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ABSTRACT OF THE DISSERTATION

Decentralized Online Clustering for Supporting

Autonomic Management of Distributed Systems

by ANDRES QUIROZ HERNANDEZ

Dissertation Director: Professor Manish Parashar

Distributed computational infrastructures, as well as the applications and services that

they support, are increasingly becoming an integral part of society and affecting every

aspect of life. As a result, ensuring their efficient and robust operation is critical. How-

ever, the scale and overall complexity of these systems is growing at an alarming rate

(current data centers contain tens to hundreds of thousands of computing and stor-

age devices running complex applications), making the management of these systems

extremely challenging and rapidly exceeding human capability.

The large quantities of distributed system data, in the form of user and component

interaction and status events, contain meaningful information that can be used to infer

the states of different components or of the system as a whole. Accurate and timely

knowledge of these states is essential for verifying the correctness and efficiency of the

operation of the system, as well as for discovering specific situations of interest, such as

anomalies or faults, that require the application of appropriate management actions.

Autonomic systems/applications must therefore be able to effectively process the

large amounts of distributed data and to characterize operational states in a robust,

accurate and timely manner. Although highly accurate, centralized approaches for

distributed system management are infeasible in general because of the costs of cen-

tralization in terms of infrastructure, fault tolerance, and responsiveness. Since data is
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naturally distributed and the collective computing power of networked elements (rang-

ing from sensor and device networks to supercomputer clusters and multi-organization

grids) is enough to be harnessed for value added, system-level services, online and de-

centralized approaches for monitoring, data analysis, and self-management are not only

feasible, but also quite attractive.

This work is based on the premise of realizing and applying online data analysis,

exploiting the collective computing resources of distributed systems for supporting au-

tonomic management capabilities. Specifically, we propose and develop decentralized

online clustering as a data analysis mechanism and infrastructure, evaluate its accu-

racy and performance with respect to other known clustering methods, and apply it

to the following autonomic management problems: 1) System profiling and outlier de-

tection from distributed data, 2) definition, autonomic adaptation, and application of

management policies, and 3) VM provisioning and energy management in data centers.
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Chapter 1

Introduction

1.1 Motivation

Distributed computational and information infrastructures, as well as the applications

and services they support, are increasingly becoming an integral part of society and af-

fecting every aspect of life. However, the scale and overall complexity of these systems

is growing at an even more alarming rate (current data centers contain tens to hun-

dreds of thousands of computing and storage devices running complex applications) and

their management is rapidly exceeding human ability, making autonomic approaches

essential.

An autonomic system must able to monitor and analyze system state and behavior

and to discover patterns or anomalies. Additionally, these dynamically changing states

must be evaluated against higher-level system goals or desired operation parameters,

as expressed by automated policies or by human administrators, enabling the timely

application of appropriate management actions. In order to realize this capability, au-

tonomic systems/applications must effectively process the large amounts of monitoring

data to characterize operational states in a robust, accurate and timely manner.

Although highly accurate, centralized approaches for distributed system manage-

ment are infeasible in general because of the costs of centralization in terms of infras-

tructure, fault-tolerance, and responsiveness. Since in these systems data is naturally

distributed and the collective computing power of networked elements (ranging from

sensor and device networks to supercomputer clusters and multi-organization grids) is

enough to be harnessed for value-added, system-level services, online and decentralized

approaches for monitoring, data analysis, and self-management are not only feasible,

but also quite attractive. This work is based on the premise of realizing online and

decentralized data analysis, exploiting the collective computing resources of distributed

systems, for supporting autonomic management capabilities.
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1.2 Problem Description

In a distributed system, multiple sources produce events that represent current opera-

tional, functional, and control status, behavior, requirements, etc. These events can be

produced by system components based on local information, or they can be the result

of monitoring remote components or system users. Patterns that emerge in sequences

of events are an important source of information about local and global system state,

enabling the discovery of trends, anomalies, and/or violations that point to possible

failures or other conditions of interest for the application of system management poli-

cies and control mechanisms. Often, these patterns can be recognized as clusters of

events that can be interpreted as the normal behavior of groups of similar components,

or of single components over time. Thus, analyzing monitoring events using clustering

techniques can help to characterize system behavior, and also as importantly, to find

potential deviations from normal behavior. The final goal is to be able to realize proac-

tive management, which implies being able to predict possible future system states and

situations of interest in order to respond to them to optimize efficiency and performance

and to curtail undesired behavior.

Performing clustering analysis on monitoring data in a distributed environment and

using the results of this analysis for autonomic management presents a number of chal-

lenges. Many existing self-monitoring systems, typically for web-based applications,

perform data analysis offline and often in a centralized manner [45, 18, 36, 37], produc-

ing models that can then be used for runtime self-management. The derivation of these

models often requires sophisticated processing and data mining techniques that can be

expensive to run, especially if they must be run in addition to the regular workload of

a system. Also, the types of behavior patterns that need to be detected are typically

not known a-priori and cannot be directly encoded into the self-monitoring mecha-

nism. In order to do online data analysis for autonomic management, it is important

to implement the analysis in a decentralized and in-network fashion, using existing net-

work resources and minimal extraneous information, which in turn ensures scalability,

computational tractability, and acceptable response times.
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A self-managing system must not only be able to recognize behavior patterns and

classify events accordingly, it must also be able to characterize and properly interpret

these patterns and relate them with corresponding control actions and management

policies. Therefore, a clustering mechanism used for this purpose must provide mecha-

nisms for cluster characterization and interpretation, in terms of management properties

and attributes, which will result in dynamic profiles of system behavior. These profiles

can then be used to identify types of behavior or operation, user roles, or system states

to which management policies can be associated.

Finally, because self-monitoring mechanisms are subject to the same failures that

occur in the network that they are helping to manage, the robustness of these mecha-

nisms is of great importance to ensure overall system reliability at different levels. At

the network level, the connectivity of the network must be maintained despite node

failures. Next, at the data messaging level, the loss of the events that are important

for the accuracy of clustering analysis results must be prevented. And finally, at the

application level, specific knowledge can be provided to predict possible failures and

recognize the most important data to enhance both the accuracy and efficiency of the

robustness mechanisms provided at lower levels.

1.3 Problem Statement

There is a gap that exists between offline data analysis and predictive models for runtime

system monitoring and management, and reactive online approaches based on empirical

rules and predefined operating conditions and policies. The former rely on sophisticated

data analysis techniques and are able to construct complex and accurate system models.

However, this is often at the expense of accounting for changes in operating or usage

conditions that require dynamic model reconfigurations because they incur in expensive

and centralized computation. The latter, on the other hand, are meant to effectively

handle dynamicity and keep the system within acceptable operating parameters, but

are generally not suited for supporting proactive decisions because of limited knowledge

available at the time of their design and the information that they can obtain from online

data. While both approaches, or a combination of them, may be perfectly suited for the
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management of a wide range of systems, we claim that decentralized and online data

analysis (in particular, clustering analysis) can bridge the gap that exists between the

two by extracting more information from online monitoring data in a timely manner,

enabling more proactive decision making and management for a number of distributed

applications, while taking advantage of decentralized system resources.

1.4 Research Overview

The research presented herein will develop and evaluate an autonomic distributed man-

agement framework based on the multidimensional monitoring and semantic online

analysis of system events. These events are assumed to be in the form of periodic up-

dates of behavior and operational status originating at system components and defined

in terms of known attributes. The event attributes are used to construct a multidi-

mensional space, which is then used to measure the similarity of events. Similar events

corresponding to groups of components or component behavior over time can be iden-

tified by clusters formed in this space, while isolated events will identify components

with abnormal behavior.

The basic approach for cluster detection consists of evaluating the relative density of

data elements within the space. In order to evaluate data density, the multidimensional

space is divided into regions, and the number of data elements within each region is

observed by an individual processing node. If the total number of elements in the space

is known, then a baseline density for a uniform distribution of elements can be calculated

and used to estimate an expected number of data elements per region. Clusters are

recognized within a region if the region has a relatively larger element count than this

expected value. Conversely, if the count is smaller than expected, then these data

elements may potentially be outliers. It is evident that the clustering algorithm itself

requires minimal computation at processing nodes, which makes it suitable for online

execution. We compare the proposed decentralized online clustering (DOC) algorithm

to other known clustering algorithms in terms of accuracy and performance and present

the result of this comparison along with conclusions supporting the conditions in which

the use of DOC is advantageous.
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The exchange of components’ status updates is supported by a content-based mes-

saging substrate [76], which also enables the partitioning of the multidimensional space

into regions by implementing a dynamic mapping of data elements to processing nodes.

The messaging substrate is responsible for getting the information used by the cluster-

ing analysis to the distributed processing nodes in a scalable fashion. The substrate

essentially consists of a content-based Distributed Hashtable (DHT) that uses a Peano-

Hilbert space-filling curve [75] as a locality preserving hash function. Content-based

DHTs provide an interface that allows networked nodes to be addressed by attribute-

value pairs. This means that data elements themselves can be used as addresses to send

messages to particular nodes.

The robustness of the decentralized mechanisms is dealt with at three levels. First,

the overlay network that supports the messaging substrate must guarantee the routing

of messages and maintenance of the overlay structure despite membership changes and

node failures. We leverage the self-organizing and self-healing mechanisms of overlay

implementations such as Chord [81], which routes around failures by using alternate

entries from its routing tables and periodically checks and updates the links in these

tables. At the data messaging level, we use the concept of replication chains [67]

to replicate and recover data elements to ensure their availability to the clustering

algorithm. A replication chain is a series of successive nodes in the overlay network,

with the property that if one fails, then the dynamic DHT mapping automatically maps

to the next node in the sequence. This way, nodes automatically receive and recover

elements from and for their neighbors in the chain. Finally, instead of having replication

chains of a fixed length, we use the concept of selective replication to probabilistically

replicate only those data elements that are likely to have an impact on the result of the

clustering analysis, using Bayesian probabilities and historical data.

Finally, we also explore how to use clustering results for decision-making, as a way

to close the loop of the autonomic management cycle. This is done via the dynamic

application of management policies defined in terms of profiles constructed from online

analysis. The mechanisms that are developed will be applied to different use cases,

including device network and data center resource management and usage control.
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1.4.1 Contributions

The contributions of this work are the following:

∙ A decentralized online clustering algorithm and its robust implementation based

on a distributed monitoring and messaging infrastructure.

∙ Evaluation of the clustering algorithm and the tradeoffs and conditions for its

application.

∙ A conceptual framework for the creation of system profiles from clustering results

and the definition and dynamic application of management policies.

∙ Demonstration of applicability and results from actual use cases and system data.

∙ Application framework for the deployment of the self-monitoring, clustering, and

dynamic policy generation for autonomic distributed system management.

1.5 Impact of the Research

The distributed computational infrastructures and applications targeted in this pro-

posal are a growing component of societys IT infrastructure, affecting every aspect of

life, including services related to health, banking, commerce, defense, education and

entertainment. Automated management strategies to increase efficiencies and reduce

these costs and impacts are urgently needed. This project aims to develop a monitoring

and management approach that can effectively support these strategies. In addition to

this, our work is guided by input and requirements given by industry partners through

the Center for Autonomic Computing as part of the NSF I/UCRC program. We ex-

pect that the experience, products, and results of this research will contribute to the

state-of-the-art in the development of products and services of these industry partners,

and to the academic community in the fields of autonomic computing and distributed

systems.
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1.6 Dissertation Overview

The rest of this document is organized as follows. Chapter 2 discusses related work

in the different areas touched on by this research, including autonomic management

models and clustering algorithms. Chapter 3 then gives details on the architecture

and robustness mechanisms used as the implementation infrastructure of our approach.

Chapter 4 describes the decentralized online clustering (DOC) algorithm, discusses

specific considerations for its application, and presents the results of a comparative

analysis meant to demonstrate the accuracy and performance of the approach with

respect to centralized clustering approaches. Finally, Chapter 6 summarizes the main

conclusions of this research.
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Chapter 2

Background: Autonomic Management and Data Analysis

There are two fundamental approaches for autonomic management that have been

explored in the literature: top-down and bottom-up. The bottom-up approach focuses

on the emergence of coordinated global behaviors based mainly on local interactions

of relatively simple components, with little or no explicit direction or control. By

contrast, the top-down approach considers explicit control elements that regulate the

behavior of system components and that interact with each other, possibly through a

control hierarchy, to produce the coordinated behavior that characterizes an autonomic

system. Our research falls into the category of top-down approaches because it provides

explicit mechanisms for monitoring and analysis of system data for the support of

control policies and management actions.

The most general and established vision for top-down autonomic management is the

MAPE control model [43]. We therefore describe the main aspects of this model and

discuss different approaches for autonomic management that are based on it and that

provide the context for our approach. As mentioned above, our main focus within the

phases of the model is monitoring and data analysis (particularly, clustering analysis),

as they support decision making, policies, and policy-based management.

2.1 MAPE: Autonomic Management Loop

The vision of Autonomic Computing, as proposed in [43], is of systems composed of

elements that monitor their own behavior (and possibly that of other elements), an-

alyze and evaluate this behavior against local and system goals, create appropriate

plans of action intended to make local and global behavior match or approximate these

goals, and execute these plans via available system actuators and component interac-

tions. This view of autonomic components or elements is what is commonly referred

to as the MAPE (Monitor, Analyze, Plan, Execute) control model, and is illustrated in
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Figure 2.1: MAPE control loop

Figure 2.1.

Autonomic elements and autonomic systems are expected to exhibit certain auto-

nomic behaviors or self-* behaviors [90], listed below:

∙ Self-configuration: Seamless integration of new components into a system, with

automatic setting of operating parameters and discovery and establishment of

communication between interacting components. Autonomic systems self-configure

by means of a process called goal-driven self-assembly [19], in which elements are

given a description of their task and the types of components that they require in

order to complete it. Elements expose the services that they provide so that they

can be discovered by those that require these services, and assemble in such a way

that service requestors can have their requirements fulfilled by the appropriate

service providers.

∙ Self-optimization: Continuous improvement of performance and efficiency via re-

sponse to context, environment conditions, current interactions, etc. Because

self-optimization at a system level is related to, but not necessarily guaranteed by

self-optimization at the component level, special control policies or mechanisms

of coordination and/or negotiation are required for achieving optimality at the

system level.

∙ Self-healing : Automatic detection, diagnosis, and repair of localized software and
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hardware problems, and system-level resilience to component failures or misbe-

havior. A self-healing component/system must be able to monitor its support-

ing/constituent components to determine if they are performing within their re-

quired parameters. Multiple component, system and application dependent mech-

anisms exist for recovering when components fail to perform as required, including

proactive reconfiguration, replacement, load migration/redistribution, etc.

∙ Self-protection: Automatic defense against malicious attacks or cascading fail-

ures. Self-protection implies early (proactive) warning to anticipate and prevent

systemwide failures. Security and usage control policies [62] are important ele-

ments for self-protection, since they define the parameters necessary to discover

and associate the individual and, more importantly, correlated collective behav-

iors that precede these types of failures. Of course, these policies also specify the

mechanisms to counter these behaviors, isolate malfunctioning components, and

protect critical components and data.

In the following sections, we give details and describe existing work on the monitor-

ing and analysis stages of the MAPE model, which are those that are relevant to this

work.

2.1.1 Monitoring and Data Analysis

“Monitoring will be an essential feature of autonomic elements. Elements will contin-

ually monitor themselves to ensure that they are meeting their own objectives, and

they will log this information to serve as the basis for adaptation, self-optimization,

and reconfiguration. When coupled with event correlation and other forms of analysis,

monitoring will be important in supporting problem determination and recovery when

a fault is found or suspected.” [43]

The distinction between monitoring and analysis in MAPE systems is sometimes

fuzzy and there is no generally accepted definition of either. Monitoring is usually

used to refer to the measurement and distribution/recording of status data, although

it sometimes also encompasses some pre-determined processing of this data. This is
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processing using functions, rules, or models that do not change based on the data. Data

analysis, on the other hand, takes place when processing of the data is done in order to

create or adapt models, rules, or descriptions of the system that can subsequently be

used for monitoring and decision making.

Monitoring technologies, tools, and mechanisms

Monitoring depends both on the sensors (i.e. instrumentation) used to obtain status

measurements from managed elements and on the media used to communicate the

monitoring information to the elements that will process it. In autonomic computing

literature, it is generally assumed that physical sensors and software instrumentation

can be provided to obtain the necessary data. Media for monitoring includes log files,

event-based messaging platforms, and query-based API’s.

Event-based messaging systems, such as publish-subscribe systems, are common

platforms for monitoring and are the ones assumed for this work. They typically en-

sure efficient and scalable delivery of messages in a loosely coupled system, such as that

of autonomic components or agents. Common production publish-subscribe platforms

include the Enterprise System Bus (ESB) architecture [57, 77]. Grid and wide-area

network messaging and monitoring systems include the Globus Toolkit web service no-

tification libraries [54, 31] and specialized grid monitoring tools for performance and

availability [44, 58]. Also widely used are content-based publish-subscribe P2P net-

works. Distributed Hash Table (DHT) functionality is usually built using some sort of

structured overlay network, the most popular of which are Chord [81], Pastry [74], and

CAN [71], because they provide scalability, search guarantees and bounds on messag-

ing within the network, as well as some degree of self-management and fault tolerance

with respect to the addition/removal of nodes. Reliable message delivery in these sys-

tems has also been addressed [61]. In Chapter 3, we present the particular robust,

content-based DHT on which our work is based.

Systems of autonomous agents are often used for monitoring and typically rely on

a messaging infrastructure such as publish-subscribe [85]. Agents are software entities

that run continuously and independently and are able to respond to and effect changes
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in their environment [12]. Examples of autonomic systems that use agents for event

aggregation and filtering, and some event correlation, are [7, 85]. In [65], more sophis-

ticated analysis engines are plugged in as agents in a monitoring platform for intrusion

detection.

One of the most critical aspects of monitoring, especially of large scale distributed

systems, is dealing with the myriad components and large amounts of data efficiently

and without excessive consumption of resources that could otherwise be used for func-

tional tasks [43]. There are many alternatives in the literature that have been proposed

to address this issue. Solutions have been proposed to keep track of the many different

components and resources to be able to monitor them as they join, become active, and

leave the system [24]. Because these registration-based solutions have limited scalabil-

ity and flexibility, decoupled, content-based communication, such as that offered by the

publish-subscribe systems cited above, is often used so that keeping explicit track of

components is not necessary.

With respect to data management, one option is to use monitoring logs as buffers

that can be analyzed offline without putting too much burden on the system. For ex-

ample, [64, 33] propose technique for log analysis and summarization, and many of the

analysis approaches mentioned in the next section rely on offline data analysis from

application logs. Applying statistic sampling techniques is also a viable option for re-

ducing the amount of monitoring data. Well known design of experiment [10] sampling

techniques, including random sampling [13] are useful for systems with unknown config-

urations or data distributions. More sophisticated sampling and modeling techniques

like probabilistic collocation [89, 87, 50], in which the importance or interest distri-

bution of data is updated over time and used to sample more interesting/important

data with higher probability. Other approaches for selective monitoring include [94],

which suppresses monitoring updates from distributed nodes based on the correlation

of values from individual nodes, as well as from groups of nodes.
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Data Analysis and Modeling

With such a broad topic, in this section we can only hope to briefly mention some

of the analysis and modeling approaches, focusing on their use in existing autonomic

management solutions. Regardless of the method used, the basic approach is to use

data analysis to build a full or partial model of the monitored component or system,

which characterizes normal system behavior and is then used to drive management

actions (detect anomalies, predict system response, etc.).

One of the most common forms of data analysis and model types are statistical re-

gression and data correlation. Simple or domain-specific correlations and linear regres-

sive models can be constructed and applied to online data. Examples of this are com-

mon in intrusion detection systems [63] and workload prediction [93]. Auto-regressive

and moving average models like Box-Jenkins ARIMA or ARMAX [11] are also used

for workload modeling and prediction [91, 17]. Kusic et al. [48] proposed a lookahead

control algorithm and used it to identify optimal allocations of computing resources

to multiple client QoS classes under correlated job arrivals modeled by ARIMA pro-

cesses and service demand given by an exponentially weighted moving average filter.

Other related models like quadratic response surface models (QRSM) [56, 68] are useful

when the data varies significantly in terms of long-range correlations in the signals and

non-linearity. Unlike linear regressive models, these models require larger data sample

sizes.

An important application of correlation models can be found in [37], for normal

application component interactions based on user requests, by measuring the intensities

of data flows between components and modeling invariant relationships between input

and output flows at each component. In [38], real-time system monitoring data is used to

adaptively trigger sets of rules for generating alerts (which are the result of management

policies). The approach described uses system invariants (static functional relationships

between data flows of dependent attributes) to correlate multiple measured attributes

and determine the probability of false positives in the triggering of management rules.

This is done by determining if the pattern of triggered rules indeed corresponds to the
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invariant relationships.

Queuing and time-series models have been heavily employed in web-server and data

center management. Their application requires modeling component service and arrival

times and the input-output dependencies of these components, which are found empir-

ically or using simulations with workload traces or logs. Chandra et al. [17] modeled

resources using a time domain queueing model to capture the transient behavior of

application workloads, and used prediction algorithms to estimate future application

workload parameters based on online measurements. Urgaonkar et al. [86] describe a

dynamic provisioning approach for multi-tier Internet applications that considers the

dynamic assignment of a number of servers to the different application tiers, based on

short and long term workload characteristics.

Finite state automata are also constructed and used for input classification and

anomaly detection. Automata constructed from normal user request traces in web ap-

plications are used in [36] to recognize abnormal interactions of application components

that are the result of or lead to faults. Process Query Systems [20, 72] are used for

recognizing known behavior patterns or processes, for which a state model is known, by

separating out interwoven event streams. These events are assumed to correspond to

the processes’ event transitions, so that applying the state models in parallel as com-

peting hypotheses, the generating processes can be discovered. Also used for a similar

purpose are Markov chains [70] and neural networks [78]. All of these methods require

training with labeled (pre-classified) data.

2.1.2 Online Data Analysis Approach

One thing to note about the majority of the analysis methods of the previous section is

that they depend on offline training to develop the respective models used for runtime

management. As stated by our problem statement, there is a gap that exists between

offline data analysis and predictive models for runtime system monitoring and manage-

ment, and reactive online approaches based on empirical rules and predefined operating

conditions and policies. In order to account for changes in operating or usage conditions
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that require dynamic model reconfigurations and still be able to effectively handle dy-

namicity and keep the system within acceptable operating parameters, solutions need

to extract as much information as possible from online monitoring data in a timely

manner. This way, enough information is available for proactive decision making, and

it can evolve dynamically with the evolution of the system.

Because of its criticality and near real-time requirements, network security and

specifically intrusion detection are areas where online data analysis plays a crucial role.

Many of the issues that we have identified as motivations of this work have come up

in the context of intrusion detection. The authors of [7, 47] identify the limitations of

centralized analysis and attempt to reduce the data sent to a centralized node by using

hierarchical event distribution in an agent-based framework. The probabilistic approach

for anomaly detection proposed in [15] also has similarities with the present work, in

that it examines events in time windows and looks for patterns. In the case of [15],

the patterns are statistical autocorrelations in the data for the different dimensions

being examined. Outliers are detected by values that differ by statistical average by

a significant number of standard deviations. Our approach is similar in the search of

patterns, but it applies a multidimensional and unsupervised analysis to the data (see

Section 2.2). Gossip based intrusion and attack detection [29, 92] is also an important

application of online data analysis. It is a very efficient analysis mechanism because

every node acts solely on local information and information from its nearest neighbors.

Given the right topology, information about an attack can propagate very quickly and

efficiently to support well-informed decisions.

Clustering has also been applied to the problem of intrusion detection. Both [66,

40] use clustering to analyze offline data to train an online anomaly detector and to

classify intrusion alarm types, respectively. In [88] a fuzzy clustering algorithm based

on the concept of nearest neighbor connectivity is applied to intrusion detection. The

complexity of this algorithm is in the same order as that of DBSCAN, introduced in

Section 2.2.3 and analyzed in Section 4.2. Similarly, 𝑦-means clustering, which is based

on 𝑘-means, was designed specifically for intrusion detection. It overcomes some of the

drawbacks of 𝑘-means like its dependence on the value 𝑘, but like 𝑘-means it cannot
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generally detect clusters of arbitrary shape.

2.1.3 Policies and Policy-based Management

Within the conceptual framework of the MAPE control model, policies are representa-

tions, in a standard external form, of desired behaviors or constraints on behavior [90].

Policies can be considered to be incorporated into the knowledge element of autonomic

managers (see Figure 2.1) and affect (and can be affected by) the different stages of

the control loop. Specifically, they enable an autonomic element or system to translate

high-level, broadly scoped directives into specific actions. In a seminal paper on policy-

based management for distributed systems, Sloman [79] described policies as pieces of

information that influence the behavior of objects within a system, and, from a design

point of view, are separated from managers that enforce them so that they can be

changed without changing general enforcement mechanisms.

Although there is no single classification that distinguishes different types of policies,

it is generally recognized that policies are expressed at different levels. According to [90],

these levels are:

∙ Action policies: Policies that are usually expressed as conditional rules associated

with specific threshold parameters and triggering specific low-level operations.

∙ Goal policies: Policies that describe conditions to be attained without specifying

how to attain them. They allow giving direction to an element without requiring

knowledge of the element’s inner workings.

∙ Utility policies: Policies that specify the relative desirability of alternative states,

automatically determining the most valuable goal in any given state.

One of the most important issues in policy-based management is policy refinement,

from utility and goal policies to low-level action policies that can be applied to individual

system components based on system state. In [53], the concept of policy hierarchies

was introduced to formalize the kinds of refinement among different types of policies.

At the time, it was stated that no automatic method for goal refinement (such as going
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from “Protect from data loss” to “Backup weekly”) was possible because it depended

on the real-world judgment of the manager. However, with the emergence of semantic

ontologies and knowledge-based reasoning, as in [46], such automatic refinement can

be realized, at least within specific contexts. In [82], Strassner describes a general

conceptual model for managing context for policy-based systems, so that appropriate

management policies at different levels can be selected.

Context is described as a collection of measured or inferred knowledge that describes

system state or environment. However, aside from policy selection, dynamic context

should also determine specific policy parameters, which are usually expressed as static

thresholds or constraints on the policies’ subjects. In fact, a recently proposed research

agenda for distributed policy management [21] identified the re-computation of action

policies (constraint thresholds) in reaction to changes in system state as a problem that

is yet to be satisfactorily addressed.

The use of utility and utility functions for autonomic management, as in [42]

and [23], is, in fact, complementary to work on policies, since utility functions can

implicitly be considered to define utility policies. In other words, the attributes that

constitute the space within which high-level policies are defined is directly related to

utility (making the constraints set by policies at this level more stable). Thus, tech-

niques for utility function management and elicitation can directly apply to policies in

this space.

2.1.4 This Work within the MAPE model

The decentralized online clustering and dynamic policy framework that is the product

of this research is not in itself a fully autonomic system, although it contains individual

elements that are autonomic. For example, the messaging infrastructure described in

Section 3.1 exhibits the autonomic properties of self-configuration and self-healing. Ad-

ditionally, the robustness mechanisms designed for the clustering system and described

in Section 3.2, provide self-protection properties.

The framework itself can be thought of as the monitoring and analysis components

of a distributed autonomic manager of elements that are themselves distributed. The
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distributed elements being managed may themselves be autonomic elements. In fact, we

assume that the distributed elements are producing monitoring data, either by means

of an autonomic manager or by way of an external monitoring agent (whichever is the

case, is not relevant).

Note that the execution stage of the MAPE loop is supported to some extent by

the messaging infrastructure, which matches events to policies to apply the actions that

they define (see Section 5.1). However, the planning stage is not explicitly supported

by our work and depends on pre-defined plans implicit in the definition of policies.

High-level autonomic planning is outside the scope of our work.

2.2 Clustering Analysis

Clustering is the unsupervised classification of data elements (observations, data items,

or feature vectors) into groups (clusters) [35, 34]. In general, clusters are identified

based on some definition of similarity, such that the elements in a cluster are most

similar to each other, whereas elements in different clusters are not. Unsupervised

classification means that group labels or descriptors are not provided beforehand, so

that they must be discovered solely from the input data.

Different approaches to clustering usually share the following basic steps [34]: 1)

Element representation; 2) Definition of a element proximity (similarity) measure; 3)

Clustering or grouping; 4) data abstraction (if needed); and 5) assessment of output (if

needed). Steps (1) and (5) are mainly application dependent and will not be discussed

here, although there are structural and statistical approaches for (5) that can be found

in [35]. For step (4) clustering algorithms commonly use centroids or other represen-

tative points to describe clusters. Those abstractions used in this work are described

in Section 4.1.1. The following subsection will enumerate different classes of clustering

based on (2) and (3), and relevant work for those that are most related to this research.
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2.2.1 Proximity Measures

Distance Measures

A distance measure (a specialization of a proximity measure) is a metric (or quasi-

metric) on the feature space used to quantify the similarity of data elements, where

similarity is inversely proportional to distance. Common distance measures include:

∙ Euclidean or generalized (Minkowski) distance: The Euclidean distance of two

data element vectors 𝑥𝑖 and 𝑥𝑗 with 𝑑 dimensions (attributes) is given by:

𝑑2(𝑥𝑖, 𝑥𝑗) =

(
𝑑∑

𝑘=1

(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

)1/2

which is a special case of the generalized distance:

𝑑𝑝(𝑥𝑖, 𝑥𝑗) =

(
𝑑∑

𝑘=1

∣𝑥𝑖𝑘 − 𝑥𝑗𝑘∣𝑝
)1/𝑝

This distance is useful for data sets with compact or isolated clusters [52], but

differences in scale among dimensions can affect its results, in a way that the

largest scale attribute tends to dominate the others. This problem is usually

handled by normalization of the data.

∙ Mahalanobis distance: Given by:

𝑑𝑀 (𝑥𝑖, 𝑥𝑗) = (𝑥𝑖 − 𝑥𝑗)𝐶
−1(𝑥𝑖 − 𝑥𝑗)

𝑇

where 𝐶 is the covarience matrix of the data elements. It is useful when the data

has linear correlations that can affect the use of other distance metrics.

∙ String distances: Used in syntactic clustering and include Hamming distance, edit

distance, and other elaborate document comparison distances based on common

terms [6]

∙ Graph distances: Clustering on graphs is usually done by assessing the similarity

of data elements based on some notion of connectedness, either by measuring the

number of links (edges) between groups of nodes or by measuring the distance in

the length of paths between nodes.
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Density Measures

Density measures can be considered a special type of distance measures that take into

account the effect of surrounding or neighboring data elements on distance. Density

measures are usually calculated taking into account the number of elements in a unit

space, and since they are not necessarily calculated as pairwise distances, they are

employed by different clustering algorithms than those defined for distance metrics.

However, some distance metrics exist that take density into account, such as the mutual

neighbor distance (𝑚𝑛𝑑) [30]:

𝑚𝑛𝑑(𝑥𝑖, 𝑥𝑗) = 𝑛𝑛(𝑥𝑖, 𝑥𝑗) + 𝑛𝑛(𝑥𝑗 , 𝑥𝑖)

where 𝑛𝑛(𝑎, 𝑏) is the neighbor number of 𝑏 with respect to 𝑎 (i.e. the index of 𝑏 in the

nearest neighbor list of 𝑎). This definition effectively computes distances with respect

to density because an element in a dense cluster has many more nearest neighbors and

is thus farther away from an arbitrary element than an element outside a cluster. The

nearest neighbor distances are expensive to compute, however, and are not commonly

used for density-based clustering.

Density-based clustering algorithms have some advantanges with respect to those

that are distance-based, especially when it is necessary to identify outliers (singular

data elements or noise) and clusters of arbitrary size and shape. This is because

distance-based algorithms usually produce a complete partition of the data into convex

sets. Furthermore, these algorithms cannot identify clusters of arbitrary (non-convex)

shape [26].

Other measures

Particular applications may have specialized proximity measures that exploit domain

information. In general, similarity can be defined as:

𝑑(𝑥𝑖, 𝑥𝑗) = 𝑓(𝑥𝑖, 𝑥𝑗 ,C )

where C is a set of domain-specific concepts. For example, in Figure 2.2, the distance
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Figure 2.2: Clustering example that requires domain-specific concepts to define distance
(Figure from [34])

between points A and B should be greater than the distance between points B and C,

given the concepts of the shapes to which the points belong.

2.2.2 Clustering Approaches

Given a similarity measure, clustering techniques can be classified according to the

following criteria:

∙ Partitions: A clustering approach is hierarchical if it produces a nested series

of partitions, and partitional if it produces only one. A hierarchical approach is

usually represented by a dendogram (see Figure 2.3), which is a tree with the root

representing a single cluster of all patterns, the leaves representing each individ-

ual data element, and each level showing an intermediate partition of the data

elements into clusters according to their distribution. The clustering algorithms

considered in this work are all partitional.

∙ Sequence: A clustering approach is agglomerative if it begins with each data ele-

ment in a single cluster and successively merges clusters until a stopping criterion

is reached. It is divisive if it begins with a single cluster of all data elements and
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then divides existing clusters. Agglomerative approaches are considered in this

work.

∙ Features used : A clustering approach is monothetic if it partitions data elements

based on individual features (dimensions) separately, and it is polythetic if it makes

use of them all simultaneously, as in the computation of a pairwise distance. The

approaches considered in this work are polythetic.

∙ Cluster membership: A clustering approach is hard or exclusive if it classifies

every data element with a single cluster label, and it is fuzzy if it gives each

data element a degree of membership in each cluster. Hard clustering is a special

case of fuzzy clustering, where the membership equals zero for each data element

for all but one cluster label. The approaches considered in this work are hard,

although we consider a metric from fuzzy clustering in the comparative analysis

of clustering algorithms of Section 4.2.

∙ Progression: A clustering approach is incremental if the results of clustering can

be updated as new data elements are considered without examining previous

elements. In a non-incremental approach, a non-empty subset of previous data

elements must be reexamined in order to produce new results. Please see the

algorithm comparison in Section 4.1.2 for a discussion on the differences in terms

of the progression of the algorithms considered herein.

2.2.3 Clustering Algorithms

Because of the nature and requirements of self monitoring, this work deals with par-

titional, agglomerative, and exclusive clustering. This classification includes both dis-

tance and density based algorithms. Among distance-based algorithms, probably the

most widely employed is k -means clustering. Traditional k -means is an iterative process

that calculates the coordinates of k centroids (elements with minimum average distance

to the data elements in their cluster) for a number of data elements. Both k and an

initial estimate for the centroids must be given as input, and the algorithm successively
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Figure 2.3: Example of a dendogram resulting from a hierarchical clustering (Figure
from [34])

associates data elements to their nearest centroid and recalculates centroids until they

do not change significantly from one iteration to the next.

A basic algorithm for density-based clustering is presented in [35]. These algortihms

identify clusters based on comparing the densities (number of elements per unit space)

around the elements in the data set. We now describe in detail two density-based

algorithms that are used for comparison with our proposed algorithm in Section 4.2.

DBSCAN

DBSCAN [26] was designed for data-mining in large databases and uses the concepts

of density-reachability and of core and border points to very effectively identify clusters

of arbitrary size and shape. Basically, the DBSCAN algorithm takes two parameters:

a distance value, called EPS, which determines a region around a point, (data element)

called an EPS-neighborhood, and an integer value MinPoints that indicates a minimum

number of points per region. Together, these two parameters define a density threshold

to identify the points that belong to a cluster. A point that contains at least MinPoints

within its EPS-neighborhood is called a core point and is automatically assumed to be

part of a cluster. A border point is a point that does not satisfy the density threshold

(core point condition), but that is within the EPS-neighborhood of a core point. A clus-

ter is a maximal set of points obtained by finding all points that are density-reachable
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from a starting core point (i.e. that are within the EPS-neighborhood of that point or

within that of a core point that is density-reachable from it). Any point that cannot be

found to be in a cluster in this way is considered noise. Although there are more recent

algorithms that improve on DBSCAN for particular types of data, such as 2D data [32],

or data distributions [41], DBSCAN continues to be one of the most prevalent general-

purpose density-based clustering algorithms in the literature, making it well-suited as

a benchmark for accuracy.

Clique

The Clique [4] algorithm divides a multidimensional space into regions of a given size

and determines if each region (i.e. the data elements contained therein) is part of a

cluster. This is the case if the percentage of elements within the region relative to the

total number of elements being clustered is greater than a given minimum proportion

of elements for each region (density threshold). A cluster is a maximal set of adjacent

regions that exceed the density threshold.

As described in [4], Clique can be considered a monothetic algorithm, because it

clusters on different dimensions separately to find the subset of dimensions that yields

the best clustering result. However, in this work, we ignore this feature of the Clique

algorithm and focus solely on the clustering principle explained above.

2.2.4 Distributed Clustering

Distributed algorithms for k -means have been devised [8, 22]. These procedures parti-

tion data elements uniformly among processing nodes, each of which runs the k -means

procedure on their subset of elements. Nodes then repeatedly exchange centroids with

neighbors and rerun the algorithm until a consensus is reached. The rate of convergence,

which determines the number of iterations and thus the execution time of the analysis,

depends on several factors, including the number of nodes and the actual distribution

of the data. If the number of iterations required is large, then the process will be slow,

considering online analysis.

An application of DBSCAN for a P2P system is presented in [49]. This is similar to
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the present work in that it divides data among processing nodes locally, so that nodes

process data elements in subregions of the multidimensional space. However, there every

node runs the DBSCAN algorithm locally, which is more expensive computationally

than the approach presented here. Our approach is based mostly on the Clique method,

as presented in [4], and is, to our knowledge, the only distributed application of this

kind of clustering algorithm.

The work in [59] shows an application of clustering in a distributed system, namely

a large multi-agent system, which is based on measuring graph connectivity. In this

type of system, agents need to form groups with other agents of similar characteris-

tics. Agents are assumed to be connected initially to an arbitrary small number of

other agents, and clustering is done by successively creating links with better matches

provided by the views of agents’ neighbors and dropping links between poor matches.

The mechanism is very suitable for a multi-agent environment in which there is no pre-

existing organization between agents. In contrast, in this work, we assume an existing

system or virtual organization in which nodes are connected in a well-known, structured

(albeit dynamic) way, and exploit this organization to transfer data between nodes.

2.2.5 Stream Clustering

There is also work on the problem of online clustering, dealing with clustering data

streams, which is the case for monitoring. This work deals mostly with the evolution

of cluster information and the summarization of cluster data over time. Because of

this, it can be considered as an orthogonal and complementary issue to the actual clus-

tering algorithm employed, although existing approaches are often tied to a particular

clustering algorithm.

In the area of machine vision, the work in [2] explores the topic of stream clustering,

with the purpose of tracking the movement of a known set of clusters (perceived objects)

as they move in the field of vision. This work is limited because it does not consider

the addition/removal of clusters over time. The work in [3] describes a framework for

clustering evolving data streams in general, based on the concept of microclusters, which

are evolving snapshots of the data stream found using large numbers of 𝑘 in runs of the
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𝑘-means algorithm. To obtain macro results for specific time windows, the microclusters

are merged using the standard 𝑘-means for a given 𝑘, which, like regular 𝑘-means, limits

the approach to instances where 𝑘 is known. In [16], the microclustering-based approach

is extended by replacing the use of 𝑘-means with a variation of DBSCAN. Because of

the complexity of DBSCAN, only the identification of microclusters is done online. The

final clustering result is found using an offline process that merges the microclusters.

The windowing approaches used by the preceding projects, such as keeping data

elements based on a weight that decreases over time, can be exploited for our frame-

work for profile maintenance and characterization. Also applicable are the approaches

described in [9], which is a survey on the temporal evolution of patterns in a generic

sense. The approaches described therein are based on incremental mining and on the

detection of interesting changes using learning.
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Chapter 3

Infrastructure Support for Data Distribution

This chapter gives details about the different technologies and implementation mecha-

nisms that support the autonomic data analysis and management framework developed

in the rest of this document. First, we describe the content-based P2P communication

platform that will be used to efficiently distribute events to the appropriate nodes for

analysis (Chapter 4) and policy application (Chapter 5). Next, we also describe and

analyze platform and application level mechanisms to ensure the robustness of the

proposed framework to random and malicious failures and data loss.

3.1 The Meteor Framework

Meteor [39] is a content-based communication platform for peer-to-peer systems based

on a rendezvous messaging model [80]. The Meteor framework is composed of the

Meteor service itself and a content-based routing infrastructure built on a structured

peer-to-peer overlay. Figure 3.1 shows the framework architecture and each of the

component technologies, described below.

Meteor
Communication Service

Squid
Content-based Routing

Chord
Overlay Network

Physical Network

Figure 3.1: The Meteor framework
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3.1.1 Squid: Content-based Routing Engine

Squid [76] implements a dynamic mapping between a multidimensional attribute space

and a dynamic set of nodes. It is built as a distributed system on top of the indexed

peers, which are organized using the Chord [81] overlay network. Its key innovation

is a dimension reducing indexing scheme and routing mechanism that effectively maps

descriptors in a multidimensional attribute space to physical nodes in the overlay net-

work. Squid dynamically divides the multidimensional space among the distributed

nodes, so that disjoint continuous subspaces of the multidimensional space are assigned

to each participating node. Squid guarantees that all existing nodes to which a given

descriptor corresponds can be reached with bounded costs in terms of the number of

messages and the number of nodes involved.

As stated, the key of Squid’s functionality is the indexing scheme that enables it

to preserve locality while mapping data points to the overlay’s one-dimensional index

space, so that points that are close in the multidimensional space will be close in the

index space. This enables Squid to efficiently handle complex content-based descriptors

with partial keywords, wildcards, and ranges, as these queries map to a reduced number

of nodes.

The mapping of attribute descriptors to the index space, shown in Figure 3.2 is

accomplished by using a locality preserving mapping called a Hilbert Space Filling

Curve (SFC) [75]. An SFC is a continuous, recursively generated mapping from a d-

dimensional space to a one-dimensional space. In the figure, the Hilbert SFC traverses

a two-dimensional attribute space used to index some computation resource with regard

to bandwidth and storage (Figure 3.2 (a)). The values of these attributes for a particular

resource correspond to a coordinate in this two-dimensional space, and, consequently,

to a point on the SFC (Figure 3.2 (b)). The dimension of the SFC maps to Chord’s

m-bit index space, so that this point corresponds to a Chord index (Figure 3.2 (c)).

Nodes in the Chord overlay have identifiers in this same index space, assigned to

them randomly upon joining, and each node is responsible for the indices between its

predecessor (the node with the immediately preceding id) and itself. Chord provides a
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Figure 3.2: Mapping from a multidimensional attribute space to a node in the overlay
network

lookup operation by which the node responsible for a given index (its successor) can be

determined. Beside predecessor and successor links, Chord nodes maintain strategically

chosen references, in a structure called a finger table, of other nodes in the ring, so that

lookup operations can be resolved in 𝑂(log 𝑛) number of messages (hops), where 𝑛 is

the number of nodes in the system.

Notice that, because of the locality preserving quality of the SFC, data points that

are close (in this case, lexicographically close) in the multidimensional attribute space

will likely be mapped to indices that are local in the one-dimensional index space.

Because of this, close indices will likely be mapped to nodes that are close in the overlay,

or even to the same node. Figure 3.3 illustrates the search process using complex queries

(e.g. ranges and wildcards). As Figure 3.3 (a) shows, these queries are translated into

a collection of segments (called clusters) in the one-dimensional space. The appropriate

nodes are contacted using the lookup mechanism provided by the overlay.

The Squid decentralized routing engine is optimized to distribute the index resolu-

tion at multiple nodes in the system, ideally the nodes to which the complex descriptor

corresponds, minimizing the communication and computational costs. The optimiza-

tion takes advantage of the recursive nature of the SFC-based mapping scheme and

generates the minimum number of index clusters for each query, such that all the cor-

responding nodes are identified. Details about this optimization can be found in [76].
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queries (*, 4) and (4-7, 0-3); (b) the clusters defined by query (*, 4) are stored at nodes
33 and 47, and the cluster defined by the range query (4-7, 0-3) is stored at nodes 51
and 0.

3.1.2 Associative Rendezvous Communication Service

The Meteor communication service is a kind of DHT based on associative rendezvous,

a paradigm for content-based decoupled interactions [39]. The nodes that implement

the service function act as rendezvous points (RPs), which, like in typical rendezvous-

based communication [27], serve as meeting places that link communicating nodes.

Associative rendezvous simply means that the choice of particular RPs by a node at

some point in time, and thus the set of nodes with which that node will interact at that

time, is transparently and dynamically determined based on its interests, expressed as

a content-based profile. In other words, nodes are dynamically associated with each

other via RPs based on common profiles.

Instead of a DHT put/get interface, Meteor exposes a single symmetric post prim-

itive, which accepts message triples of the form (header, action, data). An entity that

wishes to communicate through Meteor will invoke the post primitive on a Meteor

node, specifying in the header its profile as a set of attribute values, ranges, or wild-

cards, an appropriate action defined as a Meteor reactive behavior (see below), and a

data payload. The header also contains credentials and other information. A Meteor

node runs on top of a Squid node, and, correspondingly, is responsible for a portion of

the multidimensional attribute space from which profiles are drawn. The Meteor node

uses Squid’s routing engine to deliver a message to corresponding RPs based on the
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post(<p1, *>, notify_data(C2) )

post (<p1, p2>, notify_interest(C1))

notify(C1)

post (<p1, p2>, store, data)

notify(C2, data)
C1

C2

C1

C2

post (<p1, p2>, delete_data(C1))

(1)

(3)

C1

C1

C2
C2

(a) (b)

(c)
(d)

(2)

(4)

(5)

retrieve(C2, data)(7)

(8)

post(<p1, *>, retrieve(C2))

post(<p1, *>,  delete_interest(C2))

(6)

(9)

AR: Associative Rendezvous

ARAR

AR
AR

Figure 3.4: An example illustrating Meteor’s associative rendezvous and reactive be-
haviors

profile included in the message header. Squid will ensure that the message is delivered

to the RP(s) responsible for the given profile, as described in the previous section.

Meteor’s reactive behaviors define the way that a RP handles the messages that it

receives via the routing mechanism, differentiating the results obtained with different

calls to the post primitive. The Meteor service has the following predefined behaviors,

the functionality of which is illustrated in Figure 3.4. Notice that the predefined be-

haviors implement a pull-style system, in which receivers explicitly retrieve messages

from the rendezvous point, possibly after being notified of its existence. Extensions of

the Meteor service may redefine these behaviors or define new behaviors to implement

other messaging patterns, such as a push-style publish/subscribe.

∙ store: The RP stores the profile and executes matching profiles that contain a

notify data action.

∙ retrieve: The RP matches the received profile with existing profiles with store

action and sends the data associated with the matched profile(s) to the requester.

∙ notify data: The RP stores the received profile and executes matching profiles

that contain a notify interest action.
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Self-Monitoring network

Messaging

Substrate

Clustering

Replication

Application

events

Clustering

results

Figure 3.5: Architectural overview, showing how application events are distributed to
the clustering module and replicated to ensure robustness to failures. The replication
mechanism uses the results from the clustering algorithm to selectively replicate the
incoming application events.

∙ notify interest: The RP stores the profile, matches this profile with existing

profiles with notify data action, and sends a message to the requester if any

such matches exist.

∙ delete data: The RP deletes matching profiles that contain the store action.

∙ delete interest: The RP deletes matching interest profiles.

3.2 Robustness Mechanisms

Figure 3.5 shows an overview of the architecture of the proposed monitoring and data

analysis framework. In the figure, the messaging substrate consists of the stack de-

scribed in the previous section. The clustering module performs the required clustering

analysis and will be described in detail in Chapter 4. Both functionality from the

messaging substrate and results from the clustering module are used to ensure robust-

ness to failures at different levels. The selective replication mechanism, described in

Section 3.2.3, will be evaluated in the next chapter in Section 4.2.3.
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3.2.1 Overlay Level

The overlay middleware must guarantee routing of messages and maintenance of the

overlay structure despite membership changes and node failures. Most common struc-

tured overlays ([81, 71, 74]), provide such self-healing mechanisms, and these can be

leveraged for ensuring the robustness of the clustering application. For example, Chord

can route around failures by using alternative entries from its routing tables. Further-

more, Chord nodes perform what is called a stabilization mechanism by periodically

checking the links in their tables and updating links that are outdated due to structural

changes (node joins and departures) and failures. Because clustering is also a periodic

task, we must ensure that the frequency of the overlay’s self-healing tasks is enough to

detect and recover from failures within a single clustering period.

3.2.2 Platform Level

In order to support the replication of data points, as well as the recovery of these points

in the event of the loss of the original data due to failure, the overlay platform needs to

provide three basic mechanisms. The first is, of course, a primitive that receives a point

to be replicated and stores that point at a remote node. The second is a mechanism

to recognize the absence of a node and to notify this to the remote site(s) at which its

points have been replicated. Finally, the platform needs to provide a way to deliver the

replicated points to the application when failures occur.

We take advantage of the dynamic hash functions used in DHTs to realize these

mechanisms. This makes the selection of remote replication nodes straightforward

because the selection can be made simply by using the dynamic DHT mapping after

removing the failed node. We thus define in general terms a node’s successors(s) in the

overlay as the node(s) to which the keys that correspond to the data at the original node

would be mapped in the absence of the original node1. With this selection criteria, the

realization of the second and third mechanisms also becomes straightforward, given that

most overlays readily provide mechanisms to detect the failure of neighbors and that,

1This definition is more general than that of a successor in the Chord specification [81], which is in
fact a successor in the present sense.
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Figure 3.6: In the figure, the points that correspond to the blue region are stored at
the blue node and replicated at the green node (and possibly subsequent nodes). If the
blue node fails, the blue region becomes the responsibility of the green node, which will
add the replicated points to its own and assume the entire region.

once a node fails, the node at which its data is replicated can automatically process

this data, without the need for additional messaging overhead.

Once again, we use the Chord overlay as an example to illustrate these mechanisms.

As Figure 3.6 shows, in Chord a node is responsible for keys that map to the index

space between its predecessor and itself. Therefore, a Chord node has a single successor

in the ring topology. When a node fails, its successor learns of this failure by the same

stabilization mechanism (described in Section 3.2.1) used to update its routing table.

Subsequently, when a successor learns of its predecessor’s failure, all it must do is deliver

the predecessor’s points to the application level, because they now correspond to its

own region (see Figure 3.6).

The tradeoff for the simplicity and low cost of this replication scheme is that the

proximity of the nodes in the overlay makes the scheme vulnerable to localized failures

of multiple nodes. In the next section we show how this tradeoff can be reduced by

replicating at multiple nodes rather than just at the single successor, while minimizing

the overhead of full replication by using failure probabilities and taking data relevance

into account.

3.2.3 Analysis Level (Selective replication)

In order to bound the probability that all replicas of a point are lost given the possibility

of multiple node failures, it is necessary to provide the capability of replicating points
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at more than one node. Given failure probabilities or rates for system nodes, it is

necessary to calculate a value 𝑟 corresponding to the number of replicating nodes for

each point, taking into account the probability that at least one node will not fail.

Thus, if a point is replicated at 𝑟 nodes, we can be fairly certain that the point will be

received by an instance of the application (in this case, clustering) running at one of

these nodes. Because we would like to preserve the simplicity and low overhead of the

replication scheme as described in the previous section, replicating a point at 𝑟 nodes

can be accomplished by replicating the point at successive successors. In Chord, this

would correspond to a chain of 𝑟 successors starting at the original node. We refer to

this as a replication chain of length 𝑟.

A straightforward replication model, which we call full replication, is to always

replicate a data point at a pre-determined (fixed) number of nodes 𝑟∗. This number

could be calculated by assuming a maximum or average failure rate across all system

nodes and obtaining the minimum number of replication nodes that satisfy a desired

loss probability. This replication scheme, where all replication chains are of length

𝑟∗, can have excessive overhead, especially if it is necessary to consider adversarial

fault models in which failure probabilities depend on the data stored at each node.

These fault models make it necessary to factor a larger failure rate than average in the

calculation of 𝑟∗, and thus many points will be replicated at more nodes than necessary

under normal system operation.

The particular nature of the clustering application is such that loss is tolerable

because events are periodically being generated and the preservation of individual event

values is not necessarily as important as preserving patterns of interest, as well as

outlying values. Unlike typical data storage systems, not all data items are equally

important: if the main goal is to detect outliers from the clustered data, it is more

important not to miss a single outlier value due to loss than to miss a few of the

clustered points. For the same reason, nodes that store important points may have

higher failure rates due to adversarial attacks. Thus, some points will need to have

more replicas than others, while some might not need to be replicated at all.

The problem is then to choose a chain length 𝑟𝑖 ≥ 0 for each data point 𝑖, for
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which we propose two probabilistic replication models. In both models, replication

decisions are based on two main factors: 1) the probability that the node 𝑗 at which

the point is stored will fail; 2) the likelihood that the given point 𝑖 will be recognized

as an outlier by the clustering algorithm. These quantities are denoted by 𝑝𝑗 and 𝑎𝑖

respectively. We will first describe the basic mechanism of both models, and then derive

and compare their loss probabilites and replication chain lengths, using full replication

as a benchmark.

Replication models

The first replication model, referred to as first node replication (FNR), relies on directly

calculating a point loss probability when a node in the overlay receives a point, which

is given by the probability that the number of consecutive node failures starting at

the local node is greater than the number of replicas of the given point. Let 𝐹 be

the random variable that corresponds to the number of consecutive node failures. The

chain length 𝑟𝑖 is calculated directly at the first node that receives the point as the

smallest value that satisfies:

𝑃 [𝐹 > 𝑟𝑖] < 𝛼, (3.1)

where 𝛼 is an upper bound on the loss probability. Once the value of 𝑟𝑖 is obtained at

the first node, the point will be replicated at this number of successors without further

calculation. The outlier likelihood 𝑎𝑖 can be factored into this model in two ways. If it

is expressed as a probability (a value between 0 and 1), it can be combined with 𝑝𝑗 to

obtain a new failure probability for the node that depends on both. Alternatively, it

can be used to determine different values of 𝛼 (lower for more important points). This

model has the advantage that it is simple to implement and has inherent guarantees

on data loss, but it ignores failure probabilities at successors of the first node that

could affect the loss probability. Thus, it is suitable for environments where nodes have

relatively uniform failure rates.

In the second model, called multi-node replication (MNR), each node 𝑗 in the repli-

cation chain decides whether or not to replicate the point further based on a replication
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probability 𝑞𝑗 calculated as a function of 𝑎𝑖 and the values of 𝑝𝑗 along the replication

chain. Node 𝑗 will continue to replicate the point if the outcome of a binomial test with

probability 𝑞𝑗 is positive. Depending on the way that 𝑞𝑗 is derived, different bounds

on loss probability can be obtained, so that the implementation of this model is more

heuristic in nature than FNR. However, it is meant to be more reliable in cases with

variable failure probabilities across nodes, as with adversarial attack models that target

nodes based on the data stored in them.

In order to compare both models, we will derive a general expression for the loss

probability. Given a bound on this probability, we will also compare expected values

for the replication chain lengths and compare them to a full replication approach.

These theoretic results will then be verified empirically in Section 4.2.3. In both cases,

we model the number of consecutive failures 𝐹 as a geometric random variable with

probability 𝑝 (the probability that a given node in the chain will fail). This is:

𝑃 [𝐹 = 𝑓 ] = 𝑝𝑓 ⋅ (1− 𝑝) (3.2)

If, in general, 𝑟 is the number of replicas of a given point (not counting the original),

then the probability of loss in FNR is:

𝑃 [𝐹 > 𝑟] =

∞∑
𝑓=𝑟+1

𝑝𝑓 ⋅ (1− 𝑝) = 1−
𝑟∑

𝑓=0

𝑝𝑓 ⋅ (1− 𝑝) = 𝑝𝑟+1 (3.3)

Because FNR uses this failure probability directly in equation 3.1, equation 3.3 gives

a way to calculate the chain length 𝑟:

𝑃 [𝐹 > 𝑟] < 𝛼

𝑝𝑟+1 < 𝛼

(𝑟 + 1) log 𝑝 < log𝛼

𝑟 > log𝑝 𝛼 (3.4)

The change of the inequality in equation 3.4 is because 𝑝 is a probability, and thus

between 0 and 1, so that the log is negative.
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Obtaining an expression for the loss probability for MNR is more complex because

the number of replications is also a random variable 𝑅. For this analysis, we make two

simplifying assumptions. First, the distribution of the number of consecutive failures

is assumed to be as in equation 3.2, with a uniform failure probability across nodes.

Likewise, the replication probability is assumed to be of the form 𝑞 = 𝑛 ⋅𝑝, also uniform

across nodes, so that 𝑅 is also distributed as a geometric random variable. Even though

the MNRmodel is meant for variable failure probabilities, this analysis is still illustrative

as a simple application of the model that can still account for an adversarial attack that

affects 𝑝 directly from 𝑎𝑖. Additionally, it will allow observing loss probability bounds

and replication chain lengths for different choices of 𝑛 as a basis for defining a heuristic

for MNR.

To calculate the loss probability 𝑃 [𝐹 > 𝑅], it is necessary to obtain the joint

probability distribution of 𝐹 and 𝑅. Since these are independent events, this is:

𝑃 [𝐹 = 𝑓 ;𝑅 = 𝑟] = 𝑝𝑓 ⋅ 𝑞𝑟 ⋅ (1− 𝑝)(1− 𝑞) (3.5)

Now, the loss probability is given by:

𝑃 [𝐹 > 𝑅] =
∞∑
𝑓=1

𝑓∑
𝑟=0

𝑝𝑓𝑞𝑟(1− 𝑝)(1− 𝑞)

=
∞∑
𝑓=1

𝑝𝑓 (1− 𝑝)

𝑓∑
𝑟=0

𝑞𝑟(1− 𝑞)

=
∞∑
𝑓=1

𝑝𝑓 (1− 𝑝)(1− 𝑞𝑓+1)

= (1− 𝑝)

⎡⎣ ∞∑
𝑓=1

𝑝𝑓 − 𝑞
∞∑
𝑓=1

(𝑝𝑞)𝑓

⎤⎦
=

𝑝− 𝑝2𝑞 − 𝑝𝑞2 + 𝑝2𝑞2

1− 𝑝𝑞
(3.6)

=
𝑝− 𝑛𝑝3 − 𝑛2𝑝3 + 𝑛2𝑝4

1− 𝑛𝑝2
(3.7)

Equation 3.6 follows from the fact that 𝑝𝑞 is less than 1, because both 𝑝 and 𝑞

are probabilities. Equation 3.7 is obtained simply by replacing 𝑞 by 𝑛𝑝. Table 3.1
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p
n 0.01 0.02 0.03 0.04 0.05 0.06

1 0.00999 0.01999 0.02997 0.03993 0.04988 0.05979

2 0.00999 0.01996 0.02989 0.03975 0.04952 0.05918

3 0.00999 0.01992 0.02976 0.03944 0.04892 0.05815

4 0.00998 0.01987 0.02957 0.03901 0.04808 0.05670

5 0.00997 0.01980 0.02934 0.03845 0.04699 0.05483

6 0.00996 0.01971 0.02905 0.03776 0.04565 0.05252

7 0.00995 0.01961 0.02870 0.03695 0.04407 0.04979

8 0.00993 0.01949 0.02831 0.03601 0.04224 0.04662

9 0.00991 0.01936 0.02786 0.03495 0.04015 0.04300

10 0.00990 0.01921 0.02735 0.03375 0.03782 0.03893

Table 3.1: Loss probabilities for MNR replication model obtained from applying differ-
ent values of 𝑝 and 𝑛 to equation 3.7

shows different values of loss probabilities obtained using equation 3.7 for different

values of 𝑝 and 𝑛. Notice that until a failure probability of 6%, which is quite high,

the loss probability stays under 0.05, which is within the error bound of the clustering

algorithm. A simple way to choose the replication probability 𝑞𝑗 at each node is to

make it equal to 𝑝𝑗 , which corresponds to setting 𝑛 = 1. As can be seen from the table,

this is suitable for 𝑝 up until 5%. Another way to choose the replication probability is

to use the values in the table to choose the smallest 𝑛 that meets a required bound on

the loss probability. This is equivalent to setting 𝑞𝑗 to a higher value after 𝑎𝑖 (outlier

likelihood) is combined with 𝑝𝑗 , so that it is always possible to assume 𝑛 = 1. This

way, a low error bound is maintained for local failure probabilities of up to 50% with

an adversarial attack model. This is the heuristic used in Section 4.2.3 to evaluate the

MNR model and verify its usefulness.

Both probabilistic replication models are meant to achieve a high degree of reliability

while maintaining the overhead of replication low when compared to a full replication

model. This means that the length of the replication chains must be short on average.

Figure 3.7 shows replication chain length values for the three replication models that

guarantee a loss probability bound of 5% under different probabilities of failure. For

full replication, we assume a maximum failure probability of 50% as a worst case to

guarantee the loss probability bound in all cases. For FNR, the chain lengths are

obtained directly from equation 3.4, and for MNR they are obtained as an expected
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Figure 3.7: Replication chain lengths estimated for different replication models and
probabilities of failure.

value, setting 𝑞 to the smallest multiple of 𝑝 that achieves the desired bound.

It is interesting to observe that up until 8% failure probability, the expected chain

length of MNR is close to zero and shorter than both FNR and full replication. This can

lead to significant overhead reduction when failure rates are low and a small percentage

of the points are expected to be outliers and worth preserving. However, after 𝑝 = 0.12,

the expected chain length surpasses that of full replication and its value becomes er-

ratic. FNR provides a good compromise for cases where the failure rate is high, and,

as stated earlier, relatively uniform. Recall, however, that the loss probability model

used for MNR is a simplification, and heuristics can be employed to obtain the benefits

and good response to variable and/or adversarial failure probabilities without exceeding

a maximum replication chain length. One technique, used for the evaluation in Sec-

tion 4.2.3, is to reduce the value of 𝑞𝑗 obtained using the MNR model proportionally

to the current length of the replication chain.

Calculating failure and outlier probabilities

During the lifetime of the system, the current probability of failure for a given node

is updated using a Bayesian conditional probability, where the probability of failure is

conditioned by the time elapsed since the last failure of the node. This is:
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𝑃 [𝐹𝑎𝑖𝑙∣𝑇 ≥ 𝑡] =
𝑃 [𝑇 ≥ 𝑡∣𝐹𝑎𝑖𝑙] ⋅ 𝑃 [𝐹𝑎𝑖𝑙]

𝑃 [𝑇 ≥ 𝑡∣𝐹𝑎𝑖𝑙] ⋅ 𝑃 [𝐹𝑎𝑖𝑙] + 𝑃
[
𝑇 ≥ 𝑡∣𝐹𝑎𝑖𝑙

] ⋅ 𝑃 [𝐹𝑎𝑖𝑙
]

Here, 𝑃 [𝐹𝑎𝑖𝑙] is a statically defined probability of failure that could be parame-

terized by load and/or other factors according to the failure model. To condition the

distribution of the time that a node operates without failure by previous failures of the

node, we use two average times that can be determined from the failure model and

adjusted with the operational history of the system. The first is the mean time to fail-

ure (MTTF), which is a parameter for the probability when a node has not yet failed

(𝑃
[
𝑇 ≥ 𝑡∣𝐹𝑎𝑖𝑙

]
), that only considers random failures or failures due to normal opera-

tional malfunction. Once a node has failed, its operating time is distributed according

to the mean time between failures (MTBF) of nodes that could be heavily loaded or

targeted by malicious users due to their importance or weakness.

A Bayesian conditional probability is also used to calculate the probability that a

particular point 𝑖 is an outlier. In this case, the event of an outlier is conditioned on

the distance of the event to the closest of the centroids of clusters found in a previous

iteration. The intuition is that if a point is close to the centroid of a previously detected

cluster (as determined by the cluster’s width), then it is not likely to be anomalous, in

contrast to a point that is far from existing clusters. The update rule is given by:

𝑃 [𝐴∣𝑈 ≤ 𝑢] =
𝑃 [𝑈 ≤ 𝑢∣𝐴] ⋅ 𝑃 [𝐴]

𝑃 [𝑈 ≤ 𝑢∣𝐴] ⋅ 𝑃 [𝐴] + 𝑃
[
𝑈 ≤ 𝑢∣𝐴] ⋅ 𝑃 [𝐴]

Here, 𝑃 [𝐴] is simply the frequency of outliers found at node 𝑗 in previous iterations

with respect to the total number of points received at the node. This way, both previous

outliers and clusters are used to determine outlier probabilities, the former accounting

for outliers that have been seen before and the latter for those that may not have been

observed, but that deviate from normal behavior. In the formula above, instead of using

the absolute distance of the point to existing clusters, the probability is conditioned on a

ratio 𝑈 of the distance to the corresponding cluster width. This is to account for clusters

of different densities and widths. Given cluster centroids 𝑐𝑘 and their corresponding

widths 𝑤𝑘, the actual ratio 𝑢 calculated for each point 𝑝 is given by:
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𝑢 = min
𝑘

(
𝑑𝑖𝑠𝑡(𝑝, 𝑐𝑘)

𝑤𝑘

)
The conditional probability distributions of the distance ratios can be obtained in

two ways. One is simply to define static distributions that favor ratios smaller than one

for cluster points (𝑃 [𝑈 ∣𝐴]) and larger than one for outliers (𝑃 [𝑈 ∣𝐴]). The other is to

maintain frequency distributions by calculating 𝑢 for outliers detected by the algorithm

and for cluster points.
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Chapter 4

Decentralized Online Clustering

This work is based on the premise of realizing online and decentralized data analysis,

exploiting the collective computing resources of distributed systems. Online analysis

because offline analysis tends to produce models that do not capture short-term or

transient system behavior. Decentralized because, although highly accurate, centralized

approaches are infeasible in general because of the costs of centralization in terms of

infrastructure, fault-tolerance, and responsiveness. However, it is important to show

that the tradeoff that must be made for decentralization in terms of accuracy and

network resources is worth the aforementioned advantages.

This chapter describes the decentralized online clustering (DOC) algorithm in de-

tail, its implementation based on the robust content-based messaging infrastructure

presented in Chapter 3, specific application details, and a comparative evaluation with

well-known density-based clustering algorithms. The experiments will show that DOC

is close to these centralized algorithms in terms of accuracy, in addition to being less

sensitive to changes in its input parameters, which is important for online, automated

application. They will also show that, because of decentralization, the running time

of DOC scales well with the size of the data set to be analyzed, when considering the

impact of centralizing data elements that are originally distributed.

4.1 Algorithm Description

As mentioned in the introduction, this research targets networked systems in which

individual components can monitor their operational status or actions, represent them

using sets of globally known attributes, and periodically publish this status or interac-

tions as semantic events that contain a sequence of attribute-value pairs.

These events correspond to the data elements to be clustered, each one of which

is represented as a point in a multidimensional space, as shown in Figure 4.1. Each
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Figure 4.1: Example of an information space with three attributes. Point 𝑝3 can be
considered an outlier with respect to the relatively denser cluster formed by points 𝑝1
and 𝑝2. The space is divided into regions, within which clustering analysis is performed
individually.

dimension in this space, referred to as an information space, corresponds to one of

the event attributes, and the location of a point within the space is determined by

the values for each of its attributes. It is assumed that the range of values of each

attribute is an ordered set. For each set, a distance function can be defined in order

to measure the similarity between points (i.e. similarity is inversely proportional to

distance). This definition is straightforward for quantitative attributes, and can be

applied to non-quantitative attributes as well with an appropriate encoding.

The notion of similarity based on distance in each dimension extends to the mul-

tidimensional information space, for which a distance function can also be defined in

terms of the unidimensional distances. Conceptually, a cluster is a set of points for

which mutual distances are relatively smaller than the distances to other points in the

space [35]. However, the approach for cluster detection described in this paper is not

based primarily on evaluating distances between points, but rather on evaluating the

relative density of points within the information space. In this case, point similarity is

directly proportional to point density.

The approach used for the evaluation of point density, and thus for the detection of

clusters and outliers, is sketched in Figure 4.2. The idea is to divide the information



45

Figure 4.2: (a) Uniform distribution of data points in the information space. (b) Point
clustering and outliers among regions; the circled points are potential outliers.

space into regions and to observe the number of points within each region. If the

total number of points in the information space is known, then a baseline density for

a uniform distribution of points can be calculated and used to estimate an expected

number of points per region (Figure 4.2 (a)). Clusters are recognized within a region

if the region has a relatively larger point count than this expected value, as in Figure

4.2 (b). Conversely, if the point count is smaller than expected, then these points

are potential outliers. However, clusters may cross region boundaries, as shown in the

lower left quadrant of Figure 4.2 (b), and this must be taken into account when verifying

potential outliers.

The approach described above lends itself to a decentralized implementation because

each region can be assigned to a particular processing node. Nodes can then analyze

the points within their region and communicate with nodes responsible for adjoining

regions in order to deal with boundary conditions. We assume that the information

space is predefined and globally known; however, the assignment of regions to nodes

need not be static, and can thus be adapted to the arrival and departure of processing

nodes in the network, as long as a mechanism exists to map data points to the node

responsible for the region in which the point is located (we describe an implementation

of this mechanism in Section 4.1.3). Note the distinction between processing nodes,

physical nodes, and data points in the space. Physical nodes host processing nodes, so

that multiple processing nodes may correspond to a single physical node. However, we

they are often the same and we refer to them indistinctly, unless explicitly referring to
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a physical node. Data points correspond to status or interaction events of distributed

system components. The status of a distributed component may be mapped to any

node, depending on the region of the space where the point lies. In fact, the physical

sets of machines corresponding to nodes and components may be completely or partially

distinct. Henceforth we use node to refer to a processing node and point to refer to

an status or interaction event (set of attribute values). The following section presents

a formal description of the decentralized clustering algorithm that is based on the

concepts described in this section.

4.1.1 Specification

The decentralized online clustering (DOC) algorithm is based on a finite, discretized

and normalized information space 𝑆 ⊂ ℤ+𝑎
, where 𝑎 is the number of dimensions

(attributes). The space is discrete to facilitate the application of the mapping described

in Section 3, and it is normalized to enable the definition of a single unit of distance

within the space. To convert an arbitrary space into the required form, each application

must define, for each dimension 𝑖, a distance 𝑑𝑖 that will correspond to a unit distance

in the normalized space. The unit distance is a general property of each attribute, as

determined by the application, and is the minimum difference in attribute values that

should be distinguishable (i.e. a difference of less than 𝑑𝑖 original units is considered

negligible). The range of each dimension will thus be the interval [0, 𝑥𝑖], where 𝑥𝑖 =

(𝑚𝑎𝑥𝑖 −𝑚𝑖𝑛𝑖)/𝑑𝑖.

The following definitions correspond to the concepts introduced in the previous

section and to the main algorithm elements and operations:

∙ Contiguous points: Two points are contiguous in 𝑆 iif if they differ by at most

one unit in at most one dimension.

∙ Region: A region is a set 𝑅 ⊆ 𝑆, such that any two points in 𝑅 can be connected

by a sequence of contiguous points in 𝑅. Each node is responsible for a unique

region, denoted by node.region.

∙ Neighbor : Two regions 𝑅1 and 𝑅2 are neighbors iif ∃𝑝1 ∈ 𝑅1 and 𝑝2 ∈ 𝑅2 st. 𝑝1
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COLLECT_DATA (T)

1 listen for period T

2 points <- {p | p received during T}

END

Figure 4.3: Algorithm for the data collection phase at each node

and 𝑝2 are contiguous points. Two nodes 𝑛1 and 𝑛2 are neighbors if 𝑛1.region is

neighbor of 𝑛2.region.

∙ Spatial density (density(𝑅,𝑋)): The spatial density of a region 𝑅 with respect to a

point set 𝑋 ⊆ 𝑅 is the ratio size(𝑋)/size(𝑅), where size() denotes the cardinality

of a set. If the region is omitted for a set 𝑌 , density(𝑌 ) is the spatial density with

respect to 𝑌 of the smallest region 𝑅𝑌 such that 𝑌 ⊆ 𝑅𝑌 .

∙ Linear density (density(𝑑,𝑋)): The linear density of a point set 𝑋 along a di-

mension 𝑑 is the ratio of size(𝑋) and the maximum distance between points of 𝑋

along dimension 𝑑.

∙ Cluster : Let 𝐷 be the data set being analyzed, then a set of points 𝐶 is a cluster

with respect to a region 𝑅, if density(𝑅,𝐶) > density(𝑆,𝐷).

∙ Centroid of a set (centroid(𝑋)): Point with minimum average distance to each of

the points in 𝑋.

∙ Width of a set along a dimension (width(𝑋, 𝑑)): The maximum distance of any

point in 𝑋 to centroid(𝑋) along dimension 𝑑.

∙ Bounding box of a set (box(𝑋)): Minimal region that contains all of the points

in 𝑋, determined by the width(𝑋, 𝑑) for each dimension 𝑑.

The algorithm is divided into two phases, 1) the data collection phase and 2) the

analysis and consolidation phase. Figure 4.3 shows the steps of data collection. Ba-

sically, nodes are synchronized by a time period 𝑇 , during which data points are ex-

changed over the network and received by processing nodes.

Figure 4.4 shows the algorithm for the analysis and consolidation phase. It shows

how a node performs the clustering analysis for the points received during the period
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ANALYSIS (R, size(D))

1 exp_count = size(R) * (size(D) / size(S))

2 clusters <- {}

3 outliers <- {}

6 count = size(points)

7 If count > exp_count

8 Add (centroid(points), box(points)) to clusters

9 Else

10 outliers <- points

11 For (c, b) in Changed(clusters)

12 Broadcast((c, b), extended(b))

13 remote <- ReceiveBroadcasts()

14 clusters <- Merge(clusters, remote)

15 outliers <- RemoveContained(clusters)

16 Loop

END

Figure 4.4: Simplified algorithm for the analysis/consolidation phase at each node

of the preceding data collection phase. The analysis consists of comparing the number

of points received with an expected number of points (line 7). Because the expected

number of points is calculated (line 1) based on the size of the region relative to the

point density of the information space, given a particular data set size, this comparison

actually applies the definition of a cluster given above.

If the point count is higher than the expected number of points, then these points

form a cluster in the region under consideration. When it finds a cluster, the node

records its centroid and bounding box (line 8). Conversely, when the point count at

a particular node is not as large as expected, the points received in the corresponding

region are potential outliers. Before they are labeled as such, however, the boundary

conditions must be checked in case there are nearby clusters at neighbors to which the

potential outliers might actually correspond.

Once processing nodes have determined the existence of clusters or outliers locally,

it is necessary to consolidate the data from single clusters that may span multiple nodes

in order to obtain a single set of descriptors for each cluster. There are three possible

cases for each cluster in the data:

A. The cluster is entirely contained within a processing node’s region.

B. The cluster is, for the most part, in a single region, but the remaining points
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Figure 4.5: Initial clustering result and cluster broadcast at node 7

that lie in neighboring regions are treated as outliers. This is the case shown in

Figure 4.2.

C. The cluster lies across several nodes’ regions, so that each node identifies the

points within its region as clusters and calculates centroids separately, as shown

in Figure 4.5.

Also shown in Figure 4.5 is the grid of processing node regions (referred to by node

number 1 through 8). Each node that contains a local cluster broadcasts its description

to neighboring nodes (line 12), using a range determined by the size and density of

its own cluster, as follows. Each cluster 𝐶 has a bounding box 𝑏, the size of which

is extended by adding to width(𝐶, 𝑖) for each dimension 𝑖. First, 𝛿𝑖 = density(𝑖, 𝐶)

is calculated. The inverse of this density is the average distance between points along

that dimension. Thus, for a given constant 𝑘, 𝑘× 𝛿−1
𝑖 is the extension of the box along

dimension 𝑖. This means that, on average, 𝑘 more points of the same cluster should be

contained in the extended box, assuming that the cluster has more points than those

contained in the original region. Thus, increasing 𝑘, the likelihood that the extension

of the cluster region along that dimension crosses the boundary is increased. We have

determined empirically that a value of 𝑘 = 3 produces good results. Figure 4.5 shows

the query issued by node 7.

In case A above, it may be that the broadcast will not reach other nodes because

the extended bounding box did not intersect their regions. The nodes whose regions
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Figure 4.6: Node 7 after one level of agglomeration

are intersected (nodes 2, 3, 4, 6, and 8 in the figure) will receive the broadcast and

merge the cluster information received with their own findings (lines 13, 14). Points

that correspond to case B will be removed from the list of outliers to be reported in

the node’s result and added to the new cluster (line 15). In case C, the two parts of

the cluster are merged and a new centroid and extended bounding box are calculated.

Figure 4.6 shows how, at node 7, all of the broadcasts received from neighboring nodes

are merged into a single cluster. Notice that the new centroid may not necessarily

fall in the region of the node where the new cluster is obtained. Only the node that

“owns” the final resulting centroid (in whose region the centroid falls) will report the

corresponding consolidated cluster. Nodes will keep broadcasting cluster data for any

cluster that is extended in this way, until no further broadcasts are possible (no clusters

have changed, as indicated in line 11).

4.1.2 Algorithm Application

This section discusses the considerations and conditions required for the application of

the decentralized clustering algorithm. In order for this approach to work effectively,

first of all we require a mechanism to map points to a dynamic set of nodes, so that each

node receives the points located in its corresponding region. Our implementation of the

decentralized clustering algorithm builds on the messaging infrastructure described in

Section 3, which efficiently provides the required mapping as well as a platform for

monitoring, communication, and coordination between system and processing nodes.

Other application considerations follow.
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Parameter Estimation

Autonomic monitoring implies that the clustering algorithm has to be applied with

minimal intervention and a-priori knowledge about the data being clustered. This

ensures both that the algorithm can be deployed easily for new management tasks or

information spaces and that it can adapt to significant changes in the data. As will be

demonstrated in the sensitivity evaluation in Section 4.2.1, one of the most important

aspects that determine the accuracy of the clustering algorithms is setting the input

parameters for the analysis.

Because clustering is an underdetermined problem, there is no general best con-

figuration for the parameters of any clustering algorithm. Instead, depending on the

algorithm, effectively setting the parameters will depend to a greater or lesser extent on

the characteristics of the data, the information space, and the application. The more

dependent the parameters are on the data, however, the more need for reconfiguration

of the parameters when the data changes. Because the main design goal of DOC is

to make it suitable for autonomic application, we propose an automated method for

parameter estimation that requires minimal initial input and has minimal dependency

on the particular characteristics of the data when these are unknown.

Density-based clustering algorithms such as DBSCAN and Clique use a density

threshold (a number of points per unit-space) to determine if points in particular regions

of the space are clusters or not. This density threshold is therefore a necessary param-

eter for all such density-based algorithms. However, each algorithm has its own way of

specifying the threshold, usually decomposing it into a form of its two constituent fac-

tors. DBSCAN, for example, requires the specification of a minimum number of points

(𝑀𝑖𝑛𝑃𝑡𝑠) that can be considered as a cluster, along with a minimum distance or ra-

dius (𝐸𝑃𝑆) from a point where that number of points can be found (see Section 2.2.3

for a more detailed description). Notice that the latter parameter, the distance, is a

data-dependent parameter, since clusters can exist with the minimum number of points,

but with a greater distance between points than the one specified.1 In fact, DBSCAN

1We are assuming that the information space is defined so that the minimum unit is significant to
the application, as explained at the beginning of Section 4.1.1; otherwise, significance to the application
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provides a manual method for analyzing the data before the algorithm is applied in

order to obtain this parameter.

The way that each of the parameters is calculated for the algorithm, along with the

algorithm design, induce a cluster definition — i.e. the types of the clusters that the

algorithm will, and will not, detect. The definition induced by density-based algorithms

like DBSCAN and Clique assumes that the region size necessary to cover the cluster

of minimum density in the data is known or can be estimated. We argue that without

a-priori knowledge of the data distribution, a less stringent cluster definition is required.

DOC defines a cluster as a set of at least MinPts points in a region of the space whose

density is greater than that of a uniform distribution of the points in the space (note

that this corresponds to the formal definition presented in Section 4.1.1). This definition

translates to a parameter specification that includes the minimum number of points per

cluster (as in DBSCAN) and the total number of points 𝑁 being clustered. To see the

latter, note that:

𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁

𝑠𝑝𝑎𝑐𝑒 𝑠𝑖𝑧𝑒

To define the above parameters for DOC, the user requires minimal data-dependent

information, namely the number of points 𝑁 = 𝑠𝑖𝑧𝑒(𝐷), which is either given or can

be obtained from the number of nodes (which, if unknown, can be obtained even in the

face of high churn [5]), event generation rate, and collection period 𝑇 . The minimum

number of points per cluster is purely application specific and should not change often

during the lifetime of the application. Or, if it depends on 𝑁 , it can be expressed

as a percentage (as is done in Clique [4]). The algorithm must still estimate a region

size to divide the space among the processing nodes, however. Although our relaxed

definition allows any division, by calculating the expected number of points in the

region from the uniform density, our previous evaluations [69] showed that the region

size has a significant impact on accuracy (which is precisely why it is required by existing

algorithms). We therefore obtain the region size as that of a region 𝑅 such that:

would help determine the minimum distance as an application-dependent parameter.
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𝑠𝑖𝑧𝑒(𝑅)× 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑀𝑖𝑛𝑃𝑡𝑠 (4.1)

This is the region size for which the expected number of points in a uniform distribu-

tion equals the minimum number of cluster points specified by the parameter 𝑀𝑖𝑛𝑃𝑡𝑠.

To justify this choice, we make two observations. First, a larger region size risks group-

ing points that according to the definition should be marked as outliers. Second, a

smaller region size risks missing cluster points that are grouped with a density that is

close to the uniform density. Therefore this is the smallest region size that conforms

to the given cluster definition. Furthermore, for dense information spaces (informally

defined as those in which 𝑁 >> 𝑀𝑖𝑛𝑃𝑡𝑠 and 𝑁 > 𝑠𝑖𝑧𝑒(𝑅)) this region size is likely

to be smaller than the sizes of the clusters to be found, which we found in [69] to be

important for accuracy.

Of course, as stated earlier, with no assumptions on data distribution, it is not pos-

sible to prove anything about the optimality of the region size estimation. However,

the proposed parameter estimation can easily be applied in an automated fashion (even

to other algorithms like DBSCAN and Clique), and, as Section 4.2 will show, yields

results that are comparable to those obtained with more informed parameter estima-

tions. Furthermore, the same automated mechanism can be applied with knowledge

of the data distribution to obtain smaller and more refined region sizes where data is

known to cluster (because a smaller region size is expected to contain 𝑀𝑖𝑛𝑃𝑡𝑠), and,

conversely, larger region sizes in regions where no clusters are expected.

Online Execution

Applying the decentralized clustering algorithm online implies that it is possible to col-

lect data and produce results that can be used for management in a timely manner. In

a system where monitoring is done continuously, clustering analysis can be alternated

with data collection, as shown in Figure 4.7 (a). To be able to effectively apply the algo-

rithm in this way, the time required for the analysis phase must be short in comparison

to the data collection phase, so as to minimize the amount of data that is not collected

while the analysis is being performed. It is also possible to run the analysis phase in
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Figure 4.7: Clustering online execution timelines with (a) alternating and (b) overlap-
ping data collection and analysis phases.

parallel with data collection, as shown in Figure 4.7 (b). As long as the analysis time

does not exceed the collection period, clustering can proceed in this way, always with

the data collected in the previous period.

The preceding cases appear to assume that the results for every different collection

period are produced independently of previous data. However, it should also be possible

to cluster data incrementally, after an initial run of the algorithm, by adding new points

to modify previous results (instead of re-clustering from scratch with the new set of

points). DOC can be readily applied in this way, with the following three cases for each

new point received:

∙ If a node’s region already contains a cluster and the cluster contains the new

point, then add the point to the cluster and recalculate the centroid.

∙ If a node’s region contains outliers, but with the new point it satisfies the cluster

definition, then calculate the centroid and bounding box and record for consoli-

dation.

∙ If a node’s region is empty, or the new point does not make existing points satisfy

the cluster definition, then record as a potential outlier.

Notice that only the second case requires new broadcasts from the receiving node, so

that the time for clustering can be significantly shortened. When applying the algorithm

in this way, a rolling window can be maintained so that old points are forgotten as new

ones are produced, and the total number of points is kept constant.
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Load Balancing

As with any distributed application, balancing the load between processing nodes is

important for both avoiding bottlenecks and singular points of failure, and maximizing

the utilization of all of the available distributed resources. Because of the nature of

clustering and the spatial distribution of data that is employed by DOC, however, the

problem of load balancing among processing nodes presents special challenges. In other

words, by design, points that are clustered in the information space will be sent to and

processed by a reduced number of processing nodes.

There are two basic sources of load that must be considered in a DHT-based ap-

plication like DOC, which we call processing load and query load. The first and most

evident is that of processing load, which is the load imposed on a node by the data that

maps to it in the DHT, including the processing and storage of this data (if necessary).

Balancing processing load is relatively straightforward: it suffices to offload part of this

data and/or processing to underloaded nodes, while keeping a local pointer to the new

location(s) of the data and/or results so that they are accessible via the DHT interface.

Query load, on the other hand, is not as evident or straightforward to manage. It is the

load of the messages used to route information, including data and queries, over the

overlay topology that supports the DHT. Even if storage and processing are balanced,

all of the requests and queries for related data will still have to go through the reduced

number of nodes that hold the pointers to this data. Figure 4.8 illustrates this issue.

Applications like DOC are affected to a greater extent by query load than they are

by processing load. This is because the processing at each node is very light and the

storage requirements even for large numbers of data points are relatively small. In fact,

points don’t even have to be stored if the counts and cluster information are updated

each time a point is received. Query load, on the other hand, is incurred for every

point routed over the network and received by a processing node. As mentioned earlier,

query load imbalance occurs in DOC because clustered data maps to a reduced number

of nodes.

The way to handle query load imbalance is to insert virtual nodes in the overlay, in
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Figure 4.8: Illustration of query load imbalance. Store and query requests for element
𝑋 are all routed to the highlighted node (blue arrows), even though the data may be
stored at other nodes, due to load balancing, as indicated by the green arrows.

the index space of the overloaded node(s). A virtual node joins the overlay just like any

other node, so that the routing tables of existing nodes will be updated with the address

of the physical machine where the virtual node is hosted. If this machine previously

hosted and underloaded node(s), then the virtual node will effectively handle traffic

previously mapped to the overloaded node, and thus the corresponding region in the

information space.

Creation and deletion of virtual node groups for load balancing is a topic that has

been studied in previous work [76]. In DOC, however, there is an additional considera-

tion because of the effect that the division of the information space has on the accuracy

of the clustering results [69]. Recall from the previous section that we estimate a region

size for each processing node as a parameter of the algorithm. It is likely that this

region size does not coincide with the size of the region that maps to each physical

host on the overlay. Therefore, each host’s region must be split locally into units of the

correct size, which Figure 4.9 (a) shows. Each of these local subregions corresponds to

a processing node that applies the DOC algorithm. However, for groups of local nodes

(co-located at a single physical node), the consolidation is not done with broadcasts,

but rather by aggregating results as in the Clique algorithm.

The local subregions are used as units for load balancing to preserve the accuracy
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Figure 4.9: Overlay ID space with the region of each node divided into subregions. (a)
Initial uniform distribution. (b) Virtual nodes created in an overloaded region. (c)
Subregions given known data distribution.

of the algorithm. In order to send a unit to a remote underloaded node, two virtual

nodes have to be created, one for either end of the region, as shown in Figure 4.9 (b).

Hosting both of these virtual nodes remotely has the additional advantage that it can

help further reduce the traffic at the overloaded node because in Chord, most traffic that

maps to a node goes through the node’s predecessor. In order to reduce complexity

arising from hierarchies of virtual nodes (virtual nodes created from virtual nodes),

virtual nodes do not create other virtual nodes. Instead, the original node is always

responsible for the mapping of its subregions to hosts, and directly receives results from

them in order to consolidate them locally. This is also an advantage in the case shown

in Figure 4.9 (c), where the region size is recalculated based on a known distribution

from previous results. Because it has a reference to all of its virtual nodes, the main

node can remove them and redistribute its subregions based on the new region size.

Robustness

Because self-management mechanisms are subject to the same failures that occur on

the nodes that they are running on, the robustness of these mechanisms is of great

importance to ensure overall system reliability. We are assuming that unbalanced or

malicious system utilization is possible, so that we must account for the effect of this

utilization on the reliability of the system and ensure the robustness of data analysis,

even when node failures or data loss occur because of this behavior. This work gives

special attention to ensuring the robustness of the proposed solution at different levels,

as part of the infrastructure support for the clustering algorithm. Because of this, a
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full section was dedicated to it in the previous chapter (Section 3.2).

4.1.3 DOC Implementation

The DOC algorithm has been implemented in Java as an extension of the implemen-

tation of the Meteor content-based messaging and coordination framework presented

in Chapter 3. The class that implements the DOC algorithm sits directly on top of

the Squid routing engine (Section 3.1.1), which exposes its functionality through the

SquidOverlayService implementation of the OverlayService interface. The associa-

tive rendezvous and reactive behavior functionality of Meteor (Section 3.1.2) is reimple-

mented directly by the clustering module and is wrapped by the InfoSpace interface.

The functionality of these objects and their interactions will be explained in the rest of

this section.

Class Descriptions

An OverlayService object is a distributed object that runs on each physical node and

implements the following methods:

∙ OverlayID join(url): Called when the node is initialized. The URL corre-

sponds to the host and port on which the node is running. Returns the overlay

ID assigned to the node, or rather a concrete extension of the abstract OverlayID

class that depends on the specific overlay’s addressing scheme.

∙ leave(): Called when the node is terminated. Specific overlay implementations

handle these departures to maintain routing capability within the overlay.

∙ routeTo(ID, tag, payload): Called to send a particular message to one or more

nodes responsible for the given IDs. IDs is a list of overlay identifiers, tag is an

identifier for a listener of the overlay, and payload is the message to be sent.

∙ url[] resolve(ID): Calls for the overlay to find the physical address of the node

or nodes responsible for the given ID.
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∙ subscribe(listener, tag): Registers a listener to receive messages sent using

the routeTo method to the given tag.

∙ url[] getNeighborSet(): Returns the list of addresses that are directly known

to the overlay object.

The Squid implementation of the overlay service provides a concrete extension of the

OverlayID class called SquidKey. A Squid key is used to address Squid’s multidimen-

sional attribute space, taking either a single value or a value range for each dimension

(i.e. a region in the space). As explained in Section 3.1.1, the Squid overlay service

uses a distributed routing mechanism to map the region specified in a Squid key to the

nodes responsible for the region at that point in time.

The InfoSpace interface is an abstraction of the information space from the point

of view of the monitoring and clustering services. Points representing monitoring events

are inserted into the space, which can then be queried about the existence of clusters

and/or outliers. This functionality is provided by the following methods:

∙ insertPoint(point): Called to insert a point into the information space.

∙ getClusters(region, time): Returns the descriptors of the clusters, if any, that

have a centroid contained in the given region of the information space and that

correspond to the given time. Note that cluster points are not returned by this

method. Instead only cluster descriptors, which include the cluster bounding box

and centroid, are returned.

∙ getOutliers(region, time): Similar to the above method, but returns any

outliers contained in the given region at the given time.

∙ getPoints(region, time): Returns any points contained in the given region

that were inserted at the given time (analysis window). Because a cluster bound-

ing box is implemented as a region in the information space, this method can be

used to query the cluster points that correspond to a cluster descriptor returned

by the getClusters method.
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Figure 4.10: Class diagram for DOC implementation

∙ subscribe(listener, region): Instead of querying the information space for

cluster and outlier results, an object can subscribe to the information space as a

listener, for results in a particular region or for the entire space. A listener can

choose to be notified of clusters, outliers, or both.

The InfoSpaceManager is our distributed implementation of the InfoSpace inter-

face and which manages the execution of DOC. Figure 4.10 shows a class diagram of

the top level of the framework, centered around the InfoSpaceManager class. Each

InfoSpaceManager instance manages the processing nodes that actually implement

the logic of the clustering algorithm. Note that there may be multiple processing nodes

depending on the number of clustering regions contained within the physical node’s

region, as was illustrated in Figure 4.9. Users of the InfoSpaceManager can subscribe

to it as result listeners, to obtain clusters, or outliers, or both, depending on the sub-

scribers’ type. The InfoSpaceManager, in turn, subscribes as a listener to the squid

overlay service and uses it to send point and cluster messages and queries to remote

instances of the same class.

Algorithm Initiation and Runtime

When an application creates an instance of InfoSpaceManager (henceforth manager),

this instance in turn creates an instance of the SquidOverlayService (henceforth



61

Figure 4.11: Sequence diagram of DOC object creation and initiation. The communica-
tion between the local and remote InfoSpaceManager instances is done directly using
the url obtained through the getNeighborSet method, and not using Squid’s routeTo
method.

squid), configuring it for routing in an attribute space that corresponds to the multidi-

mensional information space in which clustering will be done. The manager object uses

squid to join the overlay with the physical node’s url. Recall from Section 3.1.1 that a

new node can join the overlay with the reference of any other node in the overlay, and

that Chord’s self-configuration mechanisms will automatically take care of updating

local and remote routing tables to include the new node. Upon joining, the manager

object obtains a reference to it’s predecessor on the overlay via squid’s getNeighborSet

method in order to synchronize to the current time (analysis window) and calculate the

region size, which corresponds to the difference between the local ID and the prede-

cessor’s ID (because of the correspondence between Squid’s attribute space and the

clustering information space). The manager can then calculate the clustering region

size and create as many processing node objects as clustering regions fit in the phys-

ical region size. Figure 4.11 shows this initiation process. Note that the overlay will

notify neighbors of the newly joined node, so that they can also adjust the size of their

corresponding region and processing node pool if necessary.
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Figure 4.12: Sequence diagram of DOC data collection and analysis. Notice that app1
acts as both an event source and a result listener.

After a node has been initialized, it can be used to update and query the distributed

information space. Figure 4.12 shows a typical sequence for the insertion of multiple

points during the data collection phase and the subsequent clustering analysis and result

notification. The figure omits the messages exchanged during the cluster consolidation

phase, which would take place during the call to analyze. Notice that the routeTo

method of the Squid objects is called both with a points and with clusters (bounding

boxes). Actually, the manager takes care of creating a SquidKey object for each call to

routeTo, taking into account that a point generates a SquidKey without ranges that will

be routed to a single remote manager instance, while a cluster bounding box generates

a SquidKey with ranges that will possibly be routed to multiple remote instances.

The same routing mechanism applies when an object subscribes as a ResultListener

for a particular region: the region is used to create a SquidKey that is used to route

the subscription to all nodes that manage results for it. In order for the app1 object in

Figure 4.12 to receive the result, it had to subscribe to ism1 with a region that maps

to that corresponding to ism2. Figure 4.13 is an illustration of how points and query
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1

Region assigned to node 1 for clustering. The points in this region are mapped to Node 1.

Range in the attribute space, associated with green nodes, as well as node 1

Node index space mapped by SFC to the attribute space

1

Node network with circular index space; each node manages a part of the index space

Figure 4.13: Mapping from attribute space to node index space. Matching of cluster
points and ranges can be done because intersecting regions are guaranteed to map to a
non-empty set of common nodes, such as node 1 in the figure.

regions (subscriptions and cluster bounding boxes) are matched at common overlay

nodes given the SFC mapping.

4.1.4 Algorithm Analysis

Correctness

As we already mentioned in Section 4.1.2, clustering is an underdetermined problem for

which no strict correctness criteria can be applied. It was also shown in the same section

that, when given the region size obtained by equation 4.1, the algorithm can correctly

apply the cluster definition from Section 4.1.1. There are, however, non-functional

correcteness criteria that can be demonstrated.

First, we can show that the algorithm is guaranteed to terminate after the analy-

sis/consolidation phase. It is evident that the procedure terminates because for each

broadcast a node either does not receive new remote clusters, in which case it termi-

nates, or it merges a new cluster with existing clusters to create a larger region for the

next iteration. Because a region cannot grow indefinitely to include responses from new

nodes, then the process must eventually terminate.

It can also be shown that the algorithm is very likely to find a single centroid for



64

an arbitrary cluster of uniform density (the case of non-uniform density is similar, but

is slightly more complex because the conclusions do not apply symmetrically to all

nodes). We have shown that we can calculate an extended cluster width that can be

made increasingly likely to query neighboring nodes if a cluster extends across region

boundaries. Thus, after each node has received a first round of broadcasts from its

neighbors, the new regions will expand to include the regions of these neighbors. Be-

cause this information is broadcast to all of these neighbors in turn, the new broadcast

will extend into these new regions (by a consideration similar as above) if the cluster

extends beyond these neighbors. All of the nodes in this region will therefore receive

the merged cluster info. If this process stops with more than one centroid, then it is

because one or more of the broadcasts failed to cross the region boundary for their given

nodes. But then the separation of the points between those regions is more than the

extension of the cluster width, which is reason to consider two separate sub-clusters.

Complexity

Because most of the complexity of the algorithm depends on messaging and the mapping

between nodes and regions in the information space, the complexity analysis must be

done with respect to the particular overlay on which the algorithm is implemented. In

this case, we use the Chord overlay and SFC mapping described in Section 3. For this

analysis, 𝑛 is the number of nodes in the network and 𝑁 is the size of the data set, 𝑎

is the number of dimensions (attributes) in the information space, and 𝑏 is the number

of bits used to encode values along each dimension.

Before running the algorithm, joining Chord requires 𝑂(log2 𝑛) number of messages,

for each node, and a time that is proportional to this number. Calculating the size of

the region 𝑅 takes one query to the predecessor node, which takes 𝑂(1) messages

in Chord. Now, the data collection and analysis phases are considered. Each data

point sent over the network requires 𝑂(log 𝑛) routing hops in Chord. This translates

to 𝑂(𝑁 log 𝑛) messages or 𝑂(𝑛 log𝑛) messages if 𝑁 ∈ 𝑂(𝑛) (as in a self-monitoring

network). Temporally, the complexity due to data distribution is 𝑂(log 𝑛) given that

nodes exchange data points in parallel.
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For the consolidation phase, we must give a bound on the number of broadcasts, as

well as the messaging complexity of each broadcast. Let 𝑚 = 𝑠𝑖𝑧𝑒(𝐶)
𝑠𝑖𝑧𝑒(𝑅) be the number of

processing node regions occupied by a cluster 𝐶 with an analysis region size 𝑅. If the

cluster is in a single region, then the number of broadcasts is trivially 𝑂(1). Otherwise,

each broadcast will reach at least the number of neighbors of the broadcasting node.

This is a constant given by 𝑔 = 3𝑎 − 1. Since each of these nodes subsequently makes a

new broadcast until the cluster is covered, the number of broadcast rounds needed to

cover the cluster is 𝑂(log𝑔 𝑚). Each broadcast is sent as a range query in Squid, which

in the worst case takes 𝑂(𝑏 log 𝑛). Since 𝑚 ∈ 𝑂(𝑛), the complexity of consolidation is

𝑂(𝑏 log2 𝑛).

4.2 Comparative Analysis

This section will present an evaluation of the decentralized clustering algorithm from

accuracy, performance, and robustness perspectives. It is difficult to evaluate accuracy

in the case of clustering, because there is no clearly established criterion to judge the

quality or correctness of a clustering result. Different algorithms are based on different

definitions of what a cluster is, and in some cases there is no single best clustering

even from a single definition. Instead, the perceived accuracy of a clustering algorithm

depends on the cluster definition used and the representation of the data, and is often

evaluated in a purely visual way.

The approach for accuracy evaluation used here is to generate data with a known

distribution (classification of points as belonging to particular clusters or to random

noise) and to compare the classifications produced by both known and widely used

clustering algorithms and DOC. Because DOC is designed as a density-based clustering

algorithm, we use two common density-based centralized algorithms for comparison,

DBSCAN and Clique, which were introduced in Section 2.2.3. The reason we use

centralized algorithms as the basis for comparing accuracy is that they can perform

more sophisticated analysis on the data and are thus expected to be more accurate. The

purpose of the evaluation is to show that DOC is close to these centralized algorithms

in terms of accuracy, making it a good tradeoff for other advantages in performance
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and/or robustness.

Because DBSCAN continues to be one of the most prevalent general-purpose density-

based clustering algorithms in the literature, we consider it is well-suited as a benchmark

for accuracy. Clique was chosen because of its similarity with DOC (in fact, DOC is

a particular decentralized version of Clique), because of which it can clearly demon-

strate the effect of DOC’s decentralization approach on accuracy. Both algorithms were

implemented in Java according to their functional specification, using the same data

representation used for DOC.

4.2.1 Accuracy Evaluation

As was mentioned earlier, the approach for evaluating the accuracy of the clustering

algorithms is to compare their output to a known classification of data points into

clusters and noise. This suggests using metrics that measure the errors due to misclas-

sification of points. Furthermore, we evaluate two distinct capabilities of the algorithm

that address two different functional requirements for management applications. The

first is outlier detection, which can be evaluated in terms of false positive and negative

rates. The second is the capability of identifying all cluster points and of distinguish-

ing points in separate clusters from each other, for which we use two separate metrics:

recall and precision, respectively. In order to calculate these metrics, we process the

results produced by the algorithms as follows:

When the data points are generated as input, they are given a different label ac-

cording to their corresponding cluster (points generated as noise are also labeled ac-

cordingly). Let the label of point 𝑝 be denoted as 𝑙(𝑝) ∈ 1, ..., 𝑛, where 𝑛 is the original

number of clusters (including noise). Let the clusters identified by a clustering algo-

rithm be denoted as 𝑐𝑗 , where 𝑗 ∈ 1, ...,𝑚. Since clusters 𝑐𝑗 can contain points of

different labels, we count the number of points of each label in each cluster. This is:

𝑐𝑜𝑢𝑛𝑡𝑖(𝑐𝑗) =
∣∣∣{𝑝∣𝑝 ∈ 𝑐𝑗 ∧ 𝑙(𝑝) = 𝑖}

∣∣∣
The label of a cluster (𝑙(𝑐𝑗)) is that corresponding to:
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arg max
𝑖∈1,...,𝑛

(𝑐𝑜𝑢𝑛𝑡𝑖(𝑐𝑗))

Finally, the representative of a label 𝑖 is the cluster 𝑐𝑗 given by:

𝑟𝑒𝑝𝑖 = arg max
𝑗∈1,...,𝑚

(𝑐𝑜𝑢𝑛𝑡𝑖(𝑐𝑗))

Precision is calculated as the sum of the number of points of the representative

clusters over the total number of points (𝑇 ):

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑𝑛
𝑖=1 𝑐𝑜𝑢𝑛𝑡𝑖(𝑟𝑒𝑝𝑖)

𝑇

According to this definition, precision will decrease both if a single generated cluster

is split into more than one piece and if two or more of these clusters are merged into

a single cluster result. On the other hand, recall is calculated for each cluster label 𝑖,

where 𝑇𝑖 is the total number of points with label i, as:

𝑟𝑒𝑐𝑎𝑙𝑙𝑖 =

∑
{𝑗∣𝑙(𝑐𝑗)=𝑖} 𝑐𝑜𝑢𝑛𝑡𝑖(𝑐𝑗)

𝑇𝑖

For recall, therefore, it only matters that the points are identified as cluster points.

If 𝑜 is the “cluster” of outliers (noise), then the false negative rate can be obtained from

1− 𝑟𝑒𝑐𝑎𝑙𝑙𝑜. Similarly, the false positive rate corresponds to:

1−
∑

𝑖∕=𝑜 𝑇𝑖 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙𝑖∑
𝑖 ∕=𝑜 𝑇𝑖

We conducted a set of experiments to evaluate the impact on precision and recall

of the number of dimensions, the number of points, and the point distribution (number

and shape of clusters as well as percentage of noise). The choices for the different

experimentation parameters are explained below:

∙ Number of dimensions: We used spaces from 2 to 6 dimensions. Two and three

dimensional spaces are used for illustration purposes, since the quality of cluster-

ing can be ascertained visually. DOC can be used with 5 and 6 dimensions, but

for these the time taken by our DBSCAN implementation became prohibitive and
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could not be used for comparison. Beyond six dimensions, the clustering proper-

ties of the SFC used for point distribution start to become less effective [55] and

would therefore not be as useful.

∙ Number of points: We clustered data sets of the order of 103, 104, and 105 points.

Illustrative tests in two and three dimensions were conducted with 103 points,

for ease of visualization. The remaining are the ranges expected in the targetted

applications, and are used with experiments for three or more dimensions.

∙ Shape of clusters: Convex and non-convex shapes were used for the illustrative

tests, given that the density-based algorithms should identify all types of shapes.

To facilitate experimentation and because the effect of cluster shape on accuracy

is beyond the scope of this thesis, convex-shaped clusters were used for all other

tests. However, these include lines and elongated shapes that would trouble non-

density-based algorithms.

∙ Noise percentage: Every experiment was conducted with high (5%) and low

(0.5%) noise percentage

Illustrative Tests

The illustrative tests were done with the purpose of verifying the accuracy of the algo-

rithms visually. Figures 4.14, 4.15, and 4.16 are the best and worst results obtained for

the three algorithms (determined by the combination of precision and recall, not visual

inspection) for the 2D and 3D illustrative tests.

Although DBSCAN had the best results visually, DOC had similarly good results,

especially in the 2D case. Although the higher dimension cases are not shown, it is worth

pointing out that DOC did better than dbscan in higher dimensions for the default

configurations because of the inaccuracy of DBSCAN’s parameter setting mechanism

in these dimensions (see Section 4.2.1). The Clique algorithm was highly sensitive to

parameter variations, as can be seen in the worst results.

The 3D test was designed as a very difficult set to cluster, because of the wide

differences in cluster densities and close proximities of the clusters. This was the test in
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Figure 4.14: Best (top) and worst (bottom) results for DBSCAN illustrative tests for
two and three dimensions

Figure 4.15: Best (top) and worst (bottom) results for DOC illustrative tests for two
and three dimensions
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Figure 4.16: Best (top) and worst (bottom) results for Clique illustrative tests for two
and three dimensions

which all algorithms performed the worst, but it is evident when observing the results

that DBSCAN had the advantage because of its density connectivity analysis.

Evaluation Results

In the results that follow, the following test name conventions are used:

<Test type><Num dimensions>D[<Point exponent>X<Noise density>]

Where:

∙ Test type is IT for illustrative tests and ACC for accuracy

∙ Point exponent is 4 or 5 (for 104 and 105 points respectively). Exponent 3 is

assumed for illustrative tests and is omitted.

∙ Noise density is L for low density and H for high density.

Figure 4.17 is the comparison of the precision of the three algorithms obtained for

their respective default parameter settings, and Figure 4.18 shows the best precision

obtained by the different algorithms with some parameter setting. While the best
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Figure 4.17: Comparison of precision results obtained from running algorithms with
default parameters

results for DBSCAN were consistently obtained with a particular set of parameters

(different from the default parameters), there was no such consistency in the results

for Clique. The best results for DOC were often obtained with the default parameters.

Another aspect to note is that the algorithms perform similarly and the quality of the

result depends more on the test type than on the algorithm used. However, DBSCAN

was the most consistent and accurate of the three algorithms in terms of precision.

The same comparison of the three algorithms is made in terms of average recall

(the recall of all clusters in the tests over the total number of clusters) and is shown in

figures 4.19 and 4.20. There is not as much variation in terms of recall as there is for

precision, since all of the tests except for one had over 85% average recall. When dis-

criminating the recall of different clusters (including noise), it is noise that consistently

has the lowest recall for all of the algorithms, as can be seen from the false negative

and positive rates.

When comparing the algorithms with respect to these outlier detection error rates,

it is evident that the false positive rate is consistently low or zero for all algorithms,

with no evident trends in the data. However, false negative rates are higher for all of

the algorithms. Figures 4.21 and 4.22 show the comparison of the false negative values

across the different tests. With default parameters, DOC performs consistently at an
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Figure 4.18: Comparison of precision results obtained from running algorithms with
best parameters

Figure 4.19: Comparison of recall results obtained from running algorithms with default
parameters
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Figure 4.20: Comparison of recall results obtained from running algorithms with best
parameters

average false negative rate of about 15%. Unlike previous cases, DOC does better than

DBSCAN and Clique for smaller data sets, possibly because of lower data densities

in the noise. It is clear from 4.22 that both DBSCAN and Clique are able to obtain

better results when provided with the correct parameters, but these are generally not

the parameters that can be found using the pre-processing method.

The relatively high false negative rates can be explained by the fact that noise is

generated randomly in the entire space, and thus a fraction of noise points inevitably

falls within existing clusters. To verify this, we calculated a metric called the local

outlying factor [14] (LOF) for the missed noise points. The LOF value is expected to

be close to 1 for points that are within a cluster and higher the more isolated a point

is from clusters in the space. Figure 4.23 shows the distribution of LOF values for all

of the different runs. For all algorithms, the majority of values are indeed close to one

within the range of values obtained, which indicates that the points being missed are

those that are close to or within a cluster.

Sensitivity Analysis

The sensitivity of the three clustering algorithms was evaluated with respect to three

basic aspects: 1) the characteristics of the information space, 2) the cluster distribution,
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Figure 4.21: Comparison of false negative results obtained from running algorithms
with default parameters

Figure 4.22: Comparison of false negative results obtained from running algorithms
with best parameters
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Figure 4.23: Box and wisker plot of LOF values of false negatives. The values within
the box are between the mean and median LOF values for the outliers missed by each
algorithm.

and 3) the individual algorithm parameters. Information space characteristics are the

number of dimensions, the number of points being clustered, and the percentage of noise

in the data. The sensitivity of the algorithms to these characteristics shows inherent

strengths and limitations for their application to particular contexts. By contrast, the

cluster distribution is a dynamic runtime aspect that includes the number, size, location,

and shape of the clusters. Although it is difficult to exhaustively and systematically

test the effect of different cluster distributions on the accuracy results, this was not

really the purpose of our analysis. Rather, we sought to establish whether or not there

was any effect due to distribution, in order to contrast this with the effect of other

aspects. The parameters of each algorithm affect the density threshold used to detect

clusters and outliers. The more sensitive an algorithm is to the setting of its analysis

parameters, the better an initial method or procedure for finding the best parameter

values has to be. This means that a very sensitive algorithm may not be suitable

for autonomous operation, unless a sufficiently intelligent agent is available to set the

parameters to achieve the best accuracy.

For each of the separate characteristics of the information space, we calculated the
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Figure 4.24: Correlations of information space characteristics with algorithm accuracy.
The quantities shown are absolute values since some of the correlations are negative.

correlation with both accuracy metrics (precision and recall). Each of the characteris-

tics was varied for the different types of tests, which are enumerated in Section 4.2.1.

Figure 4.24 shows the absolute values of the correlations found for each algorithm. For

the most part, there are no significant correlations, particularly for the number of di-

mensions and number of points. The accuracy of DOC, however, does appear to be

affected directly by the noise percentage (being that with recall the largest correlation

value found). The reason that recall is affected in this way by noise percentage is ex-

plained by the analysis of the false positive rate of the previous section. However, DOC

recall may be more sensitive that the other algorithms to the increase in noise (though

DBSCAN is also sensitive to it to some extent) because the density threshold for it is

not set manually, with the data distribution in mind. Although it may be concluded

that DOC is better suited to environments with a low incidence of outliers, which is

indeed the case of the applications studied in Chapter 5, note that the lowest average

recall for DOC with its default configuration is 81% (see Figure 4.19).

The aspect that affects accuracy the most is cluster distribution (point 2 above).

In order to evaluate the effect of cluster distribution without exhaustive exploration,

every test configuration was repeated for three different distributions. This means

that, across test repetitions, the location, size, and shape of the clusters were generated

randomly. However, the different algorithms were all run on the same test variations to

ensure a consistent comparison. As can be seen in Figure 4.25, the normalized accuracy

differences between the different distributions on each of the test types were nearly

identical for all of the algorithms. This means that the “difficulty” of the distribution

determined the accuracy of the algorithms more than any other factor. Furthermore,
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Figure 4.25: Effect of cluster distributions on algorithm accuracy. Each subfigure cor-
responds to a different algorithm and shows the different test types and cluster distri-
butions (pd1 – pd3).

the fact that the effect was the same for all of the algorithms means that DOC is not

inferior to the others in its ability to handle the different cluster distributions.

The final sensitivity evaluation is with respect to the algorithm parameters. The

parameters for DBSCAN are the minimum number of points (𝑀𝑖𝑛𝑃𝑡𝑠) in a point’s

neighborhood and the size of the neighborhood (𝐸𝑃𝑆). The parameters for Clique are

the number of divisions of the range of each dimension of the space (𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠), and the

percentage of the total number of points (𝑃𝑜𝑖𝑛𝑡𝑃𝑐𝑡) needed to identify a cluster in any

division. DOC uses the region size as a parameter, obtained from a value of 𝑀𝑖𝑛𝑃𝑡𝑠 as

described in Section 4.1.2. DBSCAN provides a visual method for parameter estima-

tion, that could conceivably be automated, but with pre-processing of the data. The

literature found for Clique does not provide a mechanism to determine its configuration

parameters, but since they are roughly equivalent to those of DBSCAN, the same set

of parameters were used for each. Each parameter was varied independently by 25%

and 50% below and 50% and 100% above the default values. For DBSCAN and Clique,

when one parameter was varied, the other was left at its default value.

Using the accuracy results from the runs with default parameters as a reference, we

obtained the difference in both precision and recall with each of the tests run with the

modified parameters. To better see the range of effects of the parameter changes, we

obtained distributions of the differences and plotted them as histograms in Figures 4.26,

4.27, and 4.28, for DBSCAN, Clique, and DOC respectively. There are two histograms

for each algorithm parameter, one for precision and the other for recall.
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Figure 4.26: Histograms showing the distribution of effects of DBSCAN parameters on
precision and recall. The values shown are relative frequencies of results that differ by
the given value from the results with default parameters.

For DBSCAN, the differences due to the variation of 𝑀𝑖𝑛𝑃𝑡𝑠 are small (most be-

tween 0 and 9 percentage points2 and 0 and 3 percentage points for recall). There

are some extreme cases, which are attributable mostly to specific cluster distributions.

For 𝐸𝑃𝑆, however, there is a broader distribution, with 40% of the maximum between

19 and 28 precision points. Recall is also relatively insensitive to variations in 𝐸𝑃𝑆,

although the distribution has values of up to 20% of the maximum between 15 and 20

points.

Clique, on the other hand, is very sensitive to parameter changes, especially to

changes in the number of divisions. Most precision results are between 12 and 37

points, and a significant amount are between 50 and 63 points. Although the other

distributions are not as marked, Clique is clearly the most sensitive algorithm.

In terms of precision, DOC is comparable to DBSCAN, with most results between

4 and 12 points. Like the other algorithms, it is also insensitive in terms of recall, with

2so called because they correspond to the metric unit, which is a percentage, and not to a percentage
of the default value for the metric
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Figure 4.27: Histograms showing the distribution of effects of Clique parameters on
precision and recall.

Figure 4.28: Histograms showing the distribution of effects of DOC parameters on
precision and recall.
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most results falling within 5 percentage points. Unlike the other algorithms, however,

the extreme values for the distributions are not as large, for either precision (up to 20

points vs 75 for both DBSCAN and Clique) or recall (28 points vs 30-32).

We mentioned earlier that the more insensitive an algorithm is to its parameters, the

more suitable it is for automated execution in a dynamic environment, because it relies

less on the accuracy of setting those parameters. These sensitivity results show that

DOC is well suited for automated, online execution using the parameter calculation

explained in Section 4.1.2, while both DBSCAN and Clique are less so. This is not

only because of the distributions above, but also because of the observation that these

algorithms often did not obtain their best results with the default parameters, especially

for higher numbers of points and dimensions, unlike the case of DOC. We further sustain

that the reason for the relative insensitivity of DOC is that the initial calculation of the

density threshold is based on a uniform distribution of points and not on the region size

parameter. Although cluster detection ultimately does depend on region size, because

the minimum number of points is obtained from the density and the region size, it is a

weaker dependency than that of the other algorithms.

4.2.2 Performance Evaluation

Algorithm running times

Online execution of clustering analysis depends significantly on the possibility of run-

ning the algorithms on the necessary data and obtaining the results within a reasonably

short time frame. This allows the analysis to be done within the same time window of

data generation. Analyzing the running times of DOC and its centralized counterparts

is thus important to understand when decentralization is necessary or at least a good

tradeoff with respect to accuracy. There are two components in the running time when

the algorithms are applied in a distributed system. In this section, we consider the

running times due exclusively to data analysis and result aggregation (in the case of

DOC), obtained from the experiments performed in the accuracy evaluation. The time

due to the distribution of data over the network will be analyzed in the next section.
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Figure 4.29: DBSCAN running times

The first observation that can be made is that the running times of DBSCAN show

poor scalability, as can be seen in Figure 4.29. Notice the logarithmic scale on the

time axis (measured in milliseconds). It should be noted that the implementation of

DBSCAN used for these experiments is not optimized, and significant improvements

in the running time of the algorithm can be obtained with appropriate optimizations.

However, the worst case complexity of the algorithm and the results presented in [26]

still suggest the same growth trend.

Until the order of 104 points, the performance of DBSCAN is good, taking slightly

over one minute in the worst case. For the order of 105 points, however, the duration of

the experiments was in the order of hours, and it was affected significantly by the num-

ber of dimensions and the algorithm parameters. Note in the figure that ACC4D5XL

and ACC4D5XH, which have the same number of points, but different noise percent-

age, took 51
2 and almost 39 hours, respectively. Because of these running times, it was

prohibitive to complete the rest of the experiments in higher dimensions.

In contrast, Clique is a very fast algorithm, as the time chart in Figure 4.30 shows.

All of the times obtained are less than one second. Because DOC is essentially a

decentralized version of Clique, the results of Figure 4.30 suggest the potential of the

decentralized implementation. The overhead of decentralization, however, is significant

when compared to the centralized result. In Figure 4.31, we can see the favorable
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Figure 4.30: Clique running times

scalability of the runtimes obtained with DOC, but also their increment with respect

to Clique. There are two main reasons for this. The first and most obvious reason

is the messaging overhead of the rounds of communication necessary to aggregate the

results across processing nodes, as described in Section 4.1.2. However, what appears

to be the most significant reason is that, due to the loosely-coupled communication

infrastructure, it is difficult for nodes to determine when no further communication

from other nodes is forthcoming and therefore when its results are complete. In the

current implementation, a node implements a timeout that is refreshed every time an

aggregation message is received. Only when the timeout expires does the node decide

that its result is complete. Clearly, the runtime is highly dependent on this timeout

value.

Despite the high runtimes with respect to Clique, DOC performs well, within two

minutes for all experiments of up to six dimensions and 105 points (Figures 4.31

and 4.32; the higher dimensionality tests are shown separately for DOC because they

were not replicated with DBSCAN and Clique, due to the excessive runtimes of the

former). The times scale well and depend more upon the data distribution than on the

number of points, since some experiments with 104 points took longer than others with

105 points. When compared to DBSCAN, the decentralized implementation becomes

favorable after 104 points. Also, recall that the results seen so far discard the point
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Figure 4.31: DOC running times

distribution time, i.e. the time taken to transmit points over the network to process-

ing nodes. If the data is initially centralized, the distribution time gives an advantage

to centralized algorithms. However, if data is initially distributed, as is the case in

distributed systems and the applications we consider, centralized algorithms also incur

overhead due to the initial centralization of the data. In the next section, we analyze

this overhead with respect to the redistribution of data in DOC and further determine

the circumstances in which the decentralized implementation is advantageous.

Figure 4.32 also includes tests run on the Amazon Elastic Compute Cloud [1], a

virtualized computing infrastructure where virtual machine instances can be configured

and created on demand. For these tests, a large file with over two million points was

divided among the nodes that ran the clustering algorithm. The first test was run

with 50 nodes and one million points, and the second with 100 nodes and the full two

million points. These tests show that the scalability of the approach can be maintained

by increasing the number of nodes in the clustering network. Note, however, that

The times in the figure had to be adjusted to account for a delay in point generation

introduced to avoid blocking of the node network, a problem which we attribute to either

network bottlenecks on Amazon’s infrastructure or load imbalance (an issue discussed

in Section 4.1.2 and then again in Section 6.1).
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Figure 4.32: DOC running times for higher dimensions, and including Amazon EC2
tests

Data Distribution Analysis

The experiments above were conducted with data generated from a single source and

distributed to processing nodes in the case of DOC. However, in an online management

scenario with monitoring data being produced by system components in real time,

data is already distributed. It makes intuitive sense, then, that processing the data

in-network with a distributed set of nodes would be more efficient than aggregating

the data in a centralized location for processing. This must be verified empirically,

however, because DOC requires a re-distribution of data to nodes in which every point

goes through 𝑂(log 𝑛) routing hops. A distributed algorithm like DOC will therefore be

preferable (in terms of distribution overhead) to a centralized algorithm if the latency

of routing is compensated by a reduction in synchronization overhead due to spreading

out the messaging load.

We assume that online clustering is done on data that is produced from distributed

sources at periodic (though not necessarily uniform) intervals. The application of DOC,

as described in Section 4.1.2 consists of two alternating or overlapping phases that

repeat over time: a data collection phase, in which nodes listen for the data routed

to them via the overlay from the distributed sources, and an analysis phase, in which

clustering results are produced. In order for online clustering to be effective, the analysis
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phase must, at most, complete within the same time period as that of the data collection

phase. Otherwise, the analysis phase would overrun the data collection phase and the

online process would not be sustainable.

The above means that the time added by point distribution to the execution of the

algorithm should be minimal. Ideally, point distribution should completely fit into the

time allotted for the data collection phase. Therefore, in order to compare centralization

against the redistribution of points in the overlay, we measure the overrun time: the

amount of time for which the clustering application is still receiving points after all

points have been sent. As another point of comparison, we also show the difference in

average bandwidth consumption during the distribution time for the overlay nodes and

the central node.

The experimental setup is as follows. In our 16 node cluster, sets of 104 and 105

points are divided equally among the nodes, which form a Squid/Chord overlay (see

Section 3). The points follow an artificially generated distribution, as in the accuracy

experiments, with a single cluster and differing levels of noise. The reason for this is

to simulate the worst case for DOC distribution in which most points are routed to a

reduced set of nodes. Points are generated by the nodes with a Poisson distribution,

and we conducted three sets of experiments, each with a different point generation rate.

These rates were 1, 2, and 10 points per second. For each experiment, the analysis

window (i.e. the duration of the data collection phase) was made to be equivalent to

the number of points per node times the data generation period. This way, all points

will be sent by the end of the analysis window, and it is possible to measure the overrun

time.

For the experiments conducted on redistribution, the nodes inserted the points via

the overlay interface with the given generation period until all points were exhausted.

During this time, they may also receive points that have been generated and routed to

them. However, they start measuring the overrun time only when they have inserted

all of their points, so that the final overrun time will be the time elapsed between the

end of the analysis window and the moment the last point is received by the node.

The experiments conducted on centralization were simpler, since all nodes send their
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Figure 4.33: Overrun time results, in terms of point equivalents, for distribution tests
conducted with 104 (left) and 105 (right) points. Notice the log scale on the Y axis.

points directly to the central node. This node keeps a timer that expires at the end of

the analysis window, so that it can likewise record the time from that moment until it

receives the last point.

The results of the experiments are summarized in Figure 4.33. To construct these

figures, we collected the overrun times for each node in each of the experiments and

obtained the average and maximum times. Since points have different generation in-

tervals in the different sets of experiments, and in order to compare their results, we

divided the total overrun times by the length of the generation period. This is roughly

equivalent to a number of points received during this period, but not exactly due to

network delay. The results from the overlay nodes are compared to the results at the

central node receiving all of the points. In the figures, notice the logarithmic scale that

shows the orders of magnitude difference between the results for centralization and re-

distribution. In terms of time overhead, the comparison is between a maximum of 4%

of the analysis window for redistribution vs 65% for centralization for 104 points, and

2% vs 65% respectively for 105 points.

As an additional comparison between the distributed and centralized setups, we

measured the application bandwidth consumption for incoming messages. Although it

is logical that the bandwidth consumption will be greater at the central node, which

receives the aggregated stream of points, we want to see the magnitude of this difference

when compared to the proportion with the number of distributed nodes. If the mes-

saging overhead among the distributed nodes is high, then the reduction in bandwidth

will be less than proportional to the number of nodes. In the distributed case, we also
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Figure 4.34: Comparison of bandwidth consumption in data distribution.

want to see if there is any significant skew in the bandwidth consumption of different

nodes due to the clustering of data (recall, we use the worst case of a single cluster).

In Figure 4.34, we can see the differences in bandwidth consumption for the different

generation rates of the distribution experiments, comparing the centralized case to the

maximum and median of the distributed nodes. Notice that there is some skew in the

consumption of the distributed nodes, seen in the difference between the maximum and

median values. Finally, the messaging overhead has negligible impact on the bandwidth

consumption at the distributed nodes.

4.2.3 Robustness Evaluation

The evaluation of the effectiveness and robustness of the clustering algorithm is done

with respect to two metrics: the error rate of outlier detection, in terms of false neg-

atives, and the overhead of replication. As with previous accuracy experiments, the

error rate is measured against a known data distribution, so that it is possible to deter-

mine whether points are labeled correctly as outliers by the algorithm. In this case, the

distribution used to generate the data is based on data collected from a device network

(used as test case for clustering-based management in Section 5.2.1), assuming that the

points drawn from the lowest frequency intervals are anomalous and should therefore

be labeled as outliers.
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We use the average length of the replication chains (see Section 3.2.3) for a run of

the algorithm as a metric that represents this overhead cost, since longer chains incur

greater overhead. The baseline for this metric is that of full replication, because the

average chain length in this case is the maximum length 𝑟∗. Below, we summarize the

replication mechanism, that corresponds to the heuristic multi-node replication model

proposed and analyzed in Section 3.2.3.

1. When a point 𝑖 is first received by a node 𝑗, this node calculates the probability

of outlier 𝑎𝑖 based on previous algorithm results. The current length of the repli-

cation chain (up to the predecessor) for that point, given by 𝑟′𝑝, will be 0 at this

stage and is included in the corresponding event message.

2. Node 𝑗, which has local failure probability 𝑝𝑗 , decides whether or not to replicate

the point further based on a replication probability 𝑞𝑗 calculated as 𝑎𝑣𝑔(𝑝𝑗 , 𝑎𝑖)×
ℎ(𝑟′𝑝), where ℎ is a decreasing probability function based on 𝑟∗ that guarantees

that the final 𝑟 is not greater than 𝑟∗. This could be, very simply:

ℎ
(
𝑟′𝑝
)
= 1− 𝑟′𝑝

𝑟∗

This function is 1 at the first node, and thus only depends on the failure and

outlier probabilities, and 0 when 𝑟′𝑝 equals 𝑟∗.

3. If the decision to replicate is affirmative, then the successor will receive the point,

store it, and calculate its own 𝑞𝑗 . Otherwise, the replication chain ends and 𝑟 is

given by 𝑟′𝑝.

In our experiments, processing node failures are independent and are modeled by

Poisson processes, simulated by a series of Bernoulli trials in which each node fails with

probability 𝑓 at each time step. For all experiments, we have two scenarios: one with

uniform failure rates and another in which more vulnerable nodes have a relatively

higher failure rate. In particular, we assume an adversarial attacker that targets nodes

responsible for regions likely to contain outlying points, so that 𝑓 is set equal to the
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outlier probability calculated at each node. Consequently, the nodes that are most

likely to fail are those with a greater outlier probability. We also calculate 𝑟∗ for full

replication as 5, as in Section 3.2.3. This is the value we use for comparison with our

experiments below.

We need to show how our selective replication mechanism produces a reduction in

the error rate that is comparable to full replication, but also significantly reduces the

average replication chain length. We evaluate the false negative rate of the clustering

algorithm in four cases: Without failures, with failures but without replication, with

failures with full replication, and with failures and selective replication. For each of the

four cases, we ran the algorithm for different numbers of processing nodes, once for each

of ten sets of data points, and averaged the results. In the case of random failures, we

also varied the failure rate from 5 to 50%. The results for full replication are the same

as those obtained without failures. Therefore, we only show the result of no failures as

a baseline comparison for the two other cases.

Selective replication is set up as follows. Because of the way in which failures are

simulated, we assume that each node has an accurate approximation of its own failure

rate, as it would be obtained using the Bayesian update rule from Section 3.2.3, and fix

this value to the corresponding rate for each trial. The outlier probability is calculated

based on the Bayesian formula. The conditional distributions for point distances are

taken from the distribution used to generate the data points, assuming that this history

is known to each node. Selective replication experiments are conducted in two stages. A

first run initializes the a-priori probabilities 𝑃 [𝐴] based on the update formula, applied

when a node detects outliers in its region. The results shown are from a second run

of the algorithm that uses these probabilities. When applying the algorithm online, of

course, the a-priori probabilities are updated continuously during the clustering runs.

Figure 4.35 shows the false negative error rates of the no replication and selective

replication strategies for differing failure rates, as compared to the case of no failures.

Lines with hollow markers correspond to results for no replication, while the corre-

sponding filled markers show the results for selective replication. It is evident that

selective replication significantly improves on no replication, and is close to the results
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Figure 4.35: Error rates vs. number of nodes for different replication strategies and
failure rates (FR=Failure rate; NR=No replication; SR=Selective replication)

Failure Nodes
rate 50 100 200 400

0.05 0.122 0.147 0.16 0.164

0.1 0.121 0.147 0.16 0.164

0.25 0.318 0.367 0.4 0.414

0.5 0.384 0.451 0.505 0.511

Targeted 0.398 0.525 0.593 0.552

Table 4.1: Average replication chain lengths based on failure and outlier probabilities

of no failures even in the face of high failure rates. Similar results for targeted failures

can be seen in Figure 4.36.

The other important result is the cost of selective replication when compared to

that of full replication, in terms of messaging overhead (measured as average replication

chain length). Table 4.1 shows the average replication chain lengths for the different

trials conducted, including targeted failures. Notice that the value is less than 1 in

all cases. This is because points are not replicated at all at many nodes, so that the

total replication overhead is a small fraction of the numbers of points being clustered.

In contrast, full replication requires at least one message per data point, and as was

calculated above, as many as five per point to provide the given guarantee that no point

is lost due to failure.
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Figure 4.36: Error rates vs. number of nodes for different replication strategies and
targeted failures

4.2.4 Result Analysis

The following points summarize the main conclusions that can be drawn from the

experimental evaluation of DOC and the algorithms to which it has been compared in

terms of accuracy and performance:

∙ The experiments showed that DOC is close in terms of precision and recall, in-

cluding outlier detection, to the centralized algorithms DBSCAN and Clique. In

addition, it is less sensitive to changes in its input parameters than the centralized

algorithms, which is an important aspect for online, automated application.

∙ The running time of DOC scales well with the size of the data set to be analyzed,

and is preferable to sophisticated algorithms like DBSCAN from the order of 104

points on. DOC completed all experiments in under 3 minutes, which makes it

suitable for online application in several management scenarios, which will be

described in Chapter 5.

∙ The overhead of decentralization, mostly due to cluster consolidation, was sig-

nificant when comparing DOC’s performance to that of Clique. On the issue

of centralization vs. decentralization, it is important to consider the impact on

centralizing data points that are originally distributed. The experiments showed
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that this overhead is indeed significant in terms of overrunning the time of the

data collection phase of the online analysis, as well as in terms of bandwidth when

compared to the decentralized implementation.

∙ The MNR replication model used for robustness predicted that the loss probability

of important points can be bounded with a short expected length of replication

chains, within given bounds of node failure probability. Implementing suitable

heuristics, the experiments confirmed the suitability of the model for maintaining

robustness at low cost in terms of replication chain length.
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Chapter 5

Decentralized Online Clustering for Autonomic

Management

In this chapter, we explore how to use clustering results for decision-making, as a way

to close the loop of the autonomic management cycle. Specifically, we describe the def-

inition and dynamic application of management policies, using profiles of distributed

system components obtained from the results of the clustering analysis. The mecha-

nisms developed in this chapter are then applied to different use cases, including device

network and data center resource management and usage control.

5.1 Dynamic Policy Management Framework

Policies are a powerful means of expressing high-level, goal oriented parameters that

manage the behavior of systems and users, and are thus valuable tools for autonomic

management. They provide a way of reducing the complexity of management tasks and

allowing human administrators to focus primarily on the definition of these policies at a

high level. However, polices are typically defined with static constraint thresholds and

are either associated with specific states of the managed entities or applied reactively

in response to feedback from events or actions. This limits their applicability to situa-

tions where the appropriate management actions depend on dynamic system properties,

which require adapting policy application thresholds and parameters without modifying

absolute policy definition constraints.

There is a gap that exists between goal-driven policies expressed in terms of these

absolute constraints and the actual thresholds on operational parameters that must be

applied so that these constraints are met. Clustering analysis can be used to charac-

terize both the operational state of the system and the dynamic mapping that exists

between this state and management goals. This is done by first identifying dynamic

run-time patterns within relevant events and correlating these patterns with specific
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Figure 5.1: Overview of the dynamic policy approach. Note that policies are derived
from meta-policies using clustering results and are applied to events in the application
space before feedback is available.

states of operation for which management policies can be defined. The online cluster-

ing approach can handle the large volumes of data that can be obtained by monitoring,

the distribution of this data, and the multiple attribute dimensions of the information

space. Policies can then be defined in terms of these evolving patterns and associated

with them with the correct events at the correct instance. We propose a scheme in

which policy definitions account for these dynamics, while at the same time are easily

realized in terms of absolute constraints and state descriptors.

The following sections present a conceptual framework for policy definition in terms

of event-based descriptions of system state, as well as for the dynamic application of

these policies based on a mapping of system states to an agglomeration of patterns in

run-time events. Figure 5.1 shows an overview of our approach.

5.1.1 Definitions

Before going into a detailed description of our approach, we enumerate some definitions

for the terminology that will be used. Some of these definitions mirror those of the

corresponding concepts introduced in Section 4.1.1 and are repeated as a reminder.
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∙ Entity : A user, component, or group of components of the system that is sub-

ject to control. In the case of users, they are subject to control though their

interactions with the system (events).

∙ Attribute: Any property of an entity that can be measured as a numeric value

within a given range.

∙ Information space (Σ): A finite, discretized, and normalized cartesian space,

where each dimension corresponds to an attribute: Σ ⊂ ℤ+𝑎
.

∙ Keyspace: Label given to a set of attributes that together define an information

space.

∙ Policy definition space (Σ𝐷): Information space composed of the keyspace of

attributes related to management goals and/or utility.

∙ Policy application space (Σ𝐴): Information space composed of the keyspace of

attributes related to management actions on system entities.

∙ Point/Event : Used interchangeably to denote a fixed set of attribute values,

specifying a coordinate in an information space.

∙ Region: A region is a set 𝑅 ⊆ 𝑆, such that any two points in 𝑅 can be connected

by a sequence of contiguous points in 𝑅. Each node is responsible for a unique

region, denoted by node.region.

∙ Cluster : Let 𝐷 be the data set being analyzed, then a set of points 𝐶 is a cluster

with respect to a region 𝑅, if density(𝑅,𝐶) > density(𝑆,𝐷).

∙ Centroid of a set (centroid(𝑋)): Point with minimum average distance to each of

the points in 𝑋.

∙ Width of a set along a dimension (width(𝑋, 𝑑)): The maximum distance of any

point in 𝑋 to centroid(𝑋) along dimension 𝑑.

∙ Profile element : Either a point or cluster associated with a particular entity.
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∙ Profile: A set of profile elements corresponding to the same entity.

∙ Action: A piece of code parameterized by an entity or an event.

∙ Meta-policy : A triple < 𝑃𝐸,𝑅𝐷, 𝐴 >, where 𝑃𝐸 is a profile element, 𝑅𝐷 is a

region in Σ𝐷 and 𝐴 is an action.

∙ Policy : A triple < 𝐸,𝑅𝐴, 𝐴 >, where 𝐸 is an entity, 𝑅𝐴 is a region in Σ𝐴 and 𝐴

is an action.

We restate an overview of our approach in terms of the preceding definitions as

follows. Managers define meta-policies associating actions to regions in Σ𝐷 by way

of a characterization of system state given by a profile element. The purpose of our

framework is to a) enable this meta-policy definition; b) detect profile elements in

monitoring data to be used with meta-policies; c) generate policies from meta-policies

by mapping regions in Σ𝐷 to regions in Σ𝐴 using the properties of profile elements; and

d) to enforce policies by applying the corresponding actions to events and entities that

match policy regions.

5.1.2 Policy spaces

In most systems, policies are usually statically defined, with fixed constraint thresholds

defined by managers, and pertaining to specific entities and system states. This is so

because policies are defined in terms of high-level goals, as measured by attributes that

act as indicators of these goals. Given these indicators, a system administrator can

define a number of desirable or undesirable system states and determine a management

action for each of these states with respect to the system goals. We consider applying

management actions defined by policies to events composed of multiple attributes. A

policy can then be defined by a region of application, an entity or entities to which it

applies (i.e. the source of the event), and a management action. Figure 5.2 shows this

concept.

The difficulty arises when defining the application region of the policy, because the

relation between the event attributes that are being managed and the system states



97

Figure 5.2: Representation of a policy as a region in a multidimensional information
space

Figure 5.3: Two policy spaces with example attributes. Note that it is easier to delimit
regions manually in the definition space (Σ𝐷) because of the nature of the attributes.
The combined region (1,3) shows that one region in Σ𝐴 may map to more than one
region in Σ𝐷.

to which management actions are attached is not known and/or is dynamic. To see

this more clearly, we can consider two distinct information spaces: one composed of

attributes that are known indicators of system goals and where policy boundaries can

be clearly delineated by an administrator, and another composed of managed attributes

whose values are the input of management actions. The point made earlier is that these

two spaces (i.e. the attributes that constitute them) are often not the same and are

related in a dynamic way, dependent on the design of the system, workload and client

interactions, available resources, etc. A snapshot of this dynamic relation is illustrated

in Figure 5.3.

We call the first space the policy definition space and denote it by Σ𝐷, and the second
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the policy application space, denoted by Σ𝐴. This is because, while an administrator

can define a policy in terms of the attributes of Σ𝐷, these policies need to apply to

events composed of attributes of Σ𝐴. Moreover, it is often the case that the values of

events in Σ𝐷 are not available a-priori, when the events in Σ𝐴 take place, and are only

available as feedback once an operation or system interaction has taken place (and after

management actions should be applied).

In order to differentiate between policies in the two spaces, we refer to policies

in Σ𝐷 as meta-policies, because a meta-policy is actually a specification of when and

how a dynamically generated policy should be applied. In order to derive policies

from meta-policies one must approximate the mapping of attribute values between the

two policy spaces. Our approach, illustrated in Figure 5.1, is to correlate both spaces

by observing the feedback attributes for a sequence of monitored events and finding

temporary mappings by finding agglomerations of patterns in these sequences that

determine the dynamic boundaries of newly generated clusters. These agglomerations

are found by applying clustering analysis to system events, composed of attributes from

both spaces, and agglomerating the clustering results to generate policies in Σ𝐴 from

meta-policies in Σ𝐷. This approach is explained in more detail in the next section.

5.1.3 Clustering-based policy generation

Figure 5.3 showed an instance in time of the mapping between the policy application

space (Σ𝐴) and the policy definition space (Σ𝐷). One way to partially obtain that

mapping, as Figure 5.4 shows, is to find sequences of events that cluster in both spaces,

because that would show a consistent relation between the regions covered by the clus-

ters in each space. Such a clustering approach can only partially show the complete

mapping at any point in time, since it is dependent on the events that occur within

a given time window. However, it is useful because it conveys the mapping for events

that, by definition of a cluster, are the most frequent or similar at that time, and ag-

glomerations of such clusters over time will cover the regions that are most likely to

contain events.

Consequently, it is necessary to find a cluster in Σ𝐴 that is also a cluster in Σ𝐷 (or
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Figure 5.4: Clustering as a tool to discover parts of the mapping between policy spaces

Object Properties Methods

Event Source

Region Keyspace Project(keyspace): Region

Ranges Apply(Action)

Cluster Size GetEntities()

Density GetElements(Entity)

Centroid

Profile Entity Update(Element)

Elements

Figure 5.5: Objects for meta-policy definition

viceversa). Sequences of events that are only clusters in one of the spaces are not useful

because they do not show a clear trend that can be interpreted as part of the mapping.

Clustering events in both spaces independently is, therefore, impractical. Instead, as

Figure 5.4 shows, we perform clustering in a combined space, which is composed of

attributes of both individual subspaces. Because clusters in this combined space will

also be clusters in each of the subspaces, the meta-policy whose region of application

contains the cluster in Σ𝐷 can be applied to a region in Σ𝐴 corresponding to the same

cluster.

Figure 5.5 shows properties and procedure calls of the different objects that are

used in a meta-policy definition. Please refer to Section 5.1.1 for detailed descriptions

of the different objects. It is important to note from the operations that a region may

be projected onto either space by removing some of its attributes. Therefore, a cluster

that is found by the clustering algorithm has a region that may be projected onto both

spaces.
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For each managed entity in the system, we maintain a profile composed of profile

elements. These profile elements are obtained by identifying the entities that produced

the different events contained in a cluster (or a single outlier) and extracting those events

for each entity (corresponding to the two cluster operations). It is important to consider

outliers in meta-policy definitions because they indicate potentially anomalous and

noteworthy behavior. Finally, meta-policies have specific actions that are application-

dependent pieces of code that can operate on any of the objects and procedures listed

in Figure 5.5.

Given all of the above objects and procedures, the cycle that includes the generation

of a policy from a meta-policy is as follows (see Figure 5.6). Events are produced by

managed entities to trigger actions in the system and are collected during a given time

window. Policies, if they have already been defined, are applied to these events to

influence the way that these actions are performed. Feedback from these actions, in

the form of events in Σ𝐷 is also collected during this time period. As the events are

being collected, clustering analysis is performed using all available attributes. These

results are available at the end of the time window, and are first projected onto Σ𝐷 as

profile elements. These profile elements trigger particular meta-policies by intersecting

with 𝑅𝐷 and contain the entities and other parameters (cluster size, location, etc.)

that are parameters of the action in this policy. Finally, each final policy is generated

by obtaining 𝑅𝐴 as a projection onto Σ𝐴, and from the entities and actions in the

meta-policy.

One issue that arises when generating policies and matching events to policies in

this way is what to do when two policies are mapped to intersecting regions in Σ𝐴

and additionally correspond to the same entity. In other words, there are potentially

conflicting policies that can apply to the same set of events. Policy conflict resolu-

tion is outside the scope of our work, although it is possible to detect and/or resolve

policy conflicts using manual techniques [51] or learning techniques [25], among others.

However, it is important to note that additional conflicts may arise from inaccuracies in

clustering and/or incomplete data. In Section 5.2, we use very simple conflict resolution

techniques, but better techniques must be developed in future work.
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1

Region assigned to node 1 for clustering. Node 1 detects a cluster in its region .

Region in which policy is defined, associated with green nodes, as well as node 1

Node index space mapped by SFC to the attribute space

Node network with circular index space; each node manages a part of the index space

The policy and profile can be matched at node 1 because the policy and clustering 

regions intersect at this node .

1

Template regions are defined and events are collected 

over time, clustered, and matched with regions

Policies are created from matched templates with 

specific regions

Policies are applied to events that fall within their regions

Figure 5.6: Application procedure for dynamic policies

5.2 Applications

The following application scenarios combine the use of different aspects of the de-

centralized online clustering and dynamic policy framework and illustrate the kind of

autonomic management tasks that it can support.

5.2.1 Device Network Management

Monitoring and management of large fleets of multi-function devices (MFDs) that can

provide physical services (printing, scanning, and communication and software services,

such as fax, e-mail, and file storage and transformation) is important for characterizing

usage patterns and load distribution, and answering questions about, for example,

the relative bias of users towards devices due to their location, performance, and the

services offered. Such understanding would help track the relative importance of devices

and services, delineate possible over/under or malicious utilization of the network, and

manage user QoS. Eventually, knowledge about user-device interactions in the network
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derived through data analysis can enable on-the-fly optimization of task scheduling

and service provisioning, and the isolation of malicious or anomalous users and system

nodes.

These MFDs are equipped with enough computing capacity to harness for in-network

management. To take advantage of this and demonstrate the use of the clustering and

dynamic policy framework, we identify outliers in job submission data and apply policies

for job priority assignment based on user/device job submission patterns.

The following experiments correspond to the analysis of real data collected from the

operation of a device network consisting of 54 devices. The network actually serves an

office environment that produces several hundred thousand pages a month. The data

consists of descriptions of jobs submitted to the devices during a seven week period. In

all, there were over 10,000 jobs of varying sizes (if the jobs were represented in terms

of pages there would be several hundred thousand) in the dataset. During the seven

week period, there were about 200 users interacting with these devices, which could

be spread out over a small geographical area within a large organization spanning

several buildings. The job descriptions identify the user submitting the job, the device

receiving the job, and the job size, and include the date and time of the submission.

The experiments correspond to two usage scenarios, described below.

Scenario 1: Monitoring device usage levels

In this scenario, the devices periodically monitor and report their usage level in order

to compare and detect normal usage patterns as well as abnormally utilized devices. To

this end, devices aggregate the job submissions for the given time period and produce a

status update consisting of three dimensions: average job size, number of jobs received,

and number of different users that submitted jobs to the device. Each one of these

attributes is a different indicator of usage that can be interpreted and controlled in

different ways.

In order to define the information space for this scenario, we must first define the

unit distances 𝑑𝑖 for each attribute. Recall that the unit distance is the minimum

distance at which two attribute values are considered to be different, and that it is
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Figure 5.7: Initial analysis for one week period using uniformly distributed regions for
the set of processing nodes. The figure illustrates the size of the information space
compared to the region where points cluster, which cause processing node regions to be
large initially.

strictly application dependent. In this case, we select 𝑑𝑗𝑜𝑏𝑆𝑖𝑧𝑒 equal to 10KB because

there were relatively fewer jobs below this value in our dataset. Since we wanted to

analyze the patterns relating to individual users and jobs that were served/received by

each device, 𝑑𝑛𝑢𝑚𝐽𝑜𝑏𝑠 and 𝑑𝑛𝑢𝑚𝑈𝑠𝑒𝑟𝑠 are both set to 1 - the smallest quantum for those

dimensions.

The network is initially set up with 54 processing nodes (one for each device). One

set of experiments was conducted setting the analysis period to one day, i.e. clustering

was done on the data generated for each day, while for another the analysis was done

for each week. In our dataset, the granularity of the weekly analysis provided better

clarity, and is thus used for illustration. Figure 5.7 shows the results for a single week,

in which events cluster near the origin, with a single outlier for a very large average

job size. However, due to the large size of the information space, the processing node

regions obtained with the initial parameter setting were large enough that nearly all

data points ended up in the region corresponding to a single node.
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Figure 5.8: Analysis of one week period after increasing the number of regions near the
origin

Given the initial clustering results, new region sizes can be calculated to obtain bet-

ter cluster resolution near the origin. Figure 5.8 shows the new results of the clustering

analysis for the same week as above. The scale has been modified to better visualize

the new outliers that were identified. Figure 5.9 summarizes the results for the seven

weeks of the experiment, showing only cluster centroids and outliers.

Additionally, outliers can be observed over several time periods to detect devices

that have consistently abnormal usage with respect to the usage of other devices. During

the seven week period, three devices were consistently present within the outlier reports

for the system. Their status updates are highlighted in Figure 5.9. It can be inferred

that the high usage of these devices is due to their importance within the network

and/or preference of users toward them (e.g. because of high quality of job execution,

strategic location in the system, kinds of services provided, etc.). This information can

subsequently be used to allocate greater resources for those particular devices, or to

improve other devices given their configuration/characteristics.
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Figure 5.9: Summary of results for weekly periods (device usage). The filled circles
represent the outliers from consistently anomalous devices.

Scenario 2: Usage control by monitoring job patterns

Usage Control defines policies that extend those of traditional access control by defin-

ing obligations and conditions, as well as authorizations, for users and policy appli-

cation [62]. These obligations and conditions are intended to provide a richer set of

semantics for runtime execution of the access control model by taking user actions and

system context into account for the application of authorizations.

In this type of device network, it is hard to come up with consistent resource quotas

and access privileges a priori because of the following: a) Most users (e.g. people who

are printing, faxing, scanning and using other document services) have their own unique

time-of-day dependent usage profile which deviates significantly from other users; b)

There is a distance element to most document services on the device network as people

have to walk up to their device and hence it is not easy to predict the user-device map-

ping; and c) Since these devices are internal to the organization, most users of services

have more than an adequate (in some other cases a very restricted) set of privileges

assigned to them, causing cost inefficiencies and security threats. As a result, adminis-

tering polices and accounting for changing user behavior is difficult in this domain.

We can show the dynamism of policy generation using our approach by defining
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Figure 5.10: Representations of the meta-policy regions as a priority mapping within
the definition space

meta-policies for this scenario. In order to do this, it is necessary to first identify the

attributes for Σ𝐷, according to the management goals. In this case, the system goal is

having a fair and balanced use of resources in the enterprise. In terms of usage control,

the rights to use certain device services (objects) by particular users (subjects) are

dependent on a user’s agreement to utilize the services in consideration of the needs of

other users and on the load conditions of the system as a whole.

The attributes that describe the usage trends of the system over time (obtainable

from job requests) are the average job size of a user within a given time period, the

number of distinct devices printed to by the user, and the job submission frequency of

the user in the period of time. A system administrator, based on experience, can set

regions of interest in the definition space that indicate the perceived fairness of situations

in which clusters of particular characteristics fall within these regions. Possible regions

for this scenario are shown in Figure 5.10.

A simple meta-policy that can be defined based on these attributes is one that

assigns priorities to jobs according to usage profiles and device utilization. For example,

jobs from low impact users (infrequent small jobs) to underloaded devices can be given

a greater priority than jobs from higher impact users and/or to more highly loaded

devices. This meta-policy can be realized by associating increasing priorities from the

origin to the regions of Figure 5.10, and, though simple, is suitable for illustrating the
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dynamism in policy generation.

The application space in this scenario is composed of request attributes of individual

job requests. Namely, the attributes are job size and the device to which the request

is sent. One thing to note is that applying clustering analysis to device IDs would not

yield very interesting results unless these IDs we related in some way. In this case,

device IDs are grouped based on the proximity of the devices, so that clusters along

this dimension indicate jobs submitted to devices that are close to each other. This

would be useful, for example, for defining policies that allow the redirection of jobs to

nearby devices.

For this experiment, we divided the data set into three chunks. The first two corre-

spond exclusively to jobs that originate in the morning and in the evening, respectively,

and are used as input to the clustering algorithm to obtain the policies, which emerge

as agglomerations of regions in Σ𝐴 (shown in Figures 5.11 and 5.12). The colors and

numbers indicate the mapping of the meta-policy regions and indicate the priorities

given a-priori to jobs of particular characteristics. Devices nearer the origin are those

that are closest together, and thus exhibit greater clustering of jobs. Note that these

devices are, in general, less loaded in the morning than in the evening, shown by the

large regions of high priority in the former, compared to a lower priority in the evening.

Also note that in the morning, regions of lowest priority are found for a group of de-

vices, both for large and small jobs. This can be explained by the behavior of certain

users submitting jobs of these characteristics at a high rate to these devices.

The third chunk of data is used as a test set to which the two different generated

policies are applied. Note that both policies were obtained using the same meta-policy

and merely reflect the dynamic mapping due to time-of-day usage differences. The

result of this experiment is shown in Figure 5.13 as two separate priority distributions

of the submitted jobs. This means that, for the same sequence of jobs, individual jobs

are be assigned different priorities based only on their application space attributes and

the automatically generated policies.



108

Figure 5.11: Policy regions generated based on clustering the events originating in the
morning, where the priority of each region is indicated by the numbers (1-3) or the
colors of the region boxes.

Figure 5.12: Policy regions generated based on clustering the events originating in the
evening, where the priority of each region is indicated by the numbers (1-3) or the colors
of the region boxes.
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Figure 5.13: Priority distributions obtained by applying morning and evening policies
separately to a single job sequence

5.2.2 VM Provisioning

The emergence of cloud computing is leading to a paradigm shift in the way that re-

search centers, enterprises and businesses are viewing their IT and computational needs,

i.e., many organizations are considering using clouds to support a significant portion

of these needs. This in turn is resulting in relatively long term, but highly varied and

elastic (dynamically growing and shrinking) demands for cloud computational resources

from various organizations of different types and sizes. At the cloud providers’ end, con-

solidated and virtualized data centers attempt to exploit economies of scale and provide

virtual machine (VM) containers to host a wide range of applications and provide users

with an abstraction of unlimited computing resources - users can essentially “rent” VMs

with required configurations to service their requests.

As scales, operating costs, and energy requirements of these data centers increase,

maximizing efficiency, cost-effectiveness, and utilization becomes paramount. However,

balancing QoS guarantees with efficiency and utilization becomes extremely challenging,

especially when the workloads are highly dynamic and extremely varied. A typical

workload in such a cloud infrastructure will consist of a dynamic mix of heterogeneous

applications, such as long running computationally intensive jobs, bursty and response-

time sensitive WS requests, and data and IO-intensive analytics tasks. Therefore,
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even though ensuring QoS and responsiveness can typically be accomplished using pre-

allocated VMs and overprovisioning, the increasing difference between these resource

allocations and application requirements magnifies resource under-utilization and leads

to cost increases. Consequently, there is a growing need for providing more reactive

on-demand provisioning, leading to better efficiency and utilization, but without an

unacceptable impact on system responsiveness.

In a cloud environment, executing application requests on underlying Grid resources

consists of two key steps. The first, which we call VM Provisioning, consists of creating

VM instances to host each application request, matching the specific characteristics and

requirements of the request. The second step is mapping and scheduling these requests

onto distributed physical resources (Resource Provisioning). While much work to date

has been dedicated to the resource provisioning problem, which is not addressed here,

under-utilization of resources resulting from inappropriate VM provisioning is still a

relatively unexplored problem. Most virtualized data centers currently provide a set of

general-purpose VM classes with generic resource configurations, which quickly become

insufficient to support the highly varied and interleaved workloads described above. For

example, Amazon’s EC2 only supports five basic VM types [1]. Furthermore, clients

(enterprises and SMBs) can easily under or overestimate their needs because of a lack

of understanding of application requirements due to application complexity and/or

uncertainty.

In this scenario, DOC can be used to efficiently characterize dynamic (rather than

generic) classes of resource requirements and can be used for proactive VM provisioning,

with the goal of reducing overprovisioning caused by the difference between the virtual

resources allocated to VM instances and those requested by individual jobs. Further-

more, policies can be defined to address the inaccuracies in client resource requests that

lead to inaccurate provisioning.
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Clustering-based VM Provisioning

VM provisioning refers to the efficient allocation of virtual resources to application jobs

as they arrive data center service queues, through the creation and allocation of ap-

propriately configured VM instances. Enterprise Grids hosting cloud services typically

have multiple geographically distributed service providers and entry points, i.e., multi-

ple queues may exist, with users submitting requests to their local application queues.

The state of a system in terms of resource requirements is represented in the short-term

by the job requests from different applications, as they wait in the multiple queues. A

dynamic provisioning solution needs to create VM instances by closely approximating

the specific resource requirements contained in this state. However, a reactive approach

in which each individual request results in a custom VM allocation would be highly in-

efficient because of the significant wait times incurred in the instantiation of new VMs,

in addition to the complexity of dynamically allocating physical resources for such a

wide range of resource configurations. According to a recent study [60], the instantia-

tion and startup times of VMs on Amazon’s EC2 are in the order of 60–120 seconds.

Thus, techniques such as DOC that can provide an online analysis and accurate char-

acterization of the dynamic state within this time frame can provide a set of required

resource configurations that can be proactively provisioned and allocated.

The proposed mechanism for dynamic and decentralized VM provisioning is as fol-

lows. As with most predictive approaches, we divide the flow of arriving jobs into

periods (analysis windows). In each window, an instance of the DOC algorithm is run

on the jobs that arrive, producing a number of clusters or VM classes. At the same

time, each job is assigned to an available VM as it arrives, if one has been provisioned

with sufficient resources to meet its requirements. The provisioning is done based on

the most recent analysis results from the previous analysis window, as follows.

For the first window, the best option is to reactively create VMs for incoming jobs.

However, the job descriptions are sent to the processing node network and by the

end of the analysis window each node can quickly determine if a cluster exists in its

particular region. If so, the node can locally trigger the creation of new VMs for the
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 Figure 5.14: Example information space and clustering results for dynamic VM provi-
sioning.

jobs in the next analysis window with similar resource requirements. According to [60],

the time required to create batches of VMs in a cloud infrastructure does not differ

significantly from the time for creating single VM instances. Thus, the VMs for each

class can be provisioned within the given time window. Because the classes correspond

to a characterization of incoming requests in the short term, it is expected that not all

windows will require reprovisioning.

To clarify the above procedure, consider an example illustrated by Figure 5.14. The

figure shows a two-dimensional information space with three initial clusters (squares).

The top right-hand corner of these squares represents the resource values that char-

acterize the class of jobs belonging to that cluster (because this amount of resources

is sufficient for all of these jobs). The dotted lines represent the regions defined by

each cluster that are mapped to the nodes that will contain the corresponding VM

descriptors. Any job that falls within those regions (like the star in the figure) can

be automatically assigned to the closest VM type (overlapping regions have more than

one VM type description). The circle is a cluster that is discovered in a subsequent

time window. This cluster can be used to create and provision a new VM type. The

x is a request that falls outside existing regions (outlier) and represents a job whose

requirements exceed the currently provisioned resources. In this case, the wait cost of

reactively creating a new VM type would have to be incurred.
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To test this approach, we examined the Los Alamos National Lab (LANL) CM-5

log, obtained from [28], which contains 201,387 jobs during two years. We used this

workload because computationally intensive applications are increasingly becoming part

of enterprise datacenter and cloud workloads. The requests from the LANL workload

contain the jobs’ resource requirements (memory, number of CPUs (𝑁), and requested

CPU time (𝑇 )). For clustering, we use memory and derive a value from the last two

requirements that represents CPU speed (𝐶). The value is calculated as:

𝐶 =
𝑁 × 𝑇

100

The value of 100 in the above calculation is a normalization factor that represents

the duration in seconds of a generic or reference job. Multiplying the number of CPUs

and requested CPU time gives a total CPU time requirement. The calculated CPU

speed corresponds to the speed necessary to finish each job in the fixed reference time.

We divide the dataset into several sequential subsets of job requests (of 1000 jobs each

in our case, chosen as an extreme value), each of which represents the contents of the

queues to be analyzed for provisioning within each analysis window.

The first experiment, which measures only overprovisioning cost, is meant to show

the accuracy with which the different data analysis approaches can statically approx-

imate the resource requirements of a job set. The DOC approach is run against cen-

tralized k -means clustering, another commonly used algorithm (see Section 2.2.3) that

is expected to provide a benchmark in terms of clustering accuracy. As a reference

point, we also consider the overprovisioning approach. For the reactive approach, of

course, no overprovisioning cost is ever incurred. The graphs in Figure 5.15 show the

overprovisioning cost for resource 𝑅 (CPU speed and memory) in each window 𝑖 as the

average difference between requested and provisioned resources for the set of jobs 𝑗 in

that window. This is:

𝑂𝑅
𝑖 =

1

𝑁

𝑁∑
𝑗=1

(
𝑃𝑅
𝑖𝑗 −𝑄𝑅

𝑖𝑗

)
On average, both DOC and 𝑘-means approaches perform similarly, which is a good

result, considering that decentralization and online execution must be traded for some
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Figure 5.15: Average difference between requested resource (CPU speed (top) and
memory (bottom)) for jobs and the corresponding analysis result in each time window
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accuracy in the clustering results (see Section 4.2.4). In fact, there is more variation in

the results of 𝑘-means, which we attribute to the differences in the selection of 𝑘. In

this experiment, we ran the 𝑘-means algorithm for a large range of 𝑘 values and picked

the best result for each run. This is a disadvantage with respect to the density-based

approach, since this procedure for determining 𝑘 values is usually done offline.

The dynamic application of the different approaches with respect to provisioning

response times is evaluated in the second experiment, in which the job sets form a

sequence of incoming requests and the analysis results in each window are used for

provisioning for the set of jobs in the next window. The impact on response time of

each approach is measured by counting the number of VMs required by each job that

could not be preallocated based on the predictions of that approach. This is because

each such VM must be created after the job is received and not during the previous

analysis window. Figure 5.16 compares the approaches that are amenable for online

execution, which are the reactive, overprovisioning, and DOC approaches. In all of

these, the VMs for the first set of jobs must be allocated reactively, so that all 1000 jobs

count in the first analysis window. Afterward, however, the overprovisioning approach

was always able to proactively allocate VMs for every job, so that its cost levels off at

1000. In contrast, all VMs created by the reactive approach are counted. The DOC

approach performs very closely to the overprovisioning approach, incurring creation

cost for outlying jobs or whenever the number of VMs provisioned for a resource class

is not sufficient. The total count for the DOC approach is 1462 out of 45000 in the

time frame shown.

Energy-Aware Provisioning

The flexibility afforded by clustering-based VM provisioning for determining resource

configuration classes can be exploited from an energy perspective by using these resource

classes to influence the selection or configuration of physical resources in a resource

provisioning strategy. The optimization of energy efficiency results from two distinct

strategies. The first is a static strategy that consists of closely matching the resource

usage of the VMs to the resource characteristics of the available physical servers. This
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Figure 5.16: VM creation cost vs. time for the different approaches

is essentially accomplished by mapping all of the jobs from single or closely related VM

classes (clusters) to similar machines. The second strategy is a dynamic approach that

requires being able to scale or power down specific subsystems of the physical resources

when they are not strictly necessary, given the mapping of specific VM classes to the

physical servers.

The static an dynamic approaches can be combined, by assigning VM classes to

servers with configurations that are close enough to those required, and only re-configuring

and provisioning available physical servers when the configurations of other servers differ

significantly. We only consider reconfiguring idle servers, except for upgrading servers

that are configured with fewer subsystems or less resources than those requested.

The dynamic server configuration strategy depends on the existence of power control

capabilities in specific subsystems, such as:

∙ CPU : The speed of the CPU can be controlled via Dynamic Voltage Scaling

(DVS). For applications that are memory bounded, the control of CPU speed

using DVS can lead to an affordable reduction in energy consumption.

∙ Memory : The energy consumption of the memory modules can be reduced by

controlling the memory frequency. For those applications that do not require
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Figure 5.17: Blade data center architecture model

high memory bandwidth, it is affordable to reduce their frequency or eventually

shut down some banks of memory in order to save energy.

∙ High performance storage: Disks can be powered down and possibly replaced

with flash memory devices that require less power when applications are not I/O

intensive.

∙ High performance network interfaces: Certain NIC subsystems (for example Myrinet

interfaces) can be powered down for non-network bound applications.

Current datacenters usually rely on modular architectures, such as those based on

blade servers, that bring new efficiencies and flexibility. Current datacenters commonly

use racks composed of blade server chassis (such as IBM BladeCenter or HP BladeSys-

tem) containing different blade server nodes. Compared to traditional 1U rack servers,

blade servers provide flexible ecosystems, easy maintenance and on-demand scalability.

Moreover, this configuration allows a higher number of processors and memory while

requiring less energy [83, 84]. Therefore, as is shown in Figure 5.17, it allows the config-

uration of specific subsystems per blade system (e.g. storage) or per node individually

(CPUs, memory and NIC).

The application of clustering-based VM provisioning to energy-aware resource pro-

visioning is the subject of current work, the initial results of which can be found in [73].

These evaluations were based on simulations and using workload traces from highly
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distributed production systems. Compared to typical reactive or pre-defined provision-

ing, our approach achieves improvements in energy efficiency of 15% on average, with

an acceptable penalty in QoS (less than 5% in workload execution time). However, we

recognized limitations of the approach due to the sporadic unavailability of configurable

servers for new VM classes. Therefore, additional mechanisms such as dynamic VM

management (such as VM migration) are necessary to improve our approach.

Request Management Policies

The results of the analysis of resource requirements for VM provisioning can only be as

good as the estimations of these requirements provided by job requests, as they relate

to performance and response times. These estimations are either based on experience

by submitting users or are approximated using historical data. In this scenario, the

goal is to apply policies to prevent over or underestimation of required resources by

making sure that the incoming job requests are as accurate as possible. (as close as

possible to the actual resource consumption of the job). We will show that this goal

can be effectively achieved using our dynamic policy approach.

Meta-policies in this scenario can be defined with respect to the slack in the re-

quested vs consumed resources of the jobs submitted to the data center. To achieve

the goal of minimizing slack, the policies that will be generated will actually modify

the requested values contained in incoming jobs, before those jobs are serviced. The

slack attributes that constitute Σ𝐷 are obtained by dividing the requested and actual

resource values. One thing we noticed from the data is that the number of CPUs re-

quested is almost invariably granted, and there is no way for an application to use more

CPUs than it has been given to run on. Therefore, we do not use this attribute and

instead focus only on computation time and memory.

Figure 5.18 shows the meta-policy regions in Σ𝐷. Basically, each region has ranges

representing different magnitudes of slack for computation time and memory, so that

different transformations can be made to incoming requests accordingly. For example,

an aggressive meta-policy (large transformation) can be defined beyond a certain slack
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Figure 5.18: Definition space with meta-policy regions for the resource management
scenario

threshold for both resources. Conversely, when the slack is small, a less aggressive meta-

policy can be defined to avoid overshooting the difference. The exact transformation

values of the generated policies depend on the profiles elements (in this case, clusters)

that fall into each region. For the present evaluation, we used the cluster width as a pa-

rameter for the transformation: aggressive transformations used the upper boundaries

of the cluster regions (by adding the width to the cluster centroid), while less aggressive

ones used the lower boundaries.

To generate the management policies from these meta-policies, we divided the job

trace into chunks as in the previous scenario, representing the clustering windows, and

then playing back the events to apply the generated policies. Note that it does not

matter that we used the same trace for analysis and simulation, since, in fact, this is

an online approach, and the analysis of any given window is only applied to events of

subsequent windows. We also assume that the application of policies does not influence

future events (which could happen if users modified their requests based on observing

the transformations applied to past events). This assumption does not compromise

our evaluation, since, in fact, it furthers the case that a solution that can handle such

dynamics is needed.

Figures 5.19 and 5.20 show the reduction in slack for compute time and mem-

ory, respectively, with respect to the request/consumption difference of the actual jobs
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Figure 5.19: Average computation time slack for the jobs in the trace

(control). The reduction in compute time is clearly significant, and, while there is a

reduction in memory, the slack for this resource was not very large to begin with. There

is also an improvement when analysis windows get larger, but the improvement is either

insignificant (for compute time) or actually starts to revert after a certain window size

(for memory). This supports the online clustering approach, as opposed to static/offline

analysis of traces, since trends change dynamically and old policies must be replaced

by new ones in oder to be accurate.

Note that three different conflict resolution strategies were used for when two or

more different policies applied to a single event. As a hypothetic comparison, we used

a strategy where the closest meta-policy region to the actual resource consumption

value of the job is chosen, if this consumption were known. The other two strategies

corresponded to applying policies only when there were no conflicts (single), or choosing

a policy randomly from the ones available. In all cases, the single strategy was similar to

the closest strategy. Curiously, the random strategy did better than the closest in some

cases, possibly because the closest strategy may have been too aggressive, overshooting

the slack difference when the values are close.
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Figure 5.20: Average memory slack for the jobs in the trace
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Chapter 6

Conclusions

The research presented in this document explored decentralized online clustering for

the autonomic management of distributed systems and included work on three levels.

The first is the decentralized, density-based clustering algorithm that spatially maps

distributed data onto processing nodes and then aggregates local results, which include

clusters as well as outliers (noise) in the data. The second is the implementation

of this algorithm on top of a communication infrastructure based on a structured,

content-addressed overlay for the robust and efficient distribution of clustering data

and the aggregation of results. The third level is the application of decentralized online

clustering to distributed system management, performing system monitoring, online

data analysis, clustering-based profiling, and dynamic policy management. This work

was applied to problems of anomaly detection, autonomic resource provisioning for

large-scale data centers and clouds, and usage control for device networks.

The basic approach for cluster detection consists of evaluating the relative density

of points within a multidimensional information space corresponding to a set of mon-

itored attributes. In order to evaluate point density, the information space is divided

into regions, and the number of points within each region is observed by an individ-

ual processing node. With knowledge of the total number of points in the information

space, processing nodes recognize clusters and outliers in their regions by comparing the

density of points contained therein with a baseline density for a uniform distribution

of points. The calculation of the baseline density corresponds to a novel parameteri-

zation that does not rely on data-dependent information, facilitating the dynamic and

automated application of the clustering algorithm. It was demonstrated that the clus-

tering algorithm itself requires minimal computation at processing nodes, which makes

it suitable for online execution. When compared to other known centralized clustering

algorithms in terms of accuracy, the proposed decentralized online clustering (DOC)
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algorithm never had more than a 15% deficit and even performed better on some data

sets. In fact, it was shown that the data distribution had a greater impact on accuracy

than the algorithms themselves. Furthermore, for a online monitoring scenario in which

data is initially distributed, it was shown that the impact on accuracy is compensated

for by the cost of centralization.

The performance of the decentralized clustering algorithm relies considerably on the

content-based messaging substrate that supports the exchange of status updates and

the partitioning of the information space into regions by implementing a dynamic map-

ping of points in the information space to processing nodes. The performance and data

distribution evaluations relied on the capacity of the messaging substrate for getting

the information used by the clustering analysis to the distributed processing nodes in

a scalable fashion. Work on the communication framework also dealt with the robust-

ness of the decentralized mechanisms at three levels. First, the overlay network that

supports the messaging substrate guarantees the routing of messages and maintenance

of the overlay structure despite membership changes and node failures. At the data

messaging level, we used the concept of replication chains to replicate and recover data

points to ensure their availability to the clustering algorithm. Finally, instead of hav-

ing replication chains of a fixed length, we used the concept of selective replication to

probabilistically replicate only those points that are likely to have an impact on the

result of the clustering analysis, using Bayesian probabilities and historical data. Our

evaluations showed that our heuristic replication model can bound the loss probability

of important points while maintaining a short expected length of replication chains.

Finally, we also explored how to use clustering results for decision-making, as a way

to close the loop of the autonomic management cycle. This is done via the dynamic

application of management policies defined in terms of profiles constructed from online

analysis. The mechanisms developed were applied to different use cases, demonstrating

the value of our proposed approach.

For device network management, the clustering analysis of job submission data

allowed the identification of consistent abnormal use of particular devices with respect

to the rest of the network, indicating the criticality of these devices. Additionally, the
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application of dynamic policies for assigning priorities to job submissions with respect

to user behavior and device usage uncovered a dependency of job submission patterns

with the time of day, which was accounted for in the policy generation.

For data center resource management, we explored the use of clustering for VM

provisioning, energy-aware resource provisioning, and the application of request man-

agement policies. The provisioning strategies helped reduce the overprovisioning and

energy cost in the allocation of VM resources by 1) allocating resources based on the

classification of incoming resource requests, as opposed to the assignment to predefined

VM configurations; and 2) scaling or powering down physical servers based on the re-

source requirements of the VM classes assigned to them. Furthermore, the accuracy of

VM provisioning was improved (by an order of magnitude for compute time and up to

30% for memory) by modifying inaccurate incoming resource requests using dynamic

policies.

We reiterate the specific contributions of this work:

∙ A decentralized online clustering algorithm and its robust implementation based

on a distributed monitoring and messaging infrastructure.

∙ Evaluation of the clustering algorithm and the tradeoffs and conditions for its

application.

∙ A conceptual framework for the creation of system profiles from clustering results

and the definition and dynamic application of management policies.

∙ Demonstration of applicability and results from actual use cases and system data.

∙ Application framework for the deployment of the self-monitoring, clustering, and

dynamic policy generation for autonomic distributed system management.
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6.1 Milestones and Future Work

6.1.1 Load balancing and processing node management

By definition, data that is clustered is distributed in an unbalanced way in the infor-

mation space. Because our clustering approach is based on the spatial distribution of

data, nodes that are responsible for regions in which data is clustering will be more

heavily loaded than others in terms of data and messaging. Although we have designed

and implemented mechanisms for load balancing, which have been employed in our

accuracy evaluation runs, we have yet to specifically evaluate both the extent and the

impact of this load imbalance and the tradeoffs with the overhead of the load balancing

solution.

6.1.2 Definition and Dynamic Application of Management Policies

As described in Section 5.1, we have explored ways to dynamically associate and adapt

policies to system profiles obtained by clustering, so that the application of these policies

is tailored to the dynamic behavior of managed elements. We have also developed ways

to use our distributed platform to map policies to regions in the clustering information

space, and consequently to profiles that fall within that region.

At present, our policy definition language is conceptual, and we rely on hand-coded

class files to specify meta-policy definitions for use in our framework. The natural

next step in this work is to develop a script-based language to write and interpret

meta-policies. The cluster-based mapping of meta-policies to policies in the application

space has been demonstrated empirically on specific use cases, but a more general and

analytic study is needed in order to obtain bounds on the accuracy of this mapping. This

is especially necessary to explore and develop mechanisms to address the generation of

conflicting policies, arising from the use of incomplete, online data.

6.1.3 Prediction and Learning Mechanisms

Ultimately, the goal of an autonomic system is to be able to respond to unexpected sit-

uations, for which learning and prediction can play a crucial role. Online, profile based
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prediction and dynamic policy application exploit the predictive potential of trends

indicated by clusters. However, we believe that learning and model-based prediction

can be more explicitly applied to several elements in our autonomic management frame-

work, such as data distribution learning for improving the accuracy of clustering results,

and probabilistic modeling, in which monitoring is viewed as a sampling problem due

to system scale and trust/security issues.

Our clustering algorithm is based on the comparison between a uniform distribution

of data in the information space and the actual possibly clustered distribution of system

events. Because we use online monitoring to analyze events periodically over time,

previous clustering results can be used to reshape the initially assumed distribution

to improve clustering accuracy and outlier detection. In other words, the clustering

algorithm can learn the data distribution from previous results. To this end, techniques

for managing historical data must be explored.

Because profiles constitute characteristic system behavior, they can be used for

history-based prediction. For example, if a user profile has information about resource

utilization, which clusters over time, the cluster centroid can be used as a prediction

of future resource utilization for effective resource provisioning. Attribute correlations

that can be obtained from profile information can also be used to construct models from

existing data, to predict, for example, missing attribute values from incomplete data,

or to better detect outliers. Although this aspect has been exploited to some extent in

the management scenarios with dynamic policies, further work using different modeling

and prediction techniques is worthwhile.

Given large systems with a very large number of components, it may not be feasible

to analyze all of the event data that originates from monitoring, even in a distributed

setting. It is also possible that system components must be queried for status informa-

tion, or monitored remotely because of trust issues. In this sense, allocating resources

for monitoring and data collection can be seen as a sampling problem, for which different

probabilistic techniques have been devised. Methods such as probabilistic collocation in

the field of engineering design are of special interest because they can be used to model

uncertainty in system response and because they are claimed to be faster with respect to
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other related methods. These techniques should be explored with the purpose of using

clustering results and the resulting data distributions as probability distributions that

can guide the sampling of event information, considering their feasibility for in-network

and decentralized application.
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