

PROCESS OPERATIONS WITH UNCERTAINTY AND
INTEGRATION CONSIDERATIONS

by

ZUKUI LI

A Dissertation submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Chemical and Biochemical Engineering

written under the direction of

Prof. Marianthi G. Ierapetritou

and approved by

New Brunswick, New Jersey

[May, 2010]

ii

ABSTRACT OF THE DISSERTATION

Process Operations with Uncertainty and Integration Considerations

By ZUKUI LI

Dissertation Director:

Prof. Marianthi Ierapetritou

There has been a lot of attention in recent years towards the application of mathematical modeling and

optimization approaches for the solution of production planning and scheduling problems. This is mainly due

to the changing economic environment which pushes for more efficient process operations. However, there

are still a number of challenges that restrict the effective application of optimization for planning and

scheduling problem especially in the process industry. First, decision making in process operations is

frequently based on parameters of which the values are uncertain. A systematic treatment of those

uncertainties (e.g., processing time variations, rush orders, failed batches, machine breakdowns, etc) is

necessary to satisfy the customer demands, increase the efficiency of operations and improve the plant

profitability. Moreover, the interactions between the different decision-making levels were often ignored in

existing solution approaches, which leads to sub-optimal and even infeasible solutions. Thus the integration

of different decision making levels has been recognized by the research community as an imperative

problem.

In this work, systematic methods have been developed to address the above challenges. First, different

methodologies are proposed to address the uncertainties in process scheduling problem: robust optimization

based preventive scheduling strategy which aims at generating a robust preventive schedule to handle the

possible parameter perturbations; parametric programming based reactive scheduling strategy which aims at

responsive schedule regeneration or updating upon the happening of disruptive events. To address the

interaction between planning and scheduling decision levels, a dual decomposition based approach that

targets the solution of large scale planning and scheduling integration problem was proposed, which aims at

decreasing the computational complexity through decomposition and parallel computation. Finally, the

rolling horizon method which provides a promising modeling framework for integrated planning and

iii

scheduling and incorporation of uncertainty is studied. A novel method of generating production capacity

model through parametric programming technique is proposed, and it is verified that the incorporation of the

capacity model into the rolling horizon framework can improve the solution quality.

iv

Acknowledgements

I would like to express my deepest and most sincere gratitude to my supervisor, Prof. Marianthi Ierapetritou.

Her wide knowledge and her logical way of thinking have been of great value for me. Her understanding,

encouraging, personal guidance and important support throughout my Ph.D. study have provided a good

basis for the present dissertation.

For this dissertation I would like to thank my thesis committee members: Dr. Ioannis Androulakis, Dr.

Yee C. Chiew and Dr. David W. Coit for their time, interest, and helpful comments.

I gratefully acknowledge the funding support from National Science Foundation under grant

CBET-0625515, 0966861 that made my Ph.D. work possible.

My time at Rutgers was made enjoyable in large part due to the many friends that became a part of my

life. I am grateful for time spent with group members who have been great support to my study and also

shared with the fantastic PhD life: Zhenya Jia, Steve Guzikowski, Eddie Davis, Patricia Portillo, Hong Yang,

Kaiyuan He, Yijie Gao, Mehmet Orman, Nikisha Shah, Fani Boukouvala, Vidya Iyer, Beverly Smith,

Shuliang Zhang.

Lastly, I would like to thank my family for all their love and encouragement: for my parents who raised

me with a love of science and supported me in all my pursuits, for the constant support from my sister Zuqing,

and most of all for my loving, supportive, encouraging, and patient wife Qian whose faithful support during

all stages of this Ph.D. is so appreciated. Thank you.

v

To my parents: Dingxiang Wang and Gaotong Li

vi

Table of Contents

Abstract .. ii

Acknowledgements ..iv

List of tables ...ix

List of illustrations ...xi

Chapter 1 Introduction .. - 1 -

1.1 Planning and scheduling in the process industry .. - 1 -

1.2 Modeling and optimization for planning and scheduling ... - 3 -

1.3 Problems and challenges .. - 4 -

1.3.1 Uncertainty issue ... - 5 -

1.3.2 Integration issue ... - 6 -

1.4 Project objectives.. - 7 -

Chapter 2 Uncertainty Analysis with Parametric Programming ... - 10 -

2.1 Introduction .. - 10 -

2.2 Parametric programming algorithm .. - 12 -

2.2.1 Problem definition ... - 12 -

2.2.2 Local parametric solution algorithm .. - 13 -

2.2.3 Exploring the parameter space ... - 16 -

2.3 Uncertainty analysis for scheduling problem ... - 21 -

2.4 Summary .. - 29 -

Chapter 3 Robust Preventive Scheduling ... - 31 -

3.1 Introduction .. - 31 -

3.2 Robust optimization .. - 34 -

3.2.1 Soyster’s formulation ... - 35 -

3.2.2 Ben-Tal and Nemirovski’s formulation ... - 36 -

3.2.3 Bertsimas and Sim’s formulation... - 37 -

3.2.4 Comparison of different formulations ... - 40 -

3.3 Robust scheduling .. - 41 -

vii

3.3.1 Price uncertainty .. - 42 -

3.3.2 Processing time uncertainty ... - 43 -

3.3.3 Demand uncertainty ... - 43 -

3.4 Examples .. - 44 -

3.4.1 Example 1 .. - 44 -

3.4.2 Example 2 .. - 50 -

3.5 Summary .. - 53 -

Chapter 4 Reactive Scheduling .. - 55 -

4.1 Introduction .. - 55 -

4.2 Reactive scheduling formulation .. - 58 -

4.2.1 General idea ... - 58 -

4.2.2 Rush order .. - 59 -

4.2.3 Machine breakdown ... - 62 -

4.3 Examples .. - 64 -

4.4 Summary .. - 76 -

Chapter 5 Integration of Planning and Scheduling ... - 77 -

5.1 Introduction .. - 77 -

5.2 Problem structure ... - 80 -

5.3 Augmented Lagrangian Optimization algorithm .. - 82 -

5.4 Decomposition strategy .. - 85 -

5.4.1 Diagonal Quadratic Approximation ... - 86 -

5.4.2 Two-Level optimization .. - 87 -

5.5 Examples .. - 90 -

5.6 Summaries .. - 96 -

Chapter 6 Rolling Horizon Optimization ... - 99 -

6.1 Introduction .. - 99 -

6.2 Rolling horizon framework .. - 102 -

6.3 Production capacity model derivation .. - 108 -

viii

6.3.1 Parametric programming ... - 108 -

6.3.2 Application of parametric programming in motivation example. - 110 -

6.3.3 Capacity model derivation through process network decomposition - 112 -

6.4 Case studies .. - 114 -

6.5 Summary .. - 122 -

Bibliography ... - 124 -

Appendix A. Parametric Linear Complementarity Problem .. - 130 -

Appendix B. Convergence Property of Augmented Lagrangian Optimization Algorithm - 133 -

ix

List of tables

Table 2.1 Summary of the characteristic of parametric solution .. - 15 -

Table 2.2 Data for example 1 ... - 23 -

Table 2.3 Demand uncertainty for example 1 .. - 23 -

Table 2.4 Solution of example 1 with demand uncertainty .. - 23 -

Table 2.5 Price uncertainty for example 1 .. - 24 -

Table 2.6 Solution of example 1 with price uncertainty ... - 24 -

Table 2.7 Price and demand Uncertainty for example 1 ... - 25 -

Table 2.8 Solution of example 1 with demand and price uncertainty .. - 26 -

Table 2.9 Demand, price and processing time uncertainty for example 1 .. - 27 -

Table 2.10 Solution of example 1with demand, price and processing time uncertainty................... - 27 -

Table 3.1 Process data for the example 1 ... - 45 -

Table 3.2 Comparison of the robust formulations for price uncertainty ... - 46 -

Table 3.3 Comparison of the robust formulations for processing time uncertainty - 47 -

Table 3.4 Comparison of the robust formulations for demand uncertainty - 47 -

Table 3.5 Solution data for example 2 with all uncertainties ... - 49 -

Table 3.6 Process data for Example 2 .. - 51 -

Table 3.7 Solution data of example 2 ... - 51 -

Table 4.1 Rush order uncertainty for example 1 .. - 66 -

Table 4.2 Parametric objective for example 1 with rush order ... - 67 -

Table 4.3 Integer solution of critical region 10 .. - 68 -

Table 4.4 Machine breakdown uncertainty for example 1 ... - 68 -

Table 4.5 Parametric objective for example 1 with machine breakdown ... - 69 -

Table 4.6 Rush order uncertainty for example 2 .. - 72 -

Table 4.7 Machine breakdown uncertainty for example 2 ... - 74 -

Table 4.8 Parametric objective for example 2 with machine breakdown ... - 74 -

Table 4.9 Computational statistics for the examples .. - 75 -

Table 5.1 Cost data for the example ... - 91 -

x

Table 5.2 Model statistics and direct solution for full space model ... - 91 -

Table 5.3 Result of the DQA method ... - 92 -

Table 5.4 Result of the two-level method ... - 92 -

Table 6.1 Cost and demand data for motivation example .. - 106 -

Table 6.2 Comparison of the rolling horizon solution procedures ... - 107 -

Table 6.3 Comparison of the final solution results ... - 107 -

Table 6.4 Parametric solution for the motivation example ... - 110 -

Table 6.5 Rolling horizon solution with production capacity model from parametric solution - 112 -

Table 6.6 Solution of the example 1 ... - 117 -

Table 6.7 Model statistics ... - 121 -

Table 6.8 Solution of the example 2 ... - 122 -

xi

List of illustrations

Figure 2.1 Flowchart of the parametric MILP algorithm .. - 14 -

Figure 2.2 Illustration of identifying the remaining part of a given region. - 17 -

Figure 2.3 Illustration of the solution procedure for the numerical example - 20 -

Figure 2.4 Final parametric solution map(partition of the parameter space into critical regions) ... - 21 -

Figure 2.5 State Task Network (STN) of Example 1 .. - 23 -

Figure 2.6 Critical region of Example 1 with demand uncertainty .. - 24 -

Figure 2.7 Critical region of Example 1 with price uncertainty .. - 25 -

Figure 2.8 Critical region of Example 1 with price and demand uncertainty - 26 -

Figure 2.9 Critical region of Example 1 with demand, price and processing time uncertainty - 28 -

Figure 3.1 State Task Network (STN)representation of Example 1 .. - 45 -

Figure 3.2 Nominal schedule for example 1 (x: hours, y: equipment) .. - 49 -

Figure 3.3 Robust schedule for example 1 (Γp=0.5, Γd=0.3, Γt=0.3) ... - 49 -

Figure 3.4 STN of example 2 ... - 50 -

Figure 3.5 Nominal schedule for example 2 .. - 52 -

Figure 3.6 Robust schedule for example 2 (Γp=1, Γd=0.3, Γt=0.3) .. - 52 -

Figure 3.7 Robust schedule for example 2 (Γp=2, Γd=0.4, Γt=0.4) .. - 53 -

Figure 4.1 State-task-network (STN) representation of example 1 ... - 65 -

Figure 4.2 Original schedule of example 1 with nominal demand .. - 65 -

Figure 4.3 Parametric solution of optimal makespan and the rush order .. - 66 -

Figure 4.4 Critical regions of example 1 with rush order .. - 67 -

Figure 4.5 Reactive schedule for example1 with rush order at t = 2.2 h ... - 68 -

Figure 4.6 Original schedule of example 1, fixed H = 8 h .. - 69 -

Figure 4.7 Parametric solution of maximum profit and machine breakdown parameter - 70 -

Figure 4.8 Critical region of the example 1 with machine breakdown .. - 70 -

Figure 4.9 Reactive schedule for reactor 2 breakdown at t = 2.5 h, maintenance time = 1 h - 71 -

Figure 4.10 STN representation of example 2 ... - 71 -

Figure 4.11 Original schedule for example 2 .. - 72 -

xii

Figure 4.12 Critical region of example for rush order uncertainty .. - 73 -

Figure 4.13 Reactive schedule for rush order at t = 1.5 h .. - 73 -

Figure 4.14 Critical region of example 2 with machine breakdown. ... - 74 -

Figure 4.15 Reactive schedule for unit 2 breakdown at t = 3 h, maintenance time = 1.5 h - 75 -

Figure 5.1 Constraint matrix structure of the integration model ... - 82 -

Figure 5.2 Constraint matrix structure of the reformulated model .. - 83 -

Figure 5.3 Illustration of the decomposition strategy: (left) DQA; (right) Two-level - 89 -

Figure 5.4 State-Task-Network (STN) representation of the motivation example - 90 -

Figure 5.5 Demand data for 90 periods ... - 91 -

Figure 5.6. Solution procedure: (left) DQA with k-iteration; (right) Two-level optimization - 93 -

Figure 5.7 Feasibility of solution: (left) DQA with k-iteration; (right) two-level optimization - 93 -

Figure 5.8 Production profile of the solution... - 95 -

Figure 5.9 Inventory profile of the solution... - 95 -

Figure 5.10 Backorder profile of the solution ... - 96 -

Figure 6.1 State Task Network for example 1 .. - 105 -

Figure 6.2 Illustration of the parametric solution .. - 111 -

Figure 6.3 Combined nonconvex production capacity region and its convex hull - 111 -

Figure 6.4 STN representation of example 1 ... - 114 -

Figure 6.5 Demand data .. - 115 -

Figure 6.6 Sub-network 2 (assume INT 5 with infinite supply) .. - 115 -

Figure 6.7 Production capacity region and the convex hull... - 117 -

Figure 6.8 Production target solution (without capacity constraints) .. - 118 -

Figure 6.9 Production target solution (with capacity constraints) ... - 118 -

Figure 6.10 Backorder amount in the solution (without capacity constraints) - 119 -

Figure 6.11 STN representation of example 2 ... - 120 -

Figure 6.12 Process network decomposition for example 2 .. - 121 -

Figure 6.13 Production capacity information .. - 121 -

- 1 -

Chapter 1

Introduction

1.1 Planning and scheduling in the process industry

Modern process industry (e.g., chemical, food, pharmaceutical, refineries, etc.) faces major new challenges

through increased global competition, greater regulatory pressures and uncertain prices of energy, raw

materials and products. These competitive concerns increase the focus on integrated processes, information

technology, and consideration of multiple decision criteria including profitability, flexibility, service quality

and the production efficiency. The success of process industry largely depends on how efficiently it generates

value by dynamically optimizing deployment of its supply chain resources. Among the challenges for the

dynamic optimization of the entire supply chain resources are the rigorous but tractable optimization of

process operations and the efficient integration of different decision making stages as well as the

consideration of uncertainty and risk factors. Planning and scheduling deal with the allocation of available

resources over time to perform a set of tasks required to manufacture one or more products, and they are the

most important topics in process operations (Grossmann & Westerberg, 2000).

Planning problem corresponds to a higher level of process operation decision making since it considers

longer time horizon and multiple orders that involve different operating conditions as well as unit changes,

price and cost variability. Planning in process industry is used to create production, distribution, sales and

inventory plans based on customer and market information while observing all relevant constraints. In

particular, operational plans have to be determined which are aimed to structure future production,

distribution and other related activities according to business objectives. Based on these operational plans,

detailed schedules are worked out which define the precise timing and sequencing of individual operations as

well as the assignment of the required resources over time. Production planning provides the decision support

systems for the logistics in the long range operation of networks of plants, and their coordination with

marketing and business considerations. A higher level of planning is supply chain planning/management

- 2 -

(Kallrath, 2002). In supply chain planning, we usually consider material flow and balance equations

connecting sources and sinks of a supply network. Time-indexed models using a relative coarse

discretization of time, e.g., a year, quarters, months or weeks are usually accurate enough. Process industry

supply chains, involving manufacturers, suppliers, retailers and distributors, strives to improve efficiency and

responsiveness. Supply chain planning considers a fixed infrastructure over a short- to medium-term, and

seeks to identify how best to use the production, distribution and storage resources in the chain to respond to

orders and demand forecasts in an economically efficient manner. Supply chain planning provides the

decision support systems for the logistics in the long range operation of networks of plants, and their

coordination with marketing and business considerations. These problems often give rise to large

multi-period optimization problems where a major challenge lies in the effective aggregation of more

detailed scheduling and operational models (Shah, 2005).

Process scheduling addresses the optimal assignment of tasks to units over the allotted time horizon in

the operations of multiproduct and multipurpose plants that manufacture a variety of products through

several sequences of operations operate in batch and/or continuous mode. Scheduling of batch and

continuous processes can have a major impact on the overall profitability of a process, as well as on the

timely delivery of products. Major problems include sequencing, scheduling of equipment utilization and

maintenance over a planning horizon, and inventory considerations of a process. Such problems form

perhaps difficult combinatorial optimization problems but also contribute to high payoffs. In an industrial

process, each task requires certain amounts of specified resources for a specific time interval called the

processing time. The resources include the use of equipment, the utilization of raw material or intermediates,

the employment of operators etc., and tasks involve the chemical or physical transformation of materials,

transportation of products or intermediates, cleaning, and maintenance operations etc. Scheduling objective

can take many forms such as minimizing the time required to complete all the tasks (the makespan),

minimizing the number of orders completed after their committed due dates, maximizing customer

satisfaction by completing orders in a timely fashion, maximizing plant throughput, maximizing profit or

minimizing production costs. Scheduling decisions to be determined include the optimal sequence of tasks

taking place in each unit, the amount of material being processed at each time in each unit and the processing

time of each task in each unit.

- 3 -

Planning and scheduling can be distinguished based on various characteristics. First in terms of the

considered time horizon, long-term planning problems deal with longer time horizons (e.g., months or years)

and are focused on higher level decisions such as timing and locations of additional facilities and levels of

production. The area of medium-term scheduling involves medium time horizons (e.g., weeks or months) and

aims to determine detailed production schedules, which can result in very large scale problems. Short-term

scheduling models address short time horizons (e.g., days or weeks) and are focused on determining detailed

sequencing of various operational tasks. Second in terms of the decisions involved, short-term scheduling

provides feasible production schedule considering the detailed operation conditions; while planning involves

consideration of financial and business decisions over extended periods of time. Lastly considering

uncertainty, short-term scheduling need to consider the disturbing events such as rush orders, machine

breakdown and attempt to absorb the impact; while the planning need to foresee the possible changes in the

future and the effects of the current decisions thus achieving an optimal solution for the benefits of the entire

planning time horizon. Planning and scheduling of process systems are also closely linked activities.

Production planning determines the optimal allocation of resources within the production facility over a time

horizon of a few weeks up to few months, scheduling provides the feasible production schedules to the plant

for every day operations. Since the boundaries of planning and scheduling problems are not well established

and there is an intrinsic integration between these decision making stages.

1.2 Modeling and optimization for planning and scheduling

In the past, planning especially scheduling operations in the industry are mostly based on heuristics (Kallrath,

2002), (Elliott, 2000), mathematical programming based modeling and optimization become more and more

the state-of-the-art in the planning and scheduling operations for the process industry.

Most of the planning problems in the process industry lead to linear programming (LP) or mixed integer

linear/nonlinear programming (MILP/MINLP) models and contain the following building blocks: tracing the

states of plants, modeling production, balance equations for material flows, transportation terms,

consumption of utilities, cost terms, and special model features. Mode-changes, start-up and cancellation

features, and nonlinear cost structures require many binary variables. Minimum utilization rates and

transportation often require semi-continuous variables. Special features such as batch and campaign

- 4 -

constraints across periods require special constraints to implement the concept of contiguity. The model,

however, remains linear in all variables. Only if the pooling problem occurs, e.g., in the refinery industry or

the food industry, we are really facing a MINLP problem. In production or supply chain planning,

time-indexed models using a relative coarse discretization of time, e.g., a year, quarters, months or weeks are

usually accurate enough. The MILP/MINLP approaches are also often appropriate and successful for

problems with a clear quantitative objective function (net profit, contribution margin, cost, total sales

neglecting cost, total production for a fixed system of production reactors, energy consumption or the usage

of other utilities, deviation of the usage of resources from their average usage), or quantitative multi-criteria

objectives usually a subset of those just listed.

There are lots of different approaches that appear in the literature to address the problem of scheduling

formulation, a recent review about classification of scheduling problems is given by (Méndez et al., 2006).

One major classification is based on the nature of the production facility to manufacture the required number

of products utilizing a limited set of units. If every job consists of the same set of tasks to be performed in the

same order and the units are accordingly arranged in production lines, the problem is classified as a

multiproduct plant (also called flow-shop problem). If production orders have different routes (require

different sequences of tasks) and some orders may even visit a given unit several times, the problem is known

as multipurpose plant (also called job-shop problem). A number of alternative ways of formulating the

scheduling problem exist in the open literature. One distinguishing characteristic is the time representation,

according to which the approaches are classified into two broad categories. Early attempts of formulating the

scheduling problem were mainly concentrated on the discrete-time formulation, where the time horizon is

divided into a number of intervals of equal duration. The other type of method aims at developing efficient

methods based on a continuous-time representation, a thorough review is given by (Floudas & Lin, 2004).

1.3 Problems and challenges

Although there has been a lot of attention in recent years towards the application of mathematical modeling

and optimization approaches for the solution of production planning and scheduling problems, there are still

a number of challenges that restrict the effective application of optimization for planning and scheduling

problem in the process industry.

- 5 -

1.3.1 Uncertainty issue

First, most of the work in the area of planning and scheduling deals with the deterministic optimization model

where all the parameters are considered known. Along with the studies in deterministic planning and

scheduling, consideration of uncertainties in these problems has got more attention in recent years. In real

plants uncertainty is a very important concern that is coupled with the planning and especially scheduling

process since many of the parameters that are associated with them are not known exactly. Parameters like

raw material availability, prices, machine reliability, and market requirements vary with respect to time and

are often subject to unexpected deviations. Having ways to systematically consider uncertainty is as

important as having the mathematical model itself.

Uncertainty appears in all the different levels of the industry from the detailed process description to

multi-site manufacturing, such as demand or changes in product orders or order priority, batch or equipment

failures, processing time variability, resource changes and/or recipe variations, etc. Based on the nature of the

source of uncertainty in a process, a suitable classification has been proposed by (Pistikopoulos, 1995) as

follows: (i) Model-inherent uncertainty, such as kinetic constants, physical properties, mass/heat transfer

coefficients; (ii) Process-inherent uncertainty, such as flow rate and temperature variations, stream quality

fluctuations, processing time and equipment availability; (iii) External uncertainty, including feed stream

availability, product demands, prices and environmental conditions; (iv) Discrete uncertainty, such as

equipment availability and other random discrete events, operational personnel absence. To include the

description of uncertain parameters within the optimization model of the planning and scheduling problem,

several methods have been used: bounded form; probability distribution function and fuzzy description.

Following the alternative description methods for uncertainty, different scheduling models and optimization

approaches have been developed.

Methodologies for process scheduling under uncertainty aim at producing feasible, robust and optimal

schedules. According to the different treatment of uncertainty, process scheduling methods can be classified

into two groups: reactive scheduling and preventive scheduling. Reactive scheduling is a process of

modifying the existing schedule during the process operation to adapt to changes (uncertainty) in production

environment, such as disruptive events, rush order arrivals, order cancellations or machine breakdowns.

Preventive scheduling on the other hand generates scheduling policies before uncertainty occurs. Detail

- 6 -

classification of preventive scheduling includes: stochastic scheduling, robust optimization method, fuzzy

programming method and sensitivity analysis and parametric programming method.

The inability of many scheduling systems to address the general issue of uncertainty is cited as a major

reason for the lack of influence of scheduling research in industrial practice. In the commercial planning and

scheduling systems, there exist few generic packages for risk analysis to support the resolution of

optimization problems under uncertainty. Most tools claim to provide real-time scheduling capabilities and

what if scenario analysis. In general, they are able to generate updated schedules as disruptions occur, and use

interactive Gantt charts which allow to drag and drop operations for manual rescheduling; however, the

incorporation of robustness issues within a systematic procedure is not considered at all.

1.3.2 Integration issue

Production planning and scheduling belong to different decision making levels in process operations, they

are also closely related since the result of planning problem is the production target of scheduling problem.

The planning problem deals with longer term issues compared to scheduling with the emphasis being on the

optimization of production capacity minimizing cost. In the process industry, the most commonly used

planning and scheduling decision making strategy follows a hierarchical approach, in which the planning

problem is solved first to define the production targets and the scheduling problem is solved next to meet

these targets. However, the main issue with this traditional strategy is the lack of communication between the

two decision levels, i.e., the planning decisions generated might cause infeasible schedule subproblems. Thus

at the planning level, the effects of changeovers and daily inventories are neglected, which tends to produce

optimistic estimates that cannot be realized at the scheduling level, i.e., a solution determined at the planning

level does not necessarily lead to feasible schedules. Moreover, the optimality of the planning solution cannot

be ensured because the planning level problem might not provide an accurate estimation of the production

cost, which should be calculated based on the details of the scheduling problem.

Therefore, it is important and necessary to develop methodologies that can effectively integrate

production planning and scheduling. However, since production planning and scheduling are dealing with

different time scales, the major challenge towards the integration is dealing with the big computational

complexity associated with the resulted optimization problem. To overcome the above difficulty, most of the

- 7 -

work appeared in the literature aim at decreasing the problem scale through different types of problem

reduction methodologies and developing efficient solution strategies as summarized by (Grossmann et al.,

2002). In this chapter, we are aiming of reviewing the existing work in the area of planning and scheduling

integration as classified in the following subsections.

1.4 Project objectives

To address the challenges for planning and scheduling operations as stated in previous subsections, the first

general research objective is to develop systematic method in addressing the uncertainty in process

operations and to help the decision maker better understand, manage and tackle uncertainty. The second part

of the research objective is related to the integrated planning and scheduling decision making. Specifically,

the following research objectives will be studied:

(1) Developing systematic uncertainty analysis framework with parametric programming technique,

(2) Developing effective preventive scheduling which uses robust optimization formulation,

(3) Developing new reactive scheduling technique,

(4) Developing efficient decomposition based methodology to address large scale integrated planning

and scheduling optimization problems.

(5) Consideration of production capacity model in the rolling horizon solution framework.

The above objectives are studied through different strategies in this thesis as follows:

Specific objective 1: Parametric programming based uncertainty analysis method

In real plants, uncertainty is a very important concern that is coupled with the scheduling process since many

of the parameters that are associated with scheduling are not known exactly. Parameters like raw material

availability, prices, machine reliability, and market requirements vary with respect to time and are often

subject to unexpected deviations. To better understand uncertainty, the effect of different uncertainties on

planning/scheduling performance should be provided. To address this issue, a parametric programming

based uncertainty analysis method for MILP problem is proposed and applied to the scheduling problem.

This part of work will be elaborated in Chapter 2.

Specific Objective 2: Preventive scheduling – efficient robust schedule generation

- 8 -

Recognizing the fact that real plants exist in a dynamic environment where the scheduling parameters change

as the schedule is being executed, a schedule developed beforehand may become inefficient or even

infeasible. The uncertainty considered in this work can be viewed as fluctuations in product demands, prices

and processing times, etc. The expected range of parameter uncertainty is incorporated within the short-term

scheduling model so as to determine a robust schedule capable of meeting the expected range of uncertain

parameter values. In this specific research, a new robust scheduling formulation is proposed which will avoid

these drawbacks of existing methods. Chapter 3 covers this part of research.

Specific Objective 3: Reactive scheduling

The ability to react to unexpected events during the execution of a schedule is an important part of plant

operating strategy. The uncertainty considered in this direction includes rush order, order cancellation and

unexpected deviations in unit availability (machine break-down). Current capabilities of optimization

methods to reactive scheduling problems are still very restricted and mostly focused on sequential batch

processes. More general, efficient and systematic rescheduling tools are required for recovering feasibility

and efficiency with short reaction time and minimum additional cost. The objective of reactive scheduling is

to determine the optimal rescheduling policy that minimizes the deviations from the old schedule while

taking into account the satisfaction of other production constraints. The main effort should be oriented

towards avoiding a time-expensive full scale rescheduling, allowing during the rescheduling process only

limited changes to the scheduling decisions already made at the beginning of the time horizon. In this

direction, we will mainly aim at developing effective reactive scheduling method to avoid the high

computational effort needed by the traditional re-scheduling framework. Chapter 4 discussed more detail of

this work.

Specific Objective 4: Solution strategy for integrated planning and scheduling

In the past, the problem integrated planning and scheduling is not well addressed. The main reason is that

many realistic industrial integrated planning and scheduling problems are large scale discrete optimization

problems. The objective of this research is to develop efficient decomposition based methodology to solve

the large scale full space integrated planning and scheduling problem. This part of work is presented in

chapter 5.

Specific Objective 5: Rolling horizon framework for integrated planning and scheduling

- 9 -

The final objective is to develop an integrated methodology to handle uncertainty in integrated planning and

scheduling problem. Rolling horizon method provides a promising framework for this objective. However,

the most existing rolling horizon method does not consider the quality of the solution because of lacking the

capability in modeling the production capacity information. Basically, we proposed a novel method to

generating the accurate production capacity information for short term scheduling problem, which can be

further incorporated into the planning level and also to improve the quality of the final solution. This has been

verified through its application in rolling horizon based solution method. This work is explained in Chapter 6.

- 10 -

Chapter 2

Uncertainty Analysis with Parametric Programming

Abstract: In this chapter, a novel parametric programming algorithm is proposed to address the uncertainty in

the right hand side (RHS), left hand side (LHS) and objective function of a mixed integer linear programming

problem. The problem of process scheduling under uncertainty was further studied using the proposed

parametric programming method.

2.1 Introduction

In real plants, uncertainty is a very important concern that is coupled with the scheduling process since many

of the parameters that are associated with scheduling are not known exactly. Parameters like raw material

availability, prices, machine reliability, and market requirements vary with respect to time and are often

subject to unexpected deviations. Having ways to systematically consider uncertainty is as important as

having the scheduling model itself. In essence, uncertainty consideration plays the role of validating the use

of mathematical models and preserving plant feasibility and viability during operations.

Stochastic optimization is the most commonly used approach in the literature for scheduling under

uncertainty (Balasubramanian & Grossmann, 2002; Bonfill et al., 2004; Bonfill et al., 2005; Ierapetritou &

Pistikopoulos, 1996; Orçun et al., 1996; Petkov & Maranas, 1997), in which the original deterministic

scheduling model is transformed into stochastic model treating the uncertainties as stochastic variables.

Within the stochastic programming models we can distinguish the following categories:

two-stage/multi-stage stochastic programming and chance constraint programming based approach. Fuzzy

programming also addresses optimization problems under uncertainty and is applied in uncertain scheduling

(Balasubramanian & Grossmann, 2003; Petrovic & Duenas, 2006; Wang, 2004). It can be used in the

situation when probabilistic information is not available. Fuzzy set theory and interval arithmetic are used to

describe the imprecision and uncertainties in process parameters. Robust optimization methods aims at

- 11 -

building the robust preventive schedule to minimize the effects of disruptions on the performance measure

(Janak et al., 2007; Jia & Ierapetritou, 2007; Lin et al., 2004; Vin & Ierapetritou, 2001). It tries to ensure that

the predictive and realized schedules do not differ drastically while maintaining a high level of schedule

performance. Except the above methods, an alternative way in preventive scheduling is using MILP

sensitivity analysis and parametric programming. These methods are important as they can offer significant

analytical results to problems related to uncertainty. Sensitivity analysis is used to determine how a given

model output depends upon the input parameters (Jia & Ierapetritou, 2004). Parametric programming serves

as an analytic tool by mapping the uncertainties in the optimization problem to optimal solution alternatives.

From this point of view, parametric programming provides the exact mathematical solution of the

optimization problem under uncertainty.

In the literature, multiparametric linear programming (mpLP) and multiparametric quadratic

programming (mpQP) problem are well studied due to the relatively smaller problem complexity (Bemporad

et al., 2002; Borrelli et al., 2003; Johansen, 2002; Seron et al., 2000). General multiparametric nonlinear

programming (mpNLP) problem is not well addressed because the exact solution of mpNLP is very complex

(Acevedo & Salgueiro, 2003). On the other hand, existing multiparametric mixed integer programming

methods are based on the solution of mpLP or mpQP subproblems (Acevedo & Pistikopoulos, 1997; Dua &

Pistikopoulos, 1999). For the multiparametric mixed integer quadratic programming (mpMIQP), there is still

not an efficient method for solving the general problem. Dua, Bozinis et al.(Dua et al., 2002) proposed a

methodology to address this problem for the special case derived from optimal control problem.

In the past, the multiparametric programming method has been mainly applied in online optimization,

process control, and process synthesis (Dua et al., 2002). All these problems are of relatively small scale.

There are not many records on the application of parametric programming in process scheduling problem. To

our knowledge, only Ryu and Pistikopoulos (Ryu & Pistikopoulos, 2007) has reported the application of

parametric programming to a zero-waiting scheduling problem and Pistikopoulos et al.(Hugo &

Pistikopoulos, 2005; Pistikopoulos & Dua, 1998) have applied parametric programming for the solution of

process planning problem.

Formulating the scheduling problem under uncertainty as a multiparametric programming problem

gives rise to mpMILP, mpMIQP or mpMINLP problem depending on the type of uncertain parameters. The

- 12 -

other important characteristic for multiparametric programming in scheduling formulation is that the

problem is generally large scale, because the deterministic formulation of process scheduling problem

involves a large number of constraints and integer variables.

In this chapter, we proposed a framework to solve the mpMILP and mpMIQP problems generated from

uncertain process scheduling problem. The framework is based on the idea of decomposing the original

problem into a series of smaller problems. The parametric solution of each subproblem provides the solution

around a given set of parameter values. The chapter’s structure is as following: in section 2.2, the parametric

solution algorithm for general MILP problem is presented and also illustrated through a numerical example;

in section 2.3, we illustrated its application in analyzing uncertainty for process scheduling problem; finally,

the work is concluded in section 2.4.

2.2 Parametric programming algorithm

2.2.1 Problem definition

In this work, we are studying the following general mixed integer linear programming problem with possible

uncertain parameter on the right hand side (RHS), or as coefficient of integer variables on the left hand side

(LHS) or the objective function (Obj):

,
min ()

x y
c E xθ+ (2.1a)

s.t. ()Ax B D y b Eθ θ+ + = + (2.1b)

0, {0,1}x y≥ ∈ (2.1c)

 [,]L Uθ θ θ∈ (2.1d)

where y represents the binary decision variables; x represents the continuous variables, θ represent the

uncertain parameters; [,]L Uθ θ represents an given range for those parametersθ . The objective is to identify

the complete map of relationship between the optimal solution and the value of the uncertain parameter in the

given parameter space. To describe the so-called relationship, the concept of “critical region” is used, which

is defined as a region in the parameter space, in which a unique set of optimal integer solution and optimal

parametric solution (represented by function of the uncertain parameters) exists.

- 13 -

2.2.2 Local parametric solution algorithm

Based on the above formulation, we present the parametric programming algorithm as follows (flowchart is

shown in Figure 2.1):

Algorithm 1. Compute parametric solution around a given point 0θ

Step 1. Fix 0θ θ= , solve problem (2.1) and get the optimal integer solution *y .

Step 2. With *y y= , formulate relaxed linear programming problem based on (2.1) and compute

a) the optimal solution * -1 * *()= ()Bx A b By E D yθ θ θ− + − (2.2)

b) the optimal value function * -1 * *() ()Bf cA b By E D yθ θ θ= − + − , (2.3)

c) the initial region * -1 * *{ | () 0, }L U
BCR A b By E D yθ θ θ θ θ θ= − + − ≥ ≤ ≤ , (2.4)

where the sub-index B represent the basis index for the linear programming problem.

Step 3. Solve the following problem (θ is treated as decision variable here):

*

, ,
max () ()
x y

err f c E x
θ

θ θ= − + (2.5a)

s.t. (2.1b)-(2.1d)

 err ε≤ (2.5b)

 *CRθ ∈ (2.5c)

If the optimal objective * 0err ≤ , return (* ()x θ , * ()f θ , *CR) as the parametric solution around 0θ

and stop. Otherwise, store the solution ('y , 'θ) of problem (2.5) and go to step 4.

Step 4. Fix 'θ θ= , 'y y= , solve problem (2.5), identify a new set of basis index B ' and get the following

optimal value function and critical region

-1
' ''() (' ')B Bf c A b By E D yθ θ θ= − + − (2.6)

-1
'' { | (' ') 0, }L U

BCR A b By E D yθ θ θ θ θ θ= − + − ≥ ≤ ≤ (2.7)

Step 5. Define * *' { | '() ()}EXCR CR CR f fθ θ θ= ∩ ∩ ≤ , update *CR by excluding EXCR from it, then go

to step 3.

- 14 -

Figure 2.1 Flowchart of the parametric MILP algorithm

The correctness of the algorithm 1 is provided by the following theorem.

Theorem. The output of algorithm 1 (* ()x θ , * ()f θ) is the optimal solution and optimal value function of

problem (2.1) in *CR that covers 0θ .

Proof: First, the solution * ()x θ derived from (2.2) and the value function * ()f θ derived from (2.3) must be

the optimal solution at point 0θ because they satisfy the optimality conditions of relaxed LP problem, which

is derived from (2.1) at the optimal integer solution at point 0θ .

Second, the solution (* ()x θ , * ()f θ) keeps its optimality in the final *CR with the following reasons.

Except all the original constraints of (2.1), problem (2.5) includes a new objective (2.5a) to seek the

parameter value that can provide a better (smaller) value function, (2.5b) is used to stop the solution once a

better value function is found, soε is set as a small positive number; (2.5c) is a restriction of the solution

space to current critical region *CR . So problem (2.5) can be solved to check whether the value function

* ()f θ keeps its optimality for all the θ values in the region *CR . If the optimal objective * 0err ≤ , it means

- 15 -

that the optimality of * ()f θ in the whole region is ensured because no better value function can be found.

Otherwise, it means that at the solution point 'θ , the optimal value function should be a different one other

than * ()f θ , then the current critical region *CR needs to be updated by excluding the region around 'θ that

takes this better value function, this region is EXCR as defined in step 5. With the update on the critical

region, the final region will take a unique value function which is ensured to be optimal. Thus the correctness

of the algorithm is proved. □

Remarks

(1) The exclusion operation in step 5 is performed through selecting one constraint in EXCR that 0θ violates,

and add this constraint with reversed inequality sign to *CR .

(2) Depending on the source of the uncertainty: objective function (Obj), Right hand side (RHS) of the

constraints, constraint matrix on the Left hand side (LHS), the optimal parametric objective value

function will be quadratic, the parametric solution will be either linear, quadratic or nonlinear fractional

function, they are summarized as Table 2.1.

Table 2.1 Summary of the characteristic of parametric solution
 * ()f θ * ()x θ CR

RHS
Linear

-1 *()BcA b By Eθ− +
Linear

-1 *()BA b By Eθ− + Linear

Obj
Linear

-1 *() ()Bc F A b Byθ+ −
Constant
-1 *()BA b By− Linear

LHS*
Linear

-1 * *()BcA b By D yθ− −
Linear

-1 * *()BA b By D yθ− − Linear

Obj+RHS
Quadratic

-1 *() ()Bc F A b By Eθ θ+ − +
Linear

-1 *()BA b By Eθ− +
Quadratic

Linear

Obj+LHS*
Quadratic

-1 * *() ()Bc F A b By D yθ θ+ − −
Linear

-1 * *()BA b By D yθ− −
Quadratic

Linear

RHS+LHS*
Quadratic

-1 * *()BcA b By E D yθ θ− + −
Linear

-1 * *()BA b By E D yθ θ− + −
Quadratic

Linear

Obj+RHS+LHS*
Quadratic

-1 * *() ()Bc F A b By E D yθ θ θ+ − + −
Linear

-1 * *()BA b By E D yθ θ− + −
Quadratic

Linear
* ()f θ : optimal parametric objective value function; * ()x θ : Optimal parametric solution
CR: critical region; LHS*: uncertainties only appear as coefficients of integer variables

(3) Notice that here we are only considering the LHS uncertainty in the coefficients of integer variables, for

the general LHS uncertainty appear also as coefficient of continuous variable, the optimal parametric

- 16 -

objective function, optimal parametric solution and critical region will be represented by nonlinear

fractional function.

(4) The proposed parametric programming algorithm has been extended to address the general parametric

Linear Complementarity Problem (Appendix A).

2.2.3 Exploring the parameter space

Based on the above algorithm for computing local parametric solution around a given point, we can develop

the algorithm to compute the complete parametric solution map. As pointed out in Table 2.1, the critical

region can be described by quadratic and/or linear constraints depending on the position of the uncertain

parameters. For the case of quadratic constraints, the region might be nonconvex and it is hard to find an

exact method to partition the original parameter space, so currently only random testing method is proposed

to explore the parameter space, i.e., the initial given point is randomly generated inside the parameter space,

then a testing step is applied to check whether it is already covered by identified critical regions, then the

local parametric solution algorithm will be applied.

In the following, we are presenting an exact method for the case that the critical region is described by

linear constraints. The whole parameter space is initially described as an unexplored region. Every time a

new critical region is identified inside an unexplored region in the parameter space, this region is further

partitioned to identify the unexplored areas. The unexplored area of the parameter space is represented by the

union of a set of “unexplored regions”. The process is repeated until all of the unexplored areas in the

parameter space have been studied. The detail algorithm is as follows:

Algorithm 2. Compute complete parametric solution map

Step 1. Set initial unexplored region set {[,]}L UR θ θ= , and identified critical region set S=∅ .

Step 2. If R is empty, stop. Otherwise, arbitrarily select one region r from set R , call the local parametric

solution algorithm to compute a critical region CR around an point inside this region. Store the

critical region CR into S : { }S S CR= ∪ .

Step 3. Partition the region r and identify the unexplored region in r. Store them into R and delete r from R.

Go to step 2.

- 17 -

In the step 2 of algorithm 2, it is necessary to identify the remaining part of a given region based on the

identified critical regions inside it. This can be achieved following the method described by (Dua &

Pistikopoulos, 2000). For example, for a two-dimension parameter space, assume that the initial unexplored

region is r0, a critical region CR is identified inside it, and CR is described as follows:

CR= {θ | 1 2 3() 0, () 0, () 0c c cθ θ θ≤ ≤ ≤ },

where 1 2 3, ,c c c represent linear constraint function of θ . The partition procedure considers one by one the

inequalities that define CR. For example, considering the constraint 1() 0c θ ≤ , the first new unexplored

region is given by: 1 0 1{ | , () 0}r r cθ θ θ= ∈ ≥ , which is obtained by reversing the sign of the inequality

1() 0c θ ≤ , adding it to the constraints of r0 and removing redundant constraints. Thus, by considering the rest

of the inequalities one by one, the complete unexplored region in region r is given by 1 2 3r r r∪ ∪

2 0 1 2{ | , () 0, () 0}r r c cθ θ θ θ= ∈ ≤ ≥ , 3 0 1 2 3{ | , () 0, () 0, () 0}r r c c cθ θ θ θ θ= ∈ ≤ ≤ ≥

These region are depicted in Figure 2.2.

(a)

(b)

Figure 2.2 Illustration of identifying the remaining part of a given region.
a) A given region and an identified critical region inside this
b) Partition of the given region into new unexplored region

At the end of algorithm 2, a complete map of all critical regions is obtained. Each critical region is associated

with a corresponding parametric solution as expressed in (2.2)-(2.3).

Finally, it is worth to point out that the number of critical regions is mostly related to the size of the

parameter space which is determined by its dimension (the number of uncertain parameters) and the length in

every dimension (the range for every uncertain parameter). Thus when the parameter space is large, the

1θ

2θ

r1

r2

r3

c1(θ)≤0

1θ

2θ

CR

r0

c2(θ)≤0

c3(θ)≤0

- 18 -

number of the critical regions can be also large. However, in this work, we are focusing on the algorithm for

generating this parametric solution information and do not study the parametric solution information storage

problem.

The proposed method has been implemented in GAMS and MATLAB, where MATLAB is used to

formulate the standard form of problem based on GAMS file, to control the flow and to calculate the

optimality conditions. CPLEX 10.1 is used to solve MILP. In the following, problems are all solved in a

Pentium CPU (2.8GHz, 1Gb RAM) running in Windows XP operation system.

Numerical Example

Considering the following MILP problem

1 2 1 2,

1

2

1 2

1 2

1 1

2 2

1

1

2

1,2

2

1 2

2

1

min 3 2 10 5

. . 10 2
10

20
2 12

20 0
20 0

4
0, {0,1},0 10

x y
z x x y y

s t x
x
x x

x x
x y
x y

x x
x y

θ θ
θ θ

θ
θ

θ

= − − + +

≤ + +
≤ − +
+ ≤ −
+ ≤ +

− ≤
− ≤
− + ≥

≥ ∈ ≤ ≤

To illustrate the proposed parametric solution algorithm, let’s consider the case of finding the local

parametric solution around the point θ0

=(5,1), then the following steps will be applied:

Step 1, solve MILP with fixed θ0

, get: y*=(0,1), z*= -7

Step 2, solve mpLP with fixed y*

to cover θ0

f*(θ)= -15+2θ1-2θ2 , x1
*(θ)=0, x2

*(θ)=10-θ1+θ2

1 2

1 20

1 2

1 2

6
1.5 4

2 10
0 , 10

CR

θ θ
θ θ

θ θ
θ θ

− ≤⎧
⎪− + ≤ −⎪= ⎨− + ≤⎪
⎪ ≤ ≤⎩

 (Figure 2.3a)

1 st iteration: step 3, check whether better solution exist in CR0

results: err*>0, y’=(1,1), θ’=(8,6)

1st iteration: step 4, solve mpLP with fixed y’ to cover θ’

- 19 -

f’(θ)= 0.3333-1.6667θ1
1 2

'
1 2

1 2

1.333 4.667
1.5 20

0 , 10
CR

θ θ
θ θ

θ θ

− ≤⎧
⎪= + ≤⎨
⎪ ≤ ≤⎩

 (Figure 2.3b)

1 st iteration: step 5, update CR0 by excluding CRex (Figure 2.3c)

1 2

1 2
0

1 2

1 2

1 2

6
1.5 4

2 10
1.333 4.667
0 , 10

CR

θ θ
θ θ

θ θ
θ θ

θ θ

− ≤⎧
⎪− + ≤ −⎪⎪= − + ≤⎨
⎪ − ≤⎪
⎪ ≤ ≤⎩

 (Figure 2.3d)

2nd iteration: step 3, check whether better solution exist in CR0

Results: err*>0, y’=(1,1), θ’=(8.3,6.3)

2 nd iteration: step 4, solve mpLP with fixed y’ to cover θ’

f’ (θ)= -23+5θ
1
-5θ

2

1 2

1 2'

1 2

1 2

6
1.333 4.667

1.5 2
0 , 10

CR

θ θ
θ θ

θ θ
θ θ

− ≤⎧
⎪− + ≤ −⎪= ⎨− + ≤⎪
⎪ ≤ ≤⎩

2 nd iteration: step 5, update CR0

by excluding CRex (Figure 2.3e)

3 nd iteration: step 3, err*=0, stop and return the parametric solution around θ0

1 2

1 2*

1 2

1 2

6
1.333 4.667

2.667
0 , 10

CR

θ θ
θ θ

θ θ
θ θ

− ≤⎧
⎪ − ≥⎪= ⎨ − ≥⎪
⎪ ≤ ≤⎩

 (Figure 2.3f)

 (y1
*,y2

*)=(0,1) , x1
* (θ)=0, x2

* (θ)=10-θ1+θ2, f* (θ)= -15+2θ1-2θ2

With this critical region, the original parameter space can be partitioned and same local parametric solution

algorithm will be applied to every unexplored region. Finally, the critical region map of the parametric

solution will be derived as shown in Figure 2.4.

- 20 -

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.3 Illustration of the solution procedure for the numerical example

- 21 -

Figure 2.4 Final parametric solution map(partition of the parameter space into critical regions)

2.3 Uncertainty analysis for scheduling problem

Problem Formulation

The mathematical model used for batch process scheduling in this chapter follows the main idea of the

continuous time formulation proposed by (Ierapetritou & Floudas, 1998). The general model involves the

following objective and constraints:

Problem (2.8):

 ,
,

max s s n
s n

price d∑ (2.8a)

 s.t. , , 1
j

i j n
i I

wv
∈

≤∑ ,j J n N∀ ∈ ∀ ∈ (2.8b)

 , , 1 , , , , , , , 1
s i s i

P c
s n s n s n s i i j n s i i j n

i I j J i I j J

st st d b bρ ρ− −
∈ ∈ ∈ ∈

= − − +∑ ∑ ∑ ∑ s S∀ ∈ , n N∀ ∈ (2.8c)

 max
,s n sst st≤ s S∀ ∈ , n N∀ ∈ (2.8d)

 min max
, , , , , , , ,i j i j n i j n i j i j nv wv b v wv≤ ≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (2.8e)

 ,s n s
n

d r≥∑ s S∀ ∈ (2.8f)

 , , , , , , , , , ,i j n i j n i j i j n i j i j nTf Ts wv bα β= + + i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (2.8g)

 , , 1 , , , ,(1)i j n i j n i j nTs Tf H wv+ ≥ − − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (2.8h)

- 22 -

 , , 1 ', , ,' ,(1)i j n i j n i j nTs Tf H wv+ ≥ − − , ' ji i I∀ ∈ , j J∀ ∈ , n N∀ ∈ (2.8i)

 , , 1 ', ', ,' ',(1)i j n i j n i j nTs Tf H wv+ ≥ − − , ' , 'ji i I i i∀ ∈ ≠ , , 'j j J∀ ∈ , n N∀ ∈ (2.8j)

 , , 1 , ,i j n i j nTs Ts+ ≥ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (2.8k)

 , , 1 , ,i j n i j nTf Tf+ ≥ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (2.8l)

 , ,i j nTs H≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (2.8m)

 , ,i j nTf H≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (2.8n)

In the above formulation, the objective function is the profit (different performance measures can be used like

makespan); allocation constraints (2.8b) state that only one of the tasks can be performed in each unit at an

event point (n); constraints (2.8c) represent the material balances for each state (s) expressing that at each

event point (n) the amount ,s nst is equal to that at event point (n-1), adjusted by any amounts produced and

consumed between event points (n-1) and (n), and delivered to the market at event point (n); the storage and

capacity limitations of production units are expressed by constraints (2.8d) and (2.8e); constraints (2.8f) are

written to satisfy the demands of final products; and constraints (2.8g) to (2.8n) represent time limitations due

to task duration and sequence requirements in the same or different production units. Detailed description of

the symbols in the above formulation is provided in the notation section of this chapter. It should be noticed

that minimum product demand and minimum processing time in the uncertain range can be used to identify

an appropriate event point number before the multiparametric solution process to avoid the loss of solution

optimality.

Example

This example process involves three processing stages, namely mixing, reaction, and separation, which are

processed in 3 units respectively. The state-task-network (STN) representation of this example is shown in

Figure 2.5 and the data is shown in Table 2.2. Products include S3 and S4 (the purified product). For the

deterministic formulation with 5 event points, there are 236 constraints, 45 integer variables and 86

continuous variables. Solving the deterministic MILP problem normally requires around 0.25 CPU second.

- 23 -

Figure 2.5 State Task Network (STN) of Example 1

(1) Demand Uncertainty

Assuming only demand uncertainty for the two products gives rise to RHS uncertainty in problem (P2) and

an mpMILP problem is solved. The demands are defined in Table 2.3, where the variation ranges of the

uncertain parameters are given in a boundary form. The corresponding multiparametric programming

problem (P2) is solved using the proposed method and the solution is shown in Figure 2.6 and Table 2.4 (note

that in all the examples of this chapter the objective is set as minimum negative profit). The total time

consumed is 140.6 CPU sec.

As stated in section 2, all the parametric objectives are linear and the critical regions are formed by

linear constraints in this case. Among the critical regions (Figure 2.6), CR3 and CR5 have an overlapping

area, because they have same objective function and integer solution and are actually belong to the same

larger nonconvex critical region. This is also a characteristic of the solution for mpMILP, which is different

from mpLP which always has a convex critical region.

Table 2.2 Data for example 1

Unit Capacity Suitability Processing time
Unit 1 100 Task 1 4.5
Unit 2 75 Task 2 3.0
Unit 3 50 Task 3 1.5
state Storage capacity Initial amount Price
State 1 Unlimited unlimited 0
State 2 100 0.0 0
State 3 100 0.0 0.7
State 4 unlimited 0.0 1.0

Table 2.3 Demand uncertainty for example 1

Parameter Value Variation Range
Demand of S3 1θ 10 50θ≤ ≤
Demand of S4 250 θ+ 250 50θ− ≤ ≤

Table 2.4 Solution of example 1 with demand uncertainty

 Parametric Objective Critical Region
1 90.46− CR1
2 272.097 0.029θ− + CR2
3 196.14 0.158θ− + CR3, CR5
4 88.55− CR4

- 24 -

Figure 2.6 Critical region of Example 1 with demand uncertainty

(2) Price Uncertainty

In this case, we consider the price uncertainty as shown in Table 2.5. Thus the uncertainty is included in the

objective function and a specific mpMIQP problem is solved. The solution of the multiparametric

programming problem is shown in Table 2.6 and Figure 2.7, where the solution still has linear objectives and

critical regions formed by linear inequalities. This verified the conclusion in section 2. Total time consumed

is 114 CPU sec.

Table 2.5 Price uncertainty for example 1

Parameter Value Variation Range
Price of S3 10.7 θ+ 10.5 0.5θ− ≤ ≤
Price of S4 21 θ+ 20.5 0.5θ− ≤ ≤

Table 2.6 Solution of example 1 with price uncertainty

 Parametric Objective Critical
Region

1 1 290.46 36.06 65.22θ θ− − − CR1
2 271.47 71.47θ− − CR2
3 1 288.55 55.07 50θ θ− − − CR3, CR4

- 25 -

Figure 2.7 Critical region of Example 1 with price uncertainty

(3) Demand and Price uncertainty

In this case both demand and price uncertainties are considered as shown in Table 2.7. Thus the

corresponding multiparametric programming problem contains both RHS and objective uncertainties and is

also mpMIQP problem. This problem is solved within 250.86 CPU sec. As analyzed in section 2, in this case,

the optimal objective functions as shown in Table 2.8 contain quadratic function of uncertain parameters.

Note that the critical regions (Figure 2.8) don’t involve quadratic constraints here because all of the objective

comparison constraints are proved to be redundant in the redundancy test in step 5, so they are not involved in

the constraints. Still, we can see that overlapped critical regions exist and they form larger nonconvex regions

(e.g., CR1 and CR9, CR2 and CR3). The number of testing points used in this case is 600 and time consumed

is 250.9 CPU sec.

Table 2.7 Price and demand Uncertainty for example 1

Parameter Value Variation Range
Price of S3 1 20.7 0.01θ θ+ − 10.5 0.5θ− ≤ ≤
Demand of S4 2 150 20θ θ+ − 250 50θ− ≤ ≤

- 26 -

Table 2.8 Solution of example 1 with demand and price uncertainty

 Parametric Objective Critical
Region

1 1 290.46 36.06 0.36θ θ− − + CR1, CR9
2 71.47− CR2, CR3
3 1 288.55 55.07 0.55θ θ− − + CR4
4 2 2

1 2 1 1 2 288.55 49.07 0.25 20 1.2 0.01θ θ θ θ θ θ− − + − + − CR5
5 1 273.55 105.07 1.55θ θ− − + CR6
6 2 2

1 2 1 1 2 272.1 32.15 0.34 29.4 1.76 0.015θ θ θ θ θ θ− − + − + − CR7
7 2 2

1 2 1 1 2 287.66 50.13 0.35 23.32 1.4 0.012θ θ θ θ θ θ− − + − + − CR8

Figure 2.8 Critical region of Example 1 with price and demand uncertainty

(4) Demand, Price and Processing time Uncertainty

In this case, three different uncertain parameters are involved as shown in Table 2.9. To address the

processing time uncertainty using the proposed method, we reformulate the duration constraints so that the

LHS uncertain parameters only appear as coefficients of integer variables and can be transformed into RHS

uncertainty. The original duration constraint (2.8g) is reformulated as follows:

, , , , , , , , , ,()i j n i j n i j i j n i j i j nTf Ts wv bα θ β= + + +

- 27 -

In the new formulation, ,i jα and ,i jβ is calculated based on nominal processing time, and uncertainty is

modeled through the termθ . The uncertain mixing time parameter are formulated using the above new

duration constraints so that it is transformed into RHS uncertainty, thus an mpMIQP problem is formulated

and solved here. Total 400 testing points is used and the elapsed time is 323.7 CPU sec.

Table 2.9 Demand, price and processing time uncertainty for example 1

Parameter Value Variation Range
Price of S4 11 θ+ 10.5 0.5θ− ≤ ≤
Demand of S4 150 20θ−
Mixing time 24.5 θ+ 5.05.0 2 ≤≤− θ

Table 2.10 Solution of example 1with demand, price and processing time uncertainty

 Parametric Objective
Critical Region
(0.5 0.5, 1,2i iθ− ≤ ≤ =)

1 2
1 2 188.55 44 25.16 20θ θ θ− − + + 1

1
1 2

0.3
2.63 6.06 1

CR
θ

θ θ
≤ −⎧

= ⎨− + ≤ −⎩

2 2
1 2 187.66 46.33 30.52 20θ θ θ− − + +

1 2

2 1 2

1

2.63 6.06 1
1.533 1.17

0.184
CR

θ θ
θ θ

θ

− + ≤ −⎧
⎪= − + ≤⎨
⎪ ≤ −⎩

3 1 2 1 286.27 42.4 38.99 46.08θ θ θ θ− − + + 1 2
3

1

2.63 6.06 1
0.3 0.184

CR
θ θ
θ

− + ≤ −⎧
= ⎨− ≤ ≤ −⎩

4 1 2 1 290.46 65.22 32.92 13.04θ θ θ θ− − + +

1

4 1 2 1 2

1 2 1 2

0.184
15.22 16.46 13.04 6.2
15.22 7.75 13.04 1.9

CR
θ

θ θ θ θ
θ θ θ θ

≥ −⎧
⎪= − + + ≤⎨
⎪− + + ≤⎩

{5 10.184 0.01CR θ= − ≤ ≤ −

5 1 288.55 50 25.16θ θ− − + 1
6

1 2 1 2

0
15.22 7.75 13.04 1.9

CR
θ

θ θ θ θ
≥⎧

= ⎨ − − ≤ −⎩

6 2
1 2 172.1 50.58 25.16 20θ θ θ− − + + 1 2

7
1 2

1.223 1.074
1.533 1.17

CR
θ θ

θ θ
− + ≤⎧

= ⎨ − ≤ −⎩

- 28 -

Figure 2.9 Critical region of Example 1 with demand, price and processing time uncertainty

As shown in the solution (Table 2.10, Figure 2.9), the critical region and parametric objective function both

involve quadratic terms. This also verifies the conclusion in section 2 and proves the effectiveness of the

proposed method in solving mpMILP and mpMIQP problems. In all the different uncertainty cases addressed

for example 1, the computation time is no more than 300 CPU seconds, where 40 evenly distributed points

are generated in every dimension of the parameter space, which is proved to be enough to cover all the critical

regions. During the solution process, once a point is checked and is found to be covered by any critical region,

it is fathomed. So although 1600 points are tested, only limited points are solved to find critical region, e.g.,

only 5,4,9,7 points are solved for the above four cases, respectively. The next example illustrates the

computational complexity for relatively larger scale problem.

- 29 -

2.4 Summary

In this chapter, a multiparametric programming framework for MILP problem is proposed, which is further

applied to solve the process scheduling problem under uncertainty. This method provides an exact and

systematic way to analyze the uncertainty in process scheduling problem and the parametric information

achieved can be used in several different ways: the result of multiparametric programming for the scheduling

problem can be used to analyze the effect of parameter variation on the scheduling performance; and also the

solution provides a basis for reactive scheduling in the sense that the decision maker can rapidly find a new

schedule with the realization of uncertainty.

To increase the efficiency of attaining the exact solution map of the corresponding mpMILP and

mpMIQP problem, the proposed framework uses a decomposition method which solves for the parametric

information around a certain parameter value, and not seeking for a complete map of solution at one time.

This method can give the decision maker useful information about uncertainty effects fast. Another

advantage of the proposed methodology is that it can be easily parallelizable by decomposing the original

parameter space into smaller regions that can be solved in parallel thus decreasing the computational

complexity of the algorithm.

The proposed method is also efficient in the critical region updating process because the MILP/MINLP

problem in step 3 of algorithm 1 is solved to seek just better but not best solution in a given critical region. In

other words, the proposed formulation is used to seek a feasible solution but not a global optimal solution,

thus the computation efficiency is increased. The only big computation effort is in the final iteration of the

proposed framework which needs to prove that no better solution exists, so a global optimal solution of the

MILP/MINLP is needed.

The consideration of a general form of LHS uncertainty as coefficient of continuous variables is still a

challenge. Because for this case the exact parametric solution is complex, different efficient methods have to

be developed to address the underlying complexity of this problem.

- 30 -

Nomenclature

i I∈ tasks

sI tasks which produce or consume state (s)

jI tasks which can be performed in unit (j)

j J∈ units

iJ units which are suitable for performing task (i)

n N∈ event points representing the beginning of a task

s S∈ states

pS states belong to products

rS states belong to raw materials

sprice price of state (s)

sSTI initial amount of state (s)

sSTF final amount of state (s)

,s nd amount of state (s) delivered to the market at event point (n)

, ,i j nwv binary, whether or not task (i) in unit (j) start at event point (n)

,s nst continuous, amount of state (s) at event point (n)

,
P
s iρ , ,

C
s iρ proportion of state (s) produced, consumed by task(i), respectively

, ,i j nb amount of material undertaking task (i) in unit (j) at event point (n)

max
sst available maximum storage capacity for state (s)

min
,i jv , max

,i jv minimum amount, maximum capacity of unit (j) when processing task (i)

sr market demand for state (s) at the end of the time horizon

, ,i j nTf time at which task (i) finishes in unit (j) while it starts at event point (n)

, ,i j nTs time at which task (i) starts in unit (j) at event point (n)

,i jα , ,i jβ constant, variable term of processing time of task (i) in unit (j)

H time horizon

- 31 -

Chapter 3

Robust Preventive Scheduling

Abstract: This chapter addresses the preventive scheduling problem using robust optimization technique.

Compared to traditional scenario based stochastic programming method; robust counterpart optimization

method has a unique advantage that the scale of the corresponding optimization problem does not increase

exponentially with the number of the uncertain parameters. Three robust counterpart optimization

formulations are studied and applied to uncertain scheduling problems in this chapter. The results show that

the “budget-parameter” based formulation is the most appropriate model for uncertain scheduling problems

since it has the following advantages: the model has the same size as the other formulations; it preserves its

linearity; it has the ability to control the degree of conservatism for every constraint and guarantees feasibility

for the robust optimization problem.

3.1 Introduction

Uncertainty is a very important concern in real plants for process scheduling since many of the parameters

associated with scheduling are not known exactly. Parameters like raw material availability, prices, machine

reliability, processing or duration time and market requirements vary with respect to time and are often

subject to unexpected deviations, which can cause infeasibilities and production disturbances. Thus

scheduling under uncertainty has received a lot of attention in the open literature in recent years from

chemical engineering and operations research communities.

According to the different treatment of uncertainty, scheduling methods can be divided into two groups:

reactive scheduling and preventive scheduling. Reactive scheduling deals with the problem of modifying the

original scheduling policy or generating scheduling policy on time when uncertainty occurs. On the other

hand, preventive scheduling aims at generating robust scheduling policies before the uncertainty occurs.

Almost all techniques that deal with uncertainty try to find solutions flexible to changes of input data.

Although this solution might not be optimal the target is to be as close as possible to the optimal one. Robust

- 32 -

scheduling focuses on obtaining preventive schedules that minimize the effects of disruptions on the

performance measure, and tries to ensure that the preventive schedules maintain a high level of performance.

For the problem of robust schedule generation, different methods have been proposed in the literature.

Generally, the formulations can be classified into two groups: a) scenario based stochastic programming

formulation; and b) robust counterpart optimization formulation.

In the literature, most existing work on robust scheduling has followed the scenario-based formulation.

(Mulvey et al., 1995) developed the scenario-based robust optimization to handle the trade-off associated

with solution and model robustness. A solution to an optimization is considered to be solution robust if it

remains close to the optimal for all scenarios, and model robust if it remains feasible for most scenarios.

(Kouvelis et al., 2000) made the first attempts to introduce the concept of robustness for scheduling problems.

They suggest a robust schedule when processing times are uncertain and compute robust schedule based on

maximum absolute deviation between the robust solution and all the possible scenarios, but this requires

knowledge of all possible scenarios. Moreover, the optimal solution of each scenario is supposed to be known

a priori. (Vin & Ierapetritou, 2001) addressed the problem of quantifying the schedule robustness under

demand uncertainty, introduced several metrics to evaluate the robustness of a schedule and proposed a

multiperiod programming model using extreme points of the demand range as scenarios to improve the

schedule performance of batch plants under demand uncertainty. Using flexibility analysis, they observed

that the schedules from the multiperiod programming approach were more robust than the deterministic

schedules. (Balasubramanian & Grossmann, 2002) proposed a multiperiod MILP model for scheduling

multistage flowshop plants with uncertain processing times. They minimized expected makespan and

developed a special branch and bound algorithm with an aggregated probability model. The scenario-based

approaches provide a straightforward way to implicitly incorporate uncertainty. However, they inevitably

enlarge the size of the problem significantly as the number of scenarios increases exponentially with the

number of uncertain parameters. This main drawback limits the application of these approaches to solve

practical problems with a large number of uncertain parameters. (Jia & Ierapetritou, 2007) proposed a

multi-objective robust optimization model to deal with the problem of uncertainty in scheduling considering

the expected performance (makespan), model robustness and solution robustness. Normal Boundary

Intersection (NBI) technique is utilized to solve the multi-objective model and successfully produce Pareto

- 33 -

optimal surface that captures the trade-off among different objectives in the face of uncertainty. The

schedules obtained by solving this multiobjective optimization problem include robust assignments that can

accommodate demand uncertainty.

Although those uncertainty-handling frameworks that follow the scenario-based formulation target the

generation of robust solutions with respect to optimality and feasibility, the model still has the common

drawback of scenario based formulation: it requires some statistic knowledge of the input data, which in

many cases may be difficult to acquire. Moreover, optimization of expectations is a practice of questionable

validity in processes involving only a small number of “trials”, because the benefits of an optimum expected

value can only be visible in the long term of a large number of trials. Finally, for the scenario based robust

optimization method, the uncertainty is modeled through the use of a number of scenarios. This type of

method provides a direct way to incorporate uncertainty. However, the problem size will increase

exponentially with the number of uncertain parameters, which restricts its application in solving problems

with a lot of uncertain parameters.

As an alternative to the scenario-based formulation, the robust counterpart optimization has been

proposed which avoids the shortcomings of the scenario-based formulation. The underlying framework of

robust counterpart scheduling formulation is based on solving robust counterpart optimization problem for

the uncertain scheduling problem.

One of the earliest papers on robust counterpart optimization, by (Soyster, 1973), considered simple

perturbations in the data and aimed to find a reformulation of the original problem such that the resulting

solution would be feasible under all possible perturbations. The pioneering work by (Ben-Tal & Nemirovski,

1999), (El-Ghaoui et al., 1998), and (Bertsimas & Sim, 2003) extended the framework of robust counterpart

optimization, and included sophisticated solution techniques with non-trivial uncertainty sets describing the

data. The major advantages of robust counterpart optimization compared to scenario-based stochastic

programming are that no assumptions are needed regarding the underlying probability distribution of the

uncertain data and that it provides a way of incorporating different attitudes toward risk.

For the problem of process scheduling under uncertainty, only very few works have been done in robust

counterpart optimization for generating robust schedules. (Lin et al., 2004) proposed a robust optimization

method to address the problem of scheduling with uncertain processing times, market demands, or prices.

- 34 -

The robust optimization model was derived from its deterministic model considering the worst-case values of

the uncertain parameters, when uncertainty is in a bounded form. They also studied the case that uncertainty

is described by known probability distribution, where the robust optimization formulation introduces a small

number of auxiliary variables and additional constraints into the original MILP problem, generating a

deterministic robust counterpart problem which provides the optimal/feasible solution given the (relative)

magnitude of the uncertain data, a feasibility tolerance, and a reliability level (Janak et al., 2007).

In this chapter, we compare several robust counterpart optimization formulations and proposed the

appropriate formulation for scheduling under uncertainty. The rest of the chapter is organized as follows.

Section 3.2 introduces the robust counterpart optimization formulations and their extensions to mixed integer

linear programming problems. In section 3.3, the problem of scheduling under uncertainty is studied based on

robust optimization considering specific uncertainties. Several case studies are presented in section 3.4 to

illustrate the application of different robust formulations and present some comparison results, whereas

section 3.5 summarizes the main conclusions of the chapter.

3.2 Robust optimization

Compared to scenario-based stochastic programming, robust counterpart optimization represents a more

systematic approach for optimization under uncertainty in order to determine flexible solutions. The aim of

robust counterpart optimization is to choose a solution which is able to cope best with the various realizations

of the uncertain data. The uncertain data is assumed to be unknown but bounded, and most current research

assumes convexity of the uncertainty space.

The optimization problem with uncertain parameters is reformulated into a robust counterpart

optimization problem. Unlike stochastic programming, robust optimization does not require information

about the probability distribution of the uncertain data, and does not optimize an expected value objective

function. Robust optimization promises to essentially ensure robustness and flexibility by enforcing

feasibility of an optimization problem for the entire given uncertainty space.

In this section, three robust counterpart optimization formulations are presented assuming the following

general mixed integer linear programming problem:

- 35 -

max cx (3.P1)

s.t. lm m l
m

a x p l≤ ∀∑

 binary or continuous, m 1,2...,nmx =

For the rest of the chapter, we assume without loss of generality that data uncertainty affects only the

elements of the left hand side matrix coefficients due to the following reasons:

1) The objective function can be transformed into constraint;

2) If the right hand side constant lp is subject to uncertainty, we can introduce a new variable

1nx + which is a binary variable with fixed value 1, and the original constraint is transformed into the

following:

1 0lm m l n
m

a x p x +− ≤∑ (3.1)

1 1 1nx +≤ ≤ (3.2)

Assuming that lma are uncertain parameters, the constraints in (3.P1) are expanded as follows:

l l

lm m lm m l
m M m M

a x a x p
∉ ∈

+ ≤∑ ∑ (3.3)

where, lM denotes the index set for the uncertain coefficients in l-th constraint; lma represent true values for

the coefficient parameters that take value within the uncertain range ˆ ˆ[,]lm lm lm lma a a a− + , where lma represent

nominal values and ˆlma represent the variation amplitude.

3.2.1 Soyster’s formulation

Robust counterpart optimization can be traced back to the work of (Soyster, 1973), which is the first work

that considered coefficient uncertainty in linear programming formulations, and showed that such uncertainty

can be handled by an equivalent linear programming model. The approach, however, admits the highest

protection and is the most conservative one since it ensures feasibility against all potential realizations. Thus

it corresponds to the worst-case version of the scenario approach.

- 36 -

The worst case formulation of equation (3.3) then take the following form considering all uncertain

parameters to take their boundary values which aims to ensure that for every possible value of the uncertain

coefficient, the solution remain feasible:

ˆ | |
l l l

lm m lm m lm m l
m M m M m M

a x a x a x p
∉ ∈ ∈

+ + ≤∑ ∑ ∑ (3.4)

To eliminate the absolute value, auxiliary variable mu is introduced for each mx , lm M∈ , which defines new

bounds for mx . Thus the following robust formulation (3.P2) is obtained.

max cx (3.P2)

s.t. ˆ
l l l

lm m lm m lm m l
m M m M m M

a x a x a u p
∉ ∈ ∈

+ + ≤∑ ∑ ∑

, if is positive or binary variable
, otherwise

m m m

m m m

u x x
u x u
=⎧

⎨− ≤ ≤⎩

In formulation (3.P2), if the uncertain parameter is coefficient of positive or binary variable, then no auxiliary

variable and constraint is added because the absolute value is eliminated naturally. The robust formulation

(,)ε σ -Interval Robust Counterpart (IRC [,]ε σ) proposed by (Lin et al., 2004) belongs to this type of

formulation. The difference is that they add certain infeasibility tolerance to the constraints to increase the

level of control towards conservative solutions. The motivation to use Soyster’s formulation is to provide

maximum protection against uncertainty. This type of formulation allows for mitigation of the worse-case

scenario, however since all possible realizations of the data are considered, the solution can end up being

overly pessimistic and the problem is more likely to be infeasible. For example, a worst case parameter

combination where all the processing times and all the demands take the maximum value might lead to an

infeasible schedule in a fixed time horizon due to inability of the plant to satisfy the demand in a fixed time

horizon.

3.2.2 Ben-Tal and Nemirovski’s formulation

Since Soyster’s formulation is extremely conservative, it is highly desirable to provide a mechanism to allow

tradeoff between robustness and performance. A significant step forward for developing a theory for robust

- 37 -

optimization was taken by (Ben-Tal & Nemirovski, 1999), who proposed the following robust counterpart

formulation:

max cx (3.P3)

s.t. 2 2ˆ ˆ
l l

lm m lm lm l lm lm l
m m M m M

a x a u a z p
∈ ∈

+ +Ω ≤∑ ∑ ∑

lm m lm lmu x z u− ≤ − ≤

Let’s consider that the values of the uncertain coefficients are obtained through random perturbations:

ˆlm lm lm lma a aξ= + (3.5)

where { }lmξ (lm M∈) are independent random variables symmetrically distributed in interval [-1, 1]. As

shown by (Ben-Tal & Nemirovski, 1999), this robust formulation ensures that the probability that the l-th

constraint is violated is at most
2 / 2le−Ω , i.e.,

Pr
l l

lm m lm m l l
m M m M

a x a x p κ
∉ ∈

⎧ ⎫⎪ ⎪+ ≥ ≤⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ (3.6)

2 / 2l
l eκ −Ω= (3.7)

This robust optimization formulation was first introduced for linear programming problems with uncertain

linear coefficients and is extended by (Lin et al., 2004) to MILP problems under uncertainty. The robust

formulation (, ,)ε σ κ - Robust Counterpart (RC[, ,]ε σ κ) proposed by the authors belongs to this type of

formulation. This type of robust counterpart formulation has the flexibility of controlling the degree of

solution conservatism through the constraint violation probability
2 /2le−Ω . Its main drawback is that it

corresponds to a nonlinear optimization formulation.

3.2.3 Bertsimas and Sim’s formulation

Although Ben-Tal and Nemirovski’s robust formulation provides a way to consider the tradeoff between

performance and robustness, it results in a nonlinear formulation. To avoid the complication of a nonlinear

optimization, (Bertsimas & Sim, 2003) considers robust linear programming with coefficient uncertainty

using an uncertainty set with budgets. In this robust counterpart optimization formulation, a budget parameter

lΓ (which takes value between 0 and the number of uncertain coefficient parameters in the constraints and is

- 38 -

not necessarily integer) is introduced to control the degree of conservatism of the solution. In other words, it

is unlikely that all of the uncertain coefficient parameters will get the worst-case value at the same time, so

the goal of this formulation is to control that up to lΓ⎢ ⎥⎣ ⎦ of those parameters are allowed to get their worst

case value.

{ { }| ,| | , \ }
ˆ ˆmax | | () | |

l l
l l l l l l l l l

l

lm m lm m l l lt t lS t S M S t M Sm m S
a x a x a x p

∪ ⊆ = Γ ∈⎢ ⎥⎣ ⎦ ∈

⎧ ⎫⎪ ⎪+ + Γ − Γ ≤⎢ ⎥⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

∑ ∑ (3.8)

Where lS represents the subset contains lΓ⎢ ⎥⎣ ⎦ uncertain parameters in the constraint, lt is an index to

describe an additional uncertain parameter if lΓ is not an integer. Thus constraint (3.8) expresses the

requirement that up to lΓ⎢ ⎥⎣ ⎦ uncertain parameters can get their worst-case values simultaneously, which can

be clearly seen when lΓ is chosen as an integer (l lΓ = Γ⎢ ⎥⎣ ⎦), then constraint (3.8) becomes:

{ | ,| | }
ˆmax | |

l l l l l
l

lm m lm m lS S M Sm m S
a x a x p

⊆ =Γ ∈

⎧ ⎫⎪ ⎪+ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ (3.9)

When lΓ is not integer, one more uncertain parameter lta can change by ˆ()
ll l ltaΓ − Γ⎢ ⎥⎣ ⎦ . Thus the robust

formulation takes the following form:

max cx (3.P4)

s.t.
{ { }| ,| | , \ }

ˆ ˆmax ()
l l

l l l l l l l l l
l

lm m lm m l l lt t lS t S M S t M Sm m S
a x a u a u p

∪ ⊆ = Γ ∈⎢ ⎥⎣ ⎦ ∈

⎧ ⎫⎪ ⎪+ + Γ − Γ ≤⎢ ⎥⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

∑ ∑

, if is positive or binary variable
, otherwise

m m m

m m m

u x x
u x u
=⎧

⎨− ≤ ≤⎩

To transform problem (3.P4) into a single optimization problem, let

{ { }| ,| | , \ }
ˆ ˆ(,) max ()

l l
l l l l l l l l l

l

l lm m l l lt tS t S M S t M S m S
x a u a uβ

∪ ⊆ = Γ ∈⎢ ⎥⎣ ⎦ ∈

⎧ ⎫⎪ ⎪Γ = + Γ − Γ⎢ ⎥⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭
∑ (3.10)

Then, (,)lxβ Γ equals to the objective of optimization problem (3.P5) because the optimal solution *
lmz of

(3.P5) must consist of lΓ⎢ ⎥⎣ ⎦ variables at 1 and one variable at l lΓ − Γ⎢ ⎥⎣ ⎦ with 0mu ≥ .

ˆmax
l

lm m lm
m M

a u z
∈
∑ (3.P5)

s.t. lm l
m

z ≤ Γ∑

- 39 -

0 1lmz≤ ≤

The dual problem of problem (3.P5) is as follows:

min
l

l l lm
m M

z q
∈

Γ + ∑ (3.P6)

s.t. ˆl lm lm mz q a u+ ≥

0lmq ≥ , 0lz ≥

where lmq corresponds to the dual variable of the equation 1lmz ≤ , lz corresponds to the dual variable of the

equation lm l
m

z ≤ Γ∑ .

The robust formulation is transformed into the following equivalent formulation after substituting the inner

optimization problem in (3.P4) with the equivalent optimization problem (3.P6).

max cx (3.P7)

s.t.
l

lm m l l lm l
m m M

a x z q p
∈

+ Γ + ≤∑ ∑

ˆl lm lm mz q a u+ ≥

0lmq ≥ , 0lz ≥

, if is positive or binary variable
, otherwise

m m m

m m m

u x x
u x u
=⎧

⎨− ≤ ≤⎩

In this model, a budget parameter for each constraint in (3.P1) lΓ limits the number of coefficients that can

simultaneously take their worst-case value; the resulting robust optimization remains a linear formulation.

This is different from the worst case formulation where all the parameters are considered to get their worst

case values at the same time without control of conservatism of the solution. Also note that formulation (3.P7)

maintains its linearity. For this robust counterpart formulation, (Bertsimas & Sim, 2003) calculate probability

bounds of constraint violation. Specifically, if the uncertain coefficient parameter ija follows symmetric

distribution and takes values in ˆ ˆ[,]ij ij ij ija a a a− + , then the probability that the ith constraint is violated

satisfies the following constraint:

1 1

1 (1) (1) (,) (,)
2

n n n

lm m l n
m l v l v k v

n n
P a x p C n v C n k

l l
μ μ μ

= = + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎪ ⎪> ≤ − + ≤ − +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎜ ⎟
⎝ ⎠ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
∑ ∑ ∑ ∑

 (3.11)

- 40 -

where | |ln M= ,
2

l n
v

Γ +
= , v vμ = − ⎢ ⎥⎣ ⎦

1 , if 0 or
2

(,)
1 exp(log() log()), otherwise

() 2()2

n k k n
C n k

n n n kn k
n k k n k kπ

⎧ = =⎪⎪= ⎨ −⎪ +
⎪ − −⎩

When applying this robust counterpart formulation to practical problems with large number of uncertain

parameters, we can use the feasibility test to identify a-priori which parameters are allowed to take the worst

case value, thus providing a guide of assigning appropriate budget parameter to the different constraints.

3.2.4 Comparison of different formulations

For a deterministic mixed integer linear programming (MILP) problem with n variables, m constraints (not

counting the bounding constraints) having a total of k uncertain parameters, where j of all the constraints are

subject uncertainty and q of all the decision variables are subject to uncertain coefficient, we have the

following comparison for the three different robust formulations presented in the previous section in terms of

the number of variables, the number of constraints required, the type of formulation and the information

obtained:

i) Formulation 1 by Soyster has n+q variables, m+2q constraints and is a linear formulation, but it

provides no control over the degree of conservatism of the solution;

ii) Formulation 2 by Ben-Tal and Nemirovski is a second order cone problem (nonlinear). It has n+2k

variables, m+2k constraints; and it is able to control the degree of conservatism through the constraint

violation probability parameter;

iii) Formulation 3 by Bertsimas and Sim is a linear optimization problem. It has n+j+k+q variables and

m+k+2q constraints. It also provides a way to control the degree of solution conservatism through the

budget parameter lΓ .

In summary, Soyster’s worst-case formation is the simplest formulation with the smallest number of

variables and constraints but it is not able to adjust the solution conservatism, thus the generated solution will

often be too pessimistic. Ben-Tal and Nemirovski’s formulation provides a level of control for solution

conservatism, but it results in a nonlinear formulation, which will cause computational complexity in solving

- 41 -

mixed integer nonlinear programming (MINLP) problems. On the other hand, the robust counterpart

optimization formulation proposed by Bertsimas and Sim is a linear formulation which has the flexibility of

adjusting the solution conservatism and also does not result in substantial increase in problem size. Note that

all the robust counterpart formulations have the same number of binary variables as the original deterministic

formulation. In the next section, different uncertainties (price, processing time and demand) in process

scheduling problem will be considered using Bertsimas and Sim’s robust counterpart formulation whereas

comparison of the three robust formulations will be conducted through different examples in section 4.

3.3 Robust scheduling

For the general process scheduling problem, the following deterministic formulation (3.P8) proposed by

(Ierapetritou & Floudas, 1998) is used:

 Problem (3.P8)

 ,
,

max ()
p r

s s n s s s
s S n s S

price d price STI STF
∈ ∈

− −∑ ∑

 s.t. , , 1
j

i j n
i I

wv
∈

≤∑ ,j J n N∀ ∈ ∀ ∈ (3.12)

 , , 1 , , , , , , , 1
s i s i

P c
s n s n s n s i i j n s i i j n

i I j J i I j J

st st d b bρ ρ− −
∈ ∈ ∈ ∈

= − − +∑ ∑ ∑ ∑ s S∀ ∈ , n N∀ ∈ (3.13)

 max
,s n sst st≤ s S∀ ∈ , n N∀ ∈ (3.14)

 min max
, , , , , , , ,i j i j n i j n i j i j nv wv b v wv≤ ≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (3.15)

 ,s n s
n

d r≥∑ s S∀ ∈ (3.16)

 , , , , , , , , , ,i j n i j n i j i j n i j i j nTf Ts wv bα β= + + i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (3.17)

 , , 1 , , , ,(1)i j n i j n i j nTs Tf H wv+ ≥ − − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (3.18)

 , , 1 ', , ,' ,(1)i j n i j n i j nTs Tf H wv+ ≥ − − , ' ji i I∀ ∈ , j J∀ ∈ , n N∀ ∈ (3.19)

 , , 1 ', ', ,' ',(1)i j n i j n i j nTs Tf H wv+ ≥ − − , ' , 'ji i I i i∀ ∈ ≠ , , 'j j J∀ ∈ , n N∀ ∈ (3.20)

 , , 1 , ,i j n i j nTs Ts+ ≥ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (3.21)

 , , 1 , ,i j n i j nTf Tf+ ≥ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (3.22)

- 42 -

 , ,i j nTs H≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (3.23)

 , ,i j nTf H≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (3.24)

In the above formulation, the objective function is the profit (different performance measures can be used like

makespan), the constraints is similar as the one presented in problem (2.8). Although the above scheduling

formulation has been used, the proposed methodology in this chapter is not limited to this model and it can

also be applied into other scheduling formulations using either discrete or continuous time models (Floudas

& Lin, 2004),(Méndez et al., 2006). In the following, different type of uncertainties including price

uncertainty, processing time uncertainty and demand uncertainty are studied. Given the advantage of

Bertsimas and Sim’s robust formulation, this approach is adopted in this chapter although comparisons with

the other models are also provided in section 4.

3.3.1 Price uncertainty

To apply Bertsimas and Sim’s formulation for the price uncertainty in the objective function, the original

objective is transformed into following:

max profit

s.t. ,
,

() 0
p r

s s n s s s
s S n s S

profit price d price STI STF
∈ ∈

− + − ≤∑ ∑ (3.25)

Thus, the uncertain price parameters sprice (ˆ ˆ[,]s s s s sprice price price price price∈ − +) appear in the left

hand side of the new constraint. The number of uncertain parameter in this constraint equals to the number of

uncertain prices. If the number of uncertain prices is k, then the budget parameter pΓ takes value in [0, k]. To

apply the robust formulation, this constraint is transformed into the following set of constraints

(3.26)~(3.29):

,
,

() 0
p r

p p p
s s n s s s s

s S n s S s
profit price d price STI STF z q

∈ ∈

− + − +Γ + ≤∑ ∑ ∑

 (3.26)

,ˆ , p p
s s s n p

n
z q price d s S+ ≥ ∈∑ (3.27)

ˆ (-), p p
s s s s rz q price STI STF s S+ ≥ ∈ (3.28)

0 , 0, 0p p p
sk z q≤ Γ ≤ ≥ ≥ (3.29)

- 43 -

Here, only one constraint is subject to uncertainty and the number of uncertain parameters is the number of

uncertain prices. The constraints introduced correspond to the constraints in (3.P7). Since , 0s nd ≥ and

- 0sSTI STF ≥ , no auxiliary variable is incorporated.

3.3.2 Processing time uncertainty

Let’s consider that the processing times take value in the symmetric region , , , , ,
ˆ ˆ[,]i j i j i j i j i jT T T T T∈ − + . The

original duration constraint is reformulated as following:

, , , , , , , , , , , , , 0i j n i j n i j i j n i j i j n i j i j nTs Tf wv b wvα β θ− + + + ≤ (3.30)

In equation (3.30), ,i jα and ,i jβ are calculated based on nominal processing time: , ,2 / 3i j i jTα = ,

max min
, , , ,2 / 3()i j i j i j i jT v vβ = − . , ,i j nTf represents the lower bound on the finishing time of the task, instead of the

exact finishing time as determined by the original duration constraint in (Ierapetritou & Floudas, 1998). In the

reformulated constraint (3.30), uncertainty is modeled through the last term , , ,i j i j nwvθ . Here, ,i jθ represent the

variable part of the processing time parameter, so it takes value in the range , ,
ˆ ˆ[,]i j i jT T− and its nominal value

is 0. Since there is only one uncertain coefficient in the reformulated duration constraint, the budget

parameter tΓ for the corresponding robust formulation takes value in [0, 1].

, , , , , , , , , , , , , , ,0 0t t t
i j n i j n i j i j n i j i j n i j n i j n i jTs Tf wv b wv z qα β− + + + ⋅ + Γ + ≤ (3.31)

, , , , , ,
ˆt t

i j n i j i j i j nz q T wv+ ≥ (3.32)

, , ,0 1, 0, 0t t t
i j n i jz q≤ Γ ≤ ≥ ≥ (3.33)

Constraints (3.31)-(3.33) correspond to the constraints in (3.P7) respectively. For every duration constraint,

one additional variable , ,
t
i j nz and one constraint are added; for every uncertain parameter ,i jθ , one additional

variable is added. So totally the additional number of variables is the sum of the number of uncertain duration

constraints and number of uncertain processing time parameters.

3.3.3 Demand uncertainty

The demand uncertainty appears on the right hand side of the demand constraints,

- 44 -

,s n s
n

d r≥∑ (3.34)

Assuming that the demand parameter takes value in the symmetric region: ˆ ˆ[,]s s s s sr r r r r∈ − + . To apply the

robust formulation, an additional binary variable with fixed value 1 is added and the constraint is transformed

as follows:

, 1 0s n s
n

d r− + ⋅ ≤∑ (3.35)

Thus, the demand constraint has only one uncertain coefficient and thus the budget parameter dΓ takes value

in [0, 1]. The following constraints (3.36)-(3.38) are then incorporated in the robust formulation:

, 0d d d
s n s s

n
d r z q− + + Γ + ≤∑ (3.36)

ˆd d
s sz q r+ ≥ (3.37)

 0 1, 0, 0d d d
sz q≤ Γ ≤ ≥ ≥ (3.38)

3.4 Examples

In all the examples presented in this section, the resulted MINLP problem is solved in GAMS using DICOPT

solver and the MILP problems are solved in GAMS using CPLEX 10.1 solver in a Pentium PC (3.8GHz, 1G

RAM) running in Windows XP operating system.

3.4.1 Example 1

This example is taken from (Ierapetritou & Floudas, 1998) and involves the production of two products using

three raw materials (Figure 3.1). Detail process data for this example are shown in Table 3.1. Through this

example, we are comparing the three different robust counterpart optimization formulations stated in

previous section considering different types of uncertainties and finally the problem is solved using the

Bertsimas and Sim’s robust formulation with a systematic consideration of all the uncertainties.

- 45 -

Reaction2

Separation

Reaction3Reaction1

Heating
Feed A Hot A

Product1

IntAB

IntBC

Feed B
Feed C

Product 2

Impure E 10%

90%

40%

60%

40%
60%

50%

50%

80%

20%

Figure 3.1 State Task Network (STN)representation of Example 1

Table 3.1 Process data for the example 1

Unit Capacity Suitability Processing time
Heater 100 Heating 1.0
Reactor 1 50 Reaction 1,2,3 2.0, 2.0, 1.0
Reactor 2 80 Reaction 1,2,3 2.0, 2.0, 1.0
Sill 200 Separation 1 for product 2, 2 for

IntAB
State Storage capacity Initial amount
Feed A Unlimited Unlimited
Feed B Unlimited Unlimited
Feed C Unlimited Unlimited
Hot A 100 0.0
IntAB 200 0.0
IntBC 150 0.0
impure 200 0.0
Product 1(P1) Unlimited 0.0
Product 2(P2) Unlimited 0.0

(a) Price uncertainty

In this case, bounded and symmetric uncertainty of raw material cost and product price is assumed. The

scheduling horizon is 8 hours and 8 event points are used in the continuous scheduling formulation presented

in section 3. The nominal cost of all raw materials is 5 and the nominal prices of product 1 and product 2 are

10, 15, respectively. A 5% variability level is assumed for all the prices and no infeasibility tolerance is

considered in the robust formulation.

First, the deterministic schedule using all nominal price values is solved, and the optimal schedule has

an optimal profit of 1088.75. Because the objective is profit maximization, the worst case scenario

- 46 -

corresponds to the minimum value of all product prices (9.5, 14.25) and maximum value of raw material

costs (5.25, 5.25, 5.25). The resulted profit from Soyster’s worst case formulation is 959.56. The extended

Ben-Tal’s robust formulation for MILP problem proposed by (Lin et al., 2004) is solved with reliability level

28.4% and 10%, which means that the probability that the constraint is violated is at most 28.4% and 10%.

Finally, the robust formulation by Bertsimas and Sim is solved using different budget parameters between 0

and 5 (the number of uncertain prices). A detailed comparison of the different robust formulations is shown

in Table 3.2 (the optimality gap in CPLEX solver is set as 0.1).

Table 3.2 Comparison of the robust formulations for price uncertainty

 Nominal Soyster Ben-Tal
Bertsimas and Sim

Γp=0 Γp=2.5 Γp=4.19 Γp=5
Objective 1088.75 959.56 981.09 961.73 1088.75 989.63 967.44 959.56
Upper probability of
constraint violation - - 0.284 0.10 0.695 0.284 0.10 0.031

CPU time (s) 14.4 22.9 64.6 44.4 13.8 33.4 20.2 19.3
Continuous variables 401 401 419 407
Binary variable 64 64 64 64
Constraints 884 884 899 889

As shown in Table 3.2, the result of the deterministic schedule using nominal parameter values is the same as

the result of Bertsimas and Sim’s formulation when budget parameter is set as 0; the result of the Soyster’s

worst case formulation is the same as that of Bertsimas and Sim’s when budget parameter takes its maximum

value. Soyster’s formulation has the same problem size as the nominal deterministic formulation because the

uncertain parameters are coefficients of positive variables and no auxiliary variable is added. Bertsimas and

Sim’s robust formulation is relatively more efficient compared to Ben-Tal’s formulation because a MILP

instead of MINLP problem is solved. Moreover, when the maximum probability of constraint violation is the

same, Bertsimas and Sim’s robust formulation generates higher profit than Ben-Tal’s formulation, which

means that Ben-Tal’s formulation is more conservative than Bertsimas and Sim’s formulation.

(b) Processing time uncertainty

In this case study, the scheduling horizon is 12 hours and 8 event points are used in the continuous scheduling

formulation. Let’s consider here that all the processing times are uncertain parameters and have a variability

of 15%. In this case we assume zero cost for all the raw materials, and product prices are set as 10 for both

Product 1 and Product 2.

- 47 -

Ben-Tal’s formulation is studied with the reliability level set as 75% and 62.5% and no infeasibility

tolerance is assumed for all the formulations. For Bertsimas and Sim’s formulation, note that the maximum

number of uncertain parameters is 1 for the duration constraints, so [0, 1]tΓ ∈ .

Table 3.3 Comparison of the robust formulations for processing time uncertainty

 Nominal Soyster Ben-Tal
Bertsimas and Sim

Γt =0 Γt =0.5 Γt =1

Objective 2657.9 2140.9 1676.1 1201.8 2657.9 2423.6 2140.9
Upper probability of
constraint violation - - 0.75 0.625 0.75 0.625 0.5

CPU time (s) 4.8 58.3 129.2 109.0 4.9 12.2 69.6
Continuous variables 401 401 401 473
Binary variable 64 64 64 64
Constraints 884 884 884 948

The results in Table 3.3 lead to the same conclusions as in Table 3.2. Comparing to deterministic formulation,

Soyster’s formulation and Ben-Tal’s formulation has the same variable and constraint number, because the

uncertain parameters are coefficients of binary variables and no auxiliary variable is added. Bertsimas and

Sim’s formulation has more constraints and variables but it is still more efficient than Ben-Tal’s formulation

because the linearity of the formulation.

(c) Demand uncertainty

In this case, the scheduling horizon is set as 8 hours and 8 event points are used in the continuous scheduling

formulation. Let’s consider that both the demand of product 1 and product 2 have 50% variability level, they

both take value in [25, 75] and the nominal value is 50. A reliability level of 75% is set for the Ben-Tal’s

formulation, since smaller reliability level 62.5% cause the problem to be infeasible. Budget parameter value

for Bertsimas and Sim’s formulation takes value in [0, 1] because only one demand parameter is uncertain in

the demand constraints.

Table 3.4 Comparison of the robust formulations for demand uncertainty

 Nominal Soyster Ben-Tal
Bertsimas and Sim

Γd=0 Γd=0.5 Γd=1
Objective 1088.75 infeasible 942.80 Infeasible 1088.75 688.05 infeasible
Upper probability of
constraint violation - - 0.75 0.625 0.75 0.625 -

CPU time (s) 29.0 - 60.9 - 28.7 181.8 -
Continuous variables 401 401 401 411
Binary variables 64 64 64 64
Constraints 884 884 884 893

- 48 -

The results in Table 3.4 illustrate similar trends as the previous case studies. Soyster’s formulation becomes

infeasible here, which means that the “worst-case” demand uncertainty cause infeasible schedules.

Correspondingly, Bertsimas and Sim’s formulation becomes infeasible when the budget parameter is set at

the largest value. So the Bertsimas and Sim’s robust formulation will be feasible for different budget

parameter in the range of zero to maximum uncertain coefficient of a constraint only if the worst case

feasibility is ensured. Furthermore, in this case, Soyster’s formulation and Ben-Tal’s formulation both have

same problem size as the deterministic formulation because the uncertain parameter is on the right hand side

of the constraint and it can be viewed as coefficient of binary variable with fixed value 1.

Summarizing, three different kinds of uncertainties in scheduling have been studied and compared.

From the results we can see that the size of all the robust formulations do not increase a lot because the

increase in the number of constraints and variables is at the same scale as the number of the uncertain

parameters. Moreover, since most decision variables in scheduling formulation are positive or binary, we can

further reduce the number of auxiliary variables and boundary constraints for the auxiliary variables.

Comparing the three different robust formulations, Soyster’s worst case formulation is the most conservative

formulation and does not have the flexibility of adjusting the degree of conservatism. The other two robust

counterpart formulations are able to adjust the solution robustness either through the constraint violation

probability or budget parameter. Bertsimas and Sim’s formulation involve relative more constraints and

continuous variables when addressing processing time and demand uncertainty, but it has more flexibility in

controlling the degree of conservatism and also avoids the solution of mixed integer nonlinear optimization

problem, thus the solution efficiency is greatly improved; although Ben-Tal’s formulation can also adjust the

degree of conservatism with the probability of constraint violation, it tends to be a more conservative

formulation and thus more likely to generate infeasible problem; on the other hand, the feasibility of

Bertsimas and Sim’s formulation can be ensured when the feasibility of the worst case formulation is

satisfied. So, Bertsimas and Sim’s formulation will be adopted in our research as the method of generating

robust preventive schedule as shown in following subsection.

(d) Systematically considering all uncertainties

- 49 -

Finally, we consider all uncertain parameters simultaneously including all processing times with variability

15%, the demand of P1 and P2 with variability 50%, and the prices of P1 and P2 with variability level 5%.

The scheduling horizon is set as 8 hours and 8 event points are used in the continuous scheduling formulation.

Table 3.5 Solution data for example 2 with all uncertainties

Budget parameter (Γp, Γd, Γt) (0,0,0) (0.5,0.3,0.3) (1,0.3,0.5) (2,0.3,0.5)

Objective 1088.75 615.5 431.3 402.6
CPU time (s) 26.7 237.2 231.3 330.5
Continuous variables 494
Binary variables 64
Constraints 972

0 1 2 3 4 5 6 7 8

heater_1

1

52.000

reactor_1

2

27.615

3

50.000

4

38.269

reactor_2

2

50.385

3

80.000

4

59.231

separ_1

5

97.500

Figure 3.2 Nominal schedule for example 1 (x: hours, y: equipment)

0 1 2 3 4 5 6 7 8

heater_1

1

65.298

reactor_1

2

33.474

3

43.776

4

32.832

2

7.277

reactor_2

2

53.558

3

70.042

4

52.531

3

31.235

separ_1

5

78.087

Figure 3.3 Robust schedule for example 1 (Γp=0.5, Γd=0.3, Γt=0.3)

Several different budget parameter combinations are used to solve the problem considering all the

uncertainties. The results are summarized in Table 3.5, which shows the relationship between the profit

objective and the budget parameters: higher budget parameters result in more conservative solution with

- 50 -

larger feasibility but smaller profit. The profit of the nominal schedule with zero budget parameter value is

1088.75, and is shown in Figure 3.2. When we choose the budget parameter as Γp=0.5, Γd=0.3 and Γt=0.3,

which means the corresponding price, demand and duration constraints may be violated with maximum

probability 61.3%, 67.5% and 67.5% respectively, the profit reduces to 615.5 (43.5% decrease). Since

product 2 (P2) is more valuable than product 1 (3.P1), the production of the nominal schedule (Figure 3.2)

leads to a production of 52 units P1 and 87.5 units P2 which aims at producing more P2 for largest profit. On

the other hand, the robust schedule is shown in Figure 3.3 which tends to generate a feasible schedule that

covers more uncertain range and has a production of 58 units P1 and 70.3 units P2 because the demand of

both P1 and P2 is in [25, 75]. Moreover, the robust schedule aims at generating feasible operations

considering the processing time variability, e.g., in the separation stage, less amount of materials is processed

in the robust schedule (78.087) than in the nominal schedule (97.5) such that the task will finish in the given

time horizon considering the processing time variability.

3.4.2 Example 2

This example is taken from (Wu & Ierapetritou, 2003). Here, four products are produced through eight tasks

from three feeds. There are nine intermediates in the system as shown in Figure 3.4. Detail process data are

shown in Table 3.6. In all, six different units are required for the whole process. This case study is considered

since it is larger than the previous example to illustrate the scale-up of the robust-counterpart formulation.

Task1

Task2

Task3

Task7

Task6 Task8

Task4 Task5

Product1

Product20.3
0.7

Feed1

Feed2

Feed3

Product3

Product4

0.7 0.5

Int4

Int5

Int6

Int7

Int8

Int9

0.5

0.5

0.40.6

0.5

0.3

Figure 3.4 STN of example 2

- 51 -

Table 3.6 Process data for Example 2

Unit Capacity Suitability Processing time
Unit1 1000 Task 1 1
Unit2 2500 Task 3,7 1
Unit3 3500 Task 4 1
Unit4 1500 Task 2 1
Unit5 1000 Task 6 1
Unit6 4000 Task 5,8 1
State Storage

capacity
Initial amount

Feed 1,2,3 Unlimited 0.0
Int4 1000 0.0
Int5 1000 0.0
Int6 1500 0.0
Int7 2000 0.0
Int8 0 0.0
Int9 3000 0.0
Products
1,2,3,4

Unlimited 0.0

The scheduling horizon is 18 hours and 15 event points are used in the continuous scheduling formulation.

The nominal values of all the processing times are 1; the nominal price of Product1~Product4 are 18, 19, 20

and 21, respectively; the nominal demand of Product1~Product4 are 6000, 8000, 2000 and 8000, respectively.

For the uncertainty problem we assume all the processing times have 20% variability level, all the product

demands have 30% variability level, and all the product price have 10% variability level.

To generate robust schedules for this problem, the robust optimization formulation proposed by

Bertsimas and Sim is also used here. Different budget parameter combinations are considered as shown in

Table 3.7 (the optimality gap in CPLEX solver is set as 0.01).

Table 3.7 Solution data of example 2

 Determinisitic
formulation

Bertsimas and Sim’s
 Robust formulation

Budget parameter (Γp, Γd, Γt) - (0,0,0) (1,0.3,0.3) (2,0.4,0.4)
Objective 738835 738835 674567 634677
CPU time (s) 7.0 12.5 147.7 476.9
Continuous variables 1471 1619
Binary variables 720 720
Constraints 2416 2554

The deterministic scheduling formulation for example 2 is first solved, and the generated schedule is shown

in Figure 3.5. Then the robust formulation with different budget parameter combination is used to generate

the robust schedules. The robust schedule with minimum budget parameter value equal to 0 is actually same

as the nominal deterministic schedule. The other two robust schedules are shown in Figure 3.6 and Figure 3.7.

- 52 -

The production of Product1~Product4 in the nominal schedule are (7522, 16418, 2835, 11180), the

production in the robust schedule (Figure 3.6) are (7200, 15096, 2522, 11256), the production in the robust

schedule (Figure 3.7) are (7150, 15400, 2459, 10235), compared to the demand uncertainty: (6000, 8000,

2000, 8000) (1 30%)⋅ ± , it can be seen that as the budget parameter value increases, the production of the

robust schedule tends to reduce the production so to satisfy the duration requirement under the uncertain

processing time with higher robustness; on the other hand, the total profit decreases. Note that when the

budget parameters increase leading to more conservative solutions, the computation time becomes longer.

This is due to the fact that the feasible space will become smaller as the robustness requirement increases.

0 2 4 6 8 10 12 14 16 18

unit1_1

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

727.6

1

809.7

unit2_1

3

1500.0

3

2500.0

7

2352.9

3

2500.0

7

1428.6

3

2500.0

7

1571.4

3

2500.0

7

1285.7

3

2075.8

7

1347.1

3

1463.8

7

1463.8

unit3_1

4

2800.0

4

1200.0

4

2000.0

4

3500.0

4

500.0

4

2000.0

4

2000.0

4

3500.0

4

1639.4

4

2860.6

4

1455.2

4

1619.4

unit4_1

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1430.3

2

1313.1

2

809.7

unit5_1

6

647.1

6

1000.0

6

1000.0

6

1000.0

6

1000.0

6

943.0

unit6_1

5

1400.0

8

1294.1

8

2000.0

5

4000.0

8

2000.0

8

2000.0

5

4000.0

8

2000.0

5

3997.6

8

1885.9

5

3021.1

Figure 3.5 Nominal schedule for example 2

0 2 4 6 8 10 12 14 16 18

unit1_1

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

257.1

unit2_1

3

2500.0

7

2205.9

3

2500.0

3

2500.0

7

2500.0

3

1869.8

3

1869.8

7

1905.7

3

2428.6

7

1428.6

3

624.5

7

367.4

3

257.1

unit3_1

4

2000.0

4

3000.0

4

1000.0

4

2000.0

4

2504.2

4

1495.8

4

2789.9

4

1216.8

4

2559.2

4

3000.0

4

2434.1

unit4_1

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1319.9

2

1425.1

unit5_1

6

294.1

6

1000.0

6

1000.0

6

1000.0

6

889.3

6

444.6

6

1000.0

6

257.1

unit6_1

8

588.2

5

3352.9

8

2000.0

8

2000.0

5

4000.0

8

2000.0

8

1778.6

8

889.3

5

3851.8

8

2000.0

5

3891.4

Figure 3.6 Robust schedule for example 2 (Γp=1, Γd=0.3, Γt=0.3)

- 53 -

0 2 4 6 8 10 12 14 16 18

unit1_1

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

1000.0

1

916.4

1

433.4

unit2_1

3

2500.0

7

2058.8

3

2500.0

3

2500.0

7

2500.0

3

2500.0

7

1323.5

3

2500.0

7

1500.0

3

1250.0

7

816.5

3

433.4

unit3_1

4

1000.0

4

3000.0

4

1000.0

4

1000.0

4

2000.0

4

2000.0

4

3000.0

4

1000.0

4

3000.0

4

2000.0

4

3000.0

4

1832.7

unit4_1

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1500.0

2

1089.8

2

1070.2

unit5_1

6

441.2

6

1000.0

6

1000.0

6

676.5

6

1000.0

6

1000.0

6

433.4

unit6_1

8

882.4

5

3500.0

8

2000.0

8

2000.0

5

2678.8

8

1352.9

5

2921.2

8

2000.0

8

2000.0

5

3968.6

5

2331.4

Figure 3.7 Robust schedule for example 2 (Γp=2, Γd=0.4, Γt=0.4)

3.5 Summary

To generate robust preventive schedules that can address the different parameter uncertainties in process

scheduling problem, a lot of efforts have been made in the past, especially in the direction of scenario based

stochastic scheduling. However, the scenario based methodologies have a main drawback that they cannot

avoid the exponential increase of the problem size when the number of parameters increases. Robust

counterpart optimization based preventive scheduling avoids this type of complexity. In this work we studied

three robust counterpart optimization formulations and compared their performance in uncertain scheduling.

The results showed that the “budget parameter” based formulation proposed by (Bertsimas & Sim, 2003) is

appropriate for uncertain scheduling problems with its unique advantages that it does not increase

substantially the problem size, maintains its linearity, and its ability to control the degree of conservatism for

every constraint and guarantee the feasibility for the robust optimization problem with the use of budget

parameter.

- 54 -

Nomenclature

lM index set for the uncertain coefficients in the l-th constraint

lma true values of the coefficient parameter

lma nominal values of the coefficient parameter

ˆlma variation amplitude of the coefficient parameter

mu auxiliary variable incorporated for robust formulation

lmξ independent random variable symmetrically distributed in interval [-1, 1]

lΩ constant (with constraint violation probability
2 / 2l

l eκ −Ω=)

lκ constraint violation probability

lmz auxiliary variable incorporated for robust formulation

lΓ budget parameter

lΓ⎢ ⎥⎣ ⎦ biggest integer not greater than lΓ

lS subset that contains lΓ⎢ ⎥⎣ ⎦ uncertain parameters of the l-th constraint

lt index that represents an additional uncertain parameter if lΓ is not an integer

lmq dual variable

- 55 -

Chapter 4

Reactive Scheduling

Abstract: To address the various disruptive events that occur during process operations, reactive scheduling

is commonly used. However, a major limitation of the existing reactive scheduling techniques is the response

time, which might cause significant delay while the generation of a new schedule takes place. In this chapter,

a novel approach is proposed to improve the efficiency of reactive scheduling and avoid the resolution of a

complex optimization problem when uncertain event occurs during the scheduling period. In the proposed

method, reactive schedule is obtained from the solution of multiparametric programming problem which is

solved ahead of time and covers all possible outcomes of future uncertainty. The multiparametric

programming problem is derived from a new reactive scheduling formulation which integrates disruptive

events (rush order and machine breakdown) as uncertain parameters in the process modeling.

4.1 Introduction

Reactive scheduling, which is also called rescheduling, takes place when the schedule is implemented based

on up-to-date information regarding the state of the system. It requires the modification of the existing

schedule during the manufacturing process to adapt to changes (uncertainty) such as rush order arrivals, order

cancellations or machine breakdowns. For this type of uncertainty there is not enough information prior to

realization of the uncertain parameters that will allow a protective action, so almost all the methods in the

literature aim to resolve a rescheduling problem once the disruptive events occur.

The reactive scheduling actions are based on various underlying strategies. It can rely on simple

techniques or heuristic rules to seek a quick schedule consistency restoration. One of the earliest efforts in

reactive scheduling was reported by (Cott & Macchietto, 1989) who considered fluctuations of processing

times and used a shifting algorithm to modify the starting times of processing steps of a batch by the

maximum deviation between the expected and actual processing times of all related processing steps.

- 56 -

(Kanakamedala et al., 1994) developed a least-impact heuristic approach with two levels that allows time

shifting and unit replacement in multipurpose batch plants. (Huercio et al., 1995) proposed a reactive

scheduling technique to deal with variations in task processing times and equipment availability. They

generated a set of decision trees using alternative unit assignments, each based on a conflict in the real

production schedule caused by a deviation between the real schedule and the nominal schedule. Branches of

the trees are then pruned according to heuristic equipment selection rules. (Sanmartí et al., 1997) extended

this work to cover unexpected equipment failure. (Rodrigues et al., 1996) also considered uncertain

processing times and proposed a rolling-horizon approach which incorporates a look-ahead procedure to

avoid possible violations of future due dates. (Honkomp et al., 1997) proposed a reactive scheduling

framework for processing time variations and equipment breakdown by coupling a deterministic schedule

optimizer with a simulator that introduces stochastic events where two different formulations of time are

considered. A number of rescheduling strategies were proposed and heuristics were used to locate critical

tasks which can be modified to make the nominal schedule less susceptible to the effects of processing time

variability.

On the other hand, a number of the techniques presented in the literature involve a full scheduling of the

tasks that have to be executed after the unexpected event occurs through mathematical programming

approaches relying mostly on mixed integer linear programming (MILP). (Roslöf et al., 2001) developed an

MILP-based heuristic algorithm by iteratively releasing a set of jobs from a nominal schedule and optimally

reallocating them, where the complexity of the problem is controlled through the number of simultaneously

released jobs. (Ruiz et al., 2001) presented a fault diagnosis system that interacts with a schedule optimizer

for multipurpose batch plants to perform reactive scheduling in the event of processing time variability or

unit unavailability. (Méndez & Cerdá, 2003) proposed a rescheduling method by first reassigning resources

to tasks that still need to be processed and then reordering the sequence of processing tasks for each resource

item. They considered start time shifting, local reordering, and unit reallocation of old batches as well as

insertion of new batches. This work was extended in (Méndez & Cerdá, 2004) to include limited discrete

renewable resources where only start-time shifting, local batch reordering, and resource reallocation of

existing batches are allowed. (Vin & Ierapetritou, 2000) considered the rescheduling of multiproduct and

multipurpose batch plants in the event of machine breakdown or rush order arrival. Full-scale rescheduling of

- 57 -

each production schedule is avoided by fixing binary variables for a subset of tasks from the original

production schedule. The fixing of tasks results in a reduced computational effort required to solve the

resulting MILP problem. (Janak & Floudas, 2006) presented a similar framework where the fixed subset of

tasks is determined using a detailed set of rules that reflect the production needs and can be modified for

different production facilities. By fixing a subset of tasks a reduced computational effort is required to solve

the resulting MILP problem.

As shown from the literature, a major consideration for reactive scheduling is the response time. If the

computation time is large the production may be significantly delayed while the new schedule is developed.

In this chapter, we proposed a framework to solve the reactive scheduling problems using multiparametric

programming technique, which will greatly improve the efficiency of the rescheduling approach because the

new schedule is obtained from the solution of parametric programming problem which was solved before the

occurrences of disruptive events, thus completely avoiding the solution of the rescheduling optimization

problem.

Parametric programming serves as an analytic tool by mapping the uncertainties in the optimization

problem to optimal alternatives. From this point of view, parametric programming provides the exact

mathematical solution of the optimization problem under uncertainty. In the literature, there are not many

records on the application of parametric programming in process scheduling problem. (Ryu & Pistikopoulos,

2007) has reported the application of parametric programming to a zero-waiting scheduling problem, where

they studied the parametric solution under processing time uncertainty for zero-wait batch processes, but the

scheduling formulation does not consider the executed tasks so it is not able to address the reactive

scheduling problem. (Li & Ierapetritou, 2007b) proposed an efficient multiparametric programming

framework and applied it to general scheduling problem to study the effect of uncertain product demand,

price and processing time on preventive scheduling problem. In this chapter, the work is further extended to

study the reactive scheduling problem.

The rest of this chapter is organized as follows. A general reactive scheduling formulation is presented

in next section for two kinds of uncertainty: rush order and machine breakdown. Then, the multiparametric

programming method presented in Chapter 2 will be applied to solve the parametric reactive scheduling

problems and the chapter is finally summarized in the last section.

- 58 -

4.2 Reactive scheduling formulation

4.2.1 General idea

The reactive scheduling model studied in this chapter is based on the deterministic model (2.8) presented in

Chapter 2. It should be noticed that the proposed methodology for reactive scheduling is not tight to the

specific deterministic model. Any schedule modeling framework can be used as long as it can be formulated

as a MILP problem such as the ones presented by (Floudas & Lin, 2004), (Méndez et al., 2006), (Maravelias

& Grossmann, 2006).

To apply the parametric programming method on reactive scheduling, it is necessary to develop an

effective way to model the disruptive uncertainty into the scheduling formulation. An important fact for

formulating the reactive scheduling is that the tasks that have already executed or started cannot be changed.

In a previously published work (Vin & Ierapetritou, 2000), those binary variables that corresponds to a subset

of tasks of the original production schedule that have been executed are fixed while generating the reactive

schedule. However this method only solves one reactive schedule after the uncertain event occurs.

Our target in this work is to develop a new reactive scheduling formulation to consider all possible

uncertain outcomes by formulating the uncertain events as uncertain parameters into the optimization

problem. The basic strategy is to generate a complete reschedule but fix the executed tasks with a set of

binary indicator variables , ,i j ny , which denote whether a task is executed (, ,i j ny =1) or not (, ,i j ny =0). The rules

and corresponding constraints to identify these indicator variables will be presented in the next two

subsections for the specific disruptive event, rush order or machine breakdown. Here, the constraints that

ensure that the executed tasks are fixed using the indicator variables (, ,i j ny) are described as follows:

 , , , ,
old

i j n i j nwv wv= , if , , 1i j ny = i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.1)

 , , , , , ,
old old

i j n i j n i j nb b wv= , if , , 1i j ny = i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.2)

 , , , , , ,
old old

i j n i j n i j nTs Ts wv= , if , , 1i j ny = i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.3)

 , , , , , ,
old old

i j n i j n i j nTf Tf wv= , if , , 1i j ny = i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.4)

- 59 -

Constraint (4.1) ensures that if a task i assigned to unit j at event point n has been executed, then the

corresponding variable , ,i j nwv has to be fixed to the value , ,
old
i j nwv that represents the task in the original

schedule. Similarly, constraints (4.2), (4.3) and (4.4) ensure that batch size, task starting and completion time

are fixed at the same values as the ones in the original schedule.

The logical constraints (4.1)-(4.4) are transformed to mathematical programming constraints as follows.

 , , , , , , , , , ,(1) (1)old old
i j n i j n i j n i j n i j nwv y wv wv y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.5)

 , , , , , , , , , , , , , , , ,(1) (1)old old UB old old UB
i j n i j n i j i j n i j n i j n i j n i j i j nb wv b y b b wv b y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.6)

 , , , , , , , , , , , , , ,(1) (1)old old old old
i j n i j n i j n i j n i j n i j n i j nTs wv U y Ts Ts wv U y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.7)

 , , , , , , , , , , , , , ,(1) (1)old old old old
i j n i j n i j n i j n i j n i j n i j nTf wv U y Tf Tf wv U y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.8)

where ,
UB
i jb is the upper bound of the batch size, and U is the upper bound of the scheduling time horizon.

Constraint (4.5) is equivalent to constraint (4.1). This can be shown as follows: if , , 1i j ny = , constraint (4.5)

becomes , , , , , ,
old old
i j n i j n i j nwv wv wv≤ ≤ , i.e., , ,i j nwv is fixed to , ,

old
i j nwv ; if on the other hand , , 0i j ny = , (4.5) becomes

, , , , , ,1 1old old
i j n i j n i j nwv wv wv− ≤ ≤ + , which is a redundant constraint since it is satisfied for any value of the binary

variable , ,i j nwv . Similarly, constraints (4.6), (4.7) and (4.8) are equivalent to logical constraints (4.2), (4.3)

and (4.4), respectively.

In order to determine the value of , ,i j ny additional constraints are required depending on the nature of

the disruptive event: rush order or machine breakdown. In the next two subsections we specify the rules and

constraints that determine the value of , ,i j ny and present the complete reactive scheduling formulation.

4.2.2 Rush order

Once a rush order arrives during the scheduling execution process, all the tasks that have already started

should be identified as executed. When this rule is implemented on the original schedule solution, the value

of , ,i j ny can be identified. However this rule should also be implemented on the complete reschedule so that

the reactive schedule does not change the schedule history, otherwise the reactive schedule can generate

- 60 -

“wrong” tasks that start before the disruptive event which do not exist in the original schedule. So, we can

define the indicator binary variable , ,i j ny as follows:

, , , ,
, ,

, , , ,

1, if and

0, if and

old rush rush
i j n i j n

i j n old rush rush
i j n i j n

Ts T Ts T
y

Ts T Ts T

⎧ < <⎪= ⎨
≥ ≥⎪⎩

which can be mathematically formulated as follows:

 , , , , , , , ,(1)old rush old
i j n i j n i j n i j nTs U y T Ts Uyε+ − − ≤ ≤ + i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.9)

 , , , , , , , ,(1) rush
i j n i j n i j n i j nTs U y T Ts Uyε+ − − ≤ ≤ + i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.10)

Constraint (4.9) and (4.10) corresponds to the definition of the binary variables , ,i j ny . Constraints (4.9) can be

verified as follows: if task i in unit j at event point n starts before the rush order arrives (, ,
old rush
i j nTs T<),

then , ,i j ny must take value 1 as a binary variable because if , , 0i j ny = constraint (4.9) will become

, ,
rush old

i j nT Ts≤ which contradicts the fact that , ,
old rush
i j nTs T< , however if , , 1i j ny = constraint (4.9) takes the

form , , , ,
old rush old
i j n i j nTs T Ts Uε+ ≤ ≤ + , which verifies the assumption (, ,

old rush
i j nTs T<) sinceε is a small positive

number and the inequality on the right hand side is redundant; similarly, if task i in unit j at event point n

starts at or after the rush order arrival time (, ,
old rush
i j nTs T≥), , ,i j ny must be 0 since in this case constraint (4.9)

satisfies this assumption whereas the value of 1 results in a contradictory conclusion (, ,
old rush
i j nTs T<). Thus the

value of , ,i j ny is defined by constraint (4.9). Constraint (4.10) defines the variables , ,i j ny for the tasks in

reactive schedule in the same way.

Furthermore, the demand constraint should be updated as following to account for the new demand in

the rush order:

,

rush
s n s

n
d r≥∑ s S∀ ∈ (4.11)

where rush
sr corresponds to the updated demand after the rush order arrival.

Thus, the reactive scheduling problem considering rush order uncertainty is formulated with the original

constraints from deterministic model and additional constraints defined as above. The reactive scheduling

objective can be selected based on preferred performance, e.g., minimizing the makespan to fulfill the

updated order. The complete problem formulation is given by Formulation A as follows. It should be noticed

- 61 -

that this formulation covers any case of a rush order arrival including the time of arrival, new orders, and

modification or cancellation of existing orders. Also it is not restricted by the number of different products in

the order.

Problem 4.A: Reactive scheduling formulation for rush order uncertainty

min H (4.A1)

s.t.

, , 1
j

i j n
i I

wv
∈

≤∑ ,j J n N∀ ∈ ∀ ∈ (4.A2)

, , 1 , , , , , , , 1
s i s i

P c
s n s n s n s i i j n s i i j n

i I j J i I j J

st st d b bρ ρ− −
∈ ∈ ∈ ∈

= − − +∑ ∑ ∑ ∑ s S∀ ∈ , n N∀ ∈ (4.A3)

max
,s n sst st≤ s S∀ ∈ , n N∀ ∈ (4.A4)

min max
, , , , , , , ,i j i j n i j n i j i j nv wv b v wv≤ ≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.A5)

,
rush

s n
n

sd r≥∑ s S∀ ∈ (4.A6)

, , , , , , , , , ,i j n i j n i j i j n i j i j nTf Ts wv bα β= + + i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.A7)

, , 1 , , , ,(1)i j n i j n i j nTs Tf U wv+ ≥ − − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.A8)

, , 1 ', , ', ,(1)i j n i j n i j nTs Tf U wv+ ≥ − − , ' ji i I∀ ∈ , j J∀ ∈ , n N∀ ∈ (4.A9)

, , 1 ', ', ', ',(1)i j n i j n i j nTs Tf U wv+ ≥ − − , ' , 'ji i I i i∀ ∈ ≠ , , 'j j J∀ ∈ , n N∀ ∈ (4.A10)

, , 1 , ,i j n i j nTs Ts+ ≥ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.A11)

, , 1 , ,i j n i j nTf Tf+ ≥ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.A12)

, ,i j nTs H≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.A13)

, ,i j nTf H≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.A14)

, , , , , , , , , ,(1) (1)old old
i j n i j n i j n i j n i j nwv y wv wv y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.A15)

, , , , , , , , , , , , , , , ,(1) (1)old old UB old old UB
i j n i j n i j i j n i j n i j n i j n i j i j nb wv b y b b wv b y− − ≤ ≤ + −

i I∀ ∈

 ij J∀ ∈ , n N∀ ∈ (4.A16)

, , , , , , , , , , , , , ,(1) (1)old old old old
i j n i j n i j n i j n i j n i j n i j nTs wv U y Ts Ts wv U y− − ≤ ≤ + − i I∀ ∈ ,

 ij J∀ ∈ ,

n N∀ ∈ ,

 (4.A17)

, , , , , , , , , , , , , ,(1) (1)old old old old
i j n i j n i j n i j n i j n i j n i j nTf wv U y Tf Tf wv U y− − ≤ ≤ + − i I∀ ∈ ij J∀ ∈ n N∀ ∈

(4.A18)

- 62 -

, , , , , , , ,(1) rusold old
i j n i j n i j n i j n

hTTs U y Ts Uyε+ − − ≤ ≤ + i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.A19)

, , , , , , , ,(1) rus
i j n i j n i j n i j n

hTTs U y Ts Uyε+ − − ≤ ≤ + i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.A20)

4.2.3 Machine breakdown

To incorporate machine breakdown within the reactive scheduling formulation, the following rules should be

included: if a unit *j breaks down at time breakT and requires repair/maintenance time of maintT , then:

a) All the tasks in *,j J j j∈ ≠ should be identified as executed if they start before breakT ;

b) All the tasks in *j should be identified as executed if they finish at or before breakT .

Note that there are different rules for the breakdown units and for the ones that operate normally. For the unit

that is broken, we are enforcing rules on task finishing time but not starting time because once the machine is

broken, the tasks that have started must be stopped. So, we define the indicator binary variables as follows:

*
, , , ,

*
, , , ,

, , *
, , , ,

, ,

< and < for , , or
1, if

 and for

and for , , or
0, if

 a

old break break
i j n i j n

old break break
i j n i j n

i j n old break break
i j n i j n

old break
i j n

Ts T Ts T j J j j

Tf T Ts T j j
y

Ts T Ts T j J j j

Tf T

⎧ ∀ ∈ ≠⎪
⎨

≤ ≤ =⎪⎩=
≥ ≥ ∀ ∈ ≠

> *
, ,nd > for break

i j nTs T j j

⎧
⎪
⎪⎪
⎨

⎧⎪ ⎪
⎨⎪

=⎪⎪ ⎩⎩

Similar to the rush order case, the rules are implemented in the original schedule to identify the value of , ,i j ny ,

and in the reactive schedule to ensure that the complete reschedule does not change the schedule history. The

definition of , ,i j ny is mathematically equivalent with the following constraints:

 , , , , , , , ,(1)old break old
i j n i j n i j n i j nTs U y T Ts Uyε+ − − ≤ ≤ + , i I∀ ∈ , *,ij J j j∀ ∈ ≠ , n N∀ ∈ (4.12)

 , *, , *, , *, , *,(1)old break old
i j n i j n i j n i j nTf U y T Tf Uy ε− − ≤ ≤ + − , i I∀ ∈ , n N∀ ∈ (4.13)

 , , , , , , , ,(1) break
i j n i j n i j n i j nTs U y T Ts Uyε+ − − ≤ ≤ + , i I∀ ∈ , *,ij J j j∀ ∈ ≠ , n N∀ ∈ (4.14)

 , *, , *, , *, , *,(1) break
i j n i j n i j n i j nTf U y T Tf Uy ε− − ≤ ≤ + − , i I∀ ∈ , n N∀ ∈ (4.15)

Constraints (4.12) are valid for units that do not break down and represent the definition of , ,i j ny in the

following way: if task i in unit j at event point n starts before the machine breaks down (, , <old break
i j nTs T),

since constraint (4.12) expresses that , , , ,
break old

i j n i j nT Ts Uy≤ + , , ,i j ny must be 1 since 0 does not satisfy this

- 63 -

constraint; similarly, if the task i in unit j at event point n start at or after the machine breakdown time

(, ,
old break
i j nTs T≥), because constraint (4.12) expresses the

requirement , , , ,(1)old break
i j n i j nTs U y Tε+ − − ≤ , , ,i j ny must be 0 since 1 will generate contradictory results.

Constraints (4.13) represent the definition of , ,i j ny for units that break down, and can be verified in similar

way. Constraints (4.14) and (4.15) are for the tasks in reactive schedule and correspond to the same rules as

constraints (4.14) and (4.15) respectively and can be verified in the same way.

Furthermore, we should add constraints to change the starting time for tasks that finish after breakT in the

machine that breaks down:

 , *, , *,
break maint

i j n i j nT T Ts Uy+ ≤ + i I∀ ∈ , n N∀ ∈ (4.16)

Constraint (4.16) expresses the requirement that if a task has been identified as one that does not finish before

breakdown time (, , 0i j ny =), it must start after the unit is fixed. For the case that the task finishes before the

breakdown occurs (, , 1i j ny =), constraint (4.16) is redundant.

The reactive scheduling formulation incorporating machine breakdown is formulated with the objective

of maximizing the profit (or minimizing makespan). The complete formulation is given in model B as

follows. Note that this formulation covers all possible machine breakdown events including the breakdown

of any unit at any time during the schedule execution that require any time for repair/maintenance.

Problem 4.B: Reactive scheduling formulation for machine breakdown uncertainty

,
,

max s s n
s n

price d∑ or min H (4.B1)

s.t. , , 1
j

i j n
i I

wv
∈

≤∑ ,j J n N∀ ∈ ∀ ∈ (4.B2)

, , 1 , , , , , , , 1
s i s i

P c
s n s n s n s i i j n s i i j n

i I j J i I j J
st st d b bρ ρ− −

∈ ∈ ∈ ∈

= − − +∑ ∑ ∑ ∑ s S∀ ∈ , n N∀ ∈ (4.B3)

max
,s n sst st≤ s S∀ ∈ , n N∀ ∈ (4.B4)

min max
, , , , , , , ,i j i j n i j n i j i j nv wv b v wv≤ ≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.B5)

,s n s
n

d r≥∑ s S∀ ∈ (4.B6)

- 64 -

, , , , , , , , , ,i j n i j n i j i j n i j i j nTf Ts wv bα β= + + i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.B7)

, , 1 , , , ,(1)i j n i j n i j nTs Tf U wv+ ≥ − − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.B8)

, , 1 ', , ', ,(1)i j n i j n i j nTs Tf U wv+ ≥ − − , ' ji i I∀ ∈ , j J∀ ∈ , n N∀ ∈ (4.B9)

, , 1 ', ', ', ',(1)i j n i j n i j nTs Tf U wv+ ≥ − − , ' , 'ji i I i i∀ ∈ ≠ , , 'j j J∀ ∈ , n N∀ ∈ (4.B10)

, , 1 , ,i j n i j nTs Ts+ ≥ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.B11)

, , 1 , ,i j n i j nTf Tf+ ≥ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.B12)

, ,i j nTs H≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.B13)

, ,i j nTf H≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.B14)

, , , , , , , , , ,(1) (1)old old
i j n i j n i j n i j n i j nwv y wv wv y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.B15)

, , , , , , , , , , , , , , , ,(1) (1)old old UB old old UB
i j n i j n i j i j n i j n i j n i j n i j i j nb wv b y b b wv b y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.B16)

, , , , , , , , , , , , , ,(1) (1)old old old old
i j n i j n i j n i j n i j n i j n i j nTs wv U y Ts Ts wv U y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.B17)

, , , , , , , , , , , , , ,(1) (1)old old old old
i j n i j n i j n i j n i j n i j n i j nTf wv U y Tf Tf wv U y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (4.B18)

, , , , , , , ,(1)old old
i j n i j n i j n

break
i j nTTs U y Ts Uyε+ − − ≤ ≤ + , i I∀ ∈ , , *ij J j j∀ ∈ ≠ , n N∀ ∈ (4.B19)

, *, , *, , *, , *,(1) brold old
i j n i j n i j n i j

eak
nTTf U y Tf Uy ε− − ≤ ≤ + − , i I∀ ∈ , n N∀ ∈ (4.B20)

, , , , , , , ,(1)i j n i j n i j n i j n
breakTTs U y Ts Uyε+ − − ≤ ≤ + , i I∀ ∈ , , *ij J j j∀ ∈ ≠ , n N∀ ∈ (4.B21)

, *, , *, , *, , *,(1) brea
i j n i j n i j n i j n

kTf U y TT f Uy ε− − ≤ ≤ + − , i I∀ ∈ , n N∀ ∈ (4.B22)

, *, , *,
break main

i j j n
t

n iTs UyT T+ ≤ + i I∀ ∈ , n N∀ ∈ (4.B23)

4.3 Examples

With the proposed reactive scheduling formulations, the parametric programming algorithm can be applied

to solve the corresponding parametric MILP problem and the relationship between the disruptive events and

optimal reactive schedule can be obtained from the parametric solution map. This application is illustrated

through the following examples.

- 65 -

Example 1

Example 1 involves the production of two products using three raw materials. The state-task-network (STN)

representation of this example is shown in Figure 4.1 and the problem data can be found in Chapter 2.

Reaction2

Separation

Reaction3Reaction1

Heating
Feed A Hot A

Product1

IntAB

IntBC

Feed B
Feed C

Product 2

Impure E 10%

90%

40%

60%

40%
60%

50%

50%

80%

20%

Figure 4.1 State-task-network (STN) representation of example 1

a) Rush order

To study the reactive scheduling problem considering an unexpected rush order, we assume the original

deterministic schedule is generated first to satisfy the nominal demand of products P1 and P2 which are both

set as 80 units. The deterministic scheduling problem consisting of constraints (4.1)-(4.14) is solved with the

objective function of minimizing the makespan. The resulted schedule is shown in Figure 4.2.

Figure 4.2 Original schedule of example 1 with nominal demand

A rush order of product P1 is investigated with an uncertain demand and an uncertain order arrival time as

described in Table 4.1.

- 66 -

Table 4.1 Rush order uncertainty for example 1
 Value Range

1
rush

Pr (New demand of P1) 1θ 170 90θ≤ ≤
rushT (Order arrival time) 2θ 22 6θ≤ ≤

For the reactive scheduling formulation with rush order uncertainty, since the demand of product is increased

to satisfy the additional order, the number of event points used for the original deterministic scheduling might

not be enough and can cause the problem to be infeasible. So we need to find the appropriate number of event

points for reactive scheduling formulation with the maximum demand using the deterministic formulation

and then fix the event point number and solve the parametric problem. For this example, the original number

of event points for deterministic formulation is 7, which is the number required for the maximum demand of

product P1 (90 units), so the number of event points are fixed at 7 for the reactive scheduling formulation

during the multiparametric programming solution process. Then the corresponding multiparametric

programming problem is solved and the parametric results are obtained. Figure 4.3 illustrates the exact

relationship between the uncertain parameter and the optimal makespan. Figure 4.4 shows the critical regions

of the solution and Table 4.2 shows the detail parametric objective in different critical regions.

Figure 4.3 Parametric solution of optimal makespan and the rush order

- 67 -

Table 4.2 Parametric objective for example 1 with rush order
Critical
Region

Makespan
H (hours)

Critical
Region

Makespan
H (hours)

1 8.1614 7 10.071 0.10667θ+ +
2 8.3723 8 15.7892 0.041θ+
3 16.353 0.02564θ+ 9 10.0467 0.10667θ+
4 10.6192 0.10667θ+ 10 15.769 0.04θ+
5 13.962 0.06667θ+ 11 10.1174 0.10667θ− +
6 15.6353 0.041θ+

Figure 4.4 Critical regions of example 1 with rush order

As shown in Figures 4.3 and 4.4, the parametric result gives the exact relationship between the uncertain

parameter and the scheduling solution, thus the reactive schedule can be obtained explicitly from the

parametric solution once the rush order arrives. For example, if a rush order arrives at t=2.2 hour 2(2.2)θ =

with 7 units additional demand of P1, thus the new demand of P1 is 87 units 1(87)θ = and the reactive

schedule can be obtained from the parametric solution for 1 2(,) (87, 2.2)θ θ = , which corresponds to critical

region 10 with a parametric objective of 15.769 0.04θ+ and the integer solution is shown in Table 4.3. Thus

the optimal makespan can be evaluated by 5.769 0.04*87 9.249+ = and the corresponding schedule is

obtained as shown in Figure 4.5.

- 68 -

Table 4.3 Integer solution of critical region 10
{ }, ,(, ,) | 1i j ni j n wv = { }, ,(, ,) | 1i j ni j n y =

heating.heater.n0
heating.heater.n1
heating.heater.n2
rxn1.rtr1.n1
rxn1.rtr1.n3
rxn1.rtr2.n1
rxn2.rtr1.n2
rxn2.rtr1.n5
rxn2.rtr2.n2
rxn2.rtr2.n5
rxn3.rtr1.n4
rxn3.rtr2.n3
sepn.sill.n5

heating.heater.n0
heating.heater.n1
rxn1.rtr1.n0
rxn1.rtr1.n1
rxn1.rtr2.n0
rxn1.rtr2.n1
rxn2.rtr1.n0
rxn2.rtr2.n0
rxn3.rtr1.n0
rxn3.rtr2.n0
sepn.sill.n0
sepn.sill.n1
sepn.sill.n2
sepn.sill.n3

Figure 4.5 Reactive schedule for example1 with rush order at t = 2.2 h

b) Machine breakdown

In order to study the case when machine breakdown occurs, we consider the problem of maximizing the

profit in a given makespan (8 hours) and there is no requirement on the demand of product P1 and P2. Note

that these assumptions are not necessary and any other optimization objective and demand constraints can be

used. The original schedule is obtained as shown in Figure 4.6 which results in a maximum profit of 1498.2.

The we assume that reactor 2 breaks down during the scheduling execution period and the breakdown time

and the time of maintenance are assumed uncertain as shown in Table 4.4.

Table 4.4 Machine breakdown uncertainty for example 1
 Value Range

breakT (Breakdown time) 1θ 11 7θ≤ ≤
maintT (Maintenance time) 2θ 20.5 2.5θ≤ ≤

- 69 -

Figure 4.6 Original schedule of example 1, fixed H = 8 h

To illustrate the parametric solution, the parametric objective is shown in Figure 4.7 and the details of the

solution are given in Table 4.5. The critical regions of the solution are shown in Figure 4.8. Computational

data for the solution process is shown in Table 4.9. From the parametric solution, it can be observed that the

final optimal profit will decrease with the increase of the maintenance time if the same unit breaks down at

the same time. Also it should be noticed that the problem will become infeasible if the machine breakdown

time and the maintenance time increase beyond certain limit.

Table 4.5 Parametric objective for example 1 with machine breakdown
Critical
Region

Optimal profit Critical
Region

Optimal profit

1 920.5 9 576.2
2 1 22015 363.2 363.2θ θ− − 10 866.6
3

1 21674.3 240 240θ θ− − 11
1 22466.6 240 240θ θ− −

4 1 21403.1 150 150θ θ− − 12 1008.2
5 1058.9 13

1 25001 706.7 706.7θ θ− −
6 896.2 14 1356.6
7

1 21856.2 240 240θ θ− − 15
1 22521.6 428.1 428.1θ θ− −

8 1 22176.2 240 240θ θ− −

- 70 -

Figure 4.7 Parametric solution of maximum profit and machine breakdown parameter

Figure 4.8 Critical region of the example 1 with machine breakdown

Once the parametric solution is obtained, the reactive schedule can be directly determined once the event

occurs. For example, a reactive schedule for the reactor 2 breakdown at t=2.5 hour with 1 hour maintenance

can be obtained by mapping the parameter value 1 2(,) (2.5,1)θ θ = in the critical region 15. The corresponding

- 71 -

reactive schedule is shown in Figure 4.9. The resulted profit is 2521.6 428.1*2.5 428.1*1 1023.3− − = ,

which corresponds to a big decrease compared to the original profit (1498.2) because of the machine

breakdown.

Figure 4.9 Reactive schedule for reactor 2 breakdown at t = 2.5 h, maintenance time = 1 h

Example 2

In example 2, four products are produced through eight tasks from three feeds and there are nine

intermediates in the system. In all, six different units are required for the whole process. The STN

representation of this process is shown in Figure 4.10 and the problem data can be found in Chapter 2.

Through this example, we are studying the application of the proposed method on consecutive uncertainties

for reactive scheduling. Specifically, we assume that the first disruptive event is a rush orders for products P1

and P2, and the second disruptive event is that unit 2 breaks down and needs maintenance.

Figure 4.10 STN representation of example 2

- 72 -

First, we solve the deterministic scheduling problem with the objective of minimizing makespan to satisfy the

nominal demand of products as: P1=600, P2=1400, P3=300, P4=1000. The original deterministic schedule is

solved with 7 event points and the schedule is shown in Figure 4.11, which has a minimum makespan of 4.45

hours.

Figure 4.11 Original schedule for example 2

To address the upcoming rush order uncertainty, we can start solving the parametric problem for rush order

soon after we get the original schedule. Using the maximum demand of the new order, 9 event points are

identified to be necessary for the reactive scheduling formulation. The uncertain event is described as shown

in Table 4.6. Then the multiparametric programming problem is solved with the critical regions illustrated in

Figure 4.12.

Table 4.6 Rush order uncertainty for example 2

 Value Range

1
rush

Pr (New order of P1) 1θ 1500 800P≤ ≤

2
rush

Pr (New order of P2) 2θ 21200 1600P≤ ≤
rushT (Order arrival time) 3θ 21 4θ≤ ≤

- 73 -

Figure 4.12 Critical region of example for rush order uncertainty

Having obtained the parametric solution, we can generate a reactive schedule as soon as the rush order arrives.

For example, if the demand of product P1 increases to 750(1 750θ =), and the demand of P2 increases to

1500 (2 1500θ =) at time t=1.5 hour (3 1.5θ =), the parametric solution for 1 2 3(, ,) (750,1500,1.5)θ θ θ = can

be found directly from the parametric result. Figure 4.13 illustrates the new schedule which has a makespan

of 4.74 hours.

Figure 4.13 Reactive schedule for rush order at t = 1.5 h

- 74 -

Soon after the reactive schedule is executed, a new parametric reactive scheduling problem is solved to deal

with future unexpected events. The machine breakdown uncertainty considered here is defined in Table 4.7.

The critical regions of the parametric solution are shown in Figure 4.14, whereas the detail parametric

objectives are shown in Table 4.8.

Table 4.7 Machine breakdown uncertainty for example 2
 Value Range

breakT (Breakdown time) 1θ 13 5θ≤ ≤
maintT (Maintenance time) 2θ 20.5 2.5θ≤ ≤

Table 4.8 Parametric objective for example 2 with machine breakdown
Critical Region Makespan H (hours)
1 4.74
2 1 23.74 0.062 0.062θ θ+ +
3 1 21.49 θ θ+ +
4 1 20.74 θ θ+ +
5 1 22.37 θ θ+ +
6 14.102 0.0656θ+
7,8 1 22.48 θ θ+ +

Figure 4.14 Critical region of example 2 with machine breakdown.

- 75 -

After we obtain the parametric solution, we can address the upcoming machine breakdown. For example, if

unit 2 breaks down at 3breakT = hour, and requires 1.5maintT = hour, it corresponds to 1 2(,) (3,1.5)θ θ = , so the

reactive schedule can be obtained from the parametric result and it is shown in Figure 4.15.

Figure 4.15 Reactive schedule for unit 2 breakdown at t = 3 h, maintenance time = 1.5 h

Following this dynamic way of addressing uncertainty, multiple disruptive uncertainties in the scheduling

process can be addressed. The only requirement is that upon the arrival of a new disruptive event, the

corresponding parametric solution that covers this uncertain event has been retrieved. In this example, the

first parametric problem is solved in 2300 CPU sec, and the second parametric problem is solved in 1442

CPU sec. In both cases we test 5000 points uniformly distributed in the uncertain space and the parametric

solution can cover all the given uncertain space (Figures 4.12, 4.14) except the infeasible operation areas.

Detail computational statistics are given in Table 4.9. Furthermore, during the process of solving the

parametric programming problem, the uncertain space that represents the near future can be solved at the

beginning so that the earlier disruptive events can be covered by the parametric solution.

Table 4.9 Computational statistics for the examples
 Example 1 Example 2
 Rush

order
Machine

breakdown
Rush
order

Machine
breakdown

Reactive scheduling model
Constraints 1360 1596 2278 2358
Continuous 576 673 1316 1370

Binaries 280 320 864 864
Number of testing points 5000 5000 5000 5000
Number of critical regions* 35 49 89 18

- 76 -

Average iterations per point 3 3 3 2
Average CPU time per point (sec)** 7 5 6 5

* Equal to the number of points used to apply the multiparametric programming, since some of these
critical regions might belong to a larger nonconvex critical region, the final critical region illustrated
in the chapter is post-processed result after union operation.

** The average time is for multiparametric programming solution process for a point

4.4 Summary

A new methodology for reactive scheduling is proposed in this chapter. Different to any existing method, this

chapter provides a direct mapping approach to generate the reactive schedule with the parametric solution. It

greatly improves the efficiency of reactive scheduling because the reactive schedule is obtained by checking

from a set of parametric solutions which is solved ahead of time but not solve a rescheduling problem after

the uncertainty occurs. The proposed methodology is designed to address single disruptive event. However,

consecutive uncertainties can be addressed through the repetitive application of the method. It is worthwhile

to note here that the number of critical regions of multiparametric MILP problem increases with the size of

the uncertain space (number of the uncertain parameters), so complete coverage of the uncertain space needs

considerable computational effort. However, the parametric solution generated using the proposed method

provides a way to derive the possible reactive decision with existing computational ability before the

uncertain event, which make it possible to save time in making reactive decision. Once the realized

uncertainty is not covered by the current solution, the reactive schedule can be directly solved through the

developed reactive scheduling formulation. Further improvements on the proposed method lie on developing

parallel algorithm to solve the multiparametric programming problem to further save the computation time.

- 77 -

Chapter 5

Integration of Planning and Scheduling

Abstract: In this chapter, augmented Lagrangian method is applied to solve the full-space integration

problem which takes a block angular structure. To resolve the non-separability issue in the augmented

Lagrangian relaxation, we study the traditional method which approximates the cross-product term through

linearization and also propose a new decomposition strategy based on two-level optimization. The results

from case study show that the augmented Lagrangian method is effective in solving the large integration

problem and generating a feasible solution. Furthermore, the proposed decomposition strategy based on

two-level optimization can get better feasible solution than the traditional linearization method.

5.1 Introduction

Production planning and scheduling belong to different decision making levels in process operations, they

are also closely related since the result of planning problem is the production target of scheduling problem. In

process industry, the commonly used planning and scheduling decision making strategy generally follows a

hierarchical approach, in which the planning problem is solved first to define the production targets and the

scheduling problem is solved next to meet these targets. However, there exists a big disadvantage in this

traditional strategy since there is no interaction between the two decision levels, i.e., the planning decisions

generated might cause infeasible scheduling subproblems. At the planning level, the effects of changeovers

and daily inventories are neglected, which tends to produce optimistic estimates that can not be realized at the

scheduling level, i.e., a solution determined at the planning level does not necessarily lead to feasible

schedules. Moreover, the optimality of the planning solution cannot be ensured because the planning level

problem might not provide an accurate estimation of the production cost, which should be calculated from

detailed tasks determined by the scheduling problem.

- 78 -

Therefore, it is important and necessary to develop methodologies that can effectively integrate production

planning and scheduling. However, since production planning and scheduling are dealing with different time

scales, the major challenge for the integration lies in the large problem size of the resulted optimization model.

A direct way for addressing the integrated planning and scheduling problems is to formulate a single

simultaneous planning and scheduling model that spans the entire planning horizon of interest. However,

when typical planning horizons are considered, the size of this detailed model becomes intractable, because

of the potential exponential increase in the computation time. To overcome the above difficulty, most of the

work appeared in the literature aim at decreasing the problem scale through different types of problem

reduction methodologies and developing efficient solution strategies as summarized by (Grossmann et al.,

2002), (Maravelias & Sung, 2008). Generally, the existing work in the area of planning and scheduling

integration can be summarized as follows.

The first type of methods is based on decomposition in a hierarchical way through iterative solution

procedure. Through a hierarchical decomposition of the integration problem, detailed scheduling constraints

are not incorporated into the upper level aggregate planning model, on the other hand, information is passed

from the aggregate planning problem to a set of detailed scheduling problems and these scheduling problems

are separated based on the temporal decomposition. Thus, the problems that need to be solved include a

relative simple planning problem and a series of scheduling subproblems. To ensure the feasibility and

optimality of the solution, it is further necessary to develop effective algorithms to improve the solution using

additional cuts in the planning level within an iterative solution framework (Papageorgiou & Pantelides,

1996); (Bassett, Pekny et al., 1996); (Munawar & Gudi, 2005); (Erdirik-Dogan & Grossmann, 2006). The

second type of method, which is also called rolling horizon approach, considers a relative rough model for the

far future planning periods in the integrated planning and scheduling model, i.e., detailed scheduling models

are only used for a few early periods and aggregate models are used for later periods. The production targets

for the early periods are directly implemented, while the production targets for the later periods are updated

along with the rolling horizon. Applications of this kind of strategy can be found in (Dimitriadis et al., 1997);

(Sand et al., 2000); (Wu & Ierapetritou, 2007); (Verderame & Floudas, 2008). Thirdly, for the cases where

there is no plant and market variability, campaign mode can be applied to generate an easy to implement and

profitable process operations plan. In a periodic scheduling framework, the planning and scheduling

- 79 -

integration problem is replaced by establishing an operation schedule and executing it repeatedly (Zhu &

Majozi, 2001); (Castro et al., 2003); (Wu & Ierapetritou, 2004). Other than using the detailed scheduling

model in the integrated planning, surrogate methods aim at deriving the scheduling feasibility and production

cost function first and then incorporating them into the integrated problem. This avoids the disadvantage of

large scale and complex model which directly incorporate the detailed scheduling model into aggregating

planning model as shown in (Sung & Maravelias, 2007).

Except the different methods for the integrated planning and scheduling summarized above, another

approach is based on the study of the special structure of the mathematical programming model for the

integration problem and aims at developing efficient decomposition techniques to solve the optimization

problem directly. Lagrangian relaxation is an approach that is often applied to models with a block angular

structure. In such models, distinct blocks of variables and constraints can be identified and they are linked

through a few “linking” constraints and variables. To our knowledge, Lagrangian relaxation has been widely

applied onto planning and scheduling problems for different applications including unit commitment in

power industry (Padhy, 2004), midterm production planning (Gupta & Maranas, 1999), and combined

transportation and scheduling (Equi et al., 1997), etc. However, the major drawback of Lagrangian relaxation

method is that there is duality gap between the solution of the Lagrangian dual problem and the solution of

original problem, and often the feasibility of the solution needs to be recovered through heuristic steps. So it

is often only used as the bounding step in the branch and bound framework. The disadvantage of Lagrangian

relaxation can be avoided by augmented Lagrangian relaxation (ALR) method, which has been used in

several applications in areas such as power generation scheduling (Carpentier et al., 1996), multidisciplinary

design (Tosserams et al., 2008), etc. One drawback of ALR method is the non-separability of the relaxed

problem, which has also received wide attention in the literature. In this chapter, we propose to apply the

ALR method on the planning and scheduling integration problem which takes a block angular model

structure, and also propose a new decomposition strategy to address the non-separability issue in the ALR

solution procedure, which can be used to decompose the relaxed problem exactly without any approximation

technique as presented in the literature.

The content of this chapter is organized as follows. The problem formulation of the integrated planning

and scheduling problem is first presented in section 5.2. The general augmented Lagrangian solution method

- 80 -

is presented in section 5.3. Detail reformulation and decomposition strategies for the planning and scheduling

integration problem are presented in section 5.4. The proposed method is studied in section 5.5 through a case

study and the chapter concludes in section 5.6.

5.2 Problem structure

Production planning model is used to predict production targets and material flow over several months (up to

one year), it is generally takes a simplified representation of the production and formulated as linear problem.

Scheduling models on the other hand are more detailed assuming that key decisions (production targets) have

been made. To integrate these two different decision-making problems, the simplest way is to formulate a full

space optimization model, where in every period of the planning horizon, the scheduling constraints are

incorporated into the model, while keeping the inventory connecting constraints between the planning

decision and scheduling decisions. In this work, we formulate the production planning and scheduling

integration problem as follows.

min ()
P P

t t t t
s s s s i ijn i ijn

t s S t s S t i j n

h Inv u U FixCost w VarCost b
∈ ∈

+ + +∑∑ ∑∑ ∑∑∑∑

(5.1a)

s.t. 1t t t t
s s s sInv Inv P D−= + − Ps S∀ ∈ , t∀ (5.1b)

1t t t t
s s s sU U Dem D−= + − Ps S∀ ∈ , t∀ (5.1c)

-
,

t t t
s n N s sst stin P= − = Ps S∀ ∈ , t∀ (5.1d)

1t t
s sstin Inv −= Ps S∀ ∈ , t∀ (5.1e)

, , 1
j

t
i j n

i I

wv
∈

≤∑ j J∀ ∈ , n N∀ ∈ , t∀ (5.1f)

min max
, , , , , , , ,

t t t
i j i j n i j n i j i j nv wv b v wv≤ ≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ , t∀ (5.1g)

, , , , , , , , , ,
t t t t

i j n i j n i j i j n i j i j nTf Ts wv bα β= + +

 i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ , t∀ (5.1h)

, , 1 , , , ,(1)t t t
i j n i j n i j nTs Tf H wv+ ≥ − − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ , t∀ (5.1i)

, , 1 ', , ', ,(1)t t t
i j n i j n i j nTs Tf H wv+ ≥ − − , ' ji i I∀ ∈ , j J∀ ∈ , n N∀ ∈ , t∀ (5.1j)

, , 1 ', ', ', ',(1)t t t
i j n i j n i j nTs Tf H wv+ ≥ − −

, ' , 'ji i I i i∀ ∈ ≠ , 'j j J∀ ∈ , n N∀ ∈ , t∀ (5.1k)

- 81 -

, , 1 , ,
t t
i j n i j nTs Ts+ ≥ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ , t∀ (5.1l)

, , 1 , ,
t t

i j n i j nTf Tf+ ≥ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ , t∀ (5.1m)

, ,
t
i j nTs H≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ , t∀ (5.1n)

, ,
t

i j nTf H≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ , t∀ (5.1o)

, , 1 , , , , , , 1
s i s i

t t C t P t
s n s n s i i j n s i i j n

i I j J i I j J

st st b bρ ρ− −
∈ ∈ ∈ ∈

= − +∑ ∑ ∑ ∑ s S∀ ∈ , n N∀ ∈ , t∀ (5.1p)

, 1 , , , 1
s i

t t C t
s n s s i i j n

i I j J

st stin bρ= =
∈ ∈

= −∑ ∑ s S∀ ∈ , t∀ (5.1q)

max
,

t
s n sst st≤ s S∀ ∈ , n N∀ ∈ (5.1r)

In the above model, the objective function (5.1a) is the total cost composed by three parts: inventory cost,

backorder cost and production cost, where the inventory cost and backorder cost are calculated based on the

inventory and backorder amount and the given unit cost parameter (sh , su); the production cost of different

planning periods is composed by a fixed part which represents the basic cost of a task, and a dynamic part

which is proportional to the amount of material processed (batch size).

The constraints of the above integration model can be divided into planning level and scheduling level.

Equations (5.1b) and (5.1c) represent the planning level constraints, among them, equations (5.1b) represent

the inventory balance and equations (5.1c) represent the backorder balance. Among the constraints of the

scheduling level, equations (5.1d) express the requirement that the planning solutions t
sP generated from

upper planning level is the production targets for different planning periods. Equations (5.1e) represent the

connection constraints for the initial product inventory for different planning periods. Equations (5.1f)-(5.1r)

represent scheduling constraints which can be referred from Chapter 2. If we denote the scheduling decision

variables (, , , , , , , , ,, , , , ,t t t t t t
i j n i j n i j n i j n s n swv b Tf Ts st stin) for planning period t using the vector ty , then the structure

of the above integrated planning and scheduling model can be illustrated as shown in Figure 5.1.

- 82 -

Figure 5.1 Constraint matrix structure of the integration model

In the above constraint matrix, the part on the top of the matrix corresponds to the planning constraints, and

the lower part is composed by scheduling constraints for different planning periods. It can be observed that

the integration model takes a block angular structure and the blocks are linked through planning decision

variables. As stated in the introduction section, Lagrangian relaxation is a typical approach that is often

applied to this type of models with a block angular structure. However, to avoid the drawback of classical

Lagrangian relaxation, augmented Lagrangian method is applied in this work.

5.3 Augmented Lagrangian Optimization algorithm

Observing the special constraint structure of the integrated planning and scheduling problem as shown in

Figure 5.1, we can reformulate the problem into a decomposable structure through the introduction of

auxiliary duplicate variables t
sPP for the production target t

sP , and t
sII for the inventory variables t

sInv ,

respectively. The following reformulated problem which is equivalent to the original problem (5.1) can be

derived:

min ()

P P

t t t t
s s s s i ijn i ijn

t s S t s S t i j n
h Inv u U FixCost w VarCost b

∈ ∈

+ + +∑∑ ∑∑ ∑∑∑∑

(5.2a)

1. . t t t t
s s s ss t Inv Inv P D−= + − Ps S∀ ∈ , t∀ (5.2b)

- 83 -

1t t t t
s s s sU U Dem D−= + − Ps S∀ ∈ , t∀ (5.2c)

-
t t

s sP PP= Ps S∀ ∈ , t∀ (5.2d)

t t
s sInv II= Ps S∀ ∈ , t∀ (5.2e)

-
,

t t t
s n N s sst stin PP= − = Ps S∀ ∈ , t∀ (5.2f)

1t t
s sstin II −= s S∀ ∈ , t∀ (5.2g)

ty Y∈ t∀ (5.2h)

In the above model, (5.2d) and (5.2e) are the coupling constraints which link the different scheduling and

planning constraints block. In the problem reformulation (5.2) we have made a compact representation of the

scheduling constraints (5.1f)-(5.1r) as (5.2h) for the sake of simplicity. Thus the constraint matrix structure of

the above problem is shown as Figure 5.2.

Figure 5.2 Constraint matrix structure of the reformulated model

With the above reformulation, the resulted model (5.2) is decomposed into a planning subproblem and a

number of scheduling subproblems once the coupling constraints (5.2d) and (5.2e) are relaxed. In this work,

the augmented Lagrangian algorithm is applied to solve the integration planning and scheduling problem.

- 84 -

Specifically, equality constraints (5.2d) and (5.2e) are relaxed and the following augmented Lagrangian

relaxation problem is obtained:

(, ,)f λ μ σ =

2 2

min ()

 () () {() () }
P P

P P P

t t t t
s s s s i ijn i ijn

t s S t s S t i j n

t t t t t t t t t t
s s s s s s s s s s

t s S t s S t s S

h Inv u U FixCost w VarCost b

P PP Inv II P PP Inv IIλ μ σ
∈ ∈

∈ ∈ ∈

+ + +

+ − + − + − + −

∑∑ ∑∑ ∑∑∑∑

∑∑ ∑∑ ∑∑

(5.3a)

1. . t t t t
s s s ss t Inv Inv P D−= + − Ps S∀ ∈ , t∀ (5.3b)

1t t t t
s s s sU U Dem D−= + − Ps S∀ ∈ , t∀ (5.3c)

,
t t t
s n N s sst stin PP= − = Ps S∀ ∈ , t∀ (5.3d)

1t t
s sstin II −= Ps S∀ ∈ , t∀ (5.3e)

ty Y∈ t∀ (5.3f)

Thus the solution of the original planning and scheduling integration problem (5.1) is transformed into the

solution of the following augmented Lagrangian dual problem
, ,

max (, ,)f
λ μ σ

λ μ σ . In particular, we propose the

following algorithm for the planning and scheduling integration problem:

Step 1. Initialization. Set bounds for multipliers: min max[,]λ λ , min max[,]μ μ . Choose initial multiplier and

penalty parameter value 0t
sλ = , 0t

sμ = , 1σ = , set 1k = , 0ε > (e.g., 0.1), 1α > (e.g., 2.2),

(0,1)β ∈ (e.g., 0.4);

Step 2. Compute an approximate solution of the augmented Lagrangian relaxation problem through

decomposition technique as described in detail in the next section, get solution , , ,Inv II P PP and

objective value (, ,)f λ μ σ . Define consistency function value vector [] Tg Inv II P PP= − − , if

|| ||g ε< , then stop, (, ,)λ μ σ is a solution; otherwise, go to step 3.

Step 3. Update multipliers:

min maxmin{max{ , ()}, }t t t t
s s s sInv IIλ λ λ σ λ= + − , min maxmin{max{ , ()}, }t t t t

s s s sP PPμ μ μ σ μ= + − .

If () (1)|| || || ||k kg gβ −≥ , set σ ασ= ; otherwise keep σ unchanged. Set 1k k= + , go to step 2.

- 85 -

Although the convergence properties of the ALR algorithm proved by (Andreani et al., 2008) (Appendix B)

are based on the assumption of the continuous first derivative of the objective function ()f x and upper level

constraints (), ()h x g x , it is worth to point out that these properties are remained for the mixed integer linear

programming problem studied in this paper. The reason is that the mixed integer problem is always able to be

transformed into its equivalent continuous counterpart because binary variable , , {0,1}t
i j nwv ∈ can be

replaced by continuous relaxation , ,0 1t
i j nwv≤ ≤ and adding complementarity

constraints , , , ,(1) 0t t
i j n i j nwv wv− = , so when the above algorithm is applied onto the mixed integer

programming problem (5.2), similar convergence properties can still be ensured.

Note that in the above solution algorithm, it is necessary to solve a series of augmented Lagrangian

relaxation problems (5.3). However, the objective function of the relaxation problem (5.3) contains cross

product terms t t
s sP PP and t t

s sInv I which are non-separable, thus it is still hard to solve the relaxation problem

unless it is decomposed because it is almost as hard as the original problem (5.1). So, in next subsection

several decomposition strategies are presented to decompose the relaxation problem and reduce the

computational complexity.

5.4 Decomposition strategy

As presented above, in the augmented Lagrangian solution framework, there is an upper level which aims at

finding the optimal Lagrangian multipliers and penalty parameters to solve the augmented Lagrangian dual

problem. In every iteration of the method of multipliers, an augmented Lagrangian relaxation problem (5.3)

needs to be solved with fixed Lagrangian multipliers ,λ μ and penalty parameter σ . The relaxation problem

is solved in a lower level using different decomposition strategies. There are several techniques in the

literature that resolve the issue of separability in the augmented Lagrangian solution method: the Diagonal

Quadratic Approximation (DQA) method (Ruszczynski, 1995); the Block Coordinate Decent (BCD) method

which is also known as the “nonlinear Gauss-Seidel” method (Bertsekas, 2003); the Alternating Direction

method (Bertsekas & Tsitsiklis, 1989), which is an extreme case of the BCD method by taking only a single

- 86 -

BCD iteration; the separable augmented Lagrangian algorithm (Hamdi et al., 1997), etc. All of those methods

generate an approximate decomposable version of the original relaxation problem then solve it through

decomposition. In this subsection, we present the Diagonal Quadratic Approximation method for comparison

and also propose a new method based on two-level optimization of the relaxation problem.

5.4.1 Diagonal Quadratic Approximation

Diagonal Quadratic Approximation method addresses the nonseparable issue through linearizing the cross

product quadratic term (t t
s sP PP , t t

s sInv II) around the tentative solution , , ,t t t t
s s s sP PP Inv II and get separable

approximation (also called) as following

2 2 2 2() () () ()t t t t t t t t
s s s s s s s sP PP P PP PP P P PP− ≈ − + − − −

Thus with above substitution for the nonseparable term, the original relaxed problem (5.3) can be rewritten as

the following decomposable form

(, ,) t
P S

t

f f fλ μ σ = +∑

where Pf represents optimal objective of the following planning subproblem (5.4)

, , ,

2 2

2 2

min

 {() () }

 {() () }

t t
P s s s sP Inv D U t s t s

t t t t t t
s s s s s s

s t s t

t t t t t t
s s s s s s

s t s t

f h Inv u U

P P PP P PP

Inv Inv II Inv II

λ σ

μ σ

= +

+ + − − −

+ + − − −

∑∑ ∑∑

∑∑ ∑∑

∑∑ ∑∑

 (5.4a)

1. . t t t t
s s s ss t Inv Inv P D−= + − Ps S∀ ∈ , t∀ (5.4b)

1t t t t
s s s sU U Dem D−= + − Ps S∀ ∈ , t∀ (5.4c)

and t

Sf represent optimal objectives of the following scheduling subproblems (5.5)

2

, ,

2

min () ()

 ()

t t t

t t t t t t t
S i ijn i ijn s s s s

PP II y i j n s s

t t t t
s s s s

s s

f FixCost w VarCost b PP PP P

II II Inv

λ σ

μ σ

= + − + −

− + −

∑∑∑ ∑ ∑

∑ ∑

 (5.5a)

,. . t t t
s n N s ss t st stin PP= − = Ps S∀ ∈ (5.5b)

- 87 -

1t t
s sstin II −= Ps S∀ ∈ (5.5c)

ty Y∈ (5.5d)

In the DQA solution method, subproblem (5.4) and subproblems (5.5) are solved alternately with updated

value of the tentative solution until a given iteration limit is reached or the relative change in the objective

function value of the relaxation problem for two consecutive inner loop iterations is smaller than some

user-defined termination tolerance. Sometimes, considering the fact that high accuracy of the subproblem

solutions is not necessary in the early iterations when the Lagrangian multipliers are far from its optimal

value and the computational effort is wasted, it is more desirable to quickly update the Lagrangian multiplier

to move toward its optimal value. This can be achieved by limiting the total number of inner loop iterations in

DQA by treating it as user-specified parameter to reduce the computational cost for solving the inner loop

(Li et al., 2008).

Among the above subproblems, the planning subproblem is a quadratic programming problem, whereas

the scheduling subproblems are mixed integer quadratic programming problems, all of them can be solved

through standard QP/MIQP solvers such as CPLEX 10. Also notice that the feasibility of the subproblems

can be ensured since the auxiliary variables are not constrained in the subproblem. Furthermore, an important

fact regarding those subproblems is that they can be solved in parallel, thus the solution efficiency can be

greatly improved.

5.4.2 Two-Level optimization

Different from those methods that use an approximation to make the objective separable, we propose a new

method to address the non-separability issue in the augmented Lagrangian method. First, the augmented

relaxation problem (5.3) can be rewritten to the following equivalent form:

(, ,)f λ μ σ =

- 88 -

, ,

2

2

, , ,

,

min ()

 () ()

 () ()min

s.t.

P P

P P
P P

t t
i ijn i ijny II PP t i j n

t t t
s s s

s S t s S t

t t t
t t s s s

s s s s s S t s S tP Inv D U t s S t

t t
s s

t t
s

s S

s n

s

FixCost w VarCost b

PP PP

II IIh Inv u U

P P

Inv Inv

st

λ σ

μ σ
∈ ∈

∈ ∈
∈ ∈

=

+

+ − + −

+ − + −+ +

∑∑∑∑

∑∑ ∑∑

∑∑ ∑∑∑∑ ∑∑

1

 ,

 ,

t t t
N s s P

t t
s s P

t

stin PP s S t

stin II s S t

y Y t

−

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪− = ∀ ∈ ∀
⎪ ⎪

= ∀ ∈ ∀⎪ ⎪
⎪ ⎪∈ ∀⎩ ⎭

 (5.6a)

1s.t. t t t t
s s s sInv Inv P D−= + − Ps S∀ ∈ , t∀ (5.6b)

1t t t t
s s s sU U Dem D−= + − Ps S∀ ∈ , t∀ (5.6c)

Problem (6) can be simplified as follows:

(, ,)f λ μ σ =

, , ,
min (,)

P P

t t t
s s s sI P D U t s S t s S t

h Inv u U q P Inv
∈ ∈

+ +∑∑ ∑∑ ∑ (5.7a)

1s.t. t t t t
s s s sInv Inv P D−= + − Ps S∀ ∈ , t∀ (5.7b)

1t t t t
s s s sU U Dem D−= + − Ps S∀ ∈ , t∀ (5.7c)

where (,)tq P Inv is further defined by the following optimization subproblems:

(,)t P Invq =

, ,

2 2

min ()

 () () {() () }
P P P

t

t t
i ijn i ijny II PP i j n

t t t t t t
s s s s s s

s

t t t
s s

S
s

S S s
s

s
P Inv P Inv

FixCost w VarCost b

PP II PP IIλ μ σ
∈ ∈ ∈

+

+ − + − + − + −

∑∑∑

∑ ∑ ∑
 (5.8a)

,s.t. t t t
s n N s s Pst stin PP s S= − = ∀ ∈ (5.8b)

1 t t
s s Pstin II s S−= ∀ ∈ (5.8c)

ty Y∈ (5.8d)

With the above reformulation strategy, the solution of the relaxation problem (5.3) can be transformed into

the solution of nonlinear problem (5.7) which takes an implicit objective function and the evaluation of the

objective function needs the solution of a series of subproblems (5.8).

The difference between the DQA strategy and the proposed two-level strategy lies on the fact that the

DQA strategy actually solves an approximation version of the relaxation problem (5.3). However the later

- 89 -

strategy solves the exact problem (5.3) using a two-level optimization. In particular, the two-level

optimization strategy solves the augmented Lagrangian relaxation problem by further reformulating it into

two levels: in the first level, the relaxation problem is solved only with respect to the planning decision

variables through an iterative algorithm, whereas in every iteration, a set of scheduling subproblems needs to

be solved with fixed planning decision variables in the second level as shown in Figure 5.3. Notice that in the

two-level strategy, the relaxation problem and the scheduling subproblems are in different levels, and in the

DQA strategy, the planning subproblem and scheduling subproblem are solved in the same level but

alternately.

Figure 5.3 Illustration of the decomposition strategy: (left) DQA; (right) Two-level

Finally, it should be mentioned that in the DQA method, the solution generated by solving subproblem (5.4)

and (5.5) alternately is actually an approximate solution of the original relaxation problem (5.3). As

explained previously, the theory provided by (Andreani et al., 2008) provides support for this kind of

approximation method. Similarly, we can use this idea in the two-level optimization strategy as follows. It is

known that (,)tq P Inv is generally a nonsmooth function of ,P Inv because of the integrality restrictions.

Theoretically, nonsmooth optimization method should be used to ensure the optimality of the solution.

However, considering the difficulty of solving the nonsmooth problem (5.7) and due to the fact that an

optimal solution is not necessary to ensure the convergence of the algorithm, we propose to use a continuous

- 90 -

solver to solve problem (5.7) to get a solution which is feasible but not optimal. In the next section, we make

a comparative study on the two different decomposition strategies in the ALR solution framework.

5.5 Examples

The augmented Lagrangian algorithm and different decomposition strategies are studied in this section

through an example production problem. All the computations in this example are performed on a dual-core

system with 2.8GHz CPU and 1Gb RAM. In this example, two products P1 and P2 are produced through

three processing stages utilizing three materials (Kondili et al., 1993). The state-task-network (STN)

representation of this example is shown in Figure 5.4 and the problem data can be found from Chapter 3.

Reaction2

Separation

Reaction3Reaction1

Heating
Feed A Hot A

Product1

IntAB

IntBC

Feed B
Feed C

Product 2

Impure E 10%

90%

40%

60%

40%
60%

50%

50%

80%

20%

Figure 5.4 State-Task-Network (STN) representation of the motivation example

Considering the production planning and scheduling integration problem for the above production process,

we divide the planning horizon into a number of planning periods with equal time length. In every planning

period, an 8-hour scheduling problem is considered and 6 event points are used in the continuous time

scheduling model as shown in model (5.1). Note that this number of event points is determined ahead of time

with an objective of maximizing the production in the scheduling horizon of fixed 8-hour. Within such a time

horizon and event point scheme, the resulted scheduling model can be efficiently and quickly solved through

standard MILP solver such as CPLEX 10.

In the following, to study the augmented Lagrangian algorithm, we test six different cases of the

planning and scheduling integration problem. Those six cases take different number of planning periods from

5 to 90 and the detail demand data can be referred from Figure 5.5 (e.g., for the 5-period case, the demand

data are the first five data in the figure). Cost data for this problem can be found from Table 5.1.

- 91 -

Table 5.1 Cost data for the example
 Fixed cost Variable cost
Heating 150 1
Reaction1,2,3 100, 100, 100 0.5, 0.5, 0.5
Separation 150 1
 Inventory cost Backorder cost
P1, P2 10, 10 100, 100

Figure 5.5 Demand data for 90 periods

Before the application of the augmented Lagrangian algorithm on the problem, we study the direct solution of

the full space problem (5.1) using standard MILP solver CPLEX 10. The statistical data for the full space

integrated planning and scheduling model with six different cases of planning periods and the results of direct

solution method are shown in Table 5.2. It is observed that the problem is generally very difficult to be solved

to optimality as the number of period increases and it becomes intractable when the number of periods is

large (90 in this example).

Table 5.2 Model statistics and direct solution for full space model
Number of
periods

Binary
variables

Continuous
variables

Constraints Time Best solution Gap

5 600 2006 3847 3600* 6576.8 4.76%
10 1200 4001 7692 3600* 13357.6 14.04%
15 1800 5996 11537 7200* 18985.9 19.60%
30 3600 11981 23072 7200* 35217.5 17.49%
45 5400 17966 34607 10800* 53960.3 13.10%
90 10800 35921 69212 intractable - -

* Terminated because resource limit (time) is reached

- 92 -

The augmented Lagrangian method is then applied on this example and different decomposition strategies

presented in section 4 are compared. First, for the DQA based decomposition strategy, we studied two

different versions of the method and the results are shown in Table 5.3. The first version uses only one

iteration for the solution of the relaxation problem and the other version uses increasing iteration limit (equal

to the index of the outer iteration, noted as ‘k-iteration’ in the following) for the solution of the relaxation

problem. In the solution procedure, CPLEX 10 is used in GAMS platform to solve both the planning

subproblem (QP problem) and the scheduling subproblems (MIQP problems).

Table 5.3 Result of the DQA method
 With one iteration (max

inner 1k =) With two iterations (max
inner outerk k=)

T k time F λg+σ||g||2 ||g|| k time f λg+σ||g||2 ||g||
5 11 62 6925.2 -3.9 0.39 14 554 6775.3 104.8 0.81
10 15 135 13684.7 -0.6 0.58 14 899 13525.8 42.8 0.80
15 15 157 21113.8 72.9 0.80 20 2151 20000.9 83.4 0.72
30 33 657 39312.6 157.1 0.84 17 3427 36568.3 3.6 0.50
45 33 1023 59135.4 164.0 0.88 21 7338 55753.1 -71.1 0.60
90 34 2462 126894.2 44.5 0.93 25 24510 122122.1 -101.4 0.76

Then, the proposed two-level optimization strategy is applied for the solution of the augmented Lagrangian

problem. To address the implicit objective function (5.7a), we use the nonlinear programming solver

KNITRO (Waltz & Plantenga, 2006) in MATLAB platform to solve the inner optimization problem (5.6)

with the maximum iteration limit set as 50. Scheduling subproblems (MIQP) are solved using CPLEX 10 in

GAMS. Note that although problem (5.7) is generally nonsmooth and KNITRO is a solver for smooth

optimization problem, it is used here to obtain a feasible solution to the corresponding problem. We test the

same group of problems as with the DQA approach and the computation results are shown in Table 5.4.

Table 5.4 Result of the two-level method
T k time f λg+σ||g||2 ||g||
5 8 1245 6648.2 0.2 0.01
10 8 4983 13371.9 -79.9 0.71
15 9 6459 19535.1 -163.7 0.75
30 8 8443 36223.4 -1.2 0.03
45 9 12243 54977.4 36.9 0.42
90 9 37875 121274.4 -10.3 0.29

In all the computation results shown in Tables 5.3 and 5.4, column ‘T’ represents the number of planning

periods, column ’k’ represents the number of outer iterations in the augmented Lagrangian method, column

‘time’ represents the time used in seconds for the computation, column ‘f’ represents the final value of the

- 93 -

augmented Lagrangian function, column ‘λg+σ||g||2’ represents the value of the augmented and penalty term

in the augmented Lagrangian function, ‘||g||’ represents the norm of the consistency constraint function value

vector. Figure 5.6 presents the solution procedure of the augmented Lagrangian method for the 90-periods

problem.

0 5 10 15 20 25
0

500

1000

N
or

m
 o

f t
he

 C
ou

pl
in

g
C

on
st

ra
in

ts
 V

al
ue

Iteration

0 5 10 15 20 25
0

1

2
x 10

O
bj

ec
tiv

e
of

 th
e

R
el

ax
at

io
n

P
ro

bl
em

Objective
Norm

1 2 3 4 5 6 7 8 9
0

50

100

N
or

m
 o

f t
he

 C
ou

pl
in

g
C

on
st

ra
in

ts
 V

al
ue

Iteration

1 2 3 4 5 6 7 8 9
1

1.2

1.4
x 105

O
bj

ec
tiv

e
of

 th
e

R
el

ax
at

io
n

P
ro

bl
em

Objective
Norm

Figure 5.6. Solution procedure: (left) DQA with k-iteration; (right) Two-level optimization

From the above results, it can be observed that the augmented Lagrangian algorithm converges to a feasible

solution of the original problem since the norm value of the coupling constraints always converges to zero.

Note that this property is independent of the decomposition strategy used. To illustrate the feasibility of the

solution, we also plot the solution of the production data along with the scheduling feasibility boundary

which is generated through parametric programming technique (Li & Ierapetritou, 2007a) for the 90-periods

case in Figure 5.7. It is observed that the solution data points are all inside the feasibility boundary.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Production of P1

P
ro

du
ct

io
n

of
 P

2

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Production of P1

P
ro

du
ct

io
n

of
 P

2

Figure 5.7 Feasibility of solution: (left) DQA with k-iteration; (right) two-level optimization

- 94 -

Although both decomposition strategies ensure the convergence of the solution, it is worth noticing that the

efficiency and quality of the solution as analyzed in the following. First, for the DQA strategy, it is observed

from the two different versions in Table 5.3 that if more iterations are used for the solution of the relaxation

problem, generally less outer iterations will be required. However the increased computational complexity

does not reflect obvious quality improvement of the final solution.

Second, for the two-level decomposition method, it can be observed that it takes relative small number

of outer iterations and can get feasible solutions which are better than the results of DQA method. On the

other hand, the computation time needed for the two-level optimization method is more than the time needed

for the DQA approach with fixed one iteration, but comparable to the DQA with increasing iteration limits.

However, the quality of the solution for two-level method is better than all the DQA cases, i.e., although more

or comparable computation time is required, better solution is achieved by using the two-level optimization

strategy.

The results for this problem are shown in Figures 5.8-5.10. In particular Figure 5.8 illustrates the

production of products P1 and P2. As shown from this figure the production in the solution produced by DQA

method is more compared with the solution from the two-level approach. Figure 5.9 illustrate the inventory of

products P1 and P2. As shown by the figure the inventory amount in the solution of the DQA method is more

than that of the two-level optimization method, leading to higher inventory cost. Finally as shown from

Figure 5.10 that illustrates the backorder amount, the backorder amount in the solution of two-level case is

almost zero for all periods, but the solution of DQA takes a relative large backorder in the 7th period. Thus it

can be observed from these results that the quality of the DQA solution is inferior compared to the solution of

the two-level strategy.

- 95 -

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

P
ro

du
ct

io
n

of
 P

1

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

Period

P
ro

du
ct

io
n

of
 P

2

Two-level
DQA (k-iteration)

Figure 5.8 Production profile of the solution

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

In
ve

nt
or

y
of

 P
1

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

Period

In
ve

nt
or

y
of

 P
2

DQA (k-iteration)
Two-level

Figure 5.9 Inventory profile of the solution

- 96 -

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

B
ac

k
O

rd
er

 o
f P

1

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

Period

B
ac

k
O

rd
er

 o
f P

2

Two-level
DQA (k-iteration)

Figure 5.10 Backorder profile of the solution

5.6 Summaries

To address the problem of integrated production planning and scheduling, a decomposition algorithm based

on augmented Lagrangian is proposed in this chapter. Based on the special structure of the optimization

model, auxiliary variables and coupling constraints for the linking variables are first introduced, the coupling

constraints are then relaxed and the resulted augmented Lagrangian relaxation problem is solved through

decomposition technique. We also propose a new decomposition strategy based on two-level optimization of

the relaxation problem and compare its performance with traditional approximation based decomposition

strategy. The results from a case study show that the augmented Lagrangian method can effectively generate

feasible solution for the original problem, and the new decomposition strategy can generate better feasible

solution than the traditional approximation based method with the trade-off of using more or comparable

computation efforts. Furthermore, it is also worth noticing that the computation time in the method is mostly

spent on the solution of scheduling subproblems. By realizing that the subproblems can be further solved in

parallel, we can reduce further the computation time through parallel computing.

- 97 -

The main advantages of the augmented Lagrangian method are: (a) the convergence of the algorithm is

ensured without the need to solve the relaxation problem to optimality; (b) it can be easily parallelized; and (c)

it is able to avoid the duality gap. Furthermore, it can be also used within a bounding procedure since a

feasible solution is always ensured. In summary, the augmented Lagrangian method is appropriate for the

solution of the planning and scheduling integration problem. Future work will include improving the solution

of the relaxation problem to find the global optimal solution of the original problem.

- 98 -

Nomenclature

Planning part

t planning periods (1,...,T)
t
sInv inventory level of state s at the end of planning period t

t
sP production target of state s in planning period t

t
sD delivery of product s in planning period t

t
sU backorder of product s in planning period t

t
sDem demand of product s in planning period t

sh inventory unit cost of state s

su backorder unit cost of product s

Scheduling part

i I∈ task index and sets

sI tasks which produce or consume state s

jI tasks which can be performed in unit j

j J∈ unit index and sets

iJ units which are suitable for performing task i

n N∈ event points representing the beginning of a task

s S∈ state index and sets

PS index set for products

, ,i j nwv binary, whether or not task i in unit j start at event point n

,s nst continuous, amount of state s at event point n

,
P
s iρ , ,

C
s iρ proportion of state s produced, consumed by task i , respectively

, ,i j nb continuous, amount of material undertaking task i in unit j at event point n

max
sst available maximum storage capacity for state s

t
sstin initial inventory for state s in planning period t

min
,i jv , max

,i jv minimum amount, maximum capacity of unit j when processing task i

, ,i j nTf continuous, time at which task i finishes in unit j while it starts at event point n

, ,i j nTs continuous, time at which task i starts in unit j at event point n

,i jα , ,i jβ constant, variable term of processing time of task i in unit j respectively

H scheduling time horizon

- 99 -

Chapter 6

Rolling Horizon Optimization

Abstract: Rolling horizon method has been proposed to address the integrated production planning and

scheduling optimization problem. Since the method can generally result in small-scale optimization model

and fast solution, it has received quite a few applications in realistic industrial planning and scheduling

problems. In this chapter, we first pointed out that the incorporation of valid production capacity information

into the planning model can improve the solution quality. Then we proposed a novel method to derive the

production capacity model representing the scheduling problem based on parametric programming technique.

A heuristic process network decomposition strategy is further applied to reduce the computational effort

needed for complex realistic process networks. Several case studies illustrate the efficiency of the proposed

methodology in improving the solution quality of rolling horizon method for integrated planning and

scheduling optimization.

6.1 Introduction

Production planning and scheduling are two important decision making levels in process operations.

Traditionally, planning and scheduling have been performed separately (Kallrath, 2002). The planning

problem is typically solved to predict production targets and material flow over a mid-term horizon (e.g.

several months) to satisfy the customer demand. The scheduling problem is usually addressed after the

production planning problem has been solved. The data generated by the production planning problem are

input data to the scheduling problem. The purpose of the scheduling problem is to transform the production

plan into a feasible schedule of all the production operations within a short-term time horizon (e.g., several

days).

However, treating the planning and scheduling activities separately can lead to lower efficiency of the

operations performed in the production plant. The aggregate production targets supplied by the planning

- 100 -

model often overestimate the production capacity of the plant and may result in infeasible scheduling

operations because they are made without consideration of short-term operational restrictions. Given the

importance of providing realistic production targets, a production planning model should take into account

not only the customer demands but also the production capacity of the plant. To address this issue, the

integration of planning and scheduling has been proposed by the process systems engineering

community(Maravelias & Sung, 2008). The integration aims to address the inaccuracies within the planning

model by allowing for the two-way interaction between planning and scheduling models. Ideally, an

integrated model should include not only the medium-term capacity utilization and production level

decisions but also the short-term production sequence and unit assignment decisions. One simple approach is

to use a scheduling model over the entire planning time horizon, which takes into account the production

capacity of the plant. However, this approach results in problems of unrealistic size, which is often

computationally intractable.

To ensure that the integration can be addressed efficiently, planning models are often formulated

through various types of aggregation or relaxation schemes, and the integration problem is often solved

through decomposition algorithms (Maravelias & Sung, 2008), (Grossmann et al., 2002). In the literature,

there are a number of decomposition based methods like the hierarchical decomposition (Bassett, Dave et al.,

1996); (Munawar & Gudi, 2005); (Erdirik-Dogan & Grossmann, 2006)), periodic scheduling (Schilling &

Pantelides, 1999); (Zhu & Majozi, 2001); (Castro et al., 2003); (Wu & Ierapetritou, 2004), mathematical

programming based decomposition (Li & Ierapetritou, 2009), as well as methods that are based on the rolling

horizon idea which is widely studied (Kreipl & Pinedo, 2004) because it can significantly reduce the

computational requirements. The method is based on iteratively solving the integrated problem in a rolling

time horizon mode. In every iteration, the detailed scheduling requirements are imposed only for the current

or several recent planning periods. In the next iteration, the new planning decision is updated with all the

previous executed decisions fixed. This mode is repeated until all the planning periods are considered. The

above idea is supported by the fact that planning decisions for far future could not be accurate enough due to

the unpredicted future uncertainty. So it is reasonable to consider a relative rough model for far future

planning periods in the aggregate planning model. Thus the rolling horizon approach results in reduced size

models and lower computation cost.

- 101 -

Rolling horizon method has received a lot of studies in the literature. (Rodrigues et al., 1996) use a

rolling horizon (rolling out a predefined schedule) approach to take account of due-date changes and

equipment unavailability to resolve infeasibilities. (Dimitriadis et al., 1997) presented an RTN-based rolling

horizon algorithm for medium term scheduling of multipurpose plants. (Sand et al., 2000) use a rolling

horizon approach, in combination with a Lagrangian relaxation algorithm, for the solution of a two-level

hierarchical planning and scheduling problem. (Wu & Ierapetritou, 2007) decompose the planning time

horizon into three stages with various durations. The scheduling problem is solved after the solution of

planning model to ensure a feasible production schedule for the current period. (Sand & Engell, 2004) use a

rolling horizon, two-stage stochastic programming approach to schedule an expandable polystyrene plant

that is subject to uncertainty in processing times, yields, capacities and demands. (Verderame & Floudas,

2008) solve the integration problem utilizing the medium-term scheduling model for large-scale batch plants

and a forward rolling horizon approach. Rolling horizon method has also been applied to address the long

term and medium term scheduling problem (Lin et al., 2002), (Janak et al., 2006), (Shaik et al., 2007), (Shaik

et al., 2009). For those scheduling problems, a rolling-horizon based decomposition scheme is used and

usually two sub-problems are solved. At the upper-level, a variant of the model is used to find the optimal

number of products, and the length of the time horizon to be considered for solving the short-term scheduling

problem at the lower level. At the lower level, short-term scheduling of continuous processes using

unit-specific event-based continuous-time representation are applied.

Although rolling horizon framework has received a lot of attention in the literature, a major drawback of

most existing methods is that they often rely on the simplistic or rather poor representation of the scheduling

problem within the aggregate part. Within such a modeling framework, rolling horizon method is generally

efficient in the computational manner. However, the method only ensures the feasibility of the final solution.

As what we will show in this chapter, production capacity information representing the scheduling problem

can have great effect on the final solution’s quality. In the literature, (Sung & Maravelias, 2007) have

proposed to derive the feasible production regions for scheduling problem through a computational geometry

method, and then incorporate it into the rolling horizon planning model. In this work, we are proposing a new

method to derive the production capacity constraints based on short-term scheduling model through

- 102 -

parametric programming, which can be used in the rolling horizon framework to greatly improve the final

solution’s quality.

The content of this chapter is organized as follows. The rolling horizon solution framework and model

are presented in section 6.2, which is further studied by a motivation example illustrating the necessity of

applying production capacity information to improve the solution quality. In section 6.3, we present a

parametric programming based method which is able to generate the accurate boundary of the production

capacity region of scheduling problem, and also a heuristic process network decomposition strategy to reduce

the computation complexity. In section 6.4, we illustrated the application of the proposed method on several

complex problems. The chapter concludes in section 6.5 with a summary of the presented work.

6.2 Rolling horizon framework

Rolling horizon methods solve the planning and scheduling integration problem within a sequence of

iterations, each of which models only part of the planning horizon in detail, while the rest of the horizon is

represented in an aggregate manner. The rolling horizon solution framework involves successively solving

each scheduling sub-horizon and carrying over any unsatisfied demand to the following sub-horizon. In

principle, this approach produces feasible planning and scheduling solutions with a significant reduction of

the computational requirements.

Generally, discrete time representation is used for the planning time domain. Consider the planning and

scheduling integration problem over a time horizon H. In order to integrate both planning and scheduling into

the optimization model, H is divided into a number of planning periods, t = 1…T. The length of the planning

horizon is typically in the order of few months. In the rolling horizon framework, both uniform and

non-uniform planning periods of fixed or varying length can be applied. For example, in production planning,

it is often required to determine weekly production targets for the first 2-4 weeks, while monthly production

targets are sufficient for subsequent periods. Hence, we can consider the non-uniform planning periods

ranging from weeks to months.

To describe the scheduling model, discrete and continuous models can both be applied. In a discrete

time representation (which assumes that an event can occur only at the boundaries of each time interval),

every planning period in the time horizon is divided into a number of predefined scheduling periods, k =

- 103 -

1…K. The length of a scheduling period is typically in the order of hours. In the continuous time

representation, an event can occur at any instant within the whole planning horizon. This makes the model

more flexible and decreases the total number of variables.

In the following paragraphs, we present a general planning model and a continuous time representation

based scheduling model, which forms a basis for the rolling horizon framework studied in this chapter. It

should be pointed out however that for long-term or medium-term scheduling problems, similar formulation

idea can be applied whereas a planning problem is not involved.

Planning model:

min t t t
s s s s s s

t s s s
TotalCost h I u U v P⎛ ⎞= + +⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ (6.1a)

1. . t t t t
s s s ss t I I P D−= + − Ps S∀ ∈ , t∀ (6.1b)

1t t t t
s s s sU U Dem D−= + − Ps S∀ ∈ , t∀ (6.1c)

t t
s sP P= pret T∀ ∈ (6.1d)

() 0t
sf P ≤ Ps S∀ ∈ , t∀ (6.1e)

, , , 0t t t t
s s s sP I D U ≥ Ps S∀ ∈ , t∀

The above planning model is similar to the one given in (Sung & Maravelias, 2007). In the problem, the

objective function is the total cost which is composed by three parts: inventory cost, backorder cost and

production cost. Equation (6.1b) represents the inventory balance and equation (6.1c) represents the

backorder balance. Equation (6.1d) fixes those planning decision that have been “executed” by the

scheduling model. Constraints (6.1e) represents the production capacity constraints.

Scheduling model:

min () ProdictionCosts s
s

ε ε γ+ −+ + ⋅∑ (6.2a)

s.t. , , , ,ProductionCost ()i i j n i i j n
i j n

FixCost w VarCost b= +∑∑∑ (6.2b)

s s s sP P ε ε+ −− = − Ps S∀ ∈ (6.2c)

- 104 -

,s n N s sst stin P= − = Ps S∀ ∈ (6.2d)

, , 1
j

i j n
i I

wv
∈

≤∑ j J∀ ∈ , n N∀ ∈ (6.2e)

min max
, , , , , , , ,i j i j n i j n i j i j nv wv b v wv≤ ≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (6.2f)

, , , , , , , , , ,i j n i j n i j i j n i j i j nTf Ts wv bα β= + +

 i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (6.2g)

, , 1 , , , ,(1)i j n i j n i j nTs Tf H wv+ ≥ − − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (6.2h)

, , 1 ', , ', ,(1)i j n i j n i j nTs Tf H wv+ ≥ − − , ' ji i I∀ ∈ , j J∀ ∈ , n N∀ ∈ (6.2i)

, , 1 ', ', ', ',(1)i j n i j n i j nTs Tf H wv+ ≥ − − , ' , 'ji i I i i∀ ∈ ≠ , , 'j j J∀ ∈ , n N∀ ∈ (6.2j)

, , 1 , ,i j n i j nTs Ts+ ≥ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (6.2k)

, , 1 , ,i j n i j nTf Tf+ ≥ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (6.2l)

, ,i j nTs H≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (6.2m)

, ,i j nTf H≤ i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ (6.2n)

, , 1 , , , , , , 1
s i s i

C P
s n s n s i i j n s i i j n

i I j J i I j J

st st b bρ ρ− −
∈ ∈ ∈ ∈

= − +∑ ∑ ∑ ∑ s S∀ ∈ , n N∀ ∈ (6.2o)

max
,s n sst st≤ s S∀ ∈ , n N∀ ∈ (6.2p)

, , , , , , , , ,{0,1}, , , , 0i j n i j n s n i j n i j nwv b st Tf Ts∈ ≥

The objective (6.2a) aims at finding a feasible schedule minimizing the sum of the absolute difference

between the result generated by the planning model t
sP and feasible schedule, plus a weighted production

cost (γ is a weight coefficient). Here, the production cost is calculated in (6.2b) by a fixed part which

represents the basic cost of a task, and a dynamic part which is proportional to the amount of material

processed (batch size). Among the constraints of the scheduling level problem, equation (6.2c) uses slack

variables to evaluate the difference between given production target and actual production amount. Equation

(6.2d) defines the actual production amount. The rest constraints has the similar meaning as explained in

problem (2.8). It should be noticed that although the above scheduling formulation derived from (Ierapetritou

- 105 -

& Floudas, 1998) has been used, the proposed methodology in this chapter is not limited to this model

because the proposed solution method is appropriate to general MILP scheduling model.

Based on the above planning and scheduling formulations, the following algorithm describes a rolling

horizon algorithm of the solution of the integrated planning and scheduling problem.

Rolling horizon algorithm

Step 1 Set the first planning period as “current period”, solve the planning problem.

Step 2. Using the production target solution obtained from step 1, solve scheduling problem in current

period. If “current period” is the last planning period of the problem, stop. Otherwise, go to step 3.

Step 3. Fix the production target in current period at the values obtained in step 2 and solve a new planning

problem; update the current period index; go to step 2.

In the following, an example is used to illustrate the above algorithm and also the effect of production

capacity constraints on the quality of the final solution.

Motivation Example

In this motivation example, two products P1 and P2 are produced through three processing stages utilizing

three materials. The state-task-network (STN) representation of this example is shown in Figure 6.1. Detail

data for this problem can be found from Chapter 3.

Reaction2

Separation

Reaction3Reaction1

Heating
Feed A Hot A

Product1

IntAB

IntBC

Feed B
Feed C

Product 2

Impure E 0.1

0.9

0.4

0.6

0.4
0.6

0.5

0.5

0.8

0.2

Figure 6.1 State Task Network for example 1

- 106 -

For the sake of simplicity in illustrating the results, 5 planning periods are considered in this problem. The

scheduling horizon is set as 8 hours and 7 event points are used for the continuous time scheduling

formulation (6.2). The cost and demand data for this problem are shown in Table 6.1.

Table 6.1 Cost and demand data for motivation example

 Fixed cost Variable cost
Heating 150 1
Reaction1,2,3 100, 100, 100 0.5, 0.5, 0.5
Separation 150 1
 Unit inventory cost 10, 10
P1, P2 Unit backorder cost 100, 100
 Unit production cost

(used in planning model)
1.5, 1.5

1

2

P

P

Dem

Dem
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

0 60 140 30 100

50 0 55 65 150
⎡ ⎤
⎢ ⎥
⎣ ⎦

Based on the given process network and corresponding production recipe, simple valid inequalities can be

derived to describe the production capacity. First, we can identify a production limit from the scheduling

model by reformulating the scheduling problem objective function as maximizing the production of certain

product ,max ()U
s s n N sP st stin== − , and setting the demand of other products as free variables. The solution

of this problem leads to the determination of an upper bound of the possible production target of this product

as 1 86.67P ≤ , 2 87.75P ≤ . Second, for this production problem, a valid inequality representing an upper

bound for the ratio between production amount of Product 2 (P2) and production amount of Product 1 (P1)

can be derived through examination of production recipe: for every P1 units of Product 1 been processed, the

maximum possible amount of Product 2 to be produced can be determined from the mass balance equation:

2 1 2(1.5 / 9) 1.25 0.9P P P= + × × . By solving this equation, we have the following valid inequality: 2 11.93P P≤ .

Thus those simple production capacity constraints can be incorporated into the planning model as shown in

equation (6.1e).

Based on the above analysis, the rolling horizon algorithm is applied to solve this example, the solution

procedure for the case with and without capacity model are both listed in Table 6.2, where the “planning

result” column denotes the solution t
sP obtained from planning problem (6.1) and the “scheduling result”

column denote the solution sP obtained through the solution of scheduling problem (6.2). The final solution

is shown in Table 6.3.

- 107 -

Table 6.2 Comparison of the rolling horizon solution procedures

k
Without capacity information With simple capacity constraints

Planning result Scheduling
result Planning result Scheduling

result

1
0 60 140 30 100

50 0 55 65 150
⎡ ⎤
⎢ ⎥
⎣ ⎦

29.6
50

⎡ ⎤
⎢ ⎥
⎣ ⎦

27 86.5 86.5 45.3 84.7

50 7.5 87.5 87.5 87.5
⎡ ⎤
⎢ ⎥
⎣ ⎦

29.6
50

⎡ ⎤
⎢ ⎥
⎣ ⎦

2
60 140 30 100

29.

0 55 65 150

6
50

⎡ ⎤
⎢ ⎥
⎣ ⎦

30.4
 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

83.9 86.5 45.3 84.7

29.6
5 7.5 87.5 87.5 87.0 5

⎡ ⎤
⎢ ⎥
⎣ ⎦

83.9
7.5

⎡ ⎤
⎢ ⎥
⎣ ⎦

3
140 30 100

55 65

29.6 30.4

50 0 150
⎡ ⎤
⎢ ⎥
⎣ ⎦

77.5
 55

⎡ ⎤
⎢ ⎥
⎣ ⎦

86.5 45.3 84.7

87.5 87.

29.6 83
5 87

.9

50 7.5 .5
⎡ ⎤
⎢ ⎥
⎣ ⎦

70.2
79.6
⎡ ⎤
⎢ ⎥
⎣ ⎦

4
92.5 100

29.6 30.4 77.5

50

65 10 55 50

⎡ ⎤
⎢ ⎥
⎣ ⎦

74.5
 65

⎡ ⎤
⎢ ⎥
⎣ ⎦

59.8 86.5

29.6 83.9 70.2

50 7.5 79.6

87.5 87.5

⎡ ⎤
⎢ ⎥
⎣ ⎦

59.8
85.3
⎡ ⎤
⎢ ⎥
⎣ ⎦

5
29.6 30.4 77.5 74.5

100

50 0 5

1505 65

⎡ ⎤
⎢ ⎥
⎣ ⎦

70.2
79.6
⎡ ⎤
⎢ ⎥
⎣ ⎦

29.6 83.9 70.2 59.8

86.5

50 7.5 79. 87.6 85.3 5

⎡ ⎤
⎢ ⎥
⎣ ⎦

70.2
79.6
⎡ ⎤
⎢ ⎥
⎣ ⎦

Table 6.3 Comparison of the final solution results

 Without capacity constraints With simple capacity constraints

Production
29.6 30.4 77.5 74.5 70.2

50 0 55 65 79.6

⎡ ⎤
⎢ ⎥
⎣ ⎦

29.6 83.9 70.2 59.8 70.2

50 7.5 79.6 85.3 79.6

⎡ ⎤
⎢ ⎥
⎣ ⎦

Inventory
29.6 0 0 0 0

0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

29.6 53.5 0 13.5 0

0 7.5 32.1 53.4 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

Backorder
0 0 62.5 17.9 47.7

0 0 0 0 70.4
⎡ ⎤
⎢ ⎥
⎣ ⎦

0 0 16.3 0 16.3

0 0 0 0 17.9
⎡ ⎤
⎢ ⎥
⎣ ⎦

Production cost 5312.8 6144.4
Inventory cost 296.3 1886.6
Backorder cost 19849.7 5059.2

Total cost 25458.8 13090.2

From the above results, it can be observed that the total cost for the case without production capacity

information is much higher than that of the case with simple capacity constraints, and the difference is

mainly due to increased backorder cost. The reason is that in the model without production capacity

constraints, the planning model cannot predict that the future production will not satisfy the demand, but

assumes that the future demand will be always satisfied with enough production capacity, so it tends to

produce as close as possible to the demand in current period so as to minimize the inventory cost. Due to this

production capacity limitation that is not accurately considered, the model without the capacity constraints

results in higher backorder cost, and thus higher total cost.

The above simple implementation of a rolling horizon approach for this motivating example illustrates

that the incorporation of production capacity constraints representing production capacity at the planning

level problem can result in huge savings in terms of backorder cost (74% reduction) and significant reduction

- 108 -

of the overall cost (49% reduction). Thus it is important to point out that the consideration of production

capacity information will improve the quality of the overall solution for the case of a rolling horizon solution

procedure.

In this example problem, for illustrative purposes the production capacity information included

represented an approximation. A more accurate method based on parametric programming is presented in the

next section, which will further improve the quality of the solution.

6.3 Production capacity model derivation

Although the simple production capacity constraints derived from production recipe can improve the quality

of the solution in the rolling horizon method, however, they are still an approximation of the exact production

capacity of a short-term scheduling problem because they only represent the mass balance information.

In this chapter, we are proposing to develop more accurate production capacity model through

parametric programming. From a mathematical point of view, the exact production capacity region for the

scheduling problem (6.2) is the projection of the scheduling problem’s feasible region onto the subspace

spanned by the planning variables, i.e., the production targets sP . The parametric programming method can

evaluate the exact production capacity by exploring the boundary of the production capacity region segment

by segment. The details of the method are presented in the follows.

6.3.1 Parametric programming

The production capacity information can be completely described by the boundary (plane or line) of the

production feasibility region. Theoretically, to retrieve production capacity information from the scheduling

model, we can set the objective of the scheduling problem as maximizing the production of a certain product

*s and set the production amount of the other products at specific fixed values as follows

* *, *max =s s n N sP st stin= − (6.3a)

s.t. (2b)-(2o) (6.3b)

, , , *s n N s s Pst stin P s S s s= − = ∀ ∈ ≠ (6.3c)

- 109 -

Thus by enumerating all possible values of the production amount for products , *Ps S s s∈ ≠ , we can

identify a set of points which is on the boundary (plane or line) of the production capacity region. However,

formulating the boundary plane or line requires the evaluation of infinite number of points and

correspondingly the solution of infinite number of scheduling problems, which is obviously impossible.

However, we can apply the parametric programming algorithm from our previous work (Li & Ierapetritou,

2007b) to identify the parametric solution which represents the boundary of the production capacity region.

Parametric programming approach generates the optimal solution map of an optimization problem with

uncertain parameters. From this point of view, parametric programming provides the exact mathematical

solution of the optimization problem under parameter variability (Pistikopoulos et al., 2007). In the

parametric programming method, the production amount of all the “other” products are viewed as uncertain

parameters and their values can vary within a given range. The complete solution of the parametric

programming problem is composed by the complete set of critical regions and optimal value functions

described with respect to uncertain parameters. The critical region is defined as the range of parameter values

where the same solution remains optimal. Thus we only need to evaluate a set of critical regions and optimal

value functions to represent the boundary of the production capacity region.

To apply parametric programming, the original scheduling formulation (6.2) is rewritten as the

following general compact form:

min cx (6.4a)

s.t. Ax By b Eθ+ = + (6.4b)

 [,]L Uθ θ θ∈ (6.4c)

0, {0,1}x y≥ ∈ (6.4d)

where y represents the binary decision variables wv; x represents the continuous variables , , ,b st Tf Ts ; θ

represent the production amount of the products , , *s PP s S s s∀ ∈ ≠ ; [,]L Uθ θ represents an initial given

range for those parametersθ , which can be determined by solving problem (6.3) without constraints (6.3c).

Based on the above formulation, we can apply the parametric programming algorithm presented in Chapter 2

and a segment of the production capacity boundary can be derived once a set of values of the uncertain

parameters are assigned. By varying the values of those parameters, the complete boundary can be identified.

- 110 -

To illustrate the application of the parametric programming algorithm for the solution of the production

capacity region, the motivation example presented in section 6.2 is studied in the next subsection.

6.3.2 Application of parametric programming in motivation example.

To apply the parametric programming approach on the motivation example, we first set the production

amount of P1 as parameter and the scheduling objective as maximizing the production of P2. Similarly,

production of P1 can be maximized by viewing production of P2 as parameter. Then the application of the

above parametric programming algorithm can result in the parametric solutions listed in Table 6.4.

Table 6.4 Parametric solution for the motivation example
 2max P Range of 1P 1max P Range of 2P
1 11.6875P 10 52P≤ ≤ 1 86.67 20 32.4P≤ ≤
2 87.75 152 55.25P≤ ≤ 2 2136.67 1.543P− 232.4 33.07P≤ ≤
3 1117.785 0.5436P− 155.25 70.19P≤ ≤ 3 2101.25 0.472P− 233.07 41.25P≤ ≤
4 1585.0 7.2P− 170.19 71.52P≤ ≤ 4 287.5 0.1389P− 241.25 52.24P≤ ≤
5 1104.62 0.4829P− 171.52 73.32P≤ ≤ 5 2166.67 1.654P− 252.24 53.65P≤ ≤
6 1317.647 3.388P− 173.32 77.92P≤ ≤ 6 293.75 0.295P− 253.65 69.22P≤ ≤
7 1100.746 0.6045P− 177.92 80.24P≤ ≤ 7 2216.67 2.071P− 269.22 70.09P≤ ≤
8 1630 7.2P− 180.24 81.77P≤ ≤ 8 281.25 0.1389P− 270.09 79.63P≤ ≤
9 1214.412 2.118P− 181.77 85.63P≤ ≤ 9 2216.67 1.8395P− 279.63 87.75P≤ ≤

10 188.56 0.648P− 185.63 86.67P≤ ≤

The above parametric solutions are also illustrated in Figure 6.2. Notice that figure 6.2(b) corresponds to the

case of maximizing the production of P1. The figure was rotated to enable the combination of those two

results as shown in Figure 6.3(a).

- 111 -

(a) (b)
Figure 6.2 Illustration of the parametric solution

(a)

(b)

Figure 6.3 Combined nonconvex production capacity region and its convex hull

As shown in Figure 6.3(a), the derived production capacity region is nonconvex. To incorporate this

information into the planning model (6.1), the following constraints with auxiliary binary variables can be

formulated based on big-M relaxation:

1k
k

y =∑ (6.5a)

2 1 11.6875 (1)P P M y≤ + − (6.5b)

1 1 10 (1) 52 (1)M y P M y− − ≤ ≤ + − (6.5c)

where M is a big positive constant and yk are the binary variables. Notice that constraints (6.5b)-(6.5c) are just

for the first segment of the capacity boundary. Similar constraints can be also formulated for all of the other

segments.

- 112 -

On the other hand, to avoid the incorporation of binary variables and mixed integer linear constraints

into planning model (6.1), we can evaluate the convex hull of the derived nonconvex production capacity

region as shown in figure 6.3(b) which can be described by the following linear inequalities:

1

2

 0 0.02550 2.23785
 0.01519 0.02795 3.29274
 0.03988 0.00004 3.45814
 0.04993 0.01833 4.96497
 0.05034 0.01629 4.89101
-0.03047 0.01806
-0.00000 -0.02060

P
P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
≤⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 0
 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Based on the nonconvex and convex representation of the production capacity, the rolling horizon algorithm

is solved again and the following results can be obtained as shown in Table 6.5.

Table 6.5 Rolling horizon solution with production capacity model from parametric solution
 With convex model With nonconvex model

Production
43.1 86.7 70.2 59.8 70.2

50 25.5 79.6 85.3 79.6

⎡ ⎤
⎢ ⎥
⎣ ⎦

43.1 86.7 70.2 59.8 70.2

50 25.5 79.6 85.3 79.6

⎡ ⎤
⎢ ⎥
⎣ ⎦

Inventory
43.2 69.8 0 29.8 0

0 25.5 50.1 70.4 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

43.1 69.8 0 29.8 0

0 25.5 50.1 70.3 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

Backorder
0 0 0.007 0 0

0 0 0 0 0.004
⎡ ⎤
⎢ ⎥
⎣ ⎦

0 0 0.003 0 0

0 0 0 0 0.009
⎡ ⎤
⎢ ⎥
⎣ ⎦

Production cost 6423.3 6423.3
Inventory cost 2886.9 2886.7
Backorder cost 1.1 1.2

Total cost 9311.3 9311.2

Comparing the results in Tables 6.3 and 6.5, it is observed that the solution quality is greatly improved with

the production capacity model derived from parametric programming technique, i.e., the more accurate

production capacity information cause the cost reduction. Furthermore, for the two cases in Table 6.5, there

are not big differences in the solution obtained. The reason is that the two different capacity representations

actually do not differ too much as shown in Figure 6.3(b).

6.3.3 Capacity model derivation through process network decomposition

For a process network with more than two products, the exact production capacity region has to be described

in a higher dimension space. Furthermore, the exact nonconvex boundary of the capacity region will involve

more facets. To exactly describe the nonconvex region, large number of auxiliary binary variables will be

- 113 -

necessary. When those binary variables are incorporated into the planning model, the resulted planning

problem will be mixed integer linear problem with a large number of binary variables which is hard to solve.

Moreover, for the parametric programming algorithm, although it can be performed off-line, the

required computation effort increases significantly for higher dimension problem (i.e., the number of

products is large) since it is proportional to the number of critical regions (Li & Ierapetritou, 2007b). To

avoid the large computational complexity of parametric programming method for high dimensionality

problems, we can use the following heuristic network decomposition strategy and apply the parametric

programming method on the sub-networks which involve relative small number of products. With a

decomposed network, the complexity of the scheduling model for the sub-network is also reduced, which

will also facilitate the solution of the parametric problem.

Based on the STN representation of the production process, we propose the following guiding rules for

the process network decomposition:

1) identify key connecting intermediate products in the process network;

2) identify sub-networks such that the resulted scheduling model is able to solve efficiently.

The above network decomposition is rather a heuristic strategy, which should be studied based on specific

problem but the basic principle is to generate scheduling problems which can be solved more efficiently by

decreasing the number of parameters (products) appeared in the scheduling problem.

The different production capacity relationships that can be obtained from this kind of decomposition include:

1) the production capacity information between any two products in each sub-network;

2) the production capacity information between the connecting products;

3) the production capacity information between certain group of products.

Notice that the production capacity information between certain products in a sub-network can be viewed as

the projection of the exact production feasibility space onto certain dimensions of the original feasible

production space. Thus the parametric solution between certain groups of products provides valid

overestimation of the feasibility space.

It should be pointed out that in the above network decomposition procedure, the same processing unit

can appear in different sub-networks if two tasks sharing the same unit are separated. Thus the production

capacity is actually overestimated through the above decomposition strategy and the derived production

- 114 -

capacity region is the relaxation of the actual production capacity region. So the capacity information derived

from the network decomposition strategy provides a valid approximation of the production feasibility and

can be incorporated into the planning and scheduling integration model. The process network decomposition

idea will be shown through case studies in the next section.

6.4 Case studies

In this section, two examples which involve more complex process networks than the motivation example are

studied to test the proposed solution framework. All the computations in this work are performed on a PC

with 2.8GHz CPU and 1Gb RAM and the MILP problems are solved using CPLEX 10.1 solver in GAMS.

Example 1.

In the following example derived from (Kondili, 1987), four products are produced through eight tasks from

three feeds in the process. Six different units are required for the whole process. The STN representation of

this process is shown in Figure 6.4 and the problem data can be found in (Li & Ierapetritou, 2009).

Task1

Task2

Task3

Task7

Task6 Task8

Task4 Task5

Product1

Product20.3
0.7

Feed1

Feed2

Feed3

Product3

Product4

0.7 0.5

Int4

Int5

Int6

Int7

Int8

Int9

0.5

0.5

0.40.6

0.5

0.3

Figure 6.4 STN representation of example 1

- 115 -

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5
x 104

Period

D
em

an
d

P2
P1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Period

D
em

an
d

P3
P4

Figure 6.5 Demand data

In this example, we are studying a two-month production planning and scheduling integration problem. The

time horizon is divided into 60 planning periods and in every planning period a 24-hour scheduling problem

is considered. The demand data are illustrated in Figure 6.5. For every scheduling problem, 15 event points

are used, which results in a MILP model with 2579 constraints, 1361continuous, and 768 binary variables. To

decrease the solution complexity of the short-term scheduling problem, here we first decompose the process

network into two sub-networks as shown in Figure 6.6. Notice that the two sub-networks are connected

through intermediate product Int5. Based on this decomposition, each sub-network only involves two

products and the complexity of the scheduling problem is reduced.

Task1

Task2

Task4 Task5

Product1

Product20.3
0.7

Feed1

Feed2

Int4

Int5 Int9

0.5

0.5

(a)

Task3

Task7

Task6 Task8

Feed3

Product3

Product4

0.7 0.5

Int6

Int7

Int8
0.40.6

0.5

0.3

INT5

(b)
Figure 6.6 Sub-network 2 (assume INT 5 with infinite supply)

- 116 -

Before we apply the parametric programming method to derive the capacity model, simple inequalities

representing the upper bound for the ratio between two products can be derived as follows: in the first

sub-network, for every 30 units of P1 been processed, the maximum amount of P2 that can be produced is 70,

so we have the valid inequality: 2 17 / 3P P≤ ; similarly, we have 4 32 (7 / 3)P P≤ × from the second

sub-network.

To derive more accurate production capacity information, parametric programming method is applied

next. For the first sub-network, we solve the problem of maximizing production of P2 (P1) with the

production of P1 (P2) as parameter. By aggregating all the parametric solutions, we can identify the

production capacity boundary between products P1 and P2 as shown in Figure 6.7(a). The convex hull is also

plotted on the same figure using red color. Similarly, the production capacity region between P3 and P4 is

shown in Figure 6.7(b) (the inner boundary of the grey area). Furthermore, the convex hulls of those

nonconvex capacity regions are also shown as the outside red boundaries. From those results, it can be

observed that the parametric solution based solution contain more accurate capacity information than those

simple inequalities derived from direct mass balance calculation.

The parametric solution for the sub-networks only provides production capacity information between

products in those sub-networks. To describe the production feasibility between different sub-networks, we

can further apply similar method in the original process network, by grouping the products. For example, we

can set the scheduling objective as maximizing the total production of P1 and P2 and set the total production

of P3 and P4 as uncertain parameter. In this way we can identify the production capacity information between

the two sub-networks as shown in Figure 6.7(c).

Table 6.6 illustrates the solution of the rolling horizon method for two different cases: one is the case

without any capacity constraints and the other is the case with convex hull capacity model in the planning

problem (notice that since there is no big difference between the nonconvex capacity region and convex hull

in Figure 6.7, we directly apply the convex hull model to avoid the addition of auxiliary binary variables and

mixed integer linear constraints).

- 117 -

(a) (b)

(c)

Figure 6.7 Production capacity region and the convex hull
(a) Between P1 and P2; (b) Between P3 and P4; (c) Between P1+P2 and P3+P4

Table 6.6 Solution of the example 1

 Without capacity model With convex model of the capacity
constraints

Production cost 3,295,638 3,383,932
Inventory cost 556,053 1,900,957
Backorder cost 26,187,860 11,770

Total cost 30,039,550 5,296,659
CPU time (sec) 360 460

It can be observed from the results that the rolling horizon method can solve the problem relatively fast.

Comparing the quality of the final solution, we can see that the convex capacity model greatly improve the

final solution’s quality. The production targets are shown in Figure 6.8 (without capacity constraints) and

Figure 6.9 (with convex capacity constraints).

- 118 -

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Period

P
ro

du
ct

io
n

P1
P2

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Period

P
ro

du
ct

io
n

P3
P4

Figure 6.8 Production target solution (without capacity constraints)

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Period

P
ro

du
ct

io
n

P1
P2

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

12000

14000

16000

Period

P
ro

du
ct

io
n

P3
P4

Figure 6.9 Production target solution (with capacity constraints)

- 119 -

From the results in Figures 6.8 and 6.9, it can be observed that the production targets in the solution with

capacity constraints is always within the feasible production capacity region, e.g., the production amounts of

P3 are always below 4000. But the production target solutions of the case without capacity constraints can

violate the production feasibility, e.g., for some periods the production of P3 is more than 4000. Those

infeasible production targets will result in more cost since much more backorder is resulted because of the

“overestimation” of production capacity. This can be further illustrated through the following backorder

amount profile. For the case without capacity constraints, the backorder amounts in the solution for P1 and P2

are shown in Figure 6.10 (the backorder amounts of P3 and P4 are all zeros). For the case with capacity

constraints, the backorder of P1, P2 and P4 at all the periods are zero, only product P3 has a backorder

amount of 117.7 at the first period. This verified the difference between the final total cost for the two

different cases (with and without capacity constraints) studied in this problem.

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Period

B
ac

ko
rd

er

P1
P2

Figure 6.10 Backorder amount in the solution (without capacity constraints)

Example 2

The process in this example can be found in (Kallrath, 2002) and it is a benchmark problem which has

stimulated the development of algorithms for scheduling problems in process industry. The STN is shown in

Figure 6.11 for this example which is more complicated compared to the previous example. To decrease the

scheduling model complexity, we assume no cleaning restrictions in this study.

In this example, we are studying a three-month production planning and scheduling integration problem,

where 30 planning periods are considered, and in every planning period a 96-hour scheduling problem is

studied. Notice that we have select 11 event points for every scheduling problem.

- 120 -

S0

Task1

Task8 Task10 Task9 Task11 Task12

Task5Task4 Task6 Task7

Task13 Task15 Task14 Task16 Task17

Task2

Task3

S3

S1

S4

S2

S10S11 S12 S13S9

S15S16 S17 S18S14

S5 S6 S7 S8

0.45 0.55

0.5

0.5

0.31

Figure 6.11 STN representation of example 2

Since the given process network in this example is complex, the resulted scheduling problem need significant

computation efforts. To increase the computation efficiency for the proposed algorithm, we decompose the

original process network and generate three sub-networks as shown in Figure 6.12. The decomposition is

performed by identifying that S2 and S4 are two connecting intermediates which separate the whole network

into three major parts. Thus that the solution complexity of the scheduling problem for the sub-networks can

be decreased comparing to the original scheduling model for the whole network. Detailed model statistics can

be found in Table 6.7.

- 121 -

Table 6.7 Model statistics

 Constraints Continuous
variables Binary variables

Whole network 5361 2685 1683
Sub-network 1 559 254 99
Sub-network 2 1488 738 396
Sub-network 3 2439 1057 528

To decrease the computation complexity of solving large scale scheduling problem, the following process

network decomposition idea can be applied:

S0

Task1

Task2

Task3

S3

S1

S4

S2

0.45 0.55

0.31

(a)

Task8 Task10

Task5Task4

Task13 Task15

S2

S11S9

S16S14

S5 S6

0.5

0.5

(b)

Task9 Task11 Task12

Task6 Task7

Task14 Task16 Task17

S4

S10 S12 S13

S15 S17 S18

S7 S8

(c)
Figure 6.12 Process network decomposition for example 2

(a) (b) (c)

Figure 6.13 Production capacity information

Base on the decomposed process networks, several sets of production capacity information can be derived.

For example, Figure 6.13(a) represents the production capacity between S2 and S4 which is derived from first

sub-network; the production capacity information between S14 and S16 is shown in Figure 6.13(b); the

production capacity information between S15 and S17 in the third network is shown in Figure 6.13(c). The

capacity information between S15 and S18, S17 and S18 are not listed considering the length of the chapter.

- 122 -

Notice that to apply the above production capacity information into the rolling horizon planning model.

We need to incorporate the following constraints:

1 2 4

2 14 16

3 15 17 3 15 18 3 17 18

14 16 2

15 17 18 4

(,) 0
(,) 0

(,) 0, (,) 0, (,) 0

S S

S S

a b c
S S S S S S

S S S

S S S S

f P P
f P P

f P P f P P f P P
P P P
P P P P

≤
≤

≤ ≤ ≤
+ ≤
+ + ≤

where f2, f3 represent the convex hull constraints for the final products derived from sub-networks,

respectively. The constraints f1 and the last two constraints are used to describe the capacity information

between the product groups in the second and the third sub-networks which are connected through the

intermediate products S2 and S4.

Table 6.8 Solution of the example 2

 Without capacity model With convex model of the capacity
constraints

Production cost 68,352 69,255
Inventory cost 2,654 3,549
Backorder cost 122,693 6,640

Total cost 193,699 79,444
CPU time (sec) 1353 1429

Table 6.8 shows the results of the rolling horizon method on this example for two cases with and without

capacity model. As shown the production capacity model derived from the proposed strategy greatly

increased the quality of the solution with no big difference on the computation time for the rolling horizon

method. It should be also noticed here that since all of the parametric solutions can be computed off-line and

the resulted capacity information, the proposed method provides an efficient way to improve the solution

quality of the integrated planning and scheduling optimization in the rolling horizon framework.

6.5 Summary

To ensure the consistency between production planning and scheduling, an integrated decision making is

necessary. Among the various types of aggregation, relaxation and decomposition methods, rolling horizon

method has received wide study and also realistic applications in the industry. In this chapter, we study the

effect of production capacity information on the final solution’s quality. It has been shown that the solution

- 123 -

quality can be greatly improved by incorporating the production capacity model representing the production

capacity of the short term scheduling problem into the planning model. The total cost can be greatly reduced

mainly due to decreased backorder amount since the planning model can “predict” the future possible

backorder based on production capacity estimation. To derive accurate production capacity information, we

proposed a parametric programming based method, which generates the exact production feasibility

information based on the short-term scheduling formulation. To reduce the computation complexity for

complex processes with a number of products, a heuristic network decomposition strategy is proposed. Cases

studies prove that the method can further improve the quality of the final solution comparing to the simple

production capacity constraints derived by production recipe and mass balance. Finally, it is worth to point

out the proposed solution framework can be also applied to address the long-term and mid-term scheduling

problem within a rolling horizon framework.

- 124 -

Bibliography

[1] Acevedo, J., & Pistikopoulos, E. N. (1997). A multiparametric programming approach for linear process
engineering problems under uncertainty. Industrial and Engineering Chemistry Research, 36,
717-728.

[2] Acevedo, J., & Salgueiro, M. (2003). An efficient algorithm for convex multiparametric nonlinear

programming problems. Industrial and Engineering Chemistry Research, 42, 5883 -5890.

[3] Andreani, R., Birgin, E. G., Martínez, J. M., & Schuverdt, M. L. (2008). On Augmented Lagrangian

methods with general lower-level constraints. SIAM Journal on Optimization, 18, 1286-1309.

[4] Balasubramanian, J., & Grossmann, I. E. (2002). A novel branch and bound algorithm for scheduling

flowshop plants with uncertain processing times. Computers and Chemical Engineering, 26, 41-57.

[5] Balasubramanian, J., & Grossmann, I. E. (2003). Scheduling optimization under uncertainty-an

alternative approach. Computers and Chemical Engineering, 27, 469-490.

[6] Bassett, M. H., Dave, P., Doyle, F. J., Kudva, G. K., Pekny, J. F., Reklaitis, G. V., Subrahmanyam, S.,

Miller, D. L., & Zentner, M. G. (1996). Perspectives on model based integration of process
operations. Computers and Chemical Engineering, 20, 821-844.

[7] Bassett, M. H., Pekny, J. F., & Reklaitis, G. V. (1996). Decomposition techniques for the solution of

large-scale scheduling problems. AICHE Journal, 42, 3373-3387.

[8] Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E. N. (2002). The explicit linear quadratic regulator

for constrained systems. Automatica, 38, 3-20.

[9] Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions to uncertain programs. Operations Research

Letters, 25, 1-13.

[10] Bertsekas, D. P. (2003). Nonlinear Programming (2nd ed. ed.). Belmont, Massachusetts: Athena

Scientific.425

[11] Bertsekas, D. P., & Tsitsiklis, J. N. (1989). Parallel and Distributed Computation. Englewood Cliffs,

New Jersey: Prentice-Hall.422

[12] Bertsimas, D., & Sim, M. (2003). Robust Discrete optimization and Network Flows. Math. Prog., 98,

49-71.

[13] Birgin, E. G., Floudas, C. A., & Martínez, J. M. (2009). Global minimization using an Augmented

Lagrangian method with variable lower-level constraints. Math. Program., Ser. A, DOI
10.1007/s10107-10009-10264-y.

[14] Bonfill, A., Bagajewicz, M., Espuna, A., & Puigjaner, L. (2004). Risk Management in the Scheduling of

Batch Plants under Uncertain Market Demand. Industrial and Engineering Chemistry Research, 43,
741-750.

[15] Bonfill, A., Espuna, A., & Puigjaner, L. (2005). Addressing Robustness in Scheduling Batch Processes

with Uncertain Operation Times. Industrial and Engineering Chemistry Research, 44, 1524-1534.

- 125 -

[16] Borrelli, E., Bemporad, A., & Morari, M. (2003). A geometric algorithm for multi-parametric linear

programming. Journal of Optimization Theory and Applications, 118, 515-540.

[17] Carpentier, P., Cohen, G., Culioli, J. C., & Renaud, A. (1996). Stochastic optimization of unit

commitment: A new decomposition framework. IEEE Transactions on Power Systems, 11,
1067-1073.

[18] Castro, P., Barbosa-Povoa, A., & Matos, H. (2003). Optimal Periodic Scheduling of Batch Plants Using

RTN-based Discrete and Continuous-time Formulations: A Case Study Approach. Ind. Eng. Chem.
Res., 42, 3346-3360.

[19] Chandrasekaran, R., Kabadi, S. N., & Sridhar, R. (1998). Integer Solution for Linear Complementarity

Problem. Mathematics of Operations Research, 23, 390-402.

[20] Cott, B. J., & Macchietto, S. (1989). Minimizing the effects of batch process variability using online

schedule modification. Computers and Chemical Engineering, 13, 105-113.

[21] Dimitriadis, A. D., Shah, N., & Pantelides, C. C. (1997). RTN-based rolling horizon algorithms for

medium term scheduling of multipurpose plants. Computers & Chemical Engineering, 21,
S1061-S1066.

[22] Dua, V., Bozinis, N. A., & Pistikopoulos, E. N. (2002). A multiparametric programming approach for

mixed-integer quadratic engineering problems. Computers and Chemical Engineering, 26, 715-733.

[23] Dua, V., & Pistikopoulos, E. N. (1999). Algorithms for the solution of multiparametric mixed-integer

nonlinear optimization problems. Industrial and Engineering Chemistry Research, 38, 3976 - 3987.

[24] Dua, V., & Pistikopoulos, E. N. (2000). An algorithm for the solution of multiparametric mixed integer

linear programming problems. Ann. Oper. Res., 99, 123-139.

[25] El-Ghaoui, L., Oustry, F., & Lebret, H. (1998). Robust solutions to uncertain semidefinite programs.

SIAM J. Optim., 9, 33-52.

[26] Elliott, M. (2000). Advanced planning and scheduling software. IIE Solutions, 32, 48-56.

[27] Equi, L., Gallo, G., Marziale, S., & Weintraub, A. (1997). A combined transportation and scheduling

problem. European Journal of Operational Research, 97, 94-104.

[28] Erdirik-Dogan, M., & Grossmann, I. E. (2006). A Decomposition Method for the Simultaneous

Planning and Scheduling of Single-Stage Continuous Multiproduct Plants. Ind. Eng. Chem. Res., 45,
299-315.

[29] Floudas, C. A., & Lin, X. (2004). Continuous-time versus discrete-time approaches for scheduling of

chemical processes: A review. Computers and Chemical Engineering, 28, 2109-2129.

[30] Grossmann, I. E., Van den Heever, S. A., & Harjunkoski, I. (2002). Discrete optimization methods and

their role in the integration of planning and scheduling. AIChE Symp. Ser., 98, 150.

[31] Grossmann, I. E., & Westerberg, A. W. (2000). Research challenges in process system engineering.

AICHE Journal, 46, 1700-1703.

[32] Gupta, A., & Maranas, C. D. (1999). A Hierarchical Lagrangean Relaxation Procedure for Solving

Midterm Planning Problem. Ind. Eng. Chem. Res., 38, 1937.

- 126 -

[33] Hamdi, A., Mahey, P., & Dussault, J. P. (1997). A new decomposition method in nonconvex
programming via a separable augmented Lagrangian. In Recent advances in optimization (Vol. 452,
pp. 90-104).412

[34] Honkomp, S. J., Mockus, L., & Reklaitis, G. V. (1997). Robust scheduling with processing time

uncertainty Computers and Chemical Engineering, 21, S1055-S1060

[35] Huercio, A., Espuña, A., & Puigjaner, L. (1995). Incorporating on-line scheduling strategies in

integrated batch production control. Computers and Chemical Engineering, 19, S609-S615.

[36] Hugo, A., & Pistikopoulos, S. (2005). Long-range process planning under uncertainty via parametric

programming. European Symposium on Computer-Aided Process Engineering, 15, 127-132.

[37] Ierapetritou, M. G., & Floudas, C. A. (1998). Effective continuous-time formulation for short-term

scheduling. 1. Multipurpose batch processes. Industrial & engineering chemistry research, 37,
4341-4359.

[38] Ierapetritou, M. G., & Pistikopoulos, E. N. (1996). Global optimization for stochastic planning,

scheduling and design problems. In I. E. Grossmann (Ed.), Global optimization in engineering
design (pp. 231-287). Dordrecht: Kluwer Academic Publishers.9

[39] Janak, S. L., & Floudas, C. A. (2006). Production Scheduling of a Large-Scale Industrial Batch Plant. II.

Reactive Scheduling. Industrial and Engineering Chemistry Research, 45, 8253-8269.

[40] Janak, S. L., Floudas, C. A., Kallrath, J., & Vormbrock, N. (2006). Production scheduling of a

large-scale industrial batch plant. I. Short-term and medium-term scheduling. Industrial and
Engineering Chemistry Research, 45, 8234-8252.

[41] Janak, S. L., Lin, X., & Floudas, C. A. (2007). A new robust optimization approach for scheduling under

uncertainty: II. Uncertainty with known probability distribution. Computers and Chemical
Engineering, 31, 171-195.

[42] Jia, Z., & Ierapetritou, M. G. (2004). Short-Term Scheduling under Uncertainty Using MILP Sensitivity

Analysis. Industrial and Engineering Chemistry Research, 43, 3782-3791.

[43] Jia, Z., & Ierapetritou, M. G. (2007). Generate Pareto optimal solutions of scheduling problems using

normal boundary intersection technique. Computers and Chemical Engineering, 31, 266-280.

[44] Johansen, T. A. (2002). On multi-parametric nonlinear programming and explicit nonlinear model

predictive control. In 41th IEEE Conference on Decision and Control (pp. 2768-2273). Las Vegas,
Nevada, USA.

[45] Jones, C. N., & Morrari, M. (2006). Multiparametric Linear Complementarity Problems. 45th IEEE

Conference on Decision and Control, 5687-5692.

[46] Kallrath, J. (2002). Planning and scheduling in the process industry. OR Spectrum, 24, 219-250.

[47] Kanakamedala, K. B., Reklaitis, G. V., & Venkatasubramanian, V. (1994). Reactive schedule

modification in multipurpose batch chemical plants. Industrial and Engineering Chemistry Research,
30, 77-90.

[48] Kondili, E. (1987). Optimal scheduling of Batch Processes. Imperial College London, London, U.K.

[49] Kondili, E., Pantelides, C. C., & Sargent, R. W. H. (1993). A general algorithm for short-term

scheduling of batch operations. I. MILP formulation. Computers and Chemical Engineering, 17,
211-227.

- 127 -

[50] Kouvelis, P., Daniels, R. L., & Vairaktarakis, G. (2000). Robust scheduling of a two-machine flow shop

with uncertain processing times. IIE. Trans., 32, 421.

[51] Kreipl, S., & Pinedo, M. (2004). Planning and Scheduling in Supply Chains: An Overview of Issues in

Practice. Production and Operations Management, 13, 77-92.

[52] Li, Y., Lu, Z., & Michalek, J. J. (2008). Diagonal quadratic approximation for parallelization of

analytical target cascading. ASME Journal of Mechanical Design, 130, 051402.

[53] Li, Z., & Ierapetritou, M. G. (2007a). A New Methodology for the General Multiparametric

Mixed-Integer Linear Programming (MILP) Problems. Industrial & engineering chemistry research,
46, 5141-5151.

[54] Li, Z., & Ierapetritou, M. G. (2007b). Process scheduling under uncertainty using multiparametric

programming. AICHE Journal, 53, 3183-3203.

[55] Li, Z., & Ierapetritou, M. G. (2009). Integrated production planning and scheduling using a

decomposition framework. Chemical Engineering Science, 64, 3585-3597.

[56] Lin, X., Floudas, C. A., Modi, S., & Juhasz, N. M. (2002). Continuous-time optimization approach for

medium-range production scheduling of a multiproduct batch plant. Industrial & engineering
chemistry research, 41, 3884-3906.

[57] Lin, X., Janak, S. L., & Floudas, C. A. (2004). A new robust optimization approach for scheduling under

uncertainty: I. bounded uncertainty. Computers and Chemical Engineering, 28, 1069-1085.

[58] Maravelias, C. T., & Grossmann, I. E. (2006). On the relation of continuous- and discrete-time state-task

network formulations. AICHE Journal, 52, 843-849.

[59] Maravelias, C. T., & Sung, C. (2008). Integration of production planning and scheduling: overview,

challenges and opportunities. Proceedings Foundations of Computer-Aided Process Operations
(FOCAPO 2008), 13-22.

[60] Méndez, C. A., & Cerdá, J. (2003). Dynamic scheduling in multiproduct batch plants. Computers and

Chemical Engineering, 27, 1247-1259.

[61] Méndez, C. A., & Cerdá, J. (2004). An MILP framework for batch reactive scheduling with limited

discrete resources. Computers and Chemical Engineering, 28, 1059-1068.

[62] Méndez, C. A., Cerdá, J., Grossmann, I. E., Harjunkoski, I., & Fahl, M. (2006). State-of-the-art review

of optimization methods for short-term scheduling of batch processes. Computers and Chemical
Engineering, 30, 913-946.

[63] Mulvey, J., Vanderbei, R., & Zenios, S. (1995). Robust optimization of large scale systems. Operations

Research, 43, 264.

[64] Munawar, S. A., & Gudi, R. D. (2005). A Multilevel, Control-Theoretic Framework for Integration of

Planning, Scheduling, and Rescheduling. Ind. Eng. Chem. Res., 44, 4001-4021.

[65] Orçun, S., Altinel, K., & Hortaçsu, Ö. (1996). Scheduling of batch processes with operational

uncertainties. Computers and Chemical Engineering, 20, S1191-S1196.

[66] Padhy, N. P. (2004). Unit commitment-a bibliographical survey. Power Systems, IEEE Transactions on,

19, 1196-1205.

- 128 -

[67] Papageorgiou, L. G., & Pantelides, C. C. (1996). Optimal campaign planning scheduling of
multipurpose batch semicontinuous plants. 2. A mathematical decomposition approach. Industrial
& engineering chemistry research, 35, 510-529.

[68] Pardalos, P. M., & Nagurney, A. (1990). The Integer Linear Complementarity Problem. International

Journal of Computer Mathematics, 31, 205-214.

[69] Petkov, S. B., & Maranas, C. D. (1997). Multiperiod Planning and Scheduling of Multiproduct Batch

Plants under Demand Uncertainty. Industrial and Engineering Chemistry Research, 36, 4864-4881.

[70] Petrovic, D., & Duenas, A. (2006). A fuzzy logic based production scheduling/rescheduling in the

presence of uncertain disruptions. Fuzzy Sets and Systems, 157, 2273-2285.

[71] Pistikopoulos, E. N. (1995). Uncertainty in process design and operations. Computers and Chemical

Engineering, 19, S553-S563.

[72] Pistikopoulos, E. N., & Dua, V. (1998). Planning under uncertainty: A Parametric Programming

approach. In J. F. Penky & C. E. Blau (Eds.), 3rd International Conference on Foundations of
Computer-Aided Process Operations (pp. 164-169).

[73] Pistikopoulos, E. N., Georgiadis, M. C., & Dua, V. (2007). Process Systems Engineering: Volume 1:

Multiparametric Programming: Wiley-VCH.364

[74] Qi, L., & Wei, Z. (2000). On the constant positive linear dependence condition and its application to

SQP methods. SIAM Journal on Optimization, 10, 963-981.

[75] Rodrigues, M. T. M., Gimeno, L., Passos, C. A. S., & Campos, M. D. (1996). Reactive scheduling

approach for multipurpose chemical batch plants. Computers and Chemical Engineering, 20,
S1215-S1220.

[76] Rosen, J. B. (1990). Minimum Norm Solution to the Linear Complementarity Problem. In Functional

Analysis, Optimization, and Mathematical Economics: Oxford University Press.333

[77] Roslöf, J., Harjunkoski, I., Björkqvist, J., Karlsson, S., & Westerlund, T. (2001). An MILP-based

reordering algorithm for complex industrial scheduling and rescheduling. Computers and Chemical
Engineering, 25, 821-828.

[78] Ruiz, D., Cantón, J., Nougués, J. M., Espuña, A., & Puigjaner, L. (2001). On-line fault diagnosis system

support for reactive scheduling in multipurpose batch chemical plants. Computers and Chemical
Engineering, 25, 829-837.

[79] Ruszczynski, A. (1995). On convergence of an augmented Lagrangian decomposition method for sparse

convex optimization. Mathematics of Operations Research, 20, 634-656.

[80] Ryu, J. H., & Pistikopoulos, E. N. (2007). A novel approach to scheduling of zero-wait batch processes

under processing time variations. Computers and Chemical Engineering, 31, 101-106.

[81] Sand, G., & Engell, S. (2004). Modeling and solving real-time scheduling problems by stochastic integer

programming. Computers and Chemical Engineering, 28, 1087-1103.

[82] Sand, G., Engell, S., Märkert, A., Schultz, R., & Schultz, C. (2000). Approximation of An Ideal Online

Scheduler for A Multiproduct Batch Plant. Comput. Chem. Eng., 24, 361-367.

[83] Sanmartí, E., Espuña, A., & Puigjaner, L. (1997). Batch production and preventive maintenance

scheduling under equipment failure uncertainty Computers & Chemical Engineering, 21,
1157-1168

- 129 -

[84] Schilling, G., & Pantelides, C. C. (1999). Optimal periodic scheduling of multipurpose plants.
Computers & Chemical Engineering, 23, 635-655.

[85] Seron, M., De Dona, J. A., & Goodwin, G. C. (2000). Global analytical model predictive control with

input constraints. In 39th IEEE Conference on Decision and Control (pp. 154-159). Sydney,
Australia.

[86] Shah, N. (2005). Process industry supply chains: Advances and challenges. Computers & Chemical

Engineering, 29, 1225-1235.

[87] Shaik, M. A., Floudas, C. A., Kallrath, J., & Pitz, H.-J. (2007). Production scheduling of a large-scale

industrial continuous plant: Short-term and medium-term scheduling. COMPUTER AIDED
CHEMICAL ENGINEERING, 24, 613-618.

[88] Shaik, M. A., Floudas, C. A., Kallrath, J., & Pitz, H.-J. (2009). Production scheduling of a large-scale

industrial continuous plant: Short-term and medium-term scheduling. Computers & Chemical
Engineering, 33, 670-686.

[89] Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact

linear programming. Operations Research, 21, 1154-1157.

[90] Sung, C., & Maravelias, C. T. (2007). An attainable region approach for effective production planning of

multi-product processes. AICHE Journal, 53, 1298-1315.

[91] Tosserams, S., Etman, L. F. P., & Rooda, J. E. (2008). Augmented Lagrangian coordination for

distributed optimal design in MDO. Int. J. Numer. Meth. Engng., 73, 1885-1910.

[92] Verderame, P. M., & Floudas, C. A. (2008). Integrated operational planning and medium-term

scheduling of a large-scale industrial batch plants. Ind. Eng. Chem. Res, 47, 4845-4860.

[93] Vin, J. P., & Ierapetritou, M. G. (2000). A new approach for efficient rescheduling of multiproduct batch

plants. Industrial and Engineering Chemistry Research, 39, 4228-4238.

[94] Vin, J. P., & Ierapetritou, M. G. (2001). Robust short-term scheduling of multiproduct batch plants under

demand uncertainty. Industrial and Engineering Chemistry Research, 40, 4543-4554.

[95] Waltz, R. A., & Plantenga, T. D. (2006). KNITRO User's Manual (Version 5.0): Ziena Optimization,

Inc.429

[96] Wang, J. (2004). A fuzzy robust scheduling approach for product development projects. European

Journal of Operational Research, 152, 180-194.

[97] Wu, D., & Ierapetritou, M. (2004). Cyclic short-term scheduling of multiproduct batch plants using

continuous-time representation. Computers & Chemical Engineering, 28, 2271-2286.

[98] Wu, D., & Ierapetritou, M. G. (2003). Decomposition approaches for the efficient solution of short-term

scheduling problems. Computers & Chemical Engineering, 27, 1261-1276.

[99] Wu, D., & Ierapetritou, M. G. (2007). Hierarchical approach for production planning and scheduling

under uncertainty. Chemical Engineering and Processing, 46, 1129-1140.

[100] Zhu, X. X., & Majozi, T. (2001). Novel continuous-time MILP formulation for multipurpose batch

plants. 2. Integrated planning and scheduling. Ind. Eng. Chem. Res., 40, 5621-5634.

- 130 -

Appendix A. Parametric Linear Complementarity Problem

For a given matrix R n nM ×∈ and vector R nq∈ , the Linear Complementarity Problem LCP(,)q M is to find

solution R nz∈ , R nw∈ , such that it satisfies the following equations or else to determine that no solution

exists:

T 0z w = (A.1a)

w q Mz= + (A.1b)

0w ≥ , 0z ≥ (A.1c)

The Parametric Linear Complementarity Problem pLCP((),)q Mθ is defined as follows:

given Rn nM ×∈ , ()q d Fθ θ= + , R nd ∈ , R n mF ×∈ , find solution map Rnz∈ , R nw∈ in the range

[,]L Uθ θ θ∈ , RL mθ ∈ , RU mθ ∈ , such that

T 0z w = (A.2a)

w d F Mzθ= + + (A.2b)

0w ≥ , 0z ≥ (A.2c)

The problem of finding a solution for the LCP problem (A.1) can be recasted as finding a solution for the

following set of mixed integer constraints:

T T() 0y w e y z+ − = (A.3a)

w q Mz= + (A.3b)

0, 0w z≥ ≥ (A.3c)

n 1{0,1}y ×∈ (A.3d)

where T[1,1,...,1]e = . If this problem is infeasible, it means that the original LCP (1) does not have a solution.

- 131 -

Since the LCP can be reduced to a set of mixed integer constraints (A.3), the solution of LCP can be obtained

by solving a mixed integer programming problem which is formed with these constraints and an additional

objective function. By setting the objective function, we can get the minimum norm solution of the LCP

problem (Rosen, 1990). The minimum norm solution to LCP(,)q M is a solution *z such that *|| || || ||z z≤ is

satisfied for all solutions z of the LCP problem. For example, the minimum 1-norm solution formulation for

LCP (A.1) can be formulated as the following:

Tmin e z (A.4a)

s.t. T T() 0y w e y z+ − = (A.4b)

w q Mz= + (A.4c)

0, 0w z≥ ≥ , n 1{0,1}y ×∈ (A.4d)

For the pLCP (A.2), the corresponding minimum 1-norm solution formulation is similar to problem (A.4)

except that (A.4c) should be changed to w Mz d Fθ= + + as follows:

Tmin e z (A.5a)

s.t. T T() 0y w e y z+ − = (A.5b)

w d F Mzθ= + + (A.5c)

0, 0w z≥ ≥ , n 1{0,1}y ×∈ (A.5d)

For a mixed integer linear complementarity problem, some of the variables are required to take integer values.

This type of problem does not get too much attention in the literature (Chandrasekaran et al., 1998; Pardalos

& Nagurney, 1990) and the parametric mixed integer LCP has not even been studied before. The proposed

solution algorithm for pLCP can also address the mixed integer pLCP as follows.

Without loss of generality, we can always assume that the first k variables of vector z in pLCP (A.2) are

restricted to be binary by rearranging the columns of M, i.e., {0,1}iz ∈ , {1,2,..., }i K k∈ = , k n≤ . To solve

this mixed integer pLCP, we propose the following minimum 1-norm formulation:

Tmin e z (A.6a)

- 132 -

s.t. T T() 0y w e y z+ − = (A.6b)

w d F Mzθ= + + (A.6c)

i iz v= i K∀ ∈ (A.6d)

0, 0w z≥ ≥ , n 1{0,1}y ×∈ , 1{0,1}kv ×∈ (A.6e)

The above parametric MILP formulation (A.5) and (A.6) can be solved with the algorithm presented in

Chapter 2, which gives the solution for the pLCP problem.

Example. Parametric Quadratic Programming

Consider the following quadratic programming problem

0
min 0.5

. .

T T

x
x Qx c x

s t Ax b
≥

+

≥
 (A.6)

where Q is positive semidefinite, then the Karush-Kuhn-Tucker (KKT) condition guarantees global

optimality for the QP problem. According to the KKT theorem, if the vector x is a local minimizer for the

QP problem (A.6), there exists a vector λ such that it satisfies the following KKT conditions:

, 0, 0TAx b x c Qx A λ≥ ≥ + − ≥ (A.7a)

0, () 0, () 0T T TAx b x c Qx Aλ λ λ≥ − = + − = (A.7b)

with the following definition

, ,

 0

T c xQ A
M q z

bA λ
⎡ ⎤− ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦
, (A.8)

The KKT conditions (A.7) form the problem (,)LCP q M (Jones & Morrari, 2006). Thus, parametric

quadratic programs where the cost c and the right hand side of the constraints b are parameterized can be

solved through the solution of the corresponding pLCP .

- 133 -

Appendix B. Convergence Property of Augmented Lagrangian

Optimization Algorithm

For the following general problem:

min ()
s.t. () 0, () 0,
 { | () 0, () 0}

f x
h x g x
x x H x G x

= ≤
∈Ω = = ≤

, (B.1)

and its augmented Lagrangian dual problem generated by relaxing the upper level

constraints () 0, () 0h x g x= ≤ :

22

, 0,
max min (, , ,) () () ()

2 2
ji

i jx i j

L x f x h x g x
λ ν σ

νλσ σλ ν σ
σ σ∈Ω≥

+

⎛ ⎞⎛ ⎞= + + + +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ , (B.2)

where () max () ,0j j
j jg x g x

ν ν
σ σ

+

⎛ ⎞ ⎛ ⎞
+ = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. The corresponding augmented Lagrangian algorithm is as

follows:

Step 0. Given bounds value for the multipliers, min max[,]λ λ λ∈ , max[0,]ν ν∈ , 1γ > , 0 1τ< < , { }kε is a

sequence of nonnegative numbers such that lim 0k

k
ε

→∞
= . Set k=1, select arbitrarily 1

min max[,]iλ λ λ∈ ,

1,...,i m= , 1
max[0,]jν ν∈ , 1,...,j n= , 1 0σ > .

Step 1. Compute an approximate solution kx of the augmented Lagrangian relaxation problem

min (, , ,)
x

L x λ ν σ
∈Ω

, which satisfies following approximate KKT conditions

a) (, , ,) () ()k k k k k k k k kL x v H x u G xλ ν σ ε∇ + ∇ + ∇ ≤

b) ()k k
jG x ε≤ , 0k

ju ≥ , j∀

c) if ()k k
jG x ε< − , then 0k

ju = , j∀

d) ()k k
iH x ε≤ , i∀

- 134 -

Step 2. Update multipliers’ and penalty parameter’s value

(){ }1
min maxmin max , () ,k k k k

i i ih xλ λ λ σ λ+ = + , (){ }1
maxmin max 0, () ,k k k k

j j jg xν ν σ ν+ = +

Compute max (),
k
jk k

j j kV g x
ν
σ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
, if () ()1 1max || () || ,|| || max || () || ,|| ||k k k kh x V h x Vτ − −

∞ ∞ ∞ ∞≤ , set

1k kσ σ+ = , otherwise set 1k kσ σγ+ = . Set k=k+1, go to next iteration.

The convergence of the proposed approach is shown using the following theorems. The details of the proofs

are not shown but the reader is referred to the literature where proofs are given (Andreani et al., 2008),

(Birgin et al., 2009).

Theorem1. The solution sequence { }kx generated by the proposed augmented Lagrangian approach admits a

limit point *x .

It is proved in (Andreani et al., 2008) that even if the augmented Lagrangian relaxation problem is not solved

to optimality at every iteration of the augmented Lagrangian optimization algorithm, Constant Positive

Linear Dependence (CPLD) based convergence property are ensured under the conditions that , ,f g h admit

continuous first derivatives and { | () 0, () 0}x H x G xΩ = = ≤ is a closed set. Furthermore, it is also proved in

(Andreani et al., 2008) that at least a limit point *x of the sequence { }kx generated by the augmented

Lagrangian optimization algorithm exists under the sufficient condition that there exists 0ε > such that the

set { || () || , () }x H x G xε ε< < is bounded.

Theorem 2. The limit point *x is a feasible and local optimal solution of the original problem (B.1).

Regarding the feasibility of the solution, the work of (Andreani et al., 2008) proved that if the sequence of

penalty parameters { kσ } is bounded (i.e., from some iteration on, the penalty parameters are not updated, or

there exists 0k such that 0kkσ σ= for all 0k k≥), the limit point *x is a feasible solution of problem (B.1).

Furthermore, if the limit point *x satisfies the Constant Positive Linear Dependence (CPLD) constraint

- 135 -

qualification condition (Qi & Wei, 2000) with respect to the lower-level constraints x∈Ω , then *x is a

KKT (stationary) point of the original problem (B.1).

Theorem 3. The algorithm converges to a BBε -global optimal solution of original problem.

The above theorem is proved by (Birgin et al., 2009), which pointed out that for problem (B.1), if in each

outer iteration, an εk-global minimization of the relaxation problems is found, where εk→ BBε , then the

convergence to BBε -global minimum of the original problem is ensured for the augmented Lagrangian

method.

- 136 -

Curriculum Vitae

ZUKUI LI

EDUCATION

Rutgers - The State University of New Jersey, Piscataway, NJ, USA

Ph.D. in Chemical and Biochemical Engineering 2010

University of Science and Technology of China, Hefei, China

M.E. in Control Theory and Engineering 2005

B.E. in Automatic Control 2002

PUBLICATIONS

·Z. Li, M.G. Ierapetritou. Production planning and scheduling integration through augmented Lagrangian

optimization. Computers & Chemical Engineering, doi:10.1016/j.compchemeng. 2009.11.016, 2009.

·Z. Li, M.G. Ierapetritou. Integrated planning and scheduling in a decomposition framework. Chemical

Engineering Science, 2009, 64, 3585.

·M.G. Ierapetritou, Z. Li. Modeling and managing uncertainty in process planning and scheduling.

Optimization and Logistics Challenges in the Enterprise, W. Chaovalitwongse et al.(eds.), Springer

Optimization and Its Applications 30, 2009, 97.

·Z. Li, M.G. Ierapetritou. Reactive scheduling using parametric programming. AIChE Journal, 2008, 54,

2610.

·Z. Li, M.G. Ierapetritou. Robust optimization for process scheduling under uncertainty. Industrial &

Engineering Chemistry Research, 2008, 47, 4148.

·Z. Li, M.G. Ierapetritou. Process scheduling under uncertainty: review and challenges. Computers &

Chemical Engineering, 2008, 32, 715.

·Z. Li, M.G. Ierapetritou. Process scheduling under uncertainty using multiparametric programming. AIChE

Journal, 2007, 53, 3183.

·Z. Li, M.G. Ierapetritou. A new methodology for the general mpMILP problems. Industrial & Engineering

Chemistry Research, 2007, 46, 5141.

	1-20
	21-50
	51-80
	81-137

