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ABSTRACT OF THE DISSERTATION

Relaying and Scheduling in Interference Limited Wireless

Networks

By Chandrasekharan Raman

Dissertation Directors: Prof. Roy D. Yates,

Prof. Narayan B. Mandayam and Dr. Gerard J. Foschini

In this dissertation, we address two issues related to communication in interference-

limited wireless networks. In the first part of the thesis, we study benefits of deploying

inexpensive half-duplex relays in interference-limited cellular system. We study two

relaying schemes in a downlink system, users sharing the same frequency band. In

the first collaborative relaying scheme, relays help users after they decode the message

intended for the user by a collaborative power addition scheme. We evaluate power

savings and rate improvement for delivering a common rate for 90% of users in the

system. We then consider power control at the base stations and relays in order to

manage the interference. In both cases, the ability of relays to reduce the peak base

station transmit power while delivering the baseline rate or alternately to increase the

user rate is computed. When power control is employed, the peak power saving is 2.6

dB and the average total power in the system can be reduced by 3 dB. We also observe a

34% improvement over the baseline in the users common rate. In the second orthogonal

relaying scheme, we study a simple scheme where the base station and relays transmit in

orthogonal time slots. We find that the performance of the simple orthogonal relaying

scheme comes very close to that of the collaborative power addition scheme.
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In the second part of the thesis, we consider a centralized spectrum server that

coordinates the transmissions of a group of links sharing a common spectrum. Links

employ on-off modulation with fixed transmit power when active. The rate obtained

by an active link depends on the activity of all other links. With knowledge of the link

gains in the network, the spectrum server schedules the on/off periods of the links so

as to satisfy constraints on link fairness and efficiency. We then extend the centralized

scheduling framework to multi-hop wireless networks with interfering links. A frame-

work for cross-layer scheduling of end-to-end flows in a multi-hop wireless network with

links sharing a common spectrum is presented. Given a set of known routes, the opti-

mization framework can be used to find the flow on each route in order to maximize an

objective function. The framework encompasses a variety of physical layer transmission

schemes. The rates in the individual links are determined based on the transmission

strategy employed. With the knowledge of the link rates in the network, the spectrum

server schedules the rates on the links and flows on the sessions to maximize a utility

function of the source rates. The schedules are a collection of time shared transmission

modes (sets of active links).
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Chapter 1

Introduction

This thesis deals with communication over interference limited wireless networks. In-

terference is an inevitable ingredient in multi-user wireless communication systems.

Wireless systems have been designed to manage interference in many ways. At one

end, orthogonalizing multiple transmissions in time and/or frequency simplifies the

problem to one of multiple simultaneous point-to-point communication links. Exam-

ples for such transmission schemes are Time Division Multiple Access (TDMA) and

Frequency Division Multiple Access (FDMA) [2, Chapter 15]. At the other extreme,

spreading the signal and interference over a wide band can make the interference look

like additive Gaussian noise and the problem again simplifies to a point-to-point com-

munication link. An example of such a scheme is the Code Division Multiple Access

(CDMA) [3]. More advanced techniques such as multiuser detection lead to complexity

in the receiver structures in practical systems [4]. In fact, the best (capacity-achieving)

transmission scheme for the interference channel is still unknown [5].

A practical example of an interference limited wireless network is the CDMA cellular

network. In the early days of cellular system, voice was the predominant type of traffic

carried by the system. Power control in CDMA systems proved to be an effective way

to handle interference when a certain voice quality (in terms of minimum signal to

interference plus noise ratio) was to be guaranteed to the users in the system. Of late,

when data traffic has become significant, maximizing end-to-end throughput under

strict quality of service constraints has turned out to be a very important criterion

for good system design. Recently, there have been many proposals to improve the

throughput of cellular systems. One such proposal is to use dedicated relays in cellular

networks.
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Though relays can improve the coverage and throughput in cellular systems, unco-

ordinated transmissions from additional relays might degrade the performance of the

system by increasing the interference in the system. In the first part of the thesis,

we study a deployment of half-duplex relays, in which a relay cannot simultaneously

transmit and receive in the same band, in cellular systems. We find that interference

limits the throughput performance as well as the power saving benefits that can be

accrued in a downlink cellular system. We propose power control in the presence of

relays in cellular systems and evaluate the power savings in the system. We evaluate

two different relaying methodologies — a collaborative scheme where the relays help

the base station in delivering the message to the destination and an orthogonal a simple

scheme where the base station and relay transmit in orthogonal time slots. An inter-

esting observation is that the performance of both relaying schemes come very close to

each other, indicating that simpler schemes buy us most of the gains due to relaying.

In the second part of the thesis, we consider a scenario in emerging wireless systems

where radios conforming to multiple competing technologies coexist in a geographical

region interfering with each other. The emerging cognitive radio networks fall into this

category. In such a scenario, the problem of interference can be more severe since the

various transmitter/receiver link pairs operate independently, each according to its own

protocol specifications. Interference aware scheduling can enhance the performance of

these systems. We propose a centralized framework to schedule these heterogeneous

radios. We assume that efficient open access to spectrum can be resolved by impartial

“spectrum servers” that can obtain information about the interference environment

through measurements contributed by different terminals, and then offer suggestions

for efficient coordination to interested service subscribers. As observed in [6], likely

neighborhood information could include various levels of time and frequency utilization,

descriptions of nodes in a neighborhood, and potentially, spatial positions as well. The

role of such a spectrum server for wireless network coordination is reminiscent of the

role of the DHCP (Dynamic Host Configuration Protocol) server in the coordination

problem that arises among nodes in the Internet.
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Specifically, we develop a centralized link scheduling framework to study the per-

formance bounds on interference limited wireless networks. Links employ ON-OFF

modulation with fixed transmit power when active. In the ON state, a link obtains a

data rate that is determined by the physical layer strategy employed at the receiving

node of the link. With knowledge of the link gains in the network, the spectrum server

schedules the ON/OFF periods of the links so as to satisfy constraints on link fairness

and efficiency. Using a graph theoretic model for the network and a linear programming

formulation, we express fairness constraints as lower bounds on the average minimum

rate for each link. Efficiency constraints are expressed as lower bounds on the ratio of

the average rate to the average transmit power for each link. Subject to fairness and

efficiency constraints, the spectrum server finds a schedule that maximizes the average

sum rate. The resulting schedule is a collection of time shared transmission modes (sets

of active links). The transmission modes are reminiscent of spatial reuse patterns in

cellular systems.

We then extend the above model to multihop wireless networks. We use a multi-

commodity flow model for routing various flows and the above interference model for

the physical layer. We obtain some intuition to which links should be scheduled to

optimize various objective functions. The objective functions captures the throughput,

efficiency and fairness requirements. The solution to the optimization problem gives

the corresponding operating point in the rate region of the set of links in the system.
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Chapter 2

Relaying in Downlink Cellular Systems

2.1 Motivation and background

The deployment of relays in cellular system has recently been standardized in the

WiMAX, IEEE 802.16j standard and is a topic of discussion in the advanced speci-

fications of 3GPP-Long Term Evolution (LTE) [7]. Although commercial relay deploy-

ments in cellular systems are not prominent at present, future wireless cellular systems

will involve operation with dedicated relays for improving coverage, increasing cell-edge

throughput and delivering high data rates. The proposed architecture is such that re-

lays would be placed at certain locations (planned or unplanned) in the cell to help in

forwarding the message from the base station to the user in the downlink, and from the

user to the base station in the uplink. Relays will be more sophisticated than simple

repeaters and could perform some digital base band processing to help the destination

terminal get better reception. Practical constraints on the radio demand that the re-

lays are half-duplex and hence cannot simultaneously transmit and receive in the same

band. These relays will rely on air interfaces, and hence avoid the considerable back

haul costs involving data aggregation and infrastructure costs associated with backbone

connectivity. However, there are a lot of open issues that require research to answer.

We present some of these issues in the sequel:

1. Throughput gains due to relay deployments

In cellular networks that are coverage limited, deploying relays can help in multi-

hop transmission and provide power gains due to reduction of distance attenua-

tion [8]. These power gains, in turn, translate to throughput improvements for the
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power limited edge users. However in interference limited settings, as is common

in cellular systems, uncoordinated transmission by relays lead to increase of the

overall interference levels in the cell and could be counter-productive by reducing

the signal-to-interference plus noise (SINR) levels of users in the system. Coordi-

nation of transmissions in the system would require centralized control and incur

high costs and overhead, especially in the uplink. Resource sharing across the

backhaul and access links becomes important to achieve gains in such scenarios.

Thus, there is a need for a thorough evaluation of throughput improvements in

a cellular system. In the cellular systems literature, there have been simula-

tion studies to evaluate throughput gains in cellular systems, e.g., [9–11]. Even

though the studies were conducted under different sets of (idealized) assumptions,

throughput improvements in interference limited cellular systems are shown to be

around 30% to 40% for the edge users. In this dissertation, we evaluate the gains

due to relay deployment by two different relaying strategies and the results in-

dicate that throughput gains are of the same order. However, there may exist

better practical schemes — which remain open — or specific scenarios where re-

lays provide larger throughput improvements. A simple case where relays provide

throughput improvements is the downlink scenario where the edge user is in a

deep canyon and the relay is placed in the line of sight of both the base station

and the shadowed user [10].

2. Relay placement

The benefits from relay deployment depend on where the relays are placed in the

cell. Throughput improvements depend on the transmit power, relay antenna

pattern and location of the relays in the system. Placing relays closer to an edge

user may help the edge user. However, when relay transmissions are uncoordi-

nated, the relays may cause near line-of-sight interference to an edge user of the

neighboring cell. The optimal relay placement depends on the transmission and

scheduling strategies, transmit power of the relays etc. A closely related issue to
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the relay placement problem is the choice of height of the deployed relays. In

macro-cellular environments, propagation characteristics of the base–relay link

and the relay–user link could be completely different, depending on whether the

relays are mounted on tall poles or on roof tops. These factors may very well

affect the system performance due to relay deployments. There are not many

measurement based models to cover all the scenarios of relay placement; some

empirical models are described in [1]. These issues apart, service providers often

do not have much choice in placing the relays in a given geographical area.

3. Lack of good models for relaying in cellular systems

Multihopping in wireless networks has been studied in the context of ad hoc net-

works and peer-to-peer networks [12]. The main issue addressed in such networks

is the routing problem. Interference constraints are abstracted as combinatorial

constraints and many insightful results and good algorithms have been proposed

to improve the throughput of such networks. Cellular networks, however, are

unique in that the traffic is one-to-many in the downlink and many-to-one in

the uplink. Direct application of the solutions obtained in the context of ad hoc

networks are not optimal for cellular systems. Hence, performance evaluation of

relays in cellular system requires fresh thinking into the problem.

On the other hand, the information theoretic relay channel [13] has been an active

area of research for three decades now. But for some coding strategies proposed

by Cover and El Gamal in [14] for special cases of the single relay channel, the

capacity of the general relay channel is still unknown [15]. Though most of the

earlier work assumes that the relay can transmit and listen over the same band,

the half-duplex constraint (the relay cannot simultaneously transmit and receive

at the same time in the same band) is taken into account in later work, for

example [16, 17]. The information theoretic studies reveal that when there are

one or two relays, the best strategy is to make use of both the source and relay

transmissions at the user location, rather than multihopping from the source to
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the destination through the relay(s). The intuition is that the user can make use

of signals from both the source and the relay to get a better signal strength and

hence a better rate. Multihopping on the other hand, ignores the signal from the

source, however strong it is.

The information theoretic relaying protocols mentioned above often involve com-

plicated multiuser coding and decoding techniques, that are too far from practical

implementation. There have been some recent work trying to bridge the gap be-

tween the information theoretic and practical multihopping schemes, e.g., [18,19].

Most of the results in these works correspond to the case of a linear network of

nodes, where there is a single commodity flow of message from the source node to

sink node through a set of relay nodes. Any interference is only due to simultane-

ous transmissions from different relay nodes. This can be completely eliminated,

by multiuser coding/decoding techniques. Such analysis does not carry over di-

rectly to the cellular systems since there are multiple simultaneous flows and

multiuser techniques may incur significant overhead.

4. Fairness

Service level agreements of cellular service providers entail certain fairness require-

ments. For example, in cellular system with voice users, the edge users and the

users near the cell require the same level of service. Many other fairness schemes

including proportional fairness [20] and max-min fairness [21, Chapter 6] have

been proposed for cellular systems serving voice and data. Present day cellular

systems implement schedulers in the MAC layer to provide various degrees of

fairness to users. In this work, we assume that the 90% of users are required to

be served at a common rate. When relays are present in the system, designing

distributed scheduling schemes to provide fairness is an active area of research.

In this dissertation, we evaluate the performance of low-cost half-duplex relays in

the downlink of a cellular system. The deployment scenario we consider is to mount a

low-cost (preferably low-powered) device per sector over roof-tops of buildings. Such
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devices can relay the information from the base station to users in the cell.

2.2 Related work and overview of our contribution

Relay deployment in a cellular system has been proposed to solve the issue of lack

of coverage over a large area [22]. The use of relays in cellular systems have also

been proposed to bring capacity improvements [23]. Viswanathan et al. [9] studied

the performance of a centralized throughput-optimal scheduler on a cellular network

with relays. They present a centralized downlink scheduling scheme that guarantees

the stability of user queues for the largest set of arrival rates into the system. Each

user has a queue at the base station and at its serving relay and the objective of the

scheduler is to stabilize both queues while maximizing the throughput. The throughput

results obtained by simulations in [9] suggest that simultaneous transmissions (due to

multihopping) exploiting spatial reuse could lead to cell-wide throughput gains in a

cellular network.

In addition to a multihopping model, wherein the message travels to the destination

in two hops, in this dissertation we evaluate the performance of a collaborative power

addition (CPA) scheme with a single relay available per user. We bring an additional

dimension to the benefits of relays in a cellular system, by quantifying the power savings

due to deployment of relays. Peak power savings in cellular networks are very important

elements of amplifier costs in base stations. Significant peak power savings can reduce

the cost of amplifiers and hence capital expenses for deploying cellular networks. Also,

average power savings while operating cellular networks can save operational expenses

such as electricity bills for the cellular operators.

In the first CPA scheme, we first consider a hypothetical model where 90% of the

users are required to be served a file (henceforth, we use the term message and file

interchangeably) of a fixed size within a certain deadline. Depending on the interference

seen by each user, the mutual information (MI) or the instantaneous “rate” of the users

vary over time. Users leave the system as they get the complete file within the deadline.

We assume facility of large computation and use an offline computation to find the worst
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10% of users that would not be able to get the complete file within the deadline and

discard them at the beginning. We run the real system without the users in outage.

When relays are present in the system, we evaluate the peak power savings at the base

station to deliver a file of same size to the same number of users in the system as when

the base stations and relays are transmitting at their peak power limits. We also find

the improvements in common rate for the users in the presence of the relays when the

peak power of the base stations are fixed for both the baseline and the system with

relays.

We then include the power control capability to the base stations and relays. We

evaluate the power savings and throughput improvement in the collaborative power

addition scheme (PC-CPA). For a desired common rate requirement for 90% of users in

the system, we find the common peak power constraint in the baseline case and in the

system with relays to guarantee the common rate. When the relays get the complete

message, they collaborate with the base station to transmit the message to the users.

Each time a relay becomes eligible to transmit, the optimal set of powers are found

to satisfy the desired rate requirement. The set of users that violate the peak power

constraint are discarded at the beginning. The improvements in common rate are also

evaluated through a similar procedure.

The second relaying scheme we evaluate is simple multihopping, wherein the base

stations and relays transmit in orthogonal time slots. The baseline system is similar

to the baseline in the CPA scheme described above. When relays are present in the

system, we simulate a time-slotted system. For a common rate requirement for 90% of

users in the system, the base stations transmit at peak power in odd time slots. The

relays and users are in the receive mode. In the even time slots, the base stations are

turned off and relays transmit to the respective users. The relays employ power control

to target the remainder of the user population to provide the residual rate to the users.

We describe the system in detail in the later sections.

We do not consider any multiuser scheduling gains, MIMO gains and any other

complex interference mitigation techniques. Thus the gains shown in the network are

purely due to the power gains at the user location due to the relay transmissions.
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Figure 2.1: Wrap-around simulation model. The center ring of 19 cells are used for the
simulation. The surrounding cell activity is mirrored in the center ring. The direction
of the arrows represent the direction of the main lobe of the sectorized antenna.

2.3 The set-up

Our work aims to evaluate the power savings and improvement in common rate among

users due to relay deployments in a cellular system. However, to model and simulate

all dynamics of a cellular system can be too complicated. In order to overcome such

difficulties, we make some reasonable simplifying assumptions and take an idealized

look at the model and operation of a cellular system in our work. In order to make a

fair comparison, the assumptions are kept consistent across systems with and without

relays. We consider a cellular system with idealized hexagonal cells with a base station

at the center of each cell. The topology is shown in Figure 2.1. The first two tiers of
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Figure 2.2: Antenna gain pattern (from [1]) as a function of the horizontal angle in
degrees. The mathematical expression for the gain is given in equation (2.1).

interferers are considered and the activities of the farther tier of cells are mirrored by

the center ring of 19 cells. The site-to-site distance (distance between any two base

stations) is taken to be 1 mile. The cells are divided into 120 degree sectors, each sector

illuminated by a base station antenna pattern given by

A(θ) = −min

(

12

(

θ

θ3dB

)2

, Amax

)

, (2.1)

where A(θ) is the antenna gain in dBi in the direction θ, −180 ≤ θ ≤ 180, min(.) denotes

the minimum function, θ3dB = 70 degrees is the 3 dB beamwidth and Amax = 20 dB is

the maximum attenuation. The antenna gain pattern is shown in Figure 2.2.

At the receiving terminal (relay or user), the transmitted power undergoes atten-

uation due to the distance traveled and shadowing effects around the receiver. The

propagation attenuation between a transmitting terminal (base station or relay) and a
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Figure 2.3: Position of relay location in a cell. The relays (represented by small circles)
are placed at half the cell radius in the direction (given by the arrows) of the main lobe
of the sector antenna. The base station at the center of the cell is represented by a
square.

receiving terminal (relay or user) consists of the path loss and the shadowing com-

ponent. At any receiving terminal, the transmitted power is attenuated in dB as

PL(d) = −31.5− 38 log10 d, where d is in meters. The shadowing is modeled as lognor-

mal with mean 0 dB and a standard deviation of 8 dB. The shadowing is assumed to

be spatially uncorrelated and fixed for a given set of user locations. The base station

and the relay antenna gains are taken to be 15 dB (at zero degree horizontal angle)

and user antenna gain as −1 dB. Other losses account for 10 dB. Together with the

above losses, we include the antenna pattern loss to calculate the received power. The

receiver noise figure is set at 5 dB, and the thermal noise power at the each receiving

terminal (relay or user) is assumed to be −102 dBm. The effect of multipath small scale

fading is ignored in our simulations. All users share the same band of frequencies and

hence simultaneous transmissions can interfere with each other. The total interference

at each receiving terminal from all transmitters in the system is modeled as Gaussian

noise and idealizes that other users use Gaussian codebooks. The achievable rate to a

user i at time t is calculated as the Shannon rate

Ri(t) = log2(1 + ρi(t)), (2.2)

where ρi(t) denotes the SINR for user i at time t The parameters used in the above

mentioned simulation set-up are summarized in Table 2.1. We use this simulation set-up
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Table 2.1: Parameters used in simulations

Network Topology 19 cells, 3 sectors per cell with wraparound

Site-to-site distance 1 mile

Bandwidth 5 MHz

Path loss model COST-231 Hata model

Path loss exponent α = 3.8

Shadowing Lognormal, with zero mean, 8 dB

standard deviation for access and backhaul

Multipath fading None

Antenna Pattern Sectorized for base stations

Omnidirectional for relays

Antenna gains 15 dB (for base station and relays)

-1 dB for users

Other losses 10 dB

Thermal noise power at

the receiver -102 dBm

Outage 10% for baseline and with relays

for evaluating all relaying methodologies proposed in this dissertation.

2.3.1 Placement of users and relays in the system

We simulate a downlink OFDM-like system wherein users in orthogonal time or fre-

quency slots do not interfere with each other. However, users in the same resource

unit interfere with the other transmissions in the band. We simulate the worst case

scenario where the system is fully loaded, i.e., users are present in all available re-

source units (or time-frequency slots) in all the sectors. The time-frequency slots are

reused in each sector. We assume that the time-frequency slots are orthogonal, and

focus only on a particular time-frequency slot within which we simulate the complete
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cellular system such that there is one active user per sector at a given time. Hence,

in a 19-cell network with 3 sectors per base antenna, at most 57 users are served at a

given time-frequency slot. In our simulations, we use the following heuristic to create a

random user population along with an association rule. Users are placed one-by-one in

a uniformly random fashion across the network until all 57 base station sectors are oc-

cupied. For each random realization of a user location, the base station sector with the

highest received signal strength is chosen to associate with the user. If the base station

sector is already occupied by another user, the user is not allowed into the system and

a new user location is generated. Along with a random realization of a user location,

independent lognormal random variables also instantiated to account for the shadow

fading gains between each base station and the user in the baseline system. If relays

are present in the system, the fading gains are also generated for base station – relay

links and relay – relay links. In this way, the random placement is carried out until all

57 sectors are occupied by exactly one user per sector. Each user is equipped with an

omni-directional antenna.

A relay with an omni-directional antenna is placed in the direction of the main lobe

of each base station sector antenna as shown in Figure 2.3. The relays always associate

with the corresponding base station sector. The relay placement is an important pa-

rameter to be considered since the power gains and throughput improvements depend

on the interference generated by the relays, which in turn, depends on the transmit

power, geographic location of the relays and the propagation environment. In our sim-

ulations, we experiment with various relay placements and the simulation results are

presented for the relay locations for which the gains are found to be maximum. The

relay powers are also varied so that we get the maximum peak power savings.

2.4 Organization

The organization of Section numbers for half-duplex relaying methodologies and the

performance evaluation is given in the Table 2.2.
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Table 2.2: PERFORMANCE EVALUATION OF RELAYS IN DOWNLINK CELLULAR SYSTEMS

(2.5) Collaborative Power Addition (CPA) (2.8) Orthogonal Relaying

(2.6) CPA with Peak power transmissions (P-CPA) (2.7) CPA with power control (PC-CPA)

(2.6.1) Principle of operation (2.7.1) Principle of operation (2.8.1) Network operation

– Baseline – Baseline – Baseline

– Relay – Relay – Relay

(2.7.2) Optimization Framework (2.8.2) User discarding method

– min average power – Baseline

– min peak power – Relay

– rate improvement

(2.6.2) User discarding method (2.7.3) User discarding method

(2.6.3) Network operation (2.7.4) Network operation

(2.6.4) Simulation Results (2.7.5) Simulation Results (2.8.3) Simulation Results

– Power savings – Power savings – Power savings

– Rate gains – Rate gains – Rate gains
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2.5 Collaborative relaying in cellular networks (CPA)

In the Collaborative Power Addition (CPA) scheme devised in [24], the relay collab-

orates with the base station to help the message reach to the destination. In our

simulation model, each base station sector has a single user to be served and a relay

that may help the source to deliver the message to the user associated with the source.

In what follows, we focus our attention on an isolated triplet of base station (source),

relay and user in a single sector. Gaussian encoding is used across all other sectors, the

interference from other sectors is considered as if it were additive Gaussian noise. Sup-

pose the source wants to transmit one of M messages to the destination, under a power

constraint P . The source transmits a Gaussian codeword of length N = (log M)/R,

where R is the rate of the code. By Shannon’s channel coding theorem [25, Chapter 9],

if N is large enough, the message can be decoded reliably at the destination provided

R < log(1 + ρ), where ρ is the received SINR. In our simulations, we are interested in

achievable rates and assume that the instantaneous mutual information at the receiver

is exactly R = log(1 + ρ).

Assume that the source picks a rate R code C1 and sends one of M equally probable

messages to the destination, using a codeword of length N . Let the received SINR ρSR

between the source and relay be greater than the received SINR ρSD at the destination.

Then, there exists some β > 1 such that

log(1 + ρSR) = β log(1 + ρSD), (2.3)

i.e., the capacity of the channel from source to relay is β times greater than the channel

from source to destination. We can now construct codebook C2 derived from C1 by

observing only the first ⌈N/β⌉ symbols of every codeword. The relay can then reliably

decode the received message since the rate of C2 is

R′ =
log M

⌈N/β⌉
< log(1 + ρSD) (2.4)
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S o u r c e R e l a y D e s t i n a t i o n

Figure 2.4: Collaborative relaying: before relay decodes the message

S o u r c e
R e l a y D e s t i n a t i o n

Figure 2.5: Collaborative relaying: after relay decodes the message

In [26, Appendix F], the authors discuss the coding interpretation of a similar col-

laborative strategy. The authors also discuss the connection of such a coding setting

with coding for arbitrary varying channel (AVC), which was first dealt with in [27] and

then subsequently studied in [28]. We simulate a similar collaborative coding strat-

egy wherein before the relay decodes the message as shown in Figure 2.4, the received

power at the destination node is only due to the base station transmission. After the

relay decodes the message, the relay joins the base station to help the base station in

delivering the message to the destination as shown in Figure 2.5. At this point, if we

assume that transmit symbol time slots at the relay and base station are synchronized

and the code books are shared, the system can be viewed as a 2 × 1 MISO (Multiple-

Input Single-Output) system without channel information at the transmitter. There is

an effective power addition of the base station and relay transmissions at the destina-

tion [29, Chapter 3]. A similar scheme was proposed in the literature dynamic decode

and forward (DDF) scheme [30].

We simulate this collaborative relaying strategy in two ways:

• Base station and relay transmit at their respective peak powers. In this case, the

transmit power is fixed and the users get variable rates depending on SINR at
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the user locations. When a target rate is obtained by a user, the user leaves the

system and the corresponding base station sector is turned off, thus reducing the

amount of interference in the system. We term this the peak collaborative power

addition (P-CPA) scheme. This is described in Section 2.6.

• Base station and relay operate with power control so that the users obtain a target

desired rate. In the baseline case, for a given desired rate requirement r0 bps/Hz,

a feasible set of powers are found to better satisfy the rate requirement, allowing

for a certain users to be in outage. When the relays decode the message in the

collaborative scheme, the optimal powers are recalculated to find another feasible

set of powers to satisfy the rate requirement at the same outage level. We term

this the power control collaborative power addition (PC-CPA) scheme. This is

described in Section 2.7.

2.6 CPA with peak power transmissions (P-CPA)

2.6.1 Principle of operation

P-CPA Baseline

In the baseline of the P-CPA scheme, each base station sector transmits at its peak

power to its own intended user. Since all users share the same band of frequencies, they

observe interference from all the base station sectors in the system. If at time t, pi(t)

is the peak power of the transmitting base station sector corresponding to the ith user

and hij is the channel gain, including path loss and shadowing, from the jth base to

the ith user and σ2 is the variance of the noise power at the receiver, the instantaneous

received SINR for user i is given by

ρi(t) =
hiipi(t)

∑

j 6=i hijpj(t) + σ2
. (2.5)
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Since we assume Gaussian signaling, the MI (mutual information) or the instantaneous

“rate” to each user is given as

Ri(t) = log2(1 + ρi(t)) bits/symbol. (2.6)

At time t = 0, all base stations simultaneously transmit to their associated user. As

time progresses, for any given time interval [t, t + ∆t], user i accumulates MI Ii(∆t) =

Ri(t)∆t. The MI for user i at time t is given by,

Ii(t) =

∫ t

0

log2(1 + ρi(ξ)) dξ. (2.7)

If user i accumulates MI corresponding to the required amount L of data before the

deadline T , i.e.,

τi = min
0≤t≤T

{t : Ii(t) = L}. (2.8)

then the user leaves the system and his associated base station sector is turned off at

time τi, reducing the overall interference levels in the system. Hence,

pi(t) =







P, t < min(τi, T ),

0, t ≥ min(τi, T ),
(2.9)

where, P is the peak power of the base station transmission. Note that the ρi(t) of user

i and the rate Ri(t) are time varying quantities. At time t = T , the users that remain

in the system are those users that did not get the complete file. It is these remaining

users that are ascribed to be in outage.

P-CPA system with Relays

The operation of the P-CPA system with relays is as follows. The requirement is the

same as the baseline case: to deliver a file of size L to as many users within the time

T . At time t = 0, the base stations transmit at peak power to users associated with

them. The relay node placed in the sector also receives the data sent to the user by

the base station. If the relay gets the complete file before the user gets it, the relay
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can potentially be useful to the user by helping it get the message faster. On the flip

side, the relay transmission can create additional interference for the other users in the

system. In our simulations, we follow a myopic1 policy on whether to turn on the relay

or not: the relay transmits at peak power to help its user only if the instantaneous

sum-rate of the whole system increases by turning the relay on. The sum-rate of the

system is calculated as the sum total of the instantaneous rates of the existing users in

the system and is a natural system-wide metric to use in order to decide whether the

relays should transmit or not. At every epoch, a relay gets the message, among the set

of all relays that are eligible to be turned on, the myopic sum-rate metric is applied and

those relays that increase the sum-rate are turned on to help the users in the system.

If the relay increases the sum-rate of the system, the relay is turned on and helps

the user with a transmission reinforcing the same message as the base station using the

code described in Section 2.5. If qi(t) is the power transmitted from the relay i at time

t and gij is the channel gain from the user i to the relay j, the effective SINR at ith

user location when the relay is active is given by

ρrelay
i (t) =

hiipi(t) + giiqi(t)
∑

j 6=i hijpj(t) + gijqj(t) + σ2
. (2.10)

The instantaneous rate and the mutual information for user i at time t are given by

Rrelay
i (t) = log2(1 + ρrelay

i (t)) (2.11)

Irelay
i (t) =

∫ t

0

Rrelay
i (ξ)) dξ. (2.12)

If Hij denote the channel gain from the jth base station to the ith relay,

Ji(t) =

∫ t

0

log2

(

1 +
Hiipi(ξ)

∑

j 6=i Hijpj(ξ) + σ2

)

dξ (2.13)

represents the cumulative MI at the relay at time t.

Suppose the relay i becomes eligible to transmit at time t, i.e., Ji(t) > L, then

1The policy is myopic since, at the time when the relay gets the message, the global optimal decision

whether the relay should transmit or not is unknown.
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denote the sum-rate of the system at time t as a function of qi(t) as

SR(t, qi(t)) =
∑

i

log2

(

1 +
hiipi(t) + giiqi(t)

∑

j 6=i hijpj(t) + gijqj(t) + σ2

)

. (2.14)

Then, the relay power at time t is given by

qi(t) =







Q, if Ji(t) > L,SR(t,Q) > SR(t, 0) and t < T,

0, otherwise,
(2.15)

where Q is the peak power constraint of the relays. Each user sees a time-varying SINR

and the time-varying rate given by Ri(t) = log2(1+ρrelay
i (t)). As with the baseline case,

for any interval of time [t, t+∆t], user i accumulates MI amounting to Ii(∆t) = Ri(t)∆t

and the MI for user i at time t is

Ii(t) =

∫ t

0

log2(1 + ρrelay
i (ξ)) dξ. (2.16)

Similar to the baseline case, if the user accumulates MI amounting to the full file size L

within the stipulated time T , the user leaves the system and the associated base station

and relay are switched off. Thus the effective interference in the system is reduced. At

time t = T , the users that remain in the system are those users that did not get the

complete file.

2.6.2 User discarding methodology

The user discarding procedure can be divided in two phases:

(i) A learning phase where we learn the power threshold, that is used as a criterion

to determine the users in outage. All the users that are not in outage require their

corresponding base stations to have peak powers lower than the power threshold.

The network will be operated with peak powers of all base stations are capped at

the power threshold.

(ii) After the power threshold is found, we assume the availability of very fast com-

puting facility and perform an off-line computation to find out the set of users
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that are in outage. Such users could be discarded upfront before the start of the

simulations so that the others users benefit from the absence of interference from

these users. Hence, this takes care of the causality of the discarding phase from

the operation of the real network.

We conduct Monte Carlo simulation runs for the baseline case as well as the case

with relays in our work. For each simulation run random instantiations of 57 user

locations (as per Section 2.3.1) and associated statistically independent shadow fading

values are generated. Once the random values are instantiated, these values are stored

in our simulation software program. The same set of user locations and shadow fading

values serve as inputs to the baseline and the system with relays.

We explain the learning phase now. Consider a single instance of the simulation

runs in the baseline case. For the given instantiation, there are 57 users one in each

sector. We fix a peak power threshold P for the base stations and also fix the desired

common rate for users as r0 bits/sec/Hz. When the baseline system operation is over,

the users that are in outage remain in the system at time T . Let the number of users

in outage for the kth instantiation when the power threshold is P and desired common

rate r0 be Ok(P, r0). For the same power threshold P and common rate r0, we run a

large number K of instantiations. We then find the total number of users in outage as

O(P, r0) =

K
∑

k=1

Ok(P, r0). (2.17)

The percentage of users in outage for the threshold P and desired rate r0 is then

O(P, r0)

57K
× 100 % (2.18)

If O(P, r0) > 10%, we increase the power threshold to P ′ > P . On the other hand,

if O(P, r0) < 10%, we decrease the power threshold to P ′′ < P . Proceeding in this

fashion, the base station peak power thresholds are adjusted such that exactly 90% of

the users are guaranteed the desired rate of r0 bits/sec/Hz and the rest of the 10%

users are in outage.



23

We could improve the performance of the system by discarding the users in outage

upfront, since the interference due to the presence of these users will be eliminated at

time t = 0. In our simulations, for a large user population over K instantiations, we

identify 10% users in outage2 by first running K instantiations of the system with all

the users present in the system. We store the coordinates of all the users that were in

outage at the end of each of the K instantiations. We then eliminate the outage users

from the system (by preserving the coordinates of the user locations of only those users

not in outage for all the K instantiations) at time t = 0 in the real network simulations.

Thus, the existing users in the system would experience lesser interference due to the

absence of those users in outage when the real network is simulated.

2.6.3 Network Operation and Simulation Aspects

Our objective is to obtain power savings and throughput improvement benefits due to

deployment of relays in cellular system. To compare systems with and without relays

in the CPA based relaying scheme, we simplify the operation of a cellular downlink

system such that 90% of the users in the system are guaranteed to be delivered a file

of fixed size L, within a fixed period of time T . The file could be different for all users

but the file sizes are fixed. Such an operation brings in the notion of a common rate for

the users in the system. In order that the system benefits from the users that get the

message within the fixed time T , the satisfied users leave the system, thus no longer

causing interference to the remaining users. The remaining 10% of the users that are

not guaranteed of the file of size L are ascribed to be in outage.

In our simulations, for the sake of simplicity, all base stations are assumed to have

the same peak power threshold values. We run K = 200 (amounting to 11400 user in-

stantiations) different user instantiations in the system. The common rate requirement

is set as 1 bit/sec/Hz. This common rate requirement translate to 0 dB common target

SINR requirement. We divide the total time T into 1000 mini-slots and at the end of

2We remark that the eliminated set of 10% users in outage is not claimed to be the optimum set

as would be obtained by evaluating all possible subsets amounting to 10% of the users. The latter is

computationally prohibitive.
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each mini-slot, we keep track of the cumulative MI Ii(t) of each user i. If at the end of

a mini-slot, a particular user’s cumulative MI exceeds the file size L, the base station

corresponding to that user is turned off.

We run the baseline for different peak power values of the base station (5 W to 30

W in increments of 5 W). For each peak power value, the relay powers are varied as a

factor of the base station power. Figure 2.6 shows the variation of outage probability

for various base station powers and various relay powers. For the case when there are

no relays in the system (ratio of relay power to base station power is zero), increasing

the peak powers of the base station decreases the outage. The percentage of outage

saturates below a certain threshold as the interference limit sets in. As we increase

the relay powers by increasing the ratio of relay power to base station power, the

outage reduces but quickly saturates to a certain threshold outage value, because of

the interference limit. From the Figure 2.6 it is clear that interference limit is quickly

reached and limits the performance of system with relays. This is because we do not

control the interference and peak power transmissions from the base stations and relays

lead to a highly interference limited scenario.

2.6.4 Simulation results

Power savings

The base station peak power required to guarantee 90% of the users (after the 10%

users in outage have been removed) a rate of 1 bit/sec/Hz is 21 W in the baseline case

and it requires 15 W for a system with relays. The relays transmit 1 W of peak power.

Hence the peak power savings at the base station locations in this case is 1.46 dB as

shown in Table 2.3.

Rate gains

In order to evaluate the throughput improvement, we find how much the common rate

of 90% of users can be improved with the peak power of the base stations being fixed.

For the baseline, we fix the power of the base stations to 21 W, so that 90% of the
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Figure 2.6: Variation of outage with relay powers and base station powers for the P-
CPA scheme. As we increase the base station powers with no relays in the system (ratio
= 0), the outage decreases and saturates at around 5%, due to the inteference limit.
The interference limit sets in very quickly even for smaller values of relay powers.

users are guaranteed to get 1 bit/sec/Hz (as obtained in the previous section). The

10% of the users in outage are eliminated as explained in Section 2.6.2. For the P-CPA

system with relays, the peak power threshold of the base stations are fixed to 21 W

(the same value as in the base line case). For the same peak power for the base stations

and with relays present in the system, we expect the common rate to be better than

1 bits/sec/Hz. To find the improvement in common rate, we fix a desired common

rate r′ > 1 bit/sec/Hz and run the sytem with relays. If this desired common rate is

feasible3, we double the desired common rate and run the simulations again. Else, if

the desired common rate is infeasible, we fix the new desired common rate at half the

difference between the highest feasible common rate and the lowest infeasible common

rate and rerun the simulations. In this manner, we converge to the achievable common

rate in the presence of relays. In our simulations, we find that the common rate can be

improved to 1.21 bits/sec/Hz in the CPA based relaying scheme. Hence the common

3The common rate is feasible if all the users present in the system are able to get the desired rate.
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Table 2.3: P-CPA relaying. Base station and relays transmit at peak power

Peak power required to Peak power required to

Savings in dB
guarantee 1 bps/Hz guarantee 1 bps/Hz

at 10% outage at 10% outage

Baseline (No relays) With relays

21 W 15 W 1.46

Common rate for 90% users Common rate for 90% users
Percentage rate increase

Baseline (No relays) With relays

1 bps/Hz 1.21 bps/Hz 21 %

rate improvement is 21%.

2.7 Power control based collaborative relaying (PC-CPA)

In case of P-CPA relaying in Section 2.6.3, we observed that the interference from the

other relays and base station sectors was limiting the peak power savings in the system

with relays. The reason for that is when the relays transmit to help the users, they

transmit with peak powers and hence increase the interference levels in the system. If

we could find the optimal set of powers to transmit for the base station and the relays,

we could reduce the overall interference levels in the system. This may improve the

gains in the system.

In the following, we describe a framework for power control in the downlink of a

cellular system with relays. When the relays are not present, downlink power control

in a cellular system is well studied and understood [31]. When relays are present in

the system, power control, if performed jointly at the base stations and relay locations,

can provide power savings and throughput improvement. We describe the PC-CPA

relaying scheme in the following sections.
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2.7.1 Principle of operation

PC-CPA Baseline

For the PC-CPA baseline, the aim is to deliver a desired common rate for 90% of the

user population by employing a simple power control scheme. Each base station sector

powers down its transmitted power within the peak power limitations so that 90% of

users are guaranteed a desired common rate of r0 bits/sec/Hz. Since all users share the

same band of frequencies, they observe interference from all the base station sectors in

the system. We use a common subscript for a base station or a user in a particular

sector. If at time t, pi is the power of the transmitting base antenna corresponding

to the ith user (we drop the argument t) and hij is the channel gain, including path

loss and shadowing, from the jth base to the ith user and σ2 is the noise power at the

receiver, the instantaneous SINR of the ith user in the system is given by

ρi(t) =
hiipi

∑

j 6=i hijpj + σ2
. (2.19)

Since the transmission use Gaussian codebooks, the corresponding instantaneous rate

for the user i is given by

Ri(t) = log2(1 + ρi(t)) bits/sec/Hz. (2.20)

The set of feasible powers such that the users not in outage are guaranteed with a rate

r0 is obtained by solving for the feasibility of instantaneous rates subject to peak power

constraints, specified by

log2(1 + ρi(t)) ≥ r0, (2.21)

i.e., ρi(t) ≥ 2r0 − 1, (2.22)

subject to pi ≤ pi,max, (2.23)

for all users i not in outage. In practice, each base station increases its power au-

tonomously in small increments, until it hits the peak power limit or when the user
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associated with it attains the desired rate r0. Users that make the power constraint

to go active before attaining the desired rate are discarded. We simulate the system

without the users in outage such that all users get the desired rate. Since the transmit

powers of the base stations are such that all users get a common rate, none of the users

leave the system.

PC-CPA System with Relays

In the PC-CPA system with relays, 10% of users are discarded in the manner similar

to the baseline system. At time t = 0, the relays do not have the complete message

required to relay to the user. Hence, the system starts out as it does for the baseline case.

The base stations increase their powers autonomously in small increments targetting

the users rates to increase. Users that do not meet the peak power constraints in

(2.23) are eliminated one after the other. The remaining users get the desired rate

without violating the peak power constraint at the base stations. While the base station

transmissions are targetted to the users, the relay in each sector also listens to the

transmission by the base stations. Depending on the channel conditions and coupling

of interference from the adjacent sectors, the relays get their message at different points

in time. When the relay in the sector decodes the message from the base station, the

relay collaboratively helps the base station such that the user gets a rate corresponding

to the total SINR from the relay and the base station. As described in Section 2.5, the

code books at the base stations and relays are designed such that the mutual information

at the receiver corresponds to the sum of received powers at the user location [24]. In

order to maintain the common desired rate for all users, the relay and base station

jointly adjust their powers so that the user gets the desired rate. This ensures that the

base station and relay transmit just enough power to the user to obtain the desired

rate.

Let pi denote the power transmitted by the base station sector i at time t and hij

be the channel gain, including path loss and shadowing, from the jth base to the ith

user. Let qi be the power transmitted from the relay i at time t and gij be the channel

gain to the user i from the relay j. Then, when the relay and base station transmit



29

simultaneously, the effective SINR at ith user location when the relay is active is given

by

ρrelay
i (t) =

hiipi + giiqi
∑

j 6=i hijpj + gijqj + σ2
, (2.24)

As with the baseline case, the set of feasible powers (for both base station antennas

and relays) such that the users not in outage are guaranteed with a rate r0 is obtained

by solving for the feasibility of instantaneous rates subject to peak power constraints

log2(1 + ρrelay
i (t)) ≥ r0, (2.25)

i.e., ρrelay
i (t) ≥ 2r0 − 1, (2.26)

subject to pi ≤ pi,max, (2.27)

and qi ≤ qi,max, (2.28)

for all users i not in outage. If we consider the transmit powers of the base stations

and relays as variables of optimization, we have a total of 2N variables, for N base

station sectors in the system. Thus, power control in cellular systems in the presence of

relays gives us additional N degrees of freedom to optimize over. The transmit powers

in the system can be optimized to reduce the maximum peak power transmission in the

system, reduce total energy in the system etc. In what follows, we assume that a central

controller has the knowledge of the all the channel gains between the base stations

as well as relays and the users. We explain ways to achieve various aforementioned

objectives using linear program (LP) formulations.

2.7.2 Optimization framework

Minimizing the total instantaneous transmit powers

We are interested in evaluating the benefits of relays in minimizing the total instanta-

neous sum power in the system while delivering the common rate r0 with 10% of the

users being omitted from the system. The practical benefit of minimizing the total

sum of transmit powers in a cellular system is to save the energy costs in the network.

Saving energy costs translate to saving electricity bills at the cell sites for the cellular
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service provider.

The desired common rate for the users is fixed at r0 bits/symbol. We define A(t)

as the set of all active relays at time t, i.e., the set of relays that have obtained the

message and are ready to help the base station. Ac(t) denotes the complementary set

of all inactive relays. For simplicity, we drop the argument and write pi and qi for the

base station powers pi(t) and qi(t) at time t, respectively.

At a given time t, we solves the following optimization problem:

min
p1,...,pN

q1,...,qN

∑

i

pi + qi (2.29a)

subject to log2

(

1 +
hiipi + giiqi

∑

j 6=i hijpj + gijqj + σ2

)

≥ r0, i = 1, . . . , N, (2.29b)

0 ≤ pi ≤ pi,max, i = 1, . . . , N, (2.29c)

0 ≤ qi ≤ qi,max, i ∈ A(t), (2.29d)

qi = 0, i ∈ Ac(t). (2.29e)

The solution to the optimization problem (2.29), p∗i , q
∗
i , i = 1, . . . , N defines the powers

pi(t) = p∗i and qi(t) = q∗i that are used at time t. The optimization problem (2.29) is

an LP, since we can write the constraint (2.29b) as

1

2r0 − 1
(hiipi + giiqi) −

∑

j 6=i

(hijpj + gijqj) ≥ σ2, (2.30)

for i = 1, . . . , N . Rewriting (2.29) in vector form, we have

s∗(t) = min
p,q

1T (p + q) (2.31a)

subject to Ap + Bq ≤ −σ21 (2.31b)

0 ≤ p ≤ pmax, (2.31c)

0 ≤ q ≤ qmax, (2.31d)
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where,

A =



















−h11/(2
r0 − 1) h12 · · · h1N

h21 −h22/(2
r0 − 1) · · · h2N

...
...

. . .
...

hN1 hN2 · · · −hNN/(2r0 − 1)



















, (2.32)

B =



















−g11/(2
r0 − 1) g12 · · · g1N

g21 −g22/(2
r0 − 1) · · · g2N

...
...

. . .
...

gN1 gN2 · · · −gNN/(2r0 − 1)



















, (2.33)

and

p(t) = [p1(t) . . . pN (t)]T ,

q(t) = [q1(t) . . . qN (t)]T ,

pmax = [p1,max . . . pN,max]
T , (2.34)

qmax = [q1,max . . . qN,max]
T ,

where, qi,max = 0, i ∈ Ac(t). Solution to the above LP provides the optimal power

values that minimize the instantaneous total power in the system. We take a myopic

approach of minimizing the total sum power of the system at time t in order to reduce

the total average power transmission in the system. Each time a relay becomes eligible

for transmission, the LP is solved to find the best set of powers by minimizing the

instantaneous powers in the system. Note that in some cases, when a relay is eligible

to help the base station, turning off the base station may be the optimal thing to do.

This choice comes out as a solution to the optimization program.
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Minimizing the peak transmit power

Minimizing the peak transmit power leads to peak power savings in the system. A

practical benefit of peak power savings is the significant savings in the cost of power

amplifiers for the cellular base stations. If by deploying low-power relays in the system,

we save in the cost of the power amplifiers of the base stations, cellular operators could

save in capital expenses. To this end, we solve the following optimization problem of

minimizing the maximum instantaneous transmit powers at the base stations:

min
p1,...,pN

q1,...,qN

max
i

pi (2.35a)

subject to log2

(

1 +
hiipi + giiqi

∑

j 6=i hijpj + gijqj + σ2

)

≥ r0, i = 1, . . . , N, (2.35b)

0 ≤ pi ≤ pi,max, i = 1, . . . , N, (2.35c)

0 ≤ qi ≤ qi,max, i ∈ A(t), (2.35d)

qi = 0, i ∈ Ac(t). (2.35e)

Rewriting the above LP in vector form yields for any dummy variable α,

p∗(t) = min
p,q

α (2.36a)

subject to Ap + Bq ≤ −σ21 (2.36b)

0 ≤ p ≤ pmax, (2.36c)

0 ≤ q ≤ qmax, (2.36d)

α1 ≥ pmax, (2.36e)

where, A and B are given by (2.32) and (2.33) respectively.

Improving the common rate

As a corollary to the above approaches, if we keep the peak power constant across both

the baseline and the system with relays, we can increase the common targeted rate in
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the system with relays. The problem of maximizing the common rate can be posed as

an optimization program with the transmit powers of the base station and relays as the

variables. The “genie” then solves the optimization program:

max
p1,...,pN

r0 (2.37a)

subject to log2

(

1 +
hiipi + giiqi

∑

j 6=i hijpj + gijqj + σ2

)

≥ r0, i = 1, . . . , N, (2.37b)

0 ≤ pi ≤ pi,max, i = 1, . . . , N, (2.37c)

0 ≤ qi ≤ qi,max, i ∈ A(t), (2.37d)

qi = 0, i ∈ Ac(t). (2.37e)

The optimization program can be viewed as a sequence of linear feasibility problems

because constraint set is non-convex. We solve this program by an iterative approach.

We start with a low easily achievable target rate r0 so that the constraint set (2.37b)-

(2.37e) is feasible. We increase the target rate in small increments until the constraint

set becomes infeasible. In each step, we get a set of feasible power assignments. The

last set of feasible power assignments is the solution to the optimization program. The

method converges, since the iterations generate a bounded sequence of increasing rates.

2.7.3 User discarding methodology

In our simulations, we eliminate 10% of users (over a large number of user realizations)

in the following way. The procedure is identical for both the baseline and the system

with relays. We simply assume the same peak power constraints for all base stations

across the network. We fix the peak power threshold pmax for each base station. Con-

sider a single instantiation, where there are 57 users in the system. We increase the

transmit power in all base stations in small incremental steps to improve the rate of

the users in the system. As we go along, we discard the user associated with the base

station whose power constraint goes active first. The base station is also turned off.

This reduces the interference coupled with other users. Within the remaining set of
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users, we can increase the transmit powers further. We then discard the next user caus-

ing the power constraint to go active and continue in this fashion until all remaining

users in the system are guaranteed the desired rate of r0 bits/sec/Hz, without violating

the peak power constraints. This procedure is repeated for a large number K of users

instantiations. Let the number of users in outage for the kth instantiation when the

power threshold is pmax and desired common rate r0 be Ok(pmax, r0). We then find the

total number of outage users for K instantiations when the peak power threshold is

pmax and the desired rate is r0 is calculated as

O(pmax, r0) =

K
∑

k=1

Ok(pmax, r0). (2.38)

The percentage of users in outage for the threshold pmax and desired rate r0 is then

O(pmax, r0)

57K
× 100 % (2.39)

If O(pmax, r0) > 10%, we increase the power threshold to p′max > pmax. On the other

hand, if O(pmax, r0) < 10%, we decrease the power threshold to p′′max < pmax. Proceed-

ing in this fashion, the base station peak power threshold pmax is adjusted such that

exactly 90% of the users are guaranteed the desired rate of r0 bits/sec/Hz and the rest

of the 10% users are in outage.

The coordinates of the discarded users are stored and the same set of users are

discarded when relays are present in the system too. We remark here that the order in

which the users are discarded results in different power levels from the base stations,

due to variations in the interference coupling among the users. Hence depending on the

peak powers limitations at the base stations, the order in which the users are dismissed

should be chosen carefully.
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2.7.4 Network Operation and Simulation Aspects

Baseline operation

We operate the baseline system as well as the system with relays such that, over a

large number of user loading iterations, 90% of users obtain a common average rate

of 1 bit/sec/Hz. We follow the approach described in Section 2.7.3 to discard users in

the system. For the PC-CPA baseline, we solve a series of linear feasibility problem to

obtain the base station powers for guaranteeing the desired common rate. One after

another, we discard users that would cause the peak power constraint to go active.

Hence we find the feasible set of powers p1, . . . , pN for the baseline such that 90% of

the users get exactly 1 bit/sec/Hz.

PC-CPA with relays: Average power savings

The peak power constraint of the base stations are fixed at pmax such that the baseline

can deliver 1 bit/sec/Hz at 10% outage. Since the relays are assumed to be inexpensive,

we assume small peak power constraints for the relays. In our work, the peak powers

of the relays are fixed at 1 W. Let us consider a single instantiation of 57 users in the

system. We start off similar to the baseline after discarding the same set of users. The

base stations target the users to deliver the common rate of 1 bit/sec/Hz. Only relays

that have better SINR to the base stations than the user are eligible to help the user.

The other relays are always inactive. At time t = 0, all relays are inactive. The aim in

this experiment is to maintain a constant rate of 1 bit/sec/Hz throughout the course of

the simulation. When relay i is eligible to transmit at time t, we include relay i into the

set of active relays A(t) and solve the LP (2.29). We stop when all the eligible relays

are included in the set of active relays. The total power in the system when all eligible

relays are active is noted down for this instantiation. We repeat this experiment for all

the K instantiations.
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PC-CPA with relays: Peak power savings

The peak power constraints of the base stations are fixed at a value smaller than the

baseline, say p′max. We assume inexpensive relays being deployed in the system. Thus,

the peak power constraints of the relays are fixed at 1 W. Since the peak power value

of the base stations is reduced from the baseline and the common rate is fixed at 1

bit/sec/Hz, the outage will be more than 10%. Let us consider a single instantiation of

57 users in the system. We start off similar to the baseline after discarding the same set

of users. The base stations target the users to deliver the common rate of 1 bit/sec/Hz.

Only relays that have better SINR to the base stations than the user are eligible to help

the user. The other relays are always inactive. At time t = 0, all relays are inactive.

Let relay i be eligible to transmit at time t. We include relay i into the set of active

relays A(t) and solve the LP (2.35). We stop when all the eligible relays are included

in the set of active relays. We repeat this experiment for all the K instantiations and

the outage is calculated. If the outage is less than 10%, the peak power of base stations

is reduced to p′′max < p′max, else the peak power values of the base stations is increased

to p′′max > p′max and the above procedure is repeated until the outage is close to 10%.

2.7.5 Simulation Results

Power savings

We observe that the average power savings averaged over K = 200 instantiations are

3 dB. We observe that the peak power savings in the downlink when power control is

employed is close to 2.6 dB.

Rate gains

We also performed experiments in which the rate improvements (problem (2.37)), and

we observed 34% improvement in the throughput for 90% users in the system, with

the baseline system being served at 1 bit/sec/Hz. The results are summarized in the

Table 2.4.
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Table 2.4: PC-CPA based relaying. Base station and relays employ power control

Peak power required to Peak power required to

Savings in dB
guarantee 1 bps/Hz guarantee 1 bps/Hz

at 10% outage at 10% outage

Baseline (No relays) With relays

10 W 5.5 W 2.6

Common rate for 90% users Common rate for 90% users
Percentage rate increase

Baseline (No relays) With relays

1 bps/Hz 1.34 bps/Hz 34%

2.8 Orthogonal Relaying

In the previous sections where we studied relaying with the CPA scheme, we saw that

in an interference-limited setting, the improvement in throughput was limited by the

interference due to multiple transmissions in the cell. In some cases the transmission

from the base stations are redundant. For instance, for a user located at the edge of the

cell, the received power from the base station could be weak and the base station’s signal

could be of little use. In that case, it might be better to turn the base station off since it

could benefit the system overall in terms of reducing the interference levels. Moreover,

the practical implementation of collaborative schemes can be complex with the existing

technology. Hence, we investigate how much gains due to collaborative addition can

be obtained if we just do simple multihopping, where the base station transmits to the

relay in one slot and then the relay passes on the message to the destination in the next

time slot. In this section, we exploit the half-duplex property of the relays in downlink

cellular system to stagger the transmissions of the base station and relays over two time

slots. A natural way to operate these relays is to have them receive in one time slot and

transmit in another time slot. This gives us a natural orthogonality in the transmission

scheme. Henceforth, we term this scheme as orthogonal relaying.
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2.8.1 Network Operation and Simulation Aspects

The simulation set up is the same as that described in Section 2.3. Unlike CPA schemes,

where the relay can start transmitting immediately after it decodes the message, relays

can start transmitting only at specific times in the orthogonal relaying scheme. The

system is assumed to be synchronous and time is divided into equal slots. The baseline

and the system with relays are operated as follows.

Baseline

The baseline system operates similar to the P-CPA baseline as described in Section 2.6.1.

All base stations transmit with peak powers and the users are required to get a fixed

sized file with a specified deadline. Satisfied users leave the system as soon as they get

the file. The associated base station sector is turned off. The users that do not get the

file are in outage. In the learning phase, we learn the threshold peak transmit powers

required by the base stations such that 10% of the users over a large population of users

are in outage. The users in outage are discarded and the simulations are rerun.

System with relays

When relays are present in the system, time is divided into slots of equal durations,

which is half of the baseline system. The operation of the system is periodic with odd

and even time slots recurring at regular intervals. The base stations transmit in the

odd time slots and the relays transmit in the even time slots. The peak power of the

base stations are fixed as in the baseline and the peak power of the relays are fixed as

1 W.

• In the odd time slots, the base stations transmit at peak power. Relays are in

receive mode in this time slot. The users and relays in each sector accumulate

mutual information, depending on their channel qualities. If some of the users

get the desired rate from the base station transmissions itself, those users are

satisfied users and leave the system as soon as they get the desired rate. The

corresponding base stations and relays are turned off. Let us denote the 57 × 1
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vector of rates obtained by users in the odd time slots by ro.

• In the even time slots, only the users that are yet to get the desired rate of 1

bps/Hz remain in the system. The base stations are turned off in this time slot.

The relays that are required to help the users start transmitting simultaneously

at the beginning of the even time slots. Simple power control is employed at the

relay locations to reduce the interference caused to the other sectors. The power

control is performed to achieve the desired residual common rate re = 1 − ro,

where 1 is a 57 × 1 vector all 1’s vector (representing 1 bps/Hz desired common

rate). The users that require the relays to transmit more than their peak power

constraint are discarded at the beginning of the even time slots. There may be

cases where the user has a better channel to the base station than to the relay.

Such users are not given the benefit of receiving the complete message from the

base station. The base stations are switched off on the even time slots and are in

outage if they do not get the message at the end of the even time slots.

2.8.2 User discarding method

Baseline

Since the baseline scheme is the same as the P-CPA baseline, we follow the user dis-

carding methodology as described in 2.6.2. In the initial learning phase, we find the

power threshold such that 10% of the users that remain in the system are in outage.

We then discard the users in outage and run the real network.

System with relays

The user elimination procedure is same as that explained in the PC-CPA relaying

scheme as described in Section 2.7.3. The users that violate the peak power constraint

of the relays are discarded at the beginning of the even time slots. The discarded users

do not get the desired common rate at the end of odd and even time slots, and hence

are said to be in outage. The system is operated such that there is 10% outage in the

system over a large number of user instantiations. The peak power threshold of the
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relay nodes are adjusted such that there the outage percentage is exactly 10%.

For the real network simulations, we discard the 10% using the previously learnt

power threshold, in the beginning of the odd time slot itself. We then run the network

simulations as described in the previous Section 2.8.1.

2.8.3 Simulation Results

The average power savings in the base station locations is 3 dB, since the base stations

transmit only for half the time. There is no peak power savings since the base sta-

tions transmit at peak power in the odd time slots. We obtain 35% rate gains due to

orthogonal relaying when there is 10% outage in the system. It is interesting to note

that simpler relaying methods, such as orthogonal relaying do nearly as well as the

more complex forms of relaying, such as CPA schemes, in obtaining throughput gains

and power savings. This observation is in agreement with the studies in simple linear

settings [24,32].
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Table 2.5: SUMMARY OF GAINS DUE TO RELAYING: 19 cells, 57 sector network, one user per sector

Baseline (No Relay) System with one relay per sector Relay Benefits

Baseline at 1 bps/Hz Relay peak power = 1 W Power Savings or Common Rate increase

Peak power transmissions Peak power transmissions
1.46 dB (peak) 25%

by base stations. by base stations and relays (CPA)

Base peak power = 21 W

Base station power control Base station and relays 2.6 dB (peak)
34%

Base peak power = 10 W power control (PC-CPA) 3 dB (average)

Peak power transmissions Relays power control
3 dB (average) 35%

by base stations. to users (Orthogonal relaying)

Base peak power = 21 W



42

2.9 Conclusions

In this chapter, we presented a simulation study of the downlink of cellular system with

relays. We evaluated the power savings and common rate increase for users when a

common rate of 1 bps/Hz is required by 90% users in the system. We first described

the collaborative power addition (CPA) scheme of relay collaboration. In the CPA

based scheme, whenever the relay gets the complete message from the base station, it

collaborates with the base station such that the mutual information at the user location

corresponds to the sum of the received power at the user location, thus boosting up

the average rate. We observe that when the system is interference limited the peak

power savings are hard to come by. Consequently, the power control based collaborative

power addition (PC-CPA) scheme along with a framework for power control is proposed.

The power control framework can be posed as a linear program formulation when the

objective is to minimize peak power or to minimize average energy in the system. This

formulation can be used to evaluate the average and peak power savings in the system.

The peak power savings and the rate gains improve when power control is employed.

We then evaluated a simple multihopping scheme where the base stations and the relays

transmit in orthogonal time slots. In the odd time slots, the base stations transmit at

peak power and in the even time slots, the base stations are turned off and the relay

employ simple power control to deliver the residual rate to the users. The summary of

the results are given in the Table 2.5.
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Chapter 3

Fair and Efficient Scheduling of Variable Rate Links via a

Spectrum Server

3.1 Introduction

The previous chapter dealt with issues due to interference in cellular systems operating

in licensed band. However, the emergence of unlicensed spectrum has spawned an

impressive variety of important technologies and innovative uses, ranging from scientific

and industrial to domestic applications and systems. Since these systems must adapt

to a wide variety of unpredictable conditions, the emerging technologies called cognitive

radio offer significant potential benefits in system capacity and service quality [33].

In their simplest embodiments (which are by no means simple to implement) cogni-

tive radios can recognize the available systems and adjust their frequencies, waveforms

and protocols to access those systems efficiently. Not surprisingly, it is upon these

difficult “design” issues that most current research activities are focused. While these

basic capabilities represent a difficult and significant step forward, they fail to fully il-

luminate the potential of cognitive behavior. They are perhaps analogous to a traveler

with fluency in a variety of languages. Such fluency is great advantage, but how much

greater an advantage is conferred when the traveler understands local conditions and

customs, can choose the best language when several are possible, and can find local

advisors and information when necessary. Following this analogy, cognitive radios must

do more than communicate with the “local population” on an ad hoc basis to realize

its full potential — it must develop a full awareness of a local environment that may

span multiple spectrum bands and systems. This implies new discovery processes that

are thorough and efficient, and even new classes of information servers that provide

assistance in the process.
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When there exist methods by which cognitive radios can independently discover

local information, a variety of physical layer, system and network layer protocols can be

applied to allow cooperation and coexistence [34]. However, such levels of cooperation

and interoperability may not be possible when multiple services and systems must

coexist. In a heterogeneous environment, some users may look to obtain high data

rates without regard to energy efficiency; other users may wish to transmit at a fixed

rate but with high efficiency. In certain applications, it will be important to enforce

fairness constraints. In general, the system performance will have a multidimensional

characterization. These dimensions represent conflicting performance measures.

In the realm of cognitive radio networks, two distinct sets of issues emerge. First, for

a given transmitter and receiver technology and a specified set of performance measures,

one must resolve the multidimensional boundaries of system performance. As we shall

see, this is a difficult problem even if complete system state information is available

to all network nodes. However, in any practical setting, complete information is not

available at every node. In fact, cognitive radios must rely on some combination of

individual measurement and shared information dispersed through the network. This

information will be used for intelligent adaptation by the individual nodes as part of a

large distributed system for spectrum allocation. This introduces a second set of issues

relating to how the information distribution and link adaptation methods should be

designed. A given set of distributed information gathering and exchange mechanisms

may greatly influence the performance of the system.

In this chapter, we examine the boundaries of system performance under the as-

sumption that efficient open access to spectrum can be resolved by impartial spectrum

servers [6,35] that can obtain information about the interference environment through

measurements contributed by different terminals, and then offer suggestions for efficient

coordination to interested service subscribers. As observed in [6], likely neighborhood

information could include various levels of time and frequency utilization, descriptions

of nodes in a neighborhood, and potentially, spatial positions as well. In fact, the role

of such a spectrum server for wireless network coordination is reminiscent of the role of

the DHCP (Dynamic Host Configuration Protocol) server in the coordination problem
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that arises among nodes in the Internet.

There are many different ways in which the spectrum server can coordinate a set of

radios in a wireless network. While the work in [36] considers the role of the spectrum

server in demand responsive pricing and competitive spectrum allocation, our work

considers the role of the spectrum server in scheduling wireless links in an interference

limited network. The links can have variable rates due to the variety of physical layer

adopted by the links in the system.

3.1.1 Related Work

Scheduling transmissions in a wireless network has been studied in various contexts.

Unlike the protocol model [37], where interference is modeled as a contention con-

straint [38], our model takes the physical layer into consideration. Although low-

complexity scheduling algorithms [39,40] are still hot topics of research, the scheduling

problem has been considered to jointly optimize another resource in the network. In [41],

a joint scheduling and power control strategy is proposed to maximize network through-

put and energy efficiency of the system. Their algorithm selects candidate subsets of

concurrently active links, and applies the distributed power control algorithm [42] to

find the minimal power vector. Another direction in this problem is addressed in [43,44],

where the authors look at the cross-layer issues of routing, scheduling and power control.

Joint scheduling and congestion control has been dealt with in [45, 46]. The authors

in [47] introduce the concept of transmission modes and develop a framework for in-

tegrated link scheduling and power control policies to maximize the average network

throughput, when each link is subject to an average power constraint and each node is

subject to a peak power constraint. The authors assume a model in which the data rate

of a link is a linear function of the signal-to-interference ratio at the receiver. Most of

the work in link scheduling in single hop networks or flow scheduling in multihop net-

works use mathematical programming approaches. For a recent survey of the research

in this area, see [48].
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3.2 System Model

It is recognized that the nodes of a cognitive radio network can interact in a wide

variety of (arbitrary) ways. To distill these interactions, we observe that each radio

follows a transmission policy that results in signals that vary over time, frequency, and

space. This variation may be the result of adaptation to measurements of channels

or interference. The performance of a particular signaling strategy depends on each

receiver’s ability to resolve signals in the presence of interfering transmissions.

For a system of interfering wireless transmissions, a mathematical model starts with

a basis for the signal space. Conceptually, this is achieved by K-L decomposition. Given

a basis, each user transmission employs a combination of basis functions and transmits

in some or all of the signals dimensions. An important lesson from communication

theory is that the actual system performance does not depend on this basis, but rather

the choice of basis determines how well we can understand the communication system.

This work assumes a relatively simple signaling structure. We assume that the

signals can be decomposed into time-slotted narrowband transmissions. Within a time

slot, the transmitters use variable-rate coding to combat interference and/or to coexist

with other transmitters. The interference that a receiver faces depends on the subset

of nodes transmitting in that time slot. We assume that the data rate obtained by

each user can be decomposed into the data rate obtained on each signal dimension.

Moreover, for the average data rate to be a meaningful, the collection of user policies

must result in an ergodic signaling process. With respect to a signal dimension, the

number of bits that can be transmitted on a link depends on the ability of the receiver

to separate the desired signal from interfering signals. Such an ability is limited by the

technology of the receiver.

Let us consider a wireless network with N nodes forming L point-to-point links

sharing a common spectrum. We model the network as a directed graph G(V, E), where

the nodes in the network are represented by the set of vertices V of the graph and the

links are represented by a set of directed edges E . A directed edge from a node m to

node n implies that n wishes to communicate data to node m. We study the scenario
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Figure 3.1: Graph of network showing the nodes and directed links

where the spectrum server coordinates the activity of the set of L links to share the

spectrum efficiently.

Before we explain the system model, we comment on the notation of this chapter.

We use boldface lowercase characters for vectors and boldface uppercase for matrices. If

a is a vector, aT denotes its transpose and aTb =
∑

i aibi represents the inner product

of the vectors a and b. The vector of all zeros and all ones are represented by 0 and 1

respectively.

Define the set of transmission modes T = {0, 1, . . . ,M − 1}, where M denotes the

number of possible transmission modes. Then the mode activity vector ti of mode i is

a binary vector, indicating the on-off activity of the links. If ti = (t1i, t2i, . . . , tLi) is a

mode activity vector, then

tli =







1, link l is active under transmission mode i,

0, otherwise.
(3.1)

Note that M is number of available transmission modes including the mode in which

all links are off. For a given system of links, some of the modes may be infeasible due

to physical constraints on the system or due to the constraints placed by the network.

Figure 3.1 shows a representative network and Figure 3.2 shows particular transmission
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mode for the set of links.

We consider transmission scenarios in which the rate in any link is also determined

by transmissions by other links in that particular mode. We denote the rate obtained

in the link l under mode i ∈ T as cli. Let xi be the fraction of time that transmission

mode i is active. We refer to the vector x = [x0 x1 · · · xM ]T as a schedule without

precise specification of sequence of active modes. The average data rate in link l is the

time average of the data rates of all the transmission modes that include link l and is

given by

rl =
∑

i

clixi, (3.2)

or in vector form,

r = Cx, (3.3)

where C is a L × M matrix with non-negative entries [C]li = cli, r is a real vector of

length L and x is a real vector of length M . Embedded in the matrix C are the rates

obtained in each link l as a part of transmission mode with simultaneous transmissions

on multiple links.

We note that this model allows for consideration of a large class of physical layer in-

teractions. We observe that all necessary aspects of transmitter and receiver technology
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are embedded in the rate matrix C. In what follows, we provide two specific examples

of how the matrix C can be constructed to encompass various multiuser communication

strategies.

Gaussian Interference Channel

Let the transmit power on a link l ∈ E be Pl. If Glk is the link gain from the transmitter

of link k to the receiver of link l and σ2
l is the noise power at the receiver of link l, the

Signal-to-Interference plus Noise Ratio (SINR) γli at the receiver of link l in transmission

mode i is given by

γli =
tliGllPl

∑

k∈E,k 6=l tkiGlkPk + σ2
l

. (3.4)

The link gain between a transmitter and receiver takes into account the path loss

and attenuation due to shadow fading. We assume that the link gains between each

transmitter and receiver are known to the spectrum server. The data rate in each link

depends on the SINR in that link. We assume that the transmitter can vary its data

rate, possibly through a combination of adaptive modulation and coding. In particular,

for a given mode, the transmitter and receiver on a link employ the highest rate that

permits reliable communication given the link SINR in that mode. If we assume that

the transmission of other links are treated as Gaussian noise and that a transmission

on link l is reliable in a given mode i with a data rate (logarithms are to the base 2)

cli = log(1 + γli). (3.5)

For sake of simplicity, we do not consider any minimum SINR threshold required at

each receiver, i.e., associated with each transmission mode i, a non-zero γli defines some

rate on the link l. Let xi be the fraction of time that transmission mode i is active and

rl be the average data rate of link l. The average data rate in link l is the time average

of the data rates of all the transmission modes that include link l. Thus,

rl =
∑

i

clixi, (3.6)
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Figure 3.3: Multiaccess Channel

or in vector form,

r = Cx, (3.7)

where C = [c1 c2 . . . cM ] is an L × M matrix with non-negative entries, such that its

jth column cj = [c1j , c2j , . . . , cLj ]
T contains the rate obtained by each link in mode j.

We denote P = diag(P1, P2, . . . , PL) to be the L×L diagonal matrix of transmit powers

of the individual links. Let T = [t1 t2 . . . tM ] denote the L × M binary matrix, which

contains the transmission mode activity vector tj as column j.

Gaussian Multiple Access Channel

Figure 3.3 shows a multiple access scenario wherein two terminals send independent

information to a receiver. Assume that the receiver knows the channel gains between

transmitters to itself, and that the transmitters encode their data using a capacity-

achieving channel code. The receiver could then perform successive decoding to achieve

a rate pair (r1, r2) for the links 1 and 2. Figure 3.4 shows the set of achievable rate pairs

that can be achieved by any successive decoding scheme [25, Chapter 15]. In particular,

for the above multiple access scenario, let C1 = (a, 0) and C2 = (0, b) are the rate pairs

that can be achieved if the links transmit in isolation. If the link 1 is decoded first and

its interference on link 2 is removed, the rate pair C4 = (c, b) is achievable. On the

other hand, if link 2 is decoded first to cancel out its interference on the link 1, the rate

pair C3 = (a, d) is achievable.
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Figure 3.4: Rate region of the multiaccess channel

Thus, the rate matrix CMA is given by,

CMA =





0 a 0 c a

0 0 b b d



 . (3.8)

Any rate pair that can be achieved over the multiaccess channel is a convex combination

(achieved by time-sharing) of the rate pairs corresponding to the points C0, C1, C2, C3, C4

of the Figure 3.3.

In summary, we note that this model has a number of desirable characteristics.

First, as illustrated by the above examples, we observe that all aspects of transmitter

and receiver technology are embedded in the rate matrix C. If, for instance, the links

employed CDMA spreading, (3.4) for the SINR on link l in mode j would be appro-

priately modified, as in [3], to reflect the transmitter spreading sequences and receiver

filter vectors used in that mode. Similarly, if we were to assume a particular practical

coding scheme, we would modify Equation (3.5) for the expected number of bits that

we would expect to decode at a specified SINR. Thus the general model allows for con-

sideration of a large class of physical layer interactions. We employ the specific choices

in Equations (3.4) and (3.5) to demonstrate trade-offs in between average rates and

various fairness constraints.
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The set of transmission modes T may turn out to be uncountable for some transmis-

sion schemes. For example, if the nodes of the network can use a continuum of powers

at their transmitters, each power level gives rise to a transmission mode. However, we

could ‘discretize’ the set of transmission modes by allowing appropriately chosen finite

power levels.

In practice, a scheduler will specify a sequence of transmission modes. Typically,

this would be done by constructing a frame with N time slots and allocating Nj time

slots to each mode j. The fraction of time that mode j is active will be xj = Nj/N .

For sufficiently large N , the ratio Nj/N can be made arbitrarily close to any xj ∈ [0, 1].

In this case, the average rate r in (3.3) will represent the average link data rates over

one frame. For our analytical model, we optimize these average rates per frame by

specification of the time fractions in x, without explicitly specifying the precise slots

assigned to each mode.

Conversely, consider the average link rates obtained by an arbitrary dynamic spec-

trum access system. Each link employs a dynamic policy, based on measurements and

perhaps some side information, to determine when to be active. At any given time,

some subset of links will be active and the rates obtained on each link will be de-

termined by the interference generated by those active links. In short, any dynamic

spectrum access system yields a series of transmission modes. The rate obtained by

each link l in each mode j will be given by clj . To speak of average rates for the links,

the collection of link access policies must yield an ergodic transmission mode process

such that we can define xj as the fraction of time the system is in mode j. In this

case, the average link data rates will be given by (3.3). In short, any set of average

rates obtained by a dynamic spectrum access system can be obtained by a centralized

scheduler that specifies the identical time fraction xj for each mode j. The centralized

scheduler allows us to separate what average link rates can be obtained from the issue

of whether a dynamic system can achieve those rates.
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3.3 Maximum Sum Rate Scheduling

The centralized approach allows us to optimize global objective functions, i.e., objective

functions that allow us to optimize the overall system performance, which is difficult to

optimize in a distributed setting. In this section, we are interested in the schedule that

maximizes the sum of the average data rates over all links l = 1, 2, . . . , L, subject to

constraints on the minimum rates for each link. These kinds of objective functions are

useful when the overall utility of the network needs to be maximized, while provided

minimum guarantees to the end users. Let us assume that each link has a minimum av-

erage data rate requirement rmin,l. The optimization problem for finding the maximum

sum rate schedule can be posed as the following linear program (LP):

max
r,x

1T r (3.9a)

subject to r = Cx, (3.9b)

r ≥ rmin, (3.9c)

1Tx = 1, (3.9d)

x ≥ 0. (3.9e)

The objective function 1T r =
∑

i ri is the sum of average rates of the individual links.

The inequality in (3.9c) represents the minimum rate constraint and (3.9d) is the nor-

malization for the schedule. The variables in the LP (3.9) are r and x. Rewriting the

LP in terms of the variable x only, we get

copt(rmin) = max
x

1T Cx (3.10a)

subject to Cx ≥ rmin, (3.10b)

1T x ≤ 1, (3.10c)

x ≥ 0. (3.10d)

Since C is a matrix with non-negative entries, the constraint 1Tx = 1 can be replaced

by the constraint 1T x ≤ 1 since the optimum x, say xopt, will satisfy 1Txopt = 1.



54

Otherwise, we could scale xopt up so that the objective function is increased because the

objective function is non-negative. We denote the optimal value 1T Cxopt as copt(rmin).

3.3.1 No minimum rate constraint

We now consider the special case when rmin = 0, i.e., when there is no minimum rate

requirement for any of the links.

Theorem 1 When rmin = 0, the solution to the LP (3.10) is xopt = [0 0 . . . 1 . . . 0 0]T ,

where the position of 1 corresponds to the transmission mode with the maximum sum

rate. The optimal objective value is the maximum column sum of the rate matrix C.

Thus, the optimal strategy is to always operate the transmission mode with the maximum

sum rate.

• Proof: Since C is non-negative and rmin = 0 by hypothesis, any x satisfying (3.10c)

and (3.10d) is feasible, as (3.10b) is trivially satisfied. Since 1TC represents the row-

vector of column sums of C, the objective function 1TCx is a convex combination of

column sums of C. Therefore,

1TCx =

L
∑

l=1

M
∑

i=1

clixi (3.11)

=

M
∑

i=1

xi

L
∑

l=1

cli (3.12)

≤
M
∑

i=1

xi max
i

L
∑

l=1

cli (3.13)

= max
i

L
∑

l=1

cli (3.14)

where the equality in (3.14) is true since
∑

i xi = 1. Equality holds in (3.13) when

x = xopt = [0 0 . . . 1 . . . 0 0]T where the position of 1 in xopt is î = arg maxi
∑L

l=1 cli.

�

We refer to transmission mode with the maximum sum rate as the dominant trans-

mission mode. Depending on the geometry of the links, the dominant transmission
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mode can be a single active link or a collection of geographically separated links. How-

ever, one implication of the above theorem is that the links that are not part of the

dominant transmission mode get zero rate. So, the system is unfair in terms of providing

non-zero data rates to all the links.

3.3.2 Non-zero minimum rate constraint

In order to offset the unfairness in the system, we introduce a non-zero minimum rate

requirement in the individual links of the network. In such cases, the optimal schedule

balances the use of the dominant mode against modes that provide non-zero rates to

the otherwise disadvantaged links. This, however, comes at the cost of reduction in

the sum rate of the network. In the case when rmin is non-zero, there is an additional

constraint in (3.10b) which has to be met. The optimal objective value cannot exceed

the unconstrained optimum copt(0).

We can characterize the loss in sum rate due to the minimum rate constraint. We

begin by writing the dual problem for the LP. The Lagrangian for the LP (3.10) is

L(x,u, v) = 1TCx + uT (Cx− rmin) + v(1 − 1Tx), (3.15)

where u ∈ RL
+ and v ∈ R+ are the Lagrange dual variables. The Lagrange dual function

is

g(u, v) = sup
x≥0

L(x,u, v) (3.16)

= −uTrmin + v + sup
x≥0

(1TC + uTC − v1T )x

=







−uT rmin + v, 1T C + uTC − v1T ≤ 0

∞, otherwise.
(3.17)
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Thus the dual of the LP (3.10) is

min
u,v

−rT
minu + v (3.18a)

subject to CT (1 + u) ≤ v1, (3.18b)

u ≥ 0, v ≥ 0. (3.18c)

Since (3.18) is also an LP, by strong duality [49, Chapter 5], the optimal value of

the dual problem in (3.18) is equal to copt(rmin). Let (u∗, v∗) be the solution of (3.18).

Since by Theorem 1, copt(0) is the maximum column sum of C, i.e., copt(0) = maxCT1,

we have according to (3.18b), v∗ ≥ copt(0) + maxCTu∗. Therefore, the optimal value

of (3.18)

copt(rmin) = −rT
minu

∗ + v∗

≥ −rT
minu

∗ + maxCTu∗ + copt(0).

Since copt(0) − copt(rmin) ≤ rT
minu

∗ − maxCTu∗, the loss in sum rate is at most

rT
minu

∗ − maxCTu∗. For the simple case when rmin = rmin1, we have

copt(0) − copt(rmin)

rmin

≤ 1Tu∗ − max
CTu∗

rmin

. (3.19)

Thus, the rate of change in the optimal value of the sum rate in the system can be

upper bounded by the right hand side expression.

There exists a trade-off between the sum rate and individual rates of the links, i.e.,

when we increase the minimum rate requirement in the links, the sum rate obtained de-

creases. This is intuitively satisfying since the dominant mode, which offers the highest

sum rate, is always turned on whenever there is no minimum rate requirement on the

links. When the minimum rate requirement is increased from zero, other transmission

modes are forced to be scheduled for transmission in order to satisfy the minimum rate

requirement of the links. Since the modes other than the dominant mode always offer

a lesser sum rate than the dominant mode, the sum rate decreases monotonically with
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Figure 3.5: A set of source-destination pairs

increase in required minimum rate. The minimum rate requirement for all links in the

network can be increased by trading off sum rate until it is infeasible to support the

rate requirement in all links.

3.3.3 Simulation Results

We now consider an example scenario in Figure 3.5. The simulation set-up is a 50 ×

50 grid. We use this scenario to as a running example to illustrate the performance

of various scheduling schemes in this chapter. We assume the Gaussian interference

channel model described in Section 3.2 The links are of fixed lengths and placed at

random locations in the grid. The interference gain Glj between the transmitter of

link j and the receiver of a link l is given by Glj = d−4
lj , where dlj is the separation

distance between the transmitter and receiver. The transmit powers are fixed for all

transmissions and the link geometries are characterized through the signal-to-noise ratio

(SNR) at the receiver for that link (in the absence of interference).

In the special case when the noise at the receiver is high, the denominator in the
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Figure 3.6: Variation of sum rates and individual rate as a function of rmin

SIR expression (3.4) is dominated by the receiver noise. This approximates the case

when there is no interference from the neighboring links. Hence the best policy would

be to turn on all the links in order to maximize the sum rate in all the links. However,

in the case of high SNR links, the best policy is to operate the singleton modes.

As the SNR in each link increases, the interference from neighbors also increases.

Then the best transmission mode is that which has the highest sum rate among all the

other transmission modes. The set of links chosen follows spatial reuse patterns that

are reminiscent of those used in cellular networks. Figure 3.5 shows a set of links and

the dominant transmission mode at SNR = 20 dB. The links in the dominant mode are

shown in solid lines.

In the case of maximum sum rate scheduling with non-zero minimum rate constraint,

we see that more than one transmission mode is operated since there is a minimum rate

requirement for each link. The dominant mode is selected for most of the time and the

mode which includes the poorer quality links are turned on for a fraction of time just

enough to satisfy their minimum rate requirement. For example with 20 dB link SNR in
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the topology of Figure 3.5, the mode consisting of links {2, 5} is always operated when

rmin is zero. But as the common minimum rate rmin increases from zero, an additional

set of modes ({2, 4}, {1}, {3}) is operated to satisfy the minimum rate requirement for

each link. The schedules of the individual transmission modes varies with the minimum

rate so that the minimum rate constraint in each of links is maintained. Notice that

only five distinct modes are active. When rmin is increased in steps, we observe that the

same set of modes ({2, 5}, {2, 4}, {1}, {3}) is operated. Figure 3.6 shows the trade-off

between the sum rate and the minimum rate requirement of the individual links. After

a certain rmin value, say r′, a different set of modes ({2, 5}, {2, 4}, {1}, {3}, {4}) has to

be operated in order to obtain a feasible schedule. Until then the sum rate falls linearly

with increase in rmin. The break point in the sum rate curve occurs at r′ = 1.48.

3.3.4 Maximum sum rate schedule with high SNR links

We examine the special case of high SNR links when each link transmits with a large

power P in the Gaussian interference model. Define a set of singleton modes

T̂ = {il : tlil = 1, tkil = 0 for all k 6= l}.

In mode il, link l transmits in isolation and thus we call T̂ = {i1, i2, . . . , iL} the set

of singleton modes. When the transmit power P is high, all links have high SNR and

a link l achieves a high rate when transmitting in the singleton mode il. However, in

a shared (non-isolation) mode j /∈ T̂ , links will have interference-limited SINRs and

relatively low data rates. These observations lead to the following theorem.

Theorem 2 If the interference gains Glk are all non-zero, then for sufficiently large

transmit power P , the solution to (3.10) is time sharing among the transmission modes

in T̂ .
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• Proof: If P is the transmit power in all links l ∈ E , from (3.4) the SIR γlj of link l

in transmission mode j is given by

γlj =
tljGllP

∑

j∈E,k 6=l tkjGlkP + σ2
l

. (3.20)

For all modes j /∈ T̂ , the nonzero interference gains Glk and the monotonicity of the

fraction P/(cP + σ2) imply that

γlj < γ̄lj =
Gll

∑

j∈E,k 6=l tkjGlk
. (3.21)

We can thus upper bound the SIR γlj of any link l in any transmission mode j /∈ T̂ as

γlj < γ̄ = max
j /∈T̂

max
l

γ̄lj. (3.22)

It follows from (3.5) that

clj ≤ c̄ = log(1 + γ̄), j /∈ T̂ . (3.23)

Note that c̄ serves as an upper bound for the rate that can be obtained by any link l

in a shared mode j /∈ T̂ . However, in a mode il ∈ T̂ in which only link l is active,

γlil =
GllP

σ2
l

= γl(P ), (3.24)

a monotone increasing function of P . Let us define

cl(P ) = log(1 + γl(P )). (3.25)

as the data rate obtained when link l transmits with power P in the singleton mode il.

Since cl(P ) is a monotone increasing function of P , there exists a transmit power P ∗,

such that P > P ∗ implies cl(P ) > Lc̄ for all links l.
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Now, let us suppose that P > P ∗, but x is an optimal schedule for problem (3.10)

with xj > 0 for a shared mode j /∈ T̂ . Consider a new schedule x′ given by

x′
i =































0 i = j

xi + xj/L i ∈ T̂

xi otherwise

(3.26)

The schedule x′ reallocates the time xj in mode j equally to the isolation modes il in

T̂ . In particular, an isolation mode il ∈ T̂ will now be active for time

x′
il

= xil +
xj

L
. (3.27)

We now show that every link l receives a positive rate increase by switching to schedule

x′. Under schedule x, a link l obtains rate

rl =
∑

i

clixi = cljxj + clilxil +
∑

i/∈{j,il}

clixi. (3.28)

Under schedule x′, link l obtains rate

r′l =
∑

i

clix
′
i = clilx

′
il

+
∑

i/∈{j,il}

clixi. (3.29)

For link l, the difference in rates is

r′l − rl = clil(x
′
il
− xil) − cljxj (3.30)

=
(clil

L
− clj

)

xj . (3.31)

However, P > P ∗ implies that in the isolation mode il, link l obtains rate

clil = cl(P ) > Lc̄. (3.32)
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It follows that r′l − rl > 0 for all links l. This contradicts the optimality of schedule x

in that every link achieves a strictly higher rate under schedule x′.

3.4 Fair scheduling

In Section 3.3, we observed that maximizing sum rate without minimum rate constraints

on the links leads to unfairness among the links. Usually, when global objective func-

tions like sum rate in the network is involved, issues of fairness naturally arise. We

investigate fair scheduling strategies in this section. We start by looking at the conven-

tional max-min fair scheme.

• Definition: A vector of rates r is said to be max-min fair if it is feasible and for

each l ∈ E , rl cannot be increased while maintaining feasibility without decreasing rl′

for some link l′ for which rl′ ≤ rl. Formally, for any other feasible allocation r̃, with

r̃l > rl, there must exist some l′ such that r̃l′ < rl′ ≤ rl.

Max-min fairness is well studied in the context of data networks [21], in the context

of flow control of elastic traffic. The data network models differ from the one we consider

since in the former, there are multiple flows through many links of finite capacity. There

may be several bottleneck links and a feasible rate allocation is max-min fair if and only

if all flows pass through at least one bottleneck link [21]. However, in our model, each

link has a minimum rate requirement to satisfy and it is not clear as to what is the

bottleneck in this case. Even if we could answer this question, the next important

question is how many bottlenecks are there in the system? Given that the max-min

fair set of rates exist, how do we compute them? We try to answer these questions in

this section.

In order to obtain the max-min fair schedule in our setting, we begin by formulat-

ing the LP to maximize the minimum common rate in all the links. The LP which
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maximizes the minimum common rate among the links is

r∗ = max
r,x

rmin (3.33a)

subject to r = Cx, (3.33b)

r ≥ rmin1, (3.33c)

1Tx = 1, (3.33d)

x ≥ 0. (3.33e)

We now have the following lemma leading to Theorem 3. Proof of Lemma 1 appears in

the appendix.

Lemma 1 If the link gains Glj are all non-zero, then the LP (3.33) which maximizes

the minimum common rate among the links results in all links getting the same rate r∗,

i.e., r∗ = r∗1.

Theorem 3 The solution x∗ obtained by solving the LP (3.33) is max-min fair.

The proof of Theorem 3 is immediate from the definition of max-min fairness. The
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Figure 3.8: Comparison between rates of the links under different settings

above two theorems can be used to show that the solution of the LP (3.33) leads to the

max-min fair rates. A similar result appeared in [50] as the solidarity property. From

Theorem 3, it is clear that solidarity property holds for a Gaussian interference model.

Figure 3.7 illustrates the solidarity property for the Gaussian interference model. The

solidarity property, however, does not hold for the multiple access model discussed in

Section 3.2.

We now find the proportional fair rate vector.

• Definition: A vector of rates r is proportional fair if it is feasible, i.e., Cx = r for

x such that 1Tx = 1 and x ≥ 0, and if for any other feasible vector r′, the aggregate of

proportional change is negative.

∑

i

r′i − ri

ri
≤ 0. (3.34)

In [51], Kelly proposed proportional fairness in the context of rate control for elastic

traffic. It can be shown that the proportionally fair vector is the one that maximizes

the sum of logarithms of the utility functions. Hence, to obtain the proportional fair
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rates, we solve the following non-linear optimization problem with linear constraints

max
r,x

∑

l

log rl (3.35a)

subject to r = Cx, (3.35b)

1Tx = 1, (3.35c)

x ≥ 0. (3.35d)

The objective function of the above non-linear optimization problem is increasing and

strictly concave. The constraint set is linear and hence the problem is a convex opti-

mization problem [49]. This implies that the problem has a unique global maximum

over the constraint set. The solution for such problems can be found out by gradient

search algorithms [52]. The comparison of scheduling schemes under different optimiza-

tion settings is shown in Figure 3.8. Notice that only in the case of maximum sum rate

with no minimum rate constraint, there exist links with zero obtained rate. In the case

of the max-min fair solution, all the links end up getting the same rate. We observe

that proportional fair rates depend on the topology of the links and strike a balance

between high rates for some links and reasonable rates for disadvantaged links.

3.4.1 Equal time scheduling

In this section, we consider the schedule which provides equal time of activity for each

of the links in the network. This may be useful in cases like sensor networks when the

nodes have just sufficient energy to transmit some data and all the nodes should be

given equal priority in transmission of data. The solution of the following LP gives the

equal-time schedule:

max 1TCx (3.36a)

subject to Tx = τ1, (3.36b)

1Tx ≤ 1, (3.36c)

x ≥ 0. (3.36d)
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where, T is the binary matrix defined in Section 3.2 and τ represents the equal time

period of the schedule. Note that whenever the value of τ is very small, the transmission

mode whose activity vector is all zero is operated (i.e., none of the links are active).

When the value of τ is very high, the transmission mode whose activity vector is all

ones is operated (i.e., all the links are active).

3.5 Energy Efficient scheduling

In certain applications, it may be required that the schedule conforms to stringent

energy constraints in the network [53]. In this section, we study the energy efficiency

of the maximum sum rate schedule. In the sequel, we define energy efficiency formally

and modify the LP in Section 3.3 so that the energy efficiency of the schedule is more

than a certain threshold.

We first introduce the notion of energy efficiency in scheduling. From the definitions

in Section 3.2, the average power P̄l used by link l can be obtained as the time average

of the power used by link l in all the transmission modes. Hence,

P̄l =
∑

i

Pltlixi. (3.37)

We define the energy efficiency ǫl of a link as the ratio of the average rate obtained by

link l to the average power P̄l expended by the link. Hence,

ǫl =
rl

P̄l
. (3.38)

We can view the efficiency of a link as the data rate obtained per unit of power used in

transmission on the link. Note that the efficiency depends on the schedule x and that

ǫl is undefined if link l does not transmit during that schedule.

The highest efficiency of a link is attained when it transmits in isolation. We refer

to the modes corresponding to a link l transmitting in isolation without interference

from other links as the link l singleton mode. If the system were to use only the link l
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singleton mode, link l obtains SINR (in fact SNR)

γ̄l =
GllPl

σ2
l

(3.39)

and efficiency

ǭl =
log(1 + γ̄l)

Pl
. (3.40)

For any schedule in which link l is active, its efficiency ǫl must satisfy ǫl ≤ ǭl since among

the all the transmission modes, the link obtains its maximum rate in the singleton mode

as there are no other interfering users that bring down the rate.

We are interested in obtaining efficient scheduling strategies which maximize the sum

rate in the links by ensuring that all links operate above a certain threshold efficiency

ǫ0, i.e., ǫl ≥ ǫ0 for all links l. Hence from (3.38),

∑

i

clixi ≥ ǫ0

∑

i

Pltlixi. (3.41)

Thus, equation (3.41) can be written in vector form as

Cx ≥ ǫ0PTx. (3.42)

The energy efficient scheduling problem can be presented as the LP:

max
r,x

1T r (3.43a)

subject to r = Cx, (3.43b)

r ≥ rmin1, (3.43c)

r ≥ ǫ0PTx, (3.43d)

1T x ≤ 1, (3.43e)

x ≥ 0. (3.43f)

where (3.43c) represents the minimum rate constraint and (3.43d) is the efficiency
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constraint. Rewriting the LP (3.43) in terms of the variable x only, we get

copt(rmin, ǫ0) = max
x

1TCx (3.44a)

subject to Cx ≥ rmin1, (3.44b)

(C − ǫ0PT)x ≥ 0, (3.44c)

1Tx ≤ 1, (3.44d)

x ≥ 0. (3.44e)

We now consider the special case rmin = 0 when there is no minimum rate requirement

for any of the links. Before proceeding, we observe that cli = 0 if and only if tli = 0.

Thus for sufficiently small efficiency threshold ǫ0, C − ǫ0PT is a nonnegative matrix.

In this case, the constraint (3.44c) is inactive in that it is trivially satisfied for all

nonnegative x.

In the absence of the efficiency constraint, as discussed in Section 3.3, the optimal

schedule for the problem (3.10) with rmin = 0 is to operate only a transmission mode

d with maximum sum rate. The optimal objective value is the maximum column sum

of the rate matrix C. We refer to mode d as the dominant mode and we denote by

x̂ = [0 · · · 0 1 0 · · · 0]T the schedule that supports exclusive use of mode d. In addition,

we use D to denote the set of active links in the dominant mode. For links l ∈ D, we

use ǫ̂l to denote the efficiency of the link under the schedule x̂.

When the efficiency threshold ǫ0 satisfies

ǫ0 ≤ ǫ̂ = min
l∈D

ǫ̂l, (3.45)

all links in the dominant mode will meet the efficiency constraint under schedule x̂. In

this case, schedule x̂, corresponding to exclusive use of the dominant mode, remains

optimal. When the efficiency threshold ǫ0 passes ǫ̂, the optimal schedule may continue

to employ the dominant mode, but other modes also must be scheduled to boost the

efficiency of the least efficient links in the dominant mode. Eventually, the scheduling

becomes infeasible when ǫ0 exceeds ǭ = maxl ǭl, the maximum efficiency in a singleton
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Figure 3.9: Set of five links each of length d = 10.

mode.

Depending on the geometry of the links, the dominant transmission mode can be

a single active link or a collection of geographically separated links. However, the ge-

ographic separation of links that is typically associated with the dominant mode is

consistent with those links in the dominant mode having high efficiency. The conse-

quence is that enforcing an efficiency constraint typically has little impact until the

efficiency constraint is very stringent.

When we impose a non-zero minimum rate rmin on all links, the optimal schedule

may change. Once again, for small values of the threshold ǫ0, the efficiency constraint

is inactive. Increasing the threshold ǫ0 gradually eliminates modes in which links are

active in the presence of significant interference. For high values of ǫ0, the system tends

to use the high-efficiency singleton modes, although this can have a significant penalty

in terms of the sum rate.
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Figure 3.10: Variation of sum rate with efficiency ǫ

3.5.1 Simulation Results

We now illustrate energy efficient scheduling using our example network shown in Fig-

ure 3.9. In the case of maximum sum rate scheduling with no minimum rate constraint,

for a fixed ǫ0 = ǫ, the transmission mode with the highest sum rate is chosen. The links

which are not a part of the dominant transmission mode are not operated at all. As

we increase ǫ, the sum rate remains constant until a certain threshold value, say ǫth.

The value of ǫth is the efficiency of the weakest (in terms of link quality) link in the

dominant mode. For ǫ > ǫth, single link modes corresponding to some of the links in

the dominant mode are operated in order to satisfy the efficiency constraints on those

links. The variation of sum-rate with ǫ is shown in Figure 3.10.

In the case of maximum sum rate scheduling with non-zero minimum rate constraint,

we see that more than one transmission mode is operated since there is a minimum

rate requirement for each link. As with the case with zero minimum rate constraint,

for a given degree of fairness (i.e., a specified rmin), there is relatively little penalty for

requiring efficiency, until the breakpoint where the required efficiency approaches the
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Figure 3.11: Variation of rates of individual links with efficiency ǫ for rmin = 0.5

efficiency of the link in isolation. For larger values of rmin, the efficiency of the single

link modes decreases. This is illustrated in Figure 3.10.

Notice that for non-zero rmin values, there is some loss in sum rate because of the

fairness introduced by rmin. However, similar to the case when rmin = 0, when ǫ0 crosses

a threshold, the penalty is sum rate increases as efficiency increases.

Figure 3.11 shows the variation of rates of individual links with the efficiency. For

lower values of ǫ, the dominant mode {1, 4} is operated to maximize the sum rate and

the links which are not a part of the dominant mode are scheduled for just enough time

to satisfy their minimum rate constraint. When higher efficiency is required, the rates

of links in the dominant mode reduces until the singleton modes are not efficient any

more.
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Figure 3.12: Variation of rates of individual links with efficiency ǫ for rmin = 0.5

3.6 A unified framework for centralized scheduling

There may be cases in a heterogenous network where the nodes of the network have

various rate and efficiency requirements. In this section, we present the unified op-

timization problem for the spectrum server which obtains the desired schedule when

some links have minimum rate requirements and some of the links come with a fixed

energy efficiency constraint. Let us define the matrix

E = diag(ǫ1, ǫ2, . . . , ǫL). (3.46)

Note that for those links for which ǫl = 0, there is no constraint on the energy efficiency.

We now present the optimization problem for the case when there are heterogenous
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requirements for the nodes in the network.

max f(r) (3.47a)

subject to r = Cx, (3.47b)

r ≥ rmin, (3.47c)

r ≥ EPTx, (3.47d)

x ∈ X . (3.47e)

where in (3.47c), the rate vector rmin may contain zeroes to reflect the absence of a

strict rate requirement for specific users and in (3.47d), the energy efficiency constraint

of each link is captured. If E is a zero matrix, then above problem (3.47) reduces

to the maximum sum rate schedule and if rmin = 0, then the problem reduces to

energy efficient scheduling discussed in Section 3.5. The objective function f(r) is

assumed to be a concave, non-decreasing function of the rate vector r. For example,

if f(r) = mini ri, then the solution to (3.47) is the maximum common rate schedule.

If f(r) =
∑

i log(ri), then (3.47) gives the proportional fair rates. Figure 3.12 shows

the variation of the individual rates in the links with efficiency when the minimum rate

requirement is different. In this particular setting, there is no efficiency constraint on

the links 2 and 5.

3.7 Towards a distributed algorithm - Random scheduling

The centralized scheduling strategies that have been presented thus far, require infor-

mation about all the links to be available at the spectrum server. There are many

reasons why such a centralized scheduler may be difficult to implement in a real world

situation, including:

1. Complete information about all the links and their channel gains should be known

to the spectrum server to solve the scheduling problem precisely.

2. If the number of the links increases, the size of the LP increases exponentially.
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Figure 3.13: Comparison of the average rates obtained by equal time scheduling and
random probabilistic scheduling.

3. The exchange of information between the centralized spectrum server and the

individual transmitters may not be an easy task.

Hence, a distributed algorithm to implement these scheduling schemes would be a desir-

able solution. Towards that end, we consider a simple distributed scheduling mechanism

called the random scheduling scheme.

In this scheme, time is slotted and each link l turns itself on or off based on a fixed

probability pl, independent of the other links. Depending on the interference from the

other links, the instantaneous rates in all links are obtained. This simple on-off scheme

is completely distributed in the sense that the interference gains between any two links

need not be known to any other link. Though this random scheduling scheme is easy

to implement, to get better sum rates, it is required to optimize over the probabilities

of the activity of each link. It may not be possible to obtain all possible rates that are

attained by the centralized scheme.
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In Figure 3.13, we compare the rates obtained by the random scheduling and equal

time scheduling strategy. We see that the rates of some of the individual links in the

random scheduling scheme are close to those obtained by the equal time scheduling

scheme, especially in the dominant mode. This motivates the need to look for dis-

tributed scheduling algorithms that can achieve the various fairness criteria discussed

here in the context of centralized scheduling. In [54], we compare the throughput re-

gions of centralized scheduling and a probabilistic random access scheme, wherein in

each slot, a link is active with a fixed probability chosen independent of other interfering

links. We observe that for the case of two interfering links, the probabilistic scheme does

not suffer any loss in the rate region relative to the centralized scheme if the interference

between the links is sufficiently low. For more than two interfering links, the charac-

terization of throughput rate region for the probabilistic scheme becomes intractable

and similar observations are not easily forthcoming. However, we give a distributed

algorithm where each link independently updates its transmission probability based on

its measured throughput to achieve any desired feasible rate vector in the throughput

region of the probabilistic scheme and prove its convergence.

3.8 Conclusion

We introduced the notion of a spectrum server, which allocates a schedule for a set

of links in a wireless network, which is modeled as a directed graph. The problem

of maximizing the sum rate in all the links subject to minimum rate constraints and

energy efficiency constraints was posed as a linear program. With knowledge of the link

gains in the network, the spectrum server scheduled the on/off periods of the links so

as to maximize the sum rate and/or satisfy constraints on link fairness and efficiency.

We provided two classes of schedules — one which maximizes the sum rate subject to

minimum rate constraints in the link and the other schedule which maximized the sum

rate subject to fairness and efficiency constraints. We also derived the schedule that

maximized the common rate. We introduced equal time scheduling as a special case of

fair scheduling. In the special case when there was no minimum rate constraint, varying

the efficiency constraint caused the optimal policy to vary from from a fixed dominant
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mode with highest sum rate being operated all the time to time sharing among singleton

modes in which just one link is active.

3.9 Appendix

Proof of Lemma 1:

Let r∗ be the optimal value of LP (3.33) which maximizes the common minimum

rate. Let x∗ be the optimal schedule corresponding to the of active transmission modes

T ∗ = {i ∈ T : x∗
i > 0}. Note that the idle transmission mode with the all zero

activity vector would never be a part of T ∗ because, if it were, we can improve the

rates of links in L2 and this contradicts that r∗ is the optimal solution of (3.33). It is

required to prove that at optima, the rate vector Cx = r∗1. We assume the contrary

that the solution to (3.33) leads to unequal rates over the set of L links. We can then

partition the sets of links E into two disjoint non-empty sets L1 = {l ∈ E : rl > r∗}

and L2 = {l ∈ E : rl = r∗}. This in turn induces a partition on the set T ∗ of all active

transmission modes for the optimal solution into three disjoint sets T ∗
1 , T ∗

2 and T ∗
3 such

that

T ∗
1 = {i ∈ T ∗ : til = 0, for all l ∈ L2}, (3.48)

T ∗
2 = {i ∈ T ∗ : til = 0, for all l ∈ L1}, (3.49)

T ∗
3 = T ∗\{T ∗

1 ∪ T ∗
2 }. (3.50)

T ∗
1 and T ∗

2 contain active transmission modes which consist of links only from L1 and

L2 respectively, and T ∗
3 contains transmission modes which consist of links in both L1

and L2. We consider two cases below.



77

3.9.1 Case (i): T ∗
1 is non-empty

There exists an active transmission mode i ∈ T ∗
1 consisting of links only from L1.

Consider the mode i′ with activity vector ti′ given by

tli′ =







1, for all l ∈ L2,

0, otherwise.
(3.51)

All the links from the set L2 are active under mode i′. Therefore, cli′ > 0 for l ∈ L2.

In the optimal schedule x∗, we know that x∗
i > 0 but x∗

i′ may be zero. The rate in link

l under schedule x∗ is rl =
∑

k clkx
∗
k. Define for some fixed ǫ1 > 0, the schedule

x̂ = [x∗
1 . . . x∗

i − ǫ1 . . . x∗
i′ + ǫ1 . . . x∗

M−1]
T . (3.52)

For sufficiently small ǫ1, the schedule x̂ will be feasible. Now, for l ∈ L2, the rate r̂l

due to schedule x̂ is

r̂l =
∑

k

clkx̂k = r∗ − cliǫ1 + cli′ǫ1 (3.53)

Since cli′ > 0 and cli = 0 for l ∈ L2,

r̂l = r∗ + cli′ǫ1. (3.54)

Thus, we conclude that r̂l > r∗, l ∈ L2. Note that ǫ1 needs to be chosen such that

for all l ∈ L1, r̂l > r∗. The choice of ǫ1 such that cliǫ1 < minl∈L1
rl − r∗ ensures that

r̂l > r∗ for l ∈ L1. We can thus improve the rates in all links in L2. This contradicts

the optimality of r∗. We denote this step as Increase(1).

3.9.2 Case (ii): T ∗
1 is empty

In this case, if T ∗
3 is empty, then T ∗ = T ∗

2 and hence all rates are equal, and the proof is

complete. Thus we consider only the case of T ∗
3 being non-empty. For an active mode

j ∈ T ∗
3 , there exist non-empty subsets of L1 and L2, namely M1 and M2 such that the
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activity vector tj is given by

tlj =























1, l ∈ M1 ⊆ L1,

1, l ∈ M2 ⊆ L2,

0, otherwise.

(3.55)

Consider the mode j′ for which the activity vector tj′ is given by

tlj′ =







1, if l ∈ M2,

0, otherwise.
(3.56)

We have assumed that all link gains Glj are non-zero, that is there is lesser interference

for links in M2 in mode j′ than in mode j due to a lesser number of active links in

mode j′. Thus for links l ∈ M2,

clj =
GllPl

∑

k∈M1∪M2,k 6=l tkjGlkPk + σ2
l

<
GllPl

∑

k∈M2,k 6=l tkj′GlkPk + σ2
l

= clj′ . (3.57)

Since j ∈ T ∗
3 , x∗

j > 0. For some ǫ2 > 0, we define a feasible schedule

x̂ = [x∗
1 . . . x∗

j − ǫ2 . . . x∗
j′ + ǫ2 . . . x∗

M−1]
T . (3.58)

Under schedule x∗ and x̂, link l obtains rate rl =
∑

k clkx
∗
k and r̂l =

∑

k clkx̂k respec-

tively. Thus, the difference

r̂l − rl = (x̂j − x∗
j′)clj′ + (x̂j − x∗

j)clj = ǫ2(clj′ − clj). (3.59)

It follows from (3.57) that r̂1 − rl > 0 for l ∈ M2. Let us call this step Increase(2).

Since L2 is a finite set, repeatedly applying Increase(1) or Increase(2) on L2\M2,

we can increase the rates of all the links in L2. This contradicts the optimality of r∗.

The proof is complete since both cases contradict the fact that the optimal solution

leads to unequal rates in the links. �
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Chapter 4

Cross Layer Scheduling in Multihop Networks via a

Spectrum Server

In this chapter, we extend the framework described in the previous chapter to the case

where the message from a node has to traverse through multiple nodes in the network.

Traversing through multiple nodes in the wireless network may be a desirable feature

since the source may transmit with lesser power to the neighboring node, thus relaying

the message via other nodes in the network. This reduces the total interference in the

network and allows for other simultaneously reliable transmissions in the network.

4.1 Cross-layer Resource Allocation of End-to-End Flows

Figure 4.1 shows a multihop wireless network transporting data from the source (node

1) to the destination (node 6) in a series of hops. In general, a network could have

many simultaneously active sessions, each specified by an origin-destination pair. Each

session may split its traffic into multiple flows through distinct routes in the network.

For instance, Figure 4.1 shows the session from node 1 to node 6 split into two flows f1

and f2 through the network. The sessions may individually demand QoS requirements

such as minimum average rate, maximum peak rate, limited delay, bounded jitter etc.

In order to satisfy the QoS guarantees, each layer in the protocol stack optimizes a set

of utility functions in view of achieving the global objectives (QoS agreements) across

the network. For instance, the network layer specifies the appropriate routes for the

individual flows in the network. The decision to choose a particular route may be

based on some metric chosen according to the QoS requirements of each session. In

most cases, the routing metric is a function of the service delays and the average rates

supported by the links. Moreover, the routing decisions may have to be updated in
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Figure 4.1: An example of a simple multihop network. The solid arrows are instances
of links in the network and dotted lines show a flow through the network

regular intervals of time to account for the variation of the parameters in underlying

layers.

The MAC/PHY layers solve the resource allocation problem. These layers specify

the rate and power allocation, transmission strategy and schedule for links in the net-

work. The power allocation strategy on a link depends on the channel conditions (its

knowledge or lack thereof at each transmitter node), constraints on the transmission

power due to device limitations and the overall interference of other transmitters in its

neighborhood. The instantaneous rate obtained in a link depends on the underlying

channel propagation parameters, modulation and coding scheme used at the transmit-

ter, signal processing employed at the receiver and the interference in the neighborhood

of the receiver. In general, a MAC scheme specifies a set of rules for transmissions in

the network. The choice of rules depend on the amount of resources allocated to the

links in the network. Addressing the resource allocation problem in the MAC/PHY

layer taking into account all these variables can be mathematically intractable [55,56].

Many individual aspects in different layers of a multihop network have been ad-

dressed by the research community by making simplifying assumptions on the rest of

the network. In particular, there have been numerous advances in the physical layer

technologies over the past two decades — adaptive modulation, reliable coding schemes

(e.g., LDPC codes, turbo codes etc.), hybrid ARQ schemes, OFDM, MIMO processing,

cooperative diversity schemes, multiple access techniques, multiuser diversity schemes

to name a few. However, most of the cross-layer design approaches addressed in the
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literature make simple and specific assumptions on the underlying physical layer tech-

nology. As a result, the impact of these advanced physical layer techniques is not very

well understood in a practical setup of a multihop network supporting end-to-end flows.

To the best of our knowledge, a unified cross-layer design framework encompassing all

physical layer technologies has not previously been proposed.

4.1.1 Related Work

Optimization-based cross-layer resource allocation in wireless networks has been an

active area of research and has been studied in different settings (see [48] and the

references therein). Since the link rates in a wireless network may vary depending on the

various power allocation policies, the set of feasible link rates is a non-convex set. Hence

the scheduling problem is typically a non-convex problem. Thus, providing analytical

solutions to such cross-layer problems is often difficult [46]. In [57], the authors pose a

problem to optimize the source data rates so that they match the link rates to maintain

stability of all queues in the network. The solution decomposes to a congestion control

component and a scheduling component, with the queue length information as implicit

costs. Although the congestion control problem can be solved in a distributed fashion,

the scheduling problem is a global optimization problem of high complexity. Some

authors [41,43] consider power control as against variable rate transmission while jointly

optimizing routing and scheduling decision across layers. Other works [58–60] consider

the protocol model [37] in which the neighboring interferers are not allowed to transmit

and each transmission yields a fixed rate in the link. These models correspond to strict

layering of the protocol stack and such models are easily amenable to results from fixed

wireline networks. In [61], the authors present the SRRAS (simultaneously optimal

routing, resource allocation and scheduling) problem and propose a nonlinear column

generation technique to reduce the complexity of the scheduling problem. We present

a model similar to [61], with an emphasis on unification of a wide variety of physical

layer models and understand the effect of some physical layer techniques, e.g., successive

decoding techniques on cross-layer routing and scheduling.

This paper extends our earlier work [62,63] to a centralized cross-layer optimization
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framework in which we separate the functionalities of network layer and the MAC/PHY

layers. Studies employing similar models can be found in [43, 61, 64, 65]. We describe

the relationship of our work with [64] in Section 4.3.3. In our work, we assume that

the network layer specifies the set of all feasible routes in the network. Together with

the instantaneous rates that can be attained in the network for different configurations

of active links, the spectrum server computes a set of flows and a series of feasible

schedules of link transmissions that make up the routes for the flows. A key feature

of the framework is a physical layer model that constitutes an enumeration of a set

of instantaneous attainable rates each for a given transmission mode of the system.

We optimize the schedule of transmission modes in the network to maximize a utility

function that may include throughput and fairness objectives. Special cases of the model

include in-band interference between the links, successive interference cancellation at

the link receivers, and multiple antennas at the link transmitters and receivers.

4.2 System Model

In this section, we present the physical layer model followed by the network layer flow

model. We start with a summary of the notation used in this paper. We use boldface

lowercase characters for vectors and boldface uppercase for matrices. If a is a vector,

aT denotes its transpose and aTb =
∑

i aibi represents the inner product of the vectors

a and b. We denote the (i, j)th element of a matrix X as [X]ij . Consider a wireless

network with N nodes forming L links sharing a common spectrum. The network

can be represented as a directed graph G(V, E), where the nodes in the network are

represented by the set of vertices V of the graph and the logical links are represented

by directed set of edges E .

4.2.1 Physical Layer and Interference Model

We use the physical layer model with transmission modes described in the previous

chapter. The model has the following two benefits:

1. The model is quite general and it covers various physical layer transmission and
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Figure 4.2: Graph of a network: (a) Nodes and the directed links (b) Illustration of
transmission mode t=[1 0 1 0 0] in which links 1 and 3 are active

signal processing schemes, and

2. The model captures all the necessary information, that the higher layers can make

use of to base their optimization decisions upon.

Recall that T = {0, 1, . . . ,M − 1} denotes the set of transmission modes of a network,

where M denotes the number of possible transmission modes. Then the mode activity

vector tk of mode k ∈ T is a binary vector, indicating the on-off activity of the links.

If tk = (t1k, t2k, . . . , tLk) is a mode activity vector, then

tlk =







1, link l is active under transmission mode k,

0, otherwise.
(4.1)

Note that not all M modes may be valid for transmission depending on the constraints

on the system. For instance, since the links share a common spectrum, the transmitter

and receiver in a node operate in the same channel. Hence the node cannot transmit and

receive simultaneously because of self-interference. Figure 4.2 shows a representative

network and a particular transmission mode for the set of links.

We also recall the rate vector in links,

r = Cx, (4.2)
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where C is a L × M matrix with non-negative entries [C]li = cli, r is a real vector of

length L and x is a real vector of length M . Embedded in the matrix C are the rates

obtained in each link l as a part of transmission mode with simultaneous transmissions

on multiple links.

For our analytical model, we optimize these average rates per frame by specification

of the time fractions in x, without explicitly specifying the precise slots assigned to

each mode. We denote the set of all feasible schedule vectors by

X = {x : 1Tx = 1,x ≥ 0}. (4.3)

We note that this model allows for consideration of a large class of physical layer in-

teractions. We observe that all necessary aspects of transmitter and receiver technology

are embedded in the rate matrix C.

4.2.2 Traffic flow model

The traffic model we consider is similar to the multi-commodity flow model discussed

in [51]. We work with average rates on the links and assume a fluid flow model for

the routing problem. We also assume that each node in the network has infinite buffer

and sources have an infinite backlog of data to send through the network. We assume

that the network consists of K sessions. A session is the end-to-end data originating

at a source node in the network and ending at a destination node. A session may be

split into multiple flows that travel through different routes in the network. A route

r is a sequence of links forming a path in the graph G of the network. Let there be

R possible routes in the whole network. We assume that the routes are known at the

network layer. The routes in the network are specified by the L × R matrix A with

entries ∈ {0, 1}, where

[A]lr =







1, if link l is a part of route r,

0, otherwise.
(4.4)
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Figure 4.3: Graph of network showing the nodes and directed links. The session is
split into two flows f11 and f21. f11 flows through links (1, 2) and (2, 3) while f21 goes
through (1, 3).

Let fjk, j = 1, . . . , R, k = 1, . . . ,K be the flow corresponding to the kth session in the

jth route. If Rl denotes the set of routes passing through the link l, we can write the

expression for the rate in link l in the session k as

rlk =
∑

j∈Rl

fjk = aT
l fk, (4.5)

where fk = [f1k f2k · · · fRk]
T is the vector of flows for the kth session, k = 1, . . . , N ,

and aT
l is the lth row of A. Let rk = [r1k r2k · · · rLk]

T , we can then write the link rate

vector equation from (4.5) as,

rk = Afk. (4.6)

Thus the aggregate rates through links l = 1, 2, . . . , L are given by

r =
∑

k

Afk. (4.7)

Let us consider an example in Figure 4.3. There are L = 3 links in the network.

Consider a single session (K = 1) originating at 1 and ending at 3. There are two

routes in the network for this session, i.e., R = 2. Let the session be split into two flows

of rates f11 and f21 along the two routes. If f1 = [f11 f21]
T is the flow vector for this



86

session, then the rate vector in the links is given by

r1 =













r11

r21

r31













=













1 0

1 0

0 1

















f11

f21



 . (4.8)

The sum of the flows f11 + f21 gives the total end-to-end session rate.

Given the routes in the network, we will be interested in maximizing
∑

k Uk(fk), the

sum of utility functions of the rates in each session, where Uk : R+ −→ R+ is a non-

negative, concave, non-decreasing function that is twice differentiable. The optimization

problem for maximizing the sum of utility functions of the rates in each session can be

posed as the mathematical program:

max
x, fk

∑

k

Uk(fk) (4.9a)

subject to r = Cx, (4.9b)

r ≥
∑

k

Afk, (4.9c)

x ∈ X , (4.9d)

fk ≥ 0, k = 1, . . . ,K. (4.9e)

In the above LP, some of the entries in the vector fk are zero since some of the flows are

not part of some routes. If the utility function Uk(fk) =
∑

j αkjfjk, where αkj represent

the weights for flows, then (4.9) maximizes a weighted sum of end-to-end flows of ses-

sions. We then get a linear program that can be solved using standard techniques [66].

If Uk(fk) = wk log(1T fk), then (4.9) solves for the weighted proportional fair rates of

the flows. More general forms of utility functions for elastic traffic corresponding to

various fairness objectives are given in [67].

The optimization problem described in (4.9) is a cross-layer optimization problem

where, the average rates in the links at the MAC/PHY layers are specified by time

schedules. Constraints (4.9b) and (4.9c) imply that the sum of the flows in each link l

is upper bounded by an average rate rl given by the link schedule determined by the
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d1 2 3 4 5

Figure 4.4: Linear network of 5 nodes, with inter-node distance d. The network has 10
links. A session originating at node 1 and terminating at node 5 is shown. The session
can take 8 distinct routes in the network.

MAC/PHY layers. The spectrum server solves the cross-layer routing and scheduling

problem, specifying the amount of flow carried by each route to match the average

link rates. This is in contrast with the model described in [51], each link has a fixed

finite capacity and this problem is solved at the network layer only. The result of

the optimization program (4.9) is a set of transmission modes along with the time

fraction of operation of these modes (solution to the scheduling problem) and the flows

in each route. Appropriate activity of the modes makes the transport of end-to-end

flows possible.

4.3 Simulation Results

In this section, we discuss simple illustrative examples to learn certain performance

aspects of a multihop network by exercising the model described in the previous sections.

We consider a linear network of five nodes as shown in Figure 4.4, each node separated

by a distance d from the other node. We label the nodes 1 through 5. These nodes form

the vertices V of a complete graph G. Thus, there are 5C2 = 10 links in the network.

Each node may be able to transmit to any other node in the network in just one hop.

We assume that the transmissions are half duplex, i.e., nodes cannot transmit and

receive simultaneously. Because of the half duplex constraint, the links that transmit

in any slot should not contain any common vertex. The number of such sets of links

is given by the number of edge independent sets of the graph G. Thus, the number of

transmission modes in this network is equal to the number of non-trivial matchings in

the graph G, i.e., 25.

We consider the physical layer to be a Gaussian interference channel. We run
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the experiments assuming a bandwidth of 20 MHz. The wireless propagation model

is taken to be the wideband PCS microcell model [68, Chapter 4] with a path loss

exponent equal to 2.8. The path loss at a distance d meters away from the transmitter

is given by PL = 38 + 28 log10 d dB. For example, the interference gains between the

transmitter of node 1 and the receiver of node 2 in Figure 4.4 is by G21 = 10−3.8/d2.8.

Using a receiver noise figure of 3 dB, the receiver noise power is σ2 = −104 dBm. The

transmit powers for all transmissions are fixed at 100 mW. The variation of rates due

to interference between the links are captured by the matrix C.

4.3.1 Maximizing sum of session rates in the network

We consider a single session, originating at node 1 and ending at node 5. Note that

there are 23 = 8 different routes in the network for this session, since the nodes 2, 3,

4 can either be a part of a route or not. The objective is to maximize the session rate

in the network. We thus use the objective function U(f) = 1T f . For any inter-node

distance d between the nodes, we can calculate the SINR for links in every possible

mode and then construct the matrix C for a fixed transmit power. By solving the LP

in (4.9), we obtain the routes and the schedule for the modes required to obtain the

optimal flows in these routes.

Figure 4.5 shows the variation of session rate with increasing inter-node distance d.

We compare the optimal value with the single hop and the four-hop flows. For small

values of d, the direct hop is the most optimal route. This also results in the highest

sum rate since the mode with the single link (1, 5) can be used. When d increases,

there is a four fold increase in the length of direct hop link. Hence the flow between the

OD pair decreases rapidly due to the path loss. As d increases further, the single hop

link is no more optimal and the flow takes more than one hop to reach the destination.

For very large values of d, the path loss is dominant and it is optimal to route to the

nearest neighbor. Table 4.1 shows the set of routes taken along with the time schedules

for the active modes of transmissions for some sample values of d.
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Figure 4.5: Variation of session rates as the inter-node distance d increases. Single
hop routing is optimal for smaller values of d and the four-hop route is asymptotically
optimal for large values of d.

4.3.2 Performance with successive interference cancellation at the re-

ceiver

We now explore the benefit of successive interference cancellation (SIC) at the receiver

node. We consider a session originating at node 1 and ending at node 5 as shown

in Figure 4.4. We add additional complexity only at the receiver node for a session

originating at node 1 and ending at node 5. In order to keep the scheduling complexity

low, we make use of an ideal interference canceler to cancel one other interferer that

transmits data to the receiver node 5. Thus, the receiver can decode two active flows

simultaneously. The average rates in the links are determined by the order in which

the links are decoded. The number of transmission modes in this case increases to 37.

We term the link with a higher received SINR as the stronger link and the link with

a lower received SINR as the weaker link. When the stronger link is decoded first, it

suffers interference from the weaker link and all other active links and thus achieves

a rate calculated using Equation (3.5). After the stronger link has been decoded, its
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Table 4.1: Schedules for the transmission modes for different inter-node distances when
single user decoding is used at the receiver

Inter-node Routes taken Transmission modes Mode

separation distance activity

d (in meters) time

10 1 → 5 1.0

130 1 → 3 → 5 0.5,

0.5

0.0251,

170 1 → 2 → 4 → 5, 0.1668,

1 → 3 → 4 → 5 0.3622,

0.0910,

0.3549.

0.0151,

250 1 → 2 → 3 → 4 → 5 0.2929,

0.3649,

0.3272.

interference to the weaker link is completely canceled out at the receiver and so the

weaker link suffers interference from all other active links except the stronger link. The

rate achieved by the weaker link is then calculated using Equation (3.5).

Figure 4.6 shows the variation of session rates with increasing distance between the

nodes of the network. When the stronger link is decoded first, followed by the weaker

link, successive decoding provides gains that are worth pursuing. While the gains for low

values of inter-node separation distance (0 < d ≤ 50) and higher inter-node separation

distance (150 < d ≤ 250) are not significant, moderate values of inter-node separation

distances (50 ≤ d ≤ 150) yield gains that are more pronounced. Transmissions in this

regime are more interference limited and hence interference cancellation helps. In the

case when the weaker link is decoded first, and its interference is canceled to decode
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Figure 4.6: Comparison of throughput gains due to successive interference cancellation
at the destination node

the stronger link, throughput gains are insignificant. This is because the average rates

do not improve due to cancellation of weaker interferers.

Table 4.2 shows the set of routes taken along with the time schedules for the ac-

tive modes of transmissions for some sample values of d, when successive decoding is

employed at the destination node.

4.3.3 Relation to Toumpis’s work

The transmission modes used in our work are similar to the transmission schemes used

in [64]. In [64], the author uses the tools of transmission schemes and rate matrices

(described in detail below) to identify the capacity regions of wireless ad hoc networks

under different transmission protocols. In the sequel, we identify the similarity of our

work with [64] and show that a simple extension of [64] can achieve our results, but

with more computational complexity.

First, we briefly describe the rate matrices used in [64]. For a network of n nodes,
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Table 4.2: Schedules for the transmission modes for different inter-node distances when
successive decoding (stronger link decoded first) is employed at the receiver

Inter-node Routes taken Transmission modes Fractions of time

separation distance modes are active

d (in meters)

10 1 → 2 → 5, 0.0893,

1 → 5 0.9107.

70 1 → 3 → 5, 0.305,

1 → 5 0.465.

230 1 → 2 → 3 → 5, 0.2111,

1 → 2 → 5 0.1640,

0.5449.

250 1 → 2 → 3 → 4 → 5 0.0151,

0.2929,

0.3649,

0.3272.

the rate matrix R(S) of a transmission scheme S is an n×n square matrix with entries

rij given by

rij =















































r, if node j receives information at rate r with node i

as the original information source

−r, if node j transmits information at rate r with node i

as the original information source

0, otherwise.

(4.10)

The rate matrices capture all the information needed to describe the states of the system

at a given time: namely, which nodes transmit or receive, at what rate, and from which

nodes the data originate. A time division of transmission schemes is described by the

weighted sum of the rate matrices with weights given by the time schedules. Given a
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Figure 4.7: A four node linear network. We consider two flows sharing the available
resources.

time-division schedule x1, x2, . . . , xN , the rate matrix is given by R =
∑N

i=1 xiRi, where

R1, . . . , RN are the rate matrices of the schemes S1, . . . ,SN .

We illustrate the similarity of our work with [64] using an example. For ease of

exposition, we consider a linear network of 4 nodes as shown in Figure 4.7. There are

two flows, one originating from the node 1 and terminating at node 4 and the second

originating at node 2 and terminating at node 3. In the simplest case, we would like to

maximize the sum of the two flows in the network. We will show how the methodology

in [64] can be used to perform the optimization and contrast with our framework.

We first enumerate the rate matrices as described by [64]. Let us denote the links

(1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4) as a, b, c, d, e and f respectively. We denote the

physical layer rate in the link x in the absence of interference as ru and in the presence

of an interfering link v as ruv where u, v ∈ {a, b, c, d, e, f}. Since, we use have multihop

routing with spatial reuse, we enumerate rate matrices for each end-to-end flow given

the constraint that any node cannot simultaneously transmit and receive. The following

is an enumeration of the rate matrices, assuming that a single flow originating from node

1 and terminating at node 4 exists in the network.

R1 =



















−ra ra 0 0

0 0 0 0

0 0 0 0

0 0 0 0



















;R2 =



















0 −rb rb 0

0 0 0 0

0 0 0 0

0 0 0 0



















;R3 =



















0 0 −rc rc

0 0 0 0

0 0 0 0

0 0 0 0



















;
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R4 =



















−rd 0 rd 0

0 0 0 0

0 0 0 0

0 0 0 0



















;R5 =



















0 −re 0 re

0 0 0 0

0 0 0 0

0 0 0 0



















;R6 =



















−rf 0 0 rf

0 0 0 0

0 0 0 0

0 0 0 0



















;

R7 =



















−rcd −rdc rcd rdc

0 0 0 0

0 0 0 0

0 0 0 0



















;R8 =



















−rac rac −rca rca

0 0 0 0

0 0 0 0

0 0 0 0



















;

R9 =



















−rfb −rbf rbf rfb

0 0 0 0

0 0 0 0

0 0 0 0



















.

If there were only one flow originating at node 2 and terminating at node 3 in the

network, the rate matrix is given by,

R′
1 =



















0 0 0 0

0 −rb rb 0

0 0 0 0

0 0 0 0



















.

The above matrices were formed assuming that the only one flow exists in the

network. If we allow both the flows in the network to coexist simultaneously, we need

to include additional 9 × 1 = 9 matrices to the number of matrices. Hence, we have

9 + 1 + 9 = 19 rate matrices in total.

In order to maximize the sum of flows shown in the Figure 4.7, we need to find the

optimal time-division schedule {x∗
1, x

∗
2, . . . , x

∗
N} such that rate matrix Ropt =

∑N
i=1 x∗

i Ri

(here N = 19). We can formulate the optimization problem as a linear program as
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shown below:

max r14 + r23 (4.11a)

subject to

19
∑

i=1

xiRi ≥ Ropt, (4.11b)

19
∑

i=1

xi = 1, (4.11c)

xi ≥ 0, i = 1, . . . , N, (4.11d)

where,

Ropt =



















−r14 0 0 r14

0 −r23 r23 0

0 0 0 0

0 0 0 0



















.

The above linear program in (4.11) can be easily solved by vectorizing the matrices. If

we denote the vectorized version of the matrix Ri as r̂i and the vectorized version of

Ropt as ropt, we can rewrite (4.11) as

max r14 + r23 (4.12a)

subject to

19
∑

i=1

xir̂i ≥ r̂opt, (4.12b)

1Tx = 1, (4.12c)

x ≥ 0. (4.12d)

If we collect the vectors r̂i, i = 1, . . . , 19 in a 16 × 19 matrix R̂, we have,

max r14 + r23 (4.13a)

subject to R̂x ≥ r̂opt, (4.13b)

1Tx = 1, (4.13c)

x ≥ 0. (4.13d)

The linear program (4.13) has v1 = 2 variables. The number of inequalities in
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(4.13b) are 16, and (4.13d) contains 19 inequalities. The constraint set is of size c1 =

16 + 1 + 19 = 36. The number of operations required to solve (4.13) is O(c3
1) [69].

In comparison, if we use the framework described in Section 4.2 to solve the same

problem, we can write the optimization program as below:

max f1 + f2 (4.14a)

subject to r = Cx, (4.14b)

r ≥ A(f1 + f2), (4.14c)

1T x = 1, (4.14d)

x ≥ 0, (4.14e)

fk ≥ 0, k = 1, 2. (4.14f)

The LP (4.14) has v2 = 2 variables. The number of equalities and inequalities in (4.14b)

and (4.14c) is 6. There are 9 inequalities in (4.14e) and 5 in (4.14f). Hence the size of

the constraint set is c2 = 6 + 6 + 1 + 9 + 5 = 27. The number of operations required to

solve (4.14) is O(c3
2).

Both (4.13) and (4.14) are linear programs but (4.13) has a higher complexity since it

has a bigger size of the constraint set. In contrast, the LP (4.14) using our framework

has a lower complexity since we decouple the physical layer and the routing layers

in (4.14b) and (4.14c). LPs using the framework in [64] grows exponentially faster

for increasing number of end-to-end flows and could limit computations to very small

networks.

4.4 Conclusion

In this work, we presented a cross-layer optimization framework for scheduling rates

and routing flows for end-to-end sessions in a wireless network. If the link gains are

known, the spectrum server provides the schedule that are a collection of time shared

transmission modes to achieve the end-to-end rates. The framework applies to a wide

variety of physical layer schemes in which the rates of individual links depend on a single
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transmitting configuration of links in the network. We illustrated the variation of the

session rates and the routes with the distance between the nodes with and without

successive decoding at the destination node. The resultant optimal routes and the

schedule of transmission modes give us an idea of how we can select routes when the

operates in a decentralized way. Gains from successive decoding, when viewed from the

end-to-end throughput perspective do not seem worthy enough. Finally, we observe

that, even for a simple example setting of a linear network, the routing decisions can

be complicated depending on the various rates in the links that can be obtained by

different forms of signal processing in the physical layer.
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Chapter 5

Conclusion

The results obtained in the first part of this dissertation gives some insights to practical

benefits to relaying in interference limited wireless networks. Chapter 2 dealt with

relaying in downlink cellular systems. We reported power savings and throughput

improvement when half-duplex relays are deployed. Although the work provides insights

into the order of gains due to relay deployments, further work is needed to assess the

exact gains in a real cellular network because the simulations were conducted over

idealized set-up. Some of the following issues require future work:

1. Propagation models for cellular relay networks

Experimental studies for propagation models for cellular relay systems are cur-

rently being conducted. However, since the physical specifications of relays are

not finalized, there are many empirical models in the literature. The propagation

characteristics could be completely different if the relays are placed above roof-

tops with line-of-sight communication to the base station, or if they are placed

below roof-tops without line-of-sight communication to the base station. A stan-

dard model is yet to be specified.

2. Practical coding schemes for implementing collaborative relaying

There is no known practical coding scheme that implements CPA scheme de-

scribed in Chapter 2. There have been studies to show the practicality of such

schemes [70]. Some attempts have been made [71–73], but there are quite a few

open questions [74].
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3. Low complexity schemes to find optimal order of base transmission

In the PC-CPA scheme, the base station employs a simple power control scheme

to target the users in order to satisfy the desired common rate. There could arise

a question as to why not target the relays? Or, depending upon the channel char-

acteristics the set of users and relays could be partitioned into two groups. The

base stations can target one group to get the desired target rate. The complexity

of these schemes grow exponentially and there are very few special cases where

these are addressed. A similar issue is the case when the transmission modes grow

exponentially in Chapter 3.

In the second part of the dissertation, we studied centralized scheduling strategies.

One of the important issues in that study is to find distributed algorithm to find the good

transmission modes of operation. The column generation approach followed in [61], is a

provably low-complex method to find good transmission modes. However, the column

generation technique is still a centralized approach. For distributed approaches, we had

explored a random access method in [54]. A recent study [75] proposes an adaptive

CSMA scheduling that can distributively achieve the maximal throughput [76]. How-

ever, for an physical interference model introduced in [54], a distributed scheduling

algorithm is still unknown. A future work is to find out ways to get good transmis-

sion modes and eventually find a distributed solution to the scheduling problem and

evaluated how well it performs when compared to the centralized solution.
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