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This dissertation addresses the problems of sliding mode control for systems with slow

and fast dynamics. Sliding mode control is a type of variable structure control, where

sliding surfaces or manifolds are designed such that system trajectories exhibit de-

sirable properties when confined to these manifolds. A system using a sliding mode

control strategy can display a robust performance against parametric and exogenous

disturbances under the matching condition (Drazenovic’s condition). This property

is of extreme importance in practice where most systems are affected by parametric

uncertainties and external disturbances.

First, we investigate a high gain output feedback sliding mode control problem for

sampled-data systems with an unknown external disturbance. It is well-known that

under high gain output feedback, a regular system can be brought into a singularly

perturbed form with slow and fast dynamics. An output feedback based sliding surface

is designed using some standard techniques for continuous-time systems. Next, we con-

struct a discrete-time output feedback sliding mode control law for the sliding surface.

The main challenge in this work is the appearance of the external disturbance in the

control law. A remedy is to approximate the disturbance by system information of the

previous time sampling period. The synthesized control law is able to provide promising

results with high robustness against the external disturbance, which is demonstrated

by the bounds of the sliding mode and state variables. These characteristics are further
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improved by a method which takes into account system information of two previous

time instants in order to better approximate the disturbance. The stability and ro-

bustness of the closed-loop system under the proposed control laws are analyzed by

studying a transformed singularly perturbed discrete-time system.

The second topic of the thesis is to study sliding mode control for singularly per-

turbed systems which exhibit slow and fast dynamics. A state feedback control law

is designed for either slow or fast modes. Then, the system under that state feedback

control law is put into a triangular form. In the new coordinates, a sliding surface

is constructed for the remaining modes using Utkin and Young’s method. The sliding

mode control law is synthesized by a control method which is an improved version of the

unit control method by Utkin. Lastly, the proposed composite control law consisting

of the state feedback control law and sliding mode control is realized. It is shown that

stability and disturbance rejection are achieved. Our results show much improvement

when compared to the other works available in the literature on the same problem.

The problem of sliding mode control for singularly perturbed systems is also ad-

dressed by the Lyapunov approaches. First, a state feedback composite control is

designed to stabilize the system. Then, Lyapunov functions based on the state feed-

back control law and the system dynamics are employed in an effort to synthesize a

sliding surface. Two sliding surfaces and two sliding mode controllers are proposed in

this direction. Theoretical and simulation results show the effectiveness of the proposed

methods. Like composite approaches, the Lyapunov ones provide asymptotic stability

and disturbance rejection.

We also study singularly perturbed discrete-time systems with parametric uncer-

tainty. Proceeding along the same lines as in the continuous-time case, we propose two

approaches to construct a composite control law: a state feedback controller to stabi-

lize either slow or fast modes and a sliding mode controller designed for the remaining

modes. It is shown that the closed-loop system under the proposed control laws is

asymptotically stable provided the perturbation parameter is small enough.
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Chapter 1

Introduction

1.1 Sliding Mode Control

Variable structure systems (VSS) are special structure systems that have been exten-

sively studied for decades. The basic philosophy of the variable structure approach is

that the structure of the system varies under certain conditions from one to another

member of a set of admissible continuous time functions (Utkin, 1977). A VSS can

inherit combined useful properties from the structures. In addition, it can be endowed

with special properties which are not present in any of the structures (Utkin, 1977).

Sliding mode control is a type of variable structure control, where sliding surfaces

or manifolds are designed such that system trajectories exhibit desirable properties as

confined to these manifolds. A system using a sliding mode control strategy can display

a robust performance against parametric uncertainties and exogenous disturbances.

This property is of extreme importance in practice where most of plants are heavily

affected by parametric and external disturbances.

Consider a general VSS described by

ẋ(t) = f(x(t), t, u(t)) (1.1)

where x(t) ∈ Rn, and u(t) ∈ Rm. Each component of control is assumed to act in

discontinuous fashions based on some appropriate conditions,

ui(t) =


u+i (x, t) if si(x) > 0

u−i (x, t) if si(x) < 0

, i = 1, ...,m (1.2)

where si(x) plays the role of a sliding surface.

Since differential equations (1.1), (1.2) have discontinuous right hand sides, they do

not meet the classical requirements on the existence and uniqueness of solutions. A
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formal technique called the equivalent control method was introduced by Utkin (1977)

to analyze the equivalent dynamics of the closed-loop system. In this approach, a

control called the equivalent control is obtained by solving ṡ(t) = 0, namely

ds

dt
=

∂s

∂x
.
dx

dt
=

∂s

∂x
f(x, ueq, t) = 0. (1.3)

The system dynamics on the sliding surface is studied by substituting the equivalent

control ueq in equation (1.1). Note that the equivalent control ueq is not physically real-

izable due to the unknown disturbances. Furthermore, the equivalent system dynamics

is not exactly but very close to the sliding dynamics (Utkin, 1977).

The existence of the sliding mode is described by the following conditions (Utkin,

1978)

• Sliding condition (sufficient, local)

lim
s→0+

ṡ < 0, lim
s→0−

ṡ > 0 (1.4)

• Reaching condition (sufficient, global)

ṡ < −σsgn(s), (1.5)

where σ > 0 is a parameter to be designed.

• Control magnitude constraint (necessary)

umin ≤ ueq ≤ umax (1.6)

In sliding mode control, a sliding surface is first constructed to meet existence con-

ditions of the sliding mode. Then, a discontinuous control law is sought to drive the

system state to the sliding surface in a finite time and stay thereafter on that surface.

We now present some fundamental designs of sliding mode control for regular linear

systems. Consider a linear system

ẋ(t) = Ax(t) +Bu(t) +Df(t) (1.7)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control, f(t) ∈ Rr is the unknown but

bounded exogenous disturbance ∥f∥ ≤ M , with m ≤ p < n. It is assumed that B is
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of full rank, (A,B) is controllable and the following matching condition (Drazenovic,

1969) is satisfied

rank[B|D] = rankD (1.8)

In other words, D can be written as D = BG.

There are several systematic methods for constructing sliding surfaces, such that

Utkin and Young’s method (Utkin and Young, 1979), Lyapunov method (Gutman and

Leitmann, 1976; Gutman, 1979; Su et al., 1996). Utkin and Young’s method and

Lyapunov method to be presented below will be employed in solving our problem in

the following chapters.

Since B has full rank, there exists a nonsingular transformation T such that

TB =

 0(n−m)×m

B0

 ,

x1(t)
x2(t)

 = Tx(t),

which bring (1.7) into the normal form ẋ1(t)

ẋ2(t)

 =

 A11 A12

A21 A22

 x1(t)

x2(t)

+

 0

B0

u(t) +

 0

B0G

 f(t) (1.9)

where x1(t) ∈ Rn−m, x2(t) ∈ Rm. Note that B0 is an m×mmatrix and it is nonsingular

because B is of full rank.

Regard x2(t) as a control input to the first subsystem of (1.9)

ẋ1(t) = A11x1(t) +A12x2(t) (1.10)

and construct a state feedback gain for (1.10) as

x2(t) = −Kx1(t) (1.11)

Hence, the sliding surface in the (x1, x2) coordinate can be chosen as

[K Im×m]

 x1

x2

 = 0 (1.12)

or

s(t) = Cx(t) = [K Im×m]Tx(t) = 0 (1.13)
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in the original coordinates. Once the sliding surface coefficient matrix C is designed,

one can proceed to construct the sliding mode control law. Taking the derivative of

(1.13) with respect to t, we have

ṡ(t) = Cẋ(t) = CAx(t) + CBu(t) + CDf(t) (1.14)

It is important to emphasize that the matrix CB in (1.14) is an m × m nonsingular

matrix equal to B0 since

CB = [K I]TB = [K I]

 0

B0

 = B0. (1.15)

A sliding mode control law can be designed by using the unit control method or the

signum method (Utkin, 1984). From (1.15), a unit control law can be chosen as (Utkin,

1984)

u(t) = −(CB)−1CAx− (CB)−1(γ + σ)
s

∥s∥
(1.16)

where

γ = ∥CD∥M (1.17)

is a value that helps to tackle disturbances. It can be shown that (1.16) satisfies the

vector form of the reaching condition, that is

sT ṡ = −σ∥s∥ − γ∥s∥+ sTCDd(t) < −γ∥s∥ (1.18)

where γ is chosen as in (1.17) and σ is a design parameter for adjusting the reaching

time. One can find the finite reaching time by considering the Lyapunov function

V = sT s (1.19)

Taking its derivative, we have

V̇ < −2γ∥s∥ = −2γ
√
V (1.20)

This yields

dV√
V

< −2γdt. (1.21)

Hence, √
V (t)−

√
V (0) < −tγ. (1.22)
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Let t = Tr be the time to reach the sliding mode (V (Tr) = 0). Thus, the reaching time

is bounded as

Tr <

√
V (0)

γ
(1.23)

A sliding surface can be designed using the Lyapunov approach (Su et al., 1996).

Since (A,B) is controllable, there exists a stabilizing feedback gain K such that As =

A+BK is asymptotically stable (Su et al., 1996). Hence, there exists a positive-definite

matrix P , which is the solution to the Lyapunov equation

PAs +AT
s P = −Q, Q > 0. (1.24)

A sliding surface is chosen as

s(t) = HBTPx(t) = 0. (1.25)

where H is an m × m nonsingular matrix. It was proven that the system (1.7) with

the sliding mode on the sliding surface (1.25) is asymptotically stable (Su et al., 1996).

The idea of employing Lyapunov’s second method to construct a sliding surface can be

extended to nonlinear systems (Su et al., 1996).

1.2 Singularly Perturbed Systems

Singularly perturbed systems are systems that possess small time constant, or similar

”parasitic” parameters which usually are neglected due to simplified modeling. When

taking into account those small quantities, the order of the model is increased and the

computation needed for control design can be expensive and even ill-conditioned. How-

ever, if one uses a simplified model to design a control strategy, the desired performance

may not be achieved or the system can be unstable. As a result, singular perturbation

methods have been developed for years to address the stability and robustness of those

systems. For an extensive study, we refer to (Kokotovic et al., 1986; Gajic and Lim,

2001).

Consider a linear singularly perturbed system without control

ẋ(t) = A11x(t) +A12z(t), x(t0) = x0

ϵż(t) = A21x(t) +A22x(t), z(t0) = z0, (1.26)
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where x(t) and z(t) are respectively slow and fast state variables and ϵ is a small positive

parameter.

To analyze the system (1.26), one common way is to use the Chang transformation

to transform (1.26) into a block-diagonal system where the slow and fast dynamics are

completely decoupled (Chang, 1972). The Chang transformation is represented by x(t)

z(t)

 =

 I1 ϵH

−L I2 − ϵLH

 ξ(t)

η(t)

 = T−1

 ξ(t)

η(t)

 (1.27)

and its inverse transformation is given by ξ(t)

η(t)

 =

 I1 − ϵHL −ϵH

L I2

 x(t)

z(t)

 = T

 x(t)

z(t)

 . (1.28)

where L and H matrices satisfy algebraic equations

A21 −A22L+ ϵLA11 − ϵLA21L = 0 (1.29)

and

ϵ(A11 −A12L)H −H(A22 + ϵLA12) +A12 = 0. (1.30)

Matrices L and H can be found using several methods. For example, the Newton

method is presented in (Grodt and Gajic, 1988). The resulting decoupled form is ξ̇(t)

η̇(t)

 =

 A11 −A12L 0

0 A22 + ϵLA12

 ξ(t)

η(t)

 . (1.31)

Now we present a short summary on the design of state feedback control for deter-

ministic linear continuous time singularly perturbed systems. Consider the following

controlled system

ẋ(t) = A11x(t) +A12z(t) +B1u(t), x(t0) = x0

ϵż(t) = A21x(t) +A22z(t) +B2u(t), z(t0) = z0. (1.32)

where x(t) ∈ Rn1 , z(t) ∈ Rn2 , and u(t) ∈ Rm. The system (1.33) is approximately

decomposed into an n1 dimensional slow subsystem and an n2 fast subsystem by setting

ϵ = 0 in (1.32). The slow subsystem is

ẋs(t) = Asxs(t) +Bsus(t), xs(t0) = x0

zs(t) = −A−1
22 (A21xs(t) +B2us(t), (1.33)
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where

As = A11 −A12A
−1
22 A21, Bs = B1 −A12A

−1
22 B2 (1.34)

and the vectors xs(t), zs(t), and us(t) denote the slow parts of x(t), z(t) and u(t). The

fast subsystem is

ϵżf (t) = A22zf (t) +B2uf (t), zf (t0) = z0 − zs(t0), (1.35)

where zf (t) = z(t) − zs(t), and uf (t) = u(t) − us(t) describe the fast parts of the

corresponding variables z(t) and u(t). A composite control law consists of slow and fast

parts as

u(t) = us(t) + uf (t) (1.36)

where us(t) = G0xs(t), and uf (t) = G2zf (t) are independently constructed for the

slow and fast subsystems (1.33) and (1.35). G0 and G2 can be designed by using

classic control theory with an assumption that (As, Bs) and (A22, B2) is controllable.

Nonetheless, a realizable control law must be presented in terms of the actual system

states x(t) and z(t). Replacing xs(t) by x(t) and zf (t) by z(t)−zf (t) bring the composite

control (1.34) into the realizable feedback form as follows.

u(t) = G0x(t) +G2[z(t) +A−1
22 (A21x(t) +B2G0x(t))] = G1x(t) +G2z(t) (1.37)

where

G1 = (I1 +G2A
−1
22 B2)G0 +G2A

−1
22 A21. (1.38)

The discrete-time version of singularly perturbed systems is described in (Litkouhi

and Khalil, 1985). Consider the difference equationx1[k + 1]

x2[k + 1]

 =

(I1 + ϵA11) ϵA12

A21 A22

x1[k]
x2[k]

+

ϵB1

B2

u[k] (1.39)

where x1 ∈ Rn1 , x2 ∈ Rn2 , u ∈ Rm, ϵ > 0 is a small parameter and det[I2 − A22] ̸= 0.

As in the continuous version, the slow and fast parts of equation (1.39) without control

can be separated by a decoupling transformation (Litkouhi and Khalil, 1985). A control

law which consists of slow and fast components is in the form

u[k] = us[k] + uf [k]
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where uf [k] decays exponentially. To investigate the slow subsystem, we neglect uf [k].

The resulting equations are given by

x̄1[k + 1] = (I1 +A11)x̄1[k] + ϵA12x̄2[k] + ϵB1us[k] (1.40)

x̄2[k] = A21x̄1[k] +A22x̄2[k] +B2us[k]. (1.41)

From (1.40) and (1.41), the slow subsystem is defined by

x̄s[k + 1] = (I1 + ϵAs)x̄s[k] + ϵBsus[k] (1.42)

where

xs = x̄1, (1.43)

As = A11 +A12(I2 −A22)
−1A21, (1.44)

Bs = B1 +A12(I2 −A22)
−1B2. (1.45)

If the pair (As, Bs) is stabilizable in the continuous sense, i.e., every eigenvalue of As

which lies in the closed right-half complex plane is controllable (Litkouhi and Khalil,

1985), then a state feedback control law for us[k] is designed as us[k] = Fsxs[k] where

Fs is chosen such that

Re{λ(As +BsFs)} < 0. (1.46)

With this choice, the closed-loop slow subsystem system is asymptotically stable. This

shows that the actual design problem for the discrete-time slow subsystem is a contin-

uous one (Litkouhi and Khalil, 1985).

The fast subsystem is defined by assuming that the slow variables are constant

during the fast transient, i.e., x̄[k + 1] = x̄[k], and us[k + 1] = us[k]. From (1.41) and

(1.39), the fast subsystem is given by

xf [k + 1] = Afxf [k] +Bfuf [k] (1.47)

where xf = x2 − x̄2, Af = A22, and Bf = B2. If the pair (Af , Bf ) is stabilizable in the

discrete-time sense, i.e., every eigenvalue of Af which lies outside or on the unit circle

is controllable (Litkouhi and Khalil, 1985), then a state feedback control law for uf [k]

is given by uf [k] = Ffxf [k] where Ff is chosen such that

|λ(Af +BfFf )| < 1. (1.48)
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As a result, the closed-loop fast subsystem is asymptotically stable. A composite control

law is taken as the sum of the slow and fast control components

u[k] = Fsxs[k] + Ffxf [k] = Fsxs[k] + Ff (x2[k]− x̄2[k])

= [Fs − Ff (I2 −Af )
−1(A21 +BfFs)]x1[k] + Ffx2[k]. (1.49)

It was shown that under the composite control law (1.49), the closed-loop full-order

system is asymptotically stable for sufficiently small ϵ. Like in the continuous case, a

stabilizing state feedback control law can be synthesized from slow and fast controllers

that are designed independently.

1.3 Literature on Relevant Works

It is pointed out that for a regular system, a sliding mode control strategy can reject

disturbances and produce a robust performance. In systems with slow and fast modes,

little work has been devoted to the study of sliding mode control (Yue and Xu, 1996;

Su, 1999).

Yue and Xu (1996) studied a singularly perturbed system as follows

ẋ(t) = A11x(t) +A12z(t) +B1u(t) +B1f(t, x, z),

ϵż(t) = A21x(t) +A22z(t) +B2u(t) +B2g(t, x, z), (1.50)

where x(t) ∈ Rn1 , z(t) ∈ Rn2 , and u(t) ∈ Rm. f(t, x, z), g(t, x, z) : R+×Rn1 ×Rn2 →

R denote the parameter uncertainties and external disturbances. 0 < ϵ < 1 represents

the singular perturbation parameter. Furthermore, the disturbances f(t, x, z), g(t, x, z)

are assumed to satisfy the following inequalities:

|f(t, x, z)∥ ≤ ρ1(x, z) = a0 + a1∥x∥+ a2∥z∥

∥g(t, x, z∥ ≤ ρ2(x, z) = b0 + b1∥x∥+ b2∥z∥.

In addition, they satisfy

∥f(t, x, z)− g(t, x, z)∥ ≤ α∥x∥+ β∥z∥.

In their approach, a designed control law includes two continuous time state feedback

terms and a switching term. The objective of the two continuous-time terms is to
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stabilize the system as no disturbances are taken into account. Specifically, the control

law is in the form

u = Kx+K0η + w (1.51)

where K and K0 are designed such that As +BsK and A22 +B2K0 are stable, and w

is a switching term to be defined. Here, η is a new state variable given by

η = z +A−1
22 (A21 +B2K)x. (1.52)

To choose w, Yue and Xu (1996) considered a Lyapunov function candidate as follows

V = xTP1x+ ϵηTP2η

where P1, P2 are positive definite solutions to the following Lyapunov equations

(As +BsK)TP1 + P1(As +BsK) = −Q1

(A22 +B2K0)
TP2 + P2(A22 +B2K0) = −Q2.

A control law is chosen as

u = −Kx−K0η − (b̂0 + b̂01∥x∥+ b̂2∥η∥)sgn(BT
1 P1x+BT

2 P2η) (1.53)

where b̂0, b̂01, and b̂2 are acquired from the definition of disturbances f(t, x, z) and

g(t, x, z) and matrices A21, A22, K. With this control law, the trajectories x and η

ultimately satisfy (Yue and Xu, 1996)

∥x∥ ≤ O(ϵ), ∥η∥ ≤ O(ϵ).

Yue and Xu (1996) also proved the existence of the sliding motion for the sliding

surface s = BT
1 P1x + BT

2 P2η provided some condition are satisfied. They employed

Lyapunov functions to construct the sliding function and the sliding mode control law.

Although, their approach deals with disturbances and provides some certain robust

characteristics, they only guarantee that the trajectories of the system stay in an O(ϵ)

boundary of the origin. Furthermore, it is somewhat complicated to compute some

parameters for their control law.

Heck (1991) studied a singularly perturbed system in the form of (1.50) without any

disturbances. The full-order system is separated into slow and fast subsystems (1.33),
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(1.35). A sliding-mode controller is constructed for each subsystem. Specifically, a slow

sliding surface can be chosen as

ss(xs) = Ssxs = 0

and a fast sliding surface is taken as

sf (zf ) = Sfzf = 0.

Corresponding slow and fast control laws are designed for these sliding surfaces. A

composition of these control law is then implemented for the full-order system. Stability

analysis was carried out by using the equivalent method of Utkin (1977). It was shown

that the reduced-order subsystems approximate the full-order system with accuracy

O(ϵ). If reaching conditions are satisfied for the reduced-order models and an additional

condition is met, the reaching conditions are satisfied for the full-order system (Heck,

1991). One draw back of Heck’s approach is that the boundedness of the derivative of

the slow sliding mode control must be supposed. Furthermore, parameter uncertainties

and external disturbances were not taken into consideration. As a result, Heck’s scheme

is limited in real applications.

Li et al. (1995a) also considered a singularly perturbed system in the form of (1.32).

Similarly to Heck’s approach, the full-order system is first decomposed into slow and

fast subsystems. Then, slow and fast sliding mode controllers are designed for the

subsystems individually. The composite control consists of two terms

u = ueq +∆u

where ueq is the equivalent control for the full-order system and ∆u is the switching

term which is the regulating control moment for the full-order system. A sigmoid

function is exploited to eliminate the chattering phenomenon. Although the switching

surface of the full-order system is decided by the fast switching surface of the reduced-

order system, when reverting back to the original coordinates, the slow sliding control

still exists in the composite one. Like Heck’s method, their approach does not address

uncertainties and external disturbances.
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Su (1999) studied the problem of sliding surface design for the system (1.32). Like

(Heck, 1991; Li et al., 1995a), the full-order system is separated into slow and fast

subsystems. Then, stabilizing state feedback controllers are constructed individually

for each subsystem, leading to a composite control law (1.36). The closed-loop system

is transformed into an exact slow and an exact fast subsystems by using the Chang

transformation (Chang, 1972; Kokotovic et al., 1986). The exact subsystems in the

new coordinates are

ξ̇ = Tsξ

ϵη̇ = Tfη.

There exist positive definite matrices Ps and Pf such that

PsTs + T T
s Ps = Qs, Qs > 0

PfTf + T T
f Pf = −Qf , Qf > 0.

Then, the sliding surface for the singularly perturbed system can be chosen as

s(x, z) =

 B1

B2/ϵ

T

JT

 Ps 0

0 ϵPf

J

 x

z

 = 0.

It was shown that (Su, 1999) if the sliding motion is achieved, the system is asymptot-

ically stable. However, a control strategy has not been provided to realize the sliding

motion.

There have been several approaches to deal with the problem of sliding mode control

for singularly perturbed systems. Many of them (Heck, 1991; Li et al., 1995a; Su, 1999)

do not address parameter uncertainties and external disturbances which are inherent

in many practical plants. Heck (1991); Li et al. (1995a) exploited the decomposition

of the full-order system into slow and fast subsystems in an effort to construct sliding

surfaces and sliding mode controls for each subsystems. Meanwhile, Su (1999) only

took advantage of the structure of the closed-loop system under the composite control

law, by which a sliding surface is designed. Although Yue and Xu (1996) dealt with

parameter uncertainties and external disturbances, their method is not able to reject

disturbances completely. Instead, the trajectories of the system are ensured in an O(ϵ)



13

bound of the origin. One common feature of the above approaches is that Lyapunov

functions are employed to construct sliding surfaces and sliding mode controls.

1.4 Contributions of the Dissertation

The contributions of the dissertation are summarized in the following:

• Two methods for design of an output feedback sliding mode control law for

sampled-data systems are proposed in Chapter 2. The first method employs the

one-step predictor ahead technique to approximate the external disturbance. The

second method offers better way to approximate the disturbance by using system

information from two previous time instants. The main feature of the proposed

methods is that the control law is high gain, which leads to singular perturbation

behavior of the closed-loop system. The characteristics of the closed-loop systems

are much better than the other works available in the control literature. In addi-

tion, they capture the same level as in the state feedback case. The results in this

topic have been presented at 2009 American Control Conference, 2010 American

Control Conference, and published in IEEE Transactions on Automatic Control.

• The development of two composite design methods for a singularly perturbed

system with external disturbances is used to design a sliding mode controller. A

state feedback control law for either slow or fast modes combines with a sliding

mode control law to constitute a composite control law. The closed-loop system

under the proposed methods is asymptotically stable and robust against exter-

nal disturbances in the sliding mode. This contribution has been accepted for

publication in Dynamics of Continuous, Discrete and Impulsive Systems journal.

• Two approaches based on the Lyapunov equations are used to design a sliding

mode controller for singularly perturbed systems with external disturbances. The

results obtained are comparable to those of the composite control approaches;

namely, disturbance rejection and asymptotic stability in the sliding mode are

attained. These features show the advantages of the proposed methods when
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compared to other works available in the literature. This contribution is submitted

for journal publication.

• The formulation and analysis of a sliding mode control problem for a discrete-

time singularly perturbed systems is investigated. Two composite approaches are

proposed to deal with the stability and robustness of a system with parametric

uncertainties. A state feedback control law is constructed for either slow or fast

modes. The remaining modes are handled by a sliding mode control law. A

composite control law combining the two components provides the system with

asymptotic stability and robustness against modeling uncertainties.

1.5 Organization of the Dissertation

Throughout the dissertation, we deal with different issues of sliding mode control for

singularly perturbed systems: discrete- and continuous-time domains. Each chapter

presents unified techniques or tools to address specific problems.

In Chapter 2, we formulate and develop an output feedback control strategy for

sampled-data systems. Stability and robustness will be analyzed by using singular

perturbation techniques. Furthermore, it will be theoretically shown that the same

characteristics as in the state feedback case are maintained. At the end of the chapter,

the numerical simulation of an aircraft model illustrates the advantages of the proposed

method.

Chapter 3 presents two composite control approaches for the sliding mode control

for singularly perturbed systems with external disturbances. We show how to design a

sliding surface and a corresponding control law to effectively stabilize the system and

reject the external disturbances. Two numerical examples at the end of the chapter

demonstrate the effectiveness of the proposed methods.

The same problem is addressed in Chapter 4 by different approaches. We employ

Lyapunov functions and the Chang transformation to construct a sliding surface and a

sliding mode control law to stabilize the closed-loop system and reject external distur-

bances.
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The techniques of Chapter 3 are applied to singularly perturbed discrete-time sys-

tems with parametric uncertainties in Chapter 5. Two composite sliding mode control

strategies are presented to deal with the stability and robustness of the closed-loop

system. A numerical example of a discrete-time model of a steam power system is

provided to illustrate the efficacy of the methods.

Finally, Chapter 6 presents an overview of the results of the dissertation which is

followed by some future directions.
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Chapter 2

Output Feedback Sliding Mode Control for Sampled-Data

Systems

2.1 Introduction

The problem of output feedback sliding mode control with disturbances has been ex-

tensively studied for years (Zak and Hui, 1993; EL-Khazali and DeCarlo, 1995; Heck

et al., 1995; Edwards and Spurgeon, 1995, 1998). It was pointed out that the problem

of choosing the desired poles of the sliding mode dynamics can be approached by using

the classical “squared-down” techniques (MacFarlane and Karcanias, 1976). In order

to attain a global attraction to the sliding surface, Heck et al. (1995) established nu-

merical methods that adjust the switching gain to compensate for the unknown state

and disturbance variables. Edwards and Spurgeon (1995) proposed a procedure to con-

struct a sliding surface based on the output information by taking advantage of the

fact that the invariant zeros of a system appear in the dynamics of the sliding motion.

The remaining eigenvalues of the sliding mode dynamics can be chosen appropriately

in the framework of a static output feedback pole placement problem for a subsystem

(Zak and Hui, 1993; Edwards and Spurgeon, 1995).

In this chapter, we consider the output feedback sliding mode control for sampled-

data linear systems. It is well-known that the exact continual sliding motion cannot be

achieved in the discrete-time case due to the sample/hold effect (Milosavljevic, 1985).

Specifically, the system trajectory only travels in a neighborhood of the sliding surface

forming a boundary layer (Su et al., 2000). Several approaches were proposed to address

the problem of discrete-time output feedback sliding mode control (Lai et al., 2007; Xu

and Abidi, 2008a,b). Some of them are devoted to sliding mode control of sampled-data

systems. Xu and Abidi (2008a) employed a disturbance observer and a state observer
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with an integral sliding surface to address the output tracking problem for sampled-

data systems. Under their proposed control approach, the stability of the closed-loop

system is guaranteed and the effect of external disturbances is reduced (Xu and Abidi,

2008b).

The deadbeat control strategy proposed in (Oloomi and Sawan, 1997) is able to

decouple external disturbances with an O(ϵ) accuracy, where ϵ is the sampling pe-

riod. In (Su et al., 2000), an one-step delayed disturbance approximation approach

has been shown to be effective in dealing with disturbances that exhibit certain con-

tinuity characteristics. We shall exploit the continuity attribute of the state variables

and the disturbances by using similar ideas to deal with the similar estimation problem

encountered above.

We will present two dynamic output feedback discrete-time control strategies that

take into account the disturbance compensation as in (Su et al., 2000). In the first

approach, the estimation of the disturbance is based on its previous time instant value,

while the second approach employs two previous time instant values. Both methods

possess high gain output feedback control. It is pointed out that with high gain output

feedback control, the system exhibits the two-time scale behavior (Litkouhi and Khalil,

1985; Gajic and Lim, 2001; Oloomi and Sawan, 1997; Young et al., 1977). By using

singular perturbation analysis, we will study the stability of the closed-loop system and

the accuracy of the sliding mode. Specifically, we will show that the state trajectory will

be remained in an O(ϵ2) boundary layer of the sliding surface in the first approach and

an O(ϵ3) vicinity of the sliding surface in the second method. While the first approach

shares with (Xu and Abidi, 2008a) some characteristics such as the bound of sliding

motion and the ultimate bound of state variables, the second one presents stronger

results. In addition to a controller for implementation, the method in (Xu and Abidi,

2008a) is performed with two observers for state and disturbance estimation, while we

employ no observers. On the other hand, the method of Xu and Abidi (2008a) applies

to systems of relative degree higher than one, while our methods are limited to systems

with relative degree one.

Throughout the dissertation, λ{A} denotes the spectrum of matrix A, while Im
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stands for an identity matrix of order m. A vector function f(t, ϵ) ∈ Rn is said to be

O(ϵ) over an interval [t1, t2] Kokotovic et al. (1986) if there exists positive constants k

and ϵ∗ such that

∥f(t, ϵ)∥ ≤ kϵ ∀ϵ ∈ [0, ϵ∗], ∀t ∈ [t1, t2]

where ∥.∥ is the Euclidean norm. Moreover, it is said to be O(1) over [t1, t2] if

∥f(t, ϵ)∥ ≤ k, ∀t ∈ [t1, t2].

2.2 Problem Formulation

We consider a linear system described by

ẋ0(t) = A0x0(t) +B0u(t) +D0f(t) (2.1)

y(t) = C0x0(t)

where x0(t) ∈ Rn is the system state, u(t) ∈ Rm is the control, y(t) ∈ Rp is the

system output, f(t) ∈ Rr is the unknown but bounded exogenous disturbance, with

m ≤ p < n. The system matrices A0, B0, C0, D0 are constant of appropriate dimensions

with magnitudes O(1). The following assumptions are made:

1. The system (2.1) has relative degree 1.

2. Matrices B0 and C0 have full rank.

3. (A0, B0, C0) is controllable and observable (EL-Khazali and DeCarlo, 1995).

4. The invariant zeros of system (2.1) are stable.

In addition, D0 satisfies the matching condition (Drazenovic, 1969)

rank([B0|D0]) = rank(B0) (2.2)

In other words, there exists a matrix K such that

D0 = B0K. (2.3)

The sliding surface under consideration is

s(t) = Hy(t) = HC0x0(t) = 0, (2.4)
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where H is a full rank m× p matrix, designed to render stable sliding dynamics. It is

shown that the eigenvalues of the sliding mode dynamics include the invariant zeros of

the system (2.1) (Edwards and Spurgeon, 1998). One can place the remaining eigen-

values of the zero dynamics of the sliding surface (2.4) if the Davison-Kimura condition

(Davison and Wang, 1975) is satisfied (Edwards and Spurgeon, 1998). In the case the

Davison-Kimura condition is not satisfied, a dynamic compensator is constructed to

produce a tractable structure for the sliding surface design (Edwards and Spurgeon,

1998). Refer to (EL-Khazali and DeCarlo, 1995; Zak and Hui, 1993; Edwards and

Spurgeon, 1998) for design of H. Note that HC0B0 is nonsingular. Our objective is to

construct a discrete-time sliding mode controller given output sliding surface (2.4).

2.3 Discrete-time Regular Form

In this section, we will use several similarity transformations to facilitate system design

and analysis. Since rank(B0) = m, there exists a coordinate transformation T0 such

that

B = T0B0 =

 0

B2

 .

where B2 is a nonsingular square matrix of dimension m. The new variables are defined

as

x =

 x1

x2

 = T0x0.

The similarity transformation T0 brings the original system (2.1) into the regular

form (Utkin and Young, 1979)

ẋ1(t) = A11x1(t) +A12x2(t)

ẋ2(t) = A21x1(t) +A22x2(t) +B2u(t) +D2f(t), (2.5)

where D2 = B2K. The sliding surface (2.4) is now described as

s(t) = HC0x0(t) = HC0T
−1
0 x(t) = Cx(t) = C1x1(t) + C2x2(t) = 0, (2.6)

where

HC0T
−1
0 = C.
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The zero dynamics of the sliding mode is represented by the eigenvalues of matrix

Ac = A11−A12C
−1
2 C1. Note that H has been chosen in (2.4) to render a sliding surface

coefficient matric C such that C2 is invertible and Ac is stable (Utkin and Young, 1979).

Sampling the continuous-time system (2.5) with the sampling period ϵ results in the

following discrete-time model

x[k + 1] = Φx[k] + Γu[k] + d[k] (2.7)

where

Φ = eAϵ, Γ =

∫ ϵ

0
eAτdτB,

d[k] =

∫ ϵ

0
eAτBKf((k + 1)ϵ− τ)dτ. (2.8)

The system matrices, Φ and Γ, of the sampled-data system (2.7) can be reformulated

by taking the Taylor series expansion as

Φ = eAϵ = I + ϵA+
ϵ2

2!
A2 + · · · = I + ϵ(A+ ϵ∆A) = O(1) (2.9)

and

Γ =

∫ ϵ

0
eAτdτB = ϵ(B + ϵ∆B) = O(ϵ), (2.10)

where

∆A =
1

2!
A2 +

ϵ

3!
A3 + · · · = O(1) (2.11)

and

∆B =
1

2!
AB +

ϵ

3!
A2B + · · · =

 ∆B1

∆B2

 = O(1), (2.12)

where the dimensions of ∆B1 and ∆B2 are (n − m) × m and m × m, respectively.

Furthermore, since B =

 0

B2

, Γ can be written as

Γ =

 ϵ2∆B1

ϵB̄2

 , (2.13)

where

B̄2 = B2 + ϵ∆B2. (2.14)
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Due to the sampling process, the disturbance in the sampled-data system (2.7) exhibits

unmatched components, as demonstrated by the following lemma, which is an enhanced

version of Abidi et al. (2007).

Lemma 2.1. If the first and second derivatives of the disturbance f(t) in (2.1) are both

well defined and bounded, then

d[k] =

∫ ϵ

0
eAτBKf((k + 1)ϵ− τ)dτ = ΓKf [k] +

ϵ

2
ΓKv[k] + ϵ3∆d[k],

d[k]− d[k − 1] = O(ϵ2),

d[k]− 2d[k − 1] + d[k − 2] = O(ϵ3), (2.15)

where v(t) = df(t)/dt and ∆d[k] is a bounded uncertainty.

Proof. Consider 0 ≤ τ < ϵ and express f((k + 1)ϵ− τ) as

f((k + 1)ϵ− τ) = f [k] +

∫ (k+1)ϵ−τ

kϵ
v(β)dβ

= f [k] +

∫ (k+1)ϵ−τ

kϵ
(v[k] +

∫ β

kϵ
v̇(σ)dσ)dβ

= f [k] + v[k](ϵ− τ) +

∫ (k+1)ϵ−τ

kϵ

∫ β

kϵ
v̇(σ)dσdβ (2.16)

with kϵ ≤ σ ≤ β < (k + 1)ϵ− τ . Substituting (2.16) into the expression of d[k] yields

d[k] =

∫ ϵ

0
eAτBKf((k + 1)ϵ− τ)dτ

=

∫ ϵ

0
eAτBKf [k]dτ +

∫ ϵ

0
eAτBKv[k](ϵ− τ)dτ

+

∫ ϵ

0
eAτBK

∫ (k+1)ϵ−τ

kϵ

∫ β

kϵ
v̇(σ)dσdβdτ. (2.17)

Following the same steps as in Lemma 1 in Abidi et al. (2007), we obtain∫ ϵ

0
eAτBKf [k]dτ = ΓKf [k], (2.18)∫ ϵ

0
eAτBKv[k](ϵ− τ)dτ =

ϵ

2
ΓKv[k] + M̂v[k]ϵ3, (2.19)

where M̂ is a constant matrix. Assume the second derivative of f(t) is bounded by W ,

namely ∥v̇(t)∥ ≤ W . Then, we have

∥
∫ (k+1)ϵ−τ

kϵ

∫ β

kϵ
v̇(σ)dσdβ∥ ≤ ∥

∫ (k+1)ϵ−τ

kϵ

∫ β

kϵ
Wdσdβ∥

≤ W (ϵ− τ)2 < Wϵ2. (2.20)
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Hence,

∥
∫ ϵ

0
eAτBK

∫ (k+1)ϵ−τ

kϵ

∫ β

kϵ
v̇(σ)dσdβdτ∥

< ∥
∫ ϵ

0
eAτBKdτ∥Wϵ2 = ∥ΓK∥Wϵ2.

This implies ∫ ϵ

0
eAτBK

∫ (k+1)ϵ−τ

kϵ

∫ β

kϵ
v̇(σ)dσdβdτ = O(ϵ3). (2.21)

From (2.17), (2.18), 2.19) and (2.21) with noting the boundedness of v(k), we obtain

the expression of d[k] in (2.15). The rest of the proof is similar to that of Lemma 1 in

Abidi et al. (2007).

Remark 2.1. The difference between our lemma and Lemma 1 in Abidi et al. (2007)

is that the first and second derivatives of the disturbance f(t) need to be bounded. Note

that if this requirement is not satisfied, equations (48) and (49) in Abidi et al. (2007)

will not hold. Our lemma is also stronger than Lemma 1 in Abidi et al. (2007) in the

fact that the smoothness of f(t) is not required.

This lemma implies that the mismatched part of the disturbance d(k) is O(ϵ3).

Such an O(ϵ3) disturbance mismatch places an ultima performance that a sampled-

data control law can ever achieve at each sampling instant.

To facilitate discrete-time sliding mode control design, we put (2.7) into a discrete-

time regular form, which is similar to (2.5). To this end, we employ the following

transformation for (2.7)

T1 =

In−m −ϵ∆B1B̄
−1
2

0 Im

 (2.22)

with new variables

z =

z1
z2

 = T1

x1
x2

 . (2.23)

The inverse transformation of T1 is

T−1
1 =

In−m ϵ∆B1B̄
−1
2

0 Im

 . (2.24)
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The m ×m matrix B̄2 is an ϵ perturbed version of the nonsingular matrix B2 as seen

in (2.14), hence it is nonsingular so that the transformation matrices T1 and T−1
1 both

exist.

Under the transformation T1, the discrete-time system in its regular form is given

by

z(k + 1) = Φ̄z(k) + Γ̄u(k) + d1(k), (2.25)

in which the new system matrix Φ̄ still keeps it original form as an ϵ-perturbed identity

matrix as in (2.9)

Φ̄ = T1ΦT
−1
1 = T1(I + ϵA+ ϵ2∆A)T−1

1 = I + ϵĀ (2.26)

Ā = T1(A+ ϵ∆A)T−1
1 =

 A11 + ϵ∆Ā11 A12 + ϵ∆Ā12

A21 + ϵ∆A21 A22 +∆Ā22

 , (2.27)

while the first n−m rows of the new control coefficient matrix Γ̄ are nullified

Γ̄ = T1Γ =

 0

ϵB̄2

 . (2.28)

Moreover, all the matched portion in the original disturbance vector d(k) is now trans-

ferred to the bottom m row of the new disturbance vector d1(k), leaving only the O(ϵ3)

mismatched portion in the first n−m rows

d1[k] = T1d[k] = T1(ΓKf [k] +
1

2
ΓKv[k] + ϵ3∆d[k])

=

 0

ϵB̄2

 (Kf [k] +
1

2
Kv[k]) + ϵ3T1∆d =

 d11[k]

d12[k]

 (2.29)

where

d11[k] = O(ϵ3) (2.30)

d12[k] = ϵB̄2(Kf [k] +
1

2
Kv[k]) +O(ϵ3) = O(ϵ). (2.31)

The sliding surface vector in the new coordinates is now described as

s[k] = CT−1
1 z(k) = C1z1[k] + C̄2z2[k] (2.32)
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where the m×m matrix C̄2 is an ϵ perturbed version of the original nonsingular matrix

in (2.6):

C̄2 = C2 − ϵC1∆B1B̄
−1
2 . (2.33)

Therefore, C̄2 is nonsingular if ϵ is small enough.

2.4 One-Step Delayed Disturbance Approximation Approach

2.4.1 Output Feedback Control Design

In this section, we develop a control strategy that forces the state to reach the sliding

surface (2.4) in a finite time. Applying the transformation

T2 =

In−m 0

C1 C̄2

 (2.34)

with state variables z1[k]
s[k]

 = T2

z1[k]
z2[k]

 (2.35)

recasts the sampled-data system (2.25) into

z1[k + 1] = Asz1[k] + ϵĀ12C̄
−1
2 s[k] + d11[k]

s[k + 1] = ϵΩ1z1[k] + (Im + ϵΩ2)s[k] + ϵC̄2B̄2u[k] + C1d11[k] + C̄2d12[k], (2.36)

where

As = In−m + ϵ(Ā11 − Ā12C̄
−1
2 C1) (2.37)

Ω1 = (C̄1Ā11 + C̄2Ā21)− (C̄1Ā12 + C̄2Ā22)C̄
−1
2 C̄1 (2.38)

Ω2 = (C̄1Ā12 + C̄2Ā22)C̄
−1
2 . (2.39)

Equation (2.32) reveals the purpose of the coordinate transformation T2. It is con-

venient for control design and analysis to bring the sliding vector s(k) directly into the

system dynamics (2.36) so that the control design objective can also be regarded as an

output regulation problem (s[k] = 0). When the discrete-time sliding mode sets in, the

dynamics of system (2.36) is reduced to that of subsystem z1[k], where the sliding mode
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dynamics is determined by the subsystem matrix As. In view of (2.33), the inverse of

C̄2 can be written as

C̄−1
2 = C−1

2 + ϵ∆C2i. (2.40)

where ∆C2i is a constant matrix. From (2.37) and (2.40), we have

As = In−m + ϵ(Ac + ϵ∆Ac). (2.41)

where

Ac = A11 −A12C
−1
2 C1 (2.42)

and

∆Ac = ∆Ā11 − (∆Ā12C̄
−1
2 +A12∆C2i)C1. (2.43)

Note that Ac contains the zero dynamics of the original continuous-time sliding motion

in (2.6) (Utkin and Young, 1979). The matrices C1 and C2 have been designed properly

such that all the eigenvalues of Ac have negative real parts. In view of (2.41), the

discrete-time sliding mode dynamics matrix As is composed of an identity matrix with

an additive ϵ perturbation of Ac. It will be shown later that all eigenvalues of As will

lie in the unit circle. Therefore, the system (2.36) is stable in the discrete-time sliding

mode.

Our goal now is to find a control law to attain sliding mode (2.4) at each sampling

instant. Rewrite the s[k] dynamics in (2.36) as

s[k + 1] = (Im + ϵΩ2)s[k] + ϵC̄2B̄2u[k] + g[k], (2.44)

where g[k] contains the state variables in z1[k] and the portion of disturbances lying in

the control range space

g[k] = ϵΩ1z1[k] + d2[k] (2.45)

with

d2[k] = C1d11[k] + C̄2d12[k] = O(ϵ). (2.46)

By solving s[k + 1] = 0, we obtain the discrete-time equivalent control law (Utkin

and Drakunov, 1989) as follows

ueq[k] = −1

ϵ
(C̄2B̄2)

−1((Im + ϵΩ2)s[k] + g[k]). (2.47)
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This control law ueq[k] theoretically keeps the system state on the sliding surface with

a full knowledge of the disturbance g[k] at each sampling instant . Since g[k] contains

the unmeasurable state variables in z1[k] and disturbances d2[k], it is unknown to the

controller at time step k, hence the equivalent control law (2.47) is not realizable.

Nevertheless, equation (2.44) reveals that we are able to approximate g[k] numeri-

cally by g[k − 1]

g[k − 1] = s[k]− (Im + ϵΩ2)s[k − 1]− ϵC̄2B̄2u[k − 1]. (2.48)

Use of g[k− 1] in place of g[k] in ueq[k] leads to a realizable control law with additional

dynamics in u[k]

u[k] = −1

ϵ
(C̄2B̄2)

−1((Im + ϵΩ2)s[k] + g[k − 1])

= −1

ϵ
(C̄2B̄2)

−1((2Im + ϵΩ2)s[k]− (Im + ϵΩ2)s[k − 1]) + u[k − 1]. (2.49)

A similar technique was employed by Su et al. (2000) for state feedback discrete-

time sliding mode control, where only the external disturbances are to be approximated.

In this paper, however, the unknown term g[k] under consideration includes both the

external disturbances and the unmeasured state variables.

Remark 2.2. The proposed control contains no switching actions; hence, no chattering

phenomenon will take place. On the other hand, it is observed that control law (2.49) is

not able to completely compensate disturbance g[k]. However, by taking into account the

past information, control law (2.49) still provides the closed-loop system with certain

characteristics to reduce the influence of external disturbances. This will be confirmed

by stability and accuracy analyses in this Section.

2.4.2 Stability Analysis

The discrete-time equivalent control law (2.47) is also known as a deadbeat control law

that brings the current state to the vicinity of the sliding surface in one sampling period

ϵ. It brings about a gigantic control action leading to a fast-time system behavior in

the state vector s[k] of (2.36). It was also pointed out in (Oloomi and Sawan, 1997;

Young et al., 1977; Popescu and Gajic, 1999) that such a deadbeat high gain control
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leads to singular perturbation behaviors for sampled-data systems. In this section,

we will employ the singular perturbation methodology to analyze the stability of the

closed-loop system driven by the proposed sliding mode control law (2.49).

The involvement of the past disturbance g[k− 1] in the control law (2.49) produces

additional m order dynamics for the closed-loop system. Following a similar way as in

(Su et al., 2000), we study an augmented dynamic system of z1[k], s[k], and u[k]. From

(2.48) and (2.49), we have

u[k + 1] =− (C̄2B̄2)
−1(2Im + ϵΩ2)Ω1z1[k]−

1

ϵ
(C̄2B̄2)

−1(Im + ϵΩ2)
2s[k]

− 1

ϵ
(C̄2B̄2)

−1(Im + ϵΩ2)ϵC̄2B̄0u[k]− (C̄2B̄2)
−1(2Im + ϵΩ2)d2[k]. (2.50)

Note that the presence of 1/ϵ complicates the analysis of the augmented system. To

overcome that obstacle, we introduce a new variable

γ[k] = ϵC̄2B̄2u[k]. (2.51)

Thus, the new augmented system of z1[k], ξ[k], and v[k] is described by
z1[k + 1]

s[k + 1]

γ[k + 1]

 = Aaug


z1[k]

s[k]

γ[k]

+


d11[k]

d2[k]

−(2Im + ϵΩ2)d2[k]

 , (2.52)

where

Aaug =


As ϵĀ12C̄

−1
2 0

ϵΩ1 (Im + ϵΩ2) Im

−ϵ(2Im + ϵΩ2)Ω1 −(Im + ϵΩ2)
2 −(Im + ϵΩ2)

 . (2.53)

The above augmented system is both a weakly coupled system and a singularly

perturbed discrete-time system (Litkouhi and Khalil, 1985; Gajic and Lim, 2001; Gajic

and Shen, 1989; Gajic et al., 2009) where the slow dynamics is represented by z1[k],

and fast dynamics is represented by s[k] and γ[k]. The slow and fast components affect

each other by a regular O(ϵ) perturbation (or by weak couplings). To see this, partition

the augmented matrix Aaug as

Aaug =

 As O(ϵ)

O(ϵ) Af


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and

Af =

 (Im + ϵΩ2) Im

−(Im + ϵΩ2)
2 −(Im + ϵΩ2)

 .

It is then natural to expect (2.52) to be separated into distinct slow and fast subsystems

by using a decoupling transformation (Litkouhi and Khalil, 1985) provided that I2m−Af

is nonsingular. The following lemma shows that all eigenvalues of Af are zero, hence

the condition for the existence of a decoupling transformation is satisfied (Litkouhi and

Khalil, 1985).

Lemma 2.2. The 2m× 2m matrix Af possesses 2m zero eigenvalues.

Proof. Since

A2
f = 0, (2.54)

it is strait forward to see that all eigenvalues of Af are zeros.

To separate the dynamics of (2.52) into reduced-order subsystems, we employ a

decoupling transformation (Litkouhi and Khalil, 1985) as follows

T3 =

In−m − ϵML −ϵM

L I2m

 , (2.55)

and its inverse is given by

T−1
3 =

In−m ϵM

−L I2m − ϵLM

 . (2.56)

The matrices L ∈ R2m×(n−m) and M ∈ R(n−m)×2m satisfy the following algebraic

equations

0 = ϵN2 + LAs −AfL− ϵLN1L (2.57)

0 = N1 +AsM −MAf − ϵN1LM − ϵMLN1, (2.58)

where N1 = [Ā12C
−1
2 0(n−m)×m] and N2 =

 Ω1

−(2Im + ϵΩ2)Ω1

. Setting ϵ = 0 in two

equations (2.57) and (2.58) yields

(I2m −Af )L0 = 0

M0(I2m −Af ) = −N1.
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Since (I2m−Af ) is nonsingular due to Lemma 2.2, L0 = 0 and M0 = −N1(I2m−Af )
−1.

This implies

L = O(ϵ) (2.59)

and

M = O(1). (2.60)

The transformation T3 puts the augmented system dynamics into the fully decoupled

two-time scale formulation. Let

w[k]
η[k]

 = T3


z1[k]

s[k]

γ[k]

 (2.61)

where w[k] ∈ Rn−m contains the slow modes due to the sliding mode dynamics and

η[k] ∈ R2m contains the fast modes due to the dead-beat control and the one-step

delayed disturbance approximation.

The transformed system is given byw[k + 1]

η[k + 1]

 =

Φs 0

0 Φf

w[k]
η[k]

+ d3[k], (2.62)

where

Φs = As − ϵN1L, (2.63)

Φf = Af + ϵLN1, (2.64)

and

d3[k] = T3


d11[k]

d2[k]

−(2Im + ϵΩ2)d2[k]

 =


O(ϵ2)

d2[k] +O(ϵ3)

−(2Im + ϵΩ2)d2[k] +O(ϵ3)

 . (2.65)

Since L = O(ϵ) and M = O(1) from (2.59) and (2.60), we havew[k + 1]

η[k + 1]

 =

As +O(ϵ2) 0

0 Af +O(ϵ2)

w[k]
η[k]

+ d3[k] (2.66)
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The stability of the closed-loop system is decided by the eigenvalues of Φs and Φf .

It is seen that

λ{Φs} = 1 + ϵλ{Ac + ϵ∆Ac −N1L}. (2.67)

Since Ac contains stable eigenvalues of the zero dynamics of the original continuous-

time sliding motion on the sliding surface (2.4) and N1 = O(ϵ), there exist a small ϵ

such that the eigenvalues of (Ac + ϵ∆Ac − N1L) have negative real parts. Therefore,

the eigenvalues of Φs lie in the unit circle for sufficiently small ϵ.

On the other hand, let q be an eigenvector corresponding to an eigenvalue of Φf .

We have

λ2{Φf}∥q∥ = ∥λ2{Φf}q∥ = ∥Φ2
fq∥ ≤ ∥Φ2

f∥∥q∥. (2.68)

This implies

λ2{Φf} ≤ ∥Φ2
f∥.

Since A2
f = 0 and N1 = O(ϵ), it is obvious that

Φ2
f = A2

f + ϵAfLN1 + ϵLN1Af + ϵ2(LN1)
2 = O(ϵ2). (2.69)

Hence, λ{Φf} = O(ϵ) and the eigenvalues of Φf lie in the unit circle for sufficiently

small ϵ.

Remark 2.3. The eigenvalues of the closed-loop system can be dissected into two

groups: the slow and the fast ones. Those which lie in an O(ϵ) neighborhood of the

unit circle represent slow modes and those which locate in an O(ϵ) neighborhood of the

origin represent fast modes. Therefore, the closed-loop system (2.52) is asymptotically

stable for sufficiently small ϵ.

We summarize the above discussion in the following theorem.

Theorem 2.1. The discrete-time output feedback sliding mode control law (2.49) ren-

ders the sampled-data system (2.7) asymptotic stability.

Remark 2.4. The structure of the augmented system of z1[k], s[k], and u[k] is difficult

to study. This is remedied by using variable γ[k]. As a result, the augmented dynamics
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is brought into a representative of two time scale behaviors. Hence, the singular per-

turbation methodology plays a pivotal role in analyzing the stability of the closed-loop

system.

2.4.3 Accuracy Analysis

In this subsection, we deal with the accuracy issues of the sliding mode and the state

variables when the closed-loop system is under the influence of external disturbances.

It is of interest to show that the closed-loop system exhibits good robustness against

external disturbances under the high gain control law (2.49). From (2.41) and (2.66),

we have

w[k + 1] = (As +O(ϵ2))w[k] +O(ϵ2) = (In−m + ϵAc +O(ϵ2))w[k] +O(ϵ2). (2.70)

At steady state, w[k + 1] ≈ w[k]. Hence, it follows that

w[k] = O(ϵ). (2.71)

Similarly, we can obtain that η[k] = O(ϵ). However, we will exploit the special

structures in the matrix Af and the corresponding disturbance vector in d3[k] for a

better insight of η[k]. First of all, it can be easily seen that A2
f = O. Consequently, it

takes two sampling periods for the sliding mode controller to actually drive the state

into a vicinity of the origin. This is shown in the following relationship of η[k + 2] and

η[k]

η[k + 2] = (A2
f +O(ϵ2))η(k) + (Af +O(ϵ2))

 d2[k + 1] +O(ϵ2)

−(2Im + ϵΩ2)d2[k + 1] +O(ϵ2)


+

 d2[k] +O(ϵ2)

−(2Im + ϵΩ2)d2[k] +O(ϵ2)


= O(ϵ2)η[k] +

−d2[k + 1] + d2[k] +O(ϵ2)

O(ϵ)

 . (2.72)
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Also note that

d2[k + 1]− d2[k] = C1(d11[k + 1]− d11[k]) + C̄2(d12[k + 1]− d12[k])

= ϵC̄2B̄2K(f [k + 1]− f [k] + 1/2(v[k + 1]− v[k]) +O(ϵ3) = O(ϵ2)

(2.73)

since ∥f [k+1]−f [k]∥ = ∥
∫ ϵ
0 v(t)dt∥ = O(ϵ) and ∥v[k+1]−v[k]∥ = ∥

∫ ϵ
0

dv(t)
dt dt∥ = O(ϵ).

Thus, after two sampling periods, we have

η[k] =

η1[k]
η2[k]

 =

O(ϵ2)

O(ϵ)

 . (2.74)

The fast mode η(k) contains two parts η1[k] and η2[k], both of which are vectors in

Rm. With L = O(ϵ) and M = O(1) in (2.59) and (2.60), the inverse transformation

(2.56) renders

z1[k] = w[k] + ϵMη[k] (2.75)

and s[k]
γ[k]

 = −Lw[k] + η[k]. (2.76)

Equations (2.74) and (2.76) imply that after two sampling periods, the sliding motion

and the bound of γ[k] are achieved with the accuracy of O(ϵ) as long as w[k] = O(1).

Furthermore, when w[k] = O(ϵ) at steady state, the accuracy of sliding motion is

s[k] = O(ϵ2). (2.77)

From (2.75) and (2.77), the ultimate bound of the original state variables is given

by

x0[k] = T−1
0 T−1

1 T−1
2

z1[k]
s[k]

 = O(ϵ). (2.78)

Also in view of (2.51) and (2.76), the ultimate bound of control input is

u[k] = O(1). (2.79)

Remark 2.5. By taking into account the past information of the disturbance, the pro-

posed control law (2.49) guarantees that under the influence of external disturbances,
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the sliding motion is achieved at the accuracy of O(ϵ2), the system state variables and

the control input possess ultimate bounds of O(ϵ) and O(1) respectively.

In between consecutive samples, the system trajectory may deviate from the sliding

surface under the control law (2.49), being a piecewise constant function u(t) = u(kϵ).

The following lemma shows the bounds on the state variables and the accuracy of the

sliding motion in an inter-sample interval.

Lemma 2.3. If the disturbance f(t) is differentiable and bounded, then the discrete-

time sliding mode output feedback control law (2.49) leads to s[k] = O(ϵ2) for k ≥ 2, and

that x[k] approaches O(ϵ) asymptotically. Furthermore, the magnitudes of the sliding

variables and the state variables during the sampling period, kϵ ≤ t ≤ (k + 1)ϵ, are

s(t) = O(ϵ2) and x0(t) = O(ϵ) respectively.

Proof. We use the same steps as in (Su et al., 2000) to prove the lemma. Let 0 ≤ τ ≤ ϵ.

Integrating both sides of (2.1) yields

x0(kϵ+ τ)− x0(kϵ) =

∫ kϵ+τ

kϵ
(A0x0(t) +D0f(t))dt+ τB0u[k]. (2.80)

If the disturbance f(t) is differentiable and bounded, the integration in (2.74) can be

approximated by using Euler’s method∫ kϵ+τ

kϵ
(A0x0(t) +D0f(t))dt = τ(A0x0[k] +D0f [k]) +O(τ2) (2.81)

Define new variables

e1 =

∫ kϵ+τ

kϵ
(A0x0(t) +D0f(t))dt− τ(A0x0[k] +D0f [k]) = O(τ2)

e2 =

∫ (k+1)ϵ

kϵ
(A0x0(t) +D0f(t))dt− ϵ(A0x0[k] +D0f [k]) = O(ϵ2).

The state variable vector is computed as

x0(kϵ+ τ) = x0[k] + e1 +
τ

ϵ
(x0[k + 1]− x0[k]− e2). (2.82)

This implies that the state vector is bounded within O(ϵ). The accuracy of the sliding

motion can be proved in the same way.
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The above results are summarized in the following theorem.

Theorem 2.2. If the exogenous disturbance f(t) is smooth and bounded, then the

sampled-data output feedback control

u[k] = −1

ϵ
(C̄2B̄2)

−1((2Im + ϵΩ2)Hy[k]− (Im + ϵΩ2)Hy[k − 1]) + u[k − 1]

produces sliding motion on the sliding surface s(t) after two sampling periods. Further-

more, s(t) = O(ϵ2), x0(t) = O(ϵ) and u(t) = O(1) at steady state.

2.5 Two-Step Delayed Disturbance Approximation Approach

2.5.1 Output Feedback Control Design

The last statement in Lemma 2.1 shows that the disturbance d[k] can be approximated

by 2d[k− 1]− d[k− 2]. Based on this observation, we approximate the disturbance g[k]

by 2g[k − 1] − g[k − 2]. Note that g[k − 1] and g[k − 2] can be computed by (2.48).

Hence, replacing g[k] by 2g[k − 1]− g[k − 2] in (2.47), we obtain a new control law

u[k] =− 1

ϵ
(C̄2B̄2)

−1((3Im + ϵΩ2)s[k]

− (3Im + 2ϵΩ2)s[k − 1] + (Im + ϵΩ2)s[k − 2]) + 2u[k − 1]− u[k − 2]. (2.83)

Like in the one-step delayed disturbance approximation approach, the proposed

control law (2.83) contains no switching actions. On the other hand, the incorporation

of the past system information s[k−1], s[k−2], u[k−1] and u[k−2] leads to additional

dynamics. Also note that 1
ϵ in the coefficient term suggests that it is a high gain linear

control law, which induces the singular perturbation phenomenon in the overall closed-

loop system. In the next section, we will study the characteristics of the closed-loop

system which is represented by an augmented linear one.

2.5.2 Stability Analysis

The discrete-time control law (2.83) is different from the corresponding one in the one-

step delayed disturbance approximation approach in the fact that two previous time

instants are taken into account. Like the control law (2.50), this control action is a high
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gain in nature due to the inverse of ϵ. Following a similar derivation in the one-step

delayed disturbance approximation approach, we will employ the singular perturbation

methodology to analyze the stability of the closed-loop system driven by the proposed

sliding mode control law (2.83).

The involvement of the past quantities at time instants [k − 1] and [k − 2] in the

control law (2.83) induces additional dynamics for the closed-loop system. Hence, we

study an augmented dynamic system of z1[k], s[k], s[k − 1], u[k] and u[k − 1].

From (2.48) and (2.83), we have

u[k + 1] = −(C̄2B̄2)
−1((3Im + ϵΩ2)Ω1z1[k] + (2Im + ϵΩ2)Ω2s[k]

+ (Im + ϵΩ2)s[k − 1])− (Im + ϵΩ2)u[k]− u[k − 1]− (C̄2B̄2)
−1(3Im + ϵΩ2)d2[k].

(2.84)

In order to make it easier for analysis, we introduce the following new variables:

s1[k − 1] = s[k − 1], (2.85)

γ[k] = ϵC̄2B̄2u[k], (2.86)

and

γ1[k] = ϵC̄2B̄2u[k − 1]. (2.87)

Thus, the new augmented system is described by

z1[k + 1]

s[k + 1]

s1[k + 1]

γ[k + 1]

γ1[k + 1]


= Aaug2



z1[k]

s[k]

s1[k]

γ[k]

γ1[k]


+



d11[k]

d2[k]

0

−(3Im + TΩ2)d2[k]

0


, (2.88)

where

Aaug2 =

As ϵP1

ϵP2 Af2

 . (2.89)
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with

Af2 =



(Im + ϵΩ2) 0 Im 0

Im 0 0 0

−ϵ(2Im + ϵΩ2)Ω2 −(Im + ϵΩ2) −(Im + ϵΩ2) −Im

0 0 Im 0


, (2.90)

P1 = [Ā12C
−1
2 0(n−m)×m 0(n−m)×m 0(n−m)×m], (2.91)

and

P2 =



Ω1

0

−(3Im + TΩ2)Ω1

0


. (2.92)

The above augmented system is a singularly perturbed discrete-time system (Litk-

ouhi and Khalil, 1985) where the slow dynamics is represented by z1[k], and the fast

dynamics is represented by s[k], s1[k], γ[k], and γ1[k]. On the other hand, the slow

and fast components affect each other by a regular O(ϵ) perturbation (or by weak cou-

plings), and hence the system also has the weakly coupled structure (Gajic and Lim,

2001; Gajic and Shen, 1989; Gajic et al., 2009).

According to (Litkouhi and Khalil, 1985), the system (2.88) can be separated into

distinct slow and fast subsystems by using a decoupling transformation provided that

I4m − Af2 is nonsingular. Since A4
f2

= 0, Lemma 2.2 implies that λ{A4
f2
} = 0. The

eigenvalues of A4
f2

satisfy the following equation

det(λI4m −A4
f2) = det(λI4m −Af2)det(λI4m +Af2)det(λI4m +A2

f2) = 0. (2.93)

This implies the eigenvalues of Af lie in the set of the eigenvalues of A4
f . Thus, all

eigenvalues of Af are zero. In other words, I4m − Af is nonsingular. Hence, the

following decoupling transformation can be employed to separate the dynamics of (2.88)

into reduced-order subsystems (Litkouhi and Khalil, 1985)

T4 =

In−m − ϵM2L2 −ϵM2

L2 I4m

 ,
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T−1
4 =

In−m ϵM2

−L2 I4m − ϵL2M2

 . (2.94)

The matrices L2 ∈ R4m×(n−m) and M2 ∈ R(n−m)×4m satisfy the following algebraic

equations

0 = ϵP2 + L2As −Af2L2 − ϵL2P1L2, (2.95)

0 = P1 +AsM2 −MAf2 − ϵP1L2M2 − ϵM2L2P1. (2.96)

Note that Af2 , L2, and M2 are functions of ϵ. Setting ϵ = 0 in equations (2.95) and

(2.96) yields

(I4m −Af2(0))L2(0) = 0, (2.97)

and

M2(0)(I4m −Af2(0)) = −P1. (2.98)

It follows that L2(0) = 0, and hence

L2 = O(ϵ). (2.99)

On the other hand, we have

M2(0) = −P1(I4m −Af2(0))
−1 = −[Ā12C

−1
2 0(n−m)×m 0(n−m)×m 0(n−m)×m]

×



Im −Im Im −Im

Im 0 Im −Im

−Im 0 0 0

Im 0 0 Im


= Ā12C

−1
2

[
−Im Im −Im Im

]
.

Thus, we obtain

M2 = Ā12C
−1
2

[
−Im Im −Im Im

]
+O(ϵ). (2.100)

The transformation P3 puts the augmented system dynamics into the fully decoupled

two-time scale forms. Let w[k]
η[k]

 = T4


z1[k]

s[k]

γ[k]

 (2.101)
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where w[k] ∈ Rn−m and η[k] ∈ R2m. The transformed system is given byw[k + 1]

η[k + 1]

 =

Φs2 0

0 Φf2

w[k]
η[k]

+ d3[k], (2.102)

where Φs2 = As − ϵP1L2, Φf2 = Af + ϵL2P1, and

d3[k] = T4



d11[k]

d2[k]

0

−(3Im + ϵΩ2)d2[k]

0


=



O(ϵ2)

d2[k] +O(ϵ3)

O(ϵ3)

−(3Im + ϵΩ2)d2[k] +O(ϵ3)

O(ϵ3)


. (2.103)

The stability of the closed-loop system is decided by the eigenvalues of Φs and Φf .

It can be seen that

λ{Φs2} = 1 + ϵλ{Ac + ϵ∆Ac − P1L2}. (2.104)

Since Ac contains stable eigenvalues of the zero dynamics of the original continuous-time

sliding motion in (2.4) and P1 = O(ϵ), there exist a small ϵ such that the eigenvalues

of (Ac + ϵ∆Ac − P1L2) have negative real parts. Therefore, the eigenvalues of Φs2 lie

in the unit circle for a sufficiently small ϵ.

On the other hand, let q be an eigenvector corresponding to an eigenvalue of Φf2 .

We have

(λ{Φf2})4∥q∥ = ∥(λ{Φf2})4q∥ = ∥Φ4
f2q∥ ≤ ∥Φ4

f2∥∥q∥. (2.105)

This implies

(λ{Φf2})4 ≤ ∥Φ4
f2∥. (2.106)

Since A4
f2

= 0 and P1 = O(ϵ), we have

Φ4
f2 = A4

f2 + ϵA2
f2(Af2L2P1 + L2P1Af2 + ϵ(L2P1)

2)

+ ϵ(Af2L2P1 + L2P1Af2 + ϵ(L2P1)
2)A2

f2 + ϵ4(L2P1)
2 = O(ϵ2). (2.107)

Hence, it follows from (2.107) that λ{Φf2} = O(
√
ϵ) and the eigenvalues of Φf2 lie in

the unit circle for a sufficiently small ϵ.
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Remark 2.6. The eigenvalues of the closed-loop system can be dissected into two

groups: the slow and fast ones. Those which lie in an O(ϵ) neighborhood of the unit

circle represent slow modes and those which locate in an O(
√
ϵ) neighborhood of the

origin represent fast modes.

We summarize the above discussion in the following theorem.

Theorem 2.3. In the absence of external disturbances, the discrete-time output feedback

sliding mode control law (2.83) renders the sampled-data system (2.5) asymptotically

stable for the sampling period ϵ being small enough .

Remark 2.7. It is seen that the closed-loop system possesses similar properties as in

the one-step delayed disturbance approximation approach. However, the fast modes in

this approach are characterized by eigenvalues which lie in an O(
√
ϵ) boundary layer of

the origin while the fast eigenvalues in the one-step delayed disturbance approximation

approach lie in a smaller boundary layer of the origin.

Remark 2.8. The control laws in both methods can induce high gain efforts if the state

variables are far from the sliding surface. We can employ a saturation control method

in (Bartolini et al., 1995) to handle undesired high gain phenomena.

2.5.3 Accuracy Analysis

In this subsection, we will investigate the accuracy issue of the sliding motion and

the bound of the state variables when the closed-loop system is under the influence of

external disturbances.

From (2.46), (2.94), (2.99) and (2.100), we have

z1[k + 4]

s[k + 4]

s1[k + 4]

γ[k + 4]

γ1[k + 4]


= A4

aug2



z1[k]

s[k]

s1[k]

γ[k]

γ1[k]


+ d4[k] (2.108)
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where

d4[k] =



d41[k]

d42[k]

d43[k]

d44[k]

d45[k]


(2.109)

with

d41[k] = ϵĀ12C̄
−1
2 (d2[k + 2]− d2[k + 1]) +O(ϵ3),

d42[k] = d2[k + 3]− 2d2[k + 2] + d2[k + 1] +O(ϵ3),

d43[k] = d2[k + 2]− 2d2[k + 1] + d2[k] +O(ϵ3),

d44[k] =− (3Im + ϵΩ2)d2[k + 3] + (3Im + 2ϵΩ2)d2[k + 2]

− (Im + ϵΩ2)d2[k + 1] +O(ϵ3),

and

d45[k] =− (3Im + ϵΩ2)d2[k + 2] + (3Im + 2ϵΩ2)d2[k + 1]

− (Im + ϵΩ2)d2[k] +O(ϵ3).

Applying the transformation (2.96) to (2.108) and using of Lemma 2.1 with d2[k]

playing the role of d[k], we have

w[k + 4]

η[k + 4]

 =

Φ4
s2 0

0 Φ4
f2

w[k]
η[k]

+



O(ϵ3)

O(ϵ3)

O(ϵ3)

O(ϵ)

O(ϵ)


. (2.110)

At steady state, w[k + 4] ≈ w[k]. Hence, it follows that

(In−m − Φ4
s2)w[k] = O(ϵ3).

Since In−m − Φ4
s2 = −4ϵAc +O(ϵ2) and λ{Ac} ̸= 0, for small enough ϵ we attain

w[k] = O(ϵ2). (2.111)
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Similarly, η[k + 4] ≈ η[k] at steady state. From (2.107) and (2.110), we have

(I4m −O(ϵ2))η[k] =



O(ϵ3)

O(ϵ3)

O(ϵ)

O(ϵ)


.

Hence,

η[k] =



O(ϵ3)

O(ϵ3)

O(ϵ)

O(ϵ)


. (2.112)

Transforming (2.111) and (2.112) back to the coordinates (2.94) renders

z1[k]

s[k]

s1[k]

γ[k]

γ1[k]


= T−1

4

w[k]
η[k]

 =



O(ϵ2)

O(ϵ3)

O(ϵ3)

O(ϵ)

O(ϵ)


. (2.113)

This shows that the accuracy of the sliding mode obtained is of the order of O(ϵ3). The

ultimate bound of the original state variables is given by

x0[k] = T−1
0 T−1

1 T−1
2

z1[k]
s[k]

 = O(ϵ2). (2.114)

By the similar arguments of Lemma 2.3, we arrive at the following theorem which

shows the ultimate bounds of the state variables and the accuracy of the sliding motion.

Theorem 2.4. If the exogenous disturbance f(t) is bounded and smooth, then the

sampled-data output feedback control law (2.83) produces a sliding motion on the sliding

surface s(t). Furthermore, s(t) = O(ϵ3) and x0(t) = O(ϵ2) at steady state.

Remark 2.9. In view of (2.36), if s[k] = 0 at some time instants, the dynamics of

z1[k] is still affected by an O(ϵ3) disturbance action. Therefore, the best bound of z1[k]

is O(ϵ2), and hence, the ultimate bound of the state variables are at best O(ϵ2).
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Remark 2.10. The proposed control strategy ensures that the state variables evolve in

an O(ϵ3) boundary layer of the sliding surface. Also, the state variables are kept in an

ultimate bound of O(ϵ2). These results are stronger than those in the one-step delayed

disturbance approximation approach.

2.6 Numerical Example

We use the L-1011 aircraft model in (Heck et al., 1995) to illustrate the proposed

approach with system matrices given by:

A0 =



0 0 1 0 0 0 0

0 −0.154 −0.0042 1.54 0 −0.744 −0.032

0 0.249 −1 −5.2 0 0.337 −1.12

0.0386 −0.996 −0.0003 −2.117 0 0.02 0

0 0.5 0 0 −4 0 0

0 0 0 0 0 −20 0

0 0 0 0 0 0 −25



, (2.115)

B0 = D0 =

0 0 0 0 0 20 0

0 0 0 0 0 0 25

T

, (2.116)

C0 =



0 −0.154 −0.0042 1.54 0 −0.744 −0.032

0 0.249 −1 −5.2 0 0.337 −1.12

1 0 0 0 0 0 0

0 0 0 0 1 0 0


. (2.117)

The coefficient matrix of the sliding surface s(t) = Hy(t) = 0 was given by Heck et al.

(1995)

H =

−0.0067 0.0167 0.0033 0

0.0167 −0.0333 0 0.0333

 . (2.118)

Consider the external disturbance vector

f(t) =

1 + sin(0.5t)

0.8 sin(t)

 . (2.119)
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The sampling period is ϵ = 0.01 second. The initial condition is x(0) = [1 −2 2 −

4 3 4 −1]T . For comparison, we plot the numerical results for the one-step delayed

disturbance approximation approach and the two-step delayed disturbance approxima-

tion approach.
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Figure 2.1: Evolution of the control law for the one-step delayed disturbance approxi-
mation approach

Fig. 2.4 indicates that the control law of the two-step delayed disturbance approxi-

mation approach possesses high gain in three sampling periods. The control law of the

one-step delayed disturbance approximation approach experiences a high gain in two

sampling periods in Fig. 2.1. On the other hand, it is observed from Fig. 2.2, Fig. 2.3,

Fig. 2.5, Fig. 2.6 that the ultimate bounds of state variables and the accuracy of the

sliding motion for the two-step delayed disturbance approximation approach are better

than those for the one-step delayed disturbance approximation approach. This agrees

with the analysis in the previous section.

2.7 Conclusions

We have investigated the output feedback sliding mode control problem for sampled-

data systems with external disturbances. By some suitable linear transformations and

changes of variables, the closed-loop system under the high gain control law (2.49) as
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Figure 2.2: O(ϵ) bounds of the state variables for the one-step delayed disturbance
approximation approach
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Figure 2.3: O(ϵ2) accuracy of the sliding motion for the one-step delayed disturbance
approximation approach
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Figure 2.4: Evolution of the control law for the two-step delayed disturbance approxi-
mation approach
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Figure 2.5: O(ϵ2) bounds of the state variables for the two-step delayed disturbance
approximation approach



46

25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1
x 10

−5

Time(sec)

s(
t)

 

 

s
1

s
2

Figure 2.6: O(ϵ3) accuracy of the sliding motion for the two-step delayed disturbance
approximation approach

well as the control law (2.83) is shaped into a two-time scale representative. This paves

way to the framework of discrete-time singular perturbation analysis, by which the

eigenvalues of the closed-loop system are clustered into two groups: the slow and fast

eigenvalues. For a small enough sampling period, the stability of the closed-loop system

is guaranteed in the absence of external disturbances.

The idea of approximating disturbances by the past information equips the control

law (2.49) and the control law (2.83) with an ability to maintain the system state in

a respective O(ϵ2) and O(ϵ3) boundary layer of the sliding surface. Also, the ultimate

bounds of the state variables are O(ϵ2) and O(ϵ3) for the two approaches. In other

words, under two proposed control laws, the closed-loop system exhibits good robustness

against exogenous disturbances. It is also shown that the second approach produces

much better characteristics than the first one. As an illustration, the numerical example

of an aircraft attitude output feedback control problem has been provided to show the

efficiency of the proposed methods.



47

Chapter 3

Sliding Mode Control for Singularly Perturbed Linear

Continuous-Time Systems: Composite Control

Approaches

3.1 Introduction

In systems with slow and fast modes, several works have addressed the study of sliding

mode control (Heck, 1991; Li et al., 1995a; Yue and Xu, 1996; Su, 1999; Innocenti et al.,

2003; Ahmed et al., 2004; Fridman, 2001, 2002a,b; Alvarez-Gallegos and Silva-Navarro,

1997; Soto-Cota et al., 2006). In general, a singularly perturbed system is decomposed

into slow and fast subsystems for which a state feedback control law is synthesized.

Then, the results are combined in a composite feedback control law (Kokotovic et al.,

1986). Sliding mode control, a powerful tool dealing with uncertainty and disturbances,

has been utilized for decades (Utkin, 1977, 1978, 1992). However, it is not straitforward

to synthesize a sliding mode control law for singularly perturbed systems due to the

complication of different time-scale behavior and the discontinuous nature of switching

actions. We will review some papers in the literature regarding sliding mode control

for singularly perturbed systems.

Various attempts to apply the knowledge of sliding mode control for singularly

perturbed systems have been realized in several papers (Heck, 1991; Li et al., 1995a;

Yue and Xu, 1996; Su, 1999; Innocenti et al., 2003; Ahmed et al., 2004; Fridman,

2001, 2002a,b; Alvarez-Gallegos and Silva-Navarro, 1997; Soto-Cota et al., 2006). Heck

(1991) proposed a composite sliding mode control method derived from two slow and

fast sliding mode control laws in an effort to stabilize a class of linear time-invariant

systems. A similar approach was investigated by Li et al. (1995a). Alvarez-Gallegos

and Silva-Navarro (1997) investigated a more general sliding mode control method for
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a class of nonlinear singularly perturbed systems. Meanwhile, Innocenti et al. (2003)

considered a class of linear singularly perturbed systems in which the control input

enters the system dynamics via fast variables. Fridman (2001, 2002a,b) investigated

some issues of stability and chattering analysis for a class of singularly perturbed relay

systems, in which the fast modes are represented by the dynamics of fast actuators.

Soto-Cota et al. (2006) studied synchronous generator systems in which the control

input only appears in the slow dynamics equation. Different from the above works,

Su (1999) employed the Lyapunov function method to design a sliding surface which

contains both slow and fast variables. Yue and Xu (1996) took into the account external

disturbances and proposed a composite sliding mode control law in an effort to reduce

the influence of external disturbances.

Heck (1991) studied a singularly perturbed system without external disturbances:

ẋ(t) = A11x(t) +A12z(t) +B1u(t), x(t0) = x0

ϵż(t) = A21x(t) +A22z(t) +B2u(t), z(t0) = z0, (3.1)

where x(t) ∈ Rn1 , z(t) ∈ Rn2 , u(t) ∈ Rm, and ϵ is a small positive parameter. It has

been assumed in (Heck, 1991) that A22 is stable. This assumption is stronger than

the condition that A22 is invertible (a standard assumption in singular perturbations

(Kokotovic et al., 1986)).

The full-order system is decoupled into reduced-order subsystems. The slow sub-

system is represented by

ẋs(t) = A0xs(t) +B0us(t)

zs(t) = −A−1
22 (A21xs(t) +B2us(t)) (3.2)

where A0 = (A11 − A12A
−1
22 A21) and B0 = B1 − A12A

−1
22 B2. The fast dynamic model

is given in terms of a stretched time variable τ = (t − t0)/ϵ and a new state variable

zf = z − zs:

dx(τ)

dτ
= ϵ(A11x(τ) +A12z(τ) +B1u) = O(ϵ), x(0) = x0, (3.3)

dzf (τ)

dτ
= A22zf (τ) +B2uf − dzs

dx(τ)

dx(τ)

dτ
, zf (0) = z0 − zs(0) (3.4)
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where z̃(τ) = z(ϵτ + t0), x̃(τ) = x(ϵτ + t0), and uf = u− us. If
dzs)
dx(τ) is O(1), equation

(3.4) can be approximated by the following reduced-order model:

dẑf
dτ

= A22ẑf +B2uf , ẑf (0) = z0 − h(x0) (3.5)

where ẑf is an approximation for zf = z − h(x) during the initial boundary layer. For

the slow subsystem (3.2), a sliding surface is chosen as

ss = Csxs = 0. (3.6)

The control law is designed in the form:

usi(xs) =


u+si(xs), if ssi(xs) > 0

u−si(xs), if ssi(xs) ≤ 0

(3.7)

where ssi = Csixs is the ith linear switching function, u+si and u−si are smooth functions

to be defined later. The equivalent control for the slow subsystem during sliding is

given by Utkin (1984)

ues = −(CsB0)
−1CsA0xs. (3.8)

For the fast subsystem (3.5), a sliding surface is chosen as

sf = Cf ẑf = 0. (3.9)

The control is chosen in the form:

ufi(ẑf ) =


u+fi(ẑf ), if sfi(ẑf ) > 0

u−fi(ẑf ), if sfi(ẑf ) ≤ 0

(3.10)

where sfi = Cfiẑf is the ith linear switching function, u+fi and u−fi are smooth functions

to be defined later. The equivalent control for the fast subsystem during sliding is given

by Utkin (1984)

uef = −(CfB2)
−1CfA22ẑf . (3.11)

The control law for the full-order system is a composite of the slow and fast controls

as given by

u = us(xs) + uf (zf ) (3.12)
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where us is defined in (3.7) and uf is defined in (3.10).

The structure of the slow control law (3.7) and the fast control one (3.10) can be

chosen by three methods (Heck, 1991). For a system

ẋ = Ax+Bu (3.13)

the control law is given (Utkin, 1977)

ui = (−α

m∑
i=1

|xm| − δ)sgn(si) (3.14)

where ui is the ith component of the control, si is the ith row vector of s(t). A control

law proposed by DeCarlo et al. (1988) can be used for the slow subsystem

u = −(SB)−1SAx− δ(SB)−1SGN(Sx) (3.15)

where SGN(y) is a vector-valued function with the ith component equal to sgn(yi). The

composite control law can be given by

u = −δSGN(Kxx+Kzz) (3.16)

where Kx, Kz are to be determined. The main contribution of Heck is that the problem

of sliding mode control for the full order system (3.1) is addressed by two reduced-order

problems for the slow and fast subsystems. The drawback of Heck’s method is the

assumption on dzs)
dx(τ) to validate the fast model; hence, the generality of the method is

limited. Furthermore, external disturbances were not brought into the picture.

Li et al. (1995a) also considered a singularly perturbed system in the form of (3.1).

Similarly to Heck’s approach, the full-order system is first decomposed into slow and

fast subsystems. Then, slow and fast sliding surfaces are designed for the subsystems

separately. The only difference is that Li et al. (1995a) proposed a non switching control

strategy. The control law for the slow subsystem is given by

us = ues +∆us (3.17)

where ues is defined in (3.8) and

∆us = −(CsB0)
−1δssig(Csxs) ∗ sgn(Csxs) (3.18)
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where ” ∗ ” stands for the component-wise multiplication, δs is a positive scalar, and

sig(Csxs) is a vector function whose ith component is given by

sig(Csixs) =
1− e−|Csixs|

1 + e−|Csixs|
≥ 0. (3.19)

Similarly, the fast sliding mode control law is given by

uf = uef +∆uf (3.20)

where

uef = −(CfB2)
−1CfA22zf

is equivalent control and

∆uf = −(CfB2)
−1δssig(Cfη) ∗ sgn(Cfzf )

The composite control is constructed from slow and fast control laws:

u = us(x) + uf (zf )

where us and uf are defined in (3.17) and (3.20). The control method proposed by Li

et al. (1995a) employs sigmoid functions to reduce the chattering phenomenon. Like

(Heck, 1991), they did not consider the problem of external disturbances beside the

closed-loop stability issue.

Following the same direction as in (Heck, 1991; Li et al., 1995a), Innocenti et al.

(2003) studied a class of singularly perturbed systems:

ẋ(t) = A11x(t) +A12z(t), x(t0) = x0

ϵż(t) = A21x(t) +A22z(t) +B2u(t), z(t0) = z0, (3.21)

where x(t) ∈ Rn1 , z(t) ∈ Rn2 , u(t) ∈ Rm, ϵ is a small positive parameter, A22 is

nonsingular, B2 is of full rank, and (A22, B2) is controllable. It is seen that system

(3.21) is less general than system (3.1) when the control input only affects the system

through the dynamics of z(t). Like in (Heck, 1991), they employed standard techniques

of singular perturbations to decompose system (3.21) into slow and fast subsystems.
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The slow model is given by

ẋs(t) = A0xs +B0us(xs)

zs = −A−1
22 (A21xs +B2us(xs)) (3.22)

where A0 = (A11 − A12A
−1
22 A21) and B0 = −A12A

−1
22 B2. The slow sliding surface is

chosen as

ss = Csxs = 0.

The slow control law is given by

us(xs) = −(CsB0)
−1(Ksss +Qsρs(ss) + CsA0xs) (3.23)

where Ks ∈ Rr×r, Qs ∈ Rr×r are positive definite diagonal matrices and ρs(σ) : R
r →

Rr is a vector function, whose ith component is given by

ρsi(σi) =
σi

|σi|+ δsi
(3.24)

and δsi is a small positive quantity. The fast reduced model obtained is the same as in

(Heck, 1991; Li et al., 1995a):

dzf
dτ

= A22zf +B2uf (3.25)

where zf = z − zs is the fast component of z and uf = u− us is the fast control. If the

fast sliding surface is chosen as

sf = Cfzf = 0,

the fast sliding control law is given by

uf (zf ) = −(CfB2)
−1(Kfsf +Qfρf (sf ) + CfA22zf ). (3.26)

The composite control is synthesized from slow control (3.23) and fast control (3.26)

uc = us(x) + uf (zf ).

To study the stability of dynamics of subsystems, Innocenti et al. (2003) employed a

state space decomposition to construct a quadratic Lyapunov function and a procedure

in (Kokotovic et al., 1986). Under their proposed scheme, the closed-loop system is
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proved to be globally stable with sufficiently small ϵ. Different from Heck (1991); Li

et al. (1995a), Innocenti et al. (2003) utilized a continuous-time control law instead

of discontinuous one. Hence, it helps avoid chattering phenomena. While external

disturbances are also not considered, the class of systems under consideration is less

general than in (Heck, 1991; Li et al., 1995a).

Unlike the above approaches, where no disturbances are taken into account, Yue

and Xu (1996) studied a singularly perturbed system of the form

ẋ(t) = A11x(t) +A12z(t) +B1u(t) +B1f(t, x, z),

ϵż(t) = A21x(t) +A22z(t) +B2u(t) +B2g(t, x, z), (3.27)

where x(t) ∈ Rn1 , z(t) ∈ Rn2 , and u(t) ∈ Rm. 0 < ϵ ≪ 1 represents the singular

perturbation parameter. f(x, z, t), g(x, z, t) : R+×Rn1×Rn2 → R denote the param-

eter uncertainties and external disturbances. Furthermore, the disturbances f(x, z, t),

g(x, z, t) are assumed to satisfy the following inequalities:

|f(x, z, t)∥ ≤ ρ1(x, z) = a0 + a1∥x∥+ a2∥z∥

∥g(x, z, t)∥ ≤ ρ2(x, z) = b0 + b1∥x∥+ b2∥z∥.

In addition, they satisfy

∥f(x, z, t)− g(x, z, t)∥ ≤ α∥x∥+ β∥z∥.

In their approach, a designed control law includes two continuous time state feedback

terms and a switching term. The objective of the two continuous-time terms is to

stabilize the system as no disturbances are taken into account. Specifically, the control

law is in the form

u = Kx+K0η + w (3.28)

where K and K0 are designed such that As +BsK and A22 +B2K0 are stable, and w

is a switching term to be defined. Here, η is a new state variable given by

η = z +A−1
22 (A21 +B2K)x. (3.29)
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The new system is given by

ẋ = A0
11x+ (A12 +B1K0)η +B1w +B1f

ϵη̇ = (A22 +B2K0)η +B2w +B2g +O(ϵ).

To choose w, Yue and Xu considered a Lyapunov function candidate as follows

V = xTP1x+ ϵηTP2η

where P1, P2 are positive definite solutions to the following Lyapunov equations

(As +BsK)TP1 + P1(As +BsK) = −Q1

(A22 +B2K0)
TP2 + P2(A22 +B2K0) = −Q2.

The control law is chosen as

u = −Kx−K0η − (b̂0 + b̂01∥x∥+ b̂2∥η∥)sgn(BT
1 P1x+BT

2 P2η) (3.30)

where b̂0, b̂
0
1, and b̂2 are acquired from the definition of disturbances f(t, x, z), g(t, x, z),

and matrices A21, A22, K. With this control law, the system (3.27) is uniformly prac-

tically stable for ϵ ∈ (0, ϵ∗] and the trajectories x and η ultimately satisfy (Yue and Xu,

1996)

∥x∥ ≤ O(ϵ), ∥η∥ ≤ O(ϵ).

Yue and Xu also proved the existence of the sliding motion for the sliding surface s =

BT
1 P1x+BT

2 P2η provided some condition are satisfied (Yue and Xu, 1996). Although,

their approach deals with disturbances and provides some certain robust characteristics,

it only guarantees the trajectories of the system travel in a O(ϵ) boundary layer of the

origin. Furthermore, it is complicated to compute some parameters for the control law.

Su (1999) studied the problem of sliding surface design for the system (3.1). Like in

(Heck, 1991; Li et al., 1995a; Innocenti et al., 2003), the full-order system is separated

into slow and fast subsystems. Then, stabilizing state feedback controls are constructed

individually for each subsystem, leading to a composite control law

u = us + uf = K1x+K2z. (3.31)
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Then, the closed-loop system is written as ẋ

ϵż

 =

 T11 T12

T21 T22

 (3.32)

where

T11 = A11 +B1K1,

T12 = A12 +B1K2,

T21 = A21 +B2K1,

T22 = A22 +B2K2.

The closed-loop system is transformed into an exact slow and an exact fast subsystem

by using the Chang transformation (Chang, 1972; Kokotovic et al., 1986): ξ

η

 =

 In1 − ϵHL −ϵH

L In2

 x

z

 = J

 ξ

η

 . (3.33)

The exact subsystems in the new coordinates are

ξ̇ = (T11 − T12)ξ = Tsξ

ϵη̇ = (T22 + ϵLT12)η = Tfη. (3.34)

There exist positive definite matrices Ps and Pf such that

PsTs + T T
s Ps = −Qs, Qs > 0

PfTf + T T
f Pf = −Qf , Qf > 0. (3.35)

Then, the sliding surface for the singularly perturbed system can be chosen as

s(x, z) =

 B1

B2/ϵ

T

JT

 Ps 0

0 ϵPf

J

 x

z

 = 0. (3.36)

It was shown that (Su, 1999) if the sliding motion is achieved, the system is asymptoti-

cally stable. Like in (Yue and Xu, 1996), only one sliding surface is designed for the full

order system. However, a control strategy has not been provided to realize the sliding

motion.
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In this chapter, we address the problem of sliding mode control for a singularly

perturbed system with the external disturbance. While several papers in the literature

only address the stability of the closed-loop system (Heck, 1991; Li et al., 1995a; Inno-

centi et al., 2003), we consider both closed-loop stability and disturbance rejection. In

our method, a state feedback control law is firstly established to stabilize either slow or

fast dynamics. Then, a sliding mode control law is designed for the remaining dynamics

of the system to ensure stability and disturbance rejection. Putting the two controls

together produces a composite control law that makes the closed-loop system asymp-

totically stable. The advantage of the proposed method over others in the literature is

that external disturbances are completely excluded.

3.2 Problem Formulation

Consider a singularly perturbed system: ẋ(t)

ϵż(t)

 = A

 x(t)

z(t)

+Bu(t) +Df(t), (3.37)

A =

 A11 A12

A21 A22

 , B =

 B1

B2

 , D =

 D1

D2

 ,

where x(t) ∈ Rn1 and z(t) ∈ Rn2 are the slow time and fast time state variables,

u(t) ∈ Rm is the control input, ϵ is a small positive parameter. Matrix A22 is invertible,

that is rank(A22) = n2. Matrices A, B, D are constant and of appropriate dimension.

Furthermore, f(t) ∈ Rr is an unknown but bounded exogenous disturbance with ∥f(t)∥ ≤

h.

Disturbance rejection and parameter variation invariance will be achieved if the

matching condition of Drazenovic (1969) is satisfied:

rank[B|D] = rankB. (3.38)

Due to this invariance condition, there exists an m× r matrix G such that

D = BG. (3.39)
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Hence, D1 = B1G and D2 = B2G.

Our objective is to find a sliding mode control law to achieve both system stability

and disturbance rejection.

3.3 Main Results

In this section, we will present two sliding mode control strategies for the singularly

perturbed system (3.37). The two control methods share a similar procedure:

• A state feedback control law is designed to maintain either the fast or slow modes

asymptotically stable.

• A discontinuous sliding mode control law for the remaining modes is established

to reject disturbances.

• The results are synthesized in a composite control law to ensure the stability and

robustness of the whole system.

Before proceeding to the main results, we need the following assumption.

Assumption 3.1. (A0, B0) and (A22, B2) are controllable.

A0 = A11 −A12A
−1
22 A21, B0 = B1 −A−1

22 B2.

This assumption allows us to construct state feedback control laws separately for

the slow and fast subsystems provided the original full-order system is controllable.

3.3.1 Dominating Slow Dynamics Approach

In this approach, a linear state feedback control law is designed to place eigenvalues

of the fast subsystem into appropriate positions, and then a sliding mode control law

is used for the slow subsystem to exhibit the desired slow time system performance.

Although the original singularly perturbed system can be decoupled into two time-

scales and into two lower dimensional state vectors, ξ(t) and z(t), the similar type of

decomposition does not hold for the control law and the disturbance. As it can be
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seen in the slow and fast subsystems, the control law u(t) is decomposed only in the

time scale, us(t) and uf (t), but not in its dimension. In other words, both us(t) and

uf (t) are still m-vectors as its composite version u(t) = us(t) + uf (t). The same holds

for the disturbance f(t). Therefore, we allege that when it comes to the subject of

disturbance rejection, we can only have one subsystem that enters the sliding mode

unless an appropriate dimensional decomposition in the control law can be achieved.

With Assumption 3.1, a continuous fast-time state feedback control law is chosen

as

uf (t) = Kfz(t) (3.40)

such that A22 + B2Kf is asymptotically stable. The gain matrix Kf can be chosen

appropriately via the eigenvalue placement technique since (A22, B2) is controllable.

Then, the system under the composite control law u(t) = us(t) + uf (t) is defined as ẋ(t)

ϵż(t)

 =

A11 (A12 +B1Kf )

A21 (A22 +B2Kf )

x(t)
z(t)

+

B1

B2

 (us(t) +Gf(t)). (3.41)

By the change of variables

ξ(t) = x(t)− ϵM(ϵ)z(t), (3.42)

the system (3.41) is transformed into a lower triangular form (sensor form) (Kokotovic

et al., 1986) ξ̇(t)

ϵż(t)

 =

 As 0

A21 A22 +B2Kf + ϵA21M

 ξ(t)

z(t)

+

 Bs

B2

 (us(t) +Gf(t))

(3.43)

where

As = A11 −MA21, (3.44)

Bs = B1 −MB2 (3.45)

and M is the solution to the following algebraic equation (Kokotovic et al., 1986)

A12 +B1Kf −M(A22 +B2Kf ) + ϵA11M − ϵMA21M = 0. (3.46)

Matrix M can be found either using the fixed-point iterations or the Newton method

(Grodt and Gajic, 1988; Gajic and Lim, 2001).
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The system formulation (3.43) is related with its original form (3.37) via state

feedback (3.40) and the similarity transformation. Therefore, the controllability of the

slow subsystem pair (As, Bs) is intact (Chen, 1998). The design objective of the slow-

time control law us(t) is to stabilize the slow subsystem and simultaneously reject the

disturbance f(t) by applying the sliding mode control technique. We choose a sliding

surface for the dominating slow dynamics using the method of (Utkin and Young, 1979)

as

ss(t) = Csξ(t) (3.47)

If m < n1, there exists a transformation Ts ∈ Rn1×n1 for the slow subsystem of (3.43)

such that (Utkin and Young, 1979)

TsBs =

 0

Bs0

 (3.48)

Under this transformation, the slow subsystem of (3.43) becomes ξ̇1(t)

ξ̇2(t)

 =

 As11 As12

As21 As22

 ξ1(t)

ξ2(t)

+

 0

Bs0

 (us(t) +Gf(t)) (3.49)

where  ξ1(t)

ξ2(t)

 = Tsξ(t).

The variable ξ2(t) should be regarded as a control input to the dynamic equation

of ξ1(t). According to (Utkin and Young, 1979), the controllability of (As, Bs) implies

the controllability of (As11 , As12). As a result, we can find a gain matrix K1 such that

As11 −As12K1 is stable. Then, a sliding surface can be chosen as

ss(t) = K1ξ1(t) + ξ2(t) = 0 (3.50)

Representing the sliding surface in ξ(t) coordinates, we obtain

ss(t) = [K1 In1 ]Tsξ(t) = Csξ(t) = 0 (3.51)

where Cs = [K1 In1 ]Ts.
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We are now in a position to design a sliding control law for the sliding surface (3.51)

as Cs is chosen. Taking the derivative of the sliding surface (3.51), we have

ṡs(t) = CsAsξ(t) + CsBsus(t) + CsBsGf(t). (3.52)

According to (Utkin and Young, 1979), CsBs is nonsingular if Bs has full rank. Assume

that Bs has full rank. Based on the control method of (Utkin, 1978), we choose a sliding

mode control law us(t) as

us(t) = −(CsBs)
−1(CsAsξ(t)− S1ss(t) + (γ1 + σ1)

ss(t)

∥ss(t)∥
) (3.53)

where γ1 = ∥CsBsG∥h, σ1 is a positive parameter and matrix S1 is asymptotically

stable. The reaching condition is satisfied since

sTs (t)ṡs(t) =− 1

2
sTs (t)P1ss(t)− σ1∥ss(t)∥ − γ1∥ss(t)∥

+ sTs (t)CsBsGf(t) < −σ1∥ss(t)∥ (3.54)

where

P1 = −ST
1 − S1 > 0. (3.55)

This means that us(t) is able to drive the slow variable ξ(t) to reach the sliding surface

ss(t) in a finite time and reject the disturbance f(t). In the following, we will estimate

the interval of the reaching time.

Choose a Lyapunov function

V (t) = sTs (t)ss(t). (3.56)

We have

−λmax{P1}V (t)− 2(σ1 + 2γ1)
√

V (t) ≤ V̇ (t) ≤ −λmin{P1}V (t)− 2σ1
√

V (t). (3.57)

Let τ1 be the time needed to reach the sliding mode (V (τ1) = 0). Taking the derivative

of (3.57), we have

2

λmax{P1}
ln(

λmax{P1}
√

V (0) + 2σ1 + 4γ1
2σ1 + 4γ1

) ≤ τ1 ≤

2

λmin{P1}
ln(

λmin{P1}
√

V (0) + 2σ1
2σ1

). (3.58)
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In other words, the reaching time of the sliding mode lies in the interval

2

λmax{P1}
ln(

λmax{P1}
√

sTs (0)ss(0) + 2σ1 + 4γ1
2σ1 + 4γ1

) ≤ τ1

≤ 2

λmin{P1}
ln(

λmin{P1}
√

sTs (0)ss(0) + 2σ1
2σ1

). (3.59)

Remark 3.1. The sliding mode control law (3.53) offers a flexibility in adjusting the

reaching time. Inequalities (3.59) show that choosing appropriate candidates for S1

(P1), σ1, and γ1 affects the reaching time. Since σ1 and γ1 constitute the magnitude of

the control effort in sliding mode, their large values are undesired. Hence, we only need

to pick up a suitable value of S1 (P1) to obtain a fast reaching time.

From (3.40) and (3.53), the composite control is given by

u(t) = Kfz(t)− (CsBs)
−1(CsAsξ(t)− S1ss(t)− (γ1 + σ1)

ss(t)

∥s(t)∥
). (3.60)

In terms of the original state variables, the control law is rewritten as

u(t) =Kfz(t)− (CsBs)
−1(CsAs(x(t)− ϵMz(t))− S1Cs(x(t)

− ϵMz(t))− (γ1 + σ1)
Cs(x(t)− ϵMz(t))

∥Cs(x(t)− ϵMz(t))∥
). (3.61)

When the sliding mode is achieved, one can use the equivalent control method

(Utkin, 1977) to study the dynamics of the closed-loop system. The stability of the

closed-loop system is guaranteed by the following theorem.

Theorem 3.1. There exists ϵ∗ > 0 such that, in the sliding mode, the closed-loop

system is asymptotically stable for ϵ ∈ (0, ϵ∗] and invariant to the external disturbance

f(t).

Proof. To study the dynamics of the closed-loop system under the control law (3.60)

or (3.61), we employ the equivalent control method of (Utkin, 1977). The equivalent

control of the sliding motion is defined by solving ṡs(t) = 0. This yields

ueqs (t) = −(CsBs)
−1(CsAsξ(t) + CsBsGf(t)). (3.62)

Substituting the equivalent control into (3.43) results in the following equivalent dy-

namics  ξ̇(t)

ϵż(t)

 = Φ1

 ξ(t)

z(t)

 (3.63)
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where

Φ1 =

 As −Bs(CsBs)
−1CsAs 0

A21 −B2(CsBs)
−1CsAs A22 +B2Kf + ϵA21M

 .

The dynamics of the system (3.63) is defined by the eigenvalues of As−Bs(CsBs)
−1CsAs

and A22+B2Kf+ϵA21M . Matrix As−Bs(CsBs)
−1CsAs containsm zeros corresponding

to the sliding motion and n1 − m stable eigenvalues. Since matrix A22 + B2Kf is

asymptotically stable, there exists a small ϵ∗ ≥ 0 such that for all ϵ ∈ [0, ϵ∗] the

eigenvalues of A22 + B2Kf + ϵA21M have negative real parts. As a result, the closed-

loop system is asymptotically stable according to (Utkin, 1977).

Remark 3.2. One can only study the stability of the slow dynamics by applying the

equivalent control to the dynamics equation (3.49). However, according to (3.43), the

whole transformed system is still affected by us. Hence, when proving stability of the

closed-loop system, we still need to consider the influence of us on the whole system.

3.3.2 Dominating Fast Dynamics Approach

This approach presents a composite control law that consists of slow state feedback

control and fast sliding mode control. According to Assumption 3.1, (A0, B0) is con-

trollable. Thus, there exists a gain matrix Ks such that state feedback control

us(t) = Ksx(t) (3.64)

renders matrix A0 + B0Ks asymptotically stable. The system under the control law

u(t) = us(t) + uf (t) is described as ẋ(t)

ϵż(t)

 =

A11 +B1Ks A12

A21 +B2Ks A22

x(t)
z(t)

+

B1

B2

 (uf (t) +Gf(t)). (3.65)

Introducing the change of variables

η(t) = z(t) + L(ϵ)x(t) (3.66)
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the system (3.65) is brought into the actuator form (Kokotovic et al., 1986) ẋ(t)

ϵη̇(t)

 =

 A11 +B1Ks −A12L A12

0 Af

 x(t)

η(t)

+

 B1

Bf

 (uf (t) +Gf(t))

(3.67)

where

Af = A22 + ϵLA12 (3.68)

Bf = B2 + ϵLB1 (3.69)

and L is the solution to the following algebraic equation (Kokotovic et al., 1986)

A21 +B2Ks −A22L+ ϵL(A11 +B1Ks)− ϵLA12L = 0. (3.70)

This equation can be solved using either the fixed-point iterations or the Newton method

(Grodt and Gajic, 1988). Since L = A−1
22 (A21 +B2Ks) +O(ϵ) (Kokotovic et al., 1986),

we have

A11 +B1Ks −A12L = A0 +B0Ks +O(ϵ) (3.71)

Because A0 + B0K is asymptotically stable, there exists a small ϵ∗ > 0 such that for

all ϵ ∈ [0, ϵ∗], A11 +B1Ks −A12L is asymptotically stable.

We are now in a position to construct a sliding mode control law for the fast sub-

system in (3.67). Employing the same technique as in the dominating slow dynamics

approach, we choose a sliding surface via the method of (Utkin and Young, 1979) as:

sf (t) = Cfη(t) (3.72)

If m < n2, there exists a transformation Tf ∈ Rn2×n2 for the fast subsystem of (3.67)

such that Utkin and Young (1979)

TfBf =

 0

Bf0

 . (3.73)

Under this transformation, the fast subsystem of (3.67) becomes η̇1(t)

η̇2(t)

 =

 Af11 Af12

Af21 Af22

 η1(t)

η2(t)

+

 0

Bf0

 (uf (t) +Gf(t)). (3.74)
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Consider η2(t) as a control input to the dynamic equation of η1(t). Since (Af21 , Af22)

is controllable, we can find a gain matrix K2 such that As21 −As22K2 is asymptotically

stable. Then, a sliding surface can be chosen as

sf (t) = K2η1(t) + η2(t) = 0. (3.75)

Representing this sliding surface in the previous coordinates, we obtain

sf (t) = [K2 In2 ]Tfη(t) = Cfη(t) = 0 (3.76)

where Cf = [K2 In2 ]Tf .

Taking the derivative of the sliding surface (3.76) with respect to t, we have

ϵṡf (t) = CfAfη(t) + CfBfuf (t) + CfBfGf(t). (3.77)

With the assumption that the disturbance f(t) is bounded, and Bf has full rank, a

control law uf (t) can be chosen as

uf (t) = −(CfBf )
−1(CfAfη(t)− S2sf (t) + (γ2 + σ2)

sf (t)

∥sf (t)∥
) (3.78)

where γ2 = ∥CfBfG∥h, σ2 is a positive parameter, and matrix S2 is asymptotically

stable. The reaching condition is satisfied since

ϵsTf (t)ṡf (t) =− 1

2
sTf (t)P2sf (t)− σ2∥sf (t)∥ − γ2∥sf (t)∥+ sTf CfBfGf(t) < −σ2∥sf (t)∥

(3.79)

where

P2 = −ST
2 − S2 > 0. (3.80)

Similarly to (3.59), the reaching time of the sliding mode satisfies

2ϵ

λmax{P2}
ln(

λmax{P2}
√

sT2 (0)s2(0) + 2σ2 + 4γ2

2σ2 + 4γ2
) ≤ τ2

≤ 2ϵ

λmin{P2}
ln(

λmin{P2}
√

sT2 (0)s2(0) + 2σ2

2σ2
). (3.81)

Like in the first approach, the reaching time of the sliding mode can be monitored

by choosing a suitable value of P2 (S2) without affecting the magnitude of the control

effort during sliding.
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The composite control law is described in terms of the slow state feedback law and

the fast sliding mode control law as follows

u(t) =Ksx(t)− (CfBf )
−1(CfAfη(t)− S2sf (t)− (γ2 + σ2)

sf (t)

∥sf (t)∥
). (3.82)

In the original coordinates, the control law (3.82) is

u(t) =Ksx(t)− (CfBf )
−1(CfAf (z(t) + Lx(t))− S2Cf (z(t) + Lx(t))−

(γ2 + σ2)
Cf (z(t) + Lx(t))

∥Cf (z(t) + Lx(t))∥
). (3.83)

The stability of the closed-loop system under the control law (3.83) is proved in the

following theorem.

Theorem 3.2. Assume (A,B) is controllable. Then there exists ϵ∗ > 0 such that in the

sliding mode, the closed-loop system is asymptotically stable for ϵ ∈ (0, ϵ∗] and invariant

to the external disturbance f(t).

Proof. Like the dominating slow dynamics approach, we employ the equivalent control

method to study the dynamics of the closed-loop system. The equivalent control of the

sliding motion of (3.75) is defined by solving ṡf (t) = 0 as follows

ueqf (t) = −(CfBf )
−1CfAfη(t)−Gf(t). (3.84)

Hence, the equivalent dynamics of the closed-loop system under the equivalent con-

trol law (3.84) is given by  ẋ(t)

ϵη̇(t)

 = Φ2

 x(t)

η(t)

 (3.85)

where

Φ2 =

 A11 +B1Ks −A12L A12 −B1(CfBf )
−1CfAf

0 Af −Bf (CfBf )
−1CfAf

 .

The dynamics of the system (3.85) is specified by the eigenvalues of A11+B1Ks−A12L

and 1
ϵ (Af − Bf (CfBf )

−1CfAf ). The eigenvalues of matrix Af − Bf (CfBf )
−1CfAf

include m zeros corresponding to the sliding motion and n1 −m asymptotically stable

eigenvalues. In addition, A11 +B1Ks −A12L is asymptotically stable. As a result, the
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dynamics of the system (3.85) is represented by n1 + n2 −m stable eigenvalues and m

zeros. According to (Utkin, 1977), the closed-loop system is asymptotically stable. This

implies that the composite control law (3.82) is able to reject external disturbances.

Remark 3.3. Inequalities of (3.59) imply that if the initial values of the sliding function

ss(t), σ, and the minimum eigenvalue of P1 are O(1), then the reaching time is O(1).

Meanwhile, inequalities of (3.81) show that the reaching time of the dominating fast

dynamics approach is O(ϵ) if the corresponding initial values of the sliding function

sf (t), σ2, and the minimum eigenvalue of P2 are O(1). However, depending on specific

systems and appropriate choice of parameters, the reaching time of the dominating slow

dynamics design can be made faster than that of the dominating fast dynamics design.

Remark 3.4. The applicability of each method depends on the structure of the system

under consideration. For example, if the number of the slow variables is larger than

the dimension of the control input, the dominating slow dynamics design can be em-

ployed. Also, if the dimension of the control input is smaller than the number of the

fast variables, the dominating fast dynamics approach can be chosen.

3.4 Numerical Examples

In this section, we use two examples to demonstrate the efficiency of our methods. All

simulations results were implemented using Matlab/Simulink with the ode45 solver.

3.4.1 Example 1

Consider a longitudinal model of an F8 aircraft (Kokotovic et al., 1986) with system

matrices given by

A11 =

−0.195378 −0.676469

1.478265 0

 , A12 =

−0.917160 0.109033

0 0

 ,

A21 =

−0.051601 0

0.013579 0

 , A22 =

−0.367954 0.43804

−2.102596 −0.214640

 ,
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B1 = D1 =

 −0.023109

−16.945030

 , B2 = D2 =

−0.048184

−3.810954

 ,

and ϵ = 0.0336. The initial condition is

 x(0)

z(0)

 =



−2

3

−4

1


The external disturbance is given by

f(t) = 2 sin(3t).

a) The dominating slow dynamics approach:

A state feedback control law for the fast subsystem is taken as

uf (t) = Kfz(t) = [2.099531 1.132588]z(t)

M of (3.10) is found using the Newton method (Grodt and Gajic, 1988):

M =

 0.632643 0.054246

−5.467584 3.772558

 .

Using the change of variables (3.42), we obtain a new system in the form of system

(3.43) with

As =

−0.16347 −0.676469

1.144905 0

 , Bs =

 0.214104

−2.831434

 .

The slow subsystem of (3.43) is transformed into the normal form (3.50) via the trans-

formation

Ts =

2.831434 0.214104

0 1

 .

According to (3.52), the sliding surface is chosen as

ss(t) = [−2.831434 0.785896]ξ(t) = Csξ(t) = Cs(x+ ϵMz(t)).

The slow sliding mode control is computed from (3.57) as

us(t) = [0.481251 0.676469]ξ(t)(t) + ss(t) + 3sign(ss(t)).
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Figure 3.1: Evolution of the slow state variables for the dominating slow dynamics
approach
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Figure 3.2: Evolution of the fast state variables for the dominating slow dynamics
approach
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Figure 3.3: Sliding function evolution for the dominating slow dynamics approach

Simulation results of the dominating slow dynamics approach are shown in Fig. 3.1–3.4

With γ = 5.662868, σ = 2.831434 and S1 = 5.662868, the reaching time lies in the

following interval which is calculated from (3.59)

0.31236s < τ1 < 0.73914s.

In Fig. 3.3, the reaching time is about 0.3545 seconds, which satisfies the above interval.

Fig. 3.1 and Fig. 3.2 show the evolution of the state variables for the dominating slow

dynamics design. There are jumping phenomena when the switching action begins.

In the sliding mode, the behaviors of the state variables exhibit nearly smooth curves.

This demonstrates that the impact of the external disturbance is rejected. In the sliding

mode, the magnitude of the control is about 5 (Fig. 3.4).

b) The dominating fast dynamics approach:

To make A0 + B0Ks stable, we choose Ks = [−0.585158 0.296061]. Using the

Newton method (Grodt and Gajic, 1988) to find L of equations (3.70), we get

L =

−1.074737 0.530216

−0.400169 0.227065

 .
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Figure 3.4: Evolution of the composite control law for the dominating slow dynamics
approach

As a result, we have the following parameters:

Af =

−0.334834 0.434103

−2.090264 −0.216106

 , Bf =

−0.349230

−3.939923

 .

According to (3.76), the sliding surface can be chosen as

sf (t) = [3.939923 0.650770]η(t) = [3.939923 0.650770](z(t) + Lx(t)).

The fast sliding mode controller is computed from (3.78) as

uf (t) = [−0.680090 0.398408]η(t)− sf (t)− 3sign(sf (t)).

The simulation results of the closed-loop system under the composite control u(t) =

us(t) + uf (t) are plotted in Fig. 3.5–3.8.

The evolution of the state variables are reflected in Fig. 3.5 and Fig. 3.6 where the

impact of the external disturbance is rejected. Evaluating (3.83) with γ2 = 7.879846,

σ2 = 3.939923, S2 = 7.879846 yields

0.000953s < τ2 < 0.003960s.

Fig. 3.7 shows that the reaching time of the sliding mode is about 0.001534 seconds,

which satisfies the calculation above. Furthermore, the reaching time of the dominat-

ing fast dynamics design is much smaller than that of the dominating slow dynamics
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Figure 3.5: Evolution of the slow state variables for the dominating fast dynamics
approach
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Figure 3.6: Evolution of the fast state variables for the dominating fast dynamics
approach
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Figure 3.7: Evolution of the sliding function for the dominating fast dynamics approach
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Figure 3.8: Evolution of the composite control law for the dominating fast dynamics
approach
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approach. The switching control law is depicted in Fig. 3.8 where the magnitude of the

control in the sliding mode is about 5. Like in the dominating slow dynamics design, the

switching action in the sliding mode plays an important role in rejecting the external

disturbance.

3.4.2 Example 2

Consider a magnetic control system (Su, 1999) with system matrices given by

A11 =

0 0.4

0 0

 , A12 =

 0 0

0.345 0

 ,

A21 =

0 −0.524

0 0

 , A22 =

−0.465 0.262

0 −1

 ,

B1 = D1 =

0
0

 , B2 = D2 =

0
1

 ,

and ϵ = 0.1. The initial condition is

x(0)
z(0)

 =



−2

3

−4

1


The external disturbance is

f(t) = 2 sin(3t).

a) The dominating slow dynamics approach:

A state feedback control law for the fast subsystem is taken as

uf (t) = Kfz(t) = [−3.134447 − 1.535000]z(t)

M of (3.10) is found using the Newton method (Grodt and Gajic, 1988):

M =

 0.020354 0.002862

−0.448947 −0.046835

 .
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Figure 3.9: Evolution of the slow state variables for the dominating slow dynamics
approach

Using the change of variables (3.42), we obtain a new system in the form of system

(3.43) with

As =

0 0.410666

0 −0.235248

 , Bs =

−0.002862

0.046835

 .

The slow subsystem of (3.43) is transformed into the normal form (3.50) via the trans-

formation

Ts =

−0.046835 −0.002862

0 1

 .

According to (3.52), the sliding surface is chosen as

ss(t) = [4.683471 1.286239]ξ(t) = Csξ(t) = Cs(x+ ϵMz(t)).

The slow sliding mode control is computed from (3.57) as

us(t) = [0 − 34.605849]ξ(t)(t)− 10ss(t)− 3sign(ss(t)).

Simulation results of the dominating slow dynamics approach are shown in Fig. 3.9–

3.12.

With γ = 0.093669, σ = 0.046835 and S1 = 0.936694, the reaching time lies in the

following interval which is calculated from (3.59)

7.043089s < τ1 < 10.415470s.
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Figure 3.10: Evolution of the fast state variables for the dominating slow dynamics
approach

In Fig. 3.11, the reaching time is about 8s, which satisfies the above interval. Fig. 3.9

and Fig. 3.10 show the evolution of the state variables when using the dominating slow

dynamics design. There are jumping phenomena when the switching action begins.

In the sliding mode, the behaviors of the state variables exhibit nearly smooth curves.

This demonstrates that the impact of the external disturbance is rejected. In the sliding

mode, the magnitude of the control is about 5 (Fig. 3.12). If we raise the values of σ,

or γ, or S1, the reaching time will be faster but the control magnitude in the sliding

mode and the control overshoot will be much higher.

b) The dominating fast dynamics approach:

To make A0+B0Ks stable, we choose Ks = [−25.721872 − 13.433123]. Using the

Newton method (Grodt and Gajic, 1988) to find L from equation (3.70), we get

L =

68.576717 6.844279

59.905785 14.448607

 .

As a result, we have the following parameters:

Af =

−0.228872 0.262000

0.498477 −1

 , Bf =

0
1

 .
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Figure 3.11: Sliding function evolution for the dominating slow dynamics approach
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Figure 3.12: Evolution of the composite control law for the dominating slow dynamics
approach
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Figure 3.13: Evolution of the slow state variables for the dominating fast dynamics
approach

According to (3.76), the sliding surface can be chosen as

sf (t) = [3 1]η(t) = [3 1](z(t) + Lx(t)).

The fast sliding mode controller is computed from (3.78) as

uf (t) = [0.188140 0.214000]η(t)− sf (t)− 3sign(sf (t)).

The simulation results of the closed-loop system under the composite control u(t) =

us(t) + uf (t) are plotted in Fig. 3.13–3.16.

The evolution of the state variables are reflected in Fig. 3.13 and Fig. 3.16. It can

be seen that the impact of the external disturbance is rejected. Evaluating (3.83) with

γ2 = 2, σ2 = 1, S2 = 2 yields

0.483663s < τ2 < 0.643970s.

Fig. 3.15 shows that the sliding mode reaching time is about 0.6s, which satisfies the

calculation above. Furthermore, the reaching time of the dominating fast dynamics

design is much smaller than that of the dominating slow dynamics approach. The

switching control law is depicted in Fig. 3.16 where the magnitude of the control in the

sliding mode is about 5.
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Figure 3.14: Evolution of the fast state variables for the dominating fast dynamics
approach
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Figure 3.15: Evolution of the sliding function for the dominating fast dynamics approach
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Figure 3.16: Evolution of the composite control law for the dominating fast dynamics
approach

3.5 Conclusions

We have presented two sliding mode control approaches for singularly perturbed continuous-

time systems. The two proposed methods share a common mechanism: the continuous

state feedback and the discontinuous sliding mode design. With the state feedback con-

trol ensuring the stability for one set of (slow or fast) modes, the sliding mode control

is demonstrated to render the sliding mode such that stability for the other modes can

also be guaranteed and that disturbance rejection for the entire system is achieved. The

two control laws are combined to construct a composite control law. It has been shown

that the closed-loop system under the proposed approaches displays asymptotic stabil-

ity and robustness gainst external disturbances. The efficiency of the two approaches

has been illustrated in the numerical examples.
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Chapter 4

Sliding Mode Control for Singularly Perturbed Linear

Continuous-Time Systems: Lyapunov Approaches

4.1 Introduction

Chapter 3 presents two composite sliding mode control strategies, that combine state

feedback control of either slow or fast modes and sliding mode control of the remain-

ing modes. In this chapter, sliding surfaces are constructed based on the Lyapunov

equations of the slow and fast subsystems. Two sliding mode control approaches are

proposed to address external disturbances and stabilize the singularly perturbed system

in the sliding mode. Numerical examples will be provided to illustrate the efficiency of

the proposed methods.

4.2 Problem Formulation

Consider a singularly perturbed system: ẋ(t)

ϵż(t)

 = A

 x(t)

z(t)

+Bu(t) +Df(t) (4.1)

where

A =

 A11 A12

A21 A22

 , B =

 B1

B2

 , D =

 D1

D2

 ,

x(t) ∈ Rn1 and z(t) ∈ Rn2 are the slow time and fast time state variables, u(t) ∈

Rm is the control input, ϵ is a small positive parameter, and A22 is assumed to be

invertible. Furthermore, f(t) ∈ Rr is an unknown but bounded exogenous disturbance

with ∥f(t)∥ ≤ h.
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External disturbance rejection will be achieved if the matching condition (Drazen-

ovic, 1969) is satisfied:

rank[B|D] = rankB. (4.2)

Due to this invariance condition, there exists a matrix G of dimension m× r such that

(Drazenovic, 1969)

D = BG. (4.3)

Hence, D1 = B1G and D2 = B2G.

We will find a discontinuous control law to achieve stability and disturbance rejection

by employing the Lyapunov approach of (Su et al., 1996).

4.3 Main Results

In this section, we employ singular perturbation techniques (Kokotovic et al., 1986) to

decompose the singularly perturbed system (4.1) into reduced-order subsystems. To

that end, two Lyapunov equations are constructed from the two subsystems. Based on

the Lyapunov approach (Su et al., 1996), two sliding surfaces are designed from the two

Lyapunov equations. The construction of the corresponding control laws is similar to

that in Chapter 3.

If we do not take into account the external disturbance f(t), then the singularly

perturbed system (4.1) can be decomposed into reduced-order slow and fast subsystems

using the standard technique of (Kokotovic et al., 1986). The slow subsystem is given

by

ẋs(t) = A0xs(t) +B0us(t)

zs(t) = −A−1
22 (A21xs(t) +B2us(t)) (4.4)

and the fast subsystem is described as

ϵżf (t) = A22zf (t) +B2uf (t) (4.5)

where zf (t) = z(t)− zs(t) and uf (t) = u(t)− us(t).

According to (3.1), (A0, B0) is controllable; hence, there exists state feedback us(t) =

K0xs(t) to stabilize the slow subsystem, that is A0 +B0K0 is stable (Kokotovic et al.,
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1986). Similarly, due to controllability of the pair (A22, B2), there exists state feedback

uf (t) = K2zf (t) such that A22+B2K2 is asymptotically stable (Kokotovic et al., 1986).

Then, we can choose a control law of the form

u(t) = K1x(t) +K2z(t) + v(t) (4.6)

where K1 = (In1 +K2A
−1
22 B2)K0 +K2A

−1
22 A21 (Kokotovic et al., 1986). Hence, under

the control law (4.6), the closed-loop system is given by ẋ(t)

ϵż(t)

 =

A11 +B1K1 A12 +B1K2

A21 +B2K1 A22 +B2K2

x(t)
z(t)

+

B1

B2

 v(t) +

D1

D2

 f(t). (4.7)

The system (4.7) can be decomposed into exact slow and exact fast subsystems by using

the Chang transformation (Chang, 1972):ξ(t)
η(t)

 =

In1 − ϵHL −ϵH

L In2

x(t)
z(t)

 = P

x(t)
z(t)

 (4.8)

where H and L are solutions of the following algebraic equations

T21 − T22L+ ϵLT11 − ϵLT12L = 0 (4.9)

and

ϵ(T11 − T12L)H −H(A22 + ϵLT12) + T12 = 0 (4.10)

where

T11 = A11 +B1K1, T12 = A12 +B1K2,

T21 = A21 +B2K1, T22 = A22 +B2K2.

H and L can be efficiently found by using either the Newton method or the fixed

point iterations (Grodt and Gajic, 1988; Gajic and Lim, 2001), or the eigenvector

method (Kecman et al., 1999). The exact reduced-order subsystems are given in the

new coordinates by ξ̇(t)

ϵη̇(t)

 =

As 0

0 Af

ξ(t)
η(t)

+

Bs

Bf

 v(t) +

Ds

Df

 f(t) (4.11)
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where

As = T11 − T12L, (4.12)

Af = T22 + ϵLT12, (4.13)

Bs = (In1 − ϵHL)B1 −HB2, (4.14)

Bf = ϵLB1 +B2, (4.15)

Ds = BsG, (4.16)

Df = BfG. (4.17)

Note that As and Af are asymptotically stable (Kokotovic et al., 1986), which means

that given positive definite matrices Qs and Qf , there exist positive definite matrices

Ps and Pf that satisfy the algebraic Lyapunov equations (Gajic and Qureshi, 2008)

PsAs +AT
s Ps = −Qs (4.18)

PfAf +AT
f Pf = −Qf . (4.19)

We will employ matrices Ps and Pf to design the sliding surfaces.

4.3.1 Dominating Slow Dynamics Approach

A sliding surface can be chosen as

s1(t) = BT
s Psξ(t) + ϵBT

f Pfη(t) = 0 (4.20)

Choose a Lyapunov function candidate as

V1(t) = ξT (t)Psξ(t) + ϵ2ηT (t)Pfη(t) (4.21)

Taking its derivative with respect to t leads to

V̇1(t) = −ξT (t)Qsξ(t)− ϵηT (t)Qfη(t) + (ξT (t)PsBs+

ϵηTPfBf )v(t) + (ξT (t)PsBs + ϵηTPfBf )Gf(t) (4.22)

When the sliding mode is achieved, namely s1(t) = 0, we have

V̇1(t) = −ξT (t)Qsξ(t)− ϵηT (t)Qfη(t) < 0. (4.23)
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This implies the asymptotic stability of the system on the sliding surface s1(t).

The sliding surface (4.20) can be rewritten in the original coordinates as

s1(t) = (BT
s Ps(In1 − ϵHL) + ϵBT

f PfL)x(t)+

ϵ(BT
f Pf −BT

s PsH)z(t) = R1x(t) + ϵR2z(t) = 0 (4.24)

We now design a control law for the sliding surface (4.20), which is similar to the

control laws in Chapter 3. Taking the derivative of the sliding function (4.20), we have

ṡ1(t) = (R1A11 +R2A21)x(t) + (R1A12 +R2A22)z(t)+

(R1B1 +R2B2)u(t) + (R1B1 +R2B2)Gf(t) (4.25)

A control law can be chosen as

u1(t) =− (R1B1 +R2B2)
−1((R1A11 +R2A21)x(t)+

(R1A12 +R2A22)z(t)−Ap1s1(t)+

(γ1 + σ1)s1(t)/∥s1(t)∥) (4.26)

where γ1 = ∥(R1B1 +R2B2)G∥h, σ1 is a positive parameter and Ap1 is asymptotically

stable. We will study the reaching condition and reaching time of the sliding mode

when using the control law (4.26). Consider the Lyapunov function

V2(t) = sT1 (t)s1(t). (4.27)

From (4.25) and (4.26), we have

V̇2(t) =− sT1 (t)W1s1(t)− 2σ1∥s1(t)∥ − 2γ1∥s1(t)∥+

2sT1 (t)(R1B1 +R2B2)Gf(t) (4.28)

where

W1 = −(Ap1 +AT
p1). (4.29)

Since Ap1 is asymptotically stable, matrix W1 is positive definite. From (4.28), we have

−λmax{W1}sT (t)s(t)− (2σ1 + 4γ1)∥s(t)∥ ≤ V̇2(t) ≤

− λmin{W1}sT (t)s(t)− 2σ1∥s(t)∥ < 0. (4.30)
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Hence, the reaching condition is satisfied.

Let τ1 be the time needed to reach the sliding mode (V2(τ1) = 0). Then, integrating

(4.30) yields

2

λmax{W1}
ln(

λmax{W1}
√

V2(0) + 2σ1 + 4γ1
2σ1 + 4γ1

) ≤ τ1 ≤

2

λmin{W1}
ln(

λmin{W1}
√

V2(0) + 2σ1
2σ1

), (4.31)

or

2

λmax{W1}
ln(

λmax{W1}
√

sT1 (0)s1(0) + 2σ1 + 4γ1

2σ1 + 4γ1
) ≤ τ1 ≤

2

λmin{W1}
ln(

λmin{W1}
√

sT1 (0)s1(0) + 2σ1

2σ1
). (4.32)

These inequalities show that the reaching time τ1 can be made small by choosing proper

values of W1 and σ1.

The previous presentation can be summarized in the following theorem.

Theorem 4.1. The system is asymptotically stable in the sliding mode of the sliding

surface (4.30).

4.3.2 Dominating Fast Dynamics Approach

In (Su, 1999), a method to design a sliding surface for the singularly perturbed system

was proposed. However, a switching control has not been provided yet. In this section,

we will construct a sliding mode controller for that sliding surface.

The sliding surface under consideration is given by Su (1999):

s2(t) = BT
s Psξ(t) +BT

f Pfη(t) = 0. (4.33)

Remark 4.1. The difference between the sliding surface (4.20) and the sliding surface

(4.33) lies in the presence of the fast variables. The quantities which contain the fast

variables are O(ϵ) and O(1) in (4.20) and (4.33) respectively.

Choose a Lyapunov function candidate as

V3(t) = ξT (t)Psξ(t) + ϵηT (t)Pfη(t). (4.34)
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Taking the derivative with respect to t leads to

V̇3(t) = −ξT (t)Qsξ(t)− ηT (t)Qfη(t) + (ξT (t)PsBs+

ηTPfBf )v(t) + (ξT (t)PsBs + ηTPfBf )Gf(t). (4.35)

When the sliding mode is achieved, namely s2(t) = 0, we have

V̇3(t) = −ξT (t)Qsξ(t)− ηT (t)Qfη(t) < 0. (4.36)

This implies the asymptotic stability of the system.

The sliding surface (4.33) is rewritten in the original coordinates as

s2(t) = (BT
s Ps(In1 − ϵHL) +BT

f PfL)x(t)+

(−ϵBT
s PsH +BT

f Pf )z(t) = S1x(t) + S2z(t) = 0. (4.37)

Taking the derivative of the sliding function (4.37), we have

ϵṡ2(t) = (ϵS1A11 + S2A21)x(t) + (ϵS1A12 + S2A22)z(t)

+ (ϵS1B1 + S2B2)u(t) + (ϵS1B1 + S2B2)Gf(t). (4.38)

Similar to Chapter 3, a control law can be chosen as

u2(t) =− (ϵS1B1 + S2B2)
−1((ϵS1A11 + S2A21)x(t)+

(ϵS1A12 + S2A22)z(t)−Ap2s2(t)+

(γ2 + σ2)s2(t)/∥s2(t)∥). (4.39)

where γ2 = ∥(ϵS1B1+S2B2)G∥h, σ2 is a positive parameter, and Ap2 is asymptotically

stable. We will study the reaching condition and the reaching time of the sliding mode

under the control law (4.39). Consider the Lyapunov function

V4(t) = sT2 (t)s2(t). (4.40)

From (4.38) and (4.39), we have

V̇4(t) =
1

ϵ
(−sT2 (t)W2s2(t)− 2σ2∥s2(t)∥ − γ2∥s2(t)∥+

2sT2 (t)(ϵS1B1 + S2B2)Gf(t)) (4.41)
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where

W2 = −(Ap2 +AT
p2). (4.42)

Note that matrix W2 is positive definite because Ap2 is asymptotically stable. From

(4.41), we have

−λmax{W2}sT (t)s(t)− (σ2 + 2γ2)∥s(t)∥ ≤ ϵV̇4(t) ≤

− λmin{W2}sT (t)s(t)− σ2∥s(t)∥. (4.43)

Hence, the reaching condition is satisfied.

Let τ2 be the time needed to reach the sliding mode (V4(t = τ2) = 0). Integrating

(4.43) results in

2ϵ

λmax{W2}
ln(

λmax{W2}
√

V4(0) + 2σ2 + 4γ2
2σ2 + 4γ2

) ≤ τ2 ≤

2ϵ

λmin{W2}
ln(

λmin{W2}
√

V4(0) + 2σ2
2σ2

), (4.44)

or

2ϵ

λmax{W2}
ln(

λmax{W2}
√

sT2 (0)s2(0) + 2σ2 + 4γ2

2σ2 + 4γ2
) ≤ τ2 ≤

2ϵ

λmin{W2}
ln(

λmin{W2}
√

sT2 (0)s2(0) + 2σ2

2σ2
), (4.45)

Like in the dominating slow dynamics design, the reaching time τ2 can be adjusted

by choosing appropriate values of W2 and σ2.

Remark 4.2. Inequalities of (4.45) imply that if the initial conditions of the sliding

surface (4.43) are O(1), then the reaching time is O(ϵ). While in the dominating slow

dynamics design, the reaching time of the sliding surface (4.20) can be O(1) with O(1)

initial conditions of the sliding function.

The previous derivations are summarized in the following theorem.

Theorem 4.2. If the sliding mode of the sliding surface (4.33) is attained, the system

will be asymptotically stable.



88

4.4 Numerical Examples

In this section, we use the two models in Chapter 3 to demonstrate the efficiency of our

methods.

4.4.1 Example 1

We continue to use the aircraft model presented in Chapter 3.

The slow subsystem (4.4) is stabilized by the slow control us(t) = K0xs(t) where

K0 = [−2.926472 0.460080].

The fast subsystem (4.5) is stabilized by the fast control uf (t) = K2zf (t) where

Kf = [11.895539 2.320739].

The parameters of the exact reduced-order subsystems (4.8) are given by

As =

−5.770548 0.101252

56.307006 −8.140588

 ,

Af =

 −6.598444 −0.835219

−48.100451 −9.172767

 ,

Bs =

 0.095399

−1.117245

 ,

Bf =

−0.539225

−3.862600

 .

We choose Qs = Qf = I, then the solutions of (4.18) and (4.19) are given by

Ps =

2.854552 0.283665

0.283665 0.064949

 ,

Pf =

 3.766945 −0.506357

−0.506357 0.100615

 .

The dominating slow dynamics sliding surface is chosen as

s1(t) = [0.036986 − 0.056156]x(t) + 0.0336[−0.375811 0.114168]z(t) = 0.
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The sliding mode control for this sliding surface is given by

u1(t) = [0.129836 0.046877]x(t) + [0.254232 0.346792]z(t)− 3sgn(s1(t))− 5s1(t).

With σ = 0.533728 and γ = 1.067456, the reaching time is estimated by (4.32)

0.064584s < τ < 0.248415s.

Fig. 4.3 shows that the reaching time is about 0.1 second. The dominating fast dy-

namics sliding surface is chosen as

s2(t) = [0.289852 − 0.129459]x(t) + [−0.085471 − 0.107876]z(t) = 0.

The sliding mode control for this sliding surface is given by

u2(t) = [0.011024 0.013481]x(t) + [−0.510192 0.027058]z(t)− 3sgn(s2(t))− 5s2(t).

With σ2 = 0.488711 and γ2 = 0.977422, the reaching time is estimated by (4.45)

0.007569s < τ < 0.021193s.

Fig. 4.7 shows that the reaching time is about 0.02 second. According to Theorem 4.1

and Theorem 4.2, the reaching time is dependent on the initial values of the sliding

function and ϵ. This example show that the reaching time of the second approach is

bigger than in the first one because the initial value of the sliding function s1(t) is much

smaller than s2(t).

4.4.2 Example 2

Consider the magnetic tape control system (Su, 1999).

The slow subsystem of (4.1) is stabilized by the slow control input us(t) = K0xs(t)

with

K0 = [−6.43047 − 5.71656].

The fast subsystem of (4.1) is stabilized by the fast control input uf (t) = K2zf (t) with

Kf = [−14.85200 − 3.53500].
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Figure 4.1: Evolution of the slow state variables for the dominating slow dynamics
approach
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Figure 4.2: Evolution of the fast state variables for the dominating slow dynamics
approach
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Figure 4.3: Sliding function evolution for the dominating slow dynamics approach
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Figure 4.4: Evolution of the sliding mode control law for the dominating slow dynamics
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Figure 4.5: Evolution of the slow state variables for the dominating fast dynamics
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Figure 4.6: Evolution of the fast state variables for the dominating fast dynamics
approach
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Figure 4.7: Sliding function evolution for the dominating fast dynamics approach
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The parameters of the exact reduced-order systems (4.8) are given by

As =

 0 0.4

−1.44170 −1.67648

 , Bs =

−0.00073

0.02036

 ,

Af =

 −0.29735 0.26200

−14.70872 −4.53500

 , Bf =

0
1

 .

We choose Qs = Qf = I, then the solutions of (4.18) and (4.19) are given by

Ps =

2.82675 0.34681

0.34681 0.38099

 ,

Pf =

 4.81557 −0.06336

−0.06336 0.10659

 .

The dominating slow dynamics sliding surface is chosen as

s1(t) =[0.03019 0.02226]x(t)+

0.1[−0.060856 0.10674]z(t) = 0.

The sliding mode control law for this sliding surface is given by

u1(t) =[0 − 0.41187]x(t) + [−0.33706 1.14937]z(t)−

5s1(t)− 3sgn(s1(t)).

With σ = 0.10674 and γ = 0.21348, the reaching time lies in the following interval

calculated from (4.32)

0.07606 ≤ τ1 ≤ 0.35273.

Fig. 4.11 shows that the reaching time is around 0.15s.

The dominating fast dynamics sliding surface is chosen as

s2(t) = [0.24689 0.14359]x(t) + [−0.06311 0.10661]z(t) = 0.

The sliding mode control for this sliding surface is given by

u2(t) =[0 − 0.40282]x(t) + [−0.32173 1.15509]z(t)−

10s2(t)− 3sgn(s2(t)).
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Figure 4.9: Evolution of the slow state variables for the dominating slow dynamics
approach
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Figure 4.10: Evolution of the fast state variables for the dominating slow dynamics
approach
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Figure 4.11: Sliding function evolution for the dominating slow dynamics approach
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Figure 4.13: Evolution of the slow state variables for the dominating fast dynamics
approach

We choose σ2 = 0.10661 and γ2 = 0.21322. The reaching time is in the interval which

is calculated from (4.44)

0.04362 ≤ τ ≤ 0.1291.

Fig. 4.15 shows that the reaching time of the dominating fast dynamics approach is

around 0.07s.

The evolution of the state variables for the dominating slow dynamics design is

depicted in Fig. 4.9 and Fig. 4.10. Is is observed that the influence of the external

disturbance is rejected in the sliding mode.

Fig. 4.13 and Fig. 4.14 show the evolution of the state variables for the dominating

fast dynamics design, in which the impact of the external disturbance is rejected. Both

sliding mode control laws experience chattering phenomena in the sliding mode, which

help stabilize the system and reject the external disturbance.

4.5 Conclusions

Two sliding mode methods have been developed to deal with the stability and distur-

bance rejection problems. The main ideas of the two approaches are based on Lyapunov

functions together with the Chang transformation. Our methods have been proved to
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Figure 4.14: Evolution of the fast state variables for the dominating fast dynamics
approach
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Figure 4.16: Evolution of the sliding mode control law for the dominating fast dynamics
approach

provide the asymptotic stability of the closed-loop system and disturbance rejection.

This is a distinctive advantage of our methods when compared to other approaches in

the literature. The two examples illustrate the effectiveness of the proposed methods.
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Chapter 5

Sliding Mode Control for Singularly Perturbed Linear

Discrete-Time Systems

5.1 Introduction

As digital controllers have been widely employed for years, the studies on discrete-time

sliding mode control have drawn a considerable amount of attention from the control

community (Milosavljevic, 1985; Su et al., 2000; Utkin and Drakunov, 1989). The work

by Milosavljevic (1985) shows that it is impossible to exactly achieve the sliding motion

due to the nature of the sampling process. Instead, a quasi-sliding mode is obtained

within a boundary layer of the sliding surface. Su et al. (2000) proposed a non switching

discrete-time control strategy that obtains an O(τ2) thickness of the boundary layer

where τ is the sampling period.

The theory of singular perturbation approach has been well studied for the last

50 years. See (Kokotovic et al., 1986; Gajic and Lim, 2001) for an extensive list of

references. There have been various works in an attempt to extend singular pertur-

bation ideas to discrete-time systems (Comstock and Hsiao, 1976; Hoppensteadt and

Miranker, 1977; Blankenship, 1981; Litkouhi and Khalil, 1984, 1985; Gajic and Lim,

2001). However, there has been sofar only one paper studying sliding mode control

for singularly perturbed discrete-time systems (Li et al., 1995b). Li et al. (1995b) ad-

dressed sliding mode control for a class of discrete-time singularly perturbed systems

whose mathematical form was adopted in (Litkouhi and Khalil, 1984, 1985) and ref-

erences therein. They made good use of the same approach as they did for singularly

perturbed continuous-time systems (Li et al., 1995a). A proposed composite control

strategy consists of an equivalent control law and a fast sliding mode control law to

stabilize the closed-loop system. Nonetheless, parametric uncertainties and external
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disturbances were not taken into account yet. In this chapter, we propose two novel

composite control schemes, that are counterparts of the corresponding approaches for

singularly perturbed continuous-time systems.

5.2 Problem Formulation

We study a singularly perturbed discrete-time system, that was formulated and studied

by Litkouhi and Khalil (Litkouhi and Khalil, 1985; Gajic and Lim, 2001):

x[k + 1] = (I1 + ϵA11)x[k] + ϵA12z[k] + ϵB1u[k] + ϵD1f1[k]

z[k + 1] = A21x[k] +A22z[k] +B2u[k] +D2f2[k] (5.1)

where x[k] ∈ Rn1 and z[k] ∈ Rn2 are the slow time and fast time state variables, u[k] ∈

Rm is the control input, ϵ is a small positive parameter. It is assumed that (In2−A22) is

invertible. Furthermore, f1[k] ∈ Rr and f2[k] ∈ Rr are unknown parametric uncertainty

functions which are given by

f1[k] = ∆A11x[k] + ∆A12z[k] (5.2)

and

f2[k] = ∆A21x[k] + ∆A22z[k]. (5.3)

Assume that ∆A11, ∆A12, ∆A21, and ∆A22 are O(ϵ). Disturbances rejection and

parameter variations invariance will be achieved if the matching condition of Drazenovic

(1969) is satisfied:

rank[B|D] = rankB. (5.4)

Due to this invariance condition, there exists a m× r matrix G such that

D = BG. (5.5)

Hence, D1 = B1G and D2 = B2G.

Like in the continuous case, we will find a composite control to deal with the slow

and fast modes as well as the parametric uncertainties

u[k] = us[k] + uf [k] (5.6)
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5.3 Main Results

5.3.1 Dominating Slow Dynamics Approach

In this subsection, a state feedback control law is constructed for the fast subsystem,

and a sliding mode control law is established for the slow dynamics. We choose a matrix

Kf such that the state feedback

uf [k] = Kfz[k] (5.7)

stabilizes the fast modes, namely the eigenvalues of (A22 +B2Kf ) lie in the unit circle.

The original system (5.1) under the composite control law u[k] = us[k] + uf [k], is

described as follows

x[k + 1] = (In1 +A11)x[k] + ϵ(A12 +B1Kf )z[k] + ϵB1us[k] + ϵB1Gf1[k]

z[k + 1] = A21x[k] + (A22 +B2Kf )z[k] +B2us[k] +B2Gf2[k]. (5.8)

We will transform system (5.8) into a triangular system by the change of state

variables:

ξ[k] = x[k]− ϵMz[k] (5.9)

where M is the solution of the following algebraic equation

(A12 +B1Kf ) + ϵA11M − ϵMA21M −M(A22 +B2Kf − In2) = 0. (5.10)

With this change of variables, we have a new system

ξ[k + 1] = (In1 + ϵAs)ξ[k] + ϵBsus[k] + ϵBsGf1[k]

z[k + 1] = A21ξ[k] + (A22 +B2Kf + ϵA21M)z[k] +B2us[k] +B2Gf2[k]. (5.11)

where

As = A11 −MA21, (5.12)

and

Bs = B1 −MB2. (5.13)

The parametric uncertainties are described in terms of the new variables as follow

f1[k] = ∆A11ξ[k] + (ϵ∆A11M +∆A12)z[k] (5.14)



103

and

f2[k] = ∆A21ξ[k] + (ϵ∆A21M +∆A22)z[k] (5.15)

We need the following assumptions.

Assumption 5.1. (As, Bs) is controllable.

Assumption 5.2. Bs has full rank.

If Bs is of full rank, there exists a transformation P1 such that

P1Bs =

 0

Bs2

 (5.16)

With the new variables ξ1[k]
ξ2[k]

 = P1ξ[k], (5.17)

the dynamics of ξ[k] is written in the new coordinates asξ1[k + 1]

ξ2[k + 1]

 =

Im−n1 + ϵAs11 ϵAs12

As21 Im +As11

ξ1[k]
ξ2[k]

+

 0

Bs2

Gf1[k]. (5.18)

Since (As, Bs) is controllable, (Im−n1 + ϵAs11 , ϵAs12) is controllable. There exists a

matrix K1 such that the eigenvalues of (Im−n1 + ϵAs11 − ϵAs12K1) lie in the unit circle.

Hence, a sliding surface is chosen as

ss[k] = K1ξ1[k] + ξ2[k] = [K1 Im]P1ξ[k] = Csξ[k] = 0. (5.19)

Set ss[k + 1] = 0 to find a control law

ss[k + 1] = Cs(In1 + ϵAs)ξ[k] + ϵCsBsus[k] + ϵCsBsGf1[k] = 0. (5.20)

This leads to

us[k] = −(ϵCsBs)
−1Cs(In1 + ϵAs)ξ[k]−Gf1[k]. (5.21)

The magnitude of this control law is high gain when the state variables are far from

the sliding surface. Setting

ss[k + 1] = Cs(In1 + ϵAs)ξ[k] + ϵCsBsus[k] + ϵCsBsGf1[k] = 0. (5.22)
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Solving (5.22) for us[k], we have

us[k] = −(ϵCsBs)
−1Cs(In1 + ϵAs)ξ[k]−Gf1[k]. (5.23)

SinceGf1[k] is unknown at time step k, we approximate it by its past valueGf1[k−1]

which is calculated by

Gf1[k − 1] = (ϵCsBs)
−1Cs(In1 + ϵAsξ[k − 1])− us[k − 1]. (5.24)

The realizable control is given by

us[k] = −(ϵCsBs)
−1(In1 + ϵAs)ξ[k]−Gf1[k − 1]. (5.25)

Under the composite control (5.6), the sliding surface is given by

ss[k + 1] = ϵCsBsG(f1[k]− f1[k − 1]) = ϵCsBsG(∆A11(x[k]− x[k − 1])

+ ∆A12(z[k]− z[k − 1])). (5.26)

The system matrix of the augmented system of ξ[k], us[k], z[k] is given by

Φ1 = Φ11 +Φ12 = Φ11 +O(ϵ). (5.27)

where

Φ11 =


In1 + ϵAs ϵBs 0

−(ϵCsBs)
−1Cs(In1 + ϵAs)

2 −(ϵCsBs)
−1ϵCs(In1 + ϵAs)Bs 0

A21 B2 A22 +B2Kf

 .

(5.28)

and

Φ12 =


ϵBsG∆A11 0 ϵBsG(∆A12 + ϵ∆A11M)

0 0 0

B2G∆A21 0 ϵA21M +B2G(ϵ∆A21M +∆A22)

 = O(ϵ). (5.29)

According to (Kato, 1995), we have

λ{Φ1} = λ{Φ11}+O(ϵ1/p) (5.30)
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where p is a positive integer (0 < p ≤ n). The eigenvalues of matrix Φ11 include those

of matrix A22 +B2Kf and Φs where

Φs =

 (In1 + ϵAs) ϵBs

−(ϵCsBs)
−1Cs(In1 + ϵAs)

2 −(ϵCsBs)
−1ϵCs(In1 + ϵAs)Bs

 . (5.31)

Since A22 + B2Kf is stable, it is enough to show that the latter matrix is stable too.

We have

det[λIn1 − Φs] = det

 λIn1 − (In1 + ϵAs) −ϵBs

(ϵCsBs)
−1Cs(In1 + ϵAs)

2 λIm + (ϵCsBs)
−1ϵCs(In1 + ϵAs)Bs


= det

 λIn1 − (In1 + ϵAs) −ϵBs

(ϵCsBs)
−1Cs(In1 + ϵAs)λ λIm


= λmdet

 λIn1 − (In1 + ϵAs) −ϵBs

(ϵCsBs)
−1Cs(In1 + ϵAs) Im


= λmdet

[
λIn1 − (In1 + ϵAs)(In1 −Bs(CsBs)

−1Cs)
]
= 0. (5.32)

It means the eigenvalues of the matrix Φs includes 2m zeros and n1 −m stable eigen-

values which present the zero dynamics of the sliding mode. Therefore, matrix Φ0 is

stable. Hence, (5.30) implies that there exists a small enough ϵ such that Φ1 is stable.

As a result, the closed-loop system under the composite control law (5.6) is stable.

Moreover, the sliding mode is asymptotically achieved due to (5.26).

The above derivations are summarized in the following theorem.

Theorem 5.1. There exists ϵ∗ > 0 such that, under the control law (5.6), the closed-

loop system is asymptotically stable for ϵ ∈ (0, ϵ∗].

5.3.2 Dominating Fast Dynamics Approach

In this subsection, a slow state feedback control law is developed, and a sliding mode

control law is constructed to deal with disturbances in the fast dynamics. We choose

the slow state feedback control law

us[k] = Ksx[k] (5.33)
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such that the eigenvalues of matrix In1 + ϵ(A0 +B0Ks) lie in the unit circle where

A0 = A11 −A12(In2 −A22)
−1A21, (5.34)

and

B0 = B1 −A12A
−1
22 B2. (5.35)

As a result, the system under the composite control law becomes

x[k + 1] = (In1 + ϵ(A11 +B1Ks))x[k] + ϵA12z[k] + ϵB1uf [k] + ϵB1Gf1[k]

z[k + 1] = (A21 +A22Ks)x[k] +A22z[k] +B2us[k] +B2Gf2[k]. (5.36)

We will transform system (5.36) into a triangular system by the change of state vari-

ables:

η[k] = z[k] + Lx[k] (5.37)

where L is the solution of the following algebraic equation

A21 +B2Ks − (A22 − In2)L+ ϵL(A11 +B1Ks)− ϵLA12L = 0. (5.38)

In the new variables, (5.36) is written as

x[k + 1] = (In1 + ϵ(A11 +B1Ks −A12L))x[k] + ϵA12η[k] + ϵB1uf [k] + ϵB1Gf1[k]

η[k + 1] = Afη[k] +Bfuf [k] +BfGf2[k]. (5.39)

where

Af = A22 + ϵLA12, (5.40)

and

Bf = B2 + ϵLB1. (5.41)

The parametric uncertainties are given in terms of the new variables by

f1[k] = (∆A11 +∆A12L)x[k] + ∆A12η[k] (5.42)

and

f2[k] = (∆A21 +∆A22L)x(k) + ∆A22η[k] (5.43)
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It can be observed from (5.38) that for sufficiently small ϵ, we have

L(0) = −(In2 −A22)
−1(A21 +A22Ks). (5.44)

which implies

In1 + ϵ(A11 +B1Ks −A12L) = In1 + ϵ(A0 +B0Ks) +O(ϵ2). (5.45)

Since In1+ϵ(A0+B0Ks) is stable, there exists a small enough ϵ such that the eigenvalues

of In1 + ϵ(A11 + B1Ks − A12L) lie in the unit circle. We will design a sliding mode

control law for the fast modes of (5.39) with the following assumptions.

Assumption 5.3. (Af , Bf ) is controllable.

Assumption 5.4. Bf has full rank.

If Bf is of full rank, there exists a transformation P2 such that

P2Bf =

 0

Bf2

 (5.46)

With the new variables η1[k]
η2[k]

 = P2η[k], (5.47)

the dynamics of η[k] is written in the new coordinates asη1[k + 1]

η2[k + 1]

 =

Af11 Af12

Af21 Af11

η1[k]
η2[k]

+

 0

Bf2

uf [k] +

 0

Bf2

Gf [k] (5.48)

Since (Af , Bf ) is controllable, (Af11 , Af12) is controllable. There exists a matrix K2

such that the eigenvalues of (Af11 − Af12K2) lie in the unit circle. Hence, a sliding

surface is chosen as

sf [k] = K2η1[k] + η2[k] = [K2 Im]P−1
2 η[k] = Cfη[k] = 0. (5.49)

Set sf [k + 1] = 0 to find a control law

sf [k + 1] = CfAfη[k] + CfBfuf [k] + CfBfGf2[k] = 0. (5.50)



108

This leads to the equivalent control

uf [k] = −(CfBf )
−1CfAfη[k]− (CfBf )

−1Gf2[k]. (5.51)

Since Gf2[k] is unknown, we estimate it by Gf2[k − 1] through the following formula

Gf2[k − 1] = sf [k]− CfAfη[k − 1]− CfBfuf [k − 1]. (5.52)

Hence, the realizable control law is given by

uf [k] = −(CfBf )
−1CfAf (η[k]− η[k − 1]− (CfBf )

−1sf [k] + uf [k − 1]. (5.53)

The composite control law is given by

u[k] = Ksx[k] + uf [k]. (5.54)

Under the composite control law, the sliding surface is given by

sf [k + 1] = CfBfG(f2[k]− f2[k − 1])

= ϵCfBfG(∆A21(x[k]− x[k − 1]) + ∆A22(z[k]− z[k − 1])). (5.55)

The system matrix of the augmented system of x[k], η[k], uf [k] is given by

Φ2 = Φ21 +Φ22 = Φ21 +O(ϵ) (5.56)

where

Φ21 =


In1 + ϵ(A11 +B1Ks −A12L) 0 0

0 Af Bf

0 −(CfBf )
−1CfA

2
f −(CfBf )

−1CfAfBf


(5.57)

and

Φ22 =


ϵB1G(∆A11 +∆A12L) ϵ(A12 +B1G∆A12) ϵB1

BfG(∆A21 +∆A22L) BfG∆A22 0

0 0 0

 = O(ϵ). (5.58)

According to Kato (1995), we have

λ{Φ2} = λ{Φ21}+O(ϵ1/p). (5.59)
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The eigenvalues of matrix Φ0 include those of matrix In1 + ϵ(A11 +B1Ks −A12L) and

Φf where

Φf =

 Af Bf

−(CfBf )
−1CfA

2
f −(CfBf )

−1CfAfBf

 . (5.60)

Note that In1 +ϵ(A11+B1Ks−A12L) is stable for a small enough ϵ. Hence, it is enough

to show that the latter matrix is stable. We have

det[λIn2 − Φf ] = det

 λIn2 −Af −Bf

(CfBf )
−1CfA

2
f λIm + (CfBf )

−1CfAfBf


= det

 λIn2 −Af −Bf

(CfBf )
−1CfAfλ λIm

 = λmdet

 λIn2 −Af −Bf

(CfBf )
−1CfAf Im


= λmdet

[
λIn2 − (Af −Bf (CfBf )

−1CfAf )
]
= 0. (5.61)

It means the eigenvalues of the matrix Φs includes 2m zeros and n2 −m stable eigen-

values which present the zero dynamics of the sliding mode. Therefore, matrix Φ21 is

stable. Hence, (5.59) implies that there exists a small enough ϵ such that Φ2 is stable.

Therefore, the closed-loop system is asymptotically stable under the composite control

law (5.54). In addition, (5.55) implies the sliding motion is asymptotically achieved.

The above results are summarized in the following theorem.

Theorem 5.2. There exists ϵ∗ > 0 such that, under the control law (5.54), the closed-

loop system is asymptotically stable for ϵ ∈ (0, ϵ∗].

5.4 Numerical Example

Consider a discrete-time model of a steam power system (Mahmoud, 1982; Li et al.,

1995b)

x[k + 1] = (I2 + ϵA11)x[k] + ϵA12z[k] + ϵB1u[k] + ϵD1f1[k]

z[k + 1] = A21x[k] +A22z[k] +B2u[k] +D2f2[k] (5.62)
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where

A11 =

−0.31481 0.18889

−0.11111 −0.41111

 , A12 =

 0.14074 0.055556 0.14074

−0.01852 0.17037 0.41111

 ,

A21 =


−0.00600 0.46800

−0.71500 −0.02200

−0.14800 −0.00300

 , A22 =


0.24700 0.01400 0.04800

−0.02110 0.24000 −0.02400

−0.00400 0.09000 0.02600

 ,

B1 = D1 =

0.03630
0.45185

 , B2 = D2 =


0.03600

0.56200

0.11500

 ,

and ϵ = 0.27. The initial condition is

 x[0]

z[0]

 =



2

3

−1

−4

−2


The parametric uncertainties are

f1[k] = ([0.135 0.054]x[k] + [−0.108 0.054 0.054]z[k]),

f2[k] = ([0.081 − 0.054]x[k] + [0.054 0.054 − 0.108]z[k]).

We will employ two proposed approaches to construct the sliding mode control laws

for the system defined in (5.62).

a) Dominating Slow Dynamics Design

A state feedback control law for the fast subsystem is taken as

uf [k] = Kfz[k] = [1 − 1 1]z[k]

M of (5.10) is found by using the Newton method (Grodt and Gajic, 1988):

M =


0.44640 0.42081

1.74865 3.10481

2.63817 6.46556

 .
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Figure 5.1: Evolution of the slow state variables for the dominating slow dynamics
approach.

Using the change of variables (5.9), we obtain a new system in the form of system (5.11)

where

As =

−0.35951 0.30820

−0.07892 −0.12692

 , Bs =

0.07924
0.44411

 .

The slow subsystem of (5.11) is transformed into the normal form (5.18) by the trans-

formation

Ts =

−0.44411 0.07924

0 1

 .

The sliding surface is chosen as

ss[k] = [−30 1]Tsξ[k] = [13.32336 − 1.37715]ξ[k] = Csξ[k] = Cs(x[k] + ϵMz[k]).

The slow sliding mode control is computed from (5.22) as

us[k] = [−211.68179 13.33023]ξ[k] + [100.57068 − 1.84539]ξ[k − 1] + us[k − 1].

The effectiveness of the composite control u[k] = us[k] + uf [k] is illustrated in Fig.

5.1–5.6.

It is seen in Fig. 5.1 that the slow state variables reach the steady state in around

10 steps.
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Figure 5.2: Evolution of the fast state variables for the dominating slow dynamics
approach.

Fig. 5.2 shows behavior of the fast variable in which the convergence time is about

10 steps .

Fig. 5.3 reveals the reaching time of sliding mode is about 10 steps. After that, the

sliding function asymptotically reaches the origin.

Fig. 5.4 shows the evolution of the composite control law. Some peaks appear

at the beginning due to the nature of high gain control and the uncertainty. The

largest magnitude of the control is about 620. After that, the control converges to a

neighborhood of the origin.

b) Dominating Fast Dynamics Approach

First, we design a state feedback control law us[k] = Ksx[k] to stabilize the slow

subsystem of (5.62). Choose Ks = [1 1]. Using the Newton method (Grodt and Gajic,

1988) to find L of equations (5.38), we get

L =


0.44640 0.42081

1.74865 3.10481

2.63817 6.46556

 .
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Figure 5.3: Sliding function evolution for the dominating slow dynamics approach.
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Figure 5.4: Evolution of the composite control law for the dominating slow dominating
approach.
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As a result, we have the following parameters:

Af =


0.26186 0.04005 0.11167

0.02982 0.40905 0.38708

0.06392 0.42699 0.84393

 , Bf =


0.09171

0.95792

0.92965

 .

Choose the transformation T =


−0.95792 0.09171 0

−0.92965 0 0.09171

0 0 1

. Then, the sliding

surface is chosen as

sf [k] = [1 − 1 1]Tη[k] = [0.90138 0.09171 0.81657]η[k]

= Cfη[k] = Cf (z[k] + Lx[k]).

The fast sliding mode control is computed from (5.53) as

uf [k] =[−1.28257 − 0.55289 − 1.76610]η[k]

+ [0.31299 0.45424 0.88774]η[k − 1] + uf [k − 1].

The simulation results of the closed-loop system under the composite control u[k] =

us[k] + uf [k] are plotted in Fig. 5.5–5.8.

Fig. 5.5 shows the evolution of the slow state variables. These slow variables

asymptotically reach the origin at about 30 steps.

It is seen in Fig. 5.7 that the reaching time of sliding mode is achieved at about

step 6, that is much faster than that of the sliding surface using the dominating slow

dynamics design.

The largest magnitude of the control of the dominating fast dynamics design is

about 41 which is much smaller than high gain magnitudes of the control law for the

dominating slow dynamics approach in Fig. 5.4.

It is observed that the dominating fast dynamics design offers a faster reaching time

than the dominating slow dynamics design.
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Figure 5.5: Evolution of the slow state variables for the dominating fast dynamics
approach.
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Figure 5.6: Evolution of the fast state variable for the dominating fast dynamics ap-
proach.
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Figure 5.7: Sliding function evolution for the dominating fast dynamics approach.
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Figure 5.8: Evolution of the composite control law for the dominating fast dynamics
approach.



117

5.5 Conclusions

Two discrete-time sliding mode control strategies have been presented. Like the contin-

uous counterparts, the control laws consist of two components: state feedback control

and sliding mode control. The state feedback component is designed such that either the

fast or slow subsystem is stable. The sliding mode control component is constructed to

alleviate the influence of parametric uncertainties by using the time delayed disturbance

approximation technique (Su et al., 2000). The numerical example has demonstrated

that the dominating fast dynamics design produces smaller control efforts and faster

sliding mode than the dominating slow dynamics design.
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Chapter 6

Conclusions

6.1 Conclusions

The dissertation addresses some issues of sliding mode control for singularly perturbed

systems. The main objective is to attenuate external disturbances in the case of out-

put feedback control for sampled-data systems or reject exogenous disturbances and

parametric uncertainties for singularly perturbed continuous- and discrete-time sys-

tems using sliding mode control. In the following, we will summarize the contributions

of the dissertation.

Within the context of high gain output feedback, a dynamical system exhibits two-

time scale behavior. This leads to employing perturbation techniques to study the

stability and robustness of the closed-loop system. The problem is concerned with the

digital implementation of sliding mode of a given sliding surface which is constructed

for the continuous time system. While many works in the literature used observers to

estimate state variables and disturbances, our methods only employ output information.

As a result, the structure of our controller is less complicated. In our approaches,

we employ the one-step delayed disturbance approximation and the two-step delayed

disturbance approximation techniques, in which unmeasured state variables are seen as

disturbances. As pointed out in Chapter 2, the closed-loop system is asymptotically

stable and exhibits strong robustness against external disturbances. In the one-step

delayed disturbance approximation method, the accuracy of the sliding mode is O(ϵ2)

and the bounds of the state variables are achieved within O(ϵ). These quantities are

at the same order as in the state feedback case. The two-step delayed disturbance

approximation approach provides better results with O(ϵ3) quasi-sliding motion and

O(ϵ2) bounds of the state variables.
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Most of works in the literature of sliding mode control for singularly perturbed

systems did not deal with external disturbances, while others which addressed exter-

nal disturbances did not offer complete disturbance rejection. We study a more general

problem where both external disturbance rejection and stability are taken into account.

In this respect, we have proposed unified composite control methods to stabilize sin-

gularly perturbed systems and reject external disturbances. First, a state feedback

control law is constructed for either slow or fast modes. Then, a sliding mode controller

is designed for the remaining modes in a transformed system (a triangular form). The

analysis of stability and disturbance rejection is realized by Utkin’s method. The re-

sults of our work are proved to be much better than the other works available in the

control literature.

In the same light of the problem, Lyapunov functions are employed to tackle the

disturbance rejection and stability. In this direction, a state feedback control law is

first constructed to stabilize the system and then a decoupled system is studied, which

leads to the design of a sliding surface and a sliding mode control law. Like composite

control approaches, the Lyapunov methods yield the stability and disturbance rejection

of the closed-loop system.

The last contribution of the dissertation is presented in Chapter 5. In that chapter,

the study of sliding mode control for singularly perturbed continuous time system is

extended to the discrete time case in which parametric uncertainties are taken into

consideration. A composite control law includes a state feedback component which

stabilizes either slow or fast modes and a sliding mode one which deals with the re-

maining modes. By employing the one step delayed estimation, we have showed that

the closed-loop system is asymptotically stable provided the perturbation parameter is

small enough.

6.2 Future Work

The results of this dissertation on singularly perturbed systems can be applied to practi-

cal problems in chemical industry, wireless communications, mechanical systems, power



120

systems, systems biology, where multi-time scale phenomena appear and disturbances

need to be addressed. In addition, the methodology can be applied to weakly-coupled

systems.

Based on the results obtained, some potential works will be considered for imple-

mentation in the future to real physical systems. Most of the existing works on output

feedback sliding mode control pose an assumption on the relative degree of the system

under consideration. The future work could focus on the problem of output feedback

sliding mode control for systems with an arbitrary relative degree. In addition, investi-

gating disturbance attenuation using sliding mode control for sampled-data nonlinear

systems will be very challenging since unlike the linear case, a discrete-time nonlinear

model is not generally exactly computed from a continuous-time nonlinear system. In

this case, efforts to study the approximative model will be carried out in order to find

a possible sliding mode control law. This direction is promising in finding applications

to many practical nonlinear systems.
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structure control of synchronous generator: singularly perturbed analysis. Interna-

tional Journal of Control, 79, 1–13.
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