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ABSTRACT OF THE THESIS

Sliding Mode Control of Continuous-time Weakly Coupled Systems

by GUN-HYUNG PARK

Thesis Director:

Professor Zoran Gajić

Sliding mode control is a form of variable structure control which is a powerful tool

to cope with external disturbances and uncertainty. There are many applications of

sliding mode control of weakly coupled system to absorption columns, catalytic crackers,

chemical plants, chemical reactors, helicopters, satellites, flexible beams, cold-rolling

mills, power systems, electrical circuits, computer/communication networks, etc. In

this thesis, the problem of sliding mode control for systems, which are composed of two

weakly coupled subsystems, is firstly addressed.

This thesis presents three methods to study continuous-time linear weakly coupled

systems using sliding mode control. First one is Utkin and Young’s sliding mode control

method for each subsystem using a decoupling transformation technique. Next one is

a composite control approach composed of two controllers, which are a state feedback

controller and a sliding mode controller. The last one is a sliding mode control technique

using the Lyapunov approach. These methods provide controls which make the systems

asymptotic stabile with a robust performance against parametric uncertainties and

exogenous disturbances.

In this thesis, we demonstrate the effectiveness of the proposed methods through

theoretical and simulation results.
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Chapter 1

Introduction

1.1 Continuous-Time Sliding Mode Control

Continuous-time sliding mode control has been recognized as a robust control approach,

which yields to reject matched disturbances and system uncertainties. The design of

sliding mode control is achieved in two steps. Firstly, a sliding surface is described which

ensures the system to remain on a plane after reaching it from any initial conditions in

a finite time. Secondly, discontinuous control is designed to render a sliding mode.

Consider the following single input linear system (Sinha, 2007).ẋ1(t)
ẋ2(t)

 =

0 1

α β

x1(t)
x2(t)

+

0

1

u(t) (1.1)

If x2(t) = −λx1(t), where λ > 0, then x1(t) and x2(t) are asymptotically stable because

(1.1) yields ẋ1(t) = −λx1(t). Define a line as follows

s(t) = x2(t) + λx1(t), λ > 0 (1.2)

Figure 1.1 shows a sliding line in the state space. The control objectives are to design

s = x2 + λx1, λ > 0

x2

s > 0

s < 0
x1

s = 0

Figure 1.1: A sliding line s(t) = 0
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u(t) to ensure that the system reaches the sliding line from any initial condition in

a finite time and stay on the line after reaching it. The conditions to achieve these

objectives are called reaching and sliding conditions. The reaching condition provides

that the system state reaches the sliding surface in a finite time, whereas the sliding

condition facilitates that the system state slides on the sliding line towards the origin.

The reaching condition is described as (Utkin, 1977; Young, 1978)

ṡ(t) = −δsgn(s(t)), δ > 0 (1.3)

where the signum function sgn(s(t)) is defined as follows

sgn(s(t)) =


+1if s(t) > 0

0if s(t) = 0

−1if s(t) < 0

(1.4)

which yields to the following condition (Sinha, 2007, Chap. 6)

ṡ(t)s(t) < 0 (1.5)

The equivalent control ueq(x(t)) is obtained when the system remains on the sliding

mode, that is ṡ(t) = 0. From (1.2), we have

ṡ(t) = αx1(t) + (β + λ)x2(t), λ > 0 (1.6)

For ṡ(t) = 0, it follows

ueq(t) = −αx1(t)− (β + λ)x2(t), λ > 0 (1.7)

Therefore, the control law to satisfy the reaching condition (1.3) is

u(t) = ueq(t)− δsgn(s(t)), δ > 0 (1.8)

The sliding condition (Young, 1978)

lim
s(t)→0+

ṡ(t) < 0, lim
s(t)→0−

ṡ(t) > 0 (1.9)

is sufficient and local.
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1.1.1 Constructing Sliding Surfaces of MIMO system

Utkin and Young’s Method

Consider a continuous-time linear system which is given by

ẋ(t) = Ax(t) +Bu(t) (1.10)

where x(t) ∈ Rn, u(t) ∈ Rm, and A, B are constant matrices of appropriate dimensions,

and B has full rank.

There exists a similarity transformation defined by (Utkin and Young, 1978)

q(t) = Hx(t) (1.11)

with

H =
[
N B

]T
(1.12)

and columns of the n× (n−m) matrix N composed of basis vectors in the null space

of BT , which puts (1.10) into the form

q̇(t) = Āq(t) + B̄u(t) (1.13)

with Ā = HAH−1 and B̄ = HB =

 0

B̄r

. Equation (1.13) is decomposed as follows

q̇1(t)
q̇2(t)

 =

Ā11 Ā12

Ā21 Ā22

q1(t)
q2(t)

+

 0

B̄r

u(t) (1.14)

where q1(t) ∈ Rn−m, q2(t) ∈ Rm, and B̄r is an m×m nonsingular matrix.

Equation (1.14) yields

q̇1(t) = Ā11q1(t) + Ā12q2(t) (1.15)

and

q̇2(t) = Ā21q1(t) + Ā22q2(t) + B̄ru(t) (1.16)

q2(t) is treated as a control input to the system (1.15) and a state feedback gain K,

which makes the system stable, is defined by

q2(t) = −Kq1(t). (1.17)
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For the system (1.15), Utkin and Yound (1978) have shown that (Ā11, Ā12) is control-

lable if and only if (A,B) is controllable (See also Chen, 1999).

On the sliding surface, the system trajectory in the (q1(t), q2(t)) coordinates is

expressed as [
K Im

]q1(t)
q2(t)

 = 0 (1.18)

or

s(t) = Gx(t) =
[
K Im

]
Hx(t) = 0 (1.19)

in the original coordinates.

Lyapunov Method

Consider a continuous-time nonlinear system in the form

ẋ(t) = f(x(t)) + g(x(t))u(t) (1.20)

Lyapunov’s second method to make the system (1.10) or (1.20) asymptotically stable

requires the following assumptions (Su et al., 1996).

(i) There exists a stablizing feedback Kx(t) for (1.10) or k(x(t)) for (1.20) such that

the autonomous systems

ẋ(t) = Ax(t) +BKx(t) (1.21)

ẋ(t) = f(x(t)) + g(x(t))k(x(t)) (1.22)

are asymptotically stable.

(ii) A Lyapunov function V (x(t)) exists and satisfies V̇ (x(t)) < 0.

(iii) V̇ (x(t)) 6= 0 in the state trajectory, except at the origin.

If ẋ(t) = f(x(t)) is stable with a Lyapunov function V̇ (x(t)) < 0, then

V̇ (x(t)) = (
∂V (x(t))

∂x(t)
)T f(x(t)) < 0 (1.23)



5

Equation (1.23) yields

V̇ (x(t)) = (
∂V (x(t))

∂x(t)
)T f(x) + (

∂V (x(t))

∂x(t)
)T g(x(t))u(t) < 0 (1.24)

when (∂V (x(t))
∂x(t) )T g(x(t)) = 0. From (1.20) and (1.24), the sliding surfaces can be de-

scribed as

s(x(t)) = gT (x(t))(
∂V (x(t))

∂x(t)
) = 0 (1.25)

where s(x(t)) is a m × 1 vector function. On the sliding surface (1.25), the nonlinear

system (1.20) becomes asymptotically stable.

If ẋ(t) = f(x(t)) is unstable with a Lyapunov function V (x(t)), a feedback gain

k(x(t)) which stabilizes the system (1.20) exists. Letting system input as u(t) =

k(x(t)) + v(t), eqaution (1.20) yields

ẋ(t) = f(x(t)) + g(x(t))(kx(t) + u(t)) = fs(x(t)) + g(x(t))u(t) (1.26)

where the corresponding autonomous dynamics fs(x(t)) = f(x(t))+g(x(t))ku(t) is sta-

ble. By choosing a Lyapunov function W (x(t)) > 0, which satisfies (∂W (x(t))
∂x(t) )T fs(x) <

0, the nonlinear sliding surfaces of equation (1.20) can be expressed as

s(x(t)) = gT (x(t))(
∂W (x(t))

∂x(t)
) = 0 (1.27)

1.1.2 Variable Structure Control Law Design

Three major types of discontinuous (switching) control exist: variable structure type,

signum function, and unit control.

Variable Structure Type

Consider a single-input system (Utkin, 1977)

ẋi(t) = ẋi+1(t), i = 1, . . . , n− 1

ẋn(t) = −
n∑

i=1

ai(t)xi(t) + u(t)
(1.28)

where ai are time-varying parameters and u(t) is m × 1 vector. This system has the

sliding surface as

s(t) = xn(t) + cn−1(t)xn−1(t) + · · ·+ c1(t)x1(t) = 0 (1.29)
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The control law is described as

u(t) = −
n−1∑
i=1

Ψixi(t)− δsgn(s(t)) (1.30)

where δ is a small positive number and the feedback gains are

Ψi = {
αi if xis(t) > 0

βi if xis(t) < 0

(1.31)

Signum Function

Consider a multi input system with a disturbance d(t)

ẋ(t) = Ax(t) +Bu(t) + Ed(t) (1.32)

where x(t) ∈ Rn, u(t) ∈ Rm, d(t) ∈ Rl and A, B, E are constant matrices of appropri-

ate dimensions, B and E have full rank. The sliding mode of (1.32) can be described

as

s(t) = Gx(t) = 0 (1.33)

where G is a m × n matrix. The sliding variable dynamics controls can be chosen by

considering

ṡ(t) = Gẋ(t) = GAx(t) +GBu(t) +GEd(t) (1.34)

Introduce a new variable s̄(t) to decouple control input

s̄(t) = (GB)−1s(t) (1.35)

From equations (1.34) and (1.35), the new sliding dynamics is obtained

˙̄s(t) = (GB)−1GAx(t) + u(t) + (GB)−1GEd(t) (1.36)

=



f1(x(t)) + u1(t) + d1(t)

f2(x(t)) + u2(t) + d2(t)

...

fm(x(t)) + um(t) + dm(t)


(1.37)
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such that each control law can be designed separately as (Su, 2009)

u1(t) = −f1(x(t))− (d1(t) + σ1)sgn(s̄1(t))

u2(t) = −f2(x(t))− (d2(t) + σ2)sgn(s̄2(t))

...

um(t) = −fm(x(t))− (dm(t) + σm)sgn(s̄m(t))

(1.38)

Unit Control

Consider the same system as on (1.32)

ẋ(t) = Ax(t) +Bu(t) + Ed(t) (1.39)

with the same sliding variable dynamics such as

ṡ(t) = Gẋ(t) = GAx(t) +GBu(t) +GEd(t) (1.40)

The control law which satisfies the reaching condition directly can be chosen as

u(t) = −(GB)−1GAx(t)− (GB)−1(γ + σ)(
s(t)

||s(t)||
) (1.41)

where

γ = ||GE||dmax (1.42)

1.1.3 The Invariance Condition for Linear Systems with Exogenous

Disturbances

Consider a multi input system with a disturbance d(t) (Drazenovic, 1969)

ẋ(t) = Ax(t) +Bu(t) + Ed(t) (1.43)

where x(t) ∈ Rn, u(t) ∈ Rm, d(t) ∈ Rl and A, B, E are constant matrices of appropri-

ate dimensions, B and E have full rank. The sliding mode of (1.32) can be described

as

s(t) = Gx(t) = 0, (1.44)

where G(t) is a m× n matrix. Equation (1.32) is invariant to d(t) in the sliding mode

if and only if

rank
[
B | E

]
= rank

[
B

]
(1.45)
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1.2 Continuous-Time Weakly Coupled Systems

Linear weakly coupled systems have been studied in different set-ups by many re-

searchers since Kokotovic and his coworkers introduced them in 1969 (Delacour, 1978;

Khalil, 1978; Sezer and Siljak, 1986; Petrovic and Gajić, 1988; Gajić and Shen, 1989;

Shen and Gajić, 1990; Su and Gajić, 1991; Qureshi, 1992; Aganovic et al., 1996; Gajić

and Borno, 2000; Mukaidani, 2006; Kim and Lim, 2007; Prljaca and Gajić, 2007;

Mukaidani, 2007a; Mukaidani, 2007b; Sagara et al., 2008; Mukaidani, 2009). Tradi-

tionally, solutions of weakly coupled systems were obtained in terms of Taylor series

and power series expansions with respect to a small weak coupling parameter ε (Koko-

tovic et al., 1969; Delacour, 1978). In 1989, Gajić and Shen, under certain conditions,

introduced a decoupling transformation which exactly decompose weakly coupled linear

systems composed of two subsystems into independent two reduced-order subsystems.

In Qureshi (1992), another version of the transformation was obtained.

The linear weakly coupled system composed of two subsystem is defined by (Koko-

tovic et al., 1969)

dx1(t)

dt
= A1x1(t) + εA2x2(t) +B1u1(t) + εB2u2(t)

dx2(t)

dt
= εA3x1(t) +A4x2(t) + εB3u1(t) +B4u2(t)

(1.46)

where ε is a small weak coupling parameter and xi(t) ∈ Rni are state space variables

and, ui(t) ∈ Rmi are subsystem controls. Two standard assumptions for weakly coupled

linear system exist (Gajić et al., 2009, pp. 98-100).

Assumption 1.2.1. Matrices Ai, i = 1, 2, 3, 4, are constant and O(1). In addition,

magnitudes of all system eigenvalues are O(1), that is, |λj | = O(1), j = 1, 2, . . . , n,

which implies that the matrices A1, A4 are nonsingular with det{A1} = O(1) and

det{A4} = O(1).

Assumption 1.2.2. Matrices A1 and A4 have no common eigenvalues.
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1.2.1 Decoupling Transformation of Gajic and Shen

Consider a linear weakly coupled system (Gajić and Shen, 1989; see also Gajić et al.,

2009, Chap. 5)

dx1(t)

dt
= A1x1(t) + εA2x2(t) +B1x1(t) + εB2x2(t) (1.47)

dx2(t)

dt
= εA3x1(t) +A4x2(t) + εB3x1(t) +B4x2(t) (1.48)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 , n1 + n2 = n, are subsystem states, ui(t) ∈ Rmi ,

i = 1, 2, are subsystem controls, and ε is a small coupling parameter. Introducing new

variables η1 and a matrix L1 as follows

x1(t) = η1(t) + εL1x2(t) (1.49)

transforms (1.47) into

η̇1(t) = A10η1(t) + εΦ1(L1)x2(t) +B10u1(t) + εB20u2(t) (1.50)

where

A10 = A1 − ε2L1A3

B10 = B1 − ε2L1B3

B20 = B2 − L1B4

(1.51)

and

Φ1(L1) = A1L1 − L1A4 +A2 − ε2L1A3L1 (1.52)

If L1 is chosen such that Φ1(L) = 0, (1.50) is completely decoupled subsystem

η̇1(t) = A10η1(t) +B10u1(t) + εB20u2(t) (1.53)

Introducing another change of variables as follows

η2(t) = x2(t) + εH1η1(t) (1.54)

we have from (1.48) and (1.53)

η̇2(t) = εΦ1(H1)η1(t) +A40η2(t) + εB30u1(t) +B40u2(t) (1.55)
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where

A40 = A4 + ε2A3L1

B30 = B3 +H1B10

B40 = B4 + ε2H1B20

(1.56)

and

Φ2(H1) = H1A10 −A40H1 +A3 (1.57)

Assuming that matrix H1 can be chosen such that Φ2(H1) = 0, (1.55) represents

another decoupled subsystem

η̇2(t) = A40η2(t) + εB30u1(t) +B40u2(t) (1.58)

The original system (1.47)-(1.48) is transformed into the decoupled subsystems using

the similarity transformationη1(t)
η2(t)

 =

 In1 −εL1

εH1 In2 − ε2H1L1

x1(t)
x2(t)

 = T1

x1(t)
x2(t)

 (1.59)

where

T−11 =

In1 − ε2L1H1 εL1

−εH1 In2

 . (1.60)

1.2.2 Decoupling Transformation of Qureshi

The difficulty of the decoupling transformation of Gajić and Shen is that computa-

tion must be done sequentially. Introducing the change of variables to overcome this

difficulty (Qureshi, 1992; see also Gajić et al., 2009, Chap. 5)η1(t)
η2(t)

 =

 In1 −εL2(t)

εH2(t) In2 − ε2H2(t)L2(t)

x1(t)
x2(t)

 = T2

x1(t)
x2(t)

 (1.61)

where

T−12 =

In1 − ε2L2(t)M(t)H2(t) εL2(t)M(t)

−εM(t)H2(t) M(t)

 (1.62)

with M(t) = (In1 − ε2H2(t)L2(t))
−1, the original system (1.46) is transformed into

η̇1(t) = (A1(t)− ε2L2(t)A3(t))η1(t) +B10u1(t) + εB20u2(t)

η̇2(t) = (A4(t)− ε2H2(t)A2(t))η2(t) + εB30u1(t) +B40u2(t)

(1.63)
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where matrices L2(t) and H2(t) are obtained from

Φ3(L2(t), L̇2(t)) = L̇2(t)−A1(t)L2(t) + L2(t)A4(t)

−A2(t) + ε2L2(t)A3(t)L2(t) = 0

Φ4(H2(t), Ḣ2(t)) = Ḣ2(t)−A4(t)H2(t) +H2(t)A1(t)

A3(t) + ε2H2(t)A2(t)H2(t) = 0

(1.64)

with

B10 = B1 − ε2L1B3

B20 = B2 − L2B4

B30 = B3 −H2B1

B40 = B4 − ε2H1B2

(1.65)

Note that equations for L2(t) and H2(t) are independent of each other.

1.2.3 Decoupling Transformation for N Weakly Coupled Subsystems

Consider a continuous-time systems consisting of n states represented by Gajić and

Borno, 2000; see also Gajić et al., 2009, Chap. 5)

dx(t)

dt
= Ax(t) (1.66)

where x(t) is n-dimentional state vector partitioned consistently with N subsystems as

x(t) =
[
xT1 (t) xT2 (t) . . . xT1 (t)

]T
, xi(t) ∈ Rn

i , and constant matrix A is

A =



A11 εA12 . . . εA1N

εA21 A22 . . . . . .

. . . . . . . . . . . .

εAN1 εAN2 . . . ANN


(1.67)

The similar Assumptions as Assumption 1.2.1 and 1.2.2 of are imposed for N weakly

coupled linear system (Gajić et al., 2009, pp. 108-111).

Assumption 1.2.3. All matrices Aij are constant and O(1), and magnitudes of all

system eigenvalues are O(1), that is, |λj | = O(1), j = 1, 2, . . . , n, which implies that

the matrices Aii, j = 1, 2, . . . , N are nonsingular with det{Aii} = O(1).
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Assumption 1.2.4. Matrices Ajj and Aii have no eigenvalues in common for every

i, j, i 6= j.

The corresponding similarity transformation matrix is given by

η(t) = Γx(t) (1.68)

where

Γ(ε) =



I εL12 . . . εL1N

εL21 I . . . εL2N

. . . . . . . . . . . .

εLN1 . . . εLN(N−1) I


(1.69)

The original system (1.66) is decoupled into

η̇i(t) = Ωiηi(t), i = 1, 2, . . . , N (1.70)

with

Ωi = Aii + ε2
N∑

j=1,j 6=i

LijAji, j = 1, 2, . . . , N (1.71)

where Lij satisfies

Ωij(Lij , ε) = LijAjj −AiiLij +Aij + ε(
N∑

k=1,k 6=i,j

LikAki)

− ε2(
N∑

k=1,k 6=i

LikAki)Lij = 0,

i, j = ∀1, 2, . . . , N, i 6= j

(1.72)

These equations can be solved iteratively by starting with

L
(0)
ij Ajj −AiiL

(0)
ij +Aij = 0 (1.73)

and performing the following iteration

L
(m+1)
ij Ajj −AiiL

(m+1)
ij +Aij + ε(

N∑
k=1,k 6=i,j

L
(m)
ik Aki)

− ε2(
N∑

k=1,k 6=i

L
(m)
ik Aki)L

(m)
ij = 0,

i, j = 1, 2, . . . , N, i 6= j; m = 0, 1, 2, . . .

(1.74)
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This algorithm converges with the rate of O(ε), that

||L(m)
ij − L

(0)
ij || = O(εi),m = 0, 1, 2, . . . (1.75)

Other methods, like the Newton method (Gajić et al., 2009), can be used to solve (1.72).

1.3 Thesis Contribution

The primary contributions of this work are two fold: the introduction of basic con-

cepts of sliding modes along with the sliding mode control and methodologies to solve

continuous-time linear weakly coupled systems using sliding mode control. This work is

the first study to find sliding mode controls for continuous-time linear weakly coupled

systems.

We present three methods in this thesis. First one is Utkin and Young’s sliding mode

control method for each subsystem using transformation of Gajić and Shen (1989).

This work provides the sliding surfaces and sliding mode controls for each reduced-

order subsystems. Next one is a composite control approach in the sense that one

control is used to stabilize one subsystem by a state feedback control law and the other

control is found by sliding mode control law for the other subsystem. The last one

is the Lyapunov approach to find sliding mode control laws. This approach does not

require a partition of the system into the canonical forms. These approaches make the

system asymptotically stable as well as robust against the external disturbances and

uncertainty.
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Chapter 2

Continuous-Time Sliding Mode Control of Weakly

Coupled Systems: Utkin and Young’s Approach

2.1 Introduction

Three main procedures could be developed for sliding mode control of weakly coupled

systems. First one is to decompose the full-order system into subsystems by using the

transformation technique. Next is to find a sliding surface and design a control law

for each subsystem. The final step is to implement composite sliding mode control

combining control variables from each subsystem.

In this chapter, we address the problem of sliding mode control of a weakly coupled

system with external disturbance. The first procedure is followed by using the decou-

pling transformation of Gajić and Shen (1989) and the next step is obtained by using

the result of Utkin and Young’s approach (1978) with the discontinuous control law.

The inverse transformation of Gajić and Shen (1989) is used on the last step.

2.2 Problem Formulation

Consider a continuous-time weakly coupled system represented byẋ1(t)
ẋ2(t)

 =

A1 εA2

εA3 A4

x1(t)
x2(t)

+

B1 εB2

εB3 B4

u1(t)
u2(t)

+ Ed(t)

= A

x1(t)
x2(t)

+B

u1(t)
u2(t)

+ Ed(t)

(2.1)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 , n1 + n2 = n, are state variables, ui(t) ∈ Rmi ,

i = 1, 2, are control inputs, and d(t) ∈ Rl is the disturbance. ε is a small weak

coupling parameter. It is assumed that matrices A1, A4 are constant and O(1). In
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addition, magnitudes of all system eigenvalues are O(1), that is, |λj | = O(1), j =

1, 2, . . . , n, which implies that the matrices A1, A4 are nonsingular with det{A1} = O(1)

and det{A4} = O(1). It is also assumed that matrices A1 and A4 have no common

eigenvalues (see Assumption 1.2.1). A, B, E are constant matrices of appropriate

dimensions. Furthermore, B and E have full rank.

The system (2.1) is invariant to d(t) if and only if the matching condition is satisfied

(Drazenovic, 1969)

rank
[
B | E

]
= rank

[
B

]
(2.2)

which means there exists a m× l matrix D such that

E = BD (2.3)

The main objective is to find a sliding surface using Utkin and Young’s approach

with a discontinuous control law to achieve system stability and disturbance rejection.

2.3 Result

Apply decoupling transformation of Gajić and Shen (1989)η1(t)
η2(t)

 =

 In1 −εL1

εH1 In2 − ε2H1L1

x1(t)
x2(t)

 = T

x1(t)
x2(t)

 (2.4)

to system (2.1). The system is completely decoupledη̇1(t)
η̇2(t)

 =

A10 0

0 A40

η1(t)
η2(t)

+

B10 εB20

εB30 B40

u1(t)
u2(t)

+ TEd(t)

=

A10 0

0 A40

η1(t)
η2(t)

+

B10 εB20

εB30 B40

(u1(t)
u2(t)

+

D1

D2

 d(t)
) (2.5)
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with

A10 = A1 − ε2L1A3

A40 = A4 + ε2A3L1

B10 = B1 − ε2L1B3

B20 = B2 − L1B4

B30 = B3 +H1B10

B40 = B4 + ε2H1B20

(2.6)

where L1 and H1 are solutions of the following algebraic equations

A1L1 − L1A4 +A2 − ε2L1A3L1 = 0

H1A10 −A40H1 +A3 = 0

(2.7)

Numerical solutions for L1 andH1 can be obtained by using the fixed point iterations

(Petrovic and Gajić, 1988)

A1L
(i+1)
1 − L(i+1)

1 A4 +A2 − ε2L(i)
1 A3L

(i)
1 = 0, i = 0, 1, . . . , N − 1 (2.8)

H
(N)
1 A

(N)
10 −A

(N)
40 H

(N)
1 +A3 = 0 (2.9)

with

A
(N)
10 = A1 − ε2L(N)

1 A3

A
(N)
40 = A4 + ε2A3L

(N)
1

(2.10)

where L
(0)
1 and H

(0)
1 are obtained from following equations

A1L
(0)
1 − L

(0)
1 A4 +A2 = 0

H
(0)
1 A1 −A4H

(0)
1 +A3 = 0

(2.11)

Using the results, it can be shown that

L1 = L
(N)
1 +O(ε2N )

H1 = H
(N)
1 +O(ε2N )

(2.12)

Other methods, like Newton method (Gajić et al., 2009, Chap. 5) or the eigenvector

method (Kecman and Tomasevic, 2006), can be used to solve (2.7).
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After the system is completely decoupled, two sliding surfaces can be defined for

each subsystem. For the first subsystem of (2.5)

η̇1(t) = A10η1(t) +
[
B10 εB20

] (u1(t)
u2(t)

+

D1

D2

 d(t)
)

= A10η1(t) +B10(u1(t) +D1d(t)) +O(ε)

(2.13)

if m1 < n1, there exists a nonsingular similarity transformation (Utkin and Young,

1978), T1 =

 N
B10

 which yields

ξ̇1(t)
ξ̇2(t)

 =

Ā111 Ā112

Ā121 Ā122

ξ1(t)
ξ2(t)

+

 0

B̄1

(u(t) +D1d(t)) +O(ε) (2.14)

where ξ1(t) ∈ Rn1−m1 , ξ2(t) ∈ Rm1 , and B̄1 is an m1 ×m1 nonsingular matrix. We can

find a state feedback gain matrix K1 such that Ā111 −K1Ā112 is asymptotically stable.

On the sliding surface using Utkin and Young’s method (Utkin and Young, 1978),

the system trajectory in the (ξ1(t), ξ2(t)) coordinates is expressed as

[
K1 Im

]ξ1(t)
ξ2(t)

 = 0 (2.15)

or

s1(t) = G1η1(t) =
[
K1 Im

]
T1η1(t) = 0 (2.16)

in the original coordinates.

Apply the same procedure for the second subsystem of (2.5)

η̇2(t) = A40η2(t) +
[
εB30 B40

] (u1(t)
u2(t)

+D2d(t)
)

= A40η1(t) +B40(u2(t) +D2d(t)) +O(ε)

(2.17)

If m2 < n2, there exists a nonsingular similarity transformation T2 =

 N
B40

 which

yields ζ̇1(t)
ζ̇2(t)

 =

Ā411 Ā412

Ā421 Ā422

ζ1(t)
ζ2(t)

+

 0

B̄4

(u(t) +D2d(t)) +O(ε) (2.18)
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where ζ1(t) ∈ Rn2−m2 , ζ2(t) ∈ Rm2 , and B̄4 is an m2 ×m2 nonsingular matrix. There

exists K2 such that Ā411 − K2Ā412 is asymptotically stable. According to Utkin and

Young (1978), the system trajectory in the (ζ1(t), ζ2(t)) coordinates is expressed as

[
K2 Im

]ζ1(t)
ζ2(t)

 = 0 (2.19)

or

s2(t) = G2η2(t) =
[
K2 Im

]
T2η2(t) = 0 (2.20)

in the original coordinates.

Starting with ṡ1(t) = 0 and ṡ2(t) = 0, we design sliding mode control laws for the

sliding surfaces (2.16) and (2.20).

ṡ1(t) = 0 = G1η̇1(t) = G1A10η1(t) +G1B10(u1(t) +D1d(t)) +O(ε)

ṡ2(t) = 0 = G2η̇2(t) = G2A40η2(t) +G2B40(u2(t) +D2d(t)) +O(ε)

(2.21)

Applying the inverses to each subsystem (2.21), u1(t) and u2(t) can be given by

u1(t) = −(G1B10)
−1G1A10η1(t)− (G1B10)

−1(γ1 + σ1)
s1(t)

||s1(t)||
+O(ε)

u2(t) = −(G2B40)
−1G2A40η2(t)− (G2B40)

−1(γ2 + σ2)
s2(t)

||s2(t)||
+O(ε)

(2.22)

where

γ1 = ||G1B10D1||dmax

γ2 = ||G2B40D2||dmax

(2.23)

is required to overcome the disturbance d(t). It can be easily seen that (2.22) satisfies

the vector type reaching condition (1.41)

sT1 (t)ṡ1(t) = −σ1||s1(t)|| − γ1||s1(t)||+ s1(t)
TG1B10D1d(t) +O(ε)

sT2 (t)ṡ2(t) = −σ2||s2(t)|| − γ2||s2(t)||+ s2(t)
TG2B40D2d(t) +O(ε)

(2.24)

with γ1 and γ2 chosen as in (2.23). Other methods, like variable structure type (Utkin

and Young, 1978) or signum function (Su, 2009), can be used to design the control law.

Lemma 2.3.1. The reaching time of sliding mode control (2.22) satisfies√
sT1 (0)s1(0)

σ1 + 2γ1
< τ <

√
sT1 (0)s1(0)

σ1√
sT2 (0)s2(0)

σ2 + 2γ2
< τ <

√
sT2 (0)s2(0)

σ2

(2.25)
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Proof. Choose a Lyapunov function for s1(t).

V (t) = sT1 (t)s1(t) (2.26)

The derivative of the Lyapunov function is given by

V̇1(t) = 2sT1 (t)ṡ1(t)

= −2σ1||s1(t)|| − 2γ1||s1(t)||+ 2s1(t)
TG1B10D1d(t) +O(ε)

(2.27)

(2.26) and (2.27) yield

−2(σ1 + 2γ1)
√
V1(t) < V̇1(t) < −2σ1

√
V1(t) (2.28)

or

−2(σ1 + 2γ1) <
V̇1(t)√
V1(t)

< −2σ1 (2.29)

Hence

−2(σ1 + 2γ1)t <
√
V1(t)−

√
V1(0) < −2σ1t (2.30)

Let τ be the time needed to reach the sliding mode (V1(τ) = 0). Then, the reaching

time satisfies √
V1(0)

σ1 + 2γ1
< τ <

√
V1(0)

σ1
(2.31)

which is finite. The similar proof can be used for estimating the reaching time for

s2(t)

From (2.22), the control law is given by

u1(t) = −(G1B10)
−1G1A10(x1(t)− εL1x2(t))

− (G1B10)
−1(γ1 + σ1)

s1(t)

||s1(t)||
+O(ε)

u2(t) = −(G2B40)
−1G2A40(εH1x1(t)− ε2H1L1x2(t)

− (G2B40)
−1(γ2 + σ2)

s2(t)

||s2(t)||
+O(ε)

(2.32)

in the original coordinates.

In (2.13) and (2.17), each O(ε) is affected by the input of the other subsystem. To

find more accurate result, O(ε) can be used in (2.13) and (2.17).
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2.4 Example

To illustrate the proposed method, we consider the system with problem matrices given

by

A =

A1 εA2

εA3 A4


B =

B1 εB2

εB3 B4


(2.33)

where

A1 =


0 1 0

0 0 1

−3 −5 −3

 , A2 =


3 −1 −1

−1 1 −2

−1 1 2



A3 =


−1 2 1

1 −2 1

1 −1 2

 , A4 =


0 1 0

0 0 1

−2 −3 −4


(2.34)

and

B1 =


3

−1

1

 , B2 =


1

−1

2

 , B3 =


−1

1

1

 , B4 =


1

−2

3

 (2.35)

The system can be decoupled with n1 = 3 and n2 = 3. The initial states are chosen as

x1(0) =


−3

5

−10

 and x2(0) =


−10

2

−5

 (2.36)

and the external disturbance is

d(t) = sin(t) (2.37)

We simulated the system when small coupling parameter ε is 0.01 and 0.1. For Drazen-

ovic’s invariance condition, we put

E =

B1

εB3

× 10−3 (2.38)
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2.4.1 Case ε = 0.01

The nonsingular decoupling transformation T of (2.4) and L1 and H1 of (2.7) are found

using the Newton method with the accuracy of O(10−10).

T =



1 0 0 −0.0299 0.0527 0.0188

0 1 0 −0.0076 −0.0967 −0.0326

0 0 1 0.0553 0.1007 0.0139

−0.1198 −0.0506 −0.0114 1.0033 −0.0026 −0.0008

0.0240 −0.0427 −0.0064 −0.0007 1.0048 0.0018

0.0293 0.0356 −0.0136 −0.0019 −0.0033 0.9992


(2.39)

The systems is decoupled into two subsystems

η̇1(t) =


0.0010 0.9982 0.0006

−0.0012 0.0021 0.9983

−2.9994 −5.0010 −2.9982

 η1(t) +


3.0010

−1.0012

1.0006


(
u1(t) + 10−3d(t)

)
+O(ε)

(2.40)

and

η̇2(t) =


−0.0007 1.0015 0.0007

−0.0004 −0.0035 0.9990

−2.0009 −3.0035 −4.0008

 η2(t) +


−6.8915

7.7832

−8.4237


(
u2(t) + 10−3d(t)

)
+O(ε)

(2.41)

From (2.16) and (2.20), we can make the sliding surfaces such as

s1(t) = G1η1(t) =
[
1.3435 −15.6873 −8.7232

]
η1(t) = 0 (2.42)

and

s2(t) = G2η2(t) =
[
−54.7511 −49.7828 −10.2291

]
η2(t) = 0 (2.43)

From (2.22), the sliding mode controls u1(t) and u2(t) can be given by

u1(t) =
[
−2.3783 −4.0812 −0.9531

]
η1(t)− 0.0918

s1(t)

||s1(t)||

u2(t) =
[
−1.4620 1.7048 0.6302

]
η2(t)− 0.0721

s2(t)

||s2(t)||

(2.44)

To compare the decoupled systems with the original system, we put σi, i = 1, 2, in

(2.22) equal to 1.
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Figure 2.1: η1(t) of the reduced-order subsystem with ε=0.01
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Figure 2.2: η2(t) of the reduced-order subsystem with ε=0.01
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Figure 2.3: s1(t) of the reduced-order subsystem with ε=0.01
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Figure 2.4: s2(t) of the reduced-order subsystem with ε=0.01
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Figure 2.5: u1(t) of the reduced-order subsystem with ε=0.01
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Figure 2.6: u2(t) of the reduced-order subsystem with ε=0.01
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Figure 2.7: x1(t) of the reduced-order system with ε=0.01
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Figure 2.8: x2(t) of the reduced-order system with ε=0.01
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Figure 2.9: Comparison of x1(t) of the reduced-order and full-order systems
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Figure 2.10: Comparison of x2(t) of the reduced-order and full-order systems

The simulation results are presented in Figures 2.1-2.6 in the new coordinates. Fig-

ures 2.1 and 2.2 show the evolution of the state variables. The chattering phenomena

of the state variables in the sliding mode are found due to the effect of the switching

control law. We can make two sliding surfaces (one surface for each subsystem) using

Utkin and Young’s method (1978). Figures 2.5 and 2.6 indicate the sliding mode control

law using unit control.

Figures 2.7 and 2.8 show the state variables in the original coordinates after applying

T−1. Figures 2.9 - 2.12 present comparisons of the state variables and chattering

phenomena of the reduced-order system and the full-order system. The trajectories of

the state variables of decoupled system take less time to converge as well as have small

chattering phenomena compared with the full-order system.
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Figure 2.11: Chattering of x1(t) with ε=0.01
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Figure 2.12: Chattering of x2(t) with ε=0.01
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2.4.2 Case ε = 0.1

The nonsingular decoupling transformation T of (2.4) and L1 and H1 of (2.7) are found

using the Newton method with O(10−10) accuracy.

T =



1 0 0 −0.0910 0.7340 0.2354

0 1 0 −0.3807 −1.5277 −0.4781

0 0 1 1.3270 2.3774 0.4982

−2.7596 −1.5714 −0.3972 1.3221 −0.5692 −0.0961

0.6352 −0.5223 −0.3325 −0.3002 1.4737 0.2336

1.2499 1.5445 0.4270 −0.1350 −0.4270 0.7685


(2.45)

The systems is decoupled into two subsystems

η̇1(t) =


0.1060 0.8115 0.1114

−0.1625 0.2772 0.7136

−2.8452 −5.2599 −2.5299

 η1(t) +


3.1060

−1.1625

1.1548


(
u1(t) + 10−3d(t)

)
+O(ε)

(2.46)

and

η̇2(t) =


−0.0657 1.1412 0.0693

−0.1997 −0.6167 0.8310

−2.2944 −3.7016 −4.1710

 η2(t) +


1.9737

−2.4976

3.0804


(
u2(t) + 10−3d(t)

)
+O(ε)

(2.47)

From (2.16) and (2.20), we can make the sliding surfaces such as

s1(t) = G1η1(t) =
[
−5.0470 −34.1787 −10.1525

]
η1(t) = 0 (2.48)

and

s2(t) = G2η2(t) =
[
−75.7295 −96.6329 −23.4569

]
η2(t) = 0 (2.49)

From (2.22), the sliding mode controls u1(t) and u2(t) can be given by

u1(t) =
[
−2.7492 −3.2297 −0.0596

]
η1(t)− 0.0821

s1(t)

||s1(t)||

u2(t) =
[
−3.9798 −3.0575 −0.6259

]
η2(t)− 0.0646

s2(t)

||s2(t)||

(2.50)
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Figure 2.13: η1(t) of the reduced-order system with ε=0.1
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Figure 2.14: η2(t) of the reduced-order system with ε=0.1
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Figure 2.15: s1(t) of the reduced-order system with ε=0.1
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Figure 2.16: s2(t) of the reduced-order system with ε=0.1
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Figure 2.17: u1(t) of the reduced-order system with ε=0.1
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Figure 2.18: u2(t) of the reduced-order system with ε=0.1
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Figure 2.19: x1(t) of the reduced-order system with ε=0.1
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Figure 2.20: x2(t) of the reduced-order system with ε=0.1
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Figure 2.21: Comparison of x1(t) of the reduced-order and full-order systems
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Figure 2.22: Comparison of x2(t) of the reduced-order and full-order systems

The simulation results are presented in Figures 2.13 - 2.18 in the new coordinates.

Figures 2.13 and 2.14 show the evolution of the state variables. The chattering phenom-

ena of the state variables in the sliding mode are found due to the effect of the switching

control law. We can make two sliding surfaces (one surface for each subsystem) using

Utkin and Young’s method (1978). Figures 2.17 and 2.18 indicate the sliding mode

control law using unit control.

Figures 2.19 and 2.20 show the state variables in the original coordinates after ap-

plying T−1. We can see that the chattering phenomena are smaller in the reduced-order

system compared with the full-order system in Figures 2.23 and 2.24. The trajectories

of the variables in the reduced-order systems are different from those in the full-order

systems but we still control the systems via the sliding mode technique using sliding

mode controllers designed for the reduced-order systems.
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Figure 2.23: Chattering of x1(t) with ε=0.1
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Figure 2.24: Chattering of x2(t) with ε=0.1
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Figure 2.25: x(t) of the reduced-order system staying when control agencies communi-
cate their decisions to each other
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Figure 2.26: Chattering of x(t) of the reduced-order system when control agencies
communicate their decisions to each other

In the reduced-order system, O(ε) is composed of the input and disturbance of

another system. If control agencies communicates their decisions to each other, the

more efficient result is found. Figure 2.25 depicts the state variables when control

agencies communicate their decisions to each other. The trajectories of Figure 2.25

become similar with those of the full-order system while the reduced-order system has

small chattering phenomena (Figure 2.26).
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2.5 Conclusion

In this chapter, the continuous-time linear weakly coupled systems are solved using

sliding mode control after the decomposition of Gajić and Shen. With the accuracy of

O(ε), the sliding surfaces and sliding mode controls are found for each reduced-order

subsystem. An advantage of sling mode control of reduced-order systems to full-order

systems is that it is of a lower order and thus has less time to find design parameters.

Furthermore, due to the split into two independent subsystems, each input is assigned

for each subsystem. For the more accurate result, O(ε), which is affected by the input

of the other subsystem, can be considered.
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Chapter 3

Continuous-Time Sliding Mode Control of Weakly

Coupled Systems: Composite Control Approach

3.1 Introduction

In the previous chapter, two sliding surfaces are designed for weakly coupled linear

systems composed of two subsystems using Utkin and Young’s approach. In this chap-

ter, the composite control approach is considered for a weakly coupled linear system

composed of two subsystems with an external disturbance. For this approach, only one

discontinuous sliding mode control law is designed while a state feedback law is chosen

to maintain the other subsystem asymptotically stable. This approach includes two

steps. Firstly, a state feedback control law is established to make the first subsystem

stable. Secondly, a sliding surface with a control law is designed for the remaining dy-

namics of the system to ensure stability and disturbance rejection. For the second step,

we used the decoupling procedure of Gajić and Shen (1989) and Utkin and Young’s

approach (1978). The composite control composed of two controls makes the whole

system asymptotically stable.

3.2 Problem Formulation

Consider a continuous-time weakly coupled system represented byẋ1(t)
ẋ2(t)

 =

A1 εA2

εA3 A4

x1(t)
x2(t)

+

B1 εB2

εB3 B4

u(t) + Ed(t) (3.1)

= A

x1(t)
x2(t)

+B

u1(t)
u2(t)

+ Ed(t) (3.2)
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where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 , n1 + n2 = n, are state variables, ui(t) ∈ Rmi ,

i = 1, 2, are control inputs, and d(t) ∈ Rl is the disturbance. ε is a small weak

coupling parameter. It is assumed that matrices A1, A4 are constant and O(1). In

addition, magnitudes of all system eigenvalues are O(1), that is, |λj | = O(1), j =

1, 2, . . . , n, which implies that the matrices A1, A4 are nonsingular with det{A1} = O(1)

and det{A4} = O(1). It is also assumed that matrices A1 and A4 have no common

eigenvalues (see Assumption 1.2.1). A, B, E are constant matrices of appropriate

dimensions. Furthermore, B and E have full rank.

The system (3.7) is invariant to d(t) if and only if the matching condition is satisfied

(Drazenovic, 1969)

rank
[
B | E

]
= rank

[
B

]
(3.3)

which means there exists a m× l matrix D such that

E = BD (3.4)

3.3 Result

We apply the composite control approach in the sense that u2C(t) is used to stabilize

the second subsystem and u1C(t) is used to provide sliding mode control with the global

control given by

u(t) =

u1C(t)

u2C(t)

 (3.5)

A state feedback control law is chosen as

u2C(t) = K2x2(t) (3.6)

which makes the second system asymptotically stable. The system under the composite

control law becomes

ẋ1(t) = A1x1(t) + ε(A2 +B2K2)x2(t) +B1u1C(t) +B1D1d(t)

ẋ2(t) = εA3x1(t) + (A4 +B4K2)x2(t) + εB3u1C(t) + εB3D1d(t)

(3.7)

By the change of variables

η1(t) = x1(t)− εL1x2(t) (3.8)
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the systems (3.7) is transformed into a lower triangular formη̇1(t)
ẋ2(t)

 =

 Ā1 0

εA3 A4 +B4K2 + ε2A3L1

η1(t)
x2(t)

+

 B̄1

εB3

u1C(t) +

 B̄1

εB3

D1d(t)

(3.9)

where

Ā1 = A1 − ε2L1A3

B̄1 = B1 − ε2L1B3

(3.10)

and L1 is the solution of the following equation (Gajić and Shen, 1989)

A1L1 − L1(A4 +B4K2) +A2 +B2K2 − ε2L1A3L1 = 0 (3.11)

Numerical solutions for L1 can be obtained by using the fixed point iterations (Petrovic

and Gajić, 1988), Newton method (Gajić et al., 2009, Chap. 5), or the eigenvector

method (Kecman and Tomasevic, 2006).

For the first subsystem

η̇1(t) = Ā1η1(t) + B̄1(u1C(t) +D1d(t)) (3.12)

if m1 < n1, there exists a nonsingular similarity transformation (Utkin and Young,

1978), T1 =

N
B̄1

 which yields

ξ̇1(t)
ξ̇2(t)

 =

Ā111 Ā112

Ā121 Ā122

ξ1(t)
ξ2(t)

+

 0

B̄r1

u1C(t) (3.13)

where ξ1(t) ∈ Rn1−m1 , ξ2(t) ∈ Rm1 , and B̄1 is an m1 ×m1 nonsingular matrix. We can

find a state feedback gain matrix K1 such that Ā111 −K1Ā112 is asymptotically stable.

On the sliding surface, the system trajectory in the (ξ1(t), ξ2(t)) coordinates is ex-

pressed as [
K1 Im1

]ξ1(t)
ξ2(t)

 = 0 (3.14)

or

s1(t) = G1η1(t) =
[
K1 Im1

]
T1η1(t) = 0 (3.15)

in the original coordinates.
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Starting with ṡ1(t) = 0, we design a sliding control law of the sliding surface (3.15),

that is

ṡ1(t) = 0 = G1η̇1(t) = G1Ā1η1(t) +G1B̄1u1C(t) +G1B̄1D1d(t) (3.16)

From (3.16), sliding mode control u1C(t) can be described as

u1C(t) = −(G1B̄1)
−1G1Ā1η1(t)− (G1B̄1)

−1(γ1 + σ1)
s1(t)

||s1(t)||
(3.17)

where

γ1 = ||G1B1D1||dmax (3.18)

is required to overcome the disturbance d(t). It can be shown that (3.17) satisfies the

vector type reaching condition (1.41)

sT1 (t)ṡ1(t) = −σ1||s1(t)|| − γ1||s1(t)||+ s1(t)
TG1B̄1D1d(t) (3.19)

with γ1 chosen as in (3.41).

Lemma 3.3.1. The reaching time of sliding mode control (3.17) satisfies√
sT1 (0)s1(0)

σ1 + 2γ1
< τ <

√
sT1 (0)s1(0)

σ1
(3.20)

Proof. Choose a Lyapunov function

V (t) = sT1 (t)s1(t) (3.21)

The derivative of the Lyapunov function is given by

V̇ (t) = 2sT1 (t)ṡ1(t) = −2σ1||s1(t)|| − 2γ1||s1(t)||+ 2s1(t)
TG1B̄1D1d(t) (3.22)

which yields

−2(σ1 + 2γ1)
√
V (t) < V̇ (t) < −2σ1

√
V (t) (3.23)

or

−2(σ1 + 2γ1) <
V̇ (t)√
V (t)

< −2σ1 (3.24)

Hence

−2(σ1 + 2γ1)t <
√
V (t)−

√
V (0) < −2σ1t (3.25)
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Let τ be the time needed to reach the sliding mode (V (τ) = 0). Then, the reaching

time satisfies √
V (0)

σ1 + 2γ1
< τ <

√
V (0)

σ1
(3.26)

which is finite.

From (3.6) and (3.17), the composite control law u(t) = u1C(t) + u2C(t) is given by

u(t) =

−(G1B̄1)
−1G1Ā1η1(t)− (G1B̄1)

−1(γ1 + σ1)
s1(t)
||s1(t)||

K2x2(t)

 (3.27)

or

u(t) =

−(G1B̄1)
−1G1Ā1(x1(t)− εL1x2(t))− (G1B̄1)

−1(γ1 + σ1)
s1(t)
||s1(t)||

K2x2(t)

 (3.28)

in the original coordinates.

We also start with u1C(t) for the composite control approach in the sense that

u1C(t) is used to stabilize the first subsystems and u2C(t) is used to provide sliding

mode control with the global control given by

u(t) =

u1C(t)

u2C(t)

 (3.29)

A state feedback control law is chosen as

u1C(t) = K1x1(t) (3.30)

which makes the first system asymptotically stable.

The system under the composite control law is defined as

ẋ1(t) = (A1 +B1K1)x1(t) + εA2x2(t) + εB2u2C(t) + εB2D2d(t)

ẋ2(t) = ε(A3 +B3K1)x1(t) +A4x2(t) +B4u2C(t) +B4D2d(t)

(3.31)

By the change of variables

η2(t) = −εL2x1(t) + x2(t) (3.32)

the systems (3.31) is transformed into a upper triangular formẋ1(t)
η̇2(t)

 =

A1 +B1K1 + ε2A2L2 εA2

0 Ā4

x1(t)
η2(t)

+

εB2

B̄4

u2C(t) +

εB2

B̄4

D2d(t)

(3.33)
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where

Ā4 = A4 − ε2L2A2

B̄4 = B4 − ε2L2B2

(3.34)

and L2 is the solution of the following equation (Gajić and Shen, 1989)

A4L2 − L2(A1 +B1K1) +A3 +B3K1 − ε2L2A2L2 = 0 (3.35)

For the second subsystem

η̇2(t) = Ā4η2(t) + B̄4(u2C(t) +D2d(t)) (3.36)

if m2 < n2, there exists a nonsingular similarity transformation (Utkin and Young,

1978) such as T2 =

N
B̄2

 which yields

ζ̇1(t)
ζ̇2(t)

 =

Ā211 Ā212

Ā221 Ā222

ζ1(t)
ζ2(t)

+

 0

B̄r2

u2C(t) (3.37)

where ζ1(t) ∈ Rn2−m2 , ζ2(t) ∈ Rm2 , and B̄1 is an m2 ×m2 nonsingular matrix. We can

find a state feedback gain matrix K2 such that Ā211 −K2Ā212 is asymptotically stable.

On the sliding surface using Utkin and Young’s method (Utkin and Young, 1978),

the system trajectory in the (ζ1(t), ζ2(t)) coordinates is expressed as

[
K2 Im2

]ζ1(t)
ζ2(t)

 = 0 (3.38)

or

s2(t) = G2η2(t) =
[
K2 Im2

]
T2η2(t) = 0 (3.39)

in the original coordinates.

The sliding mode control u2C(t) can be described as

u2C(t) = −(G2B̄2)
−1G2Ā2η2(t)− (G2B̄2)

−1(γ2 + σ2)
s2(t)

||s2(t)||
(3.40)

where

γ2 = ||G2B̄4D2||dmax (3.41)
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is required to overcome the disturbance d(t). From (3.30) and (3.40), the composite

control law u(t) = u1C(t) + u2C(t) is given by

u(t) =

 K1x1(t)

−(G2B̄2)
−1G2Ā2η2(t)− (G2B̄2)

−1(γ2 + σ2)
s2(t)
||s2(t)||

 (3.42)

or

u(t) =

 K1x1(t)

−(G2B̄2)
−1G2Ā2(−εL2x1(t) + x2(t))− (G2B̄2)

−1(γ2 + σ2)
s2(t)
||s2(t)||

 (3.43)

in the original coordinates.

3.4 Example

To illustrate the proposed method, we consider an industrially important reactor con-

sidered in Arkun and Ramakrishnan (1983). The system matrices A, B, and E are

determined by

A =



−16.11 −0.39 27.2 0 0

0.01 −16.99 0 0 12.47

15.11 0 −53.6 −16.57 71.78

−53.36 0 0 −107.2 232.11

2.27 69.1 0 0 −102.99


BT =

11.12 −3.61 −21.91 −53.6 69.1

−12.6 3.36 0 0 0


ET =

11.12 −3.61 −21.91 −53.6 69.1

−12.6 3.36 0 0 0

× 10−3

(3.44)

The eigenvalues of the matrix A are -129, -82, -74, -7.7, and -2.8. The small parameter

is chosen as ε = 0.1, which is roughly the ratio of 7.7 and 74 (Gajić et al., 2009, Chap.
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4). The initial condition is

x1(0)

x2(0)

 =



10

−10

5

7

−15


(3.45)

The external disturbance is

d(t) = 2sin(t) (3.46)

The matrices A and B are partitioned with n1 = 3 and n2 = 2.

A state feedback control law to stabilize the second subsystem is taken as

u2C(t) =
[
0.1 0

]
x2(t) (3.47)

L1 of (3.11) is found using the Newton method with O(10−10) accuracy

L1 =


−1.0096 −3.9455

−0.0322 −1.3774

3.7093 4.6965

 (3.48)

Using the change of variables of (3.8), the first subsystem is defined as

η̇1(t) =


−20.6015 26.8731 27.2000

0.1511 −7.4720 0

33.8366 −32.4526 −53.6000

 η1(t) +


32.9718

5.7356

−34.4809

 (u1C(t) +D2d(t))

(3.49)

Using a similarity transformation (Utkin and Young, 1978)

T1 =


−0.1194 0.9916 0.0508

0.7176 0.0508 0.6946

32.9718 5.7356 −34.4809

 (3.50)

which yields

ξ̇1(t)
ξ̇2(t)

 =


−12.98 −1.66 0.12

−5.55 −6.23 0.38

2305.29 682.40 −62.47


ξ1(t)
ξ2(t)

+


0

0

2308.97

u1C(t) (3.51)
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where ξ1(t) ∈ R2 and ξ2(t) ∈ R1. The sliding surface (3.15) can be chosen as

s1(t) =
[
32.1327 −30.5918 −41.3261

]
η1(t)

=
[
32.1327 −30.5918 −41.3261

]
(x1(t)− εL1x2(t))

(3.52)

and sliding mode control u1C(t) (3.17) can be described as

u1C(t) =
[
0.8943 −1.0538 −1.3379

]
η1(t)− 0.0024

s1(t)

||s1(t)||
(3.53)

Figure 3.1 and figure 3.2 present the evolution of the state variables. The chattering

phenomena are found in both figures due to the effect of the switching control law.

Figure 3.3 shows the evolution of the sliding function. We can check the reaching time

is around 75 seconds which satisfies Lemma 3.3.1 such that

63.56s < τ < 91.08s (3.54)

Figure 3.4 is the sliding mode control law for the first subsystem.
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We can also start with a state feedback control law to stabilize the first subsystem,

taken as

u1C(t) =
[
−0.9126 −0.8385 2.8105

]
x1(t) (3.55)

L2 of (3.35) is found using the Newton method with O(10−10) accuracy

L2 =

−47.8563 −30.3972 20.4838

−26.2794 −26.7637 −16.5370

 (3.56)

Using the change of variables of (3.32), the second subsystem is defined as

η̇2(t) =

−73.2583 122.9825

−27.4018 49.0868

 η2(t) +

−50.0854

−24.1194

 (u2C(t) +D2d(t)) (3.57)

Using a similarity transformation (Utkin and Young, 1978)

T2 =

 −0.4339 0.9010

−50.0854 −24.1194

 (3.58)

which yieldsζ̇1(t)
ζ̇2(t)

 =

 −11.3082 −0.0437

−8495.0827 −12.8634

ζ1(t)
ζ2(t)

+

 0

3090.2978

u2C(t) (3.59)

where ξ1(t) ∈ R1 and ξ2(t) ∈ R1. The sliding surface (3.39) can be chosen as

s2(t) =
[
−68.0232 13.1294

]
η2(t)

=
[
−68.0232 13.1294

]
(−εL2x1(t) + x2(t))

(3.60)

and sliding mode control u2C(t) (3.40) can be described as

u2C(t) =
[
−1.4961 2.4985

]
η2(t)− 0.0023

s2(t)

||s2(t)||
(3.61)

Figures 3.5 - 3.6 present the evolution of the state variables. The chattering phe-

nomena are found in both figures due to the effect of the switching control law. Figure

3.3 shows the evolution of the sliding function. We can check that the reaching time is

around 95 seconds which satisfies Lemma 3.3.1 since

82.28s < τ < 108.91s (3.62)

Figure 3.8 is the sliding mode control law for the second subsystem.
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3.5 Conclusion

We have presented composite control composed of two controls for each subsystem.

The first subsystem is asymptotically stabilized by a state feedback control law, and

then, the second system is controlled by sliding mode control law. Putting these two

control laws together produces a composite control law that makes the closed-loop

system asymptotically stable. We also consider another composite control law that

is composed of a state feedback control law, which maintains the second subsystem

stable, and a sliding mode control law, which makes the first subsystem stable. This

approach makes the system asymptotically stable as well as robust against the external

disturbances.
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Chapter 4

Continuous-Time Sliding Mode Control of Weakly

Coupled Systems: Lyapunov Approach

4.1 Introduction

In the previous chapters, Utkin and Young’s approach is used to design the sliding

surfaces. In this chapter, we design sliding surfaces on which the weakly coupled system

is asymptotically stable using the Lyapunov approach. After the weakly coupled linear

system, composed of two subsystems is decoupled, the Lyapunov functions for both

subsystems are found and synthesized into one single Lyapunov function for the whole

system

4.2 Problem Formulation

Consider a continuous-time weakly coupled system represented byẋ1(t)
ẋ2(t)

 =

A1 εA2

εA3 A4

x1(t)
x2(t)

+

B1 εB2

εB3 B4

u1(t)
u2(t)

 (4.1)

= A

x1(t)
x2(t)

+B

u1(t)
u2(t)

 (4.2)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 , n1 + n2 = n, are state variables, ui(t) ∈ Rmi , i = 1, 2,

are control inputs, and ε is a small weak coupling parameter. It is assumed that matrices

A1, A4 are constant and O(1). In addition, magnitudes of all system eigenvalues are

O(1), that is, |λj | = O(1), j = 1, 2, . . . , n, which implies that the matrices A1, A4

are nonsingular with det{A1} = O(1) and det{A4} = O(1). It is also assumed that

matrices A1 and A4 have no common eigenvalues (see Assumption 1.2.1). Furthermore,

A and B are constant matrices of appropriate dimensions. Matrix B has full rank.
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The main objective is to find a sliding surface using the Lyapunov approach with a

discontinuous control law to achieve asymptotic stability.

4.3 Result

We can design a decentralized control in the original coordinates such as

u =

u1C(t)

u2C(t)

 =

K1 0

0 K2

x1(t)
x2(t)

 = K

x1(t)
x2(t)

 (4.3)

The closed loop system is written asẋ1(t)
ẋ2(t)

 =

 J1 εJ2

εJ3 J4

x1(t)
x2(t)

 (4.4)

where J1 = A1 +B1K1, J2 = A2 +B2K2, J3 = A3 +B3K1, and J4 = A4 +B4K2. Apply

the non-singular decoupling transformation of Gajić and Shen (1989) asη1(t)
η2(t)

 =

In1 −εL

εH In2 − ε2HL

x1(t)
x2(t)

 = T

x1(t)
x2(t)

 (4.5)

(4.4) where L satisfies J1L− LJ4 + J2 − ε2LJ3L = 0 and H satisfies H(J1 − ε2LJ3)−

(J4 + ε2J3L)H + J3 = 0. The decoupled subsystems in the new coordinate are

η̇1 = (J1 − ε2LJ3)η1 = M1η1

η̇2 = (J4 + ε2J3L)η2 = M2η2

(4.6)

Both subsystems (4.6) are asymptotically stable. There exist positive definite matrices

P1 and P2 that satisfies the Lyapunov equations where Q1 and Q2 are positive definite

matrices.

P1M1 +MT
1 P1 = −Q1, Q1 > 0

P2M2 +MT
2 P2 = −Q2, Q2 > 0

(4.7)

where

M1 = J1 − ε2LJ3

M2 = J4 + ε2J3L

(4.8)

Note that Mi = f(Ki), i = 1, 2.
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With P1 and P2, the sliding surface of weakly coupled system can be described as

s(x1(t), x2(t)) =

B1 εB2

εB3 B4

T

TT

P1 0

0 P2

T

x1(t)
x2(t)

 = 0 (4.9)

Proof. Introduce a dummy control variable which stabilizes the weakly coupled system

u = K

x1(t)
x2(t)

−K
x1(t)
x2(t)

+ u (4.10)

and substitute into (4.1) to yieldẋ1(t)
ẋ2(t)

 =

 J1 εJ2

εJ3 J4

x1(t)
x2(t)

+

B1 εB2

εB3 B4

 (−K

x1(t)
x2(t)

+

u1(t)
u2(t)

) (4.11)

where  J1 εJ2

εJ3 J4

 =

A1 εA2

εA3 A4

+

B1 εB2

εB3 B4

K (4.12)

is an asymptotically stable matrix. Choose a Lyapunov function as

V (x1(t), x2(t)) =

η1(t)
η2(t)

T P1 0

0 P2

η1(t)
η2(t)

 (4.13)

=

x1(t)
x2(t)

T

TT

P1 0

0 P2

T

x1(t)
x2(t)

 (4.14)

It follows that

V̇ (x1(t), x2(t)) =

x1(t)
x2(t)

T  J1 εJ2

εJ3 J4

T

TT

P1 0

0 P2

T

x1(t)
x2(t)



+

x1(t)
x2(t)

T

TT

P1 0

0 P2

T

 J1 εJ2

εJ3 J4

x1(t)
x2(t)



+ 2
(
−K

x1(t)
x2(t)

+

u1(t)
u2(t)

)B1 εB2

εB3 B4

T

TT

P1 0

0 P2

T

x1(t)
x2(t)


(4.15)

In sliding mode (4.9), V̇ (x1(t), x2(t)) can be expressed as

V̇ (x1(t), x2(t)) = −

η1(t)
η2(t)

T Q1 0

0 Q2

η1(t)
η2(t)

 < 0 (4.16)
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We do not need actually to apply the stabilizing control (4.3) in the variable struc-

ture control law. The feedback gain K is useful for yielding a Lyapunov function only.

According to Drazenovic (1969), all controls and disturbances entering the systems

through the control channels B can be nullified in the sliding mode. By choosing the

sliding surface (4.9), asymptotic stability with the associate Lyapunov functions is re-

alized in the sliding mode instead of being enforced directly through the decentralized

continuous control (Su, 1999).

4.4 Example

The design of a chemical reactor example considered in Patnaik et al. (1980) is repre-

sented by the state space model of the form

A =



−4.02 5.12 0 0 −2.08 0 0 0 0.87

−0.35 0.99 0 0 −2.34 0 0 0 0.97

−7.91 15.41 −4.07 0 −6.45 0 0 0 2.68

−21.82 35.61 −0.34 −3.87 −17.8 0 0 0 7.39

−60.2 98.19 −7.91 0.34 −53.01 0 0 0 20.4

0 0 0 0 94 −147.2 0 53.2 0

0 0 0 0 0 94 −147.2 0 0

0 0 0 0 0 12.8 0 −31.6 0

0 0 0 0 12.8 0 0 18.8 −31.6



BT =


0.010 0.003 0.009 0.024 0.068 0 0 0 0

−0.011 −0.021 −0.059 −0.162 −0.445 0 0 0 0

−0.151 0 0 0 0 0 0 0 0


(4.17)

with

x(0)T =
[
2 1 2 1 −1 15 50 −7 −3

]
(4.18)

The system can be decoupled with n1 = 5 and n2 = 4. Using the formula for an

estimate of a small coupling parameter ε, as suggested by Shen and Gajić (1990), we
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have obtained ε = 0.47 = 94/200.4. Eigenvalues of A are -147.2, -153.12, -56.04, -

37.54, -15.55, -0.3047, -4.66, -3.30, and -3.86. The composite control (4.3) places the

eigenvalues at -153.46, -147.20, -124.94, -32.27 ± 5.86i, -9.33, -5.77 ± 3.07i, -0.14, by

letting eigenvalues of J1 as -124.44, -11.14, -9.26, -7.92, and -0.78 and eigenvalues of J4

as -152.82, -147.20, -31.60, and -25.98. The closed loop systems (4.4) is written asẋ1(t)
ẋ2(t)

 = J

x1(t)
x2(t)

 (4.19)

with

J =



125.2 −57.7 −190.8 31.8 −10.1 0 0 0 0.9

402.0 −193.0 −597.2 100.2 −28.9 0 0 0 1.0

48.2 −19.1 −74.8 8.8 −3.2 0 0 0 2.7

122.1 −54.2 −179.4 17.7 −8.1 0 0 0 7.4

364.8 −162.5 −544.0 67.1 −28.6 0 0 0 20.4

0 0 0 0 94.0 −147.2 0 53.2 0

0 0 0 0 0 94.0 −147.2 0 0

0 0 0 0 0 12.8 0 −31.6 0

0 0 0 0 12.8 0 0 18.8 −31.6


(4.20)

Applying the decoupling transformation of Gajić and Shen (1989) with the accuracy

of O(10−10) as

T =

In1 −εL

εH In2 − ε2HL

 (4.21)

with

L =



−0.0028 0 0.0450 0.2282

0.0435 0 0.7130 1.1714

−0.0200 0 −0.1993 −0.1609

−0.0285 0 −0.2629 −0.2537

−0.0837 0 −0.7570 −0.6502


(4.22)
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and

H =



17.0131 −7.6799 −25.3479 3.6489 −2.2973

84.5500 −38.1612 −125.9357 18.1831 −6.1422

−4.0636 1.8936 6.0577 −1.1417 −0.1615

−2.6498 1.3231 3.9678 −1.1197 −0.6225


(4.23)

Solving the Lyapunov equations with Q1 = I and Q2 = I renders

P1 =



5.0217 4.9624 2.0308 0.3265 −3.0537

4.9624 5.9727 1.6543 −0.2313 −4.4569

2.0308 1.6543 0.9465 0.3228 −0.7973

0.3265 −0.2313 0.3228 0.9621 2.2452

−3.0537 −4.4569 −0.7973 2.2452 9.2902



P2 =



0.0039 0.0014 0.0016 −0.0019

0.0014 0.004 0.0009 −0.0009

0.0016 0.0009 0.0165 0.0031

−0.0019 −0.0009 0.0031 0.0154



(4.24)

The sliding surface can be chosen as

s(x1(t), x2(t)) = BTTT

P1 0

0 P2

T

x1(t)
x2(t)

 = 0 (4.25)

with B from (4.17), T from (4.21), and

P1 0

0 P2

 from (4.24).

The simulation results are presented in Figures 4.1 - 4.6 in (η1(t), η2(t)) coordinates.

Figures 4.1 and 4.2 show the evolutions of state variables in the new coordinates. Figures

4.3 and 4.4 depict sliding surfaces and figures 4.5 and 4.6 show sliding mode controls

in the new coordinates.

Figures 4.7 and 4.8 show state variables in the original coordinates. Figures 4.9 and

4.10 present chattering phenomena which are small because we did not consider any

disturbances. If disturbances exist, we could handle them through the control channels

B using Drazenovic’s invariance condition.
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Figure 4.1: η1(t) state variables

0 5 10 15 20 25 30 35 40
−4

−2

0

2

4

6

8

10

12

14

t[s]

η
2
(t)

 

 
η

21

η
22

η
23

η
24

Figure 4.2: η2(t) state variables
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Figure 4.3: Sliding surfaces for the first subsystem
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Figure 4.4: Sliding surface for the second subsystem
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Figure 4.5: Sliding mode controls for the first subsystem
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Figure 4.6: Sliding mode control for the second subsystem
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Figure 4.7: x1(t) state variables
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Figure 4.8: x2(t) state variables
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Figure 4.9: Chattering of x1(t) state variables
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Figure 4.10: Chattering of x2(t) state variables
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4.5 Conclusion

In this chapter, we use the Lyapunov approach for the sliding surface design. This

approach is composed of two steps. First one is to decompose the system into two

stabilized reduced-order subsystems and the next step is to find Lyapunov functions

for both subsystems and synthesize into one single Lyapunov function for the whole

system. We do not need actually the decentralized control which is for yielding a

Lyapunov function only. Sliding mode control law, like unit control law or signum

function control law, should be found in the sliding mode.



64

Chapter 5

Conclusions and Future Work

5.1 Conclusions

The study of sliding mode control for continuous-time weakly coupled systems is firstly

introduced in this thesis. Using the decoupling transformation of weakly coupled sys-

tems, we can apply the sliding mode control to the systems. Three methods - Utkin and

Young’s sliding mode control method for each subsystem, composite control approach

composed of a state feedback control law and a sliding mode control law, and sliding

mode control using the Lyapunov approach - are presented. All three methods provide

controls that make the systems asymptotically stable and robust against parametric

uncertainties and exogenous disturbances which can deteriorate the performance of dy-

namic systems. We have demonstrated that full-order weakly coupled systems can be

successfully controlled via the sliding mode technique with the sliding mode controllers

designed on the subsystem levels.

5.2 Future Work

We can extend the results of this thesis to the systems composed of N weakly coupled

subsystems using the decoupling transformation for N weakly coupled subsystems. The

N weakly coupled systems is decoupled into N subsystems completely and each sliding

surface can be designed for each subsystem. Also, the Lyapunov approach in Chapter

4 can be extended to the nonlinear, time-varying, or delayed weakly coupled systems.

Furthermore, the sliding mode of a deterministic weakly coupled system could be de-

veloped with feedback of estimated states, and the optimal sliding Gaussian control of

the weakly coupled system could be found for stochastic systems.
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