ( )m m m m
i i i i

⊥ = ⋅u u µ µ  (5.24) 

where ( ) ( )( ) ( )( ) 1
m m m

i i i i ig g
−

≡ ∇ ∇u uu uµ  is the unit vector of the linearized constraint.  The 

( )1m
i

+u  is updated along the direction of ( )m
i

⊥u  can is defined as 

 ( ) ( ) ( ) ( )1m m m m
i i i iν+ ⊥= +u u µ  (5.25) 

where ( )m
iν  is the coefficient for the update scheme.  The Eq. (5.25) must satisfies 

( )( )1 0m
i ig + =u  so 

 ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) 0m m m m m m m m
i i i i i i i i i ig gν⎡ ⎤+ ⋅ + − ⋅∇ =⎣ ⎦ uu u u uµ µ µ  (5.26) 
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or 

 ( ) ( )( ) ( )( ) 1
m m m

i i i i ig gν
−

= − ∇uu u  (5.27) 

Therefore, the iterative equation of the FORM is given as 

 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( )
( )( )

( )( )
( )( )

1
1m m m m m m

i i i i i i i i

m m m m
i i i i i i i

m m
i i i i

g g

g g g

g g

−
+ ⎡ ⎤= ⋅ − ∇⎢ ⎥⎣ ⎦

⎡ ⎤⋅∇ − ∇⎢ ⎥= ⎢ ⎥∇ ∇⎢ ⎥⎣ ⎦

u

u u

u u

u u u u

u u u u

u u

µ µ

 (5.28) 

The iteration continues until convergence and the reliability index can be evaluated by 

substituting the *
iu  to Eq. (5.20).  The obtained reliability index by the HL-RF algorithm 

is then denoted as ,
FORM
HL iβ .  The procedure of converting the probabilistic constraints to 

deterministic constraints with the ,
FORM
HL iβ  is called the Safety Index Approach [100], or 

the Reliability Index Approach (RIA) at present time. 

The technique of FORM has been introduced to find the MPP which has the 

shortest distance from the origin to the constraint in the standard normal space.  However, 

the FORM does not guarantee the convergence of the MPP searching if the constraint is 

concave [107].  Wu [108] has introduced a procedure which utilized the linear 

approximation at the mean value to improve the efficiency of MPP searching with the 

FORM.  This method is called the Advanced Mean Value First Order (AMVFO) method 

or the Advanced Mean Value (AMV) method at present time.  In this research work, the 

MPP-searching problem is solved by a general Sequential Quadratic Programming 

(SQP)-based optimization toolbox, fmincon, in MATLAB®. 
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5.4. Other RBDO Algorithms 

Besides the RIA, several other algorithms have been introduced to solve the 

RBDO problems.  Those include Performance Measure Approach (PMA) and Sequential 

Optimization and Reliability Assessment (SORA).  The PMA [109] considers an inverse 

reliability analysis and converts the probabilistic constraints into deterministic 

formulations in terms of the performance measures.  This approach also requires a sub-

optimization problem which finds the Inverse Most Probable Points to evaluate the 

performance measures with the target reliabilities [104].  The sub-problem has been 

solved by several different kinds of iterative approaches, including the Advanced Mean 

Value [110-111], the Conjugate Mean Value (CMV) [112], and the Hybrid Mean Value 

(HMV) [112] methods.  The SORA [113] considers the RBDO problems with a single-

loop strategy where the optimization and the reliability assessment are employed.  The 

constraints are shifted toward the feasible domain with certain level considering the 

uncertainties of the design variables.  Afterward, the optimization problem is solved with 

those shifted constraints. 

The PMA and the SORA have been well utilized to solve the RBDO problems 

because the RIA is reported to have some convergence problems [109] and is less 

efficient than the prior two methods [113].  In this research work, we focus on the RIA.  

We want to revisit the definition of the RIA and reveal the true reason for the 

convergence problem and the inefficiency of the RIA.  A modified method is then 

proposed to resolve the convergence problem and solve the RBDO problems more 

efficiently. 
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5.5. Convergence Problem of Traditional Reliability Index 

Approach (TRIA) 

Since H-L Reliability Index has been defined by a measure of the shortest 

distance from the origin to the failure region in the standardly normalized variable space 

and utilized to quantify the failure probability, many RBDO methods utilizing the 

concept of reliability index have been introduced as the Reliability Index Approach (RIA) 

[100, 114-120].  In the RIA, a reliability analysis problem is formulated to find the 

reliability index for each performance constraint and the solutions are used to evaluate 

the failure probability.  Tu et al. [109] pointed out a convergence problem associated with 

the numerical singularities in the TRIA and developed the Performance Measure 

Approach (PMA) to study the inverse reliability analysis instead of the reliability index.  

Since the numerical singularity only exists in some numerical extreme cases such as the 

standard deviation is very close to zero, it is not a major issue in engineering practices. 

Other than the numerical singularity associated with the tight standard deviations, the 

TRIA still often mysteriously fails to converge under the general setting.  This 

convergence problem of the TRIA prompts many researchers select the PMA as a more 

efficient and robust choice for general nonlinear performance functions [112, 121].  The 

definition of the reliability index is revisited in the following. 

A simple RBDO example shown in Figure 5.2 is used to illustrate this concept 

and the following relation holds: 

 ( ) ( )
0

0
g

P g X f x dx
>

> =⎡ ⎤⎣ ⎦ ∫  (5.29) 
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where ( )f x  is the PDF of X .  Using a mapping factor of x d uσ= +  and assuming the 

random variables are normally distributed and uncorrelated [104], the corresponding 

standard normal CDF is illustrated in Figure 5.3, where *u  is the Most Probable Point 

(MPP) and has the shortest distance from the constraint to the origin.  The H-L Reliability 

Index, HLβ , has been defined in Eq. (5.20).  The MPP obtained from Eq. (5.19), *u , has 

the shortest distance from the equality constraint to the origin.  The failure probability is 

then evaluated by the Eq. (5.21). 

Replacing the quantity of fP  by an equivalent standard normal CDF of the 

allowable reliability index, ,HL fβ : 

 ( ),f HL fP β≡ Φ −  (5.30) 

and applying an inverse standard normal CDF operator, 1−Φ , the original probabilistic 

optimization problem in Eq. (5.2) now becomes 

 
( )

( ) ,. . HL HL f

Min z

s t β β− ≤ −
d

d

d
 (5.31) 

where HLβ  is a function of d  because *u  varies with respect to d .  The original 

probabilistic constraint in Eq. (5.2) now is converted to the solvable deterministic 

formulation in Eq. (5.31). 
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Figure 5.2. PDF of the Normally Distributed Random Variable, X. 

 
Figure 5.3. PDF of the Standard-Normally Distributed Random Variable, U. 

As discussed in Tu et al. [109], the TRIA has a convergence problem during the 

MPP-searching process because it may not have any solution as the standard deviation is 

very small and HLβ  becomes infinity.  Fortunately, the numerical singularity originated 
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from very small standard deviations in an RBDO problem is not a critical issue in most 

practical engineering problems because variables with very small standard deviations can 

be treated as deterministic variables and the singularity can be removed.  However, 

numerical results showed that the TRIA sometimes still fails to converge even with not so 

small standard deviations [121]. 

The real problem that leads to the convergence problems of the TRIA resides on 

the definition of the reliability index.  The original reliability index is defined as the 

shortest distance from the origin to the failure region.  If the origin is within the failure 

region, the current definition becomes invalid.  However, the MPP sub-optimization 

problem of the RIA will still return a MPP “solution”.  As shown in Figure 5.3 and 

Figure 5.4, both *u  are considered as the MPP solutions even the *u  is negative in 

Figure 5.3 but positive in Figure 5.4.  Therefore, the optimization iteration of the TRIA 

may arrive at erratic solutions and cause convergence problems.  One possible solution to 

avoid the convergence problem is to evaluate the failure probability of the design in each 

iteration.  If the failure probability is larger than 50 %, the current design is considered as 

a failed design and the reliability index can be assigned as a negative value.  However, 

the evaluation of the failure probability is not computationally efficient.  To this end, a 

more efficient and robust solution is presented in the next session. 
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Figure 5.4. PDF of the Standard-Normally Distributed Random Variable, U. 

5.6. Conclusion and Remarks 

In the design optimization of the thermal systems, the existence of the design 

uncertainties cannot be easily ignored.  In the chapter, we have found the optimal designs 

without the considerations of the design uncertainties have very high probabilities of the 

system failures.  The failures of the thermal systems may cause huge loss in the 

productions and even result in dangerous situations for human lives.  The strategies to 

consider the design uncertainties in the optimization process become very important in 

the study of the thermal systems. 

The RBDO algorithms have been introduced to solve the optimization problems 

of the CVD process with design uncertainties.  The TRIA utilizes the Hasofer-Lind 

Reliability Index in terms of the Most Probable Point in the standard normal space to 

evaluate the failure probabilities.  Approximate constraints are then generated in terms of 
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the reliability index to replace the original probabilistic constraints.  However, the TRIA 

suffers from the convergence problem when the design point is located in the infeasible 

domain during the optimization process.  This problem may lead to incorrect optimal 

solutions which have unacceptable failure probabilities.  Moreover, it may cause 

inefficient optimization process. 

The main problem of the TRIA comes from the definition of the reliability index, 

which provides incorrect evaluations of the failure probabilities when the design point is 

located in the infeasible domain.  A modified reliability index is proposed to provide 

correct evaluations of the failure probabilities despite of the position of the design points.  

The Modified Reliability Index Approach is then introduced to solve the RBDO problems 

of the CVD process with design uncertainties.  In Chapter 6, the MRIA is firstly 

examined by several mathematical problems and verified by the Monte Carlo Simulations.  

In Chapter 7, the MRIA is applied to the five optimization problems in Chapter 4 with the 

considerations of the design uncertainties. 
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Chapter 6. 

Modified Reliability Index Approach (MRIA) for RBDO 

In this chapter, a new definition of the reliability index is proposed to correct this 

problem and a Modified Reliability Index Approach based on this definition is developed.  

The strategies to solve RBDO problems with non-normally distributed design variables 

by the MRIA are also investigated.  Numerical examples using both the TRIA and the 

MRIA are compared and discussed. 

6.1. A New Reliability Index 

As described in the previous session, the root of the convergence problems in the 

TRIA comes from the definition of the reliability index.  The current definition of the 

reliability index fails to find the true MPP if the origin is within the failure region.  To 

overcome this problem, a new reliability index is proposed in this section. 

6.1.1. Definition of the Modified Reliability Index 

A new reliability index, Mβ , is defined as follows: 

 
( )
( )

*
*

*M

g

g
β

∇
= ⋅

∇
u

u

u
u

u
 (6.1) 

This definition makes use of the gradient of the constraint at the MPP to differentiate 

whether the current design is safe or failed, i.e. the origin is within the failure region or 
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not.  To this end, we will examine the MPP sub-problem in Eq. (4) to understand the 

relationship between *u  and ( )*g∇u u . 

Using the method of Lagrangian Multiplier to solve the MPP sub-problem in 

Eq. (5.19), an auxiliary function is introduced as follows: 

 ( ) ( ) ( )
1
2, p pL u u gλ λ= +u u  (6.2) 

where λ  is the Lagrangian multiplier.  The optimal solution is given by solving 

( ), 0L λ∇ =u , which gives 

 ( ) ( )
1
2 0q p p

q

u u g
u

λ
⎡ ⎤∂

+ =⎢ ⎥∂ ⎣ ⎦
e u  (6.3) 

and ( ) 0g =u  as qe  stands for the thq  normal basis of u .  The Eq. (6.3) can be rewritten 

as: 

 ( ) ( )1
2 0q pq p r r

q

g
u u u

u
δ λ−⎡ ⎤∂

+ =⎢ ⎥
∂⎢ ⎥⎣ ⎦

u
e  (6.4) 

where pqδ  is the Kronecker delta.  From Eq. (6.4), the MPP is given by 

 ( )1* * *gλ
−

= − ∇uu u u  (6.5) 

The relation indicates that ( )*g∇u u  has whether the same direction or the 

opposite one with the direction of *u .  Therefore, we can take advantages of this 

collinear relationship between *u  and ( )*g∇u u  to modify the original definition of the 

reliability index as the new definition of Mβ  in Eq. (6.1).  The new definition, Mβ , is 
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identical to the original HLβ  in Eq. (5.20) when the origin is outside the failure region and 

Mβ  becomes a negative quantity when the current design leads to system failure, i.e. the 

origin is within the failure region.  In this way, the new reliability index can provide the 

correct solution. 

A Simple Illustrative Example 

To illustrate the definition of the new reliability index, a simple linear 

probabilistic constraint is used here.  Consider the failure probability of a linear constraint 

is given by 

 ( ) 10 0 0.13%P g X X= − + > ≤⎡ ⎤⎣ ⎦  (6.6) 

where ( )~ ,1X N d  and ( )g∇u u  equals to a negative unit vector.  Two different values 

of the design variable are selected for comparison, 13d =  and 7.  The MPPs are found to 

be * 3u = −  for the first case and * 3u =  for the second one.  However, the traditional 

reliability index, HLβ , gives the same values as 3.  Then, the probability of failure in 

Eq. (5.21) results in the same answer as ( )3 0.13%Φ − =  that implies satisfactory for both 

cases that is obviously a wrong answer for the second case.  Using the new definition of 

reliability index, Mβ , ( )* *g⋅∇uu u  becomes 3 and -3 for the first and second cases 

respectively.  Therefore, the probabilities of failures correctly are evaluated correctly as 

( )3 0.13%Φ − =  for the first case and ( )3 99.87%Φ =  for the second case. 

Using the new definition of Mβ  in Eq. (6.1), the Eq. (5.21) now is rewritten as: 



 
 

 

95

 ( ) ( )0 MP g X β> = Φ −⎡ ⎤⎣ ⎦  (6.7) 

and the allowable failure probability, ,M fβ , can be converted as: 

 ( ),f M fP β≡ Φ −  (6.8) 

In this way, the original probabilistic formulation becomes the deterministic formulation: 

 
( )

( ) ,. . M M f

Min z

s t β β− ≤ −
d

d

d
 (6.9) 

where ( )Mβ d  varies with respect to d  because Eq. (6.1) is a function of *u  and *u  

alters with d . 

6.1.2. Implementation of MRIA 

After the original probabilistic optimization formulation in the Eq. (5.2) is 

transformed into the deterministic formulation in Eq. (6.9) using the new reliability index, 

we can apply the MRIA to solve RBDO problems. 

In the MRIA, we first express ( )Mβ d  in terms of d  using the first-order Taylor’s 

expansion at the current design, ( )kd .  At the thk  iteration, ( )Mβ d  can be written as the 

following: 

 ( ) ( )( ) ( )( ) ( )( )k k k
M M Mβ β β≅ + − ⋅∇dd d d d d  (6.10) 

Eq. (6.9) now becomes a deterministic optimization problem with linear constraints as 

follows: 
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( )

( )( ) ( )( ) ( )( ) ,. . k k k
M M M f

Min z

s t β β β− − − ⋅∇ ≤ −

d

d

d

d d d d
 (6.11) 

where ( )( )k
Mβ d  can be evaluated by solving the MPP sub-problem and applying the 

obtained ( )( )* ku d  to Eq. (6.1).  By taking the first derivative of ( )( )k
dβ d  with respect to 

d , ( )( )k
Mβ∇d d  is obtained as: 

 
( )( ) ( ) ( )

( ) ( )

* *
1*

1* * *
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β
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⎡ ⎤∂ ⋅∇⎣ ⎦∇ = ∇
∂

= ∇ ⋅∇ ∇

u
d u

d u u

u u
d u

d

u u u

 (6.12) 

Given the fact from the transformation between the normally distributed and the 

standard-normally distributed design space, we have: 

 ( ) ( ) ( )( ) ( ) ( )( ), , ,m k m kg g g∇ ≅ ∇ ⋅∇ +∇* *
d d u du d u u d u d  (6.13) 

The feasibility of the MPP problem requires ( ), 0g∇ =*
d u d ; therefore, at the optimal 

solution of the MPP problem, the Eq. (6.13) becomes: 

 ( ) ( )* * *g g∇ ⋅∇ = −∇d u du u u  (6.14) 

Eq. (6.12) then becomes 

 ( )( ) ( ) ( ) 1* *k
M g gβ

−
∇ = −∇ ∇d d ud u u  (6.15) 

and the final deterministic optimization formulation of Eq. (6.11), using the Eqs. (6.1) 

and (6.15), is obtained as follows: 

 

( )

( ) ( )
( )( ) ( ) ( )

1* * *

1* *
,

. .

k
M f

Min z

s t g g

g g β

−

−

− ⋅∇ ∇

+ − ⋅∇ ∇ ≤ −

d

u u

d u

d

u u u

d d u u

 (6.16) 
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The main difference between the MRIA and the TRIA is in the first constant term 

of the constraint equation.  In the MRIA, the constant term is obtained from the new 

definition of reliability index, Mβ , while the TRIA uses the HLβ .  The flowchart of 

MRIA is shown in Figure 6.1.  Initially, the design variables, ( )0d  and ( )0u , are given.  

For the thk  iteration, the MPP sub-problem is solved first.  The Eq. (6.11) is updated 

from the solution of the MPP and solved until solution convergence.  The typical 

convergence criterion can be the quantitative evaluation of the absolute difference, 

( ) ( )1k k+−d d , or a weighted sum of ( ) ( )1k k+−d d  and ( )( ) ( )( )1k kz z +−d d .  The iteration 

stops when the differential measure is less than a reasonably small value; or, it terminates 

when k  is larger than the allowable iteration number. 

Convergence?

( ) ( )1 ,k k+u d

( ) ( )1 1,k k+ +u d

( ) ( )0 0,u d

( )1* k +=d d

1k k= +

No

Yes

( )
( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

1
1

1

,

. . k k k

k k k
M f

Min z

s t g g

g g β

−
+

−

− ⋅∇ ∇

+ − ⋅∇ ∇ ≤ −

d

u u

d u

d

u d d

d d d d

( ) ( ). . 0k

Min

s t g =
u

d
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Figure 6.1. Flowchart of the MRIA. 
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6.2. Numerical Examples 

Two different mathematical examples are utilized to exam the functionality of the 

proposed MRIA, including a simple linear problem and a famous benchmarking 

nonlinear problem.  The comparisons between the TRIA and the MRIA with different 

starting points are studied in this session. 

6.2.1. Example 6: Linear Mathematical Problem 

A simple linear mathematical RBDO problem is solved in the first example.  The 

problem has been studied and found unstable if the TRIA is used in [109].  The math 

problem is shown as follows 

 

( )

( )
1 2

,. . 0 1,2

1 10 1,2
i i f i

j

Min z d d

s t P g P i

d j

= +

> ≤ =⎡ ⎤⎣ ⎦
≤ ≤ =

d
d

X  (6.17) 

where 

 
( )
( )

1 1 2

2 1 2

2 10

2 10

g X X

g X X

= − − +

= − − +

X

X
 (6.18) 

The allowable failure probabilities are defined as follows 

 
( ) ( )
( ) ( )

,1 ,1

,2 ,2

2.054 2%

1.881 3%

f f

f f

P

P

β

β

= Φ − = Φ − =

= Φ − = Φ − =
 (6.19) 

The standard deviations of X  are both 1 3 .  If a feasible solution, ( ) ( ) [ ]0 0
1 2, 5,5d d⎡ ⎤ =⎣ ⎦ , 

is used as the starting point, both the TRIA and MRIA arrive at the exactly same solution 
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as shown in Figure 6.2.  This is because the definition of HLβ  in Eq. (5.20) gives the same 

evaluation of Eq. (6.1) for a feasible solution. 

However, if an infeasible solution, ( ) ( ) [ ]0 0
1 2, 2.5, 2.5d d⎡ ⎤ =⎣ ⎦ , is chosen as the 

starting point, the TRIA will use Eq. (5.20) to formulate an incorrect sub-problem and 

have difficulty to find the solution while the MRIA can reach the converged solution 

quickly.  Fortunately, in this example, the TRIA can return to the feasible region 

gradually and eventually reaches the correct optimal solution.  Figure 6.3 shows the 

iteration process of another different starting point, [ ]2, 2 , using the TRIA.  The iteration 

process converges at a wrong design of [ ]1,1 .  The same starting point is used in the 

MRIA and the optimal solution is obtained in 2 iterations, shown in Figure 6.4. 

Obj. Func.
Deter. Con. #1
Deter. Con. #2
Prob. Con. #1
Prob. Con. #2
β1-Circle
β2-Circle
Iteration Path

 
Figure 6.2. Iteration Process of Example 6 Using MRIA with an Initial Design (5, 5). 
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Obj. Func.
Deter. Con. #1
Deter. Con. #2
Prob. Con. #1
Prob. Con. #2
β1-Circle
β2-Circle
Iteration Path

 
Figure 6.3. Iteration Process of Example 6 Using TRIA with an Initial Design (2, 2). 

Obj. Func.
Deter. Con. #1
Deter. Con. #2
Prob. Con. #1
Prob. Con. #2
β1-Circle
β2-Circle
Iteration Path

 
Figure 6.4. Iteration Process of Example 6 Using MRIA with an Initial Design (2, 2). 



 
 

 

101

Table 6.1. Comparison of TRIA and MRIA in Example 6. 

TRIA MRIA 
Initial Design 

Converged Efficient Converged Efficient 

(5, 5) Yes Yes Yes Yes 

(2.5, 2.5) Yes No* Yes Yes 

(2, 2) No — Yes Yes 

 

Table 6.2. Comparison of TRIA and MRIA in Example 6. 

 Initial 
Design Cost Optimal Design FC1

† FC2
‡ FCT

§ Iter. 
# 

MCS of 
Con. #1 

MCS of 
Con. #2

TRIA (5, 5) 8.36 (4.0683, 4.2917) 61 63 124 2 1.995 % 3.001 % 

MRIA (5, 5) 8.36 (4.0683, 4.2917) 61 63 124 2 1.996 % 3.003 % 

TRIA (2.5, 2.5) 8.36 (4.0683, 4.2917) 285 441 726 12 2.006 % 3.006 % 

MRIA (2.5, 2.5) 8.36 (4.0683, 4.2917) 60 63 123 2 2.001 % 3.006 % 

TRIA (2, 2) 2 (1,1) 98 72 170 2 100 % 100 % 

MRIA (2, 2) 8.36 (4.0683, 4.2917) 74 63 137 2 1.993 % 2.995 % 

 

The first example with three different starting points shows the TRIA suffers from 

inefficiency and convergence problems while the MRIA with the new reliability index, 

Mβ , can arrive at the optimal solution quickly without any problem.  Table 6.1 lists the 

resultant comparisons of the TRIA and the MRIA with different initial design points, 

                                                 
 
*  10 more iterations than MRIA. 
†  FC1 stands for the function calls of the MPP-searching sub-problems. 
‡  FC2 stands for the function calls of the global loops. 
§  FCT stands for the sum of FC1 and FC2. 
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which indicates that the TRIA may provide wrong optimal solutions or have inefficient 

optimization process when the infeasible starting points are used. The detailed 

optimization information with the three different starting points is listed in Table 6.2. 

6.2.2. Example 7: Nonlinear Mathematical Problem 

The second example is also a very well-known benchmark mathematical example 

that has been solved by many RBDO methods [102, 109, 122-126].  The problem has 

three probabilistic constraints as follows: 

 

( )
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1 2
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Min z d d
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where 
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 (6.21) 

The allowable failure probability is ( ) ( )3 0.13%f fP β= Φ − = Φ − = .  The initial design 

( ) ( ) [ ]0 0
1 2, 5,5d d⎡ ⎤ =⎣ ⎦  and the standard deviations of X  are [ ] [ ]1 2, 0.3,0.3σ σ = .  The 

termination criteria in  [122] are used where both the maximum iteration numbers of the 

MPP sub-problem and the global iteration loop cannot exceed 5.  The optimization 

process stops when the relative difference of the objective function is less than 0.001. 
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This problem is firstly solved by both TRIA and MRIA, both method generated 

the same solution and have identical iteration history as shown in Figure 6.5.  Totally 212 

function calls (FCs) are needed for the MPP searching and the 216 FCs for the global 

optimization loop.  Both methods reach the optimal solution in 4 iterations.  The Monte 

Carlo Simulations (MCS) confirm the failure probabilities of all constraints are 

satisfactory. 

Obj. Func.
Deter. Con. #1
Deter. Con. #2
Deter. Con. #3
Prob. Con. #1
Prob. Con. #2
Prob. Con. #3
β-Circle
Iteration Path

 
Figure 6.5. Iteration Process of Example 7 with an Initial Design (5, 5). 

Then, a different starting point, ( ) ( ) [ ]0 0
1 2, 1.5,3.5d d⎡ ⎤ =⎣ ⎦ , is used.  This starting point 

is an infeasible solution and other conditions are kept as the same.  As a result, the TRIA 

stops at the fifth iteration due to the termination criterion in [122] with 528 FCs.  The 

final solution is located at [ ]1.8832,1.9397  and the cost function equals to 3.8229.  The 
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MCS shows the failure probability for the first constraint almost equal to 99.989 %, 

which is totally not acceptable.  The MRIA under the same settings achieves the 

convergence with only 427 FCs and 4 iterations.  The optimal solution is [ ]3.439, 3.2866 , 

which is the same as that from the previous initial design indicating the proposed 

algorithm provides the same optimal results despite the choice of initial design variables.  

The results using both methods are listed in Table 6.3 for comparison. 

Table 6.3. Results of  Example 7. 

 Initial 
Design Cost Optimal 

Design FC1
* FC2

† FCT
‡ Iter. 

# M1
§ M2

** M3
†† 

TRIA (5,5) 6.7256 (3.439,3.2866) 212 216 428 4 0.145% 0.118% 0% 

MRIA (5,5) 6.7256 (3.439,3.3866) 212 216 428 4 0.148% 0.107% 0% 

TRIA (1.5,3.5) 3.8229 (1.8832,1.9397) 249 279 528 5 99.99% 0.113% 0% 

MRIA (1.5,3.5) 6.7256 (3.439,3.2866) 214 213 427 4 0.151% 0.109% 0% 

TRIA (1,4) 0.2 (0.1,0.1) 248 267 515 4 100% 0% 0.711%

MRIA (1,4) 6.7256 (3.439,3.2866) 218 258 476 4 0.143% 0.113% 0% 

 

Finally, the same problem with an infeasible starting point ( ) ( ) [ ]0 0
1 2, 1, 4d d⎡ ⎤ =⎣ ⎦  is 

solved by the traditional and the modified RIAs.  The TRIA leads the design points to 

their lower bounds and the failure probability of the first constraint is found 100 %, as the 
                                                 
 
*  FC1 stands for the function calls of the MPP-searching sub-problems. 
†  FC2 stands for the function calls of the global loops. 
‡  FCT stands for the sum of FC1 and FC2. 
§  M1 stands for the MCS of the constraint #1. 
**  M2 stands for the MCS of the constraint #2. 
††  M3 stands for the MCS of the constraint #3. 
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MRIA is capable of finding the correct optimal solution.  Comparing all the optimal 

solutions with different initial design points in Table 6.4, the TRIA fails to provide a 

desired optimal solution when the infeasible starting points are utilized but the MRIA 

does not have such limitations and is able to find correct solutions despite the locations of 

the starting points. 

Table 6.4. Comparison of TRIA and MRIA in Example 7. 

TRIA MRIA 
Initial Design 

Converged Efficient Converged Efficient 

(5, 5) Yes Yes Yes Yes 

(1.5, 3.5) No — Yes Yes 

(1, 4) No — Yes Yes 

 

6.3. MRIA with Non-Normally Distributed Random Variables 

Not only can the MRIA be utilized to solve the typical RBDO problems with 

normally distributed random variables, but the methods to solve the ones with non-

normally distributed random variables are investigated in this session.  Famous non-

normal distributions include lognormal, Weibull, Gumbel, and uniform distributions 

[121].  For simplicity, the random variable, X , is now considered to be independent and 

lognormally distributed and its thj  component follows ( )~ ,j j jX LogN d σ .  Using the 

transformation of exp=X Y , an independent and normally distributed random variable, 
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Y , is obtained where its thj  component follows ( ), ,~ ,j Y j Y jY N d σ  and these two 

equations: 

 
2

, 2ln 1 j
Y j

jd
σ

σ
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

 (6.22) 

 2
, ,

1ln
2Y j j Y jd d σ= −  (6.23) 

Using Y Y= + ⋅Y d Uσ , the transformation from the lognormal space to the standard 

normal space is established as ( )exp Y Y= + ⋅X d Uσ .  The sub-problem in Eq. (5.19) is 

then solved to obtain the MPP and the modified reliability index is given by the Eq. (6.1).  

Using the Eqs. (6.7) and (6.8), the original probabilistic optimization problem with 

lognormally distributed random variables now becomes a solvable deterministic 

optimization problem as follows: 

 
( )

( ) ,. .
Y

Y

M Y M f

Min z

s t β β− ≤ −
d

d

d
 (6.24) 

Notice that the nonlinear conversion from the lognormal design space to the 

standard normal space includes design-dependent parameters in Eqs. (6.22) and (6.23).  

These two parameters should be updated prior to the MPP-searching sub-problem using 

the following two iterative schemes: 

 ( ) ( ) ( )( )21 1
, ln 1k k k

Y j j jdσ σ − −⎡ ⎤= +⎢ ⎥⎣ ⎦
 (6.25) 

 ( ) ( ) ( )( )21
, ,ln 0.5k k k

Y j j Y jd d σ−= −  (6.26) 
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These updating schemes do not cost any additional function calls of the performance 

constraints; however, the varying standard deviations do decrease the convergence 

efficiency of the MRIA.  In the later session, the optimization processes of solving the 

mathematical problems with lognormally distributed random variables are demonstrated. 

Nonlinear Mathematical Problem with Lognormally Distributed Random Variables 

The nonlinear mathematical problem is considered with lognormally distributed 

random variables.  Besides the distributions of the random variables, the problem settings 

are the same as Eqs. (6.20) and (6.21) while the allowable failure probabilities, the initial 

designs, the standard deviations, and the termination criteria have no differences as well. 

In the case of the feasible design [ ]5,5 , the TRIA and the MRIA are identical 

where totally 5 iterations and 582 FCs are used to satisfy the convergence criteria.  The 

iteration history is shown in Figure 6.6.  The approximate probabilistic constraints are 

nonlinear due to transformation from the normal design space to the lognormal design 

space.  The details about the optimal solutions are shown in Table 6.5.  The MCS results 

show the failure probabilities of the optimal solutions are of acceptance.  Compared with 

the optimization process with the normally distributed initial design [ ]5,5 , more 

iterations and function calls are required to achieve the same termination criteria because 

of the updating scheme in Eqs. (27) and (28) for the lognormally distributed random 

variables. 
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Obj. Func.
Deter. Con. #1
Deter. Con. #2
Deter. Con. #3
Prob. Con. #1
Prob. Con. #2
Prob. Con. #3
β-Contour
Iteration Path

 
Figure 6.6. Iteration Process of Example 7 with the Lognormally Distributed Initial Design (5, 5). 

Table 6.5. Results of  Example 3. 

 Initial 
Design Cost Optimal 

Design FC1
* FC2

† FCT
‡ Iter. 

# M1
§ M2

** M3
†† 

TRIA (5,5) 6.5854 (3.401,3.1844) 270 312 582 5 0.143% 0.114% 0% 

MRIA (5,5) 6.5854 (3.401,3.1844) 270 312 582 5 0.142% 0.106% 0% 

TRIA (1.5,3.5) 6.5948 (3.4362,3.1586) 300 270 570 5 0.103% 0.172% 0% 

MRIA (1.5,3.5) 6.5885 (3.4003,3.1882) 293 354 647 5 0.137% 0.102% 0% 

TRIA (1,4) 1.4902 (0.9615,0.5287) 311 279 610 5 100% 0.084% 0% 

MRIA (1,4) 6.5900 (3.4001,3.1889) 311 276 587 5 0.135% 0.099% 0% 

 

                                                 
 
*  FC1 stands for the function calls of the MPP-searching sub-problems. 
†  FC2 stands for the function calls of the global loops. 
‡  FCT stands for the sum of FC1 and FC2. 
§  M1 stands for the MCS of the constraint #1. 
**  M2 stands for the MCS of the constraint #2. 
††  M3 stands for the MCS of the constraint #3. 
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In the other case of an infeasible design point [ ]1.5,3.5 , both the TRIA and the 

MRIA can find optimal solutions with acceptable failure probabilities.  However, when 

an infeasible design point [ ]1, 4  is used, the TRIA leads the optimal solution to 

[ ]0.9615, 0.5287  where the failure property of the first constraint is 100 %.  The MRIA 

still can find the optimal solution with acceptable failure probabilities.  Table 6.6 shows 

that the unstableness and inconsistency in which the TRIA finds an acceptable solution 

for one of the case with the infeasible starting point [ ]1.5,3.5  but leads to 100 % of 

failure probability for the other one with the starting point [ ]1, 4 .  Unlike the unstableness 

in the TRIA, the MRIA provides the optimal solutions with acceptable failure 

probabilities in spite of the feasibility of the starting point. 

Table 6.6. Comparison of TRIA and MRIA in Example 3. 

TRIA MRIA 
Initial Design 

Converged Efficient Converged Efficient 

(5, 5) Yes Yes Yes Yes 

(1.5, 3.5) Accepted* Yes Yes Yes 

(1, 4) No — Yes Yes 

 

                                                 
 
* 30 % of violation of the desired failure probability. 
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6.4. Conclusion and Remarks 

The TRIA suffers from inefficiency and convergence problems.  Since the 

convergence problems from numerical singularities associated with very small standard 

deviations are not very common in engineering practice, the focus of this paper is on the 

convergence problems from the incorrect evaluations of the failure probabilities which 

may happen at the initial design as well as during the optimization iteration.  The 

convergence problem of the latter kind in the TRIA is from the definition of the 

traditional reliability index.  The original reliability index is defined as the shortest 

distance between the origin and the failure region in the normalized space.  If any design 

is within the failure region, this definition of reliability index becomes invalid.  However, 

the MPP sub-optimization problem of the RIA will still return a MPP “solution”.  

Consequently, the TRIA may generate erratic solutions. 

To correct this problem, a new definition of the reliability index is proposed to 

correct this problem and a Modified Reliability Index Approach using the new definition 

is developed.  Numerical examples using both the TRIA and the MRIA are compared and 

discussed.  The results show that the TRIA may provide incorrect constraint 

approximations and lead to the unstableness of the optimization process, while the MRIA 

can always reach the optimal solution efficiently.  Furthermore, the MRIA is also found 

to be capable of solving RBDO problems with different distributions of random variables 

using the transformation from the original space to the standard normal space.  With the 

updating schemes of the mapping parameters, the MRIA does require more 

computational efforts but is able to converge at the correct optimal solution. 
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The development of the MRIA is very important in the design optimization of the 

thermal system because the design uncertainties exist in the design variables of the 

operating conditions.  The MRIA is capable of evaluating the failure probabilities in spite 

of that the designs are feasible or they violate the performance constraints in the 

optimization process.  Another important contribution of the MRIA is that it can solve the 

RBDO problems of the thermal systems with not only the normally distributed random 

variables but the non-normally distributed ones.  In the next chapter, the proposed MRIA 

is applied to solve the optimization problems of the thermal systems with the design 

uncertainties. 
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Chapter 7. 

RBDO of the CVD Process 

7.1. Introduction 

From Chapter 2 to Chapter 4, the simulations and the response surface models of 

the CVD process have been discussed.  The optimization formulations using the response 

surface models of the deposition rate and the uniformity of the thin films have been 

studied to find the optimal operating conditions of the CVD process.  However, the 

proposed optimization problems lack for the considerations of the design uncertainties 

and lead to high risks of the violations of the performance constraints.  The most 

significant impacts of the design uncertainties occur at the design variables, the inlet 

velocity and the susceptor temperature.  Only around two percents of the deviations in the 

design variables cause more than forty percents of the failure probabilities. 

In Chapter 5, the RBDO algorithms have been introduced to solve probabilistic 

optimization problems.  The Reliability Index Approach evaluates the failure 

probabilities of the performance constraints in terms of the Hasofer-Lind Reliability 

Index and solves the RBDO problems by constraining those failure probabilities under 

certain allowable level.  Chapter 6 reveals the convergence problem of the TRIA at 

infeasible design points, which may produce incorrect optimal solutions with 

unacceptable probabilities of system failures or may have inefficient optimization process.  

The Modified Reliability Index Approach is proposed with a new definition of the 
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reliability index.  The MRIA is much efficient than the TRIA because it is capable of 

evaluating the failure probabilities correctly despite of the locations of the design points. 

In this chapter, the optimization problems in Chapter 4 are to be solved by the 

proposed MRIA with the considerations of the design uncertainties in the design 

variables.  Two different distributions of the random variables are studied: session 7.2 

shows the RBDO problems of the CVD process with the normally distributed random 

variables while session 7.3 demonstrates the ones with the lognormally distributed 

random variables.  Session 7.4 includes the detailed information about the obtained 

optimal solutions and the corresponding failure probabilities evaluated by the Monte 

Carlo Simulations. 

7.2. RBDO Problems of the CVD Process with Normally 

Distributed Random Variables 

The five optimization formulations in session 4.2 are revisited.  With the 

considerations of the uncertainties in the inlet velocity and the susceptor temperature, 

probabilistic optimization problems are formulated.  In this session, the random variables 

are assumed mutually independent and normally distributed.  The probabilistic 

constraints of the thin-film performances will be converted to the solvable deterministic 

formulations in terms of the modified reliability index.  The MRIA will be utilized to 

solve those probabilistic optimization problems and the MCS will be used to verify the 

failure probabilities of the optimal solutions. 
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7.2.1. Example 1: Maximizing the PWA 

First, the optimization problem in Eq. (4.1) is studied.  Considering the standard 

deviations of 0.02 m/s and 20 K for the mutually independent normally distributed 

random variables, V  and T , respectively, the probabilistic optimization formulation is 

given by 
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 (7.1) 

where the acceptable limits of the RMS and the KUR remain the same as the previous 

conditions, as well as the bounds of the design variables.  The same response surface 

models by the 25-point RBFs are utilized.  The allowable failure probabilities are both 

0.13 % following the concept of the three-sigma criterion.  Due to the nonlinearities of 

the uniformity constraints and the concave feasible domain, the global optimal solution is 

obtained by multiple starting design points. 

Using the optimization process of the MRIA shown in Figure 6.1, the 

probabilistic constraints in Eq. (7.1) are converted into linear approximate functions in 

terms of the MPPs.  Figure 7.1 illustrates the approximate probabilistic constraints at the 

convergence of the optimization process by the MRIA, as well as the optimal solution, 

* 0.74V =  m/s and * 1068T =  K.  The blue contour in the figure highlights the 99.87 % of 

the probability distribution of the optimal solution, which is tangent to the first 

deterministic constraint.  MCS results confirmed the failure probabilities at the optimal 
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solution.  The failure probability of the first constraint improvingly decreases from 

43.03 % to 0.107 % and meets the allowable level, 0.13 %, while the original PWA only 

slightly decreases from 93.78 % to a more conservative PWA, 93.6 %. 
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Deter. Con. #1
Deter. Con. #2
Prob. Con. #1
Prob. Con. #2
Optimal Solution
Beta Contour

 
Figure 7.1. Optimal Solution of Maximizing the PWA with Normally Distributed Random 
Variables. 

7.2.2. Example 2: Maximizing the MDR 

The second example is to maximize the deposition rate subject to the probabilistic 

constraints of the RMS and the KUR with the normally distributed random variables.  

The probabilistic optimization formulation is shown as follows: 
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where the standard deviations and the allowable failure probabilities are under the same 

conditions as the previous example in session 7.2.1.  The optimal solution, * 0.9V =  m/s 

and * 574T =  K, and the corresponding probabilistic constraints are shown in Figure 7.2.  

The MCS results verify that the failure probabilities accept the desired level.  As a result, 

the optimal susceptor temperature needs to increase from 500 K to 574 K to have 

acceptable probabilities of system failures, while the optimal MDR decreases 4 % from 

the original 42.354 10−×  kg/m2s to 42.252 10−×  kg/m2s. 
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Figure 7.2. Optimal Solution of Maximizing the MDR with Normally Distributed Random 
Variables. 

7.2.3. Example 3: A Multi-Objective Formulation 

The third formulation is the multi-objective function considering the 

maximization of the PWA and the MDR simultaneously with the same normally 
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distributed random variables.  The same probabilistic constraints are considered and the 

RBDO problem is given by 
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m m
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 (7.3) 

where the two disciplines, the PWA and the MDR, are normalized by their maximum 

quantities.  Using the MRIA, the probabilistic constraints are obtained and the optimal 

solution is found at * 0.9V =  m/s and * 1148T =  K, shown in Figure 7.3.  The first 

approximate probabilistic constraint is active and leads the design point to the optimality 

with acceptable failure probabilities, which is verified by the MCS results.  More detailed 

information about the optimal solutions is discussed in the latter session. 

Obj. Func.
Deter. Con. #1
Deter. Con. #2
Prob. Con. #1
Prob. Con. #2
Optimal Solution
Beta Contour

 
Figure 7.3. Optimal Solution of the Multi-Objective Formulation with Normally Distributed 
Random Variables. 
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7.2.4. Example 4: Maximizing the PWA Subject to Constraint of 

Deposition Rate 

The next example considers the objective of maximizing the PWA subject to the 

probabilistic constraints of the uniformity factors and the deposition rate, which is given 

by 
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 (7.4) 

The bounds of the performance responses and the design domain remain the same as 

previous discussion, as well as the probability distribution and the allowable failure 

probabilities.  Figure 7.3 shows the optimal solution and the probabilistic constraints.  

The optimal solution is found the same as the example in session 7.2.1 because the MDR 

constraint is not active with the consideration of the design uncertainties, while the MCS 

results confirm zero failure probability for the MDR constraint.  The MCS results also 

verify the acceptance of the failure probabilities of the other constraints. 
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Figure 7.4. Optimal Solution of Maximizing the PWA Subject to the MDR Constraint with 
Normally Distributed Random Variables. 

7.2.5. Example 5: Maximizing the MDR Subject to Constraint of 

Working Area 

Finally, the MDR is maximized subject to the consideration of the uniformity 

constraints and the working area with the normally distributed random variables, which is 

shown as follows: 
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 (7.5) 

The approximate probabilistic constraints are obtained by the MRIA and the optimal 

solution is shown in Figure 7.5.  With the additional consideration of the PWA constraint, 
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a higher optimal susceptor temperature, * 1148T =  K, than the example in session 7.2.2 is 

needed to produce thin films with acceptable working area.  Furthermore, the temperature 

is slightly higher than the solution in session 4.2.2, 1078 K, to satisfy the allowable 

failure probabilities, which is confirmed by the MCS results.  More detailed information 

about the optimal solutions is shown in the latter session. 
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Figure 7.5. Optimal Solution of Maximizing the MDR Subject to the PWA Constraint with 
Normally Distributed Random Variables. 

7.3. RBDO Problems of the CVD Process with Lognormally 

Distributed Random Variables 

The optimization problems of the CVD process with normally distributed random 

variables have been studied in the previous session.  The optimal solutions are obtained 

in terms of finding the MPPs in the standard normal space, converting the probabilistic 

constraints into solvable formulations by the definition of the modified reliability index, 



 
 

 

121

and solving the problems iteratively.  For non-normally distributed random variables, the 

design domain is firstly converted to the normal design space and the MRIA is then 

utilized to solve the RBDO problem with varying standard deviations.  In this session, the 

five optimization problems with lognormally distributed random variables are studied and 

solved the proposed MRIA strategy in session 6.3. 

7.3.1. Example 1: Maximizing the PWA 

Considering the probabilistic optimization formulation in Eq. (7.1) with 

lognormally distributed random variables, the standard deviations of the inlet velocity 

and the susceptor temperature in the lognormal design space are 0.02 m/s and 20 K 

respectively.  After the conversion from the lognormal space to the normal space, the 

standard deviations vary with the location of the design point and follow the Eq. (6.22).  

Figure 7.6 (a) demonstrates the optimization problem of maximizing the PWA in the 

lognormal design space, where the distribution of the design point is highlighted by the 

blue non-symmetric contour.  The converted design domain in the normal space is shown 

in the Figure 7.6 (b) where the distribution of random variable is shown by the blue 

symmetric contour.  During the iteration process, the size of the distribution contour 

changes with variations of the standard deviations.  The probabilistic constraints are 

linearly approximated according to the updated standard deviations in the normal space 

and they are therefore nonlinear the original design space.  Using the MRIA and the 

updating scheme of the standard deviations in session 6.3, the optimal solution is 

obtained at * 0.74V =  m/s and * 1068T =  K.  The MCS results show acceptable failure 

probabilities at the optimal solution. 
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(b) 

Figure 7.6. Optimal Solution of Maximizing the PWA with Lognormally Distributed Random 
Variables. 

(a) Visualization in the Lognormal Design Space, and (b) Visualization in the Normal Design Space. 
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7.3.2. Example 2: Maximizing the MDR 

The second optimization formulation is given in Eq. (7.2) with the considerations 

of the lognormally distributed random variables.  The standard deviations in the 

lognormal space remain the same as the previous discussion.  To solve the RBDO 

problem by the MRIA, the design space is converted to the normal space resulting in 

varying standard deviations.  The iterative updating scheme is utilized to adjust the 

standard deviations.  Figure 7.7 (a) demonstrates the obtained optimal solution in the 

original lognormal space, while the corresponding configuration in the normal space in 

shown in Figure 7.7 (b).  The second probabilistic constraint is active and the optimal 

solution is located at * 0.9V =  m/s and * 568T =  K, which is different from the solution 

in session 7.2.2.  The MCS results confirm the correctness of the optimal design with 

lognormal distribution.  This implies the necessity of the conversion to the normal space 

and the updating of the standard deviations for solving the RBDO problems with non-

normally distributed random variables. 

7.3.3. Example 3: A Multi-Objective Formulation 

The third optimization problem is the multi-objective formulation in Eq. (7.3).  

Considering the lognormally distributed random variables and the same conditions as 

described earlier, the optimal solution is obtained by the MRIA with the updating 

standard deviations in the normal space.  Figure 7.8 illustrates the optimal solution in the 

lognormal space and the conversion to the normal space.  The first probabilistic 

performance constraint is active and the failure probability is satisfied, verified by MCS. 
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(b) 

Figure 7.7. Optimal Solution of Maximizing the MDR with Lognormally Distributed Random 
Variables. 

(a) Visualization in the Lognormal Design Space, and (b) Visualization in the Normal Design Space. 
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(b) 

Figure 7.8. Optimal Solution of the Multi-Objective Formulation with Lognormally Distributed 
Random Variables. 

(a) Visualization in the Lognormal Design Space, and (b) Visualization in the Normal Design Space. 
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7.3.4. Example 4: Maximizing the PWA Subject to Constraint of 

Deposition Rate 

The forth example considers the maximization of the working area subject to the 

constraints of the uniformity and the deposition rate with the lognormally distributed 

random variables.  The RBDO problem is formulated in Eq. (7.4) and the same 

considerations about the failure probabilities continue.  Using the proposed MRIA, the 

optimal solution is obtained, shown in Figure 7.9, and verified by the MCS. 

7.3.5. Example 5: Maximizing the MDR Subject to Constraint of 

Working Area 

The final example is to maximize the MDR subject to the constraints of the RMS, 

the KUR, and the PWA with the lognormally distributed inlet velocity and susceptor 

temperature.  The problem formulation is shown in Eq. (7.5) and it is solved by the 

proposed method discussed in session 6.3.  Figure 7.10 shows the optimal solution in the 

lognormal space, as well as the corresponding situation in the normal space.  More details 

and comparisons are included in the next session. 
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(b) 

Figure 7.9. Optimal Solution of Maximizing the PWA Subject to the MDR Constraint with 
Lognormally Distributed Random Variables. 

(a) Visualization in the Lognormal Design Space, and (b) Visualization in the Normal Design Space. 
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(b) 

Figure 7.10. Optimal Solution of Maximizing the MDR Subject to the PWA Constraint with 
Lognormally Distributed Random Variables. 

(a) Visualization in the Lognormal Design Space, and (b) Visualization in the Normal Design Space. 
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7.4. Results 

The optimization problems of the CVD process with two different kinds of design 

uncertainties have been studied, including the normally and the lognormally distributed 

random variables.  For the normally distributed random variables, the RBDO problem is 

solved directly by the MRIA.  On the other hand, the conversion to the normal space and 

the updating scheme of the varying standard deviations are necessary for non-normally 

distributed random variables.   

The details about the optimal designs with design uncertainties are listed in 

Table 7.1.  Back in the session 4.3, the MCS results have shown that the optimal 

solutions for the deterministic optimization formulations suffer from high probabilities of 

the system failures even though they are theoretically the best operating conditions for 

the CVD process without the design uncertainties.  After considering the RBDO 

formulations and solving them by the MRIA, more conservative operating conditions are 

found and the failure probabilities of all the constraints are satisfied within certain 

allowable range.  Take the first optimization formulation as an example, the failure 

probabilities of the first uniformity constraints have greatly reduced from 43.03 % to 

0.11 % for the normally distributed random variables; and from 43.13 % to 0.12 % for 

the lognormally distributed ones, using the comparison between Table 4.2 and Table 7.1.  

However, the objective functions, the PWA, only slightly decrease from 93.78 % to 

93.60 % and 93.61 % for the normally and the lognormally distributed random variables 

respectively, using the comparison between Table 4.1 and Table 7.1. 
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Table 7.1. The Optimal Solutions, the Corresponding Responses, and the Monte Carlo Simulation 
Results for Examples 1 to 5 with the Normally and the Lognormally Distributed Random Variables. 

Ex. 
# Distribution Optimal 

Solution PWA MDR RMS KUR M1
* M2

† M3
‡ 

Normal (0.74,1068) 93.60 1.643E-4 1.231E-6 1.656 0.107% 0% ─ 
1 

Lognormal (0.74,1068) 93.61 1.643E-4 1.232E-6 1.656 0.122% 0% ─ 

Normal (0.9,574) 60.05 2.252E-4 1.060E-6 2.595 0% 0.141% ─ 
2 

Lognormal (0.9,568) 59.70 2.261E-4 1.054E-6 2.60 0% 0.154% ─ 

Normal (0.9,1148) 91.04 1.744E-4 1.230E-6 1.69 0.128% 0% ─ 
3 

Lognormal (0.9,1147) 91.05 1.744E-4 1.232E-6 1.69 0.122% 0% ─ 

Normal (0.74,1069) 93.60 1.643E-4 1.230E-6 1.66 0.112% 0% 0% 
4 

Lognormal (0.74,1067) 93.61 1.644E-4 1.233E-6 1.66 0.118% 0% 0% 

Normal (0.9,1148) 91.04 1.744E-4 1.230E-6 1.69 0.120% 0% 0% 
5 

Lognormal (0.9,1147) 91.05 1.744E-4 1.232E-6 1.69 0.110% 0% 0% 

 

7.5. Conclusion and Remarks 

The MRIA has been successfully applied to solve the RBDO problems of the 

CVD process with both normally and lognormally distributed random variables, the inlet 

velocity and the susceptor temperature.  For normally distributed variables, the MPPs are 

firstly found in the standard normal space and then utilized to approximate the 

probabilistic constraints.  Those approximate probabilistic constraints are iteratively 

updated by the latest MPPs with respect to the mean of the random variables.  The global 

                                                 
 
*  M1 stands for the MCS of the constraint #1. 
†  M2 stands for the MCS of the constraint #2. 
‡  M3 stands for the MCS of the constraint #3. 
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optimal operating conditions are found with the updated probabilistic constraints and the 

multiple starting points due to the concave feasible domains. For the non-normally 

distributed random variables, the original design space is converted to the normal space 

and the variant standard deviations are iteratively updated before the RBDO problems are 

solved by the MRIA.  Numerical examples show that the MRIA is capable of solving the 

RBDO problems of the CVD process with lognormally distributed random variables.  

The MCS results are utilize to verify the acceptance of the failure probabilities.  All the 

optimal solutions satisfy the allowable probabilities of the system failures with only slight 

decrement on the optimality. 

Similarly, the proposed MRIA can be utilized to solve the RBDO problems of 

other thermal systems.  For the consideration of the normally distributed random 

variables in the thermal systems, the designer need to measure the standard deviations so 

that the design main can be transformed to the standard normal space and the MPPs can 

be found for the approximation of the probabilistic constraints.  On the other hand, the 

standard deviations are expected to be updated iteratively for the non-normally 

distributed random variables.  The results of the numerical examples in this chapter have 

shown that the MRIA is capable of finding the optimal solutions of the thermal systems 

with the failure probabilities lower than the allowable limits. 
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Chapter 8. 

Conclusion and Future Work 

8.1. Summary 

A systematic strategy to parametric model and optimize of the thermal systems 

with design uncertainties has been proposed in this research work.  The CVD has been 

chosen as an example, where the inlet velocity and the susceptor temperature are the 

design variables.  The CVD process is simulated and the responses, the PWA, the MDR, 

the RMS, and the KUR, are utilized to represent the productivity and the uniformity of 

the thin-film deposition of silicon from silane.  The Radial Basis Function is utilized to 

model those responses.  Then, the response surface models are used to formulate the 

optimization problems for finding the better operating conditions.  The Modified 

Reliability Index Approach is introduced to solve those optimization problems with both 

the normally and non-normally distributed random variables.  In the optimization process 

of the MRIA, the MPPs are found and utilized to formulate the approximate probabilistic 

constraints.  The optimal solutions for found and the failure probabilities are of 

acceptance.  As a result, not only the proposed strategy can be utilized to model and 

optimize the CVD process with design uncertainties, but also it can be applied to other 

thermal systems. 

The proposed strategy to simulate the thin-film growth of silicon, parametrically 

model the responses of the deposition, and optimize the operating condition with 
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uncertainties is also very useful for other thin-film fabrications in semiconductors.  One 

of the examples is the spin-coating process of polymers on the silicon wafer, which is a 

critical post-process of photolithography [127].  The design variables include the velocity 

of the spin-coater, the position of the silicon wafer, and the amount of the applied 

polymers.  The responses include the thickness and the uniformity of the polymer thin-

film, which can be modeled by the Radial Basis Functions in terms of experiment data.  

The proposed method can be utilized to find the optimal operating conditions for the 

desired thickness with the allowable uniformity in terms of the root mean square and the 

surface kurtosis.  In the optimization process of the thin-film growth, the design 

uncertainties in the design variables, including the spin velocity and the position of the 

water, should be considered.  The Modified Reliability Index Approach provides the 

evaluations of the failure probabilities and generates the approximate probabilistic 

constraints.  The optimization problems with design uncertainties can then solved and the 

optimal operating condition can be obtained.  Similarly, the proposed strategy can be 

directly applied to any other thin-film growth of the thermal systems. 

Besides the thermal systems with thin-film growth, the proposed method can also 

be applied to other thermal systems, such as the cooling design of the heat sink on the 

CPU chip of a computer.  In the example of the cooling design of the heat sink in 

Figure 1.1 (c), the fluid mechanics and heat transfer is different from the CVD process.  

Either experiments or numerical simulations should be designed with the different 

hardware parameters or operating conditions.  The hardware parameters include the 

dimension of the heat sink, the dimension of the fin, the orientation of the heat sink, and 
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the working space of the desktop case; on the other hand, the operating conditions 

include the temperature of the CPU chip and the velocity of the cooling fan in the case.  

Collecting the data from the experiments/simulations, some responses need to be defined 

to quantitatively describe the performance of the design.  The responses are then modeled 

parametrically by the Radial Basis Functions and utilized to formulate the optimization 

problems.  The recognitions of the design uncertainties and the distributions of the 

random variables are also important for the formulation of the Reliability-Based Design 

Optimization problems.  Once the probabilistic optimization problems are formulated, the 

Modified Reliability Index Approach can be used to find optimal designs with allowable 

failure probabilities.  To sum up, the following summarize the key steps for applying the 

proposed method to design and optimize other thermal systems with design uncertainties: 

 The design and execution of the experiments or the simulations. 

 The definition of the responses. 

 The formulation of the optimization problems. 

 The recognition of the design uncertainties. 

With the achievements of the above four key steps, the proposed system strategy can be 

applied to the specific thermal systems and find the optimal design variables with design 

uncertainties. 
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8.2. Future Work 

The proposed strategy of parametric modeling and optimization with design 

uncertainties can be applied to many other thermal systems, which have been well 

introduced in Chapter 1.  In the future study of the CVD process, the proposed 

methodology can be applied to find the optimal operating conditions for the depositions 

of different materials, such as the high-hardness materials – boron nitride (BN), silicon 

carbide (SiC), boron carbide (B4C), and titanium nitride (TiN).  Different reaction 

kinetics of the deposition should be studied.  Different configurations of the CVD 

processes also can be considered with different hardware variables, such as the shape of 

the CVD chamber, the orientation of the susceptor, and the direction of the reactant flow. 

Another focus for the future work should be devoted to the thermal systems that 

are related to the safety of human lives, the energy crisis, and the biotechnology.  

Especially for the system that requires high performance and cannot afford system 

failures, the operating conditions of the thermal systems should be determined by the 

proposed method.  One of the examples is the next-generation design of the carbon fuel 

cells [128], where the efficiency for electricity production may be possibly higher than 

the traditional hydrogen fuel cells.  The operating conditions of producing the carbon fuel 

cells differ the disorderedness of the carbon atoms, which is much related to the 

electricity yield. 

In the viewpoint of the RBDO problems, there are many different kinds of 

statistical distributions for the random variables besides the normal distributions.  In the 
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future study of the MRIA, the nonlinear transformations and the updating schemes should 

be studied for the other distributions, such as Weibull, Gumbel, and uniform distributions.  

Furthermore, the comparison between the MRIA and the other RBDO algorithms, such as 

the PMA and the SORA, can be studied.  The comparison results will help the designers 

determine the RBDO algorithms for different applications of the thermal systems. 
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Appendices 

I. Detailed Information about the 437 Sampling Points 

Table I.1. Responses of the 437 Sampling Points. 

V T PWA MDR RMS KUR V T PWA MDR RMS KUR
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0.1 
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400 

450 

500 

550 

600 

650 

700 

750 

80.39  

80.39  

80.39  

79.90  

79.41  

78.92  

78.43  

78.43  

77.94  

77.45  

76.96  

76.47  

76.47  

75.98  

75.49  

75.00  

75.00  

74.51  

74.51  

74.02  

73.53  

73.53 

73.04  

78.43  

81.37  

82.84  

82.84  

82.84  

82.84  

82.35  

82.35  

8.886E-5 

8.608E-5 

8.373E-5 

8.176E-5 

8.007E-5 

7.861E-5 

7.735E-5 

7.624E-5 

7.527E-5 

7.441E-5 

7.365E-5 

7.297E-5 

7.234E-5 

7.179E-5 

7.129E-5 

7.083E-5 

7.040E-5 

7.001E-5 

6.964E-5 

6.931E-5 

6.899E-5 

6.868E-5 

6.840E-5 

1.071E-4 

1.033E-4 

1.002E-4 

9.757E-5 

9.531E-5 

9.334E-5 

9.164E-5 

9.012E-5 

9.391E-7

8.422E-7

7.723E-7

7.046E-7

6.530E-7

6.137E-7

5.835E-7

5.777E-7

5.599E-7

5.467E-7

5.358E-7

5.279E-7

5.395E-7

5.348E-7

5.312E-7

5.285E-7

5.444E-7

5.427E-7

5.597E-7

5.584E-7

5.573E-7

5.749E-7

5.736E-7

1.127E-6

1.115E-6

1.053E-6

9.503E-7

8.700E-7

8.062E-7

7.392E-7

7.005E-7

3.305 

3.409 

3.546 

3.671 

3.801 

3.930 

4.050 

4.222 

4.313 

4.384 

4.436 

4.468 

4.550 

4.548 

4.534 

4.508 

4.531 

4.488 

4.492 

4.438 

4.380 

4.367

4.305 

3.028 

3.027 

3.042 

3.060 

3.105 

3.181 

3.243 

3.369

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

81.86 

81.37 

80.88 

80.88 

80.39

79.90 

79.41 

79.41 

78.92 

78.43 

78.43 

77.94 

77.45

77.45 

76.96 

73.53 

79.41 

83.82 

85.29 

85.29 

85.29 

84.80 

84.80 

84.31 

84.31 

83.82 

83.33 

82.84 

82.84 

82.35

81.86 

8.879E-5 

8.760E-5 

8.653E-5 

8.556E-5 

8.469E-5 

8.390E-5 

8.317E-5 

8.250E-5 

8.189E-5 

8.133E-5 

8.081E-5 

8.033E-5 

7.989E-5 

7.947E-5 

7.908E-5 

1.227E-4 

1.180E-4 

1.141E-4 

1.109E-4 

1.082E-4 

1.058E-4 

1.037E-4 

1.019E-4 

1.002E-4 

9.875E-5 

9.742E-5 

9.622E-5 

9.512E-5 

9.410E-5 

9.318E-5 

9.233E-5 

6.546E-7

6.166E-7

5.850E-7

5.742E-7

5.518E-7

5.329E-7

5.169E-7

5.192E-7

5.075E-7

4.975E-7

5.050E-7

4.974E-7

4.912E-7

5.023E-7

4.972E-7

1.105E-6

1.236E-6

1.292E-6

1.217E-6

1.100E-6

1.004E-6

9.088E-7

8.449E-7

7.772E-7

7.351E-7

6.868E-7

6.447E-7

6.088E-7

5.925E-7

5.657E-7

5.426E-7

3.457 

3.549 

3.642 

3.817 

3.907

3.990 

4.063 

4.222 

4.275 

4.316 

4.441 

4.459 

4.467

4.554 

4.542 

2.933 

2.929 

2.883 

2.850 

2.832 

2.837 

2.842 

2.891 

2.926 

3.021 

3.080 

3.145 

3.214 

3.370 

3.447

3.523
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Table I.1. Responses of the 437 Sampling Points (Continued). 

V T PWA MDR RMS KUR V T PWA MDR RMS KUR

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

1200 

1250 

1300 

1350 

1400 

1450 

1500 

400 

450 

500 

550 

600 

650 

700 

750 

800 

850 

900 

950 

1000 

1050 

1100 

1150 

1200 

1250 

1300 

1350 

1400 

1450 

1500 

400 

450 

500 

550 

600 

650 

81.86  

81.37  

80.88  

80.88  

80.39  

79.90  

79.90  

69.12  

74.02  

83.33 

86.76  

87.25  

87.25  

86.76  

86.76  

86.27  

86.27  

85.78  

85.29  

85.29  

84.80  

84.31  

83.82  

83.82  

83.33  

82.84  

82.84  

82.35  

82.35  

81.86  

66.67  

70.59  

76.47  

88.24  

88.73  

88.73  

9.153E-5 

9.079E-5 

9.011E-5 

8.946E-5 

8.887E-5 

8.831E-5 

8.777E-5 

1.364E-4 

1.312E-4 

1.265E-4 

1.227E-4 

1.196E-4 

1.168E-4 

1.144E-4 

1.123E-4 

1.104E-4 

1.086E-4 

1.071E-4 

1.057E-4 

1.044E-4 

1.032E-4 

1.021E-4 

1.011E-4 

1.001E-4 

9.923E-5 

9.841E-5 

9.763E-5 

9.690E-5 

9.621E-5 

9.557E-5 

1.489E-4 

1.430E-4 

1.380E-4 

1.334E-4 

1.298E-4 

1.268E-4 

5.370E-7

5.192E-7

5.037E-7

5.050E-7

4.928E-7

4.820E-7

4.877E-7

1.045E-6

1.145E-6

1.450E-6

1.450E-6

1.324E-6

1.201E-6

1.080E-6

9.947E-7

9.080E-7

8.488E-7

7.849E-7

7.301E-7

6.963E-7

6.547E-7

6.185E-7

5.872E-7

5.727E-7

5.484E-7

5.272E-7

5.211E-7

5.039E-7

5.023E-7

4.886E-7

1.038E-6

1.103E-6

1.257E-6

1.679E-6

1.526E-6

1.377E-6

3.700 

3.770 

3.834 

4.007 

4.056 

4.097 

4.249 

2.867 

2.877 

2.834

2.740 

2.687 

2.653 

2.627 

2.630 

2.629 

2.670 

2.692 

2.722 

2.816 

2.862 

2.913 

2.967 

3.112 

3.172 

3.232 

3.401 

3.458 

3.636 

3.685 

2.830 

2.839 

2.835 

2.668 

2.586 

2.527 

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

88.73 

88.24 

88.24 

87.75 

87.25 

87.25 

86.76 

86.27 

86.27 

85.78

85.29

85.29 

84.80 

84.31 

84.31 

83.82 

83.82 

64.22 

67.65 

72.06 

89.22 

89.71 

89.71 

89.71 

89.71 

89.22 

88.73 

88.73 

88.24 

88.24 

87.75 

87.25 

87.25 

86.76 

86.27 

86.27

1.241E-4 

1.217E-4 

1.195E-4 

1.176E-4 

1.159E-4 

1.142E-4 

1.128E-4 

1.114E-4 

1.102E-4 

1.090E-4 

1.079E-4 

1.069E-4 

1.060E-4 

1.051E-4 

1.042E-4 

1.034E-4 

1.027E-4 

1.603E-4 

1.539E-4 

1.485E-4 

1.432E-4 

1.393E-4 

1.360E-4 

1.330E-4 

1.304E-4 

1.280E-4 

1.259E-4 

1.239E-4 

1.222E-4 

1.205E-4 

1.190E-4 

1.176E-4 

1.163E-4 

1.151E-4 

1.140E-4 

1.129E-4 

1.251E-6

1.134E-6

1.041E-6

9.510E-7

8.742E-7

8.195E-7

7.627E-7

7.108E-7

6.787E-7

6.396E-7

6.054E-7

5.882E-7

5.612E-7

5.372E-7

5.280E-7

5.089E-7

5.040E-7

1.009E-6

1.060E-6

1.154E-6

1.884E-6

1.708E-6

1.538E-6

1.394E-6

1.273E-6

1.152E-6

1.050E-6

9.748E-7

8.979E-7

8.425E-7

7.836E-7

7.320E-7

6.976E-7

6.567E-7

6.211E-7

5.997E-7

2.485 

2.456 

2.443 

2.431 

2.427 

2.460 

2.474 

2.492 

2.571 

2.604

2.641

2.763 

2.808 

2.855 

3.006 

3.055 

3.226 

2.793 

2.802 

2.807 

2.619 

2.517 

2.441 

2.378 

2.333 

2.296 

2.268 

2.257 

2.245 

2.261 

2.263 

2.270 

2.324 

2.341 

2.363 

2.452
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Table I.1. Responses of the 437 Sampling Points (Continued). 

V T PWA MDR RMS KUR V T PWA MDR RMS KUR

0.35 

0.35 

0.35 

0.35 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.45 

0.45 

0.45 

0.45 

0.45 

0.45 

0.45 

0.45 

0.45 

1350 

1400 

1450 

1500 

400 

450 

500 

550 

600 

650 

700 

750 

800 

850 

900 

950 

1000 

1050 

1100 

1150 

1200 

1250 

1300 

1350 

1400 

1450 

1500 

400 

450 

500 

550 

600 

650 

700 

750 

800 

85.78  

85.78  

85.29  

84.80  

62.25  

65.69  

69.61  

75.00  

91.18  

91.18 

90.69  

90.69 

90.20  

90.20  

89.71  

89.22  

89.22  

88.73  

88.73  

88.24  

87.75  

87.75  

87.25  

87.25  

86.76  

86.76  

86.27  

60.78  

63.73  

67.16  

71.57  

92.16  

91.67  

91.67  

91.18  

91.18  

1.119E-4 

1.110E-4 

1.101E-4 

1.093E-4 

1.709E-4 

1.641E-4 

1.582E-4 

1.531E-4 

1.481E-4 

1.445E-4 

1.413E-4 

1.384E-4 

1.359E-4 

1.335E-4 

1.314E-4 

1.295E-4 

1.277E-4 

1.261E-4 

1.246E-4 

1.232E-4 

1.219E-4 

1.206E-4 

1.195E-4 

1.184E-4 

1.173E-4 

1.163E-4 

1.154E-4 

1.809E-4 

1.736E-4 

1.673E-4 

1.619E-4 

1.564E-4 

1.525E-4 

1.491E-4 

1.460E-4 

1.433E-4 

5.712E-7

5.564E-7

5.335E-7

5.131E-7

9.873E-7

1.045E-6

1.123E-6

1.268E-6

1.908E-6

1.714E-6

1.532E-6

1.395E-6

1.260E-6

1.159E-6

1.060E-6

9.737E-7

9.091E-7

8.429E-7

7.945E-7

7.427E-7

6.971E-7

6.657E-7

6.294E-7

6.063E-7

5.773E-7

5.606E-7

5.370E-7

9.771E-7

1.017E-6

1.079E-6

1.184E-6

2.080E-6

1.846E-6

1.666E-6

1.499E-6

1.367E-6

2.482 

2.599 

2.635 

2.670 

2.763 

2.777 

2.785 

2.779 

2.445 

2.359

2.296 

2.236

2.190 

2.152 

2.122 

2.099 

2.090 

2.079 

2.093 

2.092 

2.096 

2.140 

2.152 

2.221 

2.241 

2.336 

2.361 

2.741 

2.749 

2.757 

2.762 

2.388 

2.308 

2.225 

2.167 

2.105 

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

90.69 

90.69 

90.20 

90.20 

89.71 

89.71 

89.22 

88.73 

88.73 

88.24

88.24 

87.75 

87.75 

87.25 

59.31 

62.25 

65.20 

69.12 

74.51 

92.65 

92.16 

92.16 

91.67 

91.67 

91.18 

91.18 

90.69 

90.69 

90.20 

90.20 

89.71 

89.71 

89.22 

88.73 

88.73 

88.24

1.408E-4 

1.385E-4 

1.364E-4 

1.345E-4 

1.328E-4 

1.311E-4 

1.296E-4 

1.282E-4 

1.268E-4 

1.256E-4 

1.244E-4 

1.233E-4 

1.222E-4 

1.212E-4 

1.904E-4 

1.826E-4 

1.760E-4 

1.702E-4 

1.652E-4 

1.601E-4 

1.565E-4 

1.532E-4 

1.503E-4 

1.476E-4 

1.452E-4 

1.430E-4 

1.409E-4 

1.391E-4 

1.373E-4 

1.357E-4 

1.342E-4 

1.327E-4 

1.314E-4 

1.301E-4 

1.289E-4 

1.278E-4 

1.241E-6

1.144E-6

1.049E-6

9.762E-7

9.030E-7

8.476E-7

7.904E-7

7.398E-7

7.028E-7

6.626E-7

6.345E-7

6.022E-7

5.812E-7

5.551E-7

9.587E-7

1.003E-6

1.047E-6

1.135E-6

1.288E-6

1.994E-6

1.780E-6

1.616E-6

1.457E-6

1.334E-6

1.217E-6

1.124E-6

1.034E-6

9.634E-7

8.935E-7

8.390E-7

7.839E-7

7.417E-7

6.978E-7

6.586E-7

6.300E-7

5.984E-7

2.062 

2.021 

1.991 

1.968 

1.950 

1.946 

1.937 

1.932 

1.951 

1.954

1.992 

2.002 

2.062 

2.077 

2.718 

2.729 

2.733 

2.742 

2.734 

2.249 

2.177 

2.100 

2.046 

1.987 

1.949 

1.908 

1.881 

1.856 

1.838 

1.828 

1.819 

1.823 

1.821 

1.822 

1.844 

1.851
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Table I.1. Responses of the 437 Sampling Points (Continued). 

V T PWA MDR RMS KUR V T PWA MDR RMS KUR

0.5 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.55 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

1500 

400 

450 

500 

550 

600 

650 

700 

750 

800 

850 

900 

950 

1000 

1050 

1100 

1150 

1200 

1250 

1300 

1350 

1400 

1450 

1500 

400 

450 

500 

550 

600 

650 

700 

750 

800 

850 

900 

950 

88.24  

58.33  

60.78  

63.73  

67.65  

71.57  

93.14  

93.14  

92.65  

92.65 

92.16  

92.16  

91.67  

91.67  

91.18  

91.18  

90.69  

90.20  

90.20  

90.20  

89.71  

89.22  

89.22  

88.73  

57.35  

59.80  

62.75  

66.18  

69.61  

93.63  

93.63  

93.14  

93.14  

92.65  

92.65  

92.16 

1.267E-4 

1.993E-4 

1.912E-4 

1.842E-4 

1.781E-4 

1.728E-4 

1.673E-4 

1.635E-4 

1.600E-4 

1.569E-4 

1.541E-4 

1.515E-4 

1.492E-4 

1.470E-4 

1.451E-4 

1.432E-4 

1.415E-4 

1.399E-4 

1.383E-4 

1.369E-4 

1.355E-4 

1.343E-4 

1.330E-4 

1.319E-4 

2.079E-4 

1.993E-4 

1.920E-4 

1.856E-4 

1.801E-4 

1.742E-4 

1.701E-4 

1.665E-4 

1.633E-4 

1.603E-4 

1.576E-4 

1.552E-4 

5.764E-7

9.567E-7

9.826E-7

1.031E-6

1.123E-6

1.212E-6

2.120E-6

1.910E-6

1.715E-6

1.560E-6

1.415E-6

1.300E-6

1.190E-6

1.102E-6

1.017E-6

9.494E-7

8.830E-7

8.243E-7

7.776E-7

7.363E-7

6.941E-7

6.565E-7

6.279E-7

5.973E-7

9.495E-7

9.788E-7

1.030E-6

1.104E-6

1.175E-6

2.241E-6

2.017E-6

1.811E-6

1.646E-6

1.493E-6

1.369E-6

1.253E-6

1.889 

2.704 

2.707 

2.715 

2.729 

2.724 

2.211 

2.118 

2.055 

1.984

1.938 

1.884 

1.852 

1.814 

1.792 

1.767 

1.753 

1.743 

1.734 

1.733 

1.733 

1.734 

1.748 

1.754 

2.690 

2.693 

2.703 

2.714 

2.712 

2.175 

2.080 

2.017 

1.943 

1.898 

1.842 

1.810 

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.65

0.7

0.7

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

400

450

92.16 

91.67 

91.67 

91.18 

91.18 

90.69 

90.69 

90.20 

90.20 

89.71

89.71 

55.88 

58.82 

61.27 

64.22 

67.65 

72.55 

93.63 

93.63 

93.63 

93.14 

93.14 

92.65 

92.65 

92.16 

92.16 

91.67 

91.67 

91.18 

91.18 

90.69 

90.69 

90.69 

90.20 

55.39 

57.84 

1.529E-4 

1.508E-4 

1.488E-4 

1.470E-4 

1.453E-4 

1.437E-4 

1.422E-4 

1.407E-4 

1.394E-4 

1.381E-4 

1.369E-4 

2.162E-4 

2.072E-4 

1.995E-4 

1.929E-4 

1.871E-4 

1.819E-4 

1.766E-4 

1.728E-4 

1.694E-4 

1.663E-4 

1.634E-4 

1.609E-4 

1.585E-4 

1.563E-4 

1.542E-4 

1.523E-4 

1.505E-4 

1.488E-4 

1.472E-4 

1.457E-4 

1.443E-4 

1.429E-4 

1.416E-4 

2.240E-4 

2.147E-4 

1.158E-6

1.069E-6

9.953E-7

9.252E-7

8.676E-7

8.119E-7

7.665E-7

7.218E-7

6.859E-7

6.498E-7

6.214E-7

9.161E-7

9.706E-7

1.003E-6

1.057E-6

1.132E-6

1.273E-6

2.105E-6

1.904E-6

1.729E-6

1.568E-6

1.437E-6

1.315E-6

1.214E-6

1.120E-6

1.041E-6

9.672E-7

9.053E-7

8.467E-7

7.976E-7

7.506E-7

7.114E-7

6.765E-7

6.421E-7

9.240E-7

9.589E-7

1.769 

1.748 

1.719 

1.706 

1.688 

1.683 

1.674 

1.674 

1.674 

1.678

1.686 

2.665 

2.679 

2.681 

2.689 

2.695 

2.695 

2.069 

1.983 

1.908 

1.865 

1.808 

1.779 

1.737 

1.718 

1.689 

1.679 

1.660 

1.656 

1.645 

1.647 

1.644 

1.644 

1.651 

2.659 

2.663 
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Table I.1. Responses of the 437 Sampling Points (Continued). 

V T PWA MDR RMS KUR V T PWA MDR RMS KUR

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

500 

550 

600 

650 

700 

750 

800 

850 

900 

950 

1000 

1050 

1100 

1150 

1200 

1250 

1300 

1350 

1400 

1450 

1500 

400 

450 

500 

550 

600 

650 

700 

750 

800 

850 

900 

950 

1000 

1050 

1100 

60.29  

63.24  

66.18  

70.59  

94.12  

94.12  

93.63  

93.63  

93.14  

93.14 

93.14  

92.65  

92.65  

92.16  

92.16  

91.67  

91.67  

91.18  

91.18  

91.18  

90.69  

54.41  

56.86  

59.31  

62.25  

65.20  

68.63  

75.00  

94.12  

94.12  

94.12  

93.63  

93.63  

93.14  

93.14  

92.65  

2.067E-4 

1.998E-4 

1.938E-4 

1.884E-4 

1.828E-4 

1.788E-4 

1.752E-4 

1.720E-4 

1.691E-4 

1.663E-4 

1.638E-4 

1.615E-4 

1.594E-4 

1.574E-4 

1.555E-4 

1.538E-4 

1.521E-4 

1.505E-4 

1.490E-4 

1.476E-4 

1.462E-4 

2.317E-4 

2.220E-4 

2.137E-4 

2.065E-4 

2.003E-4 

1.947E-4 

1.897E-4 

1.846E-4 

1.809E-4 

1.775E-4 

1.745E-4 

1.716E-4 

1.690E-4 

1.666E-4 

1.644E-4 

9.941E-7

1.051E-6

1.107E-6

1.229E-6

2.206E-6

1.994E-6

1.800E-6

1.642E-6

1.496E-6

1.375E-6

1.268E-6

1.170E-6

1.086E-6

1.009E-6

9.430E-7

8.817E-7

8.291E-7

7.799E-7

7.378E-7

7.000E-7

6.640E-7

9.070E-7

9.443E-7

9.819E-7

1.041E-6

1.100E-6

1.180E-6

1.397E-6

2.070E-6

1.879E-6

1.713E-6

1.561E-6

1.433E-6

1.317E-6

1.218E-6

1.128E-6

2.668 

2.678 

2.681 

2.687 

2.038 

1.952 

1.901 

1.836 

1.802 

1.755

1.715 

1.699 

1.672 

1.664 

1.647 

1.647 

1.637 

1.642 

1.638 

1.638 

1.648 

2.642 

2.648 

2.654 

2.666 

2.672 

2.675 

2.664 

1.949 

1.875 

1.812 

1.781 

1.736 

1.718 

1.687 

1.678

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.85

0.85

0.85

0.85

0.85

1150

1200

1250

1300

1350

1400

1450

1500

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

400

450

500

550

600

92.65 

92.65 

92.16 

92.16 

91.67 

91.67 

91.67 

91.18 

53.92 

56.37

58.82 

61.27 

63.73 

67.16 

72.06 

94.61 

94.61 

94.12 

94.12 

93.63 

93.63 

93.63 

93.14 

93.14 

92.65 

92.65 

92.65 

92.16 

92.16 

91.67 

91.67 

52.94 

55.88 

57.84 

60.29 

62.75

1.623E-4 

1.603E-4 

1.585E-4 

1.568E-4 

1.551E-4 

1.536E-4 

1.521E-4 

1.507E-4 

2.390E-4 

2.290E-4 

2.204E-4 

2.130E-4 

2.065E-4 

2.008E-4 

1.956E-4 

1.902E-4 

1.864E-4 

1.829E-4 

1.797E-4 

1.768E-4 

1.741E-4 

1.716E-4 

1.692E-4 

1.671E-4 

1.650E-4 

1.631E-4 

1.613E-4 

1.596E-4 

1.580E-4 

1.564E-4 

1.550E-4 

2.462E-4 

2.358E-4 

2.269E-4 

2.193E-4 

2.126E-4 

1.050E-6

9.802E-7

9.163E-7

8.605E-7

8.093E-7

7.645E-7

7.241E-7

6.866E-7

9.099E-7

9.494E-7

9.892E-7

1.029E-6

1.068E-6

1.150E-6

1.299E-6

2.156E-6

1.956E-6

1.775E-6

1.623E-6

1.486E-6

1.369E-6

1.265E-6

1.172E-6

1.090E-6

1.016E-6

9.503E-7

8.917E-7

8.386E-7

7.911E-7

7.482E-7

7.096E-7

8.886E-7

9.524E-7

9.720E-7

1.014E-6

1.055E-6

1.659 

1.645 

1.647 

1.641 

1.649 

1.649 

1.651 

1.663 

2.637 

2.642

2.648 

2.653 

2.654 

2.663 

2.664 

1.922 

1.851 

1.814 

1.763 

1.741 

1.707 

1.680 

1.675 

1.660 

1.662 

1.656 

1.654 

1.664 

1.668 

1.681 

1.690 

2.620 

2.636 

2.634 

2.639 

2.643 
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Table I.1. Responses of the 437 Sampling Points (Continued). 

V T PWA MDR RMS KUR V T PWA MDR RMS KUR

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

650 

700 

750 

800 

850 

900 

950 

1000 

1050 

1100 

1150 

1200 

1250 

1300 

1350 

1400 

1450 

1500 

400 

450 

500 

550 

600 

650 

700 

750 

800 

850 

900 

950 

1000 

1050 

1100 

1150 

1200 

1250 

66.18  

69.61  

95.10  

94.61  

94.61  

94.12  

94.12  

94.12  

93.63  

93.63 

93.14  

93.14  

93.14  

92.65  

92.65  

92.16  

92.16  

92.16  

52.45  

54.90  

57.35  

59.31  

62.25  

64.71  

68.14  

75.00  

92.16  

91.67  

91.18  

90.69  

90.69  

90.69  

93.63  

93.63  

93.63  

93.14  

2.067E-4 

2.014E-4 

1.956E-4 

1.917E-4 

1.880E-4 

1.847E-4 

1.817E-4 

1.789E-4 

1.763E-4 

1.739E-4 

1.717E-4 

1.696E-4 

1.676E-4 

1.657E-4 

1.639E-4 

1.622E-4 

1.606E-4 

1.591E-4 

2.531E-4 

2.424E-4 

2.332E-4 

2.254E-4 

2.184E-4 

2.124E-4 

2.069E-4 

2.019E-4 

1.969E-4 

1.932E-4 

1.897E-4 

1.866E-4 

1.837E-4 

1.810E-4 

1.785E-4 

1.761E-4 

1.740E-4 

1.719E-4 

1.140E-6

1.222E-6

2.238E-6

2.022E-6

1.842E-6

1.680E-6

1.542E-6

1.420E-6

1.310E-6

1.214E-6

1.128E-6

1.052E-6

9.839E-7

9.226E-7

8.676E-7

8.183E-7

7.734E-7

7.329E-7

8.878E-7

9.312E-7

9.751E-7

9.967E-7

1.062E-6

1.104E-6

1.189E-6

1.437E-6

2.050E-6

1.868E-6

1.710E-6

1.572E-6

1.454E-6

1.349E-6

1.255E-6

1.167E-6

1.088E-6

1.017E-6

2.655 

2.652 

1.897 

1.853 

1.795 

1.769 

1.730 

1.700 

1.693 

1.676

1.677 

1.671 

1.669 

1.679 

1.685 

1.698 

1.709 

1.721 

2.613 

2.620 

2.628 

2.625 

2.639 

2.639 

2.643 

2.634 

1.999 

1.956 

1.920 

1.890 

1.840 

1.799 

1.692 

1.685 

1.684 

1.693 

0.9

0.9

0.9

0.9

0.9

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

1 

1 

1 

1 

1 

1 

1 

1 

1300

1350

1400

1450

1500

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

400

450

500

550

600

650

700

750

93.14 

93.14 

92.65 

92.65 

92.16 

52.45 

54.41 

56.37 

58.82 

61.27

63.73 

66.67 

71.08 

91.67 

91.18 

90.69 

90.20 

90.20 

89.71 

89.71 

89.71 

89.71 

89.71 

93.14 

93.14 

93.14 

92.65 

92.65 

51.47 

53.92 

55.88 

58.33 

60.29 

62.75 

65.69 

69.61 

1.700E-4 

1.681E-4 

1.664E-4 

1.647E-4 

1.631E-4 

2.598E-4 

2.488E-4 

2.394E-4 

2.313E-4 

2.242E-4 

2.179E-4 

2.123E-4 

2.073E-4 

2.019E-4 

1.981E-4 

1.945E-4 

1.913E-4 

1.883E-4 

1.855E-4 

1.829E-4 

1.805E-4 

1.783E-4 

1.761E-4 

1.741E-4 

1.722E-4 

1.704E-4 

1.687E-4 

1.671E-4 

2.664E-4 

2.551E-4 

2.454E-4 

2.370E-4 

2.297E-4 

2.233E-4 

2.175E-4 

2.124E-4 

9.534E-7

8.961E-7

8.453E-7

7.985E-7

7.572E-7

9.084E-7

9.311E-7

9.544E-7

1.000E-6

1.045E-6

1.089E-6

1.154E-6

1.285E-6

2.106E-6

1.921E-6

1.760E-6

1.619E-6

1.500E-6

1.390E-6

1.294E-6

1.208E-6

1.130E-6

1.059E-6

9.853E-7

9.258E-7

8.722E-7

8.251E-7

7.810E-7

8.827E-7

9.296E-7

9.547E-7

1.002E-6

1.027E-6

1.073E-6

1.140E-6

1.250E-6

1.699 

1.709 

1.724 

1.739 

1.755 

2.616 

2.613 

2.612 

2.621 

2.626

2.629 

2.632 

2.633 

2.036 

1.993 

1.956 

1.924 

1.872 

1.851 

1.813 

1.782 

1.759 

1.743 

1.723 

1.735 

1.751 

1.767 

1.786 

2.599 

2.607 

2.606 

2.615 

2.614 

2.618 

2.624 

2.628
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Table I.1. Responses of the 437 Sampling Points (Continued). 

V T PWA MDR RMS KUR V T PWA MDR RMS KUR

1 

1 

1 

1 

1 

1 

1 

1 

800 

850 

900 

950 

1000 

1050 

1100 

1150 

91.18  

90.69  

90.20  

90.20  

89.71  

89.22  

89.22  

88.73  

2.068E-4 

2.028E-4 

1.992E-4 

1.959E-4 

1.928E-4 

1.899E-4 

1.873E-4 

1.848E-4 

2.159E-6

1.972E-6

1.809E-6

1.673E-6

1.545E-6

1.432E-6

1.335E-6

1.245E-6

2.076 

2.031 

1.993 

1.932 

1.906 

1.884 

1.842 

1.829

1

1

1

1

1

1

1

1200

1250

1300

1350

1400

1450

1500

 

88.73 

88.73

88.73

88.73

88.73

93.14

93.14

 

1.824E-4 

1.802E-4 

1.782E-4 

1.762E-4 

1.743E-4 

1.726E-4 

1.709E-4 

 

1.167E-6

1.095E-6

1.030E-6

9.709E-7

9.167E-7

8.509E-7

8.054E-7

 

1.800 

1.778

1.762

1.753

1.751

1.794

1.815
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