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ABSTRACT OF THE DISSERTATION

Some applications of Freiman’s inverse theorem

by Hoi H. Nguyen

Dissertation Director: Prof. Van Vu

The celebrated Freiman’s inverse theorem in Additive Combinatorics asserts that an

additive set of small doubling constant must have additive structure. This thesis con-

tains two applications achieved by combining this theorem with a dyadic pigeonhole

principle technique.

1. A finite set A of integers is square-sum-free if no subset of A sums up to a square.

In 1986, Erdős posed the problem of determining the largest cardinality of a square-

sum-free subset of {1, . . . , n}.

Significantly improving earlier results, we show in Chapter 2 that this maximum

cardinality is of order n1/3+o(1), which is asymptotically tight.

2. A classical result of Littlewood-Offord and Erdős from the 1940s asserts that if the

vi are non-zero, then the concentration probability of the (multi)set V = {v1, . . . , vn},

ρ(V ) := supx P(v1η1 + . . . vnηn = x), is of order O(n−1/2), where ηi are i.i.d. copies of

a Bernoulli random variable.

Motivated by problems concerning random matrices, Tao and Vu introduced the

Inverse Littlewood-Offord problem. In the inverse problem, one would like to give a

characterization of the set V , given that ρ(V ) is relatively large.

In Chapter 3, we develop a method to attack the inverse problem. As an application,

ii



we strengthen several previous results of Tao and Vu, obtaining an almost optimal

characterization for V . This implies several classical theorems, such as those of Sárközy-

Szemerédi, Halász, and Stanley.
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Terminology

We use Z to denote the set of integers, Q to denote the set of rational numbers, and

Fp to denote the prime field of order p.

Let G be an abelian group. Let A be a subset of G. We denote by SA the collection of

finite partial sums of A,

SA :=

{∑
x∈B

x;B ⊂ A, 0 < |B| <∞

}
.

For two subsets A and B of G, we define their (Minkowski) sum by

A+B := {a+ b|a ∈ A, b ∈ B}.

For a positive integer l, we define the l-iterated sum of A by

lA :=

{
l∑

i=1

ai|ai ∈ A

}
.

For a positive integer l ≤ |A| we denote by l∗A the collection of partial sums of l

elements of A,

l∗A :=

{∑
x∈B

x;B ⊂ A, |B| = l

}
.

As usual, e(x) means exp(2πix), and ep(x) means exp(2πix/p).

The notation [x] denotes the set of positive integers at most x.

We use Landau asymptotic notation such as O,Ω,Θ, o under the assumption that

n → ∞. Notation such as Θc(.) means that the hidden constant in Θ depends on

a (previously defined) quantity c.

We will also omit all unnecessary floors and ceilings. All logarithms have natural base.
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Chapter 1

Additive structure and Fremain’s inverse theorem

In this chapter we will provide some tools from Additive Combinatorics that will be

used for later applications.

1.1 Generalized arithmetic progression (GAP)

A subset Q of an abelian group is a GAP of rank r if it can be expressed as in the form

Q = {a0 + x1a1 + · · ·+ xrar|Mi ≤ xi ≤M ′i for all 1 ≤ i ≤ r}

for some a0, . . . , ar and M1, . . . ,Mr,M
′
1, . . . ,M

′
r.

It is convenient to think of Q as the image of an integer box B := {(x1, . . . , xr) ∈

Zd|Mi ≤ mi ≤M ′i} under the linear map

Φ : (x1, . . . , xd) 7→ a0 + x1a1 + · · ·+ xrar.

The numbers ai are the generators of P , the numbers M ′i ,Mi are the dimensions of P ,

and Vol(Q) := |B| is the volume of B. We say that Q is proper if this map is one to one,

or equivalently if |Q| = Vol(Q). For non-proper GAPs, we of course have |Q| < Vol(Q).

If −Mi = M ′i for all i ≥ 1 and a0 = 0, we say that Q is symmetric.

We record a few useful facts about GAPs. Assume that Q is symmetric, Q =

{a1x1 + . . . arxr : |xi| ≤Mi, 1 ≤ i ≤ r}. For any t > 0, denote by tQ the set

{a1x1 + · · ·+ arxr : |xi| ≤ tMi, 1 ≤ i ≤ r}.

We say that Q is t-proper if tQ is proper. In general, a GAP is not necessarily t-proper.

However, one can embed it into a t-proper one with some small loss (see [3, 4], [40,

Theorem 3.40]).
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Lemma 1.1.1 (Embedding into proper GAP). Let Q be a symmetric GAP of rank r

in a torsion-free group G, and let t ≥ 1. Then there exists a t-proper symmetric GAP

Q′ with rank at most r and |Q′| ≤ (2t)rr6r2 |Q| which contains Q. Furthermore, if Q is

not proper, we may choose Q′ to have rank at most r − 1.

Next, assume that A is a dense subset of a GAP Q, then the iterated sumsets kA

contains a structure similar to Q (see [30, Lemma 4.4, Lemma 5.5], [32, Lemma B3]).

Lemma 1.1.2 (Sárközy-type theorem in progressions). Let Q be a proper GAP in a

torsion-free group of rank r. Let X ⊂ Q be a subset such that |X| ≥ δ|Q| for some

0 < δ < 1. Then there exists a positive integer 1 ≤ m�δ,r 1 such that mX contains a

GAP Q′ of rank r and size Θδ,r(|Q|). Furthermore, the generators of Q′ are bounded

multiples of the generators of Q. If Q and X are symmetric, then Q′ can be chosen to

be symmetric.

A more general result holds when one replaces one subset by many subsets of the same

GAP.

Lemma 1.1.3 (Sárközy-type theorem in progressions, generalized form). Let Q be a

proper GAP in a torsion-free group of rank r. Let 0 < δ ≤ 1 be a given constant.

Then there exists a positive integer 1 ≤ m �δ,r 1 such that the following holds. If

X1, . . . , Xm ⊂ Q and |Xi| ≥ δ|Q|, then X1 + · · · + Xm contains a GAP Q′ of rank

r and size Θδ,r(|Q|). Furthermore, the generators of Q′ are bounded multiples of the

generators of Q.

1.2 Freiman homomorphism

We now introduce the concept of a Freiman homomorphism, that allows us to transfer

an additive problem in one group G to another group G′ in a way which is more flexible

than the usual algebraic notion of group homomorphism.

Definition 1.2.1 (Freiman homomorphisms). Let k ≥ 1, and let X, Y be additive sets

of groups G and H respectively. A Freiman homomorphism of order k from X to Y is

a map φ : X → Y with the property that



4

x1 + · · ·+ xk = x′1 + · · ·+ x′k =⇒ φ(x1) + · · ·+ φ(xk) = φ(x′1) + · · ·+ φ(x′k)

for all x1, . . . , xk;x′1, . . . , x
′
k. If in addition there is an inverse map φ−1 from Y to

X which is a Freiman homomorphism of order k, then we say that φ is a Freiman

isomorphism of order k, and that X and Y are Freiman isomorphic of order k.

Clearly Freiman homomorphisms preserve the property of being a progression. We

now mention a result that shows torsion-free additive groups are no richer than the

integers, for the purposes of understanding sums and differences of finite sets ([40,

Chapter 5]).

Theorem 1.2.2. Let X be a finite subset of a torsion-free additive group G. Then

for any integer k, there is a Freiman isomorphism φ : X → φ(X) of order k to some

finite subset φ(X) of the integers Z. The same is true if we replace Z by Fp, if p is

sufficiently large depending on X.

By following the same proof, we can show a somewhat stronger result below, which

will be used in Chapter 3.

Theorem 1.2.3. Let X be a finite subset of a torsion-free additive group G. Then for

any integer k, there is a map φ : X → φ(X) to some finite subset φ(X) of the integers

Z such that

x1 + · · ·+ xi = x′1 + · · ·+ x′j ⇔ φ(x1) + · · ·+ φ(xi) = φ(x′1) + . . . φ(x′j)

for all i, j ≤ k. The same is true if we replace Z by Fp, if p is sufficiently large

depending on A.

1.3 Freiman’s inverse theorem

If X is a dense subset of a GAP, then the doubling constant of X, σ[X] := |2X|/|X|

is small. The celebrated Freiman’s inverse theorem says the converse. This theorem

comes in a number of variants; we give two of them below.
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Theorem 1.3.1 (Freiman’s inverse theorem). Let γ be a given positive number. Let

X be a set in Z such that |X +X| ≤ γ|X|. Then there exists a proper GAP of rank at

most r = Oγ(1) and cardinality Oγ(|X|) that contains X.

Freiman’s theorem has the following variants ([9, 29], [40, Chapter 5]), which has a

weaker conclusion, but provides the optimal estimate for the rank r.

Theorem 1.3.2 (Freiman’s inverse theorem). Let γ, δ be positive constants. Let X be

a set in Z such that |X + X| ≤ γ|X|. Then there exists a proper GAP Q of rank at

most blog2 γ+ δc and cardinality Oγ,δ(|X|) such that X is covered by Oγ,δ(1) translates

of Q.

We next discuss some crucial results that are directly relevant to our applications.

1.4 Structure in sumsets

One of the most popular problems in Combinatorial Number Theorem is to study

whether the iterated sumsets lX of a set X contains a special element (zero, squares,

etc) or the whole group. There are various methods to deal with these problems:

algebraic, analytic, combinatorial. Basing on the work of Sárközy [26] and Szemerédi-

Vu [29, 30], we have developed a new structural approach. In this method, the very

first, and most important step, is to find a fine structure in the iterated sumsets. We

mention here two such results of Szemerédi and Vu.

Lemma 1.4.1. For any fixed positive integer d there are positive constants C and c

depending on d such that the following holds. For any positive integers n and l and any

set X of [n] satisfying ld|X| ≥ Cn, lX contains a proper GAP of rank d′ and volume

at least cld
′ |X|, for some integer 1 ≤ d′ ≤ d.

Lemma 1.4.2. For any fixed positive integer d there are positive constants C and c

depending on d such that the following holds. Let X1, . . . , Xl be subsets of [n] of size

|X| where l and |X| satisfy ld|X| ≥ Cn. Then X1 + · · · + Xl contains a GAP of rank

d′ and volume at least cld
′ |X|, for some integer 1 ≤ d′ ≤ d.

Lemma 1.4.1 and Lemma 1.4.2 will play a key role in Chapter 2.
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1.5 Sumsets in structure

In contrast to the previous section, we give here a result showing that in some cases

iterated sumsets may be efficiently contained in GAPs ([34, Theorem 1.21]).

Lemma 1.5.1. Let A > 0 be a constant. Assume that X is a subset of integers such

that |lX| ≤ lA|X| for some number l ≥ 2. Then lX is contained in a symmetric 2-proper

GAP Q of rank r = OA(1), and of cardinality OA(|lX|).

Using Lemma 1.5.1, we give a structure for X under the condition |lX| ≤ lA|X| in

the following theorem, which we will refer to as the Long Range Inverse theorem.

Theorem 1.5.2 (Long Range Inverse theorem). Let A > 0 be constant. Assume that

X is a subset of a torsion-free group such that 0 ∈ X and |lX| ≤ lA|X| for some positive

integer l ≥ 2. Then there is proper symmetric GAP Q of rank r = O(A) and cardinality

OA(l−r|lX|) such that X ⊂ Q.

Notice that for any given ε > 0 and if l is large enough, it is implied from Theorem

1.5.2 that the rank of Q is at most A+ ε. The implicit constant involved in the size of

Q can be taken to be 222O(A)

, which is quite poor. Although we have not elaborated

on this bound much, our method does not seem to say anything when the polynomial

growth in size of lX is replaced by something faster.

Theorem 1.5.2 will serve as the main lemma for Chapter 3. To prove it, we combine

Lemma 1.5.1 and the following simple observation.

Lemma 1.5.3. (Dividing sumsets relations) Assume that 0 ∈ X and that P = {
∑r

i=1 xiai :

|xi| ≤ Ni} is a symmetric 2-proper GAP that contains lX. Then X ⊂ {
∑r

i=1 xiai :

|xi| ≤ 2Ni/l}.
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Chapter 2

Squares in sumsets

2.1 Introduction

In 1986, Erdős [5] raised the following question:

Question 2.1.1. What is the maximal cardinality of a subset A of [n] such that SA

contains no square?

We denote by SF (n) the maximal cardinality in question. Erdős observed that

SF (n) = Ω(n1/3). (2.1)

To see this, consider the following example

Example 2.1.2. Let p be a prime and k be the largest integer such that kp ≤ n. We

choose p of order n2/3 such that k = Ω(n1/3) and 1 + · · · + k < p. Then the set

A := {p, 2p, . . . , kp} is square-sum-free.

Remark 2.1.3. The fact that p is a prime is not essential. The construction still works

if we choose p to be a square-free number, namely, a number of the form p = p1 . . . pl

where pi are different primes.

Erdős [5] conjectured that SF (n) is close to the lower bound in (2.1). Shortly after

Erdős’ paper, Alon [1] proved the first non-trivial upper bound

SF (n) = O(
n

log n
). (2.2)

Next, Lipkin [21] improved to

SF (n) = O(n3/4+o(1)). (2.3)
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In [2], Alon and Freiman improved the bound further to

SF (n) = O(n2/3+o(1)). (2.4)

The latest development was due to Sárközy [26], who showed

SF (n) = O(
√
n log n). (2.5)

In this chapter, we obtain the asymptotically tight bound

SF (n) = O(n1/3+o(1)). (2.6)

Theorem 2.1.4. There is a constant C such that for all n ≥ 2

SF (n) ≤ n1/3(log n)C (2.7)

In fact, we are going to prove the following more general theorem

Theorem 2.1.5. There is a constant C such that the following holds for all sufficiently

large n. Let p be positive integer less than n2/3(log n)−C and A be a subset of cardinality

n1/3(log n)C of [n/p]. Then there exists an integer z such that pz2 ∈ SA.

Theorem 2.1.4 is the special case when p = 1. Furthermore, Theorem 2.1.4 implies

many special cases of Theorem 2.1.5. To see this, choose A to have the form A :=

{pb |b ∈ B} where B is a subset of [n/p] and p is a square-free-number. Then finding

a square in SA is the same as finding a number of the form pz2 in SB.

If one replaces squares by higher powers, then the problem becomes easier and

asymptotic bounds have been obtained earlier (see next section).

2.2 The main ideas

The general strategy for attacking Question 2.1.1 is as follows. One first tries to show

that if |A| is sufficiently large, then SA should contain a large additive structure. Next,

one would argue that a large additive structure should contain a square.
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In previous works [1, 2, 21, 26], the additive structure was a (homogeneous) arith-

metic progression. (An arithmetic progression is homogeneous if it is of the form

{ld, (l+ 1)d, . . . , (l+ k)d}.) It is easy to show that if P is a homogeneous AP of length

C0m
2/3 in [m], for some large constant C0, then P contains a square. Notice that the

set SA is a subset of [m] where m := |A|n. Thus, if one can show that SA contains a

homogeneous AP of length C0m
2/3, then we are done. Sárközy could prove that this is

indeed the case, given |A| ≥ C1
√
n log n for a properly chosen constant C1. This also

solves (asymptotically) the problem when squares are replaced by higher powers, since

in these cases, the lower bound (which can be obtained by modifying Example 2.1.2) is

Ω(
√
n).

Unfortunately,
√
n is the limit of this argument, since there are examples of a subset

A of [n] of size Ω(
√
n) where the longest AP in SA is much shorter than (|A|n)2/3.

Example 2.2.1. Consider

A := {q1x1 + q2x2|1 ≤ xi ≤ N}

where q1 ≈ q2 ≈ n3/4 are different primes and N = 1
100n

1/4. It is easy to show that A

is a proper GAP of rank 2 and SA is contained in the proper GAP

{q1x1 + q2x2|1 ≤ xi ≤ 1 + · · ·+N}.

Thus, the longest AP in SA has length at most 1 + · · · + N = Θ(n1/2), while A has

cardinality Θ(n1/2).

The key fact that enables us to go below
√
n and reach the optimal bound n1/3 is a

recent theorem of Szemerédi and Vu (a special case of Lemma 1.4.1) that showed that if

|A| ≥ Cn1/3 for some sufficiently large constant C, then SA does contain a large proper

GAP of rank at most 2.

Lemma 2.2.2. There are positive constants C and c such that the following holds. If

A is a subset of [n] of cardinality at least Cn1/3, then SA contains either an AP Q of

length c|A|2 or a proper GAP Q of rank 2 and cardinality at least c|A|3.



10

Ideally, the next step would be showing that a large proper GAP Q (which is a

subset of [|A|n]) contains a square. Thanks to strong tools from number theory, this

is not too hard (though not entirely trivial) if Q is homogeneous. However, we do not

know how to force this assumption.

The assumption of homogeneity is essential, as without this, one can easily run into

local obstructions. For example, if Q is a GAP of the form

{a0 + a1x1 + a2x2|0 ≤ xi ≤ L}

where both a1 and a2 are divisible by 6, but a0 ≡ 2(mod6), then clearly Q cannot

contain a square, as 2 is not a square modulo 6.

In order to overcome this obstacle, we need to add several twists to the plan. First,

we are going to use only a small subset A′ of A to create a large GAP Q. Assume that

Q has the form

{a0 + a1x1 + a2x2|0 ≤ xi ≤ L}.

(Q can also have rank one but that is the simpler case.) Let q be the g.c.d of a1 and

a2. If a0 is a square modulo q, then there is no local obstruction and in principle we

can treat Q as if it was homogeneous.

In the next move, we try to add the remaining elements of A (from A
′′

:= A\A′) to

a0 to make it a square modulo q. This, however, faces another local obstruction. For

instance, if in the above example, all elements of A
′′

are divisible by 6, then a0 will

always be 2(mod6) no matter how we add elements from A
′′

to it.

Now comes a key point. A careful analysis reveals that having all elements of A
′′

divisible by the same integer (larger than one, of course) is the only obstruction. Thus,

we obtain a useful dichotomy: either SA contains a square or there is an integer p > 1

which is divisible by all elements of a large subset A
′′

of A.

Now we keep working with A
′′
. We can write this set as {pb |b ∈ B} where B is a

subset of [n/p]. In order to show that SA′′ contains a square, it suffices to show that

SB contains a number of the form pz2. This explains the necessity of Theorem 2.1.5.
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A nice feature of the above plan is that it also works for the more general problem

considered in Theorem 2.1.5. We are going to iterate, setting new A := A
′′

of the

previous step. Since the number of iterations (i.e., the number of p’s) is only O(log n),

if we have |A′′ | ≥ (1 − 1
(logn)c )|A| in each step, for a sufficiently large constant c, then

the set A
′′

will never be empty and this guarantees that the process should terminate

at some point, yielding the desired result.

In the next lemma, which is the main lemma of the chapter, we put these arguments

into a quantitative form.

Lemma 2.2.3. The followings holds for any sufficiently large constant C. Let p be posi-

tive integer less than n2/3(log n)−C and A be a subset of [n/p] of cardinality n1/3(log n)C .

Then there exists A′ ⊂ A of cardinality |A′| ≤ n1/3(log n)C/3 such that one of the fol-

lowings holds (with A′′ := A\A′)

• SA′ contains a GAP

Q = {r + qx |0 ≤ x ≤ L}

where L ≥ n2/3(log n)C/4 and q ≤ n2/3(logn)C/12

p and r ≡ pz2(modq) for some

integer z.

• SA′ contains a proper GAP

Q = {r + q(q1x1 + q2x2) |0 ≤ x1 ≤ L1, 0 ≤ x2 ≤ L2, (q1, q2) = 1}

such that min(L1, L2) ≥ n1/3(log n)C/4, L1L2 ≥ n(log n)C/2, q ≤ n1/3

(logn)C/6p
and

r ≡ pz2(modq) for some integer z.

• There exists an integer d > 1 such that d|a for all a ∈ A′′.

Given this lemma, we can argue as before and show that after some iterations, one of

the first two cases must occur. We show that in these cases the GAP Q should contain

a number of the form pz2, using classical tools from number theory (see Section 2.9 and

Section 2.10).

The proof of Lemma 2.2.3 is technical and requires a preparation involving tools

from both combinatorics and number theory. These tools will be the focus of the next

two sections.
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2.3 Further tools from additive combinatorics

Beside Freiman’s inverse theorems [1.3.1,1.3.2], we also use the so-called Covering

Lemma, due to Ruzsa (see [23],[40, Lemma 2.14]).

Lemma 2.3.1 (Covering Lemma). Assume that X,Y are finite sets of integers. Then

X is covered by at most |X + Y |/|Y | translates of Y − Y .

We say that a GAP Q = {a0 + x1a1 + . . . xdad|0 ≤ xi ≤ Li} is positive if its steps

ai’s are positive. A useful observation is that if the elements of Q are positive, then Q

itself can be brought into a positive form.

Lemma 2.3.2. A GAP with positive elements can be brought into a positive form.

Proof. (of Lemma 2.3.2) Assume that

Q = {a0 + x1a1 + . . . xdad|0 ≤ xi ≤ Li}.

By setting xi = 0, we can conclude that a0 > 0. Without loss of generality, assume that

a1, . . . , aj < 0 and aj+1, . . . , ad > 0. By setting xi = 0 for all i > j and xi = Li, i ≤ j,

we have

a′0 := a0 + a1L1 + . . . ajLj > 0.

Now we can rewrite Q as

Q := {a′0 + x1(−a1) + · · ·+ xj(−aj) + xj+1aj+1 + . . . xdad|0 ≤ xi ≤ Li},

completing the proof.

Since we only deal with positive integers, this lemma allows us to assume that all

GAPs arising in the proof are in positive form.

Using the above tools and ideas from [29], we will prove Lemma 2.3.3 below, which

asserts that if a set A of [n/p] is sufficiently dense, then there exists a small set A′ ⊂ A

whose subset sums contain a large GAP Q of small rank. Furthermore, the set A′′ =
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A\A′ is contained in only a few translates of Q. This lemma will serve as a base from

which we will attack Lemma 2.2.3, using number theoretical tools discussed in the next

section.

Lemma 2.3.3. The following holds for all sufficiently large constant C. Let p be posi-

tive integer less than n2/3(log n)−C and A be a subset of [n/p] of cardinality n1/3(log n)C .

Then there exists a subset A′ of A of cardinality |A′| ≤ n1/3(log n)C/3 such that one of

the followings holds (with A′′ := A\A′):

• SA′ contains an AP

Q = {r + qx |0 ≤ x ≤ L}

where L ≥ n2/3(log n)C/2 and there exist m = O(1) different numbers s1, . . . , sm

such that A′′ ⊂ {s1, . . . , sm}+Q.

• SA′ contains a proper GAP

Q = {r + a1x1 + a2x2) |0 ≤ x1 ≤ L1, 0 ≤ x2 ≤ L2

such that L1L2 ≥ n(log n)C/2} and there exists m = O(1) numbers s1, . . . , sm

such that A′′ ⊂ {s1, . . . , sm}+Q.

Remark 2.3.4. The proof actually gives a better lower bounds for L1L2 in the second

case (2C/3 instead of C/2), but this is not important in applications.

2.4 Tools from number theory

Fourier Transform and Poisson summation. Let f be a function with support on

Z. The Fourier transform f̂ is defined as

f̂(w) :=
∫
R
f(t)e(−wt) dt.

The classical Poisson summation formula asserts that

∞∑
n=−∞

f(t+ nT ) =
1
T

∞∑
m=−∞

f̂(
2πm
T

)e(mt/T ). (2.8)
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For more details, we refer to [20, Section 4.3].

Smooth indicator functions. We will use the following well-known construction (see

for instance [10, Theorem 18] for details).

Lemma 2.4.1. Let δ < 1/16 be a positive constant and let [M,M +N ] be an interval.

Then there exists a real function f satisfying the following

• 0 ≤ f(x) ≤ 1 for any x ∈ R.

• f(x) = 0 if x ≤M or x ≥M +N.

• f(x) = 1 if M + δN ≤ x ≤M +N(1− δ).

• |f̂(λ)| ≤ 16f̂(0) exp(−δ|λN |1/2) for every λ.

A Weyl type estimate. Next, we need a Weyl type estimate for exponential sums.

Lemma 2.4.2. For any positive constant ε there exist positive constants α = α(ε) and

c(ε) such that the following holds. Let a, q be co-prime integers, θ be a real number, and

I be an interval of length N . Let M be a positive number such that MN ≥ q1+ε. Then,

∑
|m|≤M
m 6=0

|
∑
z∈I

e(
amz2

q
+ θmz)| ≤ c(M

√
N +

MN
√
q

)(logMN)α.

Quadratic residues. Finally, and most relevant to our problem, we need the follow-

ing lemma, which shows the existence of integer solutions with given constrains for a

quadratic equation.

Lemma 2.4.3. There is an absolute constants D such that the following holds. Let

a1, . . . , ad, r, p, q be integers such that p, q > 0 and (a1, . . . , ad, q) = 1. Then the equation

a1x1 + · · ·+ adxd + r ≡ pz2(modq) (2.9)

has an integer solution (z, x1, . . . xd) satisfying 0 ≤ xi ≤ (pq)1/2(log q)D.

The rest of the chapter is organized as follows. The proof of the combinatorial state-

ment, Lemma 2.3.3, comes first in Section 2.5. We then start the number theoretical
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part by giving a proof for Lemma 2.4.2. The verification of Lemma 2.4.3 comes in

Section 2.7. After all these preparations, we will be able to establish Lemma 2.2.3 in

Section 2.8. The proof of the main result, Theorem 2.1.5, is presented in Sections 2.9

and 2.10.

2.5 Proof of Lemma 2.3.3

We repeat some arguments from [29] with certain modifications. The extra information

we want to get here (compared with what have already been done [29]) is the fact that

the set A
′′

is covered by only few translates of Q.

2.5.1 An algorithm

Let A′ be a subset of cardinality |A′| = n1/3(log n)C/3 and let A′′ := A\A′. By a

simple combinatorial argument (see [29, Lemma 7.9]), we can find in A′ disjoint subsets

A′1, . . . , A
′
m1

such that |A′i| ≤ 20 log2 |A′| and |l∗1A′i| ≥ |A′|/2 where

l1 ≤ 10 log2 |A′| and m1 = |A′|/(40 log2 |A′|). (2.10)

(For the definition of l∗A see the beginning of the introduction.)

Without loss of generality, we can assume that m1 is a power of 4. Let B1, . . . , Bm1

be subsets of cardinality b1 = |A′|/2 of the sets l∗1A
′
1, . . . , l

∗
1A
′
m1

respectively. Following

[29, Lemma 7.6]), we will run an algorithm with the Bi’s as input. The goal of this

algorithm is to produce a GAP which has nice relations with A
′′

(while still not as good

as the GAP we wanted in the lemma). In the next few paragraphs, we are going to

describe this algorithm.

At the first step, set B1
1 := B1, . . . , B

1
m1

:= Bm1 and let B1 = {B1
1 , . . . , B

1
m1
}. Let

h be a large constant to be determined later.

At the (t + 1)-th step, we choose indices i, j and elements a1, . . . , ah ∈ A′′ that

maximizes the cardinality of ∪hd=1(Bt
i + Bt

j + ad) (if there are many choices, choose

one arbitrarily). Define Bt+1
1
′ to be the union. Delete from A′′ the used elements
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a1, . . . , ah, and remove from Bt the used sets Bt
i , B

t
j . Find the next maximum union

∪hk=1B
t
i +Bt

j + ak with respect to the updated sets Bt and A′′.

Assume that we have created mt+1 := mt/4 sets Bt+1
1
′
, . . . , Bt+1

mt+1

′. By the algo-

rithm, we have

|Bt+1
1
′| ≥ · · · ≥ |Bt+1

mt+1

′| := bt+1.

Now for each 1 ≤ i ≤ mt+1 we choose a subset Bt+1
i of cardinality exactly bt+1 in Bt+1

i
′.

These mt+1 sets (of the same cardinality) from a collection Bt+1, which is the output

of the (t+ 1)-th step.

Since mt+1 = mt/4, there are still mt/2 unused sets Bt
i left in Bt. Without loss of

generality, assume that those are Bt
1, . . . , B

t
mt/2

. With a slight abuse of notation, we

use A
′′

at every step, although this set loses a few elements each time. (The number of

deleted elements is very small compared to the size of A
′′
.)

Let lt+1 := 2lt + 1. Observe that

• lt ≤ 2tl1 (by definition);

• bt ≤ ltn/p (since ∪hd=1(Bt−1
i +Bt−1

j + ad) ⊂ [ltn/p]);

•

| ∪hd=1 B
t
i +Bt

j + ad| ≤ bt+1 (2.11)

for all 1 ≤ i < j ≤ mt/2 and a1, . . . , ah ∈ A′′ (by the algorithm, as it always

chooses a union with maximum size).

Now let c be a large constant and k be the largest index such that bi ≥ cbi−1 for all

i ≤ k. Then we have

ckb1 ≤ bk ≤ lkn/p.

Since b1 = |A′|/2 and lk ≤ 2kl1, we deduce an upper bound for k,

k ≤ logc/2
l1n

b1p
.
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Next, by the definition of k, we have bk+1 ≤ cbk. By (2.11), the following holds for all

unused sets Bk
i , B

k
j (with 1 ≤ i ≤ j ≤ mk/2) and for all a1, . . . , ah ∈ A′′:

| ∪hd=1 (Bk
i +Bk

j + ad)| ≤ bk+1 ≤ cbk = c|Bk
i |.

In particular

|Bk
1 +Bk

i | ≤ c|Bk
1 |

holds for all 2 ≤ i ≤ mk/2.

By Plunnecke-Ruzsa estimate (see [40, Corollary 6.28]), we have

|Bk
1 +Bk

1 | ≤ c2|Bk
1 |.

It then follows from Freiman’s theorem, Theorem 1.3.1, that there exists a proper GAP

R of rank Oc(1), of size Oc(1)|Bk
1 | such that R contains Bk

1 . Furthermore, by Lemma

2.3.1, Bk
i is contained in c translates of Bk

1 − Bk
1 , thus Bk

i is also contained in Oc(1)

translates of R.

Before continuing, we would like to point out that the parameter h has not yet

played any role in the arguments. The freedom of choosing h will be important in what

follows. We are going to obtain the desired GAP Q (claimed in the lemma) from R by

a few additional operations.

2.5.2 Creation of many similar GAPs.

One problem with R is that its cardinality can be significantly smaller than the bounds

on Q in Lemma 2.3.3. We want to obtain larger GAPs by adding many translates of R.

While we cannot do exactly this, we can do nearly as good by the following argument,

which creates many GAPs which are translates of each other and have cardinalities

comparable to that of R.

By the pigeonhole principle, for i ≤ mk/2, we can find a set B′i ⊂ Bk
i with cardinality

Θc(1)bk which is contained in one translate of R.



18

By Lemma 1.1.3, there exists g = Oc(1) such that B′1 + · · ·+ B′g contains a proper

GAP Q1 of cardinality Θc(1)|R|. Create Q2 by summing B′g+1, . . . , B
′
2g, and so on. At

the end we obtain mk
2g = Θc(1)mk such GAPs. Also, we can require the Qi’s to have

the properties below

• rank(Qi) =rank(R) = Oc(1);

• |Qi| = Θc(1)|R| = Θc(1)bk;

• each Qi is a subset of a translate of gR. Thus by Lemma 2.3.1, R is contained in

Oc(1) translates of Qi −Qi;

• the j-th size of Qi is different from j-th size of R by a (multiplicative) factor of

order Θc(1), for all j;

• the j-th step of Qi is a bounded multiple of the j-th step of R for all j;

Thus, by the pigeonhole principle and truncation (if necessary) we can obtain m′ =

Θc(mk) GAPs, say, Q1, . . . , Qm′ , which are translate of each other. An important

remark here is that since the Qi are obtained from summing different B’s, the sum

Q1 + · · ·+Qm′ is a subset of SA′ . The desired GAP Q will be a subset of this sum.

2.5.3 Embedding A′′

In this step, we embed A
′′

in a union of few translates of a GAP Q1 of constant rank.

We set the (so far untouched) parameter h to be sufficiently large so that

Θc(1) = h > c|Bk
1 |/|B′1|.

Let d be the largest number such that there are d elements a1, . . . , ad of A′′ for which

the sets B′1 +B′2 + ai are disjoint. Assume for the moment that d ≥ h, then we would

have

| ∪hi=1 (B′1 +B′2 + ai) = h|B′1 +B′2| ≥ h|B′1| > c|Bk
1 |
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However, this is impossible because ∪hi=1(B′1 +B′2 +ai) ⊂ ∪hi=1(Bk
1 +Bk

2 +ai) and the

latter has cardinality less than c|Bk
1 | by definition. Thus we have d < h. So d = Oc(1).

Let us fix d elements a1, . . . , ad from A′′ which attained the disjointness in the

definition of d. By the maximality of d, for any a ∈ A′′ there exists ai so that (B′1 +

B′2 + a) ∩ (B′1 +B′2 + ai) 6= ∅. Hence

a− ai ∈ Bk
1 +Bk

2 − (Bk
1 +Bk

2 ) = (Bk
1 −Bk

1 ) + (Bk
2 −Bk

2 ) ⊂ 2R− 2R.

Thus A′′ is covered by at most d = Oc(1) translates of 2R − 2R. On the other hand,

since R is contained in Oc(1) translates of Q1 − Q1, 2R − 2R is contained in Oc(1)

translates of 4Q1 − 4Q1. It follows that that A′′ is covered by Oc(1) translates of Q1.

The remaining problem here is that Q1 does not yet have the required rank and

cardinality. We will obtain these by adding the Qi together (recall that these GAPs

are translates of each other) and using a rank reduction argument.

2.5.4 Rank reduction

Let P be the symmetric translate of Q1 (and also of Q2, . . . , Qm′). Recall that

|P | = |Q1| = Θc(bk) = Ωc(ckb1).

and also

m′ = Θc(mk) = Θc(
b1
4k

), and lk+1 ≤ 2k+1l1.

Set l := min{m′, |A′|/2lk+1}. Recall that |A′| = n1/3(log n)C/2, l1 ≤ 10 log2 |A′| and

b1 = |A′|/2. By choosing c and C sufficiently large, we can guarantee that

l|P | ≥ n2/3(log n)C/2 ; l2|P | ≥ n(log n)2C/3. (2.12)

and also

l3|P | ≥ n4/3(log n)C (2.13)
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Now we invoke Lemma 1.1.1 to find a large GAP in lP . Assume, without loss of

generality, that l = 2s for some integer s. We start with P0 := P and `0 := l. If 2sP0

is proper, then we stop. If not, then there exists a smallest index i1 such that 2i1P0 is

proper but 2i1+1P0 is not.

By Lemma 1.1.1 (applying to 2i1P0) we can find a symmetric GAP S which contains

2i1P0 such that rank(S) < r := rank(2i1P0).

By Lemma 1.1.2, there is a constant g = Θc(1) such that the set 2g(2i1P0) contains

a symmetric proper GAP P1 of rank equals rank(S) and cardinality Θc(1)|2i1P0|. Set

`1 := `0/2i1+g if `0/2i1+g ≥ 1 and proceed with P1, `1 and so on. Otherwise we stop.

Observe that if 2ijPj is proper, then |2ijPj | = (1 + o(1))2ijrj |Pj |, where rj is the

rank of Pj .

As the rank of P0 is Oc(1), and rj+1 ≤ rj − 1, we must stop after Θc(1) steps.

Let Q′ be the symmetric proper GAP Q′ obtained when we stop. It has rank d′,

for some integer d′ < r and cardinality at least Θc(1)`d
′

0 |P0| = Θc(1)ld
′ |P |. On the

other hand, since a translate of lP is contained in SA′ , |Q′| ≤ |A′|n/p ≤ |A′|n, that is

Θc(1)ld
′ |P | ≤ |A′|n. Because of (2.13), this holds only if d′ ≤ 2.

2.5.5 Properties of Q.

By the Covering Lemma 2.3.1 and by the definition of Pj ’s, Pi is contained in Oc(1)

translates of Pi+1 for all i ≥ 0. At the starting point, we know that A′′ is contained

in Oc(1) translates of P0. Since there are only Oc(1) different Pj ’s, at the last step we

conclude that A
′′

is covered by Oc(1) translates of Q′.

Furthermore, Q′ is a subset of lP . Thus a translate Q of Q′ lies in Q1 + · · ·+Qm′ ⊂

SA′ . This Q has rank 1 ≤ d′ ≤ 2 and cardinality |Q| = |Q′| ≥ Θ(1)ld
′ |A′|. (The right

hand side satisfies the lower bounds claimed in Lemma 2.3.3, thanks to (2.12).) This

is the GAP claimed in Lemma 2.3.3 and our proof is complete.
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2.6 Proof of Lemma 2.4.2

If q is a prime, the lemma is a corollary of the well known Weyl’s estimate (see [20].)

We need to add a few arguments to handle the general case. The following lemma will

be useful.

Lemma 2.6.1. Let τ(n) be the number of positive divisors of n. For any given k ≥ 3

there exists a positive constant β(k) such that the following holds for every n.

τ(n) = Ok(
∑
d|n

d≤n1/k

τ(d)β(k)).

Proof. (of Lemma 2.6.1). We can set β(k) = k log(k+1). We factorize n in the following

specific way

n =
u∏
i=1

paii

v∏
j=1

q
bj
j

where p1 ≤ · · · ≤ pu, q1 ≤ · · · ≤ qv are primes and ai ≥ k > bj ≥ 1. Set

d :=
u∏
i=1

p
bai
k
c

i

∏
j≤b v

k
c

qj .

Then d ≤ n1/k by definition and

(k+1)kτ(d)β(k) = (k+1)k2b
v
k
ck log(k+1)

u∏
i=1

(bai
k
c+1)k log(k+1) ≥ (k+1)v

u∏
i=1

(1+ai) ≥ τ(n),

completing the proof.

Now we start the proof of Lemma 2.4.2. Let S :=
∑
|m|≤M
m 6=0

|
∑

z∈I e(
amz2

q + θmz)|.

Following Weyl’s argument, we use Cauchy-Schwarz and the triangle inequality to ob-

tain

S2 ≤ 2M
∑
|m|≤M
m 6=0

∑
z1,z2∈I

e(
am(z1 − z2)(z1 + z2)

q
+ θm(z1 − z2)).
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For convenience, we change the variables, setting u := z1 − z2, v := z2, then

S2 ≤ 2M
∑
|m|≤M
m 6=0

∑
|u|≤N

e(
amu2

q
+ θmu)

∑
v∈I,v∈I−u

e(
2amuv
q

)

≤ 2M
∑
|m|≤M
m6=0

∑
|u|≤N

|
∑

v∈I,v∈I−u
e(

2amuv
q

)|.

Next, using the basic estimate (see [20, Section 8.2], for instance)

|
∑

K0<k≤K0+K

e(ωk)| ≤ min(K,
1
‖2ω‖

)

we obtain that

S2 ≤ 2M
∑
|m|≤M
m6=0

∑
|u|≤N

min(N,
1

‖2amu/q‖
).

To estimate the right hand side, let Nr be the number of pairs (m,u) such that 2amu ≡

r(modq). (In what follows, it is useful to keep in mind that a and q are co-primes.)

We have

S(M,N, q)2 ≤ 2M

N0N +
∑

1≤r≤q/2

(Nr +Nq−r)
q

r

 . (2.14)

To finish the proof, we are going to derive a (uniform) bound for the Nr’s. For 0 ≤

r ≤ q − 1 let 0 ≤ ra ≤ q − 1 be the only number such that ara ≡ r(modq). Thus

2amu ≡ r(modq) is equivalent with 2mu ≡ ra(modq).

First we consider the case r 6= 0, thus ra 6= 0. Write 2mu = ra + sq. It is clear that

ra + sq 6= 0 for all s. Since 2mu ≤ 2MN , we have |s| ≤ 2MN/q. For each given s the

number of such pairs (m,u) is bounded by τ(ra + sq).

Choose k = max(1
ε + 2, 3), then MN/q ≥ (MN)2/k by the assumption MN ≥ q1+ε.

It follows from Lemma 2.6.1 that, for r 6= 0,
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Nr ≤
∑

|s|≤2MN/q

τ(ra + sq) = Oε(
∑

d≤(MN)1/k

τ(d)β(k)(
∑

|s|≤4MN/q
d|ra+sq

1)

= Oε(
∑

d≤(MN)1/k

τ(d)β(k)(
4MN

qd
+O(1)))

= Oε(
MN

q

∑
d≤(MN)1/k

τ(d)β(k)

d
+O((MN)1/k+o(1)))

= Oε(
MN

q

∑
d≤(MN)1/k

τ(d)β(k)

d
).

Notice that
∑

d≤x τ(d)β(k) � x logβ
′(k) x for some positive constant β′(k) depending on

β(k) (see [20, Section 1.6], for instance). By summation by parts we deduce that

Nr = Oε(
MN

q
logβ

′′(k)(MN))

for some positive constant β′′(k) depending on β′(k).

Now we consider the case r = 0. The equation 2mu = sq has at most τ(sq) solution

pairs (m,u), except when s = 0, the case that has 2M solutions {(m, 0); |m| ≤ 2M,m 6=

0}. Thus we have

N0 ≤ 2M +
∑

|s|≤2MN/q,s 6=0

τ(sq),

and hence,

N0 = Oε(2M +
MN

q
logβ

′′(k)(MN)).

Combining these estimates with (2.14), we can conclude that

S(M,N, q)�ε (M
√
N +MN/

√
q) logα(MN)

for some sufficiently large constant α = α(ε).
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2.7 Proof of Lemma 2.4.3

We are going to need the following simple fact.

Fact 2.7.1. Let a1, . . . , am, q be integers such that (a1, . . . , am, q) = 1. Then we can se-

lect a decomposition q = q1 . . . ql of q and l different numbers ai1 , . . . , ail of {a1, . . . , am}

(for some l ≥ 1) such that

(qi, qj) = 1 for evey i 6= j and (aij , qj) = 1 for every j.

Proof. (of Fact 2.7.1) Let q = q′1 . . . q
′
k be the decomposition of q into prime powers.

For each q′i we assign a number a′i from {a1, . . . , am} such that (q′i, a
′
i) = 1 (the same ai

may be assigned to many q′j). Let aij ’s be the collection of the a′i’s without multiplicity.

Set qj to be the product of all q′i assigned to aij .

The core of the proof of Lemma 2.4.3 will be the following proposition, which is

basically the case of one variable in a slightly more general setting.

Proposition 2.7.2. There is a constants D such that the following holds. For given

integers g, h, p, t, z1; g, h, p > 0 there exist integers x ∈ [0, (ph)1/2(log h)D] and z2 such

that gx+ pz2
1 + tk ≡ pz2

2(modh), where k = (g, h) .

Lemma 2.4.3 follows from Fact 2.7.1 and Proposition 2.7.2 by an inductive argument.

Indeed, by the above fact we may assume that q = q1 . . . ql where (ai, qi) = 1, and so

(al, q)|q1 . . . ql−1.

Now if Lemma 2.4.3 is true for l − 1 variables, i.e. there are appropriate x1, . . . , xl−1

such that a1x1 + . . . al−1xl−1 + r = pz2
1 + tq1 . . . ql−1. Then we apply Proposition 2.7.2

for q = h, g = al to find xl. It thus remains to justify Proposition 2.7.2.

Proof. (of Proposition 2.7.2) Without loss of generality we assume that h ≥ 3. As

k = (g, h), we can write g = ka, h = kq where (a, q) = 1. We shall find a solution in the

form z2 = z1 + zk. Plugging in z2 in this form and simplifying by k, we end up with

the equation
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ax+ t ≡ pkz2 + 2pz1z(modq).

or equivalently,

x ≡ āpkz2 + 2āpz1z − āt(modq) (2.15)

where ā is the reciprocal of a modulo q, aā ≡ 1(modq).

Our task is to find x ∈ [0, (ph)1/2(log h)D] such that (2.15) holds for some integer

z. Notice that if q is small and D is large then (ph)1/2(log h)D ≥ (log 3)D, therefore

the interval [0, (ph)1/2] contains every residue class modulo q; as a result, (2.15) holds

trivially. From now on we can assume that q is large,

q ≥ exp
(
16(6(α+ 1)/e)α+1

)
(2.16)

where c, α are constants arising from Lemma 2.4.2 with ε = 1/3.

Let s = (pk, q); so we can write pk = sp′, q = sq′ with (p′, q′) = 1.

Let D be a large constant (to be determined later) and set

L := (sq)1/2(log q)D/2 and I := [L, 2L].

Note that

ph = pkq = sp′q ≥ sq.

Thus we have

I ⊂ [0, (ph)1/2(log h)D].

Let f be a smooth function defined with respect to the interval I (as in Lemma 2.4.1).

For fixed z ∈ [1, q] the numbers of x in [0, (sq)1/2 logD q] satisfying (2.15) is at least

Nz :=
∑
m∈Z

f(āpkz2 + 2āpz1z − āt+mq).
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By Poisson summation formula (2.8)

Nz =
∑
m∈Z

1
q
f̂(
m

q
)e(

(āpkz2 + 2āpz1z − āt)m
q

).

By summing over z ∈ [1, q] we obtain

N :=
q∑
z=1

Nz =
1
q

∑
m∈Z

f̂(
m

q
)

q∑
z=1

e(
(āpkz2 + 2āpz1z − āt)m

q
).

To conclude the proof, it suffices to show that N > 0. We are going to show (as fairly

standard in this area) that the sum is dominated by the contribution of the zero term.

By the triangle inequality, we have

|N − f̂(0)| ≤ 1
q

∑
m∈Z,m 6=0

|f̂(
m

q
)||

q∑
z=1

e(
(āpkz2 + 2āpz1z)m

q
)|.

Let γ1, γ2 be a sufficiently large constant and let

L′ :=
γ1q(log q)γ2

L
.

Set

S1 :=
1
q

∑
|m|≥L′

|f̂(
m

q
)||

q∑
z=1

e(
(āpkz2 + 2āpz1z)m

q
)|

and

S2 :=
1
q

∑
|m|≤L′
m6=0

|f̂(
m

q
)||

q∑
z=1

e(
(āpkz2 + 2āpz1z)m

q
)|.

We then have

|N − f̂(0)| ≤ S1 + S2.

In what follows, we show that both S1 and S2 are less than f̂(0)/4.

Estimate for S1. It is not hard to show that
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∑
k∈Z

exp(−
√
x|k|) < 5

x
for 0 < x < 1.

To see this, observe that

∑
k≥1

exp(−
√
xk) ≤

∫ ∞
0

exp(−
√
xt)dt =

2
x
,

where the integral is evaluated by changing variable and integration by parts.

Thus

∑
|k|≥k0

exp(−
√
x|k|) <

∑
k∈Z

exp(−
√
x(

√
|k|+

√
k0

2
)) ≤ 20

x
exp(−

√
xk0

2
). (2.17)

From the property of f (Lemma 2.4.1) we can deduce that

S1 ≤ 16f̂(0)
∑

|m|≥ γ1q(log q)
γ2

L

exp(−δ
√
|Lm/q|),

which, via (2.17) and since q ≥ 3, implies

S1 ≤ 16f̂(0)
20
Lq−1

exp(−δ(γ1(log q)γ2)1/2

2
) ≤ f̂(0)/4,

given that we choose γ1, γ2 sufficiently large.

Estimate for S2. We have

S2 =
f̂(0)
q

∑
|m|≤L′
m 6=0

|
q∑
z=1

e(
āp′z2

q′
+

2āpz1zm

q
)|.

We shall choose D > γ2.

Set

γ1 :=
(6(D − γ2)

e

)D−γ2 .
First, we observe that
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L′q =
2γ1q

2(log q)γ2

(sq)1/2(log q)D
=

2γ1q
3/2

s1/2(log q)D−γ2
=

2γ1q
′1/2q

(log q)D−γ2
≥ q′4/3 γ1q

1/6

(log q)D−γ2
.

It is not hard to show that the function q1/6/(log q)D−γ2 , where q ≥ 3, attains its

minimum at q = exp(6(D − γ2)). Therefore, by the choice of γ1, we have

L′q ≥ q′4/3.

Next, Lemma 2.4.2 applied for ε = 1/3 (and with the mentioned c and α) yields

S2 =
f̂(0)
q

∑
|m|≤L′
m 6=0

|
q∑
z=1

e(
āp′z2

q′
+

2āpz1zm

q
)|

≤ c f̂(0)
q

(
L′q√
q′

+ L′
√
q)(log q)α

≤ 2c
f̂(0)
q

L′q√
q′

(log q)α = 2c
f̂(0)L′√

q′
(log q)α.

It follows that

S2 ≤
4cγ1q(log q)α+γ2

(
√
sq logD q)

√
q′
f̂(0) =

4cγ1(log q)α+γ2

(log q)D
f̂(0).

Now we choose D, γ2 so that D − γ2 − α = 1. Thus γ1 = (6(α+ 1)/e)α+1, and

S2 ≤
4cγ1(log q)α+γ2

(log q)D
f̂(0) =

4c(6(α+ 1)/e)α+1

log q
f̂(0) ≤ f̂(0)/4

where the last inequality comes from (2.16).

2.8 Proof of Lemma 2.2.3

We first apply Lemma 2.3.3 to obtain a large proper GAP Q of rank 1 or 2. By this

lemma, we have A
′′ ⊂ {s1, . . . , sm}+Q, where m is a constant.

Let Si = A′′ ∩ (si + Q) for 1 ≤ i ≤ m. We would like to guarantee that all Si are

large by the following argument.
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If Si is smaller than n1/3(log n)3C/10, then we delete it from A
′′

and add to A′. The

new sets A′, A
′′

and Q still satisfy the claim of Lemma 2.3.3. On the other hand, that

the total number of elements added to A′ is only O(n1/3(log n)3C/10 = o(|A′|), thus the

sizes of A′ and A′′ hardly changes.

From now on, we assume that |Si| ≥ n1/3(log n)3C/10 for all i.

For convenience, we let

s′i := si + r.

Thus every element of Si is congruent with s′i modulo q.

2.8.1 Q has rank one

In this subsection, we deal with the (easy) case when Q has rank one. We write

Q = {r + qx |0 ≤ x ≤ L} where L ≥ n2/3(log n)C/2.

Since Q ⊂ SA′ ⊂ [np |A
′|], we have

q ≤ |A
′|n
pL

≤ n2/3

(log n)C/6p
.

By setting C (of Lemma 2.3.3) sufficiently large compared to D (of Lemma 2.4.3), we

can guarantee that

(pq)1/2(log q)D ≤ n1/3. (2.18)

Let d := (s1 + r, . . . , sm + r, q) = (s′1, . . . , s
′
m, q). If d > 1 then all elements of A′′ are

divisible by d, since A
′′

are covered by {s1, . . . , sm}+Q. Thus we reach the third case

of the lemma and are done.

Assume now that d = 1. By Lemma 2.4.3, we can find 0 ≤ xi ≤ (pq)1/2(log q)D

such that

s′1x1 + · · ·+ s′mxm + r ≡ pz2(modq). (2.19)
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Pick from Si’s exactly xi elements and add them together to obtain a number s. The

set s + Q is a translate of Q which satisfies the first case of Lemma 2.2.3 and we are

done.

2.8.2 Q has rank two

In this section, we consider the (harder) case when Q has rank two. The main idea is

similar to the rank one case, but the technical details are somewhat more tedious. We

write

Q = r + q(q1x+ q2y)|0 ≤ x ≤ L1, 0 ≤ y ≤ L2

where L1L2 = |Q| ≥ n log2C/3 n.

As Q is proper, either q1 ≥ L2 or q2 ≥ L1 holds. Thus qL1L2 ≤ |A′|n/p, which

yields (with room to spare)

q ≤ n1/3

(log n)C/6p
. (2.20)

We consider two cases. In the first (simple) case, both L1 and L2 are large. In the

second, one of them can be small.

Case 1. min(L1, L2) ≥ n1/3(log n)C/4. Define d := (s′1, . . . , s
′
m, q) and argue as in the

previous section. If d > 1, then we end up with the third case of Lemma 2.2.3. If d = 1

then apply Lemma 2.4.3. The fact that q is sufficiently small (see (2.20)) and that |Si|

is sufficiently large guarantee that we can choose xi elements from Si. At the end, we

will obtain a GAP of rank 2 which is a translate of Q and satisfies the second case of

Lemma 2.2.3.

Case 2. min(L1, L2) ≤ n1/3(log n)C/4. In this case the sides of GAP Q are unbalanced

and one of them is much larger than the other. We are going to exploit this fact to

create a GAP of rank one (i.e., an arithmetic progression) which satisfies the first case

of Lemma 2.3.3, rather than trying to create a GAP of rank two as in the previous case.

Without loss of generality, we assume that L1 ≤ n1/3(log n)C/4. By the lower bound

on L1L2, we have that L2 ≥ n2/3(log n)C/4. This implies
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qq2 ≤
|A′|n
pL2

≤ n2/3

(log n)C/12p
.

Again by setting C sufficiently large compared to D, we have

(pqq2)1/2(log qq2)D ≤ n1/3(log n)C/5. (2.21)

Creating a long arithmetic progression. In the rest of the proof we make use of

A′′ and Q to create an AP of type {r′ + qq2x2 |0 ≤ x2 ≤ L2, r
′ ≡ pz2(modqq2)}. This

gives the first case in Lemma 2.3.3 and thus completes the proof of this lemma.

Let S be an element of {S1, . . . , Sm}. Since S is contained in a translate of Q, there

is a number s such that any a ∈ S satisfies a ≡ s+ tqq1(modqq2) for some 0 ≤ t ≤ L1

(for instance, if a ∈ Si then a ≡ s′i + tqq1(modqq2)). Let T denote the multiset of t’s

obtained this way. Notice that T could contain one element of multiplicity |S|. Also

recall that |S| ≥ n1/3(log n)3C/10.

For 0 ≤ l ≤ |S|/2, let ml and Ml (respectively) be the minimal and maximal values

of the sum of l elements of T . Since 0 ≤ t ≤ L1 for every t ∈ T , by swapping summands

of ml with those of Ml, we can obtain a sequence ml = n0 ≤ · · · ≤ nl = Ml where each

ni ∈ l∗T and ni+1 − ni ≤ L1 for all relevant i.

By construction, we have

[ml,Ml] ⊂ {n0, . . . , nl}+ [0, L1] ⊂ l∗T + [0, L1]. (2.22)

Next we observe that if l is large and Ml −ml is small, then T looks like a sequence of

only one element with high multiplicity. We will call this element the essential element

of T .

Proposition 2.8.3. Assume that 1
4(n1/3(log n)3C/10 ≤ l ≤ 1

2n
1/3(log n)3C/10 and Ml−

ml <
1
4n

1/3(log n)3C/10. Then all but at most 1
2n

1/3(log n)3C/10 elements of T are the

same.

Proof. ( of Proposition 2.8.3) Let t1 ≤ t2 ≤ · · · ≤ tl be the l smallest elements of T

and t′1 ≤ · · · ≤ t′l be the l largest. By the upper bound on l and lower bound on
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|S| = |T |, t′1 ≥ tl. On the other hand, Ml −ml = (t′1 − t1) + · · · + (t′l − tl). Thus if

Ml −ml <
1
4n

1/3(log n)3C/10 ≤ l − 1 then t′i = ti for some i. The claim follows.

The above arguments work for any S among S1, . . . , Sm. We now associate to each

Si a multiset Ti, for all 1 ≤ i ≤ m.

Subcase 2.1 The hypothesis in Proposition 2.8.3 holds for all Ti. In this case we

move to A′ those elements of Si whose corresponding parts in Ti is not the essential

element. The number of elements moved is only O(n1/3(log n)3C/10), which is negligible

compared to both |A′| and |A′′|. Furthermore, the properties claimed in Lemma 2.3.3

remain unchanged and the size of new Si are now at least 1
2n

1/3(log n)3C/10.

Now consider the elements of A′′ with respect to modulo qq2. Since each Ti has only

the essential element, the elements of A
′′

produces at most m residues ui = s′i + tiqq1,

each of multiplicity at least

|Si| ≥
1
2
n1/3(log n)3C/10 ≥ (pqq2)1/2(log qq2)D

where the last inequality comes from (2.21). Define d = (u1, . . . , um, qq2) and proceed

as usual, applying Lemma 2.4.3.

Subcase 2.2 The hypothesis in Proposition 2.8.3 does not hold for all Ti. We can

assume that, with respect to T1, Ml−ml ≥ 1
4n

1/3(log n)3C/10 for all 1
4n

1/3(log n)3C/10 ≤

l ≤ 1
2n

1/3(log n)3C/10. From now on, fix an l in this interval.

Next, for a technical reason, we extract from S1 a very small part S′1 of cardinality

n1/3(log n)C/5 and set S
′′
1 = S1\S′1. Let T be the multiset associated with S

′′
1 . We can

assume that T satisfies the hypothesis of this subcase.

Define d := (s′1, . . . , s
′
m, q). As usual, the case d > 1 leads to the third case of

Lemma 2.2.3, so we can assume d = 1. By Lemma 2.4.3, there exist integers

0 ≤ xi ≤ (pq)1/2(log n)D ≤ n1/3(log n)C/5 ≤ |Si|

and k, z1 such that

s′1x1 + · · ·+ s′mxm + (ls′1 + r) = pz2
1 + kq. (2.23)
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For i ≥ 2 we pick from Si exactly xi elements ai1, . . . , a
i
xi , and for i = 1 we pick x1

elements a1
1, . . . , a

1
x1

from S′1 and add them together. By (2.23) the following holds for

some integer k′,

m∑
i=1

xi∑
j=1

aij + (ls′1 + r) = pz2
1 + k′q. (2.24)

Furthermore, by Proposition 2.7.2, as q = (qq1, qq2), there exist 0 ≤ x ≤ (pqq2)1/2 logD(qq2)

and k′′, z2 such that

qq1x+ pz2
1 + (k′ +mlq1)q = pz2

2 + k′′qq2,

pz2
1 + k′q + (x+ml)qq1 = pz2

2 + k′′qq2. (2.25)

As (pqq2)1/2 logD(qq2) ≤ n1/3 logC/5 n and n1/3 logC/5 n ≤Ml −ml, we have

ml ≤ x+ml ≤Ml.

On the other hand, recall that [ml,Ml] ⊂ l∗T + [0, L1] (see (2.22)), we have

{ls′1 + r + [ml,Ml]qq1} ⊂ l∗S
′′
1 + r + [0, L1]qq1(modqq2).

Thus

ls′1 + r + (x+ml)qq1 ∈ l∗S
′′
1 + r + [0, L1]qq1(modqq2). (2.26)

Combining (2.24),(2.25) and (2.26) we infer that there exist l elements a1, . . . , al of S
′′
1 ,

and there exist 0 ≤ u ≤ L1 and v such that

m∑
i=1

xi∑
j=1

aij + a1 + · · ·+ al + r + uqq1 = pz2
2 + vqq2.

Hence,
∑m

i=1

∑xi
j=1 a

i
j + a1 + · · · + al + Q contains the AP {(pz2

2 + vqq2) + qq2x2|0 ≤

x2 ≤ L2}, completing Subcase 2.2.
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Finally, one checks easily that the number of elements of A′′ involved in the creation

of pz2
2 in all cases is bounded by O(n1/3 logC/5 n) = o(|A′|), thus we may put all of them

to A′ without loss of generality.

2.9 Proof of Theorem 2.1.5: The rank one case.

Here we consider the (easy) case when Q (in Lemma 2.2.3) has rank one. In this case,

SA′ contains an AP Q = {r + qx|0 ≤ x ≤ L}, where L ≥ n2/3(log n)C/4 as in the first

statement of Lemma 2.2.3. We are going to show that Q contains a number of the form

pz2.

Write r = pz2
0 + tq for some 0 ≤ z0 ≤ q. Since r is a sum of some elements of A′, we

have

0 ≤ r ≤ |A′|(n/p) ≤ n4/3(log n)C/3

p
.

Thus

− pq ≤ t ≤ n4/3(log n)C/3

pq
. (2.27)

The interval [t/pq, (t+ L)/pq] contains at least two squares because

(
L

pq
)2 ≥ n4/3(log n)C/2

(pq)2
≥ 10

t

pq
+ 20.

Thus, we can find an integer x0 ≥ 0 such that t
pq < x2

0 < (x0 + 1)2 ≤ t+L
pq . It is implied

that (since 0 ≤ z0 ≤ q)

t ≤ pqx2
0 + 2pz0x0 ≤ t+ L. (2.28)

Set z := z0 + qx0. We have

pz2 = pz2
0 + q(pqx2

0 + 2pz0x0).

On the other hand, by (2.28), the right hand side belongs to



35

pz2
0 + q[t, t+ L] = pz2

0 + tq + q[0, L] = r + q[0, L] = Q.

Thus, Q contains pz2, completing the proof for this case.

2.10 Proof of Theorem 2.1.5: The rank two case

In this case, we assume that SA′ contains a proper GAP as in the second statement of

Lemma 2.2.3. We can write

Q = {r + q(q1x1 + q2x2) |0 ≤ x1 ≤ L1, 0 ≤ x2 ≤ L2, (q1, q2) = 1}

where

• min(L1, L2) ≥ n1/3(log n)C/4,

• L1L2 ≥ n(log n)C/2,

• q ≤ n1/3(logn)−C/6

p ,

• and r = pz2
0 + tq for some integers t and 0 ≤ z0 ≤ q.

Since r is a sum of some elements of A′, we have 0 ≤ r ≤ n4/3(logn)C/3

p , and so

−pq ≤ t ≤ n4/3(log n)C/3

pq
.

Without loss of generality, we assume that q2L2 ≥ q1L1. Because Q is proper, either

q2 ≥ L1 or q1 ≥ L2. On the other hand, if q2 < L1 then L2 ≤ q1, which is impossible

by the assumption. Hence,

q2 ≥ L1.

Now we write Q = {pz2
0 + q(q1x1 + q2x2 + t)|0 ≤ x1 ≤ L1, 0 ≤ x2 ≤ L2, (q1, q2) = 1}

and notice that if we set w := z0 + zq then

pw2 − pz2
0 = p(z0 + qz)2 − pz2

0 = q(pqz2 + 2pz0z).
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Thus if there is an integer z satisfies

pqz2 + 2pz0z ∈ {q1x+ q2y + t|0 ≤ x ≤ L1, 0 ≤ y ≤ L2} (2.29)

then pw2 ∈ Q, and we are done with this case. The rest of the proof is the verification

of the following proposition, which shows the existence of a desired z.

Proposition 2.10.1. There exists an integer z which satisfies (2.29).

Proof. (of Proposition 2.10.1) The method is similar to that of Lemma 2.4.3, relying

on Poisson summation.

Set a := pq and b := 2pz0. Notice that since 0 ≤ z0 ≤ q, 0 ≤ b ≤ 2pq = 2a. Our

task is to find a z such that

az2 + bz − q1x− t = q2y for some 0 ≤ x ≤ L1, 0 ≤ y ≤ L2.

Define (with foresight; see (2.31)) Ix := [L1/8, L1/4] and

Iz := [(
q1L1/4 + t

a
)1/2 + 1, (

q2L2 + q1L1/8 + t

a
)1/2 − 1].

(Notice the that the lower bounds on L1, L2 and the upper bound on pq guarantee that

the expressions under the square roots are positive.)

Since r + qq1L1 + qq2L2 = pz2
0 + tq + q(q1L1 + q2L2) ∈ Q, it follows that (with

max(Q) denoting the value of the largest element of Q)

q2L2 + q1L1/8 + t ≤ max(Q)/q ≤ p−1n4/3(log n)C/3

q
=
n4/3(log n)C/3

a
.

Thus

|Iz| ≥
1
4

(q2L2 − q1L1/4)a−1√
q2L2+q1L1/8+t

a

|Iz| = Ω(
q2L2

n2/3(log n)C/6
). (2.30)

By the definitions of Ix and Iz, we have, for any x ∈ Ix and z ∈ Iz
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0 ≤ az2 + bz − q1x− t ≤ a(z + 1)2 − q1x− t ≤ q2L2. (2.31)

Thus, for any such pair of x and z, if az2 + bz − q1x − t is divisible by q2, then

y := (az2 + bz − q1x − t)/q2 is an integer in [1, L2]. We are now using the ideas from

Section 2.7, with respect to modulo q2 and the intervals Ix, Iz.

Let q̄1 be the reciprocal of q1 modulo q2 (recall that (q1, q2) = 1). Let f be a function

given by Lemma 2.4.1 with respect to the interval Ix. For a given z ∈ Iz, the number

of x ∈ Ix satisfying (2.29) is at least Nz, where

Nz :=
∑
m∈Z

f(q̄1az
2 + q̄1bz − q̄1t+mq2).

By applying Poisson summation formula (2.8) and summing over z in Iz we obtain

N :=
∑
z∈Iz

Nz =
∑
m∈Z

1
q2
f̂(
m

q2
)
∑
z∈Iz

e(
(q̄1az

2 + q̄1bz − q̄1t)m
q2

).

It suffices to show that N > 0. Similar to the proof of Lemma 2.4.3, we will again

show that the right hand side is dominated by the contribution at m = 0. By triangle

inequality, we have

|N − 1
q2
f̂(0)|Iz|| ≤

∑
m∈Z
m 6=0

1
q2
|f̂(

m

q2
)||
∑
z∈Iz

e(
(q̄1az

2 + q̄1bz − q̄1t)m
q2

)|.

Let γ be a sufficiently large constant and let

L′ :=
8q2(log q2)γ

L1
.

We have

|N − 1
q2
f̂(0)|Iz|| ≤ S1 + S2

where

S1 :=
∑
|m|≥L′

1
q2
|f̂(

m

q2
)||
∑
z∈Iz

e(
(q̄1az

2 + q̄1bz − q̄1t)m
q2

)|
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and

S2 :=
∑
|m|≤L′
m 6=0

1
q2
|f̂(

m

q2
)||
∑
z∈Iz

e(
(q̄1az

2 + q̄1bz − q̄1t)m
q2

)|.

To conclude the proof, we will show that both S1 and S2 are o( f̂(0)|Iz |
q2

).

Estimate for S1. By the property of f ,

S1 ≤
f̂(0)|Iz|
q2

∑
|m|≥ 8q2(log q2)γ

L1

exp(−δ
√
|mL1/(8q2)|).

By (2.17), and as q2 is large (q2 ≥ L1 > n1/3), the inner sum is o(1), so

S1 = o(
f̂(0)|Iz|
q2

) (2.32)

as desired.

Estimate for S2. Let q′ = (q̄1a, q2). We can write

q̄1a = q′q′1, q2 = q′q′2 with (q′1, q
′
2) = 1. (2.33)

Then

S2 ≤
f̂(0)
q2

∑
|m|≤L′
m6=0

|
∑
z∈Iz

e(
q′1mz

2

q′2
+

(q̄1bz − q̄1t)m
q2

)|.

By Lemma 2.4.2 there are absolute constants c, α such that

S2 ≤ c
f̂(0)
q2

(
L′
√
|Iz|(log n)α +

L′|Iz|(log n)α√
q′2

)
.

To show that S2 = o( f̂(0)|Iz |
q2

), it suffices to show that

L′(log n)α = o(
√
|Iz|) (2.34)

and
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L′(log n)α = o(q′2) (2.35)

To verify (3.3), notice that by (2.30), we have

|Iz|L2
1 = Ω(

L2
1q2L2

n2/3(log n)C/6
).

Thus

|Iz|
L′2(log n)2α

= Ω(
|Iz|L2

1

q2
2(log n)2α+2γ

) = Ω
( L2

1L
2
2

L2q2n2/3(log n)C/6+2α+2γ

)
.

Since (L1L2)2 ≥ (n(log n)C/2)2 = n2 logC n and L2q2 = O(max(Q)) = O(p−1n4/3(log n)C/3),

the last formula is ω(1) if we set C sufficiently large compared to α and γ. This proves

(3.3).

As a result,

f̂(0)
q2

L′
√
|Iz|(log n)α = o(f̂(0)|Iz|/q2).

Now we turn to (3.4). Recall that q2 = q′q′2 and q′ = (q̄1a, q2) = (a, q2) (as q1 and q2

are co-primes). Thus

q′2 ≥
q2

a
=
q2

pq
.

To show (3.4), it suffices to show that

q2

pq
= ω(L′2(log n)2α)

which (taking into account the definition of L′) is equivalent to

q2L
2
1 = ω(pqq2

2(log n)2α+2γ).

Multiplying both sides with L2q
−1
2 , it reduces to

L2
1L2 = ω(pqq2L2(log n)2α+2γ).



40

Now we use the fact that qq2L2 = O(max(Q)) = O(p−1n4/3(log n)C/3) and the lower

bounds L1L2 ≥ n(log n)C/2 and L1 ≥ n1/3(log n)C/4. The claim follows by setting C

sufficiently large compared to α and γ, as usual. Our proof is completed.
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Chapter 3

The inverse Littlewood-Offord problem

3.1 Introduction

3.1.1 The Forward Littlewood-Offord problem

Let ηi, i = 1, . . . , n be iid Bernoulli random variables, taking values ±1 with probability

1
2 . Given a multiset V of n integers v1, . . . , vn, we define the random walk S with steps

in V to be the random variable S :=
∑n

i=1 viηi. The concentration probability is defined

to be

ρ(V ) := sup
x

P(S = x).

Motivated by their study of random polynomials, in the 1940s Littlewood and Offord

[19] raised the question of bounding ρ(V ). (We call this the forward Littlewood-Offord

problem, in contrast with the inverse Littlewood-Offord problem discussed in the next

section.) They showed that ρ(V ) = O(n−1/2 log n). Shortly after Littlewood-Offord

paper, Erdős [6] gave a beautiful combinatorial proof of the refinement

ρ(V ) ≤

(
n
n/2

)
2n

= O(n−1/2). (3.1)

Erdős’ result is sharp, as demonstrated by V = {1, . . . , 1}.

The Littlewood-Offord and Erdős results are classic in combinatorics and have gen-

erated an impressive wave of research, in particular from the early 1960s to the late

1980s.

One direction of research was to generalize Erdős’ result to other groups. For ex-

ample, in 1966 and 1970, Kleitman extended Erdős’ result to complex numbers and

normed vectors, respectively. Several results in this direction can be found in [13, 17].
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Another direction was motivated by the observation that (3.1) can be improved

significantly under additional assumptions on V . The first such result was discovered

by Erdős and Moser [7], who showed that if vi are distinct, then ρ(V ) = O(n−3/2 log n).

They conjectured that the logarithmic term is not necessary and this was confirmed by

Sárközy and Szemerédi [27].

Theorem 3.1.2. Let V be a set of n different integers, then

ρ(V ) = O(n−3/2).

In [15], Halász proved very general theorems that imply Theorem 3.1.2 and many others.

One of his results can be formulated as follows.

Theorem 3.1.3. Let l be a fixed integer and Rl be the number of solutions of the

equation vi1 + · · ·+ vil = vj1 + · · ·+ vjl. Then

ρ(V ) = O(n−2l− 1
2Rl).

It is easy to see, by setting l = 1, that Theorem 3.1.3 implies Theorem 3.1.2.

Another famous result in this area is that of Stanley [28], which, solving a conjecture

of Erdős and Moser, shows when ρ(V ) attains its maximum under the assumption that

the vi are different.

Theorem 3.1.4. Let n be odd and V0 := {−bn/2c, . . . , bn/2c}. Then

ρ(V ) ≤ ρ(V0).

A similar result holds for the case n is even [28]. Stanley’s proof of Theorem

3.1.4 used sophisticated machineries from algebraic geometry, in particular the hard-

Lepschetz theorem. Few years later, a more elementary proof was given by Proctor [22].

This proof is also of algebraic nature, involving the representation of the Lie algebra

sl(2,C). As far as we know, there is no purely combinatorial proof.

It is natural to ask for the actual value of ρ(V0). From Theorem 3.1.2, one would

guess (under the assumption that the elements of V are different) that
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ρ(V0) = (C0 + o(1))n−3/2

for some constant C0 > 0. However, the algebraic proofs do not seem to yield the value

of C0. In fact, it is not obvious that limn→∞ n
3/2ρ(V0) exists.

Assume that C0 exists for a moment, one would next wonder if V0 is a stable

maximizer. In other words, if some other set V ′0 has ρ(V0)′ close to C0n
−3/2, then

should V ′0 , in some sense, close to V0 ? (Notice that ρ is invariant under dilation.)

So far we have discussed various results on the concentration probability. There

is another quantity that has been widely studied in theoretical probability, the small

ball probability. This can be seen as the continuous analogue of the above. Instead of

considering the probability that the random sum S concentrates on a single point, we

consider the probability that it concentrates in a small ball.

Let V = {v1, . . . , vn} be a multiset of n vectors in Rd. For any x ∈ Rd and r > 0,

we let B(x, r) denote the closed disk of radius r centered at x. Let z be a real-valued

random variable and z1, . . . , zn be iid copies of z. We define the small ball probability

as

ρr,z(V ) := sup
x∈Rd

P(
n∑
i=1

vizi ∈ B(x, r)).

Notice that, in contrast with the discrete setting, the small ball probability does not

vary much if one slightly changes the vectors vi.

The original setting in Littlewood-Offord paper [19] considered the bound of ρ1,z(V )

when vi are real numbers of absolute value at least 1, and z has Bernoulli distribution

η. The continuous version of Erdős’ theorem shows that in this case

ρ1,η(V ) ≤

(
n
n/2

)
2n

= O(n−1/2). (3.2)

The results of Kleitman are also valid for this setting. Another beautiful extension

given by Frankl and Füredi [8] also demonstrated a sharp upper bound for the small

ball probability in general Euclidean space.
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Theorem 3.1.5. Assume that v1, . . . , vn ∈ Rd such that ‖vi‖2 ≥ 1. Then

ρr,η(V ) ≤ (br/2c+ 1 + od(1))

(
n
n/2

)
2n

.

3.1.6 The inverse Littlewood-Offord problem

We first discuss the discrete setting. Motivated by inverse theorems from additive

combinatorics (see [40, Chapter 5]) and a variant for random sums in [33, Theorem 5.2],

Tao and Vu [37] brought a different view to the problem. Instead of trying to improve

the bound further by imposing new assumptions as done in the forward problems, they

tried to provide the full picture by finding the underlying reason for the concentration

probability to be large (say, polynomial in n).

Notice that the (multi)-set V has 2n subsums, and ρ(V ) ≥ n−C mean that at least

2n

nC
among these take the same value. This suggests that the set should have a very

strong additive structure. In order to determine this structure, we first discuss a few

examples of V where ρ(V ) is large.

Example 3.1.7. Let I = [−N,N ] and v1, . . . , vn be elements of I. Since S ∈ nI, by

the pigeonhole principle, ρ(V ) ≥ 1
|nI| = Ω( 1

nN ). In fact, a short consideration yields a

better bound. Notice that with probability at least .99, we have S ∈ 10
√
nI, thus again

by the pigeonhole principle, we have ρ(V ) = Ω( 1√
nN

). If we set N = nC−1/2 for some

constant C ≥ 1/2, then

ρ(V ) = Ω(
1
nC

). (3.3)

The next, and more general, construction comes from additive combinatorics.

Example 3.1.8. Let Q be a proper symmetric GAP of rank r and volume N . Let

v1, . . . , vn be (not necessarily distinct) elements of P . The random variable S =
∑n

i=1 viηi

takes values in the GAP nP . Since |nP | ≤ Vol(nB) = nrN , the pigeonhole principle

implies that ρ(V ) ≥ Ω( 1
nrN ). In fact, using the same idea as in the previous exam-

ple, one can improve the bound to Ω( 1
nr/2N

). If we set N = nC−r/2 for some constant

C ≥ r/2, then

ρ(V ) = Ω(
1
nC

). (3.4)
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The above examples show that if the elements of V belong to a proper GAP with small

rank and small cardinality then ρ(V ) is large. A few years ago, Tao and Vu [37] showed

that this is essentially the only reason:

Theorem 3.1.9 (Weak inverse theorem,[37]). Let C, ε > 0 be arbitrary constants.

There are constants r and C ′ depending on C and ε such that the following holds.

Assume that V = {v1, . . . , vn} is a multiset of integers satisfying ρ(V ) ≥ n−C . Then

there is a proper symmetric GAP Q of rank at most r and volume at most nC
′

which

contains all but at most n1−ε elements of V (counting multiplicity).

Remark 3.1.10. The presence of the small set of exceptional elements is not completely

avoidable. For instance, one can add o(log n) completely arbitrary elements to V and

only decrease ρ(V ) by a factor of n−o(1) at worst. Nonetheless we expect the number of

such elements to be less than what is given by the results here.

The reason we call Theorem 3.1.9 weak is that the dependence between the parame-

ters is not optimal. In particular, they are far from reflecting the relations in (3.3) and

(3.4). In a later paper [38], Tao and Vu refined the approach to obtain the following

stronger result.

Theorem 3.1.11 (Strong inverse theorem, [38] ). Let C and 1 > ε be positive constants.

Assume that

ρ(V ) ≥ n−C .

Then there exists a proper symmetric GAP Q of rank d = OC,ε(1) which contains all

but Or(n1−ε) elements of V (counting multiplicity), where

|Q| = OC,ε(nC−
r
2

+ε).

The bound on |Q| matches (3.4), up to the nε term. However, this error term seems

to be the limit of the approach. The proofs of Theorem 3.1.9 and 3.1.11 rely on a

replacement argument and various lemmas about random walks and GAPs.

Let us now consider another application of Theorem 3.1.11. Notice that Theorem

3.1.11 enables us to make very precise counting arguments. Assume that we would like
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to count the number of (multi)-sets V of integers with max |vi| ≤ N = nO(1) such that

ρ(V ) ≥ ρ := n−C .

Fix r ≥ 1, fix 1 a GAP Q with rank r and volume |Q| = nC−
r
2 . The dominating

term in the calculation will be the number of multi-subsets of size n of Q, which is

|Q|n = n(C− r
2

+ε)n ≤ nCnn−
n
2

+εn = ρ−nn−n( 1
2
−ε). (3.5)

Motivated by questions from random matrix theory, Tao and Vu obtained the following

continuous analogue of this result.

Let n be a positive integer and β, p be positive numbers that may depend on n.

Let Sn,β,ρ be the collection of all multiple sets V = (v1, . . . , vn), vi ∈ R2 such that∑n
i=1 ‖vi‖2 = 1 and ρβ,η(V ) ≥ ρ.

Theorem 3.1.12 (The β-net Theorem, [35]). Let 0 < ε ≤ 1 and C > 0 be constants.

Then, for all sufficiently large n and β ≥ exp(−nε/3) and ρ ≥ n−C there is a set

S ⊂ (R2)n of size at most

ρ−nn−n( 1
2
−ε) + exp(o(n))

such that for any V = {v1, . . . , vn} ∈ Sn,β,p there is V ′ = (v′1, . . . , v
′
n) ∈ S such that

‖vi − v′i‖2 ≤ β for all i.

The theorem looks a bit cleaner if we use C instead of R2 (as in [35]). However, we

prefer the current form as it is more suitable for generalization. The set S is usually

referred to as a β-net of Sn,β,p.

Theorem 3.1.12 is at the heart of the establishment of the Circular Law conjecture

in random matrix theory (see [35], also [36]). It also plays an important role in the

study of condition number of randomly perturbed matrices (see [39]). Its proof in [35]

is quite technical and occupies the bulk part of that paper.

1A more detailed version of Theorems 3.1.9 and 3.1.11 tells us that there are not too many ways to
choose the generators of Q. In particular, if N = nO(1), the number of ways to fix these is negligible
compared to the main term.
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On the other hand, given the above discussion, one would, obviously, expects to

obtain Theorem 3.1.12 as a simple corollary of a continuous analogue of Theorem 3.1.11.

However, the arguments in [35] have not yet provided such inverse theorem (although it

did provide a sufficient amount of information about the set S that makes the estimate

possible). The paper [24] of Rudelson and Vershynin also contained a characterization

of the set S, but their characterization of somewhat different spirit than those discussed

in this chapter.

3.2 A new approach and new results

In this chapter, we present a new approach to the inverse theorem. The core of this

new approach is a (long range) variant of Freiman’s famous inverse theorem: Theorem

1.5.2.

The new approach seems useful. First of all, it enables us to remove the error term

nε in Theorem 3.1.11, resulting in an optimal inverse theorem.

Theorem 3.2.1 (Optimal inverse Littlewood-Offord theorem, discrete case). Let C and

1 > ε be positive constants. There is a constant c1 = c1(ε, C) such that the following

holds. Assume that

ρ(V ) ≥ n−C .

Then there exists a proper symmetric GAP Q of rank r = OC,ε(1) which contains all

but at most εn elements of V (counting multiplicity), where

|Q| = OC,ε(ρ(V )−1n−
r
2 ).

This immediately implies several forward theorems, such as Theorems 3.1.2 and 3.1.3.

Proof. (of Theorem 3.1.2) Assume, for contradiction, that there is a set V of n different

number such that ρ(V ) ≥ c1n
−3/2 for some large constant c1 to be chosen. Set ε =

.1, C = 3/2. By Theorem 3.2.1, there is a GAP Q of rank r and size Oε( 1
c1
nC−

r
2 ) that

contains at least .9n elements from V . This implies |Q| ≥ .9n. By setting c1 sufficiently

large and using the fact that C = 3/2 and r ≥ 1, we can guarantee that |Q| ≤ .8n, a

contradiction.
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Theorem 3.1.3 can be proved similarly with the detail left as an exercise.

Similar to [37, 38], our method and results can be extended (rather automatically)

to much more general settings.

General V . Instead of taking V to be a subset of Z, we can take it to be a subset of

any abelian torsion free group G (thanks to Freiman isomorphism). We can also replace

Z by the finite field Fp, where p is any sufficiently large prime. (In fact, the first step

in our proof is to embed V into Fp.)

General η. We can replace the Bernoulli random variables by independent random

variables ηi satisfying the following condition. There is a constant c > 0 and an infinite

sequence of primes p such that for any p in the sequence, any (multi)-subset V of size

n of Fp and any t ∈ Fp

n∏
i=1

|Eep(ηivit)| ≤ exp(−c
n∑
i=1

‖vit
p
‖2) (3.6)

where ‖x‖ denote the distance from x to the closest integer (we view the elements of

Fp as integers between 0 and p− 1) .

Example 3.2.2. (Lazy random walks) Given a parameter 0 < µ ≤ 1, let ηµi be iid

copies of a random variable ηµ: ηµ = 1 or −1 with probability µ/2, and ηµ = 0 with

probability 1− µ. The sum

Sµ(V ) :=
n∑
i=1

ηi
µvi,

can be viewed as a lazy random walk with steps in V . A simple calculation shows

Eep(ηx) = (1− µ) + µ cos
2πx
p
.

It is easy to show that there is a constant c > 0 depending on µ such that

|(1− µ) + µ cos
2πx
p
| ≤ exp(−c‖x

p
‖2).

Example 3.2.3. (µ-bounded variables) It suffices to assume that there is some constant

0 < µ ≤ 1 such that for all i
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|Eep(ηix)| ≤ (1− µ) + µ cos
2πx
p
. (3.7)

Theorem 3.2.4. The conclusion of Theorem 3.2.1 holds for the case when V is a multi-

subset of an arbitrary torsion free abelian group G and ηi, 1 ≤ i ≤ n are independent

random variables satisfying (3.6).

In the next application, we address the issues concerning Theorem 3.1.4. First, we

compute the maximum concentration probability

ρ(V0) = (

√
24
π

+ o(1))n−3/2. (3.8)

Next, we obtain a stable version of Theorem 3.1.3, which shows that if ρ(V ) is close to

(
√

24/π + o(1))n−3/2, then V is close to V0 .

Theorem 3.2.5 (Asymptotic and stable Stanley theorem). Let V be a set of n distinct

elements of a torsion free group, then

ρ(V ) ≤ (

√
24
π

+ o(1))n−3/2.

Furthermore, there is a positive constant ε0 such that for any constant 0 < ε ≤ ε0, there

is a constant 0 < ε′ = ε′(ε) such that ε′ → 0 as ε→ 0 and the following holds. If V ⊂ Z

and ρ(V ) ≥ (
√

24/π − ε)n−3/2, then there exists an integer k which divides all v ∈ V

and ∑
v∈V

(
v

k
)2 ≤ (1 + ε′)

∑
v∈V0

v2.

As a byproduct, we obtain the first non-algebraic proof for the asymptotic version

of Stanley theorem. More importantly, this result and its proof reveal a natural reason

for V0 to be the optimal set: This is the set (modulo a dilation) that minimizes the

variance
∑

v∈V v
2 of the random sum S. It is easy to see that if

∑
v∈V

v2 ≤ (1 + ε′)
∑
v∈V0

v2

then |V \V0| ≤ ε
′′
n, with ε

′′
tends to zero with ε′. Our theorem actually says more than

this, as it also bounds the elements that do not belong to V0.



50

We now turn to the continuous setting. Let z be a real valued random variable such

that there exists a constant Cz so

P(1 ≤ z1 − z2 ≤ Cz) ≥ 1/2, (3.9)

where z1, z2 are idd copies of z. We notice that Bernoulli random variables are clearly of

this type. (Also, the interested reader may find (3.9) more general than the condition of

κ-controlled second moment defined in [35] and the condition of bounded third moment

in [24].) In the above Cz is not uniquely defined. In what follows, we will take the

smallest value of Cz.

We say that a vector v ∈ Rd is δ-close to a set Q ⊂ Rd if there exists a vector q ∈ Q

such that ‖v− q‖2 ≤ δ. A set X is δ-close to a set Q if every element of X is δ-close to

Q.

Theorem 3.2.6 (Continuous Inverse Littlewood-Offord theorem). Let 0 < ε ≤ 1, 0 < C

be constants. Let β > 0 be a parameter that may depend on n. Suppose that V =

{v1, . . . , vn} is a (multi-) subset of Rd such that
∑n

i=1 ‖vi‖22 = 1 and that V has large

small ball probability

ρ := ρβ,z(V ) ≥ n−C ,

where z is a real random variable satisfying (3.9). Then the following holds. For any

number n′ between nε and n, there exists a proper symmetric GAP Q = {
∑r

i=1 xigi :

|xi| ≤ Li} such that

• (Full dimension) There exists
√

n′

logn � k′ �
√
n′ such that the dilate P :=

β−1k′ ·Q contains the discrete hypercube {0, 1}d.

• (Approximation) At least n− n′ elements of V are O( βk′ )-close to Q.

• (Small rank and cardinality) Q has constant rank d ≤ r = O(1), and cardinality

|Q| ≤ max
(
O(ρ−1n′(−r+d)/2), 1

)
.
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• (Small generators) There is a non-zero integer p = O(
√
n′) such that all steps

gi of Q have the form gi = (gi1, . . . , gid), where gij = β
pij
p with pij ∈ Z and

pij = O(β−1
√
n′)

This theorem is sharp in the sense that the exponent (−r + d)/2 in the bound on |Q|

cannot be improved in general (see 3.5 for more details).

Theorem 3.2.6 implies the following corollary (see also 3.5 for a simple proof), from

which one can derive Theorem 3.1.12 in a straightforward manner (similar to the discrete

case discussed earlier).

Corollary 3.2.7. Let 0 < ε ≤ 1, 0 < C be constants. Let β > 0 be a parameter that

may depend on n. Suppose that V = {v1, . . . , vn} is a (multi-) subset of Rd such that∑n
i=1 ‖vi‖22 = 1 and that V has large small ball probability

ρ := ρβ,z(V ) ≥ n−C ,

where z is a real random variable satisfying (3.9). Then the following holds. For any

number n′ between nε and n, there exists a proper symmetric GAP Q = {
∑r

i=1 xigi :

|xi| ≤ Li} such that

• At least n− n′ elements of V are β-close to Q.

• Q has small rank, r = O(1), and small cardinality

|Q| ≤ max
(
O(

ρ−1

√
n′

), 1
)
.

• There is a non-zero integer p = O(
√
n′) such that all steps gi of Q have the form

gi = (gi1, . . . , gid), where gij = β
pij
p with pij ∈ Z and pij = O(β−1

√
n′)

In the above theorems, the hidden constants could depend on previously set constants

ε, C,Cz, d. We could have written Oε,C,Cz ,d and �ε,C,Cz ,d everywhere, but these nota-

tions are somewhat cumbersome and this dependence is not our focus.

Proof. (of Theorem 3.1.12) Set n′ := n1− ε
2 . Let S ′ be the collection of all subsets of

size at least n− n′ of GAPs whose parameters satisfy the conclusion of Theorem 3.2.6.
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Since each GAP is determined by its generators and dimensions, the number of such

GAPs is bounded by ((β−1
√
n′)
√
n′)O(1)( ρ

−1
√
n′

)O(1) = exp(o(n)). (The term ( ρ
−1
√
n′

)O(1)

bounds the number of choices of the dimensions Li.) Thus the cardinality of S ′ is at

most
(

(Od,Cz(
ρ−1
√
n′

))n + 1
)

exp(o(n)).

We approximate each of the exceptional elements by a lattice point in β · (Z/d)d.

Thus if we let S ′′ to be the set of these approximated tuples then |S ′′| ≤
∑

i≤n′(Od(β
−1))i =

exp(o(n)) (here we used the assumption that β ≥ exp(−nε/3)).

Set S := S ′×S ′′. It is easy to see that |S| ≤ (n−1/2+ερ−1)n+exp(o(n)). Furthermore,

if ρ(V ) ≥ n−O(1) then V is β-close to an element of S, concluding the proof.

3.3 Proof of Theorem 3.2.1

Embedding. The first step is to embed the problem into the finite field Fp for some

prime p. In the case when vi are integers, we simply take p to be a large prime (for

instance p ≥ 2n(
∑n

i=1 |vi|+ 1) suffices). If V is a subset of a general torsion-free group

G, one can use Theorem 1.2.3.

From now on, we can assume that vi are elements of Fp for some large prime p. We

view elements of Fp as integers between 0 and p − 1. We use short hand ρ to denote

ρ(V ).

Fourier Analysis. The main advantage of working in Fp is that one can make use of

discrete Fourier analysis. Assume that

ρ = ρ(V ) = P(S = a),

for some a ∈ Fp. We have

ρ = P(S = a) = E
1
p

∑
ξ∈Fp

ep(ξ(S − a)) = E
1
p

∑
ξ∈Fp

ep(ξS)ep(−ξa). (3.10)

By independence

Eep(ξS) =
n∏
i=1

ep(ξηivi) =
n∏
i=1

cos
2πξvi
p

(3.11)

Since |ep(−ξa)| = 1, it follows that
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ρ ≤ 1
p

∑
ξ∈Fp

| cos
2πviξ
p
| = 1

p

∑
ξ∈Fp

|cosπviξ
p

|. (3.12)

By convexity, we have that | sinπz| ≥ 2‖z‖ for any z ∈ R, where ‖z‖ := ‖z‖R/Z is the

distance of z to the nearest integer. Thus,

| cos
πx

p
| ≤ 1− 1

2
sin2 πx

p
≤ 1− 2‖x

p
‖2 ≤ exp(−2‖x

p
‖2), (3.13)

where in the last inequality we used that fact that 1− y ≤ exp(−y) for any 0 ≤ y ≤ 1.

Consequently, we obtain a key inequality

ρ ≤ 1
p

∑
ξ∈Fp

∏
i

| cos
πviξ

p
| ≤ 1

p

∑
ξ∈Fp

exp(−2
n∑
i=1

‖viξ
p
‖2). (3.14)

Large level sets. Now we consider the level sets Sm := {ξ|
∑n

i=1 ‖viξ/p‖2 ≤ m}. We

have

n−C ≤ ρ ≤ 1
p

∑
ξ∈Fp

exp(−2
n∑
i=1

‖viξ
p
‖2) ≤ 1

p
+

1
p

∑
m≥1

exp(−2(m− 1))|Sm|.

Since
∑

m≥1 exp(−m) < 1, there must be is a large level set Sm such that

|Sm| exp(−m+ 2) ≥ ρp. (3.15)

In fact, since ρ ≥ n−C , we can assume that m = O(log n).

Double counting and the triangle inequality. By double counting we have

n∑
i=1

∑
ξ∈Sm

‖viξ
p
‖2 =

∑
ξ∈Sm

n∑
i=1

‖viξ
p
‖2 ≤ m|Sm|.

So, for most vi

∑
ξ∈Sm

‖viξ
p
‖2 ≤ C0m

n
|Sm| (3.16)

for some large constant C0.
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Set C0 = ε−1. By averaging, the set of vi satisfying (3.16) has size at least (1− ε)n.

We call this set V ′. The set V \V ′ has size at most εn and this is the exceptional set

that appears in Theorem 3.2.1. In the rest of the proof, we are going to show that V ′

is a dense subset of a proper GAP.

Since ‖ · ‖ is a norm, by the triangle inequality, we have for any a ∈ kV ′

∑
ξ∈Sm

‖aξ
p
‖2 ≤ k2C0m

n
|Sm|. (3.17)

More generally, for any l ≤ k and a ∈ lV ′

∑
ξ∈Sm

‖aξ
p
‖2 ≤ k2C0m

n
|Sm|. (3.18)

Dual sets. Define S∗m := {a|
∑

ξ∈Sm ‖
aξ
p ‖

2 ≤ 1
200 |Sm|} (the constant 200 is adhoc and

any sufficiently large constant would do). S∗m can be viewed as some sort of a dual set

of Sm. In fact, one can show as far as cardinality is concerned, it does behave like a

dual

|S∗m| ≤
8p
|Sm|

. (3.19)

To see this, define T (a) =
∑

ξ∈Sm cos 2πaξ
p . Using the fact that cos 2πz ≥ 1 − 100‖z‖2

for any z ∈ R, we have, for any a ∈ S∗m

Ta ≥
∑
ξ∈Sm

(1− 100‖aξ
p
‖2) ≥ 1

2
|Sm|.

One the other hand, using the basic identity
∑

a∈Fp cos 2πax
p = pIx=0, we have

∑
a∈Fp

T 2
a ≤ 2p|Sm|.

(3.19) follows from the last two estimates and averaging.

Set k := c1

√
n
m , for a properly chosen constant c1 = c1(C0). By (3.18) we have

∪kl=1lV
′ ⊂ S∗m. Set V

′′
= V ′∪{0}; we have kV

′′ ⊂ S∗m∪{0}. This results in the critical

bound
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|kV ′′ | = O(
p

|Sm|
) = O(ρ−1 exp(−m+ 2)). (3.20)

The Long Range Inverse Theorem. The role of Fp is now no longer important, so

we can view vi as integers. The inequality (3.20) is exactly the assumption of our Long

Range Inverse Theorem.

With this theorem in hand, we are ready to conclude the proof. A slight technical

problem is that V
′′

is not a set but a multi-set, so we are going to apply Theorem 1.5.2

to X being the set of different elements of V
′′
. Notice that k = Ω(

√
n
m) = Ω(

√
n

logn),

so ρ−1 ≤ nC is bounded from above by k2C+1.

It follows from Theorem 1.5.2 that X is a subset of a proper symmetric GAP Q of

rank r = OC,ε(1) and cardinality

OC,ε(k−r|kX|) = OC,ε(k−r|kV
′′ |) = OC,ε

(
ρ−1 exp(−m)(

√
n

m
)−r
)

= OC,ε(ρ−1n−r),

concluding the proof.

3.4 Proof of Theorem 3.2.6

We denote the z-norm of a real number to be

‖w‖z := (E‖w(z1 − z2)‖2)1/2,

where z1, z2 are two iid copies of z.

Fourier analysis. Our first step is to obtain the following analogue of (3.14), using

the Fourier transform.

Lemma 3.4.1 (bounds for small ball probability).

ρr,z(V ) ≤ exp(πr2)
∫
Rd

exp(−
n∑
i=1

‖〈vi, ξ〉‖2z/2− π‖ξ‖22)dξ.

This lemma is basically from [35]; the proof is presented here for the reader’s conve-

nience.
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Proof. (of Lemma 3.4.1) We have

P(
n∑
i=1

zivi ∈ B(x, r)) = P(‖
n∑
i=1

zivi − x‖22 ≤ r2)

= P

(
exp(−π‖

n∑
i=1

zivi − x‖22) ≥ exp(−πr2)

)

≤ exp(πr2)E exp(−π‖
n∑
i=1

zivi − x‖22).

Notice that

exp(−π‖x‖22) =
∫
Rd

e(〈x, ξ〉) exp(−π‖ξ‖22)dξ.

We thus have

P(
n∑
i=1

zivi ∈ B(x, r)) ≤ exp(πr2)
∫
Rd

Ee(〈
n∑
i=1

zivi, ξ〉)e(−〈x, ξ〉) exp(−π‖ξ‖22)dξ.

Using

|Ee(〈
n∑
i=1

zivi, ξ〉)| =
n∏
i=1

|Ee(zi〈vi, ξ〉)|,

and

|Ee(zi〈vi, ξ〉)| ≤ |Ee(zi〈vi, ξ〉)|2/2 + 1/2 ≤ exp(−‖〈vi, ξ〉‖2z/2),

we obtain

ρr,z(V ) ≤ exp(πr2)
∫
Rd

exp(−
n∑
i=1

‖〈vi, ξ〉‖2z/2− π‖ξ‖22)dξ.

Next, consider Vβ := β−1 · V = {β−1v1, . . . , β
−1vn}. It is clear that

ρβ,z(V ) = ρ1,z(Vβ).
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We now work with Vβ. Thus ρ1,z(Vβ) ≥ n−O(1) and
∑

v∈Vβ ‖v‖
2 = β−2.

For short, we write ρ for ρ1,z(Vβ). Set M := 2A log n where A is large enough. From

Lemma 3.4.1 and that ρ ≥ n−O(1) we easily obtain

∫
‖ξ‖2≤M

exp(−1
2

∑
v∈Vβ

‖〈v, ξ〉‖2z − π‖ξ‖22)dξ ≥ ρ

2
.

Large level sets. For each integer 0 ≤ m ≤M we define the level set

Sm :=

ξ ∈ Rd :
∑
v∈Vβ

‖〈v, ξ〉‖2z + ‖ξ‖22 ≤ m

 .

Then it follows that
∑

m≤M µ(Sm) exp(−m
2 + 1) ≥ ρ, where µ(.) denotes the Lebesgue

measure of a measurable set. Hence there existsm ≤M such that µ(Sm) ≥ ρ exp(m4 −2).

Next, since Sm ⊂ B(0,
√
m), by pigeonhole principle there exists a ball B(x, 1

2) ⊂

B(0,
√
m) such that

µ(B(x,
1
2

) ∩ Sm) ≥ cdµ(Sm)m−d/2 ≥ cdρ exp(
m

4
− 2)m−d/2.

Consider ξ1, ξ2 ∈ B(x, 1/2) ∩ Sm. By Cauchy-Schwarz inequality, and notice that ‖.‖z

is a norm, we have

∑
v∈Vβ

‖〈v, (ξ1 − ξ2)〉‖2z ≤ 4m.

Since ξ1 − ξ2 ∈ B(0, 1) and µ(B(x, 1
2) ∩ Sm − B(x, 1

2) ∩ Sm) ≥ µ(B(x, 1
2) ∩ Sm), if we

put

T := {ξ ∈ B(0, 1),
n∑
i=1

‖〈ξ, vi〉‖2z ≤ 4m},

then

µ(T ) ≥ cdρ exp(
m

4
− 2)m−d/2.

Discretization. Choose N to be a sufficiently large prime (depending on the set T ).

Define the discrete box
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B0 := {(k1/N, . . . , kd/N) : ki ∈ Z,−N ≤ ki ≤ N} .

We consider all the shifted boxes x+B0, where x ∈ [0, 1/N ]d. By pigeonhole principle,

there exists x0 such that the size of the discrete set (x0 + B0) ∩ T is at least the

expectation, |(x0 + B0) ∩ T | ≥ Ndµ(T ) (to see this, we first consider the case when T

is a box itself).

Let us fix a ξ0 ∈ (x0 +B0) ∩ T . Then for any ξ ∈ (x0 +B0) ∩ T we have

∑
v∈Vβ

‖〈v, ξ0 − ξ〉‖2z ≤ 2

∑
v∈Vβ

‖〈v, ξ〉‖2z +
∑
v∈Vβ

‖〈v, ξ0〉‖2z

 ≤ 16m.

Notice that ξ0 − ξ ∈ B1 := B0 − B0 = {(k1/N, . . . , kd/N) : ki ∈ Z,−2N ≤ ki ≤ 2N}.

Thus there exists a subset S of size at least cdNdρ exp(m4 − 2)m−d/2 of B1 such that

the following holds for any s ∈ S

∑
v∈Vβ

‖〈v, s〉‖2z ≤ 16m.

Double counting. We let y = z1 − z2, where z1, z2 are iid copies of z. By definition

of S, we have

∑
s∈S

∑
v∈Vβ

‖〈v, s〉‖2z ≤ 16m|S|

Ey

∑
s∈S

∑
v∈Vβ

‖y〈v, s〉‖2R/Z ≤ 16m|S|.

It is then implied that there exists 1 ≤ |y0| ≤ Cz such that

∑
s∈S

∑
v∈Vβ

‖y0〈v, s〉‖2R/Z ≤ 16m|S|P(1 ≤ |y| ≤ Cz)−1.

On the other hand, by property (3.9) we have P(1 ≤ |y| ≤ Cz) ≥ 1/2. So

∑
s∈S

∑
v∈Vβ

‖y0〈v, s〉‖2R/Z ≤ 32m|S|.
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Let n′ be any number between nε and n. We say that v ∈ Vβ is bad if

∑
s∈S
‖y0〈v, s〉‖2R/Z ≥

32m|S|
n′

.

Then the number of bad vectors is at most n′. Let V ′β be the set of remaining vectors.

Thus V ′β contains at least n − n′ elements. In the rest of the proof, we are going to

show that V ′β is close to a GAP, as claimed in the theorem.

Dual sets. Consider v ∈ V ′β, we have
∑

s∈S ‖y0〈s, v〉‖2R/Z ≤ 32|K|/n′.

Set k :=
√

n′

64π2m
and let V ′′β := k(V ′β ∪ {0}). By Cauchy-Schwarz inequality (see

(3.18)), for any a ∈ V ′′β we have

∑
s∈S

2π2‖〈s, y0a〉‖2R/Z ≤
|S|
2
,

which implies

∑
s∈S

cos(2π〈s, y0a〉) ≥
|S|
2
.

Observe that for any x ∈ B(0, 1
256d) and any s ∈ S ⊂ B(0, 2) we always have cos(2π〈s, x〉) ≥

1/2 and sin(2π〈s, x〉) ≤ 1/12. Thus for any x ∈ B(0, 1
256d),

∑
s∈S

cos (2π〈s, (y0a+ x)〉) ≥ |S|
4
− |S|

12
=
|S|
6
.

On the other hand,

∫
x∈[0,N ]d

(∑
s∈S

cos(2π〈s, x〉)

)2

dx ≤
∑

s1,s2∈S

∫
x∈[0,N ]d

exp
(
2π
√
−1〈s1 − s2, x〉

)
dx

�d |S|Nd.

Hence we deduce the following

µx∈[0,N ]d

(
(
∑
s∈S

cos(2π〈s, x〉))2 ≥ (
|S|
6

)2

)
�d

|S|Nd

(|S|/6)2
�d

Nd

|S|
.
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Now we use the fact that S has large size, |S| �d N
dρ exp(m4 − 2)m−d/2, and y0V

′′
β +

B(0, 1
256d) ⊂ [0, N ]d,

µ(y0V
′′
β +B(0,

1
256d

))�d ρ
−1 exp(−m

4
+ 2)md/2.

Thus, we obtain the following analogue of (3.20)

µ

(
k(V ′β ∪ {0}) +B(0,

1
256dy0

)
)
�d ρ

−1y−d0 exp(−m
4

+ 2)md/2. (3.21)

The Long Range Inverse Theorem. Our analysis now again relies on the Long

Range Inverse Theorem. Let D := 1024dy0. We approximate each vector v′ of V ′β by a

closest vector in ( Z
Dk )d,

‖v′ − a

Dk
‖2 ≤

√
d

Dk
, with a ∈ Zd.

Let Aβ be the collection of all such a. Since
∑

v′∈V ′β
‖v′‖22 = O(β−2), we have

∑
a∈Aβ

‖a‖22 = Od,Cz(k
2β−2). (3.22)

It follows from (3.21) that

|k(Aβ + C(0, 1))| = Od,Cz

(
ρ−1(Dk)dy−d0 exp(−m

4
+ 2)md/2

)
= Od,Cz

(
ρ−1kd exp(−m

4
+ 2)md/2

)
,

where C(0, r) is the discrete cube {(z1, . . . , zd) ∈ Zd : |zi| ≤ r}.

Now we apply Theorem 1.5.2 to the set Aβ + C(0, 1) (notice that 0 ∈ Aβ). There

exists a proper GAP P = {
∑r

i=1 xigi : |xi| ≤ Li} ⊂ Zd containing Aβ + C(0, 1) which

has small rank r = O(1), and small size

|P | = Od,Cz

(
(ρ−1kd exp(−m

4
+ 2)md/2k−r

)
= Od,Cz(n

′(d−r)/2ρ−1).
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Moreover, we have learned from the proof of Theorem 1.5.2 and Lemma 1.1.2 that kQ

can be contained in a set ck(Aβ+C(0, 1)) for some c = O(1). Using (3.22), we conclude

that all the generators gi of Q are bounded,

‖gi‖2 = Od,Cz(kβ
−1).

Next, since C(0, 1) ⊂ Q, the rank r of P is at least d. It is a routine calculation to see

that Q := β
Dk · P satisfies all required properties in the theorem.

3.5 Remarks on Theorem 3.2.6

Consider the set U := [−2n,−n] ∪ [n, 2n]. Sample n points v1, . . . , vn, from U , inde-

pendently with respect to the (continuous) uniform distribution and let A be the set of

sampled points. Let ξ be the gaussian random variable N(0, 1) and consider the sum

S := v1ξ1 + · · ·+ vnξn,

where ξi are iid copies of ξ.

S has gaussian distribution with mean 0 and variance Θ(n3), with probability one.

Thus, for any interval I of length 1, P(S ∈ I) ≤ Cn−3/2, for some constant C.

Set n′ = δn, for some small positive constant δ. Theorem 3.2.6 states that (most

of) A is O( logn√
n

)-close to a GAP of rank r and volume O(n2− r
2 ). We show that one

cannot replace this bound by O(n2− r
2
−ε). There are only three possible values for r:

r = 1, 2, 3 and our claim follows from the following simple lemma.

Lemma 3.5.1. Let C, δ, ε be positive constants and n → ∞. The followings hold with

probability 1− o(1) (with respect to the random choice of A).

• There is no subset A′ of A of cardinality at least (1− δ)n and an AP Q of length

at most Cn3/2−ε such that A′ is C logn√
n

-close to Q.

• There is no subset A′ of A of cardinality at least (1− δ)n and a GAP Q of rank

2 and volume at most Cn1−ε such that A′ is C logn√
n

-close to Q.
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• There is no subset A′ of A of cardinality at least (1− δ)n and a GAP Q of rank

3 and volume at most Cn1/2−ε such that A′ is C logn√
n

-close to Q.

The above construction can be generalized to higher dimensions as well, but we do not

attempt to do so here. In the rest of this section, we prove Corollary 3.2.7.

Proof. We consider the following two cases.

Case 1: r ≥ d + 1. Consider the GAP P at the end of the proof of Theorem 3.2.6.

Recall that |P | = Od,Cz(ρ
−1n′(d−r)/2) = Od,Cz(ρ

−1/
√
n′). Let

Q :=
β

Dk
· P.

It is clear that Q satisfies all the conditions of Corollary 3.2.7. (Notice that in this case

we obtain a stronger approximation: almost all elements of V are O(β logn′√
n′

)-close to

Q.)

Case 2: r = d. Because the unit vectors ej = (0, . . . , 1, . . . , 0) belong to P =

{
∑d

i=1 xigi : |xi| ≤ Ni} ⊂ Zd, the set of generators gi, i = 1, . . . , d forms a base with

unit determinant of Rd. In P , consider the set of lattice points with all coordinates

divisible by k. We observe that ( for instance by [40, Theorem 3.36]) this set can be

contained in a GAP P ′ of rank d and cardinality O( 1
kr |P |) = O(ρ−1/n′r/2) (here we use

the bound |P | = O(ρ−1 exp(−m
4 )md/2)). Next, define

Q :=
β

Dk
· P ′.

It is easy to verify that Q satisfies all the conditions of Corollary 3.2.7. (Notice that in

this case we obtain a stronger bound on the size of Q.)

3.6 Proof of the optimal asymptotic bound (3.8)

Consider V0 as in Theorem 3.2.5 and view the elements of Fp as integers between −p/2

and p/2. By (3.10), we have
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P(S = 0) =
1
p

∑
ξ∈Fp

∏
i∈V0

cos
2πiξ
p

=
∑
ξ∈Fp

∏
i∈V0

cos
2πiξ
p

. (3.23)

We split this sum into two parts

Σ1 :=
1
p

∑
‖ ξ
p
‖≤ log2 n

n3/2

∏
i∈V0

cos
πiξ

p
,

Σ2 :=
1
p

∑
‖ ξ
p
‖> log2 n

n3/2

∏
i∈V0

cos
πiξ

p
.

We are going to show that

Lemma 3.6.1.

Σ1 =
1
p

∑
‖ ξ
p
‖≤ log2 n

n3/2

∏
i∈V0

| cos
πiξ

p
| = (

√
24
π

+ o(1))n−3/2.

Lemma 3.6.2.

Σ2 ≤
1
p

∑
‖ ξ
p
‖> log2 n

n3/2

∏
i∈V0

| cos
2πiξ
p
| ≤ n−3.

The two lemmas together imply that ρ(V0) ≥ (
√

24
π + o(1))n−3/2. The matching lower

bound also follows from these lemmas and (3.12). This verifies (3.8).

Proof. (of Lemma 3.6.1) The first equality is trivial, as all cos are positive in this range

of ξ. Viewing ξ as an integer with absolute value at most n−3/2p log2 n, we have

cos
πiξ

p
= 1− (

1
2

+ o(1))
π2i2ξ2

p2
= exp

(
−(1/2 + o(1))

π2i2ξ2

p2

)
.

Since
∑

i∈V0
i2 = (1 + o(1))n

3

12 , it follows that

Σ1 = (1 + o(1))
∫
|x|≤ log2 n

n3/2

exp
(
−(1/2 + o(1))

n3π2

12
x2

)
.

Setting y =
√

n3π2

12 x, changing variables, and using the gaussian identity 1√
2π

∫∞
−∞ exp(−y2

2 )dy =

1, we have
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Σ1 = (1 + o(1))(
n3π2

12
)−1/2

∫ ∞
−∞

exp(−y
2

2
)dy = (

√
24
π

+ o(1))n−3/2,

completing the proof.

Proof. (of Lemma 3.6.2). To prove Lemma 3.6.2 we use the upper bound from (3.13).

We split the sum into three subsums, according to the magnitude of ‖ξ‖. We make

frequently use of the simple fact that if |w|‖ ξp‖ ≤ 1/2 then ‖wξp ‖ = |w|‖ ξp‖.

Small ξ: log2 n
n3/2 ≤ ‖ ξp‖ ≤

1
n . For all w with |w| ≤ n

2 , we have ‖wξp ‖ = |w|‖ ξp‖.

∑
w∈V0

‖wξ
p
‖2 =

∑
w∈V0

w2‖ξ
p
‖2 ≥ n3

12
log4 n

n3
≥ 4 log n (3.24)

Thus, the contribution of this subsum is bounded from above by n−4.

Medium ξ: 1
n ≤ ‖

ξ
p‖ ≤

1
4 . By Cauchy-Schwartz, we have

‖wξ
p
‖2 + ‖w

′ξ

p
‖2 ≥ 1

2
‖(w − w′)ξ

p
‖2.

For any ξ in this case, let W (ξ) be the set of pairwise disjoint pairs (w,w′) ∈ V0

that maximizes the sum M(ξ) :=
∑

(w,w′)∈W (ξ) |w − w′|2 under the constrain that

|w − w′|‖ ξp‖ ≤
1
2 for all (w,w′) ∈ W (ξ). It is easy to check that M(ξ) ≥ nc for some

constant c > 0 for all ξ in this case (For more details see Lemma 3.9.2.) From here one

can conclude that the contribution of this subsum is at most exp(n−Ω(1)) = o(n−4).

Large ξ: 1
4 ≤ ‖

ξ
p‖ ≤

1
2 . By Weyl’s equidistribution theorem, the number of w ∈ V0

such that ‖wξp ‖ ≥
1
4 is approximately n/2. Thus, for any ξ in this category

∑
w∈V0

‖wξ
p
‖2 ≥ n

8
, (3.25)

thus the contribution of this subsum is only exp(−Ω(n)).

3.7 Proof of Theorem 3.2.5

The proof of this theorem has two steps. In the first step, we refine our approach to

prove the following theorem.



65

Theorem 3.7.1 (Characterization of sets near optimal concentration probability). Let

δ be a positive constant. Then there are constants C1 = C1(δ) > 0 and C2 = C2(δ) > 0

such that the following holds. Let V = {v1, . . . , vn} be a subset of size n of Fp, where

p � n is a large prime, such that ρ(V ) ≥ δn−3/2. Then there exists a number k ∈ Fp

and a partition V = V1 ∪ V2 with the following properties:

• |V1| ≤ C1,

•
∑

v∈V2
‖k−1v

p ‖
2 ≤ C2n3

p2
.

This can be seen as a more precise version of Theorem 3.2.1 in the case C = 3/2. The

appearance of k is necessary as ρ(V ) is invariant under dilation.

One can easily derive from this theorem a similar statement for a set V of integers.

Corollary 3.7.2. Let δ be a positive constant. Then there are constants C1 = C1(δ) > 0

and C2 = C2(δ) > 0 such that the following holds. Let V = {v1, . . . , vn} be a subset of

size n of Z such that ρ(V ) ≥ δn−3/2. Then there exists a number k ∈ Z and a partition

V = V1 ∪ V2 with the following properties:

• |V1| ≤ C1,

• k divides all elements of V2, and
∑

v∈V2
| vk |

2 ≤ C2n
3.

Let us now sketch the second step. Corollary 3.7.2 implies that most of the elements of

V (after dividing by k) belong to the interval [−C3n,C3n] for some large constant C3.

For the sake of discussion, assume that all elements of V are in this interval. Then we

can finish the proof by applying the analysis in the previous section to V the same way

we did with V0. The fact that V now in [−C3n,C3n] instead of [−n/2, n/2] has little

importance. As far as V has constant density, all arguments will extend with slight

modifications. As a result, at the end we will have

ρ(V ) ≤ (1 + o(1))Σ1,

where
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Σ1 =
1
p

∑
‖ ξ
p
‖≤ log2 n

n3/2

∏
w∈V

cos
πwξ

p
.

Use the Taylor expansion and exponential approximation as in the previous section,

the right hand side is

(1 + o(1))
∫
|x|≤ log2 n

n3/2

exp

(
−(1/2 + o(1))π2

∑
w∈V

w2x2

)
.

By the gaussian identity and change of variables, this is

(

√
24
π

+ o(1))n−3/2 n3/12∑
w∈V w

2
.

It follows that if ρ(V ) ≥ (1− ε)
√

24
π n
−3/2 then n3/12∑

w∈V w
2 ≥ 1− 3

2ε. This implies

∑
w∈V

w2 ≤ (1 + 2ε)
n3

12
,

giving the desired claim.

In what follows, we complete the above two steps in details. In the next section, we

prove Theorem 3.7.1. In Section 3.9, we fill in the details of the second steps, which

include the necessary modifications of the arguments from the previous section and the

treatment of exceptional elements.

3.8 Proof of Theorem 3.7.1

We use a well-known result from Additive Combinatorics.

Theorem 3.8.1 (Cauchy-Davenport). [40, Theorem 5.4] Assume that A,B ⊂ Fp.

Then |A+B| ≥ min(p, |A|+ |B| − 1).

We also a result that allows us to pass from Fp back to torsion-free groups ([11, Theorem

1.3]).

Theorem 3.8.2. Let X ⊂ Fp be a set with |2X| ≤ γ|X| and |X| = ok,γ(p). Then X is

Freiman isomorphism of order k to a subset of Z.
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Now we are ready to prove Theorem 3.7.1. By (3.15)

|Sm| ≥ exp(
m

4
− 2)ρp ≥ δ exp(

m

4
− 2)pn−3/2. (3.26)

for some m = O(log n) (it will turn out that m = O(1) later on).

Structure of Sm. Consider a set sequence, Sm, 2Sm, . . . , 2lSm, where l is the largest

integer such that 4lm ≤ n/100.

Assume that i0 is the smallest index such that |2iSm| ≥ 2.1|2i−1Sm| for all 1 ≤ i ≤ i0.

Thus |2i0Sm| ≥ (2.1)i0 |Sm|.

By Cauchy-Schwartz inequality and by the definition of level sets, kSm ⊂ Sk2m

holds for all k. In particular, 2lSm ⊂ S4lm ⊂ Sn/100.

On the other hand, by Theorem 3.8.1, |2lSm| ≥ 2(l−i0)(|2i0Sm| − 1). Hence

|Sn/100| ≥ |2lSm| ≥ 2(l−i0)(|2i0Sm| − 1) ≥ 2(l−i0)(2.1i0 |Sm| − 1)

≥ 2l−1(2.1/2)i0 |Sm|

≥ 2l−1(2.1/2)i0δ exp(
m

4
− 2)pn−3/2.

Observe that Sn/100 is the dual set of V (see Section 3.3), so |Sn/100| ≤ 8p/n. Insert

this estimate and 2l = Θ(
√
n/m) into the above inequalities, we derive that m = Oδ(1)

and i0 = Oδ(1).

Now we consider the set X := 2i0Sm. By definition, for |X| ≤ |Sn/100| � p/n,

Theorem 3.8.2 implies that X is Freiman-isomorphism of order 2h to a subset X ′ of the

integers (h is a sufficiently large constant to be chosen).

Next, since |2X ′| = |2X| ≤ 2.1|X| = 2.1|X ′|, we apply Theorem 1.3.2, and then

Lemma 1.1.2 (since h is large) to obtain an arithmetic progression P ′ of rank 1 and of

size |P ′| = Θ(|X ′|) such that P ′ ⊂ hX ′.

Lifting back to Fp, we conclude that hX contains an arithmetic progression P of

rank 1 and of size |P | = Θ(|X|)� p/n3/2. Since X is symmetric, we may assume that

P is symmetric.

Set M := h24i0m = Oδ(1). Then P ⊂ hX = h2i0Sm ⊂ Sh24i0m = SM .
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To summarize, we have showed that there exists a constant C = Oδ(1) and a

symmetric arithmetic progression P = {kx : |x| ≤ Cp
n3/2 } such that the following holds

for all ξ ∈ P

n∑
i=1

‖ξvi
p
‖2 ≤M.

Our next step is to derive structure for V . By dilating the elements of V by k−1, we

could assume that
∑n

i=1 ‖
jvi
p ‖

2 ≤M for all 0 ≤ j ≤ Cp
n3/2 .

Summing over j we get

n∑
i=1

∑
0≤j≤ Cp

n3/2

‖jvi
p
‖2 ≤ CMp

n3/2
. (3.27)

Set V1 := {v ∈ V : ‖vp‖ ≥
C′n3/2

p } for some sufficiently large constant C ′. We next show

that V1 contains only a few elements.

Viewing Fp as {0, . . . , p−1}, we observe that if v ∈ V1 then C ′n3/2 ≤ v ≤ p−C ′n3/2.

Provided that CC ′ is sufficient large, and j varies in 0 ≤ j ≤ Cp
n3/2 , we conclude that

there are at least Cp
3n3/2 indices satisfying jv ∈ [p4 ,

3p
4 ] (in Fp). It follows that

∑
0≤j≤ Cp

n3/2

‖jv
p
‖2 ≥ (

1
4

)2 Cp

3n3/2
.

Summing over v ∈ V1 we obtain

∑
v∈V1

∑
0≤j≤ Cp

n3/2

‖jv
p
‖2 ≥ C

48
|V1|p
n3/2

.

Together with (3.27), this implies that |V1| ≤ 48M .

Next we consider V2 := V \V1. By definition, ‖ jvp ‖ = j‖vp‖ for all j ≤ p
2C′n3/2 and all

v ∈ V2. Thus

∑
0≤j≤ p

n3/2

‖jv
p
‖2 ≥

∑
0≤j≤ p

2C′n3/2

j2‖v
p
‖2

≥ 1
64C ′3

p3

n9/2
‖v
p
‖2.
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Summing over v ∈ V2 and using (3.27), we obtain

∑
v∈V2

1
64C ′3

p3

n9/2
‖v
p
‖2 ≤

∑
v∈V2

∑
0≤j≤ Cp

n3/2

‖jv
p
‖2

≤ CMp

n3/2
.

Hence,
∑

v∈V2
‖v/p‖2 ≤ 64CC ′3Mn3/p2, concluding the proof.

3.9 Completing the proof of Theorem 3.2.5: details of the second step

By applying Theorem 3.7.1, we obtain a partition V = V1 ∪ V2 = V1 ∪ k ·W2, where

W2 = k−1V2 and

• |V1| ≤ C1,

•
∑

w∈W2
‖wp ‖

2 ≤ C2n3

p2
.

Let C = C(ε) be a large positive constant and c = c(ε) be a small positive constant.

By setting C, c properly and throwing away a small amount of elements of W2, we can

assume that W2 has the following properties

• |W2| ≥ (1− ε)n;

• W2 ⊂ [−Cn,Cn];

• W2 is c-irreducible, i.e. there is no d ∈ Z which divides all but c|W2| elements of

W2.

Set W1 := k−1 · V1 (in Fp). Then V = k · (W1 ∪W2) := k ·W , we have

P(SV = kv) = P(SW = v) =
1
p

∑
ξ∈Fp

ep(−
vξ

2
)
∏
w∈W

cos
πwξ

p
.

We split the sum into two parts,
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Σ1 :=
1
p

∑
‖ ξ
p
‖≤ log2 n

n3/2

ep(−
vξ

2
)
∏
w∈W

cos
πwξ

p

Σ2 :=
1
p

∑
‖ ξ
p
‖> log2 n

n3/2

ep(−
vξ

2
)
∏
w∈W

cos
πwξ

p
.

We are going to exploit the structure of W2 to show that

Lemma 3.9.1.

Σ2 ≤
1
p

∑
‖ ξ
p
‖≥ log2 n

n3/2

∏
w∈W2

| cos
πwξ

p
| ≤ n−3.

Proof. Making use of (3.13), we split the sum into three subsums, according to the

magnitude of ‖ξ‖.

Small ξ: log2 n
n3/2 ≤ ‖ ξp‖ ≤

1
2Cn . Similar to Section 3.6, we easily obtain that

∑
w∈W2

‖wξ
p
‖2 =

∑
w∈W2

w2‖ξ
p
‖2 ≥ (1− ε)3n3

12
log4 n

n3
≥ 4 log n.

Thus the contribution from this part is bounded from above by n−4.

Medium ξ: 1
2Cn ≤ ‖

ξ
p‖ ≤

1
64C . To handle this part, we first observe the following

simple fact

Lemma 3.9.2. Let a ∈ Fp be arbitrary. Let ξ ∈ Fp and l > 0 such that l‖ξ‖ ≤ p/2.

Then the following holds for any sequence 0 ≤ i1 < · · · < im ≤ l with m ≥ 4

m∑
j=1

‖a+ ijξ‖2 ≥
m3

48
‖ξ‖2. (3.28)

Proof. (of Lemma 3.9.2). Without loss of generality we assume that m is even. For

each j ≤ m/2, by the Cauchy-Schwarz inequality and the triangle inequality,

‖a+ ijξ‖2 + ‖a+ im−jξ‖2 ≥
1
2
‖(a+ im−jξ)− (a+ ijξ)‖2

≥ 1
2
‖(im−j − ij)ξ‖2 ≥

1
2

(im−j − ij)2‖ξ‖2.

Sum over 0 ≤ j ≤ m/2 and notice that im−j − ij decreases in j
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m∑
j=1

‖a+ ijξ‖2 ≥
1
2

∑
1≤j≤m/2

(im−j − ij)2‖ξ‖2 ≥ 1
2

∑
1≤j≤m/2

j2‖ξ‖2

≥ m3

48
‖ξ‖2.

Now we return to our main goal. We arrange the elements of W2 as −Cn < w1 < w2 <

· · · < w|W2| < Cn.

Set l := 1
2‖ξ/p‖ . Thus 32C ≤ l ≤ Cn. Let i1 be the largest index such that wi1−w1 ≤

l. We then move on to choose i2 > i1, the largest index such that wi2 −wi1+1 ≤ l, and

so on. By so, we create blocks of elements of W2 with the property that elements of

the same block have difference ≤ l.

Since wij+1−wij−1+1 > l for all j, the number of blocks is less than 2Cn
l + 1. Next,

we call a block short if it contains no more than l
8C elements of W2. The total number

of elements of W2 that belong to short blocks is bounded by (2Cn
l + 1)( l

8C ) ≤ |W2|
2 .

Hence there are at least |W2|
2 elements that belong to long blocks.

For simplicity, we divide each long block into smaller blocks of exactly b l
8C c elements.

The number of such uniform blocks is then at least

1
2
|W2|/2
l/8C

=
2C|W2|

l
≥ Cn

l
.

Now we apply (3.28) to each block (with m = bl/8Cc), and then sum over the collection

of all blocks,

∑
w∈W2

‖wξ
p
‖2 ≥ Cn

l

m3

48
‖ξ
p
‖2 � l2n‖ξ

p
‖2 � n,

where in the last bound we used l = 1
2‖ξ/p‖ .

Large ξ: 1
64C ≤ ‖

ξ
p‖ ≤

1
2 . Let δ := 1

logn and

W ′ := {w ∈W2, ‖
wξ

p
‖ ≤ δ}.
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Assume, for a moment, that |W ′| ≤ (1 − c)|W2| for some positive constant c = c(ε).

Then
∑

w∈W2
‖wξp ‖

2 ≥ c|W2|δ2 � δ2n� n
log2 n

, and we are done.

So it suffices to show that |W ′| ≤ (1− c)|W2| for some sufficiently small c. Assume

otherwise, we will deduce that there exists a nontrivial d ∈ Z that divides all the

elements of W ′, which contradicts the c-irreducibility assumption of W2.

To obtain the above contradiction we use the following lemma, which is a conse-

quence of Lemma 1.1.2.

Lemma 3.9.3. Assume that X is a subset of [−Cn,Cn] of size n in Z. Then there

exists an integer k = k(C) and a positive number γ = γ(C) > 0 such that kX − kX

contains a symmetric arithmetic progression of rank 1 and length 2γn+ 1.

Applying Lemma 3.9.3 to W2, we infer that that kW2−kW2 contains an arithmetic

progression Q = {id : |i| ≤ γn}. Since Q ⊂ [−2kCn, 2kCn], the step d must be

bounded,

0 < d ≤ 2kC
γ

. (3.29)

Let q be an element of Q. By definition, q = w1 + · · ·+wk −wk+1 − · · · −wk for some

wi ∈W2. Since ‖wξp ‖ ≤ δ for all i, by the triangle inequality we have ‖ qξp ‖ ≤ 2kδ.

We apply the above estimate for all elements of Q, obtaining ‖ idξp ‖ ≤ 2kδ for all

|i| ≤ γn. But since 2kδ < 1
4 , it follows that ‖dξp ‖ ≤

2kδ
γn .

Next, we view Fp as the interval [−(p − 1)/2, (p − 1)/2] of Z, and consider ξ as

an integer satisfying p
64C ≤ |ξ| ≤

p
2 . By the above bound of ‖dξp ‖, we have dξ =

sp+ t, where |t| ≤ 2kδp
γn .

We write ξ = sp+t
d . As ξ has large absolute value, s cannot be zero. Another crucial

observation is that as |ξ| ≤ p/2 and t is small, d does not divide s.

Let w be an arbitrary element of W ′ and consider in Z the product wξ,

wξ =
wsp

d
+
wt

d
= s′p+

t′p

d
+
wt

d
, (3.30)

where ws = s′d+ t′; s′, t′ ∈ Z, and −d/2 ≤ t′ ≤ d/2.
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Now, since |w| ≤ Cn, we have |wtd | ≤ Cn2kδp/γn
d = 2Ckδ

γ
p
d ≤

p
2d , where in the last

inequality we used the fact that δ is small compared to all other quantities.

Next we consider two cases, according to the value of t′.

Case 1 : t′ 6= 0. We have p
d ≤ |

t′p
d | ≤

p
2 , and so p

2d ≤ |
t′p
d + wt

d | ≤
p
2 + p

2d .

It is implied that ‖wξp ‖ ≥
1
2d , and hence, by the bound of d from (3.29), ‖wξp ‖ ≥

γ
4kC > δ. But this inequality violates the definition of W ′.

Case 2: t′ = 0. It follows that d divides sw for all w ∈ W ′. Recall that d does not

divide s, we conclude that all the element of W ′ is divisible by a nontrivial divisor of

d, which contradicts the c-irreducibility assumption of W2. This concludes the proof of

Lemma 3.9.1.

We have shown that the contribution of Σ2 is negligible. Thus, it suffices to justify

Theorem 3.2.5 from the following assumption

Σ1 ≥ (1− ε)
√

24
π
n−3/2 = (1− ε)

√
12
π2n3

∫ ∞
−∞

exp(−y
2

2
)dy. (3.31)

We have

Σ1 =
1
p

∑
‖ ξ
p
‖≤ log2 n

n3/2

ep(−
vξ

2
)
∏
w∈W

cos
2πwξ
p

≤ 1
p

∑
‖ ξ
p
‖≤ log2 n

n3/2

∏
w∈W1

| cos
πwξ

p
|
∏
w∈W2

cos
πwξ

p

≤ 1
p

∑
‖ ξ
p
‖≤ log2 n

n3/2

exp

− ∑
w∈W1

‖ξw
p
‖2
 fW2(ξ),

where

fW2(ξ) :=
∏
w∈W2

cos
πwξ

p
= exp

−(1/2 + o(1))
∑
w∈W2

π2w2ξ2

p2

 .

Combining this estimate and the lower bound for Σ1 we obtain that
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∑
w∈W2

w2 ≤ (1 + ε)
n3

12
. (3.32)

To obtain information about W1, we need to restrict the range of ξ furthermore. Let

C = C(ε) be a number so that

∫
|y|≥C

exp(−y
2

2
)dy = ε.

Notice that if ε is sufficiently small, then by the property of the Gaussian distribution

∫
C/2≤|y|≤C

exp(−y
2

2
)dy ≥ ε2/3. (3.33)

Next, as p and n are large

1
p

∑
C

n3/2
≤‖ ξ

p
‖≤ log2 n

n3/2

fW2(ξ) ≤ (
∑
w∈W2

π2w2)−1/2

∫
|y|≥C

exp(−y
2

2
)dy

< (1 + 4ε)−1

√
12
π2n3

ε ≤ ε
√

12
π2n3

∫ ∞
−∞

exp(−y
2

2
)dy,

where we used the estimate
∑

w∈W2
w2 ≥ (1− 3ε)n

3

12 as |W2| ≥ (1− ε)n.

It follows from (3.31) that

1
p

∑
‖ ξ
p
‖≤ C

n3/2

exp

− ∑
w∈W1

‖wξ
p
‖2
 fW2(ξ) ≥ (1− 2ε)

√
12
π2n3

∫ ∞
−∞

exp(−y
2

2
)dy. (3.34)

Viewing Fp as the interval [−(p− 1)/2, (p− 1)/2] of Z, we now show that the elements

of W1 do not have large absolute values.

Lemma 3.9.4. Let w0 be an arbitrary element of W1. Then

|w0| ≤
n3/2

2C
.

Proof. (of Lemma 3.9.4) Assume, for a contradiction, that |w0| > n3/2

2C . Then the

number of ξ ∈ [− Cp
n3/2 ,

Cp
n3/2 ] satisfying 1

8 ≤ ‖
w0ξ
p ‖ is at least (3/4− o(1)) 2Cp

n3/2 .
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Denote this set by I, we then have |I| ≥ Cp/n3/2. By definition, if ξ ∈ I then

∑
w∈W

‖wξ
p
‖2 ≥ ‖w0ξ

p
‖2 ≥ 1

64
.

Notice that the function fW2(ξ) is decreasing in |ξ| (in the range − Cp
n3/2 ≤ ξ ≤ Cp

n3/2 ).

We have

Σ1 ≤
1
p

∑
ξ∈I

exp(−‖wξ
p
‖2)fW2(ξ) +

1
p

∑
‖ ξ
p
‖≤ C

n3/2
,ξ 6∈I

exp(−‖wξ
p
‖2)fW2(ξ)

≤ 1
p

∑
ξ∈I

exp(− 1
64

)fW2(ξ) +
1
p

∑
‖ ξ
p
‖≤ C

n3/2
,ξ 6∈I

fW2(ξ)

≤ 1
p

∑
‖ ξ
p
‖≤ C

n3/2

fW2(ξ)− (1− exp(− 1
64

))
1
p

∑
C

2n3/2
≤‖ ξ

p
‖≤ C

n3/2

fW2(ξ).

As p and n are large, the above sum is bounded by

Σ1 ≤ (1 + 4ε)

√
12
π2n3

(∫
|y|≤C

exp(−y
2

2
)− (1− exp(− 1

64
))
∫
C/2≤|y|≤C

exp(−y
2

2
)dy

)

≤ (1 + 4ε)

√
12
π2n3

(√
2π − (1− exp(− 1

64
))ε2/3

)
where in the last estimate we used (3.33).

By choosing ε sufficiently small, this upper bound is smaller than the lower bound

provided in (3.31), a contradiction. This concludes the proof of Lemma 3.9.4.

To continue, set

σ1 :=
∑
w∈W1

w2.

As |w| ≤ n3/2

2C for all w ∈W1 and ‖ ξp‖ ≤
C
n3/2 , we have

∑
w∈W1

‖wξ
p
‖2 =

∑
w∈W1

|w|2‖ξ
p
‖2 = σ1‖

ξ

p
‖2.

Applying the same argument as in Lemma 3.9.4, we obtain
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σ1 ≤
n3

4C2
.

Recall that W = W1∪W2 and
∑

w∈W2
w2 ≤ (1 + ε)n3/12 from (3.32), we conclude that

∑
w∈W

w2 =
∑
w∈W1

w2 +
∑
w∈W2

w2 ≤ (1 + ε+
3
C2

)
n3

12

≤ (1 + ε′)
n3

12
,

where ε′ → 0 as ε→ 0, finishing the proof.
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