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ABSTRACT OF THE DISSERTATION

Some applications of Freiman’s inverse theorem

by Hoi H. Nguyen

Dissertation Director: Prof. Van Vu

The celebrated Freiman’s inverse theorem in Additive Combinatorics asserts that an
additive set of small doubling constant must have additive structure. This thesis con-
tains two applications achieved by combining this theorem with a dyadic pigeonhole
principle technique.
1. A finite set A of integers is square-sum-free if no subset of A sums up to a square.
In 1986, Erdés posed the problem of determining the largest cardinality of a square-
sum-free subset of {1,...,n}.

Significantly improving earlier results, we show in Chapter [2| that this maximum

1/3+0(1)

cardinality is of order n , which is asymptotically tight.

2. A classical result of Littlewood-Offord and Erdds from the 1940s asserts that if the
v; are non-zero, then the concentration probability of the (multi)set V' = {v1,...,v,},
p(V) == sup, P(v1m1 + ... a7, = ), is of order O(n~1/2), where 7; are i.i.d. copies of
a Bernoulli random variable.

Motivated by problems concerning random matrices, Tao and Vu introduced the
Inverse Littlewood-Offord problem. In the inverse problem, one would like to give a
characterization of the set V', given that p(V) is relatively large.

In Chapter 3, we develop a method to attack the inverse problem. As an application,
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we strengthen several previous results of Tao and Vu, obtaining an almost optimal
characterization for V. This implies several classical theorems, such as those of Sarkozy-

Szemerédi, Halasz, and Stanley.
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Terminology

We use Z to denote the set of integers, Q to denote the set of rational numbers, and

F, to denote the prime field of order p.

Let G be an abelian group. Let A be a subset of G. We denote by S4 the collection of

finite partial sums of A,

Sy = {Zx;BCA,O< |B| <c>o}.

zeB

For two subsets A and B of G, we define their (Minkowski) sum by

A+ B:={a+blac A be B}.

For a positive integer [, we define the [-iterated sum of A by

l
[A = {Zaﬂai S A} .

i=1
For a positive integer | < |A| we denote by [*A the collection of partial sums of I

elements of A,

I*A = {Zx;BCA,\B]:l}.

zeB

As usual, e(x) means exp(2miz), and e,(x) means exp(2miz/p).
The notation [z] denotes the set of positive integers at most x.

We use Landau asymptotic notation such as O,€), 0,0 under the assumption that
n — oo. Notation such as O.(.) means that the hidden constant in © depends on

a (previously defined) quantity c.

We will also omit all unnecessary floors and ceilings. All logarithms have natural base.



Chapter 1

Additive structure and Fremain’s inverse theorem

In this chapter we will provide some tools from Additive Combinatorics that will be

used for later applications.

1.1 Generalized arithmetic progression (GAP)
A subset @ of an abelian group is a GAP of rank r if it can be expressed as in the form
Q= {ao+za1+ - +xra,|M; <x; < M forall 1 <i<r}

for some ay, . ..,a, and My, ..., M., M{,..., M.

It is convenient to think of @ as the image of an integer box B := {(z1,...,x,) €

ZYM; < m; < M/} under the linear map
@:(ml,...,md) —ag+ 101 + -+ TpQp.

The numbers a; are the generators of P, the numbers M/, M; are the dimensions of P,
and Vol(Q) := | B| is the volume of B. We say that @ is proper if this map is one to one,
or equivalently if |@Q| = Vol(Q). For non-proper GAPs, we of course have |Q| < Vol(Q).
If —M; = M/ for all i > 1 and ag = 0, we say that Q is symmetric.

We record a few useful facts about GAPs. Assume that @ is symmetric, Q =

{a1z1 + ... apxy : x| < M;, 1 < i <r}. For any ¢t > 0, denote by tQ the set
{agz1 4+ -+ apxy || <M, 1 < <r}.

We say that () is t-proper if t(Q is proper. In general, a GAP is not necessarily t-proper.
However, one can embed it into a t-proper one with some small loss (see [3], [4], [40,

Theorem 3.40)).



Lemma 1.1.1 (Embedding into proper GAP). Let Q be a symmetric GAP of rank r
i a torsion-free group G, and let t > 1. Then there exists a t-proper symmetric GAP
Q' with rank at most r and |Q'| < (2t)’"7“6’"2\Q| which contains Q. Furthermore, if Q is

not proper, we may choose Q' to have rank at most r — 1.

Next, assume that A is a dense subset of a GAP @, then the iterated sumsets kA

contains a structure similar to @ (see [30, Lemma 4.4, Lemma 5.5], [32, Lemma B3]).

Lemma 1.1.2 (Sarkozy-type theorem in progressions). Let Q be a proper GAP in a
torsion-free group of rank r. Let X C @Q be a subset such that |X| > 0|Q| for some
0 < < 1. Then there exists a positive integer 1 < m <5, 1 such that mX contains a
GAP Q' of rank r and size ©;,(|Q|). Furthermore, the generators of Q' are bounded
multiples of the generators of Q. If Q and X are symmetric, then Q' can be chosen to

be symmetric.

A more general result holds when one replaces one subset by many subsets of the same

GAP.

Lemma 1.1.3 (Sarkozy-type theorem in progressions, generalized form). Let @ be a
proper GAP in a torsion-free group of rank r. Let 0 < § < 1 be a given constant.
Then there exists a positive integer 1 < m <5, 1 such that the following holds. If
X1,..., X C Q and |X;| > 6|Q|, then X1 + -+ + X, contains a GAP Q' of rank
r and size ©5,(|Q|). Furthermore, the generators of Q' are bounded multiples of the

generators of Q.

1.2 Freiman homomorphism

We now introduce the concept of a Freiman homomorphism, that allows us to transfer
an additive problem in one group G to another group G’ in a way which is more flexible

than the usual algebraic notion of group homomorphism.

Definition 1.2.1 (Freiman homomorphisms). Let k > 1, and let X, Y be additive sets
of groups G and H respectively. A Freiman homomorphism of order k from X toY is

a map ¢ : X — Y with the property that



T+ b ap =2l 4oy = ¢(wn) + o+ Ga) = @(a) + -+ o)

for all x1,... ,xp;2), ..., 2. If in addition there is an inverse map ¢! from'Y to

X which is a Freiman homomorphism of order k, then we say that ¢ is a Freiman

isomorphism of order k, and that X and Y are Freiman isomorphic of order k.

Clearly Freiman homomorphisms preserve the property of being a progression. We
now mention a result that shows torsion-free additive groups are no richer than the
integers, for the purposes of understanding sums and differences of finite sets ([40]

Chapter 5]).

Theorem 1.2.2. Let X be a finite subset of a torsion-free additive group G. Then
for any integer k, there is a Freiman isomorphism ¢ : X — ¢(X) of order k to some
finite subset ¢(X) of the integers Z. The same is true if we replace Z by F,, if p is

sufficiently large depending on X.

By following the same proof, we can show a somewhat stronger result below, which

will be used in Chapter

Theorem 1.2.3. Let X be a finite subset of a torsion-free additive group G. Then for
any integer k, there is a map ¢ : X — ¢(X) to some finite subset ¢(X) of the integers
Z such that

Ty 4wy =y 4t xh e () oo+ dx) = o) + .. p(ah)
for all i,5 < k. The same is true if we replace Z by ¥y, if p is sufficiently large

depending on A.

1.3 Freiman’s inverse theorem

If X is a dense subset of a GAP, then the doubling constant of X, o[X] := |2X]|/|X]
is small. The celebrated Freiman’s inverse theorem says the converse. This theorem

comes in a number of variants; we give two of them below.



Theorem 1.3.1 (Freiman’s inverse theorem). Let v be a given positive number. Let
X be a set in Z such that | X + X| < v|X|. Then there exists a proper GAP of rank at

most r = O~(1) and cardinality O(|X|) that contains X.

Freiman’s theorem has the following variants ([9, 29], [40, Chapter 5]), which has a

weaker conclusion, but provides the optimal estimate for the rank r.

Theorem 1.3.2 (Freiman’s inverse theorem). Let 7,0 be positive constants. Let X be
a set in Z such that | X + X| < v|X|. Then there exists a proper GAP Q of rank at

most |logy v+ 8] and cardinality O., s(|X|) such that X is covered by O, 5(1) translates
of Q.

We next discuss some crucial results that are directly relevant to our applications.

1.4 Structure in sumsets

One of the most popular problems in Combinatorial Number Theorem is to study
whether the iterated sumsets ([ X of a set X contains a special element (zero, squares,
etc) or the whole group. There are various methods to deal with these problems:
algebraic, analytic, combinatorial. Basing on the work of Sarkozy [26] and Szemerédi-
Vu [29, 30], we have developed a new structural approach. In this method, the very
first, and most important step, is to find a fine structure in the iterated sumsets. We

mention here two such results of Szemerédi and Vu.

Lemma 1.4.1. For any fixed positive integer d there are positive constants C' and c
depending on d such that the following holds. For any positive integers n and | and any
set X of [n] satisfying 1%|X| > Cn, IX contains a proper GAP of rank d' and volume

at least cl¥ | X|, for some integer 1 < d' < d.

Lemma 1.4.2. For any fixed positive integer d there are positive constants C and c
depending on d such that the following holds. Let Xi,...,X; be subsets of [n] of size
|X| where | and | X| satisfy 1%|X| > Cn. Then X1+ --- + X; contains a GAP of rank

d' and volume at least cl? | X|, for some integer 1 < d' < d.

Lemma [[.4.1] and Lemma [1.4.2] will play a key role in Chapter



1.5 Sumsets in structure

In contrast to the previous section, we give here a result showing that in some cases

iterated sumsets may be efficiently contained in GAPs ([34, Theorem 1.21]).

Lemma 1.5.1. Let A > 0 be a constant. Assume that X is a subset of integers such
that |IX| < 14| X| for some number1 > 2. Then1X is contained in a symmetric 2-proper

GAP Q of rank r = O4(1), and of cardinality O4(|IX]).

Using Lemma we give a structure for X under the condition [IX| < 14| X] in

the following theorem, which we will refer to as the Long Range Inverse theorem.

Theorem 1.5.2 (Long Range Inverse theorem). Let A > 0 be constant. Assume that
X is a subset of a torsion-free group such that 0 € X and |[IX| < 14| X| for some positive
integer 1 > 2. Then there is proper symmetric GAP Q of rank r = O(A) and cardinality
OA(I7"IX]) such that X C Q.

Notice that for any given € > 0 and if [ is large enough, it is implied from Theorem
that the rank of Q is at most A + €. The implicit constant involved in the size of
(@ can be taken to be 2220(A>, which is quite poor. Although we have not elaborated
on this bound much, our method does not seem to say anything when the polynomial
growth in size of X is replaced by something faster.

Theorem will serve as the main lemma for Chapter |3l To prove it, we combine

Lemma [I.5.7] and the following simple observation.

Lemma 1.5.3. (Dividing sumsets relations) Assume that 0 € X and that P = {>",_| x;a; :
|z;| < N;} is a symmetric 2-proper GAP that contains 1X. Then X C {d ., za; :



Chapter 2

Squares in sumsets

2.1 Introduction

In 1986, Erdés [5] raised the following question:

Question 2.1.1. What is the maximal cardinality of a subset A of [n] such that S

contains no square?

We denote by SF(n) the maximal cardinality in question. Erdés observed that

SF(n) = Q(n'/?). (2.1)
To see this, consider the following example
Example 2.1.2. Let p be a prime and k be the largest integer such that kp < n. We

choose p of order n*/® such that k = Q(n'/3) and 1+ --- + k < p. Then the set

A= {p7 2]?, sy kp} 18 SC]UG’I“G-Sum-free,

Remark 2.1.3. The fact that p is a prime is not essential. The construction still works
if we choose p to be a square-free number, namely, a number of the form p = p1...p;

where p; are different primes.

Erdés [5] conjectured that SF(n) is close to the lower bound in (2.1]). Shortly after

Erd6s’ paper, Alon [1] proved the first non-trivial upper bound

SF(n) = O(—"

g (2.2)

Next, Lipkin [21] improved to

SF(n) = O(n3/4+oM), (2.3)



In [2], Alon and Freiman improved the bound further to

SF(n) = O(n?3o0), (2.4)

The latest development was due to Sarkozy [26], who showed

SF(n) = 0(y/nlogn). (2.5)

In this chapter, we obtain the asymptotically tight bound

SF(n) = O(n!/3to(), (2.6)

Theorem 2.1.4. There is a constant C such that for all n > 2

SF(n) < n'?(ogn)® (2.7)
In fact, we are going to prove the following more general theorem

Theorem 2.1.5. There is a constant C' such that the following holds for all sufficiently
large n. Let p be positive integer less than n2/3(log n)~C and A be a subset of cardinality

n'/3(logn)C of [n/p]. Then there exists an integer z such that pz> € Sy4.

Theorem [2.1.4] is the special case when p = 1. Furthermore, Theorem [2.1.4] implies
many special cases of Theorem [2.1.5] To see this, choose A to have the form A :=
{pb |b € B} where B is a subset of [n/p] and p is a square-free-number. Then finding
a square in Sy is the same as finding a number of the form pz? in Sp.

If one replaces squares by higher powers, then the problem becomes easier and

asymptotic bounds have been obtained earlier (see next section).

2.2 The main ideas

The general strategy for attacking Question [2.1.1]is as follows. One first tries to show
that if |A| is sufficiently large, then S4 should contain a large additive structure. Next,

one would argue that a large additive structure should contain a square.



In previous works [I], 2, 21], 26], the additive structure was a (homogeneous) arith-
metic progression. (An arithmetic progression is homogeneous if it is of the form
{ld,(l+1)d,...,(I+k)d}.) It is easy to show that if P is a homogeneous AP of length
Com?/3 in [m], for some large constant Cy, then P contains a square. Notice that the
set Sy is a subset of [m] where m := |A|n. Thus, if one can show that S4 contains a
homogenecous AP of length Coym?/?, then we are done. Sérkozy could prove that this is
indeed the case, given |A| > C1v/nlogn for a properly chosen constant C;. This also
solves (asymptotically) the problem when squares are replaced by higher powers, since
in these cases, the lower bound (which can be obtained by modifying Example is
Q(yi).

Unfortunately, \/n is the limit of this argument, since there are examples of a subset

A of [n] of size Q(,/n) where the longest AP in S4 is much shorter than (|A|n)/3.

Example 2.2.1. Consider

A:={qz1 + qr2|l <z; <N}

3/4

where q1 = qo =~ n°'* are different primes and N = ﬁionl/‘l. It is easy to show that A

is a proper GAP of rank 2 and S 4 is contained in the proper GAP

{Q1«T1+QQZ‘2‘1 <z; < 1_|-..._|_N}'

Thus, the longest AP in S, has length at most 1 4+ --- + N = O(n'/?), while A has

cardinality ©(n'/?).

The key fact that enables us to go below \/n and reach the optimal bound n'/3 is a
recent theorem of Szemerédi and Vu (a special case of Lemma|l.4.1]) that showed that if
|A| > Cn!'/? for some sufficiently large constant C, then S4 does contain a large proper

GAP of rank at most 2.

Lemma 2.2.2. There are positive constants C and ¢ such that the following holds. If
A is a subset of [n] of cardinality at least Cnl'/3, then Sa contains either an AP Q of

length c|A|? or a proper GAP Q of rank 2 and cardinality at least c|AJ3.
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Ideally, the next step would be showing that a large proper GAP @ (which is a
subset of [|A|n]) contains a square. Thanks to strong tools from number theory, this
is not too hard (though not entirely trivial) if @ is homogeneous. However, we do not
know how to force this assumption.

The assumption of homogeneity is essential, as without this, one can easily run into

local obstructions. For example, if @) is a GAP of the form

{ao + a1 + a2m2]0 <z < L}

where both a; and ag are divisible by 6, but ap = 2(mod6), then clearly @ cannot
contain a square, as 2 is not a square modulo 6.
In order to overcome this obstacle, we need to add several twists to the plan. First,

we are going to use only a small subset A’ of A to create a large GAP Q. Assume that

Q@ has the form

{ao + a171 + asz2|0 < x; < L}.

(@ can also have rank one but that is the simpler case.) Let ¢ be the g.c.d of a; and
as. If ag is a square modulo ¢, then there is no local obstruction and in principle we
can treat @) as if it was homogeneous.

In the next move, we try to add the remaining elements of A (from A" := A\ 4’) to
ao to make it a square modulo ¢. This, however, faces another local obstruction. For
instance, if in the above example, all elements of A" are divisible by 6, then ag will
always be 2(mod6) no matter how we add elements from A" to it.

Now comes a key point. A careful analysis reveals that having all elements of A"
divisible by the same integer (larger than one, of course) is the only obstruction. Thus,
we obtain a useful dichotomy: either S4 contains a square or there is an integer p > 1
which is divisible by all elements of a large subset A" of A.

Now we keep working with A”. We can write this set as {pb |b € B} where B is a
subset of [n/p]. In order to show that S, contains a square, it suffices to show that

Sp contains a number of the form pz?. This explains the necessity of Theorem m
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A nice feature of the above plan is that it also works for the more general problem
considered in Theorem m We are going to iterate, setting new A := A" of the
previous step. Since the number of iterations (i.e., the number of p’s) is only O(logn),
if we have [A"| > (1 — mﬂfﬂ in each step, for a sufficiently large constant ¢, then
the set A” will never be empty and this guarantees that the process should terminate
at some point, yielding the desired result.

In the next lemma, which is the main lemma of the chapter, we put these arguments

into a quantitative form.

Lemma 2.2.3. The followings holds for any sufficiently large constant C. Let p be posi-
tive integer less than n?/3(logn)~C and A be a subset of [n/p] of cardinality n'/3(logn)C.
Then there exists A’ C A of cardinality |A’'| < n'/3(logn)C/? such that one of the fol-

lowings holds (with A" := A\A’)

e Sy contains a GAP
Q={r+qz|0<z<L}

n2/3(logn)c/12

where L > n?/3(logn)®/* and q < -

and r = pz*(modq) for some

integer z.

e S, contains a proper GAP

Q={r+qlqz1 + qr2) |0 <z < L;,0 <23 < Lo, (q1,q2) =1}

nl/3

Togmo7p 214

such that min(Ly, Ly) > n'/3(logn)¢/*, LiLy > n(logn)¢/?,q <

r = pz?(modq) for some integer z.

e There exists an integer d > 1 such that d|a for all a € A”.

Given this lemma, we can argue as before and show that after some iterations, one of
the first two cases must occur. We show that in these cases the GAP @ should contain
a number of the form pz?2, using classical tools from number theory (see Section and
Section .

The proof of Lemma is technical and requires a preparation involving tools
from both combinatorics and number theory. These tools will be the focus of the next

two sections.
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2.3 Further tools from additive combinatorics

Beside Freiman’s inverse theorems [1.3.1§1.3.2], we also use the so-called Covering

Lemma, due to Ruzsa (see [23],[40, Lemma 2.14]).

Lemma 2.3.1 (Covering Lemma). Assume that X,Y are finite sets of integers. Then

X is covered by at most | X +Y|/|Y| translates of Y — Y.

We say that a GAP @ = {ag + z1a1 + ... 24040 < z; < L;} is positive if its steps
a;’s are positive. A useful observation is that if the elements of ) are positive, then @

itself can be brought into a positive form.

Lemma 2.3.2. A GAP with positive elements can be brought into a positive form.

Proof. (of Lemma [2.3.2]) Assume that

Q = {ap+ 101 + ... 2904|0 < z; < L;}.

By setting x; = 0, we can conclude that ag > 0. Without loss of generality, assume that
a,...,a; <0 and ajy1,...,a9 > 0. By setting x; = 0 for all i > j and x; = L;,1 < 7,

we have

a6 =ao+a1Li+...a;L; > 0.

Now we can rewrite @) as

Q = {a6 + $1(*CL1) + -4 xj(—aj) + Tjt10541 + .. .xdad|0 <z < Ll},
completing the proof. O

Since we only deal with positive integers, this lemma allows us to assume that all
GAPs arising in the proof are in positive form.

Using the above tools and ideas from [29], we will prove Lemma below, which
asserts that if a set A of [n/p] is sufficiently dense, then there exists a small set A’ C A

whose subset sums contain a large GAP @ of small rank. Furthermore, the set A” =
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A\ A’ is contained in only a few translates of (). This lemma will serve as a base from
which we will attack Lemma [2.2.3] using number theoretical tools discussed in the next

section.

Lemma 2.3.3. The following holds for all sufficiently large constant C. Let p be posi-
tive integer less than n?/3(logn)~C and A be a subset of [n/p] of cardinality n'/3(logn)C.
Then there exists a subset A’ of A of cardinality |A’| < n'/3(logn)¢/? such that one of

the followings holds (with A" .= A\A’):

e Su contains an AP

Q={r+q|0<z<L}

where L > n*/3(logn)®/? and there exist m = O(1) different numbers s1,. .., 5y

such that A” C {s1,...,sm} + Q.
e S contains a proper GAP
Q={r+az +ar2) [0<21 < L1,0< 22 < Lo

such that LiLy > n(logn)®/?} and there exists m = O(1) numbers s1,...,Sm

such that A” C {s1,...,sm}+ Q.

Remark 2.3.4. The proof actually gives a better lower bounds for LyiLo in the second

case (2C'/3 instead of C/2), but this is not important in applications.

2.4 Tools from number theory

Fourier Transform and Poisson summation. Let f be a function with support on

Z. The Fourier transform fis defined as

Flw) = /R F()e(—wt) dt.

The classical Poisson summation formula asserts that

3 f(t+nT):% 3 f(QQm)e(mt/T). (2.8)

n=—oo m=—00
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For more details, we refer to [20), Section 4.3].
Smooth indicator functions. We will use the following well-known construction (see

for instance [10, Theorem 18] for details).

Lemma 2.4.1. Let § < 1/16 be a positive constant and let [M, M + N] be an interval.

Then there exists a real function f satisfying the following

e 0 < f(x) <1 for any z € R.
o f(x)=0ifx <M orax>M+N.
o f(x)=1if M+N <x <M+ N(1-9).

o [f(N)| < 16£(0) exp(—8|AN|Y2) for every A.

A Weyl type estimate. Next, we need a Weyl type estimate for exponential sums.

Lemma 2.4.2. For any positive constant € there exist positive constants a = a(e) and
c(€) such that the following holds. Let a,q be co-prime integers, 6 be a real number, and

I be an interval of length N. Let M be a positive number such that MN > ¢'T¢. Then,

2 MN
Z ‘Ze(amz +0mz)| < «(MVN + ——)(log MN)°.
ml<m zel ¢ Vi
m##0
Quadratic residues. Finally, and most relevant to our problem, we need the follow-

ing lemma, which shows the existence of integer solutions with given constrains for a

quadratic equation.

Lemma 2.4.3. There is an absolute constants D such that the following holds. Let

ai,...,aq,r,p,q be integers such that p,q > 0 and (a1, ...,aq,q) = 1. Then the equation
a1y + -+ + agrg +r = pz*(modq) (2.9)
has an integer solution (z,x1,...xq) satisfying 0 < z; < (pg)*/?(log ¢)”.

The rest of the chapter is organized as follows. The proof of the combinatorial state-

ment, Lemma [2.3.3] comes first in Section We then start the number theoretical
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part by giving a proof for Lemma [2.4.2] The verification of Lemma [2.4.3] comes in
Section After all these preparations, we will be able to establish Lemma in
Section 2.8, The proof of the main result, Theorem [2.1.5] is presented in Sections
and

2.5 Proof of Lemma [2.3.3

We repeat some arguments from [29] with certain modifications. The extra information
we want to get here (compared with what have already been done [29]) is the fact that

the set A” is covered by only few translates of Q.

2.5.1 An algorithm

Let A’ be a subset of cardinality |4’| = n!'/3(logn)¢/? and let A” := A\A’. By a
simple combinatorial argument (see [29, Lemma 7.9]), we can find in A" disjoint subsets

Al LA

mi

such that |A| < 20log, |A'| and |IJA;| > |A’|/2 where

l; < 10logy |A’| and my = |A’|/(401ogy |A']). (2.10)

(For the definition of [*A see the beginning of the introduction.)

Without loss of generality, we can assume that m; is a power of 4. Let By,..., By,
be subsets of cardinality by = |A’|/2 of the sets ITA}, ... [T A}, respectively. Following
[29, Lemma 7.6]), we will run an algorithm with the B;’s as input. The goal of this
algorithm is to produce a GAP which has nice relations with A” (while still not as good
as the GAP we wanted in the lemma). In the next few paragraphs, we are going to
describe this algorithm.

At the first step, set B := By,..., B}, := By, and let B* = {B],..., B}, }. Let
h be a large constant to be determined later.

At the (¢ + 1)-th step, we choose indices i,j and elements aq,...,a, € A” that
maximizes the cardinality of U}_,(Bf + B! + aq) (if there are many choices, choose

one arbitrarily). Define BiHl to be the union. Delete from A” the used elements
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ai,...,ap, and remove from Bt the used sets Bf, B;. Find the next maximum union

ur_ B! + B! + a), with respect to the updated sets B* and A”.

t+1 /

/
Assume that we have created m;y1 := my/4 sets Bi“ oo B

By the algo-
rithm, we have

B > > B | = by
Now for each 1 < i < my1 we choose a subset BEH of cardinality exactly by in BEH,.
These myy1 sets (of the same cardinality) from a collection B** which is the output
of the (¢ + 1)-th step.

Since my4+1 = my/4, there are still m;/2 unused sets B! left in Bt Without loss of
generality, assume that those are Bi, ..., Bfnt /2° With a slight abuse of notation, we
use A" at every step, although this set loses a few elements each time. (The number of
deleted elements is very small compared to the size of A”.)

Let ;41 := 2l; + 1. Observe that
o [; < 2!l (by definition);

e by <ln/p (since UZZI(Bf_I + B§_1 +aq) C [lin/p));

| Uy Bl + B! + aq| < b (2.11)

forall 1 <i < j < my/2 and ay,...,a, € A” (by the algorithm, as it always

chooses a union with maximum size).

Now let ¢ be a large constant and &k be the largest index such that b; > cb;_1 for all

7 < k. Then we have

Foy < by < lgn/p.

Since by = |A’|/2 and [}, < 2¥1;, we deduce an upper bound for k,

k <log., 2117;
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Next, by the definition of k, we have by < cbg. By (2.11)), the following holds for all

unused sets BZI“,BJZC (with 1 <4 < j <myg/2) and for all aq,...,a, € A”:

| Uiy (BF + B + aa)| < biy1 < cby = | Bf|.

In particular

| B + Bf| < c| By

holds for all 2 <1i < my/2.

By Plunnecke-Ruzsa estimate (see [40, Corollary 6.28]), we have

| B + By| < ¢?|Bf.

It then follows from Freiman’s theorem, Theorem that there exists a proper GAP
R of rank O.(1), of size O.(1)|B¥| such that R contains Bf. Furthermore, by Lemma
m, BF is contained in ¢ translates of BY — B¥  thus B¥ is also contained in O.(1)
translates of R.

Before continuing, we would like to point out that the parameter A has not yet
played any role in the arguments. The freedom of choosing h will be important in what
follows. We are going to obtain the desired GAP @ (claimed in the lemma) from R by

a few additional operations.

2.5.2 Creation of many similar GAPs.

One problem with R is that its cardinality can be significantly smaller than the bounds
on @ in Lemma[2.3.3] We want to obtain larger GAPs by adding many translates of R.
While we cannot do exactly this, we can do nearly as good by the following argument,
which creates many GAPs which are translates of each other and have cardinalities
comparable to that of R.

By the pigeonhole principle, for i < my,/2, we can find a set B} C BF with cardinality

©.(1)bg, which is contained in one translate of R.
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By Lemma m, there exists g = O.(1) such that B} +--- + B; contains a proper
GAP @ of cardinality ©.(1)|R|. Create Q2 by summing B;H, el Bég, and so on. At
my

the end we obtain Sy = O.(1)my, such GAPs. Also, we can require the @;’s to have

the properties below

e rank(Q;) =rank(R) = O.(1);

|Qz’ = 60(1)|R| = @c(l)bk‘;

each (); is a subset of a translate of gR. Thus by Lemma [2.3.1] R is contained in
O.(1) translates of Q; — Q;;

the j-th size of Q); is different from j-th size of R by a (multiplicative) factor of
order ©.(1), for all j;

the j-th step of @); is a bounded multiple of the j-th step of R for all j;

Thus, by the pigeonhole principle and truncation (if necessary) we can obtain m’ =
Oc(my) GAPs, say, Q1,...,Q,, which are translate of each other. An important
remark here is that since the (); are obtained from summing different B’s, the sum

Q1+ -+ Qny is a subset of S4/. The desired GAP @ will be a subset of this sum.

2.5.3 Embedding A"

In this step, we embed A” in a union of few translates of a GAP Q; of constant rank.

We set the (so far untouched) parameter h to be sufficiently large so that

Oc(1) = h > ¢|BY|/|Bil.

Let d be the largest number such that there are d elements ay,...,aq of A” for which
the sets B + Bj + a; are disjoint. Assume for the moment that d > h, then we would

have

| ULy (By + By + ai) = h|By + Bj| > h|Bj| > ¢|Bf]|
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However, this is impossible because U_; (B} + By +a;) C Ul (BY+ BS +a;) and the
latter has cardinality less than c|Bf| by definition. Thus we have d < h. So d = O.(1).

Let us fix d elements aq,...,aq from A” which attained the disjointness in the
definition of d. By the maximality of d, for any a € A” there exists a; so that (B} +
Bl +a)N (B} + By +a;) # 0. Hence

a—a; € Bf + B — (Bf + BY) = (Bf — BY) + (BY — B¥) c 2R — 2R.

Thus A” is covered by at most d = O.(1) translates of 2R — 2R. On the other hand,
since R is contained in O.(1) translates of Q1 — Q1, 2R — 2R is contained in O.(1)
translates of 4Q1 — 4Q1. It follows that that A” is covered by O.(1) translates of Q1.
The remaining problem here is that )1 does not yet have the required rank and
cardinality. We will obtain these by adding the @Q; together (recall that these GAPs

are translates of each other) and using a rank reduction argument.

2.5.4 Rank reduction

Let P be the symmetric translate of @1 (and also of Qg, ..., Q). Recall that

|P‘ = ’Q1| = @c(bk) = Qc(ckbl).

and also

b
m/ = @C(mk) = @C(%), and lk+1 < 2k+1l1.

Set I := min{m’,|A’|/2l;41}. Recall that |4’ = n'/3(logn)/?, I; < 10log, |A’| and

by = |A’|/2. By choosing ¢ and C sufficiently large, we can guarantee that

1|P| > n*3(ogn)®/? ;1P| > n(logn)?¢/3. (2.12)

and also

1| P| > n*3(logn)° (2.13)
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Now we invoke Lemma to find a large GAP in [P. Assume, without loss of
generality, that [ = 2° for some integer s. We start with Py := P and {y := 1. If 2°Fy
is proper, then we stop. If not, then there exists a smallest index i; such that 2% Py is
proper but 24+ Py is not.

By Lemma (applying to 2%t Py) we can find a symmetric GAP S which contains
21 Py such that rank(S) < r := rank(24 P).

By Lemma there is a constant g = ©.(1) such that the set 29(2% Py) contains
a symmetric proper GAP P; of rank equals rank(S) and cardinality ©.(1)[2% Py|. Set
01 := Lo /2119 if £y /21+9 > 1 and proceed with Py, ¢1 and so on. Otherwise we stop.

Observe that if 2% P; is proper, then [2% P;| = (1 4 0(1))2%"i|P;|, where r; is the
rank of P;.

As the rank of Py is O.(1), and 7j41 < rj — 1, we must stop after ©.(1) steps.
Let Q" be the symmetric proper GAP Q' obtained when we stop. It has rank d’,
for some integer d’ < r and cardinality at least ©.(1)¢4|Py| = ©.(1)I*|P|. On the
other hand, since a translate of [P is contained in Sy, |Q'| < |A'|n/p < |A'|n, that is

0.(1)I%|P| < |A'|n. Because of (2.13), this holds only if @’ < 2.

2.5.5 Properties of Q.

By the Covering Lemma and by the definition of P;’s, P; is contained in O.(1)
translates of P,y for all 7 > 0. At the starting point, we know that A” is contained
in O.(1) translates of P. Since there are only O(1) different P;’s, at the last step we
conclude that A" is covered by O.(1) translates of Q'

Furthermore, Q' is a subset of [P. Thus a translate Q of Q' liesin Q1 +---+Q, C
S,. This Q has rank 1 < d’ < 2 and cardinality |Q| = |Q'| > ©(1)I¥|A’|. (The right
hand side satisfies the lower bounds claimed in Lemma thanks to (2.12)).) This

is the GAP claimed in Lemma and our proof is complete.



21

2.6 Proof of Lemma [2.4.2]

If ¢ is a prime, the lemma is a corollary of the well known Weyl’s estimate (see [20].)
We need to add a few arguments to handle the general case. The following lemma will

be useful.

Lemma 2.6.1. Let 7(n) be the number of positive divisors of n. For any given k > 3

there exists a positive constant 3(k) such that the following holds for every n.

(n) = O( Y T(@)"™).

dln
dSnl/k

Proof. (of Lemma|2.6.1). We can set 5(k) = klog(k+1). We factorize n in the following

specific way

u v
@ T b
n=[]w1]q’
=1 j=1

where p1 < --- < py, 1 <--- < gy are primes and a; > k > b; > 1. Set

Then d < n'/* by definition and

u

(k+1)k7_(d)ﬁ(k) — (k+1)k2tﬁjklog(k+l H JJFl klog (k+1) > (k+1>v H(1+a2> > T(n),
i=1 =1

completing the proof. O

Now we start the proof of Lemma [2.4.2l Let S := Y7 <m | D.er € (amz + Omz)|.
m7#0
Following Weyl’s argument, we use Cauchy-Schwarz and the triangle inequality to ob-

tain

S2 < oM Z Z m(z = z2)(21 + 22) +0m(z — z2)).

Im|<M =1,22€1 q
m7#0
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For convenience, we change the variables, setting u := 21 — 29, v := 29, then

<o Y oM gy T 2

Im|<M |u|<N velvel—u q
m#0

< oM Z Z’ Z €(2amuv)’.

m|<M |u|<N wvelwvel-u q
m#0

Next, using the basic estimate (see [20, Section 8.2], for instance)

Y e(wk:)|§min(K,H21H)

Ko<k<Ko+K

we obtain that

1
52 <2M min(N
2 D min(N )

Im|<M |u|<N
m#0

To estimate the right hand side, let N, be the number of pairs (m, u) such that 2amu =
r(modq). (In what follows, it is useful to keep in mind that a and ¢ are co-primes.)

We have

S(M,N,q)* <2M [ NoN+ Y (N, + Np-) 2. (2.14)
1<r<q/2 "

To finish the proof, we are going to derive a (uniform) bound for the N,’s. For 0 <
r<qg—11let 0 <r, <qg—1 be the only number such that ar, = r(modg). Thus
2amu = r(modq) is equivalent with 2mu = r,(modq).

First we consider the case r # 0, thus r, # 0. Write 2mu = r, + sq. It is clear that
re + 8q # 0 for all s. Since 2mu < 2M N, we have |s| < 2M N/q. For each given s the
number of such pairs (m,u) is bounded by 7(r, + sq).

Choose k = max(2 +2,3), then MN/q > (MN)?* by the assumption M N > ¢**¢
It follows from Lemma that, for r # 0,
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Ne< > rlratsg) =0 Y. Tm(@P(C Y o1

|s|<2MN/q d<(MN)1/k |s|<4MN/q
d|ra+sq

—o Y @O Loy

qd
d<(MN)/k
MN B(k)
_ 06(7 Z T(d) + O((MN)l/k+o(1)))
4 d<(MN)'/k

d<(MN)/k

Notice that >, 7(d)P®) < 210g”® 1 for some positive constant #'(k) depending on

B(k) (see [20, Section 1.6], for instance). By summation by parts we deduce that

N, = oe(MqN log® M (MN))

for some positive constant 5”(k) depending on (k).
Now we consider the case r = 0. The equation 2mu = sq has at most 7(sq) solution

pairs (m, u), except when s = 0, the case that has 2M solutions {(m,0); |m| < 2M,m #
0}. Thus we have

No <2M + Z 7(sq),
|| <2M N/g,57£0

and hence,

No = O.(2M + MN log® ) (M N)).

Combining these estimates with (2.14), we can conclude that

S(M,N,q) < (MVN + MN/\/q)log*(MN)

for some sufficiently large constant o = «(e).
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2.7 Proof of Lemma [2.4.3

We are going to need the following simple fact.

Fact 2.7.1. Let ay,...,am,q be integers such that (ai,...,am,q) = 1. Then we can se-
lect a decomposition ¢ = q1 . ..q of g and l different numbers a;,, ..., a; of {a1,...,am}

(for some | > 1) such that

(¢i,q;5) = 1 for evey i # j and (ai;,q;) = 1 for every j.

Proof. (of Fact [2.7.1)) Let ¢ = ¢ ...q;, be the decomposition of ¢ into prime powers.
For each ¢, we assign a number a} from {ay,...,a;} such that (¢}, a}) = 1 (the same qa;
may be assigned to many q;) Let a;;’s be the collection of the a}’s without multiplicity.

Set g; to be the product of all ¢, assigned to ag,;. O

The core of the proof of Lemma [2.4.3] will be the following proposition, which is

basically the case of one variable in a slightly more general setting.

Proposition 2.7.2. There is a constants D such that the following holds. For given
integers g, h,p,t, z1;9,h,p > 0 there exist integers = € [0, (ph)/?(log h)P] and z such

that gz + pz3 + tk = pz3(modh), where k = (g, h) .

Lemma follows from Fact and Proposition by an inductive argument.

Indeed, by the above fact we may assume that ¢ = ¢ ...q where (a;,¢;) = 1, and so

(a1, 9)|q1 - q—1-

Now if Lemma, is true for [ — 1 variables, i.e. there are appropriate x1,...,T;_1
such that ajz1 +...a; 1211 +7 = pz? +tq1...q_1. Then we apply Proposition

for ¢ = h, g = a; to find z;. It thus remains to justify Proposition [2.7.2

Proof. (of Proposition [2.7.2) Without loss of generality we assume that A > 3. As
k = (g,h), we can write g = ka, h = kq where (a,q) = 1. We shall find a solution in the
form z9 = 21 + zk. Plugging in 25 in this form and simplifying by k, we end up with

the equation
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ax +t = pkz* + 2pz12(modq).

or equivalently,

x = apkz® + 2apz, 2 — at(modq) (2.15)

where a is the reciprocal of @ modulo ¢, aa = 1(modg).

Our task is to find = € [0, (ph)Y/?(log h)P] such that holds for some integer
z. Notice that if ¢ is small and D is large then (ph)Y/?(logh)? > (log3)”, therefore
the interval [0, (ph)'/?] contains every residue class modulo ¢; as a result, (2.15) holds

trivially. From now on we can assume that ¢ is large,

q > exp (16(6(a +1)/e)*t1) (2.16)

where ¢, a are constants arising from Lemma with e = 1/3.
Let s = (pk, q); so we can write pk = sp’,q = sq¢’ with (p/,¢") = 1.

Let D be a large constant (to be determined later) and set

L := (sq)"?(log q)P /2 and I := [L,2L].

Note that

ph = pkq = sp'q > sq.

Thus we have

I cC|o, (ph)l/Z(log h)P1.

Let f be a smooth function defined with respect to the interval I (as in Lemma [2.4.1)).

For fixed z € [1,¢q] the numbers of z in [0, (sq)'/?log? ¢ satisfying (2.15) is at least

N, = Z f(&pkz2 + 2apz1z — at + mq).
meZ
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By Poisson summation formula ([2.8])

1 A apk‘z2 + 2apz1z — at)m
L >-
mEZ q

By summing over z € [1, q] we obtain

q

d m apkz2 apziz — at)m
N3:Z foze((p +2(§71 t) )

z=1 meZ q z=1

To conclude the proof, it suffices to show that N > 0. We are going to show (as fairly
standard in this area) that the sum is dominated by the contribution of the zero term.

By the triangle inequality, we have

[N = F(0)] <

Q| =

~m d a 22 apzi1z)m
3 \f(q)HZe((pk T 2apziz)my
z=1

meZ,m#0 q

Let ~1,72 be a sufficiently large constant and let

11q(log )

L .=
L

Set

1 m apk:z +2apzlz)
Sy = . oIS q HZ )|

|m|>L’

and

1 m apkz +2apzlz)
Soi=— > |If q HZ -

Im|<L'
m#0

We then have

IN — f(0)] < S1 + Sa.

In what follows, we show that both S; and Sy are less than j?(()) /4.

Estimate for S;. It is not hard to show that
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Zexp <—for0<1:<1
keZ

To see this, observe that

S exp(—Vak) < [ expl(~Vaye =2

k>1

where the integral is evaluated by changing variable and integration by parts.

Thus

Z exp(—+/z|k|) Zexp \/W+\ﬁ)) . exp(—\/:?ko). (2.17)

‘k‘Zko keZ

From the property of f (Lemma [2. we can deduce that

S1<16f(0) D exp(=dv/[Lm/q]),

~v19(log )72
|m|> T

which, via (2.17) and since ¢ > 3, implies

~ 20 5 1 72)1/2 ~
Sl < 16f(0) Lq_l exp(— (’Yl( qu) ) )

given that we choose =1, ys sufficiently large.

Estimate for S;. We have

J? 1 ap 22 2c‘zpzlzm
So==7 2 1D o=, )l
9 |m|<L" z=1 q
m#0
We shall choose D > 7.
Set
6 D — "yg D—
e (0= 22)y 0

(&

First, we observe that
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271¢*(logq)? 271¢%/2 _2md 2y S A3 v1q'/°

Lg = - _ _ma
17 (50)'2(log )P ~ s1/2(logq)P2  (logq)? ‘”2_q (log q) P~

It is not hard to show that the function ¢'/6/(logq)P?~72, where ¢ > 3, attains its
minimum at ¢ = exp(6(D — ~2)). Therefore, by the choice of 1, we have
/4/3

L'q>q

Next, Lemma applied for € = 1/3 (and with the mentioned ¢ and «) yields

J? g ap 22 2c‘zpzlzm
Sy = T | Z e )|

m|<L' z=1 q
m#0

£(0), L'q

It follows that

< 4cy1q(log q)aJrWz By 4cy1 (log q)ot2
= (/5qlog” OV (log ¢)P

Now we choose D,7s so that D —v5 — a = 1. Thus 7; = (6(a + 1)/e)*!, and

c o a+y2 C (% €O‘+1A iy
IO gy - 2OV o) < Foya

Sy <

where the last inequality comes from (2.16]).

2.8 Proof of Lemma [2.2.3]

We first apply Lemma to obtain a large proper GAP @ of rank 1 or 2. By this
lemma, we have A" C {s1,...,8m} + @, where m is a constant.
Let S; = A" N (s; + Q) for 1 < i < m. We would like to guarantee that all S; are

large by the following argument.
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If S; is smaller than n'/3(logn)3¢/10, then we delete it from A" and add to A’. The
new sets A’, A" and Q still satisfy the claim of Lemma On the other hand, that
the total number of elements added to A’ is only O(n'/3(logn)3¢/10 = o(]A’|), thus the
sizes of A’ and A” hardly changes.

From now on, we assume that |S;| > n'/3(logn)3¢/19 for all .

For convenience, we let

/
S; = 8;+.

Thus every element of S; is congruent with s, modulo g.

2.8.1 () has rank one

In this subsection, we deal with the (easy) case when @ has rank one. We write
Q= {r+qz |0 <z < L} where L > n?/3(logn)°/2.

Since Q C Sy C [%]A'H, we have

< |A'|n < n2/3
1L = (ogn)Tp

By setting C' (of Lemma [2.3.3) sufficiently large compared to D (of Lemma [2.4.3]), we

can guarantee that

(pq)'*(log ) < n'/3. (2.18)

Let d:=(s1+7,...,8m+7,q) = (s],...,8,,q). If d > 1 then all elements of A" are
divisible by d, since A" are covered by {s1,...,8m} + Q. Thus we reach the third case
of the lemma and are done.

Assume now that d = 1. By Lemma we can find 0 < z; < (pq)'/?(logq)P

such that

Siz1 + -+ ST + 17 = pz?(modq). (2.19)



30

Pick from S;’s exactly x; elements and add them together to obtain a number s. The
set s + () is a translate of () which satisfies the first case of Lemma and we are

done.

2.8.2 (@ has rank two

In this section, we consider the (harder) case when @ has rank two. The main idea is
similar to the rank one case, but the technical details are somewhat more tedious. We

write

Q=r+qqz+qy)0<s<L,0<y< Ly

where L1 Ly = |Q| > nlog?/3n.
As @Q is proper, either ¢ > Ly or g2 > Ly holds. Thus qLiLs < |A'|n/p, which

yields (with room to spare)

nl/3

qg< W' (2.20)
We consider two cases. In the first (simple) case, both L; and Ly are large. In the
second, one of them can be small.
Case 1. min(Ly, Ly) > n'/3(logn)¢/4. Define d := (s},...,s,,,q) and argue as in the
previous section. If d > 1, then we end up with the third case of Lemma[2.2.3] If d =1
then apply Lemma[2.4.3] The fact that ¢ is sufficiently small (see (2.20)) and that ||
is sufficiently large guarantee that we can choose z; elements from S;. At the end, we
will obtain a GAP of rank 2 which is a translate of () and satisfies the second case of
Lemma 2.2.3
Case 2. min(Lq, Ly) < n'/3(logn)®/4. In this case the sides of GAP @ are unbalanced
and one of them is much larger than the other. We are going to exploit this fact to
create a GAP of rank one (i.e., an arithmetic progression) which satisfies the first case
of Lemma rather than trying to create a GAP of rank two as in the previous case.
Without loss of generality, we assume that L1 < n!/ 3(log n)c/ 4. By the lower bound

on LiLy, we have that Ly > n2/3(log n)c/4. This implies
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_ ]A’|n n2/3
q92 = Ly (logn)C/12p'

Again by setting C' sufficiently large compared to D, we have

(pag2)**(log gq2)” < n'/3(logn)“/". (2.21)

Creating a long arithmetic progression. In the rest of the proof we make use of
A" and @ to create an AP of type {r' + qqox2 |0 < x2 < Lo, 7’ = pz?(modgqs)}. This
gives the first case in Lemma and thus completes the proof of this lemma.

Let S be an element of {Sy,...,S,,}. Since S is contained in a translate of @, there
is a number s such that any a € S satisfies a = s 4 tqq1(modggs) for some 0 <t < Ly
(for instance, if a € S; then a = s) + tqqi1(modqgs)). Let T denote the multiset of t’s
obtained this way. Notice that 7' could contain one element of multiplicity |S|. Also
recall that |S| > n'/3(logn)3¢/10.

For 0 <1 < |S|/2, let m; and M; (respectively) be the minimal and maximal values
of the sum of [ elements of T'. Since 0 < t < L4 for every t € T, by swapping summands
of m; with those of M, we can obtain a sequence m; = ng < --- < n; = M; where each
n; € T and n;41 — n; < Ly for all relevant «.

By construction, we have

[my, Mi] C {no,...,m}+ 1[0, L] CI*T 40, Ly]. (2.22)

Next we observe that if [ is large and M; — m; is small, then T looks like a sequence of
only one element with high multiplicity. We will call this element the essential element

of T.

Proposition 2.8.3. Assume that %(nl/g(log n)3¢/10 <1 < %nl/?’(log n)3¢/10 and M, —
my < %nl/S(log n)3¢/10. Then all but at most %nl/‘g(log n)3¢N0 clements of T are the

same.

Proof. ( of Proposition [2.8.3)) Let ¢; < to < --- < t; be the [ smallest elements of T

and t} < --- < t; be the [ largest. By the upper bound on [ and lower bound on
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‘S‘ = ’T|, tll > t;. On the other hand, M; — m; = (tll — tl) + -+ (t; - tl). Thus if

M;—my < %nl/S(log n)3¢/10 < — 1 then t; = t; for some i. The claim follows. d

The above arguments work for any S among Si,...,5,. We now associate to each
S; a multiset T;, for all 1 <7 < m.
Subcase 2.1 The hypothesis in Proposition holds for all T;. In this case we
move to A’ those elements of S; whose corresponding parts in T} is not the essential
element. The number of elements moved is only O(n'/3(logn)3¢/19), which is negligible
compared to both |A’| and |A”|. Furthermore, the properties claimed in Lemma
remain unchanged and the size of new S; are now at least %nl/ 3(logn)3¢/10.

Now consider the elements of A” with respect to modulo ggo. Since each T; has only
the essential element, the elements of A" produces at most m residues u; = s; + tiqqi,

each of multiplicity at least

1
1Si] > §n1/3(10g n)3¢/10 > (pgge)/?(log qg2)”

where the last inequality comes from . Define d = (uy, ..., un,qq2) and proceed
as usual, applying Lemma [2.4.3

Subcase 2.2 The hypothesis in Proposition does not hold for all T;. We can
assume that, with respect to 11, M;—m; > %nl/g(log n)3¢/10 for all inl/3(log n)3¢/10 <
[ < %n1/3(log n)3¢/19 From now on, fix an [ in this interval.

Next, for a technical reason, we extract from S a very small part S} of cardinality
n/3(logn)¢/> and set S; = S1\S]. Let T be the multiset associated with S}. We can
assume that T satisfies the hypothesis of this subcase.

Define d := (s},...,5),,q9). As usual, the case d > 1 leads to the third case of

Lemma so we can assume d = 1. By Lemma [2.4.3] there exist integers

0 < z; < (pg)'/*(logn)? < n'/3(logn)°/® < ||

and k, z; such that

six1 + o+ Shrm + (18] + 1) = pzi + ke (2.23)
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For i > 2 we pick from S; exactly x; elements ai, ... ,afvi, and for ¢ = 1 we pick

elements al, ... ,a}cl from S| and add them together. By (2.23) the following holds for

some integer k’,

m  x;
Z Z aj 4 (Isy +7) = p2? +kq. (2.24)
i=1 j=1

Furthermore, by Proposition[2.7.2} as ¢ = (qq1, ¢g2), there exist 0 < z < (pgq2)"/? log? (qq2)

and k", zo such that

gz + pzi + (K +muaq)g = pz3 + k'qqe,

22 + K q+ (x +my)qq = pz3 + K'qqo. (2.25)

As (pqq2)'/?1ogP (qqo) < n'/3 1og/® n and n'/310g/® n < M; — m;, we have

ml§x+ml§Ml.

On the other hand, recall that [m;, M;] C I*T + [0, L1] (see (2.22])), we have

(I8} + 7+ [my, MiJgq1} € I*Sy + 7+ [0, L1]qqi (modggo).

Thus

Is) + 7+ (x+my)qq € Z*S; + 7+ [0, L1]gq1 (modqqs). (2.26)

Combining (2.24),(2.25) and (2.26)) we infer that there exist I elements a1, ... ,a; of S},

and there exist 0 < u < Ly and v such that

m  x;
DY i tar+ -+ a+r 4 ugq = pz3 + vgge.
i=1 j=1

Hence, > 1%, > 7L, a§- +a1 + -+ a; + Q contains the AP {(p23 + vqqe) + qqax2|0 <

x9 < Lo}, completing Subcase 2.2.
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Finally, one checks easily that the number of elements of A” involved in the creation
of pz2 in all cases is bounded by O(n!'/310g%/® n) = o(|4’|), thus we may put all of them

to A’ without loss of generality.

2.9 Proof of Theorem [2.1.5: The rank one case.

Here we consider the (easy) case when @ (in Lemma [2.2.3)) has rank one. In this case,

S, contains an AP Q = {r 4+ ¢qz|0 < z < L}, where L > n%*?(logn)“/* as in the first

statement of Lemma We are going to show that ) contains a number of the form
2

Pz,

Write r = ng + tq for some 0 < 2y < ¢. Since r is a sum of some elements of A’, we

have
4/3(1 C/3
0<r<|A(n/p) < ”(Of”).
Thus
4/3 1 C/3
—pg<t< 08T (;in) . (2.27)

The interval [t/pq, (t + L)/pq| contains at least two squares because

4/3 c/2
£ 22%210i+20'
Pq (pq) Pq

(

Thus, we can find an integer g > 0 such that ;fT; <ad < (zo+1)2< %. It is implied

that (since 0 < 29 < q)

t < pqx% + 2pzoxg <t + L. (2.28)

Set z := z9 + qxg. We have

pz? = ng + q(pqac% + 2pzo10).

On the other hand, by (2.28]), the right hand side belongs to
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pzh + qlt,t + L] = pzg +tq + q[0, L] = + ¢[0, L] = Q.
Thus, @ contains pz2, completing the proof for this case.
2.10 Proof of Theorem 2.1.5t The rank two case
In this case, we assume that S4s contains a proper GAP as in the second statement of

Lemma 2.2.31 We can write

Q={r+q(qr1 +qr2) 0 <21 < L1,0 <23 < Lo, (q1,q2) = 1}

where

e min(Ly, Ly) > n'/3(logn)¢/4,

L1Ly > n(logn)®/?,

nl/3(logn)—C/6
< ntogn) —

e and r = pz% + tq for some integers t and 0 < zg < q.

n4/3(10gn)c’/3

Since r is a sum of some elements of A’, we have 0 < r < , and so

n4/3(10g n)C/3

pq

—pg <t <

Without loss of generality, we assume that goLs > ¢1L1. Because @) is proper, either
q2 > L1 or ¢ > Lo. On the other hand, if g5 < Ly then Lo < q1, which is impossible

by the assumption. Hence,

g2 > L.

Now we write @ = {pz2 + q(q121 + ga22 + 1)|0 < 21 < L1,0 < 29 < Lo, (q1,q2) = 1}

and notice that if we set w := 29 4+ zq then

pw?® — pzi = p(20 + q2)* — p=§ = q(pgz” + 2p20z).
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Thus if there is an integer z satisfies

gz 4 2pz0z € {4+ oy + 1|0 <z < L1,0 <y < Ly} (2.29)

then pw? € @, and we are done with this case. The rest of the proof is the verification

of the following proposition, which shows the existence of a desired z.
Proposition 2.10.1. There exists an integer z which satisfies .

Proof. (of Proposition [2.10.1) The method is similar to that of Lemma relying
on Poisson summation.
Set a := pq and b := 2pzy. Notice that since 0 < 25 < ¢, 0 < b < 2pqg = 2a. Our

task is to find a z such that

az’ + bz —quz —t = gy for some 0 < z < L1,0 < y < Lo.

Define (with foresight; see (2.31))) I, := [L1/8, L1/4] and

Li/4+t Lo+qiL1/8+t
il 12 )1/2_1_17(612 2 (J; 1/

I, = [( )1/2—1].

(Notice the that the lower bounds on L;, Ls and the upper bound on pg guarantee that
the expressions under the square roots are positive.)
Since r + qq1 L1 + qqoLo = ng +tq + q(q1 L1 + q2L2) € Q, it follows that (with

max (@) denoting the value of the largest element of Q)

wolst q1L1/8 e max(@)/q - p_1n4/3(log n)C/B B n4/3(10g n)C/3.

q a
Thus
1(g2Ly — q1L1/4)a™?
1>
/q2L2+q1L1/8+t

a

_ q2L2
|| = Q(—n2/3(logn)0/6 . (2.30)

By the definitions of I, and I,, we have, for any = € I, and z € I,
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0<az’+bz—qr—t<a(z+1)?—qz—t<qglLs. (2.31)

Thus, for any such pair of = and z, if az? + bz — i@ — t is divisible by go, then
y = (az? + bz — q1x — t)/qa is an integer in [1, Ly]. We are now using the ideas from
Section with respect to modulo ¢o and the intervals I, I,.

Let ¢ be the reciprocal of ¢; modulo ¢ (recall that (g1, g2) = 1). Let f be a function
given by Lemma with respect to the interval I,. For a given z € I,, the number
of x € I, satisfying is at least N,, where

N, = Z f(@az® + @bz — @it + mag).
meZ

By applying Poisson summation formula (2.8)) and summing over z in I, we obtain

N = Z N, = Z Z e((q’1az2+<ﬁbz—qit)m)'

z€el, meZ zel, a2
It suffices to show that N > 0. Similar to the proof of Lemma we will again

show that the right hand side is dominated by the contribution at m = 0. By triangle

inequality, we have

~ naz? + @bz — qit)m
N Ol < X SIFE)| Y o R0,

mez zel. a2
m7#0

Let v be a sufficiently large constant and let

8q2(log g2)”

L =
Ly

We have

1~
N — quf(O)!IzH < S1+ 5o

where

2 — —
(Graz* + qibz — qit)m
Sim Y AR Y oD Dm0,

im|>1 2 el %



and

1,~m (az? + @bz — qit)m
Spi= Y —[F( D el |-
iml<L’ Q@2 Qg2 el q2
m##0

To conclude the proof, we will show that both S; and Sy are o(f((zl)yzl).

Estimate for S;. By the property of f,

FO)|L:| ST exp(—3y/mLy/(8a))).

42 ‘m‘>8q2(10g q2)”

S1 <

By (2.17), and as g2 is large (g2 > L1 > n'/3), the inner sum is o(1), so

~

f(O)!Iz\)

Si=o0
! (Q2

as desired.

Estimate for Sy. Let ¢ = (q1a,q2). We can write
qia = q'q1,¢2 = ¢'¢y with (g1, 3) = 1.

Then

mz?  (@bz — @t)m
— + )l
qs q2

S2§@ Z \Ze(qll

2 Im|<L' z€l,
m#0

By Lemma there are absolute constants ¢, a such that

f0) (10 o, L|L|(logn)
Sy <c - (L V|1 |(logn)* + \/(72)

To show that Sy = o(f((z)yz\ ), it suffices to show that

L'(logn)* = o(v/|I:|)

and

38

(2.32)

(2.33)

(2.34)
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L'(logn)™ = o(gy) (2.35)

To verify (3.3)), notice that by (2.30)), we have

Liga Lo

2 _ o Litels

’IZ|L1 - Q(n2/3(logn)0/6>

Thus
B g LS ( LiL3 )
L"?(log n)2« q3(log n)2e+2y Logon?/3(log n)C/6+20+2y )

Since (L1Lg)? > (n(logn)©/?)? = n2log® n and Lagy = O(max(Q)) = O(p~'n/3(logn)C/3),
the last formula is w(1) if we set C' sufficiently large compared to « and . This proves

B3).

As a result,

f;;f’)ymaog n)* = o(F(0)|.] /q2)-

Now we turn to (3.4). Recall that g2 = ¢'¢} and ¢’ = (Gia,q2) = (a,q2) (as ¢1 and g2

are co-primes). Thus

G>L=2
a pq
To show ([3.4)), it suffices to show that
L — (L (log n)*)
pq

which (taking into account the definition of L') is equivalent to

¢2L7 = w(pqg3 (log n)***27).

Multiplying both sides with Log, ! it reduces to

L3Ly = w(pqqaLa(logn)* 7).
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Now we use the fact that ggaLo = O(max(Q)) = O(p~'n*/?(logn)¢/3) and the lower
bounds L1Ly > n(logn)©/? and L; > n'/3(logn)¢/*. The claim follows by setting C

sufficiently large compared to a and +y, as usual. Our proof is completed. ]
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Chapter 3

The inverse Littlewood-Offord problem

3.1 Introduction

3.1.1 The Forward Littlewood-Offord problem

Let n;,i =1,...,n be iid Bernoulli random variables, taking values +1 with probability
%. Given a multiset V' of n integers vy, ..., v,, we define the random walk S with steps
in V' to be the random variable S := """ | v;n;. The concentration probability is defined

to be

p(V) :=supP(S = z).
Motivated by their study of random polynomials, in the 1940s Littlewood and Offord
[19] raised the question of bounding p(V'). (We call this the forward Littlewood-Offord
problem, in contrast with the inverse Littlewood-Offord problem discussed in the next
section.) They showed that p(V) = O(n~'2logn). Shortly after Littlewood-Offord

paper, Erdés [0] gave a beautiful combinatorial proof of the refinement

p(V) < =0(n~'?). (3.1)

Erdés’ result is sharp, as demonstrated by V = {1,...,1}.

The Littlewood-Offord and Erdés results are classic in combinatorics and have gen-
erated an impressive wave of research, in particular from the early 1960s to the late
1980s.

One direction of research was to generalize Erdds’ result to other groups. For ex-
ample, in 1966 and 1970, Kleitman extended Erdés’ result to complex numbers and

normed vectors, respectively. Several results in this direction can be found in [13] 17].
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Another direction was motivated by the observation that can be improved
significantly under additional assumptions on V. The first such result was discovered
by Erdés and Moser [7], who showed that if v; are distinct, then p(V) = O(n=%/2logn).
They conjectured that the logarithmic term is not necessary and this was confirmed by

Sérkozy and Szemerédi [27].

Theorem 3.1.2. Let V be a set of n different integers, then

p(V) = O(n™%?).

In [15], Haldsz proved very general theorems that imply Theorem and many others.

One of his results can be formulated as follows.

Theorem 3.1.3. Let | be a fixed integer and R; be the number of solutions of the

equation v, + -+ - +v;, = v +---+vj. Then

It is easy to see, by setting I = 1, that Theorem |3.1.3| implies Theorem |3.1.2
Another famous result in this area is that of Stanley [28], which, solving a conjecture
of Erdés and Moser, shows when p(V') attains its maximum under the assumption that

the v; are different.

Theorem 3.1.4. Let n be odd and Vy :={—[n/2],...,|n/2]}. Then
p(V) < p(Vo).

A similar result holds for the case n is even [2§]. Stanley’s proof of Theorem
used sophisticated machineries from algebraic geometry, in particular the hard-
Lepschetz theorem. Few years later, a more elementary proof was given by Proctor [22].
This proof is also of algebraic nature, involving the representation of the Lie algebra
sl(2,C). As far as we know, there is no purely combinatorial proof.

It is natural to ask for the actual value of p(Vp). From Theorem one would

guess (under the assumption that the elements of V' are different) that
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p(Vo) = (Co + o(1))n~?/?

for some constant Cy > 0. However, the algebraic proofs do not seem to yield the value
of Cy. In fact, it is not obvious that lim,,_ n°/ 2p(Vo) exists.

Assume that Cjy exists for a moment, one would next wonder if Vj is a stable
maximizer. In other words, if some other set VJ has p(Vp)" close to Con~%/2, then
should V{j, in some sense, close to V ? (Notice that p is invariant under dilation.)

So far we have discussed various results on the concentration probability. There
is another quantity that has been widely studied in theoretical probability, the small
ball probability. This can be seen as the continuous analogue of the above. Instead of
considering the probability that the random sum S concentrates on a single point, we
consider the probability that it concentrates in a small ball.

Let V = {v1,...,v,} be a multiset of n vectors in R?. For any x € R? and r > 0,
we let B(x,r) denote the closed disk of radius r centered at z. Let z be a real-valued
random variable and zy, ..., z, be iid copies of z. We define the small ball probability
as

n
pr-(V) = sup P(> vz € B(x,7)).
zeRd ;4
Notice that, in contrast with the discrete setting, the small ball probability does not
vary much if one slightly changes the vectors v;.

The original setting in Littlewood-Offord paper [19] considered the bound of p; . (V)

when v; are real numbers of absolute value at least 1, and z has Bernoulli distribution

7. The continuous version of Erdds’ theorem shows that in this case

(n72)
2n

p1,(V) < = O(n~1?%). (3.2)

The results of Kleitman are also valid for this setting. Another beautiful extension
given by Frankl and Fiiredi [§] also demonstrated a sharp upper bound for the small

ball probability in general Euclidean space.
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Theorem 3.1.5. Assume that vy, ...,v, € R? such that ||vi|la > 1. Then

()

pea(V) < ([7/2] + 1+ 04(1) 2

3.1.6 The inverse Littlewood-Offord problem

We first discuss the discrete setting. Motivated by inverse theorems from additive
combinatorics (see [40, Chapter 5]) and a variant for random sums in [33, Theorem 5.2],
Tao and Vu [37] brought a different view to the problem. Instead of trying to improve
the bound further by imposing new assumptions as done in the forward problems, they
tried to provide the full picture by finding the underlying reason for the concentration
probability to be large (say, polynomial in n).

Notice that the (multi)-set V has 2" subsums, and p(V) > n~¢ mean that at least
2% among these take the same value. This suggests that the set should have a very
strong additive structure. In order to determine this structure, we first discuss a few
examples of V' where p(V) is large.

Example 3.1.7. Let I = [N, N]| and v1,...,v, be elements of I. Since S € nl, by
the pigeonhole principle, p(V') > ﬁ = Q(RLN) In fact, a short consideration yields a

better bound. Notice that with probability at least .99, we have S € 10y/nl, thus again

by the pigeonhole principle, we have p(V') = Q(\/%N) If we set N = n®1/2 for some

constant C > 1/2, then

p(V) = Q7). (3.3)
The next, and more general, construction comes from additive combinatorics.

Example 3.1.8. Let Q be a proper symmetric GAP of rank r and volume N. Let
U1, ..., Uy be (not necessarily distinct) elements of P. The random variable S =" | vin;

takes values in the GAP nP. Since [nP| < Vol(nB) = n"N, the pigeonhole principle

implies that p(V) > Q(n}N) In fact, using the same idea as in the previous eram-

1

m) If we set N = n€~"/2 for some constant

ple, one can improve the bound to Q(
C >r/2, then

p(V) = 0-r). (3.4)
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The above examples show that if the elements of V belong to a proper GAP with small
rank and small cardinality then p(V') is large. A few years ago, Tao and Vu [37] showed

that this is essentially the only reason:

Theorem 3.1.9 (Weak inverse theorem,[37]). Let C,e > 0 be arbitrary constants.
There are constants v and C' depending on C and € such that the following holds.
Assume that V. = {v1,...,v,} is a multiset of integers satisfying p(V) > n=C. Then
there is a proper symmetric GAP Q of rank at most r and volume at most n®" which

€

contains all but at most n'=¢ elements of V (counting multiplicity).

Remark 3.1.10. The presence of the small set of exceptional elements is not completely
avoidable. For instance, one can add o(logn) completely arbitrary elements to V' and
only decrease p(V') by a factor of n=°M) at worst. Nonetheless we expect the number of

such elements to be less than what is given by the results here.

The reason we call Theorem weak is that the dependence between the parame-
ters is not optimal. In particular, they are far from reflecting the relations in (3.3 and
(3.4). In a later paper [38], Tao and Vu refined the approach to obtain the following

stronger result.

Theorem 3.1.11 (Strong inverse theorem, [38] ). Let C' and 1 > ¢ be positive constants.
Assume that

p(V)>n=C.

Then there exists a proper symmetric GAP Q of rank d = Oc (1) which contains all

but O, (n'~%) elements of V (counting multiplicity), where
Q| = Oc-(n“2%).

The bound on |@Q| matches (3.4)), up to the n® term. However, this error term seems

to be the limit of the approach. The proofs of Theorem [3.1.9] and [3.1.11] rely on a

replacement argument and various lemmas about random walks and GAPs.
Let us now consider another application of Theorem [3.1.11] Notice that Theorem

3.1.11] enables us to make very precise counting arguments. Assume that we would like
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to count the number of (multi)-sets V' of integers with max |v;| < N = n®1 such that
p(V)=p:=n=C.
Fix r > 1, fix|'|a GAP @ with rank r and volume |Q| = n¢~3. The dominating

term in the calculation will be the number of multi-subsets of size n of (), which is

|Q‘n _ n(Cf%Jre)n < nCnnf%+en — pfnnfn(%fe)‘ (35)

Motivated by questions from random matrix theory, Tao and Vu obtained the following
continuous analogue of this result.
Let n be a positive integer and 3,p be positive numbers that may depend on n.

Let S, 5, be the collection of all multiple sets V = (vi,...,v,),v; € R? such that

iy [lvil* =1 and psa(V) = p.

Theorem 3.1.12 (The -net Theorem, [35]). Let 0 < € <1 and C > 0 be constants.
Then, for all sufficiently large n and 3 > exp(—n€/3) and p > n~C there is a set
S C (R?)™ of size at most

n(i—e)

p~"n~"27 + exp(o(n))

such that for any V = {vi,...,von} € Sppgp there is V! = (v},...,v},) € S such that

lvi = vf|l2 < B for all i.

The theorem looks a bit cleaner if we use C instead of R? (as in [35]). However, we
prefer the current form as it is more suitable for generalization. The set S is usually
referred to as a (B-net of S, 3.

Theorem [3.1.12]is at the heart of the establishment of the Circular Law conjecture
in random matrix theory (see [35], also [36]). It also plays an important role in the
study of condition number of randomly perturbed matrices (see [39]). Its proof in [35]

is quite technical and occupies the bulk part of that paper.

1A more detailed version of Theorems and [3.1.11 tells us that there are not too many ways to
o

choose the generators of ). In particular, if N = n , the number of ways to fix these is negligible
compared to the main term.
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On the other hand, given the above discussion, one would, obviously, expects to
obtain Theorem [3.1.12)as a simple corollary of a continuous analogue of Theorem [3.1.11
However, the arguments in [35] have not yet provided such inverse theorem (although it
did provide a sufficient amount of information about the set S that makes the estimate
possible). The paper [24] of Rudelson and Vershynin also contained a characterization
of the set S, but their characterization of somewhat different spirit than those discussed

in this chapter.

3.2 A new approach and new results

In this chapter, we present a new approach to the inverse theorem. The core of this
new approach is a (long range) variant of Freiman’s famous inverse theorem: Theorem
o2

The new approach seems useful. First of all, it enables us to remove the error term

n® in Theorem [3.1.11] resulting in an optimal inverse theorem.

Theorem 3.2.1 (Optimal inverse Littlewood-Offord theorem, discrete case). Let C' and
1 > e be positive constants. There is a constant ¢; = c1(g,C) such that the following
holds. Assume that

p(V) >n=C.

Then there exists a proper symmetric GAP Q of rank r = Oc (1) which contains all

but at most en elements of V' (counting multiplicity), where
QI = Oce(p(V)"'n"2).
This immediately implies several forward theorems, such as Theorems and

Proof. (of Theorem [3.1.2)) Assume, for contradiction, that there is a set V of n different
number such that p(V) > ¢;n /2 for some large constant ¢; to be chosen. Set & =
.1,C = 3/2. By Theorem there is a GAP @ of rank r and size OE(%nC_g) that
contains at least .9n elements from V. This implies |Q| > .9n. By setting ¢; sufficiently
large and using the fact that C' = 3/2 and r > 1, we can guarantee that |Q| < .8n, a

contradiction. ]
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Theorem can be proved similarly with the detail left as an exercise.

Similar to [37, [38], our method and results can be extended (rather automatically)
to much more general settings.
General V. Instead of taking V' to be a subset of Z, we can take it to be a subset of
any abelian torsion free group G (thanks to Freiman isomorphism). We can also replace
Z by the finite field F;,, where p is any sufficiently large prime. (In fact, the first step
in our proof is to embed V into F,.)
General 7. We can replace the Bernoulli random variables by independent random
variables 7; satisfying the following condition. There is a constant ¢ > 0 and an infinite
sequence of primes p such that for any p in the sequence, any (multi)-subset V' of size

nof F, and any t € F,,

H|Eep mivit)] < exp(— ZH (3.6)

=1

where ||z|| denote the distance from z to the closest integer (we view the elements of

F, as integers between 0 and p — 1) .

Example 3.2.2. (Lazy random walks) Given a parameter 0 < p < 1, let i be iid
copies of a random wvariable n*: n* =1 or —1 with probability /2, and n* = 0 with

probability 1 — . The sum

n
- § niuvia
=1

can be viewed as a lazy random walk with steps in V. A simple calculation shows

2rx
Ee,(nz) = (1 — p) + pcos >

It is easy to show that there is a constant ¢ > 0 depending on pu such that

2rx x
|(1 — p) + pcos 7! < eXp(—CHEHQ)

Example 3.2.3. (u-bounded variables) It suffices to assume that there is some constant

0 < pu <1 such that for all i
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2nx
|Eep(niz)] < (1 — p) + pcos o (3.7)

Theorem 3.2.4. The conclusion of Theorem holds for the case when V is a multi-
subset of an arbitrary torsion free abelian group G and n;,1 < i < n are independent

random variables satisfying (3.6)).

In the next application, we address the issues concerning Theorem [3.1.4l First, we

compute the maximum concentration probability

p(Vo) = (\/2:4+ o(1))n~?/2, (3.8)

Next, we obtain a stable version of Theorem which shows that if p(V) is close to
(1v/24/7 + 0(1))n /2, then V is close to Vj .

Theorem 3.2.5 (Asymptotic and stable Stanley theorem). Let V' be a set of n distinct

elements of a torsion free group, then

o) < (2 + oy

Furthermore, there is a positive constant €g such that for any constant 0 < € < €q, there
is a constant 0 < € = € (e) such that € — 0 as e — 0 and the following holds. If V C Z

and p(V) > (1/24/7 — €)n=3/2 then there exists an integer k which divides all v € V

and

P REAIERID LS

veV veVp

As a byproduct, we obtain the first non-algebraic proof for the asymptotic version
of Stanley theorem. More importantly, this result and its proof reveal a natural reason
for Vp to be the optimal set: This is the set (modulo a dilation) that minimizes the
variance ), oy v? of the random sum S. It is easy to see that if

ZUQ <(1+¢€) Z v?
veV vEVy
then [V\Vy| < € n, with € tends to zero with €. Our theorem actually says more than

this, as it also bounds the elements that do not belong to V4.
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We now turn to the continuous setting. Let z be a real valued random variable such

that there exists a constant C, so

P(l S 21 — 22 S Cz) 2 1/2, (39)

where z1, z9 are idd copies of z. We notice that Bernoulli random variables are clearly of
this type. (Also, the interested reader may find more general than the condition of
r-controlled second moment defined in [35] and the condition of bounded third moment
in [24].) In the above C, is not uniquely defined. In what follows, we will take the
smallest value of C,.

We say that a vector v € R? is §-close to a set Q C R? if there exists a vector ¢ € Q

such that ||[v — qll2 < §. A set X is d-close to a set Q if every element of X is d-close to

Q.

Theorem 3.2.6 (Continuous Inverse Littlewood-Offord theorem). Let0 < e < 1,0 < C
be constants. Let 8 > 0 be a parameter that may depend on n. Suppose that V =
{vi,...,vn} is a (multi-) subset of R such that Y1 | |vil|3 = 1 and that V has large

small ball probability

p = pﬂ,z(v) > n—C’

where z is a real random variable satisfying (3.9). Then the following holds. For any
number n' between n® and n, there exists a proper symmetric GAP Q = {_;_, zig; :

|xi| < L} such that

e (Full dimension) There exists logn < kK < V0! such that the dilate P :=

Bk - Q contains the discrete hypercube {0,1}2.

o (Approzimation) At least n —n' elements of V are O(%)-close to Q.

e (Small rank and cardinality) Q has constant rank d < r = O(1), and cardinality

|Q] < max (O(pfln’(f”d)ﬂ), 1) :
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e (Small generators) There is a non-zero integer p = O(vV/n/) such that all steps

pij

gi of Q have the form g; = (gi1,--.,9id), where g;j = [ D

pij = O(B~Wn')

with p;; € Z and

This theorem is sharp in the sense that the exponent (—r 4 d)/2 in the bound on |Q)|
cannot be improved in general (see for more details).

Theorem implies the following corollary (see also for a simple proof), from
which one can derive Theoremin a straightforward manner (similar to the discrete

case discussed earlier).

Corollary 3.2.7. Let 0 < € < 1,0 < C be constants. Let B > 0 be a parameter that
may depend on n. Suppose that V = {vy,...,v,} is a (multi-) subset of R such that

S |lvill3 =1 and that V' has large small ball probability

pi=pg.(V)=nC,

where z is a real random variable satisfying (3.9). Then the following holds. For any
number n' between n® and n, there exists a proper symmetric GAP Q = {d_;_, ©igi :

|z;| < L;} such that
o At least n —n' elements of V are (B3-close to Q.

e () has small rank, r = O(1), and small cardinality

-1

Q| < max (O(’;ﬁ),l).

e There is a non-zero integer p = O(v/n’) such that all steps g; of Q have the form

9i = (gin, -+ gia), where gij = BPL with py; € Z and pij = O(B~'V/n/)

In the above theorems, the hidden constants could depend on previously set constants
€,C,C,,d. We could have written O, ¢ ¢, ¢ and <, c,c, 4 everywhere, but these nota-

tions are somewhat cumbersome and this dependence is not our focus.

Proof. (of Theorem [3.1.12) Set n’ := n'~2. Let &' be the collection of all subsets of

size at least n —n/ of GAPs whose parameters satisfy the conclusion of Theorem
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Since each GAP is determined by its generators and dimensions, the number of such

GAPs is bounded by ((8~1v/n)Vi/)OW(£2)00) = exp(o(n)). (The term (£)0W

bounds the number of choices of the dimensions L;.) Thus the cardinality of &’ is at

most ((OdCZ(f/n—l,))” + 1) exp(o(n)).

We approximate each of the exceptional elements by a lattice point in 3 - (Z/d)%.

Thus if we let S” to be the set of these approximated tuples then |S”| < Y7, (Oa(871))"
exp(o(n)) (here we used the assumption that 3 > exp(—n</?)).
Set S := &' xS". Tt is easy to see that |S| < (n~Y/?+<p~1)"+exp(o(n)). Furthermore,

if p(V) > n~ 9@ then V is B-close to an element of S, concluding the proof. ]

3.3 Proof of Theorem [3.2.1]

Embedding. The first step is to embed the problem into the finite field F,, for some
prime p. In the case when v; are integers, we simply take p to be a large prime (for
instance p > 2"(>"7" | |v;| 4+ 1) suffices). If V' is a subset of a general torsion-free group
G, one can use Theorem [1.2.3

From now on, we can assume that v; are elements of F, for some large prime p. We
view elements of F,, as integers between 0 and p — 1. We use short hand p to denote
p(V).
Fourier Analysis. The main advantage of working in F,, is that one can make use of

discrete Fourier analysis. Assume that

p=P(S=0a)=E> Y (&S —a)=E= ) ¢(¢S)e,(—ta). (3.10)
§€Fy £€EF,
By independence
- - 2mév;
Ee,(£95) = Hep(fnivi) = Hcos ) (3.11)
i=1 i=1

Since |e,(—€a)| = 1, it follows that
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Z 27rvz§ 1 Z |COS;W€‘- (3.12)

cF, P e,
By convexity, we have that |sinwz| > 2||z|| for any z € R, where ||z| := [|z[|r/z is the
distance of z to the nearest integer. Thus,
1
leos 0| <1 — =sin? = < 12|22 < exp(—2[| 2 ?), (3.13)
p 2 p p p

where in the last inequality we used that fact that 1 —y < exp(—y) for any 0 <y < 1.

Consequently, we obtain a key inequality

<7ZH1 ”Zf <fZexp 22\\”’5 (3.14)

Pécr, i P ¢cr,
Large level sets. Now we consider the level sets Sy, := {£| Y1, [[vié/p||> < m}. We

have

*C<p<72exp QZ:HUZ‘f 11) ;Z —2(m — 1))[Sp|-
m>1

§€Fp

Since ), <, exp(—m) < 1, there must be is a large level set S, such that

| S| exp(—m + 2) > pp. (3.15)

C

In fact, since p > n~%, we can assume that m = O(logn).

Double counting and the triangle inequality. By double counting we have

353 u”zfrr? $ ZH%HQ < m|Spl.

=1 £€Sm £€Sm

So, for most v;

v;€ Com
Zn 1> < =>=15ml (3.16)
£eSm

for some large constant Cj.
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Set Cp = £~1. By averaging, the set of v; satisfying (3.16)) has size at least (1 —¢)n.
We call this set V’. The set V\V’ has size at most en and this is the exceptional set
that appears in Theorem In the rest of the proof, we are going to show that V’

is a dense subset of a proper GAP.

Since || - || is a norm, by the triangle inequality, we have for any a € kV’
a& Com
d=IP< k2715m|~ (3.17)
§ESM

More generally, for any | < k and a € [V’

S % < 2, (3.18)
EESH "

Dual sets. Define Sy, = {a|J ccg, H%HQ < 555/9m|} (the constant 200 is adhoc and
any sufficiently large constant would do). S}, can be viewed as some sort of a dual set
of Sp,. In fact, one can show as far as cardinality is concerned, it does behave like a

dual

8p
SHl < ——. 3.19
551 < 75 (3.9
To see this, define T'(a) = g, cos 27;%5. Using the fact that cos2mz > 1 — 100||2|]?

for any z € R, we have, for any a € S},

a& 1
T, > Y (1—100]=]% > 5 /Sml.
£€5m p

2max

One the other hand, using the basic identity » acF, CO8 = pl,—g, we have

> T2 < 2p| S

acFy

(3.19) follows from the last two estimates and averaging.
Set k := c1./,5, for a properly chosen constant ¢; = ¢1(Cp). By (3.18) we have
UR_ V' C S}, Set V' = V'U{0}; we have kV" C S, U{0}. This results in the critical

bound
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KV | = 0(|SL;L’) = O(p~Lexp(—m + 2)). (3.20)

The Long Range Inverse Theorem. The role of F,, is now no longer important, so
we can view v; as integers. The inequality is exactly the assumption of our Long
Range Inverse Theorem.

With this theorem in hand, we are ready to conclude the proof. A slight technical
problem is that V" is not a set but a multi-set, so we are going to apply Theorem m
to X being the set of different elements of V. Notice that k = Q(/2) = Q(\/%),

so p~ ' < n% is bounded from above by k2¢+1.

It follows from Theorem that X is a subset of a proper symmetric GAP @ of

rank r = O¢ (1) and cardinality

—r —r " - ny_p
Oc (- X1) = Ok~ k") = O (57 expl-m)(y /) )
= OC,E(Io_ln_T)a

concluding the proof.

3.4 Proof of Theorem [3.2.6]

We denote the z-norm of a real number to be

lwlz = (Bllw(z — 22)])"?,

where z1, z9 are two iid copies of z.

Fourier analysis. Our first step is to obtain the following analogue of (3.14)), using

the Fourier transform.

Lemma 3.4.1 (bounds for small ball probability).
pre(V) < expmr®) [ exn(= 3 (00 €)2/2 = wl€l)e
i=1

This lemma is basically from [35]; the proof is presented here for the reader’s conve-

nience.
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Proof. (of Lemma [3.4.1)) We have

ZZzUZEer ||Zzz%—x||2<7"
=P <exp<—7ru >z —al3) > exp(—7r7"2)>
=1

n
< exp(mr?)E exp(—7| Z 20 — x||3).
=1

Notice that

exp(—z]}3) :/Rd€(<fc,€>)exp(—7r||§!§)d§

We thus have

Zzzvz € B(z,r)) < exp(mr? / Ee(( Zzzvz, x,€)) exp(—]|€]|3)d¢
=1

Using

|Ee Zzsz | = H |Ee(zi<vi>£>)‘a

=1

and

[Ee(zi(vi, €))| < [Ee(zi(vi,€))*/2 +1/2 < exp(~[[{vi, €)2/2),

we obtain

pre(V) < expmr®) [ exn(= ZH 0 1272 — w3 de

Next, consider Vg := 71V = {37 tvy,..., 7 v, }. It is clear that

pp,=(V) = p1,:(Vp).
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We now work with Vs. Thus p; (V) > n %M and Zuevﬁ |v||? = 872
For short, we write p for p1 .(V3). Set M := 2Alogn where A is large enough. From
Lemma and that p > nOM we easily obtain

RS

X —1 2 2
/”€2<Me p( 2 Z (v, Oz — wl[€l[2)dE >

UEVg

Large level sets. For each integer 0 < m < M we define the level set

Smi=qEERY: D (W, OI2+ €13 <m

VeV
Then it follows that 3, s #(Sm) exp(—% +1) > p, where u(.) denotes the Lebesgue
measure of a measurable set. Hence there exists m < M such that p(S,,) > pexp(—2).

Next, since Sy, C B(0,+/m), by pigeonhole principle there exists a ball B(z, %) C
B(0,+/m) such that

1
m_

(B(,5) N Sm) > catt(Sm)m =42 > cqpexp( 1 ym 2.

Consider &;,& € B(x,1/2) N Sy,. By Cauchy-Schwarz inequality, and notice that .||,

is a norm, we have

D v, (= &I < 4m.

UEV/}
Since & — & € B(0,1) and p(B(z,3) N Sy — Bz, 3) N Sp) > p(B(z, 3) N Sy, if we
put
T:={¢€ B(0,1),)_lI(& )2 < 4m},
=1

then

w(T) > cap exp(% —2)m~ /2,

Discretization. Choose N to be a sufficiently large prime (depending on the set T').

Define the discrete box
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By :={(k1/N,...,kq/N):k; € Z,—N < k; < N}.

We consider all the shifted boxes = + By, where 2 € [0,1/N]?. By pigeonhole principle,
there exists xo such that the size of the discrete set (zo + Bp) N'T is at least the
expectation, |(zg + Bg) NT| > N%u(T) (to see this, we first consider the case when T

is a box itself).

Let us fix a § € (xo + Bo) NT. Then for any & € (zo + By) N T we have

Ylwa -l <2 S al2+ > &) | < 16m.

’UEVB ’L)GV@ ’UGVB
Notice that §g — £ € By := By — By = {(kﬁl/N,...,kd/N) c ki€ Z,—2N < k; < QN}.
Thus there exists a subset S of size at least cqN%p exp(} — 2)m~%2 of By such that

the following holds for any s € S

> i, s)lI2 < 16m.

’UEVg
Double counting. We let y = z; — 22, where z1, zo are iid copies of z. By definition

of S, we have

> D I s)lI2 < 16mls|

seSveVg

B, > > ly(v. s)l}z < 16m]S].

seS vEVg

It is then implied that there exists 1 < |yg| < C, such that

YD (v, s)lRz < 16m|SIP(1 < |y < C.) ™!

seSveV

On the other hand, by property (3.9) we have P(1 < |y| < C,) > 1/2. So

D> llvofv.s)llkz < 32mlS|.

seS 'UGV@
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Let n' be any number between n¢ and n. We say that v € V3 is bad if

32m[5’]
> llvolv, )iz > —

n
SES

Then the number of bad vectors is at most n’. Let Vé be the set of remaining vectors.
Thus Vj contains at least n —n’ elements. In the rest of the proof, we are going to

show that VB/ is close to a GAP, as claimed in the theorem.

Dual sets. Consider v € Vjj, we have > ¢ Hy0<s,v)H%{/Z < 32|K|/n/.

Set k = ‘/647r 7, and let V' := k(V3 U {0}). By Cauchy-Schwarz inequality (see
(3.18)), for any a € V' we have

S
S 2 s w00 < .

sES

which implies

5]

Z cos(2m (s, yoa)) > R

seS

Observe that for any x € B(0, ﬁ) and any s € S C B(0,2) we always have cos(2m (s, z)) >
1/2 and sin(2m (s, z)) < 1/12. Thus for any = € B(0, 357),

ZCOS (27 (s, (yoa + x))) >

On the other hand,

/me[ d(Zcos(%r(s,:c ) de < Z / exp 277\/7<81—82, >)d

S1 SQGS

<y ’S|Nd.

Hence we deduce the following

Slo) ISV e
o cos(2m(s, x) — <q <d 7o
<oy ( Q2 = (6" ) < {sijer <3
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Now we use the fact that S has large size, |S| >q Népexp(% — 2)m~%2, and yoVy +
B(0, 3555) € [0, N]4,
a/2.

1 m
1 B -1 _ 2
#yoVa + B(0, 5p ) <a p " exp(= +2)m

Thus, we obtain the following analogue of ([3.20))

1
’ 256dy0

i (B30 0D + B, g5 ) <t exo(= ) 4+ 2y, (3.21)

The Long Range Inverse Theorem. Our analysis now again relies on the Long
Range Inverse Theorem. Let D := 1024dyy. We approximate each vector v’ of Vﬁ’ by a

closest vector in ()4,

d
v — Dikuz < g;, with a € Z¢.

Let Ag be the collection of all such a. Since Zv,evé [v']|3 = O(B32), we have

> lall3 = Oac. (k*872). (3.22)

aEAg

It follows from ({3.21]) that

_ m
k(A +C(0,1)] = Oac. (07" (DR)'y5 " exp(— +2)m™?)

_ —17.d _m d/2
=04, (p k® exp( 1 +2)m )

where C(0,r) is the discrete cube {(z1,...,2q4) € Z%: |z| < r}.
Now we apply Theorem to the set Ag + C(0,1) (notice that 0 € Ag). There
exists a proper GAP P = {3"1_, ;9; : |z;] < L;} C Z% containing Ag + C(0,1) which

has small rank » = O(1), and small size

_ m .,
|P| = Ouc, ((p 1kdexp(fz + 2)md/2k: >

= Oac. (7).
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Moreover, we have learned from the proof of Theorem [.5.2] and Lemma [T.1.2] that kQ
can be contained in a set ck(Az+C(0,1)) for some ¢ = O(1). Using (3.22)), we conclude

that all the generators g; of Q are bounded,

lgill2 = Oq.c. (kB71).

Next, since C(0,1) C @, the rank r of P is at least d. It is a routine calculation to see

that @Q := % - P satisfies all required properties in the theorem.

3.5 Remarks on Theorem [3.2.6

Consider the set U := [—2n,—n]| U [n,2n]. Sample n points vi,...,v,, from U, inde-
pendently with respect to the (continuous) uniform distribution and let A be the set of

sampled points. Let £ be the gaussian random variable N(0,1) and consider the sum

S = v1&1 + -+ v,

where &; are iid copies of £.
S has gaussian distribution with mean 0 and variance ©(n?), with probability one.
Thus, for any interval I of length 1, P(S € I) < Cn=3/2, for some constant C.

Set n’ = dn, for some small positive constant 6. Theorem states that (most

of) A is O(k\)/g;)—close to a GAP of rank 7 and volume O(n?>"2). We show that one
cannot replace this bound by O(n?~27¢). There are only three possible values for r:

r =1,2,3 and our claim follows from the following simple lemma.

Lemma 3.5.1. Let C, 6, e be positive constants and n — oo. The followings hold with

probability 1 — o(1) (with respect to the random choice of A).

e There is no subset A" of A of cardinality at least (1 —0)n and an AP Q of length

at most Cn3/2¢ such that A’ is %\/%”—close to Q.

o There is no subset A" of A of cardinality at least (1 — 0)n and a GAP Q of rank

2 and volume at most Cn'=¢ such that A’ is %En—close to Q.

R
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e There is no subset A" of A of cardinality at least (1 — 0)n and a GAP Q of rank

3 and volume at most Cn'/2=¢ such that A’ is CLE”-CZOSQ to Q.

NG

The above construction can be generalized to higher dimensions as well, but we do not

attempt to do so here. In the rest of this section, we prove Corollary [3.2.7]

Proof. We consider the following two cases.
Case 1: » > d + 1. Consider the GAP P at the end of the proof of Theorem [3.2.6
Recall that |P| = Oq4c, (p~tn/\ /2y = Ouc.(p~t/Vn). Let

g

- 2.p
Dk

Q:
It is clear that @ satisfies all the conditions of Corollary (Notice that in this case

ﬁi;%"/ )-close to

we obtain a stronger approximation: almost all elements of V' are O(
Q.)

Case 2: r = d. Because the unit vectors e; = (0,...,1,...,0) belong to P =
{E?Zl rigi ¢ |xi| < N;j} € Z4, the set of generators g;,i = 1,...,d forms a base with
unit determinant of R%. In P, consider the set of lattice points with all coordinates
divisible by k. We observe that ( for instance by [40, Theorem 3.36]) this set can be
contained in a GAP P’ of rank d and cardinality O(2|P|) = O(p~t/n/ "/2) (here we use
the bound |P| = O(p~! exp(—%)mdﬂ)). Next, define

p

= . p.
@ Dk

It is easy to verify that @ satisfies all the conditions of Corollary (Notice that in

this case we obtain a stronger bound on the size of Q.) O

3.6 Proof of the optimal asymptotic bound (3.8)

Consider Vj as in Theorem and view the elements of F,, as integers between —p/2
and p/2. By (3.10), we have
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ZH 27;'5 S ] o 27”'5. (3.23)

SEFPZGV6 EeF, ieVy

We split this sum into two parts

Y= }1) Z H cos — mf

1 eV
H <= og? Doy 2R

1
Yo ;:5 Z cosﬂ—lg

H§”>log2n A% p
D n3/2

We are going to show that

Lemma 3.6.1.

s

¥ :]1) Z H | cos ng e = 4 o(1))n 2,

log n 1€V
15 PS5

Lemma 3.6.2.

oo 3 J[les ™ <n

” H>10g n’lEV()

The two lemmas together imply that p(Vp) > \/ 4 4 o( n~3/2. The matching lower
bound also follows from these lemmas and (3.12)). This verifies (3.8).

Proof. (of Lemma |[3.6.1]) The first equality is trivial, as all cos are positive in this range

-3/2

of £. Viewing £ as an integer with absolute value at most n plog? n, we have

cos e =1-(5+ 0(1>)7r2;£2 = exp <—(1/2 + 0(1))7T22252> '

Since Y ey, 1% = (14 (1)) 15, it follows that

S = (14 o(1)) /| )

3.2
n°me
10?’52” exp (—(1/2 +0(1)) TR ) .

Setting y = 4/ %x, changing variables, and using the gaussian identity \/% ffooo exp(—%)dy =

1, we have
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3.2 00 2 24
S = (o)) [ exn(= Dy = (/2 + o1y
12 . 2 ™
completing the proof. O

Proof. (of Lemma [3.6.2)). To prove Lemma we use the upper bound from ([3.13]).

We split the sum into three subsums, according to the magnitude of [|£]|. We make

frequently use of the simple fact that if [w[]|5] < 1/2 then ||“| = [w|[|5].

Small & 8" < || < L. For all w with |w| < 2, we have ||| = wl[|$]].
w§ 13 n3log*n
> I =D P> > 4logn (3.24)
D n3
weVp weVp

Thus, the contribution of this subsum is bounded from above by n =%

Medium &: 2 < ||]§D|| < 1. By Cauchy-Schwartz, we have

W' o H_i

|| H2+H (o=

For any £ in this case, let W(f) be the set of pairwise disjoint pairs (w,w’) € Vj
that maximizes the sum M(§) = 3, wyew () W — w'|? under the constrain that
|w ’\H£|| < § for all (w,w') € W(E). It is easy to check that M (&) > n for some
constant ¢ > 0 for all £ in this case (For more details see Lemma [3.9.2]) From here one
can conclude that the contribution of this subsum is at most exp(n~*1)) = o(n=%).

Large &: % < H%H < % By Weyl’s equidistribution theorem, the number of w € 1

such that waH > % is approximately n/2. Thus, for any & in this category

>z g (3.25)

weVy

thus the contribution of this subsum is only exp(—Q(n)).

3.7 Proof of Theorem [3.2.5|

The proof of this theorem has two steps. In the first step, we refine our approach to

prove the following theorem.
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Theorem 3.7.1 (Characterization of sets near optimal concentration probability). Let
d be a positive constant. Then there are constants C; = C1(0) > 0 and Cy = Ca() > 0
such that the following holds. Let V = {v1,...,v,} be a subset of size n of Fp, where
p > n is a large prime, such that p(V') > on=3/2. Then there exists a number k € F,

and a partition V- = V1 U Vo with the following properties:

L4 |V1’ S Cl;

-1 Con3
i ZUGVQ Hk:va2 S 12)7;1

This can be seen as a more precise version of Theorem in the case C' = 3/2. The
appearance of k is necessary as p(V') is invariant under dilation.

One can easily derive from this theorem a similar statement for a set V' of integers.

Corollary 3.7.2. Let § be a positive constant. Then there are constants C1 = C1(5) > 0
and Cy = C2(8) > 0 such that the following holds. Let V- = {v1,...,v,} be a subset of
size n of Z such that p(V') > dn=3/2. Then there exists a number k € Z and a partition

V = V1 U Vs with the following properties:
o [V1] < (4,
o k divides all elements of Va, and Yoy, |#|* < Con®.

Let us now sketch the second step. Corollary [3.7.2] implies that most of the elements of
V' (after dividing by k) belong to the interval [—C3n, Csn] for some large constant Cs.
For the sake of discussion, assume that all elements of V' are in this interval. Then we
can finish the proof by applying the analysis in the previous section to V' the same way
we did with Vj. The fact that V now in [—C3sn, Csn| instead of [—n/2,n/2] has little
importance. As far as V has constant density, all arguments will extend with slight

modifications. As a result, at the end we will have

p(V) < (1+0(1)51,

where
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1 W
Yi=-— E cos —é
p I3 <log2n weV p
lel_fg/g

Use the Taylor expansion and exponential approximation as in the previous section,

the right hand side is

(1+o0(1)) /| o2 exp (—(1/2 + o(1))n? Z w2x2> :

n3/2 weV

By the gaussian identity and change of variables, this is

(2 + o2 L2

T ZweV w? .

It follows that if p(V) > (1 — €)1/ Zn=3/2 then % > 1— 3¢, This implies

weV

TL3
10

< (142
Zw <(1+ 6)12

weV

giving the desired claim.

In what follows, we complete the above two steps in details. In the next section, we
prove Theorem [3.7.1] In Section we fill in the details of the second steps, which
include the necessary modifications of the arguments from the previous section and the

treatment of exceptional elements.

3.8 Proof of Theorem

We use a well-known result from Additive Combinatorics.

Theorem 3.8.1 (Cauchy-Davenport). [0, Theorem 5.4] Assume that A,B C F,.
Then |A + B| > min(p, |A| + |B| — 1).

We also a result that allows us to pass from F), back to torsion-free groups ([11, Theorem

1.3]).

Theorem 3.8.2. Let X C F), be a set with [2X| < v|X| and |X| = oy (p). Then X is

Freiman isomorphism of order k to a subset of Z.
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Now we are ready to prove Theorem By (3.15)

m_y

[Sinl > exp(4 M _ 9

Jop = dexp(- — 2pn~?2. (3.26)

for some m = O(logn) (it will turn out that m = O(1) later on).
Structure of S,,. Consider a set sequence, Sp,,2Sm, .. .,2'S,,, where [ is the largest
integer such that 4'm < n/100.

Assume that i is the smallest index such that [25,,| > 2.1|2¢71S,,| for all 1 < i < do.
Thus [205,,| > (2.1)]S,,].

By Cauchy-Schwartz inequality and by the definition of level sets, kS,, C Sk,
holds for all k. In particular, 2'S,, C Sy, C Sn/100-

On the other hand, by Theorem 218, > 2U=%0) (|20 G, | — 1). Hence

1S /100] > 28| > 207100 (|20 8, | — 1) > 2(70)(2.17%|S,,,| — 1)
> 271(2.1/2)"[ S|

> 9l=1(2.1 /2)i05exp(% — 2)pn 3/,

Observe that S, /109 is the dual set of V' (see Section , 80 |Sp 100l < 8p/m. Insert
this estimate and 2/ = ©(,/n/m) into the above inequalities, we derive that m = Og(1)
and ig = Os(1).

Now we consider the set X := 20S,,. By definition, for |X| < [S,/100| < p/n,
Theorem implies that X is Freiman-isomorphism of order 2h to a subset X’ of the
integers (h is a sufficiently large constant to be chosen).

Next, since |2X'| = [2X]| < 2.1|X| = 2.1|X’|, we apply Theorem and then
Lemma [1.1.2] (since h is large) to obtain an arithmetic progression P’ of rank 1 and of
size |P'| = ©(|X'|) such that P’ C hX".

Lifting back to F), we conclude that hX contains an arithmetic progression P of
rank 1 and of size |P| = ©(|X|) > p/n/?. Since X is symmetric, we may assume that
P is symmetric.

Set M := h%4"om = Os(1). Then P C hX = h20S,, C S)24i0,, = Su-
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To summarize, we have showed that there exists a constant C' = Os(1) and a
symmetric arithmetic progression P = {kz : |z| < = /2} such that the following holds

forall £ € P

n
ui 9
I < M
i1 P
Our next step is to derive structure for V. By dilating the elements of V by k~!, we

could assume that > 7" | HJ”Z |2 < M forall 0 < j < 3/2

Summing over j we get

n
Jvi CMp
Z Z || I? < REYCR (3.27)

i=1 0<5<

3/2
Set Vi:={veV:|7] = CI”TM} for some sufficiently large constant C’. We next show
that V7 contains only a few elements.

Viewing F,, as {0,...,p—1}, we observe that if v € V; then C'n3/2 < v < p—C'n%/2.
Provided that C'C’ is sufficient large, and j varies in 0 < j < 3 /2, we conclude that

there are at least MTP/Q indices satisfying jv € [, %p] (in Fp). It follows that

ju 1., Cp
O NI s
—cp P n
0<j<-55

Summing over v € V; we obtain

C |[Vilp
> Y Ze=ghk

veVi0<j< 58

Together with (3.27)), this implies that |Vi| < 48M.
Next we consider V5 := V\V;. By definition, H%H = jll 3|l for all j < ;=P and all

v € V. Thus

Sl v 2SI

p )
<n 0<j<

p

20’n3/2

> L Pt
64C"3 n9/2 " p
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Summing over v € V5 and using (3.27)), we obtain

1 |
> s Q/QHP >oX I

veVs veVz g<j<C2

3/2
CMp
= a2

Hence, Y- v, llv/pl]* < 64CC"> Mn3 /p?, concluding the proof.

3.9 Completing the proof of Theorem |3.2.5 details of the second step

By applying Theorem we obtain a partition V = V3 UV, = V3 Uk - Wy, where
Wo ==k_1V§ and

o V1] <,

|22 < Can®

i zzzu)el@b p2

Let C' = C(e) be a large positive constant and ¢ = ¢(e) be a small positive constant.
By setting C, ¢ properly and throwing away a small amount of elements of W5, we can

assume that Ws has the following properties
o || > (1 —é€)n;
e Wy C [-Cn,Cnl;

e Wy is c-irreducible, i.e. there is no d € Z which divides all but ¢|W3| elements of

Wa.

Set Wi :=k=1-V; (in Fp). Then V =k - (W, UWa) := k- W, we have

P(Sy = kv) = P(Sw = v) = ; 3 ep(—g) 11 cos”;’?

£eF, weW

We split the sum into two parts,
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1
2 ::]; Z ep(—v—g) costg

og n weW
HESS=:

log2 n weW
H;”> n3/2

We are going to exploit the structure of Wy to show that

Lemma 3.9.1.

Y <

H |cos—|< -3,
eWs

"=

Proof. Making use of (3.13)), we split the sum into three subsums, according to the

magnitude of ||£]|.

Small ¢: l°§/2" <3 Ll < . Similar to Section we easily obtain that
w§ £ (1 —€)*n®log*n
> || = > W= 5 = 4logn.
P 12 n
weWs weWs
Thus the contribution from this part is bounded from above by n=%.
Medium ¢ 55~ < H;%H < &i. To handle this part, we first observe the following

simple fact

Lemma 3.9.2. Let a € F), be arbitrary. Let £ € F), and | > 0 such that 1||€]| < p/2.

Then the following holds for any sequence 0 < ip < - < ipy <1 with m >4

S lla+ il = Sy (3.28)
j=1

Proof. (of Lemma [3.9.2). Without loss of generality we assume that m is even. For

each j < m/2, by the Cauchy-Schwarz inequality and the triangle inequality,

, . 1 . .
la+ 5817 + lla + im—j&ll* > S ll(a+ im—5€) = (a+ i€
1 1

> Nlim-g — €I 2 5(imes — i) €1,

Sum over 0 < j < m/2 and notice that i,,_; — i; decreases in j



71

I\/
l\DM—l
—_

M

la+ ;€]
Jj=1 1<j

Z (im=5 = %) e =5 Yo sl
j<m

1<j<m/2

ﬁ 2
Z 13 [F3]
O

Now we return to our main goal. We arrange the elements of W5 as —C'n < w1 < wg <
< Wy < Cn.

Setl := Thus 32C <1 < Cn. Let i1 be the largest index such that w;, —w; <

2HE/ I
[. We then move on to choose i2 > i1, the largest index such that w;, —w;,+1 <1, and
so on. By so, we create blocks of elements of Wy with the property that elements of
the same block have difference < {.

Since Wi 41 — Wij_y+1 > [ for all j, the number of blocks is less than 207” + 1. Next,
we call a block short if it contains no more than % elements of W5. The total number
of elements of W5 that belong to short blocks is bounded by (QC" + 1)(%) < @
\

Hence there are at least |TZ elements that belong to long blocks.
For simplicity, we divide each long block into smaller blocks of exactly L%J elements.

The number of such uniform blocks is then at least

1[Wa/2 _ 2C|Wa| _ Cn
2 1/8C 1 T 1

Now we apply (3.28)) to each block (with m = |[/8C]), and then sum over the collection
of all blocks,

Cnm &
>0 S ST ISR > Eul >,
weWs
where in the last bound we used | = 2”51/1,“
Large & gio < ||5] < 3. Let 6 := ;b and

w
W= {w € W, ||p€|y < 5.
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Assume, for a moment, that |W’| < (1 — ¢)|[Ws| for some positive constant ¢ = c(e).

Then >° e, H%HQ > | Wa|6% > §%n > log”én, and we are done.

So it suffices to show that |[W'| < (1 — ¢)|W3| for some sufficiently small c. Assume
otherwise, we will deduce that there exists a nontrivial d € Z that divides all the
elements of W', which contradicts the c-irreducibility assumption of W5.

To obtain the above contradiction we use the following lemma, which is a conse-

quence of Lemma [1.1.2

Lemma 3.9.3. Assume that X is a subset of [-Cn,Cn] of size n in Z. Then there
exists an integer k = k(C) and a positive number v = v(C) > 0 such that kX — kX

contains a symmetric arithmetic progression of rank 1 and length 2yn + 1.

Applying Lemma to Wa, we infer that that kW5 — kW5 contains an arithmetic

progression @ = {id : |i| < yn}. Since Q@ C [-2kCn,2kCn], the step d must be

bounded,
2kC
0<d< —. (3.29)
Y
Let ¢ be an element of Q). By definition, ¢ = wy + - -+ + wy — wgy1 — - - - — wy, for some

w; € Wa. Since H%EH < ¢ for all 7, by the triangle inequality we have H%H < 2k6.

We apply the above estimate for all elements of (), obtaining H%H < 2k6 for all
|i| < yn. But since 2k§ < %, it follows that H%H < 27—’“7?.

Next, we view F, as the interval [—(p — 1)/2,(p — 1)/2] of Z, and consider ¢ as
an integer satisfying 7= < [£| < §. By the above bound of H%H, we have d§ =
sp+t, where [t| < 25%.

We write £ = %ﬂ. As £ has large absolute value, s cannot be zero. Another crucial

observation is that as |[£| < p/2 and t is small, d does not divide s.

Let w be an arbitrary element of W’ and consider in Z the product w¢,

wfzi—l-fzsp—l—f—kj, (3.30)

where ws = s'd+t';8',t' € Z, and —d/2 <t < d/2.
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Now, since |w| < Cn, we have |%f] < Cn% = %% < 47, where in the last
inequality we used the fact that § is small compared to all other quantities.
Next we consider two cases, according to the value of t'.
Case 1 : t' #0. We have £ | PI<E andso%g\%p—i-%qﬁg—k%.

It is implied that ||“’§|| > L, and hence, by the bound of d from , ||w75\| >
o > 0. But this inequality violates the definition of W’
Case 2: t' = 0. It follows that d divides sw for all w € W’. Recall that d does not
divide s, we conclude that all the element of W’ is divisible by a nontrivial divisor of
d, which contradicts the c-irreducibility assumption of W5. This concludes the proof of

Lemma [B3.9.1]
O

We have shown that the contribution of ¥4 is negligible. Thus, it suffices to justify

Theorem from the following assumption

24 [ 12 (> 2

We have
v€ 2mwé
¥ = Z ep(—?) H cos
log n weW
5] < e 372
1 ﬂ'wf
<= Z H ]co ] H cos ——
p” ” nUJEWl weWs
1
<- > exp- Y || Z12 ) fwa(€),
p log n weWy
5]< e 372
where
Twé wlw?g?
Jw, (8) = cos — =exp | —(1/2+0(1)) > —
weWs p weW> p

Combining this estimate and the lower bound for ¥; we obtain that
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TL3
> wr<(1 +eg- (3.32)
weWs

To obtain information about Wi, we need to restrict the range of £ furthermore. Let

C = C(€) be a number so that

o2
/ exp(—=)dy = e.
ly|=C 2

Notice that if € is sufficiently small, then by the property of the Gaussian distribution

2
/ exp(—y—)dy > €2/, (3.33)
C/2<y|<C 2
Next, as p and n are large
1 y2
G ”2/ esp(- )
p C <€)< o2 1 wEWo ly|>C
n3/2 p n /2

< (1+4e)7t

\/W2 3/ exp(— dy,

where we used the estimate ),y w? > (1— 36)% as [Wa| > (1 —¢e)n.

It follows from (3.31)) that

12 00 2
LY e ( = 1R A0 2 0 =20y 5 [ oot Do
3/2

H§| weWy
s

Viewing F), as the interval [—(p —1)/2, (p — 1) /2] of Z, we now show that the elements

of W7 do not have large absolute values.

Lemma 3.9.4. Let wg be an arbitrary element of Wy. Then

3/2

< —
[wol < <5
Proof. (of Lemma D Assume, for a contradiction, that |wy| > ";—g Then the

number of ¢ € [--S2 3—/2] satisfying § < HU’OfH is at least (3/4 — o(1)) 2.

n3/2> n3/2
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Denote this set by I, we then have |I| > Cp/n3/2. By definition, if & € I then

w9 w0§2
ZH 1= === = _64

weW

Notice that the function fy, (&) is decreasing in |£| (in the range —3—/2 <¢e< n3/2)

We have
1
S b PETAGEE D SN S L DIIA
EEI || 1< 3/27§€I
1 1 1
SO U LACE N DR A
Pleer s
<1 fw, (6) — (1 —ex (—i))1 Z fwa (€)
_puéus 573 h T > o

As p and n are large, the above sum is bounded by

2 2
F1= (a0, W%” (/|y|<c exp(~1) — (1 - eXp(_ﬁiﬁl)) /C/2<|y<c eXp(_ZMy)
<@+ 46),/% <ﬁ (1 — exp(— 614))62/3>

where in the last estimate we used (3.33)).

By choosing € sufficiently small, this upper bound is smaller than the lower bound

provided in (3.31)), a contradiction. This concludes the proof of Lemma m O

To continue, set

:ZwQ_

weWy

As |w| < Q for all w € Wj and H | < 3/2, we have

> SP= 3 fuf? al||§12.

weWq weWq

Applying the same argument as in Lemma [3.9.4] we obtain
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<—n3
g1 S 402.

Recall that W = W; UWs and > w? < (1+¢€)n3/12 from (3.32)), we conclude that

weWs

3 .nd
E 2 _ § 2 § 2
weW weWy weWa

3

<1+ e')%,

where ¢ — 0 as € — 0, finishing the proof.
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