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There has been a lot of attention in recent years towards the application of mathematical modeling and 

optimization approaches for the solution of production planning and scheduling problems. This is mainly due 

to the changing economic environment which pushes for more efficient process operations. However, there 

are still a number of challenges that restrict the effective application of optimization for planning and 

scheduling problem especially in the process industry. First, decision making in process operations is 

frequently based on parameters of which the values are uncertain. A systematic treatment of those 

uncertainties (e.g., processing time variations, rush orders, failed batches, machine breakdowns, etc) is 

necessary to satisfy the customer demands, increase the efficiency of operations and improve the plant 

profitability. Moreover, the interactions between the different decision-making levels were often ignored in 

existing solution approaches, which leads to sub-optimal and even infeasible solutions. Thus the integration 

of different decision making levels has been recognized by the research community as an imperative 

problem. 

In this work, systematic methods have been developed to address the above challenges. First, different 

methodologies are proposed to address the uncertainties in process scheduling problem: robust optimization 

based preventive scheduling strategy which aims at generating a robust preventive schedule to handle the 

possible parameter perturbations; parametric programming based reactive scheduling strategy which aims at 

responsive schedule regeneration or updating upon the happening of disruptive events. To address the 

interaction between planning and scheduling decision levels, a dual decomposition based approach that 

targets the solution of large scale planning and scheduling integration problem was proposed, which aims at 

decreasing the computational complexity through decomposition and parallel computation. Finally, the 

rolling horizon method which provides a promising modeling framework for integrated planning and 
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scheduling and incorporation of uncertainty is studied. A novel method of generating production capacity 

model through parametric programming technique is proposed, and it is verified that the incorporation of the 

capacity model into the rolling horizon framework can improve the solution quality. 
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Chapter 1  

Introduction  

1.1 Planning and scheduling in the process industry 

Modern process industry (e.g., chemical, food, pharmaceutical, refineries, etc.) faces major new challenges 

through increased global competition, greater regulatory pressures and uncertain prices of energy, raw 

materials and products. These competitive concerns increase the focus on integrated processes, information 

technology, and consideration of multiple decision criteria including profitability, flexibility, service quality 

and the production efficiency. The success of process industry largely depends on how efficiently it generates 

value by dynamically optimizing deployment of its supply chain resources. Among the challenges for the 

dynamic optimization of the entire supply chain resources are the rigorous but tractable optimization of 

process operations and the efficient integration of different decision making stages as well as the 

consideration of uncertainty and risk factors. Planning and scheduling deal with the allocation of available 

resources over time to perform a set of tasks required to manufacture one or more products, and they are the 

most important topics in process operations (Grossmann & Westerberg, 2000).  

Planning problem corresponds to a higher level of process operation decision making since it considers 

longer time horizon and multiple orders that involve different operating conditions as well as unit changes, 

price and cost variability. Planning in process industry is used to create production, distribution, sales and 

inventory plans based on customer and market information while observing all relevant constraints. In 

particular, operational plans have to be determined which are aimed to structure future production, 

distribution and other related activities according to business objectives. Based on these operational plans, 

detailed schedules are worked out which define the precise timing and sequencing of individual operations as 

well as the assignment of the required resources over time. Production planning provides the decision support 

systems for the logistics in the long range operation of networks of plants, and their coordination with 

marketing and business considerations. A higher level of planning is supply chain planning/management 
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(Kallrath, 2002). In supply chain planning, we usually consider material flow and balance equations 

connecting sources and sinks of a supply network. Time-indexed models using a relative coarse 

discretization of time, e.g., a year, quarters, months or weeks are usually accurate enough. Process industry 

supply chains, involving manufacturers, suppliers, retailers and distributors, strives to improve efficiency and 

responsiveness. Supply chain planning considers a fixed infrastructure over a short- to medium-term, and 

seeks to identify how best to use the production, distribution and storage resources in the chain to respond to 

orders and demand forecasts in an economically efficient manner. Supply chain planning provides the 

decision support systems for the logistics in the long range operation of networks of plants, and their 

coordination with marketing and business considerations. These problems often give rise to large 

multi-period optimization problems where a major challenge lies in the effective aggregation of more 

detailed scheduling and operational models (Shah, 2005). 

Process scheduling addresses the optimal assignment of tasks to units over the allotted time horizon in 

the operations of multiproduct and multipurpose plants that manufacture a variety of products through 

several sequences of operations operate in batch and/or continuous mode. Scheduling of batch and 

continuous processes can have a major impact on the overall profitability of a process, as well as on the 

timely delivery of products. Major problems include sequencing, scheduling of equipment utilization and 

maintenance over a planning horizon, and inventory considerations of a process. Such problems form 

perhaps difficult combinatorial optimization problems but also contribute to high payoffs. In an industrial 

process, each task requires certain amounts of specified resources for a specific time interval called the 

processing time. The resources include the use of equipment, the utilization of raw material or intermediates, 

the employment of operators etc., and tasks involve the chemical or physical transformation of materials, 

transportation of products or intermediates, cleaning, and maintenance operations etc. Scheduling objective 

can take many forms such as minimizing the time required to complete all the tasks (the makespan), 

minimizing the number of orders completed after their committed due dates, maximizing customer 

satisfaction by completing orders in a timely fashion, maximizing plant throughput, maximizing profit or 

minimizing production costs. Scheduling decisions to be determined include the optimal sequence of tasks 

taking place in each unit, the amount of material being processed at each time in each unit and the processing 

time of each task in each unit. 
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Planning and scheduling can be distinguished based on various characteristics. First in terms of the 

considered time horizon, long-term planning problems deal with longer time horizons (e.g., months or years) 

and are focused on higher level decisions such as timing and locations of additional facilities and levels of 

production. The area of medium-term scheduling involves medium time horizons (e.g., weeks or months) and 

aims to determine detailed production schedules, which can result in very large scale problems.  Short-term 

scheduling models address short time horizons (e.g., days or weeks) and are focused on determining detailed 

sequencing of various operational tasks. Second in terms of the decisions involved, short-term scheduling 

provides feasible production schedule considering the detailed operation conditions; while planning involves 

consideration of financial and business decisions over extended periods of time. Lastly considering 

uncertainty, short-term scheduling need to consider the disturbing events such as rush orders, machine 

breakdown and attempt to absorb the impact; while the planning need to foresee the possible changes in the 

future and the effects of the current decisions thus achieving an optimal solution for the benefits of the entire 

planning time horizon. Planning and scheduling of process systems are also closely linked activities. 

Production planning determines the optimal allocation of resources within the production facility over a time 

horizon of a few weeks up to few months, scheduling provides the feasible production schedules to the plant 

for every day operations. Since the boundaries of planning and scheduling problems are not well established 

and there is an intrinsic integration between these decision making stages. 

1.2 Modeling and optimization for planning and scheduling  

In the past, planning especially scheduling operations in the industry are mostly based on heuristics (Kallrath, 

2002), (Elliott, 2000), mathematical programming based modeling and optimization become more and more 

the state-of-the-art in the planning and scheduling operations for the process industry.  

Most of the planning problems in the process industry lead to linear programming (LP) or mixed integer 

linear/nonlinear programming (MILP/MINLP) models and contain the following building blocks: tracing the 

states of plants, modeling production, balance equations for material flows, transportation terms, 

consumption of utilities, cost terms, and special model features. Mode-changes, start-up and cancellation 

features, and nonlinear cost structures require many binary variables. Minimum utilization rates and 

transportation often require semi-continuous variables. Special features such as batch and campaign 
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constraints across periods require special constraints to implement the concept of contiguity. The model, 

however, remains linear in all variables. Only if the pooling problem occurs, e.g., in the refinery industry or 

the food industry, we are really facing a MINLP problem. In production or supply chain planning, 

time-indexed models using a relative coarse discretization of time, e.g., a year, quarters, months or weeks are 

usually accurate enough. The MILP/MINLP approaches are also often appropriate and successful for 

problems with a clear quantitative objective function (net profit, contribution margin, cost, total sales 

neglecting cost, total production for a fixed system of production reactors, energy consumption or the usage 

of other utilities, deviation of the usage of resources from their average usage), or quantitative multi-criteria 

objectives usually a subset of those just listed. 

There are lots of different approaches that appear in the literature to address the problem of scheduling 

formulation, a recent review about classification of scheduling problems is given by (Méndez et al., 2006). 

One major classification is based on the nature of the production facility to manufacture the required number 

of products utilizing a limited set of units. If every job consists of the same set of tasks to be performed in the 

same order and the units are accordingly arranged in production lines, the problem is classified as a 

multiproduct plant (also called flow-shop problem). If production orders have different routes (require 

different sequences of tasks) and some orders may even visit a given unit several times, the problem is known 

as multipurpose plant (also called job-shop problem). A number of alternative ways of formulating the 

scheduling problem exist in the open literature. One distinguishing characteristic is the time representation, 

according to which the approaches are classified into two broad categories. Early attempts of formulating the 

scheduling problem were mainly concentrated on the discrete-time formulation, where the time horizon is 

divided into a number of intervals of equal duration. The other type of method aims at developing efficient 

methods based on a continuous-time representation, a thorough review is given by (Floudas & Lin, 2004).  

1.3 Problems and challenges 

Although there has been a lot of attention in recent years towards the application of mathematical modeling 

and optimization approaches for the solution of production planning and scheduling problems, there are still 

a number of challenges that restrict the effective application of optimization for planning and scheduling 

problem in the process industry. 
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1.3.1 Uncertainty issue 

First, most of the work in the area of planning and scheduling deals with the deterministic optimization model 

where all the parameters are considered known. Along with the studies in deterministic planning and 

scheduling, consideration of uncertainties in these problems has got more attention in recent years. In real 

plants uncertainty is a very important concern that is coupled with the planning and especially scheduling 

process since many of the parameters that are associated with them are not known exactly. Parameters like 

raw material availability, prices, machine reliability, and market requirements vary with respect to time and 

are often subject to unexpected deviations. Having ways to systematically consider uncertainty is as 

important as having the mathematical model itself. 

Uncertainty appears in all the different levels of the industry from the detailed process description to 

multi-site manufacturing, such as demand or changes in product orders or order priority, batch or equipment 

failures, processing time variability, resource changes and/or recipe variations, etc. Based on the nature of the 

source of uncertainty in a process, a suitable classification has been proposed by (Pistikopoulos, 1995) as 

follows: (i) Model-inherent uncertainty, such as kinetic constants, physical properties, mass/heat transfer 

coefficients; (ii) Process-inherent uncertainty, such as flow rate and temperature variations, stream quality 

fluctuations, processing time and equipment availability; (iii) External uncertainty, including feed stream 

availability, product demands, prices and environmental conditions; (iv) Discrete uncertainty, such as 

equipment availability and other random discrete events, operational personnel absence. To include the 

description of uncertain parameters within the optimization model of the planning and scheduling problem, 

several methods have been used: bounded form; probability distribution function and fuzzy description. 

Following the alternative description methods for uncertainty, different scheduling models and optimization 

approaches have been developed. 

Methodologies for process scheduling under uncertainty aim at producing feasible, robust and optimal 

schedules. According to the different treatment of uncertainty, process scheduling methods can be classified 

into two groups: reactive scheduling and preventive scheduling. Reactive scheduling is a process of 

modifying the existing schedule during the process operation to adapt to changes (uncertainty) in production 

environment, such as disruptive events, rush order arrivals, order cancellations or machine breakdowns. 

Preventive scheduling on the other hand generates scheduling policies before uncertainty occurs. Detail 
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classification of preventive scheduling includes: stochastic scheduling, robust optimization method, fuzzy 

programming method and sensitivity analysis and parametric programming method. 

The inability of many scheduling systems to address the general issue of uncertainty is cited as a major 

reason for the lack of influence of scheduling research in industrial practice. In the commercial planning and 

scheduling systems, there exist few generic packages for risk analysis to support the resolution of 

optimization problems under uncertainty. Most tools claim to provide real-time scheduling capabilities and 

what if scenario analysis. In general, they are able to generate updated schedules as disruptions occur, and use 

interactive Gantt charts which allow to drag and drop operations for manual rescheduling; however, the 

incorporation of robustness issues within a systematic procedure is not considered at all. 

1.3.2 Integration issue 

Production planning and scheduling belong to different decision making levels in process operations, they 

are also closely related since the result of planning problem is the production target of scheduling problem. 

The planning problem deals with longer term issues compared to scheduling with the emphasis being on the 

optimization of production capacity minimizing cost. In the process industry, the most commonly used 

planning and scheduling decision making strategy follows a hierarchical approach, in which the planning 

problem is solved first to define the production targets and the scheduling problem is solved next to meet 

these targets. However, the main issue with this traditional strategy is the lack of communication between the 

two decision levels, i.e., the planning decisions generated might cause infeasible schedule subproblems. Thus 

at the planning level, the effects of changeovers and daily inventories are neglected, which tends to produce 

optimistic estimates that cannot be realized at the scheduling level, i.e., a solution determined at the planning 

level does not necessarily lead to feasible schedules. Moreover, the optimality of the planning solution cannot 

be ensured because the planning level problem might not provide an accurate estimation of the production 

cost, which should be calculated based on the details of the scheduling problem. 

Therefore, it is important and necessary to develop methodologies that can effectively integrate 

production planning and scheduling. However, since production planning and scheduling are dealing with 

different time scales, the major challenge towards the integration is dealing with the big computational 

complexity associated with the resulted optimization problem. To overcome the above difficulty, most of the 
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work appeared in the literature aim at decreasing the problem scale through different types of problem 

reduction methodologies and developing efficient solution strategies as summarized by (Grossmann et al., 

2002). In this chapter, we are aiming of reviewing the existing work in the area of planning and scheduling 

integration as classified in the following subsections. 

1.4 Project objectives 

To address the challenges for planning and scheduling operations as stated in previous subsections, the first 

general research objective is to develop systematic method in addressing the uncertainty in process 

operations and to help the decision maker better understand, manage and tackle uncertainty. The second part 

of the research objective is related to the integrated planning and scheduling decision making. Specifically, 

the following research objectives will be studied: 

(1) Developing systematic uncertainty analysis framework with parametric programming technique,  

(2) Developing effective preventive scheduling which uses robust optimization formulation,  

(3) Developing new reactive scheduling technique,  

(4) Developing efficient decomposition based methodology to address large scale integrated planning 

and scheduling optimization problems.  

(5) Consideration of production capacity model in the rolling horizon solution framework. 

The above objectives are studied through different strategies in this thesis as follows: 

Specific objective 1: Parametric programming based uncertainty analysis method 

In real plants, uncertainty is a very important concern that is coupled with the scheduling process since many 

of the parameters that are associated with scheduling are not known exactly. Parameters like raw material 

availability, prices, machine reliability, and market requirements vary with respect to time and are often 

subject to unexpected deviations. To better understand uncertainty, the effect of different uncertainties on 

planning/scheduling performance should be provided. To address this issue, a parametric programming 

based uncertainty analysis method for MILP problem is proposed and applied to the scheduling problem. 

This part of work will be elaborated in Chapter 2. 

Specific Objective 2: Preventive scheduling – efficient robust schedule generation 
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Recognizing the fact that real plants exist in a dynamic environment where the scheduling parameters change 

as the schedule is being executed, a schedule developed beforehand may become inefficient or even 

infeasible. The uncertainty considered in this work can be viewed as fluctuations in product demands, prices 

and processing times, etc. The expected range of parameter uncertainty is incorporated within the short-term 

scheduling model so as to determine a robust schedule capable of meeting the expected range of uncertain 

parameter values. In this specific research, a new robust scheduling formulation is proposed which will avoid 

these drawbacks of existing methods. Chapter 3 covers this part of research. 

Specific Objective 3: Reactive scheduling 

The ability to react to unexpected events during the execution of a schedule is an important part of plant 

operating strategy. The uncertainty considered in this direction includes rush order, order cancellation and 

unexpected deviations in unit availability (machine break-down). Current capabilities of optimization 

methods to reactive scheduling problems are still very restricted and mostly focused on sequential batch 

processes. More general, efficient and systematic rescheduling tools are required for recovering feasibility 

and efficiency with short reaction time and minimum additional cost. The objective of reactive scheduling is 

to determine the optimal rescheduling policy that minimizes the deviations from the old schedule while 

taking into account the satisfaction of other production constraints. The main effort should be oriented 

towards avoiding a time-expensive full scale rescheduling, allowing during the rescheduling process only 

limited changes to the scheduling decisions already made at the beginning of the time horizon. In this 

direction, we will mainly aim at developing effective reactive scheduling method to avoid the high 

computational effort needed by the traditional re-scheduling framework. Chapter 4 discussed more detail of 

this work. 

Specific Objective 4: Solution strategy for integrated planning and scheduling 

In the past, the problem integrated planning and scheduling is not well addressed. The main reason is that 

many realistic industrial integrated planning and scheduling problems are large scale discrete optimization 

problems. The objective of this research is to develop efficient decomposition based methodology to solve 

the large scale full space integrated planning and scheduling problem. This part of work is presented in 

chapter 5. 

Specific Objective 5: Rolling horizon framework for integrated planning and scheduling 
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The final objective is to develop an integrated methodology to handle uncertainty in integrated planning and 

scheduling problem. Rolling horizon method provides a promising framework for this objective. However, 

the most existing rolling horizon method does not consider the quality of the solution because of lacking the 

capability in modeling the production capacity information. Basically, we proposed a novel method to 

generating the accurate production capacity information for short term scheduling problem, which can be 

further incorporated into the planning level and also to improve the quality of the final solution. This has been 

verified through its application in rolling horizon based solution method. This work is explained in Chapter 6. 
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Chapter 2  

Uncertainty Analysis with Parametric Programming  

 

Abstract: In this chapter, a novel parametric programming algorithm is proposed to address the uncertainty in 

the right hand side (RHS), left hand side (LHS) and objective function of a mixed integer linear programming 

problem. The problem of process scheduling under uncertainty was further studied using the proposed 

parametric programming method. 

 

2.1 Introduction 

In real plants, uncertainty is a very important concern that is coupled with the scheduling process since many 

of the parameters that are associated with scheduling are not known exactly. Parameters like raw material 

availability, prices, machine reliability, and market requirements vary with respect to time and are often 

subject to unexpected deviations. Having ways to systematically consider uncertainty is as important as 

having the scheduling model itself. In essence, uncertainty consideration plays the role of validating the use 

of mathematical models and preserving plant feasibility and viability during operations. 

Stochastic optimization is the most commonly used approach in the literature for scheduling under 

uncertainty (Balasubramanian & Grossmann, 2002; Bonfill et al., 2004; Bonfill et al., 2005; Ierapetritou & 

Pistikopoulos, 1996; Orçun et al., 1996; Petkov & Maranas, 1997), in which the original deterministic 

scheduling model is transformed into stochastic model treating the uncertainties as stochastic variables. 

Within the stochastic programming models we can distinguish the following categories: 

two-stage/multi-stage stochastic programming and chance constraint programming based approach. Fuzzy 

programming also addresses optimization problems under uncertainty and is applied in uncertain scheduling 

(Balasubramanian & Grossmann, 2003; Petrovic & Duenas, 2006; Wang, 2004). It can be used in the 

situation when probabilistic information is not available. Fuzzy set theory and interval arithmetic are used to 

describe the imprecision and uncertainties in process parameters. Robust optimization methods aims at 
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building the robust preventive schedule to minimize the effects of disruptions on the performance measure 

(Janak et al., 2007; Jia & Ierapetritou, 2007; Lin et al., 2004; Vin & Ierapetritou, 2001). It tries to ensure that 

the predictive and realized schedules do not differ drastically while maintaining a high level of schedule 

performance. Except the above methods, an alternative way in preventive scheduling is using MILP 

sensitivity analysis and parametric programming. These methods are important as they can offer significant 

analytical results to problems related to uncertainty. Sensitivity analysis is used to determine how a given 

model output depends upon the input parameters (Jia & Ierapetritou, 2004). Parametric programming serves 

as an analytic tool by mapping the uncertainties in the optimization problem to optimal solution alternatives. 

From this point of view, parametric programming provides the exact mathematical solution of the 

optimization problem under uncertainty. 

In the literature, multiparametric linear programming (mpLP) and multiparametric quadratic 

programming (mpQP) problem are well studied due to the relatively smaller problem complexity (Bemporad 

et al., 2002; Borrelli et al., 2003; Johansen, 2002; Seron et al., 2000). General multiparametric nonlinear 

programming (mpNLP) problem is not well addressed because the exact solution of mpNLP is very complex 

(Acevedo & Salgueiro, 2003). On the other hand, existing multiparametric mixed integer programming 

methods are based on the solution of mpLP or mpQP subproblems (Acevedo & Pistikopoulos, 1997; Dua & 

Pistikopoulos, 1999). For the multiparametric mixed integer quadratic programming (mpMIQP), there is still 

not an efficient method for solving the general problem. Dua, Bozinis et al.(Dua et al., 2002) proposed a 

methodology to address this problem for the special case derived from optimal control problem. 

In the past, the multiparametric programming method has been mainly applied in online optimization, 

process control, and process synthesis (Dua et al., 2002). All these problems are of relatively small scale. 

There are not many records on the application of parametric programming in process scheduling problem. To 

our knowledge, only Ryu and Pistikopoulos (Ryu & Pistikopoulos, 2007) has reported the application of 

parametric programming to a zero-waiting scheduling problem and Pistikopoulos et al.(Hugo & 

Pistikopoulos, 2005; Pistikopoulos & Dua, 1998) have applied parametric programming for the solution of 

process planning problem.  

Formulating the scheduling problem under uncertainty as a multiparametric programming problem 

gives rise to mpMILP, mpMIQP or mpMINLP problem depending on the type of uncertain parameters. The 
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other important characteristic for multiparametric programming in scheduling formulation is that the 

problem is generally large scale, because the deterministic formulation of process scheduling problem 

involves a large number of constraints and integer variables. 

In this chapter, we proposed a framework to solve the mpMILP and mpMIQP problems generated from 

uncertain process scheduling problem. The framework is based on the idea of decomposing the original 

problem into a series of smaller problems. The parametric solution of each subproblem provides the solution 

around a given set of parameter values. The chapter’s structure is as following: in section 2.2, the parametric 

solution algorithm for general MILP problem is presented and also illustrated through a numerical example; 

in section 2.3, we illustrated its application in analyzing uncertainty for process scheduling problem; finally, 

the work is concluded in section 2.4. 

2.2 Parametric programming algorithm 

2.2.1 Problem definition 

In this work, we are studying the following general mixed integer linear programming problem with possible 

uncertain parameter on the right hand side (RHS), or as coefficient of integer variables on the left hand side 

(LHS) or the objective function (Obj): 

,
min     ( )

x y
c E xθ+          (2.1a) 

s.t. ( )Ax B D y b Eθ θ+ + = +        (2.1b) 

0,  {0,1}x y≥ ∈         (2.1c) 

 [ , ]L Uθ θ θ∈         (2.1d) 

where y represents the binary decision variables; x represents the continuous variables, θ  represent the 

uncertain parameters; [ , ]L Uθ θ represents an given range for those parametersθ . The objective is to identify 

the complete map of relationship between the optimal solution and the value of the uncertain parameter in the 

given parameter space. To describe the so-called relationship, the concept of “critical region” is used, which 

is defined as a region in the parameter space, in which a unique set of optimal integer solution and optimal 

parametric solution (represented by function of the uncertain parameters) exists. 
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2.2.2 Local parametric solution algorithm 

Based on the above formulation, we present the parametric programming algorithm as follows (flowchart is 

shown in Figure 2.1): 

 

Algorithm 1. Compute parametric solution around a given point 0θ  

Step 1. Fix 0θ θ= , solve problem (2.1) and get the optimal integer solution *y . 

Step 2. With *y y= , formulate relaxed linear programming problem based on (2.1) and compute 

a) the optimal solution  * -1 * *( )= ( )Bx A b By E D yθ θ θ− + −    (2.2) 

b) the optimal value function  * -1 * *( ) ( )Bf cA b By E D yθ θ θ= − + − ,  (2.3) 

c) the initial region * -1 * *{ | ( ) 0, }L U
BCR A b By E D yθ θ θ θ θ θ= − + − ≥ ≤ ≤ ,  (2.4) 

where the sub-index B represent the basis index for the linear programming problem. 

Step 3. Solve the following problem (θ  is treated as decision variable here): 

*

, ,
max     ( ) ( )
x y

err f c E x
θ

θ θ= − +        (2.5a) 

s.t. (2.1b)-(2.1d) 

   err ε≤         (2.5b) 

   *CRθ ∈         (2.5c) 

If the optimal objective * 0err ≤ , return ( * ( )x θ , * ( )f θ , *CR ) as the parametric solution around 0θ  

and stop. Otherwise, store the solution ( 'y , 'θ ) of problem (2.5) and go to step 4. 

Step 4. Fix 'θ θ= , 'y y= , solve problem (2.5), identify a new set of basis index B '  and get the following 

optimal value function and critical region 

-1
' ''( ) ( ' ')B Bf c A b By E D yθ θ θ= − + −       (2.6) 

-1
'' { | ( ' ') 0, }L U

BCR A b By E D yθ θ θ θ θ θ= − + − ≥ ≤ ≤      (2.7) 

Step 5. Define * *' { | '( ) ( )}EXCR CR CR f fθ θ θ= ∩ ∩ ≤ , update *CR by excluding EXCR from it, then go 

to step 3.  
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Figure  2.1 Flowchart of the parametric MILP algorithm 
 
 
The correctness of the algorithm 1 is provided by the following theorem. 

Theorem. The output of algorithm 1 ( * ( )x θ , * ( )f θ ) is the optimal solution and optimal value function of 

problem (2.1) in *CR  that covers 0θ . 

Proof: First, the solution * ( )x θ  derived from (2.2) and the value function * ( )f θ  derived from (2.3) must be 

the optimal solution at point 0θ  because they satisfy the optimality conditions of relaxed LP problem, which 

is derived from (2.1) at the optimal integer solution at point 0θ .  

Second, the solution ( * ( )x θ , * ( )f θ ) keeps its optimality in the final *CR with the following reasons. 

Except all the original constraints of (2.1), problem (2.5) includes a new objective (2.5a) to seek the 

parameter value that can provide a better (smaller) value function, (2.5b) is used to stop the solution once a 

better value function is found, soε  is set as a small positive number; (2.5c) is a restriction of the solution 

space to current critical region *CR . So problem (2.5) can be solved to check whether the value function 

* ( )f θ keeps its optimality for all the θ  values in the region *CR . If the optimal objective * 0err ≤ , it means 
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that the optimality of * ( )f θ  in the whole region is ensured because no better value function can be found. 

Otherwise, it means that at the solution point 'θ , the optimal value function should be a different one other 

than * ( )f θ , then the current critical region *CR  needs to be updated by excluding the region around 'θ that 

takes this better value function, this region is EXCR  as defined in step 5. With the update on the critical 

region, the final region will take a unique value function which is ensured to be optimal. Thus the correctness 

of the algorithm is proved.      □ 

 

Remarks 

(1) The exclusion operation in step 5 is performed through selecting one constraint in EXCR that 0θ violates, 

and add this constraint with reversed inequality sign to *CR . 

(2) Depending on the source of the uncertainty: objective function (Obj), Right hand side (RHS) of the 

constraints, constraint matrix on the Left hand side (LHS), the optimal parametric objective value 

function will be quadratic, the parametric solution will be either linear, quadratic or nonlinear fractional 

function, they are summarized as Table 2.1. 

Table 2.1 Summary of the characteristic of parametric solution 
 * ( )f θ  * ( )x θ  CR 

RHS 
Linear 

-1 *( )BcA b By Eθ− +  
Linear 

-1 *( )BA b By Eθ− +  Linear 

Obj 
Linear 

-1 *( ) ( )Bc F A b Byθ+ −  
Constant 
-1 *( )BA b By−  Linear 

LHS* 
Linear 

-1 * *( )BcA b By D yθ− −  
Linear 

-1 * *( )BA b By D yθ− −  Linear 

Obj+RHS 
Quadratic 

-1 *( ) ( )Bc F A b By Eθ θ+ − +  
Linear 

-1 *( )BA b By Eθ− +  
Quadratic 

Linear 

Obj+LHS* 
Quadratic 

-1 * *( ) ( )Bc F A b By D yθ θ+ − −  
Linear 

-1 * *( )BA b By D yθ− −  
Quadratic 

Linear 

RHS+LHS* 
Quadratic 

-1 * *( )BcA b By E D yθ θ− + −  
Linear 

-1 * *( )BA b By E D yθ θ− + −  
Quadratic 

Linear 

Obj+RHS+LHS* 
Quadratic 

-1 * *( ) ( )Bc F A b By E D yθ θ θ+ − + −
Linear 

-1 * *( )BA b By E D yθ θ− + −  
Quadratic 

Linear 
* ( )f θ : optimal parametric objective value function;   * ( )x θ : Optimal parametric solution 
CR: critical region;  LHS*: uncertainties only appear as coefficients of integer variables 

(3) Notice that here we are only considering the LHS uncertainty in the coefficients of integer variables, for 

the general LHS uncertainty appear also as coefficient of continuous variable, the optimal parametric 
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objective function, optimal parametric solution and critical region will be represented by nonlinear 

fractional function. 

(4) The proposed parametric programming algorithm has been extended to address the general parametric 

Linear Complementarity Problem (Appendix A). 

2.2.3 Exploring the parameter space 

Based on the above algorithm for computing local parametric solution around a given point, we can develop 

the algorithm to compute the complete parametric solution map. As pointed out in Table 2.1, the critical 

region can be described by quadratic and/or linear constraints depending on the position of the uncertain 

parameters. For the case of quadratic constraints, the region might be nonconvex and it is hard to find an 

exact method to partition the original parameter space, so currently only random testing method is proposed 

to explore the parameter space, i.e., the initial given point is randomly generated inside the parameter space, 

then a testing step is applied to check whether it is already covered by identified critical regions, then the 

local parametric solution algorithm will be applied.  

In the following, we are presenting an exact method for the case that the critical region is described by 

linear constraints. The whole parameter space is initially described as an unexplored region. Every time a 

new critical region is identified inside an unexplored region in the parameter space, this region is further 

partitioned to identify the unexplored areas. The unexplored area of the parameter space is represented by the 

union of a set of “unexplored regions”. The process is repeated until all of the unexplored areas in the 

parameter space have been studied. The detail algorithm is as follows: 

 

Algorithm 2.  Compute complete parametric solution map  

Step 1. Set initial unexplored region set {[ , ]}L UR θ θ= , and identified critical region set S=∅ . 

Step 2. If R is empty, stop. Otherwise, arbitrarily select one region r from set R , call the local parametric 

solution algorithm to compute a critical region CR around an point inside this region. Store the 

critical region CR into S : { }S S CR= ∪ . 

Step 3. Partition the region r and identify the unexplored region in r. Store them into R and delete r from R. 

Go to step 2. 
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In the step 2 of algorithm 2, it is necessary to identify the remaining part of a given region based on the 

identified critical regions inside it. This can be achieved following the method described by (Dua & 

Pistikopoulos, 2000). For example, for a two-dimension parameter space, assume that the initial unexplored 

region is r0, a critical region CR is identified inside it, and CR is described as follows: 

CR= {θ | 1 2 3( ) 0, ( ) 0, ( ) 0c c cθ θ θ≤ ≤ ≤ },  

where 1 2 3, ,c c c represent linear constraint function of θ . The partition procedure considers one by one the 

inequalities that define CR. For example, considering the constraint 1( ) 0c θ ≤ , the first new unexplored 

region is given by: 1 0 1{ | , ( ) 0}r r cθ θ θ= ∈ ≥ , which is obtained by reversing the sign of the inequality 

1( ) 0c θ ≤ , adding it to the constraints of r0 and removing redundant constraints. Thus, by considering the rest 

of the inequalities one by one, the complete unexplored region in region r is given by 1 2 3r r r∪ ∪  

2 0 1 2{ | , ( ) 0, ( ) 0}r r c cθ θ θ θ= ∈ ≤ ≥ , 3 0 1 2 3{ | , ( ) 0, ( ) 0, ( ) 0}r r c c cθ θ θ θ θ= ∈ ≤ ≤ ≥  

These region are depicted in Figure 2.2.   

 
(a) 

 
(b) 

Figure  2.2 Illustration of identifying the remaining part of a given region. 
a) A given region and an identified critical region inside this 
b) Partition of the given region into new unexplored region 

At the end of algorithm 2, a complete map of all critical regions is obtained. Each critical region is associated 

with a corresponding parametric solution as expressed in (2.2)-(2.3). 

Finally, it is worth to point out that the number of critical regions is mostly related to the size of the 

parameter space which is determined by its dimension (the number of uncertain parameters) and the length in 

every dimension (the range for every uncertain parameter). Thus when the parameter space is large, the 

1θ

2θ

r1 

r2 

r3 

c1(θ)≤0 

1θ

2θ

CR 

r0 

c2(θ)≤0 

c3(θ)≤0 
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number of the critical regions can be also large. However, in this work, we are focusing on the algorithm for 

generating this parametric solution information and do not study the parametric solution information storage 

problem. 

The proposed method has been implemented in GAMS and MATLAB, where MATLAB is used to 

formulate the standard form of problem based on GAMS file, to control the flow and to calculate the 

optimality conditions. CPLEX 10.1 is used to solve MILP. In the following, problems are all solved in a 

Pentium CPU (2.8GHz, 1Gb RAM) running in Windows XP operation system. 

 
Numerical Example 
 
Considering the following MILP problem 

1 2 1 2,

1

2

1 2

1 2

1 1

2 2

1

1

2

1,2

2

1 2

2

1

min           3 2 10 5

. .                            10 2
10

20
2 12

20 0
20 0

4
0, {0,1},0 10

x y
z x x y y

s t x
x
x x

x x
x y
x y

x x
x y

θ θ
θ θ

θ
θ

θ

= − − + +

≤ + +
≤ − +
+ ≤ −
+ ≤ +

− ≤
− ≤
− + ≥

≥ ∈ ≤ ≤

 

 
To illustrate the proposed parametric solution algorithm, let’s consider the case of finding the local 

parametric solution around the point θ0
 
=(5,1), then the following steps will be applied: 

Step 1, solve MILP with fixed θ0
 
, get:  y*=(0,1), z*= -7  

Step 2, solve mpLP with fixed y*
  
to cover θ0

 
 

f*(θ)= -15+2θ1-2θ2 , x1
*(θ)=0, x2

*(θ)=10-θ1+θ2
 
 

1 2

1 20

1 2

1 2

6
1.5 4

2 10
0 , 10

CR

θ θ
θ θ

θ θ
θ θ

− ≤⎧
⎪− + ≤ −⎪= ⎨− + ≤⎪
⎪ ≤ ≤⎩

 (Figure 2.3a) 

1 st iteration: step 3, check whether better solution exist in CR0  

results: err*>0, y’=(1,1), θ’=(8,6)   

1st iteration: step 4, solve mpLP with fixed y’ to cover θ’
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f’(θ)= 0.3333-1.6667θ1  
1 2

'
1 2

1 2

1.333 4.667
1.5 20

0 , 10
CR

θ θ
θ θ

θ θ

− ≤⎧
⎪= + ≤⎨
⎪ ≤ ≤⎩

 (Figure 2.3b) 

1 st iteration: step 5, update CR0 by excluding CRex (Figure 2.3c) 

1 2

1 2
0

1 2

1 2

1 2

6
1.5 4

2 10
1.333 4.667
0 , 10

CR

θ θ
θ θ

θ θ
θ θ

θ θ

− ≤⎧
⎪− + ≤ −⎪⎪= − + ≤⎨
⎪ − ≤⎪
⎪ ≤ ≤⎩

 (Figure 2.3d) 

2nd iteration: step 3, check whether better solution exist in CR0
 
 

Results: err*>0,  y’=(1,1), θ’=(8.3,6.3)   

2 nd iteration: step 4, solve mpLP with fixed y’ to cover θ’ 

f’ (θ)= -23+5θ
1
-5θ

2  

1 2

1 2'

1 2

1 2

6
1.333 4.667

1.5 2
0 , 10

CR

θ θ
θ θ

θ θ
θ θ

− ≤⎧
⎪− + ≤ −⎪= ⎨− + ≤⎪
⎪ ≤ ≤⎩

 

2 nd iteration: step 5, update CR0
 
by excluding CRex (Figure 2.3e) 

3 nd iteration: step 3, err*=0, stop and return the parametric solution around θ0 

1 2

1 2*

1 2

1 2

6
1.333 4.667

2.667
0 , 10

CR

θ θ
θ θ

θ θ
θ θ

− ≤⎧
⎪ − ≥⎪= ⎨ − ≥⎪
⎪ ≤ ≤⎩

 (Figure 2.3f) 

 (y1
*,y2

*)=(0,1) , x1
* (θ)=0, x2

* (θ)=10-θ1+θ2, f* (θ)= -15+2θ1-2θ2   

 

With this critical region, the original parameter space can be partitioned and same local parametric solution 

algorithm will be applied to every unexplored region. Finally, the critical region map of the parametric 

solution will be derived as shown in Figure 2.4. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
 

Figure  2.3 Illustration of the solution procedure for the numerical example 
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Figure  2.4 Final parametric solution map(partition of the parameter space into critical regions) 

 

2.3 Uncertainty analysis for scheduling problem 

Problem Formulation 

The mathematical model used for batch process scheduling in this chapter follows the main idea of the 

continuous time formulation proposed by (Ierapetritou & Floudas, 1998). The general model involves the 

following objective and constraints: 

 
Problem (2.8): 

  ,
,

max s s n
s n

price d∑         (2.8a) 

 s.t. , , 1
j

i j n
i I

wv
∈

≤∑    ,j J n N∀ ∈ ∀ ∈     (2.8b) 

  , , 1 , , , , , , , 1
s i s i

P c
s n s n s n s i i j n s i i j n

i I j J i I j J

st st d b bρ ρ− −
∈ ∈ ∈ ∈

= − − +∑ ∑ ∑ ∑  s S∀ ∈ , n N∀ ∈   (2.8c) 

  max
,s n sst st≤     s S∀ ∈ , n N∀ ∈     (2.8d) 

  min max
, , , , , , , ,i j i j n i j n i j i j nv wv b v wv≤ ≤   i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (2.8e) 

  ,s n s
n

d r≥∑     s S∀ ∈      (2.8f) 

  , , , , , , , , , ,i j n i j n i j i j n i j i j nTf Ts wv bα β= + +  i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (2.8g) 

  , , 1 , , , ,(1 )i j n i j n i j nTs Tf H wv+ ≥ − −   i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (2.8h) 



- 22 - 
 

  , , 1 ', , ,' ,(1 )i j n i j n i j nTs Tf H wv+ ≥ − −   , ' ji i I∀ ∈ , j J∀ ∈ , n N∀ ∈   (2.8i) 

  , , 1 ', ', ,' ',(1 )i j n i j n i j nTs Tf H wv+ ≥ − −   , ' , 'ji i I i i∀ ∈ ≠ , , 'j j J∀ ∈ , n N∀ ∈  (2.8j) 

  , , 1 , ,i j n i j nTs Ts+ ≥    i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (2.8k) 

  , , 1 , ,i j n i j nTf Tf+ ≥     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (2.8l) 

  , ,i j nTs H≤     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (2.8m) 

  , ,i j nTf H≤     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (2.8n) 

In the above formulation, the objective function is the profit (different performance measures can be used like 

makespan); allocation constraints (2.8b) state that only one of the tasks can be performed in each unit at an 

event point (n); constraints (2.8c) represent the material balances for each state (s) expressing that at each 

event point (n) the amount ,s nst is equal to that at event point (n-1), adjusted by any amounts produced and 

consumed between event points (n-1) and (n), and delivered to the market at event point (n); the storage and 

capacity limitations of production units are expressed by constraints (2.8d) and (2.8e); constraints (2.8f) are 

written to satisfy the demands of final products; and constraints (2.8g) to (2.8n) represent time limitations due 

to task duration and sequence requirements in the same or different production units. Detailed description of 

the symbols in the above formulation is provided in the notation section of this chapter. It should be noticed 

that minimum product demand and minimum processing time in the uncertain range can be used to identify 

an appropriate event point number before the multiparametric solution process to avoid the loss of solution 

optimality. 

 
Example 

This example process involves three processing stages, namely mixing, reaction, and separation, which are 

processed in 3 units respectively. The state-task-network (STN) representation of this example is shown in 

Figure 2.5 and the data is shown in Table 2.2. Products include S3 and S4 (the purified product). For the 

deterministic formulation with 5 event points, there are 236 constraints, 45 integer variables and 86 

continuous variables. Solving the deterministic MILP problem normally requires around 0.25 CPU second. 
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Figure  2.5 State Task Network (STN) of Example 1 

(1) Demand Uncertainty 

Assuming only demand uncertainty for the two products gives rise to RHS uncertainty in problem (P2) and 

an mpMILP problem is solved. The demands are defined in Table 2.3, where the variation ranges of the 

uncertain parameters are given in a boundary form. The corresponding multiparametric programming 

problem (P2) is solved using the proposed method and the solution is shown in Figure 2.6 and Table 2.4 (note 

that in all the examples of this chapter the objective is set as minimum negative profit). The total time 

consumed is 140.6 CPU sec. 

As stated in section 2, all the parametric objectives are linear and the critical regions are formed by 

linear constraints in this case. Among the critical regions (Figure 2.6), CR3 and CR5 have an overlapping 

area, because they have same objective function and integer solution and are actually belong to the same 

larger nonconvex critical region. This is also a characteristic of the solution for mpMILP, which is different 

from mpLP which always has a convex critical region. 

 
Table 2.2 Data for example 1 

Unit Capacity Suitability Processing time 
Unit 1 100 Task 1 4.5 
Unit 2 75 Task 2 3.0 
Unit 3 50 Task 3 1.5 
state Storage capacity Initial amount Price 
State 1 Unlimited unlimited 0 
State 2 100 0.0 0 
State 3 100 0.0 0.7 
State 4 unlimited 0.0 1.0 

 
Table 2.3 Demand uncertainty for example 1 

Parameter Value Variation Range 
Demand of S3 1θ  10 50θ≤ ≤  
Demand of S4 250 θ+  250 50θ− ≤ ≤  

 
Table 2.4 Solution of example 1 with demand uncertainty 

 Parametric Objective Critical Region 
1 90.46−  CR1 
2 272.097 0.029θ− +  CR2 
3 196.14 0.158θ− +  CR3, CR5 
4 88.55−  CR4 
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Figure  2.6 Critical region of Example 1 with demand uncertainty 
 
(2) Price Uncertainty 

In this case, we consider the price uncertainty as shown in Table 2.5. Thus the uncertainty is included in the 

objective function and a specific mpMIQP problem is solved. The solution of the multiparametric 

programming problem is shown in Table 2.6 and Figure 2.7, where the solution still has linear objectives and 

critical regions formed by linear inequalities. This verified the conclusion in section 2. Total time consumed 

is 114 CPU sec. 

 
Table 2.5 Price uncertainty for example 1 

Parameter Value Variation Range 
Price of S3 10.7 θ+  10.5 0.5θ− ≤ ≤  
Price of S4 21 θ+  20.5 0.5θ− ≤ ≤  

 

Table 2.6 Solution of example 1 with price uncertainty 

 Parametric Objective Critical 
Region 

1 1 290.46 36.06 65.22θ θ− − −  CR1 
2 271.47 71.47θ− −  CR2 
3 1 288.55 55.07 50θ θ− − −  CR3, CR4 
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Figure  2.7 Critical region of Example 1 with price uncertainty 
 

(3) Demand and Price uncertainty 

In this case both demand and price uncertainties are considered as shown in Table 2.7. Thus the 

corresponding multiparametric programming problem contains both RHS and objective uncertainties and is 

also mpMIQP problem. This problem is solved within 250.86 CPU sec. As analyzed in section 2, in this case, 

the optimal objective functions as shown in Table 2.8 contain quadratic function of uncertain parameters. 

Note that the critical regions (Figure 2.8) don’t involve quadratic constraints here because all of the objective 

comparison constraints are proved to be redundant in the redundancy test in step 5, so they are not involved in 

the constraints. Still, we can see that overlapped critical regions exist and they form larger nonconvex regions 

(e.g., CR1 and CR9, CR2 and CR3). The number of testing points used in this case is 600 and time consumed 

is 250.9 CPU sec. 

Table 2.7 Price and demand Uncertainty for example 1 

Parameter Value Variation Range 
Price of S3 1 20.7 0.01θ θ+ −  10.5 0.5θ− ≤ ≤  
Demand of S4 2 150 20θ θ+ −  250 50θ− ≤ ≤  
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Table 2.8 Solution of example 1 with demand and price uncertainty 

 Parametric Objective Critical 
Region 

1 1 290.46 36.06 0.36θ θ− − +  CR1, CR9 
2 71.47−  CR2, CR3 
3 1 288.55 55.07 0.55θ θ− − +  CR4 
4 2 2

1 2 1 1 2 288.55 49.07 0.25 20 1.2 0.01θ θ θ θ θ θ− − + − + −  CR5 
5 1 273.55 105.07 1.55θ θ− − +  CR6 
6 2 2

1 2 1 1 2 272.1 32.15 0.34 29.4 1.76 0.015θ θ θ θ θ θ− − + − + −  CR7 
7 2 2

1 2 1 1 2 287.66 50.13 0.35 23.32 1.4 0.012θ θ θ θ θ θ− − + − + −  CR8 
 

 

Figure  2.8 Critical region of Example 1 with price and demand uncertainty 
 
(4) Demand, Price and Processing time Uncertainty 

In this case, three different uncertain parameters are involved as shown in Table 2.9. To address the 

processing time uncertainty using the proposed method, we reformulate the duration constraints so that the 

LHS uncertain parameters only appear as coefficients of integer variables and can be transformed into RHS 

uncertainty. The original duration constraint (2.8g) is reformulated as follows: 

, , , , , , , , , ,( )i j n i j n i j i j n i j i j nTf Ts wv bα θ β= + + +
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In the new formulation, ,i jα  and ,i jβ  is calculated based on nominal processing time, and uncertainty is 

modeled through the termθ . The uncertain mixing time parameter are formulated using the above new 

duration constraints so that it is transformed into RHS uncertainty, thus an mpMIQP problem is formulated 

and solved here. Total 400 testing points is used and the elapsed time is 323.7 CPU sec. 

 

Table 2.9 Demand, price and processing time uncertainty for example 1 

Parameter Value Variation Range 
Price of S4 11 θ+  10.5 0.5θ− ≤ ≤  
Demand of S4 150 20θ−   
Mixing time 24.5 θ+  5.05.0 2 ≤≤− θ  

 

Table 2.10 Solution of example 1with demand, price and processing time uncertainty 

 Parametric Objective 
Critical Region 
( 0.5 0.5, 1,2i iθ− ≤ ≤ = ) 

1 2
1 2 188.55 44 25.16 20θ θ θ− − + +  1

1
1 2

0.3
2.63 6.06 1

CR
θ

θ θ
≤ −⎧

= ⎨− + ≤ −⎩
 

2 2
1 2 187.66 46.33 30.52 20θ θ θ− − + +  

1 2

2 1 2

1

2.63 6.06 1
1.533 1.17

0.184
CR

θ θ
θ θ

θ

− + ≤ −⎧
⎪= − + ≤⎨
⎪ ≤ −⎩

 

3 1 2 1 286.27 42.4 38.99 46.08θ θ θ θ− − + +  1 2
3

1

2.63 6.06 1
0.3 0.184

CR
θ θ
θ

− + ≤ −⎧
= ⎨− ≤ ≤ −⎩

 

4 1 2 1 290.46 65.22 32.92 13.04θ θ θ θ− − + +  

1

4 1 2 1 2

1 2 1 2

0.184
15.22 16.46 13.04 6.2
15.22 7.75 13.04 1.9

CR
θ

θ θ θ θ
θ θ θ θ

≥ −⎧
⎪= − + + ≤⎨
⎪− + + ≤⎩

 

{5 10.184 0.01CR θ= − ≤ ≤ −  

5 1 288.55 50 25.16θ θ− − +  1
6

1 2 1 2

0
15.22 7.75 13.04 1.9

CR
θ

θ θ θ θ
≥⎧

= ⎨ − − ≤ −⎩
 

6 2
1 2 172.1 50.58 25.16 20θ θ θ− − + +  1 2

7
1 2

1.223 1.074
1.533 1.17

CR
θ θ

θ θ
− + ≤⎧

= ⎨ − ≤ −⎩
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Figure  2.9 Critical region of Example 1 with demand, price and processing time uncertainty 
 

As shown in the solution (Table 2.10, Figure 2.9), the critical region and parametric objective function both 

involve quadratic terms. This also verifies the conclusion in section 2 and proves the effectiveness of the 

proposed method in solving mpMILP and mpMIQP problems. In all the different uncertainty cases addressed 

for example 1, the computation time is no more than 300 CPU seconds, where 40 evenly distributed points 

are generated in every dimension of the parameter space, which is proved to be enough to cover all the critical 

regions. During the solution process, once a point is checked and is found to be covered by any critical region, 

it is fathomed. So although 1600 points are tested, only limited points are solved to find critical region, e.g., 

only 5,4,9,7 points are solved for the above four cases, respectively. The next example illustrates the 

computational complexity for relatively larger scale problem. 
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2.4 Summary 

In this chapter, a multiparametric programming framework for MILP problem is proposed, which is further 

applied to solve the process scheduling problem under uncertainty. This method provides an exact and 

systematic way to analyze the uncertainty in process scheduling problem and the parametric information 

achieved can be used in several different ways: the result of multiparametric programming for the scheduling 

problem can be used to analyze the effect of parameter variation on the scheduling performance; and also the 

solution provides a basis for reactive scheduling in the sense that the decision maker can rapidly find a new 

schedule with the realization of uncertainty. 

To increase the efficiency of attaining the exact solution map of the corresponding mpMILP and 

mpMIQP problem, the proposed framework uses a decomposition method which solves for the parametric 

information around a certain parameter value, and not seeking for a complete map of solution at one time. 

This method can give the decision maker useful information about uncertainty effects fast. Another 

advantage of the proposed methodology is that it can be easily parallelizable by decomposing the original 

parameter space into smaller regions that can be solved in parallel thus decreasing the computational 

complexity of the algorithm.  

The proposed method is also efficient in the critical region updating process because the MILP/MINLP 

problem in step 3 of algorithm 1 is solved to seek just better but not best solution in a given critical region. In 

other words, the proposed formulation is used to seek a feasible solution but not a global optimal solution, 

thus the computation efficiency is increased. The only big computation effort is in the final iteration of the 

proposed framework which needs to prove that no better solution exists, so a global optimal solution of the 

MILP/MINLP is needed.  

The consideration of a general form of LHS uncertainty as coefficient of continuous variables is still a 

challenge. Because for this case the exact parametric solution is complex, different efficient methods have to 

be developed to address the underlying complexity of this problem.  
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Nomenclature 
 
i I∈   tasks 

sI   tasks which produce or consume state ( s ) 

jI   tasks which can be performed in unit ( j ) 

j J∈   units 

iJ   units which are suitable for performing task ( i ) 

n N∈   event points representing the beginning of a task 

s S∈   states 

pS   states belong to products 

rS   states belong to raw materials 

sprice   price of state ( s ) 

sSTI   initial amount of state ( s ) 

sSTF   final amount of state ( s ) 

,s nd   amount of state ( s ) delivered to the market at event point ( n ) 

, ,i j nwv   binary, whether or not task ( i ) in unit ( j ) start at event point ( n ) 

,s nst   continuous, amount of state ( s ) at event point ( n ) 

,
P
s iρ , ,

C
s iρ   proportion of state ( s ) produced, consumed by task( i ), respectively 

, ,i j nb   amount of material undertaking task ( i ) in unit ( j ) at event point ( n ) 

max
sst   available maximum storage capacity for state ( s ) 

min
,i jv , max

,i jv  minimum amount, maximum capacity of unit ( j ) when processing task ( i ) 

sr   market demand for state ( s ) at the end of the time horizon 

, ,i j nTf   time at which task ( i ) finishes in unit ( j ) while it starts at event point ( n ) 

, ,i j nTs   time at which task ( i ) starts in unit ( j ) at event point ( n ) 

,i jα , ,i jβ  constant, variable term of processing time of task ( i ) in unit ( j )  

H   time horizon 
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Chapter 3  

Robust Preventive Scheduling  

 

Abstract: This chapter addresses the preventive scheduling problem using robust optimization technique. 

Compared to traditional scenario based stochastic programming method; robust counterpart optimization 

method has a unique advantage that the scale of the corresponding optimization problem does not increase 

exponentially with the number of the uncertain parameters. Three robust counterpart optimization 

formulations are studied and applied to uncertain scheduling problems in this chapter. The results show that 

the “budget-parameter” based formulation is the most appropriate model for uncertain scheduling problems 

since it has the following advantages: the model has the same size as the other formulations; it preserves its 

linearity; it has the ability to control the degree of conservatism for every constraint and guarantees feasibility 

for the robust optimization problem. 

 

3.1 Introduction 

Uncertainty is a very important concern in real plants for process scheduling since many of the parameters 

associated with scheduling are not known exactly. Parameters like raw material availability, prices, machine 

reliability, processing or duration time and market requirements vary with respect to time and are often 

subject to unexpected deviations, which can cause infeasibilities and production disturbances. Thus 

scheduling under uncertainty has received a lot of attention in the open literature in recent years from 

chemical engineering and operations research communities.  

According to the different treatment of uncertainty, scheduling methods can be divided into two groups: 

reactive scheduling and preventive scheduling. Reactive scheduling deals with the problem of modifying the 

original scheduling policy or generating scheduling policy on time when uncertainty occurs. On the other 

hand, preventive scheduling aims at generating robust scheduling policies before the uncertainty occurs. 

Almost all techniques that deal with uncertainty try to find solutions flexible to changes of input data. 

Although this solution might not be optimal the target is to be as close as possible to the optimal one. Robust 
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scheduling focuses on obtaining preventive schedules that minimize the effects of disruptions on the 

performance measure, and tries to ensure that the preventive schedules maintain a high level of performance. 

For the problem of robust schedule generation, different methods have been proposed in the literature. 

Generally, the formulations can be classified into two groups: a) scenario based stochastic programming 

formulation; and b) robust counterpart optimization formulation.  

In the literature, most existing work on robust scheduling has followed the scenario-based formulation. 

(Mulvey et al., 1995) developed the scenario-based robust optimization to handle the trade-off associated 

with solution and model robustness. A solution to an optimization is considered to be solution robust if it 

remains close to the optimal for all scenarios, and model robust if it remains feasible for most scenarios. 

(Kouvelis et al., 2000)  made the first attempts to introduce the concept of robustness for scheduling problems. 

They suggest a robust schedule when processing times are uncertain and compute robust schedule based on 

maximum absolute deviation between the robust solution and all the possible scenarios, but this requires 

knowledge of all possible scenarios. Moreover, the optimal solution of each scenario is supposed to be known 

a priori. (Vin & Ierapetritou, 2001) addressed the problem of quantifying the schedule robustness under 

demand uncertainty, introduced several metrics to evaluate the robustness of a schedule and proposed a 

multiperiod programming model using extreme points of the demand range as scenarios to improve the 

schedule performance of batch plants under demand uncertainty. Using flexibility analysis, they observed 

that the schedules from the multiperiod programming approach were more robust than the deterministic 

schedules. (Balasubramanian & Grossmann, 2002) proposed a multiperiod MILP model for scheduling 

multistage flowshop plants with uncertain processing times. They minimized expected makespan and 

developed a special branch and bound algorithm with an aggregated probability model. The scenario-based 

approaches provide a straightforward way to implicitly incorporate uncertainty. However, they inevitably 

enlarge the size of the problem significantly as the number of scenarios increases exponentially with the 

number of uncertain parameters. This main drawback limits the application of these approaches to solve 

practical problems with a large number of uncertain parameters. (Jia & Ierapetritou, 2007) proposed a 

multi-objective robust optimization model to deal with the problem of uncertainty in scheduling considering 

the expected performance (makespan), model robustness and solution robustness. Normal Boundary 

Intersection (NBI) technique is utilized to solve the multi-objective model and successfully produce Pareto 
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optimal surface that captures the trade-off among different objectives in the face of uncertainty. The 

schedules obtained by solving this multiobjective optimization problem include robust assignments that can 

accommodate demand uncertainty.  

Although those uncertainty-handling frameworks that follow the scenario-based formulation target the 

generation of robust solutions with respect to optimality and feasibility, the model still has the common 

drawback of scenario based formulation: it requires some statistic knowledge of the input data, which in 

many cases may be difficult to acquire. Moreover, optimization of expectations is a practice of questionable 

validity in processes involving only a small number of “trials”, because the benefits of an optimum expected 

value can only be visible in the long term of a large number of trials. Finally, for the scenario based robust 

optimization method, the uncertainty is modeled through the use of a number of scenarios. This type of 

method provides a direct way to incorporate uncertainty. However, the problem size will increase 

exponentially with the number of uncertain parameters, which restricts its application in solving problems 

with a lot of uncertain parameters. 

As an alternative to the scenario-based formulation, the robust counterpart optimization has been 

proposed which avoids the shortcomings of the scenario-based formulation. The underlying framework of 

robust counterpart scheduling formulation is based on solving robust counterpart optimization problem for 

the uncertain scheduling problem.  

One of the earliest papers on robust counterpart optimization, by (Soyster, 1973), considered simple 

perturbations in the data and aimed to find a reformulation of the original problem such that the resulting 

solution would be feasible under all possible perturbations.  The pioneering work by (Ben-Tal & Nemirovski, 

1999), (El-Ghaoui et al., 1998), and (Bertsimas & Sim, 2003) extended the framework of robust counterpart 

optimization, and included sophisticated solution techniques with non-trivial uncertainty sets describing the 

data. The major advantages of robust counterpart optimization compared to scenario-based stochastic 

programming are that no assumptions are needed regarding the underlying probability distribution of the 

uncertain data and that it provides a way of incorporating different attitudes toward risk.  

For the problem of process scheduling under uncertainty, only very few works have been done in robust 

counterpart optimization for generating robust schedules. (Lin et al., 2004) proposed a robust optimization 

method to address the problem of scheduling with uncertain processing times, market demands, or prices. 
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The robust optimization model was derived from its deterministic model considering the worst-case values of 

the uncertain parameters, when uncertainty is in a bounded form. They also studied the case that uncertainty 

is described by known probability distribution, where the robust optimization formulation introduces a small 

number of auxiliary variables and additional constraints into the original MILP problem, generating a 

deterministic robust counterpart problem which provides the optimal/feasible solution given the (relative) 

magnitude of the uncertain data, a feasibility tolerance, and a reliability level (Janak et al., 2007). 

In this chapter, we compare several robust counterpart optimization formulations and proposed the 

appropriate formulation for scheduling under uncertainty.  The rest of the chapter is organized as follows. 

Section 3.2 introduces the robust counterpart optimization formulations and their extensions to mixed integer 

linear programming problems. In section 3.3, the problem of scheduling under uncertainty is studied based on 

robust optimization considering specific uncertainties. Several case studies are presented in section 3.4 to 

illustrate the application of different robust formulations and present some comparison results, whereas 

section 3.5 summarizes the main conclusions of the chapter. 

3.2 Robust optimization 

Compared to scenario-based stochastic programming, robust counterpart optimization represents a more 

systematic approach for optimization under uncertainty in order to determine flexible solutions. The aim of 

robust counterpart optimization is to choose a solution which is able to cope best with the various realizations 

of the uncertain data.  The uncertain data is assumed to be unknown but bounded, and most current research 

assumes convexity of the uncertainty space.   

The optimization problem with uncertain parameters is reformulated into a robust counterpart 

optimization problem.  Unlike stochastic programming, robust optimization does not require information 

about the probability distribution of the uncertain data, and does not optimize an expected value objective 

function. Robust optimization promises to essentially ensure robustness and flexibility by enforcing 

feasibility of an optimization problem for the entire given uncertainty space. 

In this section, three robust counterpart optimization formulations are presented assuming the following 

general mixed integer linear programming problem: 
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max cx           (3.P1) 

s.t.       lm m l
m

a x p l≤ ∀∑  

  binary or continuous, m 1,2...,nmx =  

For the rest of the chapter, we assume without loss of generality that data uncertainty affects only the 

elements of the left hand side matrix coefficients due to the following reasons: 

1) The objective function can be transformed into constraint; 

2) If the right hand side constant lp is subject to uncertainty, we can introduce a new variable 

1nx + which is a binary variable with fixed value 1, and the original constraint is transformed into the 

following: 

1 0lm m l n
m

a x p x +− ≤∑         (3.1)  

1 1 1nx +≤ ≤          (3.2) 

Assuming that lma are uncertain parameters, the constraints in (3.P1) are expanded as follows: 

l l

lm m lm m l
m M m M

a x a x p
∉ ∈

+ ≤∑ ∑        (3.3)  

where, lM denotes the index set for the uncertain coefficients in l-th constraint; lma represent true values for 

the coefficient parameters that take value within the uncertain range ˆ ˆ[ , ]lm lm lm lma a a a− + , where lma represent 

nominal values and ˆlma represent the variation amplitude.   

3.2.1 Soyster’s formulation 

Robust counterpart optimization can be traced back to the work of (Soyster, 1973), which is the first work 

that considered coefficient uncertainty in linear programming formulations, and showed that such uncertainty 

can be handled by an equivalent linear programming model. The approach, however, admits the highest 

protection and is the most conservative one since it ensures feasibility against all potential realizations. Thus 

it corresponds to the worst-case version of the scenario approach. 
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The worst case formulation of equation (3.3) then take the following form considering all uncertain 

parameters to take their boundary values which aims to ensure that for every possible value of the uncertain 

coefficient, the solution remain feasible: 

ˆ | |
l l l

lm m lm m lm m l
m M m M m M

a x a x a x p
∉ ∈ ∈

+ + ≤∑ ∑ ∑       (3.4) 

To eliminate the absolute value, auxiliary variable mu is introduced for each mx , lm M∈ , which defines new 

bounds for mx . Thus the following robust formulation (3.P2) is obtained. 

max cx           (3.P2) 

s.t.   ˆ
l l l

lm m lm m lm m l
m M m M m M

a x a x a u p
∉ ∈ ∈

+ + ≤∑ ∑ ∑  

,        if  is positive or binary variable
,      otherwise

m m m

m m m

u x x
u x u
=⎧

⎨− ≤ ≤⎩
 

In formulation (3.P2), if the uncertain parameter is coefficient of positive or binary variable, then no auxiliary 

variable and constraint is added because the absolute value is eliminated naturally. The robust formulation 

( , )ε σ -Interval Robust Counterpart (IRC [ , ]ε σ ) proposed by (Lin et al., 2004) belongs to this type of 

formulation. The difference is that they add certain infeasibility tolerance to the constraints to increase the 

level of control towards conservative solutions. The motivation to use Soyster’s formulation is to provide 

maximum protection against uncertainty. This type of formulation allows for mitigation of the worse-case 

scenario, however since all possible realizations of the data are considered, the solution can end up being 

overly pessimistic and the problem is more likely to be infeasible. For example, a worst case parameter 

combination where all the processing times and all the demands take the maximum value might lead to an 

infeasible schedule in a fixed time horizon due to inability of the plant to satisfy the demand in a fixed time 

horizon. 

3.2.2 Ben-Tal and Nemirovski’s formulation 

Since Soyster’s formulation is extremely conservative, it is highly desirable to provide a mechanism to allow 

tradeoff between robustness and performance. A significant step forward for developing a theory for robust 
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optimization was taken by (Ben-Tal & Nemirovski, 1999), who proposed the following robust counterpart 

formulation:  

max cx           (3.P3) 

s.t.   2 2ˆ ˆ
l l

lm m lm lm l lm lm l
m m M m M

a x a u a z p
∈ ∈

+ +Ω ≤∑ ∑ ∑   

lm m lm lmu x z u− ≤ − ≤   

Let’s consider that the values of the uncertain coefficients are obtained through random perturbations: 

ˆlm lm lm lma a aξ= +          (3.5)  

where { }lmξ ( lm M∈ ) are independent random variables symmetrically distributed in interval [-1, 1]. As 

shown by (Ben-Tal & Nemirovski, 1999), this robust formulation ensures that the probability that the l-th 

constraint is violated is at most 
2 / 2le−Ω , i.e., 

Pr
l l

lm m lm m l l
m M m M

a x a x p κ
∉ ∈

⎧ ⎫⎪ ⎪+ ≥ ≤⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑       (3.6) 

2 / 2l
l eκ −Ω=          (3.7) 

This robust optimization formulation was first introduced for linear programming problems with uncertain 

linear coefficients and is extended by (Lin et al., 2004) to MILP problems under uncertainty. The robust 

formulation ( , , )ε σ κ - Robust Counterpart (RC[ , , ]ε σ κ ) proposed by the authors belongs to this type of 

formulation. This type of robust counterpart formulation has the flexibility of controlling the degree of 

solution conservatism through the constraint violation probability 
2 /2le−Ω . Its main drawback is that it 

corresponds to a nonlinear optimization formulation. 

3.2.3 Bertsimas and Sim’s formulation 

Although Ben-Tal and Nemirovski’s robust formulation provides a way to consider the tradeoff between 

performance and robustness, it results in a nonlinear formulation. To avoid the complication of a nonlinear 

optimization, (Bertsimas & Sim, 2003) considers robust linear programming with coefficient uncertainty 

using an uncertainty set with budgets. In this robust counterpart optimization formulation, a budget parameter 

lΓ (which takes value between 0 and the number of uncertain coefficient parameters in the constraints and is 
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not necessarily integer) is introduced to control the degree of conservatism of the solution. In other words, it 

is unlikely that all of the uncertain coefficient parameters will get the worst-case value at the same time, so 

the goal of this formulation is to control that up to lΓ⎢ ⎥⎣ ⎦  of those parameters are allowed to get their worst 

case value. 

{ { }| ,| | , \ }
ˆ ˆmax | | ( ) | |

l l
l l l l l l l l l

l

lm m lm m l l lt t lS t S M S t M Sm m S
a x a x a x p

∪ ⊆ = Γ ∈⎢ ⎥⎣ ⎦ ∈

⎧ ⎫⎪ ⎪+ + Γ − Γ ≤⎢ ⎥⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

∑ ∑   (3.8) 

Where lS represents the subset contains lΓ⎢ ⎥⎣ ⎦  uncertain parameters in the constraint, lt is an index to 

describe an additional uncertain parameter if lΓ  is not an integer. Thus constraint (3.8) expresses the 

requirement that up to lΓ⎢ ⎥⎣ ⎦  uncertain parameters can get their worst-case values simultaneously, which can 

be clearly seen when lΓ is chosen as an integer ( l lΓ = Γ⎢ ⎥⎣ ⎦ ), then constraint (3.8) becomes:  

{ | ,| | }
ˆmax | |

l l l l l
l

lm m lm m lS S M Sm m S
a x a x p

⊆ =Γ ∈

⎧ ⎫⎪ ⎪+ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑       (3.9) 

When lΓ is not integer, one more uncertain parameter lta  can change by ˆ( )
ll l ltaΓ − Γ⎢ ⎥⎣ ⎦ . Thus the robust 

formulation takes the following form: 

max cx           (3.P4) 

s.t.   
{ { }| ,| | , \ }

ˆ ˆmax ( )
l l

l l l l l l l l l
l

lm m lm m l l lt t lS t S M S t M Sm m S
a x a u a u p

∪ ⊆ = Γ ∈⎢ ⎥⎣ ⎦ ∈

⎧ ⎫⎪ ⎪+ + Γ − Γ ≤⎢ ⎥⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

∑ ∑  

,        if  is positive or binary variable
,      otherwise

m m m

m m m

u x x
u x u
=⎧

⎨− ≤ ≤⎩
 

To transform problem (3.P4) into a single optimization problem, let 

{ { }| ,| | , \ }
ˆ ˆ( , ) max ( )

l l
l l l l l l l l l

l

l lm m l l lt tS t S M S t M S m S
x a u a uβ

∪ ⊆ = Γ ∈⎢ ⎥⎣ ⎦ ∈

⎧ ⎫⎪ ⎪Γ = + Γ − Γ⎢ ⎥⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭
∑    (3.10) 

Then, ( , )lxβ Γ equals to the objective of optimization problem (3.P5) because the optimal solution *
lmz of 

(3.P5) must consist of lΓ⎢ ⎥⎣ ⎦ variables at 1 and one variable at l lΓ − Γ⎢ ⎥⎣ ⎦  with 0mu ≥ . 

ˆmax
l

lm m lm
m M

a u z
∈
∑         (3.P5) 

s.t.    lm l
m

z ≤ Γ∑  
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0 1lmz≤ ≤  
 
The dual problem of problem (3.P5) is as follows: 

min   
l

l l lm
m M

z q
∈

Γ + ∑         (3.P6) 

s.t.    ˆl lm lm mz q a u+ ≥  

0lmq ≥ , 0lz ≥  

where lmq corresponds to the dual variable of the equation 1lmz ≤ , lz corresponds to the dual variable of the 

equation lm l
m

z ≤ Γ∑ . 

The robust formulation is transformed into the following equivalent formulation after substituting the inner 

optimization problem in (3.P4) with the equivalent optimization problem (3.P6). 

max   cx          (3.P7) 

s.t.   
l

lm m l l lm l
m m M

a x z q p
∈

+ Γ + ≤∑ ∑  

ˆl lm lm mz q a u+ ≥  

0lmq ≥ , 0lz ≥  

,        if  is positive or binary variable
,      otherwise

m m m

m m m

u x x
u x u
=⎧

⎨− ≤ ≤⎩
 

In this model, a budget parameter for each constraint in (3.P1) lΓ  limits the number of coefficients that can 

simultaneously take their worst-case value; the resulting robust optimization remains a linear formulation. 

This is different from the worst case formulation where all the parameters are considered to get their worst 

case values at the same time without control of conservatism of the solution. Also note that formulation (3.P7) 

maintains its linearity. For this robust counterpart formulation, (Bertsimas & Sim, 2003) calculate probability 

bounds of constraint violation. Specifically, if the uncertain coefficient parameter ija  follows symmetric 

distribution and takes values in ˆ ˆ[ , ]ij ij ij ija a a a− + , then the probability that the ith constraint is violated 

satisfies the following constraint: 

1 1

1 (1 ) (1 ) ( , ) ( , )
2

n n n

lm m l n
m l v l v k v

n n
P a x p C n v C n k

l l
μ μ μ

= = + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎪ ⎪> ≤ − + ≤ − +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎜ ⎟
⎝ ⎠ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
∑ ∑ ∑ ∑

 

 (3.11) 
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where  | |ln M= , 
2

l n
v

Γ +
= , v vμ = − ⎢ ⎥⎣ ⎦  

1 ,   if  0  or  
2

( , )
1 exp( log( ) log( )),     otherwise

( ) 2( )2

n k k n
C n k

n n n kn k
n k k n k kπ

⎧ = =⎪⎪= ⎨ −⎪ +
⎪ − −⎩

 

When applying this robust counterpart formulation to practical problems with large number of uncertain 

parameters, we can use the feasibility test to identify a-priori which parameters are allowed to take the worst 

case value, thus providing a guide of assigning appropriate budget parameter to the different constraints. 

3.2.4 Comparison of different formulations 

For a deterministic mixed integer linear programming (MILP) problem with n variables, m constraints (not 

counting the bounding constraints) having a total of k uncertain parameters, where j of all the constraints are 

subject uncertainty and q of all the decision variables are subject to uncertain coefficient, we have the 

following comparison for the three different robust formulations presented in the previous section in terms of 

the number of variables, the number of constraints required, the type of formulation and the information 

obtained: 

i) Formulation 1 by Soyster has n+q variables, m+2q constraints and is a linear formulation, but it 

provides no control over the degree of conservatism of the solution; 

ii) Formulation 2 by Ben-Tal and Nemirovski is a second order cone problem (nonlinear). It has n+2k 

variables, m+2k constraints; and it is able to control the degree of conservatism through the constraint 

violation probability parameter; 

iii) Formulation 3 by Bertsimas and Sim is a linear optimization problem. It has n+j+k+q variables and 

m+k+2q constraints. It also provides a way to control the degree of solution conservatism through the 

budget parameter lΓ .  

In summary, Soyster’s worst-case formation is the simplest formulation with the smallest number of 

variables and constraints but it is not able to adjust the solution conservatism, thus the generated solution will 

often be too pessimistic. Ben-Tal and Nemirovski’s formulation provides a level of control for solution 

conservatism, but it results in a nonlinear formulation, which will cause computational complexity in solving 



- 41 - 
 

mixed integer nonlinear programming (MINLP) problems. On the other hand, the robust counterpart 

optimization formulation proposed by Bertsimas and Sim is a linear formulation which has the flexibility of 

adjusting the solution conservatism and also does not result in substantial increase in problem size. Note that 

all the robust counterpart formulations have the same number of binary variables as the original deterministic 

formulation. In the next section, different uncertainties (price, processing time and demand) in process 

scheduling problem will be considered using Bertsimas and Sim’s robust counterpart formulation whereas 

comparison of the three robust formulations will be conducted through different examples in section 4. 

3.3 Robust scheduling  

For the general process scheduling problem, the following deterministic formulation (3.P8) proposed by 

(Ierapetritou & Floudas, 1998)  is used: 

  Problem (3.P8) 

 ,
,

max ( )
p r

s s n s s s
s S n s S

price d price STI STF
∈ ∈

− −∑ ∑      

 s.t. , , 1
j

i j n
i I

wv
∈

≤∑    ,j J n N∀ ∈ ∀ ∈     (3.12) 

  , , 1 , , , , , , , 1
s i s i

P c
s n s n s n s i i j n s i i j n

i I j J i I j J

st st d b bρ ρ− −
∈ ∈ ∈ ∈

= − − +∑ ∑ ∑ ∑  s S∀ ∈ , n N∀ ∈   (3.13) 

  max
,s n sst st≤     s S∀ ∈ , n N∀ ∈     (3.14) 

  min max
, , , , , , , ,i j i j n i j n i j i j nv wv b v wv≤ ≤   i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (3.15) 

  ,s n s
n

d r≥∑     s S∀ ∈      (3.16) 

  , , , , , , , , , ,i j n i j n i j i j n i j i j nTf Ts wv bα β= + +  i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (3.17) 

  , , 1 , , , ,(1 )i j n i j n i j nTs Tf H wv+ ≥ − −   i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (3.18) 

  , , 1 ', , ,' ,(1 )i j n i j n i j nTs Tf H wv+ ≥ − −   , ' ji i I∀ ∈ , j J∀ ∈ , n N∀ ∈   (3.19) 

  , , 1 ', ', ,' ',(1 )i j n i j n i j nTs Tf H wv+ ≥ − −   , ' , 'ji i I i i∀ ∈ ≠ , , 'j j J∀ ∈ , n N∀ ∈  (3.20) 

  , , 1 , ,i j n i j nTs Ts+ ≥    i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (3.21) 

  , , 1 , ,i j n i j nTf Tf+ ≥     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (3.22) 
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  , ,i j nTs H≤     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (3.23) 

  , ,i j nTf H≤     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (3.24) 

In the above formulation, the objective function is the profit (different performance measures can be used like 

makespan), the constraints is similar as the one presented in problem (2.8). Although the above scheduling 

formulation has been used, the proposed methodology in this chapter is not limited to this model and it can 

also be applied into other scheduling formulations using either discrete or continuous time models (Floudas 

& Lin, 2004),(Méndez et al., 2006). In the following, different type of uncertainties including price 

uncertainty, processing time uncertainty and demand uncertainty are studied. Given the advantage of 

Bertsimas and Sim’s robust formulation, this approach is adopted in this chapter although comparisons with 

the other models are also provided in section 4. 

3.3.1 Price uncertainty 

To apply Bertsimas and Sim’s formulation for the price uncertainty in the objective function, the original 

objective is transformed into following: 

max profit  

s.t. ,
,

( ) 0
p r

s s n s s s
s S n s S

profit price d price STI STF
∈ ∈

− + − ≤∑ ∑     (3.25) 

Thus, the uncertain price parameters sprice ( ˆ ˆ[ , ]s s s s sprice price price price price∈ − + ) appear in the left 

hand side of the new constraint. The number of uncertain parameter in this constraint equals to the number of 

uncertain prices. If the number of uncertain prices is k, then the budget parameter pΓ takes value in [0, k]. To 

apply the robust formulation, this constraint is transformed into the following set of constraints 

(3.26)~(3.29): 

,
,

( ) 0
p r

p p p
s s n s s s s

s S n s S s
profit price d price STI STF z q

∈ ∈

− + − +Γ + ≤∑ ∑ ∑
  

 (3.26) 

,ˆ ,     p p
s s s n p

n
z q price d s S+ ≥ ∈∑        (3.27) 

ˆ ( - ),     p p
s s s s rz q price STI STF s S+ ≥ ∈       (3.28) 

0 , 0, 0p p p
sk z q≤ Γ ≤ ≥ ≥         (3.29) 
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Here, only one constraint is subject to uncertainty and the number of uncertain parameters is the number of 

uncertain prices. The constraints introduced correspond to the constraints in (3.P7). Since , 0s nd ≥  and 

- 0sSTI STF ≥ , no auxiliary variable is incorporated. 

3.3.2 Processing time uncertainty 

Let’s consider that the processing times take value in the symmetric region , , , , ,
ˆ ˆ[ , ]i j i j i j i j i jT T T T T∈ − + . The 

original duration constraint is reformulated as following: 

, , , , , , , , , , , , , 0i j n i j n i j i j n i j i j n i j i j nTs Tf wv b wvα β θ− + + + ≤      (3.30) 

In equation (3.30), ,i jα  and ,i jβ  are calculated based on nominal processing time: , ,2 / 3i j i jTα = , 

max min
, , , ,2 / 3( )i j i j i j i jT v vβ = − .  , ,i j nTf represents the lower bound on the finishing time of the task, instead of the 

exact finishing time as determined by the original duration constraint in (Ierapetritou & Floudas, 1998). In the 

reformulated constraint (3.30), uncertainty is modeled through the last term , , ,i j i j nwvθ . Here, ,i jθ represent the 

variable part of the processing time parameter, so it takes value in the range , ,
ˆ ˆ[ , ]i j i jT T− and its nominal value 

is 0. Since there is only one uncertain coefficient in the reformulated duration constraint, the budget 

parameter tΓ for the corresponding robust formulation takes value in [0, 1].  

, , , , , , , , , , , , , , ,0 0t t t
i j n i j n i j i j n i j i j n i j n i j n i jTs Tf wv b wv z qα β− + + + ⋅ + Γ + ≤    (3.31) 

, , , , , ,
ˆt t

i j n i j i j i j nz q T wv+ ≥         (3.32) 

, , ,0 1, 0, 0t t t
i j n i jz q≤ Γ ≤ ≥ ≥        (3.33) 

Constraints (3.31)-(3.33) correspond to the constraints in (3.P7) respectively. For every duration constraint, 

one additional variable , ,
t
i j nz  and one constraint are added; for every uncertain parameter ,i jθ , one additional 

variable is added. So totally the additional number of variables is the sum of the number of uncertain duration 

constraints and number of uncertain processing time parameters. 

3.3.3 Demand uncertainty 

The demand uncertainty appears on the right hand side of the demand constraints,  



- 44 - 
 

,s n s
n

d r≥∑          (3.34) 

Assuming that the demand parameter takes value in the symmetric region: ˆ ˆ[ , ]s s s s sr r r r r∈ − + . To apply the 

robust formulation, an additional binary variable with fixed value 1 is added and the constraint is transformed 

as follows: 

, 1 0s n s
n

d r− + ⋅ ≤∑         (3.35) 

Thus, the demand constraint has only one uncertain coefficient and thus the budget parameter dΓ takes value 

in [0, 1]. The following constraints (3.36)-(3.38) are then incorporated in the robust formulation: 

, 0d d d
s n s s

n
d r z q− + + Γ + ≤∑        (3.36) 

ˆd d
s sz q r+ ≥          (3.37) 

 0 1, 0, 0d d d
sz q≤ Γ ≤ ≥ ≥         (3.38) 

3.4 Examples 

In all the examples presented in this section, the resulted MINLP problem is solved in GAMS using DICOPT 

solver and the MILP problems are solved in GAMS using CPLEX 10.1 solver in a Pentium PC (3.8GHz, 1G 

RAM) running in Windows XP operating system. 

3.4.1 Example 1 

This example is taken from (Ierapetritou & Floudas, 1998) and involves the production of two products using 

three raw materials (Figure 3.1). Detail process data for this example are shown in Table 3.1. Through this 

example, we are comparing the three different robust counterpart optimization formulations stated in 

previous section considering different types of uncertainties and finally the problem is solved using the 

Bertsimas and Sim’s robust formulation with a systematic consideration of all the uncertainties. 
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Figure  3.1 State Task Network (STN)representation of Example 1 

 
Table 3.1 Process data for the example 1 

Unit Capacity Suitability Processing time 
Heater 100 Heating 1.0 
Reactor 1 50 Reaction 1,2,3 2.0, 2.0, 1.0 
Reactor 2 80 Reaction 1,2,3 2.0, 2.0, 1.0 
Sill 200 Separation 1 for product 2,  2 for 

IntAB 
State Storage capacity Initial amount  
Feed A Unlimited Unlimited  
Feed B Unlimited Unlimited  
Feed C Unlimited Unlimited  
Hot A 100 0.0  
IntAB 200 0.0  
IntBC 150 0.0  
impure 200 0.0  
Product 1(P1) Unlimited 0.0  
Product 2(P2) Unlimited 0.0  

 
 
(a) Price uncertainty 

In this case, bounded and symmetric uncertainty of raw material cost and product price is assumed. The 

scheduling horizon is 8 hours and 8 event points are used in the continuous scheduling formulation presented 

in section 3. The nominal cost of all raw materials is 5 and the nominal prices of product 1 and product 2 are 

10, 15, respectively.  A 5% variability level is assumed for all the prices and no infeasibility tolerance is 

considered in the robust formulation.  

First, the deterministic schedule using all nominal price values is solved, and the optimal schedule has 

an optimal profit of 1088.75. Because the objective is profit maximization, the worst case scenario 



- 46 - 
 

corresponds to the minimum value of all product prices (9.5, 14.25) and maximum value of raw material 

costs (5.25, 5.25, 5.25). The resulted profit from Soyster’s worst case formulation is 959.56. The extended 

Ben-Tal’s robust formulation for MILP problem proposed by (Lin et al., 2004) is solved with reliability level 

28.4% and 10%, which means that the probability that the constraint is violated is at most 28.4% and 10%. 

Finally, the robust formulation by Bertsimas and Sim is solved using different budget parameters between 0 

and 5 (the number of uncertain prices). A detailed comparison of the different robust formulations is shown 

in Table 3.2 (the optimality gap in CPLEX solver is set as 0.1). 

 
Table 3.2 Comparison of the robust formulations for price uncertainty 

 Nominal Soyster Ben-Tal 
Bertsimas and Sim 

Γp=0 Γp=2.5 Γp=4.19 Γp=5 
Objective 1088.75 959.56 981.09 961.73 1088.75 989.63 967.44 959.56
Upper probability of 
constraint violation - - 0.284 0.10 0.695 0.284 0.10 0.031

CPU time  (s) 14.4 22.9 64.6 44.4 13.8 33.4 20.2 19.3 
Continuous variables 401 401 419 407 
Binary variable 64 64 64 64 
Constraints 884 884 899 889 

 
As shown in Table 3.2, the result of the deterministic schedule using nominal parameter values is the same as 

the result of Bertsimas and Sim’s formulation when budget parameter is set as 0; the result of the Soyster’s 

worst case formulation is the same as that of Bertsimas and Sim’s when budget parameter takes its maximum 

value. Soyster’s formulation has the same problem size as the nominal deterministic formulation because the 

uncertain parameters are coefficients of positive variables and no auxiliary variable is added. Bertsimas and 

Sim’s robust formulation is relatively more efficient compared to Ben-Tal’s formulation because a MILP 

instead of MINLP problem is solved. Moreover, when the maximum probability of constraint violation is the 

same, Bertsimas and Sim’s robust formulation generates higher profit than Ben-Tal’s formulation, which 

means that Ben-Tal’s formulation is more conservative than Bertsimas and Sim’s formulation. 

 
(b) Processing time uncertainty 
 
In this case study, the scheduling horizon is 12 hours and 8 event points are used in the continuous scheduling 

formulation. Let’s consider here that all the processing times are uncertain parameters and have a variability 

of 15%. In this case we assume zero cost for all the raw materials, and product prices are set as 10 for both 

Product 1 and Product 2. 
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Ben-Tal’s formulation is studied with the reliability level set as 75% and 62.5% and no infeasibility 

tolerance is assumed for all the formulations. For Bertsimas and Sim’s formulation, note that the maximum 

number of uncertain parameters is 1 for the duration constraints, so [0,  1]tΓ ∈ . 

 
Table 3.3 Comparison of the robust formulations for processing time uncertainty 

 Nominal Soyster Ben-Tal 
Bertsimas and Sim 

Γt =0 Γt =0.5 Γt =1 

Objective 2657.9 2140.9 1676.1 1201.8 2657.9 2423.6 2140.9 
Upper probability of  
constraint violation - - 0.75 0.625 0.75 0.625 0.5 

CPU time  (s) 4.8 58.3 129.2 109.0 4.9 12.2 69.6 
Continuous variables 401 401 401 473 
Binary variable 64 64 64 64 
Constraints 884 884 884 948 

 
The results in Table 3.3 lead to the same conclusions as in Table 3.2. Comparing to deterministic formulation, 

Soyster’s formulation and Ben-Tal’s formulation has the same variable and constraint number, because the 

uncertain parameters are coefficients of binary variables and no auxiliary variable is added. Bertsimas and 

Sim’s formulation has more constraints and variables but it is still more efficient than Ben-Tal’s formulation 

because the linearity of the formulation. 

 
(c) Demand uncertainty  
 
In this case, the scheduling horizon is set as 8 hours and 8 event points are used in the continuous scheduling 

formulation. Let’s consider that both the demand of product 1 and product 2 have 50% variability level, they 

both take value in [25, 75] and the nominal value is 50. A reliability level of 75% is set for the Ben-Tal’s 

formulation, since smaller reliability level 62.5% cause the problem to be infeasible. Budget parameter value 

for Bertsimas and Sim’s formulation takes value in [0, 1] because only one demand parameter is uncertain in 

the demand constraints. 

 
Table 3.4 Comparison of the robust formulations for demand uncertainty 

 Nominal Soyster Ben-Tal 
Bertsimas and Sim 

Γd=0 Γd=0.5 Γd=1 
Objective 1088.75 infeasible 942.80 Infeasible 1088.75 688.05 infeasible
Upper probability of  
constraint violation - - 0.75 0.625 0.75 0.625 - 

CPU time  (s) 29.0 - 60.9 - 28.7 181.8 - 
Continuous variables 401 401 401 411 
Binary variables 64 64 64 64 
Constraints 884 884 884 893 
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The results in Table 3.4 illustrate similar trends as the previous case studies. Soyster’s formulation becomes 

infeasible here, which means that the “worst-case” demand uncertainty cause infeasible schedules. 

Correspondingly, Bertsimas and Sim’s formulation becomes infeasible when the budget parameter is set at 

the largest value. So the Bertsimas and Sim’s robust formulation will be feasible for different budget 

parameter in the range of zero to maximum uncertain coefficient of a constraint only if the worst case 

feasibility is ensured. Furthermore, in this case, Soyster’s formulation and Ben-Tal’s formulation both have 

same problem size as the deterministic formulation because the uncertain parameter is on the right hand side 

of the constraint and it can be viewed as coefficient of binary variable with fixed value 1. 

Summarizing, three different kinds of uncertainties in scheduling have been studied and compared. 

From the results we can see that the size of all the robust formulations do not increase a lot because the 

increase in the number of constraints and variables is at the same scale as the number of the uncertain 

parameters. Moreover, since most decision variables in scheduling formulation are positive or binary, we can 

further reduce the number of auxiliary variables and boundary constraints for the auxiliary variables. 

Comparing the three different robust formulations, Soyster’s worst case formulation is the most conservative 

formulation and does not have the flexibility of adjusting the degree of conservatism. The other two robust 

counterpart formulations are able to adjust the solution robustness either through the constraint violation 

probability or budget parameter. Bertsimas and Sim’s formulation involve relative more constraints and 

continuous variables when addressing processing time and demand uncertainty, but it has more flexibility in 

controlling the degree of conservatism and also avoids the solution of mixed integer nonlinear optimization 

problem, thus the solution efficiency is greatly improved; although Ben-Tal’s formulation can also adjust the 

degree of conservatism with the probability of constraint violation, it tends to be a more conservative 

formulation and thus more likely to generate infeasible problem; on the other hand, the feasibility of 

Bertsimas and Sim’s formulation can be ensured when the feasibility of the worst case formulation is 

satisfied. So, Bertsimas and Sim’s formulation will be adopted in our research as the method of generating 

robust preventive schedule as shown in following subsection. 

 
(d) Systematically considering all uncertainties 
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Finally, we consider all uncertain parameters simultaneously including all processing times with variability 

15%, the demand of P1 and P2 with variability 50%, and the prices of P1 and P2 with variability level 5%. 

The scheduling horizon is set as 8 hours and 8 event points are used in the continuous scheduling formulation.  

 
Table 3.5 Solution data for example 2 with all uncertainties 

Budget parameter (Γp, Γd, Γt) (0,0,0) (0.5,0.3,0.3) (1,0.3,0.5) (2,0.3,0.5) 

Objective 1088.75 615.5 431.3 402.6 
CPU time  (s) 26.7 237.2 231.3 330.5 
Continuous variables 494 
Binary variables 64 
Constraints 972 
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Figure  3.2 Nominal schedule for example 1 (x: hours, y: equipment) 
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Figure  3.3 Robust schedule for example 1 (Γp=0.5, Γd=0.3, Γt=0.3) 

 
Several different budget parameter combinations are used to solve the problem considering all the 

uncertainties. The results are summarized in Table 3.5, which shows the relationship between the profit 

objective and the budget parameters: higher budget parameters result in more conservative solution with 
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larger feasibility but smaller profit. The profit of the nominal schedule with zero budget parameter value is 

1088.75, and is shown in Figure 3.2. When we choose the budget parameter as Γp=0.5, Γd=0.3 and Γt=0.3, 

which means the corresponding price, demand and duration constraints may be violated with maximum 

probability 61.3%, 67.5% and 67.5% respectively, the profit reduces to 615.5 (43.5% decrease). Since 

product 2 (P2) is more valuable than product 1 (3.P1), the production of the nominal schedule (Figure 3.2) 

leads to a production of 52 units P1 and 87.5 units P2 which aims at producing more P2 for largest profit. On 

the other hand, the robust schedule is shown in Figure 3.3 which tends to generate a feasible schedule that 

covers more uncertain range and has a production of 58 units P1 and 70.3 units P2 because the demand of 

both P1 and P2 is in [25, 75]. Moreover, the robust schedule aims at generating feasible operations 

considering the processing time variability, e.g., in the separation stage, less amount of materials is processed 

in the robust schedule (78.087) than in the nominal schedule (97.5) such that the task will finish in the given 

time horizon considering the processing time variability.  

3.4.2 Example 2 

This example is taken from (Wu & Ierapetritou, 2003). Here, four products are produced through eight tasks 

from three feeds. There are nine intermediates in the system as shown in Figure 3.4. Detail process data are 

shown in Table 3.6. In all, six different units are required for the whole process. This case study is considered 

since it is larger than the previous example to illustrate the scale-up of the robust-counterpart formulation.  
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Figure  3.4 STN of example 2  
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Table 3.6 Process data for Example 2 

Unit Capacity Suitability Processing time 
Unit1 1000 Task 1 1 
Unit2 2500 Task 3,7 1 
Unit3 3500 Task 4 1 
Unit4 1500 Task 2 1 
Unit5 1000 Task 6 1 
Unit6 4000 Task 5,8 1 
State Storage 

capacity 
Initial amount  

Feed 1,2,3 Unlimited 0.0  
Int4 1000 0.0  
Int5 1000 0.0  
Int6 1500 0.0  
Int7 2000 0.0  
Int8 0 0.0  
Int9 3000 0.0  
Products 
1,2,3,4 

Unlimited 0.0  

 
The scheduling horizon is 18 hours and 15 event points are used in the continuous scheduling formulation. 

The nominal values of all the processing times are 1; the nominal price of Product1~Product4 are 18, 19, 20 

and 21, respectively; the nominal demand of Product1~Product4 are 6000, 8000, 2000 and 8000, respectively. 

For the uncertainty problem we assume all the processing times have 20% variability level, all the product 

demands have 30% variability level, and all the product price have 10% variability level.  

To generate robust schedules for this problem, the robust optimization formulation proposed by 

Bertsimas and Sim is also used here. Different budget parameter combinations are considered as shown in 

Table 3.7 (the optimality gap in CPLEX solver is set as 0.01). 

 
Table 3.7 Solution data of example 2 

 Determinisitic 
formulation 

Bertsimas and Sim’s 
 Robust formulation 

Budget parameter (Γp, Γd, Γt) - (0,0,0) (1,0.3,0.3) (2,0.4,0.4)
Objective 738835 738835 674567 634677 
CPU time  (s) 7.0 12.5 147.7 476.9 
Continuous variables 1471 1619 
Binary variables 720 720 
Constraints 2416 2554 

 
The deterministic scheduling formulation for example 2 is first solved, and the generated schedule is shown 

in Figure 3.5. Then the robust formulation with different budget parameter combination is used to generate 

the robust schedules. The robust schedule with minimum budget parameter value equal to 0 is actually same 

as the nominal deterministic schedule. The other two robust schedules are shown in Figure 3.6 and Figure 3.7. 
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The production of Product1~Product4 in the nominal schedule are (7522, 16418, 2835, 11180), the 

production in the robust schedule (Figure 3.6) are (7200, 15096, 2522, 11256), the production in the robust 

schedule (Figure 3.7) are (7150, 15400, 2459, 10235), compared to the demand uncertainty: (6000, 8000, 

2000, 8000) (1 30%)⋅ ± , it can be seen that as the budget parameter value increases, the production of the 

robust schedule tends to reduce the production so to satisfy the duration requirement under the uncertain 

processing time with higher robustness; on the other hand, the total profit decreases. Note that when the 

budget parameters increase leading to more conservative solutions, the computation time becomes longer.  

This is due to the fact that the feasible space will become smaller as the robustness requirement increases.  
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Figure  3.5 Nominal schedule for example 2 
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Figure  3.6 Robust schedule for example 2 (Γp=1, Γd=0.3, Γt=0.3) 
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Figure  3.7 Robust schedule for example 2 (Γp=2, Γd=0.4, Γt=0.4) 

 

3.5 Summary  

To generate robust preventive schedules that can address the different parameter uncertainties in process 

scheduling problem, a lot of efforts have been made in the past, especially in the direction of scenario based 

stochastic scheduling. However, the scenario based methodologies have a main drawback that they cannot 

avoid the exponential increase of the problem size when the number of parameters increases. Robust 

counterpart optimization based preventive scheduling avoids this type of complexity. In this work we studied 

three robust counterpart optimization formulations and compared their performance in uncertain scheduling. 

The results showed that the “budget parameter” based formulation proposed by (Bertsimas & Sim, 2003) is 

appropriate for uncertain scheduling problems with its unique advantages that it does not increase 

substantially the problem size, maintains its linearity, and its ability to control the degree of conservatism for 

every constraint and guarantee the feasibility for the robust optimization problem with the use of budget 

parameter. 
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Nomenclature 
 

lM   index set for the uncertain coefficients in the l-th constraint 

lma   true values of the coefficient parameter 

lma   nominal values of the coefficient parameter 

ˆlma   variation amplitude of the coefficient parameter 

mu   auxiliary variable incorporated for robust formulation 

lmξ   independent random variable symmetrically distributed in interval [-1, 1] 

lΩ   constant (with constraint violation probability 
2 / 2l

l eκ −Ω= ) 

lκ   constraint violation probability 

lmz   auxiliary variable incorporated for robust formulation 

lΓ   budget parameter  

lΓ⎢ ⎥⎣ ⎦   biggest integer not greater than lΓ  

lS   subset that contains lΓ⎢ ⎥⎣ ⎦  uncertain parameters of the l-th constraint 

lt   index that represents an additional uncertain parameter if lΓ  is not an integer 

lmq   dual variable 
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Chapter 4  

Reactive Scheduling  

 

Abstract: To address the various disruptive events that occur during process operations, reactive scheduling 

is commonly used. However, a major limitation of the existing reactive scheduling techniques is the response 

time, which might cause significant delay while the generation of a new schedule takes place. In this chapter, 

a novel approach is proposed to improve the efficiency of reactive scheduling and avoid the resolution of a 

complex optimization problem when uncertain event occurs during the scheduling period. In the proposed 

method, reactive schedule is obtained from the solution of multiparametric programming problem which is 

solved ahead of time and covers all possible outcomes of future uncertainty. The multiparametric 

programming problem is derived from a new reactive scheduling formulation which integrates disruptive 

events (rush order and machine breakdown) as uncertain parameters in the process modeling. 
 

4.1 Introduction 

Reactive scheduling, which is also called rescheduling, takes place when the schedule is implemented based 

on up-to-date information regarding the state of the system. It requires the modification of the existing 

schedule during the manufacturing process to adapt to changes (uncertainty) such as rush order arrivals, order 

cancellations or machine breakdowns. For this type of uncertainty there is not enough information prior to 

realization of the uncertain parameters that will allow a protective action, so almost all the methods in the 

literature aim to resolve a rescheduling problem once the disruptive events occur.  

The reactive scheduling actions are based on various underlying strategies. It can rely on simple 

techniques or heuristic rules to seek a quick schedule consistency restoration. One of the earliest efforts in 

reactive scheduling was reported by (Cott & Macchietto, 1989) who considered fluctuations of processing 

times and used a shifting algorithm to modify the starting times of processing steps of a batch by the 

maximum deviation between the expected and actual processing times of all related processing steps. 
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(Kanakamedala et al., 1994) developed a least-impact heuristic approach with two levels that allows time 

shifting and unit replacement in multipurpose batch plants. (Huercio et al., 1995) proposed a reactive 

scheduling technique to deal with variations in task processing times and equipment availability. They 

generated a set of decision trees using alternative unit assignments, each based on a conflict in the real 

production schedule caused by a deviation between the real schedule and the nominal schedule. Branches of 

the trees are then pruned according to heuristic equipment selection rules. (Sanmartí et al., 1997) extended 

this work to cover unexpected equipment failure. (Rodrigues et al., 1996) also considered uncertain 

processing times and proposed a rolling-horizon approach which incorporates a look-ahead procedure to 

avoid possible violations of future due dates. (Honkomp et al., 1997) proposed a reactive scheduling 

framework for processing time variations and equipment breakdown by coupling a deterministic schedule 

optimizer with a simulator that introduces stochastic events where two different formulations of time are 

considered. A number of rescheduling strategies were proposed and heuristics were used to locate critical 

tasks which can be modified to make the nominal schedule less susceptible to the effects of processing time 

variability.  

On the other hand, a number of the techniques presented in the literature involve a full scheduling of the 

tasks that have to be executed after the unexpected event occurs through mathematical programming 

approaches relying mostly on mixed integer linear programming (MILP). (Roslöf et al., 2001) developed an 

MILP-based heuristic algorithm by iteratively releasing a set of jobs from a nominal schedule and optimally 

reallocating them, where the complexity of the problem is controlled through the number of simultaneously 

released jobs. (Ruiz et al., 2001) presented a fault diagnosis system that interacts with a schedule optimizer 

for multipurpose batch plants to perform reactive scheduling in the event of processing time variability or 

unit unavailability. (Méndez & Cerdá, 2003) proposed a rescheduling method by first reassigning resources 

to tasks that still need to be processed and then reordering the sequence of processing tasks for each resource 

item. They considered start time shifting, local reordering, and unit reallocation of old batches as well as 

insertion of new batches. This work was extended in (Méndez & Cerdá, 2004) to include limited discrete 

renewable resources where only start-time shifting, local batch reordering, and resource reallocation of 

existing batches are allowed. (Vin & Ierapetritou, 2000) considered the rescheduling of multiproduct and 

multipurpose batch plants in the event of machine breakdown or rush order arrival. Full-scale rescheduling of 
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each production schedule is avoided by fixing binary variables for a subset of tasks from the original 

production schedule. The fixing of tasks results in a reduced computational effort required to solve the 

resulting MILP problem. (Janak & Floudas, 2006) presented a similar framework where the fixed subset of 

tasks is determined using a detailed set of rules that reflect the production needs and can be modified for 

different production facilities. By fixing a subset of tasks a reduced computational effort is required to solve 

the resulting MILP problem. 

As shown from the literature, a major consideration for reactive scheduling is the response time. If the 

computation time is large the production may be significantly delayed while the new schedule is developed. 

In this chapter, we proposed a framework to solve the reactive scheduling problems using multiparametric 

programming technique, which will greatly improve the efficiency of the rescheduling approach because the 

new schedule is obtained from the solution of parametric programming problem which was solved before the 

occurrences of disruptive events, thus completely avoiding the solution of the rescheduling optimization 

problem. 

Parametric programming serves as an analytic tool by mapping the uncertainties in the optimization 

problem to optimal alternatives. From this point of view, parametric programming provides the exact 

mathematical solution of the optimization problem under uncertainty. In the literature, there are not many 

records on the application of parametric programming in process scheduling problem. (Ryu & Pistikopoulos, 

2007) has reported the application of parametric programming to a zero-waiting scheduling problem, where 

they studied the parametric solution under processing time uncertainty for zero-wait batch processes, but the 

scheduling formulation does not consider the executed tasks so it is not able to address the reactive 

scheduling problem. (Li & Ierapetritou, 2007b) proposed an efficient multiparametric programming 

framework and applied it to general scheduling problem to study the effect of uncertain product demand, 

price and processing time on preventive scheduling problem. In this chapter, the work is further extended to 

study the reactive scheduling problem. 

The rest of this chapter is organized as follows. A general reactive scheduling formulation is presented 

in next section for two kinds of uncertainty: rush order and machine breakdown. Then, the multiparametric 

programming method presented in Chapter 2 will be applied to solve the parametric reactive scheduling 

problems and the chapter is finally summarized in the last section.  
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4.2 Reactive scheduling formulation 

4.2.1 General idea 

The reactive scheduling model studied in this chapter is based on the deterministic model (2.8) presented in 

Chapter 2. It should be noticed that the proposed methodology for reactive scheduling is not tight to the 

specific deterministic model. Any schedule modeling framework can be used as long as it can be formulated 

as a MILP problem such as the ones presented by (Floudas & Lin, 2004), (Méndez et al., 2006), (Maravelias 

& Grossmann, 2006).  

To apply the parametric programming method on reactive scheduling, it is necessary to develop an 

effective way to model the disruptive uncertainty into the scheduling formulation. An important fact for 

formulating the reactive scheduling is that the tasks that have already executed or started cannot be changed. 

In a previously published work (Vin & Ierapetritou, 2000), those binary variables that corresponds to a subset 

of tasks of the original production schedule that have been executed are fixed while generating the reactive 

schedule. However this method only solves one reactive schedule after the uncertain event occurs.  

Our target in this work is to develop a new reactive scheduling formulation to consider all possible 

uncertain outcomes by formulating the uncertain events as uncertain parameters into the optimization 

problem. The basic strategy is to generate a complete reschedule but fix the executed tasks with a set of 

binary indicator variables , ,i j ny , which denote whether a task is executed ( , ,i j ny =1) or not ( , ,i j ny =0). The rules 

and corresponding constraints to identify these indicator variables will be presented in the next two 

subsections for the specific disruptive event, rush order or machine breakdown. Here, the constraints that 

ensure that the executed tasks are fixed using the indicator variables ( , ,i j ny ) are described as follows:  

 , , , ,
old

i j n i j nwv wv= , if , , 1i j ny =  i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (4.1) 

 , , , , , ,
old old

i j n i j n i j nb b wv= , if , , 1i j ny =  i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (4.2) 

 , , , , , ,
old old

i j n i j n i j nTs Ts wv= , if , , 1i j ny =  i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (4.3) 

 , , , , , ,
old old

i j n i j n i j nTf Tf wv= , if , , 1i j ny =  i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (4.4) 
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Constraint (4.1) ensures that if a task i assigned to unit j  at event point n  has been executed, then the 

corresponding variable , ,i j nwv has to be fixed to the value , ,
old
i j nwv that represents the task in the original 

schedule. Similarly, constraints (4.2), (4.3) and (4.4) ensure that batch size, task starting and completion time 

are fixed at the same values as the ones in the original schedule.  

The logical constraints (4.1)-(4.4) are transformed to mathematical programming constraints as follows. 

 , , , , , , , , , ,(1 ) (1 )old old
i j n i j n i j n i j n i j nwv y wv wv y− − ≤ ≤ + −  i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (4.5) 

 , , , , , , , , , , , , , , , ,(1 ) (1 )old old UB old old UB
i j n i j n i j i j n i j n i j n i j n i j i j nb wv b y b b wv b y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈  (4.6) 

 , , , , , , , , , , , , , ,(1 ) (1 )old old old old
i j n i j n i j n i j n i j n i j n i j nTs wv U y Ts Ts wv U y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈  (4.7) 

 , , , , , , , , , , , , , ,(1 ) (1 )old old old old
i j n i j n i j n i j n i j n i j n i j nTf wv U y Tf Tf wv U y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈  (4.8) 

where ,
UB
i jb is the upper bound of the batch size, and U is the upper bound of the scheduling time horizon. 

Constraint (4.5) is equivalent to constraint (4.1). This can be shown as follows: if , , 1i j ny = ,  constraint (4.5) 

becomes , , , , , ,
old old
i j n i j n i j nwv wv wv≤ ≤ , i.e., , ,i j nwv is fixed to , ,

old
i j nwv ; if on the other hand , , 0i j ny = , (4.5) becomes 

, , , , , ,1 1old old
i j n i j n i j nwv wv wv− ≤ ≤ + , which is a redundant constraint since it is satisfied for any value of the binary 

variable , ,i j nwv . Similarly, constraints (4.6), (4.7) and (4.8) are equivalent to logical constraints (4.2), (4.3) 

and (4.4), respectively. 

In order to determine the value of , ,i j ny  additional constraints are required depending on the nature of 

the disruptive event: rush order or machine breakdown. In the next two subsections we specify the rules and 

constraints that determine the value of , ,i j ny and present the complete reactive scheduling formulation. 

4.2.2 Rush order 

Once a rush order arrives during the scheduling execution process, all the tasks that have already started 

should be identified as executed. When this rule is implemented on the original schedule solution, the value 

of , ,i j ny can be identified. However this rule should also be implemented on the complete reschedule so that 

the reactive schedule does not change the schedule history, otherwise the reactive schedule can generate 
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“wrong” tasks that start before the disruptive event which do not exist in the original schedule. So, we can 

define the indicator binary variable , ,i j ny as follows: 

 

, , , ,
, ,

, , , ,

1,    if   and 

0,   if   and 

old rush rush
i j n i j n

i j n old rush rush
i j n i j n

Ts T Ts T
y

Ts T Ts T

⎧ < <⎪= ⎨
≥ ≥⎪⎩

 

which can be mathematically formulated as follows:  

 , , , , , , , ,(1 )old rush old
i j n i j n i j n i j nTs U y T Ts Uyε+ − − ≤ ≤ + i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (4.9) 

 , , , , , , , ,(1 ) rush
i j n i j n i j n i j nTs U y T Ts Uyε+ − − ≤ ≤ + i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (4.10) 

Constraint (4.9) and (4.10) corresponds to the definition of the binary variables , ,i j ny . Constraints (4.9) can be 

verified as follows: if task i  in unit j  at event point n  starts before the rush order arrives ( , ,
old rush
i j nTs T< ), 

then , ,i j ny must take value 1 as a binary variable because if  , , 0i j ny =  constraint (4.9) will become 

, ,
rush old

i j nT Ts≤  which contradicts the fact that , ,
old rush
i j nTs T< , however if , , 1i j ny =  constraint (4.9) takes the 

form , , , ,
old rush old
i j n i j nTs T Ts Uε+ ≤ ≤ + , which verifies the assumption ( , ,

old rush
i j nTs T< ) sinceε is a small positive 

number and the inequality on the right hand side is redundant; similarly, if task i  in unit j  at event point n  

starts at or after the rush order arrival time ( , ,
old rush
i j nTs T≥ ), , ,i j ny must be 0 since in this case constraint (4.9) 

satisfies this assumption whereas the value of 1 results in a contradictory conclusion ( , ,
old rush
i j nTs T< ). Thus the 

value of , ,i j ny is defined by constraint (4.9). Constraint (4.10) defines the variables , ,i j ny  for the tasks in 

reactive schedule in the same way. 

Furthermore, the demand constraint should be updated as following to account for the new demand in 

the rush order: 

  
,

rush
s n s

n
d r≥∑   s S∀ ∈        (4.11) 

where rush
sr corresponds to the updated demand after the rush order arrival.  

Thus, the reactive scheduling problem considering rush order uncertainty is formulated with the original 

constraints from deterministic model and additional constraints defined as above. The reactive scheduling 

objective can be selected based on preferred performance, e.g., minimizing the makespan to fulfill the 

updated order. The complete problem formulation is given by Formulation A as follows. It should be noticed 
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that this formulation covers any case of a rush order arrival including the time of arrival, new orders, and 

modification or cancellation of existing orders. Also it is not restricted by the number of different products in 

the order. 

 
Problem 4.A: Reactive scheduling formulation for rush order uncertainty 

min H            (4.A1) 

s.t.  

, , 1
j

i j n
i I

wv
∈

≤∑     ,j J n N∀ ∈ ∀ ∈      (4.A2) 

, , 1 , , , , , , , 1
s i s i

P c
s n s n s n s i i j n s i i j n

i I j J i I j J

st st d b bρ ρ− −
∈ ∈ ∈ ∈

= − − +∑ ∑ ∑ ∑  s S∀ ∈ , n N∀ ∈     (4.A3) 

max
,s n sst st≤     s S∀ ∈ , n N∀ ∈      (4.A4) 

min max
, , , , , , , ,i j i j n i j n i j i j nv wv b v wv≤ ≤   i I∀ ∈ , ij J∀ ∈ , n N∀ ∈     (4.A5) 

,
rush

s n
n

sd r≥∑     s S∀ ∈       (4.A6) 

, , , , , , , , , ,i j n i j n i j i j n i j i j nTf Ts wv bα β= + +   i I∀ ∈ , ij J∀ ∈ , n N∀ ∈     (4.A7) 

, , 1 , , , ,(1 )i j n i j n i j nTs Tf U wv+ ≥ − −   i I∀ ∈ , ij J∀ ∈ , n N∀ ∈     (4.A8) 

, , 1 ', , ', ,(1 )i j n i j n i j nTs Tf U wv+ ≥ − −   , ' ji i I∀ ∈ , j J∀ ∈ , n N∀ ∈    (4.A9) 

, , 1 ', ', ', ',(1 )i j n i j n i j nTs Tf U wv+ ≥ − −   , ' , 'ji i I i i∀ ∈ ≠ , , 'j j J∀ ∈ , n N∀ ∈   (4.A10) 

, , 1 , ,i j n i j nTs Ts+ ≥     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈     (4.A11) 

, , 1 , ,i j n i j nTf Tf+ ≥     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈     (4.A12) 

, ,i j nTs H≤     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈     (4.A13) 

, ,i j nTf H≤     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈     (4.A14) 

, , , , , , , , , ,(1 ) (1 )old old
i j n i j n i j n i j n i j nwv y wv wv y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈                      (4.A15) 

, , , , , , , , , , , , , , , ,(1 ) (1 )old old UB old old UB
i j n i j n i j i j n i j n i j n i j n i j i j nb wv b y b b wv b y− − ≤ ≤ + −

 
i I∀ ∈

 ij J∀ ∈ , n N∀ ∈     (4.A16) 

, , , , , , , , , , , , , ,(1 ) (1 )old old old old
i j n i j n i j n i j n i j n i j n i j nTs wv U y Ts Ts wv U y− − ≤ ≤ + − i I∀ ∈ , 

 ij J∀ ∈ , 
 

n N∀ ∈ , 
 
  (4.A17)  

, , , , , , , , , , , , , ,(1 ) (1 )old old old old
i j n i j n i j n i j n i j n i j n i j nTf wv U y Tf Tf wv U y− − ≤ ≤ + − i I∀ ∈ ij J∀ ∈ n N∀ ∈

  
(4.A18)  



- 62 - 
 

, , , , , , , ,(1 ) rusold old
i j n i j n i j n i j n

hTTs U y Ts Uyε+ − − ≤ ≤ + i I∀ ∈ , ij J∀ ∈ , n N∀ ∈               (4.A19) 

, , , , , , , ,(1 ) rus
i j n i j n i j n i j n

hTTs U y Ts Uyε+ − − ≤ ≤ + i I∀ ∈ , ij J∀ ∈ , n N∀ ∈               (4.A20) 

4.2.3 Machine breakdown 

To incorporate machine breakdown within the reactive scheduling formulation, the following rules should be 

included: if a unit *j  breaks down at time breakT  and requires repair/maintenance time of maintT , then: 

a) All the tasks in *,j J j j∈ ≠  should be identified as executed if they start before breakT ; 

b) All the tasks in *j should be identified as executed if they finish at or before breakT . 

Note that there are different rules for the breakdown units and for the ones that operate normally. For the unit 

that is broken, we are enforcing rules on task finishing time but not starting time because once the machine is 

broken, the tasks that have started must be stopped. So, we define the indicator binary variables as follows: 
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 and  for 
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old break break
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y

Ts T Ts T j J j j

Tf T
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⎨
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⎧
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=⎪⎪ ⎩⎩

 

Similar to the rush order case, the rules are implemented in the original schedule to identify the value of , ,i j ny , 

and in the reactive schedule to ensure that the complete reschedule does not change the schedule history. The 

definition of , ,i j ny is mathematically equivalent with the following constraints: 

 , , , , , , , ,(1 )old break old
i j n i j n i j n i j nTs U y T Ts Uyε+ − − ≤ ≤ + , i I∀ ∈ , *,ij J j j∀ ∈ ≠ , n N∀ ∈    (4.12) 

 , *, , *, , *, , *,(1 )old break old
i j n i j n i j n i j nTf U y T Tf Uy ε− − ≤ ≤ + − , i I∀ ∈ , n N∀ ∈    (4.13) 

 , , , , , , , ,(1 ) break
i j n i j n i j n i j nTs U y T Ts Uyε+ − − ≤ ≤ + , i I∀ ∈ , *,ij J j j∀ ∈ ≠  , n N∀ ∈   (4.14) 

 , *, , *, , *, , *,(1 ) break
i j n i j n i j n i j nTf U y T Tf Uy ε− − ≤ ≤ + − , i I∀ ∈ , n N∀ ∈    (4.15) 

Constraints (4.12)  are valid for units that do not break down and represent the definition of , ,i j ny in the 

following way: if task i  in unit j  at event point n  starts before the machine breaks down ( , , <old break
i j nTs T ), 

since constraint (4.12) expresses that , , , ,
break old

i j n i j nT Ts Uy≤ + , , ,i j ny must be 1 since 0 does not satisfy this 
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constraint; similarly, if the task i  in unit j  at event point n  start at or after the machine breakdown time 

( , ,
old break
i j nTs T≥ ), because constraint (4.12) expresses the 

requirement , , , ,(1 )old break
i j n i j nTs U y Tε+ − − ≤ , , ,i j ny must be 0 since 1 will generate contradictory results. 

Constraints (4.13) represent the definition of , ,i j ny  for units that break down, and can be verified in similar 

way. Constraints (4.14) and (4.15) are for the tasks in reactive schedule and correspond to the same rules as 

constraints (4.14) and (4.15) respectively and can be verified in the same way.  

Furthermore, we should add constraints to change the starting time for tasks that finish after breakT  in the 

machine that breaks down: 

 , *, , *,
break maint

i j n i j nT T Ts Uy+ ≤ +  i I∀ ∈ , n N∀ ∈      (4.16) 

Constraint (4.16) expresses the requirement that if a task has been identified as one that does not finish before 

breakdown time ( , , 0i j ny = ), it must start after the unit is fixed. For the case that the task finishes before the 

breakdown occurs ( , , 1i j ny = ), constraint (4.16) is redundant.  

The reactive scheduling formulation incorporating machine breakdown is formulated with the objective 

of maximizing the profit (or minimizing makespan). The complete formulation is given in model B as 

follows. Note that this formulation covers all possible machine breakdown events including the breakdown 

of any unit at any time during the schedule execution that require any time for repair/maintenance. 

 
Problem 4.B: Reactive scheduling formulation for machine breakdown uncertainty 

,
,

max s s n
s n

price d∑ or min H         (4.B1) 

s.t. , , 1
j

i j n
i I

wv
∈

≤∑     ,j J n N∀ ∈ ∀ ∈      (4.B2) 

, , 1 , , , , , , , 1
s i s i

P c
s n s n s n s i i j n s i i j n

i I j J i I j J
st st d b bρ ρ− −

∈ ∈ ∈ ∈

= − − +∑ ∑ ∑ ∑  s S∀ ∈ , n N∀ ∈     (4.B3) 

max
,s n sst st≤     s S∀ ∈ , n N∀ ∈      (4.B4) 

min max
, , , , , , , ,i j i j n i j n i j i j nv wv b v wv≤ ≤   i I∀ ∈ , ij J∀ ∈ , n N∀ ∈     (4.B5) 

,s n s
n

d r≥∑     s S∀ ∈       (4.B6) 
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, , , , , , , , , ,i j n i j n i j i j n i j i j nTf Ts wv bα β= + +   i I∀ ∈ , ij J∀ ∈ , n N∀ ∈     (4.B7) 

, , 1 , , , ,(1 )i j n i j n i j nTs Tf U wv+ ≥ − −   i I∀ ∈ , ij J∀ ∈ , n N∀ ∈     (4.B8) 

, , 1 ', , ', ,(1 )i j n i j n i j nTs Tf U wv+ ≥ − −   , ' ji i I∀ ∈ , j J∀ ∈ , n N∀ ∈    (4.B9) 

, , 1 ', ', ', ',(1 )i j n i j n i j nTs Tf U wv+ ≥ − −   , ' , 'ji i I i i∀ ∈ ≠ , , 'j j J∀ ∈ , n N∀ ∈   (4.B10) 

, , 1 , ,i j n i j nTs Ts+ ≥     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈     (4.B11) 

, , 1 , ,i j n i j nTf Tf+ ≥     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈     (4.B12) 

, ,i j nTs H≤     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈     (4.B13) 

, ,i j nTf H≤     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈     (4.B14) 

, , , , , , , , , ,(1 ) (1 )old old
i j n i j n i j n i j n i j nwv y wv wv y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈                     (4.B15) 

, , , , , , , , , , , , , , , ,(1 ) (1 )old old UB old old UB
i j n i j n i j i j n i j n i j n i j n i j i j nb wv b y b b wv b y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (4.B16) 

, , , , , , , , , , , , , ,(1 ) (1 )old old old old
i j n i j n i j n i j n i j n i j n i j nTs wv U y Ts Ts wv U y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (4.B17) 

, , , , , , , , , , , , , ,(1 ) (1 )old old old old
i j n i j n i j n i j n i j n i j n i j nTf wv U y Tf Tf wv U y− − ≤ ≤ + − i I∀ ∈ , ij J∀ ∈ , n N∀ ∈    (4.B18) 

, , , , , , , ,(1 )old old
i j n i j n i j n

break
i j nTTs U y Ts Uyε+ − − ≤ ≤ + , i I∀ ∈ , , *ij J j j∀ ∈ ≠ , n N∀ ∈    (4.B19) 

, *, , *, , *, , *,(1 ) brold old
i j n i j n i j n i j

eak
nTTf U y Tf Uy ε− − ≤ ≤ + − , i I∀ ∈ , n N∀ ∈     (4.B20) 

, , , , , , , ,(1 )i j n i j n i j n i j n
breakTTs U y Ts Uyε+ − − ≤ ≤ + , i I∀ ∈ , , *ij J j j∀ ∈ ≠  , n N∀ ∈    (4.B21) 

, *, , *, , *, , *,(1 ) brea
i j n i j n i j n i j n

kTf U y TT f Uy ε− − ≤ ≤ + − , i I∀ ∈ , n N∀ ∈     (4.B22) 

, *, , *,
break main

i j j n
t

n iTs UyT T+ ≤ +   i I∀ ∈ , n N∀ ∈      (4.B23) 

4.3 Examples 

With the proposed reactive scheduling formulations, the parametric programming algorithm can be applied 

to solve the corresponding parametric MILP problem and the relationship between the disruptive events and 

optimal reactive schedule can be obtained from the parametric solution map. This application is illustrated 

through the following examples.  
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Example 1 

Example 1 involves the production of two products using three raw materials. The state-task-network (STN) 

representation of this example is shown in Figure 4.1 and the problem data can be found in Chapter 2.  

Reaction2

Separation

Reaction3Reaction1

Heating
Feed A Hot A

Product1

IntAB

IntBC

Feed B
Feed C

Product 2

Impure E 10%

90%

40%

60%

40%
60%

50%

50%

80%

20%

 

Figure  4.1 State-task-network (STN) representation of example 1 
 

a) Rush order  

To study the reactive scheduling problem considering an unexpected rush order, we assume the original 

deterministic schedule is generated first to satisfy the nominal demand of products P1 and P2 which are both 

set as 80 units. The deterministic scheduling problem consisting of constraints (4.1)-( 4.14) is solved with the 

objective function of minimizing the makespan. The resulted schedule is shown in Figure 4.2. 

 

Figure  4.2 Original schedule of example 1 with nominal demand 
 

A rush order of product P1 is investigated with an uncertain demand and an uncertain order arrival time as 

described in Table 4.1. 
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Table 4.1 Rush order uncertainty for example 1 
 Value Range 

1
rush

Pr (New demand of P1) 1θ  170 90θ≤ ≤  
rushT (Order arrival time) 2θ  22 6θ≤ ≤  

 

For the reactive scheduling formulation with rush order uncertainty, since the demand of product is increased 

to satisfy the additional order, the number of event points used for the original deterministic scheduling might 

not be enough and can cause the problem to be infeasible. So we need to find the appropriate number of event 

points for reactive scheduling formulation with the maximum demand using the deterministic formulation 

and then fix the event point number and solve the parametric problem. For this example, the original number 

of event points for deterministic formulation is 7, which is the number required for the maximum demand of 

product P1 (90 units), so the number of event points are fixed at 7 for the reactive scheduling formulation 

during the multiparametric programming solution process. Then the corresponding multiparametric 

programming problem is solved and the parametric results are obtained. Figure 4.3 illustrates the exact 

relationship between the uncertain parameter and the optimal makespan. Figure 4.4 shows the critical regions 

of the solution and Table 4.2 shows the detail parametric objective in different critical regions.  

 

 

Figure  4.3 Parametric solution of optimal makespan and the rush order 
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Table 4.2 Parametric objective for example 1 with rush order 
Critical 
Region 

Makespan  
H (hours) 

Critical 
Region 

Makespan 
H (hours) 

1 8.1614  7 10.071 0.10667θ+ +  
2 8.3723  8 15.7892 0.041θ+  
3 16.353 0.02564θ+  9 10.0467 0.10667θ+  
4 10.6192 0.10667θ+  10 15.769 0.04θ+  
5 13.962 0.06667θ+  11 10.1174 0.10667θ− +  
6 15.6353 0.041θ+    

 

 

Figure  4.4 Critical regions of example 1 with rush order 
 

As shown in Figures 4.3 and 4.4, the parametric result gives the exact relationship between the uncertain 

parameter and the scheduling solution, thus the reactive schedule can be obtained explicitly from the 

parametric solution once the rush order arrives. For example, if a rush order arrives at t=2.2 hour 2( 2.2)θ =  

with 7 units additional demand of P1, thus the new demand of P1 is 87 units 1( 87)θ =  and the reactive 

schedule can be obtained from the parametric solution for 1 2( , ) (87, 2.2)θ θ = , which corresponds to critical 

region 10 with a parametric objective of 15.769 0.04θ+  and the integer solution is shown in Table 4.3. Thus 

the optimal makespan can be evaluated by 5.769 0.04*87 9.249+ = and the corresponding schedule is 

obtained as shown in Figure 4.5.  
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Table 4.3 Integer solution of critical region 10 
{ }, ,( , , ) | 1i j ni j n wv =  { }, ,( , , ) | 1i j ni j n y =  

heating.heater.n0   
heating.heater.n1   
heating.heater.n2   
rxn1.rtr1.n1   
rxn1.rtr1.n3   
rxn1.rtr2.n1   
rxn2.rtr1.n2   
rxn2.rtr1.n5   
rxn2.rtr2.n2   
rxn2.rtr2.n5   
rxn3.rtr1.n4 
rxn3.rtr2.n3 
sepn.sill.n5   

heating.heater.n0   
heating.heater.n1   
rxn1.rtr1.n0   
rxn1.rtr1.n1   
rxn1.rtr2.n0   
rxn1.rtr2.n1   
rxn2.rtr1.n0   
rxn2.rtr2.n0   
rxn3.rtr1.n0   
rxn3.rtr2.n0   
sepn.sill.n0   
sepn.sill.n1   
sepn.sill.n2   
sepn.sill.n3   

 

 

Figure  4.5 Reactive schedule for example1 with rush order at t = 2.2 h 

b) Machine breakdown  

In order to study the case when machine breakdown occurs, we consider the problem of maximizing the 

profit in a given makespan (8 hours) and there is no requirement on the demand of product P1 and P2. Note 

that these assumptions are not necessary and any other optimization objective and demand constraints can be 

used. The original schedule is obtained as shown in Figure 4.6 which results in a maximum profit of 1498.2. 

The we assume that reactor 2 breaks down during the scheduling execution period and the breakdown time 

and the time of maintenance are assumed uncertain as shown in Table 4.4. 

Table 4.4 Machine breakdown uncertainty for example 1 
 Value Range 

breakT (Breakdown time) 1θ  11 7θ≤ ≤  
maintT (Maintenance time) 2θ  20.5 2.5θ≤ ≤  
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Figure  4.6 Original schedule of example 1, fixed H = 8 h 
 
 
To illustrate the parametric solution, the parametric objective is shown in Figure 4.7 and the details of the 

solution are given in Table 4.5. The critical regions of the solution are shown in Figure 4.8. Computational 

data for the solution process is shown in Table 4.9. From the parametric solution, it can be observed that the 

final optimal profit will decrease with the increase of the maintenance time if the same unit breaks down at 

the same time. Also it should be noticed that the problem will become infeasible if the machine breakdown 

time and the maintenance time increase beyond certain limit.  

 

Table 4.5 Parametric objective for example 1 with machine breakdown 
Critical 
Region 

Optimal profit Critical 
Region 

Optimal profit 

1 920.5  9 576.2  
2 1 22015 363.2 363.2θ θ− −  10 866.6  
3 

1 21674.3 240 240θ θ− −  11 
1 22466.6 240 240θ θ− −  

4 1 21403.1 150 150θ θ− −  12 1008.2  
5 1058.9  13 

1 25001 706.7 706.7θ θ− −  
6 896.2  14 1356.6  
7 

1 21856.2 240 240θ θ− −  15 
1 22521.6 428.1 428.1θ θ− −  

8 1 22176.2 240 240θ θ− −    
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Figure  4.7 Parametric solution of maximum profit and machine breakdown parameter 
 
 

 
Figure  4.8 Critical region of the example 1 with machine breakdown 

Once the parametric solution is obtained, the reactive schedule can be directly determined once the event 

occurs. For example, a reactive schedule for the reactor 2 breakdown at t=2.5 hour with 1 hour maintenance 

can be obtained by mapping the parameter value 1 2( , ) (2.5,1)θ θ = in the critical region 15. The corresponding 
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reactive schedule is shown in Figure 4.9. The resulted profit is 2521.6 428.1*2.5 428.1*1 1023.3− − = , 

which corresponds to a big decrease compared to the original profit (1498.2) because of the machine 

breakdown. 

 

Figure  4.9 Reactive schedule for reactor 2 breakdown at t = 2.5 h, maintenance time = 1 h 
 

Example 2 

In example 2, four products are produced through eight tasks from three feeds and there are nine 

intermediates in the system. In all, six different units are required for the whole process. The STN 

representation of this process is shown in Figure 4.10 and the problem data can be found in Chapter 2. 

Through this example, we are studying the application of the proposed method on consecutive uncertainties 

for reactive scheduling. Specifically, we assume that the first disruptive event is a rush orders for  products P1 

and P2, and the second disruptive event is that unit 2 breaks down and needs maintenance. 

 

Figure  4.10 STN representation of example 2 
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First, we solve the deterministic scheduling problem with the objective of minimizing makespan to satisfy the 

nominal demand of products as: P1=600, P2=1400, P3=300, P4=1000. The original deterministic schedule is 

solved with 7 event points and the schedule is shown in Figure 4.11, which has a minimum makespan of 4.45 

hours. 

 

Figure  4.11 Original schedule for example 2 
 

To address the upcoming rush order uncertainty, we can start solving the parametric problem for rush order 

soon after we get the original schedule. Using the maximum demand of the new order, 9 event points are 

identified to be necessary for the reactive scheduling formulation. The uncertain event is described as shown 

in Table 4.6. Then the multiparametric programming problem is solved with the critical regions illustrated in 

Figure 4.12. 

Table 4.6 Rush order uncertainty for example 2 
 

 

 Value Range 

1
rush

Pr (New order of P1) 1θ  1500 800P≤ ≤  

2
rush

Pr (New order of P2) 2θ  21200 1600P≤ ≤  
rushT (Order arrival time) 3θ  21 4θ≤ ≤  
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Figure  4.12 Critical region of example for rush order uncertainty 

Having obtained the parametric solution, we can generate a reactive schedule as soon as the rush order arrives. 

For example, if the demand of product P1 increases to 750( 1 750θ = ), and the demand of P2 increases to 

1500 ( 2 1500θ = ) at time t=1.5 hour ( 3 1.5θ = ), the parametric solution for 1 2 3( , , ) (750,1500,1.5)θ θ θ =  can 

be found directly from the parametric result. Figure 4.13 illustrates the new schedule which has a makespan 

of 4.74 hours.  

 

Figure  4.13 Reactive schedule for rush order at t = 1.5 h 
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Soon after the reactive schedule is executed, a new parametric reactive scheduling problem is solved to deal 

with future unexpected events. The machine breakdown uncertainty considered here is defined in Table 4.7. 

The critical regions of the parametric solution are shown in Figure 4.14, whereas the detail parametric 

objectives are shown in Table 4.8. 

Table 4.7 Machine breakdown uncertainty for example 2 
 Value Range 

breakT (Breakdown time) 1θ  13 5θ≤ ≤  
maintT (Maintenance time) 2θ  20.5 2.5θ≤ ≤  

 

Table 4.8 Parametric objective for example 2 with machine breakdown 
Critical Region Makespan H (hours) 
1 4.74  
2 1 23.74 0.062 0.062θ θ+ +  
3 1 21.49 θ θ+ +  
4 1 20.74 θ θ+ +  
5 1 22.37 θ θ+ +  
6 14.102 0.0656θ+  
7,8 1 22.48 θ θ+ +  

 

 
Figure  4.14 Critical region of example 2 with machine breakdown. 
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After we obtain the parametric solution, we can address the upcoming machine breakdown. For example, if 

unit 2 breaks down at 3breakT = hour, and requires 1.5maintT = hour, it corresponds to 1 2( , ) (3,1.5)θ θ = , so the 

reactive schedule can be obtained from the parametric result and it is shown in Figure 4.15. 

 

Figure  4.15 Reactive schedule for unit 2 breakdown at t = 3 h, maintenance time = 1.5 h 
 
Following this dynamic way of addressing uncertainty, multiple disruptive uncertainties in the scheduling 

process can be addressed. The only requirement is that upon the arrival of a new disruptive event, the 

corresponding parametric solution that covers this uncertain event has been retrieved. In this example, the 

first parametric problem is solved in 2300 CPU sec, and the second parametric problem is solved in 1442 

CPU sec. In both cases we test 5000 points uniformly distributed in the uncertain space and the parametric 

solution can cover all the given uncertain space (Figures 4.12, 4.14) except the infeasible operation areas. 

Detail computational statistics are given in Table 4.9. Furthermore, during the process of solving the 

parametric programming problem, the uncertain space that represents the near future can be solved at the 

beginning so that the earlier disruptive events can be covered by the parametric solution.  

Table 4.9 Computational statistics for the examples 
 Example 1 Example 2 
 Rush 

order 
Machine 

breakdown 
Rush 
order 

Machine 
breakdown 

Reactive scheduling model     
Constraints 1360 1596 2278 2358 
Continuous 576 673 1316 1370 

Binaries 280 320 864 864 
Number of testing points 5000 5000 5000 5000 
Number of critical regions* 35 49 89 18 
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Average iterations per point 3 3 3 2
Average CPU time per point (sec)** 7 5 6 5

* Equal to the number of points used to apply the multiparametric programming, since some of these 
critical regions might belong to a larger nonconvex critical region, the final critical region illustrated 
in the chapter is post-processed result after union operation. 

** The average time is for multiparametric programming solution process for a point 

4.4 Summary 

A new methodology for reactive scheduling is proposed in this chapter. Different to any existing method, this 

chapter provides a direct mapping approach to generate the reactive schedule with the parametric solution. It 

greatly improves the efficiency of reactive scheduling because the reactive schedule is obtained by checking 

from a set of parametric solutions which is solved ahead of time but not solve a rescheduling problem after 

the uncertainty occurs. The proposed methodology is designed to address single disruptive event. However, 

consecutive uncertainties can be addressed through the repetitive application of the method. It is worthwhile 

to note here that the number of critical regions of multiparametric MILP problem increases with the size of 

the uncertain space (number of the uncertain parameters), so complete coverage of the uncertain space needs 

considerable computational effort. However, the parametric solution generated using the proposed method 

provides a way to derive the possible reactive decision with existing computational ability before the 

uncertain event, which make it possible to save time in making reactive decision. Once the realized 

uncertainty is not covered by the current solution, the reactive schedule can be directly solved through the 

developed reactive scheduling formulation. Further improvements on the proposed method lie on developing 

parallel algorithm to solve the multiparametric programming problem to further save the computation time. 
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Chapter 5  

Integration of Planning and Scheduling  

 

Abstract: In this chapter, augmented Lagrangian method is applied to solve the full-space integration 

problem which takes a block angular structure. To resolve the non-separability issue in the augmented 

Lagrangian relaxation, we study the traditional method which approximates the cross-product term through 

linearization and also propose a new decomposition strategy based on two-level optimization. The results 

from case study show that the augmented Lagrangian method is effective in solving the large integration 

problem and generating a feasible solution. Furthermore, the proposed decomposition strategy based on 

two-level optimization can get better feasible solution than the traditional linearization method. 

 

5.1 Introduction 

Production planning and scheduling belong to different decision making levels in process operations, they 

are also closely related since the result of planning problem is the production target of scheduling problem. In 

process industry, the commonly used planning and scheduling decision making strategy generally follows a 

hierarchical approach, in which the planning problem is solved first to define the production targets and the 

scheduling problem is solved next to meet these targets. However, there exists a big disadvantage in this 

traditional strategy since there is no interaction between the two decision levels, i.e., the planning decisions 

generated might cause infeasible scheduling subproblems. At the planning level, the effects of changeovers 

and daily inventories are neglected, which tends to produce optimistic estimates that can not be realized at the 

scheduling level, i.e., a solution determined at the planning level does not necessarily lead to feasible 

schedules. Moreover, the optimality of the planning solution cannot be ensured because the planning level 

problem might not provide an accurate estimation of the production cost, which should be calculated from 

detailed tasks determined by the scheduling problem.  
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Therefore, it is important and necessary to develop methodologies that can effectively integrate production 

planning and scheduling. However, since production planning and scheduling are dealing with different time 

scales, the major challenge for the integration lies in the large problem size of the resulted optimization model. 

A direct way for addressing the integrated planning and scheduling problems is to formulate a single 

simultaneous planning and scheduling model that spans the entire planning horizon of interest. However, 

when typical planning horizons are considered, the size of this detailed model becomes intractable, because 

of the potential exponential increase in the computation time. To overcome the above difficulty, most of the 

work appeared in the literature aim at decreasing the problem scale through different types of problem 

reduction methodologies and developing efficient solution strategies as summarized by (Grossmann et al., 

2002),  (Maravelias & Sung, 2008). Generally, the existing work in the area of planning and scheduling 

integration can be summarized as follows. 

The first type of methods is based on decomposition in a hierarchical way through iterative solution 

procedure. Through a hierarchical decomposition of the integration problem, detailed scheduling constraints 

are not incorporated into the upper level aggregate planning model, on the other hand, information is passed 

from the aggregate planning problem to a set of detailed scheduling problems and these scheduling problems 

are separated based on the temporal decomposition. Thus, the problems that need to be solved include a 

relative simple planning problem and a series of scheduling subproblems. To ensure the feasibility and 

optimality of the solution, it is further necessary to develop effective algorithms to improve the solution using 

additional cuts in the planning level within an iterative solution framework (Papageorgiou & Pantelides, 

1996); (Bassett, Pekny et al., 1996); (Munawar & Gudi, 2005); (Erdirik-Dogan & Grossmann, 2006). The 

second type of method, which is also called rolling horizon approach, considers a relative rough model for the 

far future planning periods in the integrated planning and scheduling model, i.e., detailed scheduling models 

are only used for a few early periods and aggregate models are used for later periods. The production targets 

for the early periods are directly implemented, while the production targets for the later periods are updated 

along with the rolling horizon. Applications of this kind of strategy can be found in (Dimitriadis et al., 1997); 

(Sand et al., 2000); (Wu & Ierapetritou, 2007); (Verderame & Floudas, 2008). Thirdly, for the cases where 

there is no plant and market variability, campaign mode can be applied to generate an easy to implement and 

profitable process operations plan. In a periodic scheduling framework, the planning and scheduling 
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integration problem is replaced by establishing an operation schedule and executing it repeatedly (Zhu & 

Majozi, 2001); (Castro et al., 2003); (Wu & Ierapetritou, 2004). Other than using the detailed scheduling 

model in the integrated planning, surrogate methods aim at deriving the scheduling feasibility and production 

cost function first and then incorporating them into the integrated problem. This avoids the disadvantage of 

large scale and complex model which directly incorporate the detailed scheduling model into aggregating 

planning model as shown in  (Sung & Maravelias, 2007). 

Except the different methods for the integrated planning and scheduling summarized above, another 

approach is based on the study of the special structure of the mathematical programming model for the 

integration problem and aims at developing efficient decomposition techniques to solve the optimization 

problem directly. Lagrangian relaxation is an approach that is often applied to models with a block angular 

structure. In such models, distinct blocks of variables and constraints can be identified and they are linked 

through a few “linking” constraints and variables. To our knowledge, Lagrangian relaxation has been widely 

applied onto planning and scheduling problems for different applications including unit commitment in 

power industry (Padhy, 2004), midterm production planning (Gupta & Maranas, 1999), and combined 

transportation and scheduling (Equi et al., 1997), etc. However, the major drawback of Lagrangian relaxation 

method is that there is duality gap between the solution of the Lagrangian dual problem and the solution of 

original problem, and often the feasibility of the solution needs to be recovered through heuristic steps. So it 

is often only used as the bounding step in the branch and bound framework. The disadvantage of Lagrangian 

relaxation can be avoided by augmented Lagrangian relaxation (ALR) method, which has been used in 

several applications in areas such as power generation scheduling (Carpentier et al., 1996), multidisciplinary 

design (Tosserams et al., 2008), etc. One drawback of ALR method is the non-separability of the relaxed 

problem, which has also received wide attention in the literature. In this chapter, we propose to apply the 

ALR method on the planning and scheduling integration problem which takes a block angular model 

structure, and also propose a new decomposition strategy to address the non-separability issue in the ALR 

solution procedure, which can be used to decompose the relaxed problem exactly without any approximation 

technique as presented in the literature. 

The content of this chapter is organized as follows. The problem formulation of the integrated planning 

and scheduling problem is first presented in section 5.2. The general augmented Lagrangian solution method 
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is presented in section 5.3. Detail reformulation and decomposition strategies for the planning and scheduling 

integration problem are presented in section 5.4. The proposed method is studied in section 5.5 through a case 

study and the chapter concludes in section 5.6. 

5.2 Problem structure 

Production planning model is used to predict production targets and material flow over several months (up to 

one year), it is generally takes a simplified representation of the production and formulated as linear problem. 

Scheduling models on the other hand are more detailed assuming that key decisions (production targets) have 

been made. To integrate these two different decision-making problems, the simplest way is to formulate a full 

space optimization model, where in every period of the planning horizon, the scheduling constraints are 

incorporated into the model, while keeping the inventory connecting constraints between the planning 

decision and scheduling decisions. In this work, we formulate the production planning and scheduling 

integration problem as follows. 

min     ( )
P P

t t t t
s s s s i ijn i ijn

t s S t s S t i j n

h Inv u U FixCost w VarCost b
∈ ∈

+ + +∑∑ ∑∑ ∑∑∑∑
  

(5.1a) 

s.t. 1t t t t
s s s sInv Inv P D−= + −    Ps S∀ ∈ , t∀    (5.1b) 

1t t t t
s s s sU U Dem D−= + −    Ps S∀ ∈ , t∀    (5.1c) 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
,

t t t
s n N s sst stin P= − =    Ps S∀ ∈ , t∀    (5.1d) 

1t t
s sstin Inv −=     Ps S∀ ∈ , t∀    (5.1e) 

, , 1
j

t
i j n

i I

wv
∈

≤∑     j J∀ ∈ , n N∀ ∈ , t∀   (5.1f) 

min max
, , , , , , , ,

t t t
i j i j n i j n i j i j nv wv b v wv≤ ≤   i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ , t∀  (5.1g) 

, , , , , , , , , ,
t t t t

i j n i j n i j i j n i j i j nTf Ts wv bα β= + +
 
 i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ , t∀  (5.1h) 

, , 1 , , , ,(1 )t t t
i j n i j n i j nTs Tf H wv+ ≥ − −   i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ , t∀  (5.1i) 

, , 1 ', , ', ,(1 )t t t
i j n i j n i j nTs Tf H wv+ ≥ − −   , ' ji i I∀ ∈ , j J∀ ∈ , n N∀ ∈ , t∀  (5.1j) 

, , 1 ', ', ', ',(1 )t t t
i j n i j n i j nTs Tf H wv+ ≥ − −

 
, ' , 'ji i I i i∀ ∈ ≠ , 'j j J∀ ∈ , n N∀ ∈ , t∀  (5.1k) 
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, , 1 , ,
t t
i j n i j nTs Ts+ ≥    i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ , t∀   (5.1l) 

, , 1 , ,
t t

i j n i j nTf Tf+ ≥    i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ , t∀   (5.1m) 

, ,
t
i j nTs H≤     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ , t∀  (5.1n) 

, ,
t

i j nTf H≤     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈ , t∀  (5.1o) 

, , 1 , , , , , , 1
s i s i

t t C t P t
s n s n s i i j n s i i j n

i I j J i I j J

st st b bρ ρ− −
∈ ∈ ∈ ∈

= − +∑ ∑ ∑ ∑ s S∀ ∈ , n N∀ ∈ , t∀   (5.1p) 

, 1 , , , 1
s i

t t C t
s n s s i i j n

i I j J

st stin bρ= =
∈ ∈

= −∑ ∑    s S∀ ∈ , t∀   (5.1q) 

max
,

t
s n sst st≤     s S∀ ∈ , n N∀ ∈    (5.1r) 

In the above model, the objective function (5.1a) is the total cost composed by three parts: inventory cost, 

backorder cost and production cost, where the inventory cost and backorder cost are calculated based on the 

inventory and backorder amount and the given unit cost parameter ( sh , su ); the production cost of different 

planning periods is composed by a fixed part which represents the basic cost of a task, and a dynamic part 

which is proportional to the amount of material processed (batch size). 

The constraints of the above integration model can be divided into planning level and scheduling level. 

Equations (5.1b) and (5.1c) represent the planning level constraints, among them, equations (5.1b) represent 

the inventory balance and equations (5.1c) represent the backorder balance. Among the constraints of the 

scheduling level, equations (5.1d) express the requirement that the planning solutions t
sP  generated from 

upper planning level is the production targets for different planning periods. Equations (5.1e) represent the 

connection constraints for the initial product inventory for different planning periods. Equations (5.1f)-(5.1r) 

represent scheduling constraints which can be referred from Chapter 2. If we denote the scheduling decision 

variables ( , , , , , , , , ,, , , , ,t t t t t t
i j n i j n i j n i j n s n swv b Tf Ts st stin ) for planning period t using the vector ty , then the structure 

of the above integrated planning and scheduling model can be illustrated as shown in Figure 5.1. 
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Figure  5.1 Constraint matrix structure of the integration model 

In the above constraint matrix, the part on the top of the matrix corresponds to the planning constraints, and 

the lower part is composed by scheduling constraints for different planning periods. It can be observed that 

the integration model takes a block angular structure and the blocks are linked through planning decision 

variables. As stated in the introduction section, Lagrangian relaxation is a typical approach that is often 

applied to this type of models with a block angular structure. However, to avoid the drawback of classical 

Lagrangian relaxation, augmented Lagrangian method is applied in this work. 

5.3 Augmented Lagrangian Optimization algorithm 

Observing the special constraint structure of the integrated planning and scheduling problem as shown in 

Figure 5.1, we can reformulate the problem into a decomposable structure through the introduction of 

auxiliary duplicate variables t
sPP for the production target t

sP , and t
sII for the inventory variables t

sInv , 

respectively. The following reformulated problem which is equivalent to the original problem (5.1) can be 

derived: 

 
min     ( )

P P

t t t t
s s s s i ijn i ijn

t s S t s S t i j n
h Inv u U FixCost w VarCost b

∈ ∈

+ + +∑∑ ∑∑ ∑∑∑∑
   

(5.2a) 

1. .       t t t t
s s s ss t Inv Inv P D−= + −   Ps S∀ ∈ , t∀      (5.2b) 
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1t t t t
s s s sU U Dem D−= + −  Ps S∀ ∈ , t∀       (5.2c) 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
t t

s sP PP=    Ps S∀ ∈ , t∀      (5.2d) 

t t
s sInv II=    Ps S∀ ∈ , t∀      (5.2e) 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
,

t t t
s n N s sst stin PP= − =   Ps S∀ ∈ , t∀      (5.2f) 

1t t
s sstin II −=    s S∀ ∈ , t∀      (5.2g) 

ty Y∈     t∀       (5.2h) 

 
In the above model, (5.2d) and (5.2e) are the coupling constraints which link the different scheduling and 

planning constraints block. In the problem reformulation (5.2) we have made a compact representation of the 

scheduling constraints (5.1f)-(5.1r) as (5.2h) for the sake of simplicity. Thus the constraint matrix structure of 

the above problem is shown as Figure 5.2.  

 

 
Figure  5.2 Constraint matrix structure of the reformulated model 

 

With the above reformulation, the resulted model (5.2) is decomposed into a planning subproblem and a 

number of scheduling subproblems once the coupling constraints (5.2d) and (5.2e) are relaxed. In this work, 

the augmented Lagrangian algorithm is applied to solve the integration planning and scheduling problem. 
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Specifically, equality constraints (5.2d) and (5.2e) are relaxed and the following augmented Lagrangian 

relaxation problem is obtained: 

 
( , , )f λ μ σ =  

2 2

min  ( )

 ( ) ( ) {( ) ( ) }
P P

P P P

t t t t
s s s s i ijn i ijn

t s S t s S t i j n

t t t t t t t t t t
s s s s s s s s s s

t s S t s S t s S

h Inv u U FixCost w VarCost b

P PP Inv II P PP Inv IIλ μ σ
∈ ∈

∈ ∈ ∈

+ + +

+ − + − + − + −

∑∑ ∑∑ ∑∑∑∑

∑∑ ∑∑ ∑∑
  

(5.3a) 

1. .       t t t t
s s s ss t Inv Inv P D−= + −   Ps S∀ ∈ , t∀      (5.3b) 

1t t t t
s s s sU U Dem D−= + −   Ps S∀ ∈ , t∀      (5.3c) 

,
t t t
s n N s sst stin PP= − =   Ps S∀ ∈ , t∀      (5.3d) 

1t t
s sstin II −=    Ps S∀ ∈ , t∀      (5.3e) 

ty Y∈     t∀       (5.3f) 

 
Thus the solution of the original planning and scheduling integration problem (5.1) is transformed into the 

solution of the following augmented Lagrangian dual problem 
, ,

max ( , , )f
λ μ σ

λ μ σ . In particular, we propose the 

following algorithm for the planning and scheduling integration problem: 

 
Step 1. Initialization. Set bounds for multipliers: min max[ , ]λ λ , min max[ , ]μ μ . Choose initial multiplier and 

penalty parameter value 0t
sλ = , 0t

sμ = , 1σ = , set 1k = , 0ε > (e.g., 0.1), 1α > (e.g., 2.2), 

(0,1)β ∈  (e.g., 0.4); 

Step 2. Compute an approximate solution of the augmented Lagrangian relaxation problem through 

decomposition technique as described in detail in the next section, get solution , , ,Inv II P PP  and 

objective value ( , , )f λ μ σ . Define consistency function value vector [ ]   Tg Inv II P PP= − − , if 

|| ||g ε< , then stop, ( , , )λ μ σ  is a solution; otherwise, go to step 3. 

Step 3. Update multipliers: 

min maxmin{max{ , ( )}, }t t t t
s s s sInv IIλ λ λ σ λ= + − , min maxmin{max{ , ( )}, }t t t t

s s s sP PPμ μ μ σ μ= + − . 

If ( ) ( 1)|| || || ||k kg gβ −≥ ,  set σ ασ= ; otherwise keep σ unchanged. Set 1k k= + , go to step 2. 



- 85 - 
 

 

Although the convergence properties of the ALR algorithm proved by (Andreani et al., 2008) (Appendix B) 

are based on the assumption of the continuous first derivative of the objective function ( )f x  and upper level 

constraints ( ), ( )h x g x , it is worth to point out that these properties are remained for the mixed integer linear 

programming problem studied in this paper. The reason is that the mixed integer problem is always able to be 

transformed into its equivalent continuous counterpart because binary variable , , {0,1}t
i j nwv ∈  can be 

replaced by continuous relaxation , ,0 1t
i j nwv≤ ≤ and adding complementarity 

constraints , , , ,(1 ) 0t t
i j n i j nwv wv− = , so when the above algorithm is applied onto the mixed integer 

programming problem (5.2), similar convergence properties can still be ensured. 

Note that in the above solution algorithm, it is necessary to solve a series of augmented Lagrangian 

relaxation problems (5.3). However, the objective function of the relaxation problem (5.3) contains cross 

product terms t t
s sP PP  and t t

s sInv I  which are non-separable, thus it is still hard to solve the relaxation problem 

unless it is decomposed because it is almost as hard as the original problem (5.1). So, in next subsection 

several decomposition strategies are presented to decompose the relaxation problem and reduce the 

computational complexity. 

5.4 Decomposition strategy 

As presented above, in the augmented Lagrangian solution framework, there is an upper level which aims at 

finding the optimal Lagrangian multipliers and penalty parameters to solve the augmented Lagrangian dual 

problem. In every iteration of the method of multipliers, an augmented Lagrangian relaxation problem (5.3) 

needs to be solved with fixed Lagrangian multipliers ,λ μ and penalty parameter σ . The relaxation problem 

is solved in a lower level using different decomposition strategies. There are several techniques in the 

literature that resolve the issue of separability in the augmented Lagrangian solution method: the Diagonal 

Quadratic Approximation (DQA) method (Ruszczynski, 1995); the Block Coordinate Decent (BCD) method 

which is also known as the “nonlinear Gauss-Seidel” method (Bertsekas, 2003); the Alternating Direction 

method  (Bertsekas & Tsitsiklis, 1989), which is an extreme case of the BCD method by taking only a single 



- 86 - 
 

BCD iteration; the separable augmented Lagrangian algorithm (Hamdi et al., 1997), etc. All of those methods 

generate an approximate decomposable version of the original relaxation problem then solve it through 

decomposition. In this subsection, we present the Diagonal Quadratic Approximation method for comparison 

and also propose a new method based on two-level optimization of the relaxation problem. 

5.4.1 Diagonal Quadratic Approximation  

Diagonal Quadratic Approximation method addresses the nonseparable issue through linearizing the cross 

product quadratic term ( t t
s sP PP , t t

s sInv II ) around the tentative solution , , ,t t t t
s s s sP PP Inv II  and get separable 

approximation (also called) as following  

2 2 2 2( ) ( ) ( ) ( )t t t t t t t t
s s s s s s s sP PP P PP PP P P PP− ≈ − + − − −  

Thus with above substitution for the nonseparable term, the original relaxed problem (5.3) can be rewritten as 

the following decomposable form 

( , , ) t
P S

t

f f fλ μ σ = +∑  

where Pf  represents optimal objective of the following planning subproblem (5.4) 

, , ,

2 2

2 2

min  

                    {( ) ( ) }

                    {( ) ( ) }

t t
P s s s sP Inv D U t s t s

t t t t t t
s s s s s s

s t s t

t t t t t t
s s s s s s

s t s t

f h Inv u U

P P PP P PP

Inv Inv II Inv II

λ σ

μ σ

= +

+ + − − −

+ + − − −

∑∑ ∑∑

∑∑ ∑∑

∑∑ ∑∑

    (5.4a) 

1. .       t t t t
s s s ss t Inv Inv P D−= + −   Ps S∀ ∈ , t∀     (5.4b) 

1t t t t
s s s sU U Dem D−= + −   Ps S∀ ∈ , t∀     (5.4c) 

 
and t

Sf  represent optimal objectives of the following scheduling subproblems (5.5) 
 

2

, ,

2

min  ( ) ( )

                                                                               ( )

t t t

t t t t t t t
S i ijn i ijn s s s s

PP II y i j n s s

t t t t
s s s s

s s

f FixCost w VarCost b PP PP P

II II Inv

λ σ

μ σ

= + − + −

− + −

∑∑∑ ∑ ∑

∑ ∑
  

 (5.5a) 

,. .       t t t
s n N s ss t st stin PP= − =   Ps S∀ ∈      (5.5b) 
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1t t
s sstin II −=     Ps S∀ ∈      (5.5c) 

ty Y∈           (5.5d) 

 
In the DQA solution method, subproblem (5.4) and subproblems (5.5) are solved alternately with updated 

value of the tentative solution until a given iteration limit is reached or the relative change in the objective 

function value of the relaxation problem for two consecutive inner loop iterations is smaller than some 

user-defined termination tolerance. Sometimes, considering the fact that high accuracy of the subproblem 

solutions is not necessary in the early iterations when the Lagrangian multipliers are far from its optimal 

value and the computational effort is wasted, it is more desirable to quickly update the Lagrangian multiplier 

to move toward its optimal value. This can be achieved by limiting the total number of inner loop iterations in 

DQA by treating it as user-specified parameter to reduce the computational cost for solving the inner loop  

(Li et al., 2008). 

Among the above subproblems, the planning subproblem is a quadratic programming problem, whereas 

the scheduling subproblems are mixed integer quadratic programming problems, all of them can be solved 

through standard QP/MIQP solvers such as CPLEX 10. Also notice that the feasibility of the subproblems 

can be ensured since the auxiliary variables are not constrained in the subproblem. Furthermore, an important 

fact regarding those subproblems is that they can be solved in parallel, thus the solution efficiency can be 

greatly improved. 

5.4.2 Two-Level optimization 

Different from those methods that use an approximation to make the objective separable, we propose a new 

method to address the non-separability issue in the augmented Lagrangian method. First, the augmented 

relaxation problem (5.3) can be rewritten to the following equivalent form: 

( , , )f λ μ σ =  
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  (5.6a) 

1s.t.       t t t t
s s s sInv Inv P D−= + −    Ps S∀ ∈ , t∀     (5.6b) 

1t t t t
s s s sU U Dem D−= + −    Ps S∀ ∈ , t∀     (5.6c) 

Problem (6) can be simplified as follows:  

( , , )f λ μ σ =  

, , ,
min    ( , )

P P

t t t
s s s sI P D U t s S t s S t

h Inv u U q P Inv
∈ ∈

+ +∑∑ ∑∑ ∑       (5.7a) 

1s.t.       t t t t
s s s sInv Inv P D−= + −    Ps S∀ ∈ , t∀     (5.7b) 

1t t t t
s s s sU U Dem D−= + −    Ps S∀ ∈ , t∀     (5.7c) 

where ( , )tq P Inv  is further defined by the following optimization subproblems: 

( , )t P Invq =  

, ,

2 2

min    ( )
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P P P

t

t t
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t t t t t t
s s s s s s

s

t t t
s s

S
s

S S s
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+
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∑∑∑
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  (5.8a) 

,s.t.               t t t
s n N s s Pst stin PP s S= − = ∀ ∈        (5.8b) 

1                     t t
s s Pstin II s S−= ∀ ∈        (5.8c) 

ty Y∈           (5.8d) 

With the above reformulation strategy, the solution of the relaxation problem (5.3) can be transformed into 

the solution of nonlinear problem (5.7) which takes an implicit objective function and the evaluation of the 

objective function needs the solution of a series of subproblems (5.8). 

The difference between the DQA strategy and the proposed two-level strategy lies on the fact that the 

DQA strategy actually solves an approximation version of the relaxation problem (5.3). However the later 
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strategy solves the exact problem (5.3) using a two-level optimization. In particular, the two-level 

optimization strategy solves the augmented Lagrangian relaxation problem by further reformulating it into 

two levels: in the first level, the relaxation problem is solved only with respect to the planning decision 

variables through an iterative algorithm, whereas in every iteration, a set of scheduling subproblems needs to 

be solved with fixed planning decision variables in the second level as shown in Figure 5.3. Notice that in the 

two-level strategy, the relaxation problem and the scheduling subproblems are in different levels, and in the 

DQA strategy, the planning subproblem and scheduling subproblem are solved in the same level but 

alternately. 

 

Figure  5.3 Illustration of the decomposition strategy: (left) DQA; (right) Two-level 

Finally, it should be mentioned that in the DQA method, the solution generated by solving subproblem (5.4) 

and (5.5) alternately is actually an approximate solution of the original relaxation problem (5.3). As 

explained previously, the theory provided by (Andreani et al., 2008) provides support for this kind of 

approximation method. Similarly, we can use this idea in the two-level optimization strategy as follows. It is 

known that ( , )tq P Inv is generally a nonsmooth function of ,P Inv  because of the integrality restrictions. 

Theoretically, nonsmooth optimization method should be used to ensure the optimality of the solution. 

However, considering the difficulty of solving the nonsmooth problem (5.7) and due to the fact that an 

optimal solution is not necessary to ensure the convergence of the algorithm, we propose to use a continuous 
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solver to solve problem (5.7) to get a solution which is feasible but not optimal. In the next section, we make 

a comparative study on the two different decomposition strategies in the ALR solution framework. 

5.5 Examples 

The augmented Lagrangian algorithm and different decomposition strategies are studied in this section 

through an example production problem. All the computations in this example are performed on a dual-core 

system with 2.8GHz CPU and 1Gb RAM. In this example, two products P1 and P2 are produced through 

three processing stages utilizing three materials (Kondili et al., 1993). The state-task-network (STN) 

representation of this example is shown in Figure 5.4 and the problem data can be found from Chapter 3. 

Reaction2

Separation

Reaction3Reaction1

Heating
Feed A Hot A

Product1

IntAB

IntBC

Feed B
Feed C

Product 2

Impure E 10%

90%

40%

60%

40%
60%

50%

50%

80%

20%

 
Figure  5.4 State-Task-Network (STN) representation of the motivation example 

 
Considering the production planning and scheduling integration problem for the above production process, 

we divide the planning horizon into a number of planning periods with equal time length. In every planning 

period, an 8-hour scheduling problem is considered and 6 event points are used in the continuous time 

scheduling model as shown in model (5.1). Note that this number of event points is determined ahead of time 

with an objective of maximizing the production in the scheduling horizon of fixed 8-hour. Within such a time 

horizon and event point scheme, the resulted scheduling model can be efficiently and quickly solved through 

standard MILP solver such as CPLEX 10.  

In the following, to study the augmented Lagrangian algorithm, we test six different cases of the 

planning and scheduling integration problem. Those six cases take different number of planning periods from 

5 to 90 and the detail demand data can be referred from Figure 5.5 (e.g., for the 5-period case, the demand 

data are the first five data in the figure). Cost data for this problem can be found from Table 5.1. 
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Table 5.1 Cost data for the example 
 Fixed cost Variable cost 
Heating 150 1 
Reaction1,2,3 100, 100, 100 0.5, 0.5, 0.5 
Separation 150 1 
 Inventory cost Backorder cost 
P1, P2 10, 10 100, 100 

 

 
Figure  5.5 Demand data for 90 periods 

 
Before the application of the augmented Lagrangian algorithm on the problem, we study the direct solution of 

the full space problem (5.1) using standard MILP solver CPLEX 10. The statistical data for the full space 

integrated planning and scheduling model with six different cases of planning periods and the results of direct 

solution method are shown in Table 5.2. It is observed that the problem is generally very difficult to be solved 

to optimality as the number of period increases and it becomes intractable when the number of periods is 

large (90 in this example).  

Table 5.2 Model statistics and direct solution for full space model 
Number of 
periods 

Binary 
variables 

Continuous 
variables 

Constraints  Time Best solution Gap  

5 600 2006 3847 3600* 6576.8 4.76% 
10 1200 4001 7692 3600* 13357.6 14.04% 
15 1800 5996 11537 7200* 18985.9 19.60% 
30 3600 11981 23072 7200* 35217.5 17.49% 
45 5400 17966 34607 10800* 53960.3 13.10% 
90 10800 35921 69212 intractable - - 

* Terminated because resource limit (time) is reached 
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The augmented Lagrangian method is then applied on this example and different decomposition strategies 

presented in section 4 are compared. First, for the DQA based decomposition strategy, we studied two 

different versions of the method and the results are shown in Table 5.3. The first version uses only one 

iteration for the solution of the relaxation problem and the other version uses increasing iteration limit (equal 

to the index of the outer iteration, noted as ‘k-iteration’ in the following) for the solution of the relaxation 

problem. In the solution procedure, CPLEX 10 is used in GAMS platform to solve both the planning 

subproblem (QP problem) and the scheduling subproblems (MIQP problems).  

Table 5.3 Result of the DQA method 
 With one iteration ( max

inner 1k = ) With two iterations ( max
inner outerk k= ) 

T k time F λg+σ||g||2 ||g|| k time f λg+σ||g||2 ||g|| 
5 11 62 6925.2 -3.9 0.39 14 554 6775.3 104.8 0.81 
10 15 135 13684.7 -0.6 0.58 14 899 13525.8 42.8 0.80 
15 15 157 21113.8 72.9 0.80 20 2151 20000.9 83.4 0.72 
30 33 657 39312.6 157.1 0.84 17 3427 36568.3 3.6 0.50 
45 33 1023 59135.4 164.0 0.88 21 7338 55753.1 -71.1 0.60 
90 34 2462 126894.2 44.5 0.93 25 24510 122122.1 -101.4 0.76 

 

Then, the proposed two-level optimization strategy is applied for the solution of the augmented Lagrangian 

problem. To address the implicit objective function (5.7a), we use the nonlinear programming solver 

KNITRO (Waltz & Plantenga, 2006) in MATLAB platform to solve the inner optimization problem (5.6) 

with the maximum iteration limit set as 50. Scheduling subproblems (MIQP) are solved using CPLEX 10 in 

GAMS. Note that although problem (5.7) is generally nonsmooth and KNITRO is a solver for smooth 

optimization problem, it is used here to obtain a feasible solution to the corresponding problem. We test the 

same group of problems as with the DQA approach and the computation results are shown in Table 5.4. 

Table 5.4 Result of the two-level method 
T k time f λg+σ||g||2 ||g|| 
5 8 1245 6648.2 0.2 0.01 
10 8 4983 13371.9 -79.9 0.71 
15 9 6459 19535.1 -163.7 0.75 
30 8 8443 36223.4 -1.2 0.03 
45 9 12243 54977.4 36.9 0.42 
90 9 37875 121274.4 -10.3 0.29 

 

In all the computation results shown in Tables 5.3 and 5.4, column ‘T’ represents the number of planning 

periods, column ’k’ represents the number of outer iterations in the augmented Lagrangian method, column 

‘time’ represents the time used in seconds for the computation, column ‘f’ represents the final value of the 
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augmented Lagrangian function, column ‘λg+σ||g||2’ represents the value of the augmented and penalty term 

in the augmented Lagrangian function, ‘||g||’ represents the norm of the consistency constraint function value 

vector. Figure 5.6 presents the solution procedure of the augmented Lagrangian method for the 90-periods 

problem.  
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Figure  5.6. Solution procedure: (left) DQA with k-iteration; (right) Two-level optimization 

 

From the above results, it can be observed that the augmented Lagrangian algorithm converges to a feasible 

solution of the original problem since the norm value of the coupling constraints always converges to zero. 

Note that this property is independent of the decomposition strategy used. To illustrate the feasibility of the 

solution, we also plot the solution of the production data along with the scheduling feasibility boundary 

which is generated through parametric programming technique (Li & Ierapetritou, 2007a) for the 90-periods 

case in Figure 5.7. It is observed that the solution data points are all inside the feasibility boundary. 
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Figure  5.7 Feasibility of solution:  (left) DQA with k-iteration; (right) two-level optimization 
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Although both decomposition strategies ensure the convergence of the solution, it is worth noticing that the 

efficiency and quality of the solution as analyzed in the following. First, for the DQA strategy, it is observed 

from the two different versions in Table 5.3 that if more iterations are used for the solution of the relaxation 

problem, generally less outer iterations will be required. However the increased computational complexity 

does not reflect obvious quality improvement of the final solution.  

Second, for the two-level decomposition method, it can be observed that it takes relative small number 

of outer iterations and can get feasible solutions which are better than the results of DQA method. On the 

other hand, the computation time needed for the two-level optimization method is more than the time needed 

for the DQA approach with fixed one iteration, but comparable to the DQA with increasing iteration limits. 

However, the quality of the solution for two-level method is better than all the DQA cases, i.e., although more 

or comparable computation time is required, better solution is achieved by using the two-level optimization 

strategy. 

The results for this problem are shown in Figures 5.8-5.10. In particular Figure 5.8 illustrates the 

production of products P1 and P2. As shown from this figure the production in the solution produced by DQA 

method is more compared with the solution from the two-level approach. Figure 5.9 illustrate the inventory of 

products P1 and P2. As shown by the figure the inventory amount in the solution of the DQA method is more 

than that of the two-level optimization method, leading to higher inventory cost. Finally as shown from 

Figure 5.10 that illustrates the backorder amount, the backorder amount in the solution of two-level case is 

almost zero for all periods, but the solution of DQA takes a relative large backorder in the 7th period. Thus it 

can be observed from these results that the quality of the DQA solution is inferior compared to the solution of 

the two-level strategy. 



- 95 - 
 

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

P
ro

du
ct

io
n 

of
 P

1

 

 

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

Period

P
ro

du
ct

io
n 

of
 P

2

Two-level
DQA (k-iteration)

 
Figure  5.8 Production profile of the solution 
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Figure  5.9 Inventory profile of the solution 
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Figure  5.10 Backorder profile of the solution 

5.6 Summaries 

To address the problem of integrated production planning and scheduling, a decomposition algorithm based 

on augmented Lagrangian is proposed in this chapter. Based on the special structure of the optimization 

model, auxiliary variables and coupling constraints for the linking variables are first introduced, the coupling 

constraints are then relaxed and the resulted augmented Lagrangian relaxation problem is solved through 

decomposition technique. We also propose a new decomposition strategy based on two-level optimization of 

the relaxation problem and compare its performance with traditional approximation based decomposition 

strategy. The results from a case study show that the augmented Lagrangian method can effectively generate 

feasible solution for the original problem, and the new decomposition strategy can generate better feasible 

solution than the traditional approximation based method with the trade-off of using more or comparable 

computation efforts. Furthermore, it is also worth noticing that the computation time in the method is mostly 

spent on the solution of scheduling subproblems. By realizing that the subproblems can be further solved in 

parallel, we can reduce further the computation time through parallel computing. 
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The main advantages of the augmented Lagrangian method are: (a) the convergence of the algorithm is 

ensured without the need to solve the relaxation problem to optimality; (b) it can be easily parallelized; and (c) 

it is able to avoid the duality gap. Furthermore, it can be also used within a bounding procedure since a 

feasible solution is always ensured. In summary, the augmented Lagrangian method is appropriate for the 

solution of the planning and scheduling integration problem. Future work will include improving the solution 

of the relaxation problem to find the global optimal solution of the original problem. 
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Nomenclature 

Planning part 

t   planning periods (1,...,T ) 
t
sInv   inventory level of state s  at the end of planning period t  

t
sP   production target of state s  in planning period t  

t
sD   delivery of product s  in planning period t  

t
sU   backorder of product s  in planning period t  

t
sDem   demand of product s  in planning period t  

sh   inventory unit cost of state s   

su   backorder unit cost of product s   

Scheduling part 

i I∈   task index and sets 

sI   tasks which produce or consume state s  

jI   tasks which can be performed in unit j  

j J∈   unit index and sets 

iJ   units which are suitable for performing task i  

n N∈   event points representing the beginning of a task 

s S∈   state index and sets 

PS   index set for products 

, ,i j nwv   binary, whether or not task i  in unit j  start at event point n  

,s nst   continuous, amount of state s  at event point n  

,
P
s iρ , ,

C
s iρ   proportion of state s  produced, consumed by task i , respectively 

, ,i j nb   continuous, amount of material undertaking task i  in unit j  at event point n  

max
sst   available maximum storage capacity for state s  

t
sstin   initial inventory for state s  in planning period t 

min
,i jv , max

,i jv  minimum amount, maximum capacity of unit j  when processing task i  

, ,i j nTf   continuous, time at which task i  finishes in unit j  while it starts at event point n  

, ,i j nTs   continuous, time at which task i  starts in unit j  at event point n  

,i jα , ,i jβ  constant, variable term of processing time of task i  in unit j  respectively 

H   scheduling time horizon 
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Chapter 6  

Rolling Horizon Optimization  

 

Abstract: Rolling horizon method has been proposed to address the integrated production planning and 

scheduling optimization problem. Since the method can generally result in small-scale optimization model 

and fast solution, it has received quite a few applications in realistic industrial planning and scheduling 

problems. In this chapter, we first pointed out that the incorporation of valid production capacity information 

into the planning model can improve the solution quality. Then we proposed a novel method to derive the 

production capacity model representing the scheduling problem based on parametric programming technique. 

A heuristic process network decomposition strategy is further applied to reduce the computational effort 

needed for complex realistic process networks. Several case studies illustrate the efficiency of the proposed 

methodology in improving the solution quality of rolling horizon method for integrated planning and 

scheduling optimization. 

 

6.1 Introduction 

Production planning and scheduling are two important decision making levels in process operations. 

Traditionally, planning and scheduling have been performed separately (Kallrath, 2002). The planning 

problem is typically solved to predict production targets and material flow over a mid-term horizon (e.g. 

several months) to satisfy the customer demand. The scheduling problem is usually addressed after the 

production planning problem has been solved. The data generated by the production planning problem are 

input data to the scheduling problem. The purpose of the scheduling problem is to transform the production 

plan into a feasible schedule of all the production operations within a short-term time horizon (e.g., several 

days). 

However, treating the planning and scheduling activities separately can lead to lower efficiency of the 

operations performed in the production plant. The aggregate production targets supplied by the planning 
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model often overestimate the production capacity of the plant and may result in infeasible scheduling 

operations because they are made without consideration of short-term operational restrictions. Given the 

importance of providing realistic production targets, a production planning model should take into account 

not only the customer demands but also the production capacity of the plant. To address this issue, the 

integration of planning and scheduling has been proposed by the process systems engineering 

community(Maravelias & Sung, 2008). The integration aims to address the inaccuracies within the planning 

model by allowing for the two-way interaction between planning and scheduling models. Ideally, an 

integrated model should include not only the medium-term capacity utilization and production level 

decisions but also the short-term production sequence and unit assignment decisions. One simple approach is 

to use a scheduling model over the entire planning time horizon, which takes into account the production 

capacity of the plant. However, this approach results in problems of unrealistic size, which is often 

computationally intractable. 

To ensure that the integration can be addressed efficiently, planning models are often formulated 

through various types of aggregation or relaxation schemes, and the integration problem is often solved 

through decomposition algorithms (Maravelias & Sung, 2008), (Grossmann et al., 2002). In the literature, 

there are a number of decomposition based methods like the hierarchical decomposition (Bassett, Dave et al., 

1996); (Munawar & Gudi, 2005); (Erdirik-Dogan & Grossmann, 2006)), periodic scheduling (Schilling & 

Pantelides, 1999); (Zhu & Majozi, 2001); (Castro et al., 2003); (Wu & Ierapetritou, 2004), mathematical 

programming based decomposition (Li & Ierapetritou, 2009), as well as methods that are based on the rolling 

horizon idea which is widely studied (Kreipl & Pinedo, 2004) because it can significantly reduce the 

computational requirements. The method is based on iteratively solving the integrated problem in a rolling 

time horizon mode. In every iteration, the detailed scheduling requirements are imposed only for the current 

or several recent planning periods. In the next iteration, the new planning decision is updated with all the 

previous executed decisions fixed. This mode is repeated until all the planning periods are considered. The 

above idea is supported by the fact that planning decisions for far future could not be accurate enough due to 

the unpredicted future uncertainty. So it is reasonable to consider a relative rough model for far future 

planning periods in the aggregate planning model. Thus the rolling horizon approach results in reduced size 

models and lower computation cost.   
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Rolling horizon method has received a lot of studies in the literature. (Rodrigues et al., 1996) use a 

rolling horizon (rolling out a predefined schedule) approach to take account of due-date changes and 

equipment unavailability to resolve infeasibilities. (Dimitriadis et al., 1997) presented an RTN-based rolling 

horizon algorithm for medium term scheduling of multipurpose plants. (Sand et al., 2000) use a rolling 

horizon approach, in combination with a Lagrangian relaxation algorithm, for the solution of a two-level 

hierarchical planning and scheduling problem. (Wu & Ierapetritou, 2007) decompose the planning time 

horizon into three stages with various durations. The scheduling problem is solved after the solution of 

planning model to ensure a feasible production schedule for the current period. (Sand & Engell, 2004) use a 

rolling horizon, two-stage stochastic programming approach to schedule an expandable polystyrene plant 

that is subject to uncertainty in processing times, yields, capacities and demands. (Verderame & Floudas, 

2008) solve the integration problem utilizing the medium-term scheduling model for large-scale batch plants 

and a forward rolling horizon approach. Rolling horizon method has also been applied to address the long 

term and medium term scheduling problem (Lin et al., 2002), (Janak et al., 2006), (Shaik et al., 2007), (Shaik 

et al., 2009). For those scheduling problems, a rolling-horizon based decomposition scheme is used and 

usually two sub-problems are solved. At the upper-level, a variant of the model is used to find the optimal 

number of products, and the length of the time horizon to be considered for solving the short-term scheduling 

problem at the lower level. At the lower level, short-term scheduling of continuous processes using 

unit-specific event-based continuous-time representation are applied. 

Although rolling horizon framework has received a lot of attention in the literature, a major drawback of 

most existing methods is that they often rely on the simplistic or rather poor representation of the scheduling 

problem within the aggregate part. Within such a modeling framework, rolling horizon method is generally 

efficient in the computational manner. However, the method only ensures the feasibility of the final solution. 

As what we will show in this chapter, production capacity information representing the scheduling problem 

can have great effect on the final solution’s quality. In the literature, (Sung & Maravelias, 2007) have 

proposed to derive the feasible production regions for scheduling problem through a computational geometry 

method, and then incorporate it into the rolling horizon planning model. In this work, we are proposing a new 

method to derive the production capacity constraints based on short-term scheduling model through 
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parametric programming, which can be used in the rolling horizon framework to greatly improve the final 

solution’s quality. 

The content of this chapter is organized as follows. The rolling horizon solution framework and model 

are presented in section 6.2, which is further studied by a motivation example illustrating the necessity of 

applying production capacity information to improve the solution quality. In section 6.3, we present a 

parametric programming based method which is able to generate the accurate boundary of the production 

capacity region of scheduling problem, and also a heuristic process network decomposition strategy to reduce 

the computation complexity. In section 6.4, we illustrated the application of the proposed method on several 

complex problems. The chapter concludes in section 6.5 with a summary of the presented work. 

6.2 Rolling horizon framework 

Rolling horizon methods solve the planning and scheduling integration problem within a sequence of 

iterations, each of which models only part of the planning horizon in detail, while the rest of the horizon is 

represented in an aggregate manner. The rolling horizon solution framework involves successively solving 

each scheduling sub-horizon and carrying over any unsatisfied demand to the following sub-horizon. In 

principle, this approach produces feasible planning and scheduling solutions with a significant reduction of 

the computational requirements. 

Generally, discrete time representation is used for the planning time domain. Consider the planning and 

scheduling integration problem over a time horizon H. In order to integrate both planning and scheduling into 

the optimization model, H is divided into a number of planning periods, t = 1…T. The length of the planning 

horizon is typically in the order of few months. In the rolling horizon framework, both uniform and 

non-uniform planning periods of fixed or varying length can be applied. For example, in production planning, 

it is often required to determine weekly production targets for the first 2-4 weeks, while monthly production 

targets are sufficient for subsequent periods. Hence, we can consider the non-uniform planning periods 

ranging from weeks to months. 

To describe the scheduling model, discrete and continuous models can both be applied. In a discrete 

time representation (which assumes that an event can occur only at the boundaries of each time interval), 

every planning period in the time horizon is divided into a number of predefined scheduling periods, k = 
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1…K. The length of a scheduling period is typically in the order of hours. In the continuous time 

representation, an event can occur at any instant within the whole planning horizon. This makes the model 

more flexible and decreases the total number of variables. 

In the following paragraphs, we present a general planning model and a continuous time representation 

based scheduling model, which forms a basis for the rolling horizon framework studied in this chapter. It 

should be pointed out however that for long-term or medium-term scheduling problems, similar formulation 

idea can be applied whereas a planning problem is not involved. 

 
Planning model:   

min     t t t
s s s s s s

t s s s
TotalCost h I u U v P⎛ ⎞= + +⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑      (6.1a) 

1. .       t t t t
s s s ss t I I P D−= + −    Ps S∀ ∈ , t∀     (6.1b) 

1t t t t
s s s sU U Dem D−= + −   Ps S∀ ∈ , t∀     (6.1c) 

t t
s sP P=     pret T∀ ∈     (6.1d) 

( ) 0t
sf P ≤    Ps S∀ ∈ , t∀     (6.1e) 

, , , 0t t t t
s s s sP I D U ≥    Ps S∀ ∈ , t∀  

 
The above planning model is similar to the one given in (Sung & Maravelias, 2007). In the problem, the 

objective function is the total cost which is composed by three parts: inventory cost, backorder cost and 

production cost. Equation (6.1b) represents the inventory balance and equation (6.1c) represents the 

backorder balance. Equation (6.1d) fixes those planning decision that have been “executed” by the 

scheduling model. Constraints (6.1e) represents the production capacity constraints. 

 
Scheduling model:    

min     ( ) ProdictionCosts s
s

ε ε γ+ −+ + ⋅∑       (6.2a) 

s.t. , , , ,ProductionCost ( )i i j n i i j n
i j n

FixCost w VarCost b= +∑∑∑    (6.2b) 

s s s sP P ε ε+ −− = −           Ps S∀ ∈     (6.2c) 
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,s n N s sst stin P= − =    Ps S∀ ∈     (6.2d) 

, , 1
j

i j n
i I

wv
∈

≤∑     j J∀ ∈ , n N∀ ∈    (6.2e) 

min max
, , , , , , , ,i j i j n i j n i j i j nv wv b v wv≤ ≤   i I∀ ∈ , ij J∀ ∈ , n N∀ ∈   (6.2f) 

, , , , , , , , , ,i j n i j n i j i j n i j i j nTf Ts wv bα β= + +
 
 i I∀ ∈ , ij J∀ ∈ , n N∀ ∈   (6.2g) 

, , 1 , , , ,(1 )i j n i j n i j nTs Tf H wv+ ≥ − −   i I∀ ∈ , ij J∀ ∈ , n N∀ ∈   (6.2h) 

, , 1 ', , ', ,(1 )i j n i j n i j nTs Tf H wv+ ≥ − −   , ' ji i I∀ ∈ , j J∀ ∈ , n N∀ ∈  (6.2i) 

, , 1 ', ', ', ',(1 )i j n i j n i j nTs Tf H wv+ ≥ − −  , ' , 'ji i I i i∀ ∈ ≠ , , 'j j J∀ ∈ , n N∀ ∈  (6.2j) 

, , 1 , ,i j n i j nTs Ts+ ≥     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈   (6.2k) 

, , 1 , ,i j n i j nTf Tf+ ≥     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈   (6.2l) 

, ,i j nTs H≤     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈   (6.2m) 

, ,i j nTf H≤     i I∀ ∈ , ij J∀ ∈ , n N∀ ∈   (6.2n) 

, , 1 , , , , , , 1
s i s i

C P
s n s n s i i j n s i i j n

i I j J i I j J

st st b bρ ρ− −
∈ ∈ ∈ ∈

= − +∑ ∑ ∑ ∑  s S∀ ∈ , n N∀ ∈   (6.2o) 

max
,s n sst st≤      s S∀ ∈ , n N∀ ∈   (6.2p) 

, , , , , , , , ,{0,1}, , , , 0i j n i j n s n i j n i j nwv b st Tf Ts∈ ≥  

 
The objective (6.2a) aims at finding a feasible schedule minimizing the sum of the absolute difference 

between the result generated by the planning model t
sP and feasible schedule, plus a weighted production 

cost ( γ is a weight coefficient). Here, the production cost is calculated in (6.2b) by a fixed part which 

represents the basic cost of a task, and a dynamic part which is proportional to the amount of material 

processed (batch size). Among the constraints of the scheduling level problem, equation (6.2c) uses slack 

variables to evaluate the difference between given production target and actual production amount. Equation 

(6.2d) defines the actual production amount. The rest constraints has the similar meaning as explained in 

problem (2.8). It should be noticed that although the above scheduling formulation derived from (Ierapetritou 
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& Floudas, 1998) has been used, the proposed methodology in this chapter is not limited to this model 

because the proposed solution method is appropriate to general MILP scheduling model. 

Based on the above planning and scheduling formulations, the following algorithm describes a rolling 

horizon algorithm of the solution of the integrated planning and scheduling problem. 

 
Rolling horizon algorithm 

Step 1  Set the first planning period as “current period”, solve the planning problem. 

Step 2. Using the production target solution obtained from step 1, solve scheduling problem in current 

period. If “current period” is the last planning period of the problem, stop. Otherwise, go to step 3. 

Step 3.  Fix the production target in current period at the values obtained in step 2 and solve a new planning 

problem; update the current period index; go to step 2. 

 
In the following, an example is used to illustrate the above algorithm and also the effect of production 

capacity constraints on the quality of the final solution. 

 

Motivation Example 

In this motivation example, two products P1 and P2 are produced through three processing stages utilizing 

three materials. The state-task-network (STN) representation of this example is shown in Figure 6.1. Detail 

data for this problem can be found from Chapter 3. 
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Figure  6.1  State Task Network for example 1 
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For the sake of simplicity in illustrating the results, 5 planning periods are considered in this problem. The 

scheduling horizon is set as 8 hours and 7 event points are used for the continuous time scheduling 

formulation (6.2). The cost and demand data for this problem are shown in Table 6.1. 

 
Table 6.1 Cost and demand data for motivation example 

 Fixed cost Variable cost 
Heating 150 1 
Reaction1,2,3 100, 100, 100 0.5, 0.5, 0.5 
Separation 150 1 
 Unit inventory cost 10, 10 
P1, P2 Unit backorder cost 100, 100 
 Unit production cost  

(used in planning model) 
1.5, 1.5 

1

2

P

P

Dem

Dem
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0 60 140 30 100

        
50 0 55 65 150
⎡ ⎤
⎢ ⎥
⎣ ⎦

  

 
Based on the given process network and corresponding production recipe, simple valid inequalities can be 

derived to describe the production capacity. First, we can identify a production limit from the scheduling 

model by reformulating the scheduling problem objective function as maximizing the production of certain 

product ,max   ( )U
s s n N sP st stin== − , and setting the demand of other products as free variables. The solution 

of this problem leads to the determination of an upper bound of the possible production target of this product 

as 1 86.67P ≤ , 2 87.75P ≤ . Second, for this production problem, a valid inequality representing an upper 

bound for the ratio between production amount of Product 2 (P2) and production amount of Product 1 (P1) 

can be derived through examination of production recipe: for every P1 units of Product 1 been processed, the 

maximum possible amount of Product 2 to be produced can be determined from the mass balance equation: 

2 1 2(1.5 / 9) 1.25 0.9P P P= + × × . By solving this equation, we have the following valid inequality: 2 11.93P P≤ . 

Thus those simple production capacity constraints can be incorporated into the planning model as shown in 

equation (6.1e). 

Based on the above analysis, the rolling horizon algorithm is applied to solve this example, the solution 

procedure for the case with and without capacity model are both listed in Table 6.2, where the “planning 

result” column denotes the solution t
sP obtained from planning problem (6.1) and the “scheduling result” 

column denote the solution sP obtained through the solution of scheduling problem (6.2). The final solution 

is shown in Table 6.3. 
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Table 6.2 Comparison of the rolling horizon solution procedures 

k 
Without capacity information With simple capacity constraints 

Planning result Scheduling 
result Planning result Scheduling 

result 

1 
0 60 140 30 100

        
50 0 55 65 150
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
29.6
50

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
27 86.5 86.5 45.3 84.7

        
50 7.5 87.5 87.5 87.5
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
29.6
50

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

2 
60 140 30 100

      
29.

  
0 55 65 150

6
50

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
30.4
 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
83.9 86.5 45.3 84.7

        
29.6
5 7.5 87.5 87.5 87.0 5

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
83.9
7.5

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

3 
140 30 100

      
55 65

29.6 30.4
  

50 0 150
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
77.5
 55

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
86.5 45.3 84.7

      
87.5 87.

29.6 83
5 87

.9
  

50 7.5 .5
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
70.2
79.6
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

4 
92.5 100

 
29.6 30.4 77.5

    
50

   
65 10 55 50

⎡ ⎤
⎢ ⎥
⎣ ⎦

74.5
 65

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
59.8 86.5

 
29.6 83.9 70.2

    
50 7.5 79.6

   
87.5 87.5

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
59.8
85.3
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

5 
29.6 30.4 77.5 74.5

     
100

 
50 0 5

  
1505 65

⎡ ⎤
⎢ ⎥
⎣ ⎦

70.2
79.6
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
29.6 83.9 70.2 59.8

     
86.5

   
50 7.5 79. 87.6 85.3 5

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
70.2
79.6
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
Table 6.3 Comparison of the final solution results 

 Without capacity constraints With simple capacity constraints 

Production 
29.6 30.4 77.5 74.5 70.2

        
50 0 55 65 79.6

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
29.6 83.9 70.2 59.8 70.2

        
50 7.5 79.6 85.3 79.6

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Inventory 
29.6 0 0 0 0

                   
0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
29.6 53.5 0 13.5 0

           
0 7.5 32.1 53.4 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Backorder 
0 0 62.5 17.9 47.7

            
0 0 0 0 70.4
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
0 0 16.3 0 16.3

            
0 0 0 0 17.9
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Production cost 5312.8 6144.4 
Inventory cost 296.3 1886.6 
Backorder cost 19849.7 5059.2 

Total cost 25458.8 13090.2 
 
From the above results, it can be observed that the total cost for the case without production capacity 

information is much higher than that of the case with simple capacity constraints, and the difference is 

mainly due to increased backorder cost. The reason is that in the model without production capacity 

constraints, the planning model cannot predict that the future production will not satisfy the demand, but 

assumes that the future demand will be always satisfied with enough production capacity, so it tends to 

produce as close as possible to the demand in current period so as to minimize the inventory cost. Due to this 

production capacity limitation that is not accurately considered, the model without the capacity constraints 

results in higher backorder cost, and thus higher total cost. 

The above simple implementation of a rolling horizon approach for this motivating example illustrates 

that the incorporation of production capacity constraints representing production capacity at the planning 

level problem can result in huge savings in terms of backorder cost (74% reduction) and significant reduction 
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of the overall cost (49% reduction). Thus it is important to point out that the consideration of production 

capacity information will improve the quality of the overall solution for the case of a rolling horizon solution 

procedure. 

In this example problem, for illustrative purposes the production capacity information included 

represented an approximation. A more accurate method based on parametric programming is presented in the 

next section, which will further improve the quality of the solution. 

6.3 Production capacity model derivation 

Although the simple production capacity constraints derived from production recipe can improve the quality 

of the solution in the rolling horizon method, however, they are still an approximation of the exact production 

capacity of a short-term scheduling problem because they only represent the mass balance information. 

In this chapter, we are proposing to develop more accurate production capacity model through 

parametric programming. From a mathematical point of view, the exact production capacity region for the 

scheduling problem (6.2) is the projection of the scheduling problem’s feasible region onto the subspace 

spanned by the planning variables, i.e., the production targets sP . The parametric programming method can 

evaluate the exact production capacity by exploring the boundary of the production capacity region segment 

by segment. The details of the method are presented in the follows.  

6.3.1 Parametric programming 

The production capacity information can be completely described by the boundary (plane or line) of the 

production feasibility region. Theoretically, to retrieve production capacity information from the scheduling 

model, we can set the objective of the scheduling problem as maximizing the production of a certain product 

*s  and set the production amount of the other products at specific fixed values as follows  

* *, *max   =s s n N sP st stin= −         (6.3a) 

s.t.     (2b)-(2o)          (6.3b) 

, , , *s n N s s Pst stin P s S s s= − = ∀ ∈ ≠          (6.3c) 
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Thus by enumerating all possible values of the production amount for products , *Ps S s s∈ ≠ , we can 

identify a set of points which is on the boundary (plane or line) of the production capacity region. However, 

formulating the boundary plane or line requires the evaluation of infinite number of points and 

correspondingly the solution of infinite number of scheduling problems, which is obviously impossible. 

However, we can apply the parametric programming algorithm from our previous work (Li & Ierapetritou, 

2007b) to identify the parametric solution which represents the boundary of the production capacity region. 

Parametric programming approach generates the optimal solution map of an optimization problem with 

uncertain parameters. From this point of view, parametric programming provides the exact mathematical 

solution of the optimization problem under parameter variability (Pistikopoulos et al., 2007). In the 

parametric programming method, the production amount of all the “other” products are viewed as uncertain 

parameters and their values can vary within a given range. The complete solution of the parametric 

programming problem is composed by the complete set of critical regions and optimal value functions 

described with respect to uncertain parameters. The critical region is defined as the range of parameter values 

where the same solution remains optimal. Thus we only need to evaluate a set of critical regions and optimal 

value functions to represent the boundary of the production capacity region. 

To apply parametric programming, the original scheduling formulation (6.2) is rewritten as the 

following general compact form: 

min     cx          (6.4a) 

s.t. Ax By b Eθ+ = +        (6.4b) 

 [ , ]L Uθ θ θ∈         (6.4c) 

0,  {0,1}x y≥ ∈         (6.4d) 

where y represents the binary decision variables wv; x represents the continuous variables , , ,b st Tf Ts ; θ  

represent the production amount of the products , , *s PP s S s s∀ ∈ ≠ ; [ , ]L Uθ θ represents an initial given 

range for those parametersθ , which can be determined by solving problem (6.3) without constraints (6.3c). 

Based on the above formulation, we can apply the parametric programming algorithm presented in Chapter 2 

and a segment of the production capacity boundary can be derived once a set of values of the uncertain 

parameters are assigned. By varying the values of those parameters, the complete boundary can be identified. 
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To illustrate the application of the parametric programming algorithm for the solution of the production 

capacity region, the motivation example presented in section 6.2 is studied in the next subsection.  

6.3.2 Application of parametric programming in motivation example. 

To apply the parametric programming approach on the motivation example, we first set the production 

amount of P1 as parameter and the scheduling objective as maximizing the production of P2. Similarly, 

production of P1 can be maximized by viewing production of P2 as parameter. Then the application of the 

above parametric programming algorithm can result in the parametric solutions listed in Table 6.4.  

Table 6.4 Parametric solution for the motivation example 
 2max P  Range of 1P  1max P  Range of 2P  
1 11.6875P  10 52P≤ ≤  1 86.67 20 32.4P≤ ≤  
2 87.75 152 55.25P≤ ≤  2 2136.67 1.543P−  232.4 33.07P≤ ≤  
3 1117.785 0.5436P−  155.25 70.19P≤ ≤  3 2101.25 0.472P−  233.07 41.25P≤ ≤  
4 1585.0 7.2P−  170.19 71.52P≤ ≤  4 287.5 0.1389P−  241.25 52.24P≤ ≤  
5 1104.62 0.4829P−  171.52 73.32P≤ ≤  5 2166.67 1.654P−  252.24 53.65P≤ ≤  
6 1317.647 3.388P−  173.32 77.92P≤ ≤  6 293.75 0.295P−  253.65 69.22P≤ ≤  
7 1100.746 0.6045P−  177.92 80.24P≤ ≤  7 2216.67 2.071P−  269.22 70.09P≤ ≤  
8 1630 7.2P−  180.24 81.77P≤ ≤  8 281.25 0.1389P−  270.09 79.63P≤ ≤  
9 1214.412 2.118P−  181.77 85.63P≤ ≤  9 2216.67 1.8395P−  279.63 87.75P≤ ≤  

10 188.56 0.648P−  185.63 86.67P≤ ≤    
 
The above parametric solutions are also illustrated in Figure 6.2.  Notice that figure 6.2(b) corresponds to the 

case of maximizing the production of P1. The figure was rotated to enable the combination of those two 

results as shown in Figure 6.3(a). 
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(a) (b) 
Figure  6.2 Illustration of the parametric solution 

 
   

 
(a) 

 
(b) 

Figure  6.3 Combined nonconvex production capacity region and its convex hull 
 
As shown in Figure 6.3(a), the derived production capacity region is nonconvex. To incorporate this 

information into the planning model (6.1), the following constraints with auxiliary binary variables can be 

formulated based on big-M relaxation: 

1k
k

y =∑          (6.5a) 

2 1 11.6875 (1 )P P M y≤ + −         (6.5b) 

1 1 10 (1 ) 52 (1 )M y P M y− − ≤ ≤ + −        (6.5c) 

 
where M is a big positive constant and yk are the binary variables. Notice that constraints (6.5b)-(6.5c) are just 

for the first segment of the capacity boundary. Similar constraints can be also formulated for all of the other 

segments. 
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On the other hand, to avoid the incorporation of binary variables and mixed integer linear constraints 

into planning model (6.1), we can evaluate the convex hull of the derived nonconvex production capacity 

region as shown in figure 6.3(b) which can be described by the following linear inequalities: 

1

2

       0        0.02550 2.23785
 0.01519   0.02795 3.29274
 0.03988   0.00004 3.45814
 0.04993   0.01833 4.96497
 0.05034   0.01629 4.89101
-0.03047   0.01806  
-0.00000  -0.02060

P
P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
≤⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

    0
     0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Based on the nonconvex and convex representation of the production capacity, the rolling horizon algorithm 

is solved again and the following results can be obtained as shown in Table 6.5. 

Table 6.5 Rolling horizon solution with production capacity model from parametric solution 
 With convex model With nonconvex model 

Production 
43.1 86.7 70.2 59.8 70.2

        
50 25.5 79.6 85.3 79.6

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
43.1 86.7 70.2 59.8 70.2

        
50 25.5 79.6 85.3 79.6

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Inventory 
43.2 69.8 0 29.8 0

            
0 25.5 50.1 70.4 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
43.1 69.8 0 29.8 0

           
0 25.5 50.1 70.3 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Backorder 
0 0 0.007 0 0

                
0 0 0 0 0.004
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
0 0 0.003 0 0

            
0 0 0 0 0.009
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Production cost 6423.3 6423.3 
Inventory cost 2886.9 2886.7 
Backorder cost 1.1 1.2 

Total cost 9311.3 9311.2 
 
Comparing the results in Tables 6.3 and 6.5, it is observed that the solution quality is greatly improved with 

the production capacity model derived from parametric programming technique, i.e., the more accurate 

production capacity information cause the cost reduction. Furthermore, for the two cases in Table 6.5, there 

are not big differences in the solution obtained. The reason is that the two different capacity representations 

actually do not differ too much as shown in Figure 6.3(b). 

6.3.3 Capacity model derivation through process network decomposition 

For a process network with more than two products, the exact production capacity region has to be described 

in a higher dimension space. Furthermore, the exact nonconvex boundary of the capacity region will involve 

more facets. To exactly describe the nonconvex region, large number of auxiliary binary variables will be 
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necessary. When those binary variables are incorporated into the planning model, the resulted planning 

problem will be mixed integer linear problem with a large number of binary variables which is hard to solve. 

Moreover, for the parametric programming algorithm, although it can be performed off-line, the 

required computation effort increases significantly for higher dimension problem (i.e., the number of 

products is large) since it is proportional to the number of critical regions (Li & Ierapetritou, 2007b). To 

avoid the large computational complexity of parametric programming method for high dimensionality 

problems, we can use the following heuristic network decomposition strategy and apply the parametric 

programming method on the sub-networks which involve relative small number of products. With a 

decomposed network, the complexity of the scheduling model for the sub-network is also reduced, which 

will also facilitate the solution of the parametric problem. 

Based on the STN representation of the production process, we propose the following guiding rules for 

the process network decomposition: 

1) identify key connecting intermediate products in the process network; 

2) identify sub-networks such that the resulted scheduling model is able to solve efficiently. 

The above network decomposition is rather a heuristic strategy, which should be studied based on specific 

problem but the basic principle is to generate scheduling problems which can be solved more efficiently by 

decreasing the number of parameters (products) appeared in the scheduling problem.  

The different production capacity relationships that can be obtained from this kind of decomposition include: 

1) the production capacity information between any two products in each sub-network; 

2) the production capacity information between the connecting products; 

3) the production capacity information between certain group of products. 

Notice that the production capacity information between certain products in a sub-network can be viewed as 

the projection of the exact production feasibility space onto certain dimensions of the original feasible 

production space. Thus the parametric solution between certain groups of products provides valid 

overestimation of the feasibility space.  

It should be pointed out that in the above network decomposition procedure, the same processing unit 

can appear in different sub-networks if two tasks sharing the same unit are separated. Thus the production 

capacity is actually overestimated through the above decomposition strategy and the derived production 
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capacity region is the relaxation of the actual production capacity region. So the capacity information derived 

from the network decomposition strategy provides a valid approximation of the production feasibility and 

can be incorporated into the planning and scheduling integration model. The process network decomposition 

idea will be shown through case studies in the next section. 

6.4 Case studies 

In this section, two examples which involve more complex process networks than the motivation example are 

studied to test the proposed solution framework. All the computations in this work are performed on a PC 

with 2.8GHz CPU and 1Gb RAM and the MILP problems are solved using CPLEX 10.1 solver in GAMS. 

 
Example 1. 
 

In the following example derived from (Kondili, 1987), four products are produced through eight tasks from 

three feeds in the process. Six different units are required for the whole process. The STN representation of 

this process is shown in Figure 6.4 and the problem data can be found in (Li & Ierapetritou, 2009).  
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Figure  6.4 STN representation of example 1 
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Figure  6.5 Demand data 

 
In this example, we are studying a two-month production planning and scheduling integration problem. The 

time horizon is divided into 60 planning periods and in every planning period a 24-hour scheduling problem 

is considered. The demand data are illustrated in Figure 6.5. For every scheduling problem, 15 event points 

are used, which results in a MILP model with 2579 constraints, 1361continuous, and 768 binary variables. To 

decrease the solution complexity of the short-term scheduling problem, here we first decompose the process 

network into two sub-networks as shown in Figure 6.6. Notice that the two sub-networks are connected 

through intermediate product Int5. Based on this decomposition, each sub-network only involves two 

products and the complexity of the scheduling problem is reduced. 
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Figure  6.6 Sub-network 2 (assume INT 5 with infinite supply) 
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Before we apply the parametric programming method to derive the capacity model, simple inequalities 

representing the upper bound for the ratio between two products can be derived as follows: in the first 

sub-network, for every 30 units of P1 been processed, the maximum amount of P2 that can be produced is 70, 

so we have the valid inequality: 2 17 / 3P P≤ ; similarly, we have 4 32 (7 / 3)P P≤ ×  from the second 

sub-network.  

To derive more accurate production capacity information, parametric programming method is applied 

next. For the first sub-network, we solve the problem of maximizing production of P2 (P1) with the 

production of P1 (P2) as parameter. By aggregating all the parametric solutions, we can identify the 

production capacity boundary between products P1 and P2 as shown in Figure 6.7(a). The convex hull is also 

plotted on the same figure using red color. Similarly, the production capacity region between P3 and P4 is 

shown in Figure 6.7(b) (the inner boundary of the grey area). Furthermore, the convex hulls of those 

nonconvex capacity regions are also shown as the outside red boundaries. From those results, it can be 

observed that the parametric solution based solution contain more accurate capacity information than those 

simple inequalities derived from direct mass balance calculation. 

The parametric solution for the sub-networks only provides production capacity information between 

products in those sub-networks. To describe the production feasibility between different sub-networks, we 

can further apply similar method in the original process network, by grouping the products. For example, we 

can set the scheduling objective as maximizing the total production of P1 and P2 and set the total production 

of P3 and P4 as uncertain parameter. In this way we can identify the production capacity information between 

the two sub-networks as shown in Figure 6.7(c).  

Table 6.6 illustrates the solution of the rolling horizon method for two different cases: one is the case 

without any capacity constraints and the other is the case with convex hull capacity model in the planning 

problem (notice that since there is no big difference between the nonconvex capacity region and convex hull 

in Figure 6.7, we directly apply the convex hull model to avoid the addition of auxiliary binary variables and 

mixed integer linear constraints). 
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(a) (b) 

 
(c) 

Figure  6.7 Production capacity region and the convex hull 
(a) Between P1 and P2; (b) Between P3 and P4; (c) Between P1+P2 and P3+P4 

 
 

Table 6.6 Solution of the example 1 

 Without capacity model With convex model of the capacity 
constraints 

Production cost 3,295,638 3,383,932 
Inventory cost 556,053 1,900,957 
Backorder cost 26,187,860 11,770 

Total cost 30,039,550 5,296,659 
CPU time (sec) 360 460 

 
 

It can be observed from the results that the rolling horizon method can solve the problem relatively fast. 

Comparing the quality of the final solution, we can see that the convex capacity model greatly improve the 

final solution’s quality. The production targets are shown in Figure 6.8 (without capacity constraints) and 

Figure 6.9 (with convex capacity constraints). 
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Figure  6.8 Production target solution (without capacity constraints) 
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Figure  6.9 Production target solution (with capacity constraints) 
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From the results in Figures 6.8 and 6.9, it can be observed that the production targets in the solution with 

capacity constraints is always within the feasible production capacity region, e.g., the production amounts of 

P3 are always below 4000. But the production target solutions of the case without capacity constraints can 

violate the production feasibility, e.g., for some periods the production of P3 is more than 4000. Those 

infeasible production targets will result in more cost since much more backorder is resulted because of the 

“overestimation” of production capacity. This can be further illustrated through the following backorder 

amount profile. For the case without capacity constraints, the backorder amounts in the solution for P1 and P2 

are shown in Figure 6.10 (the backorder amounts of P3 and P4 are all zeros).  For the case with capacity 

constraints, the backorder of P1, P2 and P4 at all the periods are zero, only product P3 has a backorder 

amount of 117.7 at the first period. This verified the difference between the final total cost for the two 

different cases (with and without capacity constraints) studied in this problem. 
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Figure  6.10 Backorder amount in the solution (without capacity constraints) 

 
 
Example 2 
 
The process in this example can be found in (Kallrath, 2002) and it is a benchmark problem which has 

stimulated the development of algorithms for scheduling problems in process industry. The STN is shown in 

Figure 6.11 for this example which is more complicated compared to the previous example. To decrease the 

scheduling model complexity, we assume no cleaning restrictions in this study. 

In this example, we are studying a three-month production planning and scheduling integration problem, 

where 30 planning periods are considered, and in every planning period a 96-hour scheduling problem is 

studied. Notice that we have select 11 event points for every scheduling problem. 
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Figure  6.11 STN representation of example 2 

 
Since the given process network in this example is complex, the resulted scheduling problem need significant 

computation efforts. To increase the computation efficiency for the proposed algorithm, we decompose the 

original process network and generate three sub-networks as shown in Figure 6.12. The decomposition is 

performed by identifying that S2 and S4 are two connecting intermediates which separate the whole network 

into three major parts. Thus that the solution complexity of the scheduling problem for the sub-networks can 

be decreased comparing to the original scheduling model for the whole network. Detailed model statistics can 

be found in Table 6.7. 
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Table 6.7 Model statistics 

 Constraints Continuous 
variables Binary variables 

Whole network 5361 2685 1683 
Sub-network 1 559 254 99 
Sub-network 2 1488 738 396 
Sub-network 3 2439 1057 528 

 
To decrease the computation complexity of solving large scale scheduling problem, the following process 

network decomposition idea can be applied: 
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Figure  6.12 Process network decomposition for example 2 

 
 

 
(a) (b) (c) 

Figure  6.13 Production capacity information 
 

Base on the decomposed process networks, several sets of production capacity information can be derived. 

For example, Figure 6.13(a) represents the production capacity between S2 and S4 which is derived from first 

sub-network; the production capacity information between S14 and S16 is shown in Figure 6.13(b); the 

production capacity information between S15 and S17 in the third network is shown in Figure 6.13(c). The 

capacity information between S15 and S18, S17 and S18 are not listed considering the length of the chapter. 
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Notice that to apply the above production capacity information into the rolling horizon planning model. 

We need to incorporate the following constraints: 

1 2 4

2 14 16
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14 16 2
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where f2, f3 represent the convex hull constraints for the final products derived from sub-networks, 

respectively. The constraints f1  and the last two constraints are used to describe the capacity information 

between the product groups in the second and the third sub-networks which are connected through the 

intermediate products S2 and S4. 

 
Table 6.8 Solution of the example 2 

 Without capacity model With convex model of the capacity 
constraints 

Production cost 68,352 69,255 
Inventory cost 2,654 3,549 
Backorder cost 122,693 6,640 

Total cost 193,699 79,444 
CPU time (sec) 1353 1429 

 
 

Table 6.8 shows the results of the rolling horizon method on this example for two cases with and without 

capacity model. As shown the production capacity model derived from the proposed strategy greatly 

increased the quality of the solution with no big difference on the computation time for the rolling horizon 

method. It should be also noticed  here that since all of the parametric solutions can be computed off-line and 

the resulted capacity information, the proposed method provides an efficient way to improve the solution 

quality of the integrated planning and scheduling optimization in the rolling horizon framework. 

6.5 Summary 

To ensure the consistency between production planning and scheduling, an integrated decision making is 

necessary. Among the various types of aggregation, relaxation and decomposition methods, rolling horizon 

method has received wide study and also realistic applications in the industry. In this chapter, we study the 

effect of production capacity information on the final solution’s quality. It has been shown that the solution 
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quality can be greatly improved by incorporating the production capacity model representing the production 

capacity of the short term scheduling problem into the planning model. The total cost can be greatly reduced 

mainly due to decreased backorder amount since the planning model can “predict” the future possible 

backorder based on production capacity estimation. To derive accurate production capacity information, we 

proposed a parametric programming based method, which generates the exact production feasibility 

information based on the short-term scheduling formulation. To reduce the computation complexity for 

complex processes with a number of products, a heuristic network decomposition strategy is proposed. Cases 

studies prove that the method can further improve the quality of the final solution comparing to the simple 

production capacity constraints derived by production recipe and mass balance. Finally, it is worth to point 

out the proposed solution framework can be also applied to address the long-term and mid-term scheduling 

problem within a rolling horizon framework. 
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Appendix A. Parametric Linear Complementarity Problem 

For a given matrix R n nM ×∈ and vector R nq∈ , the Linear Complementarity Problem LCP( , )q M is to find 

solution R nz∈ , R nw∈ , such that it satisfies the following equations or else to determine that no solution 

exists: 

T 0z w =           (A.1a) 

w q Mz= +          (A.1b) 

0w ≥ , 0z ≥          (A.1c) 

The Parametric Linear Complementarity Problem pLCP( ( ), )q Mθ is defined as follows: 

given Rn nM ×∈ , ( )q d Fθ θ= + , R nd ∈ , R n mF ×∈ , find solution map Rnz∈ , R nw∈ in the range 

[ , ]L Uθ θ θ∈ , RL mθ ∈ , RU mθ ∈ , such that 

T 0z w =           (A.2a) 

w d F Mzθ= + +          (A.2b) 

0w ≥ , 0z ≥          (A.2c) 

The problem of finding a solution for the LCP problem (A.1) can be recasted as finding a solution for the 

following set of mixed integer constraints: 

T T( ) 0y w e y z+ − =         (A.3a) 

w q Mz= +          (A.3b) 

0,  0w z≥ ≥          (A.3c) 

n 1{0,1}y ×∈          (A.3d) 

where T[1,1,...,1]e = . If this problem is infeasible, it means that the original LCP (1) does not have a solution.  
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Since the LCP can be reduced to a set of mixed integer constraints (A.3), the solution of LCP can be obtained 

by solving a mixed integer programming problem which is formed with these constraints and an additional 

objective function. By setting the objective function, we can get the minimum norm solution of the LCP 

problem (Rosen, 1990). The minimum norm solution to LCP( , )q M  is a solution *z such that *|| || || ||z z≤ is 

satisfied for all solutions z of the LCP problem. For example, the minimum 1-norm solution formulation for 

LCP (A.1) can be formulated as the following:  

Tmin    e z          (A.4a) 

s.t. T T( ) 0y w e y z+ − =        (A.4b) 

w q Mz= +         (A.4c) 

0,  0w z≥ ≥ , n 1{0,1}y ×∈        (A.4d) 

For the pLCP (A.2), the corresponding minimum 1-norm solution formulation is similar to problem (A.4) 

except that (A.4c) should be changed to w Mz d Fθ= + +  as follows:  

Tmin    e z          (A.5a) 

s.t. T T( ) 0y w e y z+ − =        (A.5b) 

w d F Mzθ= + +         (A.5c) 

0,  0w z≥ ≥ , n 1{0,1}y ×∈        (A.5d) 

For a mixed integer linear complementarity problem, some of the variables are required to take integer values. 

This type of problem does not get too much attention in the literature (Chandrasekaran et al., 1998; Pardalos 

& Nagurney, 1990) and the parametric mixed integer LCP has not even been studied before. The proposed 

solution algorithm for pLCP can also address the mixed integer pLCP as follows. 

 

Without loss of generality, we can always assume that the first k variables of vector z in pLCP (A.2) are 

restricted to be binary by rearranging the columns of M, i.e., {0,1}iz ∈ , {1,2,..., }i K k∈ = , k n≤ . To solve 

this mixed integer pLCP, we propose the following minimum 1-norm formulation: 

 

Tmin    e z          (A.6a) 
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s.t. T T( ) 0y w e y z+ − =        (A.6b) 

w d F Mzθ= + +         (A.6c) 

i iz v=    i K∀ ∈       (A.6d) 

0,  0w z≥ ≥ , n 1{0,1}y ×∈ , 1{0,1}kv ×∈      (A.6e) 

 

The above parametric MILP formulation (A.5) and (A.6) can be solved with the algorithm presented in 

Chapter 2, which gives the solution for the pLCP problem. 

 

Example. Parametric Quadratic Programming 

Consider the following quadratic programming problem 

0
min 0.5

. .   

T T

x
x Qx c x

s t Ax b
≥

+

≥
        (A.6)  

where Q is positive semidefinite, then the Karush-Kuhn-Tucker (KKT) condition guarantees global 

optimality for the QP problem. According to the KKT theorem, if the vector x  is a local minimizer for the 

QP problem (A.6), there exists a vector λ such that it satisfies the following KKT conditions:  

,  0,  0TAx b x c Qx A λ≥ ≥ + − ≥        (A.7a) 

0,  ( ) 0,  ( ) 0T T TAx b x c Qx Aλ λ λ≥ − = + − =      (A.7b) 

with the following definition  

       
,  ,  

       0

T c xQ A
M q z

bA λ
⎡ ⎤− ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦
,      (A.8) 

The KKT conditions (A.7) form the problem ( , )LCP q M (Jones & Morrari, 2006). Thus, parametric 

quadratic programs where the cost c and the right hand side of the constraints b  are parameterized can be 

solved through the solution of the corresponding pLCP . 
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Appendix B. Convergence Property of Augmented Lagrangian 

Optimization Algorithm 

For the following general problem:  

min   ( )   
s.t.   ( ) 0,   ( ) 0,   
        { | ( ) 0, ( ) 0}

f x
h x g x
x x H x G x

= ≤
∈Ω = = ≤

,      (B.1) 

and its augmented Lagrangian dual problem generated by relaxing the upper level 

constraints ( ) 0,   ( ) 0h x g x= ≤ : 

22

, 0,
max min ( , , , ) ( ) ( ) ( )

2 2
ji

i jx i j

L x f x h x g x
λ ν σ

νλσ σλ ν σ
σ σ∈Ω≥

+

⎛ ⎞⎛ ⎞= + + + +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ,   (B.2) 

where ( ) max ( ) ,0j j
j jg x g x

ν ν
σ σ

+

⎛ ⎞ ⎛ ⎞
+ = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. The corresponding augmented Lagrangian algorithm is as 

follows: 

Step 0. Given bounds value for the multipliers, min max[ , ]λ λ λ∈ , max[0, ]ν ν∈ , 1γ > , 0 1τ< < , { }kε  is a 

sequence of nonnegative numbers such that lim 0k

k
ε

→∞
= . Set k=1, select arbitrarily 1

min max[ , ]iλ λ λ∈ , 

1,...,i m= , 1
max[0, ]jν ν∈ , 1,...,j n= , 1 0σ >  . 

Step 1. Compute an approximate solution kx of the augmented Lagrangian relaxation problem 

min  ( , , , )
x

L x λ ν σ
∈Ω

, which satisfies following approximate KKT conditions 

a) ( , , , ) ( ) ( )k k k k k k k k kL x v H x u G xλ ν σ ε∇ + ∇ + ∇ ≤  

b) ( )k k
jG x ε≤ , 0k

ju ≥   , j∀  

c) if ( )k k
jG x ε< − , then 0k

ju =  , j∀  

d) ( )k k
iH x ε≤ , i∀  
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Step 2. Update multipliers’ and penalty parameter’s value 

( ){ }1
min maxmin max , ( ) ,k k k k

i i ih xλ λ λ σ λ+ = + , ( ){ }1
maxmin max 0, ( ) ,k k k k

j j jg xν ν σ ν+ = +  

Compute max ( ),
k
jk k

j j kV g x
ν
σ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
, if ( ) ( )1 1max || ( ) || ,|| || max || ( ) || ,|| ||k k k kh x V h x Vτ − −

∞ ∞ ∞ ∞≤ , set 

1k kσ σ+ = , otherwise set 1k kσ σγ+ = . Set k=k+1, go to next iteration. 

 

The convergence of the proposed approach is shown using the following theorems. The details of the proofs 

are not shown but the reader is referred to the literature where proofs are given (Andreani et al., 2008), 

(Birgin et al., 2009).  

 

Theorem1. The solution sequence { }kx generated by the proposed augmented Lagrangian approach admits a 

limit point *x . 

It is proved in (Andreani et al., 2008) that even if the augmented Lagrangian relaxation problem is not solved 

to optimality at every iteration of the augmented Lagrangian optimization algorithm, Constant Positive 

Linear Dependence (CPLD) based convergence property are ensured under the conditions that , ,f g h admit 

continuous first derivatives and { | ( ) 0, ( ) 0}x H x G xΩ = = ≤ is a closed set. Furthermore, it is also proved in 

(Andreani et al., 2008) that at least a limit point *x of the sequence { }kx generated by the augmented 

Lagrangian optimization algorithm exists under the sufficient condition that there exists 0ε > such that the 

set { || ( ) || , ( ) }x H x G xε ε< < is bounded. 

 

Theorem 2. The limit point *x  is a feasible and local optimal solution of the original problem (B.1). 

Regarding the feasibility of the solution, the work of (Andreani et al., 2008) proved that if the sequence of 

penalty parameters { kσ } is bounded (i.e., from some iteration on, the penalty parameters are not updated, or 

there exists 0k such that 0kkσ σ= for all 0k k≥ ), the limit point *x  is a feasible solution of problem (B.1). 

Furthermore, if the limit point *x  satisfies the Constant Positive Linear Dependence (CPLD) constraint 
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qualification condition (Qi & Wei, 2000) with respect to the lower-level constraints x∈Ω , then *x is a 

KKT (stationary) point of the original problem (B.1).  

 

Theorem 3. The algorithm converges to a BBε -global optimal solution of original problem. 

The above theorem is proved by (Birgin et al., 2009), which pointed out that for problem (B.1), if in each 

outer iteration, an εk-global minimization of the relaxation problems is found, where εk→ BBε , then the 

convergence to BBε -global minimum of the original problem is ensured for the augmented Lagrangian 

method. 
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